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Résumé

Des biocarburants alternatifs, utilisant des écosystèmes microbiens, sont actuelle-
ment étudiés dans le but de limiter la consommation non raisonnée de ressources
énergétiques et le rejet de gaz à effet de serre, qui modifient le climat. Dans cette
thèse, nous avons considéré des bioréacteurs à base de microalgues oléagineuses,
et des écosystèmes bactériens anaérobies qui décomposent des déchets et pro-
duisent du méthane. Ces travaux avaient pour objectif de mieux comprendre ces
procédés et d’en améliorer les performances. Nous avons tout d’abord modélisé
et étudié des cultures de microalgues en photobioréacteurs, dans lesquels les pig-
ments algaux induisent une forte atténuation lumineuse. Pour les écosystèmes
bactériens, nous avons utilisé un modèle précédemment développé. A l’aide de
ces modèles et de leur analyse mathématique rigoureuse, nous avons proposé
des stratégies pour optimiser leur productivité. Ensuite, l’étude de la sélection
naturelle entre plusieurs espèces de microorganismes dans ces deux écosystèmes
a permis de prédire quelles espèces remportent la compétition. Et finalement
nous avons montré comment il est possible, dans chaque écosystème, de con-
trôler la compétition pour diriger la sélection naturelle, de façon à avantager
des espèces améliorant les performances du procédé.

Abstract

Some alternative biofuels, produced by microbial ecosystems, are presently stud-
ied with the aim of limiting the unreasoned resource consumption of energetic
resources, and greenhouse gases emissions which modify the climate. In this
thesis we have considered bioreactors based on oleaginous microalgae, and on
anaerobic bacterial ecosystems which degrade wastes and produce methane. The
aims of these works were to better understand these processes and to improve
their performances. First we have developed and studied models of microalgal
cultures in photobioreactors, in which algal pigments cause strong light atten-
uation. For anaerobic digestion we have used an existing model. By rigorous
mathematical analysis of these models, we propose strategies for optimizing
their productivity. Then the study of natural selection between several micro-
bial species, in these two ecosystems, leads to the prediction of the species which
wins the competition. And finally we showed how it is possible in each ecosys-
tem to control competition and drive natural selection, in order to advantage
species with efficient characteristics, inducing better performances.
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Chapter 1

Introduction

The beginning of the 21th century is characterized by a large scale awareness
that the way humankind is developing is no more sustainable [28]. The concept
of ecological footprint [45] was proposed in order to compare human demand
of resources with Earth’s ecological capacity to regenerate them. It represents
the amount of biologically productive land and sea area needed to regenerate
the resources a human population consumes and to absorb and recycle the cor-
responding waste. To date, the ecological footprint of a French inhabitant is 5
global hectares [15] (a global hectare represents an average productive surface
on Earth), which means that 2.5 Earth planets would be necessary to sustain a
population of shortly 7 billion inhabitants. There are two ways of reducing our
ecological footprint in order to pass a planet on to our children with a sustain-
able model in a world which may reach 9 billion inhabitants before theend of the
century. The first approach consists in drastically decreasing our needs in order
to save resources and decrease the generated pollution. The second approach,
which must be carried out concomitantly, consists in improving the technologies
we are using in order to minimize their impact. This second approach, towards
more efficiency and less impacting technologies has a meaning only if it is led
in parallel to a drastic decrease in consumption and waste production. This
PhD thesis focuses on this technological approach in order to reduce the impact
of transportation, which is responsible of more than 20% of the total green-
house gas emissions. In order to decrease the impact of transportations and
to limit the use of fossil fuel, alternative non-fossil biofuel production processes
are investigated. In this thesis we focused on a new generation of biofuel based
on microscopic photosynthetic organisms which harvest the solar energy with a
better efficiency than terrestrial plants.

Light energy from the sun is the main source of energy on Earth, and it
supports life on Earth. Plants are the very base of the alimentary chain, as they
are the main organisms which can turn mineral molecules into organic molecules
with higher energy content: this energy gain, gathered by photosynthesis, comes
from light. Solar energy allows to transform, through photosynthesis, CO2 to-
gether with various nutrients (nitrogen, phosphorus, potassium, ...) into organic
matter. Except autotrophic organisms, all the other organisms (heterotrophic
bacteria, yeasts, animal, ...) need to consume such organic molecules and use
the energy they contain to live. The enzyme which is responsible for C02 fix-
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ation is the Rubisco (Ribulose-1,5-bisphosphate carboxylase oxygenase), which
intervenes in the Calvin cycle [16]. This enzyme is the most abundant enzyme
on Earth [16], and it is also the most abundant protein on Earth which demon-
strate the crucial role played by photosynthesis. The idea of producing biofuel
consists in exploiting this capacity of plants to harvest light energy and to re-
cover the energy stored in the plants. There are two possibilities to recover
this energy. Either plants can be grown for their ability to store energy under
some specific usable form (lipids, sugars) into dedicated organs. The energy is
then recovered under the form of oil which can be transformed into biodiesel (or
bioethanol if sugar reserves are used). The energy can also be recovered from
wastes, after the plant has been used. In such a case, a community of anaerobic
archae and bacteria can be grown on the remaining wastes, and methane (which
is also a biofuel) can be produced. This second process can also be combined
to the treatment of organic wastes in order, to both produce bioenergy, and
process organic pollutants at the same time.

Phytoplankton (mainly composed of microalgae and cyanobacteria) are mi-
croscopic plants which can be found in most of the aquatic environments, from
the ocean to lakes and rivers [24]. Some species can even develop in very extreme
environments, in the ice, and other can be found in geysers or in very acid lakes.
More than 30 000 species have been described, but there are probably more than
1 million species on Earth [7]. Figure 1.1 illustrates their broad diversity in size,
shapes and colours. Phytoplankton is often refered to as microalgae, which is
a slight abuse of language (since cyanobacteria are not, rigorously speaking,
microalgae), but this term will be used in the manuscript.

Figure 1.1: Microalgae can be found almost anywhere on the globe, approxi-
mately 30.000 species have been referenced.

In the last fifty years, several microalgal species have demonstrated attrac-
tive characteristics for biotechnological applications, from food and pharmaceu-
tic productions [38, 42], to CO2 fixation [3] and biofuel production [26, 8]. Their
high actual photosynthetic yield compared to terrestrial plants (whose growth is
limited by CO2 availability) leads to large potential algal biomass productions of
several order of magnitude higher than terrestrial plants [7]. This actual higher
efficiency in recovering solar energy is the main reason why several projects
have been initiated in the very begining of the century. Among them, the ANR-
Shamash project was aiming at studying and optimising the potential of biofuel
production from microalgae. Another ANR project (Symbiose) is considering
the possibility of using microalgae to feed an anaerobic ecosystem in order to
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produce methane and recycle nitrogen and phosphorus under the form of ni-
trate and phosphate. Such anaerobic ecosystem is rather complex since it can
involve more than 300 bacterial species [11] in complex interactions. Anaerobic
digestion can be observed in the sediment of lakes and rivers, where they de-
grade wastes and produce methane that will go back to the atmosphere, thus
contributing to global warming. When the process is domesticated in a biore-
actor (see Figure 1.2) the anaerobic ecosystem can both produce methane and
process wastewater [2].

Figure 1.2: Anaerobic digester developed at the Laboratoire de Biotechnologie
de l’Environnement, INRA, Narbonne, France.

Apart from their direct application in renewable energy, microbial ecosys-
tems have also a strong interest for theoretical ecology [29]: experiments with
microbial ecosystems can be monitored accurately, replicated easily, grow fast,
the organisms can be archived by cryogenic processes, and their physiologi-
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cal and genetic constituents are pretty well-characterized. These strengths are
counterbalanced by some limitations: evolution is often fast so that interactions
can change before researchers have completed their characterization; and finally,
we are limited in our ability to extrapolate from microbial experimental systems
to larger and often more complex systems. In particular in this thesis, the works
concerning competition have conceptual implications that could also apply to
non-microbial ecosystems.

Several obstacles must be considered to study microbial ecosystems: biologi-
cal systems and environments are complex, measurements are often not accurate
or at low sampling frequency, the systems often display non-linearities, such as
threshold effect leading to sudden and stiff reactions. To limit the degree of
complexity of such systems in order to have higher chances to develop models,
it is often useful to first simplify them. In 1942, Monod [36] developed a tool
for microbial dynamics study: the chemostat. This vessel is continuously filled
with growth medium. To keep the same volume, a mixing of nutrients and mi-
croorganisms is removed at the same rate. Such a system allows to isolate the
microorganisms from the possible environment variations (light, temperature,
....) and to accurately control the growth conditions. It also allows to accurately
monitor the growth of the organisms, thanks to dedicated sensors. During this
thesis, experiments were made in the continuous photobioreactors (chemostat)
of the LOV (Laboratory of Oceanography of Villefranche-sur-Mer), see figure
1.3. Nutrients, light, temperature and pH where on-line measured and for some
of them, regulated. Most of these experiments were done by Thomas Lacour
in the context of his PhD thesis [30], dealing with the effect of environment on
microalgal growth and lipid synthesis.

In order to study these bioenergy producing microbial processes on a quan-
titative point of view, we use mathematical models which are able to describe
their dynamics. With such a model based on ordinary differential equations,
we can explain, predict and control the ecosystem state and behaviour at every
instant of its life. This model must account for the inherent complexity and
the non-linearity of these biological systems. For example, when dealing with
microalgae, the complex interactions with their environment must be taken into
account: microalgal growth is influenced by nutrients and light availability, but
at the same time microalgae absorb nutrients and attenuate light in the water
column, thus changing their environment.

Modelling natural phenomena is the basis of physics, where empirical laws
have been deduced from observations. However, on the contrary to physics,
there does not exist any law in biology from which a model can be based with
a reasonable degree of accuracy.

The models in the biological field are often the results of an iterative ap-
proach, which was described by Hardin [23]:

" From the model we make predictions; these we test against empir-
ical data. When we find that a prediction is not verifiable we then
set about modifying the model. There is no procedural rule to tell
us which element of the model is best abandoned or changed. (...).
Aesthetics plays a part in such decision. "

Monod developed a pioneer model, where bacterial growth rate was directly
dependent on nutrients availability in the medium. As phytoplankton has a
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Figure 1.3: Photobioreactors at the LOV for carrying out experiments on lipid
production with microalgae [30].

capacity to store nutrients and continue to grow on their nutrient storage when
the medium is depleted, Droop [13] introduced a new model which represents
this feature. The Droop model does not take light effects into account (it was
mainly used for a constant experimental light). In this thesis we developed a
new model, based on the Droop model, including light effect and light distri-
bution in a photobioreactor with high microalgal biomass (chapter 2.1). We
named our model "Droop Photobioreactor Model" (DPM). In order to study oil
production we then added two variables to this model, to represent lipid and
sugar synthesis (chapter 2.2).

The Monod (or Droop) chemostat model is however very simple and does
not account for the biodiversity which can be found in the nature, or even in
biofuel producing open microalgal ponds often faced to invasion by local en-
demic species. Even when considering anaerobic digestion, we used a variant of
a previously developed model [6] which is basically a two stages Monod/Haldane
model. Quite surprisingly, this complex ecosystem involving hundreds of bac-
terial species could be described by only two main phenomena. In a first step,
acidogenic bacteria turn organic wastes into volatile fatty acids according to
Monod model. In a second step volatile fatty acids are turned into methane
by methanogenic bacteria, according to Haldane model. The Haldane model
includes inhibition of growth by high nutrient concentration, whereas Monod
growth function is increasing with respect to nutrient.

In order to go closer from real outdoor ecosystems (even if these ecosys-
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tems are still simplified), and optimize the behaviour of exploited ecosystems,
the interactions between microbial populations must be considered. One of
the simplest interaction to be considered is competition for a limiting nutrient.
Competition for a substrate between several species in an homogeneous medium
is a topic of great interest to ecologists: "when and why is coexistence possible?",
"can we explain the mosaic of observed spatial and temporal species distribu-
tion?", "can we predict in some cases which species will win a competition and
exclude all the others from the environment?".

Theoreticians predicted competitive exclusion with several competing species
represented by Monod models [1, 41], and then, later on, represented by Droop
models [25]: in both cases only one species wins the competition and excludes
all the others from the chemostat. From the theoretical result, it was possible to
predict the outcome of competition from parameters derived from single species
experiments.

These results were experimentally validated by Hansen and Hubbel [22],
which demonstrated the power of using mathematical models. These authors
experimented the competition outcome between two bacterial species, on the
basis of single-species experiments which were used to characterize the species
parameters. More surprisingly, they demonstrated that the outcome could be
triggered by manipulating the dilution rate of the chemostat. Figure 1.8 shows
the result of their experiments, where they could predict in two cases which
species would win the competition, and where they could also force a coexistence
between two species.

Figure 1.4: Validation of the theoretical competition results with bacteria.
Hansen and Hubbel could make one bacteria or another win the competition,
or make two species coexist.
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But sometimes several species do not all exclude each other. For example
the species represented by the Contois model [9] can coexist under some condi-
tions [19, 31] which are less restrictive than to get coexistence from Monod type
species [35]. In the Contois model, like in the Monod model, the population
growth rate depends directly on the nutrient concentration in the medium. But
in this model, the growth rate also depends on the biomass: the more biomass,
the slower the population grows. This reflects e.g. intraspecific population com-
petition for space (spatial heterogeneity, flocculation/deflocculation phenomena
[32, 21]).

Thus with the Monod, Droop, and Contois models, we can represent three
different types of behaviors of the species present in microbial ecosystems. The
result of competition is not the same for each of the models: pure Monod or
Droop competition models predict competitive exclusion [41, 25], whereas pure
Contois competition models predict coexistence. In this thesis, we propose a
generalized result for a competition between species represented by Monod,
Droop or Contois models.

One way of optimising the efficiency of an exploited microbial ecosystem is to
use the competition principle to make the more efficient species win the compe-
tition. This principle is a basis of the directed selection. Indeed, this technique
can be used as an alternative to genetic engineering for identifying microorgan-
isms with efficient characteristics, or for improving some species characteristics.
Percival Zhang gives a review of techniques to improve a species characteristics
[37]. He expresses quite clearly the interest of the "selection by competition"
approach, against biotechnologist genetic rational design:

" The faith in the power of rational design relies on the belief that
our current scientific knowledge is sufficient to predict function from
structure. But such information of structures and mechanisms is not
available for the vast majority of enzymes. [...] An exceedingly higher
cell concentration of 1012 individual cells per litre and a longer
cultivation time (generations) allow continuous culture to become a
powerful selection system for the ultra-large size of the mutant library
even when selective advantages are very small. "

Several examples are given [14] where competitions in specific environments
led to the selection of population with desired traits. The review of Zelder and
Hauer [47] details some examples and industrial considerations.

The principle is the same as the one used in agriculture since the Neolithic to
produce bigger vegetables, by using the seeds of the biggest individuals. Along
the course of time and generations, this led to a progressive evolution from wild
plants with small fruits or seeds, to the vegetables we know today: for example
corn with big yellow grains, which did not exist seven thousands of years ago
(before the Neolithic revolution).

In the spirit of maximizing exploited microbial ecosystems performances,
two approaches can be deployed. In this thesis we considered these approaches
focusing either on the individuals, or on the ecosystem.

First, the models can be used to derive control strategies which will be used
to dynamically compute the input to be applied to the ecosystem (dilution rate,
influent nutrient concentrations, ...) from the knowledge of its state. Based on a
Pontryagin maximum principle, optimal controls are proposed which maximize
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productivity. In this study we focus on microalgal biomass productivity opti-
mization in a photobioreactor, under continuous light (chapter 3.1) or day-night
cycles (chapter 3.2). For these studies, we use our previously developed DPM
model (chapter 2.1).

Finally, species with efficient characteristics that increase productivity must
be chosen, and the condition to drive the ecosystem in more efficient working
mode can be found. We propose rigorous mathematical results based on the
models, to predict and control the outcome of competition in both Monod and
Droop models (chapter 4.2), as well as in the anaerobic ecosystem model (chap-
ter 4.3). With these results it becomes possible to change the selection criteria
in the ecosystem, in order to select species with new desired characteristics that
should help to increase productivity, both for microalgal or bacterial ecosystems.
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Introduction

Le début du 21ème siècle est caractérisé par une prise de conscience à grande
échelle que la façon dont l’humanité se développe actuellement n’est pas durable
[28]. Le concept de l’empreinte écologique
[45] a été proposé afin de comparer la demande humaine de ressources avec la
capacité écologique de la Terre à les régénérer. Il représente la surface de terre
biologiquement productive et la zone maritime nécessaires pour régénérer les
ressources consommées par une population humaine et pour absorber et recy-
cler les déchets correspondants. À ce jour, l’empreinte écologique moyenne d’un
habitant français est de 5 hectares globaux [15] (un hectare global représente une
surface moyenne de production sur terre), ce qui signifie que 2,5 planètes Terre
seraient nécessaires pour soutenir une population de 7 milliards d’habitants vi-
vant comme un habitant français moyen. Il y a deux façons de réduire notre
empreinte écologique afin de laisser à nos enfants une planète avec un modèle
durable dans un monde qui peut atteindre 9 milliards d’habitants avant la fin
du siècle. La première approche consiste à réduire radicalement nos besoins
afin d’économiser les ressources et diminuer la pollution générée. La seconde
approche, qui doit être réalisée de façon concomitante, consiste à améliorer les
technologies que nous utilisons afin de minimiser leur impact. Cette seconde
approche, vers plus d’efficacité et moins d’impact des technologies, n’a de sens
que si elle est menée en parallèle à une diminution drastique de la production,
de la consommation et des déchets. Cette thèse met l’accent sur cette approche
technologique afin de réduire l’impact du transport, qui est responsable de plus
de 20 % du total des émissions de gaz à effet de serre. Afin de diminuer l’impact
des transports et de limiter l’utilisation de combustibles fossiles, des processus
de production de biocarburants non-fossiles sont étudiés. Dans cette thèse nous
nous sommes concentrés sur une nouvelle génération de biocarburants produits
pas des organismes photosynthétiques microscopiques qui capturent l’énergie
solaire plus efficacement que les plantes terrestres.

L’énergie lumineuse du soleil est la principale source d’énergie sur Terre,
dont elle soutient la vie. Les plantes sont la base même de la chaîne alimentaire,
car elles sont les principaux organismes qui peuvent transformer des molécules
minérales en molécules organiques dotées d’un contenu énergétique plus élevé :
ce gain d’énergie, fruit de la photosynthèse, provient de la lumière. L’énergie so-
laire permet de transformer, grâce à la photosynthèse, le CO2, avec les divers élé-
ments nutritifs (azote, phosphore, potassium, ...) en matière organique. À part
les organismes autotrophes, tous les autres organismes (bactéries hétérotrophes,
levures, animaux, ...) ont besoin de consommer de telles molécules organiques
et d’utiliser l’énergie qu’elles contiennent pour vivre. L’enzyme qui est respon-
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sable de la fixation du C02 est la Rubisco (ribulose-1,5-bisphosphate carboxy-
lase/oxygénase), qui intervient dans le cycle de Calvin [16]. Cette enzyme est
l’enzyme la plus abondante sur Terre [16], et c’est aussi la protéine la plus abon-
dante sur Terre, ce qui démontre le rôle crucial joué par la photosynthèse. L’idée
de produire des biocarburants consiste à exploiter cette capacité des plantes à
emmagasiner l’énergie lumineuse, pour récupérer ensuite l’énergie ainsi stockée.
Il y a deux possibilités pour récupérer cette énergie. Soit les plantes peuvent être
cultivées pour leur capacité à stocker l’énergie sous une forme utilisable spéci-
fique (lipides, sucres) dans des organes spécialisés. L’énergie est alors récupérée
sous forme d’huile qui peut être transformée en biodiesel (ou bioéthanol pour
des réserves cellulaires de sucre). Soit l’énergie peut être récupérée à partir
de déchets, après que la plante a été utilisée. Dans ce cas, une communauté
d’archea-bactéries et de bactéries anaérobies peut être cultivée sur les déchets
restants et du méthane (qui est aussi un biocarburant) peut être produit. Ce sec-
ond procédé peut également être combiné au traitement de déchets organiques
industriels et ménagers, dans le but de produire de la bioénergie et de traiter
des polluants organiques en même temps.

Le phytoplancton est constitué de plantes microscopiques (microalgues et
cyanobactéries) qui se trouvent dans la plupart des milieux aquatiques, que ce
soit dans les océans, dans les lacs ou dans les rivières [24]. Certaines espèces peu-
vent même se développer dans des environnements extrêmes, comme la glace,
et d’autres peuvent être trouvées dans des geysers ou dans des lacs très acides.
Plus de 30 000 espèces ont été décrites, mais il y a probablement plus d’un mil-
lion d’espèces sur Terre [7]. La Figure 1.5 illustre leur très grande diversité de
tailles, de formes et de couleurs. Les organismes phytoplanctoniques sont sou-
vent désignés par le terme "microalgues", ce qui est un abus de langage (puisque
les cyanobactéries ne sont pas, rigoureusement parlant, des microalgues), mais
ce terme sera utilisé dans le manuscrit.

Figure 1.5: Les microalgues peuvent être rencontrées à peu près partout sur le
globe, environ 30.000 espèces ont été référencées.

Dans les cinquante dernières années, plusieurs espèces de microalgues ont
montré des caractéristiques intéressantes pour des applications biotechnologiques
: de la production de nourriture aux productions pharmaceutiques [38, 42], à la
fixation de CO2 [3] et à la production de biocarburants [26, 8]. Leur haut rende-
ment photosynthétique par rapport aux plantes terrestres (dont la croissance est
limitée par la disponibilité en CO2) permet de fortes productivités potentielles
en biomasse, de plusieurs ordres de grandeur plus élevées que les plantes ter-
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restres [7]. Cette plus grande efficacité dans la récupération de l’énergie solaire
est la principale raison pour laquelle plusieurs projets ont été lancés au début de
ce siècle. Parmi eux, le projet ANR-Shamash a pour but d’étudier et d’optimiser
le potentiel de production de biocarburants à partir de microalgues. Un autre
projet ANR (Symbiose) envisage la possibilité d’utiliser des microalgues pour
nourrir un écosystème anaérobie, afin de produire du méthane et recycler l’azote
et le phosphore sous forme de nitrate et de phosphate, dont une nouvelle culture
de microalgues pourra alors se nourrir. Ces écosystèmes anaérobies sont assez
complexes car ils peuvent impliquer plus de 300 espèces bactériennes [11] dans
des interactions complexes. La digestion anaérobie peut être naturellement ob-
servée dans les sédiments des lacs et des rivières, où des déchets sont dégradés
et du méthane produit. Ce méthane est ensuite libéré dans l’atmosphère, con-
tribuant ainsi au réchauffement climatique. Lorsque le processus est domestiqué
dans un bioréacteur (voir la figure 1.6) l’écosystème anaérobie peut à la fois pro-
duire du méthane (qui sera ensuite valorisé energétiquement) et traiter les eaux
usées [2].

Indépendamment de leur application directe dans les énergies renouvelables,
les écosystèmes microbiens ont également un fort intérêt pour l’écologie théorique
[29] : les expériences avec des écosystèmes microbiens peuvent être suivies de
très près, reproduites facilement, elles présentent une croissance rapide de la
population, les organismes peuvent être archivés par des procédés cryogéniques,
et leurs constituants physiologiques et génétiques sont assez bien caractérisés.
Ces atouts sont contrebalancés par certaines limites : l’évolution est souvent
rapide de telle sorte que les interactions peuvent changer avant que les chercheurs
aient terminé leur caractérisation. Enfin, nous sommes limités dans notre ca-
pacité à extrapoler à partir de systèmes expérimentaux microbiens, vers des
systèmes plus grands et souvent plus complexes. En particulier dans cette
thèse, les travaux sur le fonctionnement de la compétition ont des implica-
tions conceptuelles qui pourraient également s’appliquer à des écosystèmes non
microbiens.

Plusieurs obstacles doivent aussi être considérés dans l’étude des écosystèmes
microbiens : les systèmes biologiques et les environnements sont complexes, les
mesures sont souvent inexactes ou à faible fréquence d’échantillonnage, les sys-
tèmes présentent souvent des non-linéarités, telles que des effets de seuil con-
duisant à des réactions brusques et rapides. Pour limiter le degré de complexité
de ces systèmes, afin d’accroitre les chances de développer des modèles, il est
souvent utile de commencer par les simplifier. En 1942, Monod [36] a développé
un outil pour étudier la dynamique microbienne : le chémostat. C’est un récip-
ient dans lequel on injecte continument du milieu de croissance. Pour garder
un volume constant dans le récipient, un mélange de nutriments et de micro-
organismes est évacué à la même vitesse que le débit d’entrée. Un tel système
permet d’isoler les micro-organismes des variations environnementales (lumière,
température, ....) et ainsi de contrôler avec précision les conditions de croissance.
Il permet également de surveiller précisément la croissance des organismes, grâce
à des capteurs dédiés. Au cours de cette thèse, des expériences ont été faites
dans les photobioréacteurs continus (cultures de microalgues en chémostats) du
LOV (Laboratoire d’Océanographie de Villefranche-sur-Mer), que l’on peut voir
à la Figure 1.7. Les éléments nutritifs, la lumière, la température et le pH étaient
mesurés en ligne et pour certains d’entre eux, régulés. La plupart de ces expéri-
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Figure 1.6: Fermenteur anaérobie du Laboratoire de Biotechnologie de
l’Environnement, INRA, Narbonne.
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ences ont été réalisées par Thomas Lacour dans le cadre de sa thèse de doctorat
[30], traitant de l’effet de l’environnement sur la croissance des microalgues et
sur la synthèse des lipides.

Figure 1.7: Photobioréacteurs du LOV, utilisés pour des expériences sur la
production lipidique des microalgues [30]

Afin d’étudier ces processus microbiens de production de bioénergie d’un
point de vue quantitatif, nous utilisons des modèles mathématiques qui sont en
mesure de décrire leur dynamique. Avec de tels modèles basés sur des équations
différentielles ordinaires, nous pouvons expliquer, prédire et contrôler l’état de
l’écosystème et son comportement à chaque instant de sa vie. Le modèle doit
prendre en compte la complexité inhérente et la non-linéarité des systèmes bi-
ologiques impliqués. Par exemple, lorsqu’il s’agit de microalgues, les interactions
complexes avec leur environnement doivent être prises en compte : la croissance
des microalgues est influencée par les éléments nutritifs et la disponibilité de la
lumière, mais en même temps les microalgues absorbent des nutriments, et la
lumière est atténuée dans la colonne d’eau, ce qui modifie leur environnement.

La modélisation des phénomènes naturels est également la base de la physique,
où des lois empiriques ont été déduites des observations. Cependant, au con-
traire de la physique, il n’existe pas une loi de la biologie à partir de laquelle un
modèle peut être construit avec un degré raisonnable d’exactitude.

Les modèles dans le domaine biologique sont souvent le résultat d’une ap-
proche itérative, qui a été décrite par Hardin [23] :

" À partir du modèle nous faisons des prédictions que nous com-
parons à des données empiriques. Lorsque nous constatons que la
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prédiction n’est pas vérifiée, nous modifions alors le modèle. Il n’y a
pas de règle ni de procédure pour nous dire quels éléments du modèle
devraient être abandonnés ou modifiés. (...). L’ esthétique joue un
rôle dans cette décision. "

Monod a développé un modèle pionnier, où le taux de croissance bactérien
est directement lié à la disponibilité en éléments nutritifs dans le milieu. Comme
le phytoplancton a une capacité à stocker des éléments nutritifs et à continuer à
croître sur ses stocks d’éléments nutritifs lorsque le milieu est appauvri, Droop
[13] a introduit un nouveau modèle qui représente ce processus. Le modèle de
Droop ne prend pas en compte les effets de la lumière (il a été principalement
utilisé pour une lumière expérimentale constante). Dans cette thèse nous avons
développé un nouveau modèle, basé sur le modèle de Droop, comprenant les
effets de la lumière et de la distribution de la lumière dans un photobioréac-
teur à forte biomasse de microalgues (chapitre 2.1). Nous avons nommé notre
modèle "Droop Photobioreactor Model" (DPM). Afin d’étudier la production
d’huile nous avons ensuite ajouté deux variables à ce modèle, pour représenter
la synthèse des lipides et du sucre (chapitre 2.2).

Lorsque nous avons considéré la digestion anaérobie, nous avons utilisé une
variante d’un modèle précédemment développé [6] qui est essentiellement un
modèle Monod / Haldane à deux étapes. De manière étonnante, cet écosystème
complexe impliquant des centaines d’espèces de bactéries peut être décrit par
seulement deux réactions principales. Dans un premier temps, des bactéries
acidogènes transforment les déchets organiques en acides gras volatils selon le
modèle de Monod. Dans une deuxième étape ces acides gras volatils sont trans-
formés en méthane par des bactéries méthanogènes, selon le modèle de Haldane.
Le modèle de Haldane représente une inhibition de la croissance par les concen-
trations élevées en nutriments, alors que la fonction de croissance de Monod
augmente toujours avec la concentration en éléments nutritifs.

Ce dernier modèle, ainsi que les modèles de chémostat de Monod et de
Droop, sont très simples et ne tiennent pas compte de la diversité biologique
qui se trouve dans la nature, ou même dans les étangs ouverts de culture de mi-
croalgues, qui sont souvent confrontés à l’invasion par des espèces compétitrices
locales.

