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Abstract

This dissertation addresses electron acceleration and the associated betatron X-ray radi-
ation generated by laser wakefield inside dielectric capillary tubes. Focusing the state-
of-the-art multi-terawatt laser pulses, high peak intensity, of the order of 10'® W/cm?,
can be achieved in the focal plane, where a plasma bubble free of electron is formed just
behind the laser. Owing to space charge separation ultrahigh electric fields, of the order
of 100 GV /m, occur inside the plasma bubble, providing the possibility to accelerate elec-
trons up to GeV-class over merely a centimeter-scale distance. Furthermore, ultra-short
synchrotron-like X-ray radiation, known as betatron radiation, is produced simultaneously
when the accelerated electrons are transversely wiggled by the radial electric field inside
the plasma bubble. This thesis reports experimental results on the generation and opti-
mization of electron and X-ray beams, particularly when a capillary tube is used to collect
the energy of laser halos in the focal plane to facilitate the laser keeping self-focused over
a long distance.

The spatial distribution of gas along the axis of capillary tubes in the stationary state
was obtained by numerical fluid simulations, which demonstrate a stable, uniformly dis-
tributed gas medium is established between the two capillary slits. The temporal process of
gas filling into capillary tubes was characterized using a method based on a Mach-Zehnder
interferometer, which suggests in our gas filling arrangement the shortest valve opening
duration of 27 ms should be used for hydrogen gas in order to minimize gas leakage into
the vacuum target chamber.

Employing the 40 fs, 16 TW Ti:sapphire laser at the Lund Laser Centre (LLC) in
Sweden, either peaked or widely-spread accelerated electron spectra with a typical beam
charge of tens of pC were measured with a maximum energy up to 300 MeV in 10 mm long
capillary tubes. Meanwhile, betatron X-ray radiation consisting of 1-10 keV photons was
measured with a peak brightness of the order of ~ 102! photons/s/mm?/mrad?/0.1%BW,
which is around 30 times higher than that in the case of a 2 mm gas jet without external
optical guiding. When the laser pointing fluctuation is compensated, reproducible electron
beams are obtained with fluctuations of only ~ 1 mrad RMS in beam pointing, a few
percent in electron energy, and around 20% RMS in beam charge. Moreover, betatron
radiation is able to provide the diagnostics about electron acceleration process and average
number of betatron oscillations fulfilled by electrons inside the plasma bubble. The typical
X-ray source size (waist of Gaussian distribution at 1/e? intensity) is quantified to be
~ 2.5 pm using Fresnel diffraction induced by a razor blade, which furthermore yields the
corresponding normalized RMS emittance of electron beam e ~ 0.837 mm mrad. Three
dimensional particle-in-cell (PIC) modelings are in good agreement with the experimental
findings. The PIC simulations also indicate the generated electron bunches (or X-ray
bursts) have pulse durations as short as ~ 10 fs.






Résumé

Cette these porte sur le rayonnement X bétatron généré par des électrons accélérés par
sillage laser plasma dans des tubes capillaires diélectriques. En I’état actuel de la tech-
nologie des impulsions laser multi-térawatts, on peut produire des faisceaux ayant une
intensité créte élevée, de l'ordre de 10'® W/cm? dans le plan focal. Une telle impulsion
laser se propageant au sein d’un gaz sous-dense conduit & des phénomenes d’interaction
laser-plasma non-linéaires, tels que la création d’une bulle plasma, i.e. une bulle ne con-
tenant aucun électron, suivant le laser. La séparation spatiale des charges en résultant
crée des champs électriques tres élevés au sein de la bulle, de 'ordre de 100 GV /m, ce
qui offre la possibilité d’accélérer des électrons jusqu’au GeV aprés seulement quelques
centimetres d’interaction. En outre, un rayonnement synchrotron ultra-bref, appelé ray-
onnement bétatron, est produit lors de I'accélération des électrons puisque ces derniers,
soumis au champ électrique radial de la bulle plasma, ont une trajectoire oscillante. Cette
these présente des résultats expérimentaux sur la génération et I'optimisation de faisceaux
d’électrons et de leur rayonnement X, en particulier lorsque le tube capillaire est utilisé
pour recueillir I’énergie du halo laser dans le plan focal facilitant I’autofocalisation du laser
sur de longues distances.

La répartition spatiale du gaz, a I’état stationnaire, le long de I’axe du tube capillaire a
été déterminée grace a des simulations numériques d’écoulement de gaz. Elles démontrent
qu’un gaz stable et uniformément distribué remplit le capillaire entre ces deux fentes. La
dynamique de remplissage du tube capillaire par le gaz est caractérisée par une méthode
basée sur un interféromeétre de Mach-Zehnder. Elle suggeére, pour notre dispositif expéri-
mental, de minimiser les fuites de gaz vers ’enceinte en choisissant un temps d’ouverture
de valve de 27 ms lorsque du dihydrogene est utilisé.

Des faisceaux d’électrons de quelques dizaines de picocoulomb, avec une énergie max-
imale allant jusqu’a 300 MeV, et dont le spectre est soit piqué a haute énergie soit expo-
nentiellement décroissant, ont été produits dans des tubes capillaires de 10 mm de long
avec l'installation laser du Lund Laser Centre (LLC, en Suede) par une impulsion laser
de 40 fs d’'un 16 TW Ti: Saphir. Un rayonnement bétatron a également été mesuré, il se
compose de photons X dont ’énergie est comprise entre 1 et 10 keV et atteint une lumi-
nosité maximale d’environ 10?! photons/s/mm?/mrad?/0.1%BW. Cela équivaut & environ
30 fois 'intensité des faisceaux générés dans le cas des jets de gaz de longueur 2 mm ne dis-
posant pas de guidage optique externe. La compensation des fluctuations de pointé laser
permet de minimiser les fluctuations des propriétés du faisceau d’électrons. On obtient des
faisceaux d’électrons dont les fluctuations tir-a-tir sont de ~ 1 mrad en pointé, de quelques
pourcents en énergie et d’environ 20% RMS en charge. De plus, il a été montré que le
rayonnement bétatron pouvait étre utilisé pour caractériser le processus d’accélération
des électrons en caractérisant le nombre moyen d’oscillations bétatron effectuées par les
électrons a l'intérieur de la bulle plasma. La taille typique des sources de rayonnement
X (dimension pour laquelle intensité gaussienne est égale a 1/e? de la valeur créte) est
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estimée & ~ 2.5 pym en utilisant un modele de diffraction de Fresnel induite par une lame
de rasoir. Cela correspond a une émittance RMS normalisée pour le faisceau d’électrons
d’environ 0.837 mm mrad. Des simulations tridimensionnelles particle-in-cell (PIC) ont
été effectuées et confirment les résultats expérimentaux. Elles indiquent également que les
paquets d’électrons générés ainsi que les flashs X directionnels sont ultra-brefs : ~ 10 fs.
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Chapter 1

Introduction

1.1 Conventional accelerator and synchrotron radiation

Accelerators are devices which accelerate charged particles to energies from MeV to TeV-
scale. Nowadays accelerators play important roles in the development of science and tech-
nology. On one hand, the produced high energy charged particles have led to remarkable
progress in investigations concerning fundamental particle physics and quantum physics.
Therefore, ongoing research with accelerators operating at the energy frontier are strongly
chased by physicists driven by their thirst to explore unknown knowledge. Taking op-
portunity of these “super” accelerators, physicists hope to address the most fundamental
questions: the deep structure of space and time, how the universe started and evolves,
and many interesting issues in the domains of quantum mechanism and general relativity.
It may bring new transformations of our understandings about the universe and human
being. On the other hand, 99% accelerators in operation are actually related to societal
applications, for example, medical science, biology, fusion research, cancer therapy, and so
forth [1].

Looking at the Lorentz force, one can easily find that only the electric field does work
on charged particles while the magnetic field bends the trajectory. The first demonstration
of the concept of accelerator was based on high DC electrostatic field, typical of which
is the well known Van de Graaff accelerator [2]. Unfortunately, above a few MeVs the
use of electrostatic fields for accelerator is limited by a major engineering difficulty, the
breakdown of insulator subjected to high voltage. In order to circumvent this difficulty,
new mechanisms of acceleration were proposed employing radio frequency (RF) electric
field, with which much higher accelerating field can be applied before breakdown occurs
[3]. Most of the currently existing GeV-class high energy accelerators therefore utilize
RF fields. Typically they are composed by a series of RF cavities to accelerate charged
particles periodically, as illustrated in Figure 1.1(a). However again, the acceleration
gradient is still limited to less than ~ 50 MV/m by cavity breakdown [3]. Therefore,
accelerators with huge dimensions are built worldwide to produce charged particles with
energy up to GeV, or even to TeV range. As an example, the Stanford Linear Accelerator
(USA) is capable of accelerating electrons to 50 GeV over a 3 km long tunnel, as depicted
in Figure 1.1(b). Moreover, to be compact, the RF cavities are circularly arranged, while
using the magnetic field to rotate the charged particles, forming an accelerator called
synchrotron. The world’s largest and highest-energy synchrotron accelerator: the Large
Hadron Collider (LHC) locates at the border between France and Switzerland built by
the European Organization for Nuclear Research (CERN), will be able to boost protons
to the unprecedented energy as high as 7 TeV within a 27 km ring.
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(b)

Figure 1.1: (a) Schematic of electron acceleration by electric field inside RF cavities of
conventional accelerators. (b) Aerial view of SLAC' (built in Stanford, the USA) where the
linac accelerates electrons to 50 GeV over 8 km. Images reproduced from the websites of
DESY and SLAC.

In a synchrotron, high energy electrons are maintained by a large storage ring which
normally consists of several sections. In the so-called “beamline” section, the electrons are
bent by magnetic fields to produce electromagnetic radiation, losing energy, while in the
acceleration section, RF electric fields replenish them to high energy again. Therefore,
the electrons can be effectively used for a long time (typically several hours). In the third
generation synchrotron light sources, special insertion devices composed by hundreds of
periodic magnets (called “wiggler” or “undulator”) are used to enforce the flux of emission.
Therefore, it is not surprising that synchrotron light sources have large dimensions as
well. For example, the Soleil synchrotron facility located in the plateau of Saclay near
Paris employs a 350 m circumference ring to store and boost electrons to 3 GeV. One
of the three largest third generation synchrotron sources is the European Synchrotron
Radiation Facility (ESRF) built in Grenoble (France), where 6 GeV electrons run in a 844
m circumference ring, as shown in Figure 1.2. The synchrotron radiation holds attractive
properties [4]: high brightness (~ 10?! photons/s/mm?/mrad?/0.1%BW), high repetition
rates (kHz to MHz), wide tunability in photon energy (1-20 keV), short pulse duration
(tens of ps), and so on. The synchrotron lights bring renaissance of X-ray and benefit
lots of multidisciplinary fields: material sciences, condensed matter physics, biological and
medicine, to name a few.

Nowadays the ongoing fourth generation synchrotron sources, namely X-ray Free Elec-
tron Lasers [5], aim to produce ultrabright, coherent, time-structured hard X-ray pulses
for extremely demanding and also probably yet-to-be-conceived experiments. In this new
regime, a low-emittance relativistic electron bunch passes through a sufficiently long un-
dulator, where beam-wave interaction entails X-rays generated by the mechanism of self
amplified spontaneous emission (SASE) as what happens in a conventional laser [6]. The
Linac Coherent Light Source built at the SLAC (USA) produced the first lasing of the
fourth generation synchrotron source with X-ray wavelength as low as 1.5 A and unprece-
dented peak brightness of the order of 1032 photons/s/mm?/mrad?/0.1%BW [7]. Other fu-
ture facilities under construction are: the European X-ray Laser Project (XFEL) housed at
the Deutsches Elektronen-Synchrotron (DESY) in Hamburg (Germany), Spring-8 (SCSS)
in Japan, and the Fourth Generation Light Source (4GLS) at Daresbury Laboratory in
the UK. Those remarkable advances in synchrotron sources will open many new avenues
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Figure 1.2: Aerial photographs of (a) Soleil synchrotron light source (Plateau of Saclay,
France) which boosts electrons to 8 GeV in a 350 m circumference ring. (b) European
Synchrotron Radiation Facility (Grenoble, France) using 6 GeV electrons stored by a ring
with perimeter of 844 m. Images reproduced from the websites of Soleil and ESRF.

for scientific research which can not be realized before.

One coin has two sides. While the huge synchrotron accelerators offer plenty of new
opportunities, they become extremely expensive. Such large facilities are usually funded
by several countries under international projects. To have an idea: the budget of the
European XFEL project is 1.1 billion Euros shared by 13 nations [8]. In long terms,
if we expect charged particles with even higher energy in future, the size and cost of
accelerator would become prohibitive. In this context, physicists started to think about
the question: is there an alternative scheme to achieve energy frontier particles while
significantly reducing the sizes of the present RF accelerators and particularly their costs?

1.2 Plasma-based acceleration and betatron X-ray radiation

The energy gained by a charged particle in an accelerator is determined by the product of
accelerating gradient and distance. In order to reduce the accelerator size, the accelerating
gradient has to be increased. In order to overcome the limitation on accelerating gradient
by electrical breakdown in RF cavity, Tajima and Dawson first proposed to accelerate
electrons via plasma wave in 1979 [9]. The concept relies on the use of the ultrahigh
electric filed associated with charge separation in plasma. Electric fields of the order of
~ 100 GV/m can be sustained in an underdense plasma [10], which is three to four orders
of magnitude higher than that in the conventional RF accelerators.

Generally, the current plasma-based accelerators may be classified into two kinds ac-
cording to the mechanism of plasma wave generation. When the plasma wave is excited
by charged particle bunch(es) (electrons, or protons), it is called plasma wakefield ac-
celeration (PWFA) [11, 12, 13, 14, 15, 16, 17], while it is referred to as laser wakefield
acceleration (LWFA) if the plasma wave is driven by a laser pulse [9, 18, 19, 20, 21, 22].

In the PWFA, the Coulomb force due to the space charge effect of the driving beam
sets up a plasma wave which accelerates either an externally injected “witness” bunch or
part of the driving bunch itself. The basic concept of PWFA was introduced by Chen et al
in 1985 [11], and it was further developed to 2D nonlinear regime by Rosenzweig et al in
1991 [13]. It was also Rosenzweig and coworkers who for the first time tested the physics
of PWFA, where an accelerating field around ~ 1 MV/m was observed with a 21 MeV,
~ 2 — 3 nC electron bunch [12]. More recently, spectacular work was carried out at the
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SLAC (USA), where the energy of some electrons at the tail part of the driving bunch (43
GeV) was doubled to 85 GeV over a 85 cm long plasma medium [15]. The inferred peak
accelerating gradient reached ~ 52 GV/m. Even though the final electron bunch energy is
dominated by an exponential distribution, it is still impressive that one meter long plasma
gives the same energy gain as a 3 km long RF tunnel does.

Recently, the generation of plasma wave by proton beams was examined in simulation
[16, 23]. The authors demonstrate this scheme of proton-driven PWFA is capable of
scaling the energy gain of electrons up to the TeV range, which would be a significant step
forward towards the energy frontier of particle physics [24]. Notwithstanding, the main
drawback of PWFA is that PWFA relies on conventional RF accelerator, which contradicts
the ultimate motivation of developing plasma-based accelerators.

Electron trajectory

)

Plasma wave

Figure 1.3: Schematic of laser wakefield acceleration in the bubble regime. See more
details in Chapter 2.

In LWFA, plasma wave is excited by laser pulse. The ponderomotive force [25] as-
sociated with an intense laser pulse creates a plasma wave which can accelerate either
externally injected or self-trapped plasma electrons to relativistic energy. In their pioneer-
ing work [9], Tajima and Dawson proposed the scheme of plasma beat-wave acceleration
(PBWA) as an alternative to LWFA, since intense, ultrashort laser pulses were not avail-
able in 1979. In PBWA, two long laser pulses copropagate and excite a plasma wave, where
the beat frequency of the two laser drivers roughly matches the plasma frequency. Obser-
vation of plasma wave generation and electron acceleration in PBWA were demonstrated
by several groups[26, 27, 28, 29]. In those proof-of-principle experiments, the laser-driven
plasma waves accelerated electrons provided by external sources, because the plasma wave
is too weak to trap electrons from the background plasma. For example in Ref. [28], Ev-
erett et al injected a 2 MeV electron bunch into a plasma wave, and observed electron
acceleration with maximum energy gain of 28 MeV.

The emergence of short (<1 ps) ultraintense (>10'® W /cm?) laser beams, based on
the chirped pulse amplification (CPA) technology [30], stimulated laser-plasma acceler-
ator research to a new regime: self-modulated LWFA. As indicated by the name, in
self-modulated LWFA the laser pulse that propagates in a plasma experiences nonlinear
instability, which eventually modulates the driving laser into a train of resonant oscilla-
tions. The length of the laser oscillation equals plasma wavelength, so the modulated laser
excites a large amplitude plasma wave [31]. The self-modulated LWFA was extensively
investigated worldwide [32, 33, 34]. Particularly, in the experiments in Refs. [32, 33],
the accelerated electrons were trapped by the plasma waves from the background plasma
but not provided by external electron sources. The self-trapping happened when the
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plasma waves were driven to the threshold of wavebreaking. This finding was a significant
progress for LWFA | because it means LWFA does not necessarily rely on external injec-
tion of electrons. Hence, the experimental setup could be greatly simplified. Nevertheless,
the obtained electron energy spectrum was still Maxwellian-like with only a low number
electrons extending to high energy.

Subsequently, the developments in laser technology have made intense, ultrashort
pulsed laser (tens of femtoseconds, 10 W/cm?) readily available [35]. Along with deeper
understandings of the mechanism of LWFA in terms of simulation [36] and experiment
[10], a breakthrough in LWFA was achieved in 2004 when Mangles et al [37], Geddes et al
[38], and Faure et al [39] for the first time obtained spectrally peaked! electron bunches
in experiment. By matching the laser duration and plasma wavelength operating in the
so-called “bubble” (or “blowout”) regime, these three groups produced ~100 pC electrons
at an energy of ~100 MeV with energy spread of only a few percent. Due to the great
importance of spectrally peaked electrons for applications, this success is often viewed as
a milestone of the LWFA development. In 2006, the electron energy was boosted to ~ 1
GeV by guiding the laser pulse over a 3 cm long plasma channel [40].

Meanwhile new techniques were developed to improve the quality of electron bunch.
Employing a sophisticated laser colliding method, Faure et al achieved stable and energy
tunable relativistic electrons [41]. Staged acceleration which separates the processes of
electron injection and acceleration provides more tunability and controllability over the
produced electrons [42; 43, 44]. Novel plasma targets boomed the development of LWFA
as well. Adopting a gas-cell, Osterhoff et al generated stable high energy electrons [45].
Lately, Genoud et al demonstrated that dielectric capillary tube is able to assist laser
guiding over a longer distance than in a gas-cell [46, 47], which is beneficial for generating
higher energy electrons and more intense X-rays [48].

Diagnostics of the plasma wave and the electrons bunch also made tremendous pro-
gresses [49, 50, 51, 52]. Especially, two important parameters about the electrons, bunch
length and transverse emittance, have been finely characterized. In Refs. [51, 52], the au-
thors reported that the accelerated electron bunches were as short as a few femtoseconds,
while the measurements in Refs. [53, 54] show that the relativistic electrons possess nor-
malized emittance as low as < 17w mm mrad. Those high quality electrons are of great inter-
est for many scientific applications, such as the generation of ultrashort light pulses. In the
proof-of-principle experiment, the electrons obtained from a LWFA were sent to an external
undulator to generate visible to soft X-ray synchrotron radiations [55, 56]. The observed
X-ray peak brightness was of the order of 10'® — 107 photons/s/mm?/mrad?/0.1%BW.

Also in 2004, a breakthrough was achieved in ultrashort X-ray generation. Rousse et
al produced an X-ray pulse based on LWFA but not using an external wiggler [57]. In this
scheme, the radial eclectic field inside the plasma bubble forces the electrons to oscillate
transversely when they are accelerated. This oscillation, known as “betatron oscillation”,
produces an X-ray beam. The plasma cavity itself plays the role of accelerator and wiggler
together. This approach attracted a lot of interest, not only because it simplifies the
means of X-ray generation, but also because the produced X-rays hold striking properties:
ultrashort pulse duration in femtosecond scale and perfect synchronization to the pump
laser. More recently, performing in the highly nonlinear bubble regime ~10 keV X-ray
photons with peak brightness of 10?2 photons/s/mm?/mrad?/0.1%BW were achieved in
experiment by Kneip and coworkers [58]. The photon energy was later extended to the

'We do not use the word “quasi-monoenergetic”, as it is not clearly defined in the LWFA community.
Instead, “spectrally peaked” is used to describe the electron beam displaying a clear peak in the spectrum,
for which the energy spread around the peak energy can be defined.
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gamma-ray range by Cipiccia et al through enhancing the betatron oscillation amplitude
with laser electron modulation [59]. Furthermore, when a gas-cell or capillary tube is used,
betatron X-ray radiation offers an approach to visualize the process of electron trapping
and acceleration inside the plasma bubble [46, 60].

1.3 Objective and outline of the thesis

The objective of this work is to investigate laser wakefield acceleration of electrons and the
associated betatron X-ray radiation driven by a guided laser in dielectric capillary tubes.
While many laboratories around the world are pursuing higher and higher electron energy
using increasing laser power, our main goal is to improve the performances of LWFA by
utilizing capillary tubes.

The use of capillary tube in LWFA has been studied for more than a decade in our
group: Interaction et Transport de Faisceaux Intenses dans les Plasmas (ITFIP) at the
Laboratory of Physique des Gaz et des Plasmas (LPGP). In previous work [61, 62], a
~10'6 W /cm? laser pulse was guided by capillary tubes over 100 Rayleigh lengths, and
the diagnostic of linear plasma waves driven by ~10'7 W /cm? laser pulses in centimeter-
scale long capillary tubes was demonstrated. This thesis is especially devoted to exploring
the highly nonlinear bubble regime of laser-plasma interaction in capillary tubes with laser
intensity in the range of ~ 1018 — 10 W /cm?.

During the PhD study, many efforts were spent on designing a new system to control
gas filling into capillary tubes, and spatially and temporally characterizing gas density
evolution in capillary tubes in experiment and fluid simulation. This work was done at
LPGP. Two campaigns were performed at the Lund Laser Centre (LLC) in Sweden, where
the contributions of capillary tube to laser guiding, electron acceleration, X-ray generation,
beam stability, and the associated diagnostics were examined. The results obtained from
those experiments are discussed in this manuscript.

The thesis is organized as follows. Chapter 2 presents the main physics relevant
to laser wakefield acceleration of electrons, while the theories and calculations associated
with betatron X-ray radiation are given in Chapter 3. In Chapter 4, we show the
numerical and experimental characterizations of capillary tube in terms of laser guiding
and determination of gas density inside the capillary tubes. Chapter 5 introduces the
multi-terawatt laser facility at the LLC, and discusses the diagnostic methods conducted
to measure the data. The observed electrons, X-rays, and their stability are demonstrated
in Chapter 6. Finally, Chapter 7 summarizes the work presented in this manuscript.



Chapter 2

Laser wakefield acceleration

When an ultrashort intense laser pulse propagates in an underdense plasma, the associated
ponderomotive force drives a plasma wave, which is able to trap and accelerate some back-
ground electrons to ultrarelativistic energy. In this chapter, we present theoretical work
associated with the key issues of laser wakefield acceleration, including plasma wave gen-
eration, nonlinear laser propagation, electron trapping, beam loading, and so forth. We
also introduce the 3D nonlinear bubble regime and the related phenomenological scaling
laws.

2.1 Laser electron interaction

2.1.1 Laser

Laser wakefield acceleration (LWFA) [9] employs powerful ultrashort laser pulses at the
forefront of laser research and development, and LWFA has progressed significantly since
the implement of the CPA technology [30]. The electromagnetic field of laser is described
by Maxwell’s equations (See Appendix A.1). The laser pulse is usually modeled by Gaus-
sian functions in space and time as a good approximation of experimental profiles. The
electric field E' of such a bi-Gaussian laser beam propagates in vacuum along the z axis
is given by

Wo r’ (z — ct)?
Bl ~Erom | o [-em 5
- ’ (2.1)
xR {exp [’iwot —tkoz — ikom + iqu(z)} eJ_} ’

where E, is the amplitude of the electric field, wqy is the waist of the laser transverse
size in the focal plane (z = 0), ¢ denotes the speed of light in vacuum, and 79 is the full
width at half maximum (FWHM) pulse duration. kg = 27/\g and wg = cky represent the
wavenumber and angular frequency? of a laser light with wavelength Ag. The unit vector
e, indicates the polarization of the laser. For a laser linearly polarized in the x direction:
e, = e,; while for circular one: e; = 1/v2(e, + iey). In this thesis, we only consider the
case of linear polarization.

The propagation of the Gaussian laser pulse is fully characterized by the beam waist
w(z), the radius of curvature of the wavefront R(z), and the Gouy phase term 1)4(2).

The bold symbols are vectors.
2Note the difference in writing between laser beam waist wo and angular frequency wo.
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These parameters evolve along the z axis as

w(z) = wot/1+ (;)2,

R(z) = = [1 + (;)Q] , (2.2)

14(2) = arctan (Z) ,

ZR

where zp = w3 /)\o is the Rayleigh length which represents the length over which the
laser transverse area is doubled due to diffraction. The beam divergence in the far-field
(z > zR) is given by 0, ~ \g/mwy, as illustrated in Figure 2.1.
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Figure 2.1: Propagation of a Gaussian beam with wg = 1.3 um in vacuum at z = 0. The
laser wavelength is 0.8 um, corresponding to the Rayleigh length zp ~ 6.6 pm.

In some cases, it is convenient to describe the electromagnetic fields E and B in terms
of the scalar potential ® and the vector potential A to be

0A

E=-Vb -
v ot’ (2.3)

B=VxA.

Since the potentials defined by the above equations are not unique, the Coulomb gauge
V - A = 0 is often adopted to close the equations. Especially in vacuum ® = 0, both the
fields E and B depend only on the vector potential A.
In experiment, we usually measure the laser energy £ and pulse duration 7. The
laser power is calculated by
In(2) &, &p

P =2y R CL (2.4)
s T0 T0

The corresponding peak laser intensity in the focal plane is

2P 2&
Ip= g o (2.5)

Through Equation 2.5, one can assess the peak amplitude of the laser electric field via the
definition of laser intensity

CEQ

IL :C2€0<EX B> = B)

EP”, (2.6)
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where g9 = 8.85 x 10712 F/m is the permittivity of free space.

2.1.2 Electron motion in the laser field

In order to study the collective phenomena in relativistic laser-plasma interaction, a good
starting point is the specific trajectory of a single electron with charge —e and mass m,
in the laser electromagnetic field. The motion of an electron in the fields E and B is
described by the Lorentz equation

dp _

i —e(E+v x B), (2.7)

where p = ymeV is the electron momentum, vy = (1 — ﬁz)*l/ 2 is the relativistic factor, and
[ = v/c denotes the normalized velocity. We first consider the simplest case: the laser is
a plane electromagnetic wave polarized along the x axis and propagating along the z axis
as E(z) = Er, cos(koz — wot)e,. Very often, the electric field is written in the form of the
vector potential by using Equation 2.3: A(z) = Agsin(koz — wot)e, with Ay = EL/wp.
Taking into account the amplitude relationship of |B| = %|E|, the second term on the
right side of Equation 2.7 can be neglected in the nonrelativistic regime when § < 1.
Then Equation 2.7 is simplified to

Ccll—lt) ~ —eE = e%?. (2.8)
Therefore an electron, initially at rest at z = 0, oscillates in the direction of the electric
field with velocity of

_ €cAp .
8= o sin(wot) = —ag sin(wot), (2.9)

where ag = eAg/mec = eEr,/mcwy is the normalized vector potential (or laser strength).
It is obvious to find from Equation 2.9 that once the laser has passed by the electron, the
electron will go back to rest. There is no energy transferred from the laser to the electron.

When the laser field is very strong (ag 2 1), the electron oscillation velocity will
approach ¢, and then the v x B component in Lorentz force must be taken into account.
The solution of Equation 2.7 in the relativistic regime can be found in Ref. [63]. Following
their approach, we rewrite the laser field as a(z) = ag sin(ko§)e,, where £ = z — ct is the
coordinate in the frame co-moving with the laser. The normalized momentum of the

electron was found to be

dx .
Uy = Y0z = g€ a = ag sin(kof),
s _%_f_&%s‘n%k N (2.10)
Uz—Vz—d€—2—21 0S)-

We can see that the electron velocity is always positive in the longitudinal z direction,
which means the v x B force pushes the electron to move forward. Integrating Equation
2.10 gives the electron trajectory

xr = —% cos(kof),
2 (2.11)
0 .
= —[2ko& — 2koé)].
? = Gy [2Ro€ — sin(2hot)]
Equation 2.11 indicates the electron not only moves forward but also oscillates with
twice the laser frequency in the longitudinal direction. Figure 2.2 shows the electron
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Figure 2.2: FElectron trajectories seen from (a) the laboratory frame, and from (b) the
frame co-moving with the electron.

trajectories corresponding to ag = 1 and ag = 2.55. When it is seen in the laboratory, the
electron displays a zig-zag shaped trajectory, while the well-known eight-shaped motion
is observed in the frame moving with the average velocity of the electron. Moreover, the
longitudinal momentum scales with the square of the laser strength as a3/2, while the
transverse one linearly depends on the laser strength ag. Hence, at higher electric field
(ap > 1) the longitudinal motion of the electron becomes dominant over the transverse
oscillation. It is also of interest to determine when the longitudinal motion becomes
dominant. To do this, we consider the excursion distances that the electron moves in the
xz and z axes over one period. The distance along the z axis is four time the oscillation
amplitude given by Equation 2.11, namely L, = 4ag/ko, while that along the z axis can
be calculated by

2w [ko dz CL2 2 /ko 7TCL2
L,= 7d=70/ 2ko — 2kq cos(2ko€)]dé = L. 2.12
L e =g [ 2k - 2moeos(2hogae = T (212)
A critical value can be determined when the two distances become equal
2
aog Tag
L,=4—=L,=—, 2.1
ko 2ko (2.13)

which yields ap = 8/7 ~ 2.55. To assess the corresponding laser intensity, we substitute
Equation 2.6 into the definition ag = eEr/mcwy, and get a practical formula

e2 9 2
o \/27r260m§c5’\010 ~ 0.86A[pm]/ Io[10"8W /em?]. (2.14)

For laser wavelength of 0.8 um, ag = 2.55 corresponds to Ip = 1.4 x 10* W /em?2. Such a
laser intensity can be reached by the state-of-the-art multi-terawatt laser facilities [35].
The analysis above shows the importance of operation in the relativistic regime in
order to achieve electron motion along the laser propagation direction. Nevertheless, as
shown in Figure 2.2(a), the electron is merely pushed forward in each light cycle but does
not gain any energy from the laser. The overall net effect is only to transfer the electron
to a new longitudinal position. Once the laser passes by, the electron will remain at rest.
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However, it is noteworthy that the laser discussed in this section is an uniform and infinite
plane wave. This is definitely not the real case in experiment, where the laser pulses
are normally tightly focused. The laser intensity is not uniform but Gaussian-like in the
transverse plane. As shown in the following part, the ponderomotive force associated with
the laser intensity gradient will excite a plasma wave which plays as a medium to transfer
laser energy to electrons.

2.1.3 Ponderomotive force

A plasma wave is driven by the laser pulse through the so-called ponderomotive force [25].
It is actually the force associated with the second-order electron motion. From Equation
2.7, it was found that the first-order electron quiver momentum in the nonrelativistic case
is p; = meca [See Equation 2.9]. Supposing there is a small perturbation of the electron
motion, namely p = py + 6p (6p < pg), the net second-order motion over one laser cycle
is given by

<d§p> = —me ([(vg - V)vg + vy x (V x a)l)

dt
— e ([(a- V)a+cax (V xa)) (2.15)
a2
=—m?V (=)= F,,
2
2
where F,, = —m662v<§) = —mec?V% is the 3D ponderomotive force [25]. In the 3D
nonlinear regime, the ponderomotive force is generalized to be F,y = —m.c?V (1 + (12—(2’)1/ 2

2
[64]. Accordingly we can define the ponderomotive potential as ®,x = mec?(1 + %0)1/ 2,

Basically the ponderomotive force can be viewed as the radiation pressure of laser in-
tensity. Such a force will eject charged particles out of the region of high laser intensity, and
the ponderomotive force does not depend on the sign of charged particles. Furthermore,
the ponderomotive force is inversely proportional to the charged particle mass F}, o %
Hence for a given laser field, the acceleration exerted on a proton is only 1075 times that
of an electron. That’s why we will treat the ions as immobile in the process of plasma
wave generation in Section 2.2.3.

As an example, when the peak laser intensity Iy ~ 1.7 x 10 W/cm? (corresponding
to ag = 2\/5), the ponderomotive potential is @,y = VBmec? ~ 1.1 MeV. Therefore it is
not possible to accelerate electrons to high energy directly via the ponderomotive force,
however the ponderomotive force makes a crucial contribution to the mechanism of LWFA:

exciting plasma wave.

2.2 Laser-plasma interaction

The single-particle analysis shows that the laser electron interaction in vacuum is not
suitable for electron acceleration. However, the physics will be significantly changed when
the laser beam interacts with a plasma, in which the electrons exhibit a collective behavior.

2.2.1 Ionization

Plasma, after solid, liquid, and gas, is the fourth state of matter. Plasma is defined as
an electrically neutral medium which exhibits collective behavior [65]. It is often stated
that more than 99% materials all over the universe are in plasma state [66]. However,
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Figure 2.3: Schematics of (a) the Coulomb potential and the multi-photon ionization,
(b) the perturbed Coulomb potential by an external electric field and tunneling ionization,
(c) the suppressed potential and barrier suppression ionization.

plasma does not naturally exist in atmospherical environment where the shell electrons
are bounded to the nuclei by Coulomb force. Plasma can be obtained by ionizing atoms
in some special conditions, such as heating, discharge, strong electric field, and so forth.

In the domain of LWFA, plasma is sometimes produced by an external high voltage
discharge [67] or more generally by the powerful laser pulse itself. In this thesis, we work
with the latter, and the gas that we use is hydrogen. The photon energy of a Ti:sapphire
laser (Ao = 800 nm) is about &, = hw ~ 1.6 eV, while the potential of the ground state
of hydrogen is 13.6 eV. It is obvious that the laser photon is not able to ionize hydrogen
by the photoelectric effect. However, if the laser intensity is very high, new processes
of ionization will occur. The different regimes of ionization may be distinguished by the
Keldysh parameter [68]

(2.16)
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which indicates the ratio between the atomic ionization potential ®;,, and the laser inten-
sity Ir,. When I'" > 1, the binding potential inside the atom is not significantly disturbed
by the external electric filed. In this sense, the atom can be ionized by the process of
multi-photon absorption, as illustrated in Figure 2.3(a). For instance, the shell electron
of hydrogen can overcome the potential barrier by properly absorbing 9 laser photons of
800 nm.

When the laser field is comparable to the Coulomb field inside the atom (I" ~ 1), the
binding potential is drastically deformed, as shown in Figure 2.3(b). As seen, the barrier
that the electron has to pass decreases, implying the electron can escape more easily.
This mechanism is called tunneling ionization. The probability of tunneling ionization is
predicted by the theoretical ADK model [69]. The more the potential is distorted, higher
is the probability that the electron tunnels through the barrier.

When the laser field becomes so strong (I' > 1) that the potential is completely
depressed below the ground state of hydrogen, the electron is no longer bound, and the
atom is ionized. This mechanism is called barrier suppression ionization (BSI), and shown
in Figure 2.3(c). The threshold of laser intensity required by BSI can be estimated as
follows. The effective potential seen by the electron is

V(r)=— —eEpr. (2.17)

There is a position 7,,,; Where the potential reaches its maximum. 7,4, can be easily
found from d‘gff) = 0 to be Tmer = (e/47r60EL)1/ 2. Equalling the maximum potential
V(rmaz) to the ionization potential ®;,, gives the threshold of laser intensity for BSI

(using Equation 2.6)

7r2088<1>§10n
b (2.18)
In order to ionize hydrogen via the BSI mechanism, the laser intensity needs to exceed
1.4x 10 W/cm?. In our experiment, the laser intensity in the focal plane reaches the range
of 10'® — 10 W/cm? which is at least four orders of magnitude higher than that required
for ionization of hydrogen. It means the leading edge of the focused laser will completely
ionize the neutral hydrogen gas, while the laser bulk interacts with the preformed plasma.

The ionization process not only provides plasma, but also closely affects laser-plasma
interaction. Especially for some petawatt laser facilities, even the amplified spontaneous
emission (ASE) pedestal of the main pulse is intense enough to ionize the gas if the
pulse contrast is not well controlled. This unexpected plasma formation may degrade the
electron energy and pointing stabilities [70]. On the other hand, ionization offers a chance
to tune the position of creation of an electron when it is trapped by plasma wave [71, 72].
This technique is known as ionization injection, by which the high electron energy up to
1.45 GeV was obtained from a 1.3 cm long gas-cell by Clayton et al in 2010 [73].

Ipsr =

2.2.2 Electromagnetic waves in plasmas

As discussed before, the ponderomotive force of laser expels electrons from high laser
intensity regions. In vacuum, electrons will go back to rest at their new positions, however
in a plasma the electric field induced by space charge separation will pull the ejected
electrons to their original positions. Because of the inertia of the electrons, they will
overshoot and oscillate around their equilibrium positions. This oscillation forms a plasma,
wave. As the plasma wave is created by and closely follows the driving laser pulse, it is
often called laser wakefield.
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The periodic electron oscillation can be decomposed by Fourier analysis into a su-
perposition of many sinusoidal oscillations. If we consider small amplitude oscillation,
the waveform consists of only one harmonic component e/®*=%Y  From the Maxwell’s
equations (Appendix A.1), one can obtain the EM wave equation in plasma

pee’
k x k x Ek = Ko c — 80&)2 Ek, (219)
m

e

where g = 47 x 1077 H/m is the permeability of free space, and p. represents plasma
electron density.

For k||Ey, the left side of Equation 2.19 equals zero. The right side gives the frequency
of plasma oscillation (or plasma frequency):

2

| pee
= = . 2.20
W = Wp ——— ( )

This plasma oscillation is also called a Langmuir wave. In the nonlinear regime, the plasma
frequency is modified by the relativistic effect to wyn = wp/,/7. Such a wave is of vital
importance for electron acceleration, because it is a longitudinal wave: direction of electric
field is parallel to the light propagation direction.

For k 1 Ej, Equation 2.19 gives the dispersion relation of an electromagnetic field in
plasma

wh = w? + k7. (2.21)

Two cases can be drawn from Equation 2.21. For wg > wp, k is real and the laser can
propagate in the plasma, whereas k becomes imaginary for wy < wp, and the wave is
evanescent. The light is either transmitted or damped in the plasma depending on the
plasma density. The critical density is defined when wy = w,, which yields

wimeeo 1.12

[10%em ™3] = = ) 2.22
el e = = 22

Numerically for a laser wavelength of 0.8 pum, the corresponding critical density is 1.75 x
102! em~3. For p. < p. the plasma is called underdense, while on the contrary it is called
overdense for p. > p.. LWFA is linked to the excitation of a plasma wave in the underdense
regime.

Based on Equation 2.21, we can calculate the phase and group velocities of an EM
wave in an underdense plasma

2

wo w
vh = = g 293
_dwy c? Ak (2.23)

vg = = =
dk v fe2g + w2

If the evolution of the driving laser pulse in the plasma is not significant, the phase
velocity of the plasma wave is equal to the group velocity of the driving laser [18]. Therefore
we can calculate the normalized phase velocity and relativistic factor of the plasma wave

Ug / Pe
= = = 1 _
/Bp c pc7
- 1 _ [pe (2.24)
T = Ve
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As will be presented, the phase velocity of the plasma wave is of great importance to
determine the minimum energy required for electron trapping and the energy gain of
accelerated electrons. Basically, the lower the density is, the higher the phase velocity
becomes, and furthermore higher electron energy can be achieved. That is why for LWFA
experiments the ultra-underdense regime (p. < p) is desirable.

2.2.3 Plasma wave

In this section, we discuss the excitation of plasma wave by laser ponderomotive force,
and the properties associated with the plasma waves in both linear and nonlinear regimes.
Linear regime

The general solution of the equation of linear plasma wave is given in Equation A.8.
Particularly for a Gaussian laser pulse described Equation 2.1, the solutions are

dpe \/F a7 8c 272 wfﬂ'g 2r2\ |
wpkp 1-— — - — k
P0 24v2In 2k, T wi wd P\ T 162 wd sin(kpt),

E. \/? wprg  2r?

—E =2 cos(k 2.25
5 Vinameo Xp( oma ~ wg ) k) (2.25)
E, ™ a? r wf,Tg 2r?\ |

o _ _ k

Ey 2V2In2 ) Xp( 6mz g ) e

where £ = z — v4t, k, = wp/c is the wavenumber of the plasma wave, and Ey = mecwp/e
is the cold nonrelativistic wavebreaking field.

Figure 2.4 illustrates the electron density perturbation in a plasma for density py =
7x 10" cm™? excited by a laser pulse with ag = 0.2, wg = 15 um, and 75 = 40 fs. One may
immediately observe that, according to Equation 2.25, the density part and the electric
fields have the same transverse dimension which is determined by the size of the driving
laser, and an identical oscillation period given by the plasma frequency. Furthermore we
find the longitudinal and radial fields are out of phase of m/2. Especially interesting for
LWFA is the phase region where the electron is longitudinally accelerated and transversely
focused. As shown in Figure 2.4, such a region only occurs over a quarter of the period,
for example, the interval [, 37/2] in the first plasma cycle. This finding suggests that the
electron bunch accelerated in a LWFA should be shorter than \,/4. For p. = 7 x 10'8
cm ™3, it corresponds to a bunch length of < 10 fs. Such short electron bunch is fairly
attractive for studies like ultrafast phenomena [74, 75].

On the other hand, the strongest longitudinal field for acceleration arises on-axis (r =
0) where the radial field is zero, while the radial field, varying as r exp(—2r?/w}), reaches
its maximum when r = wp/2, as shown in Figure 2.5(a). Thus we can obtain the ratio
between the maxima of the accelerating and focusing fields

Erer Qexp(—%)
Emaz - kpwo

(2.26)

Quantitatively, for the parameters used in Figure 2.4, the value is E"%* /ET*%" ~ (.16.
Evidently it is the the longitudinal that dominates. Furthermore, we find the density
perturbation and the plasma field components depend on the laser pulse duration 7y via
To exp(—ngg /161n2). So there is an optimal pulse duration which matches the given
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Figure 2.4: (a) Density perturbation, (b) longitudinal, and (c) transverse electric fields
of plasma wave excited by a laser pulse with ag = 0.2, wg = 15 um, 19 = 40 fs for a plasma
density pe = 7 x 10 cm=3.

plasma density and most efficiently drives the plasma wave:

V8In2 236

Wp Wp

To = (2.27)
The optimum pulse duration can be interpreted by the resonance between the laser pon-
deromotive force and plasma electron oscillation [76]. In the case of Figure 2.4, the opti-
mum pulse duration is about 16 fs. Away from the optimum duration, the field amplitude
drops quickly, as shown in Figure 2.5(b). The field magnitude shown in Figure 2.4 driven
by a 40 fs laser pulse is merely 17% the optimal case. It highlights the laser pulse duration
must be carefully chosen to match the optimal condition.

Nonlinear regime

When the laser intensity is high (ag > 1), the assumption of small density perturbation
(0p/po < 1) does not hold, so the nonlinear regime is reached. In this regime, electron
oscillations consist of not only the fundamental but also higher harmonics of Fourier series.
Therefore the shape of plasma wave will differ from the standard sinusoid that we presented
before. Nonlinear plasma wave excitation in multi-dimension is not analytically solvable,
so numerical simulations are widely employed to understand the features of laser-plasma
interactions [77, 78]. In this section, we will numerically address this nonlinear problem
in one dimension to get some insight of the underlying physics.
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Figure 2.5: (a) The radial electric field profile of a linear plasma wave. (b) The field
strength as a function of driving pulse duration.

Numerically solving Equations A.14 and A.16, we are able to obtain the density per-
turbation and plasma potential of a nonlinear plasma wave. Figure 2.6 displays plasma
waves and their associated electric fields driven by laser pulses with different intensities.
When the laser intensity is ag = 0.2, a linear standard sinusoidal plasma wave is created
behind the laser, as obtained in previous section (Figure 2.4). With increasing laser inten-
sity, the plasma electrons oscillate with a larger amplitude, and the wave shape gradually
deviates from the sinusoidal case. In Figure 2.6(d) where ag = 4, the density distribution
becomes highly peaked. Associated with this density steepening, the electric field exhibits
the so-called “sawtooth” profile, namely a sharp ascent at the density peak and a linear
drop between the density peaks.

The most significant feature is the incense of electric field amplitude with laser intensity.
For ag = 0.2, the linear electric field strength is only E, ~ 0.013FEy, while it is increased to
E, ~ 1.8E for ag = 4. It is more than two orders of magnitude higher, which emphasizes
the interest of LWFA in the highly nonlinear regime, as higher electric field means higher
electron energy over a given accelerating distance. In this context, a question arises:
is there an ultimate limit of the plasma electric field amplitude with increasing laser
intensity?