Pour se rapprocher des écosystèmes réels, en plein air (même si ces écosys-
tèmes sont encore simplifiés), et optimiser le comportement de ces écosystèmes,
les interactions entre différentes populations microbiennes doivent être consid-
érées. L’une des interactions les plus simples à prendre en compte est la com-
pétition pour un élément nutritif limitant. La compétition pour un substrat
entre plusieurs espèces dans un milieu homogène est un sujet de grand intérêt
pour les écologistes : "quand et pourquoi des situations de coexistence sont-elles
possibles?", "Peut-on expliquer les mosaïques spatiales et temporelles de distri-
bution des espèces?", "Peut-on prévoir dans certains cas quelle espèce gagne la
compétition et va ainsi exclure toutes les autres de l’environnement?".

Dans le cas d’une compétition entre plusieurs espèces représentées par des
modèles de Monod, la théorie prédit l’exclusion compétitive.
[1, 41]. Ce même résultat a ensuite été étendu à une compétition entre des
espèces représentées par des modèles de Droop [25] : dans les deux cas une
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seule espèce remporte la compétition et exclut toutes les autres du chémostat.
Le résultat théorique permet même de prédire le résultat de la compétition, à
partir des paramètres des espèces, ces derniers pouvant être obtenus par des
expériences avec une seule espèce.

Ces résultats ont été validés expérimentalement par Hansen et Hubbel
[22], qui ont démontré la puissance de l’utilisation des modèles mathématiques.
Ces auteurs ont prédit le résultat de la compétition entre deux espèces bac-
tériennes, sur la base d’expériences mono-spécifiques qui ont été utilisées pour
caractériser les paramètres de ces espèces. Plus surprenant, ils ont vérifié expéri-
mentalement que le résultat de la compétition pouvait être contrôlé en faisant
varier le taux de dilution du chémostat. La Figure 1.8 montre le résultat de
leurs expériences, où ils ont pu prédire dans deux cas l’espèce qui remporterait
la compétition, et où ils ont également pu forcer la coexistence entre deux es-
pèces.

Figure 1.8: Validation des résultats théoriques de la compétition entre des es-
pèces de bactéries. Hansen et Hubbel pouvaient faire gagner une espèce de
bactéries, ou une autre, ou même faire coexister deux espèces.

Mais parfois plusieurs espèces ne s’excluent pas mutuellement. Par exemple,
il a été démontré que des espèces représentées par le modèle Contois [9] peuvent
coexister dans certaines conditions [19, 31] qui sont moins restrictives que pour
obtenir la coexistence des espèces de type Monod [35]. Dans le modèle de
Contois, comme dans le modèle de Monod, le taux de croissance de la population
dépend directement de la concentration des nutriments dans le milieu. Mais dans
ce modèle, le taux de croissance dépend aussi de la concentration de biomasse
: plus il y a de biomasse, plus le taux de croissance est faible. Cela peut
refléter par exemple une compétition intraspécifique des individus pour l’espace
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(hétérogénéité spatiale, phénomènes de floculation / défloculation [32, 21]).
Ainsi, avec les modèles de Monod, Droop, et Contois, on peut représenter

trois types de comportements différents d’espèces présentes dans les écosystèmes
microbiens. Le résultat de la compétition n’est pas la même pour chacun des
modèles : dans les modèles de compétition pure entre des espèces représentées
par le modèle de Monod ou celui de Droop , la théorie prédit l’exclusion com-
pétitive [41, 25], tandis que les modèles de compétition pure entre des espèces
représentées par le modèle Contois prédisent la coexistence. Dans cette thèse,
nous proposons une généralisation de ces résultats, en mettant en compétition
mixte des espèces représentées par des modèles de Monod, Droop et Contois.

Une façon d’optimiser l’efficacité d’un écosystème microbien est d’utiliser
le principe de compétition pour faire remporter la compétition à l’espèce la
plus efficace. C’est le principe de base de la Sélection Dirigée. Cette tech-
nique peut être utilisée comme une alternative au génie génétique, pour identi-
fier les micro-organismes ayant des caractéristiques efficaces, ou pour améliorer
certaines caractéristiques d’une population donnée. Percival Zhang donne une
vue d’ensemble des techniques permettant d’améliorer les caractéristiques d’une
population [37]. Il exprime très clairement l’intérêt de l’approche de "sélection
par compétition", par rapport au "genetic rational design" des biotechnologistes
:

" La foi dans la puissance du "rational design" repose sur la con-
viction que nos connaissances scientifiques actuelles sont suffisantes
pour prédire la fonction à partir de la structure. Mais de telles infor-
mations sur les structures et les mécanismes ne sont pas disponibles
pour la grande majorité des enzymes. [...] Une concentration cellu-
laire extrêmement élevée d’environ 1012 cellules par litre et un long
temps de culture (de l’ordre de dizaines ou centaines de générations)
permettent à la culture continue de devenir un système de sélection
puissant dans la bibliothèque immense des mutants, même lorsque
les avantages sélectifs sont infimes. "

Plusieurs exemples sont donnés [14] où des compétitions dans des environ-
nements spécifiques ont conduit à la sélection d’une population ayant des car-
actéristiques souhaitées. La review de Zelder et Hauer [47] détaille quelques
exemples et donne des considérations industrielles.

Le principe est le même que celui utilisé dans l’agriculture depuis le Néolithique
pour produire de plus gros légumes, en utilisant les graines des plus gros in-
dividus. Au fil du temps et des générations, cela a conduit à une évolution
progressive à partir de plantes sauvages à petits fruits ou graines, jusqu’aux
légumes que nous connaissons aujourd’hui : par exemple le maïs avec de gros
grains jaunes, qui n’existait pas il y a sept milliers d’années (avant la Révolution
néolithique).

Dans l’esprit de maximiser les performances des écosystèmes microbiens con-
trôlés, deux approches peuvent être déployées. Dans cette thèse, nous avons
étudié ces deux approches, centrées soit sur les individus, soit sur l’écosystème.

D’abord, les modèles peuvent être utilisés pour déterminer des stratégies de
contrôle qui seront utilisées pour calculer à chaque instant l’entrée à appliquer
à l’écosystème (taux de dilution, concentration en nutriments de l’influent, ...)
à partir de la connaissance de son état. Basé sur le principe du maximum de
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Pontryagin, nous proposons des stratégies de contrôle optimales qui permettent
de maximiser la productivité. Dans cette étude, nous nous concentrons sur
l’optimisation de la productivité de la biomasse de microalgues dans un photo-
bioréacteur, sous une lumière continue (chapitre 3.1) ou sous des cycles jour-nuit
(chapitre 3.2). Pour ces études, nous utilisons notre modèle "DPM" développé
antérieurement (chapitre 2.1).

Enfin, les espèces ayant des caractéristiques efficaces qui augmentent la pro-
ductivité doivent être choisies. Nous proposons des résultats mathématiques
rigoureux basés sur les modèles, pour prévoir et contrôler le résultat de la com-
pétition dans les modèles de Monod et de Droop (chapitre 4.2), ainsi que dans
le modèle d’écosystème anaérobie (chapitre 4.3). Avec ces résultats, il devient
possible de changer les critères de sélection dans l’écosystème, afin de sélection-
ner des espèces possédant de nouvelles caractéristiques souhaitées, qui devraient
contribuer à accroître la productivité, tant pour les écosystèmes de microalgues
que pour ceux de bactéries.
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Chapter 2

Photobioreactor modelling

A first approach for studying microorganisms consists in growing them in "batch",
i.e. with a predefined quantity of nutrients that they will consume. When the
nutrients are depleted, the population stops growing. In general, in the two
bioreactor types that we will consider (photobioreactor and anaerobic digester),
only one nutrient will be limiting, and we denote this nutrient’s concentration s

(for "substrate"). To get closer to the conditions of natural environments where
water and nutrients are renewed (sea, lakes, etc.), researchers began to change
the nutritive medium after periodic time intervals [17]. This approach was im-
proved by changing part of the medium continuously, which is achieved in a
chemostat. Water continuously comes in, enriched with nutrients (with con-
centration sin), and goes out together with microorganisms and the remaining
nutrients. The flow of water leads to a dilution rate denoted D, which corre-
sponds to the proportion of medium renewed each day. The main biological
phenomena occurring in the chemostat are substrate absorption (ρ will be the
absorption rate per population unit) and population growth, whose rate willbe
denoted µ. Thus, with x the microorganisms biomass concentration (e.g. in
grams of carbon per liter), a chemostat model can be written:














nutrients concentration change = nutrients input− nutrients output
−nutrients absorption

microalgal biomass change = growth
−microalgae going out of the chemostat

(2.1)
This model can also be written with mathematical symbols:

{

ṡ = Dsin − Ds − ρ(.)x
ẋ = µ(.)x − Dx

(2.2)

This general chemostat model is presented in Figure 2.1.
Many variants of this chemostat model were developed, with different factors

affecting absorption and growth rates. Monod model [36] states that the growth
rate is proportional to the absorption rate :

µ(.) = kρ(.)

it means that microorganisms need a fixed amount of substrate for building one
biomass unit. In this model also, the growth rate is a function of the output
substrate concentration s.
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Figure 2.1: In the chemostat the main physical phenomena are influent medium
with nutrients, and water output with both remaining nutrients and microor-
ganisms. The main biological phenomena are nutrients absorption, and growth.

But it was observed that nutrients absorption and growth rate can be uncou-
pled for some microorganisms, and especially for microalgae. In a batch culture
limited with nitrogen, microalgae will absorb all the nitrogen until the medium
is depleted, and keep on growing (thus accumulating carbon by photosynthe-
sis) for some time, by using the previously stored nitrogen. In this case the
microalgal intracellular nitrogen/carbon ratio will vary along time. This phe-
nomenon is represented in Droop model [13] where the nitrogen/carbon quota in
the biomass is a new variable denoted q. Then, the growth rate does not depend
on the extracellular substrate concentration s, but on the internal quota q. By
denoting Q = qx the total nitrogen in the biomass (grams of algal nitrogen per
liter), the model writes:







ṡ = Dsin − Ds − ρ(s)x
Q̇ = ρ(s)x − DQ

ẋ = µ(q)x − Dx

(2.3)

By a simple computation
(

q̇ = Q̇

x
− q ẋ

x

)

we obtain another formulation for this

model:






ṡ = Dsin − Ds − ρ(s)x
q̇ = ρ(s) − µ(q)q
ẋ = µ(q)x − Dx

(2.4)

This model is satisfactory when growth rate has no light dependence, but must
be changed if light varies and if the microorganisms are affected by this light
variation.
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In order to produce energy from microalgae, since the light conversion yield
is lower than 20% [7], electric energy cannot reasonably be used as a source of
light. Thus, the sun is the only sustainable energy source to support microalgal
growth. Since light varies along the day-night cycle, it will affect photosynthesis
and thus microalgal growth. More precisely, when considering a photobioreactor
or a raceway to grow outdoor microalgae, the following aspects must be taken
into account:

• when biomass is high the light is attenuated by pigments (mainly chloro-
phyll);

• under this condition, respiration is not negligible and must be considered;

• high light intensities lead to a photoinhibition which decreases the growth
rate;

• Microalgae photoacclimate to light intensity: they adapt their chlorophyll
to the incident flux of photons. As a consequence, the chlorophyll/carbon
ratio varies with light intensity in the photobioreactor, and is linked to
the nitrogen/carbon ratio.

For the optimization works presented in this thesis (chapter 3), we needed
a model that would take all these phenomena into account, while being simple
enough to be validable, identifiable, and to allow a mathematical analysis. The
photobioreactor models encountered in literature did not meet these criteria
[40, 39], so we had to build our own model. In particular, the models developed
in [34, 5] were too complex for identification and mathematical analysis. In the
following we present a new photobioreactor model, based on Droop’s formu-
lation, and called Droop Photobioreactor Model (DPM). It contains the main
Droop’s ingredients, as well as the light effect, auto shading by the microalgal
population and photoacclimation mechanisms.

Finally, we need a lipid synthesis model for assessing lipid productivity.
This model, developped in cooperation with the biologists of the Laboratoire
d’Océanographie de Villefranche-sur-mer, represents lipid and sugar synthesis,
as well as a functionnal carbon pool. Its singularity is that lipids are accumu-
lated during nitrate stresses (for example in the final stationnary phase of a
batch culture), whereas the lipid/carbon quota decreases under nitrate limita-
tion in a continuous culture at equilibrium. The sugar/carbon quota at equilib-
rium increases with increasing nitrate concentration in the medium. Finally, the
functionnal carbon pool is constitued of all the remaining carbon. The variables
of this model can be added to the Droop model, as presented in the paper, or
to the DPM model.
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Abstract

Oleaginous microalgae are seen as a potential major biofuel producer in the future
since, under conditions of nitrogen deprivation, they can contain high amounts
of lipids. In order to optimize productivity in a microalgal production system
(including open raceways and closed photobioreactors), we develop a new model
to predict biomass dynamics in conditions of nitrogen limitation and light gra-
dient. On the basis of the Droop model, we represent light influence, and then
we relate the chlorophyll content to the nitrogen cell quota, for a given photoac-
climation light. In a second step, we compute the light distribution thanks to
a Beer-Lambert law. It results in a model where biology (microalgal growth in
nitrogen limited conditions) and physics (radiative transfer) are strongly coupled.
Dynamical photoacclimation to light variation is the key biological phenomenon
that couples these two aspects. The mathematical complexity is kept at a minimal
level so that the model calibration is rather straightforward. The model is assessed
with experimental data of Isochrysis galbana under light/dark cycles. This model
shows that, when averaged along photobioreactor depth, the photoinhibition fea-
ture of a microalgal species may apparently disappear while photoinhibition re-
duces overall productivity. The proposed model can be the basis for research of
working conditions which optimize biomass or lipid productivity.

Key words: Microalgae, modelling, photoacclimation, photoinhibition, nitrogen
limitation, photobioreactor, biofuel

Autotrophic microalgae and cyanobacteria use photons as energy source to fix
carbon dioxide (CO2). These microorganisms have recently received a specific at-
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tention in the framework of renewable energy. Their high actual photosynthetic
yield compared to terrestrial plants (whose growth is limited by CO2 availability)
leads to large potential algal biomass productions of several tens of tons perhectare
and per year (Chisti, 2007). After a nitrogen starvation, some oleaginous microal-
gal species can reach a very high lipid content (up to 80% of dry weight (Metting,
1996)). These possibilities have led some authors to consider that microalgae could
be one of the main biofuel sources in the future (Huntley and Redalje, 2007; Chisti,
2007). Lipid can be extracted from the biomass to produce biodiesel (Huntley and
Redalje, 2007), while anaerobic digestion of the residual biomass (Chisti, 2007;
Sialve et al., 2009) can generate methane.

On top of this, the ability of microalgae to fix CO2 in a controlled way has re-
cently involved them in the race for mitigation systems (Benemann, 1997; Olaizola,
2003). Thus microalgal biofuel production systems could be associated to indus-
trial power plants with a high CO2 production. In the same spirit, microalgae could
be used to consume inorganic nitrogen and phosphorus, and thus avoid expensive
wastewater treatment plants.

These advantages put microalgae in a good position for renewable energy pro-
duction at large scale (Chisti, 2007). This means that, in the coming years, there
might be industrial plants to produce microalgae dedicated to energy production.
However, the culture of algae is not straightforward and suffers from many limi-
tations (Pulz, 2001; Carvalho et al., 2006). In this article we will consider planar
microalgal production systems including open raceways and closed photobioreac-
tors, which will be called photobioreactors (PBR) for sake of brevity. We will
assume that microalgal growth is not limited by inorganic carbon availability, and
thus that light and inorganic nitrogen are driving microalgal kinetics.

Extensive microalgae production in PBR is a complex process that should be
strongly monitored and optimized through on-line control algorithms. In this ob-
jective, a model is a powerful tool to support an automatic control strategy. Several
PBR models exist, especially to deal with light transfer properties in the culture
medium (Suh and Lee, 2003; Pottier et al., 2005; Franco-Lara et al., 2006), but
none of them considered the microalgal kinetics in condition of nutrient limitation
and none of them deal with photoacclimation.

In the specific case of biodiesel production, nitrogen starvation is known to in-
crease the lipid content of phytoplankton (Spoehr and Milner, 1949; Rodolfi et al.,
2009; Pruvost et al., 2009). But, it also strongly affects the pigment composi-
tion and concentration (Turpin, 1991; Geider et al., 1996; Sciandra et al., 1997;
Stramski et al., 2002; Geider et al., 1998), which modifies the radiative transfer
properties in the culture medium (Stramski et al., 2002). The objective of our
modelling approach is to propose a new model that can predict the behaviour of a
PBR characterized by varying irradiance gradient and nitrogen availability, which
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are both conditions susceptible of modifying pigment concentrations.
The targeted model must keep a level of complexity compatible with the re-

quested mathematical analyses necessary for deriving optimal control algorithms.
We will thus consider the simplest model that contains the elements to reproduce
both the ability of microalgae to adapt their pigments to a given irradiance (pho-
toacclimation) (Anning et al., 2000; MacIntyre et al., 2002) and the reduction of
the cell pigment contents in case of nitrogen limitation (Laws and Bannister, 1980;
Sciandra et al., 2000). The basis of our development is Droop model (Droop, 1968,
1983) which has been deeply investigated (Lange and Oyarzun, 1992; Bernard and
Gouzé, 1995, 2002; Vatcheva et al., 2006) and proved to accurately reproduce situ-
ations of nitrogen limitations (Droop, 1983; Sciandra and Ramani, 1994; Bernard
and Gouzé, 1999) in constant light conditions. A link between cellular nitrogen
and chlorophyll will then be introduced, so that, for a planar geometry, a simplified
irradiance distribution model within the reactor can be proposed.

The paper is organized as follows. In a first part, we recall Droop model. Then
we introduce the light influence in this model. In a third part we propose a model
to infer chlorophyll concentrations. Finally the radiative transfer is examined, and
the photoacclimation equation is proposed. The model is then validated using
data from Isochrysis galbana light/dark cultures.

1. Recall and presentation of Droop model

Droop model, initially established to represent the effect of B12 Vitamin in-
ternal quota on the growth rate of phytoplankton (Droop, 1968), has been shown
appropriate to represent also the effect of macronutrients, such as nitrogen, on
growth rate (Droop, 1983). Contrarily to Monod model in which the growth is
related to the limiting substrate external concentration (s), Droop model considers
that nutrient uptake and growth are uncoupled processes. Growth of the biomass
(expressed in carbon and denoted x) is thus assumed to be related to the nitro-
gen cell concentration for nitrogen limited microalgae. The intracellular nitrogen
cell concentration, or quota (q), is defined by the amount of limiting element per
biomass unit. The model equations, in a chemostat with dilution rate D and
influent inorganic nitrogen (nitrate or ammonium) concentration sin writes:































ṡ = Dsin − ρ(s)x−Ds

q̇ = ρ(s)− µ(q)q

ẋ = µ(q)x−Dx

(1)

In this model the absorption rate ρ(s) and the growth rate µ(q) are generally
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taken as Michaelis-Menten and Droop functions:

ρ(s) = ρm
s

s+Ks

µ(q) = µ̄(1− Q0

q
)

(2)

where Ks is the half saturation constant for substrate uptake, associated with
the maximum uptake rate ρm. Parameter µ̄ is defined as the growth rate at
hypothetical infinite quota, while Q0 is the minimal nitrogen cell quota for which
no algal growth can take place. This model is more accurate than Monod model
for algal growth modelling (Vatcheva et al., 2006), but it is more complex and has
been less studied from a mathematical point of view. Droop model is however
sufficiently simple to allow a detailed mathematical analysis (Lange and Oyarzun,
1992; Bernard and Gouzé, 1995, 2002; Vatcheva et al., 2006), and link the model
parameters to measurable quantities.

Property 1. Droop model guarantees that internal quota stays between two bounds:

Q0 ≤ q ≤ Qm (3)

Where
Qm = Q0 +

ρm
µ̄

(4)

represents the maximum cell quota obtained in conditions of non limiting nutrient.
The growth rate is also bounded :

0 ≤ µ(q) ≤ µm =
ρm

Q0µ̄+ ρm
µ̄ (5)

where µm is the maximum growth rate reached in non limiting conditions.

Proof: See e.g. (Bernard and Gouzé, 1995).
As a corollary of this property, most of Droop model parameters can be straightfor-
wardly identified from the measurements of the internal quota during nonlimited
growth (for which µ(Qm) = µm) and at the end of a batch phase, when growth
rate becomes zero for a minimal value of the quota q = Q0. The internal quota in
nonlimited growth conditions (when q = Qm) together with the maximum growth
rate provides then the values of µ̄ and ρm:

ρm = µmQm and µ̄ = µm
Qm

Qm −Q0

(6)

Parameter Ks can be deduced (together with another estimate of ρm) from
a batch experiment where the disappearance of inorganic nitrogen is measured
together with algal biomass.
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Droop model has been widely validated (Droop, 1983; Sciandra and Ramani,
1994; Bernard and Gouzé, 1999; Vatcheva et al., 2006). However, it cannot directly
be used in the case of PBR for two main reasons:

• In its rough form it does not include the irradiance effect.

• It does not account for light gradient due to the cell density in the PBR

2. Improvement of Droop model to deal with light limitation

2.1. Inorganic carbon uptake rate

Droop model does not take irradiance into account. Including light is how-
ever not straightforward. A first approach consists in representing the light effect
through µ̄ = µ̄(I) (Han, 2001):

µ(q, I) = µ̄(I)(1− Q0

q
) (7)

where we use, depending on the species, two possible expressions for µ̄(I). For the
species that do not photoinhibit, we use a simple kinetic (Han, 2001):

µ̄a(I) = µ̃a
I

I +KasI
(8)

Parameter KasI refers to the half saturation coefficient with respect to light, and
µ̃a is the hypothetical maximal growth rate without photoinhibition.

This simple expression will be used as a first approximation for species whose
photoinhibition is limited. With this simplified point of view the computation
stays tractable and it leads to the model denoted (Sa) . However, we will also
consider the more complex model of Eilers and Peeters (1988, 1993):

µ̄b(I) = µ̃
I

I +KbsI + I2

Kb
iI

(9)

Here an inhibition coefficient KbiI is considered, together with parameter KbsI ,

they define the light intensity Iopt =
√

KbsIK
b
iI for which µ̄b(I) is maximal. Pa-

rameter µ̃b is the hypothetical growth rate at non limiting irradiance and without
inhibition.

It is well known that, for eukaryotic microalgae, the initial slope of a photo-
synthesis irradiance (P-I) curve normalized with Chl a does not depend on the
light at which cells have been photoadapted (MacIntyre et al., 2002). This can be
observed on Figure 1 for the diatom Skeletenonema costatum. In mathematical
terms, this property constraints the model in the sense that the parameter αChl,
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defined by the initial slope of the curve µ(I)/θ has to be independent of the ratio
θ = Chl/x. Parameter αChl can be computed from equation (9):

αChl =
µ̃

θKbsI
(10)

To ensure that αChl is a constant, it implies that KbsI has to be computed from θ
as follows:

KbsI = K∗sI/θ (11)

Indeed, with this expression, the initial slope of the inorganic carbon uptake rate
normalized by chlorophyll is constant: αChl = µ̃

K∗
sI

A comparison of model given by equation (9) with the data of Anning et al.
(2000) with the diatom Skeletonema costatum is presented figure 1. The data
shows experiments where the cells have been photoadapted at a low irradiance
(IL = 50µmol.m−2.s−1) and at a high irradiance (IH = 1200µmol.m−2.s−1). Model
(9) together with equation (11) turns out to accurately represent these data.

When considering equation (9), we denote (Sb) the corresponding model.

2.2. Inorganic nitrogen uptake rate

When including light effect in the growth rate, the maximum inorganic nitrogen
uptake rate must be adapted to limit cell quota increase. Indeed, with Droop
model, when keeping a constant maximum uptake rate, equation 4 becomes:

Qm(I) = Q0 +
ρm
µ̄(I)

(12)

Then, during night periods, µ̄(0) = 0 and thus equation (12) would lead to an
infinite maximal quota. Indeed, with such a formulation no growth occurs at
night, so that the substrate can be indefinitely taken up into the cell without being
consumed for growth. If an increase of the maximum cell quota in the absence of
light is possible (Laws and Bannister, 1980), obviously it cannot become infinite.

We impose therefore, in line with Geider et al. (1998), that the uptake rate
stops as cells become replete:

ρ(s, q) = ρ̄
s

s+Ks
(1− q/Ql) (13)

where parameter Ql > Q0 is the maximal internal quota in dark conditions.

2.3. Model synthesis

Finally we consider a respiration term. As in Geider et al. (1998), we assume
that the rate of nitrogen loss (due both to mortality and excretion) is the same
than the respiration rate.
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Figure 1: Model and data of the photosynthetic response of the diatom Skeletenonema costa-

tum grown at low (IL = 50µmol.m−2.s−1, dark points and lines) and at a high irradiance
(IH = 1200µmol.m−2.s−1, light grey points and lines) (Anning et al., 2000). The top graph is
normalized with carbon and the lower graph is normalized by chlorophyll.

It leads to the following model including irradiance:

(Sa,b)































ṡ = Dsin − ρ̄ s
s+Ks

(1− q/Ql)x−Ds

q̇ = ρ̄ s
s+Ks

(1− q/Ql)− µ̄(I, θ)(q −Q0)

ẋ = µ̄(I, θ)(1− Q0

q
)x−Dx−Rx

(14)
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If µ̄ is represented with equation (8), it leads to model (Sa). If expression (9)
is used for µ̄, we end up with model (Sb).

Now, with uptake rate (13), it is straightforward to show that the absence of
light prevents growth, but that the maximum cell quota is lower than parameter
Ql:

Property 2. The internal quota for models (Sa) and (Sb) stays between two
bounds:

Q0 ≤ q ≤ Qm(I) ≤ Ql (15)

In model (Sa), where µ̄ does not depend on θ, the maximum quota, in nutrient

replete conditions, can be explicitly computed: Qm(I) = ρ̄+µ̄(I)Q0

ρ̄+µ̄(I)Ql
Ql. In these con-

ditions, the associated maximum growth rate at irradiance I is now given by :

0 ≤ µ(q, I) ≤ µm(I) = µ̄(I)(1− Q0

Qm(I)
) (16)

Proof: If q = Ql, then q̇ ≤ 0 so the nitrogen quota is bounded by Ql.
Moreover, the quota equation in conditions of abundance of nutrients (ρ̄ s

s+Ks
≃ρ̄)

for model (Sa) becomes:

q̇ = ρ̄(1− q/Ql)− µ̄(I)(q −Q0) = (µ̄(I) +
ρ̄

Ql
)(Qm(I)− q) (17)

where

Qm(I) =
ρ̄+ µ̄(I)Q0

ρ̄+ µ̄(I)Ql
Ql (18)

It is thus clear from (17) that q tends towards Qm(I) at a rate (µ̄(I) + ρ̄
Ql

).

Note that Qm(I) as defined by equation (18) varies oppositely to µ̄(I). It
means that, for non-inhibiting irradiances, the maximum cell quota decreases with
irradiance as observed by Laws and Bannister (1980) and Pawlowski (2004).

2.4. Relationship between chlorophyll and particulate nitrogen

The chlorophyll concentration must be represented in the model in order to
predict the light field throughout the PBR. In a spirit of keeping the model very
simple, we assume that chlorophyll is proportional to the cellular proteins, and
thus to particulate nitrogen xq (Laws and Bannister, 1980; Pawlowski, 2004). More
specifically, for a culture photoacclimated at an irradiance I∗, we have:

Chl = γ(I⋆)xq (19)

where

γ(I⋆) = γmax
kI∗

I⋆ + kI∗
(20)
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Figure 2: Chlorophyll a over particulate nitrogen for various light conditions under nutrient
replete conditions for Chaetoceros simplex (blue line and square), Phaeodactylum tricornutum

(red dash-dotted line and circle) and Dunaliella tertiolecta (green dashed line and diamond)
(data from Thompson et al. (1990)).

This expression results from experimental observations of photoadapted cul-
tures obtained at various irradiance and nitrogen conditions. Figure 2 presents
three light limited data sets (Thompson et al., 1990) which support this relation-
ship for batch cultures of Chaetoceros simplex, Phaeodactylum tricornutum and
Dunaliella tertiolecta.Figure 3 shows data for continuous cultures of Rhodomonas
salina at equilibrium, with various levels of nitrogen limitation (i.e. dilution rates)
and various light intensities. The proposed relationship accurately represents the
chlorophyll per unit of algal nitrogen.

One of the key originality of the proposed model is that we introduce a con-
ceptual variable, denoted I⋆, which is the irradiance at which the cells are pho-
toacclimated. Of course, for steady state cultures in a light homogeneous (low
biomass density) PBR, this variable is exactly the irradiance I. For denser cul-
tures at steady state it includes the effect of hydrodynamics through the light
gradient which generates a succession of high (close to the lighten surfaces) and
low irradiance (Pottier et al., 2005). After an irradiance shift from I1 to I2, since
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Figure 3: Representation of the ratio Chlorophylla over particulate nitrogen for various light con-
ditions for Rhodomonas salina with different levels of nitrogen limitation (data from Pawlowski
(2004)).

photoacclimation is not instantaneous, the photoacclimation light I⋆ will move
from I1 to I2, with a delay. To represent this light adaptation dynamics, we use
the following formulation:

İ⋆ = δµ(q, I)(Ī − I⋆) (21)

where Ī is the average irradiance in the PBR. Nevertheless, a more subtle compu-
tation of Ī can be envisaged considering the hydrodynamics of the PBR. For sake
of simplicity, we assume that the chlorophyll adaptation rate is proportional to the
growth rate (with a factor δ). Note that this choice ensures that the adaptation
rate stops during the night.

3. Dealing with light gradient in the PBR

3.1. Average light

We investigate here a simple representation of light attenuation inside a PBR
of thickness L, due to high biomass. We consider a planar geometry with a light
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source perpendicular to the PBR plane, so that irradiance distribution in the PBR
can be represented with a good accuracy by a Beer-Lambert exponential decrease.
Note that this approach can also describe the behavior of a high rate raceway
pond. We assume that pigment concentrations are proportional to chlorophyll
concentration (which is the main pigment), so that the light decrease rate is linearly
correlated to chlorophyll concentration. When I0 is the irradiance at the surface,
we have thus, for a PBR where cells are photoacclimated at light I⋆:

I(z) = I0e
−ξz (22)

where the light attenuation coefficient ξ is linearly related to chlorophyll a: ξ =
aChl + b. As a consequence, from equation (19), we have: ξ = aγ(I⋆)qx+ b.

This light attenuation coefficient is used to compute the optical depth λ = ξL.
λ is a key parameter of PBR performance as it reflects how efficiently light energy
is absorbed.

I(L)

I0
= e−λ (23)

The average irradiance received by the cell culture between depth 0 and L is
therefore:

Ī =
I0
L

∫ L

0
e−ξzdz =

I0
λ

[1− e−λ] (24)

Note that this Beer-Lambert approximation could be improved by using more
accurate radiative transfer models which would take the detailed pigment compo-
sition into account (Pottier et al., 2005; Pruvost et al., 2006), provided that we
can predict this pigment composition at any time.

Remark: In order to get a more workable equation, we may replace (24) by a
rational expression with equivalent behaviour:

Ī ≃ I0
Kg
λ+Kg

(25)

with Kg = 1.25. This expression is a good approximation of (24) since 1−e−x

x
≃

Kg
Kg+x

.

3.2. Average growth rate

Now a key computation must be done to assess the average growth rate in the
PBR. Indeed, Pottier et al. (2005) showed that an accurate way of estimating the
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growth rate consists in computing the average value of µ̄(I(z)) through the light
gradient:

¯̄µ(I0) =
1

L

∫ L

0
µ̄(I(z))dz (26)

Property 3. The average growth rate is µ(I0, q, ξ) = ¯̄µ(I0, ξ)(1 − Q0

q
) with, for

model (Sa):
¯̄µa(I0, ξ) = µ̃

1

λ
ln

(

I0 +KasI
I0e−λ +KasI

)

(27)

and for model (Sb), considering that KbiI < 2KbsI :

¯̄µb(I0, ξ) = µ̃
2KbiI
λ
√

∆
arctan

(

I0(1− e−λ)
√

∆

2I20e
−λ + I0(1 + e−λ)KbiI + 2I2opt(θ)

)

(28)

where ∆ = 4I2opt(θ) − Kb 2iI . The function ¯̄µb(I0) is an increasing function of I0
up to an irradiance Ĩ0 = Iopt(θ)e

λ/2, and is then decreasing after (Iopt(θ) is the
irradiance providing maximal rate of photosynthesis, as given by equation (9)).

Proof: This results from straightforward computation based on the fact that,
for a planar geometry:

¯̄µb(I0) =
1

L

∫ L

0
µ̃

KbiII0e
−ξz

KbiII0e
−ξz + I2opt(θ) + I20e

−2ξz
dz (29)

with the variable change v = I0e
−ξz, we get dv = −ξvdz, and

¯̄µb(I0) = − µ̃K
b
iI

λ

∫ I0e−λ

I0

1

v2 +KbiIv + I2opt(θ)
dv = −2µ̃KbiI

λ
√

∆

[

arctan(
2v +KbiI√

∆
)

]I0e−λ

I0
(30)

Remark: Property 3 shows that a PBR with high biomass or large thickness
won’t show any inhibition behaviour. Indeed, this is clear for model (Sa) where
¯̄µa is an increasing saturating function of I0. But, even if we consider species
with strong photoinhibition (case of model Sb) the maximum of ¯̄µb is reached at
a value Ĩ0 = Iopt(θ)e

λ/2 which is much higher than Iopt(θ) when the optical depth
λ is larger than 3 (i.e. when more than 95% of light is absorbed in the PBR).
Figure 4 illustrate this, considering values of λ ranging from 0 (limit case where
no shading effect occurs) to 10 (obtained when light is completely attenuated by
a high biomass or a large reactor thickness). It results that the behaviour of high
biomass density PBR can be approximated with a good accuracy with Michaelis-
Menten type responses, and thus the PBR behaviour is equivalent to a Sa model.
This can be explained by the fact that, for high density PBR, only the first few
centimetres are photoinhibited, so that photoinhibition has a low weight in the
averaging process.
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Figure 4: Average growth rate computed in the PBR with respect to influent light and optical
depth λ.

4. Results and discussion

4.1. Synthesis: the nitrogen limited PBR model

Synthesising the developments of the previous sections, the resulting model in
a light gradient field writes now, for an incident irradiance I0:

(Sa,bPBR)























ṡ = Dsin − ρ̄ s
s+Ks

(1− q/Ql)x−Ds
q̇ = ρ̄ s

s+Ks
(1− q/Ql)− ¯̄µ(I0, I

⋆, x, q)(q −Q0)

ẋ = ¯̄µ(I0, I
⋆, x, q)(1− Q0

q
)x−Dx−Rx

İ⋆ = ¯̄µ(I0, I
⋆, x, q)(1− Q0

q
)(Ī − I⋆)

(31)

where the irradiance at which cells photoadapt can be, depending on the species,
computed on the basis of the average irradiance Ī = I0

Kg
(aγ(I⋆)qx+b)L+Kg

, or it can

be computed from more subtle considerations, taking into account the PBR hy-
drodynamics.
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The average growth function is given by equation (27) and (28) for models
(SaPBR) and (SbPBR), respectively.

4.2. Model calibration

The way the model is designed makes its calibration rather straightforward.
The idea is based on the fact that simpler models are easier to calibrate. The
procedure thus consists in progressively improving the model accuracy by using
the simple models calibration to initiate the identification of the more complex
models, moving then from Droop model to the PBR model SbPBR. The first step
consists in calibrating the parameters of Droop model on the basis of Property
1. The observation of the nitrogen quota during phases of replete and depleted
inorganic nitrogen in the culture gives an estimate of the minimal and maximal
nitrogen quota of Droop model, and thus, using equations (4) and (6) together
with an estimate of the (average) growth rate in conditions of nutrient repletion,
we get parameters Q0, ρm and µ̄. Parameter Ks is determined from additional
uptake experiments. This first raw calibration of the Droop model is used as a
first guess for the more detailed model parameters. Droop’s parameter can now
be seen as the average value of the detailed model. For example, the average
value of ¯̄µ() in the PBR model is µ̄ in Droop’s model. The first guess of the PBR
parameters are then chosen such that, taking into account the measured average
light intensity and Chl:C ratio, we have:

µ̄ =
1

T

∫ T

0

¯̄µ(I†0, I
⋆, x†, q†)dτ (32)

where the values with † are measurements. This approach, leads to a first sketch
which generates simulation results improving Droop’s predictions. A final refine-
ment, where a least square quality criterion is minimised by Levenberg-Marquardt
algorithm (function lsqcurvefit under Matlab R©) produces the final values of the
parameters.

Model is calibrated with the experimental data of Flynn et al. (1994) for
Isochrysis galbana grown with ammonium in a batch PBR on a 12:12 light/dark
cycle under incident illumination of 100 µmol.m−2.s−1. The resulting parameter
values are given in table 1.

4.3. Model validation

Model simulations are shown on figure 5. The good adequation obtained with
the experimental data illustrates the fact that the model calibration is rather
straightforward. The model demonstrates a great ability to properly reproduce
such data set. The simulations of particulate nitrogen seem to underestimate a bit
the measured values. This results from a leak in the nitrogen balance, from the
initial ammonium concentration to the final particulate nitrogen concentration.
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Parameter Value Unit
µ̃ 1.7 day−1

Q0 0.050 gN. gC−1

Ql 0.25 gN.gC−1

K∗sI 1.4 µmol.m−2.s−1

KbiI 295 µmol.m−2.s−1

ρ̄ 0.073 gN.gC−1.day−1

Ks 0.0012 gN.m−3

R 0.0081 day−1

δ 1 –
γmax 0.57 gChl.gN−1

kI∗ 63 µmol.m−2.s−1

a 16.2 m2.gChl−1

b 0.087 m−1

Table 1: Parameter values used for the simulation of the PBR model

This experimental imbalance in the nitrogen may also have impacted the accuracy
on the chlorophyll a.

These results can be compared with the simulation results obtained by Smith
and Yamanaka (2007) that use both biological models of Geider et al. (1998) and
of Pahlow (2005), where the light distribution was added as an extra layer in the
model. Our model prediction is of comparable quality, while it explicitly represents
the coupling between microalgae physiology and light transfer properties on the
PBR.

4.4. discussion

Light heterogeneity in the medium induces a complex photoacclimation pro-
cess resulting from both a negative and a positive feedback. After an incident light
shift, the biomass concentration increases and so do the pigments in the medium.
It results in reducing the range of average light increase compared to the incident
light shift. This negative feedback is completed by a positive feedback, since pho-
toacclimation to a higher irradiance leads to a reduction of the pigment content
and thus a higher light penetration. This shows that modelling is the only possi-
bility to quantitatively describe the dynamics in a high density PBR. This is all
the more crucial since microalgae are necessarily in a permanent dynamical regime
induced by the daily light variations. As a consequence, such model is necessary to
extrapolate from the cell characteristics to photobioreactor behaviour. It can also
help in assessing and optimising the biomass productivity in outdoor conditions,
which are the conditions for autotrophic biofuel production.
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Figure 5: Simulation of the PBR model and comparison with experimental data from Flynn
et al. (1994).

Beyond the prediction capacity of our model, under dynamical variations in-
duced by the daily light variation, our approach explains a key point: for high
density cultures, there is no apparent photoinhibition. This does not mean that
algae do not photoinhibit, but it means that, because of averaging along the re-
actor depth, photoinhibition is not revealed by a standard production versus light
intensity study. However photoinhibition must be avoided, since it results in a
hidden loss of productivity that can be evaluated from the decreased apparent
averaged maximum growth rate. Figure 4 also reveals that, for a given light inten-
sity, there is an optimal optical depth that leads to the optimum average growth
rate.

5. Conclusion

The proposed dynamical model integrates the light gradient in the PBR in
order to represent the coupling between microalgal growth and radiative transfer
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Figure 6: Simulation of the PBR model and comparison with experimental quota from Flynn
et al. (1994).

properties. Dynamical photoacclimation to light variation is the key phenomenon
which couples these two aspects.

When coupled with a lipid production model (Mairet et al., Submitted), this
PBR model could predict the overall lipid productivity and guide the optimisation
resulting from the trade-off between lipid content (enhanced by nitrogen depri-
vation) and growth (reduced by nitrogen deprivation)(Rodolfi et al., 2009). A
lipid photobioreactor model is then the next step towards optimisation of lipid
productivity under dynamical light regime.
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ANR-06-BIOE-014 Shamash project.
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Abstract: Microalgae offer potentially great opportunities for producing biofuel. In order to
optimize triglyceride production, this article proposes a dynamical model of microalgal lipid
production. In this model, intracellular carbon is divided between a functional pool and two
storage pools (sugars and neutral lipids). The various intracellular carbon flows between these
pools lead to a complex dynamic with a strong discrepancy between accumulation and reuse of
neutral lipids. This generates an hysteresis which has been observed experimentally. The model
has been validated with experiments of Isochrysis affinis galbana (T. iso) culture under different
nitrogen limitation conditions.

Keywords: phytoplankton, growth model, nitrogen starvation, neutral lipid, biofuel

1. INTRODUCTION

Various photosynthetic microorganisms (microalgae or
cyanobacteria) have shown an ability to synthesize and
accumulate considerable amounts of lipids [Chisti 2007].
Indeed, the photosynthetic yield of these microorgan-
isms (abusively gathered under the name ”microalgae”) is
higher than for terrestrial plants whose growth is limited
by CO2 availability. Its leads to algal biomass productivi-
ties of several tens of dry biomass tons per hectare and per
year [Huntley and Redalje 2007]. When combined with a
high neutral lipid content [Metting 1996], microalgae can
potentially produce biofuel in a range of magnitude higher
than for terrestrial plants. This potential has led some
authors to consider that microalgae could be one of the
main biofuel producers in the future [Huntley and Redalje
2007, Chisti 2007].

However, the culture of algae is not straightforward and
suffers from many limitations [Pulz 2001, Carvalho et al.
2006]. For example, a nitrogen limitation increases the cell
lipid content but it also strongly affects the growth rate.
The lipid productivity, which is the consequence of these
two factors, needs a trade off between biomass production
and oil content.

The main objective of this work is to propose a new
model for lipid production under nitrogen stress which will
guide the research of an optimisation strategy. The model
must thus find a trade off between realism, in order to
accurately represent the key variables of the process, and
simplicity so that it can be mathematically tractable and
suitable to solve optimal control problems. The simplest
model for describing growth of a population of microalgae
limited by a nutrient (e.g. nitrogen or phosphorus) is the
Droop model [Droop 1968, 1983]. This models assumes
that the growth rate depends on the internal concentration
of the limiting element. More accurate models have been
proposed to deal with the coupling between nitrogen and
carbon assimilation in various light conditions [Geider

et al. 1998, Faugeras et al. 2004, Pahlow 2005]. However
none of these models predicted the lipid concentration and,
to our knowledge, the model which is presented in this
work is the first dealing with neutral lipid production by
microalgae. The main objective of this dynamical model
is to identify conditions that optimise the lipid synthesis.

The article is structured as follows: after a material and
methods section, the model assumptions are detailled and
then the resulting model equations are presented. Then,
we describe the calibration procedure and we compare the
model with experimental data of a Isochysis galbana cul-
ture, with different nitrogen limitations. Finally, a section
is devoted to the analysis of the model behavior.

2. MATERIAL AND METHODS

2.1 Culturing device

Cultures of Isochrysis affinis galbana, (clone T-iso) were
grown in 5 l cylindrical vessels at constant temperature
(22.5◦C), ligth (430±30 µmol.m−2.s−1 in the centre of the
culture vessel) and pH (maintained at 8.0 by automatic
injection of CO2). The experiment consists in imposing
nitrogen limitation through a succession of dilution rates
changes followed by transient periods to reach the equilib-
rium. Finally, dilution was stopped to obtain a nitrogen
starvation. Figure 1 presents the operating conditions.

2.2 Measurements

The following measurements were performed: nitrate con-
centrations (Technicon Auto-analyser), biovolumes (opti-
cal particle counter Hiac/Royco), concentrations of partic-
ulate carbon and nitrogen (CHN analyser, PerkinElmer),
total carbohydrates concentrations (by the phenol method),
and neutral lipid (column chromatography on silica gel,
Extract-Clean, Alltech). A correlation between biovolume
measurements and particulate carbon is used to convert

57



the biovolume measurements into particulate carbon. An
imbalance in the total observed nitrogen concentration was
punctually observed. We therefore excluded observations
of particulate nitrogen for any time at which this nitrogen
imbalance was greater than 0.3 mgN/L . An estimation of
particulate nitrogen from the nitrogen balance is used in
this case. Carbohydrates and neutral lipid measurements
are converted in g[C] using average values of conversion.
For more details on the experiment protocol see Le Floc’h
et al. [2002].
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Fig. 1. Operating conditions for experiment with T-iso.
Dilution rate variations impose various nitrogen lim-
itations.

3. MODEL DESIGN

3.1 Variables and reaction network

Our objective is to propose a simple model which can
support control approach an optimisation algorithm. It
must therefore keep a minimal level of complexity to be
mathematically tractable. We have therefore limited the
number of variables to the most important ones. We focus
on the growth of microalgae, whose biomass, in terms of
organic carbon, is denoted x. These microalgae are limited
by an inorganic nitrogen source (nitrate, denoted s).In line
with Ross and Geider [2009], we consider that organic
carbon can be split into functional and storage pools.
The functional compartment (f) includes the biosynthetic
apparatus (proteins and nucleic acids) and the stuctural
material (membranes mainly made of glycolipids and phos-
pholipids). Contrarily to Ross and Geider [2009], we add
a new distinction: the storage pool is divided into a sugar
reserve compartment (g) and a neutral lipid reserve com-
partment (l).

Nutrient uptake and biomass growth are known to be
uncoupled processes for microalgae [Droop 1983, Geider
et al. 1998] leading thus to variations in the internal quota
of nutrient.

Nutrient is taken up by the microalgae to make cellular
nitrogen (n) at rate ρ(s). This flux of nitrogen can be
summarized in the following macroscopic reaction which
represents the mass flux between the inorganic and organic
compounds:

s
ρ(s)x
−→ n (1)

The absorption rate ρ(s) is taken as Michaelis-Menten
function:

ρ(s) = ρm

s

s + Ks

(2)

whith Ks the half-saturation constant for the substrate
and ρm the maximum uptake rate.

In line with Droop model philosophy, we consider that
the specific growth rate µ, i.e. the net incorporation of
CO2 is an increasing function of the internal quota of
nutrient (qn = n

x
). We assume that inorganic carbon is

first incorporated in the pool of sugars g:

CO2
µ(qn)x
−→ g (3)

This macroscopic reaction summarizes the set of reactions
that occur in the dark phase of photosynthesis, and that
lead, through the Calvin cycle to the production of carbo-
hydrates such as glucose 6-phosphate. The mathematical
expression for the specific growth rate µ is chosen using
Droop model:

µ(qn) = µ̄(1 −
Q0

qn

) (4)

where µ̄ and Q0 represent the theoretical maximum growth
rate and the minimum nitrogen quota allowing growth,
respectively.

The sugar compartment g is then used in a second stage
to synthesize the functional elements of the biomass f :

g
αρ(s)x
−→ f (5)

This reaction corresponds to the synthesis of proteins and
nucleic acids, which depends on nitrogen availability. We
therefore consider as in Ross and Geider [2009] that the
synthesis rate is proportional to the nitrogen assimilation
rate .

The sugar compartment g is also used in a competitive
pathway to synthesize neutral lipid (i.e. mainly triglyc-
erides) :

g
βqnµ(qn)x

−→ l (6)

We assume that this rate of sugar mobilization depends
on the photosynthesis rate µ(qn), but that it is modulated
by the nitrogen carbon. This assumption is based on the
work of Sukenik and Livne [1991] who have observed the
dependence of lipid production on the growth rate in T-iso
cultures.

These neutral lipids are then mobilized to the production
of functional carbon (mainly membranes):

l
γρ(s)x
−→ f (7)

The rate of this reaction is assumed to be proportional to
the synthesis of proteins and nucleic acids (reaction 5).

A representation of the carbon flows is given on Fig.2. Note
that it is a rather strong simplification of the complex
metabolism of the cell. Thus, reaction 6 can be decom-
posed in two steps with the formation of fatty acids as
intermediate. These fatty acids can be used directly to syn-
thetize structure (reaction 7). As ”free” fatty acids can not
be stored in the cell [Ohlrogge and Browse 1995, Guschina
and Harwood 2009], neutral lipids are used to store or to
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provide fatty acids when there is a disequilibrium between
fatty acid synthesis and consumption [Thompson-Jr 1996].
Nevertheless, as fatty acid pool is of negligible size, we do
not represent its dynamic in order to keep a low level of
model complexity.

Neutral

lipid (l)

x

Functional 
pool (f)

CO2
Sugar

(g)

Fig. 2. Representation of the carbon flows. The dynamic
of neutral lipids results from the unbalance between
lipid synthesis and mobilization.

3.2 Model equations

Assuming that the main mass transfer of carbon and
nitrogen can be summarized by the reactions (1) to (7),
the time-varying evolution equations resulting from mass
balances considerations [Bastin and Dochain 1990] in
a continuously stirred homogeneous photobioreactor are
given by:



























































ṡ = Dsin − ρ(s)x − Ds

ṅ = ρ(s)x − Dn

ġ = (1 − βqn)µ(qn)x − αρ(s)x − Dg

l̇ = βqnµ(qn)x − γρ(s)x − Dl

ḟ = (α + γ)ρ(s)x − Df

(8)

Where D is the dilution rate (ratio of the influent flow
rate over the photobioreactor volume) and sin the influent
nitrate concentration.

From equations (8), we can deduce the dynamics of the
quota of nitrogen qn, the carbon biomass x = c + g + l,
and the fractions of neutral lipid ql = l/x and functional
carbon qf = f/x, leading to the following set of equations:















































ṡ = Dsin − ρ(s)x − Ds

q̇n = ρ(s) − µ(qn)qn

ẋ = µ(qn)x − Dx

q̇l = (βqn − ql)µ(qn) − γρ(s)

q̇f = −qfµ(qn) + (α + γ)ρ(s)

(9)

It is worth noting that the first 3 equations of system
(9) are exactly the Droop model [Droop 1968, 1983].
This model presents the advantage of being simple and
having been extensively validated [Droop 1983, Sciandra
and Ramani 1994, Bernard and Gouzé 1999]. The system
has a cascade structure: the dynamics of the fractions ql

and qf do not influence the kinetics of the biomass.

4. MODEL CALIBRATION

4.1 Parameter computation

First, we present some model properties that will be used
to identify the parameter values. We take benefit of the
Droop model which has been widely studied.

In the Droop model, it can be proved (see Bernard and
Gouzé [1995]) that the nitrogen quota stays between two
bounds:

Q0 ≤ qn ≤ Qm (10)

with

Qm = Q0 +
ρm

µ̄
(11)

Qm represents the maximum cell quota obtained in con-
ditions of non limiting nutrients, and the minimum quota,
Q0, is obtained in batch conditions after nutrient deple-
tion. Thus, we can deduce a maximal growth rate µm:

µm = µ(Qm) = µ̄(1 −
Q0

Qm

) (12)

This property will be used to compute µ̄, from the minimal
and maximal nitrogen quota Q0 and Qm:

µ̄ = µm

Qm

Qm − Q0
(13)

In order to compute steady states for the fractions of
neutral lipid q∗l and functional carbon q∗f , the dynamics

of ql and qf in (9) can be rewritten:
{

q̇l = [(β − γ)qn − ql]µ(qn) − γq̇n

q̇f = [(α + γ)qn − qf ]µ(qn) + (α + γ)q̇n

(14)

At steady state, as q̇n = 0, we obtain the following
equilibrium:







q∗l = (β − γ)qn
∗

q∗f = (α + γ)qn
∗

(15)

The model predicts thus, at steady state, that neutral
lipid and functional carbon quotas are proportional to the
nitrogen quota. Steady state of the sugar fraction q∗g is
deduced from the relation ql + qf + qg = 1:

q∗g = 1 − (β + α)qn
∗ (16)

As both q∗l (qn) and q∗f (qn) are linear increasing functions,

q∗g(qn) is a linear decreasing function.

Parameters α, β and γ can then be computed from the
previous equations, using steady state measurements.
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4.2 Parameter estimation

We have decoupled the estimation into two groups of
parameters: the Droop parameters (Q0, µ̄, ρm, Ks) and
the intracellular carbon flow parameters (α, β, and γ). The
Droop parameters can be easily determined, on the basis
of dedicated experimental conditions. Then, the carbon
parameters are identified using steady state observations.

The minimal nitrogen quota Q0 is obtained from the
nitrogen quota measurement during nitrate starvation (at
the end of the experiment). The maximum nitrogen quota
Qm and specific growth rate µm are estimated directly
from the nitrogen quota measurements and the dilution
rate during non-limited growth (see Fig. 3). The maximal
absorption rate ρm and growth parameter µ̄ were obtained
with relations (11) and (13). The half-saturation constant
Ks = 0.018 mg[N ]/L is taken from previous experiments
(data not shown).

The second step of the calibration procedure concerns the
intracellular carbon flow parameters. The data obtained
at steady state for the several dilution rates are used to
determine, thanks to equations (15), the parameters α, β,
and γ. Using an estimation of the slopes of q∗l (qn) and
q∗f (qn) lines, we obtain a system of two equations with
three unknown parameters. We have therefore one freedom
degree to fit the transient behavior of the model to the data
using a minimization algorithm.

The results of the calibration are given in table 1.

Table 1. Parameters obtained by the calibra-
tion of the model

Parameter Value

Minimal nitrogen quota Q0 0.05 mg[N ].mg[C]−1

Maximal nitrogen quota Qm 0.11 mg[N ].mg[C]−1

Maximal growth rate µm 1 d−1

Protein synthesis coefficient α 2.9 mg[C].mg[N ]−1

Fatty acid synthesis coefficient β 3.75 −

Fatty acid mobilisation coefficient γ 2.0 mg[C].mg[N ]−1

Half-saturation constant Ks 0.018 mg[N ].L−1

Theoretical maximum growth rate µ̄† 1.83 d−1

Maximal uptake rate ρm

† 0.11 mg[N ].mg[C]−1.d−1

† : Parameters computed from Q0, Qm and µm

5. SIMULATION AND COMPARISON WITH
EXPERIMENTAL DATA

Continuous culture of T-iso is used in order to assess
the ability of the model to reproduce experimental data.
Results shown in Fig. 3 demonstrate that the model re-
produces quite accurately the dynamics of s, qn and x.
This corroborates the fact that the Droop model has been
widely validated [Droop 1983, Sciandra and Ramani 1994,
Bernard and Gouzé 1999] for its aptitude to predict both
biomass and remaining inorganic nitrogen. The simulated
intracellular carbon distribution between sugar, neutral
lipid and functional pool also accurately follows the ex-
perimental records (Fig. 4).
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Fig. 3. Comparison of the Droop model with the data
of T-iso culture under various nitrogen conditions.
Nitrogen quota is directly measured (red diamond) or
estimated from nitrogen balance (green circle). Car-
bon biomass is measured (red diamond) and deduced
from biovolume measurements (green circle). Vertical
lines indicate dilution rate changes.

6. ANALYSIS OF THE MODEL BEHAVIOR

In this section, we analyse the behavior of the model
compared with the experimental data in order to explain
the complex dynamic of neutral lipid quota.

6.1 Steady state

Equation (15) shows that the neutral lipid is proportional
to the nitrogen quota in stabilized culture. This result is
validated with the experimental data (see Fig. 5). The
steady states obtained in chemostat mode through the
various dilution rates indeed show that the lipid quota at
equilibrium is proportional to the nitrogen quota.

6.2 Unbalanced conditions

Let us consider a situation where the cells are in a steady
state given by a high nitrogen content qn

∗
1. If the dilution

rate is decreased, the cells should undergo a decrease of
their nitrogen quota down to a value qn

∗
2 < qn

∗
1. This

means that, during this transient, we have ˙qn < 0. Using
equation of q̇l in (14), the dynamic of z = ql − (β − γ)qn

is:

ż = −zµ(qn) − βq̇n (17)

As z is initialy null, z remains nonnegative during this
transient so that ql is above the line of equation ql = (β −
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Fig. 4. Comparison of the lipid model with the data
of T-iso culture under various nitrogen conditions.
Evolution of the intracellular carbon quotas. Vertical
lines indicate dilution rate changes.
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Fig. 5. The dependence of neutral lipid quota ql on ni-
trogen quota qn. Red dashed line represents model
equilibrium line. A: transient decrease of qn, B: tran-
sient increase of qn, C: transient decrease of qn until
growth stops (nitrogen starvation).

γ)qn, which is indeed the steady state line. Once the
nitrogen quota has reached its steady state value, we have
q̇n = 0. It follows that z tends toward zero and ql finally
reaches its steady state on the line q∗l = (β − γ)qn

∗.

Note that this behaviour is possible only since µ(qn) is not
zero, and is decreasing from µ(qn1) down to µ(qn2) > 0.

This transient behaviour of ql is observed on Fig.4. During
this transient, the neutral lipid mobilisation decreases
faster than its synthesis which explains transient increase
of neutral lipid quota.

6.3 Hysteresis behaviour

The same reasoning can describe the behaviour of the
lipid content, when the internal nitrogen quota is increased
(following for example an increase in the dilution rate). In
such a case, we can show that ql will increase under the line
ql = (β − γ)qn. This behavior leads to a phenomenon of
hysteresis experimentally observed: the trajectory between
two steady states for an increase in nitrogen limitation is
very different from this of a decrease in nitrogen limitation
(see Fig. 5).

6.4 Nitrogen starvation

In a case of nitrogen starvation (i.e. s = 0), the steady
state value of ql can be computed, when qn decreases from
Qm down to Q0 as follows (see Appendix for details):

q†l = Q0

[

(β − γ) + β ln

(

Qm

Q0

)]

(18)

If the parametric condition β−γ
β

< Q0

Qm−Q0

ln
(

Qm

Q0

)

is

verified, this expression shows that the final content of lipid
after exhaustion of the nitrate is greater than (β − γ)Qm,
the maximum amount of lipid reached in balanced growth.
With the computed parameters (Table 1), this condition
is fulfilled. Nevertheless, it may be species dependent,
meaning that for some species balanced growth may allow
to reach higher lipid quota.
Nitrogen starvation at the end of the experiment confirms
this result. A comparison between the nitrogen limitation
at day 5 and the nitrogen starvation at day 38 is of par-
ticular interest. The model predicts that such a protocol
should lead to radically different behaviour of neutral lipid
fraction. In the nitrogen limitation, a new lower value
of the lipid fraction should be reached after a transient
increase, while the starvation should lead to an enhanced
value of ql, higher than the maximum obtained in balanced
growth conditions. On the other side, the sugar fraction
should increases in both situations. Fig. 4 and 5 show that
these predictions are experimentally verified.