To answer this equation, we need to examine the phenomenon called wavebreaking. A
noticeable feature for ag > 1 is a large number of electrons in the narrow density peak
regions, making local electron density 12 folds higher than background density as seen in
Figure. 2.6(d). The plasma wave is said to “break”, when the local plasma density becomes
infinite, namely p. — oo. In this condition, the velocity of the electrons approaches that
of the plasma wave they build, v — v,. Mathematically, it occurs when (1 + ¢) — 1/,
(See the denominator in Equation A.14). Meanwhile, we know that behind the driving
laser the minimum plasma potential is related to plasma wave magnitude E7** by [79]

1/2

¢mm=;(Egsxf—ﬁp{[ui(Eg:mﬂQ—l} : (2.28)

At wavebreaking, ¢y, = 1/, — 1. Substituting this value into above equation leads to
the maximum amplitude of electric field sustained by the plasma wave

Ewb = E’Zma:c = 2(’7}7 — I)Eo, (229)
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Figure 2.6: Density perturbations and the associated electric fields of the plasma waves
driven by temporal Gaussian laser pulses with duration of cto = \p/2 at plasma density
po =17 x 108 ecm™3. The laser strengths in (a)-(d) are ag = 0.2, 1, 2, 4, respectively.

where FE,; is often called the relativistic wavebreaking field. As an example, for a laser
wavelength 0.8 pm and a plasma density 7 x 10'® cm™3, the corresponding relativistic
factor of phase velocity is v, = wp/wy =~ 16, and the wavebreaking field E,, = 5.5F) ~ 1.4
TV/m. Even if thermal effects in plasma may reduce the maximum plasma wave amplitude
[80, 81], relativistic wavebreaking was indeed reached in LWFA experiments [10].

It seems that wavebreaking limits the maximum electric field amplitude, so we should
try the best to avoid it. As a matter of fact, wavebreaking is essential for trapping electrons
from the background plasma. If there is no wavebreaking, all the electrons are bound to
the collective plasma oscillation. None of them is able to move freely. On the contrary,
when the plasma wave breaks, some of the electrons will get rid of the confinement of
collective behavior, producing a chance for them to be trapped by the plasma wave.

2.3 Electron trapping

As in accelerator physics [3], an electron will gain energy from a wave, if it is located in
an accelerating phase, and more importantly possesses an initial energy adequate to be
trapped by the wave. If so, the electron is locked within a phase region of the wave where
it gets accelerated. In this section, we will examine how an electron is trapped by the
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plasma wave. In the early stage of LWFA development, external electron beams produced
by RF accelerators were injected into plasma waves, however it is complicated [82] to
manage electron sources and laser facilities together. As demonstrated in the following
part, wavebreaking provides a simpler way to directly trap electrons from the background
plasma.

The electron orbit in phase space (£, u,) can be examined with the Hamiltonian
H(E uy) = (72 +ud)V? = Bpu, — (€), where v, = (1 + a?)¥/? is the relativistic fac-
tor resulting from the transverse quiver motion of an electron in the laser field. Electron
motion is governed by the following equations

¢  O0H Uy 3
At~ Bu, 2 .2 P
/Lt
- , (2.30)
du,  OH 0¢ 1 ovi

T S

As there is no explicit time dependence in the Hamiltonian, for a given electron orbit the
Hamiltonian is a constant H(&,u,) = Ho = const. Therefore the electron longitudinal
momentum u, can be written as a function of £

us(€) = By (Ho + ) = /13 (Ho + 6)2 — 13 (2:31)

u(§) is referred to as orbit in phase space.

Figure 2.7 demonstrates the electron orbits in phase space corresponding to different
Ho, where the driving laser pulse is Gaussian with ag = 1.6 and pulse duration crg = A, /2.
The plasma density therein is p. = 8 x 10'® cm™3. The fluid orbit, indicated by the black
solid line in Figure 2.7, describes the electron initially at rest (u, = 0) before the arrival
of the laser pulse. In this case, there is no plasma wave, namely ¢ = 0. So, the initial
Hamiltonian is Hg = 1. Substituting this into Equation 2.31 gives the fluid orbit

ugluzd(g) _ 6}77}%(1 + (b) o 717\/7%(1 + ¢)2 _ fyi (232)

Clearly, there are two different kinds of orbits: the closed orbits (in violet) correspond
to trapped electrons, while the open orbits (in green) indicate the trajectories of untrapped
ones. The curve (in red) separating them is called the “separatrix”. The Hamiltonian of
the separatrix is given by Hs = 71 /Yp— ®min, Where ¢py, is the minimum plasma potential
obtained in Equation 2.28. For Hy > Hj, the electron orbits are open, which means the
initial electron energy is either too low (the lower green lines in Figure 2.7) or too high
(the upper green lines in Figure 2.7) to be trapped by the plasma wave. On the contrary,
the orbits become closed for Hy < Hs, corresponding to the trapped cases.

Let us assume there is an electron trapped in the first plasma bucket initially at position
A in Figure 2.7. Because its velocity is lower than the phase velocity of the plasma wave
Be < Bp, the electron slips backwards with respect to the plasma wave. During this time
the plasma wave accelerates the electron, so the electron’s velocity increases and becomes
equal to the phase velocity of the wave 3. = 3, at position B. And then the electron keeps
acquiring energy from the plasma wave until position C' where it reaches the maximum
energy gain. Typically, the accelerating process should stop here. If not, the electron will
enter the decelerating phase, and give energy back to the plasma wave, corresponding to
rotation in phase space. This phenomenon is known as “dephasing”. Apparently, it’s the
separatrix orbit that requires minimal initial electron energy for tapping and offers the
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Figure 2.7: Top: the plasma potential and associated electric field driven by a Gaussian
laser pulse (dashed line) with ag = 1.6 and a duration of ctg = \p/2 for a plasma density

pe = 8 x 1018 e¢m™3. Bottom: Electron trajectories in phase space (€, u.). The red curve
is the separatrix.

highest final energy. The maximum net energy gain of a trapped electron is therefore
given by

(Au2)™ =By 2 (Ho + bmaz) + Yo/ B (Ha + bmaz)? — 72

— B2 (Ha + Smin) — oA/ 12 (s + bmin)? — 72, (2.33)
S

where Ad) = Pmaz — Pmin-

Now let’s examine the injection threshold, or the minimum energy that is required for
electron trapping. For an electron with initial velocity u, in a plasma, its orbit in phase
space is characterized by the Hamiltonian #o = (1 4+ u2)'/? — Bpuz. On the other hand,
we know that the minimum initial electron momentum for trapping is determined by the
separatrix orbit. Matching them, that is Ho = Hs, yields the trapping threshold [83]

uirap = ’YPBP(’VJ_ - 7p¢min) - ’VP[(’VJ_ - 7p¢min)2 - 1]1/2' (2'34)
dmin is related to electric field of plasma wave via Equation 2.28. Figure 2.8 shows the
trapping threshold calculated with parameters used for Figure 2.7. As seen, stronger
plasma electric field requires lower initial electron energy to fulfill trapping. Particularly,
this trapping threshold decreases to zero when the plasma electric field approaches the cold
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Figure 2.8: The normalized electron momentum required for trapping as a function of
electric field magnitude. The blue line indicates the electric field of cold wavebreaking
Eyup >~ 5.25E).

wavebreaking field, namely E7*** — E,;,. I, is given by Equation 2.29, corresponding to
5.25Fj in this case. It implies an electron initially at rest would be trapped by the plasma
wave when wavebreaking occurs. It is thus the plasma itself that provides the accelerated
electrons.

We should stress that the above analysis is based on 1D cold plasma theory and does
not take into account the plasma wave evolution. In fact, multi-dimensional effects such
as transverse wavebreaking [84] and plasma wave evolution [85, 86] play important roles
in electron self-trapping as well. The trapping threshold will be revisited in the section on
the bubble regime.

2.4 Laser modulation in plasma

Up to this point, our analyses have been carried out in the frame of quasi-static state,
where the evolution of the driving laser pulse is neglected. Actually, when the driving
laser pulse generates density perturbations in the plasma, the optical properties of the
plasma are changed accordingly. Therefore the plasma in turn modulates the driving
pulse. Especially for LWFA, there are two important laser modulations: self-focusing and
self-compression, corresponding to the variations of the transverse size and pulse duration
of the driving laser pulse.

2.4.1 Self-focusing

In the LWFA experiments, the lasers are often tightly focused to achieve high intensity
in the focal spot. Nevertheless, the intensity can only be maintained over the Rayleigh
length zr owing to diffraction. Therefore several guiding techniques have been developed
to guide an intense laser beam (See Chapter 4). Among them, self-focusing is a convenient
and widely used mechanism to maintain a high laser intensity over more than zg, relying
on relativistic modulation of the plasma index of fraction.
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The propagation of a laser pulse in a plasma can be investigated in terms of the spatial
index of refraction n(r) = c¢/vyn. Recalling the expression of v,, in Equation 2.23, the
index of refraction for an underdense plasma (w?/wi < 1) reads

1/2
n(r)ziz (1— i ) 21_1067(7“) (2.35)

Uph ’YJ_W(Q] 2 an (T)pc’

It shows that the transverse variation of the index of refraction n(r) can be altered by the
relativistic factor (r) or the density distribution pe(r). In the weakly relativistic case,
Equation 2.35 may be expanded as [87]

w? a’>  op dwo
n=1—-—L[1——42_221|. 2.36
2 4 po wo (2:36)

where dwp indicates the modulation of laser frequency. In the above expression, the a?/4
term corresponds to the contribution of relativistic laser guiding.

Supposing the laser is Gaussian with intensity peaked on axis a(r) = ag exp(—r2/w3),
we can obtain da?(r)/dr < 0. Accordingly, the transverse gradient of the index of re-
fraction is negative, that is On(r)/0r < 0 or Quvpp(r)/0r > 0. It implies that the on-axis
phase velocity is lower than off-axis, making the laser wavefront curved. The plasma thus
behaves like a convex lens to focus the laser beam towards the propagation axis. This
mechanism is known as self-focusing, which is able to balance the laser natural diffrac-
tion. As shown in Equation 2.36, the modulation of the index of refraction leading to
beam focusing scales with a®. Therefore for a given beam divergence, there is a minimum
threshold for laser intensity to balance the divergence. Through a rigorous derivation, the
minimum laser power required for self-focusing, normally called critical power, is obtained
by [88, 89, 90]

8 2.5,,2 2
p. = 0220 1720 [aw), (2.37)
e wp (JJp

For example, the critical power for \g = 0.8 um laser at plasma density p, = 7 x 10'®
em ™3 is P, = 4.25 TW. In our experiment, the laser power is about 16 TW, which is
around four times the required P.. Consequently, the laser is capable of self-focusing until
the laser power drops below the critical power owing to transfer its energy to the plasma
wave.

The radial ponderomotive force expels electrons from the axis, creating a radial density
gradient 0(0pe(r))/0r > 0. It thus produces a negative transverse gradient of the index of
refraction On(r)/0r < 0, and focuses the laser beam. The density profile excited by laser
ponderomotive force is determined by Equation A.7. Notwithstanding, it was found that
the ponderomotive force alone is not sufficient to channel the laser for laser power P < P,
[18]. When laser power approaches the critical power P — P,, it is still relativistic self-
focusing that dominates laser propagation, while ponderomotive channeling just enhances
self-guiding. The contribution of ponderomotive channeling slightly relaxes the critical
power for self-focusing to P, = 16.8(w§/w?) GW.

It was believed for some time that relativistic self-focusing was not able to guide a
sufficiently short laser pulse, namely ¢ty < Ap. Since the evolution of index of refraction is
typically on the time scale of the plasma oscillation 1/w,, for such a short laser pulse there
is not enough time for the plasma to effectively respond. This point was verified by several
groups in experiments, where the authors demonstrated a laser pulse can only be properly
self-guided when crg > A, [91, 92]. However, recent findings in the bubble regime suggest
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that an ultrashort intense laser pulse can still be guided by self-focusing. Because the
leading edge of the driving laser locally pump depletes before it diffracts, while the bulk
laser is appropriately guided within the plasma bubble owing to the density depression
[93, 94]. Self-guiding of a 50 fs (FWHM) long laser pulse over tens of Rayleigh lengths
has been observed in the bubble regime for ¢y ~ A\, by Ralph et al in 2009 [95], where
Aw = %\/% denotes the nonlinear wavelength of the first plasma period [96].

2.4.2 Self-compression

Besides laser beam size evolution in the transverse direction, plasma density variation
along the propagation axis modulates the laser pulse longitudinally as well. The density
variation along the axis dp.(£) makes the laser pulse experiencing different local indexes
of refraction, and consequently compresses or stretches the laser pulse in time.
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Figure 2.9: (a) Plasma electron density perturbation (solid line) excited by a laser pulse
(dashed line) with ag = 1, ctg = A\p/2 for a plasma density p. = 7 x 108 em™3. (b) The
associated relative group wvelocity of the laser pulse in the plasma. The green (red) lines

correspond the local group velocities higher (lower) than that in the uniform background
plasma.

Figure 2.9(a) shows the 1D plasma density perturbation induced by a ap = 1 laser
pulse with duration of ety = A, /2. The background plasma density is p. = 7 x 1018 ¢cm™3.
It shows that the laser goes through different plasma density pe(§). A significant number
of electrons accumulate at the leading edge of the driving pulse when it ploughs across
the plasma, while a density depression is seen by the trailing edge of the driving laser.
Through Equation 2.36, the local group velocity of the drive laser (or phase velocity of
the plasma wave) can be evaluated by

w? a’>  p dwo
vg~en=cll— L (1-—4+- 527, 2.38
g l 2w[2)< 4 00 wo ( )

dpe = 0 gives to the laser group velocity in the background plasma: vgg. For positive
density variation dp. > 0, the laser group velocity becomes smaller: vy —vg9 < 0, whereas
a negative one dp. < 0 corresponds to higher laser group velocity: vy — vgo > 0, as
illustrated in Figure 2.9. In this case, the laser back edge moves faster than its front
edge. The laser pulse gets temporally compressed, which is also called pulse shortening.
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This is indeed an important phenomenon in LWFA. Because it somewhat relaxes the
requirement of laser duration for optimum plasma wave excitation [See Equation 2.27],
as the feedback of plasma gradually modulates the driving laser to match the resonant
condition. Relying on this approach, it was experimentally demonstrated that an initial
38 fs laser was compressed by a plasma of p. = 7.5 x 10'® em ™3 to about 10— 14 fs [97, 98].

It is worth noting that as indicated by Fourier transformation a temporal compression
of the laser will cause an increase of its spectral bandwidth. Particularly the laser leading
edge becomes redshifted, and the back edge is mainly blueshifted [98]. As spectral modu-
lation of the driving laser is the feedback from the plasma, it hence provides a good means
to diagnose the excited plasma wave [62, 99].

2.5 Multi-dimensional plasma wave

In the preceding sections, we have examined nonlinear issues regarding LWFA in one
dimension. Although several physical aspects were identified, a full picture of the LWFA
process can be retrieved only in three dimension (3D). In this section, we will present
the nonlinear phenomena in 3D. As mentioned before, the 3D nonlinear problem is not
analytically solvable, so the discussions here are schematic and phenomenological, from
particle-in-cell (PIC) simulations.

2.5.1 The bubble regime

The 3D highly nonlinear regime was first considered by Pukhov and Meyer-ter Vehn as a
novel scheme to produce spectrally peaked electrons in LWFA [36]. When an ultrashort
(eto ~ Ap) and intense (ag > 1) laser pulse propagates in an underdense plasma, the
ponderomotive force of the driving laser becomes so strong that all the plasma electrons
are expelled outwards from the laser spot region. The ions keep stationary due to their
inertia. Therefore the Coulomb force resulting from space charge separation tends to pull
the expelled electrons back to their original positions. The ponderomotive and Coulomb
forces together create an ion cavity free of plasma electron following the driving laser,
as illustrated schematically in Figure 2.10. It is greatly different from what we saw in
the linear regime, where a periodic plasma oscillation is generated behind the driver. As
the ion cavity is almost perfectly spherical, it was named plasma “bubble”. Historically
speaking, the report of the bubble regime stimulated physicists to experimentally look for
spectrally peaked electrons [37, 38, 39].

Subsequently Lu and coworkers developed phenomenological laws about the bubble
regime based on currently attainable laser parameters (ag ~ 4) [94]. Interestingly in Lu’s
description, the bubble regime is referred to as “blowout” regime. But, essentially they
are the same. In this thesis, we follow the primary notation of Pukhov to term it as the
bubble regime. The equation that describes the bubble shape in the ultrarelativistic limit
is given by Lu et al [96, 100]

d27“b d?"b 2

— + 2 == 1=0 2.39
de£2+<d£>+ : (2.39)
where r(§) is the radial coordinate of the bubble, and & = 0 is located at the bubble
center. The associated longitudinal electric field inside the bubble is given by E,(&)/Ey ~
ikpdrg /d¢. The bubble radius Rj is determined when the ponderomotive force of the
laser is balanced by the Coulomb force. Under the matching condition (k,wo = 2,/ay,
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Figure 2.10: Scheme of laser-plasma electron acceleration in the bubble regime. The
laser creates an ion cavity free of plasma electrons. The trapped electrons surf on the
longitudinal electric field inside the bubble and get accelerated.

ety < wp), Ry is determined by [94]
kp Ry, = kpwo = 2\/ag. (2.40)

The relationship in Equation 2.40 holds for ag > 2. Actually it was shown by Lu et al in
[94] that for ag > 4 the produced ion cavity is perfectly spherical, while for 4 > ag > 2
the laser is still able to blowout the electrons but the bubble shape may slightly deviate
from a sphere. The expression in Equation 2.40 can be written in terms of laser power as
P ~ (ag/2)?P.. It suggests that to reach ag = 4 the laser power must be greater than 8P,,
namely 34 TW for a 0.8 um laser at a plasma density 7 x 10'® cm™3. For most current
terawatt laser facilities, it remains challenging to attain such a power in the useful volume
of the laser focal spot. However, it is worth noting that for an initial unmatched laser
pulse (wg > Rp or/and ag < 4), the self-focusing and self-compressing discussed before
will favor the laser gradual evolution to the matched condition, as observed in experiments
[97, 101].

The electric field distribution inside the bubble structure makes it ideal for electron
acceleration. Firstly, the longitudinal accelerating field does not depend on radial position,
which can greatly diminish the energy spread for off-axis injected electrons. Furthermore,
the focusing ability of the radial electric field linearly increases with off-axis position
(E, o 1), which is good for preserving the electron transverse emittance. Thirdly, the
accelerated electrons and the driving laser pulse are spatially separated from each other
(as illustrated in Figure 2.10), which is not only good for stable laser propagation but also
favorable to conserve the electron quality.

2.5.2 Production of spectrally peaked electrons

Even though the bubble regime possesses excellent features for electron acceleration, it is
still not sufficient to ensure the production of spectrally peaked electrons. As introduced
before, it is the wavebreaking that triggers electron injection into the plasma bubble.
Without special control over the injection process, the final electron energy spread is
large. In this section, we examine how spectrally peaked electrons can be produced in the
plasma bubble due to the effects of beam loading and electron rotation in phase space.
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We would like to mention that in the conventional accelerator community, monoenergetic
means the relative energy spread AE/E is on the order of one percent, while in the LWFA
domain the electron distribution can be called quasi-monoenergetic when AE/E is less
than 20%.

Effect of beam loading

In order to generate spectrally peaked electrons, the foremost task is to ensure that all the
electrons experience a similar accelerating field. The process of electron injection must
be controlled to trap electrons in a very localized region, so that the accelerating field
experienced by the trapped electrons is the same. The influence of beam loading can favor
us to accomplish this task.
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Figure 2.11: Electric field of plasma wave excited (a) by only a laser pulse, (b) by only an
electron bunch, (c)-(d) by both the laser and the electron bunch. The laser is with ag = 1
and ctg = A\p/2. The electron bunch is 10 fs long with charge of ppo = 0.2p, in (b)-(c) and
peo = 0.3pe in (d).

The trapped electrons produce a plasma wave as well, like in the mechanism of PWFA.
Such a wakefield modifies the electric field distribution initially created by the driving laser.
This phenomenon is termed as “beam loading” [102]. Taking into account the electron
bunch, the 1D nonlinear plasma potential in Equation A.16 is modified to be

82¢_ 9 9 1+ a?
ae—kﬂp{ﬁp [“M

~1/2
- 1} + k2 pbp(g), (2.41)
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where pp,(£) = ppo exp[—41n2(€ — &y0)? /7] represents the electron bunch with Gaussian
distribution in time. ppo, &, 7 denote the peak charge density, center position, and
FWHM duration, respectively. The longitudinal electric field of plasma wave is obtained
by E, = —Ey0¢/0E.

Figure 2.11 demonstrates the electric fields of plasma wave calculated using Equation
2.41 for a laser pulse (ap = 1, ctg = Ap/2) with or without beam loading at a plasma
density p, = 7 x 10" cm™3. The electron bunch is 10 fs in duration with peak density
pro = 0.2p, for (b)-(c) and ppo = 0.3p. for (d). As seen, the magnitude of the electric
field generated by the electron bunch is comparable to that excited by the driving laser.
There are several interesting features shown in Figure 2.11. First of all, the electron bunch
situates in the first half period of the plasma wave generated by the bunch itself, where
the electric field is positive. It implies the electrons will be decelerated by this field, or
in other words, the total accelerating gradient will become lower. Typically at the bunch
center &, the unloaded electric field E,(&o) = —0.2Ey [Figure 2.11(a)] is reduced to
E%(&0) = —0.06Ey in the case of Figure 2.11(c). Therefore the final achieved electron
energy is decreased by beam loading. Moreover, for the case of optimum beam loading
in Figure 2.11(c), the electric field is flat within the electron bunch. That is of great
importance, since it means all the electrons experience nearly the same accelerating field
and can get the same energy gain. Thirdly, the trapped electrons will turn off further
electron injection. For the beam loaded case in Figure 2.11(d), the effective electric field
at the end of the first plasma bucket is changed to be positive. This means not only
further electron injection is not possible, but also some trapped electrons will give back
their energies to the plasma wave.

The three natures of beam loading presented above, especially controlling electrons
being trapped in a localized space and time, provide the possibility to generate spectrally
peaked electrons. Recently, the influences of beam loading on electron energy, energy
spread, and beam charge in the bubble regime have been characterized in theory and
experiment [103, 104]. Nevertheless, beam loading alone does not seem sufficient to pro-
duce spectrally peaked electrons, as the flat accelerating field occurs only for the optimal
loading case. A slight deviation from it may aggravate the electron energy spread.

Contribution of dephasing

Dephasing can compress the electron energy spread by rotating electrons in phase space.
As shown in Section 2.3.1, the orbits of trapped electrons in phase space are closed. Once
an electron reaches the maximum energy, it starts decelerating. The mechanism where the
electron surpasses the maximum energy and enters the decelerating phase is often referred
to as “dephasing” [18]. Here we examine how dephasing favors a decrease in electron
energy spread.

Figure 2.12 illustrates an electron bunch rotation in phase space (£, u,). The orbit is
taken from the first plasma bucket given in Figure 2.7. Supposing the electron bunch is
initially trapped at position A. It slips backwards with respect to the plasma wave, while
it picks up energy and gradually catches the wave, as indicated by point B. After some
time, the electrons at the front of the bunch reach the maximum energy (the top of the
orbit) at tg, —6t, as shown by position C; in Figure 2.12(a), where a significant amount of
electrons are still far from the orbit top, leading to a relatively large energy spread. With
time going by, the front electrons tend to be decelerated, while the back electrons still get
accelerated. The time t4,, as shown in Figure 2.12(b), when the bunch center arrives at
the orbit top Cy corresponds to a minimum energy spread A&. Afterwards the bulk of
the electron bunch enters the decelerating phase, and the energy spread increases again,
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Figure 2.12: FElectron bunch rotation in phase space at (a) tg, — 0t, (b) tap, and (c)
tap +6t. A, B, C indicates the positions of an electron bunch (red rod) rotating in phase
space, and the blue dashed lines show the energy spreads.

as shown by A& at position C3 in Figure 2.12(c).

So we do see that dephasing can produce an electron bunch with the same maximum
energy but quite different energy spread. Ideally, the electrons should be extracted at the
time ¢4, as given in Figure 2.12(b). In experiment, this could be implemented by varying
the plasma density to making the plasma length slightly longer than the dephasing length
[105]. The appropriate effects of beam loading and dephasing played important roles in
the demonstration of spectrally peaked electrons in 2004 [37, 38, 39].

2.5.3 Threshold of electron self-trapping

In Section 2.3.1, we examined electron self-trapping in the 1D nonlinear regime. Here we
will consider the threshold of self-trapping in the 3D bubble regime. What we obtained for
1D plasma wave is wavebreaking occurs when the minimum plasma potential approaches
®min — (1/7p—1). In the bubble regime, by examining the bubble evolution Kalmykov et
al [85, 86] found a sufficient condition for electron trapping: the change of the electron’s
Hamiltonian in the co-moving frame must exceed its rest mass energy, namely AH <
—mec? . Nevertheless, it is difficult to use this finding to guide experimental work as it is
purely theoretical. Another theoretical prediction of the electron self-trapping threshold
was obtained by Thomas via studying the electron trajectory inside the plasma bubble
[106]. Tt suggests self-trapping happens when
kpRy > 2 ln(27§) -1, (2.42)
where v, = (p¢/ 3pe)/? is the relativistic factor associated with the bubble phase velocity
[93]. Tt suggests that the bubble size must be larger than a density dependant critical
value to trap background electrons.
On the other hand, according to Lu’s bubble phenomenological scaling laws [94], the
bubble radius is related to the laser intensity by &, R, = 2/ag. Hence Equation 2.42 yields

2
a0>ln( pc> — 1.
3pe

(2.43)

Furthermore when the laser waist matches the bubble size, the laser intensity is determined
by laser power through ag = 2(P/P.)/3 [94]. We can therefore rewrite Equation 2.43 as
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a function of laser power

P 9 3 2.5 9 3
P>C[ln( pc>1} :W”C[ln( pC)q : (2.44)
8 3pe € Pe 3pe

The right-hand side of Equation 2.44 depends the inverse of plasma density p.. The
minimum laser power, fulfilling this inequality corresponds to a minimum value of p,,
which we term as density threshold. For a laser energy &£; and pulse duration 7p, the
laser power can be written as P = o€y, /79, where « indicates the fraction of laser energy
contained within the FWHM laser focal spot. This factor « is important, as without
external collecting scheme, the halos of the focal spot are not self-focused, so this part
laser energy does not contribute to plasma wave excitation [98]. And then for a given P
one can find the corresponding density threshold for self-trapping from Equation 2.44. But
one needs to pay attention that the laser power will change by nonlinear laser propagation
in the plasma, as presented in Section 2.4.2. An experimental study by Mangles et al has
demonstrated that the laser temporal evolution indeed affects the determination of the
self-trapping threshold [107].
The rate of laser pulse compression in the plasma was found to be [98]
pel

() =10 — 2, (2.45)

where 7(1) is the pulse duration after a propagation length [ in the plasma. In experiments,
[ is limited by either the plasma length or the laser pump depletion length L,q = cTopc/pe.
Interestingly for the later, the pulse duration will evolve to 7(I = L,q) = 70/2, and laser
power is accordingly doubled. Taking this into account, the threshold in Equation 2.44 is

relaxed to 5 ) 5 5

P, 2 2

P>C[ln(pc>—l} :W”C[ln(”c)—l} . (2.46)
16 3pe 2e2  pe 3pe

Numerically solving the above equation provides the self-trapping threshold.
Other studies on the threshold of electron self-trapping are reported as well. Froula et

al performed experiments in the density range of 10'® cm™3, and found electrons started
to be self-trapped when [108]

2.5
2dmegmzc’ pe

P>3P.=——, ;
€

(2.47)
Another empirical scaling suggested by Mangles et al was found by examining a lot of
experimental results in LWFA to be ap > 3.8 [109]. Recalling ap = 2(P/P.)'/ and
considering pulse compression, we can rewrite this expression as

27.2meom2c® pe.

A
€

(2.48)

The predictions of Equations 2.46-2.48 are plotted in Figure 2.13. Generally, lower
plasma density requires higher laser power for electron self-trapping. In more details,
all these predictions lead to similar results for laser power around 12 TW. Apart from
that, Equations 2.47 and 2.48 produces similar results which are different from the case
of Equation 2.46. The former two equations overestimate the density threshold for high
densities, while significantly underestimate it in the low density range. The validity of
Equation 2.47 was only tested with a given laser facility of 200 TW and limited density
range p. = 3 — 9 x 10'® cm ~3 [108], whereas Equation 2.46 was tested and found to
produce reasonable predictions over a broad laser and density range [107].
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Figure 2.13: Density threshold for electron self-trapping as a function of laser power.

2.6 Limits on acceleration

In this section, we consider the limits of electron energy gain in LWFA. Besides the limita-
tion of electric field amplitude in plasma by wavebreaking, there are other mechanisms that
restrict the accelerating distance, namely: laser diffraction, dephasing, and laser pump de-
pletion. In many cases, diffraction is the severest limitation. To prevent or compensate it,
an intense laser can be guided by self-focusing (See Section 2.4.1), or an external waveg-
uide. External guiding techniques will be discussed more detailedly in Chapter 4. Here
we concentrate on the other two limits exerted on LWFA.

2.6.1 Dephasing

The concept of dephasing has been introduced in Section 2.5.2, which describes how an
electron reaches its maximum energy and enters the decelerating phase. The length that
the electron moves before dephasing is often called the dephasing length L4. In 1D linear
regime, Ly is determined as follows. In the co-moving frame, the maximum length of
accelerating field in one period is A,/2. Supposing the accelerated electron propagates at
the speed of light ¢, keeping in mind that the plasma wave moves forward with velocity of
vg, the 1D dephasing length, L}iD , is calculated by

A A I w?
LP = LEE—— P ~ N, =2 2.49
T e TR T T @ (249

The above expression can be easily generalized to 2D. Considering that for a 2D plasma
wave there is only a quarter period (),/4) where the longitudinal electric field is accel-
erating and the radial field is focusing, the dephasing length becomes half the 1D value:
L3P = LP 2 = A/ (22).

Furthermore in the 3D bubble regime, the distance in the co-moving frame for dephas-
ing becomes the bubble radius Rp. The phase velocity of the plasma wave is modified to
Bp=1-— Swf) /(2wd). Accordingly the dephasing length L3P is given by

Rb 2w2 4(,‘.)2,/0,()
L3P = ~20p, =0V T 2.50
d 1-53, 3wl b 3wk ky (2.50)
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The above equation shows that the 3D nonlinear dephasing length depends on both the
plasma electron density and laser intensity. A longer LgD can be achieved by either
decreasing the plasma density or improving the laser intensity.

25_ T T T T T T T T T T T T T T T T I

—— Dephasing length
- — = Pump depletion length

Distance (mm)

1 2 3 4 5 6 7 8 9 10
Electron density (10*® cm™®)

Figure 2.14: The 3D dephasing length and pump depletion length as a function of plasma
electron density. The laser pulse is 40 fs in duration with ag = 4.

2.6.2 Pump depletion

Another underlying limit is pump laser depletion. It concerns the length L,q, after which
the driving laser energy is depleted. When the pump laser travels in a plasma, it transfers
its energy to drive the plasma wave. Consequently, the laser energy becomes lower and
lower. The pump depletion length L, is defined when the energy contained by the plasma
wave equals that of the driving laser, namely Eszd =/ Eidﬁ, where F, is the electric
field of the plasma wave, and F, denotes the electric field of the driving laser. For a
Gaussian driving laser pulse with resonant duration, the linear pump depletion length is
given by [110] ,
4.35w,
Lys= 53

R
ag wp

(2.51)

In the nonlinear regime, pump depletion length is estimated via the etching velocity
Veteh =2 cwf, Jw?d [93]. Veten describes the erosion velocity of the laser front that excites the
plasma wave. The laser will be depleted after a length given by

2

W
ety = —ocT. (2.52)
Vetch wp

c

NL _
L,y =

It was verified in PIC simulation [94] that this expression of nonlinear pump depletion
length L}%L is valid for the 2D and 3D nonlinear cases.

Figure 2.14 exhibits the 3D dephasing length L‘Z’lD and pump depletion length L%L
as a function of plasma density for the case of an ag = 4 laser pulse with 40 fs FWHM
duration. Typically, the two distances are of the order of several millimeters for densities
above 3 x 10" cm™3. Below p, = 2.5 x 10'® cm™ it is the pump depletion that limits the
acceleration process, while the dephasing length becomes the limitation for high densities.



48 2.6. Limits on acceleration

In terms of utilization efficiency of the driving laser, one should work around the density
where LgD ~ LI])\&L . In this sense, a significant amount of laser energy has been transferred
to the plasma wave when the electrons reach their maximum energy.

2.6.3 Phenomenological laws

Lu et al systematically examined the scalings of LWFA in different regimes and developed
a framework for the 3D bubble regime [94]. These scaling laws play an important role in
LWFA designs, and were verified by many recent experiments. Table 6.1 lists some of the
main scalings that will be often used in this thesis.

Particularly interesting for us is the electron energy gain, which is calculated by integra-
tion over the accelerating distance L: & = e [; E.(I)dl. The maximum of the longitudinal
electric field inside the bubble was obtained by 3D PIC simulation to be ET"* = | /agEy
[94]. It was also found that E, has a linear dependence on the bubble radius, so the
average accelerating field is half the peak, namely (E.) = E"**/2 = | /agEy/2. When the
acceleration process is restricted by dephasing (namely LzD < L), the energy gain is given
by

1/3
2a0 wi e?P 2/3
_ 3D, 240 %o 2 2 Pe
ge == <EZ>Ld =~ ?;gmec =~ MeC (77’[%C5> (pe) . (253)
In practical units, the above expression becomes
P[TWN\Y3 /0.8 %3 1 2/3
E|GeV] ~ 1.7 . 2.54
e[GeV] < 100 ) (AO[Mm]> <pe[1018 cm3]> (2:54)

Figure 2.15 demonstrates electron energy gain as a function of plasma density and laser
power calculated through Equation 2.54. Typically, a 0.8 pm laser with power of 100 TW
can accelerate electrons to 1.7 GeV at a plasma density of p, = 1 x 10'® cm™3. Meanwhile,
it is worth noting that the energy gain displays a stronger dependence on plasma density
than on laser power. Hence in order to achieve higher electron energy, performing towards
lower p, is desirable. Nevertheless, one must always keep the laser size matching condition
in mind, which requires wo = A,+/ag/m o (pe)~ /2. When p, is decreased, the laser power
must be increased accordingly to meet the requirement for producing a larger bubble, as
P = Iymw3/2 o p; 1. Actually, the threshold of self-trapping in Equation 2.46 also requires
higher laser power in order to trap electrons from plasma with lower density. Therefore
in experiment all the laser and plasma parameters must be carefully chosen.

Furthermore, an empirical law of the electron beam charge was drawn from the 3D
simulation work. The electron number of the accelerated bunch, N., is approximated to

Table 2.1: Summary of the scaling laws for different regimes in [9/]. E. represents the
energy gain of an electron accelerated over the dephasing length.

ao wo Ly Lpq Tp Ee/MmecC
Linear <1 A “ A @i ey “o a? wp
D w2 P w? a2 wp 0w?
. qwd 1 w2 wo qwd
1D Nonlinear | >1 Ap 4@007127)\,, 32070 | Vaog, 4a0w—g
- Vao 4wg/ao | wg 1w | 2,09
3D Nonlinear | >2 —Np | 3 o 2 cTH 73w 300 o
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Figure 2.15: Electron energy gain from Equation 2.54 for plasma density ranging from
108 ¢m™3 to 10" em™3 and laser power varying between 5 — 100 TW.

be [94]
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e (2.55)
where 7, = e2/m.c? is the classical electron radius. As an example, a 100 TW laser
with wavelength of A\g = 0.8 pum can produce 2.5 x 10° electrons from the first bucket,
corresponding to a beam charge of 0.3 nC. Multiplying the electron number N, and electron
energy &, yields the total energy can be extracted by the electron bunch, by which one can
furthermore assess the efficiency of LWFA by 1,14 = Ne&e/Er. In the matching condition
pulse duration obeys crg ~ Ry, which leads to n,fq o< 1/ag. It suggests ag should not be
too large to obtain a high efficiency.

2.7 Particle-in-cell simulation

As stated before, 3D nonlinear laser-plasma interaction is not analytically solvable, so
numerical modeling is employed. Among the various methods, particle-in-cell (PIC) sim-
ulation is often used. The primary concept of PIC approach is to track the motions of
the charged particles in their self-consistent and external electromagnetic fields [111]. In
principle, to implement PIC simulation one needs to solve the Lorentz equation (Equation
2.7) for all the charged particles and update the electromagnetic fields by the Maxwell’s
equations (See table A.1). However, for plasma physics the total number of particles is
extremely huge, so the so-called macro-particle is normally adopted. A macro-particle rep-
resents several real particles, which allows to rescale the total particle number and makes
the simulation possible. Even so, standard PIC simulations, especially for 3D cases, are
still fairly time-consuming.
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In this thesis, the simulation was done by collaborating with Hugo Ferrari at the
CONICET in Argentina for using the PIC code CALDER-CIRC [112]. It solves Maxwell’s
equations via Fourier decomposition, which allows the code capturing the 3D nature of
laser-plasma interaction, while the computational load is comparable to 2D calculation.
The performance of this code has been benchmarked with 3D full PIC simulation [112].
It was found by Davoine et al that 3D simulations can give a more accurate description of
nonlinear laser-plasma interaction, which is not possible for 1D or 2D simulations [113].
Lately, the code was developed by adding dielectric boundary conditions to describe laser-
plasma interaction inside capillary tubes [114]. The modified code can well predict the
results of laser-plasma interaction inside capillary tubes as observed in experiments [46,
115]. Figure 2.16 displays an example of the laser wakefields in a capillary tube for a
plasma density 7 x 10'® cm™3.
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Figure 2.16: (a) Normalized laser intensity, (b) plasma electron density normalized to
the critical density, and (c) the associated longitudinal electric field normalized by the cold
wavebreaking electric field Ey from 8D PIC simulation with the code CALDER-CIRC. The
initial laser parameters at z=0 are ag = 1.6 and 19 = 40 fs. The plasma electron density
is T x 10" em™3.

2.8 Summary

This chapter discusses the mechanism of electron acceleration using laser wakefield. The
plasma wave driven by the ponderomotive force of an intense laser pulse, propagating at
a speed slightly less than ¢, can sustain an electric field of the order of ~ 100 GV/m,
which provides the possibility to accelerate electrons to high energy over a short distance.
In the nonlinear regime, when the laser power is in excess of the critical power, the
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driving laser pulse can keep self-focused and compress its temporal duration owing to the
interactions with the excited plasma wave. Consequently, the intensity of the driving laser
increases, producing a plasma bubble free of electron which can trap some electrons from
the background plasma and accelerates them to high energy. The electron acceleration
process terminates owing to either slippage of the electrons to the decelerating phase
(the dephasing length) or depletion of the pump laser (the pump depletion length). The
scaling law developed in the 3D bubble regime indicates the maximum electron energy
gain is £, [MeV] = %aopc /pe, which suggests that 1.7 GeV electron beam can be achieved
by employing a 100 TW laser at a low plasma density 1 x 10'® cm™3.






Chapter 3

Betatron X-ray radiation

As presented in Chapter 2, besides the longitudinal electric field for acceleration, there is
also a radial component of electric field associated with the plasma bubble. Therefore the
trapped electrons are not only accelerated, but also transversely wiggled. This transverse
oscillation consequently generates an electromagnetic radiation, called betatron radiation.
In this chapter, we address the mechanism of betatron radiation and its properties.

3.1 Introduction

X-rays are indispensable tools to investigate microscopic structures and dynamics in mat-
ter. With the growing demands of ever shorter wavelength and higher brightness of X-ray,
many large synchrotron facilities have been established worldwide, as shown in the In-
troduction. Since LWFA is able to shrink the accelerator dimension, it is thus of great
interest to consider how LWFA could be applied to generate X-rays.

Studies were carried out in two different directions. The first one imitates traditional
synchrotron, which sends the electrons obtained from a LWFA to an externally inserted
undulator to produce synchrotron radiation. The feasibility of this concept was demon-
strated by two different groups using gas jet and gas-cell in 2008 and 2009, respectively
[55, 56], where visible to soft X-ray radiations were observed. The main disadvantage of
this approach is the difficulty to extend the photon energy to the hard X-ray domain.
Because the emitted radiation wavelength Ax depends on the period of the magnetic field
of the undulator Ag as Ax = Ag/(27?), where ym.c? represents the electron energy. Typ-
ically, Ap is in the millimeter range [56]. To achieve X-ray with wavelength Ax = 1 nm,
the electron energy must scale to as high as v ~ 103. It is still very challenging to produce
stable electron beams with such high electron energy by present LWFAs.

The above-mentioned requirement on electron energy is greatly relaxed by the second
scheme using a “plasma wiggler” [116]. The radial electric field in a plasma channel forces
the electrons to oscillate in the transverse plane, similar to the periodic magnetic fields
of an undulator. Likewise, oscillating electrons emit a synchrotron-like radiation, referred
to as “betatron radiation”. Figure 3.1 schematically illustrates the mechanism of betatron
radiation inside a plasma bubble. The electrons injected from off-axis locations at the rear
of the bubble oscillate and produce radiations in the forward direction. The oscillation
amplitude gradually decreases owing to the increase of the effective mass of the electron
(yme) by the relativistic effect (See more details in Section 3.4). As the plasma itself
plays the roles of accelerator and wiggler together, this mechanism therefore makes the
radiation source fairly compact, usually at university laboratory scale. Furthermore, the
radiation wavelength is determined by the plasma wavelength through Ay ~ \,/(2v%).
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Bubble

Figure 3.1: Schematic of betatron radiation in the bubble regime. The accelerated elec-
tron transversely oscillates inside the plasma bubble, producing an X-ray pulse. The laser
propagates to the right-hand side of this image. See more details in Section 3.4.

For a typical value of the plasma density employed in LWFA, p, = 1 x 10* cm™3, the
corresponding plasma wavelength is A\, ~ 10 pm. In this case, to reach the X-ray domain
of Ax = 1 nm, the electron energy could be as low as v ~ 100. Such an electron energy is
readily available from contemporary LWFAs.

Proof-of-principle experiments observed betatron radiation in the X-ray domain with
photon energy of ~ 1 keV ! in 2004 [57], and later in 2010 the X-ray peak brightness was
impressively boosted to the order of 10?2 photons/s/mm?/mrad?/0.1%BW by working in
the highly nonlinear bubble regime [58]. Such a high brightness is comparable to third
generation conventional synchrotron light sources [4]. Since the first demonstration various
diagnostics have been implemented to characterize the properties of betatron radiation,
like X-ray source size[117, 118, 119, 120], pulse duration [121], spectrum [122], and so
forth. Among them, the most interesting feature is the pulse duration. It is not trivial to
accurately measure it in experiment. A reasonable approximation is the length of electron
bunch [57, 58], by which the X-rays are emitted. A very recent study by Lundh et al
shows that the electron bunch could be as short as few femtoseconds [52], and simulation
shows the X-ray pulse duration is very similar, around 10 femtoseconds as well [59]. This
ultrashort nature, along with the high peak brightness, makes betatron X-ray very suitable
as a research tool on time-resolved ultrafast dynamics. Lately, single-shot phase contrast
imaging with these betatron light sources has been demonstrated in experiment [123,
124]. In this context, we could argue that betatron X-ray is a good complement for
conventional synchrotron lights. As even for the fourth generation synchrotrons it is
still rather difficult to decrease the radiation pulse duration to a few femtoseconds [125],
nevertheless synchrotrons can perform at high repetition rate (~ 100 Hz), yielding higher

1Using £ = h2nc/\, a photon energy of 1 keV corresponds to a wavelength of ~ 1.24 nm.
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average X-ray flux [7].

Betatron X-ray radiation, along with electron acceleration, is the other main subject
of this thesis study. We have investigated the influences of capillary guiding on X-ray
characteristics, as described in Ref. [48]. In this chapter, the basic theory about betatron
radiation will be presented.

3.2 Radiation by a moving electron

According to the theory of electrodynamics [126], an accelerated charged particle emits
electromagnetic radiation. Here we only consider the case of high energy electrons. Be-
fore discussing the radiation of a specific case of electron motion, the general theories of
radiation are presented in this section.

We start with the retarded potentials of a moving electron with normalized velocity of
B. The Lineard-Wiechert potentials are given as [120]

= ‘47550 L«(l —1n : mLt’

A=l

where r is the distance between the electron and the observer, and unit vector n denotes
the observation direction. Recalling the relationships in Equation 2.3, one can obtain the
associated electric and magnetic fields
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B=

In the above expressions, one may find that the first terms decrease as the inverse square
of the distance, which is the normal Coulomb field, and the second terms are relative
to acceleration of the particle, which is known as acceleration field [126]. Neglecting the
high-order small amounts O(T%) in Equation 3.2, the Poynting’s vector is calculated to be

62

n x [(n— B) x 8]
r(1-n- By

Two radiation features can be immediately drawn from above expression. The angular
distribution of radiation is determined by the relationship between observation direction
n, electron velocity 3, and acceleration 8. Furthermore, the opening angle of radiation
is determined by the term 1 — n - 8 in the denominator. In the ultrarelativistic case, a
forward directional beam will be produced.

The power radiated per solid angle ) can be easily derived from Poynting’s vector to
be

S n=

- 16m2egc
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Therefore the energy radiated per solid angle is
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The above expression can be also written in frequency space via Fourier transformation
as
d€ 2]
dQ 0 dwdQ
Using Equations 3.4~3.6, one can eventually obtain the frequency and angular distribution
of radiation of a moving electron as

:2050/ IrE|? dt:2cao/ rE|? dw = dw. (3.6)
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A more rigorous derivation of Equation 3.7 is given in Ref. [126]. If 8 and B are known, one
can calculate the associated radiation with Equation 3.7. However, it is not easy to solve
this equation analytically. Hence some studies are dedicated to numerically computing it
[127].

3.3 Radiation in a plasma column

In this section, we will consider the betatron radiation of an ultrarelativistic electron
(v > 1) that propagates in a plasma column. The plasma column is cylindrical and free
of electron, namely an ion channel, which is a good approximation of the bubble regime.
The schematic physics is illustrated in Figure 3.2. An important aspect of this study, as
presented below, is that the electron motion is analogous to that in a traditional wiggler.
Thereby many important features about betatron radiation can be captured.

Plasma column

Figure 3.2: FElectron trajectory and betatron radiation in a plasma column.

3.3.1 [Electron trajectory

The electrostatic field associated with the plasma column is described by Gauss’s law (See
Appendix A.1)

€pe
€0 '

V-E= (3.8)
As the plasma column is 2D cylindrically symmetrical, the E field is along the radial
direction. Thus Equation 3.8 can be simplified to

10 €pPe

S B =T (3.9)
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which gives the transverse field

= e, (3.10)

E,. =
" 280

The electron motion in this electrostatic field is governed by the Lorentz equation (Equa-
tion 2.7)

dp ep?

— = —¢F, = ——°

dt " 2e0
where p = ymev is the momentum. The relativistic factor v consists of the transverse
component v, and the longitudinal one ~,, which obeys v = ~,~,. If the transverse
oscillation is small and the initial longitudinal velocity is high, v < 7,9 will hold. In this
case, the electron energy is dominated by its longitudinal movement, leading to v ~ v, =
v,0. Thus Equation 3.11 can be written as

r, (3.11)

dv,  d*r ep? Wy 9
_dr_ s O 3.12
dt  dt? 2Mmeeny 27 T=wer (3.12)

where wg = wy/+/27 is the betatron frequency. One can then obtain the electron oscillation
and its velocity as
B, = = rgkg cos(ksct)
= — =rgkgcos(kgct),
T e T (3.13)
r = rgsin(kgct),

where kg = wg/c is the betatron wavenumber and 7z indicates the amplitude of the
oscillation. The maximum of normalized electron transverse momentum is often referred
to as the betatron strength parameter: Kg = 3" = yrgkg. As will be presented later,
Kp is a very important parameter to distinguish different radiation regimes.

Now let us consider how the transverse oscillation influences the longitudinal motion.
Owing to 7, < 7., the normalized velocity becomes 8 ~ f.q, where 8 = (82 4+ 82)1/2. So
the longitudinal velocity is affected to be

B. =82 — B} (3.14)

Along with Equation 3.13, this yields

7,2 k‘2 T‘2 kQ
Bz >~ B0 (1 - 4'862?) - 455 i cos(2kgct),

r3k> r2k
z~ 20+ B0 (1 B 5) ot — 20 sin(2kgct).

(3.15)

a 453{) 8/820

Equation 3.15 suggests the electron oscillates in the longitudinal direction with twice
betatron frequency. Together with the transverse oscillation, it exhibits the eight-shaped
motion when seen from the electron co-moving frame, as shown before in Figure 2.2. This
is the typical trajectory of an electron in a synchrotron wiggler. Likewise, the electron
motion in a plasma column shall produce a synchrotron-like radiation.

3.3.2 Spectral features

As demonstrated above, once the electron motion is known, the corresponding radiation
can be calculated using Equation 3.7. Specially for the case of plasma column, Equation
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3.7 is analytically solvable. Of particular interest is the radiation emitted along the lon-
gitudinal axis, namely § = 0. In this case, the radiated intensity is given by Esarey et al
[116] to be

d’I > e 2N2F, R,
—y L@l (3.16)
dwdQ) g—0 o1 TEOCWn l—i—Kﬂ/Q

where n is odd, because the even harmonics vanish. w, is the nth harmonic frequency of

radiation, given by
2
v 2
W, = 2nwg———5—= =~ 2ny wg, (3.17)
" 1+ K3/2

and Npg is the number of oscillation periods that the electron undergoes. Fj, indicates the
nth harmonic amplitude

Fn = no‘n[j(n—l)/Q(O‘n) - «7(n+1)/2(an)]2a (3.18)

where 7, is the first kind Bessel function of the nth order, and

n(w/wy) K2
= L)QB (3.19)
4(1 + KB/Q)
R,, is the spectrum function
R, — sin?[nm Ng(w/wp, — 1)] (3.20)

[ N (w/wn — 1)J2

Figure 3.3 displays several spectra calculated with the above equations for a 15 MeV
electron. The ambient plasma density is taken as p, = 7 x 10'® cm™3, and the elec-
tron performs ten oscillations Ng = 10. As given in Equation 3.18, the harmonic am-
plitude strongly depends on c, which is further dominated by Kz. So we will exam-
ine how the radiation spectrum evolves with Kg. In practical units, Kg = yrgkg =
1.33 x 10719 /ypc[em=3]rg[um).

In the case of Figure 3.3(a), a small oscillation amplitude 73 = 0.1 pm is used, cor-
responding to Kz = 0.2. As seen, the spectrum is very pure with only the fundamental
harmonic (n = 1). The radiated photon energy is given by & = hw,—1 ~ h2vy?ws ~
22.4 eV. The frequency width Aw for w,—1 is determined through Equation 3.20 to be
Aw/wp—1 = 1/Ng = 1/10. It suggests purer radiation is attainable by using larger Ng.
This regime with K3 < 1 is well known as undulator regime. It is particularly interest-
ing for implementing free electron laser (FEL), because all the emitted photons could be
highly coherent.

When Kg becomes of the order of unity for a large oscillation amplitude rg = 0.5 pm,
higher order harmonics clearly appear, as shown in Figure 3.3(b), where 5 harmonics are
appreciable. Owing to the larger amplitude of the oscillation, the photon energy of the
fundamental harmonic degrades to &,, = 16 eV, evaluated by Equation 3.17. With an
even larger rg of 1.6 pm in Figure 3.3(c), a typical value observed in our experiment, high
order harmonics become stronger and numerous, and the harmonic amplitudes follow a
synchrotron-like distribution. Figure 3.3(d) illustrates an example of spectrum when the
electron energy is higher v = 200, leading to Kg = 8. In this case, many harmonics
are excited, closely spaced, and unresolved. Their envelope can be well described by
synchrotron radiation. The most striking feature is that photon energies extend to as
high as ~ 10 keV. This regime of Kg > 1 is known as the wiggler regime. Most present
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Figure 3.3: Calculated betatron radiation spectra in a plasma column with density of
7x 10" em™3. The electron energy is 15 MeV, and oscillation amplitudes are (a) 0.1 pm,
(b) 0.5 um, and (c) 1.6 pm. (d) shows the case of a 100 MeV electron with an oscillation
amplitude of 1.6 um.

experiments about laser-plasma betatron radiation operate in this regime, where ~ 1 keV
energy photons with high brightness are produced.

Figure 3.3(d) suggests that the envelop of the spectrum in the wiggler regime can be
described as the synchrotron radiation. Recently, it was demonstrated that the spectrum
of betatron radiation is indeed synchrotron-like [122]. Ref. [116] furthermore examines
the asymptotic spectrum when Kz > 1, which reads

d?I N 3e?
dwd) —0 o '827r3sgc

7 5(0), (3.21)

where ¢ = w/w,, and Ky/3 is the second kind modified Bessel function of 2/3 order. w, is
the widely used critical frequency in the synchrotron radiation community?

we = 372 Kpwg. (3.22)

2A different definition of w. may be found in other literature with a difference of a factor of 2. In this
thesis, we follow the definition from Refs. [116, 126].
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Accordingly, the critical energy is defined as E.[keV] = hw, = 1.1 x 1072342 p, [em™3]rg[pm)].
For example, the spectra in Figure 3.3(c)-(d) have critical energies of 0.1 keV and 4.7 keV,
respectively. Obviously, the value of &, is mainly determined by electron energy. It is
useful to calculate the spectrum of angularly integrated radiation, which is given by

o0

dI /2 42 ve? w
o= /_ g0 0= VBN [ Kapal€) (3.23)
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Figure 3.4: (a) The on-azis and (b) angularly integrated spectra. The dashed lines
indicate the frequencies below (green) and above (blue) which half of the energy is radiated.

Figure 3.4 demonstrates the on-axis and angularly integrated spectra obtained with
Equations 3.21 and 3.23. The on-axis radiation is fully described by the term ¢ 2IC% /3 Q). Tt
peaks at the frequency w ~ 0.42w.. Half radiation energy is produced for w < 0.77w. and
the other half is for w > 0.77w,, as seen in Figure 3.4(a). Moreover, for w < we, the increase
of radiation intensity can be approximated by (w/w.)?/3, while for the frequency w >> w.
the radiation intensity exponentially drops as exp(—2w/w.). These quantities change
when off-axis radiation is taken into account, as presented in Figure 3.4(b). The radiation
intensity exhibits its maximum at a lower frequency w ~ 0.14w., and diminishes rapidly

when w > w,. Particularly, half radiation energy is produced at frequencies w < w./2

and the other half is for w > w./2, namely fSUC/Q 4L gy = fof:/z 4L 4y. In this sense, one

can understand the critical energy w. as twice the frequency below and above which half
radiation energy is created.
Moreover, the power produced by a single electron can be calculated by the relativistic

Larmor formula
e? du\? dy\?
P, = 2 =) = (=) |. 3.24
6#5007 l(dt) (dt> ( )

For the trajectory of betatron oscillation given by Equations 3.13 and 3.15, the radiated
power averaged over an oscillation period is

— e?c 5.9 e’e

2 _ 4,4, 2 2.2
s Y kK = 127r507 kgrg oc y°rp. (3.25)

~ 12720
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Furthermore, the total emitted energy, the product of P, and the interaction time N, BAg/¢,
is given by

— 62

2
e
W N,g’yzk,gKg = %Ngyd‘kgr% x '75/27“%. (3.26)

680
As seen, both the radiated power and energy strongly scale with v and rz. This suggests
significantly higher Ps and W could be reached by working in the wiggler regime (K3 > 1)
rather than the undulator regime (Kg < 1).

3.3.3 Spatial distributions

Besides spectral feature, the other important nature of radiation is the spatial distribution.
It determines how the radiation looks when detected somewhere. In order to study the
spatial distribution of radiation, one needs the corresponding 3D electron trajectory. In
the previous section, the electron motion was assumed to take place in a 2D plane (r, z).
The corresponding electron trajectory was described by Equations 3.13 and 3.15. Here we
will introduce the electron movement in the transverse (z, y) plane to get 3D trajectory
in the coordinate (z, y, z).
Equation 3.13 can be split along the two transverse directions (z, y) as

d*x duy ep? .

— ==

aifdt o 2ye (3.27)
dy dvy  ep;

atz —odt _2’760y.

The motion of electron is then determined by its initial condition (zo, Yo, Pz0, Pyo)-
Without loss of generality, we assume the electron is initially located at somewhere in
the z axis. Equation 3.27 is numerically solved with different initial parameters with the
fourth-order Runge-Kutta method. The associated radiation is calculated using Equation
3.7 at each time step.

Figure 3.5 illustrates the electron trajectory and radiation pattern for three typical
cases obtained with a 100 MeV electron propagating in a plasma column at density p. =
7 x 10'® ¢cm™3. For all these cases, the electron is initially at zy = 1.6 um, yo = 2o = 0.
In Figure 3.5(a) pyo = 0, which implies initially the electron is at rest. Thus the orbit
degrades to the 2D movement. As seen in Figure 3.5(b), an elliptical trajectory is exhibited
in the transverse plane for p,o = 3mec. From the viewpoint of 3D, the motion is helical.
Figure 3.5(c) illustrates a circular motion in the transverse plane for p,o = 8mec, where
the local electrostatic force matches the centrifugal force of the electron.

Figure 3.5(d)-(f) display the radiation profiles corresponding to the motions in Figure
3.5(a)-(c), respectively. The color scale represents the amplitude of radiated energy. One
can see that the radiation profiles reflect the electron transverse motions. Such radiation
patterns observed in experiments have been used by Phuoc et al to infer the parameters of
electron motions in plasma cavity [128, 129]. Two angles are widely employed to describe
the radiation profile. The first is the opening angle © (as illustrated in Figure 3.2) which
determines the radiation divergence at a given moment. The angular distribution of the
radiation in the wiggler regime is given by [126]

dI 0 271 7e2 Ng~v2w, 57262
c i l 7 ] (3.28)

_— = d f—
dQ ~ Jo dwdQ ™ T 96meqe (1 4 42602)5/2 7(1 +1262)
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Figure 3.5: 3D trajectories and transverse projections of an electron with energy of 100
MeV in a plasma column with density of p. = 7 x 1018 em™3. Initially the electron is at

xo = 1.6 pum, yo = 0 with momentum (a) pyo = 0, (b) pyo = 3mec, (c) pyo = 8mec. (d)-(f)
are the corresponding radiation profiles.



Chapter 3. Betatron X-ray radiation 63

The denominator in Equation 3.28 suggests the radiation is collimated within a cone,
the half opening angle of which can be estimated by

O =~ 5 (3.29)
Typically in Figure 3.5(d), the width of the radiation profile along the y axis is given by
©p = 1/200 = 5 mrad. This is also the width of the lobes in Figure 3.5(e)-(f).
The other angle ©3 is often referred to as radiation opening angle, which represents
the maximal angle that the radiation can reach in the electron oscillation plane. Thus one
can evaluate ©3 when the electron cross the z axis via

dx K,Bx

v=0 (3.30)
O, — @ — ra ks — Kpy
By dz — By™p ~ )

where 7g,, rg, represent respectively the electron oscillation amplitudes along the x and
y axes. For example in Figure 3.5(b), rg, = 1.6 ym, rg, = 0.6 pm, which correspond to
the strength parameters Kg, ~ 8 and Kpg, ~ 3. Thus the opening angles of the radiation
are estimated to be ©g, = 8/200 = 40 mrad, and ©g, = 3/200 = 15 mrad.

It is interesting to discuss the magnitude relationship between ©g and ©g. ©5 <K O
corresponds to Kg < 1. It is actually the known undulator regime. In this case, the source
oscillation amplitude is small compared to its angular width. The radiation divergence is
thus dominated by the beam divergence itself. The main interest of this regime is that the
radiation exhibits an interference pattern which yields a narrow spectrum. That’s why
normally free electron lasers operate in the undulator regime. Whereas for ©5 > O, the
radiation enters the wiggler regime (Kg > 1). As presented before, the spectrum becomes
broad owing to independent contributions by the excited harmonics. Furthermore, the
radiation divergence is then characterized by the oscillation amplitude of electron.

3.4 Radiation in a plasma column with acceleration

In Section 3.3, the physics of betatron radiation was obtained for a given longitudinal
electron energy. This is certainly not the case for electron motion in LWFA, where the
longitudinal acceleration of electron can not be neglected. In this sense, the radiation
properties should differ somewhat from what we presented before. In this part, we are
going to examine the radiation features when electron acceleration is taken into account.
It is sometimes referred to as “bubbletron” radiation [106] to distinguish from betatron
radiation without electron acceleration.

3.4.1 Electron motion

Firstly let’s see how the electron motion is modified when a longitudinal accelerating field
E, is present. Electron acceleration along the z axis is given by

d(vB.) _ e

= —F 3.31
dt mec (3.31)

which leads to >
e
VB =B = v0bo + - “t, (3.32)
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where 5y denotes the initial normalized momentum, and § ~ 3, is used again. The
transverse motion is given by Equation 3.11

(3.33)

Vyp —

at rat " at
Substituting Equation 3.32 into the above expression, keeping in mind 8 — 1, and recalling
vy = dr/dt, one can get

d(yvr) dy dv, _ _ué
5

ek, d*>r  eE, dr wg
t —_— — 4+ —=r=0. 3.34
( e +7050> dt? + mec dt + 2" ( )

Solving this equation with initial conditions r(0) = ¢ and v, (0) = 0 yields [130]
E
r(t) = %V’mﬁoro [jl (\/ 27050E0/Ez> Vo (\/ 2%3E0/Ez)
~V1 (V230BoEo/E-) Jo (V2yBE0/E:)| .

where ) is the Bessel function of the second kind. When 2v/v9BgFEy > E., the above
expression can be further simplified to

10 =0 (22) " cos [ 22 (255 - v,

~ 7 (7:)1/4 cos [EO (\/ﬂ— \/%)] .

E.

(3.35)

(3.36)

r(um)

_3 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n
20 40 60 80 100 120 140 160 180 200

Electron energy (MeV)

Figure 3.6: Trajectory of an electron accelerated from 20 to 200 MeV with ro = 2.5 um.
The damping of the oscillation amplitude and the lengthening of the oscillation period are
clearly visible.

Figure 3.6 illustrates the betatron trajectory of an electron initially at rg = 2.5 pm
accelerated from 20 to 200 MeV. The accelerating field is assumed equal to Ey. Two fea-
tures of the motion can be drawn. Firstly, the oscillation amplitude is gradually damped
due to the increase of the relativistic factor. As shown in Figure 3.36, r o y~/4. Fur-
thermore, the oscillation period slowly lengthens. That’s because the relativistic electron
mass increases as ym., which leads to the decrease of the betatron oscillation frequency

according to wg = wp/v/27 (or Ag = /27p).
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3.4.2 Spatial and spectral features

It is also of great interest to examine the spatial distribution of the radiation and further-
more how the radiation spectrum is modified by the acceleration process. To do this, we
need the electron movement parameters: r(t), A(t), and 3(t). Therefore Equations 3.31
and 3.33 are numerically solved for different initial cases with the fourth-order Runge-
Kutta method.

Figure 3.7(a)-(b) are two typical 3D trajectories of an electron accelerated along the z
axis from 20 to 200 MeV in a plasma with density p. = 7 x 10'® cm™3. The longitudinal
accelerating field is supposed to be equal to the cold wavebreaking electric field, namely
E, = Ey ~ 255 GV /m. Initially the electron is at 9 = 2.5 pm and with p,o = 0. For the
case of pyo = 0 in Figure 3.7(a), the trajectory degrades to 2D, as shown in Figure 3.6. The
electron experiences more than 3 periods, and its oscillation amplitude decreases from 2.5
pm to about 1.4 pm. When the initial transverse momentum is pyo = 3mec, the electron
exhibits a spiral motion, as seen in Figure 3.7(b). The corresponding radiation is calculated
at each time step through Equation 3.7, and integrated over the propagation time. One
can see that the radiation emission patterns are clearly related to the electron trajectories.
Owing to the increase of electron energy, both the emission divergence ©3 = Kg/v and
width of the lobes ©g = 1/v decrease accordingly. This is particularly appreciable in
Figure 3.7(d). The most significant feature is that the radiation tends to be more intense
when oscillation amplitude diminishes, because the intensity of the instantaneous radiation
increases quickly with increasing electron energy by % oc 8 [126].

The modification of the radiation spectrum by electron acceleration has also been
studied. As we are mainly interested in on-axis radiation, only this case is considered
here. The on-axis spectrum given by Equation 3.21 was derived for constant electron
energy. The modified spectrum can be computed by integrating Equation 3.21 over the
electron energy range [Eint, Efin)

d2 Iacc
dwdQ)

3¢ [Ehin 55
= 27['3600/5 dy°¢ ICQ/?,(C)7 (3.37)
0=0 int

where I,.. denotes the radiated intensity when electron acceleration is taken into account.
Figure 3.7(e)-(f) demonstrate the calculated spectra for the two orbits in Figure 3.7(a)-(b).
Their shapes look similar to synchrotron spectrum. Therefore we tried two kinds of fit.
The first is a least squares fit. Treating w, as a free variable, the best fit comes when the
difference x? between the spectra of Equations 3.37 and 3.21 becomes minimum. x? is

calculated through
2 — /oo d2Iacc
Tl \dwan

The corresponding critical frequency is noted as w/®. The dashed lines in Figure 3.7(d)-
(e) are the results given by this least squares fit. Interestingly, it is found that wg“ ~
0.56w™@ for the 2D linear oscillation, and w/® ~ 0.58w™% for the 3D spiral motion,
T is the critical frequency corresponding to the maximum electron energy. In
this calculation, the maximum electron energy is £y;, = 200 MeV. Analytical study of the
radiation spectrum of an electron accelerated in a plasma bubble gives w/* ~ 0.57wme*
[106], which is quite close to this numerical analysis.

B d2T
o dwdQ

) dw. (3.38)
0=0

where w
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Figure 3.7: Trajectories of an electron accelerated from 20 to 200 MeV in a plasma with
density of pe = 7x 10'® ecm™3. The electron is launched at x = 2.5 um with momentum of
(a) pyo =0 and (b) pyo = 3mec. (c)-(d) are the corresponding radiation patterns. (e)-(f)
present the calculated on-axis spectra (red solid), the least squares fit (green dash), and the
peak fit (blue dash dot).

The other interesting fit is a “peak fit”. The spectrum is fitted using Equation 3.21 to
have the same peak position as the numerical spectrum, indicated by the dash dotted lines
in Figure 3.37(e)-(f). It is obvious that below the peak frequency the peak fits excellently
agree with the numerical spectra, while above it the numerical spectra deviate from the



Chapter 3. Betatron X-ray radiation 67

fit and display more enhanced high energy tails. Another feature of interest is the peak
photon energy is 2.9 keV for the spiral case, slightly larger than that of the linear oscillation
case of 2.2 keV. This is because the peak photon energy (or critical energy) linearly scales
with oscillation amplitude. In the case of linear oscillation in Figure 3.7(a), the oscillation
magnitude can become very small, 13 — 0, when the electron goes across the z axis,
whereas this does not happen for the spiral motion where the electron rotates around the
z axis but never crosses it.

It is worth mentioning that the calculated radiation spectra, red solid lines in Figure
3.7(e)-(f), are indeed observed in PIC simulations of betatron radiation in the bubble
regime (See more details in Chapter 6). We have also experimentally observed the X-rays
showing similar spatial patterns as displayed in Figure 3.7(d) [46].

3.5 Emission from an electron bunch

Up to now, we considered the typical results of betatron radiation emitted by a single
electron. In experiment, it is an electron bunch, or many electrons together, which con-
tribute to the radiation. We now discuss the radiation produced by an electron bunch.
If all the electrons have the same energy and oscillation amplitude, the radiations shall
be the same as what we calculated above. However in most experiments, the electron
energy spread is relatively large or Maxwellian-like [48]. Thus the radiation properties
may become different from the case of single electron.

Firstly we consider the spatial profiles of radiation. As shown in Figures 3.5 and 3.7,
the spatial profile is determined by the electron trajectory, and more precisely by the initial
position and momentum. Normally the trapping processes of different electrons should be
independent except when some collective electron oscillation are deliberately introduced,
for example, by tailoring the laser wavefront [131, 132]. The combination of the radiations
from electrons with various initial conditions will generate numerous spatial distribution
patterns. Here we examine two typical cases.

Figure 3.8(a) depicts the initial conditions of the first case, where 18 electrons are
uniformly distributed on a circle with radius of 2.5 ym in the transverse (z, y) plane.
Every electron has an initial momentum py = 3mec along the counterclockwise direction
of the local tangent, as indicated by the arrows. The electrons are accelerated from 20 to
200 MeV along the z axis by a longitudinal electric field E, = Fy. The radiation profile, as
shown in Figure 3.8(c), looks like a ring with opening angle of ©g ~ 15 mrad. Besides, the
profile is symmetrical, completely different from that of single electron [See Figure 3.7(d)].
The other example is 5 electrons initially located along the z axis from 0.5 to 2.5 um
with equal separation of 0.5 um. All those electrons have initially the same momentum
along the y axis of p,o = 3mcc. Like in the first case, the electrons are accelerated from
20 to 200 MeV, but the radiation profile is dominated by electrons with larger oscillation
amplitudes, as both the opening angle ©3 and radiated power P are proportional to rg.

Now let’s examine how the radiation spectrum varies with respect to the electron
energy spread. We suppose that the electrons are trapped with an initial energy of 20
MeV and accelerated by the plasma wave at a density of p, = 7 x 10'® cm™3. The initial
conditions of these electrons are the same: rg = 2.5 ym and p;, = 0. The final energy
range of electrons is 40 — 200 MeV, and the energy distribution of the electrons is assumed
to be Maxwellian with a temperature of 30 MeV, namely N.(E) = exp[—(£ — 40)/30], as
shown in Figure 3.9(a). It is a function close to the typical electron spectra observed in our
experiments (See Chapter 6). The radiation is proportional to the electron number [116],
and for a given electron energy, the radiated energy can be calculated, using Equation
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Figure 3.8: Examples of radiation pattern calculated for two electron distributions. Initial
conditions: (a) 18 electrons uniformly distribute on a circle of radius of 2.5 um, (b) 5
electrons equably locate along the x axis. The arrows indicate the directions of initial
momentum of 3mec. (c)-(d) are the respective radiation profiles.

3.23, via

Ix (&) = Ne(€) ‘/7 /w2 &L dwdr' (3.39)

where 79 = 40 corresponds to the electron initial energy. hw; = 0.1 keV and hAws = 20
keV represent the range of photon energies taken into account. The distribution of Iy
computed numerically is plotted with a red solid line in Figure 3.9(a). It is found that the
electrons with a final energy of 112 MeV contributes most to the radiation. The peak of
the emitted radiation as a function of electron energy can be understood by the optimum
values of electron energy and number, as more energetic electrons create more emission
while their number tends to decrease. In this case it is not the most energetic electrons
that dominate the radiation. This finding suggests it is more relevant to use electron
mean energy (about 70 MeV) rather than maximum energy (200 MeV) to correlate the
properties between electron beam and radiation, as presented in Refs. [48, 131].

Another interesting feature is the on-axis radiation spectrum, since it is usually what
we measure in experiments [46, 48]. In most cases, the radiations from different electrons



Chapter 3. Betatron X-ray radiation 69

Ne, Ix (a. u.)

d’I/dedQ (a. u.)

0.0 1 [ N TR Ml S ) 0.0

. . Cl o 1 S e e L
40 60 80 100 120 140 160 180 200 0 2 4 6 8 10 12 14 16 18 20
Electron energy (MeV) Photon energy (keV)

Figure 3.9: (a) Energy distribution (blue dashed line) of an electron bunch with a tem-
perature of 30 MeV and the radiate intensity (red solid line) calculated by Equation 3.39.
(b) Numerically calculated spectrum (red solid line) of on-axis radiation, and the peak fit
(blue dashed line) .

incoherently overlap on axis, thus using Equation 3.37 the spectrum is obtained via

d21I, 3e? T as
= 2mdege € : 4
dwd) 0=0 27‘(3500N (6) "o d’}/ C IC2/3(C) (3 O)

For the electron spectrum in Figure 3.9(a), the on-axis spectrum is calculated numerically
and shown in Figure 3.9(b) as a red solid line, as well as the corresponding peak fit
(blue dashed line). As one can see, the numerical spectrum of the electron bunch is
still synchrotron-like, with a peak photon energy of 1.2 keV. Compared to the peak fit
spectrum, the spectrum calculated for the electron bunch displays a larger amount of
high energetic photons, as already seen in the case of a single accelerated electron in
Figure 3.7(f). This phenomenon is attributed to the fact that the electron energies are
not constant but increase during the propagation.

It should be noted that what we presented here are simplified examples. The physics
of electron acceleration and betatron radiation should be more complex in experiments.
Therefore 3D PIC simulations play an important role in interpreting experimental obser-
vations.

3.6 Mapping electron acceleration via betatron radiation

In this section, we introduce an important application of betatron radiation, as a diagnostic
to map the process of electron acceleration in plasma. Optical methods are often employed
as diagnostics [49, 50, 51], however it can be complicated to implement them, and local
plasma information can not always be retrieved. As presented below, betatron radiation
can provide a relatively simple way to visualize the process of LWFA.

When an off-axis electron is trapped by the plasma wave and gets accelerated, it starts
to oscillate transversely and emit photons. These two processes happen simultaneously,
and provide a way to study the dynamics of electron acceleration via the emitted radiation.
Typically in experiments, the amplitude of the transverse oscillation of electrons is of the
order of a few microns, which is small compared to the longitudinal acceleration distance
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Figure 3.10: Schematic illustration of the X-ray profile produced by betatron radiation
from an extended source inside a capillary tube.

of several millimeters. Thus in the following analysis, the emission source is viewed as 1D
along the z axis. Figure 3.10 illustrates schematically the geometry of the X-ray emission
produced by a line source inside a capillary tube. At a given position z, the opening angle
of the X-ray emission determined by the capillary size is ©¢qp = arctan[Reqp/(Leap — 2))-
Rcap, Leap are the radius and length of the capillary tube, respectively. In most cases,
the emission occurs in the wiggler regime, for which ©5 > ©.,, normally holds. It means
the emitted radiation cone is cropped by the rim of capillary exit. The photons hitting
the capillary wall are absorbed there. In other words, the radiation emitted at different
longitudinal positions project the border of capillary exit, working as an aperture, onto
the detector with different sizes. Closer is the emission to the capillary exit, larger the
shadow is. The superposition of emission cones with different aperture sizes establish a
transition zone at the edge of the far-field X-ray profile. The starting point of trapping
and the longitudinal extension of acceleration can be easily characterized by the size of
the transition zone with a geometrical method. The starting position can be inferred
by zs ~ Leap — ReapLx/Rx0. Lx represents the distance from capillary entrance to
the detector, and Rxg is the inner radius of the X-ray transition zone. For a typical
experimental setup, Lx > L.qp. The length of the emitting zone is thus given by Az =
ReapLx(1/Rxo —1/Rx1), where Rx is the outer radius of the transition zone.

Furthermore the intensity gradient in the transition region yields the longitudinal pro-
file of the emission process. The signal on the detector is

2m Leap I !
sx0)= [ sxtroyan= [ 7 XD

/ 41
; L dz’, (3.41)

where r is the radial coordinate on the detector, z(r) = Lcqp — ReapLx /7 is the correspond-
ing longitudinal position of emission inside the capillary tube, and dIx(z')/dz’ indicates
the X-rays produced per unit length around 2’. Note it is an integration with variable
lower limit in Equation 3.41, so taking the derivative leads to

dIx(z) 0Sx(r(z)) r%(2)

= 3.42
dz or ReopLx’ (3.42)

where 7(z) = ReapLx /(Leap—2). For a known X-ray intensity distribution, the longitudinal
profile of emission can be obtained through Equation 3.42.

It is important to know the precision of the above analysis method. There are two
possible uncertainties introducing errors in this calculation using Equation 3.42. The first
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one is the determination of the longitudinal coordinate z. As shown before, z is calculated
through

Rcap

2(r) = Leap — Lx (3.43)

In measurement, the resolution of r is limited by the pixel size of the X-ray CCD camera
05piger- So the error of z is

Rcap Rcap
r2 or = LXTT(SSPLTEZ' (344)

0z=Lx

The second possible error is the transverse source size, because the above analysis was
derived for a 1D line source. The influence of the transverse source size is illustrated in
Figure 3.11. If one deduces an emission region from z; to z. using the 1D formula, the

X-ray detector

Capillary

Capillary

Figure 3.11: Influence of the transverse source size on the X-ray profile.

region might be different when taking into account the source size. For example, if the
source has a transverse size at z (indicated by the transverse red line), it would project
the capillary border equivalent to the emissions produced from 1D source between z; and
z. The distance between z; and z, DZ,, is therefore the error of the 1D determination
method at z. DZ, can be geometrically calculated by

Leap — 2

Dz = e ©
" Reap/7s — 1’

(3.45)
where 7, is the source size.

For a typical setup in our experiment (See more details in Chapter 5), a capillary length
Lcqp = 30.5 mm, a distance from capillary exit to X-ray camera Ly = 110 cm, a capillary
radius Reqp = 89 pm, and a radius coordinate on the X-ray detector r(z) ~ 3.7 mm,
Equation 3.44 corresponds to a resolution of about 180 pm. Furthermore if we assume the
transverse source size is s = 2 pm, Equation 3.45 would introduce an error of ~ 600 um at
z =4 mm. z =0 is at the capillary entrance. One can clearly see that it is the transverse
source size that dominantly limits the resolution of this 1D analysis.

This diagnostic method provides deep insights into the associated mechanisms on laser
evolution, electron trapping, dephasing, and so on [46, 60]. Putting an external aperture
in the radiation path, this method can be applied to a gas jet target as well. It is worth
noting that in our case the capillary tube is versatile: besides guiding the laser, its exit
naturally performs as an aperture, making the setup quite compact.
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3.7 Summary

The accelerated electrons are transversely wiggled by the radial electric field in the plasma
bubble, generating a synchrotron-like X-ray radiation, often termed as betatron radiation.
The radiation spectrum is determined by the betatron strength parameter Kg = yrgkg.
Kz < 1 corresponds to the undulator regime, in which only the fundamental harmonic
(wn = 272wg) is excited. On the contrary, it is the wiggler regime for Kz > 1, where
the on-axis radiation spectrum becomes broad and described by the shape of % x
C2IC§ /S(C). The average power radiated by an electron oscillating in a plasma column

strongly depends on the electron energy and the oscillation amplitude as P, o 727“%. The
radiation is confined in a cone with half opening angle of ©g = Kg/~.

When the electron acceleration process is taken into account, the betatron oscillation
amplitude gradually decreases and the oscillation period lengthens due to the increase
of the electron relativistic mass. Accordingly, the radiation spectrum deviating from the
standard synchrotron type has to be calculated numerically. The spatial radiation pattern,
essentially related to the electron trajectory, can be used to deduce the electron motion
parameters in the plasma bubble. Furthermore, X-rays emitted by electrons at different
longitudinal positions project the rim of capillary tube exit to the far-field with different
shadow sizes, which results in a transition zone of intensity in the X-ray image. This
relationship in turn provides a diagnostic to the electron acceleration process in plasma
by using betatron radiation.



Chapter 4

Properties of capillary tubes

Dielectric capillary tubes' play a key role in our laser wakefield accelerator. In this chap-
ter we will first introduce the theory concerning laser coupling and guiding properties in
capillary tubes, and then discuss laser propagation when plasma is present inside capillary
tube. Moreover, an important issue of target design, measuring and controlling the gas
density evolution inside capillary tubes, is addressed numerically and experimentally.

4.1 Introduction

As presented in Chapter 2, high laser intensity (> 10 W/cm?) is required in order to
explore the strongly nonlinear bubble regime. To approach this regime with the state-of-
the-art laser facility based on the CPA technology [30], the amplified laser beam has to be
tightly focused onto plasma target. However in this case, the achieved high laser intensity
can only be maintained over a short distance, the Rayleigh length, determined by the limit
of diffraction, as depicted in Figure 4.1(a). As an example, for a Gaussian Ti:sapphire
laser beam with Ay = 800 nm and a waist of wg = 12 pum, the corresponding Rayleigh
length is zg = Tw3 /Ao ~ 565 um. As the electron energy increases with the acceleration
length (See more details in Section 2.6), various techniques have been developed to guide
the focused laser over a longer distance. Among them, self-guiding (See more details in
Section 2.4.1) is one of the most widely employed methods due to its simplicity. Relying
on this scheme, a powerful laser (P, > P,) can be guided over the pump depletion length,
typically several millimeter long (See Figure 2.14). The main drawback of self-guiding is
that the laser power must be in excess of the critical power given by P. [GW] = 17w3 /w2,
which increases rapidly with dropping plasma density. For a plasma density p, = 1 x 10'®
ecm ™3, P, becomes as high as 30 TW.

Another often employed guiding approach is plasma channelling [133, 134, 135, 136]. In
this scheme, a plasma is created either by an external electrical discharge [133, 134] or by
a heating laser pulse [135, 136], and then the hot on-axis plasma electrons move outward
owing to radial hydrodynamic expansion, resulting in a density depletion on axis and a
nearly parabolic transverse density profile, which is called plasma waveguide. Under the
matching condition, lasers with intensity as high as 10'® W /cm? were successfully guided
by plasma waveguide over many Rayleigh lengths [135, 137]. Sub-GeV to 1 GeV electron
beams were generated by LWFAs with the plasma channels [38, 40, 105]. However there
are some limits of plasma guiding as well. Firstly, the incident laser parameters (spot
size, duration, energy) have to be tightly tuned in accordance with channel parameters

'In the following part of this thesis, the word “dielectric” will be omitted for simplicity.
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[138]. Secondly, the guiding mechanism relies on plasma density and its spatial profile,
whereas many applications need plasma parameters very different from those required for
laser guiding. Last but not the least, due to the ultimate dynamics of channel forma-
tion, thermal heating, becomes inefficient at low plasma densities, so that suitable plasma
waveguide could only be produced at plasma density in excess of 1012 cm™3 by laser heat-
ing [40] or of the order of 10'® cm™3 when an external magnetic field is applied to control
the shape of the plasma channel [139].

(a) v
<01cm

<0.7cm /
PN

Capillary | /

Figure 4.1: Typical lengths of laser guiding for different mechanisms illustrated in Ref.
[47]. (a) Without guiding, as in vacuum, a focused laser beam will naturally diffract over a
Rayleigh length, typically a distance of hundreds of microns. (b) When a plasma is present,
self-guiding can extend laser propagation to a few millimeters. (c) Beside self-focusing, a
capillary tube is able to collect laser energy lies outside the central laser spot, permitting
a longer distance of guiding in the scale of centimeter.
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In this context, a question arises: Is there a method to guide an intense laser without
requiring the properties of laser and shapes of plasma medium?

The use of capillary tube, where the laser is guided by Fresnel reflection at inner cap-
illary wall [140], looks very promising for laser-guiding [46, 47]. This guiding scheme does
not rely on laser power, neither plasma density, providing the opportunities to explore
a large domain of laser/plasma parameters. In the nonlinear regime where self-focusing
takes place, capillary tubes are able to collect the laser energy contained in the focal
halos to assist self-focusing of the laser spot over a longer distance than in gas jet or
gas-cell, as shown in Figure 4.1(c). Consequently, higher electron energy and more intense
X-rays than in a gas jet or gas-cell can be expected when using capillary tubes. It was
also shown by Genoud et al that increasing the plasma length in a capillary tube reduces
the initial laser intensity required for reaching the threshold of electron self-injection [46].
Studying of capillary guiding has been carried out in our group (ITFIP, LPGP) for more
than ten years [61, 62]. As a first step, monomode guiding of 10 W/cm? intense laser
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pulses was demonstrated in experiments [141, 142, 143], and then extending the gener-
ated plasma wave into ~ 10 centimeter long. Meanwhile, the associated diagnostics were
successfully performed during the thesis of Franck Wojda [62, 99, 144]. In this thesis,
we are particularly concentrated on exploring the properties of the electrons produced
by capillary-guided LWFA operating in the nonlinear regime and the associated betatron
X-rays.

In this chapter we first present how the laser couples and propagates in capillary tubes
with or without plasma. Then, the issue of temporally and spatially determining and
controlling gas density inside capillary tube is addressed.

4.2 Description of capillary tubes

The capillary tubes employed in our experiments have thick cylindrically shaped outer wall.
The capillary wall is made of glass (Composition: 80%SiO2+15%B203+5%K20), and the
relative permittivity of the glass is &, ~ 2.25. Those capillary tubes are commercially
available from the manufacturer Friedrich & Dimmock. In order to avoid perturbation of
laser propagation induced by surface roughness, we choose the high wall precision (HWP)
capillary tubes.

2.5 mm

A
i _270 ] i_L

Al Al

100~300 pm

Figure 4.2: Schematic drawing of capillary tube with characteristic dimensions.

Figure 4.2 illustrates the structure of capillary tube with characteristic dimensions.
The outer radius of the capillary wall is always 5.5 mm, while the inner radius is chosen
for a given laser spot size to achieve either monomode or multimode guiding. Typically
in our case, the inner radius is in the range of 100 — 300 um. In principle, the capillary
tubes could be arbitrarily long, however the target holder used in the present work was
designed for a length within 50 mm.

To study laser-plasma interaction, we inject neutral hydrogen gas into the capillary
tubes, and then the laser leading edge ionizes the gas into a plasma (See Section 2.2.1).
Two small slits are cut in the capillary tubes, through which the gas is fed into the
capillary core. As seen later, a stable homogeneous gas medium is obtained between
the two capillary slits. The slits are cut with the help of a precision diamond wire saw.
The diameter of the cutting wire is about 220 pm, which makes slightly larger slits with
width of 270 pm, as indicated in Figure 4.2. Determining the slit width is a compromise
between gas filling and laser guiding. Using a larger slit, gas filling becomes faster and
less turbulent, however more laser energy will be lost in the slit section. The 270 pm slit
is a good balance for these two considerations.
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The distance from the slit to capillary end is 2.5 mm. Ideally we want this distance to
be as short as possible to avoid unwanted density ramp between the slit and capillary end
(See Section 4.5). Nevertheless, owing to the design of the capillary holder, this distance
could not be shorter than 2.5 mm. On the other hand, cutting a slit very close to the
capillary end would make the tube very fragile. All the slits are cut down to the bottom
of the inner capillary core, as seen in the side view in Figure 4.2. We find in experiment
that such a completely cut slit allows stable gas filling into the capillary tubes.

4.3 Optical properties of capillary tube

An important issue is how a laser couples to the eigenmodes of the capillary tube and how
it propagates afterwards. In the following part, we will examine those optical properties of
capillary tube. Especially, the matching condition of monomode guiding and the influence
of laser fluctuations will be presented. Note that in this section capillary tubes are assumed
to be evacuated.

4.3.1 Eigenmodes of capillary tube

The electromagnetic field inside capillary tubes is described by Maxwell’s equations under a
certain set of boundary conditions. Solving these equations, one will obtain the eigenmodes
of capillary tube [140]. An incident linearly polarized Gaussian laser beam can be efficiently
coupled to the linearly polarized family of hybrid modes, namely the EHy,, modes. The
transverse electric components of the EHy,, modes at zero order are given by [140]

Eim(r, z,t) = Jo(kimr) exp(—kfnz) cos|wot — kzmz], (4.1)

where k., = Um/Reqp, and uy, is the mth root of Jy(x) = 0. Table 4.1 gives the first
nine values of u,,. k., is the longitudinal wavenumber given by k.,, = (k:g — k:im)l/ 2,
The exponential decay term in Equation 4.1 indicates laser damping due to the loss by
reflection at the dielectric capillary wall. The characteristic damping coefficient k! is
given by [140]

. u?, 1+e .
m2kZ, R3,, Ve —1
As we can see, k:fn strongly depends on the capillary radius, the wavelength of the incident
laser beam, and the mode order through u,,. Laser damping is usually described by the
attenuation length L! defined as

(4.2)

1 2k§nga r 1
L= = pVEr T2 (4.3)

kL. u2, 1+,

After a propagation distance of L! the field amplitude decreases to 1/e. For example,
the damping lengths L., of a Ti:sapphire laser (\g = 800 nm) within a 50 pm radius
capillary tube are tabulated in Table 4.1. L. drops rapidly with increasing m, which
means higher order modes are damped more quickly. Therefore it is more interesting to
use the fundamental mode to achieve long laser propagation distance.

The dispersion relation of an EM wave in capillary tube is k3 = (k2,, + &%, ), through
which one can determine the group velocity when k2~ < k3 as

B2\ 12
Vgm =~ € < - J‘S") . (4.4)
kg
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Table 4.1: u,,, L!,, Vgm, and F for the first nine modes of a capillary with radius of
50 pm and o laser wavelength of Ag = 800 nm.

U, Lfn (em) | vgm/c | F* (107°)
2.404826 91.7 0.99998 2.034
5.520078 17.4 0.9999 4.604
8.653728 7.1 0.9998 7.2011
11.79153 3.8 0.9995 9.8049

14.93092 2.4 0.9993 12.4113
18.07106 1.6 0.9989 15.0189
21.21164 1.2 0.9985 17.6272
24.35247 0.9 0.9981 20.2359
27.49348 0.7 0.9975 22.8449

© 00O U W RS

The third column in Table 4.1 gives vg4y,. It is noticeable that the group velocity decreases
as the mode order increases.

Another important issue associated with capillary tube is the threshold of material
damage, which determines the intensity which can be guided by a capillary tube. To
examine this, we introduce the normalized flux at the capillary wall, F,,, defined as the
ratio of the radial component of the Poynting vector ar r = R4, to the longitudinal
component of the on-axis Poynting vector. F,, is given by [140]

cos? 6 + ¢, sin’ 0

k2 9
]:m — ﬂjl (kJ_chap) Pa—]

kg

(4.5)

It is clear that F,, depends on the azimuthal angle # and mode order m. F,, is minimum
for # = 0, 7 and maximum for § = 7/2, 37/2. So it will be the maximum value that
determines the threshold of capillary breakdown. As shown in the last column in Table
4.1, F"** increases by one order of magnitude from the fundamental mode to the ninth
mode. It again highlights the interest of the use of the fundamental mode. For a glass
capillary, the ionization threshold is of the order of 10'* W /cm? for a 800 nm laser pulse
with duration of the order of 100 fs [145]. The maximum intensity guided by a capillary of
50 pm radius on the fundamental EHi; mode without wall ionization is thus of the order
of 10 W/ecm?. The ability to guide such laser intensities makes capillary tubes suitable
candidates for intense laser-plasma interactions.

Figure 4.3 presents the distributions of the transverse field of the first three EHq,,
modes for a capillary with 50 pm radius. As seen, the fields of the higher modes are not
smooth. Their field directions change in the transverse plane. Only the EH11 mode has
a smooth transverse profile pretty similar to a Gaussian distribution. The fundamental
mode is therefore preferable to optimize the coupling of the incident laser beam energy.

4.3.2 Laser coupling

When a laser beam is focused at the entrance of a capillary tube, it couples its energy to
the capillary eigenmodes and gets transmitted. In this section, we will show the coupling
of two laser spots: Gaussian beam and Airy beam, both of which are widely used in our
experiments. As demonstrated before, monomode guiding with the fundamental EHqq
mode has many interesting features, so the condition for monomode coupling will be
particularly discussed.
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Figure 4.3: Electric field distributions in the transverse plane for the eigenmodes: (a)
EHy, (b) EHia, (¢) EHi3 of a 100 um diameter capillary tube. (d)-(f) are the field
profiles along the horizontal direction going across the beam centers.