6.5 Consequences on neutral lipid productivity

This study emphasises that neutral lipid content at equi-
librium is proportional to nitrogen quota. Therefore, it is
worth noting that a continuous culture at low nitrogen
quota leads to both a low growth rate and a low lipid
fraction, and thus a weak productivity. However, a tran-
sient increase of lipid content is obtained when the nitro-
gen quota decreases (i.e. when there is a disequilibrium
between carbon and nitrogen flows).
Finally, this study highlights the fact that the highest
values of the neutral lipid content are obtained in two
very different modes. Either after a nitrogen starvation,
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or at maximum growth rate in non limiting conditions.
This provides an hint to identify the optimal productivity
conditions, which are probably a species dependent combi-
nation of these two working modes. The model simplicity
will be the key point to make the optimisation study, from
a mathematical point of view, tractable.

7. CONCLUSIONS

We have proposed a new model for neutral lipid production
by microalgae. The strength of this model is to describe
accurately both the steady state and the transient phases.
The model catches the different dynamics encountered in
various physiological conditions from low nitrogen limita-
tion to starvation. The model, based on a Droop model
principle, has a minimal degree of complexity so that it
can be mathematical analysed. This models highlights and
explains the phenomenon of hysteresis in neutral lipid
production which has been experimentally verified.

The model must be assessed and validated with other
microalgal species. This model will then be used to predict
and optimize neutral lipid production in the perspective of
large scale biofuel production. It may also endorse a model
based closed loop control in order to on-line implement the
optimal strategy [Mailleret et al. 2005].
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Appendix A. COMPUTATION OF FINAL LIPID
QUOTA AFTER NITROGEN STARVATION

The dynamics of qn and ql, once external nitrate have been
exhausted are:

{

q̇n = −µ(qn)qn

q̇l = (βqn − ql)µ(qn)
(A.1)

Using these equations, the dynamic of v = ql

qn

is:

v̇ =
qnq̇l − qlq̇n

qn
2

= −
β

qn

q̇n (A.2)

Integrating from t1 to t2, we obtain:

v2 − v1 =

t2
∫

t1

v̇dt =

qn2
∫

qn1

−
β

qn

dq = [−β ln qn]
qn2

qn1

(A.3)

Now consider a complete starvation from a non limited
equilibrium,i.e. qn1 = Qm, ql1 = (β − γ)Qm, qn2 = Q0

and ql2 = q†l , the last expression becomes:

q†l
Q0

−
(β − γ)Qm

Qm

= [−β ln qn]
Q0

Qm
= β ln

Qm

Q0
(A.4)

From this equation, we can deduce the expression of q†l .
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Chapter 3

Model based productivity

optimization

Productivity of a compound (biomass, oil, methane, ...) is the amount of this
compound produced in the bioreactor per time unit (and possibly by reactor
volume or surface). In this chapter, we focused on microalgae production, rep-
resented by the DPM model.

When we speak about productivity, it is important to say if we are speaking
about volumetric productivity (grams per liter per day) or surface productivity
(grams per square meters per day). When dealing with microalgae, we will be
interested by surface productivity, as the sun delivers a given light energy per
surface unit. What we want is to maximize the light energy converted into
biomass per day.

When considering surface productivity, we consider a planar geometry with
perpendicular light source. The depth of the culture will be W. We are interested
in the quantity of microalgae per surface unit X, which is going to both use and
attenuate light, and which can be computed with

X = xW

Based on the Droop Photobioreactor Model (presented in the last chapter), it
is possible to compute analytically surface productivities in continuous (chemo-
stat) culture.

In the papers presented here we answer rigorously the question "which con-
trols (D(t) and sin(t) values) induce maximal productivity?". For reaching this
goal, our commands are the dilution rate D (input/output flow of water) and
input substrate concentration sin.

The first paper presents a study in a photobioreactor under constant light,
at equilibrium. We consider the problem of surface productivity on a given
production surface. The model is simplified by assuming that chlorophyll’s
photoadaptation dynamics reached its equilibrium.

The second paper proposes an optimization under day-night cycles. It uses
Pontryagin’s maximum principle. The complex mathematics involved led us
to begin with volumetric productivity optimization, and with a simpler model
assuming that microalgae are not substrate limited.
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Abstract: In this paper we predict and optimize the biomass surface productivity of microalgae
in continuous culture under a constant light source. Surface biomass is identified as a key
variable for assessing productivity: we provide both a mathematical and intuitive explanation.
For reaching maximal productivities, biomass surface concentration must be such that growth
at the culture bottom (assuming a planar geometry orthogonal to the light source) must be
equal to respiration. Therefore the optimal biomass concentration depends both on the incident
light and culture’s depth. We then show how the chlorophyll/carbon ratio must also be carefully
controlled to optimize light use in the photobioreactor. Finally, numerical results illustrate our
theoretical approach.
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1. INTRODUCTION

Microalgae cultures have recently received high attention
in the frameworks of food supplements, pharmaceutic pro-
duction (Spolaore et al., 2006), as well as CO2 fixation
and biofuel production (Huntley and Redalje, 2007; Chisti,
2007). Their high actual photosynthetic yield compared to
terrestrial plants (whose growth is limited by CO2 avail-
ability) leads to large potential algal biomass productions
of several tens of tons per hectare and per year.

The objective of this paper is to give new insights in
the optimization of microalgal biomass production. The
key aspect when dealing with photobioreactor is the opti-
mization of light use. The pigment concentration (mainly
chlorophyll) affects the light distribution and use within
the reactor, so that for too high biomass, light in the
photobioreactor is strongly attenuated and growth is low.
Moreover, in case of nitrogen depreciation (necessary to
produce biofuel (Chisti, 2007)) the pigments are affected
and decrease, which modifies light distribution.

In order to find a solution to this non intuitive optimiza-
tion problem, analysis based on a modelling approach
is required. In this paper, we base our approach on a
simplified macroscopic photobioreactor model, dealing not
only with light diffusion, but also with nitrogen use and
nitrogen/carbon ratio variation. In order to perform this
mathematical analysis we must use models that are simple
so that they are mathematically tractable; we use a sim-
plified version of the model proposed in (Bernard et al.,
2009, Sub.). Our results are obtained at steady state, and
we prove that these equilibria are achievable. From this
model, it is shown mathematically that biomass surface

concentration is the key parameter for surface produc-
tivity. Then global optimization is computed, and finally
numerical results are presented.

The paper is structured as follows: first, we present the
model dealing with both nitrogen limitation and light
attenuation; then biomass concentration optimization is
presented, followed by chlorophyll/carbon ratio optimiza-
tion. A numerical result illustrates the approach. Finally,
some ideas are given on how to choose the dilution rate in
a continuous culture in order to maximize productivity.

2. A NEW DROOP PHOTOBIOREACTOR MODEL

2.1 Droop model presentation

We here focus on the growth of microalgae limited by
inorganic nitrogen availability (provided by nitrate or am-
monium), since such conditions are favourable for lipid
production (Chisti, 2007) or other compounds such as as-
taxanthin (Aflalo et al., 2007). The Droop model (Droop,
1968, 1983) has been broadly used to take into account
the ability of microalgae to uncouple substrate absorption
and biomass (x) growth (Droop, 1968, 1983). The growth
rate is assumed to depend on the internal quota (q) which,
here, is the amount of intracellular nitrogen per biomass
unit. This variable yield model writes thus:



















ṡ = Dsin − ρ(s)x−Ds

q̇ = ρ(s)− µ(q)q

ẋ = µ(q)x−Dx

(1)

In this model the growth rate functions µ and absorption
functions ρ are generally taken as Michaelis-Menten and
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Droop functions:

ρ(s) = ρm
s

s+Ks

µ(q) = µ̄(1−
Q0

q
)

(2)

where ρm is the maximum uptake rate, Ks is the half satu-
ration constant for substrate uptake, µ̄ is the hypothetical
maximum growth rate (at infinite internal nitrogen quota)
and Q0 the minimal cell quota (below this level, no algal
growth can take place).

It can be proved (Bernard and Gouzé, 1995) that the
internal quota will stay between two bounds:

Q0 ≤ q ≤ Qm (3)

Where Qm = Q0+
ρm

µ̄ represents the maximum cell quota

obtained in conditions of non limiting nutrients.

The Droop model has been widely studied Bernard and
Gouzé (1995, 2002) and validated (Sciandra and Ramani,
1994; Vatcheva et al., 2006). However, it cannot directly
be used in the case of high density photobioreactors for
two main reasons:

• In its rough form it does not include the effect of light
intensity

• It does not account for the decrease of light due to
the cell density

2.2 Adding light effect on growth

We first consider the case where light is homogeneous in
the reactor, with an intensity I. In the next section we will
consider the case with light attenuation in the reactor.

Light intensity has a direct effect on growth (photosynthe-
sis), while nitrogen uptake can continue in the dark. Light
can then be introduced into parameter µ̄ = µ̄(I) (Bernard
et al., 2009, Sub.):

µ(q, I) = µ̄(I)(1−
Q0

q
) = µ̄

I

I +KI
(1−

Q0

q
) (4)

where KI is the light half saturation coefficient.

In order to prevent unrealistic quota increase in the
dark, we use the down regulation mechanism proposed by
Lehman et al. (1975):

ρ(s, q) = ρm
s

s+Ks

Ql − q

Ql −Q0
(5)

with Ql > Q0: the uptake rate stops for replete cells
q = Ql.

We also add a constant respiration term r that applies
to both nitrogen and carbon, so that the nitrogen/carbon
ratio q is not affected:

ẋ = (µ(q, I)− r −D)x

One can verify that the q equation does not change by
adding this respiration term.

Finally, the model including light effect reads:


















ṡ = Dsin − ρm
s

s+Ks

Ql−q
Ql−Q0

x−Ds

q̇ = ρm
s

s+Ks

Ql−q
Ql−Q0

− µ̄ I
I+KI

(q −Q0)

ẋ = µ̄ I
I+KI

(1− Q0

q )x− rx−Dx

(6)

In the next section, we will take into account the exponen-
tial light distribution within the reactor.

2.3 Light attenuation in the photobioreactor

Light is strongly attenuated by the biomass and its pig-
ments in the photobioreactor. In this section we represent
light distribution and its consequence on the growth rate.
The biological and chemical concentrations are still as-
sumed to be homogeneous within the photobioreactor.

We consider a planar geometry with perpendicular light
source. For the sake of explanation simplicity we will
consider a horizontal reactor and speak about ”upper
part” of the reactor on the side of incident light, and
”reactor bottom” for the other side. However, our work
is also valid for a vertical or diagonal geometry with
perpendicular light source. The depth of the culture will
be W .

At equilibrium, it has been shown (Bernard et al., 2009)
that the chlorophyll concentration (Chl) is proportional
to the nitrogen content:

Chl = γ(I⋆)qx

γ(I⋆) is a chlorophyll to nitrogen ratio, depending on the
light I⋆ at which the microalgae have been photoadapted.
The photoadaptation mechanism is presented in Bernard
et al. (Sub.), but it induces a significant complexity and
will be neglected in this study. We thus consider that γ is
a constant value which does not depend on light.

To model light attenuation we use a Beer-Lambert law,
where the attenuation depends on the chlorophyll content:

I(q, xz) = I0e
−aiγqxz (7)

where I0 is the incident light, ai is a light attenuation
coefficient, and z is the depth, so that γqxz represents the
chlorophyll per surface unit present above depth z.

From (7) we can compute the average irradiance received
by the cell culture:

Ī =
I0
W

∫ W

0

e−aiγqxzdz

=
I0

aiγqxW

(

1− e−qiγqxW
)

(8)

which decreases with γqx: this confirms the intuition that
higher biomass or chlorophyll content leads to lower mean
light in the reactor, due to stronger light attenuation.

In the reactor, growth rates vary with depth: in the upper
part of the reactor, higher light causes higher growth than
in the bottom part. The growth rate for a given depth z
can be written:

µz(q, I(q, xz)) = µ̄
I(q, xz)

I(q, xz) +KI
(1−

Q0

q
) (9)

Then, we compute the mean growth rate in the reactor:

µ(q, I0, x) =
1

W

∫ W

0

µz(q, I(q, xz))dz

by the change of variable χ = xz it can be rewritten

µ(q, I0, x) =
1

xW

∫ xW

0

µz(q, I(q, χ))dχ (10)

so that the mean growth rate depends on the surface
biomass xW . It represents the total biomass present per
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surface unit, and will be denoted X = xW . Finally, from
(10), we compute the growth rate (now denoted µ(q, I0, X)
after a slight abuse of notation):

µ(q, I0, X) = µ̄(1−Q0/q)
aiγqX

ln
(

I0+KI

I0e−aiγqX+KI

)

(11)

which depends both on the surface biomass X and the
nitrogen/carbon quota q, which is proportional to the
chlorophyll/carbon quota at equilibrium. By construction
µ is decreasing withX: the more surface biomass, the more
light attenuation, so that mean growth rate in the reactor
is lower. It is interesting to note that µ is increasing with
q for low q values, and that it is decreasing with q for high
q values: high chlorophyll concentrations lead to high light
attenuation, so that mean growth in the reactor decreases.

It is also interesting to note that for a given q value, there
is a maximal attainable biomass in the reactor, for which
µ(q, I0, X) = r: if such a biomass is attained it cannot
increase anymore due to respiration.

The simplified Droop Photobioreactor Model (DPM) is














ṡ = Dsin − ρm
s

s+Ks

Ql−q
Ql−Q0

x−Ds

q̇ = ρm
s

s+Ks

Ql−q
Ql−Q0

− µ(q, I0, X)q

ẋ = (µ(q, I0, X)− r −D)x

(12)

This model is a simplified version of the model presented
by Bernard et al. (2009) when photoadaptation is ne-
glected. It will be used in the rest of the paper.

3. OPTIMAL CONDITIONS FOR MAXIMIZING
PRODUCTIVITY

3.1 Choosing surface biomass

With model (12), our aim is to compute and optimize
biomass surface productivity (units: mg[C]/m2/day):

P (q, I0, X) = (µ(q, I0, X)− r)X (13)

At equilibrium it is the product between dilution rate
(D = µ(I0, q,X)− r) and surface biomass.

Important Remark: productivity is a function of the ni-
trogen/carbon quota q and surface biomass X = xW :
according to this model a thin culture (W small) with high
biomass concentration x is equivalent to a deep culture (W
high) with low biomass concentration x, if they have the
same surface biomass.

The reactor can be seen as a solar panel with an energy
yield, and losses. The panel’s parameter is X:

• A lowX (low biomass and thin culture) indicates that
most light is not absorbed by the culture: the panel
has a low energy yield.

• A high X (high biomass and deep culture) indicates
that in the culture’s bottom there is very little light:
most light is absorbed, but in the reactor’s bottom
there are only respiration losses.

Thus, we must choose the best X value to maximize the
panel’s efficiency P .

Theorem 1. For given I0 and q, the optimal X surface
biomass for maximizing productivity (13) is such that
growth rate at depth W is equal to the respiration rate:

µW (q, I(q,Xopt)) = r (14)

This optimal surface biomass concentration can thus be
computed:

Xopt(q) =
1

aiγq
ln

(

I0
KI

(
µ̃(q)

r
− 1)

)

(15)

Proof: For a given biomass surface concentration X, pro-
ductivity can be written from (13) and (10)

P (q, I0, X) =

∫ X

0

(µz(q, I(q, χ))− r)dχ

=

∫ Xopt

0

(µz − r)dχ+

∫ X

Xopt

(µz − r)dχ

= P (q, I0, Xopt) +

∫ X

Xopt

(µz − r)dχ

where the first term is the productivity P (q, I0, Xopt) with
Xopt chosen according to (14), and the second term is
always negative because µz decreases with X:

• If X is lower than Xopt, then this term would ”re-
move” microalgae that grow more than they respire:
µz(q, I(q, χ)) > r, ∀χ < Xopt.

• If X is higher than Xopt, then this term would
”add” microalgae that respired more than they grow:
µz(q, I(q, χ)) < r, ∀χ > Xopt.

so that Xopt maximizes surface productivity.

It is then possible to compute this optimal surface biomass
from (14), (9) and (7)

µ̃(q)
I0e

−aiγqXopt

I0e−aiγqXopt +KI
= r

(with notation µ̃(q) = µ̄(1−Q0/q)) we obtain

I0e
−aiγqXopt = KI

r

µ̃(q)− r
(16)

which gives the light intensity at depth W , and then leads
to (15).

Since Xopt(q) needs to be positive, it only exists for q >
I0µ̄

I0µ̄−r(I0+KI)
Q0, that is the minimal quota that ensures

that growth can compensate respiration at the reactor’s
surface. 2

3.2 Optimization with both surface biomass and nitrogen
quota

We are then left with the choice of an optimal nitro-
gen/carbon value q, which can be controlled by adjusting
D and sin (see section 4).

• A low quota leads to low potential growth rate µ̃(q)
• A high quota leads to high µ̃(q) potential growth rate,
but also to higher light attenuation, so that the mean
growth rate µ(I0, q,X) in the reactor can be lower.

Thus, an optimal intermediate value must be found.

Theorem 2. There exists only one value qopt maximizing
P , provided that the following condition is satisfied:

I0 > KI

[

µ̄

µ̄− 2r
e

r2

µ̄−2r − 1

]

(17)

Important Remark: (17) is, in practice, always true since
I0 ≫ KI and µ̄ ≫ r.
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Proof: First, we compute the growth rate at optimal
surface biomass concentration (15), from (11) and (16)

µ(q, I0, Xopt) = µ̃(q)
ln
(

(1 + I0
KI

)(1− r
µ̃(q) )

)

aiγqXopt(q)
(18)

Then we compute the corresponding productivity

P (q, I0, Xopt) = (µ(q, I0, Xopt(q))− r)Xopt(q)

=
µ̃(q)

aiγq
ln

(

(1 +
I0
KI

)(1−
r

µ̃(q)
)

)

−
r

aiγq
ln

(

I0
KI

(
µ̃(q)

r
− 1)

)

Its derivative with respect to q is then computed, to find
the optimal q value:

∂P (q,I0,Xopt)
∂q = 1

aiγq2
f(q)

with

f(q) =µ̄(
2Q0

q
− 1) ln

(

(1 +
I0
KI

)(1−
r

µ̃(q)
)

)

+ r ln

(

I0
KI

(
µ̃(q)

r
− 1)

)

which can only be equal to zero for values of q higher than
2Q0, because both logarithms are positive by construction:
the first one comes from the growth rate, and the second
one from the optimal biomass surface concentration.

We can show that an extremum of P corresponds to a max-
imal productivity, and that it is unique, by demonstrating

that when
∂P (q,I0,Xopt)

∂q = 0 is achieved (equivalent to

f(q) = 0), the second derivative
∂2P (q,I0,Xopt)

∂q2 is negative.

∂2P (q,I0,Xopt)
∂q2 = − r

aiγq3
f(q) + r

aiγq2
∂f
∂q (q)

When f(q) = 0, we know that q > 2Q0, and that the sign

of this second derivative is the sign of ∂f
∂q (q)

∂f
∂q (q) =

µ̄
r
Q0

q2

[

r2

µ̃(q)−r − 2 ln
(

(1 + I0
KI

)(1− r
µ̃(q) )

)

−(1− 2Q0

q ) r
µ̃(q)−r

µ̄
µ̃(q)

]

which should be negative when f(q) = 0, because the third
term will be negative (q > 2Q0 and µ̃(q) > r), and the first
term is small compared to the second one. Let us clarify
precise conditions for ∂f

∂q (q) < 0 to hold:

r2

µ̃(q)− r
< 2 ln

(

(1 +
I0
KI

)(1−
r

µ̃(q)
)

)

(19)

Starting from (19) and with

µ(q) > µ(2Q0) =
µ̄

2
we have that

r2

µ̃(q)− r
<

r2

µ̄/2− r
and also

1−
r

µ̃(q)
> 1−

2r

µ̄
so that (20) implies (19)

r2

µ̄/2− r
< 2 ln

(

(1 +
I0
KI

)(1−
2r

µ̄
)

)

(20)

From this inequality, we can compute the condition (17)
which shows that a ”high enough” I0 incident light ensures
this unicity property. 2

4. OPTIMAL CONTROL FOR A
PHOTOBIOREACTOR

4.1 Choosing D and sin to maximize productivity

Having identified optimal Xopt and qopt, we now have to
verify that an equilibrium with X = Xopt and q = qopt can
be achieved through an appropriated choice of D⋆ and s⋆in.
The ẋ = 0 equation imposes the choice of the dilution rate:

D⋆ = µopt − r

with
µopt = µ(qopt, I0, Xopt(qopt))

D⋆ is positive since µ > µz(qopt, I(qopt, Xopt)) = r (see
Theorem 1).

The equilibrium substrate concentration can then be com-
puted from q̇ = 0:

ρm
s

s+Ks

Ql − qopt
Ql −Q0

= µoptqopt

so that, at equilibrium:

sopt = Ks
µopt(1−Q0/Ql)qopt

ρm − (ρm/Ql + µopt(1−Q0/Ql))qopt

which must be positive: this point will be developed later.

Finally we obtain sin from the Droop nitrogen mass
balance equality (Bastin and Dochain, 1990)

sin = sopt + qoptXopt/W

which is the optimal input substrate value to maximize
surface productivity.

4.2 Optimal equilibrium attainability

In some cases (depending on incident light and microalgal
parameters) the computed sopt is negative. This is caused
by

µoptqopt > ρm
Ql − qopt
Ql −Q0

(21)

so that the optimal qopt quota cannot be attained under
biomass surface concentration Xopt (see the q̇ dynamics).
In such cases, we must reformulate our optimization prob-
lem:

max(q,X) (µ(q, I0, X)− r)X

such that µ(q, I0, X)q ≤ ρm
Ql−q
Ql−Q0

(22)

Theorem 3. The solution of the optimization problem (22)
is the one provided by Theorems 1 and 2 (qopt, Xopt) or lies
on the following constraint:

µ(q, I0, X)q = ρm
Ql − q

Ql −Q0
(23)

Proof: • If (qopt, Xopt) is such that the constraint is
valid, we have already demonstrated that this couple is
optimal (see Figure 2 for a numerical example).

• If (qopt, Xopt) does not verify the constraint (example
on Figure 3), the closer from Xopt(q) is X, the higher is
P (see Theorem 1’s demonstration). The optimal solution
lies thus as close as possible to X = Xopt(q), i.e. either on
X = Xopt(q) or on the constraint (23).

Let us denote C-curve the part of the X = Xopt(q) curve
that verifies the constraint.

69



Because µ(q, I0, X)q is increasing with q and ρm
Ql−q
Ql−Q0

is

decreasing with q, we know that any q value on the C-
curve verifying the constraint is lower than qopt (which
is too high to verify the constraint). We also know from
Theorem 2 that on the C-curve, the derivative of P with
respect to q is positive for any q < qopt. Because of that,
on the C-curve, the maximal P is attained for the highest
possible q: it is the q value lying both on the C-curve
and constraint (23). This demonstrates that the optimal
productivity will lie on the constraint.

In this last case sin should be chosen infinite to have s
infinite and ρ(s) = ρm, so that we can be on the constraint.
The identification of the optimal (X, q) couple is then not
straightforward, and this case will be the topic of further
analysis. 2

Fig. 1. Mean net growth rate (µ − r) in the reactor
computed from (11), with q = 0, 1g[N ]/g[C] and
I0 = 100µ mol quanta. m−2s−1. It is affected by light
attenuation, caused by high biomass concentration.

5. NUMERICAL RESULTS

In the previous sections we have determined that there is
a unique optimal (Xopt(qopt), qopt) couple that maximizes
the surface productivity P . In this section we illustrate
this result with parameters for the microalgae Isochrysis
galbana.

5.1 Microalgae parameters

The parameter values are taken from Bernard et al. (Sub.)
to show productivity results predicted by the model for I.
galbana. However, parameters KI and γ (which may vary
through photoacclimation) are computed from average
values of the photoadaptation model in Bernard et al.
(Sub.).

For all the simulations we use culture’s depth W = 0, 1m.

The growth rate predicted for such a strain is com-
puted and plotted in Figure 1, for q = 0.1g[N ]/g[C] and
I0 = 100µ mol quanta. m−2s−1. We see on this figure
that because of respiration, there is a maximal biomass
x = 4.93g[C]/L for which respiration is equal to growth
(µ(X)− r = 0).

Table 1. Parameter values of the lipid model
for I.galbana culture.

Parameter Value Unit

Q0 0.05 g[N ].g[C]−1

Ql 0.25 g[N ].g[C]−1

µ̄ 1.7 d−1

ρm 0.073 g[N ].g[C]−1.d−1

Ks 0.0012 g[N ]/m3

r 0.07 day−1

KI 20 µ mol quanta. m−2s−1

ai 16.2 m2/g[Chl]
γ 0.25 g[Chl]/g[N]

Condition (17) for the unicity of a maximum productivity
is verified for I0 > 3, 5µ mol quanta. m−2s−1 which is
small compared to incident light intensities ranging usually
between 100µ mol quanta. m−2s−1 to 3000µ mol quanta.
m−2s−1.

5.2 Productivity prediction

Productivity was computed with these parameters and
with I0 = 100µ mol quanta. m−2s−1 (Figure 2) and 2000µ
mol quanta. m−2s−1 (Figure 3).

Fig. 2. Surface biomass productivity for I0 = 100µ mol
quanta. m−2s−1. The X = Xopt(q) curve is repre-
sented by a solid line, and the optimal (qopt, Xopt)
couple is represented by a circle. Dotted line indicates
constraint (23).

On Figure 2 we see that there is an optimal (qopt, Xopt)
couple which maximizes productivity. Note that, contrar-
ily to the usually assumed hypothesis that higher nitro-
gen/carbon ratio leads to higher productivities, we see
here that the optimal conditions do not correspond to
nitrogen replete microalgae: for X = Xopt, q > qopt lead to
suboptimal productivities. Thus, depending on the species
and culture conditions, this result suggests that it could be
advantageous to have slightly nitrogen limited microalgae,
so that light attenuation by chlorophyll is weaker and light
is used more efficiently in the photobioreactor.

In Figure 3 we see that the optimal (qopt, Xopt) couple
(circle) depends on the incident irradiance (it is not the
same as in the previous figure), and that higher light
intensities lead to higher productivities.
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Fig. 3. Surface biomass productivity for I0 = 2000µ mol
quanta. m−2s−1. The X = Xopt(q) curve is repre-
sented by a solid line, and the optimal (qopt, Xopt)
couple is represented by a circle. This optimal couple
does not respect the constraint (dotted line) of the op-
timization problem (22). The real optimum (square)
thus lies on the constraint.

Contrarily to the previous example, here the constraint
of optimization problem (22) is not verified, so that the
theoretical optimum cannot be attained: the real optimum
(determined numerically) lies on the constraint, as pre-
dicted by Theorem 3.

6. CONCLUSION

In this paper we determined the optimal conditions for
maximizing the biomass surface productivity, and rede-
fined the optimization problem for the case where the
optimal equilibrium is not attainable. The identified opti-
mal conditions correspond to both optimal biomass surface
concentration Xopt so that light is used optimally (section
3.1), and optimal nitrogen/carbon ratio. This work clearly
follows the work of Cornet and Dussap (2009); Takache
et al. (2009) who computed optimal biomass concentration
from a light diffusion model (neglecting also photoacclima-
tion) and experimentally validated the obtained produc-
tivities.

In order to get analytical results we have kept a trade-off
between model simplicity to handle mathematical analysis,
and model complexity to capture the main phenomena
driving a photobioreactor’s productivity: nitrogen absorp-
tion, growth depending both on the nitrogen/carbon quota
and on the light attenuation induced by chlorophyll.

A key result shown by this approach is that slight nitrogen
depreciation can enhance photobioreactor productivity.
This is of particular importance since nitrogen limitation
is known to stimulate lipids production. The model anal-
ysis also predicts that surface biomass X = xW drives
productivity, so that a thin reactor (low W ) with dense
biomass x or a deep reactor (high W ) with low biomass
concentration x should have the same productivity, if their
surface biomass is the same. These results must now be
verified with dedicated experiments.
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Optimization of a photobioreactor biomass production

using natural light

Frédéric Grognard, Andrei Akhmetzhanov, Pierre Masci and Olivier Bernard

Abstract— We address the question of optimization of the
biomass long term productivity in the framework of microalgal
biomass production in photobioreactors under the influence of
day/night cycles. For that, we propose a simple bioreactor model
accounting for light attenuation in the reactor due to biomass
density and obtain the control law that optimizes productivity
over a single day through the application of Pontryagin’s
maximum principle, with the dilution rate being the control.
An important constraint on the obtained solution is that the
biomass in the reactor should be at the same level at the
beginning and at the end of the day so that the same control can
be applied everyday and optimizes the long term productivity.
Several scenarios are possible depending on the microalgae’s
strain parameters and the maximal admissible value of the
dilution rate: bang-bang or bang-singular-bang control or, if
the growth rate of the algae is very strong in the presence
of light, constant maximal dilution. A bifurcation diagram is
presented to illustrate for which values of the parameters these
different behaviors occur.

I. INTRODUCTION

Microalgae have recently received more and more atten-

tion in the frameworks of CO2 fixation and renewable energy

[5], [2]. Their high actual photosynthetic yield compared to

terrestrial plants (whose growth is limited by CO2 avail-

ability) leads to large potential algal biomass productions

in photobioreactors of several tens of tons per hectare and

per year [2].

The objective of this paper is to develop an optimal control

law that would maximize the photobioreactor yield, while

taking into account that the light source (i.e the primary

energy source) that will be used is the natural light. The

light source is therefore periodic with a light phase (day)

and a dark phase (night). In addition to this time-varying

periodic light source, we will take the auto-shading in

the photobioreactor into account: the pigment concentration

(mainly chlorophyll) affects the light distribution and thus the

biological activity within the reactor. As a consequence, for

a too high biomass, light in the photobioreactor is strongly

attenuated and growth is low.