Coupling of a Gaussian beam

In many experimental cases, laser beams, like CW HeNe laser, are generated with the
TEMpo mode and a Gaussian transverse field distribution. Supposing a linearly polarized
Gaussian beam is focused at the capillary entrance (z = 0), the radial variation of the
electric field is written as Eg(r) = Er exp(—r?/w3), while the electric field inside capillary
tube is described as a superposition of the EHy,, eigenmodes defined by Equation 4.1. At
the entrance (z=0), the continuity of the field can be written as

Epexp(—r?/wd) = Z AnEim = Z AmJo (um RT ) . (4.6)
cap

m=1 m=1

The coefficient A,,, indicates the amplitude of the EHy,, mode, which can be determined
using the orthogonality of bessel functions

fol T exp(—:c2r2/Rgap)jo (umzx)dx
jlz (wm) '

Then one can compute the coupling efficiency C,, defined as laser energy coupled to the
EH;,, mode, through

A =2E; (4.7)

R (= e ol 9

j12(“m)

As seen, C,, depends on the mode order, m, the capillary radius, R.qp, and the laser waist,
wo-

Figure 4.4 presents the repartition of the incident laser energy on the first five eigen-
modes as a function of the ratio of the capillary radius to the laser waist, Reqp/wo. It shows
that quasi-monomode coupling can be achieved when R.qp,/wg =~ 1.55 (or wo/Reqp =~ 0.65).
In this case, almost 98% of the incident laser energy is coupled to the fundamental EHyq
mode, and higher modes are coupled to merely 1% of the laser energy. The other 1% laser

Cn =2

Wo
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Figure 4.4: Coupling efficiency of a Gaussian beam to the first five eigenmodes as a
function of Reqp/wo. The gray area indicates the range of values of Reqp/wo where more
than 90% of the laser energy is coupled to the EHy1 mode.

energy is lost into the front surface of capillary tube. It may not be easy to match the
laser size exactly to be Reqp/wo = 1.55 in experiment, however we find that more than
90% laser energy can be coupled to the fundamental mode if only Re.p/wo € [1.2,2], as
represented by the gray area in Figure 4.4, which provides a large range of freedom for
efficient coupling.

When Rqp/wo — 0, if, for example, the laser waist increases, it is still the fundamental
mode that predominates the coupling, however the coupling efficiency decreases quickly.
That’s because more laser energy is radiated onto the front surface around the capillary
hole and lost. As Reqp/wo increases, the laser waist becomes smaller compared to the
optimal waist for quasi-monomode coupling. In this case, the laser energy is nearly 100%
coupled into the capillary tube, as indicated by the sum curve in Figure 4.4. However,
less and less energy is coupled to the fundamental mode, while more and more higher
order modes are excited, resulting in undesired mode beating and severe laser attenuation
during the propagation in the capillary tube.

Coupling of an Airy beam

Another important case is the coupling of an Airy laser beam, because the focal spot
profile of a powerful laser is close to an Airy distribution rather than a Gaussian function
(See Chapter 6). In multi-terawatt laser facilities, to avoid optical damage in amplification
stages, a flat-top laser beam is usually amplified. When such a beam is focused, the focal
spot is Airy-like [146]. The amplitude of electric field of an Airy beam focused at capillary
entrance (z = 0) is written as

Ea(r) = ELJI(VITT/TO), (4.9)
where 11 = 3.8317 is the first root of the equation Ji(z) = 0, and 7 is the radius of the

first zero. Like for a Gaussian beam, the continuity of the electric field at the capillary
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entrance leads to

r m=1 m=1 cap

As before, the coupling efficiency C, can be calculated by

Cm = t712(4u7n) [/01 Ji (Vlfocapx) jo(uma:)dxr. (4.11)
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Figure 4.5: Coupling efficiency of an Airy beam to the first five eigenmodes as a function
of Reap/T0- The gray area indicates the condition when more than 80% laser energy is
coupled to EHi1 mode.

Figure 4.5 shows the coupling efficiencies of the first five eigenmodes as a function
of Reqp/rm0. We find that monomode guiding of an Airy beam can be achieved when
Reap/ro =~ 1. However in this case only 83% laser energy is coupled to the fundamental
mode, while the other 17% energy contained by the laser halos within r > Rq;, is damped
into the capillary wall. When R,/ increases, more laser energy can be coupled but
essentially to the high order modes. It is apparently less efficient to use an Airy beam
than a Gaussian beam in terms of laser coupling and monomode guiding. Another issue
is capillary breakdown. The front surface of the capillary tube is exposed to a greater
energy for an Airy beam than for one with a Gaussian profile, and hence the peak laser
intensity has to be lowered to avoid capillary damage.

Influence of laser fluctuations

So far the properties of laser coupling has been discussed assuming a perfect laser/capillary
alignment, namely the incident laser is exactly aligned with respect to capillary axis.
However this ideal alignment is not usually achievable in experiments, as powerful laser
beams exhibit shot-to-shot pointing fluctuation. It is thus important to examine the
influence of laser fluctuations on the coupling to capillary tubes. A theoretical model
regarding the influence was given by Veysman et al in Ref. [147]. Here we present an
experimental study in the parameter range interesting for our LWFA experiments.
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The fluctuations of the laser beam can be described by the spatial displacement § R and
the incident angle 6;, with respect to the capillary axis. The experimental procedure is
first searching for a as good as possible laser/capillary alignment, and then vary d R or/and
0in to see how the transmitted laser changes consequently. To do so, we use a stable CW
HeNe laser (A9 = 632 nm) and a 5-degree motorized capillary holder (See Section 5.2),
which allows us to control dR or 6;,, by shifting or rotating the capillary tube.

The capillary tube tested was 30 mm long with a diameter of 127 pym. The 5 mW
output laser was expanded by a telescope to have a beam waist of ~ 2 mm, and then
focused by a f = 25 cm lens. Figure 4.6 schematically represents laser guiding by the

Focal spot Transmitted spot

4
..:1 0

Capillary
HeNe laser

Figure 4.6: Schematic of laser guiding by capillary tube together with the focal spot and
the transmitted laser spot in experiment.
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capillary tube. All the measurement were performed in air. The focal spot was measured
by a 12 bit charge coupled device (CCD) camera together with a 20x objective. The
focal spot was found to be Gaussian with a waist of about 43 pm, which corresponds to
wo/ Reap = 0.68, almost matching the criterion of monomode guiding. Also shown in Figure
4.6 is the transmitted laser, which is symmetrical and in quasi-monomode. To approach
the best alignment, the transmitted laser was optimized to reach the maximal amplitude
and symmetry. In this case, a transmission of 90 + 2% was obtained. The transmission is
defined as the ratio of incident and transmitted laser energies at the capillary entrance and
the exit, respectively. As a first step, the experimental transmission should be compared
with the theoretical value to check if we really get the ideal alignment.

Using the values in Figure 4.4, the coupling of EHy; mode is 97% for wg/Reqp = 0.68
(Reap/wo =~ 1.47). Furthermore, the attenuation length is calculated through Equation 4.3
to be Lll ~ 230 cm for A\g = 632 nm and R,y = 63 pm. So the theoretical transmission is
given by Try = Cy exp(—2Lcap/LY) ~ 94%, which is very close to the experimental value,
suggesting a nearly perfect alignment was achieved in experiment.

Figure. 4.7 presents the energy distribution of the transmitted laser in the plane of the
capillary exit for different displacements at the capillary entrance while keeping 6;, = 0.
As seen, when there is no displacement, § R = 0, the transmitted laser is symmetrical and
monomode. With R increasing, asymmetry of the energy distribution is more appreciable,
and the maximum intensity drops as well. When dR > 40 pm, or 0R/Rcqp > 63%, the
displacement leads to dramatic changes of energy repartition, where several lobes appear.
In order to achieve a roughly monomode guiding in this case, the laser displacement should
be less than 20 pm or 0R/Reqp < 30%.
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Figure 4.7: FEnergy distributions of the laser beam at the capillary exit for different
displacements at the entrance of the capillary tube from 0 to 60 pm with step of 10 um.

Shown in Figure 4.8 are the energy distributions in the plane of the capillary exit when
the incident 6;, is varied and JR is fixed to be zero. We find that the transmitted spot
gradually degraded in intensity and symmetry as #;, becomes larger. A symmetrical and
intense output profile could be achieved in this case only if 6;, < 1.7 mrad. This finding
agrees well with the theoretical predictions [147]. The corresponding transmissions con-
cerning those variations are quantified in Figure 4.9. One can see that the transmission
is optimal for the best alignment, namely 0 R = 0 and 6;, = 0, where monomode guid-
ing is achieved. The transmissions exponentially drops (fitted by Gaussian function) as
either displacement d R or incident angle 6;, increases. This measurement illustrates the
importance of optimizing the alignments in experiments.

The normalized transmission is higher than 90% if R/Rcqp < 2.2 or 6;, < 3 mrad.
Beyond this fluctuations range the transmissions are still high, however the transmitted
laser distributions display several lobes as seen in Figures 4.7 and 4.8. It is therefore
not possible to use such a guided laser to drive a symmetrical plasma wave for LWFA.
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Figure 4.8: Energy distributions of the laser at the capillary exit for different incident
angles from 0 to 10.2 mrad with a step of 1.7 mrad.

But non-symmetrical coupling might be interesting to trigger some special effects, such as
in Ref. [131] where the laser wavefront was deliberately tilted to control photon energy.
Another issue one has to take into account is the capillary damage, as the energy deposited
on the capillary wall quickly increases with 0 R and #;,,. To diminish the risk of capillary
breakdown, the fluctuation of laser pointing must be well controlled.

4.4 Guiding of intense laser by capillary tube with plasma

Up to this point, we have presented the pure optical properties of capillary tubes, whereas
in most cases the tubes are filled with gas to study laser-plasma interaction. In this section
we examine how an intense laser propagates in a capillary tube when plasma is present.
Both numerical [114] and experimental [46, 47, 48] work demonstrated that capillary tube
not only guides the laser but also in the nonlinear regime collects the energy associated
with laser halos in the focal spot to favor laser keeping self-focused over a longer distance
than in a gas-cell or gas jet. In those studies the laser power was well above the critical
power, that is Pr, > P,, so self-focusing played a significant role for laser guiding. In



84 4.4. Guiding of intense laser by capillary tube with plasma

(a) (b)
1 0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
OR_ 1 -
N R ] 1OFw ]
09| LN - - 1
c : * 1 o9} “u -
S 08f N i N |
2 - = ] A |
E 07F ~u 1 osft N 4
%) L N ] " ]
< \
g 06 a \ 1 07F N E
B 1 N\
8 o5} b | . ]
= r \ 1 06} N .
g 04f - 7 -\\
= | \R E \ ]
2 03f . 4 o5t N
L B 4 \ ]
02r "= 04} Ly
I ] 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1

O.l " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " " "
0.0 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1.0 0 1 2 3 4 5 6 7 8 9
OR/Rcap dé (mrad)
Figure 4.9: Transmissions, normalized to the results of the best alignment, corresponding

to the measurements shown in Figures 4.7 and 4.8, respectively. The dashed lines are
Gaussian fits.

this part, we examine the laser propagation when its power is comparable to the critical
power, namely P;, < P.. In this case, the plasma density is very low and self-trapping
does not occur. This study is of particular interest to use capillary tube for future staging
acceleration with an externally injected electron bunch.

The simulation was performed using the code WAKE [148] which was modified by B.
Paradkar at LPGP to add the capillary boundary. The incident laser is Gaussian in space
and time with a FWHM pulse duration of 40 fs, a transverse waist of wg = 15 pum, and
a normalized laser intensity of ag = 1.5. The laser power is therefore P; ~ 16.8 TW.
Those parameters are close to those of the LLC multi-TW laser we used for our electron
acceleration experiments. The plasma electron density is set as p, = 1 x 10'® cm ™3, which
corresponds to the critical power of P. ~ 29.5 TW. It yields Pr/P. ~ 0.57, suggesting
self-focusing should not be an important issue.

Figure 4.10 presents the simulation results for two different targets: capillary tube
and gas jet. The capillary radius is chosen to meet the requirement of quasi-monomode
guiding, e.g. R.qp = 1.55wg. The evolutions of the normalized laser intensity are shown in
Figure 4.10(a). In the case of capillary tube, the laser is well guided without appreciable
energy loss until z = 7 mm. The laser intensity evolution exhibits oscillations with a
period of about 2 mm, which are due to the beating of the modes excited by the Gaussian
distribution of the incident laser beam. For the capillary radius used in this simulation,
~ 98% of the incident laser energy is coupled to the fundamental EHy; mode, where
about 0.44% and 0.15% are coupled to the second (EH;2) and the third (EH;3) modes.
The beating of the mth higher order mode with the fundamental mode is represented by
the term Ak,,, = k.1 —k.m, and the characteristic beating length is given Ly,, = 27/Ak.,.
For this simulation case, the beating length are respectively 2.1 mm and 0.8 mm for the
second and third modes. In Figure 4.10(a), the beating of the third and the fundamental
modes indicated by the markers A and A’ shows a beating length of about 0.9 mm, while
the beating of the second and the fundamental modes noted by the markers B and B’
corresponds to a beating length of approximately 2.2 mm. The beating lengths observed in
the simulation well agree with the theoretical estimations given above. Owing to a shorter
damping length of 7 mm given by Equation 4.3, the beating of the third and fundamental
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Figure 4.10: (a) Evolution of normalized laser intensity ay for two different targets:
capillary tube and gas jet. The plasma electron density is p. = 1 x 10'® em™3. Snapshots
of laser longitudinal profiles at three different positions for capillary tube [panel (b)] and
gas jet [panel (c)]. The laser beam propagates from right to left in those images.

modes is suppressed faster than that between the second and the fundamental modes.
In the case of gas jet, the laser is merely self-guided over less than one Rayleigh length
(zr = Tw3/Ao ~ 0.88 mm). Afterwards diffraction dominates, and the laser intensity
decreases rapidly.

Figure 4.10(b) shows the laser profiles inside capillary tube at different longitudinal
positions. The laser shape is preserved throughout the propagation even though the laser
tail is modulated by the excitation of a plasma wave in its wake (the density perturbation
is not shown in these images). By contrast in Figure 4.10(c), in the case of gas jet the
laser size gradually increases and the laser intensity significantly decreases as predicted by
diffraction. Note that the vertical scales are different in Figure 4.10(b) and (c).

4.5 Determination of gas density in capillary tube: fluid
simulation

4.5.1 Introduction

The LWFA experiments are usually carried out at gas pressures lower than the atmospheric
pressure, and the intense, short pulse laser needs to propagate in vacuum in order to avoid
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undesirable pulse modulation or material damage before interacting with the target. Thus
the target is usually placed inside an evacuated chamber and gas is fed inside capillary
tubes through slits (See Section 4.6). For most experimental cases, the knowledge and
control of gas density? inside the capillary tube are crucial to define the regime of laser-
plasma interaction. Therefore the characterization of the target gas or plasma distribution
is an important issue for experimental design.

When hydrogen gas is used, the laser intensity used in LWFA is more than three
orders of magnitude above the ionization threshold (See Section 2.2.1) and allows to realize
plasma density profiles along the radius and the propagation length directly deduced from
gas profiles. The duration of gas filling needs to be determined and optimized for each
capillary parameters set in order to be able to minimize the amount of gas leaking into
the main vacuum chamber before the arrival of the laser pulse. In this sense, a full spatial
and temporal characterization of gas flow inside capillary tube is required.

Interferometry has been used to diagnose targets such as gas jets [149, 150] and plasma
waveguide [151]. The gas evolution in gas-cell and capillary tubes has not been well
investigated. In the frame of a LWFA experiment using gas-cell, the spatial distribution
of gas flow in the stationary state was obtained by simulation [45], whereas the temporal
gas evolution inside capillary tube was not known. Therefore the valve for gas filling was
opened for a long duration (200 ms for the gas-cell in Ref. [45]) to reach the stable state
of gas. In this case, significant amount of gas leaks into the vacuum chamber before the
arrival of the laser pulse. Consequently the pump system is subjected to a heavy load,
making repetitive operation of LWFA more difficult.

So far, no investigation has been carried out to study the correlations between gas
density /profile and capillary diameters (length, diameter, slit size, etc). The first attempt
of gas density measurement was carried out during the thesis of Franck Wojda [62], however
approximate results were obtained because of strong mechanical vibrations and of shaking
of the target induced by gas shock. During my PhD study, many efforts were put to address
this issue of gas filling in both simulation and experiment. We particularly developed a
new capillary housing (See Section 5.2) which is robust enough for gas shock. Furthermore,
a new gas filling system was built up to precisely control the process of gas filling.

Experimental measurements of gas density evolution inside capillary tubes will be
presented in Section 4.6. In this section, we first show the results of numerical simulations.
Particularly, the spatial distribution of gas flow in the stationary state was obtained by
this numerical modelling. Together with the temporal evolution of gas density measured
in experiment, the features of gas filling are fully determined.

4.5.2 Governing equations

The process of gas filling is a fluid dynamics problem. In order to use the correct governing
equations to describe it, one needs first of all to determine in which regime (continuous
flow or molecular flow) it operates. Usually these two flow regimes are distinguished by
the Knudsen number defined as

i

Kn=—1_
Dcap

(4.12)

where £; is the molecular mean free path length, and D), is the diameter of the capillary
tube. In kinetic theory, the mean free path describes the average distance a particle travels

2Unless otherwise specified in this thesis, gas density refers to number density rather than mass density.
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between collisions with other moving particles, and it is given by

1 1 x107207K
£ylem] = ~ 30 TK]

~ V2rpd? ~ Plmbar|d?[cm?]’ (4.13)

where the formula of ideal gas P = prpT is used; P, p, and T are the gas pressure, density,
and temperature, respectively; kg = 1.38 x 10723 J/K is the Boltzmann constant, and d
denotes the particle hard shell diameter. For hydrogen molecule, d = 2.62 x 1078 cm at
standard temperature and pressure (namely 20 °C and 1 atm).

Since ¢ increases as the pressure is lowered, the domain of large values of Kn rep-
resents molecular flow while the low values of Kn correspond to the continuum regime.
Typically when Kn > 1 or £ > D¢y, the gas is in the typical molecular regime, where
the particles are free and collisionless. The motion of particle is changed when interacting
with boundary wall. This regime often appears in microfluid, and is modeled using the
so-called Direct simulation Monte Carlo method [152]. As an example, for a capillary with
178 pm diameter, Kn > 1 means gas density p < 1.8 x 106 cm™3.

For Kn < 0.01 or £y < 0.01Dc4p, the gas flow can be treated as a continuous flow
described by the classical fluid dynamics. For the 178 pum capillary diameter, Kn < 0.01
requires gas density p > 1.8 x 10'® cm™3. Note that this density requirement decreases for
larger capillary diameter. Typically in our experiments, the plasma density is p. > 5 x 10'®
ecm~? (or neutral hydrogen gas density of pg, > 2.5 x 10'® em™2). It suggests we work in
the fluid regime. It is worth pointing out that under a looser criterion of Kn < 0.1 the
gas flow can be still reasonably described by the fluid equations with the help of the slip
boundary condition [153].

The range 0.01 < Kn < 1 is the transition regime between continuous flow and
molecular flow. For the 178 um diameter capillary, it corresponds to the density range
of 1.8 x 1016 cm™3 < p < 1.8 x 10'® cm™3. Recently the Direct simulation Monte Carlo
method has been extended to study the features of gas flow in this transition regime [154].

The gas filling process refers to both the molecular and the continuum regimes, while
the gas at the stationary state is determined by fluid dynamics in the continuum regime.
This is a classical field of fluid, and has been extensively investigated [155]. The contin-
uous flow can be described by an analytical model which consists of three conservation
equations:

e Continuity equation (conservation of mass)

ap B
5 V- (pv) =0, (4.14)

e Navier-Stokes equation (conservation of momentum)

)
,o(a;,+v-Vv>:—VP+V~T+fb, (4.15)

where T is the stress tensor and f, indicates body force (such as gravity) per unit volume
acting on the fluid. Equation 4.15 is actually Newton’s second law applied to fluid motion.
T describes viscous stresses that originate from the friction between the fluid and a surface.
In Cartesian coordinates, T is a 3 X 3 matrix whose element is given by [155]

ov;  0v; 2. Ov
T = A I W 4.1
J R[(ﬁxj +8xi> 35]8xm] ’ (4.16)
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where « is the dynamic viscosity. 4,j,m = 1,2,3, and J;; denotes the Kronecker delta
function ((5” =1if1 :j and 52-3- =0if1 75 j)
e Equation of energy (conservation of energy)

pdjz" +P(V-v) = gtqh -V (8;0) - Tijg;’;, (4.17)
where &;, represents internal energy per unit mass, and the total energy per unit mass
can be calculated through € = &, + |v|?/2. The first term on the right-hand side denotes
the external heat source, and the second term corresponds to heat loss due to conduction.

As &;, is a function of temperature 7', the three conservation equations are based on
a set of variables (P, p, v, T'). Usually the ideal gas law (equation of state), P = pkpT, is
added to enclose the equations.

Another important issue which has to be taken into account is turbulence [156]. To
estimate if there is turbulence in a flow, the Reynolds number is widely used

oDy

R 4.18
o= 2220, (418)

where ¢ is the mass density, Dy is the hydraulic diameter. As seen, Re is a dimension-
less number that indicates the ratio of inertial forces to viscous forces and consequently
quantifies the relative importance of these two types of forces for given flow conditions.
Experimental observations demonstrate that the duct flow is laminar when Re < 2300,
where viscous forces are dominant and the flow is characterized by smooth motion. The
duct flow becomes turbulent when Re > 4000, which is dominated by inertial forces
and likely to produce chaotic eddies, vortices and other instabilities. In the interval of
2300 < Re < 4000, it is called transition flow. Even though the transition flow is not com-
pletely turbulent, the effects of turbulence are significant and must be taken into account.
It was also found in experiment that the onset of turbulence in microtube with dimension
of micrometer occurs at a relatively low value of Re ~ 1800 [157].

Quantitatively, for hydrogen gas, the dynamics viscosity is kp, = 9 x 1076 Pa-s at 27
°C. The gas velocity can be as high as sonic (1.3 km/s) inside capillary tube (See Section
4.5.4). For a hydrogen gas from reservoir of stagnant pressure of 500 mbar (corresponding
to density of o = 0.045 kg/m?), its density drops to 0.028 kg/m® when the speed of flow
is sonic (See more details in Section 4.5.4). For the gas filling pipe of 1/16 inch diameter,
the Reynolds number is estimated to be Re ~ 6400. Obviously, the flow is turbulent.

Turbulence is an interesting and challenging domain in fluid dynamics, extensively
discussed in literature, for example Ref. [158]. Details of turbulence are absolutely beyond
the scope of this thesis. Here we just give a brief introduction of turbulence modeling.
The description idea is that a turbulent flow is composed by eddies of different sizes. The
sizes define a characteristic length scale for the eddies, which are also characterized by
velocity scales and time scales dependent on the length scale. Large eddies are unstable
and eventually break up, producing smaller eddies, and the kinetic energy of the initial
large eddy is divided into the smaller eddies that stemmed from it. These smaller eddies
undergo the same process, giving rise to even smaller eddies which inherit the energy of
their predecessor eddy, and so on. In this way, the energy is passed down from the large
scales of the motion to smaller scales until reaching a sufficiently small length scale such
that the viscosity of the fluid can effectively dissipate the kinetic energy into internal
energy. Based on this mechanism, several different numerical models have been developed
[159]. Unfortunately, there is not yet a single, practical turbulence model that can reliably
predict all turbulent flows with sufficient accuracy. In this work, we have chosen the
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standard two equation > — e model developed by Jones and Launder [160], which is the
most widely-used engineering turbulence model for industrial applications. By definition,
this model includes two transport equations to represent the turbulent properties of flow.
The first one, s, represents the energy in turbulence, while the second one, €, describes
turbulent dissipation.

4.5.3 Model setup in FLUENT

The governing equations shown in Section 4.5.2 can be analytically solved only with very
simple boundary conditions, whereas for most real cases we need to resort to numerical
computation. In this context, a specific domain called computational fluid dynamics
(CFD) has grown up very quickly in recent years, which uses numerical methods and
algorithms to solve the fluid problems.

With the development of supercomputers, ongoing research in CFD yields softwares
that improve the accuracy and speed of complex simulation scenarios. In the work of this
thesis, we employed the commercial software ANSYS FLUENT, which basically solves the
governing equations numerically using the finite volume method [161]. It is a powerful and
flexible general-purpose CFD software package oriented to model flow, turbulence, heat
transfer, and reactions for various applications.

To successfully implement a simulation with the FLUENT software, we proceed along
the following steps:

(I) Building the model and meshing

Figure 4.11: A typical model and mesh used in FLUENT simulation. The numbers
indicate the lengths of the lines beside them in unit of millimeter. A small region is
zoomed to show the fine structure of the mesh inside the capillary tube.

The simulation models are created and meshed with the software FLUENT Gambit.
Figure 4.11 illustrates a typical model discussed in the following sections. The dimensions
are set to be close to the experimental ones. The slit is 200 ym wide and 1.5 mm away
from the capillary end. The diameter of capillary is 200 gm, and the tube length is 15
mm. With the help of symmetry boundary, only half the capillary is actually simulated.
Around the capillary end, a rectangle box is employed to imitate the vacuum background.
The size of the vacuum box is determined from two considerations: on one hand, it should
be large enough to obtain the gas density full variation over its characteristic scale, and on
the other hand, it should be limited to a size insuring that the flow can be treated within
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the continuum approximation as the gas density drops in the vacuum background [149].
It may become so low that the continuity requirement of fluid dynamics does not hold any
more. A set of simulations with different vacuum box sizes was carried out. It was found
that when using a box of 3.2 x 3 mm?, the gas flow in the vacuum box remains in the
fluid regime and the normalized on-axis gas density at the box output boundary decreases
to about < 1% of the maximum density in the capillary tube. Thus the gas outside this
vacuum box could be neglected.

Next, the model has to be meshed for numerical calculation. There are many rules
developed in order to achieve a good mesh; a key criterion is the detailed dynamics of fluid
can be resolved, specially for a turbulent flow. Thus in our simulations, the meshes near
boundaries are refined as shown in the zoomed inset in Figure 4.11.

(IT) Assigning the boundary conditions

The boundaries are assigned as the same as in experiment (See more details in Section
4.6.1). The input boundary has a stagnant pressure varying in the range of 100 — 500
mbar. The pressures at the output boundaries are set to be 0.5 mbar. It is worth pointing
out that the exact value of the initial pressure assigned at the output boundaries is not
so important provided it meets the requirement of continuous flow. Because the gas flow
becomes supersonic in the vacuum box region, the real pressure at the output boundaries is
consequently calculated from the upstream flow. All the walls are assumed to be isothermal
at room temperature of 293 K.

(ITI) Setting-up the physical models

As mentioned above, the standard s — e turbulent model with default parameters is
employed to simulate the flow. Other two-equations turbulent models, for instance the
»—w model, were tested as well. No appreciable difference between them was found for our
cases. The 7 — e model is solved by the implicit density-based solver, which is particularly
designed for problems of compressible flow. The gas is hydrogen, treated as ideal gas.
As the local temperature varies significantly according to gas velocity, the viscosity x will
change accordingly. Therefore Sutherland’s formula is employed to describe the dynamic
viscosity of an ideal gas as a function of temperature [162]

Ty +Cs (T2
R = I‘i()m (110> s (419)

where £ is the reference viscosity at a given temperature Ty. C; is Sutherland’s constant.
Typically for hydrogen gas, kg = 8.76 x 1076 at Ty = 293 K, and C, = 72.
(IV) Control of iteration

The solution is viewed as converging when the residual of iteration becomes less than
1075; meanwhile the relative difference between the inward flows at the inlets and the
outward flows at the outlets is below 1076.

4.5.4 Results of 2D stationary state
Simulation results

Before going to 3D study, we will first present the results of 2D simulations in this section.
2D simulations are less time-consuming, while able to reflect many fundamental gas dy-
namics. Here we present the results of the stationary state study, namely for a given set
of boundary conditions the gas features do not vary with time any more. This stationary
state is of great interest for many experiments of laser-plasma interaction.

Figure 4.12 displays the simulation results at stationary state for the model shown in
Figure 4.11. The distance in Figure 4.12 is measured from the center of the tube zg. The
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Figure 4.12: (a) velocity and (b) density distributions of neutral hydrogen gas at station-
ary state inside a capillary tube for an input pressure of 300 mbar. A small area of the
capillary end part is zoomed to show the fine local distribution. The grey areas are the cap-
illary material. (c) the on-azis gas density and velocity as a function of the distance along
the capillary tube, where zg is the center of the tube, and the two dashed lines indicate the
positions of the two slits. The parameters are the same as for Figure 4.11.

input pressure is chosen to be 300 mbar, a typical value used in our LWFA experiments.
When the gas flow moves forward inside the slit, it hits the capillary wall and is split into
two branches. One fills the main part of the capillary tube between the two slits, while
the other leaks out from the capillary ends.

Several features associated with gas flow at stationary state can be drawn immediately.
First of all, the density drops when the gas moves inside the slit. That’s because the
total pressure? is determined by the input condition. When gas velocity increases, the
dynamics pressure of gas for compressible flow, quadratically depending on the Mach
number, P, oc M2, rises significantly. M, represents the ratio of gas velocity and the local
speed of sound. As a consequence, the static pressure, or gas density, diminishes. The gas
density filled into the main part of capillary tube is about ¢ = 18.5 g¢/m? in Figure 4.12.
Therefore the filling efficiency, defined as the ratio of the density in the capillary main
part and the density at input, is about 1y = 75% in this case. Secondly, an immobile and

3In fluid dynamics, total pressure is the sum of static pressure and dynamic pressure. Specifically, static
pressure is the value measured by barometer at a point in a fluid flow, while dynamics pressure represents
the kinetic energy per unit volume of a moving flow.
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perfectly uniform gas is achieved between the two slits. Such a shock-free gas medium
plays a crucial role in our LWFA experiments. Lastly, the gas turns 90° from the slit to
capillary end for going out (See the zoom in Figure 4.12). This 2D motion induces the
on-axis density profile between slit and capillary end as displayed in Figure 4.12(c).
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Figure 4.13: On-axis gas static pressure (a) and velocity (b) as a function of the distance
from the center of the capillary tube for different values of the slit width indicated in the
legend. (c) shows the static pressure in the central part of the tubes as a function of the
slit width. The parameters are the same as for Figure 4.12.

An important issue is the relationship between the gas features and capillary structure
parameters (length, diameter, and slit width). As mentioned above, the slit width is a
key parameter to determine the filling efficiency. Figure 4.13 shows the main features of
gas flow at the stationary state when the slit width varies from 0.2 to 0.6 mm. All the
other parameters are the same as for Figure 4.12. Figure 4.13(a) shows the on-axis static
pressures as a function of the distance along the capillary tube. From now on, we will give
the static pressure instead of gas density, as it is more convenient to compare with the
input condition in unit of mbar. One can easily convert it to density through the state
equation of ideal gas for room temperature of 20 °C. As shown in Figure 4.13(a) and (c),
the profile of pressure does not appreciably change with respect to the slit size, nevertheless
the pressure fed into the capillary central part increases significantly. Especially for the
case of 0.3 mm wide slit, the static pressure P, increases from 223 mbar to 274 mbar.
That’s mainly because the slit size becomes larger than the capillary diameter of 0.2 mm,
and much more gas can be filled into the tube. In this sense, the larger is the slit, the higher
pressure can be achieved in the tube. Particularly for a slit width of 0.6 mm, the pressure
achieved is P5; = 295 mbar, which is close to the input pressure of 300 mbar. However,
it is not that desirable to use such a wide slit, since more laser energy will be lost at the
slit position. Figure 4.13(b) shows that there is no significant difference between the gas
velocity profiles for the different slit widths. That is because gas velocity is determined
by the gradient of gas pressure. The similar pressure profiles along the capillary tube for
slit widths larger than 0.2 mm, exhibited in Figure 4.13(a), result in the similar velocity
profiles shown in Figure 4.13(b).

In experiments, the capillary tube is mounted into a housing which is connected to
the gas reservoir by a filling pipe (See more details in Section 4.6.1). In order to take
into account the influence of housing and filling pipe on gas characteristics in the capillary
tube, a more realistic model was simulated. As shown in Figure 4.14, the capillary holder
is cylindrical with a radius 0.8 mm larger than the capillary radius, and the diameter of
the filling tube is 1 mm. The real length of the filling tube is around 1 m in our setup,
however calculating such a long tube is extremely time-consuming and absolutely beyond
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Figure 4.14: Distributions of (a) static pressure and (b) gas velocity in the capillary tube
obtained when the housing and filling pipe are included in the calculation. The line-outs
represent the corresponding profiles on the capillary tube axis. The other parameters are
the same as for Figure j.12.

our machine capacity, so a 10 mm long tube was modelled. As seen below, the length
of the filling pipe actually does not affect the gas properties at the stationary state, but
affects the characteristic time of gas filling and leaking. Furthermore, as we have already
obtained the distributions of gas expansion into vacuum in Figure 4.12 and a theoretical
estimation of gas expansion (See the following subsection), a smaller vacuum box was used
for the simulation presented in Figure 4.14 to save computation time.

Figure 4.14 shows that at the stationary state gas distribution inside the capillary tube
is nearly the same as the one shown in Figure 4.12 for the case without housing and filling
pipe. It is easy to understand this result. As the dimensions of the housing and filling
pipe are much larger than the slit, the gas flow is chocked by the slit. The upstream gas is
uniform and equal to reservoir pressure. The static pressure of gas towards the inner side
of the capillary tube (z — 29 < 6 mm) reaches 210 mbar, which is slightly lower than the
value of 223 mbar achieved for the case without housing and filling pipe. That is because
the gas is not exactly immobile at the slit top, which corresponds to a local static pressure
lower than 300 mbar, whereas the pressure was set to be 300 mbar at the slit top (input)
for the case of Figure 4.12.

Theoretical analysis of gas expansion from capillary end

One disadvantage of capillary tubes, compared to supersonic gas jet, may be that the gas
distribution does not have sharp edges. As seen in Figure 4.12, there is an appreciable
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amount of gas around the capillary ends. To estimate this amount, one needs the on-axis
gas profile, which can be obtained from numerical simulation. In this section, we present
a theoretical estimation of the on-axis density profile when gas expands from capillary end
into vacuum.

Vacuum

Capillary

Figure 4.15: Schematic illustration of gas expansion from capillary tube into vacuum
background. The origin of the coordinates (r, Z) is set at the capillary exit.

We consider a very simple model with only a gas flow coming out from a capillary tube,
as illustrated in Figure 4.15. The goal here is to find the on-axis density profile p(Z) for
Z >0, where Z = z— L4 and z is the coordinate defined in Figure 4.15. Since outside the
capillary exit is the vacuum background, the gas moving in the capillary tube experiences
a pressure drop to reach a sonic chocked flow at the capillary exit [155], namely Ma = 1
at Z = 0. After leaving the capillary, gas freely expands into the vacuum background,
which typically exhibits a Gaussian radial density profile [149] as

p(r, Z) = p(0, Z)e ™" 1A, (4.20)

where Ar(Z) indicates the transverse size of gas plume at the position Z. As observed
in experiments by Geddes et al with a sonic gas jet, the gas expands in the transverse
direction at the speed of sound [163], so Ar(Z) can be estimated through Ar(Z) = ro+Z,
where 7 is the waist of transverse distribution at the capillary exit (Z = 0), so ro =~ Reqp.

Integrating equation 4.20 along the radial direction gives the total gas particle number
at Z:

o0
N(Z) = / p(r, Z)2xrdr = p(0, Z)m(Ar)?. (4.21)
0
At the capillary exit it gives N(Z = 0) = p(0,0)7R2,,. Using the conservation of the
number of particles, one can obtain the on-axis density profile of the expanding flow
(Z > 0) by

Rcap 2
p(0,2) = p(0,0) [Rcap n Z] . (4.22)
This expression shows that the on-axis density profile depends on the capillary radius and
the distance from the capillary end.

Figure 4.16 presents the on-axis density profile predicted by Equation 4.22 for a cap-
illary tube with diameter of 178 um, and the profile obtained from FLUENT simulation.
The two profiles exhibit similar decreasing tendencies, however the theoretical prediction
drops more rapidly. The difference may be understood as follows. In simulation, the
friction effect of capillary wall makes the flow becoming sonic not exactly at the capillary
exit but slightly earlier inside the capillary tube, so the flow becomes supersonic when
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Figure 4.16: Theoretical on-azis density profile given by Equation 4.22 for a capillary tube
of 178 um diameter (red solid curve), and the profile obtained with FLUENT simulation
(blue dashed line). Z = 0 is located at the capillary exit.

the gas leaves the capillary tube. In this case, the longitudinal gas velocity is higher than
the velocity of gas transverse expansion; namely the transverse size of gas flow, Ar(Z),
increases more slowly with Z than the prediction of Ar(Z) = ro + Z. Thus p(0, 2) is
relatively higher in simulation than the theoretical approximation. Nevertheless, the the-
oretical prediction, once we know its error with respect to the simulation result, is still
very useful for a rough estimation in experiment.

4.5.5 Results of 2D transient simulation

Up to this point, we have presented the gas features in the stationary state, however
an important question is to determine when the stationary state can be reached for a
given setup of gas filling. To answer this question, one needs to investigate the temporal
evolution of gas density inside capillary tubes. In this section, we will show the results of
transient (or unsteady) evolution of gas density, which demonstrate how the gas evolves
in the filling system and when the stationary state is reached in a capillary tube.

300
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Figure 4.17: The input pressure for transient simulation given by Equation 4.23.
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Figure 4.18: Time evolution of the on-axis (a) gas static pressure and (b) velocity in
a 15 mm long, 200 um diameter capillary tube with a 200 pm wide slit, where the two
dashed lines indicate the slit position. (c) Evolutions of static pressure at four different
locations along the capillary axis.
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As a first step of transient simulation, we use the capillary model given in Figure
4.11, while the boundary and initial conditions are adjusted to approach the experimental
ones. In experiment, all the filling components downstream the gas reservoir are pumped
down to < 1075 mbar, so the initial condition of gas inside the capillary tube should be
Pu,(t = 0) = 0 and vg,(t = 0) = 0. Nevertheless in order to meet the requirement of
continuous flow (Kn < 0.1), we assume that the capillary tube is initially filled with a gas
pressure of 7 mbar, i.e. Pp,(t = 0) = 7 mbar. This assumption may shorten somewhat
the filling time, compared to the experimental case of initial condition of vacuum.

The input pressure can be viewed as constant in experiment owing to the use of a real-
time pressure regulator (See more details in Section 4.6.1). Simulation are performed for
an input pressure P, = 300 mbar, which is a medium value in the pressure range (100—500
mbar) explored in experiment. To avoid numerical problems, the input pressure is required
to gradually increase from the initial pressure Py, (¢ = 0) to the constant value of Pj,. In
our case, the input pressure is given by

T+ 228-t, if Py, < 300,

: (4.23)
300, if Py, > 300,

Pin[mbar](t) = {

where At = 0.1 us is the time step of calculation. N is used to control the ramp of
pressure increase. A typical value of N = 100 was found to be suitable for our simulation
cases to avoid problems of numerical convergence. It means the input pressure linearly
increases from 7 to 300 mbar over 10 us and then remains stable for ¢ > 10 pus, as shown in
Figure 4.17. The output boundary condition is the same as for the stationary state. The
transient calculations are stopped when the gas distributions become nearly the same as
the results of stationary state.

Figures 4.18 demonstrates the transient evolutions of static pressure and gas velocity
inside the capillary tube for the model shown in Figure 4.11. The time evolution of the
gas static pressure and velocity along the capillary central axis are illustrated in Figures
4.18(a)-(b), where the two white dashed lines indicate the slit of 200 pm wide. As seen, the
hydrogen gas coming from the inlet arrives at the junction of the slit and the capillary axis
at t = 5 us. Then the gas is split into two parts. One part leaks out from the capillary end,
while the other part moves towards the capillary center with a speed of around 400 m/s,
filling the capillary tube. Consequently, the local static pressures inside the capillary tube
increase. The gas arrives at the symmetry of the capillary center (z = zp) at t ~ 14 us.
This gas then collides with the filling gas coming from the other direction (not shown
in Figures 4.18 owing to symmetry) and becomes immobile at this position. With more
and more gas being filled into the capillary, the local static pressure rises rapidly, and
meanwhile the gas on-axis velocity drops owing to a lower pressure gradient between the
inlet and the capillary central region. This filling process is clearly reflected in Figure
4.18(c)-(d) by the evolutions of the gas static pressure and velocity at four different on-
axis points, namely z—zg = 1, 3, 5, 7 mm. Three of them are located in the main capillary
part, while one, z — zp = 7 mm, is between the slit and the capillary end. They show that
the gas becomes stable for ¢ > 40 us. As shown before, the gas is stationary and uniform
in the central capillary part, while at z — zg = 7 mm the local static pressure is lower and
the gas leaks out with a speed of 900 m/s. The transient calculation was terminated at
t = 50 us when the stationary state has been reached.

We examined how the filling process is affected by the capillary parameters since
different capillary diameters and lengths were used in our experiments. Appendix B
shows a set of simulation results performed for capillary tubes with different lengths.
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Figure 4.19: Time necessary to reach the stationary state as a function of the capillary
tube length and a polynomial fit.

The capillary models are similar to the model in Figure 4.11 except for the length of the
tube. The input pressure is the same as given in Figure 4.17.

We first examine the influence of slit width. In Figures B.1-B.3, the slit is 300 ym wide,
while the right side of the slit is kept at 1.5 mm from the capillary end. The slit/diameter
ratio thus becomes 1.5 instead of 1 used for Figure 4.18. Noticeable differences are observed
between Figures B.1 and Figure 4.18. With a wider slit, the gas filling process is faster.
The gas propagates in the capillary central part with a higher speed of 800 m/s. As a
consequence, the local pressure increases more rapidly, and overshoots (a local pressure
larger than the input pressure, Py > P;,) at ¢ ~ 25 us. However this overshot state
is not stable, as the gas is expelled to lower pressure regions, and the local overshot
pressure drops. This phenomenon induces overshot-to-undershot oscillations which are
clearly visible in Figure B.1(c)-(d). The oscillation magnitude decreases with time, and
eventually the stationary state is reached at ¢ ~ 60 us.

The influences of the capillary length on the gas filling process was studied as well.
Figures B.2-B.3 display the simulation results of gas filling for 30 mm and 60 mm long
capillary tubes with 300 pm wide slit, respectively. Compared to the case of 15 mm long
shown in Figure B.1, the filling process is smoother. A gas oscillation occurs between t =
50—80 us in the 30 mm long capillary, but without overshot. For the 60 mm long capillary
tube, the static pressure inside the tube gradually increases without oscillation. This
occurs mainly because it takes more time for the gas to reach the capillary symmetrical
plane in a longer capillary tube. At the same time, the input flux tends to become stable
owing to pressure adjustment in the slit region, so pressure overshot is less excited in a
long capillary. Eventually stationary states are achieved in the 30 mm and 60 mm long
capillary tubes at £ ~ 90 us and ¢ ~ 250 us respectively, when the gas distribution becomes
unvaried with time. An empirical formula for the arrival time of the stationary state as a
function of capillary length is obtained as ts, = 0.074L%ap —1.33Lcqp +63.3. As expected,
the capillary length does not affect the filling efficiency. For all the three cases in Figures
B.1-B.3, an efficiency of 90% (P g, ~ 270 mbar) is achieved.

Finally, we present the results of transient simulations for capillary tubes together with
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the holder and filling pipe (the model illustrated in Figure 4.14). This simulation should
give us a whole picture of gas evolution in the filling system. The boundary setups are the
same as above. Shown in Figure 4.20(a)-(d) are the contour plots of gas velocity at four
different times: ¢t = 5, 10, 15, 47.5 us. They respectively represent four important times
in the procedure: (a) the gas coming from the input port propagates in the filling pipe;
(b) the gas has filled the capillary housing and starts to fill the capillary slit; (c) the gas
feeds the capillary main part and meanwhile leaks into the vacuum box; and (d) the first
stationary state is reached.

¢ Magnltude (m/=) (Time=5.00010s-08) Contours of Veloolty Magnitude tmfs) (Time=1.0000e-05)
FLLENT 6.3 [2d. dp FLLENT 6.3 [2d. dp

Centours of Ve agnltude (m/=) [Time=1.5000a-05) W f fagnitude (mfe) [Time=4.7E00
FLLENT B.3 [2d. « FLUEMT

Figure 4.20: Contour maps of gas velocity inside the capillary tube with the holder and
filling pipe at different times of t = (a) 5, (b) 10, (c) 15, (d) 47.5 ps.

Even though the gas velocity is zero inside the central part of the capillary tube in
Figure 4.20(d), it is still not the final stationary state seen in Figure 4.14. To give a clearer
picture of the filling process, the evolution of on-axis gas static pressure and velocity are
shown in Figures 4.21. One can immediately find that the process is quite different from
Figures 4.18 which presents the capillary model without housing and filling pipe.
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Figure 4.21: Time evolution of the on-axis (a) gas static pressure and (b) velocity in
the capillary connected to filling pipe, where the two vertical dashed lines indicate the
slit position. Different time scales are used below and above the horizontal dotted line.
Time evolutions of (c) static pressure and (d) velocity at four different locations along the
capillary axis.
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The key difference is that here the gas experiences several oscillations before reaching
the stationary state. This specific phenomenon can be easily understood as follows. When
the gas comes from the input port, it moves quickly through the filling tube and stops at
the end of the capillary holder. With continuous gas pouring into this region, even though
a slight amount of gas leaks into the capillary tube through the slit [as seen in Figure
4.20(b)], the local pressure in the holder region above the slit becomes higher than the
input pressure. Subsequently, the gas pressure reaches a maximum inside capillary tube
at t ~ 50 us. The overshot gas is expelled along pressure gradient to other areas, which
results in undershot local pressure in the end region of the holder. It further results in
the pressure minima inside the capillary tube. With time increasing, this oscillation is
gradually damped and the stationary state eventually arrives inside the capillary tube at
t ~ 350 ps. It is obvious that the filling process becomes significantly longer and more
complicated when the filling pipe and capillary holder are taken into account.

4.5.6 Results of 3D simulation

As illustrated in Figure 4.2, the capillary tube we use is not symmetrical around the axis,
so the real gas filling process might be different from that observed in the 2D models. In
order to obtain a better knowledge of gas distribution inside capillary tubes, 3D simulations
are definitely required.
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Figure 4.22: Model of the capillary tube with the same dimensions as for the 2D model
given in Figure 4.11. Contour cut-view in the x — z plane of (a) the gas static pressure
and (b) velocity. Owing to the symmetry boundary, only half of the capillary tube was
simulated.
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Figure 4.23: On-axis profiles of (a) gas static pressure and (c) velocity obtained with
transient 3D simulation at t = 50 ps. Time evolutions of (b) gas static pressure and (d)

velocity profiles along the capillary axis, where the two vertical dashed lines indicate the
slit position.
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In this section, we present the results of 3D fluid simulations for both the stationary
and transient states. The 3D model shown in Figure 4.22(a) is generalized from the 2D
model given in Figure 4.11. The dimensions and boundary conditions are kept the same.
Owing to the symmetry boundary, only half of the capillary tube was simulated.

Figure 4.22(b)-(c) exhibits the contour cut-views in the  — z plane of the gas static
pressure and velocity obtained from the stationary state simulation. The input pressure
is set as usual as 300 mbar. As seen, the pressure is uniform and nearly equal to the
input pressure inside the slit and main part of the capillary tube. This result is slightly
different from what is shown in Figure 4.12 from the 2D simulation. In the 3D case, the
gas is almost immobile in the slit and the static pressure inside capillary tube of 294 mbar
is relatively higher than 220 mbar obtained in the 2D model. This difference may be
interpreted as follows. In the 3D model, the input port is a piece of half cylinder, whereas
the 2D inlet is a line. The inlet/outlet size ratio in increased from 1 : 1 for the 2D model
to 13 : 1 for the 3D model, which means the amount of outflow takes a smaller fraction
from the inflow in the 3D case. A higher pressure of 294 mbar is therefore fed into the
capillary tube. The filling efficiency is nearly 100%.

Shown in Figure 4.23 are the results of the transient simulation. The input pressure
is the same as for the 2D cases shown in Figure 4.17. It is found that in the 3D case that
gas reaches the capillary symmetrical plane (z = zp) at ¢ ~ 13 us, and finally reaches the
stationary state when t > 40 ps. Apart from a higher filling efficiency, the process of gas
filling is similar to the 2D case as shown in Figures 4.18. The line-outs of on-axis gas static
pressure and velocity in Figures 4.23(a) and (c) are roughly the same as those from 2D
simulation as well. A small difference is the gas dynamics in the slit region. A noticeable
pressure overshoot is seen at t = 12 s in the slit in Figure 4.23(b). Two weaker overshoots
appear later at t = 18 us and 23 us, respectively. This phenomenon of overshoot however
was not observed in the 2D results. That’s essentially because in the 2D case the gas flow
comes from a slit comparable to the capillary diameter, whereas in the 3D model the gas
flow comes from half circumference, in which case the gas converges to the center of the
circle making local “over-injection”. The oscillation of overshot tends to attenuate and
finally disappears owing to pressure self-adjusting in the slit region.

4.5.7 Limits of fluid simulations

We have shown the results of gas dynamics inside the capillary system from fluid simula-
tions carried out with FLUENT. These simulations are very helpful to understand how the
gas evolves in the filling system and especially to know the gas distribution along capillary
axis at the stationary state. The latter point is of great importance for PIC simulations
or to estimate the laser evolution before it enters the capillary tube.

Nevertheless, there is still one vital question remaining: at what time is the stationary
state realized for a given filling system? Because we are really interested in working with
a stable gas distribution, we could in principle obtain the filling time from 3D FLUENT
simulations, however there are some difficulties to accomplish this. First of all, it is ex-
tremely time-consuming. In our setup of gas filling (See Section 4.6), there is an one meter
long flexible pipe to connect the gas reservoir and capillary housing. The mesh number
would become unacceptable concerning our cluster capacity to model all the components.
Furthermore, it is not easy to describe the flexible pipe very precisely as it is often twisted
in experiments. Secondly, the fluid simulation can only work properly for the regime of
continuous flow, however in experiment the filling process begins and terminates with vac-
uum background. The temporal evolution of gas flow in the molecular regime is therefore
impossible to model correctly with fluid simulations. Last but not least, in real case the
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reservoir pressure is not exactly constant even though there is a self-adaptive pressure reg-
ulator, and the effective valve opening duration also changes with respect to the reservoir
pressure. Those effects are not easy to include in fluid simulation, but they indeed affect
the filling process.

Owing to these reasons, it was crucial to experimentally characterize the temporal
evolution of gas density inside capillary tubes to determine the required time to reach a
stationary state in the experimental configuration.

4.6 Determination of gas density in capillary tube: experi-
ment

As discussed above, it is important to determine the time when the stationary state is
achieved in a capillary tube. It tells us when we should send the laser pulse for laser-
plasma interaction. In this section, we report on a method developed to address this
issue [164]. The determination of the average density along the capillary axis is obtained
by interferometry through the measurement of the real-time phase variation when gas
is fed into the tube. The time evolution of gas is determined from the measurement
of the continuous fringe displacement as a function of time by following the temporal
intensity variation inside a given interval located at a fixed position on the beam axis. As
demonstrated below, this method is very efficient for optimizing a gas filling system, and
can be applied to other similar plasma targets such as gas-cell or gas jet as well.

4.6.1 Gas filling system

In this section, we introduce the design of our gas filling system. The setup shown in
Figure 4.24 is improved from the previous work [62], where the gas injection process was
controlled manually. It is important to precisely control the gas filling process on one
hand to achieve the desired plasma density in the capillary tube, and on the other hand,
to minimize gas leakage into vacuum chamber. If the valve for gas filling is opened for
a duration longer than the one necessary to reach the stationary state of gas inside the
capillary tube, a significant amount of gas will leak into the target chamber. Gas leakage
is an important consideration, because (i) there is a high risk to damage to the turbo
pump, and because (i¢) it may result in undesirable nonlinear modifications of the laser
beam interacting with a large volume of gas before focusing.

Figure 4.24(a) shows schematically the system of gas injection, and Figure 4.24(b) is a
photograph of the setup for the interferometric measurements at LPGP in 2012 [164]. The
filling procedure is mainly controlled through a pressure regulator and a solenoid valve.
The inlet port of the regulator (Bronkhorst pressure controller) is connected to the gas
bottle of either hydrogen or argon with output pressure up to 30 bar, while the outlet
port is connected to the reservoir. The regulator that we used is able to provide a desired
pressure in the reservoir ranging from 50 to 500 mbar with an error of merely 1%. The
inset in Figure 4.24(a) shows the principle of the regulator’s function. A high-accuracy
pressure sensor measures the real-time pressure Py at the outlet port (namely the reservoir
pressure), and feeds back to the controller P —600. The controller calculates the difference
between Po and the desired pressure in the reservoir, and regulates the flow rate through
a valve. Finally the desired pressure can be precisely produced in the reservoir. When the
reservoir pressure is ready, we open the solenoid Valvel to inject gas into capillary tube.

The solenoid valve (Pfeiffer Vacuum DVI 005 M) is driven by a 24V, 10 W electrical
signal which is further triggered by a digital TTL signal. The valve is capable of functioning
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Figure 4.24: (a) Schematic illustration of the system for gas injection into capillary tube.
(b) Photograph of the experimental setup at LPGP for interferometric measurements.

under a pressure difference up to 1.5 bar. The TTL signal is used to control the opening
duration of the valve. The duration of the electrical signal can be decreased to as short
as 27 ms, below which the valve is not able to open normally for a high reservoir pressure
(~ 500 mbar). The effective duration of valve opening is shorter than the electrical pulse
duration because of the internal delay of the valve, of the order of 20 ms. In the following
part, the duration of valve opening should be understood as the duration of the electrical
pulse. As the valve has to be placed outside the vacuum chamber owing to self-heating
during operation, a flexible pipe with inner diameter of 1/4 inch and with a total length
of 110 cm connects the valve to the capillary housing.

The filling procedure is briefly described as follows: (i) pumping the chamber and
filling pipes down to < 5 x 10~° mbar; (i) setting the reservoir pressure; (iii) opening the
valve with a desired duration. After valve opening, the regulator automatically works to
feed the reservoir to the desired pressure.

4.6.2 Principle of the interferometric measurement

Interferometry is widely employed in gas/plasma diagnostics. In this thesis, we used a
Mach-Zehnder (shortened as “MZ” in the following) interferometer [146] to measure gas
density in capillary tubes. The MZ interferometer, as illustrated in Figure 4.25, consists
of two separate optical paths. The incident HeNe laser is split 50/50 by a cube into
two beams, reflected by two mirrors, and then recombined by a second cube to produce
interference. In one optical path, one can put the sample to be tested which will introduce
a relative phase shift between the two laser beams. The phase shift can be measured
by the spatial shift of the interference fringes. To avoid disturbances of air flow, the
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interferometer is usually built up in a vacuum chamber. The lengths of the two optical
paths should not differ too much since the coherence length of the HeNe laser is around
20 cm. If a pulsed laser is employed, the two optical paths must be nearly equal to get
interference.

Cube2
Mirror2

Interference
fringes

Cube1

HeNe
laser

Vacuum chamber

Figure 4.25: Schematic illustration of the Mach-Zehnder interferometer used in our
experiments. The optical path with capillary tube is called “sample beam”, while the other
is called “reference beam”.

The phase shift between the two laser beams depends on the difference between the
indexes of refraction along the optical paths as

B(t) =5 [ na(t.0) = ()

2
=5 [in.n - a1

where A is the phase shift, L is the optical path length between the two cubes, and
ns(l) and n,(I) represent the indexes of refraction for the sample and reference beams,
respectively. As it is in vacuum, n,(l) = 1 holds. Following Born and Wolf [165], the
index of refraction of gas n can be written as a function of the gas density p to be

(4.24)

3
n=1+ EAngp, (4.25)

where A, is the molar refractivity, and my, is the mass of gas atom. A, is calculated via
A, = %ﬂ'N Acy. N4 represents the Avogadro constant, and o, is the mean polarizability of
a molecule. Using tabulated physical constants [166], the term 3A,m,/2 is calculated to
be 5.22x10724 cm? for hydrogen and 10.5x1072% cm? for argon at standard temperature
and pressure. The phase shift is linked to gas density through

_ 3mArmy

Au(t) = =5 /L po(l, 1)dl. (4.26)

Equation 4.26 implies that the measurement of the time variation of the interference fringe
is thus a direct measurement of the evolution in time of the gas density integrated over
the direction of propagation of the laser beam inside capillary tubes. In order to quantify
the gas density, one needs the spatial distribution of gas along capillary axis.

For a stationary gas distribution in capillary tubes, we can get the spatial distribution
from the FLUENT simulations presented in the Section 4.5. As shown in Figure 4.12,
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the density profile can be written as p(l,t) = 9(1)p*(t), in which 9(I) = p(l)/p* is the

normalized density profile and p* denotes the plateau density between the two capillary

slits. Substituting this expression into Equation 4.26, the plateau density in the stationary
state is determined by

(0=

TArmyg [ 9(1)dl

The term [; 9¥(1)dl can be numerically calculated. Once the phase shift A (t) is measured,
one can first obtain the plateau density p*(¢) through Equation 4.27, and then get the
density profile by p(l,t) = p*(t)¥(1).

It should be mentioned that interferometry in the direction transverse to the capillary
axis would bring a more precise spatial determination of the gas density. However in our
case, as shown in Figure 4.25, longitudinal interference was chosen owing to the following
considerations. (i) Within the parameter range of capillary tube, the transverse phase shift
induced by hydrogen or argon gas requires a high stability and resolution. For example,
for a capillary tube of 200 um diameter, when gas density is py, = 1 x 1012 cm™3, the
maximum phase shift is merely At/(27) ~ 0.016. Such a small phase variation is far
below the typical noise level of a few percent in our experiment. The transverse phase
shift would be measurable if we ionize the gas into plasma like in Ref. [151]. (i7) In our
present capillary housing, the capillary tube is mounted into an enclosed metallic holder for
gas filling. It was not possible to build transverse interference with such an arrangement.

(4.27)

4.6.3 Experimental measurements and results

As presented above, characterization of temporal gas density evolution becomes the issue
of measuring the temporal phase shift of interference fringes. One approach is to use an
ultrashort pulsed laser and change the arrival time of the laser pulse with respect to the
opening of valve for gas filling [149], so many shots have to be repeated to get a well-
resolved evolution profile. In this section, we introduce a scheme using continuous HeNe
laser together with a photodiode [164]. Temporal phase shift is inferred by following the
intensity variation in time of a fraction of the most intense fringe for a given reservoir
pressure and valve opening duration. This diagnostic scheme provides an efficient way to
determine the influence of capillary parameters or/and valve opening on the gas filling
process.

Experimental setup

The experimental arrangement used for the characterization of gas density inside capillary
tubes is illustrated in Figure 4.26. The gas filling system was introduced in Section 4.6.1.
A collimated HeNe laser (5mW, 632 nm) with beam waist of 2 mm was used. The laser
entered the vacuum chamber through an optical window with transmission of more than
99% for wavelength of 632 nm. The MZ interferometer was constructed in vacuum using
two 50/50 beamsplitter cubes and two Al mirrors of flatness A\g/10. Two identical lenses
of focal length f = 25 ¢m were used to focus the beam at the entrance of the capillary
tubes, and to collect the beam emerging after propagation through the capillary tubes.
In the conditions of this experiment, the focal spot waist was 44 + 4 pm, and typical
transmission of > 90% of laser energy was measured. The produced interference fringes
were measured by the 12 bit CCD camera and a photodiode at the same time. The slit
in front of the photodiode was about 0.5 mm wide, selecting one third the most intense
fringe. To fully characterize the gas filling process, two oscilloscopes were used to record
the photodiode signal simultaneously with different time scales. The gas filling process,
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Figure 4.26: Schematic illustration of the interferometric measurement.

oscilloscope and camera acquisitions were synchronized by a numerical Stanford pulse
generator and automatically controlled by a LabVIEW program.

In order to achieve good quality (straight, high contrast) interference fringes, the capil-
lary tubes must be very carefully aligned with the laser. Quasi-monomode guiding should
be achieved in the capillary tubes, and furthermore the transmitted light has to be pre-
cisely collimated by the second lens to plane wave. If not, the fringes would not be straight.
To give an idea of the influence of laser wavefront on the interference pattern, Figure 4.27
shows three fringe patterns produced by different configurations of laser wavefronts, which
are typical cases observed in experiments. They are calculated using two Gaussian beams
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Figure 4.27: Three fringe patterns numerically calculated using two laser beams with (a)
plane wavefronts; (b) one plane wavefront and one curved wavefront with radius R = 0.5
m; (c) one plane wavefront and one curved wavefront with radius R =5 m.

with waist of w = 2 mm and a tilt angle of 1 mrad (See more details in Appendix A.4).
The two beams are assumed to have the same peak intensity. Figure 4.27(a) is the de-
sired pattern produced by two collimated beams with plane wavefronts. The fringes are
straight. In Figures 4.27(b)-(c), one of the wavefront is set to be spherical. The radius
of curvature of the wavefronts are R = 0.5 and 5 m, respectively. The curved wavefront
could be introduced by the second f = 25 cm lens downstream capillary tube if it is not
exactly focused at the capillary exit. The case of R = 0.5 m corresponds to a strongly
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bent wavefront. As shown in Figure 4.27(b), the interference pattern becomes circular,
like Newton’s rings, instead of straight fringes. If the lens is slightly misplaced, it may in-
troduce a weakly bent wavefront with a larger radius, which gives banana-shaped fringes,
as exhibited in Figure 4.27(c).

Since the method using a CCD camera to characterize gas density for gas jet has been
well investigated [149, 150], we first measured the gas density evolution inside the capillary
tubes with the CCD camera, and then benchmarked the result with that obtained using
the photodiode scheme. After verification, the dependences of gas filling process on the
capillary parameters and valve opening duration were systematically studied.

Measurement with CCD camera

This section presents the results measured with the 12 bit CCD camera for a 20 mm long,
102 pm diameter capillary tube. Argon was used to produce a more easily detectable fringe
shift than hydrogen for a given gas density. Figure 4.28 shows an image sequence taken
by the CCD camera at different time delays. The achieved fringes were fairly straight as
those in Figure 4.27(a). A red line is plotted on purpose in Figure 4.28 to give a position
of reference, so it is easy to appreciate the fringe shift. ¢ = 0 corresponds to the start of
the electrical pulse for valve opening. It is the reference position of fringe when there is
no gas filled into the capillary tube. The duration of valve opening was 20 ms (namely
t = 0—20 ms), and the reservoir pressure was 125 mbar. At ¢t = 30 ms, the fringe positions
are still nearly the same as t = 0, implying no gas reaches the capillary tube yet. However
with time passing by, the fringes perceptibly shift upwards at t = 40 ms. This fringe shift
becomes even more pronounced in Figure 4.28(d), and clearly visible at t = 60 ms. The
most intense fringe indicated by the arrow is just above the red line in Figure 4.28(a),
while it was clearly moved upwards at ¢ = 60 ms in Figure 4.28(e). As explained before,
the fringe shift is relative to the phase shift of the sample laser beam, which is introduced
by gas filling into the capillary tube.

(@) (b) () (d) (e)

Figure 4.28: Image sequence of the interference fringes taken at (a) 0, (b) 80 ms, (¢) 40
ms, (d) 50 ms, (e) 60 ms. t =0 is the start of the electrical pulse for valve opening. The
red line is plotted as a reference position; the fringe shift is clearly visible at t = 50 and
60 ms.

The phase shift Ai(t) corresponding to the fringe shift is quantified by the method
developed by Takeda et al [167]. The algorithm is briefly introduced as follows. We
especially concentrate on 1D calculation, as the fringes are straight in our case and the
fringe shift is perpendicular to the fringe direction. For the image in Figure 4.29(a), the
fringe intensity Iy at a given horizontal position zg is

It (z0,y) = A(xo,y) + B(o, y) cos[th(zo,y)], (4.28)

where A(z,y) indicates the background variation, B(xg,y) is relative to the local fringe
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contrast, and ¥ (xg,y) is the interference phase to be determined. The above equation can
be written as

Iy(zo,y) = Alzo,y) + C(x0,y) + C* (20, y), (4.29)

where C(xg,y) = %B(xo,y) expliv)(zo,y)], and * denotes the complex conjugate. Next,
Equation 4.29 is Fourier transformed with respect to y, yielding

It(zo,w) = A(zo,w) + C(x0,w — wy) + C*(x0, w + wy), (4.30)

where wy indicates the characteristic spatial frequency of the fringes. Equation 4.30 implies
that the three terms A, C, and C* are separated in frequency domain. One is able to
filter out any of the two terms convolved with wy, saying C. Applying inverse Fourier
transformation to C(zg,w — wy), C(xo,y) is obtained. Finally, the phase term can be
calculated through

Ya(z0,y) = S{In[C(z0,y)]}, (4.31)

where & denotes the imaginary part.

As the interference pattern dominated by the cosine function is periodic, the phase
Ya(xo,y) given by Equation 4.31 varies within the interval of [—7, 7]. However in reality,
the phase varies continuously. The discontinuities of numerically calculated phase can be
corrected by adding an offset phase 1), f(xo,y), namely

Y(20,y) = Ya(z0,y) + Yos (w0, y)- (4.32)

Yors is determined by the following consideration. In many experiments, the width of
interference fringe is much larger than the pixel size of CCD, so the phase difference
between two adjacent points should be much smaller than 27, that is |¢g4(zo,yj4+1) —
Ya(xo,y;)] < 2m. When the phase difference is comparable to 2w, say for example
|Ya(xo0, yj+1) — Yalxo,y;)| > m, the (j + 1)th phase 1)4(zo,y;j4+1) must be compensated
by adding ¢ (20, yj+1) = 2mjp17m. m; is characterized by the sign of phase jump (posi-
tive or negative) to be

0, ifj=1
mj_1, if [¢(z0,y5) — (w0, yj—1)| <7
mj—1+ 1, if P(xo,y;) — Y(zo,yj-1) < —7
mj_1—1, if ¥(wo,y;) — ¥(z0,yj-1) > 7

(4.33)

Equations 4.32 and 4.33 together allow us to obtain the desired continuous phase term.

Figure 4.29 shows an example of phase retrieving following the above procedure. The
first fringe image in Figure 4.28 is reused here. First, we chose a region where the fringe
signal is strong and the contrast is high and make a line (z = 145 and y € [125,275])
along the direction of fringe shift, as indicated in Figure 4.29(a). The fringe intensity
profile along this line is given in Figure 4.29(b). The intensity profile can be described
by Equation 4.28. Applying the procedure of phase computation to this intensity profile,
we finally retrieve the corresponding phase distribution plotted in Figure 4.29(c). The
obtained phase profile at t = 0 is therefore the reference to determine the phase shift at
a later time. Also plotted in Figure 4.29(c) is the phase profile determined at ¢t = 60 ms.
One can immediately see the phase shift (the gray area) between them. The phase shift
determined by averaging over the range y € [125,275] is Av|,_go,s = (0.65+£0.0087) * 27,
which corresponds to the number of fringe shift Ay /(27) = 0.65. The RMS error of this
determination is around 1%.
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Figure 4.29: (a) Fringe pattern at t = 0 in Figure 4.28. (b) Intensity line-out along the
line in (a). (c) The corresponding phase profile of the intensity line-out. Also plotted in
(c) is the phase profile of the fringes at t = 60 ms shown in Figure 4.28(e).

The temporal phase shift, displayed in Figure 4.30 is obtained by repeating the above
calculation for the hundreds of fringe images taken at different time delays. The gas
dynamics during the filling process will be presented together with the measurement using
photodiode in the following subsection. For the stationary state (¢ = 70 — 170 ms in
Figure 4.30), using Equation 4.27 and the equation of state of ideal gas one can compute
the static pressure inside the capillary tube to be 80 £ 3 mbar, corresponding to a gas
filling efficiency of 1y ~ 64%.
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Figure 4.30: Phase shift induced by argon gas filled into the 102 um, 20 mm long capillary
tube when the reservoir pressure is 125 mbar.

There are two issues regarding the diagnostic method with CCD camera, which must
be carefully treated:

e Direction of fringe shift

In order to obtain the temporal phase shift At(t), one needs to record fringe images
with a high sampling frequency in time to know which direction the fringes shift. For
example, we can clearly see the fringes shift upwards in Figure 4.28. It is not possible to
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determine the phase shift without knowing the shift direction, as both the two directions
are possible, whereas they lead to different values of phase shift: Ay or 27 — Avp.

e Step of density scan

One important calibration is the relationship between the reservoir pressure and gas
density inside the capillary tubes at a given time delay. Nevertheless one should not use
a too large step for reservoir pressure scan. As the fringe pattern described by the cosine
function (See Equation 4.28) is periodic, the phase shifts Aty and 2mm + Ay will produce
exactly the same shifted fringe pattern, and therefore indistinguishable. In this sense,
a small step corresponds to phase shift less than 27 shall be used to rule out the other
possibilities.

These two arguments require to perform a lot of repeated acquisitions to calibrate one
capillary tube, so it becomes considerably time-consuming if we want to explore a large
range of capillary parameters and investigate the influence of gas species. In this context,
we sought a more efficient method.

Measurement with photodiode

In this section, we present the scheme developed to determine temporal gas density evolu-
tion inside capillary tubes using a photodiode. The configuration of this measurement is
illustrated in Figure 4.26. A narrow slit is placed in the optical path to select a fraction of
the most intense interference fringe. The selected light shines onto a sensitive photodiode
whose signal is recorded by oscilloscopes. The temporal variation of the photodiode signal
is related to the fringe shift (phase shift), and can be used to infer gas density evolution.
The mechanism is described as follows.

The photodiode signal, Sy(t), is proportional to the fraction of light from the interfer-
ence pattern going through the rectangular aperture. As the aperture is large, diffraction
is neglected. The signal is given by

Sp(t) = app //Q I(z,y,t)H (x,y) dx dy, (4.34)

where ap, is a constant associated to the photodiode responsivity to the 633 nm laser
beam, and €, is the surface of the photodiode; If(x,y,t) is the intensity of the interference
pattern, z and y are the coordinates in the plane transverse to the beam propagation, and
H(z,y) is the 2D Heaviside function describing the rectangular aperture. The interference
pattern can be written as

It(z,y,t) = Li(z,y) + Lo(z,y) + 24/ 11 (z,y)L2(z,y) % cos[Avo(z,y) + Ap(t)], (4.35)

where I1(z,y), I2(z,y) are the transverse distributions of energy of the two beams exiting
the interferometer; Avyy(x,y) is the initial phase difference, and A (t) is the phase shift
to be measured. Substituting Equation 4.35 into Equation 4.34 (See the derivation in
Appendix A.4), the photodiode signal as a function of time can be reformed as

Sp(t) = A+ Becoslfy + Ap(t)], (4.36)

where A, B, and 6y are coefficients determined by the aperture size and the energy distri-
bution of each beam in the transverse plane. The phase term of above equation may be
extracted by defining the normalized signal Sy (t) as

Sp(t) —min(S,) 1+ cos[fl + Av(t)

Sn(t) = max(S,) — min(S,) 2 ’

(4.37)
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and inversing the cosine function
A)g(t) = arccos[2Sn (t) — 1] — arccos[2Sn5(0) — 1], (4.38)

where Sy (0) is the initial photodiode signal in vacuum before valve opening. The phase
shift obtained from Equation 4.38 oscillates inside the interval [0, 7], which is not phys-
ically true but just owing to the definition of the inverse cosine function. Likewise, the
discontinuities of the phase Aty are corrected by adding an offset phase Aw,rr. The
determination of At,s; is explained as follows.
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Figure 4.31: (a) Ezample of the discontinuous phase evolution in time calculated from
Equation /.38, where the red dots mark stationary points. (b) Offset phase distribution
corresponding to (a). (c¢) The corrected continuous phase evolution. The four parts of gas
filling are separated by the dashed lines and indicated on the top.

Figure 4.31(a) shows the typical behavior of the phase distribution Avy(t) calculated
using Equation 4.38 from a measured photodiode signal. The phase evolution can be fully
determined by taking into account the time sequence for filling gas into the capillary tube,
which can be schematically separated into four parts: part I is the initial state in vacuum,
where the phase shift is equal to zero; part II is the time interval when gas is continuously
filling the tube, and the phase shift is assumed to be continuously increasing; part III is
the time interval when a stationary state is reached inside the tube, and the phase shift is
constant; part IV is the time interval when gas leaks into the vacuum chamber through the
capillary tube ends, producing a decrease of the average pressure inside the tube, and the
phase shift is assumed to decrease continuously. The slope of the phase shift in time is thus
determined using these physical assumptions. Av,r(t) [see Figure 4.31(b)] between two
stationary points of the discontinuous distribution is determined by adding (subtracting)
7 if the two stationary points are located before (respectively, after) the stationary state.
Finally, the continuous phase evolution is retrieved by adding the local phase variation to
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the phase offset as

|AYa(t) — Avpg(Ts)], it <t <7

, (4.39)
|Apg(t) — Apg(Tjr1)|, 75 <t <14

Ap(t) = Athosp(t) + {

where 7; (7;) is the time of the ith (jth) stationary point before (after) the stable state.
Once the phase is properly corrected by this procedure, one can obtain the variation of
the integrated gas density through Equation 4.27.

One important issue for using the photodiode is the slit width. On one hand, the
slit should be as large as possible to select more laser energy in order to reach a high
signal /noise ratio, whereas on the contrary the contrast of signal will decrease with slit
width increasing. So there is an optimal width of a given setup. Figure 4.32(a) shows a
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Figure 4.32: (a)Interference fringe calculated using two Gaussian beams with waist of
2 mm and a cross angle of 0.7 mrad. The two vertical lines indicate the size of the
rectangular aperture chosen to select spatially the part of the signal sent to the photodiode.
(b) Photodiode signal as a function of phase shift in time for an aperture width of 0.1 mm
(blue star), 0.3 mm (green triangle), 0.6 mm (red spot), and 0.8 mm (black square). The
curves are normalized to their respective maxima. (c) Signal contrast as a function of slit
width for the fringe pattern in (a).

fringe pattern calculated with two Gaussian beams with waists of 2 mm and a cross angle
of 0.7 mrad. The two vertical lines indicate the slit. Displayed in Figure 4.32(b) are the
photodiode signal as a function of the phase shift for different aperture widths. It shows
that increasing the width of the aperture lowers the contrast of the photodiode signal,

defined as _
Cop — max(Sy) — m%n(Sp)' (4.40)

max(S,) + min(S,)

Because fringe pattern is periodic, the contrast oscillates with slit width as well. However
it is obvious that the general trend of contrast is dropping. Especially when the slit width
is an integral of fringe width, the contrast becomes zero. In that case, no matter how
the fringe shifts, the photodiode signal does not change at all. Taking this into account,
the optimal opening size should be a compromise between signal contrast and signal /noise
ratio. Typically in our experiment, the width of the aperture was selected to be 0.3 mm,
about one third the fringe period, corresponding to a contrast of 0.8. In this case, the
noise to signal ratio was measured to be around 5%. Using a larger aperture did not
significantly reduce the noise/signal ratio, whereas it degraded the contrast considerably.
Figure 4.33 exhibits the phase shift deduced by the diagnostics using the photodiode
and the CCD camera. The experimental conditions are the same as for Figure 4.30. As
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shown, the two measurements agree very well with each other, which suggests using the
photodiode is a reliable scheme to measure gas density. The main advantage of using a
photodiode is that the temporal evolution of gas density can be obtained with a single
rather than hundreds of repeated gas filling sequence in the case of CCD camera measure-
ment [149]. The other advantage is that the time resolution is better for the measurement
of photodiode. In Figure 4.33, one can clearly see the density fluctuations for ¢ > 80 ms.
These fluctuations are due to gas oscillation between the reservoir and capillary housing
as explained in Ref. [164], however these oscillations were not resolved when the CCD
camera was employed owing to a relatively large time step.
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Figure 4.33: Comparison of the measurements using the CCD camera and photodiode.
The parameters are the same as for Figure 4.30.

Characterization of hydrogen gas filling process

In this section, we present the results for characterizing the filling process of hydrogen gas,
as hydrogen gas is usually used in our laser-plasma interaction experiments. Figure 4.34
shows a typical measurement of the phase shift induced by hydrogen gas. The capillary
tube was 30 mm long with a diameter of 178 pm. The valve opening was 27 ms and the
reservoir pressure was 500 mbar. Two oscilloscopes were used with sampling frequencies of
10 kHz and 100 Hz in order to analyse the detailed dynamics of gas filling [Figure 4.34(a)]
and the overall evolution of gas density [Figure 4.34(b)]. The phase shift was calculated
using the method described in the preceding subsection.

The photodiode signal in Figure 4.34 is constant from the gate opening time until
24 ms, then drops down and oscillates quickly between 0 and 10 V before reaching a
spiky regime over a 100 ms scale. The corresponding dynamics of gas evolution can be
interpreted as follows. Once the valve is opened, gas starts filling the 4.5 mm diameter,
~ 110 cm long metallic pipe connecting the reservoir to the capillary tube. At around
t ~ 26 ms, a fast variation of the photodiode signal occurs owing to gas filling the capillary
tube. The gas density in the capillary tube quickly increases and reaches a maximum at
about ¢ ~ 34 ms. The fluctuations of gas density after ¢ > 40 ms can be attributed to
a small oscillation of the hydrogen gas flow between the valve and the capillary housing,
inducing gas instability in the capillary tube. The time for a density fluctuation to make a
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Figure 4.34: Measured photodiode signal (black dotted curve, left hand azis) and the

corresponding calculated phase shift (red solid curve, right hand axis) as a function of time

for two different time scales in (a) and (b); the electrical gate for valve opening (green line)

is set as t = 0 — 27 ms. The two blue dashed lines in (a) highlight one oscillation with
period of 2.3 ms.

round trip between these two points is estimated to be 2L /vg, ~ 2.2 ms, where Ly ~ 1.4
m is the whole length of the filling pipe with connectors, and vy, the speed of sound of
hydrogen (about 1.3 km/s). The typical period of the oscillation in Figure 4.34(a) for
t > 40 ms is 2.3 ms, which is consistent with the period of 2.2 ms for gas oscillation. After
this rapid filling process, the gas density slowly drops over the time scale of second as seen
in Figure 4.34(b), corresponding to the leaking of the gas filling the metallic pipe into
the vacuum chamber through the two small capillary exits (178 pum diameter holes). The
largest time range that the oscilloscope can cover is up to t = 10 s, when there is still a
phase shift of Ay (t = 10s) >~ 7. Real-time observation shows that the photodiode signal
returns to its initial value at ¢ > 15 s. This characteristic time scale of phase returning
confirms that the spikes with ms time scale in Figure 4.34(a) during the stationary state
are not associated to phase returning.

Furthermore, the leaking process can be estimated theoretically. As discussed before,
the gas flow is sonic at the capillary exits. The choked sonic gas flow is given by [155]

_ 2
.7:—119

9 (1/2)(kg+1)/(kg—1)
( ) P (R,T)'?, (4.41)

kg + 1

where k4 is the heat capacity ratio, Qs = ﬂRgap denotes the exit area, Ry = 8.31 J/K/mol

is the gas constant. For hydrogen gas, k4, = 1.4 and R, = 287, so Equation 4.41 can be
simplified to be

F = 0.6847pQ(R,T)"2. (4.42)

Supposing the total gas particle number is N, gas flow is correlative to the variation of
the total gas particle number through dN = — [2F dt. The factor of 2 is due to the
fact that there are two capillary exits. The total gas particle number can be furthermore
approximated by N = pV, where V stands for the whole volume of the filling pipe upstream



Chapter 4. Properties of capillary tubes 117

the capillary hosing. Then one can obtain the evolution of gas density in the pipe via

dp F 0.6847Q(R,T)"/?
T _2V =2 V( oT) p=—2Ap. (4.43)
A

Integrating the above equation yields the evolution of gas density
p(t) = poe >, (4.44)

where pg is the initial gas density inside pipe before dropping. We can define the char-
acteristic time A7 when the gas density decreases to 1/e of the initial value, namely
p(t = A1) = po/e. Using Equation 4.44, AT is given by

_ 1
247

In our case, the capillary diameter is 178 pm, 7' = 293 K, and V ~ 2x 10~% m3, yielding
A ~ 0.025, which yields A7 = 20 s. It is reasonably consistent with the experimental
observation. The rather long characteristic time of gas leakage is an important issue in
experiments, which greatly limits the repetition rate of operation. For example, during the
campaign at the Lund Laser Centre time interval of 40 s between two consecutive shots
was used for data acquisition. One can find that A7 is proportional to V', which implies
decreasing the volume of filling pipe can shorten the time of gas leaking. In our setup,
the main problem is that the solenoid valve for gas injection has to be placed outside the
vacuum chamber owing to heating-up during operation. Using a vacuum compatible valve
could be a good improvement in future.

The temporal evolution of the phase shift in the 178 pm diameter, 30 mm long capillary
tube for different reservoir pressures when the duration of valve opening is fixed to 27 ms
is shown in Figure 4.35(a), and in Figure 4.35(b) for a fixed reservoir pressure of 500 mbar
and different values of the valve opening duration. In the range of pressure explored, a
stationary state is established at about ¢t ~ 34 ms, indicated by the dashed lines in Figures
4.35(a)-(b). For a fixed pressure, the increase of the duration of valve opening does not
change the phase shift behavior, showing that 27 ms is longer than the characteristic time
necessary to reach a stationary state. In order to quantify the plateau gas density inside
the capillary tube at the stationary state, a 2D FLUENT simulation was carried out to
obtain the gas density profile [164]. The plateau gas densities calculated for the curves
of Figure 4.35(a) are shown in Figure 4.35(c), which increase linearly with the reservoir
pressure.

The highest gas density achieved in the capillary tube is 10 4= 0.4 x 10'® em™3 for
500 mbar in the reservoir. Noting that a pressure of 500 mbar corresponds theoretically to
a gas density of pg = 12.35 x 10'® em™3 at 20 °C, the gas density achieved experimentally
in the capillary tube corresponds to 81 + 3% of the one in the reservoir. This observation
can be explained by gas expansion when the valve is opened: the reservoir has a volume of
about 176 cm?, and the total volume, including pipe, connectors, and capillary housing,
increases at valve opening to approximately 198 cm3. Consequently the gas density is
expected to drop down to (176/198)py ~ 89%pg. The losses due to gas leaking from
the capillary tube itself can account for the measured value of (81 £ 3%)pg. For a fixed
reservoir pressure [500 mbar for Figure 4.35(b) and (d)], when the valve opening duration is
increased beyond 27 ms, the gas density in the capillary tube does not increase further. It
means that for our setup the filling process is saturated even for the shortest valve opening
duration (27 ms). This information is of interest to minimize the opening duration of the

AT (4.45)
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Figure 4.35: Phase shift as a function of time for different values of (a) reservoir pressure
and a valve opening duration of 27ms, and (b) duration of valve opening and a reservoir
pressure of 500mbar. (c) and (d) show plateau densities of gas at t = 34 ms obtained from

(a) and (b), respectively. Error bars indicate the standard deviations of fluctuations of gas
density in the stationary state (t = 34 — 80 ms).

valve and avoid unnecessary gas leakage into the vacuum chamber. It should be noted
that the gas density in the capillary tube can be increased for a given reservoir pressure
by using a larger slit as shown in simulations [45]. However in the case of capillary tubes,
the slit size should be kept as small as possible to avoid discontinuities of laser reflection
at the capillary wall.

A systematic study was conducted to investigate the influences of capillary diameter
on the gas filling process. To accomplish this parameter scan in a reasonable time scale, we
specially looked into the capillary diameter range of 127—203 pm, which is typically used
in the laser-plasma acceleration experiments. We compared the filling processes of two
different gases, hydrogen and argon, to study the role of gas species. Figure 4.36 presents
the results of four 20 mm long capillary tubes with different diameters. For a fixed duration
of valve opening of 27 ms, as seen before, the hydrogen gas density (or static pressure)
at the stationary state linearly increases with reservoir pressure in the range of 100 — 500
mbar. There is no significant difference between the four diameter cases. This finding
probably because all these capillary diameters explored are smaller than the slit size of
about 270 pm. In this case, the evolution of gas inside the capillary tubes is dominated
by the inflow from the slit even though a larger diameter results in higher outflow. For
a given reservoir pressure of 500 mbar, the effects of valve opening, varying from 27 to
100 ms, was examined as well. As demonstrated above, filling of hydrogen gas already
becomes saturated for the shortest duration of 27 ms. Nevertheless, valve opening has
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Figure 4.36: (a) Static pressure of hydrogen gas filled into the capillary tubes with differ-
ent diameters; filling efficiencies as a function of valve opening duration for (b) hydrogen
gas and (c) argon gas at a reservoir pressure of 500 mbar.

a strong influence on the filling efficiency of argon gas, as shown in Figure 4.36(c). The
four filling efficiencies increase rapidly with the duration of valve opening, and become
saturated when the duration of valve opening is in excess of 60 ms. Owing to a higher
molecular mass, argon gas moves more slowly than hydrogen gas, so a longer duration
of valve opening is required to fill argon gas into a capillary tube. It is noticeable that
the filling efficiency tends to be the same for the two gases as long as the valve is opened
longer than 60 ms.

4.7 Single-slit capillary tube

In this section, we introduce a special kind of capillary tube with only one slit, which
is designed to produce a tapered plasma density profile inside the capillary tube. Both
downramp and upramp density profiles are extensively investigated to control electron self-
trapping or to extend the acceleration distance to achieve higher electron energy [168, 169,
170, 171, 172]. Downramp means plasma density decreases along the laser propagation
direction, while upramp denotes the opposite. The concepts of using these density ramps
are briefly introduced as follows.

Downramp was proposed to facilitate electron-trapping via slowing down the phase
velocity of plasma wave [168]. As demonstrated in Chapter 2, self-trapping requires the
velocity of electron in excess of the phase velocity of plasma wave, that is ve > v, to
ensure the electron is able to catch the plasma wave. A rigorous expression of the phase
velocity of plasma wave is given by [21]

By

- € dh,’
L+ 5%

Bp (4.46)

where £ is the coordinate in the laser frame, and z is the direction of laser propagation.
The term A; YdX,/dz can be expressed as a function of plasma density to be %dln Pe/dz.
In the case of downramp, namely dp./dz < 0, the phase velocity is lowered in the region
behind the laser owing to & < 0. Therefore the initial electron energy required for electron
self-trapping is reduced accordingly.

On the other hand, density upramp was put forward to overcome the limit of electron
dephasing [171]. In an uniform plasma, the accelerated electron slips forward with respect
to the driving laser, and finally enters the decelerating phase region. When there is a
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positive density gradient, the driving laser encounters higher density as it moves forward,
during which the plasma wavelength is decreasing. As a consequence, the node of plasma
wave phase change (from accelerating to decelerating) shifts towards the driving laser as
well. In an ideal density tailoring, the speed of phase node shift is equal to that of electron
slippage, so the electron could be “locked” in accelerating phase till the laser is depleted.
Therefore higher electron energy can be obtained than in an uniform plasma.
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Figure 4.37: On-axis gas density and velocity inside a single-slit capillary tube obtained
with FLUENT simulation. The two dashed lines represent the capillary ends. Case I and
1I indicate two different directions of laser coupling, which correspond to downramp or
upramp of plasma density along the laser propagation path.

The previous studies concerning density tapering were carried out using gas jet or
plasma waveguide [169, 170]. We are therefore motivated to generate those density ramps
inside the capillary tubes to investigate if there is an enhancement of laser tapered-plasma
interaction by capillary guiding. The gas distributions were obtained with FLUENT sim-
ulations. The capillary tube is 20 mm long, 178 pum in diameter, as illustrated in Figure
4.37. There is only one slit of 270 um located at 2.5 mm from the left capillary end. > —e€
turbulence model was employed to simulate at the stationary state. Line-outs of on-axis
gas density and velocity are shown in Figure 4.37.

As seen in Figure 4.37, there are two density ramps beside the slit. In case I, the laser
propagates from the left-hand side. The laser mainly experiences a density downramp.
One may note that there is also an undesired upramp between the slit and the capillary
left-hand end. This upramp can be minimized by shifting the slit as closely as possible
to the capillary end. However, the distance of 2.5 mm could not be shortened in our
present capillary holder design. If the laser propagates from the right-hand side as shown
by case I in Figure 4.37, it sees a density upramp. An important issue for upramp is that
the plasma density becomes low at the entrance part of capillary tube, so it requires a
powerful laser to launch electron self-trapping [107], and then the trapped electrons can be
phase-locked in the plasma wave. It is worth mentioning that the density gradient can be
changed by varying the capillary length. This point is interesting for controlling electron
self-trapping for the case of density downramp, since localized electron trapping happens
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only if k,L; < 1 [168]. L, represents the characteristic length of the density transition.
One may find in Figure 4.37 that the gas is not immobile inside the single-slit capillary
tube, which is different from the case of two-slit capillary tube (See Figure 4.12). The
moving gas might worsen the stability of laser-plasma interaction, as the stable shock-free
gas flow was found significantly beneficial for improving electron stability [45].

Both the downramp and upramp density profiles inside single-slit capillary tubes were
examined during our second campaign on laser electron acceleration at the Lund Laser
Centre (LLC). More details will be reported in our future publications.

4.8 Summary

The fundamental EH;; mode of capillary tube is ideal for laser guiding owing to its smooth
traverse field distribution and long attenuation length. The efficiency of laser coupling to
the capillary tube depends on the laser spot size compared to the tube radius R.qp. For
a Gaussian spot with waist wg, about 98% of the laser energy can be coupled to the
fundamental mode when wg ~ 0.65R.,p, while for an Airy spot with radius at the first
minimum ro ~ Ry, the coupling efficiency reaches 83%.

Spatial distribution of gas inside the capillary tubes was characterized using fluid
simulations at the stationary state. It shows a stable, uniform gas medium is achieved
between the two capillary slits, beside which there are two density ramps extending out
of the capillary ends. A theoretical estimation suggests the on-axis gas density drops as
pHy, X (Reap + 2 )_2 when the gas expands in the vacuum chamber, where R.q, and Z
denote the capillary tube radius and the distance from the capillary exit. The evolution
of gas density inside the capillary tubes was determined using a scheme based on the
Mach-Zehnder interferometer [164]. For a 30 mm long, 178 um capillary tube, hydrogen
gas reached the stationary states 34 ms later than the start of valve opening. Owing to
gas leakage from the capillary holes during the filling process, the gas density achieved in
the tube at the stationary state corresponds to 81 4+ 3% of the one in the reservoir. It was
found that the filling efficiency does not significantly depends on the capillary diameter, as
long as the slit width (~ 270 pm) is larger than the capillary diameter. Another important
result is that the filling efficiency of hydrogen gas does not increase with the duration of
valve opening for the reservoir pressure range of 50-500 mbar, which implies the filling
process has been saturated for the shortest opening duration (27 ms) that can be used
for the solenoid valve. As the valve controlling gas injection has to be placed outside the
vacuum chamber, a ~ 1 m long filling pipe was employed in our setup, which results in
a long characteristic decay time of the order of ~ 10 s for gas leaking from the capillary
tube to the vacuum chamber. This essentially limits the repetition rate of the operation,
which can be significantly decreased by using a vacuum-compatible valve to shorten the
gas filling pipe.