It is therefore necessary to develop a model that takes both

features into account in order to develop the control law,

where the substrate concentration in the input (marginally)

and the dilution rate (mainly) will be used. This model should

not be too complicated in order to be tractable and should

present the main features of the process. Since we want to

This work was supported by the ANR-06-BIOE-014 Shamash project.
The authors are with the COMORE project-team of INRIA

Sophia Antipolis, BP 93, 06902 Sophia Antipolis Cedex, France,
{frederic.grognard,andrei.akhmetzhanov,
pierre.masci,olivier.bernard}@sophia.inria.fr

develop a control strategy that will be used on the long run,

we could choose an infinite time-horizon measure of the

yield. However, we rather took advantage of the observation

that, in the absence of a discount rate in the cost functional,

the control should be identical everyday and force the state

of the system to be identical at the beginning of the day and

24 hours later. We therefore opted for optimizing a cost over

one day with the constraint that the initial and terminal state

should be identical.

The paper is structured as follows: first, we present the

model dealing with both substrate limitation, light attenu-

ation and light periodicity; then biomass productivity opti-

mization is presented in a constant light environment. The

solution to the periodic light problem is then presented.

Finally, numerical results are presented with a bifurcation

analysis.

II. A PHOTOBIOREACTOR MODEL WITH LIGHT

ATTENUATION

Micro-algae growth in a photobioreactor is often modelled

through one of two models, the Monod model [9] or the

Droop Model [3]. The latter is more accurate as it separates

the process of substrate uptake and growth of the microalgae.

The former gives a reasonable representation of reality

by coupling growth and uptake, and is more convenient

for building control laws since it is simpler. For sake of

simplicity we will introduce the problem with the Monod

model, but the presented results are similar with the Droop

model when considering the working modes where nutrients

are not limiting growth. The Monod model writes:
{

ds
dτ

= D(sin − s)− kν(s)x
dx
dτ

= ν(s)x−Dx
(1)

where s and x are the substrate and biomass concentrations in

the medium, while D is the dilution rate, sin is the substrate

input concentration and k is the substrate/biomass yield

coefficient. We will depart from this model in two directions.

First, we introduce respiration by the microalgae: contrary to

photosynthesis, this phenomeneon takes place with or with-

out light; from a carbon point of view, it converts biomass

into carbon dioxyde, so that we represent it as a −ρx term in

the biomass dynamics. Secondly, under the hypothesis of an

horizontal planar photobioreactor (or raceway) with vertical

incoming light, we represent light attenuation following an

exponential Beer-Lambert law where the attenuation at some

depth z comes from the total biomass xz per surface unit

contained in the layer of depth [0, z]:

I(xz) = I0e
−axz (2)
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where I0 is the incident light and a is a light attenuation

coefficient. In microalgae, as we proposed in (2) chlorophyll

is mostly the cause of this shadow effect and, in model (1),

it is best represented by a fixed portion of the biomass [1].

Finally, the light source variation will be introduced by taking

a time-varying incident light I0(τ). With such an hypothesis

on the light intensity that reaches depth z, growth rates vary

with depth: in the upper part of the reactor, higher light

causes higher growth than in the bottom part. Supposing

that light attenuation directly affects the maximum growth

rate [4], the growth rate for a given depth z can then be

written as

νz(s, I(xz, τ)) =
ν̃I(xz, τ)

I(xz, τ) +KI

s

s+Ks

,

with I(xz, τ) = I0(τ)e
−axz

Then, we can compute the mean growth rate in the reactor:

ν(s, I0(τ), x) =
1

L

∫ L

0

νz(s, I(xz, τ))dz

where L is the depth of the reactor and where we have sup-

posed that, even though the growth rate is not homogeneous

in the reactor due to the light attenuation, the concentrations

of s and x are kept homogeneous through continuous reactor

stirring. It is this average growth rate that will be used in the

lumped model that we develop. We then have:

ν(s, I0(τ), x) =
ν̃

L

∫ L

0

I0(τ)e
−axz

I0(τ)e−axz +KI

dz
s

s+Ks

=
ν̃

axL
ln

(

I0(τ) +KI

I0(τ)e−axL +KI

)

s

s+Ks

The system for which we want to build an optimal

controller is therefore






ds
dτ

= D(sin − s)− k ν̃
axL

ln
(

I0(τ)+KI

I0(τ)e−axL+KI

)

s
s+Ks

x

dx
dτ

= ν̃
axL

ln
(

I0(τ)+KI

I0(τ)e−axL+KI

)

s
s+Ks

x− ρx−Dx

(3)

However, since we want to maximize the productivity, it

seems clear that the larger s the better, large values of s

translating into large growth rates. The control sin should

then always be kept very large so as to always keep the

substrate in the region where s
s+Ks

≈ 1. We can then

concentrate on the reduced model

dx

dτ
=

ν̃

axL
ln

I0(τ) +KI

I0(τ)e−axL +KI

x− ρx−Dx (4)

which then encompasses all the relevant dynamics for the

control problem.

In order to more precisely determine the model, we should

now indicate what the varying light will be like. Classically, it

is considered that daylight varies as the square of a sinusoidal

function so that

I0(τ) =

(

max

{

sin

(

2πτ

T

)

, 0

})2

where T is the length of the day. The introduction of

such a varying light would however render the computations

analytically untractable. Therefore, we approximate the light

source by a step function:

I0(τ) =

{

Ī0, 0 ≤ τ < T̄ — light phase

0, T̄ ≤ τ < T — dark phase

In a model where the time-unit is the day, T will be equal

to 1. In the following, we will consider T̄ = T
2 , but this

quantity obviously depends on the time of the year.

Finally, we consider a last simplification to the model:

instead of considering that the biomass growth in the pres-

ence of light has the form ν̃
aL

ln Ī0+KI

Ī0e−axL+KI
, which is an

increasing and bounded function, we replace it with another

increasing bounded function ν̄x
k+x

and obtain the model

dx

dτ
=

ν(τ)x

κ+ x
− ρx−Dx

where ν(τ) = ν̄ during the light phase and 0 at night. It

is possible to show that this simplified model is a good

numerical approximation of the original model.

III. PRODUCTIVITY OPTIMIZATION

The productivity problems that we will consider in the

sequel will be put in a framework where D is bounded, so

that, ∀t ≥ 0, D(t) ∈ [0, Dmax]; such a bound makes sense

in an optimal control framework since it prevents infinite

values of the control, which might occur when harvesting

the photobioreactor. In order to simplify notations, we then

introduce the following change of time and variable (t, y) =
(Dmaxτ,

x
k
), which yields

dy

dt
= ẏ =

µ(t)y

1 + y
− ry − uy (5)

where r = ρ
Dmax

and u = D
Dmax

∈ [0, 1] is the new control.

We also have µ(t) = µ̄ = ν̄
κDmax

for t ∈ [0, T̄ ] and 0 for

t ∈ [T̄ , T ] (with T̄ = DmaxT̄ and T = DmaxT ).

A. Productivity optimization in constant light environment

In a previous work [8], we have studied the productivity

optimization of a microalgae photobioreactor with light-

attenuation in the Droop framework with constant light.

In that study, since we wanted to optimize the long-term

productivity, we looked for the control values for D and

sin that optimized the instantaneous biomass output flow at

equilibrium, that is

max
u

uy∗V

where V is the photobioreactor volume (assumed here to

be constant). This study was complex because the shading

was dependent on the internal substrate quota. In the present

case, it will greatly simplify with sin that does not need to

be optimized. Indeed, for a given dilution u, the equilibrium

of (5) in the presence of light is

y∗ =
µ̄

r + u
− 1

which needs to be non-negative, so that 0 ≤ u ≤ µ̄− r. The

positivity of u imposes that r ≤ µ̄, that is the respiration
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needs to be weaker than the maximal growth. For a given u,

the productivity rate at equilibrium is then

µ̄uV

r + u
− uV

whose optimum value is reached in

uσ =
√
µ̄r − r (6)

which is positive because r ≤ µ̄ but requires

µ̄ ≤ (r + 1)2

r
(7)

to be smaller or equal to 1 (otherwise, the optimal dilution

is u = 1). This yields the optimal productivity rate:

(
√
µ̄−

√
r)2V

It is important to note that the equilibrium is then

yσ =

√

µ̄

r
− 1 (8)

which maximizes the net production rate µ̄y
1+y

−ry = uy. We

will use this definition of yσ even when it is not achievable

with some uσ ≤ 1.

B. Productivity optimization in day/night environment

In an environment with varying light we cannot settle

for an instanteneous productivity rate optimization since

this equilibrium cannot be maintained during the night. In

essence, we want to optimize the long term productivity of

the photobioreactor, that is we want that, everyday, the same

maximal amount is produced. The problem that we consider

is therefore

max
u(t)∈ [0,1]

∫ T

0

u(t)V y(t)dt

We then need to add constraints to the solution that we want

to obtain; indeed, at the end of the day, we want to be able

to start operating the photobioreactor in the same conditions

for the next day. This then requires that we add the constraint

y(T ) = y(0)

We therefore are faced with the following optimal control

problem

max
u(t)∈ [0,1]

∫ T

0

u(t)y(t)dt

with ẏ = µ(t)y
1+y

− ry − uy

y(T ) = y(0)

(9)

1) Parameter constraints: In order to solve this problem,

it is convenient to observe that y(T ) = y(0) cannot be

achieved for large values of y even without considering

optimality. Indeed, for all t, we have ẏ < 0 when y(t) >
µ̄− r

r
independently of the choice of u; therefore, an initial

condition such that y(0) >
µ̄− r

r
cannot be considered since

necessarily y(T ) < y(0) in that case. We then know that, for

admissible initial conditions below that threshold, y(t) will

stay below this threshold for all times. It also implies that,

whenever u(t) = 0 for such solution with t ∈ [0, T̄ ), ẏ > 0
because y(t) then tends toward µ̄−r

r
;

We could make this bound stronger by noticing that, for

a given y(0), the largest value of y(T ) that can be achieved

is reached by taking u(t) = 0 for all times; indeed, at any

time, applying u(t) > 0 implies that ẏ is smaller than if

u(t) = 0 were applied. If the value of y(T ) corresponding to

u(t) = 0 is smaller than y(0), then the corresponding initial

condition cannot be part of the optimal solution. Solving

(5) with u(t) = 0 in the interval [0, T̄ ], by separating the

variables yields

r ln

(

y(T̄ )

y0

)

− µ̄ ln

(

µ̄− r(1 + y(T̄ ))

µ̄− r(1 + y0)

)

r(µ̄− r)
= T̄

where we denoted y(0) as y0. Trivially, the integration of

(5), for the dark period (u(t) = 0) on the interval [T̄ , T ],
yields

y(T ) = y(T̄ )e−r(T−T̄ )

so that, introducing this equation in the previous one, we get

r ln

(

y(T )er(T−T̄ )

y0

)

− µ̄ ln

(

µ̄− r(1 + y(T )er(T−T̄ ))

µ̄− r(1 + y0)

)

r(µ̄− r)
= T̄

The equality y(T ) = y0 is then achieved with u(t) = 0 when

solving this last equation for y0 with y(T ) = y0, which yields

y0max =
µ̄− r

r

e
r
µ̄
(µ̄T̄−rT ) − 1

e
rT
µ̄

(µ̄−r) − 1

For larger values of y0, we have y(T ) < y0 independently of

the choice of u(t); for smaller values of y0, there exist control

functions u(t) that guarantee y(T ) = y0. The constraint µ >

r, which is necessary for growth to occur in the light phase

guarantees that the first fraction and the denominator of the

second one in y0max are positive. We then need to add the

constraint

µ̄ >
rT

T̄
(10)

to ensure the positivity of y0max and so the possibility of the

existence of a solution to the optimal control problem (9).

Note that, in the case where T̄ = T
2 , this simply means that

µ̄ > 2r.

It is also interesting to see that, if a constant control u(t) =
1 is applied, a periodic solution is obtained for

y0min =
µ̄− r − 1

r + 1

e
r+1
µ̄

(µ̄T̄−(r+1)T ) − 1

e
(r+1)T

µ̄
(µ̄−r−1) − 1

which can be positive if µ̄ >
(r+1)T

T̄
. For any value of y0

smaller than y0min, any control law would force y(T ) > y0.

As a consequence, y0, solution of problem (9), should belong

to the interval [y0min, y0max].
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2) Maximum principle: In order to solve problem (9),

we will use Pontryagin’s Maximum Principle (PMP, [10])

in looking for a control law maximizing the Hamiltonian

H(x, u, λ, t) ,

[

λ

((

µ(t)

1 + y
− r

)

y − uy

)

+ uy

]

with the constraint
{

ẏ = µ(t)y
1+y

− ry − uy

λ̇ = λ
(

− µ(t)
(1+y)2 + r + u

)

− u

In addition, we should add the constraint

λ(T ) = λ(0).

Indeed, the solution of the optimal control problem is in-

dependent of the reference initial time: defining x(t) =
x(t − T ), u(t) = u(t − T ), and λ(t) = λ(t − T ) for

values of t larger than T , we have that x(t), u(t) and

therefore λ(t) are unchanged if we consider the interval

[t0, T + t0] (for 0 < t0 < T ) rather than [0, T ]. Since λ(t) is

continuous inside the interval when considering the problem

over [t0, T + t0], it is continuous in time T and λ(0) = λ(T )
[6].

We see from the form of the Hamiltonian that

∂H

∂u
= 1− λ

so that, when λ > 1, we have u = 0, when λ < 1, we have

u = 1, and when λ = 1 over some time interval, intermediate

singular control is applied.

In the sequel, we propose candidate solutions to the PMP

by making various hypotheses on the value of λ(0) = λ0.

Bang-bang with λ0 > 1: With λ0 > 1, we have u = 0
at times 0 and T . At any given time 0 ≤ t ≤ T̄ before the

first switch, the solution of (5) yields

r ln

(

y(t)

y0

)

− µ̄ ln

(

µ̄− r(1 + y(t))

µ̄− r(1 + y0)

)

r(µ̄− r)
= t (11)

and, as stated earlier, y(t) is increasing because y(0) <

y0max < µ−r
r

. The constancy of the Hamiltonian during

the light phase then imposes that

λ(t)y(t)

(

µ̄

1 + y(t)
− r

)

= λ0y0

(

µ̄

1 + y0
− r

)

(12)

for all times t ∈ (0, T̄ ) such that u(t) = 0. A switch to 1
then needs to occur between time 0 and T (otherwise the

payoff would be 0) and this switch cannot take place in the

dark phase. Indeed, in that zone, as long as u(t) = 0, the λ

dynamics are

λ̇ = rλ

with λ(t) > 1. The adjoint variable is therefore an increasing

function in that region, and cannot go through λ = 1. We

will use this impossibility of switch from 0 to 1 in the dark

phase several times in the sequel.

For the solution that we study, a switch then needs to take

place at time t01 in the (0, T̄ ) interval and for y(t01) = y01
and λ(t01) = 1 solutions of (11)-(12).

r ln

(

y01

y0

)

− µ̄ ln

(

µ̄− r(1 + y01)

µ̄− r(1 + y0)

)

r(µ̄− r)
= t01 (13)

y01

(

µ̄

1 + y01
− r

)

= λ0y0

(

µ̄

1 + y0
− r

)

(14)

Another constraint that appears at the switching instant

from u = 0 to u = 1 is that λ̇ < 0, which amounts to
µ̄

(1+y)2 > r or y < yσ (see (8)). After time t01, y(t) then

converges increasingly or decreasingly toward µ̄−r−1
r+1

Due to the constancy of the Hamiltonian, another switch

can only take place at time t̃ before time T̄ if

y(t̃)

(

µ̄

1 + y(t̃)
− r

)

= y01

(

µ̄

1 + y01
− r

)

where we have used the fact that λ(t̃) = λ(t01) = 1 at the

switching instants. This can only happen for two values of

y(t̃): y(t̃) = y01 and another value y(t̃) = µ̄
1+y01

− r which

is larger than yσ. Since y(t) was converging to µ̄−r−1
r+1 with

u(t) = 1, y(t̃) cannot go through y01 again unless y01 =
µ̄−r−1
r+1 . In this last case, by considering the λ̇ dynamics, we

see that another switch could only take place if u(t) = 1
solves the conditions for being a singular solution to the

optimal control; this will be handled later. Generically, a

single switch can then only take place inside the interval

(0, T̄ ).
The solution then reaches the time T̄ with (y(t), λ(t)) =

(ȳ, λ̄) that solve the same kind of equations as (11) and (12):

(r + 1) ln

(

ȳ

y01

)

− µ̄ ln

(

µ̄− (r + 1)(1 + ȳ)

µ̄− (r + 1)(1 + y01)

)

(r + 1)(µ̄− r − 1)
= T̄−t01

(15)

λ̄ȳ

(

µ̄

1 + ȳ
− r − 1

)

+ ȳ = y01

(

µ̄

1 + y01
− r

)

(16)

Since λ(T̄ ) < 1 and λ(T ) > 1, a switch from u = 1 to

u = 0 then needs to take place inside the (T̄ , T ) interval.

With the dynamics being in the form

ẏ = −(r + 1)y λ̇ = (r + 1)λ− 1

another switch can only take place if λ̄ > 1
r+1 ; otherwise λ

cannot go through 1 again. The switching point (t10, y10) is

then characterized by

y10 = ȳe−(r+1)(t10−T̄ ) (17)

λ(t10) = 1 = λ̄e(r+1)(t10−T̄ ) − e(r+1)(t10−T̄ ) − 1

r + 1
(18)

After this switching, the dynamics become

ẏ = −ry λ̇ = rλ

so that no other switch can take place and these dynamics

and the constraints y(T ) = y0 and λ(T ) = λ0 impose that

y0 = y10e
−r(T−t10) (19)
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λ0 = er(T−t10) (20)

In the end, we have a system of 8 algebraic equations

(13)-(20) with eight unknowns, which we solve numerically.

Even though, we were not able to lead this study analyti-

cally all the way to the end, we have shown the qualitative

form of the solutions analytically. It is made of four phases:

• Growth with a closed photobioreactor until a sufficient

biomass level is reached

• Maximal harvesting of the photobioreactor with simul-

taneous growth

• Maximal harvesting of the photobioreactor with no

growth until a low level of biomass is reached

• Passive photobioreactor: no harvesting, no growth, only

respiration

The first two phases take place in the presence of light, the

other two in the dark. In phase 3, harvesting of as much

biomass produced in the light phase as possible is continued

while not going below the level where the residual biomass

left is sufficient to efficiently start again the next day.

Bang-singular-bang with λ0 > 1:

We will first look at what a singular arc could be. For that,

we see that ∂H
∂u

= 1 − λ should be 0 over a time interval

and compute its time derivatives.

d

dt

(

∂H

∂u

)

|λ=1

= − µ(t)

(1 + y)2
+ r

When µ(t) = 0, that is in the dark phase, no singular arc is

thus possible. When µ(t) = µ̄, this derivative is equal to zero

when y = yσ defined in (8). The singular control is then the

control that maintains this equilibrium, that is uσ =
√
µ̄r−r

defined in (6). This control is positive thanks to (10) but it

is smaller or equal to 1 only if

µ̄ ≤ (r + 1)2

r
(21)

No singular control can exist otherwise. When a singular

branch appears in the optimal solution, it is locally optimal

because the second order Kelley condition

∂

∂u

(

d2

dτ2
∂H

∂u

)

=
2λµ

(1 + y)3
≥ 0

is satisfied on the singular arc [7].

The construction of the solution is very similar to that

in the purely bang-bang case. Similarly, a switch needs to

occur in the interval (0, T̄ ). This switch can be from u = 0
to u = 1 or from u = 0 to u = uσ and should occur with

y ≤ yσ in order to have λ̇ ≤ 0. In fact, if a switch first occurs

to u = 1, an argument identical to the one in the previous

section shows that no switch back to 0 can take place before

T̄ ; this same argument can in fact be used to show that no

switch to u = uσ can take place either since: in both cases,

λ should get back to 1, which we show to be impossible.

A switch from 0 to uσ then takes place once λ = 1 at

(t0σ, yσ). Equations (11)-(12) can then be used to identify

this switching instant:

r ln

(

yσ

y0

)

− µ̄ ln

(

µ̄− r(1 + yσ)

µ̄− r(1 + y0)

)

r(µ̄− r)
= t0σ (22)

yσ

(

µ̄

1 + yσ
− r

)

= λ0y0

(

µ̄

1 + y0
− r

)

(23)

From there, λ(t) = 1 and y(t) = yσ for some time. This

could be until t = T̄ , followed directly by u = 0 in the dark

phase but, more generically, the singular arc ends at time

tσ1 < T̄ , where a switch occurs toward u = 1. From then

on, things are unchanged with respect to the bang-bang case.

The equations that define the transitions from tσ1 to T̄ are

similar to (15) and (16):

(r + 1) ln

(

ȳ

yσ

)

− µ̄ ln

(

µ̄− ((r + 1)(1 + ȳ)

µ̄− (r + 1)(1 + yσ)

)

(r + 1)(µ̄− r − 1)
= T̄ − tσ1

(24)

λ̄ȳ

(

µ̄

1 + ȳ
− r − 1

)

+ ȳ = yσ

(

µ̄

1 + yσ
− r

)

(25)

The remainder of the solution is unchanged with respect

to the bang-bang one, so that we can compute the solution

by solving system (17)-(20) and (22)-(25) of eight algebraic

equations with eight unknown variables.

Again, the analytical approach has helped us identify the

qualitative form of the optimal productivity solution. It now

contains five phases:

• Growth with a closed photobioreactor until a sufficient

biomass level is reached

• Maximal equilibrium productivity rate on the singular

arc

• Maximal harvesting of the photobioreactor with simul-

taneous growth

• Maximal harvesting of the photobioreactor with no

growth until a low level of biomass is reached

• Passive photobioreactor: no harvesting, no growth, only

respiration

For this form of solution, we see that maximal instan-

taneous productivity is achieved during the whole second

phase, when the singular solution occurs.

Solution with λ0 < 1:

Such a solution would mean that harvesting takes place

during the whole dark phase because no transition from u =
0 to u = 1 can take place in this phase, as we have already

shown. Two possibilities then occur: either u = 1 all the

time or switches from u = 1 to u = 0 or uσ and then back

to u = 1 take place in the interval (0, T̄ ).
In the latter case, the first switch from u = 1 to u = 0

can only take place with y > yσ because of the constraint

that λ̇ > 0 with λ = 1 at that moment. Then, when the

control u = 0 is applied for some time, the solution y(t)
is increasing. We also have that the switch from u = 0 to

u = 1 can only take place with y < yσ because of the

constraint that λ̇ < 0 with λ = 1 at that moment. This is

in contradiction with the fact that y(t) was increasing from

above yσ .
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Fig. 1. Bifurcation picture for Dmax = 12, κ = 1, T = 1, T̄ = T/2.
The solid black line is ν̄ = κρT/T̄ (see (10)), the dashed line is ν̄ =
κ(ρ + Dmax)2/ρ and it is related to (7). Optimal patterns for A, B and
C are shown on Fig. 3
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Fig. 2. The region E with optimal constant control u = 1. Below this
region, this diagram is connected with Fig. 1

We can also show that no strategy in the (0, T̄ ) interval

can have the form u = 1 → uσ → u = 0 or 1. Indeed,

in order to reach the singular arc with u = 1, a solution

should be coming from above it. If the switch that takes

place at the end of the singular phase is from uσ to 0, y(t)
will increase and there should be a subsequent switch from

0 to 1 which is impossible with y(t) > yσ . If the switch that

takes place at the end of the singular phase is from uσ to 1,

y(t) will decrease all the time between tσ1 and T , which is

in contradiction with the fact that we had y(0) > yσ.

The only potential optimal control in that family is there-

fore u(t) = 1 for all times. Using the expressions computed

previously, this control can be a candidate optimal control

law only if y0 = y0min as we have seen earlier and the

complete dynamics should satisfy:

λ̄ȳ

(

µ̄

1 + ȳ
− r − 1

)

+ ȳ = λ0y0

(

µ̄

1 + y0
− r

)

(26)

ȳ = y0e
(r+1)(T−T̄ ) (27)

λ0 = λ̄e(r+1)(T−T̄ ) − e(r+1)(T−T̄ ) − 1

r + 1
(28)

1
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Fig. 3. Different optimal patterns: (A) ν̄ = 14, (B) ν̄ = 36, (C) ν̄ = 64;
ρ = 5, Dmax = 12, κ = 1, T = 1, T̄ = T/2. Red: u = 0, Blue:
u = 1, Green: intermediate control u ∈ [0, 1]. Magenta line indicates the
level x = κyσ (see (8))

with λ0 < 1 and λ̄ < 1.

IV. BIFURCATION ANALYSIS

In this section, we will consider fixed values of all

parameters except of ν̄ and ρ. We build a bifurcation diagram

for these two parameters by identifying in which region no

solution is possible (where (10) is not satisfied, it is below

the solid black line on Fig. 1), and where the optimal solution

is bang-singular-bang (Fig. 1, inside the blue curve), bang-

bang (Fig. 1, outside the blue curve and above the solid black

line), and constant at value 1 (see Fig. 2). But the last case is

only realized for extremely large values of ν̄. We see that the

region where singular control can exist is smaller than what is

defined by condition (21). This is due to the fact that, though

the singular control is possible, there is not enough time for

the control to reach that level (see Fig. 3(C)). For larger

values of ν̄, no singular control is possible and the optimal

solution in the light region goes toward the equilibrium

corresponding to u = 1 (see Fig. 3(A)). In that case, as well

as in the bang-singular-bang case, the solutions go to the

optimal solution of the constant light problem (Fig. 3(B)).
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V. CONCLUSIONS

We have shown that, because of the day-night constraint,

the productivity rate cannot be as high as it could have

been without it. However, when the maximal growth rate

is sufficiently larger than the respiration rate, we manage

to have a temporary phase where the productivity rate is at

or near this level. The maximal harvesting at the end of the

light phase and at the beginning of the dark phase minimizes

the biomass during the dark phase and, consequently, the

net respiration. If the maximal growth rate is very large,

the optimal solution consists in constantly applying maximal

control because the biomass that is built-up in the light phase

needs to be harvested even during the night.
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Chapter 4

Competition outcome

prediction and control for

selecting species of interest

Since Darwin’s work, competition has become one of the main topics in ecology.
In "On the Origin of Species by Means of Natural Selection, or the Preservation
of Favoured Races in the Struggle for Life" [10], page 102, he was expressing the
competitive exclusion principle quite clearly:

" Owing to the high geometrical rate of increase of all organic beings,
each area is already fully stocked with inhabitants; and it follows from
this, that as the favoured forms increase in number, so, generally,
will the less favoured decrease and become rare. Rarity, as geology
tells us, is the precursor to extinction. We can see that any form
which is represented by few individuals will run a good chance of
utter extinction, during great fluctuations in the nature of seasons,
or from a temporary increase in the number of its enemies. But we
may go further than this; for, as new forms are produced, unless we
admit that specific forms can go on indefinitely increasing in number,
many old forms must become extinct." "

Darwin’s work was an impressive demonstration of this principle, by the accu-
mulation of a collection of examples.

Since then, many researchers have tried to apprehend this principle by dif-
ferent means. In 1934, Gause [17] opened the way for a methodology made of
both mathematics and experiments:

" Experimental researches will enable us to understand the mecha-
nism of the elementary process of the struggle for existence, and we
can proceed to the next step: to express these process mathematically.
As a result we shall obtain coefficients for the struggle for existence
which can be exactly measured. "

The theoretical result [1] in a competition between several species each rep-
resented by Monod model, states that in a pure competition for one limiting
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nutrient in a chemostat, the species which needs the lower nutrient concen-
tration to be at equilibrium will win the competition and exclude the others
from the environment. A striking point about this result is that it permits to
make predictions on the result of a competition, only by a priori knowledge of
each species nutrient concentration at equilibrium in a monospecific chemostat.
This latter can be determined in mono-specific chemostat cultures, so that the
competition outcome can be predicted before the real competition experiment.
This result was later extended to the more complex Droop competition model
with several species, where the minimal nutrient subsistence concentration was
also the criteria for winning the competition [25]. Based on these results, the
pessimization principle of Adaptive dynamics states [12]:

" mutation and natural selection lead to a deterioration of the en-
vironmental condition, a Verlenderung. We end up with the worst
of all possible environment (where the nutrient concentration is the
lowest). "

This result was validated experimentally by Hansen and Hubbel [22] with two
bacterial species, by [44] with two microalgal species, and finally this theoretical
behavior was also confirmed in a lake [43], where limitations by phosphate or
silicate led to the winning of species with lowest phosphate or silicate equilibrium
concentrations.

Meanwhile, theories where developed to explain the "paradox" of phytoplank-
ton species coexistence, introduced by Hutchinson [27]:

" The problem that is presented by the phytoplankton is essentially
how it is possible for a number of species to coexist in a relatively
isotropic or unstructured environment all competing for the same
sort of materials "

Many explanations were found [46], among which biomass-dependence on growth,
represented in the Contois model [9], which enables the coexistence of an in-
definite number of species on one substrate [19, 32]. This result opens the
way for new considerations, where the competitive exclusion and pessimization
principles can be explored.

The first paper presented here generalizes the three previous theoretical com-
petition results demonstrated on the Monod [1], Droop [41] and Contois [19]
models. By studying a mixed competition with species represented by the three
models (some Monod, some Droop, some Contois), we show how the pessimiza-
tion principle can be revisited.

Then we explore another aspect of competition: instead of predicting compe-
tition, we propose new ways to control and modify its outcome. The experiments
of Hansen and Hubbel [22] were not only a demonstration that mathematical
models enable to predict the outcome of the struggle for existence, but that,
by changing the dilution rate, it is possible to change the species that wins
the competition, or even to force a coexistence between two species. Thus, it
became possible to control competition in a chemostat by using the dilution
rate. The second paper of this chapter gives new tracks in this direction, for a
competition between species in the Droop model. By controlling the chemostat
into a turbidostat mode (where biomass is kept constant), and by forcing the
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substrate concentration to be periodic, we show that new competitive criteria
arise.