Chapter 5

Experimental methods

This chapter shows the main instruments and methods employed during our erperiments
on laser wakefield electron acceleration and X-ray production. The multi-terawatt laser
facility at the Lund Laser Centre is first introduced, including two important techniques:
focal spot correction and laser pointing stabilization. Then we present the designs of the
motorized target housing system. The experimental setups of the electron spectrometer and
X-ray detectors employed for the two campaigns at the LLC are described along with the
corresponding diagnostic methods.

5.1 High power laser system

5.1.1 Chirped pulse amplification technology

To achieve relativistic laser-plasma interaction, high intensity lasers are required. In this
section, we briefly introduce the chirped pulse amplification (CPA) technology, relying on
which the current state-of-the-art multi-terawatt lasers are built. The concept of CPA
was proposed in the 1980s [173], which is one of the most important evolutions for intense
laser development. Before it, the peak power of pulsed laser was restricted to GW scale by
damage to the gain medium owing to nonlinear optics such as self-focusing, laser filament,
and so forth. The CPA technique however cleverly overcomes these issues.

Amplified
short pulse
Amplified
stretched pulse
Short pulse
| Stretched pulse ‘
Grating pair Amplifiers Grating pair
(stretcher) {compressor)

Figure 5.1: Schematic diagram of a chirped-pulse amplified laser.

Figure 5.1 schematically illustrates the scheme of the CPA technique. The ultra-
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short laser pulse with duration on the femtosecond scale produced by an oscillator is first
stretched out in time using a grating pair (termed as “stretcher”). After that, the laser
pulse becomes positively or negatively chirped, and meanwhile the pulse duration is ex-
tended to time scale of picosecond. Accordingly, the peak power of the stretched pulse
becomes much lower than the short pulse from the oscillator, so it is safe to amplify such
a beam within the limit of gain medium as much as possible. After amplifying, the laser
beam is sent to another grating pair with negative dispersion (referred to as “compressor”)
to remove the chirp, temporally compressing the pulse. In this case, the final amplified
short pulse possesses extremely high peak power ranging from tens of terawatt to petawatt
class. When such a power laser is focused, the peak intensity at focus can reach as high
as 1021 W /cm?.

5.1.2 Multi-terawatt laser facility at the Lund Laser Centre

The experiments throughout this thesis were carried out using the femtosecond multi-
terawatt laser facility at the Lund Laser Centre (LLC) in Sweden, which is a high power
laser system based on the CPA technology [173]. The laser installation is schematically
illustrated in Figure 5.2 and briefly described as follows.

| Table 1

L"T_._T—f‘

Figure 5.2: Schematic arrangement of the LLC multi-terawatt laser. The elements are
respectively: a) mode-locked oscillator, b) pre-amplifier, c) stretcher, d) regenerative ampli-
fier, e) multi-pass amplifier, f) spatial filter, g) second multi-pass amplifier, h) the stretched
amplified main beam to the compressor (not shown), i) Nd:YAG pump lasers, j) beam part
for high order harmonic study.

The front end is a titanium-doped sapphire (Ti:sapphire) Kerr lens mode-locked oscil-
lator [174], and produces 80 MHz laser pulses with energy of ~nJ. Ti:sapphire is especially
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suitable for ultrashort laser pulse generation owing to its relatively large spectral band-
width (~ 50 nm) [175]. It operates most efficiently at a central wavelength around 800
nm. Using a Pockels cell together with a polarizer, ten pulses per second are selected from
the pulse train generated by the oscillator. Before amplifying, the 10 Hz laser pulses pass
through a pre-amplifier ended with a saturable absorber to improve laser temporal con-
trast. Immediately after that, the laser is sent to a stretcher where its duration increases
up to approximately 300 ps. The stretched pulse is consecutively amplified through three
stages. The first is a regenerative amplifier [176], in which the laser makes 15 round trips
within the closed cavity, and then it enters the first five-pass amplifier [177], reaching
energy of 300 mJ. 200 mJ of that is taken by another experiment (indicated by j in Figure
5.2). The other 100 mJ is further amplified by a second four-pass stage using cryogenically
cooled Ti:sapphire crystal. All the amplifiers are pumped by 10 Hz frequency-doubled Q-
switched Nd:YAG lasers. After full amplification, the laser energy can reach 2 J before
compression. The amplified laser pulse is compressed down to ~ 40 fs (FWHM duration).
Typically, 1 J laser energy can be delivered on target.

Figure 5.3: Photographs of (a) the laser room and (b) the target area at the LLC. The
gas filling system, extension tube for parabolic mirror, and diagnostics around the target
chamber can be seen as well.

Figure 5.3(a) is a photograph of the LLC laser room. All the optical components
are arranged on three tables as illustrated in Figure 5.2. The amplified laser beam is
then sent to the compressor located in the target room [Figure 5.3(b)], where most of the
experiments were performed.

Focal spot correction

Among the properties characterizing laser performance, focal spot shape and pointing
stability are essential in the case of capillary tubes, as demonstrated in Chapter 4. Many
efforts have been put at the LLC to address these two issues via adaptive optics and
pointing stabilization technique. Owing to their importance for our experiment, we will
briefly introduce these two schemes here. More details can be found in [62, 76].

In a large high power laser system, wavefront aberrations are introduced into the laser
beam by such as misalignments of components in the optical chain, misalignment of the
focusing mirror, thermal effects, and so on. When such an aberrated beam is focused, the
focal spot is far from the ideal case of an Airy distribution. Therefore, adaptive optics is
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adopted to correct the focal spot by compensating the deformation. The goal is to control
the wavefront shape and achieve a symmetrical and close to diffraction-limited focal spot
in the far-field.

The system mainly consists of a deformable mirror and a wavefront sensor. The de-
formable mirror is composed of piezoelectric ceramics and actuators. When a voltage is
applied to the actuators, they locally deform the ceramics and furthermore the output
wavefront. The deformable mirror is placed directly after the compressor. The wavefront
is measured after the focusing mirror using a specially-designed sensor based on a four-
wave shearing interferometer. In this case, any aberration upstream the focal plane can
be taken into account. The detected wavefront is decomposed using the series of Zernike
polynomials (See the patterns in Appendix A.5) to find the applied voltage pattern for
the actuators. There is a feedback loop between the wavefront sensor and the deformable
mirror to shape the beam wavefront. Normally, a satisfying corrected wavefront could be
obtained after only a few iterations.
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Figure 5.4: Focal spot of fully amplified laser pulse measured (a) without and (b) with
correction during the second campaign at the LLC. Increase of laser intensity is clearly
vistble when the beam is corrected.

Shown in Figure 5.4 are the focal spots of the fully amplified laser pulse (700 mJ on
target) with or without correction by the deformable mirror. The focusing optics was
a 14° off-axis f = 76 cm parabolic mirror. The images were taken with a 12 bit CCD
camera when the laser was properly attenuated. One can immediately see that the laser
peak intensity increases significantly when the wavefront aberrations are compensated by
the deformable mirror, and moreover the spot is less elliptical. Nevertheless, the corrected
spot is still not circular, which is believed to be due to angular chirp of the compressor
gratings but not to phase aberration.

Even though the spot is still not ideal, the capillary tubes are able to sustain hundreds
of shots without dramatic damage. This achievement must be partially attributed to
another success of stabilizing the laser pointing.

Laser pointing stabilization

Another key issue of laser performance is pointing stability. It is particularly crucial when
capillary tubes are used as target. As shown in Chapter 4, if the incident laser deviates
from the capillary axis, higher modes are excited inside the capillary tube and coupling
efficiency drops. More importantly, the capillary front face could be damaged directly by
only one laser pulse, resulting in an “ultrashort” lifetime of target. In this sense, the laser
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pointing must be carefully stabilized.

Pointing instability can be caused by mechanical vibrations, air turbulence, and so on.
Recently the laser pointing stability was significantly improved at the LLC. Perturbations,
like mechanical and air influences, were reduced by isolating the pump systems from
the laser room. Furthermore, an active stabilization system was implemented in order
to lock the laser pulse to the desired position. This scheme was reported on in Ref.
[178]. The stabilization system consists of two pairs of piezoelectric mirror together with
a position sensing detector (PSD). One pair controls the near-field, while the other takes
care of the far-field, so the laser axis can be regulated. The two PSDs record the real-
time laser positions. Omnce the detected positions deviate from the expected ones, the
piezoelectric mirrors will compensate the offsets, getting the beam back. A LabVIEW
program was developed by the LLC team to manage the feedbacks between the PSDs and
the piezoelectric mirrors.

Quantitatively, without control the RMS (root mean square) pointing fluctuation was
6.7 prad in the focal plane. The pointing instability was decreased to 3.7 urad by removing
the perturbations from the laser room. When the active stabilization system was launched,
the fluctuation went down by 30% to merely 2.6 urad [178]. Typically in our experiments,
the focal length of the parabolic mirror is 76 cm, which corresponds to a RMS fluctuation of
approximately 2 pym in the focal plane. The focal spot size (first minimum of Airy pattern)
is 19.8 um. The pointing fluctuation is therefore about 10% of the focal spot size. When
a large capillary tube of 178 pum diameter is adopted, such a pointing instability should
not considerably deteriorate laser coupling and capillary guiding.

5.2 Motorized capillary housing

As presented before, the capillary tubes must be correctly aligned with respect to the laser
axis to achieve good coupling and guiding. To do so, one needs to move the tube in five
dimensions, namely three translations xz, y, z and two rotations 6y, 6,. A new motorized
capillary housing was designed in our group during my PhD study. One critical problem
of our old housing [62] was vibration, as the capillary holder was loosely mounted into
the motor system. When the valve was opened, the strong gas force shook the capillary
holder, making laser coupling less efficient. This issue is solved in the new design. First of
all, several damping bellows are employed to weaken the gas shock. Secondly, the capillary
holder is strongly fixed to the housing base by mechanical force. Using this new housing,
no appreciable vibration of capillary tube was found when gas was filled.

Figure 5.5 shows a schematic illustration of the motorized housing. One 50 mm range
translation stage and one 15 mm stage are used to displace the capillary in the plane
perpendicular to laser propagation. The third translation stage is put along the laser path,
permitting us to shift the capillary entrance with respect to laser focal spot position. The
capillary tube is rotated horizontally and vertically by two motors to change the angle
between laser path and capillary axis. The capillary entrance center is set as the origin
of the rotations. A precision of ~ 0.1 um per step can be achieved with those motors
(Newport products).

In order to characterize capillary alignment, a CCD camera is used to measure laser
transmission through the tube, and also check focal spot quality before alignment. The
steps of capillary alignment are as follows:

(I). Shifting the camera along laser axis to find the focal plane.
(IT). Moving the camera along laser propagation direction by a distance the same as
capillary length. In this case, the laser will focus at capillary entrance. If one wants to
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Figure 5.5: Schematic drawing of the motorized capillary housing viewed from the back.

A laser beam (the top red cone) focuses at the capillary entrance. Designed by J.-C. Lagron
at LPGP.

focus inside the tube, the distance of camera retreat has to be adjusted accordingly.
(III). Move in the capillary tube and shift it along laser axis till a sharp capillary hole is
observed by the camera.

(IV). Translating and rotating the tube until the best transmission is found.
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Figure 5.6: (a) Focal spot of the LLC laser, and (b) transmission from a 20 mm long,
152 um diameter capillary tube. Different laser attenuations were used in (a) and (b).
Multimodes are excited in the tube, however the transmission is pretty symmetrical.

For a matched capillary tube, the optimal alignment is monomode guiding. However,
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in our experiment at the LLC the laser focal spot with radius of ~ 20 ym was much smaller
compared to the capillary radii ranging from 50 — 125 pgm. In this case, high order modes
are excited in the tube as well. We therefore optimize the alignment until a symmetrical
transmission is achieved. In this case, the light should propagate in the tube without large
angle with respect to the capillary axis, minimizing the risk of capillary damage. Figure
5.6 displays the focal spot of the LLC laser and a typical output laser energy distribution
obtained from a 20 mm long, 152 um diameter capillary tube when it was well aligned.
Both images were recorded using an 8 bit CCD camera, so the laser beam was strongly
attenuated without seeing the rings of Airy pattern in the focal spot. The transmission is
estimated to be around 80%, and more importantly it is reasonably symmetrical. After
more than 100 high intensity laser shots, no vital damage of the tube was observed at the
entrance.

5.3 Experimental setup at the LLC

Two campaigns were conducted at the LLC during my thesis to investigate laser wakefield
electron acceleration and betatron radiation inside capillary tubes. This section presents
the experimental setup which was similar for the two campaigns.

The Ti:sapphire laser operates in the chirped pulse amplification (CPA) mode and was
able to deliver a laser pulse with an energy of 650 mJ at 800 nm central wavelength on
target. The FWHM pulse duration measured day-to-day was 7p,pm = 4015 fs. Figure 5.7
illustrates the experimental setup. The laser beam was focused by a f = 76 cm parabola

Filter Capillary Parabola

X-ray
camera !

Vacuum chamber

Figure 5.7: Schematic diagram of the experimental arrangement. Elements inside the
chamber were under vacuum. The Lanex screen shows a typical electron spectrum of the
accelerated electrons obtained in the experiment.

at 1 mm inside the capillary tubes. Using the motorized holder, capillary tubes were
aligned with respect to the laser axis. Gases were filled into the capillary tubes through
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two ~270 pm wide slits situated at 2.5 mm from each capillary end. The plasma density
inside the capillary tubes was adjusted by controlling the upstream reservoir pressure (See
Chapter 4). A 12 cm long permanent magnet with a central field of 0.7 T over a 15 mm
gap deflected electrons downwards onto a Lanex (Kodak Regular) phosphor screen which
was imaged by a CCD camera. Electron energy and beam charge were characterized
as detailed in Section 5.4. On the same laser shots, the far-field betatron radiation was
recorded using a 16 bit X-ray CCD camera placed outside the target chamber (See Section
5.5). A filter consisting of several metal pieces was inserted in front of the X-ray camera
to give a rough estimation of the photon energy. Razor blade was placed just downstream
the magnet to evaluate the X-ray source size, as discussed in Section 5.5.
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Figure 5.8: (a) Energy distribution in the focal plane; (b) Averaged radial profile of laser
energy in logarithmic scale. The grey shaded area, with a boundary at the first minimum
of the focal spot, contains about 84% laser energy in the focal plane.

The energy distribution in the transverse plane delivered by the laser system exhibits
a nearly flat-top cylindrically symmetrical distribution before focusing. In the focal plane,
the corresponding energy distribution is close to an Airy pattern, as exhibited in Figure 5.8.
The focal spot shown in Figure 5.8(a) was optimized to achieve a symmetrical distribution
by tuning the deformable mirror placed after the compressor to compensate for aberrations
in the laser wavefront. The average radius of the focal spot at the first minimum can be
determined from the radial profile of energy distribution averaged over the angles; it was
measured to be 19.7 £+ 0.8 ym, which yields an on-axis peak intensity of (5.440.1)x10'®
W /cm? and a normalized laser vector potential of ag ~ 1.6. The energy fraction contained
within the grey shaded area in Figure 5.8(b) is estimated to be equal to 84% of the energy
in the focal plane.

The capillary tubes employed in this experiment range from 152 pm to 254 pum in
diameter and from 8 mm to 30 mm in length. For the focal spot shown in Figure 5.8, the
focal spot diameter at first minimum over capillary diameter ratio is in the range 0.26 to
0.16, and gives rise to multimode excitation at the entrances of the capillary tubes [140].
Using small capillary tubes (Reqp =~ 20 pm) to match the focal spot was not possible as
the laser intensity outside the central focal spot was still so high that the capillary front
surface could be broken immediately by laser radiation. The laser stabilization system [178]
did not function during the first campaign owing to some technical problems, however it
worked correctly during the second campaign.
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5.4 Electron beam characterization

This section describes the diagnostic methods characterizing the electron beams produced
in our electron acceleration experiments for the main parameters: electron energy, beam
charge, and beam divergence.

5.4.1 Electron spectrometer

Traditionally, various electron spectrometers have been developed in the community of
RF accelerators, however they are designed to provide a high energy resolution at a given
electron energy, which is specially oriented for monoenergetic electron beams. On the
contrary, electrons generated by LWFAs usually own large energy spread, which could
cover an energy range from tens of MeVs to GeV class in a single bunch [179]. Furthermore,
the electron bunches generated by LWFAs are merely a few femtoseconds long with peak
currents of a few kiloamperes [52], which are very different from those in RF accelerators.
Specific spectrometers are therefore needed for LWFA produced electrons.

The most commonly used spectrometer design in LWFAs is composed of a magnet
together with a scintillating screen imaged by a 16 bit CCD camera with a high dynamic
range. Other candidates for electron detection could be image plates [180]. Nevertheless
image plates have to be read out after the experiment, which is not suitable for high
repetition rate data acquisition. What we adopted in experiments is the Kodak Lanex

Figure 5.9: The permanent magnet and the Lanex screen placed in the vacuum chamber
at the LLC. The electrons enters the magnet from the right, and get bent downwards onto
the Lanex screen.

Regular scintillating screen. Shown in Figure 5.9 is the typical setup of the spectrometer
used during our experiments at the LLC. A 12 cm long (along laser propagation direction)
permanent magnet with central field of 0.7 T was used. The magnet is normally placed
just behind the target. When the electrons pass through the magnet, they are deflected
downwards by the Lorentz force and hit the Lanex screen located downstream. Both the
magnet and the Lanex screen were mounted onto manual or motorized translations stages.
Once the magnet is shifted off-axis, we can move the Lanex screen up towards the laser
axis to measure electron beam profile, pointing, and so on.

The Lanex screen consists of a ~ 100 pm thick phosphor layer of gadolinium oxysul-
phide (Gd202S:Tbh). When it is illuminated by an ionizing radiation, the layer will produce
fluorescent light over a time scale of ~ 660 us [181]. The emission has a sharp spectrum
peak at 546 nm. Usually the Lanex screen was protected by an aluminium shield from
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direct exposure to the intense laser light. The Lanex screen is imaged by a CCD camera
placed outside the chamber. A narrow-band filter matched to the peak fluorescence of the
Lanex was often placed in front of the CCD camera to reduce background light.

As presented below, this compact spectrometer allows us to measure simultaneously
electron energy spectrum, beam charge, beam divergence for a single shot.

5.4.2 Electron beam energy spectrum

To obtain the energy spectrum of electron beams, one needs to know the dispersion of the
spectrometer & (y), namely the electron energy &, as a function of the vertical coordinate
on Lanex screen y. The spatial parameter associated with a spectrometer is schematically
illustrated in Figure 5.10(a). Before and after the magnet, the electrons do uniform linear
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Figure 5.10: (a) Illustration of the spatial parameters associated with a spectrometer,
where the magnetic field points into the paper. (b) Numerically calculated trajectories of
electrons with different energies for the setup of campaign II. The green square represents
the magnet borders.

motion, while in the magnetic filed, they are rotated. The magnetic force exerted on an
electron is Fg = —ev x B. Since Fp - v = 0 always holds, the magnetic force does not do
work. It will change the direction of motion but never change electron energy, suggesting
~ of electron is constant. In this sense, the electron motion is described by

dv e
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«v is linked to electron energy via v ~ 142&.[MeV]. The electron trace can be then obtained
though r = [ vdt.

If the magnetic field is uniform, Equation 5.1 can be solved analytically. However
the field that we used varies in space, as seen in Figure 5.10. The field measured by the
manufacturer has a central peak of 0.7 T and gradually decreases to zero towards the
magnet borders. A program was written to calculate numerically the electron trajectories
in the magnetic field using the fourth-order Runge-Kutta method. The magnetic field was
measured with spatial steps of 0.48 mm and 0.44 mm along and perpendicular to the laser
axis, respectively. A very short time step At = 80 fs (corresponding to a spatial step of
24 pum) therefore was adopted to resolve the spatial detail of the field. The precision of
the code was verified by comparing with theoretical result when assigning the magnetic
field as uniform. The error between them is less than 0.2%.

Table 5.1: Spatial configurations of the electron spectrometer for the two campaigns at
the LLC.

Campaign | yin (cm) | Dy (cm) yﬁ)p (cm) | yL, (cm) | Energy range (MeV)
I ~1.6 20 —1.2 6.8 [42, 690]
11 —0.7 16 1.8 13.6 [31, 380]

A specific electron trajectory depends on the position where the electron enters the
magnet y;,, the distance between the magnet end and the Lanex screen D,,,;. The energy
range that the Lanex can measure depends on its top and bottom positions: ytLOp and
ybLOt. Table 5.1 gives the setup parameters of the spectrometers used in the two campaigns
carried out at the LLC. The magnetic field center is set as the coordinate origin (0, 0). Here
we use the case of campaign IT as an example. Figure 5.10(b) exhibits four typical traces
for electron energies of 27, 31, 60, and 300 MeV. As seen, the lower the electron energy
is, the more they are deflected downwards. The Lanex bottom corresponds to electron
energy as low as 27 MeV, indicated by the yellow dashed curve in Figure 5.10(b). However,
such a low energy electron is so strongly bent that it hits the magnet inner bottom before
escaping from the magnet. The energy threshold of electron escape is 31 MeV. This kind
of spectrometer is thus called as “magnet-limited”, as it is the magnet but not the Lanex
that sets the low limit of detection. The dispersion curve of the spectrometer is plotted in
Figure 5.11(a). The electron energy range covered by the spectrometer is [31, 380] MeV
when the electrons enter perpendicularly to the manget.

The spectrometer resolution is mainly restricted by electron beam divergence, as the
dispersion curve is rather sensitive to the incident angle of electrons 6;,,. Figure 5.11(a)
illustrates schematically the trajectories of electron entering either perpendicularly into
the magnet (red solid curve) or with an incident angle (blue dashed curve). It shows that
for a given electron energy, different incident angles lead to different positions on the Lanex
screen. Figure 5.11(b) shows the dispersion curves of the spectrometer for three incident
angles #;, = —5, 0, and 5 mrad, respectively. The positive direction is defined towards the
top-right direction in Figure 5.11(a). We can see that a given Lanex position corresponds
to a relatively lower electron energy for the case of positive incident angle, and the opposite
happens to the negative incident angle. They together result in the error of electron energy
determination. Figure 5.11(c) presents the energy error of the spectrometer for an electron
bunch with a full opening angle of 10 mrad. One can immediately find the error rapidly
increases with increasing electron energy. For an energy of 50 MeV, the error is about 3
MeV (corresponding to an energy resolution of 6%), whereas it degrades to 80 MeV for
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Figure 5.11: (a) Schematic illustration of the trajectories of electrons entering perpendic-
ularly to the magnetic field (red solid curve) or with an incident angle (blue dashed curve).
(b) Dispersion curves of the spectrometer for different incident angles of the electrons. (c)
Energy error for an electron bunch with full opening angle of 10 mrad.

an energy of 250 MeV (resolution of 32%). The resolution of the spectrometer might be
improved by cropping the electron beam with a collimator, or/and using a larger Lanex
screen and putting it further away from the magnet.

5.4.3 Electron beam charge

Another important feature associated with an electron bunch is its beam charge. Two
devices are used on conventional accelerators to measure the beam charge of an electron
bunch: Faraday cup and integrating current transformer (ICT). In LWFA experiments,
they have to be placed upstream of the magnet before electrons are dispersed, making the
experimental arrangement difficult. Moreover, electromagnetic radiations, such as laser,
X-ray, bremsstrahlung radiation and so forth, are present inside the vacuum chamber,
making it a rather noisy environment. In order to measure the charge correctly, special
attention has to paid to protect the ICT from ambient noise, as achieved by Nakamura et
al [182].

In this context, a few groups have calibrated the fluorescence of Lanex for measuring
beam charge [182, 183, 184], in order to be able to read-out the beam charge directly from
an image if the optical transmission and CCD responsivity are calibrated as well. The
photon number produced by an electron in the phosphor screen depends on the energy
deposited by the electron in the screen. Previous study demonstrated that the deposited
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energy is constant for a Kodak Lanex Fine screen as long as the incident electron energy
is in excess of 1 MeV [183], so the total number of the emitted photons only depends on
electron beam charge. The conversion efficiency from the deposited electron energy to
the fluorescent light, is thus the only missing parameter for beam charge measurement.
Ref. [184] calibrated several scintillating screens often used in LWFA experiments. This
calibration was carried out on the ELBE linear accelerator at the Forschungszentrum
Dresden-Rossendorf, which was capable of delivering single or multi electron bunches with
charge from 1 pC up to 100 nC at an energy of 40 MeV. Figure 5.12(a) shows the calibration
setup, where the beam charge was measured by an ICT, and the scintillating light was
imaged onto a CCD camera. All the screens investigated exhibit a linear charge-to-photon
dependency over the several order of magnitude of charge, as displayed in Figure 5.12(b).
For the Kodak Lanex Regular screen used in our experiments, the absolute calibration
from Ref. [184] is (6.95 4 0.6) x 10° photons/sr/pC.
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Figure 5.12: (a) Setup of the scintillating screen and imaging system, and (b) the absolute
charge calibration of scintillating screens given in Ref. [18/].

Figure 5.13 illustrates schematically the experimental setups for beam charge measure-
ment in our two campaigns, and the corresponding parameters are given in Table 5.2. For
a CCD-recorded image, the spectral charge can be obtained by the expression [183, 185]

e = CE) (&)
dé TochchIFQ COS(QCCd)m exp (_ %l) 5Spixel

x cos(0in) (5.2)

The left-hand side represents spectral charge in unit of pC/MeV at an electron energy of
&o. On the right-hand side, the factor C(&y) is the total CCD count measured for electron
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Figure 5.13: Configurations of the beam charge measurement for (a) the first and (b)
the second campaign at the LLC. The configuration in the second campaign was similar to
that in Ref. [18]] shown in Figure 5.12(a).

Table 5.2: Parameters for the beam charge measurement in the two campaigns.

Campaign Tochcd Tir Q2 Occa Td Oin 53pia;el
(count,/photon) ws) | ) | (us) | ) | ()

1 0.056 0.265 0.84 | 40 | 76.5 | 40 | 4.65
11 0.092 No filter 2 0 0 0 13

energy &. T,p denotes the total transmission of the scintillating light through the optics
except the filter placed in front of the CCD camera. g..q is the quantum efficiency of the
CCD, namely CCD count per incident photon. T7r represents the transmission through
the interference filter. €2 indicates the solid collection angle, while 6,..4 is the viewing angle
of the CCD camera with respect to the normal of Lanex screen, as shown in Figure 5.12(a).
The factor cos(f..q) arises from the fact that the emission of the angular distribution of
the scintillating emission obeys a Lambertian (cosine) law [186]. 7 = (6.95 & 0.6) x 10°
photons/sr/pC is the absolute calibration of the Lanex screen [184]. The exponential
term indicates how much the illumination is cut out if the camera is launched for data
acquisition using a time delay 74, while the characteristic decay time is 7; ~ 660 ps [181].
Using a time delay is favorable for reducing the noise level, whereas part of the signal will
be lost, so one has to find a compromise value for 7;. The factor cos(6;,) accounts for the
effective screen thickness for different electrons, and 6;,, is the electron incident angle with
respect to the screen normal. 05, is the pixel size along the dispersion direction. The
last term in Equation 5.2 yields the energy range corresponding to one pixel. Once the
spectral charge is known, the total beam charge can be computed through @ = [ %dé‘ .

The spectrum of the scintillating light produced from the Kodak Lanex Regular screen,
S1(N), has a sharp peak at 546 nm [184]. Light transmission through the filter given in Ta-
ble 5.2 is the value averaged over the spectrum range as Trp = [ SL(A)Tir(A)dA/ [ Sp(N)dA,
where Tjf()) is the transmission as a function of wavelength. It should be mentioned that
the emission spectrum of the Lanex screen was not known during our first campaign. The
factor TTr was thus determined to be 0.6 by measuring the transmission of a 543 nm green
HeNe laser though the filter. This error in T7r determination leads to an underestimation
of beam charge by a factor of 0.6/0.265 ~ 2.3 in our publication [48].
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5.4.4 Electron beam divergence

The last parameter we discuss here is beam divergence, which is of great interest for many
applications of the electron beams. In our setup, one can shift the magnet out of the
optical axis to directly measure electron beam distributions with the Lanex screen, and
then it is straightforward to characterize the beam divergence. However in this case we do
not have any information about electron energy or X-ray emission, as the X-ray detector
has to be shifted off-axis to avoid damage by the electrons. Another way is to determine
the beam divergence from the dispersed electron profile. Then we can get the divergence
for a specific electron energy. In the following part, we present two examples to show how
the beam divergences are determined accordingly in each case.

Charge (a. u.)

Vertical divergence (mrad)

-20 -10 0 10 20
Horizontal divergence (mrad)

Figure 5.14: An electron beam profile measured from a 10 mm long capillary tube with
diameter of 178 um for a plasma electron density 8 x 10'® ¢m™3. The white cross indicates
the position of the mazximum of the charge distribution, while the green curves are line-outs
of the charge distribution along the white lines.

Shown in Figure 5.14 is an electron beam charge distribution measured from a 178 ym
diameter, 10 mm long capillary tube at a plasma electron density 8 x 10'® cm™3. We first
of all find the position of the maximum of the charge distribution, and then the horizontal
and vertical charge distributions through the maximum point (the green curves in Figure
5.14) are used to determine the beam size. The divergence is defined as the beam size
over the distance from the capillary exit to the Lanex screen. For the beam shown in
Figure 5.14, the horizontal and vertical FWHM beam divergences are determined to be
12.9 mrad and 13.8 mrad, respectively. Using Gaussian fits to the line-outs, the horizontal
and vertical RMS beam divergences are found to be 8.4 mrad and 9.5 mrad, respectively.
A detailed study of beam divergence will be presented in Chapter 6.

Figure 5.15 exhibits the energy distribution of a dispersed electron beam obtained on
the Lanex screen after the magnet taken for the same parameters as those of Figure 5.14.
The horizontal axis corresponds to dispersed electron energy. There is a negligible influence
of the magnetic field on electron motion along the vertical axis, so the beam divergence
can be evaluated using the beam size in this direction. As the electron are dispersed, one is
able to determine the divergence for a specific energy. We chose the position corresponding
to the maximum of vertically integrated intensity profile (the white line in Figure 5.15).
In Figure 5.15, the size of the selected pixel corresponds to an electron energy range of
[93, 93.5] MeV, which is determined by the dispersion of the spectrometer. The beam size
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Figure 5.15: FEnergy distribution of a dispersed electron beam. The conditions are the
same as for Figure 5.14. The line along the horizontal axis is the vertically integrated
intensity profile, while the line along the vertical axis is the line-out of intensity profile for
electrons with energy from 93 to 93.5 MeV.

is calculated using the vertical intensity profile for the chosen energy range (the vertical
green line in Figure 5.15). The FWHM beam divergence of 93 — 93.5 MeV electrons is
found to be 12 mrad, and the RMS beam divergence using Gaussian fit is about 7 mrad.

It is noticeable that under the same conditions both the FWHM and RMS divergences
are smaller when they are determined from the dispersed beam. This maybe because
all the electrons are taken into account in the case of undispersed measurement, whereas
lower energy electrons have larger divergences [10], which therefore give a larger overall
beam divergence.

5.5 X-ray diagnostics

As demonstrated in Chapter 3, the electrons wiggling inside a plasma cavity generate X-
ray radiation. Therefore beside electron diagnostics, X-ray characterization is the other
important measurement in our experiments. We discuss in this section the devices and
methods associated with X-ray diagnostics.

5.5.1 X-ray CCD cameras

Since the X-rays produced by betatron radiation are collimated and directional, the sim-
plest measurement is to place an X-ray detector downstream to intercept and record the
beam. During our experiments two X-ray sensitive CCD cameras were employed. The
first one is a backilluminated Princeton instrument (model SXTE/CCD-512TKB1). The
CCD chip is made by a 15 pm thick silicon layer, consisting of 512 x 512 pixels with a size
of 24.8 x 24.8 pum?. Each pixel is 16 bit, namely a dynamics count up to 2'6. This feature
is very important to avoid CCD saturation, as the brightness of X-rays generated through
betatron radiation could be as high as ~ 10*! — 10?® photons/s/mm?/mrad?/0.1%BW
[58, 59]. The chip lies 10 mm behind a 250 pm thick beryllium (Be) window in an
evacuated, water cooled head. A detailed study of this camera features can be found in
Ref. [187]. The second one that we used is an Andor X-ray CCD camera (iKon-L, model
DO0936N-MOW-BN). The CCD chip is composed by 2048 x 2048 pixels of 13.5 x 13.5 pum?,
providing a large field of view of 27.6 x 27.6 mm?. The dynamics range of this camera is
16 bit as well. The camera was cooled down to -30 °C during our experiment to diminish
the intrinsic electronic noise. This camera was particularly employed for X-ray source size
measurement (see more details in Chapter 6) owing to its high spatial resolution.
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Figure 5.16: (a) The Princeton X-ray CCD camera and (b) the Andor X-ray CCD
camera used in our experiments. (c) Quantum efficiencies of these two cameras.

The cameras respond to the incident photons according to the photoelectric effect.
The photoelectrons that one photon can produce depend on the fraction of the energy it
deposits in the chip, namely the quantum efficiency of the chip. The quantum efficiencies
of the two X-ray cameras are given in Figure 5.16(c). As one can see, they are strongly
dependant on photon energy. Both of them, specially the Andor one, possess high respon-
sivity over the energy range of 1-10 keV, and are able to detect photons up to 20 keV.
Furthermore there is a gain setting in each camera, which determines how many photo-
electrons yields one count. This is also known as analogue-to-digital conversion. The gain
setting of the Andor camera is 7 photoelectrons/count or 25.55 €V /count, while it is 20.2
eV /count for the Princeton camera.

Inside the chamber, apart from the betatron X-ray beam, there are other X-ray emis-
sions generated by synchrotron radiation when the electrons are deflected by the magnet,
and bremsstrahlung radiation when the electrons go through the target chamber. As we
are mostly interested in betatron X-ray, the other radiations have to be filtered out. To
do so, a 250 pum thick Be aperture was placed on the laser axis in front of the X-ray cam-
eras. Since the cameras take in-line view of the target, synchrotron and bremsstrahlung
radiations that do not propagate along the optical axis are thus drastically blocked.

5.5.2 Filter arrays

The betatron X-ray radiation produced in the wiggler regime has a broad spectrum, as
examined in Chapter 3. The radiation spectrum was experimental demonstrated to be
synchrotron-like using the single-hit method [122], however this measurement is intrinsi-
cally sensitive to noise and requires a large experimental space. So what we adopted is
the method of Ross filter [188, 189] which contains an array of several metal pieces. Two
filters with different metal patterns were used in our experiments. One was called “pizza”
filter, and the other “square” filter, as shown in Figure 5.17. Both of the them consist of
six metals of different thickness. The transmissions of X-ray photons in the range 1-30
keV through the materials of these filters strongly depend on their energies; this diagnostic
is sensitive and suitable for photon energy determination. For a given X-ray beam, the
spectrum critical energy is quantified using a least squares method [190]. The procedure
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Figure 5.17: (a) The “pizza” filter and (b) “square” filter employed in our experiments.
(c) Transmissions of the metal pieces.

can be described as follows.

We first of all assume the X-ray beam has a synchrotron spectrum described by Equa-
tion 3.21, whose shape is fully dominated by the parameter ( = &£,,/&.. Photon number
distribution is therefore given by

AN, (E/Ec)K55(E/Ee) 53
dE T TN [ (E[E)PKE 5(E[E)dE (53)

where Ny, is the total photon number of the radiation. One can calculate the theoretical
CCD count in the area of metal m by

mo & deh gphﬂot(lemQCcd
ced 0 dgph Gccd

A€y, (5.4)

where G..q denotes the gain setting of the camera, and T}, indicates X-ray transmission
before the filter. T, represents the transmission through metal m. The second fraction
in Equation 5.4 is the conversion factor from photon energy to CCD count, while the
first one corresponds to the photon number for energy &,,. In reality, one only needs to
integrate Equation 5.4 up to 30 keV, beyond which the quantum efficiency becomes less
than 0.01, so the photon contribution can be neglected. Once the CCD count is known,
we can compute the theoretical transmission of the X-ray beam via T} =Cn,jC%

theor ced”
C¥ is the count without metal filter in front of the camera. It is easy to ﬁIyld that T}, ory
depends only on critical energy &..

Figure 5.18(a) displays an X-ray beam produced using a 178 pum diameter, 20 mm
long capillary tube at a plasma electron density 8.2 x 10'® ¢cm™3. In order to get the
transmissions correctly, one needs to first properly process the noise. The mean CCD
count obtained from the 100 pm thick copper covered area [lower-left part of Figure
5.18(a)] is viewed as noise level and subtracted from the whole image. As shown in Figure
5.17(c), the 100 um copper blocks most of the photons below 20 keV. Next we select a
significantly large area in each metal part to determine the local CCD count C}. cure-
The corresponding transmission is defined by 177, ..re = Clicasure/ Cref- Cref is the mean

CCD count of a metal-free area just beside the metal, like, for example, the area labeled
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as Zn and Ref in Figure 5.18(a). Finally we use a least squares method to determine the
critical energy that leads to theoretical transmissions fitting best the experimental ones,
namely when the residual

V= 3 [Ty () — Thheasure] (5.5)

m

reaches a minimum. In the case of Figure 5.18, the calculation quickly converges to a
minimums value at 6.2 keV. Using this critical energy and the expression of synchrotron
spectrum, the X-ray spectrum is found to peak at 2.6 keV and extend up to 20 keV, as
shown in Figure 5.18(c).
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Figure 5.18: (a) Far-field distribution of an X-ray beam with metal pieces of the filter in
front of the camera. The shadow of the capillary tube is clearly visible. (b) Residual of the
least squares fit of critical energy. A minimum is obtained at 6.2 keV. (c) X-ray spectrum
corresponding to a critical energy of 6.2 keV.

The other essential aspect associated to the X-ray beam is the photon number, which is
often used to characterize beam flux and brightness. Once the critical energy is determined,
we can calculate the incoming X-ray fluence using measured CCD counts. What we need
is the conversion factor converting from CCD counts to photon number, which can be
obtained through

Aph _ Nph _ fO ( Ph/g )2,C2/3( ph/gc)dgph
ccd fO ph/g 2IC2/3( ph/c‘/’c)Ttotaleqwd%d‘g‘ph

(5.6)

C

What we measure in experiments is the CCD counts C]),,sure, SO the photon number per

pixel is therefore given by N, [photon/pixel]= C™, ... AP". If the pixel size and the
distance between the X-ray source and the detector are known, we can further calculate
the beam fluence in unit of photons/mrad?. The total photon number is not possible
to measure in our cases, as the beam is cropped by the exit wall of the capillary tube.
Nevertheless the radiation divergence can be theoretically estimated to be ©g = Kg/7.
If further assuming the transverse profile of the X-ray beam is Gaussian [57], one can
evaluate the total photon number by counting all the photons in the divergence cone.

In principle, only one piece metal is sufficient to determine photon energy and X-ray
fluence; however, more than three pieces should be used to most avoid misinterpretation
that could be introduced by noise handling. That’s also why two different pattern filter
arrays were designed in our experiments. The shadow of long capillary tubes on the camera
is smaller than the chip, so that the emission beam may illuminate only one metal piece
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of the square filter. By contrast, all the sector-shaped pieces of the pizza filter are able to
be illuminated as long as the filter is well centered on the optical path.

It is worth pointing out that the advantage of this diagnostic method using filter arrays
is that one can acquire the X-ray spectrum, fluence, and profile for a single shot, and it
is less noise sensitive than, for example, the single-photon counting method [187]. The
essential drawback is one needs to assume the spectrum shape, and no spectrum detail,
like K« emission from the chamber [191], can be resolved. However more and more recent
single-photon counting measurements in different conditions demonstrate betatron radi-
ation spectra are indeed synchrotron-like [192, 193], which justify the diagnostic method
using filter array.

5.5.3 X-ray source size

Another aspect associated with the betatron X-ray radiation is its source size. It is of
interest not only to estimate the emission brightness [58], but also to assess electron
beam emittance [193], both of which are crucial parameters of the beams for their future
applications. The upper limit of the X-ray source size can be evaluated by measuring
the transmission of X-ray beam through microscopic objects. If the smallest feature of
a micro-object is still able to be resolved in the image, one can conclude that the source
size is smaller than the feature. To do so, micrometer size structures were laser-machined
in 100 pm thick copper plates, as shown in Figure 5.19. The lines (diameters of the

(a) (b) ()

Figure 5.19: Photographs of micro-objects used for X-ray imaging: (a) micro-structures
as small as 10 pm; (b) logos of our laboratory and team names; (c) logos of the collabora-
tors involved in our experiments. Machined by G. Bauville at LPGP.

holes) in Figure 5.19(a) are separated by 500 pum with widths of 200, 100, 50, and 10
pm, respectively. Figure 5.19(b)-(c) are the logos of the collaborators involved in our
experiments, which were machined with dimensions of the order of hundreds of microns.
In order to achieve a high resolution, the camera has to be placed far away from the objects.
Typically in our cases, the magnification, M = %, was larger than five, which leads
to resolutions of ~ 5 pum for the Princeton camera and 2.7 pm for the Andor camera. L;
and L, represent the distances from the source to object and from the object to detector,
respectively. In those setups, the narrowest 10 pym line was clearly resolved in the X-ray
images (See more details in Chapter 6).

To achieve the determination of the X-ray source size with a high precision, knife-
edge method was used. The knife-edge is provided by a commercially available (Gillette
product) razor blade made of stainless steel, as displayed in Figure 5.20. The razor blade
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Figure 5.20: (a) Photographic image of a razor blade after tens of shots; (b) taper angle
of the blade measured using a profile meter; (c) the shape of a fresh razor blade measured
with a CCD camera.

was first measured with a profile meter! with resolution of ~ 0.2 um. The tilt angle of
the blade was found to be 8.2°. However, owing to technical problems, we were not able
to measure the whole shape of the blade. It was further measured using a CCD camera
with a 20x objective, as exhibited in Figure 5.20(c). The uniform part (razor body) has
a thickness of approximately 87 pum, and the wedge has a symmetrical tapered angle of
16.4°, which is excellently consistent with the measurement of profile meter. Note that in
Figure 5.20(c) the shape of the wedge part was slightly bent owing to shear stress when
it was cut.

When X-ray radiation shines on the edge of the razor blade, an intensity transition
is expected to be observed in the transmission pattern at the knife-edge, because on one
hand the 87 pm thick razor would effectively stop all the photons below 20 keV, while on
the other hand it is completely transparent outside the razor blade. The profile of the
intensity transition depends on the source intensity distribution and the geometry, and
can be fitted by an error function for a Gaussian source and an ideal step-like knife-edge

1 T
Sx(z) = 5 {1 + erf <ﬂMO‘>:| , (5.7)
where x is the position perpendicular to the projection of the razor blade on the camera
and o denotes the source waist.

A better evaluation of the source size can be achieved using the diffraction pattern
induced by the razor blade. In the far-field, the diffraction pattern is known as the
Fraunhofer diffraction, whereas it is described by the Fresnel diffraction in the near-field
[146]. The two frameworks are distinguished by the Fresnel number

D2

Fr—
"TIN

(5.8)

where D, is the characteristic X-ray beam size in the obstacle plane. In our experiments,
L; =2.32m, A <1.24 nm (for & > 1 keV), and L,=0.26 m. A typical divergence of an

"With the help of Oliver Antonin at LPGP.
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X-ray beam generated in a 20 mm long capillary tube could be ~ 5 mrad (See Chapter
6), which yields D, ~ 1.3 mm. It yields Fr ~ 580 > 1, which suggests theory of the
Fresnel diffraction must be applied. The Fresnel diffraction pattern convolves the source
information, aperture shape, locations of the aperture and the detector, as illustrated in
Figure 5.21.

I

Source
X camera

Fresnel diffraction

Figure 5.21: Schematic illustration of the Fresnel diffraction from a half-plane, where 11
represents the half-plane of obstacle.

The general theory about Fresnel diffraction can be found in literature [146, 165]. The
electric field at an observation point Py = (x,y, ) after diffraction is given by

E(x,y,z // [cos(n, ) — cos(n, s)]dII, (5.9)

where U denotes the field amplitude, II is the obstacle half-plane. r, s indicate the
distances from the source and the observation point to the unit area dII, and n is the
normal to the plane. Using the coordinate system shown in Figure 5.21, the obstacle
half-plane can be defined as

IT ={z >z, —00 <y < o0,z=0} (5.10)

Accordingly the other half-plane II sits in vacuum, where the integral of Equation 5.9
is computed. To facilitate the calculation, especially the large parameter scan for least-
squares fit, the razor blade is treated as an ideal step function, namely all the photons are
absorbed by it. Equation 5.9 is then calculated to be

U [0 [To ezk:(r-i-s)
E(r,y,2) =— 7/ / [cos(n,T) — cos(n, s)]|dzdy,

o~ iU 0086/ / 0 iy (5.11)

A rls

=U'[Cp(w) + iSr(w)],
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where 7/ s’ and 0 are defined in Figure 5.21. U’, w, Cp, and Sp are given by

U= iU cos 8 ek (' +s")
B A r's’
2 /1

w=/5 (7” + ;)gcocosé,
(,—&-11,)(3056 [(; +CF(w)> - <; +SF(w)>} ’ o
(,+1)cos6 [(; +Cp(w)> - G +SF(w)>} :

where Crp(w) = [y" cos(t?)dt, Sp(w) = [y’ sin(t?)dt are the Fresnel integrals. Through
Equation 5.11, one can finally obtain the diffraction intensity at P via

[—F E = % K; +CF(w))2 + <; +Sp(w)>2] . (5.13)

A
CF§
A
SF§

The red line in Figure 5.22 is an example of the intensity profile produced by a monochro-
matic, 5 keV, point source. The half-plane and the detector are respectively 0.1 m and 1.1
m away from the source. The intensity overshoots, while the oscillation magnitude and
period decrease with the distance from the knife-edge.
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Figure 5.22: Intensity profiles of Fresnel diffraction for fully incoherent source types.
The spatial arrangements are L, = 0.1 m and L; =1 m.