The last paper applies the same methodology to anaerobic digestion for
wastewater treatment and methane production, in the case of a reactor’s start-
up. Start-up in an anaerobic process is a long phase, during which more than 300
bacteria species settle the reactor and build a biofilm. Thus, the species favoured
during start-up may have a strong impact on the ecosystem’s performance.
That is why we propose, using a previously developed model in two steps [6]
(acidification and methanization), to control the competition during this phase
in order to select the most efficient species.
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Abstract. Resource-based competition between microorganisms species in
continuous culture has been studied extensively both experimentally and theo-
retically, mostly with Monod ”constant yield”, Droop ”variable yield”, and
Contois ”biomass dependent” models. In Monod or Droop model with N
species, with one limiting substrate and under constant controls, the theo-
retical studies [1, 2, 3] indicated that competitive exclusion occurs: only one
species wins the competition and displaces all the others. The winning species
expected from theory is the one with the lowest ”substrate subsistence con-
centration” s

⋆, such that its corresponding equilibrium growth rate is equal to

the dilution rate D. This theoretical result was validated experimentally with
microalgae [4] and bacteria [5], and observed in a lake with microalgae [6]. On
the contrary in Contois, theory [7] predicts coexistence between several species.
In this paper we present a generalization of these results by studying a compe-
tition between several generalized Monod, Droop and Contois models, leading
to a coexistence between several Contois species with the best Monod or Droop

competitor, all the other Monod and Droop species being washed out. This
demonstration is based mainly on the study of the substrate concentration’s

evolution caused by competition; it converges towards the lowest subsistence

concentration s
⋆, leading to three different types of competition outcome: 1.

only the Monod / Droop best competitor excludes all other species; 2. only

some Contois species coexist in the chemostat; 3. A coexistence between the

best Monod / Droop species, with one or several Contois species.

1. Introduction.

1.1. The Competitive Exclusion Principle (CEP), an ecological and math-
ematical topic of interest.

”Complete competitors cannot coexist”

This is the formulation chosen by Hardin [8] to describe the Competitive Exclusion
Principle (CEP). According to him, this ambiguous wording ”is least likely to hide
the fact that we still do not comprehend the exact limits of the principle”. But still,
a more precise formulation is given: if several non-interbreeding populations ”do
the same thing” (they occupy the same ecological niche in Elton’s sense [9]) and if

2000 Mathematics Subject Classification. Primary: 92D40, 92D25, 34D23; Secondary: 34A34.
Key words and phrases. competition, competitive exclusion, droop, variable yield model,

monod, ratio-dependent, biomass-dependent, microorganism, microalgae, phytoplankton.

1

84



2 PIERRE MASCI, FREDERIC GROGNARD, ERIC BENOÎT AND OLIVIER BERNARD

they occupy the same geographic territory, then ultimately the most competitive
species will completely displace the others, which will become extinct.

Darwin was already expressing this principle when he spoke about natural selec-
tion ([10] p.71 and 102). Scriven described and analyzed his work in these words:
”Darwin’s success lay in his empirical, case by case, demonstration that recogniz-
able fitness was very often associated with survival. [...] Its great commitment and
its profound illumination are to be found in its application to the lengthening past,
not the distant future: in the tasks of explanation, not in those of prediction” [11].

Since the work of Darwin, men have tried to apprehend the limits of the principle
in different context and by different means. The ”paradox” of phytoplantkon species
coexistence was introduced by Hutchinson [12]: ”The problem that is presented by
the phytoplankton is essentially how it is possible for a number of species to coexist
in a relatively isotropic or unstructered environment all competing for the same sort
of materials”. The task we are interested in, in this paper, is a task of prediction:
with the tools of mathematical modelization and analysis we consider the question
”what are the mechanisms leading to competitive exclusion or coexistence, and to
what competition outcome do they lead?”. In the next sections we present how
mathematical models have shown their appropriateness for predicting the outcome
of competition, in the case of chemostat-controlled microcosms.

1.2. The chemostat, a tool for studying the CEP in microcosms. ”Micro-
bial systems are good models for understanding ecological processes at all scales of
biological organization, from genes to ecosystems” [13]. The chemostat is a device
which enables to grow microorganisms under highly controlled conditions. It con-
sists of a vessel crossed by a flow of water, where nourishing nutrients are provided
by the input flow, whereas both nutrients and microorganisms are evacuated by
the output flow. To keep a constant volume in the vessel, these two flows are kept
equal. In this paper we consider that the following conditions are imposed in the
chemostat: the medium is well mixed (homogeneous); only one substrate is limiting
for all the species, whose only (indirect) interaction is the substrate uptake; the
environmental conditions (temperature, pH, light, ...) are kept constant, and so are
the dilution rate D, corresponding to the input/output flow of water, and the input
substrate concentration sin. Figure 1 represents such a chemostat.

Figure 1. A chemostat, which enables to grow microorganisms
under highly controlled conditions. The input/output flow of water
is D, and the input substrate concentration is sin
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MICROORGANISM COMPETITION: EXCLUSION AND COEXISTENCE 3

The chemostat has been used to study the CEP since the beginning of the XXth

century [14], and its experimental use has often been coupled with mathematical
models [2].

1.3. Simplistic mathematical models for microorganisms growth in a chemo-
stat, and previous theoretical results on competition.

1.3.1. Substrate ”S-model” (generalized Monod model). To predict the growth of
microorganisms species in a chemostat, Monod developed a first model [15], where
the growth rates of the biomasses xi (i ∈ {1, · · · , Nx} for a competition between
Nx species) depend on the extracellular substrate concentration s. In the classical
Monod model the growth rates αi(s) are Michaelis-Menten functions

αi(s) =
s

s + Ks
i

αm
i

where αm
i are the maximum growth rates in substrate replete conditions, and Ks

i

are the half saturation constants. In this paper we consider a generalized Monod
model called ”S-model” (Substrate-model), by using the wider class of functions
verifying Hypothesis 1.

Hypothesis 1. S-model:
αi(s) are C1, increasing and bounded functions such that αi(0) = 0.

We note αm
i the supremum of the growth rate:

sup
s≥0

αi(s) = αm
i > 0

The S-species dynamics write

ẋi = (αi(s) − D)xi

with s, xi ∈ R
+ for i ∈ {1, · · · , Nx} and D ∈ R

+
∗ .

(1)

In this model the substrate uptake is proportional to the biomass growth for each

species, so that the total substrate uptake per time unit will be
∑Nx

i=1 αi(s)
xi

ai
.

1.3.2. Quota ”Q-model” (generalized Droop model). Some microorganisms, like phy-
toplankton species, are able to uncouple substrate uptake of nutrients from the
growth associated to photosynthesis [16]. This capacity to store nutrients can pro-
vide a competitive advantage for the cells that can develop in situations where
substrate and light (necessary for phytoplankton growth) are rarely available con-
comitantly. This behaviour results in varying intracellular nutrient quota: it is
the proportion of assimilated substrate per unit of biomass zk; it can be expressed
for instance in mg[substrate]/mg[biomass]. Droop [17] developed a model where
these internal quotas are represented by new dynamic variables qk (denoted ”cell
quota”). The substrate uptake rates ρk(s) are assumed to depend on the extracel-
lular substrate while the biomass growth rates γk(qk) depend on the corresponding
cell quota.

In the classical Droop model the functions have specified forms. Uptake rates
are Michaelis-Menten functions (2) of the substrate concentration:

ρk(s) =
s

s + Ks
k

ρm
k (2)
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4 PIERRE MASCI, FREDERIC GROGNARD, ERIC BENOÎT AND OLIVIER BERNARD

and the growth rates are Droop functions (3) of the cell quotas:

γk(qk) =

{ (

1 −
Q0

k

qk

)

γ̄k if qk ≥ Q0
k

0 if qk < Q0
k

(3)

with ρm
k and γ̄k the maximal uptake and growth rates; Ks

k represent the half satura-
tion constants, and Q0

k the minimal cell quota. In this paper we consider the wider
class of Q-models (Quotas models) verifying Hypothesis 2, so that it can encompass,
among others, the classical Droop formulation [17] as well as the Caperon-Meyer
model [18].

Hypothesis 2. Q-model:

• ρk(s) are C1, increasing and bounded functions such that ρk(0) = 0
• γk(qk) are C1, increasing and bounded functions for qk > Q0

k > 0. When
qk ≤ Q0

k, γk(qk) = 0.

It directly ensues from Hypothesis 2 that fk(qk) = γk(qk)qk are increasing func-
tions (for qk > Q0

k) which are onto R
+
⋆ , so that the inverse functions f−1

k are defined
on R

+
⋆ .

We denote ρm
k and γ̄k the supremal uptake and growth rates:

sups≥0 ρk(s) = ρm
k > 0

supqk≥Q0

k
γk(qk) = γ̄k > 0

The Q-species dynamics write

q̇k = ρk(s) − fk(qk)
żk = (γk(qk) − D)zk

with s, qk, zk ∈ R
+ for k ∈ {1, · · · , Nz} and D ∈ R

+
∗ .

(4)

The substrate uptake per time unit is
∑Nz

k=1 ρk(s)zk

This model has been experimentally shown to be better suited for micro-algae
dynamic modelling than the Monod model ([19]) that implicitly supposes that the
intracellular quota is simply proportional to the substrate concentration in the
medium. The stability of the Q-model has been extensively studied in the mono-
specific case ([20, 21, 22]).

1.4. Previous demonstrations of the CEP S- and Q-models. The advantage
of the S- and Q-models is that their relative simplicity allows a mathematical anal-
ysis. The analyses of the S-model with Nx competing species [1], and of the Droop
model with 2 species [2] and then recently with Nz species [3] led to a confirmation
of the CEP in the chemostat, and to a prediction on ”who wins the competition”,
or ”what criterion should a species optimize to be a good competitor”. In both
cases, we have

Theorem 1.1. If environmental conditions are kept constant and the competition
is not controlled (D and sin remain constant) in a chemostat, then the species with
lowest ”substrate subsistence concentration” sx⋆

i (or sz⋆
k ), such that its corresponding

equilibrium growth rate is equal to the dilution rate D, is the most competitive and
displaces all the others.

A striking point about this result is that it permits to make predictions on the re-
sult of a competition, only by a priori knowledge of the species substrate subsistence
concentrations sx⋆

i (or sz⋆
k ). This latter can be determined in monospecific-culture

chemostat, so that the competition outcome can be determined before competition
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MICROORGANISM COMPETITION: EXCLUSION AND COEXISTENCE 5

really occurs. Several experimental validations where carried out with microalgae
[4] and bacteria [5]. This theoretical behaviour was also confirmed in a lake [6],
where limitations by phosphate or silicate led to the winning of species with lowest
phosphate or silicate subsistence concentrations.

1.4.1. Substrate-Biomass ”SB-model” (generalized Contois model). In cases of in-
traspecific competition for space (spatial heterogeneity, flocculations/deflocculations
phenomena [23]) or substrate, some bacterial or algal species have biomass-dependent
growth rates. Contois model [24] represents such dynamics by using more complex
growth functions where the growth rates depend not only on the substrate concen-
tration, but also on the species biomass concentration yj (j ∈ {1, · · · , Ny}):

βj(s, yj) =
s

Ks
j yj + s

βm
j

In this paper we consider the wider class of ”SB-model” (Substrate-Biomass model)
verifying the following hypotheses:

Hypothesis 3. SB-model :
βj(s, yj) are C1 functions on R

+ × R
+ \ {(0, 0)}, increasing and bounded functions

of s (for yj > 0), and decreasing functions of yj (for sj > 0) such that ∀yj ∈
R

+
∗ , βj(0, yj) = 0 and ∀s ∈ R

+, lim
yj→+∞

βj(s, yj) = 0

We also need to add the following technical hyposthesis, which is verified by the
classical Contois function:

Hypothesis 4.
∂

∂yj

(βj(s, yj)yj) > 0

We notice that the Contois growth function is undefined in (0, 0), and that Hy-
pothesis 3 has been built so that this property can (but does not have to) be retained
by the generalized β function. All other properties imposed by Hypotheses 3 and 4
are satisfied by the original Contois growth-rate.

We denote βm
j (yj) the supremal growth rates for biomass concentration yj :

sup
s≥0

βj(s, yj) = βm
j (yj)

so that the SB-species dynamics write

ẏj = (βj(s, yj) − D)yj

with s, yj ∈ R
+ for j ∈ {1, · · · , Ny} and D ∈ R

+
∗ .

(5)

In this model, like in the S-model, the substrate/biomass intracellular quotas bj

are supposed to be constant for each species, so that the substrate uptake rates are
proportional to the growth rates with a factor 1/bj .

1.4.2. Coexistence result for competition between SB-species. Competition between
several SB-species was studied [7] and led to a coexistence at equilibrium with the
substrate at a level sy⋆ depending on the input substrate concentration sin and the
dilution rate D. The species share the available substrate. To be more precise we
must define the ”s0-compliance” concept: s0-compliant species are the species able
to have a growth rate equal to the dilution rate D with a substrate concentration
s0. The results of [7] show that all the ”sy⋆-compliant” species coexist in the reactor
at equilibirum, and all the others are washed out, as they cannot grow fast enough
with substrate concentration sy⋆.
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6 PIERRE MASCI, FREDERIC GROGNARD, ERIC BENOÎT AND OLIVIER BERNARD

Definition 1.2. A species xi, yj or zk is s0-compliant if it is able to reach a growth
rate equal to the dilution rate D with a substrate concentration s0.

1.4.3. Competition and coexistence - towards a new paradigm. Following these re-
sults an interrogation arises:

≪ What would be the result of a competition between ”competitive” S- or
Q-species, and ”coexistive” SB-species? Competitive exclusion? Coexistence? ≫

The aim of this paper is to provide an answer to this question, and to give insight
into the mechanisms forcing the outcome of such a competition. This answer leads
to a broader view and understanding of competitive exclusion and coexistence mech-
anisms, following the words of Hardin [8]: ”To assert the truth of the competitive
exclusion principle is not to say that nature is and always must be, everywhere,”red
in tooth and claw.” Rather, it is to point out that every instance of apparent co-
existence must be accounted for. Out of the study of all such instances will come
a fuller knowledge of the many prosthetic devices of coexistence, each with its own
costs and its own benefits.”

1.5. A generalized model for competition between several microorgan-
isms species growing according to different kinetic models. The general-
ized model for competition between all S-, Q- and SB-species is an aggregation of
these models, which alltogether give the following substrate dynamics, subject to
substrate input, output, and uptake rates:

ṡ = D(sin − s) −

Nx
∑

i=1

αi(s)
xi

ai

−

Ny
∑

j=1

βj(s, yj)
yj

bj

−

Nz
∑

k=1

ρk(s)zk (6)

The parameters related to the nutrient flow are the dilution rate D > 0 and the
input substrate concentration sin > 0, which are both assumed to be constant.

To simplify notations we can remark that this system can be normalized with
ai = bj = 1, when considering the change of variables x̃i = xi

ai
and ỹj =

yj

bj
(note

that all the hypotheses are still satisfied). We obtain system (7) where variables xi

and yj are now expressed in substrate units.










































ṡ = D(sin − s) −

Nx
∑

i=1

αi(s)xi −

Ny
∑

j=1

βj(s, yj)yj −

Nz
∑

k=1

ρk(s)zk

ẋi = (αi(s) − D)xi

ẏj = (βj(s, yj) − D)yj

żk = (γk(qk) − D)zk

q̇k = ρk(s) − fk(qk)

with fk(qk) = γk(qk)qk

and s, qk ∈ R
+, sin, D ∈ R

+
∗ .and xi(0), yj(0), zk(0) ∈ R

+
∗ for i ∈ {1, · · · , Nx},

j ∈ {1, · · · , Ny}, k ∈ {1, · · · , Nz}
(7)

Note that the results obtained in this paper apply also on the simple S-only, Q-
only, and SB-only competition models, or on a model with two of these three kind
of species.

1.6. Other coexistence mechanisms, and competition control. This intro-
duction wouldn’t be complete without a short review of what has been done con-
cerning other coexistive models, or the control of competition.
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MICROORGANISM COMPETITION: EXCLUSION AND COEXISTENCE 7

Following the question arised by Hutchinson [12] concerning the ”paradox of the
phytoplankton”, a large amount of work has been done to explore the mechanisms
that enable coexistence, mainly for models derived from the Monod model. It has
been shown to occur in multi-resource models [25, 26], in case of non instanta-
neous growth [27], in some turbidity operating conditions [28], a crowding effect
[29], or variable yield [30] (not in the Droop sense). [31] and [32] also presented
several mechanisms which can mitigate the competition between microorganisms
and promote coexistence.

In other papers ([33], [34] and [35]), controls were proposed to ”struggle against
the struggle for existence” (that is, to enable the coexistence of complete competi-
tors). These controls indicate how to vary the environmental conditions in order
to prevent the CEP from holding : some time varying or state-depending environ-
mental conditions can enable coexistence. [36] propose a theoretical way of driving
competition, that is, of choosing environmental conditions for which the competi-
tiveness criterion changes.

2. Mathematical preliminaries.

2.1. The variables are all bounded. Throughout this paper we study the evo-
lution of one solution of system (7) with initial condition (s(0), x1(0), . . . , xNx

(0),
y1(0), . . . , yNy

(0), q1(0), . . . , qNz
(0), z1(0), . . . , zNz

(0)) where xi(0) > 0, yj(0) > 0,
zk(0) > 0. In this section we study the boundedness of the variables. First, the
variables all stay in R

+, as their dynamics are non negative when the variable is
null.

Then we know that the biomasses remain positive:

Lemma 2.1.
∀i ∈ {1, · · · , Nx}, xi(0) > 0 ⇔ ∀t, xi(t) > 0
∀j ∈ {1, · · · , Ny}, yj(0) > 0 ⇔ ∀t, yj(t) > 0
∀k ∈ {1, · · · , Nz}, zk(0) > 0 ⇔ ∀t, zk(t) > 0

Proof. Because of the lower bounds on the dynamics (ẋi > −Dxi for the S-species
for example), the biomasses are lower bounded by exponentials decreasing at a rate
D:

∀t, xi(t) > xi(0)e−Dt > 0

Then, to upperbound the variables we define

M = s +

Nx
∑

i=1

xi +

Ny
∑

j=1

yj +

Nz
∑

k=1

qkzk

the total concentration of intra and extracellular substrate in the chemostat. The
computation of its dynamics gives

Ṁ = D(sin − M) (8)

so that M converges exponentially towards sin. This linear convergence implies the
upper boundedness of M :

∀t ≥ 0, M(t) ≤ Mm = max(M(0), sin)
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Then s, xi,yj and qkzk are also upper bounded:

∀t ≥ 0, s(t) ≤ M(t) ≤ Mm

∀i ∈ {1, · · · , Nx},∀t ≥ 0, xi(t) ≤ M(t) ≤ Mm

∀j ∈ {1, · · · , Ny},∀t ≥ 0, yj(t) ≤ M(t) ≤ Mm

∀k ∈ {1, · · · , Nz},∀t ≥ 0, qk(t)zk(t) ≤ M(t) ≤ Mm

(9)

We are now interested in the boundedness of the Q-model’s cell quotas qk and
biomasses zk

Lemma 2.2. ∀k, the qk variables are upper bounded by max(f−1
k (ρk(Mm)), qk(0))

Proof. For any qk > f−1
k (ρk(Mm)) there is an upper bound on q̇k:

q̇k = ρk(s) − fk(qk) ≤ ρk(s) − ρk(Mm) ≤ 0

so that s ≤ Mm implies that qk cannot increase if it is higher than f−1
k (ρk(Mm)).

Lemma 2.3. ∀k, the zk variables are upper bounded by

zm
k = max

(

Mm

γ−1
k (D)

, zk(0)

)

(10)

with the convention that γ−1
k (D) = +∞ if γ̄k ≤ D

Proof. As qkzk is upper bounded by Mm, there is an upper bound on żk

żk = (γk(qk) − D) zk ≤

(

γk

(

Mm

zk

)

− D

)

zk

so that zk cannot increase if it is larger than Mm

γ−1

k
(D)

.

Lemma 2.4. After a finite time t0 there exists a lower bound ŝ > 0 for s.

Proof. With hypothesis 4, and as the biomasses are upper bounded, we see that ṡ
can be lower bounded

ṡ ≥ D(sin − s) −

Nx
∑

i=1

αi(s)x
m
i −

Ny
∑

j=1

βj(s, y
m
j )ym

j −

Nz
∑

k=1

ρk(s)zm
k = φ(s)

where φ is a decreasing function of s, with φ(0) = Dsin and φ(sin) < 0. By
continuity of the φ function, there exists a positive value ŝ < sin such that φ(ŝ) =
Dsin/2. The region where s ≥ ŝ is therefore positively invariant. Also s is increasing
for any value lower than ŝ with ṡ ≥ Dsin/2 so that s(t) reaches ŝ after some finite
time t0.

Remark 1. This lemma eliminates any problem that could have arisen from the
problem of definition of βj(s, yj) in (0, 0). After the finite time t0, no solution can
approach this critical value anymore.

Lemma 2.5. There exists a finite time t1 ≥ 0 such that for any time t ≥ t1,
qk(t) ∈ (Q0

k, Qm
k ) with Qm

k = f−1
k (ρm

k ).

Proof. If qk(t) ≥ Qm
k , then we have

q̇k ≤ ρk(s) − fk(Qm
k ) ≤ ρk(Mm) − ρm

k < 0

for all qk ∈ [Qm
k , qk(0)], so that qk(t) < Qm

k in finite time t1 and for any t ≥ t1.
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If qk(t) ≤ Q0
k with t > t0 (defined in Lemma 2.4), then we have that

q̇k = ρk(s) ≥ ρk(ŝ) > 0

for all qk ∈ [qk(t0), Q
0
k], so that qk(t) > Q0

k in finite time t1 and for any t ≥ t1.

This lemma is biologically relevant since minimum and maximum cell quotas are
indeed known characteritics of microalgae species. For the rest of this paper we will
consider that all the qk are in the (Q0

k, Qm
k ) intervals.

Remark 2. In the classical case of Michaelis-Menten uptake rates (2) and Droop
growth rates (3) we have:

Qm
k = Q0

k +
ρm

k

γ̄k

2.2. From a ”substrate” point of view... (How substrate concentration
influences the system). Since model (7) is of dimension 1 + Nx + Ny + 2Nz,
it is hard to handle directly. In this section we introduce functions which clarify
how the qk and yj dynamics are influenced by s. This will enable us to focus on
the substrate concentration evolution, and thus reduce the dimension in which the
system needs to be analyzed.

2.2.1. Internal cell quotas qk are driven by the substrate concentration s. It is con-
venient to introduce the functions

Qk(s) = f−1
k (ρk(s)) (11)

and

Sz
k(qk) = Q−1

k (qk) (12)

With Hypothesis 2 it is easy to check that Qk is defined, continuous, increasing from
(0,+∞) to (Q0

k, Qm
k ), so that Sz

k is also well defined, continuous and increasing from
(Q0

k, Qm
k ) to (0,+∞). The q̇k equation can then be written

q̇k = fk(Qk(s)) − fk(qk) (13)

or

q̇k = ρk(s) − ρk(Sz
k(qk)) (14)

Since fk(qk) and ρk(s) are increasing functions, we see how the dymanics of qk is
influenced by the sign of Qk(s) − qk (or s − Sz

k(qk)):

sign(q̇k) = sign(Qk(s) − qk) = sign(s − Sz
k(qk)) (15)

For a given constant substrate concentration s, the equilibrium value of qk is Qk(s).
Conversely, s must be equal to Sz

k(qk) for qk to be at equilibirum.
Function Qk realizes a mapping from the substrate axis to the cell quota axis.

Functions Sz
k realizes a mapping from the cell quota axis to the substrate axis. An

illustration of the cell quotas behaviour is presented in Figure 2.
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Figure 2. Two equivalent statements: ”qk goes towards Qk(s)”
and ”Sz

k(qk) goes towards s” (see the sign Property (15)). The
latter permits a one dimensional view of the s and qk dynamics, on
the substrate axis.

2.2.2. How the biomasses yj are driven by the substrate concentration s. For the
SB-species, it is also convenient to introduce functions Yj(s):

if βj(s, 0) > D, then Yj(s) is defined by βj(s, Yj(s)) = D
if βj(s, 0) ≤ D, then Yj(s) = 0

(16)

and the inverse Sy
j (yj) functions:

∀yj > 0,

{

if ∃s0 s.t. βj(s0, yj) > D, then Sy
j (yj) is defined by β(Sy

j (yj), yj) = D

else, Sy
j (yj) = +∞

Sy
j (0) = infyj>0 Sy

j (yj)

(17)
The values of s such that Yj(s) = 0 correspond to values where the substrate is
too low for yj to survive (yj is not s-compliant at these values). The values of yj

such that Sy
j (yj) = +∞ correspond to levels of biomass yj that cannot be sustained

independently of the substrate level.
With Hypothesis 3 it is easy to check that Yj is defined, continuous, increasing

from
(

Sy
j (0),+∞

)

to

(

0, sup
s≥0

Yj(s)

)

, so that Sy
j is also well defined, continuous and

increasing from

(

0, sup
s≥0

Yj(s)

)

to
(

Sy
j (0),+∞

)

.

The ẏj equation can then be written

ẏj = (βj(s, yj) − βj(s, Yj(s)))yj (18)

or

ẏj = (βj(s, yj) − βj(S
y
j (yj), yj))yj (19)

Thus with yj positivity (see Lemma 2.1) we see how the dymanics of yj are influ-
enced by the sign of Yj(s) − yj (or s − Sy

j (yj)):

sign(ẏj) = sign(Yj(s) − yj) = sign(s − Sy
j (yj)) (20)

For a given constant substrate concentration s, the equilibrium value of yj is Yj(s).
Conversely, s must be equal to Sy

j (yj) for yj to be at equilibirum.
Function Yj realizes a mapping from the substrate axis to the cell quota axis.

Functions Sy
j realizes a mapping from the cell quota axis to the substrate axis. An

illustration of the biomasses behaviour is presented in Figure 3.
Finally, with Figures 2 and 3 we obtain a one dimensional view of the s, qk and yj

dynamics on the substrate axis. The demonstration presented in this paper ensues
mainly from this one dimensional view of the system.
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Figure 3. Two other equivalent statements: ”yj goes towards
Yj(s)” and ”Sy

j (yj) goes towards s” (see the sign Property (20)).
The latter permits a one dimensional view of the s and yj dynamics,
on the substrate axis.

2.3. The convergence of s is related to the convergence of qk and yj.

Lemma 2.6. In system (7) the five following properties are equivalent for any
s0 > minj(S

y
j (0)):

i) limt→+∞ s(t) = s0

ii) ∀i, limt→+∞ qk(t) = Qk(s0)
iii) ∃i, limt→+∞ qk(t) = Qk(s0)
iv) ∀j, limt→+∞ yj(t) = Yj(s0)
v) ∃j, limt→+∞ yj(t) = Yj(s0) > 0

When limt→+∞ s(t) = s0 ≤ minj(S
y
j (0)), all the qk(t) converge to Qk(s0) and the

yj(t) to Yj(s0) = 0.

Proof. In the case s0 > minj(S
y
j (0)) we successively demonstrate five implications.

i => ii and i => iv: straightforward with the attraction (13) of qk by Qk(s), and
the attraction (18) of yj by Yj(s). Note that yj(0) cannot be null (Lemma 2.1).
ii => iii and iv => v: trivial implications.
iii => i (and v => i): we equivalently demonstrate that the simultaneous conver-
gence of qk (resp. yj) and non convergence of s lead to a contradiction.

Figure 4. Visual explanation of the demonstration of Lemma 2.6.
s is repeatedly escaping a η-interval around s0 (•). Because |ṡ| is
upper bounded by B, then s is out of the η/2-interval during non
negligible time intervals (dashed lines represent |ṡ| = B). qk (resp.
yj) is repeatedly attracted away from Qk(s0) (resp. Yj(s0)) by
Qk(s) (resp. Yj(s)) (arrows)
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If s does not converge towards s0, it is repeatedly out of a [s0−η, s0 +η] interval,
denoted η-interval:

∃η > 0,∀t > 0,∃ts > t, |s(ts) − s0| > η

In Figure 4, ts time instants are represented by •.
We can then use the upper-bounds (9) and (10) on s, xi, yj and zk to show the

boundedness of the s dynamics

D(sin − Mm) −

Nx
∑

i=1

αm
i xm

i −

Ny
∑

j=1

βm
j (0)ym

j −

Nz
∑

k=1

ρm
k zm

k ≤ ṡ ≤ Dsin (21)

so that

|ṡ| ≤ B

with B = max



Dsin,−D(sin − Mm) +

Nx
∑

i=1

αm
i xm

i +

Ny
∑

j=1

βm
j (0)ym

j +

Nz
∑

k=1

ρm
k zm

k



.

Then, every time s is out of the η-interval, it must also have been out of the η/2-
interval during a time interval of minimal duration A(η) = 1

B
η
2 . (For a visual

explanation see the dashed lines of Figure 4, representing the increase caused by
|ṡ| = B).