In the case of our experiments, the X-ray has a finite source size, so the diffracted
electric field has to be computed according to the spatial coherence of the source. As the
phase distribution of the source is not known, here we examine two extreme cases of spatial
coherence: fully incoherent and fully coherent [165]. If the source is fully incoherent, the
diffraction pattern is given by

AN,

lncla,9.) = [ S aeaV) [ £ ) @y da'dyar, (5.14)



146 5.6. Summary

where = = [z, y/] is the source plane, fr(z’,1’) represents the source intensity distribution,
and I(z,y,z) is calculated from Equation 5.13. The first integral in Equation 5.14 corre-
sponds to the influences of X-ray spectrum and detector responsivity, while the second one
relates to the effects of the source intensity distribution. If the source is fully coherent,
the electric field at a observation point can be obtained through

dN,
Een(a,p2) = [ S0V [[ J@ ) By )dddyar, (519

dA
where E(z,y, z) is calculated from Equation 5.11, and fg(z’, ') represents the source field
distribution. The corresponding diffraction intensity distribution is therefore given by

Icoh(x7 Y, Z) = Ecoh : E:oh' (516)

Also shown in Figure 5.22 are two typical cases of fully incoherent source: a point
source emits synchrotron radiation with critical energy of 5 keV, and another one has the
same spectrum and moreover a Gaussian transverse profile with waist of 2 um. It is seen
that if the spectrum is broad, all the intensity oscillations except the first one are washed
out even though the source is point-like. That’s due to superposition of the diffraction
fringes generated by photons with different energies. With a finite source size, the rising
slope of the first overshot becomes even smoother. For a given fringe pattern measured
in experiment, one can retrieve the critical energy and source size using a least-squares
method. Such a fit could have a high precision, allowing to characterize an X-ray source
size as small as 1 pm [58].

5.6 Summary

The multi-terawatt Ti:sapphire laser facility at the Lund Laser Centre in Sweden was
employed for the two campaigns presented in this thesis, which delivered a laser pulse with
FWHM duration of ~ 40 fs and energy around 650 mJ on target. The phase abberations
in the laser wavefront were compensated by a deformable mirror in order to achieve a
symmetrical laser focal spot, while the laser pointing fluctuation was diminished by a
stabilization system to merely 2.6 urad in the focal plane.

Electrons and the X-rays were diagnosed simultaneously in the experiments. The high
energy electrons were deflected by a magnet onto a scintillating (Kodak Lanex Regular)
screen imaged by a CCD camera. For a recorded Lanex image, electron energy spectrum
can be determined from the dispersion direction, while the undispersed direction yields
the beam divergence, and the emitted photon number is proportional to electron beam
charge. The X-ray photon energy was estimated using a Ross filter consisting of several
metal pieces, and the CCD counts were used to determine the X-ray beam fluence. The
X-ray source size can be deduced by imaging microscopic objects or through the intensity
distribution of Fresnel diffraction induced by a razor blade.



Chapter 6

Experimental results and
discussions

This chapter summarizes the most important results about high energy electrons and in-
tense X-rays obtained in our experiments. The key features of the electrons and X-rays,
and their dependences on plasma density and capillary parameters are first demonstrated.
The second main part reports on the schematic study on electron and X-ray stabilities, and
ends up with preliminary results of X-ray source size measurement. Results of numerical
modelings are presented as well.

6.1 Introduction

The studies carried out in our group before this thesis include guiding intense laser pulses
over long distance and generating linear plasma waves in capillary tubes [61]. The mea-
surement of linear plasma wave amplitude was also performed during the thesis of Franck
Wojda [62]. One way to use such a linear plasma wave is to inject an external electron
bunch into the accelerating phase of the wave, which was not feasible with the accessible
facilities when I started my PhD study. However, results on electron acceleration and X-
ray generation using capillary guiding in the moderately nonlinear regime (ag ~ 0.7) had
already been obtained [46, 114, 115], where capillary tubes were found able to favor laser
evolution and electron trapping. Due to operation around the threshold of self-injection,
electrons were observed only in a narrow density regime, together with a photon critical
energy ~ 1 keV and an X-ray fluence lower than 1 x 10% photons/mrad? [46].

During this thesis two campaigns were carried out at the LLC to explore capillary
guided LWFA in the nonlinear regime, where simulations show that using long plasmas at
relatively low density is promising to achieve multi-GeV range electrons [94]. To achieve
low density plasmas and guide the intense laser over a long enough distance, capillary
tubes [140] were used owing to the following considerations: the plasma density inside
capillary tubes can be arbitrarily low, as the laser beam is guided by reflection from the
tube walls and there is no density requirement for guiding, so that different plasma density
ranges can be explored; the capillary tube is able to collect part of the laser energy in the
wings around its central focal spot to assist laser guiding over a longer distance than in
a gas jet or gas-cell [46, 47, 114]. The latter point is important from a practical point
of view, as for present multi-terawatt laser facilities, the fraction of energy contained in
the full width at half maximum (FWHM) focal spot is generally around or less than 50%
[108, 194]. The laser energy outside the central focal spot is lost in the absence of guiding
[107]. Hence this fraction of laser energy is not taken into account for the excitation
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of plasma waves [98]. In the case of laser guiding by capillary tubes with radius larger
than twice the waist of the focal spot, nearly all the laser energy can be collected by the
interplay of self-focusing and reflection from the capillary wall, leading to a higher laser
peak intensity and longer distance of self-focusing than in a medium without boundary.

The goal of the first campaign was to study the dependence of the electrons and X-rays
on plasma density, and the role of capillary guiding on electron acceleration and X-ray
production. Recently we performed a second campaign aiming at fully characterizing
the stability of the electrons and X-rays, especially to investigate the correlations of the
fluctuations between the laser and the produced beams. Moreover we attempted to test
some interesting ideas in capillary tubes like gas mixture, plasma density ramp, and their
effects on electron beam stability. Results of these two campaigns are presented in this
chapter, together with the PIC and GEANT numerical modelings, to give the readers a
full picture of our experimental conclusions.

The main parameters of the experiments and PIC simulations presented in this chapter
are summarized as follows.

Table 6.1: Summary of the parameters in the experiments and PIC simulations.

Parameter Experiment | PIC simulation
Laser wavelength (nm) ~ 800 800
Laser FWHM pulse duration (fs) 40+£5 40
Laser energy (mJ) ~ 650 650
ag ~ 1.6 1.6
Offset of laser focus in capillary tube (mm) ~1 1, 2.5
Diameter of capillary tube (pm) 76-254 152
Length of capillary tube (mm) 8-30 10
Plasma electron density (10'® cm™3) 5-14 5, 7,8, 12,14

6.2 Properties of the electrons and X-rays

In this section, we present the results of the high energy electrons and X-rays obtained in
our first campaign. Over the whole capillary parameter range explored, electron beams
with charge! in the range of 1 to 100 pC and energy up to 300 MeV were observed.
Meanwhile, X-rays in the range 1 — 10 keV were observed with a peak brightness of the
order of 10! photons/s/mm?/mrad?/0.1%BW. One should always keep in mind that the
beam charge determined experimentally accounts for electrons with an energy above the
detector lower limit of 42 MeV.

6.2.1 Spectrally peaked electrons

It is always attractive to generate spectrally peaked electron beams, as they are required
for many applications. As demonstrated in Chapter 2, spectrally peaked electron beams

The beam charge was compensated for the underestimation induced by incorrect determination of the
filter transmission discussed in Section 5.4, so the values of beam charge shown in this chapter are different
from those in the publication [48].
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can be obtained when the electrons are trapped very locally. The electron spectrum
observed in experiment was found to sensitively depend on plasma density. For a given
laser /capillary setup, we gradually decreased the plasma density towards the threshold of
self-trapping [107, 108], where we were able to produce a spectrally peaked electron beam.
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Figure 6.1: (a) Raw Lanez image and (b) energy spectrum of a spectrally peaked electron
bunch produced from a 20 mm long capillary tube with diameter of 152 um at a plasma
density pe = (6 £0.4) x 10'® em™3. The FWHM energy spread is 11 MeV.

Figure 6.1 exhibits the spectrum of a typical spectrally peaked electron bunch obtained
in experiment using a 20 mm long, 152 pym diameter capillary tube at a plasma density
pe = (6+0.4) x 10'8 cm~3. The electron beam peaks at 67 MeV with a total beam charge
of approximately 2.8 pC. The FWHM energy spread is 11 MeV, corresponding to a relative
spread of about 16%. This is the smallest energy spread achieved in the first campaign. It
should be mentioned that the energy resolution of the spectrometer at 67 MeV is about 9.2
MeV owing to the beam divergence of 4.6 mrad FWHM, so the real electron energy spread
should be smaller than the measured value of 11 MeV. At this plasma density, the critical
power is P. ~ 5 TW, corresponding to Pr/P. ~ 3.2, which is very close to the threshold
of laser power required for electron self-trapping found in Ref. [108] (See Section 2.5.3).
However, owing to performing around the threshold of self-trapping, electron trapping is
rather sensitive to laser or/and plasma fluctuation [37, 38, 39], so we just observed such a
spectrally peaked electron beam occasionally. The fine structure of the electron beam in
Figure 6.1(a) shows the bunch consists of two beamlets. It may be due to filament or/and
hosing instabilities experienced by the electrons when they propagate in the plasma target
beyond the laser pump depletion length L]"D\QL ~ 4.4 mm [195].

6.2.2 Dependence of electrons and X-rays on plasma density

As laser-plasma interaction strongly depends on plasma density, it is of great interest
to see how the produced electrons and X-rays are affected accordingly. The electrons
are deflected onto the Lanex screen, and the X-ray camera is placed on-axis in the far-
field, permitting us to record both the electrons and X-rays simultaneously. It is worth
mentioning that X-rays were detected only for strong signals on the Lanex screen; in
other words if there was no electron detected or the laser pulse was blocked, no X-ray
was measured accordingly, which implies the X-rays indeed originate from the accelerated
electrons.

To highlight the effects of plasma density, in this section we concentrate on one capillary
tube of 10 mm in length and 178 pm in diameter, which was extensively studied in the
first campaign. Two examples of energy spectra obtained for this tube are shown in
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Figure 6.2: Raw Lanex images and electron spectra obtained from a 10 mm long, 178
pum capillary tube at plasma densities: (a)-(b) (5.440.3) x 10'8 em™3, and (¢)-(d) (8.1 %
0.5) x 1018 em™=3. (e)-(f) are the corresponding X-ray images.

Figure 6.2 for two different values of the plasma electron density: (5.4 4 0.3) x 10*® cm™3

and (8.1 4 0.5) x 10'® cm™3. The raw Lanex images are shown in panels (a) and (c),
while the corresponding electron spectra are plotted in (b) and (d) after integrating in
the transverse direction and rescaling in the horizontal direction to account for magnet
dispersion. Accelerated electrons with a maximum energy of 300 MeV and a charge of
~ 2 pC were obtained for the low plasma density case as seen in Figure 6.2(a)-(b). The
maximum energy, Enqz, 18 defined when the energy spectrum decreases to 10% of its
peak value. The electron beam FWHM divergence in the case of Figure 6.2(b) is around
5.2 mrad. It was found that at such a low plasma density, the electron beam properties
exhibit large shot-to-shot fluctuations, due to the fact that LWFA operates just above the
threshold of self-injection. When a higher plasma density, p. = (8.1£0.5)x10'® cm—3, was
used, electron beams with higher charges were produced, around 40 pC for the example
in Figure 6.2(c)-(d). In this case, the maximum electron energy was limited to 120 MeV.
Moreover, several structures are observed in the raw image of Figure 6.2(c), which can be
interpreted as multiple electron trappings inside the bubble along the acceleration distance
or/and electron emergences from different plasma buckets [196].

Exhibited in Figure 6.2(e)-(f) are the X-ray images corresponding to the two electron
beams. Figure 6.2 (e) shows that no X-ray was detected for the low density case: although
the electron energy is relatively high for this shot, the associated beam charge was too
low to generate a detectable signal on the X-ray CCD. On the contrary, as seen in Figure
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6.2(f), a strong X-ray signal was measured for the shot at higher plasma density owing to
a higher beam charge. The different filters can be clearly seen, together with the copper
grid substrate. The circular structure near the edges of the image is due to the filter holder
blocking the edges of the beam. The photon energy was quantitatively determined using
the transmissions of the X-ray beam through different metals, and a least squares method
(See Section 5.5). For the case of Figure 6.2(f), the critical energy was evaluated to be 5.4
keV. Once the critical energy is known, one can furthermore quantify the X-ray fluence to
be 5.7 x 10° photons/mrad?.

In contrast to the narrow density range where self-electron trapping occurs at lower
laser intensities [46, 115], of the order of 0.8 x 10'® W/em? (ag ~ 0.6), for the value of
intensity used for the results presented in this chapter, electrons were detected in a broad
range of plasma densities above the threshold for self-injection, as shown in Figure 6.3. In
this figure, the maximum electron beam energy in (a), and the beam charge estimated for
the corresponding shots in (b), are plotted as a function of the plasma electron density
inside the capillary tube. The black squares are the experimental results, each point
corresponding to one single laser shot and the error bars indicating the precision of the
measurements.
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Figure 6.3: (a) Mazimum electron beam energy and (b) charge as a function of plasma
electron density at the output of a 10 mm long, 178 um diameter capillary tube. The black
squares are experimental results, each point corresponding to one single laser shot. Red
stars (the right-hand scale) are the results of PIC simulations. The curves in (a) show the
predictions of scaling laws obtained for three different ag values.

Figure 6.3(a) shows that the highest value of maximum beam energy is achieved for the
lowest value of electron density where self-injection occurs, and that the beam maximum
energy decreases as the plasma density is increased, in agreement with previous findings
[37, 194]. The measured dependence of beam maximum energy behaves as 1/p, and can be
compared with the phenomenological scaling law developed for the 3D nonlinear regime
[94] when the electron maximum energy is limited by dephasing: & [MeV]= 1agp./pe.
The experimental points are in a region of the graph limited by curves with values of ag
in the range from 1.1 to 2.6, which can be interpreted as effective values of ag over the
whole plasma length. The point of highest electron energy in Figure 6.3(a) corresponds
to a curve with ap = 2.6. During the propagation in the plasma, the increase of laser
intensity is linked to self-focusing and self-compressing (See Section 2.4) as the incident
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laser power Py, is well above the critical power for self-focusing: 2.8P, < Py, < 7.2P.. The
maximum energy values measured agree well with 3D PIC simulation results (See Section
6.3), plotted as red stars in Figure 6.3(a).

The dephasing length Lg,, given by Equation 2.50, is calculated to be about 1.6 mm
for pe = 5.4 x 10'® ecm™3. L4, becomes even shorter at higher plasma densities, and the
capillary length, L., = 10 mm, was always longer than the dephasing length in this
experiment. The electrons observed in this experiment were thus accelerated over the
dephasing length and decelerated, so their output energies are in general lower than the
prediction of the scaling law. The electron maximum energy obtained by PIC simulation
at the output of the capillary tube agrees well with experimental observations. At low
density the simulation data are consistent with the curve for ag = 2.6, while they start to
deviate from it and approach the curve for ag = 1.8 as density increases, as the result of
the shorter dephasing length and longer propagation distance inside the capillary beyond
the dephasing length.

For plasma densities below 8 x 10'® ¢cm™2, the measured electron energy exhibits larger
shot-to-shot fluctuations than in the larger density range. This might be attributed to
electron injection just above the threshold of self-trapping, observed previously to be of
the order of P/P. ~ 3.3 [114], corresponding here to a density of about 6 x 10'® cm™3.

Figure 6.3(b) demonstrates that the beam charge reaches a maximum around the value
of plasma density, n. = 8x10'® cm™3 both in the experiment and the simulation. Here the
characteristic pump depletion length is larger than the dephasing length in the range of
electron density studied. Electron injection and acceleration occur above the threshold and
the amount of accelerated charge increases with the density as the value of the ratio Py /P,
becomes higher for a fixed incident laser power. The increase of accelerated charge above
pe = 5x10' cm™3 can be explained by more efficient electron self-trapping occurring for a
higher ratio of Pp/P,., as observed in Ref. [108], and by the decrease of the phase velocity
of the plasma wave. For densities in excess of p, = 8x10'® cm™3, beam charge does not
increase due to the function of beam loading as previously observed in experiment [104]
and simulation [114]. Moreover, the dephasing and pump depletion lengths being less than
1 mm and 2 mm respectively in this range of plasma density, some electrons are scattered
during the propagation in the remaining part of the plasma [195], and do not reach the
detector. The beam charges obtained in PIC simulation are about two times lower than
the experimental ones, as shown in Figure 6.3(b). The main contribution to this difference
is electrons going out from the simulation box. The simulation box moves forward with
the group velocity of the laser in the plasma v, ~ 0.998¢, while the accelerated electrons
move in the first plasma bucket with speed of light ¢, so the electrons slip forward in the
simulation box. Subsequently more and more of them overrun the front boundary of the
simulation box and get lost with computation time increasing, resulting in the observed
lower values of beam charge in the simulations.

Now let’s examine the dependence of X-ray on plasma electron density. Figure 6.4
shows that betatron X-ray radiation can be tuned by varying the plasma density. In this
case, the X-ray fluence peaks at 5.7x10° phtons/mrad? for p. ~ 8 x10'® cm™3, and behaves
similarly as the beam charge given in Figure 6.3(b). The influences of the plasma electron
density on the X-ray fluence can be understood as a result of the influences of the density
on the laser propagation and the associated electron injection and acceleration. At lower
plasma densities, the electron number decreases rapidly owing to inefficient self-trapping,
so the photon number diminishes accordingly. If the beam charge is too low, the X-ray
signal finally vanishes, as seen in Figure 6.2(e). Above the optimum density, trapping
becomes more efficient and more charge can be accelerated, however the electron energy
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Figure 6.4: X-ray fluence as a function of plasma electron density for the 10 mm long,
178 pm diameter capillary tube. Fach black square corresponds to one laser shot, and the
stars represent the results obtained in 8D PIC' simulations.

becomes lower due to shortening of both the electron dephasing length and laser pump
depletion length, which consequently leads to a drop of X-ray signal. This dependence of
X-ray fluence on plasma density is well reproduced by simulation results, plotted as red
stars in Figure 6.4. More details of the simulations will be presented in Section 6.4.

6.2.3 Enhancement of X-ray by capillary guiding

To highlight the role of capillary guiding on electron acceleration and X-ray generation,
we compare the results obtained from the 10 mm long, 178 um capillary tube and a 2 mm
long gas jet. The two targets were used during the same run with the same experimental
parameters at the LLC. The laser was focused onto the front edge of a 2 mm gas jet
which provides a plasma with a plateau of 1.8 £ 0.1 mm long. Electron trapping starts
at a relatively low density in the case of capillary tube, and furthermore the peak X-ray
brightness is enhanced by a factor of around 30 comparing with the result of the gas jet
[48].

The enhancement of the X-ray fluence and the associated electron features are demon-
strated in Figure 6.5 by comparison of the X-ray fluence measured from the two targets
under the same experimental conditions. One can immediately find that the maximum
X-ray fluence in the capillary is more than one order of magnitude higher than in the gas
jet. This enhancement can be explained as follows.

Figure 6.5(c) shows that for the laser intensity used in this experiment, the use of a
capillary tube allows electron self-injection to happen at lower density than in the gas
jet. The capillary provides a long distance for laser evolution to the threshold required
for self-trapping [46, 115], and helps collecting and refocusing the energy initially in the
wings of the laser spot [114]; the excitation of multiple modes and their beating can also
give rise locally to higher intensity than in vacuum, thus favoring an increase of ag. In
contrast, electron trapping starts around p, = 11 x 10'® cm™3 for the gas jet, which results
in lower energy electrons, as electron energy inversely depends on plasma density [94].
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Figure 6.5: (a) X-ray fluence in logarithmic scale, (b) electron mean energy and (c) beam
charge as a function of plasma density for the 10 mm long capillary (red squares) and 2
mm gas jet (blue dots).

In the density region where both plasma media produce accelerated electrons, namely
pe = (11 — 13)x10'® ecm~3, the increased electron energy in the capillary tube can be
attributed to the more efficient use of laser energy by capillary collecting. In consequence,
although similar beam charges in the range of 1 to 100 pC were observed for the two
cases, much more intense X-rays were produced in the capillary tube as there is a strong
nonlinear dependence of X-ray intensity on electron energy [116].

It is also interesting to assess the enhancement of X-ray peak brightness. The maxi-
mum X-ray fluence measured from the capillary tube is (5.7 & 0.6) x 10% photons/mrad?
for po = 8 x 10" ecm™3 [Figure 6.5(a)]. To estimate the peak brightness, the source
size and pulse duration of X-ray are needed. The source size can be estimated from the
expression of critical energy [120] as 73 = E.c/ 3hy3w?. The relativistic factor is deter-
mined using the mean energy of the electron spectra (&), where (&) is the average of
electron energies weighted by their respective spectral intensities. For the shot plotted in
Figure 6.2(d), (&) is calculated to be 88+4 MeV. The source size is therefore estimated
to be rg = 2+ 0.3 pm. This estimation is also validated by 3D PIC simulation per-
formed for input parameters close to the experimental ones (See Section 6.3). It shows
that the laser pulse nonlinear evolution in the 178 pm diameter capillary tube leads to
a maximum normalized vector potential in the range 3 < ap < 4, and produces acceler-
ated electrons with a mean energy of about 130 MeV. The transverse and longitudinal
sizes of the electron bunch in the simulation are 1.3 pym and 10 pum (~35 fs), respec-
tively, in reasonable agreement with the estimation from the measurements. The peak
brightness achieved in our experiment is conservatively estimated, using rg = 2 um, to
be ~ 1 x 10%! photons/s/mm?/mrad?/0.1%BW. To the best of our knowledge, this is the
brightest X-ray obtained with a 16 TW laser. On the other hand, the maximum X-ray
fluence obtained with the gas jet is 2.7 x 10* photons/mrad? for p, = 15 x 10*® cm=3.
Using the values obtained from experimental data, & = 4.6 keV, (£.) = 56 MeV, the
source size is estimated to be 2.4 ym and the corresponding peak brightness is ~ 3 x 10'?
photons/s/mm? /mrad?/0.1%BW, which is 30 times lower compared to the case of capil-
lary guiding.

These results highlight the role of capillary guiding. It is consistent with the prediction
of the scaling laws of betatron radiation in the blowout regime: lowering plasma density
or/and increasing laser intensity are expected to improve X-ray brightness [106]. We
would like to stress that using a longer gas jet or a gas-cell could also increase the X-ray
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brightness, but the use of a capillary tube enhances this effect by collecting the unfocused
laser energy and reflecting it back to the axis.

In the case of capillary tube, the wiggler strength parameter at the optimal density
is computed to be Kg ~ 10. Taking into account the divergence of the X-ray beam,
©3 = Kp/v, the estimated total photon number over the whole spectrum is of the order
of 10? per shot. Such a compact, bright, and ultrashort X-ray burst is of great interest for
many applications such as phase-contrast imaging [123, 124].

6.2.4 Diagnostics of electron acceleration

As demonstrated in Section 3.6, betatron X-ray radiation is also a powerful tool to inves-
tigate the acceleration process because of its strong dependence on the electron properties
[46, 60, 115]. The diagnostic of electron acceleration is very important for knowing how
long the laser-plasma interaction extends inside the plasma in the nonlinear regime for
matching the capillary length.
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Figure 6.6: X-ray beam distributions measured for p. = (8.1 £0.5) x 10*® em™3 at the
output of (a) the 10 mm long, 178 um diameter capillary tube, (b) a 30.5 mm long, 178
um diameter capillary tube; (c) averaged radial intensity profile of (b); (d) longitudinal
profiles of X-ray emission for five consecutive shots under the same conditions. The curves
are normalized to their respective mazrima.

The X-ray source is closer to the capillary exit when a short capillary tube is used,
which geometrically produces a shadow with a larger diameter on the detector. For exam-
ple, most of the shadow of the 10 mm long, 178 pum diameter capillary tube was beyond
the X-ray detector size, as seen in Figure 6.6(a). Only roughly a quarter of the X-ray
beam going through the capillary exit could be recorded. As the shortest capillary tube
studied, L.qp = 10 mm, is still longer than the whole distance of laser evolution and
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electron acceleration (See Figure 6.11), so that the X-ray emission due to electron trap-
ping and acceleration is expected to be the same for a longer capillary tube. In order to
determine the X-ray profile, a 30.5 mm long capillary tube was employed, for which the
X-ray beam confined by the capillary exit could be recorded, like in Figure 6.6(b). In this
shot, the X-ray beam is homogeneous expect for a bright feature in the bottom left region.
This feature can be explained by the acceleration of some electrons along the direction of
the feature extension [128]. To avoid this specific feature in the analysis, the bottom left
region in Figure 6.6(b) is excluded in the following determination. The radial profile of
the X-ray signal averaged over the azimuthal angle was calculated and plotted in Figure
6.6(c). In this plot, one can immediately find the transition zone between r = 3.5 — 4
mm. Substituting this profile into Equation 3.42, the longitudinal distribution of X-ray
emission is obtained, and plotted in Figure 6.6(d). Also plotted are four other successive
shots. In this calculation, z = 0 corresponds to the capillary entrance.

It shows that electrons start to generate detectable X-rays with photon energy above 2
keV around z ~ 2 mm. The photons become detectable (> 2 keV) when the electron energy
is higher than ~ 50 MeV for the plasma density 8 x 10'® cm™3 and oscillation amplitude
rg = 2 pm. After a distance corresponding to electron acceleration, the X-ray emission has
a FWHM extension of about 3 mm, and peaks at z >~ 4.5 mm, where the electrons reach
their maximum energy (See Figure 6.11), because the radiated power scales with v* [116].
Afterwards, the X-ray emission decreases and terminates at z ~ 7 mm where the laser is
fully depleted. The precision of the above analysis is limited by the beam transverse source
size. For the position of emission peak at z = 4.5 mm, a beam size rg = 2 pm will result
in the same intensity gradient on the detector as does a longitudinal emission extending
~ 600 pm, which sets the resolution of the determination of the emission position. It
should be also noted that this diagnostic scheme requires photon energy does not change
significantly within the length scale of the intensity transition zone on the detector [r ~
3.5 —4 mm in Figure 6.6(c)]. If not, the measured signal profile, Sx (r), will be different
from the real case, as the quantum efficiency or the CCD count of the detector (See Figure
5.16) sensitively depends on photon energy.

The emission profile determined in Figure 6.6(d) is confirmed by 3D PIC simulations
shown in Section 6.3. They show that in the highly nonlinear regime electron acceleration
terminates before z = 10 mm. This physical picture is quite different from the moderately
nonlinear regime [46, 115], where several centimeter long capillary tubes are necessary to
favor laser reaching the threshold of electron self-trapping.

6.2.5 Correlation of electrons and X-rays stability

One goal of the first campaign was examining the stability of the produced electrons and
X-rays using capillary tubes. We were particularly intersected in finding the correlations
between the fluctuations of electrons and X-rays, as there are some publications about
the electron stability [41, 44, 45, 197], whereas none of them investigates the stability of
betatron radiation. Considering its importance for the applications, we were therefore
motivated to address this issue.

In previous section, we showed that the X-ray fluence exhibits large shot-to-shot fluc-
tuations, as presented in Figure 6.4. These fluctuations could result from the process
of electron injection that determines beam charge or/and the acceleration process which
determines electron energy. These two effects together contribute to the X-ray intensity.
The acceleration process has been characterized in Section 6.2.4 through the X-ray far-field
profile. In Figure 6.6(d), the calculated longitudinal profiles of X-ray emission indicate a
similar position and distance of X-ray emission for five consecutive shots, which implies
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similar processes of electron acceleration. However the maximum amplitude of these emis-
sion curves [not shown in Figure 6.6(d) where they are normalized with their respective
magnitudes], exhibits a fluctuation of the order of 20%. In this sense, it can be assumed
that the origin of the fluctuations lies less in the acceleration process than in the trapping
conditions, i.e. in the amount of injected charge. In order to get some insight on the origin
of fluctuations, the stability of electrons and X-rays was examined.
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Figure 6.7: Raw Lanex images (left panel), electron spectra(middle panel), and X-ray
images (right panel) of 20 consecutive shots measured with a 10 mm long, 203 pm diameter
capillary tube for a plasma density (7 £ 0.4) x 1018 em=3.
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Figure 6.7 shows the electron and X-ray data recorded for 20 consecutive laser shots
with a 10 mm long, 203 pm diameter capillary tube. The plasma density was chosen
to be pe = (74 0.4) x 10*® cm ™3, for which strong signals could be obtained for both
electrons and X-rays. For these parameters, electron injection occurred for every shot. On
average, ~ 40 pC electrons were accelerated to a maximum energy of ~150 MeV. The main

Table 6.2: Summary of the main parameters of the electrons and X-rays associated with
the shots in Figure 6.7.

Emaz (Ee) Q Ee Sx
(MeV) | (MeV) | (pC) | (keV) | (photons/mrad?)
Mean 147 91.4 46 3.3 2.5x10°
Std 11.6 6.6 78 | 0.3 3x104
Std/Mean (%) 8 7 17 9 12

parameters of the electrons and the corresponding X-rays are summarized in Table 6.2. In
terms of electron energy, both the maximum energy &4, (147£11.6 MeV) and the mean
one (&) (91.4+6.6 MeV) exhibit a relatively small instability with a relative standard
deviation (std/mean) of 7 — 8%. The beam charge exhibits a shot-to-shot fluctuation of
17%. The critical energy of X-ray exhibits a fluctuation of about 9%, and the X-ray fluence
fluctuation was measured to be 12%. Note that these X-rays in Figure 6.7 constitute the
most intense on-axis part, measured by the detector with a small collecting angle, which
may have smaller fluctuations than the the total X-ray beam.

Figure 6.8 shows the measured X-ray fluence as a function of the measured beam
charge. As seen, the X-ray fluence and beam charge are linearly correlated. The extrapo-
lation of the linear fit is close to zero when there is no charge. The residual value of the
fluence may be due to the fact that electrons with energy less than 42 MeV which are be-
yond the detector limit, and are not taken into account for the calculation of beam charge.
The slope of the linear fit is calculated to be 7.8 x 10~* photons/mrad? per electron. The
scaling developed for betatron radiation in ion channels [198] shows that the average num-
ber of photons emitted by an oscillating electron is given by Nx ~ 5.6 x 1073NgK. The
opening solid angle of the betatron radiation [116], = K /42, can be used to evaluate the
strength parameter. The number of photons per solid angle can therefore be theoretically
estimated to be Nx/Q ~ 5.6 x 10799?>Njs in unit of photons/mrad? per electron. By
measuring electron energy, v was evaluated as the average value plus/minus three times
the standard deviation to be v = 183 + 40. Using the value of the slope of the linear
fit in Figure 6.8, the number of oscillations performed by an electron in the plasma is
calculated to be N3 ~ 4 £ 2. From this analysis of experimental results, we are thus able
to estimate that the electron fulfills about four oscillations in the plasma. This finding is
in reasonable agreement with the determination N3 ~ 5 in PIC simulations for plasma
density p. = 7 x 1018 em™3.

The instability of beam charge is probably due to the process of electron self-injection.
In the bubble regime, the dynamics of electron self-injection is a complex process dependent
on the laser nonlinear evolution [108], the bubble dynamics [94], and beam loading [199].
As a result, a slight change to one of these processes, due for example to fluctuations of the
laser energy distribution at the entrance of the plasma, would subsequently induce a large
variation on beam charge, and consequently on the X-ray fluence. Stabilizing the electron
beam charge would therefore be a reasonable way to reduce shot-to-shot fluctuations and
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Figure 6.8: X-ray fluence as a function of beam charge for the 20 shots shown in Figure
6.7, where the red line is a linear fit.

improve X-ray stability. The beam charge has been observed to be the most unstable
parameter of the electron bunches produced in LWFAs. Typically, the variation of beam
charge is > 50% for commonly used gas jets [197], 16% for a gas-cell [45], ~ 36% for
advanced optical injection techniques [41], and 45% for the recent staged acceleration
with separated nozzle injector [44]. Although there is no corresponding study on X-ray
stability in these publications, it is still reasonable to stress that controlling the beam
charge would benefit X-ray stability.

6.2.6 Influence of capillary parameters

In this section, we discuss the influence of capillary diameter and length on the produced
electron beams. As presented in Chapter 4, laser coupling and mode excitation sensitively
depend on capillary diameter, and affect the structure of plasma wave generated inside
capillary tubes. On the other hand, capillary length determines the plasma length which
could furthermore affect the process of electron acceleration if the laser pump depletion
length is long enough. The influence of capillary parameters were therefore explored in
the first campaign.

Figure 6.9 displays the maximum electron energies and beam charges over the whole
density range for three 20 mm long capillary tubes with 152, 178, and 203 pm diameters.
The curves in (a) represents indicate the scaling law of electron energy & [MeV] = % p./pe
developed in Ref. [94], and the a, values agreeing best with the three cases are 1.9, 1.9,
and 1.7, respectively. The curves in Figure 6.9(a) show higher electron energies (laser
intensities) are achieved in the 152 and 178 pm tubes than in the 203 pm tube, but
generally, the electron energy and beam charge are not significantly affected by capillary
diameter within the explored parameter range. This finding can be elucidated as follows.
As the laser power is well above the critical power, it is mainly guided by self-focusing
and assisted by capillary collecting. Since the laser focal spot with 20 um at the first
minimum is relatively small compared to the capillary diameters ranging from 152 to 203
pm, higher eigenmodes are excited in the capillary tubes, as shown in Figure 5.6. In terms
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of laser energy, the total coupling efficiency is above 95% for all the three diameters, so
similar mechanisms of laser propagation and electron acceleration happen in the examined
capillary tubes.
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Figure 6.10: (a) Electron mazimum energy and (b) beam charge as a function of plasma
density for 10 mm (red squares), 20 mm (green circles), and 30 mm (blue triangles)
long capillary tubes with diameter of 178 um. Each point represents the average value of
several shots for a given plasma density. The curves in (a) correspond to the scaling law
for electron mazimum energy E = G pc/pe-

Figure 6.10 shows the influence of capillary length, where the electron maximum energy
and beam charge are plotted as functions of plasma density for 10 mm, 20 mm, and 30 mm
long capillary tubes with a given diameter of 178 pum. Likewise, the curves in (a) indicate
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the scaling law of electron maximum energy £.[MeV] = % p./p., and the corresponding
ap values are 1.8, 1.9, and 1.7 for the three cases, respectively. In terms of electron
energy, there is no substantial difference for the three cases. This observation agrees with
the characterization of electron acceleration in the plasma demonstrated in Section 6.2.4,
where the acceleration process is shown to terminate before the first 10 mm. Therefore the
accelerated electrons can not gain energy as long as the plasma wave driven by the bunch
itself is negligible. In Figure 6.10(b), it is noticeable that beam charge becomes lower in
longer capillary tubes. This phenomenon can be explained by laser electron interaction.
As will be seen in PIC simulation, the accelerated electrons finally catch up with and
overrun the driving laser pulse, during which the electrons are transversely scattered by
the laser ponderomotive force, resulting in a significant increase in the beam divergence.
Subsequently, some of the scattered electrons enter the downstream part of the capillary
wall. This process decreases the measured beam charge in two ways: (i) the electrons with
divergence larger than the acceptable angle of the magnet in front of the Lanex screen
(~ 30 mrad) are not measured; (ii) the electrons entering the capillary wall lose their
energy therein. If their final energy is below the lower limit of the detection 42 MeV, they
will not be recorded. Longer the capillary tube is, the more electrons are lost, and less
beam charge is measured. When the scattered electrons go through the capillary wall,
they generate bremsstrahlung radiation which casts a second illumination on the X-ray
detector. This phenomenon will be presented in Section 6.4.

6.3 Results of PIC simulation

In order to obtain a deeper understanding of the underlying physics of LWFA in capillary
tubes, simulations were performed with the 3D PIC code CALDER-CIRC [112]. Param-
eters were chosen close to the experimental ones: a FWHM 40 fs laser pulse was taken as
input condition with a normalized intensity of ag = 1.6, and the transverse profile mea-
sured experimentally and shown in Figure 5.8. In experiments, the laser focus in vacuum
was set inside the capillary at 1 mm from the capillary entrance. A similar condition was
studied in the simulation and compared to focusing position at 2.5 mm from the entrance.
The comparison of two PIC simulation cases with different focus positions presented in
Figure 6.11 highlights the sensitivity of the laser propagation to the coupling conditions
at the entrance of the plasma.

As demonstrated in Chapter 4, numerical simulations using the FLUENT code show
that the gas density profile inside capillary tubes is constant over the length situated
between the two slits, and decreases from the slits positions to the ends of the capillary
tube. The gas distribution in the capillary tube and the density profile between the slit and
the capillary exit was determined in Ref. [164]. For PIC simulations, the density profiles
were simply assumed to be linearly increasing from 0 to a constant value of density, pe,
over a length of 3 mm, as shown in Figure 6.11(a) and (c); the capillary entrance is located
at z = 0 mm and the density plateau is assumed to start at z = 2.5 mm. More details
regarding the PIC simulation can be found in Ref. [115].

Simulations were carried out for different plasma electron densities and compared to
experimental results. Whereas in the experiment the laser was focused 1 mm inside cap-
illary tubes, it was found that simulation results are in good agreement with experiments
for simulation results with focus at z = 2.5 mm, as can be shown in Figure 6.3 and Figure
6.4. This sensitivity to focusing position is linked to the density profile existing between
the slit and the entrance of the capillary tube: it has not been measured experimentally,
and can only be approximately calculated by fluid calculations. In the remaining part of
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this section, the behaviour of the laser beam intensity, electron beam energy, and X-ray
emission are examined along the capillary axis and the two cases of focus positions are
compared for the plasma density p. = 8 x 10'® cm™3, at which both electrons and X-rays
were systematically studied in experiment.
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Figure 6.11: Simulation results for ag = 1.6, and plasma density 8 x 1018 em™3. (a)
Density profile used in 3D PIC simulation with laser focus position in vacuum at z = 1 mm,
indicated by the vertical dashed line. (b) Evolution of the normalized laser intensity (red
solid line) and the mean energy (dashed blue line) of the electron bunch accelerated in
the first plasma bucket. The histogram corresponds to the amplitude of X-ray emission in
arbitrary unit. (e) Snapshot of plasma density around the position z = 4.07 mm, where the
laser propagates from left to right. The right column represents the corresponding results
with laser focus position in vacuum at z = 2.5 mm.

The left column in Figure 6.11 corresponds to the case of focus position of z = 1
mm. As seen in Figure 6.11, after entering the plasma the laser beam quickly self-focuses,
and the normalized laser intensity increases to ag > 3 at z ~ 1.7 mm. With the help
of capillary guiding and self-focusing, the laser propagates with a stable amplitude until
z ~ 4.2 mm. When most of the laser energy is transferred to the plasma wave, the laser
becomes subsequently too weak to maintain self-focusing. This simulation result agrees
well with the theoretical prediction [94] of laser pump depletion length L,y ~ 2.6 mm.
Closely following the laser pulse, a bubble with a radius of ~7 pum is created, as illustrated
in Figure 6.11(e). An appreciable number of electrons starts to be trapped by the bubble
after the first maximum of laser normalized intensity z ~ 2 mm in Figure 6.11(b), and the
trapped electrons gain energy rapidly. The mean energy of the electron bunch produced in
the first plasma bucket reaches a maximum of 220 MeV at z ~ 4 mm and then gradually
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decreases, because the electrons enter a decelerating phase. In addition, the laser intensity
remains large enough (ap > 3) to trap electrons [197] over a few millimeters, so multiple
electron injection occurs. The electron bunch formed in the first plasma bucket in Figure
6.11(e) has a transverse radius of ~ 1 um and a longitudinal length of approximately 6
pm, from which one can estimate the X-ray pulse duration to be ~ 20 fs. They confirm
the calculation in Section 6.2.3 about X-ray peak brightness on the order of ~ 1 x 102!
photons/s/mm?/mrad?/0.1%BW.

The influence of the laser focus position can be evaluated by comparing the two columns
in Figure 6.11. In the right column, the laser focus position is located at the beginning of
the density plateau and this leads to a faster self-focusing with a higher peak amplitude
than in the case of the left column. Then the laser amplitude oscillates with larger peak
to peak amplitude. Electron injection occurs at about the same position z ~ 2 mm, but
the maximum value of the mean electron energy is higher in the case of the left column
probably due to an increasing laser intensity from z = 1.8 to 4.5 mm. The X-ray emission
in Figure 6.11(d) has a similar peak position around z ~ 4.7 mm. It can also be noticed
in Figure 6.11(f) that the number of electrons in the first bucket after the laser pulse is
lower than that in Figure 6.11(e), which is linked to different laser evolutions in the two
cases.
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Figure 6.12: (a) Energy evolution of an electron traced in PIC simulation and (b) its
corresponding 3D trajectory, where the laser propagates along the z axis and is polarized
along the y azis. (c) X-ray spectrum calculated in the simulation. The inset in (c) is the
X-ray beam profile calculated in the exit plane of a 30 mm long, 178 pm diameter capillary
tube. Other parameters are the same as for Figure 6.11(a) with focusing at z =1 mm.

The betatron radiation was calculated from Lineard-Wiechert potentials [116] by post-
processing the trajectories of electrons with energies larger than 10 MeV. Figure 6.12(b)
exhibits a typical electron trajectory obtained in simulation for the case of laser focus
position at z = 1 mm (left column in Figure 6.11). As shown in Figure 6.12(a), the
electron is trapped at around z ~ 4.4 mm, and gets accelerated to 130 MeV at z ~ 5.3
mm. Afterwards it enters the decelerating phase. The electron performs a spiral-like
motion and fulfills four oscillations [Figure 6.12(b)]. The maximum oscillation amplitude
along the y axis, the direction of laser polarization, is 1 um, roughly equal to the transverse
size of the electron bunch. The maximum oscillation amplitude along the direction (the
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x axis) perpendicular to the laser polarization is 0.5 pm, smaller than that in the laser
polarization direction. This kind of elliptical motion in the transverse plane is due to
electron interacting with the laser tail in the first plasma bucket [200].

Figure 6.12(c) gives the spectrum of betatron radiation produced by the electron beam,
which is synchrotron-like but differs from the standard synchrotron spectrum defined by
Equation 3.21. That is because the accelerated electrons are widely-spread in energy and
have different oscillation amplitudes. Fitting the simulated spectrum with a standard
synchrotron spectrum yields a critical energy of 7.7 keV, however the simulated and the
fitted spectra have a large difference in photon energy distribution. Therefore it is more
significant to define the critical energy &£. as the energy below or above which half of the
power is radiated [115]. Accordingly, &, is 4.6 keV for this spectrum in Figure 6.12(c).
The inset in Figure 6.12(c) shows the X-ray profile observed at the exit of a 30 mm
long, 178 pm capillary tube in the simulation, where one can see the intensity transition
due to X-ray cropping by the capillary exit border. The cropped X-ray beam has a
divergence of 3.6 mrad which is close to the divergence of about 3.4 mrad deduced from
the experimental measurement shown in Figure 6.6(b). Furthermore, the histogram in
Figure 6.11(b) represents the X-ray intensity, obtained by integrating photons from 1 to
10 keV, emitted at different longitudinal positions calculated over each 1 mm. It is seen
that the X-ray generation extends from about z = 3 mm to around z = 7.5 mm, and
peaks at z ~ 4.6 mm. This is in good agreement with the experimental observation
presented in Figure 6.6(d). The agreement of the X-ray emission profile and location
between simulation and experiment shows that the analysis of the X-ray emission is a
powerful diagnostics, providing also information on the electron beam dynamics.

6.4 Bremsstrahlung radiation

6.4.1 Physical mechanism of secondary emission

In order to characterize the process of electron acceleration in plasma, a 30.5 mm long
capillary tube was used in order to ensure the whole shadow of the capillary border lying
within the chip of the X-ray CCD camera, as presented in Section 6.2.4. Beside achieving
that diagnostics, another interesting phenomenon was observed in the X-ray images. A
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Figure 6.13: X-ray beam profiles measured with the 30.5 mm long capillary tube (a)
without or (b) with the filter metals. The wire cross outside the shadow of the capillary
border, indicated by the white circle, is clearly visible in (a).
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cross made of stainless steel wire with diameter of 50 ym was placed in the optical path
approximately 53 cm after the capillary tube and about 57 cm from the X-ray camera.
The stainless steel wire was clearly resolved even outside the rim of the capillary tube,
as exhibited in Figure 6.13(a). This region in principle should be completely dark unless
there is another X-ray source illuminating the wire. This secondary emission can be
better appreciated in the image with the filter metals [Figure 6.13(b)], where there is still
a detectable signal on the CCD camera through the metal pieces outside the capillary
shadow. Without a secondary emission, the local signals in those metals would be as
low as in the copper part which blocks the secondary emission as well. This secondary
emission was also detected occasionally with some 20 mm long capillary tubes, but not as
strong as with the 30.5 mm long capillary tube, and never with the 10 mm long tubes,
which means the secondary emission depends on the capillary length.

There are several possible explanations for the origin for such a secondary emission.
We will examine them one by one in the following part.

X-ray reflection

To avoid ambiguity, we call the emission producing the capillary shadow in Figure 6.13(a)
the main emission, as it produced a higher intensity inside the shadow [i.e. inside the
white circle in Figure 6.13(a)]. Because the divergence of the main emission is larger than
the cropping angle of the capillary exit, it could be envisaged that part of the beam is
reflected by the capillary inner surface and goes out from the capillary tube as a second
emission, as illustrated in Figure 6.14. However, this assumption can be easily ruled out.
The capillary radius is 89 pym. Assuming an X-ray is produced at z = 4.5 mm, the emission
peak position determined in Figure 6.6(d), the reflection just upstream the capillary exit
has the smallest grazing angle 6;, ~ 3.4 mrad. Correspondingly, the reflectivity at the
capillary surface with roughness of ~ 0.1 pum is of the order of ~ 1 x 1073 for 1 — 10 keV
photons. The reflected beam is too weak to be detected in experiment, and it becomes
even weaker for larger incident angles.

X-ray detector

Capillary

Capillary

Figure 6.14: Schematic illustration of X-rays cropped and reflected by a capillary tube.
The cropped part confined within the two dotted lines is the main emission, and the the
solid lines indicate the X-rays reflected by the capillary inner surface producing a secondary
emission.

Beam-driven betatron radiation

As seen both in experiment and simulation, after z = 7 mm the laser is depleted by
transferring energy to the plasma wakefield. However, the accelerated electron bunch
itself could excite a plasma wave beyond the pump depletion length [201], corresponding
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to a transition to the plasma wakefield accelerator [15]. In this case, electrons can still
perform betatron oscillations and generate X-rays at a later time owing to the transverse
plasma field [60]. It is beyond our capacity to verify this in experiments, so we turned to
PIC simulations.
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Figure 6.15: Snapshots of plasma density (gray scale) and instantaneous laser intensity
(color scale), in which the laser propagates from left to right at three different positions
along the axis of capillary tube. Electron trapping starts at z ~ 2.895 mm in (a), and
at z ~ 4.645 mm (b) a large amount of electrons are trapped and accelerated in the first
plasma bubble, where the head of the electron bunch catches up with the laser. The electrons
interact with the laser and get modulated at z ~ 5.805 mm (c¢), where the transverse size
of the electron bunch is appreciably increased.

A simulation campaign was carried out to determine if we can generate the secondary
emission by beam-driven betatron radiation in our parameter range. Different configura-
tions of laser parameter and plasma density were examined, nevertheless no X-ray emission
was found according to the aforementioned mechanism. Instead, we found that in most
of the simulated cases the accelerated electrons gradually catch up with and overrun the
driving laser pulse, while the electron bunch explodes owing to transverse expulsion by
the laser ponderomotive force. Figure 6.15 shows one simulation case at plasma density of
7 x 10'® cm ™2 with laser focus at 1 mm inside a 30 mm long capillary tube with diameter?
of 152 um. The laser parameters are the same as given in Section 6.3. In Figure 6.15(a), a
plasma bubble is produced behind the laser and start trapping electrons at z ~ 2.895 mm.
Afterwards, the accelerated electrons catch up with the laser tail and get scattered by the
laser ponderomotive force. The increase in transverse size of the electron bunch can be
seen in Figure 6.15(c). The distance that it takes for a trapped electron (nearly moving at
the speed of light) to catch up with the laser can be approximated by L = Ryc/(c — vg).
The bubble radius in Figure 6.15(b) is Ry ~ 7 um, and the laser group velocity given by
Equation 2.23 is vy ~ 0.997¢, which yields L ~ 2.3 mm. The laser pump depletion length
is evaluated from Equation 2.52 as L,s ~ 3 mm. Since L < L,q, some electrons can catch
up with the laser before it is depleted.

Figure 6.16 shows the electron profiles at different longitudinal positions, namely

= 5.3, 7.6, and 8.8 mm. The simulation parameters are the same for Figure 6.15.
A tiny bright spot is seen in Figure 6.16(a), corresponding to the typical electron profile
before or just catching up with the driving laser. The bunch size is dramatically enlarged

2To reduce the time for parameter scan in 3D PIC simulation, a smaller capillary tube diameter 152 pm
was used. It was verified in simulation that the laser-plasma interaction is nearly the same for capillary
tubes with 152 and 178 pum diameters.
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after interaction with the laser pulse [Figure 6.16(b)], and afterwards the outmost electrons
start touching and entering into the capillary wall around z = 8.8 mm. The beam profile
in Figure 6.16(c) consists of a central bright elliptical spot rounded by a big halo. The
central part of the spot corresponds to the electrons that do not catch up with the laser
before the laser depletes, so they are not modulated by the laser. Owing to a larger emit-
tance along the laser polarization direction [200], electron explosion is more pronounced
in that direction as shown in Figure 6.16(a)-(c). Some electron trajectories are given in
Figure 6.16(d)-(e). Since the ponderomotive force does not depend on laser polarization
(See Section 2.1.3), the electrons are expelled both along and perpendicular to the laser
polarization direction. Especially the lower energy electrons are more scattered, because
the transverse acceleration inversely depends on the relativistic electron mass yme.
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Figure 6.16: FElectron transverse profiles at different longitudinal positions (a) 5.8 mm,
(b) 7.6 mm, and (c) 8.8 mm, where the circle indicates the capillary border of 152 um.
Increase in electron size is clearly visible. The laser is polarized along the y axis. Typ-
ical electron trajectories in the planes (d) perpendicular and (e) parallel with the laser
polarization. The simulation parameters are the same as for Figure 6.15.

In summary, the PIC simulations show that beam-driven betatron radiation does not
occur in our experimental conditions, while the accelerated electrons are exploded when
they overrun the driving laser pulse.

Estimation of bremsstrahlung radiation

When the electrons go through the capillary wall, they produce bremsstrahlung radiation.
To verify the secondary emission is indeed resulted by the bremsstrahlung radiation, we
need to check the spectrum and angular distribution of the bremsstrahlung radiation, as
the detector that we used was sensitive to 1-20 keV photons and had a collecting angle of
12 x 12 mrad?. Here we show a theoretical estimation about this.
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Figure 6.17: Model for theoretical estimation of bremsstrahlung radiation generated in
capillary wall.

The model for the estimation is illustrated in Figure 6.17. We consider a 200 MeV
electron expelled at z = 6 mm with an incident angle 6;, = 7.5 mrad, a typical case in
Figure 6.16. For a 30.5 mm long, 178 um diameter capillary tube, the electron energy drops
to 176 MeV at z = 30.5 mm owing to energy stopping® in the capillary wall, assumed to be
pure SiOs. When the incident electron is ultrarelativistic, the spectrum of bremsstrahlung
radiation is given by [202]

dNy, A &\? 28 2661\ 1
S PR 1 1
i 5phl * <50) 36| |\ e, ) 2| (6.1)

where A is a coefficient associated with the material property. & = 200 MeV is the
incident electron energy, and £ = 176 MeV is the electron energy after going through the
capillary wall. The calculated spectrum is shown in Figure 6.18(a). As seen, substantial
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Figure 6.18: (a) Spectrum and (b) angular distribution of bremsstrahlung radiation of
an electron having incident and escaping energies of 200 MeV and 176 MeV.

photons can be produced in the energy range of 2-20 keV. The angular distribution of

3Using the stopping energy rate in the database of ESTAR (stopping-power and range tables for elec-
trons) provided by the National Institute of Standards and Technology.
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bremsstrahlung radiation in the small angle approximation is given by [202]

Ny, A1 & [16(05)°E; (& + £1)%&
dgpth o gph & (1 + 9253)4 51(1 + 9253)2
Eo&1 (E’g + 512)50 49256l
+21In 55 — 5 ,
Eph ) |E1(14602E5)2 (1 +6285)4

(6.2)

where 6 is the angle with respect to the electron propagation direction. For the case
of incident and escaping energies of 200 and 176 MeV, the angular distribution of the
bremsstrahlung radiation is shown in Figure 6.18(b). Omne can see that the emission
distribution sensitively depends on the photon energy. The FWHM divergence is around
4.6 mrad for 2 keV photons. The emitted photons are very likely to be detected if they
are created by electrons with a small divergence and close to the laser axis.

6.4.2 Modeling with GEANT4 and discussion

To more precisely calculate the bremsstrahlung radiation produced by an electron bunch,
we performed a numerical modeling with the code GEANT4 [203]. GEANT4 is a toolkit
specially designed for the simulation of the passage of particles through matter using the
Monte Carlo method. The particle transport is described by the processes of bremsstrahlung,
multiple scattering, and ionization, while the produced electromagnetic radiation expe-
riences the processes of photoelectric effect, Compton scattering, and conversion into
electron-positron pair.
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Figure 6.19: (a) Angular distribution of the electron bunch obtained from PIC simulation
at z = 8.8 mm. (b) Trajectories of the simulated particles in the capillary tube (yellow):
photons (green), electrons (red), and positrons (blue).

The bremsstrahlung modeling is initialized with the electron beam obtained from PIC
simulation at z ~ 8.8 mm, where the electrons have already been modulated after over-
running the laser pulse, but not yet reached the capillary wall. The electron beam is fully
described using six parameters in phase space, namely (z, y, 2z, vz, vy, v;). The electron
beam transverse distribution used in the GEANT4 simulation is shown in Figure 6.16(c),
and the corresponding beam divergence is shown in Figure 6.19(a). 4 x 10* macro-electrons
are used in the GEANT4 calculation. The capillary tube, taken as pure SiOs, is 30 mm
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long with inner and outer radii of 89 um and 2.75 mm, respectively. The two Be win-
dows with total thickness of 300 pm and the 5 mm air gap (See setup in Figure 5.7) were
included in the modeling as well.

Figure 6.19(b) shows the particle trajectories in the capillary wall, where the red, blue,
and green lines represent the trajectories of electrons, positrons, and photons, respectively.
As seen, numerous photons are produced by bremsstrahlung radiation when the electrons
pass through the capillary wall. Most of the photons move forward very directionally. The
spectrum of the emitted photons and their angular distribution are shown in Figure 6.20.
The overall spectrum exponentially drops with only a few photons remaining around 100
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Figure 6.20: (a) Spectrum and (b) angular distribution of the bremsstrahlung radiation.
(c¢) Spectrum for 0-500 keV photons and (d) angular distribution for 0-100 mrad.

MeV. Figure 6.20(c) shows the spectrum for photon energy below 500 keV, indicating the
spectrum peaks around 40 keV, and diminishes when photon energy decreases towards
zero. Furthermore, most of the photons are collimated within a divergence cone of 100
mrad as shown in Figure 6.20(b), where 6 is defined as the angle with respect to the
capillary central axis. Especially, a peak at 6 ~ 20 mrad is observed in Figure 6.20(d).
This peak perfectly coincides with the second divergence peak of the electron beam given
in Figure 6.19(a), which implies the photons are indeed generated by the outer scattered
electrons.

It is important to check whether this bremsstrahlung radiation could be detected by
the X-ray camera and furthermore induce the X-ray halo observed in Figure 6.13. First
the photon number generated by bremsstrahlung radiation needs to be estimated. Here
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we particularly consider the photons with a divergence of 4 < 6 < 6 mrad, corresponding
to a ring consists of 1.1 x 10° pixels outside the capillary shadow (the white circle) in
Figure 6.13(a), where the signal could be induced by the bremsstrahlung photons. The
charge of the electron bunch obtained from PIC simulation is ~ 150 pC at z ~ 8.8 mm,
and the electron-to-photon (4 < 6 < 6 mrad) conversion efficiency is found to be 2%
in the GEANT4 modeling, which yields 2 x 107 photons produced in the angle range of
4 — 6 mrad. So the average fluence is approximately 200 photons per pixel. We shall
furthermore estimate the resulting CCD counts. To do so, only the photons with energy
less than 50 keV will be taken into account, because the detector responsivity for higher
energy photons is negligible, as presented in Figure 5.16. Using the radiation spectrum
obtained in the modeling and the quantum efficiency of the X-ray camera, we eventually
get an average CCD count of around 500 for 4 < # < 6 mrad. This numerical result is
consistent with the experimental measurement. In Figure 6.13(a), we typically measured
around 400 counts outside the shadow of the capillary border, which is nearly one order
of magnitude lower than that inside the shadow, of ~ 3000 counts. We therefore can
conclude that the X-ray halo is indeed generated by bremsstrahlung photons, while the
relatively low CCD count is due to the poor detector responsivity for high energy photons
but not a low fluence.

It is obvious that our detection system is not suitable for measuring the gamma-ray
photons of bremsstrahlung radiation, as most of the photons are either out the detector
view or beyond the detector energy range. Some special broad range detectors [204] could
be employed for this purpose in future. As presented above, 10° photons per shot can be
produced provided the beam charge is of the order of 100 pC. Such a gamma-ray is as
intense as those generated by other schemes like Compton scattering [205], which could
be applied for imaging the interior structure of dense object [206].

6.5 On the stability of electrons

In the first campaign, we examined the correlations between the instabilities of electrons
and X-rays, as presented in Section 6.2.5. Nevertheless, the origins of the beam fluctua-
tions were not explored. Some publications [197] stress that those fluctuations may result
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Figure 6.21: Raw Lanex images of 100 consecutive electron beams obtained with a 10
mm long, 254 um diameter capillary tube at p = (8.3 & 0.5) x 10'® c¢m=3,

from laser fluctuations. A second campaign was carried out at the LLC to study the cor-
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relations between laser instabilities and those of the produced electron beams. It is worth
mentioning that the supersonic gas flow provided by the gas jet in Ref. [197] can induce
some fluctuations as well, however this issue of gas flow is greatly minimized when using
capillary tube [164], which allows us to highlight the influence of laser fluctuations.

The laser parameters are nearly the same as for the first campaign presented in Section
5.3, while the differences about electron and X-ray diagnostics were discussed in Sections
5.4 and 5.5. Large capillary parameter ranges with diameter varying in 76 — 254 pum
and length ranging in 8 — 30 mm were explored during this campaign. The experimental
data are being analyzed. What we present here are the preliminary results. We typically
discuss the stability study with a 10 mm long, 254 pm diameter capillary tube. Such a
big capillary tube, working like a gas-cell [45], is chosen here to emphasize the relationship
between laser and electron instabilities, because a smaller capillary tube may modify the
influence of laser fluctuation through mode coupling.
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Figure 6.22: (a) Mean energy, (b) mazximum energy, (c) beam charge, and (d) beam
divergence of the 100 consecutive electron beams shown in Figure 6.21.

To perform a statistical stability study within a reasonable time schedule, we usually
took hundred consecutive shots for a given set of parameters. Figure 6.21 exhibits 100 raw
Lanex images of the electron beams obtained with a 10 mm long and 254 pm diameter
capillary tube at a plasma density p. = (8.3 & 0.5) x 10'® cm™3. Electron injection was
achieved for all the shots, even though the signal of the shot 99 was very weak. The
electron spectra are generally Maxwellian-like with a cut-off energy around 130 MeV. The
characteristic features associated with the 100 electron beams are presented in Figure
6.22, where the percentage values indicate standard deviation over mean. The electron
energies correspond to instabilities of a few percents: 5% for mean energy and 7% for
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maximum energy. The FWHM beam divergence shows an instability of 17%, while the
largest fluctuation happens for beam charge as 19%. Those findings are both qualitatively
and quantitatively similar to what we observed during the first campaign given in Table
6.2.

The laser parameters were recorded simultaneously for each single shot. To do so,
about 1% laser energy was taken from the main beam and furthermore split into two
beams. One was attenuated and imaged at the focus of a 1 m focal length by a 10 bit
CCD camera outside the chamber, providing the information of laser energy and pointing,
and the other was sent to an optical spectrometer to record the laser spectrum. Applying
the Fourier transform to the recorded laser spectrum, we are able to obtain the temporal
laser profile and the corresponding pulse duration. Without knowing the phase term of
each frequency component, we assume a flat phase distribution for the Fourier transform.
This assumption may lead to a pulse duration different from the real value, however this
difference could be calibrated by comparing the calculated and experimentally measured
(using an autocorrelator) durations.
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Figure 6.23: Mazimum electron energy and beam charge of the 100 shots shown in Figure
6.21 as functions of the corresponding (a) cube root (b) square root of laser energy before
compressor, and (c) cube root (d) square root of laser power on target. The lines in (b)
and (d) are linear fits.

Figure 6.23 the dependences of electron maximum energy and beam charge on laser
energy (before compressor) and laser power (on target) corresponding to the 100 shots
in Figure 6.22. It seems that there is no clear correlations between electron maximum
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energy and laser energy (power) as displayed in Figure 6.23(a)-(c). In order to interpret

this observation, we recall the scaling law developed for electron energy gain in the bubble

regime in Equation 2.54: &, Pé/ P x Sé/ 5, Especially in Figure 6.23, the fluctuations

(Std/Mean) of PLI/ % and Si/ % are around 2%. With such a small fluctuation, it is therefore
not apparent to observe a clear correlation. Varying the laser energy purposefully in a
larger range would perhaps give us a deeper understanding of this phenomenon. One
should also keep in mind that the 10 mm long capillary tube is probably longer than the
electron dephasing length of a few millimeters, so the accelerated electrons start rotating
in the plasma potential well (See in Figure 2.7), which leads to electron energy different
from the scaling law in Equation 2.54. By contrast, the beam charge strongly depends
on laser energy (power). The scaling law in Equation 2.55 shows beam charge scales with
laser energy and power as Q. < /P < v/Er. The line in Figure 6.23(b) corresponds to a
linear fit Q. = 883(y/EL — 1). The fluctuation of beam charge 6Q. therefore depends on
the variation of laser energy &1, by

0Qe 1 1 &
Qe 21— \/%7 Er
The coefficient on the right-hand side of Equation 6.3 is a function of laser energy £r. For
example, the coefficient is calculated to be about 4 for a laser energy £, = 1.3 J, which
means the fluctuation of beam charge is four times that of laser energy. The coefficient
becomes even larger when the value of laser energy £&;, — 1. The beam charge also exhibits
a linear dependence on the square root of laser power as shown in Figure 6.23(d). The fit
suggests that beam charge will decrease to zero when laser power P;, ~ 11.6 + 1.4 TW.
The critical power is P, ~ 3.6 TW for the plasma density 8.3 x 10'® cm™3 used in Figure
6.21. The fit in Figure 6.23(d) therefore suggests that the power ratio required for electron
self-trapping is P,/ P, ~ 3.2+ 0.4, consistent with the ratio Py /P, ~ 3 found by Froula et
al in experiment [108].

(6.3)

(a) (b) Count (a. u.)
_25 — 1
-20 0.9
15 0.8
—_ ©
o ©
g = -10 0.7
g E
.5 % -5 10.6
.g g 0 0.5
3 =
= S 5 0.4
8 K
5 £ 10 0.3
> 2
15 0.2
20 0.1
25 0
-20 -10 0 10 20 -20 -10 0 10 20

Horizontal deviation (mrad) Horizontal divergence (mrad)

Figure 6.24: (a) Sum of 100 electron beam profiles and the peak positions of the individual
beam (green dots) obtained under the same condition as for Figure 6.21. (b) A typical
single electron beam profile.

Beside electron spectrum study, we examined the pointing of electron beam as well.
Figure 6.24(a) shows the signal of 100 accumulated electron beams and their respective
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Figure 6.25: (a)-(b) Correlations between laser and electron poingtings for the beams
shown in Figure 6.24(a). (c)-(d) Dependences of the electron beam divergence on laser
power and beam charge.

peak positions, while Figure 6.24(b) displays a single electron beam profile with FWHM
divergence of 7.4 mrad. No appreciable difference can be found between the two subfigures,
suggesting the electron beams possess very good pointing stability. In Figure 6.24(a), the
horizontal and vertical RMS pointing fluctuations are 1.23 and 1.0 mrad, respectively.
Such an electron beam pointing is of great interest for multi-stage applications such as
sending the electron beam to an undulator [56].

We furthermore attempted to correlate the electron beam divergence and pointing
to the laser fluctuations, as presented in Figure 6.25. An intuitive presumption is laser
pointing links to electron pointing. Figure 6.25(a)-(b) show the deviations of laser and
electron pointings in the horizontal and vertical directions. The laser pointing was deter-
mined from the images recorded by the 10 bit CCD camera outside the chamber. The
pointing deviation is defined as (r. — (r¢)) /fr, where r. is the position of the intensity
maximum, (r.) is the mean of r. for the 100 shots, and fr, = 1 m is the focal length of
the lens. As the laser pointing was stabilized, only a few laser shots exhibit large pointing
deviations. Even though, we can still probably observe a correlation especially when the
laser shifts towards the minus directions [bottom-left parts in Figure 6.25(a)-(b)]. Figure
6.25(c) shows that the electron beam divergence and laser power are independent. How-
ever, we found in Figure 6.25(d) that the beam divergence linearly increases with beam
charge. This correlation can be understood as follows. On one hand, space charge effects
become more pronounced for higher beam charge, which may increase the electron beam
divergence. On the other hand, the electron spectrum is Maxwellian-like for the examined
plasma density, which means it is the low energy electrons that dominate the population.
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Increase in beam charge mainly contributes to increase the number of low energy elec-
trons. Since low energy electrons are more divergent [10], larger divergence are measured
for higher beam charge.

6.6 Characterization of X-ray source size

Another goal of the second campaign was the characterization of the source size of X-ray
via Fresnel diffraction, since source size is crucial for evaluating X-ray brightness. It was
obtained by theoretical estimation and PIC simulation but not experimentally measured in
the first campaign [48]. Recently measurements of X-ray source size as small as 1 ym were
reported by several groups [58, 118] using the method of Fresnel diffraction (See Section
5.5.3), so we were motivated to quantify the X-ray source size in our scheme employing
capillary guiding.
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Figure 6.26: (a) X-ray image of the microscopic object with the smallest feature of 10
um. (b) Line-out of the intensity integrated along the vertical direction over the rectangle
region in (a).

We first attempted to assess the order of the X-ray source through imaging micro-
structures introduced in Figure 5.19. Figure 6.26(a) depicts the radiographic image of the
microscopic slits backilluminated by an X-ray beam generated from a 10 mm long, 178
pm diameter capillary tube. The object and the X-ray CCD camera (Princeton) were
respectively placed 25 and 130 cm away from the capillary exit, which corresponds to a
magnification of M = L"LLOLl ~ 5. Given the detector pixel size of 24.8 um, it yields a
spatial resolution of about 5 um. Figure 6.26(b) shows the line-out of vertically summed
intensity over the rectangle region in Figure 6.26(a). An intensity peak is observed through
the 10 pum slit and the signal contrast is as high as those for other big slits, implying the
smallest feature is well resolved in this image. It indicates the X-ray source size must be
smaller than 10 pm.

To ascertain the source size more precisely, we adopted the method of Fresnel diffrac-
tion. In order to achieve a high spatial resolution, an Andor X-ray CCD camera with
a pixel size of 13.5 pm was employed. Figure 6.27 illustrates the spatial arrangement
for this measurement. The razor blade was mounted onto a motorized translation stage
just behind the magnet, and the razor blade was perpendicular to the laser path. The
distance from capillary entrance to the razor was around 26 cm. In order to achieve a
large magnification, the X-ray camera should be placed as far as possible away from the
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Figure 6.27: Spatial arrangement for the source size measurement with razor blade.

razor blade, however, on the other hand, the photon fluence per pixel will decrease, yield-
ing a lower signal-to-noise ratio on the detector. Taking a compromise, in our setup the
camera was placed 2.32 m away from the razor blade, corresponding to a magnification of
M = LOLLOLZ ~ 10 and a spatial resolution of approximately 1.35 pm.

The inset of Figure 6.28(a) shows an image of the razor blade casted by X-ray on the
detector, where one can observe a pretty sharp shadow of the blade. Integrating the X-ray
intensity along the direction of the razor edge gives the experimental data plotted in Figure
6.28, which is normalized to the X-ray intensity in a transparent area several millimeters
away from the blade. We first notice that the normalized experimental data exhibit an

overshoot peak with a value in excess of 1.4. Nevertheless, as discussed in Section 5.5.3,
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Figure 6.28: The experimental data (black squares) are the X-ray intensity integrated
along the direction of the razor blade edge, while other curves indicate numerical modelings
for (a) fully coherent and (b) fully incoherent sources with different sizes. Inset in (a) is
the X-ray image of the edge of a razor blade.

the normalized intensity peak should not be that high even for a monochromatic point
source. According to our understanding, the experimental overshoot could probably re-
sult from X-ray refraction in the razor blade part. As the blade has a tapered profile (See
Figure 5.20) with several micron thick apex, some of the photons are able to penetrate the
obstacle and are deflected towards the transparent area. The deflected photons overlap
with the diffracted photons, producing the observed intensity overshoot. Since the model-
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ing presented in Section 5.5.3 was designed for an ideal knife-edge with 100% absorption,
we attempted to fit the profile but not the amplitude of the intensity overshoot observed
in experiment. The source was assumed to have a Gaussian distribution exp(—2r2/r2)
and synchrotron spectrum CQICg /3(< ). Different combinations of source size rs and critical
energy &. were calculated. As the spatial coherence of the source is not known, we ex-
amined two extreme cases: fully coherent and fully incoherent sources. To be clear and
highlight the influence of source size, only the cases of 6 keV critical energy are displayed
in Figure 6.28. All the fit magnitudes are adjusted to have the same maximum value as
the experimental one. For the fully coherent sources shown in Figure 6.28(a), the curve
for source size of rs = 1.5 um best predicts the tendencies of the intensity overshoot for
both the rise and drop sides. 1 pm source size underestimates the drop slope, whereas 2
pm case overestimates it. All the fit curves are lower than the experimental one inside the
razor region, as not all the photons are absorbed by the razor blade in the experimental
case. For the modelings of fully incoherent sources, the curve corresponding to a Gaussian
source with waist of 3.5 um best reproduces the slopes of the experimental intensity over-
shoot. We can therefore tentatively conclude the X-ray source has a Gaussian distribution
with 1/e? intensity size between 1.5 and 3.5 um.
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Figure 6.29: FEnergy distribution of the dispersed electron beam corresponding to the
X-ray beam in Figure 6.28.

Once the source size is known, we can furthermore estimate the transverse emittance
of electron beam. Beam emittance is a parameter describing the beam volume occupied
by the particles in phase space, which is crucial for applications when the electron beam is
needed to be transported or focused. The upper limit of normalized transverse emittance
of an electron beam is defined as ¢ = v3,7,0., where O, represents electron beam
divergence. The mean energy and RMS beam divergence of the electron beam in Figure
6.29 are 77 MeV and 6.7 mrad, respectively. The source size can be estimated by the
mean value of the fully coherent and incoherent best fits to be 2.5 pm. It yields a RMS
normalized transverse emittance ;- < 0.837 mm mrad in our measurement, which is as low
as reported for electron beams generated by LWFAs using other schemes [53, 54, 193, 207].
Such a low emittance electron bunch with beam charge as high as 90 pC is of great interest
for future applications such as sending to an external undulator to generate X-ray free
electron laser [56], or working as an injector for multi-stage acceleration [208].

6.7 Summary

This chapter presents the results of high energy electrons and intense X-rays obtained from
the two campaigns at the Lund Laser Centre (LLC). The goal of the first campaign was
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to characterize the influence of capillary tubes on the generation of electrons and X-rays,
while the second campaign was devoted to investigating the stability of the electron beams
and quantifying the X-ray source size.

Tens of pC electrons were found to be accelerated up to 300 MeV from 10 mm long
capillary tubes. The electron spectrum, either spectrally peaked or Maxwellian-like, sensi-
tively depends on the plasma electron density. The spectrally peaked electrons can only be
obtained by decreasing the plasma density towards the threshold required for electron self
trapping Pr/P. ~ 3. The electron energy and beam charge are not significantly affected
by changing the capillary diameter from 152 pm to 203 pum, owing to a relatively small
laser focal spot with a radius of around 20 pm at the first minimum of laser intensity
distribution. The contribution of the capillary tube to laser guiding was highlighted by
enhancing the X-ray brightness by 30 times, instead of using a 2 mm gas jet. The X-ray
fluence was found to have a linear correlation with beam charge, which furthermore was
used to deduce the number of electron betatron oscillations inside the plasma bubble.

The electron acceleration process inside the capillary tube was characterized using the
far-field intensity profile of the X-ray beam cropped by the rim of capillary exit, which
shows the laser-plasma acceleration terminates before the first 7 mm for a plasma density
8 x 10" ¢cm™3. PIC simulations demonstrate that the accelerated electrons finally catch
up with and overrun the driving laser pulse, where the electrons get scattered transversely
by the laser ponderomotive force. The scattered electrons enter the downstream capillary
wall and generate bremsstrahlung radiation, which casts a second illumination on the
detector.

When the laser pointing is stabilized, the electrons exhibit typically a few percents fluc-
tuation in electron energy, and around 20% for beam charge and divergence. Meanwhile,
the RMS pointing fluctuation of the produced electron beams is found to be ~ 1 mrad.
The X-ray source size (1/e? intensity waist) quantified by fitting the intensity distribution
of X-ray diffraction induced by a razor blade is between rs = 1.5 ym (assuming the source
is fully coherent) and r; = 3.5 pm (assuming the source is fully incoherent). Using the
mean value of these two estimations r; = 2.5 pum, the upper limit of the normalized RMS
transverse emittance of the corresponding electron beam is evaluated to be e+ ~ 0.837
mm mrad.

Some new schemes of capillary-guided LWFA, like the use of plasma density ramp (See
Section 4.7), gas mixture (99% Ha+1% N3), and their influences on the beam stability were
studied in the second campaign as well. The results will be reported in future publications.






Chapter 7

Conclusions

The objective of this thesis was to study laser-driven plasma-based electron acceleration
and the associated betatron radiation in the nonlinear regime. In this work, we were
particularly interested in understanding the physics of electron trapping and acceleration,
and in generating bright X-rays by efficiently using a moderately intense laser. Capillary
tubes were therefore employed to confine the gas over a long distance and to collect
laser energy around its central focal spot to favor laser keeping self-focused over a longer
distance comparing to a gas jet or gas-cell [46, 47, 140]. Two experimental campaigns
were performed at the Lund Laser Centre (LLC) in Sweden by using the multi-terawatt
laser pulse (40 fs FWHM duration, 16 TW on target) to explore electron acceleration and
betatron X-ray radiation inside capillary tubes.

Significant efforts were dedicated to determining neutral gas density in capillary tubes.
We investigated the temporal and spatial gas density evolution in capillary tube. Numer-
ical fluid modeling was carried out in order to obtain the spatial distribution of gas along
the central axis of capillary tube at the stationary state. The obtained results demon-
strate a stable, uniformly distributed gas medium is established between the two capillary
slits, outside which the gas density drops rapidly when the gas expands into vacuum back-
ground. Transient simulations reveal that the stationary state can be reached at ¢t > 40 us
for a 2D capillary model, however it is beyond our computing capacity to calculate the gas
evolution in a 3D model similar to the real gas filling system. Thus the temporal process
of gas filling into capillary tube was determined using a self-developed scheme based on
the Mach-Zehnder interferometer [164]. For a 30 mm long capillary tube with diameter
of 178 pum, the gas inside capillary tube reaches the stationary state ~ 34 ms after the
opening of the valve, and then gas oscillating between the capillary holder and the valve
induces a ~ 6% fluctuation of gas density inside the tube. At the stationary state, there
is a linear relationship between the gas density in tube and the reservoir pressure. Even-
tually, the large amount of gas in the filling pipe leaks into the vacuum chamber through
the two small capillary exits, resulting in a second-scale characteristic decay time. It was
also found that the filling process of hydrogen gas becomes saturated even for the shortest
valve opening duration of 27 ms, which implies increasing the opening duration would
just discharge more gas into the vacuum chamber but not benefit gas filling. In contrast,
owing to a lower speed of propagation, the filled pressure of argon gas can be increased
by lengthening the valve opting until 60 ms.

In order to study the nonlinear regime of capillary-guided LWFA, the laser at the LLC
was focused to a peak intensity of 5.4 x 10'® W/cm? (ap = 1.6) in vacuum. The observed
electrons could be either spectrally peaked with FWHM energy spread of 16% or broad-
spread with a Maxwellian distribution. In a 10 mm long, 178 um diameter capillary tube,
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electrons with beam charge of tens of pC were typically accelerated with a maximum energy
up to 300 MeV. The electron energy drops with increasing plasma density, consistent with
the scaling law & o ag/pe. Comparing the experimental data with the scaling law further
indicates that the laser intensity is amplified by self-focusing and self-compression in the
plasma to ag ~ 2.6. Moreover, the produced electron beam charge reaches a maximum
around the plasma density of 8 x 10'® cm™3. That is because electron self-trapping is not
efficient at lower densities, whereas the beam charge is limited by shortening of dephasing
length and pump depletion length, and beam-loading when the plasma density increases.
Meanwhile, betatron X-ray radiation consisting of 1-10 keV photons was measured with
a peak fluence of 5.7 x 105 photons/mrad?. The photon fluence is very sensitive to beam
charge variance, and shows a peak at the same plasma density as the beam charge does.
The relationship between beam charge and X-ray fluence furthermore allowed us to deduce
the number of betatron oscillations fulfilled by an electron inside the plasma bubble to
be Ng = 44+ 2. The X-ray peak brightness is estimated to be of the order of ~ 10%!
photons/s/mm?/mrad?/0.1%BW, which is around 30 times higher than that in the case
of a 2 mm gas jet, highlighting the role of capillary guiding. The electron acceleration
process, diagnosed using the far-field X-ray intensity profile, indicates that the laser-plasma
interaction terminates when the pump laser is depleted at around z ~ 8 mm for a plasma
density p. = 8.1 x 10'® cm™3. Three dimensional PIC simulations reasonably reproduce
the experimental findings. It shows that the laser intensity is amplified to ag > 3 at p. =
8 x 10'® cm ™3 and a significant number of electrons is trapped in the first plasma bubble,
forming a bunch as short as ~ 10 fs. The calculated radiation spectrum deviates from the
standard synchrotron case, but is similar to the spectrum corresponding to a distribution
of accelerated electrons as discussed in Chapter 3. The PIC simulations also show the
accelerated electrons finally overrun the driving laser pulse and get scattered by the laser
ponderomotive force. The scattered electrons enter capillary wall if the capillary tube is
long enough, generating bremsstrahlung radiation with photons extending to gamma-ray
range. This radiation produces a broad secondary illumination on the X-ray detector.

The stability of the generated electron beam was examined. It exhibits a shot-to-
shot reproducibility with fluctuations of a few percent in electron energy, and around
20% RMS in beam charge and divergence. Beam charge and divergence have a linear
correlation, and the instability of beam charge is found to be sensitively linked to laser
energy (power) fluctuation. It suggests laser energy must be carefully stabilized to diminish
beam charge fluctuation. Meanwhile, the electron beams possess a pointing fluctuation
of ~ 1 mrad when the laser pointing is stabilized, which is of great interest for further
transporting and using the beam. Moreover, the X-ray source size was evaluated using
Fresnel diffraction induced by a razor blade. Assuming a spatially coherent source with a
synchrotron spectrum, the theoretically calculated curve with a source size (1/e? intensity
waist of Gaussian distribution) of 1.5 um and a critical energy of 6 keV best reproduces
the experimental diffraction pattern. The difference between theoretical and experimental
results probably result from a partial absorption of X-ray photons in the razor blade part.
Consequently, some transmitted photons are deflected and overlap with the diffracted
photons, inducing the observed X-ray intensity overshoot in experiments. Using the mean
source size of rg = 2.5 um, we are able to compute the corresponding upper limit of the
normalized RMS emittance of electron beam to be ¢ ~ 0.837 mm mrad.

As presented in this thesis, even though LWFAs have made tremendous progress in the
past decades, most of the generated electrons are still in the energy range from sub-GeV to
~ 1 GeV [40]. One of the promising perspectives is therefore to push the electron energy to
multi-GeV or even further to TeV. One way to boost the output electron energy could be
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the concept of proton-driven plasma walefield acceleration proposed by Caldwell et al [16],
however a TeV-class proton beam has to be obtained first from a RF accelerator. Another
attractive scheme is multi-stage laser-plasma acceleration [22, 209], which is being studied
in our group and planned to be explored experimentally in the frame of the CILEX (Centre
Interdisciplinaire Lumiére Extréme) project in France.
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Appendix A

Theoretical derivations

A.1 Maxwell’s equations

Maxwell’s equations contains four equations to describe the static electric and magnetic
fields are generated by charge and current, and how the time varying electric and magnetic
fields depend on each other. For some cases, the problem can be simplified by using the
Maxwell’s equations in Gaussian units.

Table A.1: Mazwell’s equations

’ Name ‘ SI units ‘ Gaussian units
Gauss’s law V-E=Z£ V-E =4mp
Gauss’s law for magnetism | V-B =0 V-B=0
Maxwell-Faraday equation | V x E = —%—]? VXE= —%%—?
Ampere-Maxwell equation | V x B = pugj + C%%—? VxB= %j + %%—]?

where V is the gradient operator:

ex% + eya% + eZ%, in cartesian coordinate
V= er% + eg%% + eZ%, in cylindrical coordinate (A.1)

o) 10 1 el : : .
€y T, 55 t€orsnpa, N spherical coordinate

A.2 The laser frame

The laser frame is a reference frame moving at the speed of the laser group velocity (the
phase velocity of plasma wave) v,. It is a Galilean transform from (z,t) to (&£, 7), where
§ = z —vpt and 7 = t. The derivatives change accordingly

o oro 99 9 9

ot otor (otoE  or o
9 _0ro 060 0
0z 0z20r 0206 O

82 82 62 82 (A2)
=tV — 2Up 5,

o2 02 Pog2 oEo0T

0? 0?

022 9¢2°
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A.3 Equations of plasma wave

A.3.1 Linear plasma wave

Assuming the plasma is initially uniform with a density of pg and the density perturbation
is relatively small, [p. — po|/po < 1, the continuity equation dp./dt + V - (p.v) = 0 can
be linearized and averaged to

Adpe
ot

+poV - (v) =0, (A.3)

where dp. = p.—po denotes the plasma electron density variation. Differentiating Equation
A.3 with respect to ¢ yields

02 (6pe o)
at?(po>+v’ o (A4

The term 0(v)/0t can be found from the Lorentz equation 2.7 to be

o(v) e
wrS = <—WE—(V-V)V—6VXB>7
= ——(E) - c2v<a22>, (A.5)
e ad
— _E<E) - QVZO

(& (&
V- (E) = —5(% — po) = —551)& (A.6)

into Equation A.4, one will get the governing equation for plasma wave generation

0? 2\ 0pe 2 2a%
<at2 +wp> % = C V Z (A?)

The left-hand side of Equation A.7 represents the density oscillation of the plasma wave,
while the right-hand side corresponds to the wave driver: the ponderomotive force. The
Green’s function solution of Equation A.7 is [21]

Ope — 672 /t VQCL%(I‘,t/)
po w2 4

p 70
t 2 /
®E_ / w285 o — )]t
Ey 0 4

sin[wy (t — t)]dt’,

where Ey = mecwy/e is the cold wavebreaking field.

A.3.2 Nonlinear plasma wave

Following the mathematical approach in Refs. [79, 210], we will derive the governing
equation of nonlinear plasma wave in the laser co-moving frame (£, 7). The Hamiltonian
describing the motion of an electron in 1D plasma is given by [79]

H(’% E) = 7(1 - 626}7) - ¢(§) =7 uz/BP - ¢(£)v (AQ)
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where ¢ = —e®/mec? is the normalized plasma potential. The Hamiltonian does not
explicitly depends on time, so at any time #H(t) = H (¢t = 0). Initially, there is no plasma
wave, so y(t = 0) = 1, 8,(t = 0) = 0, and ¢(t = 0) = 0, leading to H(t = 0) = 1.
Substituting the initial Hamiltonian into Equation A.9 yields

v—ufp — () —1=0. (A.10)

The electron energy and momentum are related by 42 = 1 + u?, where u = p/mec is the
normalized momentum. Furthermore, u can be written as u? = u? + u2 = a® + u2. Thus

the relativistic factor becomes
v=1/1+a?+u2. (A.11)

On the other hand, transforming the continuity equation into the laser frame gives

Ipe(§)  9j(§)

— - = =0, A.12

€Vp 85 85 ( )

where vj, is the phase velocity of the plasma wave. Integrating this equation yields ep.v, +
J = epovp. Recalling the current is given by j = —ep.v., one can obtain

pe(vp — vz) — povp = 0. (A.13)

Treating ), ¢, and a as variables, Equations A.10, A.11, A.13 constitute a closed equation
system. Solving them leads to [21]

p 14 a2 ~1/2

e 2

— =70 l————+ —Bp| - A14
po PP [( 73(1+¢)2> p] (A
Besides, in the co-moving frame Poisson equation is written as

> p

:k2<6—1>. A15
962 P\ po (4.15)
Inserting Equation A.14 into Equation A.15, one will finally obtain the equation describing
nonlinear plasma wave generation

0%¢ 14a2 172

Likewise, the term a? on the right-hand side of Equation A.16 indicates the origin of
plasma wave excitation is the laser ponderomotive force. This equation can be solved
numerically, and the associated electric field is obtained through E, = —Ey0¢/d¢.

A.4 Derivation from Equation 4.34 to Equation 4.36

Figure A.1 schematically shows laser beam propagation around the second cube of the
interferometer. The wavefront of beam 2 is titled by a tiny angle 6 with respect to the z
axis. Beam 1 is the reference beam which propagates along the z axis. Beam 2 is the one
coming from the capillary tube. P" = (z0,0, 0) is the virtual source of beam 2 with respect
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Photodiode

Cube i :7777777777777% 777777777777777777777 " error

Beam 1 Beam 2

Figure A.1: Schematic illustration of laser beam propagation in the interferometer.

to the cube. Both of the optical beams are assumed to be Gaussian, so the superposed
wave is

2, ,.2
E(z,y,t) = Erexp (_az ;y ) cos(kz — wt)
' (A.17)
(z — @0)* +y° :
+ Eyexp | —————%5—— | cos[kzcos O + k(xg — x)sin § + A(t) — wt],
w3

where wi, wy are the waists of beam 1 and 2, respectively. We can further have

2 2

F*(z,y,t) = E?exp <_2m —|—2y ) cos?(kz — wt)
wy

N2 g a2
+ EZexp [QW cos? [kz cos 0 + k(xg — z) sin @ + Ay (t) — wt]

wa

4y’ (w—w)+y’

2 2
wy wa

+ 2F1 Es exp

cos(kz — wt) cos [kz cos O + k(xg — ) sin b + Ay(t) — wt].

(A.18)

Averaging Equation A.18 in time leads to

E? ?+y*\ | B3 (z — x0)* + ¢
E? 1)) = =L ) =2 ) A Sl .
(B%(z,y,1)) = -~ exp ( )t e w2

24y (x—x0) +
wi w3

+ E1Esexp cos |kzcosf — kz + k(xog — ) sin 0 +A(t)

Po

(A.19)

The intensity of fringe at position (z,y) can be calculated through

If(,y,t) = SHE(w,y.1)). (A.20)
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On the other hand, the photodiode signal is given by

—aph// I¢(x,y,t) a:y)da:dy—aph// If(z,y,t)dxdy

. (A.21)
QppC
_aph/ / #x,y, t)dedy = ph 0/ / (E*(z,y,t)) dz dy,
where Q' = [—Ax, Az] X [-Ay, Ay] indicates the slit region. Substituting Equation A.19
into Equation A.21, one can obtain
S,(t) = aphceo/ / (E%(z,y,1)) dz dy
E o 2 2
_ aphCEo/ / {exp( 233 +y >+2exp QW/}} dz dy
w? 2 wj
A
2., .2 N2 2
aphceo/ / {ElEgexp [_m +2y @ $0)2 +y COS[i/JO—i-Ai/J(t)]} dxdy.
wy wy
w

(A.22)

The second term W in Equation A.22 can be further simplified as

W = % }12050E FEs / / {exp
aphceo / /
ex
G w3

[cos Y cos A (t) — sin g sin Ay (t)]} dx dy

2 4,2 N2 2
aph;goE Ez/ / {exp [—x +2y _ mo)g Y

2 +y? (z—m0)®+y°
wi w3

cos(¢o + Aw(t)]} da dy

22+ (x—x0)?+ 92

cos 1/10} dx dy cos A)(t)

wy wy
P
2, .2 N2 2
aphcgoElEg/ / {exp l—x —|—2y - (2 a:o)2 ty Sinwg} dx dy sin Ai)(t)
2 wy w3
Q
=P cos Ap(t) — Qsin Ay(t).
(A.23)
We then introduce an angle variable 6y satisfying
cos by = P
MRV =znrork
0 (A.24)
sinfy = ——.
VPR Q2
Substituting Equation A.24 into Equation A.23, YW can be reformed as
W =v/P? 4+ Q?[cos Oy cos A)(t) — sin Oy sin A (t)] (A.25)

:\/mcoswo + A(t)].
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Using Equation A.25 into Equation A.22, the photodiode signal becomes
Sp(t) = A+ W = A+ Beos[fy + A(t)], (A.26)

where B = /P2 + Q2. For a given experimental setup, the constants A, B can be calcu-
lated numerically.

A.5 Zernike polynomials

The Zernike polynomials are a sequence of polynomials which are orthogonal on the unit
disk. It is defined as

Zy (p, o) = Ry (p) cos(mep),
Z, ™ (ps ) = Ry (p) sin(mep),

where p € [0,1]; n and m are integrals with n > m. If n —m is odd, R} = 0. Otherwise
it is given by

(A.27)

(n—m)/2 k
me (=1)"(n — k)! n—2k
R(p) = g) H((n+tm)/2—&) (n—m)j2—k! " (A.28)

The first 15 Zernike polynomials are plotted in Figure A.2. The first ten low-order
modes describes the most common aberrations seen in optics such as tilt, coma, and
astigmatism. The fourth order modes correspond to spherical aberrations.

.

Astigmatism

Figure A.2: The first 15 Zernike polynomials on the unit disk and the corresponding
most common laser beam aberrations.



Appendix B

Results of 2D transient
simulations with FLUENT

B.1 Influence of capillary length on gas filling process

In this section, Figures B.1-B.3 present the results of 2D transient simulations for capillary
tubes with lengths ranging from 15 to 60 mm while the slit is kept 300 um wide. The
simulation setup parameters can be found in Section 4.5.5.
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Figure B.1: Time evolutions of the on-azis (a) gas static pressure and (b) velocity in a
15 mm long, 200 um diameter capillary tube, where the two dashed lines indicate the slit

of 300 um wide. FEvolutions of (c) gas static pressure and (d) velocity at four different
locations along the capillary axis.
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