If for some ts we have s(ts) ≥ s0 + η, we then have that s(ts) ≥ s0 + η/2 during
the whole time-interval [ts − A(η), ts]. We can thus lower bound the dynamics of
qk (resp. yj) during that time-interval:

q̇k = fk(Qk(s)) − fk(qk)
> fk(Qk(s0 + η/2)) − fk(qk)

and
ẏj > (βj(s0 + η/2, yj) − D)yj

= (βj(s0 + η/2, yj) − βj(s0 + η/2, Yj(s0 + η/2)))yj

Now the convergence of qk to Qk(s0) (resp. yj to Yj(s0)) is defined as

∀ǫ > 0,∃tq > 0,∀t > tq, |qk(t) − Qk(s0)| < ǫ(resp. |yj(t) − Yj(s0)| < ǫ) (22)

since we can pick ǫ such that ǫ < Q(s0 + η/4) − Q(s0) (resp. ǫ < min(Yj(s0 +
η/4)−Yj(s0), Yj(s0)−Yj(s0 − η/4))), we then have, for t > tq, that qk(t) < Q(s0 +
η/4) (resp. Yj(s0 − η/4) < yj(t) < Yj(s0 + η/4)). Taking our ts larger than the
corresponding tq + A(η), we then have for all time t ∈ [ts − A(η), ts]

q̇k > fk(Qk(s0 + η/2)) − (fk(Qk(s0) + ǫ))
> fk(Qk(s0 + η/2)) − fk(Qk(s0 + η/4)) = Cq(η) > 0

and
ẏj > (βj(s0 + η/2, Yj(s0) + ǫ) − βj(s0 + η/2, Yj(s0 + η/2)))yj

> (βj(s0 + η/2, Yj(s0 + η/4)) − βj(s0 + η/2, Yj(s0 + η/2)))yj

> (βj(s0 + η/2, Yj(s0 + η/4)) − βj(s0 + η/2, Yj(s0 + η/2)))Yj(s0 − η/4)
= Cy(η) > 0

with Cq(η) > 0 since fk is an increasing function of qk, and Cy(η) > 0 since βj is a
decreasing function of yj

We then define

C(η) = min (Cq(η), Cy(η))

If we then choose ǫ such that ǫ < C(η)·A(η)
2 , then |qk(ts) − qk(ts − A(η))| > 2ǫ

(resp. |yj(t
s) − yj(t

s − A(η))| > 2ǫ), and we see that the increase of qk (resp. yj)
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makes it eventually get out of the ǫ-interval around Qk(s0) (resp. Yj(s0)). This is
a contradiction, so that implication iii => i (resp. v => i) holds.

Alternatively, if for some ts we have s(ts) ≤ s0 − η, then we can upper bound
the dynamics of qk (resp. yj) during the [ts − A(η), ts] time-interval:

q̇k < fk(Qk(s0 − η/2)) − fk(qk)
and
ẏj < (βj(s0 − η/2, yj) − D)yj

= (βj(s0 − η/2, yj) − βj(s0 − η/2, Yj(s0 − η/2)))yj

and the same arguments hold, with

q̇k < fk(Qk(s0 − η/2)) − fk(Qk(s0) − η/4) = C(η) < 0
and
ẏj < (βj(s0 − η/2, Yj(s0 − η/4)) − βj(s0 − η/2, Yj(s0 − η/2)))Yj(s0 + η/4)
= C(η) < 0

and finally ǫ < −C(η)·A(η)
2 which causes the contradiction.

2.4. The equilibria correspond to the substrate subsistence concentra-
tions. In this section we present the equilibria of the generalized competition model
(7). The first equilibrium of this model corresponds to the extinction of all the mi-
croorganisms species:

E0 = (sin , 0, . . . , 0 , 0, . . . , 0 , 0, . . . , 0 , Q1(sin), . . . , QN (sin))

This equilibrium is globally attractive if the input substrate concentration sin is
not high enough for the species’ growth to compensate their withdrawal of the
chemostat by the output flow D, that is if ∀i, αi(sin) ≤ D and ∀j, βj(sin, 0) ≤ D
and ∀k, γk(Qk(sin)) ≤ D (proof of this result is easy and we omit it; for getting
a clear idea of the demonstration, see [1] and [2] for the S-only and Q-only cases).
We suppose that we are not in this situation through the following hypothesis:

Hypothesis 5. We assume that one of the following condition is satisfied:

• ∃i, αi(sin) > D
• ∃j, βj(sin, 0) > D
• ∃k, γk(Qk(sin)) > D

This guarantees that, at least for one of the families of species, there exists some
index i, j, k and some associated unique sx⋆

i , sy⋆
j , sz⋆

k < sin (denoted ”subsistence

concentration”) such that

αi(s
x⋆
i ) = D

βj(s
y⋆
j , Yj(s

y⋆
j )) = D with sy⋆

j + Yj(s
y⋆
j ) = sin

γk(Qk(sz⋆
k )) = D

Note that in the SB-model, there exists an infinity of s ∈ [Sy
j (0), sin) verifying

βj(s, Yj(s)) = D. The value sy⋆
j is then the substrate concentration required for

having species j remaining alone in the chemostat at equilibrium. It has to satisfy
sy⋆

j + Yj(s
y⋆
j ) = sin because of (8) that imposes M = s + yj = sin at equilibrium.
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We number these species such that

0 < sx⋆ = sx⋆
1 < sx⋆

2 < . . . < sx⋆
nx

≤ sin

0 < Sy
1 (0) < Sy

2 (0) < . . . < Sy
ny

(0) ≤ sin

0 < sz⋆ = sz⋆
1 < sz⋆

2 < ... < sz⋆
nz

≤ sin

with ∀(i, j, k) ∈ ({1, ..., nx}, {1, ..., ny}, {1, ..., nz}), sx⋆
i 6= Sy

j (0) 6= sz⋆
k

(23)

where nx, ny and nz are the number or S-, SB- and Q-species having a subsistence
concentration smaller than sin for the given D; all other species cannot be positive
at equilibrium. Hypothesis 5 implies that at least one of nx, ny and nz is non-zero.
We denote sx⋆ and sz⋆ the lowest S- and Q- substrate subsistence concentrations.
We also denote sy⋆ the substrate concentration that there would be at equilibrium
if there were only SB-species in the chemostat (see [7]); since it needs to satisfy (8),
it requires

sy⋆ +

ny
∑

j=1

Yj(s
y⋆) = sin

Though the sum of Yj(s
y⋆) spans all the relevant indices, some species might have

Yj(s
y⋆) = 0 because they have sy⋆ < Sy

j (0) < sin. If some nx, ny or nz is zero, we
set the corresponding sx⋆, sy⋆ or sz⋆ to sin because none of the species from their
family can survive at a substrate concentration lower than sin, which is the higher
admissible concentration.

In the previous competitive exclusion studies [1, 2, 7] these quantities were of
primer importance, as they directed the result of competition. Here we show that
the competition outcome is strongly linked to

s⋆ = min(sx⋆, sy⋆, sz⋆)

which is the lowest of all subsistence concentrations. Hypothesis 5 implies that
s⋆ < sin.

We do not consider the case where two subsistence concentrations are equal,
because we suppose that the biological parameters of each species are different.
In his broad historical review about competitive exclusion [8] Hardin wrote: ”no
two things or processes in a real world are precisely equal. In a competition for
substrate, no difference in growth rate or subsistence quota can be so slight as to
be neglected”.

Hypothesis 6. ∀(i, j, k) ∈ ({1, ..., nx}, {1, ..., ny}, {1, ..., nz}), sx⋆
i 6= Sy

j (0) 6= sz⋆
k

The subsistence concentrations and Yj(s) functions are presented in Figure 5. In
this figure, we see that no S- or Q-model species can coexist at equilibrium because
s cannot simultaneously be equal to sx⋆

i and sz⋆
k . On the contrary, SB-species

verifying Hypothesis 5 can support different s value at equilibrium (between Sy
j (0)

and sin), so that there exist equilibria where one S- or Q-model species coexist
with one or several SB-species (see Figure 5 for a graphical explanation). On those
equilibria, only the SB-species verifying

Sy
j (0) < sx⋆

i (resp. Sy
j (0) < sz⋆

k ) (24)

can coexist as they can be at equilibrium at the subsistence concentration of the S-
model (resp. Q-model) species, by having a biomass equal to Yj(s

x⋆
i ) (resp. Yj(s

x⋆
k )).

For these considerations, we can enunciate the following proposition which does
not need to be proved:

Lemma 2.7. For a given s0 substrate concentration, we have
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Figure 5. Subsistence concentrations of the S-model (sx⋆
i ) and

Q-model (sz⋆
k ) species, and equilibrium biomass Yj(s) of the SB-

species, which enable these species to have a growth rate equal
to the dilution rate D, and thus to be at equilibrium. We see
that S- and Q-model species cannot coexist at equilibrium because
they have only one fixed subsistence concentration, and s cannot
be simultaneously equal to several of these concentrations. On the
contrary, SB-species can coexist with others at equilibrium because
they can have a growth equal to D for any s ∈ [Sy

j (0), sin), by

adjusting their biomass concentration to Yj(s) (see definition (16))

• xi is s0-compliant if sx∗
i = s0;

• yj is s0-compliant is Sj(0) < s0;
• zk is s0-compliant if sz∗

k = s0

It ensues that, for the corresponding SB-species we have

Yj(s0) > 0

which means that they can be at positive equilibrium under dilution rate D and
substrate concentration s0. Thus, the s⋆-compliant species are:

• only the s⋆-compliant SB-species, if s⋆ = sy⋆

• x1 and all the s⋆-compliant SB-species, if s⋆ = sx⋆

• z1 and all the s⋆-compliant SB-species, if s⋆ = sz⋆

We now present all these equilibria and their stability in S-, SB- and Q-only sub-
strate competitions.

2.5. S-only equilibria.

Ex
i = (sx⋆

i , 0, . . . , x⋆
i , . . . , 0 , 0, . . . , 0 , 0, . . . , 0 , Q1(s

x⋆
i ), . . . , QNz

(sx⋆
i ))

with x⋆
i = sin − sx⋆

i

each of these S-only equilibria corresponds to the winning of competition by S-
species i; such an equilibrium only exists for i ∈ {0, · · · , nx} (all other species
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cannot survive at a substrate level lower than Sin fot the given D). In a compe-
tition between several S-species, eqilibrium Ex

1 (with lowest substrate subsistence
concentration sx⋆

1 ) is asymptotically globally stable, while all the others are unstable
[1].

2.6. Q-only equilibria.

Ez
k = (sz⋆

k , 0, . . . , 0 , 0, . . . , 0 , 0, . . . , z⋆
k, . . . , 0 , Q1(s

z⋆
k ), . . . , QNz

(sz⋆
k ))

with z⋆
k =

sin−sz⋆
k

Qk(sz⋆
k

)

Similarly to S-only equilibria, each of these Q-only equilibria corerspond to the
winning of competition by Q-species k; such an equilibrium only exists for k ∈
{0, · · · , nz}. In a competition between several Q-species, eqilibrium Ez

1 (with lowest
substrate subsistence concentration sz⋆

1 ) is asymptotically globally stable, while all
the others are unstable [2].

2.7. SB-only equilibria. We denominate G a subset of {1, · · · , ny} representing
any SB-species coexistence. For example if we want to speak about species 1, 5 and
7 coexistence, then we use G = {1, 5, 7}. We then define Ey

G the equilibrium where
these species coexist. It is composed by

• sy⋆
G such that sy⋆

G +
∑

j∈G Yj(s
y⋆
G ) = sin because of (8)

• ∀j ∈ G, yj = Yj(s
y⋆)

• for any other j, yj = 0
• ∀i ∈ {1, · · · , Nx}, xi = 0
• ∀k ∈ {1, · · · , Nz}, zk = 0
• ∀k ∈ {1, · · · , Nz}), qk = Qk(sy⋆

G )

there exist many Ey
G equilibria, corresponding to all the possible G subset. The

globally asymptotically stable equilibrium of a competition with only SB-species is
given by the choice G = {1, · · · , ny} [7]. Note that some of the G species can have a
null biomass on these equilibria, as Yj(s

y⋆
G ) might be null for some j ∈ G. Therefore

Ey
G1

and Ey
G2

with G1 6= G2 are not necessarily different.
We must here introduce a technical hypothesis which will be useful later to prove

hyperbolicity of the equilibria.

Hypothesis 7. For all G and all j : Sj(0) 6= sy⋆
G

2.8. Coexistence equilibria. As previously said in this section, there also exist
equilibria where one of the S- or Q-species coexist with several sx⋆

i - or sz⋆
k -compliant

SB-species. For a coexistence with S-species we denote them E
(x,y)⋆
i,G . They are

composed of:

• s = sx⋆
i

• ∀j ∈ G, yj = Yj(s
x⋆
i )

• for any other j, yj = 0
• ∀l 6= i, xl = 0
• ∀k ∈ {1, · · · , Nz}, zk = 0
• ∀k ∈ {1, · · · , Nz}, qk = Qk(sx⋆

i )
• xi = sin − sx⋆

i −
∑

j∈G Yj(s
x⋆
i ) (this value will be denoted x̄G

i )

Similarly, for a coexistence with Q-species we denote them E
(z,y)⋆
k,G . They are

composed of:

• s = sz⋆
k

• ∀j ∈ G, yj = Yj(s
z⋆
k )
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• for any other j, yj = 0
• ∀i ∈ {1, · · · , Nx}, xi = 0
• ∀l 6= k, zl = 0
• ∀l ∈ {1, · · · , Nz}, ql = Ql(s

z⋆
k )

• zk =
sin−sz⋆

k −
P

j∈G Yj(s
z⋆
k )

Qk(sz⋆
k

) (this value will be denoted z̄G
k )

To our knowledge, these equilibria have never been studied until now.
Note that some of these equilibria might be reduntant with S- or Q-only equilib-

ria, if all the SB-species represented by G are not sx⋆
i - or sz⋆

k -compliant. Note also
that all those equilibria do not necessarily exist in the non-negative orthant. In-
deed, x̄G

i and z̄G
k can be negative, depending on sin and on the substrate subsistence

concentrations. These equilibria with negative components will not be studied any
further since we only consider initial conditions in the positive orthant, which is
invariant. In the sequel, we will denote E an equilibrium of (7) which belongs to
an unspecified class.

We will now show that if s = s⋆ at equilibrium, there exists a positive equilibrium
containing all s⋆-compliant species.

Lemma 2.8.

• If s⋆ = sx⋆ then E
(x,y)⋆
1,{1,··· ,ny}

is in the positive orthant.

• If s⋆ = sy⋆ then Ey⋆

{1,··· ,ny}
is in the positive orthant.

• If s⋆ = sz⋆ then E
(z,y)⋆
1,{1,··· ,ny}

is in the positive orthant.

Proof. • If s⋆ = sx⋆, then all yj = Yj(s
x⋆) ≥ 0 at equilibrium and sy⋆ +

∑ny

j=1 Yj(s
y⋆) = sin implies that sx⋆ +

∑ny

j=1 Yj(s
x⋆) < sin since sx⋆ < sy⋆ and

Yj(s) is non-decreasing. It directly follows that x⋆
1 = sin−sx⋆−

∑ny

j Yj(s
x⋆) >

0.
• If s⋆ = sy⋆, then all xi and zk are zero at equilibrium and all yj = Yj(s

y⋆) ≥ 0
• If s⋆ = sz⋆, then all yj = Yj(s

z⋆) ≥ 0 at equilibrium and sy⋆ +
∑ny

j=1 Yj(s
y⋆) =

sin implies that sz⋆ +
∑ny

j=1 Yj(s
z⋆) < sin since sz⋆ < sy⋆. It directly follows

that z⋆
1 =

sin−sz⋆−
Pnz

j
Yj(s

z⋆)

Qk(sz⋆) > 0.

We call E⋆ the equilibrium with all s⋆-compliant species remaining in the chemo-
stat, while all the others are excluded. Depending on the species subsistence con-
centrations, E⋆ can be one of the previously presented equilibria:

• if s⋆ = sy⋆ then E⋆ = Ey⋆

{1,··· ,ny}
: only the s⋆-compliant SB-species remain in

the chemostat.
• if s⋆ = sx⋆ then E⋆ = E

(x,y)⋆
1,{1,··· ,ny}

: the best S-species (lowest sx⋆
i ) remains in

the chemostat with all the sx⋆
i -compliant SB-species.

• if s⋆ = sz⋆ then E⋆ = E
(z,y)⋆
1,{1,··· ,ny}

: the best Q-species (lowest sz⋆
k ) remains in

the chemostat with all the sz⋆
k -compliant SB-species.

In the next section, we present an important global stability result for this equilib-
rium.

3. Statement and demonstration of the Main Theorem: competitive ex-
clusion or coexistence in the generalized competition model. This theorem
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states that all the s⋆-compliant species (those who can be at equilibrium with sub-
strate subistence concentration s⋆, which is the lowest of all sx⋆.sy⋆, sz⋆) coexist in
the chemostat at equilibrium, while all the others are excluded.

Main Theorem. In the generalized competition model (7), if Hypotheses 1–7
hold, then all the solutions of the system, having xi(0), yj(0), zk(0) > 0 for all
s∗-compliant species, converge asymptotically towards equilibrium E⋆.

Structure of the proof: In a first step we reduce system (7) to the mass balance
surface. Then we present a non decreasing lower bound L(t) for s(t), and use it
to demonstrate that s converges towards s⋆. Finally only the s∗-compliant species
have a large enough substrate concentration to remain in the chemostat, so that
all other S-, Q-, and SB-model species are washed out. The final step consists in
showing that the convergence result that we showed on the mass-balance surface
can be extended to the whole non-negative orthant.

Remark 3. It is not restrictive to consider xi(0), yj(0), zk(0) > 0 for the solutions
of the system since species with null initial condition can be ignored, so that we can
then consider a smaller dimensional system.

3.1. Step 1: we consider the system on the mass balance surface and
in the region where qk ∈ (Q0

k, Qm
k ) for all k ∈ {1, ..., Nz}. Lemma 2.5 indi-

cates that qk reaches (Q0
k, Qm

k ) in finite time, and in (8) we showed that the total
concentration of intra and extracellular substrate in the chemostat M converges to
sin.

We denote ”Σ”, the generalized competition model (7) on the mass balance
surface defined by

M = s +

Nx
∑

i=1

xi +

Ny
∑

j=1

yj +

Nz
∑

k=1

qkzk = sin (25)

For the remainder of the demonstration we will study system Σ, and we will
later show that its asymptotic convergence towards an equilibrium has the same
behaviour as the initial model (7). While studying system Σ, we will however
retain all the states of the original system and the expressions of the equilibria; Σ
is then defined by the addition of the invariant constraint (25).

3.2. Step 2: we propose a non decreasing lower bound L(t) for s. The main
obstacle for the demonstration of the Main Theorem was the possibility that s would
repeatedly be lower than s⋆ and repeatedly be higher than s⋆

n = max(sx∗
nx

, sz∗
nz

),
which would generate an oscillating behaviour. In order to eliminate this possibility
we build a non decreasing lower bound for s, which converges towards s⋆

1. We now
present such a lower bound, which will be used to show that s converges to s⋆ in
the next sections.

Lemma 3.1. In system Σ

L(t) = min

(

min
k

(Sz
k(qk(t))),min

j
(Sy

j (yj(t)), s
⋆, s(t)

)

is a non decreasing lower bound for s

Proof. We know that the right derivative of L is the derivative of one of the function
which realizes the minimum. In four cases we show that this right derivative is non
negative.

101



MICROORGANISM COMPETITION: EXCLUSION AND COEXISTENCE 19

• Case 1: If Sz
k(qk(t)) realizes the minimum then its derivative is non negative,

because Sz
k(qk) goes towards s (see (15)).

• Case 2: If Sy
j (yj(t)) realizes the minimum then its derivative is non negative,

because Sy
j (s) goes towards s (see (20)).

• Case 3: If s(t) realizes the minimum then we examine its dynamics ṡ for
system Σ (i.e. on the mass balance equilibrium manifold). We replace sin by
s +

∑

i xi +
∑

j yj +
∑

k qkzk:

ṡ =
∑

i

(D − αi(s))xi +
∑

j

(D − βj(s, yj))yj +
∑

k

(Dqk − ρk(s)) zk

which is equivalent to, from the definition (11) of Qk(s) :

ṡ =
∑

i

(D − αi(s))xi +
∑

j

(D − βj(s, yj))yj +
∑

k

(Dqk − γk(Qk(s))Qk(s)) zk

Then
– for all i, s ≤ s⋆ gives us αi(s) ≤ D, so that the first sum is non negative;
– for all j, s ≤ Sy

j (yj)) gives us βj(s, yj) ≤ βj(S
y
j (yj), yj) = D), so that the

second sum is non negative;
– for all k, s ≤ Sz

k(qk) gives us Qk(s) ≤ qk, and s ≤ s⋆ gives us γk(Qk(s)) ≤
γk(Qk(sz⋆

k )) = D so that the third sum is also non negative.
Finally we obtain

ṡ ≥ 0

• Case 4: If s⋆ realizes the minimum, we know that its right derivative is null
and thus non negative.

3.3. Step 3: we demonstrate that s converges towards s⋆.

Lemma 3.2. In system Σ

lim
t→+∞

s(t) = s⋆

Proof. We first show, by contradiction, that the substrate concentration s(t) can-
not converge towards any constant value other than s⋆. Suppose the reverse hy-
pothesis, i.e. limt→+∞ s(t) = s̄ 6= s⋆. Through Lemma 2.6, we then have that
limt→+∞ qk(t) = Qk(s̄) and limt→+∞ yj(t) = Yj(s̄).

If s̄ < s⋆,

• αi(s̄) < D for all i so that all xi go to 0
• γk(Qk(s̄)) < D for all k implies that all zk go to 0

So that we have a contradiction with mass balance equilibrium (25), as the total

substrate (in the medium + in the biomasses) at equilibrium s̄ +
∑Ny

j=1 Yj(s̄) will

be lower than sy⋆ +
∑Ny

j=1 Yj(s
y⋆) = sin.

If s̄ > s⋆ we must consider three cases:

• if s⋆ = sx⋆
1 then αi(s̄) > D implies that x1 diverges to +∞, which is in

contradiction with the boundedness shown in (9).
• if s⋆ = sz⋆

1 then γ1(Q1(s̄)) > D implies that z1 diverges to +∞, which is in
contradiction with the boundedness shown in (10).

• if s⋆ = sy⋆ then we have a contradiction with mass balance equilibrium (25),

because s̄ +
∑Ny

j=1 Yj(s̄) will be higher than sy⋆ +
∑Ny

j=1 Yj(s
y⋆) ≤ sin.
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Hence the impossibility of convergence of s towards any s̄ other that s⋆ is proven.
We now demonstrate the lemma by contradiction. We assume that

s does not converge towards s⋆

which, from the previous remark means that s does not converge to any constant
value.

Remark 4. As s does not converge towards s⋆, we know that the qk do not converge
towards Qk(s⋆) (see Lemma 2.6)

We consider two cases, which both lead to a contradiction, on the basis of a
reasoning which is close to the demonstration developed to prove Lemma 2.6.

• Case a: L attains s⋆ in finite time
In Appendix A we show that a contradiction occurs.
Idea : s cannot stay higher than s⋆ without converging to s⋆, because this would

cause x1 or z1 to diverge, or s +
∑Ny

j=1 Yj(s) to be always higher than sin without
converging to sin.

• Case b: L never attains s⋆

See Appendix B.
Idea : If s did not converge to s⋆, the non decrease of L and its attraction by s
would cause it to reach s⋆.

In both cases we found a contradiction, so that the proof of Lemma 3.2 is com-
plete.

3.4. Step 4: all the s⋆-compliant species remain in the chemostat, while
the others are excluded. In this section we show that, as s converges towards
s⋆ in model Σ, all the S- and Q-species with substrate subsistence concentration
higher than s⋆ are washed out of the chemostat because their growth αi(s) or γk(qk)
cannot stay high enough to compensate the output dilution rate D. Finally, all the
s⋆-compliant species able to be at equilibrium with a substrate concentration s⋆

remain in the chemostat.

Lemma 3.3. In system Σ all the solutions with positive initial conditions for the
s∗-compliant species converge to E⋆.

Proof. For all the xi and zk species such that αi(s
⋆) < D and γk(Qk(s⋆)) < D, it is

straigthforward that the convergence of s to s⋆ will cause their biomass to converge
to 0. If s⋆ = sy⋆, then this is true for all the S- and Q-species.

For all the s⋆-compliant SB-species, we have from Lemma 2.6 that their biomass
will tend to Yj(s

⋆), which is positive for the s⋆-compliant species and null for all
the others.

Finally, if s⋆ = sx⋆ or s⋆ = sz⋆, then we have through the mass balance equilib-
rium (25) that the S- or Q-species whose subsistence concentration is s⋆ will have

its biomass converge to sin−s⋆−
∑N

y
z1

j=1 Yj(s
⋆): all the substrate which is not present

in the medium or in the SB-biomasses is used by the best S- or Q-competitor.

3.5. Step 5: convergence of the solutions for model Σ implies convergence
for model (7). In order to extend the convergence result to the full model and
thus prove our Main Theorem, we apply a classical theorem for asymptotically
autonomous system [37, 2].
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Lemma 3.4. All solutions of system (7) with positive initial conditions for the
s∗-compliant species converge to E∗ defined in section 2.7.

Remark 5. While, up to here, we simply had considered Σ as the same system
as (7), in the same dimension, except that it was restricted to (25), we will now
equivalently explicitely include (25) into system (7) to obtain Σ in the form of a
system that has one dimension less than (7) by omitting the s coordinate. Since
both representations of Σ are equivalent, the previously proven stability results
are still valid in the new representation, with the exception that convergence takes
place towards equilibria directly derived from these presented in sections 2.5-2.8 by
omitting the s coordinate. These new equilibria are differentiated from the original
ones by adding a ˜ , so that an arbitrary equilibrium is denoted Ẽ.

Proof. System Σ can be written as follows :


































































ẋi =



αi



sin −

Nx
∑

l=1

xl −

Ny
∑

m=1

ym −

Nz
∑

r=1

qrzr



− D



xi

ẏj =



βj



sin −

Nx
∑

l=1

xl −

Ny
∑

m=1

ym −

Nz
∑

r=1

qrzr, yj



− D



 yj

żk = (γk(qk) − D)zk

q̇k = ρk



sin −

Nx
∑

l=1

xl −

Ny
∑

m=1

ym −

Nz
∑

r=1

qrzr



− fk(qk)

for i ∈ {1, · · · , Nx}, j ∈ {1, · · · , Ny}, k ∈ {1, · · · , Nz}

(26)

where the s state has been removed compared to (7). In order to recover model (7),
we should add the equation

Ṁ = D(sin − M)

which we interconnect with (26) by replacing every sin in (26) with M . It is this
interconnection that we will now study.

In the first part of the proof, we will show that every solution of (7) converges
to an equilibrium E. We will then show by induction that all the solutions that do
not converge to E∗ have an initial condition with some xi = 0, yj = 0 or zk = 0 for
some s∗-compliant species. Thus, all the solutions with xi 6= 0, yj 6= 0, zk 6= 0 for
the s∗-compliant species converge to E∗.

For that, we will use Theorem F.1 from [2]. We will therefore first compute the
stable manifolds of all equilibria of Σ:

• The stable manifold of Ẽ∗ is of dimension Nx +Ny +2Nz. It is constituted of
all the initial conditions which verify xi(0), yj(0), zk(0) > 0 for s∗-compliant
species and xi(0), yj(0), zk(0) ≥ 0 for all other species, as well as qk ≥ 0 for
all k (see Lemma 3.3).

• The stable manifold of Ẽ0 is of dimension Nx −nx +Ny −ny +2Nz −nz. It is
constitued of all the initial conditions which verify x1(0) = . . . = xnx

(0) = 0,
y1(0) = . . . = yny

(0) = 0 and z1(0) = . . . = znz
(0) = 0. The only species

that can be present at the initial condition are those that cannot survive
for the given D and sin. Indeed, if any xi(0) > 0 for i ≤ nx (or similar
yj(0) > 0 or zk(0) > 0), one can apply Lemma 3.3. to the reduced order
system containing these species to show that convergence does not take place
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towards Ẽ0. Conversely, any initial condition with x1(0) = . . . = xnx
(0) = 0,

y1(0) = . . . = yny
(0) = 0 and z1(0) = . . . = znx

(0) = 0 generates a solution

that goes to Ẽ0 since for the other species we have:
– ẋi < (αi(sin) − D)xi, with αi(sin) − D < 0 for all i > nx because of the

definition of nx presented in (23);
– ẏj < (βj(sin, yj) − D)yj , with βj(sin, 0) − D < 0 for all j > ny, because

of the definition of ny;
– żk < (γk(Qk(sin)) − D)zk, with γk(Qk(sin)) − D) < 0 for all k > nz

because of the definition of nz.
• The dimension of the stable manifold of any other Ẽ can be computed from

Lemma 3.3. To an equilibrium Ẽ corresponds a substrate value s̃ (> s∗ by
definition of s∗). Lemma 3.3 indicates that solutions of Σ converge towards an
equilibrium corresponding to s̃, if there is no smaller subsistance concentration
corresponding to a species present in the system (for S- and Q species) and if
all S-, Q- and SB-species that are s̃-compliant are present in the corresponding
equilibrium. The stable manifold of Ẽ must therefore be constrained to initial
conditions that verify xi(0) = 0, yj(0) = 0 and zk(0) = 0 for all species that

are s-compliant for some s ≤ s̃ and that are not positive in Ẽ. Having set all
these values to zero, it is indeed clear that s̃ is the s⋆ as defined in Lemma
3.3 of the reduced order system (without the aforementionned xi, yj and zk

coordinates). All solutions defined in Lemma 3.3 of this system then converge

to Ẽ, which justifies our definition of the stable manifold of Ẽ. Its dimension
is Nx +Ny +2Nz −nẼ,s̃, where nẼ,s̃ is the number of s-compliant species (for

some s ≤ s̃) that are not present in Ẽ.

Through Lemma 3.3, we have in fact shown that all solutions of Σ in the non-
negative orthant converge to an equilibrium. Indeed, for a given initial condition,
either it belongs to the stable manifold of Ẽ0 or, eliminating from the system all
species that are null at the initial time necessarily sets it in a form where Lemma
3.3 can be applied (which shows convergence to an equilibrium).

The dimension of the stable manifold of any equilibrium E will therefore be the
one of Ẽ plus 1. The hypotheses of Theorem F.1 from [2] are indeed all verified:

• The whole system (7) is bounded (see section 2.1)
• The equilibria of system Σ are hyperbolic (see Appendix C.2-C.6).
• There are no cycles of equilibria in system Σ. Indeed, if we analyze the

potential transition between two equilibria, both equilibria must belong to
the same face, so that convergence takes place to the one corresponding to
the smallest value of s. A potential sequence of equilibria would then be
characterized by a decreasing value of s at each equilibrium, which prevents
it from cycling.

We can then conclude from this theorem that all solutions of (7) tend to an equi-
librium. We are then left with checking to what equilibrium they tend.

Before continuing this proof, we need to detail nẼ,s̃. In the case of Ẽ = Ẽ∗ and

s̃ = s∗, we have nẼ,s̃ = 0 (by definition, all s∗-compliant species are present in E∗

and there is no other species that is compliant for smaller values of s). Otherwise,
we necessarily have nẼ,s̃ > 0. Indeed, we know that s̃ > s∗, so that all species

present in E∗ are compliant for some s < s̃; as such, in order to have nẼ,s̃ = 0, Ẽ

would need to at least contain all species that are present in Ẽ∗. In such a case no
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S and Q species can be present in Ẽ∗ (otherwise, it could not be present in Ẽ also
for a different value of s). Defining J the set of SB-species that are present in E∗

and writing (25) for E∗ then yields

M = s∗ +
∑

j ∈ J

Yj(s
∗) = sin

Equality (25) should also be valid in s̃ > s∗ so that

sin = s̃ +

Nx
∑

i=1

xi +

Ny
∑

j=1

yj +

Nz
∑

k=1

qkzk > s̃ +
∑

j ∈ J

Yj(s̃) > sin

where we have the last inequality (which leads to a contradiction) because Yj(s) is

an increasing function. We can then conclude that, for all Ẽ 6= Ẽ∗, nẼ,s̃ > 0, and
at least one s⋆-compliant species species must be null.

In order to check to what equilibrium solutions of (7) tend, we use an induction
argument, by supposing that our Main Theorem has been proven up to N − 1
species, which we use for the proof for N species. Along with the fact that the
stability result is trivial for 1 species (classical Monod model, [2], classical Droop
model, [21] and generalized Contois model, [7]), this will conclude our proof.

Let us consider a system of N species with equilibrium E∗ as defined earlier.
This equilibrium contains positive species (which are s⋆-compliant) and null species
(which are not s⋆-compliant).

Imposing, for one of the not s⋆-compliant species, xi = 0 (or yj = 0 or zk = 0) for
the initial condition, sets us in the framework where we have N − 1 species present
in the system. Also, since this species did not belong to the positive ones in E⋆, its
absence does not change anything into which equilibrium is the one corresponding
to the smallest subsistance concentration, which remains E⋆. We can then apply
the induction hypothesis, which indicates that all such initial conditions initiate
solutions that converge to E⋆ (as long as the s⋆-compliant species have positive
initial condition).

Studying now the equilibrium E0, we know from the beginning of the proof that
its stable manifold is of dimension Nx−nx+Ny−ny +2Nz−nz +1. As was done for
Σ, it is directly apparent that any initial condition with x1(0) = . . . = xnx

(0) = 0,
y1(0) = . . . = yny

(0) = 0 and z1(0) = . . . = znx
(0) = 0 generates a solution that has

all species exponentially go to zero. Finally, the analysis of the ṡ equation shows
that it has the form ṡ = D(sin − s)−F (t) with F (t) exponentially going to zero so
that s goes to sin and all such solutions go to E0.

We can now consider all the other equilibria. Let an equilibrium E corresponding
to a substrate concentration s̃ (> s∗ by definition). As we have seen in our analysis

of Σ, the stable manifold of the corresponding Ẽ is of dimension Nx+Ny+2Nz−nẼ,s̃,
so that the stable manifold of E is of dimension Nx +Ny +2Nz−nẼ,s̃ +1. Let us set
ourselfes in the situation where all nẼ,s̃ species are set to zero at the initial time and
all others are positive. We can then consider the system with only the remaining
Nx +Ny +2Nz −nẼ,s̃ positive species and the substrate. We have seen that, in this

case, all solutions of the corresponding reduced order Σ go to Ẽ which means that
s̃ is the “s∗” defined in Lemma 3.4 for the reduced order system. Since the reduced
order system contains less than N species because nẼ,s̃ > 0, we conclude that all

solutions of the full system (7) that have zero initial condition for all nẼ,s̃ species

and positive values for all Nx +Ny +2Nz−nẼ,s̃ others converge to Ẽ. We have then
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exhibited an invariant manifold of dimension Nx + Ny + 2Nz − nẼ,s̃ + 1 for which
all solutions go to E; this corresponds to the predicted dimension of the stable
manifoldof E. No solution with some of the nẼ,s̃ species positive (among which

there is at least on s∗-compliant species) at the initial time can then converge to E.
This completes the proof of our Main Theorem since all solutions go to an equi-

librium and we have exhibited the stable manifold of all equilibria other than
E∗. These manifolds cannot go into the region where xi, yj or zk > 0 for all
s ∗ −compliant species because at least one of them is in the corresponding nẼ,s̃-
set. All initial conditions in the region where xi, yj or zk > 0 for all s ∗−compliant
species therefore generate solutions that go to E∗.

4. Discussion: How D and sin both determine competition outcome. In
S- and Q-only competitions, the outcome of competition is mainly determined by
D, which fixes the sx⋆

i and sz⋆
k S- and Q-substrate subsistence concentrations; the

role of sin is to allow the best competitor (already determined by the value of D)
to settle the reactor, or to cause it to be washed out with all the others. On the
contrary in SB-only competition, both controls have important roles: D fixes the
Yj(s) functions, while sin determines the equilibrium, where sy⋆+

∑

j Yj(s
y⋆) = sin.

With a low enough sin, only few SB-species will settle the chemostat (sy⋆ being low
in this case, there will be few sy⋆-compliant species, with non-null Yj(s

y⋆)), whereas
a high enough sin can enable all SB-species to coexist.

Finally, in a mixed S-Q-SB-competition the dilution rate D fixes all the S- and
Q-substrate subsistence concentrations sx⋆

i and sz⋆
k , as well as the Yj(s) functions,

while the input substrate concentration sin selects the species remaining in the
reactor, by limiting the available nutrients, and thus the biomasses present in the
reactor at equilibrium. Figure 6 gives an example between three competitors.

On this figure the sx⋆ and sz⋆ values and the Y (s) function are fixed by D. Here
sz⋆
1 is lower than sx⋆

1 , so that the S-species will be outcompeted and washed out.
Then the value of sin determines wether

1. no species remain at equilibrium
2. only the SB-species remains at equilibrium, as there is not enough input sub-

strate to feed both SB- and Q-species: because sy⋆ + Y (sy⋆) = sin and
sin < sz⋆ + Y (sz⋆), we know that sy⋆ < sz⋆, so that s⋆ = sy⋆, and only
the SB-species remains in the reactor.

3. both the SB- and Q-species remain in the chemostat: here sin > sz⋆ +Y (sz⋆)
and sin = sy⋆ + Y (sy⋆) give sy⋆ > sz⋆, so that s⋆ = sz⋆ and the Q-species
remains in the reactor, coexisting with the sz⋆-compliant SB-species.

In this last case D has fixed the sz⋆ substrate equilibrium value and the Y (s)
function, and at equilibrium the total substrate in the chemostat, equal to sin, will
be composed of

• the substrate in the medium sz⋆ (which is fixed by D and does not depend on
sin);

• the SB-species internal substrate Y (sz⋆) (which is also fixed by D only);
• the Q-species internal substrate Q(sz⋆))z⋆ = sin−Y (sz⋆)−sz⋆, which depends

on sin.

By going from left to right in Figure 6, starting with sin = 0, it is possible to
imagine the input substrate concentration increase, thus enabeling more and more
substrate s = sin at equilibrium (zone 1). Then in zone 2 the SB-species is present
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Figure 6. Mixed S-SB-Q-competition outcome depends both on
the dilution rate D and input substrate concentration sin. The
solid lines represent the influence of D, which fixes the subsistence
concentrations of one S-model (sx⋆) and Q-model (sz⋆) species,
and the equilibrium biomass Y (s) of one SB-species. As the S-
species has a too high subsistence concentration sx⋆ > sz⋆ it will be
outcompeted and excluded. The three numerated zones represent
the influence of sin. Zone 1 (sin ≤ Sy(0)) : no species remain
at equilibrium. Zone 2 (Sy(0) < sin ≤ sz⋆ + Y (sz⋆)) : only the
SB-species remains at equilibrium. Zone 3 (sin > sz⋆ + Y (sz⋆)) :
the SB- and Q-species coexist.

at equilibrium, and as sin increases, more and more biomass Y (s) is present at
equilibrium. Finally Y (sz⋆) is the maximal biomass for which the SB-species needs
less substrate at equilibrium than the Q-species to have a growth rate equal to
D. After that it has to coexist with the Q-species: when sin increases higher
than sz⋆ + Y (sz⋆) it enables more and more Q-biomass z⋆, while keeping substrate
concentration s = sz⋆ and SB-biomass y = Y (sz⋆).

5. Conclusion. In this paper a demonstration was given for the outcome of com-
petition between generalized Monod ”constant yield” (S-model), Contois ”biomass
dependent” (SB-model) and Droop ”variable yield” (Q-model) models. Three sce-
narios are possible, depending both on the dilution rate D and input substrate
concentration sin (see discussion for precisions):

• only the best S- or Q-competitor remains in the chemostat;
• only some SB-species coexist at equilibrium;
• a new equilibrium (never studied before) is attained, where the best S- or

Q-competitor coexists with all the s⋆-compliant SB-species.

The demonstration explains how the state variables evolve, and its originality for
the study of pure substrate competition model can be summed up in three points.
First, we chose to study the substrate evolution instead of ignoring it after the
classical mass balance equilibrium transformation s = sin−

∑

i xi−
∑

j yj−
∑

k qkzk.

Then, the definition of the Sy
j and Sz

k functions enabled to gather most information
on the substrate axis: instead of having separate information on 1+Nx +Ny +2Nz
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axes we obtained a one dimensional view on these dynamics (Figure 2 and 3),
where all the Sy

j (yj) and Sz
k(qk) go towards s. We have thus turned a complex

1 + Nx + Ny + 2Nz dimensional problem into a simpler one: ”how do s and the
Sy

j (yj) and Sz
k(qk) behave on the substrate axis, and what are the consequences for

the biomasses?”.
Finally the definition of the non decreasing lower bound L(t) (section 3.2) and its
convergence towards s⋆ (section 3.3) were the last steps for this demonstration to
emerge.

Monod and Droop-only pure competitions for substrate lead to the ”survival of
the fittest”, the fittest being the species with lowest substrate requirement s⋆. On
the contrary, Contois-only competition lead to a coexistence equilibrium, because
biomass dependence gives SB-species the capability to remain at equilibrium for
different substrate concentrations in the range [Sy

j (0), sin) (see Figure 5). Monod
and Droop species are mutually exclusive, which leads to the pessimization principle
of adaptative dynamics [38] : ”mutation and natural selection lead to a deterioration
of the environmental condition, a Verlenderung. We end up with the worst of all
possible environment.” On the contrary Contois species are coexistence-compliant
thanks to biomass dependence, which nuances the pessimization principle: ”some
species could live in worse environments (s = minj(S

y
j (0)) being the worse one) but

if there is enough substrate for other species, they can coexist.” (see Figure 6 and
discussion)

Since the introduction of the concept of evolution, with its link to competitive
exclusion [8] and the ”paradox of phytoplankton” [12] modelling has tried to ap-
prehend competition, and to predict or control it. Our contribution in this frame-
work was to extend the results proven in the N-species Monod model, N-species
Droop model and N-species Contois model, where the outcome of competition was
predicted and explained with mathematical arguments, accompanied by ecological
interpretations.

Appendix A. Step 3 - Case a: L attains s⋆ in finite time. In this case

• if s⋆ = sz⋆
1 we consider Figure 7 where L attains s⋆ after a finite time tL:

∀t ≥ tL, L(t) = s⋆
1

Substep 3a.1: after a finite time larger than tL, q1 is repeatedly higher than
Q1(s

⋆) + θ. Since mini(S
z
k(qk)) ≥ L, we know that

∀t > tL, q1(t) ≥ Q1(s
⋆)

As s does not converge to s⋆, we also know from Lemma 2.6 that q1 does not
converge towards Q1(s

⋆):

∃θ > 0,∀t > 0,∃tq > t, |q1(t
q) − Q1(s

⋆)| > θ

Those two facts imply that the repeated exits of q1(t) from the θ-interval
around Q1(s

⋆) take place above Q1(s
⋆) for any tq > tL, so that, in that case,

we have q1(t
q) > Q1(s

⋆)+θ. In Figure 7, such tq time instants are represented
by •.
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Figure 7. Visual explanation of the demonstration of Lemma 3.2 -
Case 1: L attains s⋆ in finite time tL (Q-model). i) q1 is repeatedly
higher than Q1(s

⋆) + θ (•). ii) Because q̇1 is upper bounded by
ρm
1 , so that q1 is higher than Q1(s

⋆) + θ/2 during non negligible
time intervals (dashed lines represent q̇1 = ρm

1 ). Thus z1 diverges,
which is a contradiction.

Substep 3a.2: q1 is higher than Q1(s
⋆) + θ/2 during non negligible time inter-

vals. Since the q1-dynamics are upper bounded with

q̇1 ≤ ρm
1

we know that every time q1 is higher than Q1(s
⋆)+ θ, it has been higher than

Q1(s
⋆) + θ/2 during a time interval of minimal duration A(θ) = θ

2ρm
1

. On

Figure 7, q̇1 = ρm
1 is represented by the dashed lines.

Substep 3a.3: then z1 diverges, which is impossible. From time tL on, we have
that q1 ≥ Q1(s

⋆) ⇒ γ1(q1) ≥ D, so that z1(t) is non decreasing. During each
of the time interval where q1 is higher than Q1(s

⋆) + θ/2, the increase of z1 is
lower bounded by

ż1 = γ1(Q1(s
⋆) + θ/2) − D = C(θ) > 0

so that every tq time we have

z1(t
q) − z1(t

q − A(θ)) > C(θ)A(θ)

As such increases occurs repeatedly, and as z1 is non decreasing, z1 diverges.
This is a contradiction because z1 is upper bounded (see (10)).

• if s⋆ = sx⋆
1 then the non convergence of s to s⋆, and the fact that s ≥ s⋆ will

cause s to be non negligibly ”away” from s⋆, so that x1 will diverge, causing
a contradiction with (9). This is exactly the same demonstration as above (in
the case s⋆ = sz⋆

1 ) without needing the qk study.

• if s⋆ = sy⋆ then s +
∑Ny

j=1 Yj(s) will always be higher than sin = sy⋆ +
∑Ny

j=1 Yj(s
y⋆) without converging to sin, which is in contradiction with (25).
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Appendix B. Step 3 - Case b: L never attains s⋆. In this case L(t) converges

towards a value L̂ ∈ (0, s⋆], because it is non decreasing and bounded in [0, s⋆], so
that

∀ǫ > 0,∃tL(ǫ) > 0,∀t > tL(ǫ), |L(t) − L̂| < ǫ

We consider the neighborhood of L̂ in Figure 8.

Figure 8. Visual explanation of the demonstration of Lemma 3.2
- Case 2: L never attains s⋆. i) s is repeatedly higher than L̂ + λ
(•). ii) ṡ is upper bounded by Dsin, so that s is higher than

L̂+λ/2 during non negligible time intervals (dashed lines represent
ṡ = Dsin) iii) during such a time intervals L = mink(Sz

k(qk)) (or
minj(S

y
j (yj))) is increasing non negligibly towards s, so that L

cannot both converge towards L̂ and stay lower than L̂ during the
whole time interval: there is a contradiction.

Substep 3b.1: after a finite time, s is repeatedly higher than L̂ + λ. Since, from the
beginning of the proof of Lemma 3.2, we know that s does not converge to any
constant value, hence not to L̂,

∃λ > 0,∀t > 0,∃ts > t, |s(ts) − L̂| > λ

Since L is increasing and converges to L̂, it reaches L̂ − λ in finite time tL(λ).

After this finite time, s is higher than L̂ + λ on every ts time instants, which are
represented by • in Figure 8.

Substep 3b.2: s is higher than L̂+λ/2 during non negligible time intervals. Because
of the boundedness of ṡ

ṡ ≤ Dsin

every time s is higher than L̂ + λ, it has been higher than L̂ + λ/2 during a non
negligible time interval of minimal duration A(λ) = λ

2Dsin
. On Figure 8 the case

ṡ = Dsin is represented by dashed lines.
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Substep 3b.3: L = mink(Sz
k(qk)) (or minj(S

y
j (yj))) is increasing non negligibly

towards s, so that L cannot both converge towards L̂ and stay lower than L̂ during
the whole time interval: there is a contradiction. Like in previous proofs, we are
interested in what happens during the [ts−A(λ), ts] time-interval, with ts−A(λ) >

tL(ǫ) (for some ǫ < λ). Since, during this time-interval, s(t) > L̂ + λ/2 and L < L̂,

we know that there exists a k such that L(ts) = Sz
k(qk(ts)) < L̂, or a j such that

L(ts) = Sy
j (yj(t

s)) < L̂.

For both this step (3b.3) we choose to first only present arguments for the case
L(ts) = mink(Sz

k(qk)); almost similar arguments for the case L(ts) = minj(S
y
j (yj))

will then be briefly presented.

• if L(ts) = mink(Sz
k(qk)), then during the whole considered time-interval, as

Sz
k(qk) was increasing, we know that

L̂ − ǫ < L ≤ Sz
k(qk) ≤ Sz

k(qk(ts)) < L̂ (27)

so that Qk(L̂− ǫ) < qk(t) < Qk(L̂). For the k species, the dynamics of qk can
then be lower bounded:

q̇k ≥ ρk(L̂ + λ/2) − fk(Qk(L̂))

and then

q̇k ≥ ρk(L̂ + λ/2) − ρk(L̂) = Gk(λ)

positive, so that the increase of qk during the [ts − A(λ), ts] time-interval is
also lower bounded:

qk(ts) − qk(ts − A(λ)) ≥ Gk(λ)A(λ) = Hk(λ)

Since Qk = Sz−1

k is locally Lipschitz with constant K (because f ′
k > 0), we

have

qk(ts) − qk(ts − A(λ)) = Qk(Sz
k(qk(ts))) − Qk(Sz

k(qk(ts − A(λ))))
< K [Sz

k(qk(ts)) − Sz
k(qk(ts − A(λ)))]

so that the corresponding increase of Sz
k(qk) is lower bounded with

Sz
k(qk(ts)) − Sz

k(qk(ts − A(λ))) ≥ 1
K

Hk(λ)

and then

Sz
k(qk(ts − A(λ))) < L̂ −

1

K
Hk(λ)

which implies the same higher bound for L:

L(ts − A(λ)) < L̂ −
1

K
Hk(λ)

By choosing ǫ < 1
K

Hk(λ), this inequality is contradictory with (27) so that
Case 2 is not possible

• if L(ts) = minj(S
y
j (yj)), then the same arguments can be developped for the

j species, with a lower bound Gj(λ) on the yj dynamics:

Gj(λ) = βj(L̂ + λ/2, Yj(L̂)) − βj(L̂, Yj(L̂)) > 0

and then an increase of variable yj at least equal to Hj(λ) = Gj(λ)A(λ)
followed by a non negligible increase of L

L(ts − A(λ)) < L̂ −
1

K
Hj(λ)
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because Yj is locally Lipschitz. Finally a contradiction also occurs when ǫ <
1
K

Hj(λ):

L(ts − A(λ)) < L̂ − ǫ

Appendix C. Computation of system Σ Jacobian Matrix and eigenvalues
for all the equilibria. Computation of the Jacobian Matrix of system Σ, with

s = sin −
∑Nx

i=1 xi −
∑Ny

j=1 yj −
∑Nz

k=1 qkzk.









Jxx Jxy Jxz Jxq

Jyx Jyy Jyz Jyq

Jzx Jzy Jzz Jzq

Jqx Jqy Jqz Jqq









where

Jxx
ii = αi(s) − D − ∂αi

∂s
xi and ∀l 6= i, Jxx

il = −∂αi

∂s
xi

Jxy
ij = −∂αi

∂s
xi

Jxz
ik = −∂αi

∂s
xiqk

Jxq
ik = −∂αi

∂s
xizk

and

Jyx
ji = −

∂βj

∂s
yj

Jyy
jj = βj(s, yj) − D +

∂βj

∂yj
yj −

∂βj

∂s
yj and ∀l 6= j, Jyy

jl = −
∂βj

∂s
yj

Jyz
jk = −

∂βj

∂s
yjqk

Jyq
jk = −

∂βj

∂s
yjzk

and
Jzx

ki = 0
Jzy

kj = 0

Jzz
kk = γk(qk) − D and ∀l 6= k, Jzz

kl = 0

Jzq
kk = ∂γk

∂qk
zk and ∀l 6= k, Jzq

kl = 0

and

Jqx
ki = −∂ρk

∂s

Jqy
kj = −∂ρk

∂s

Jqz
kl = −∂ρk

∂s
ql

Jqq
kk = −∂ρk

∂s
zk − ∂fk

∂qk
and ∀l 6= k, Jqq

kl = −∂ρk

∂s
zl

Fortunately for eigenvalue computations, at equilibria the null biomasses will
simplify the matrix:

• when xi = 0, then the whole ith line gives eigenvalue αi(s) − D (denoted
”xi-eigenvalue”) and can be deleted, as well as the ithcolumn;

• when yj = 0 then the whole Nx+jth line gives eigenvalue βj(s, yj)−D (denoted
”yj-eigenvalue”) and can be deleted, as well as the Nx + jth corresponding
column;

• when zk = 0 then the whole Nx + Ny + kth line gives eigenvalue γk(qk) − D
(denoted ”zk-eigenvalue”) and can be deleted, as well as the Nx + Ny + kth

column; in a second step, the whole Nx + Ny + Nz + kth column can also be

deleted and gives eigenvalue −∂fk

∂qk
(denoted ”qk-eigenvalue”), as well as the

Nx + Ny + Nz + kth line.
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C.1. Complete washout equilibrium. With this in hand, we see that for equi-
librium Ẽ0 (xi = yj = zk = 0) the Jacobian matrix is triangular, so that the
eigenvalues lay on the diagonal. They are:

• αi(sin) − D
• βj(sin, 0) − D
• γk(Qk(sin)) − D

• −∂fk

∂qk
(negatives)

We denote nx, ny, nz the number of S-, SB- and Q- species verifying the inequalities
of Hypothesis 5, and thus having the possibility to be at equilibrium with a positive
biomass, under controls D and sin. Each of these species has a positive correspond-
ing eigenvalue on this equilibrium, so that equilibirum Ẽ0 has nx +ny +nz positive
eigenvalues, and Nx − nx + Ny − ny + 2Nz − nz negative eigenvalues.

C.2. S-only equilibria. For equilibrium Ex
i we get all the previously cited x-,y-,

z-and q-eigenvalues:

• αl(s
x⋆
i ) − D whose signs are the same as sign(sx⋆

i − sx⋆
l )

• βj(s
x⋆
i , 0)−D which are positive if the jth species is sx⋆

i -compliant, or negative
else;

• γk(Qk(sx⋆
i )) − D whose signs are the same as sign(sx⋆

i − sz⋆
k )

• −∂fk

∂qk
which are all negative

and the remaining eigenvalue corresponds to the positive xi-only dynamics:

ẋi = (αi(sin − xi) − D)xi

which yields the eigenvalue −∂αi

∂s
x⋆

i for S-species i. Each S- or Q-species with
a substrate subsistence concentration sx⋆

l or sz⋆
k lower than sx⋆

i gives a positive
eigenvalue. Among all the Ex

i equilibria, only Ex
1 is stable if and only if s⋆ = sx⋆

1 <
sz⋆
1 , and if all the SB-species are not sx⋆

1 -compliant.

C.3. Q-only equilibria. For Equilibrium Ez
k we get all the

• x-eigenvalues whose signs are the sign of sign(sz⋆
k − sx⋆

i );
• y-eigenvalues: as previously, y-eigenvalues are positive if the corresponding

SB-species is sz⋆
k -compliant and negative else;

• zl-eigenvalues whose signs are the sign of sign(sz⋆
k − sz⋆

l );
• ql-eigenvalues for all l 6= k (negative);

and the remaining eigenvalues correspond to the positive (zk, qk)-only dynamics:
{

żk = (γk(qk) − D)zk

q̇k = ρk(sin − qkzk) − fk(qk)

and we obtain the following resulting matrix:
(

0 ∂γk

∂qk
zk

−∂ρk

∂s
qk −∂ρk

∂s
zk − ∂fk

∂qk

)

which has negative trace and positive determinant, so that its two eigenvalues are
real negative. Just like before, each S- or Q-species with a substrate subsistence
concentration sx⋆

i or sz⋆
l lower than sz⋆

k gives a positive eigenvalue. Among all the
Ez

k equilibria, only Ez
1 is stable if and only if s⋆ = sz⋆

1 < sx⋆
1 , and if all the SB-species

are not sz⋆
1 -compliant.
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C.4. SB-only equilibria. Now let us consider the Ey
G equilibria for which all j ∈ G

(where G represents a subset of {1, . . . , Ny}) SB-species coexist in the chemostat
under substrate concentration sy⋆

G , while all the S- and Q-species are washed out.
sy⋆

G is defined by sy⋆
G +

∑

j∈G Yj(s
y⋆
G ) = sin. Note that some of the G species can

have a null biomass on these equilibria, as Yj(s
y⋆
G ) might be null for some j ∈ G.

This gives all the

• x-eigenvalues whose sign are the same as the signs of sx⋆
i − sy⋆

G ;
• z-eigenvalues whose sign are the same as the signs of sz⋆

k − sy⋆
G ;

• q-eigenvalues (negative).

All the yj species who are not included in G give negative eigenvalues if they are
not sy⋆

G -compliant, and positive eigenvalues else; their eigenvalues cannot be null
because of technical hypothesis 7. All the yj species who are included in G but
have a null biomass Yj(s

y⋆
G ) on the Ey

G equilibrium give negative eigenvalues. Now
let us study the remaining matrix Jyy

G which is composed of all the j ∈ G lines of
Jyy, for which Yj(s

y⋆
G ) > 0, and thus βj(s

y⋆
G , Yj(s

y⋆
G )) = D:

ẏj =

(

βj(s −
∑

l

yl, yj) − D

)

yj

which yields the Jacobian matrix:

Jyy
G =

















−a1 − b1 . . . −a1 . . . −a1

...
. . .

...
...

−aj . . . −aj − bj . . . −aj

...
...

. . .
...

−an . . . −an . . . −an − bn

















with aj =
∂βj

∂s
Yj(s

y⋆
G ) > 0 and bj = −

∂βj

∂yj
Yj(s

y⋆
G ) > 0.

Let us show that this matrix has only real negative eigenvalues, by using the
definition of an eigenvalue λ = (A + Bi), where A ∈ R is the real part and B ∈ R

the imaginary part:

Jyy
G ·







y1

...
yn






= (A + Bi)







y1

...
yn






(28)

We obtain n equations:

−bjyj − aj

∑

l

yl = (A + Bi)yj

and thus

(A + Bi + bj)yj = −aj

∑

l

yl (29)

If we have A + Bi + bj = 0 for some j, then B = 0 and A = −bj < 0 so that we
have a negative eigenvalue.
Else, isolating yj yields

yj =
−aj

∑

l yl

bj + A + Bi
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Summing over j, we obtain

∑

j

yj =
∑

j

(

−aj

∑

l yl

bj + A + Bi

)

Now if
∑

j yj = 0, since some yj must be different of 0, (29) yields, for that j, that
A + Bi + bj = 0 so that again B = 0 and A = −bj < 0.
Else, simplifying the sums of yl and yj , this yields

1 =
∑

j

(

−aj

bj+A+Bi

)

=
∑

j

(

−aj(bj+A−Bi)
(bj+A)2+B2

)

=
∑

j

(

−aj(bj+A)
(bj+A)2+B2

)

+ i
∑

j

(

ajB)
(bj+A)2+B2

)

Since the left-hand-side is real, the imaginary part of the right-hand side must be
zero, which imposes B = 0. For thr right-hand-side to be positive, at least one of
the bj + A must be negative, which translates into minj(bj + A) < 0 and

A < −min
j

bj < 0

We conclude from this that all eigenvalues of this matrix are real negative.
Finally, an Ey

G equilibrium is stable if and only if all the SB-species not contained
in G are not sy⋆

G -compliant (this is equivalent to saying that sy⋆
G = sy⋆, with sy⋆ =

sy⋆

{1,...,Ny}
), and if s⋆ = sy⋆.

C.5. S-coexistive equilibria. In this section we consider equilibria E
(x,y)
i,G where

S-species xi coexists with the SB-species in G, a subset of {1, . . . , Ny}, under sub-
strate concentration sx⋆

i .
We obtain here all the

• xl-eigenvalues (l 6= i) whose signs are the signs of sx⋆
i − sx⋆

l ;
• z-eigenvalues whose sign is the sign of sx⋆

i − sz⋆
k ;

• q-eigenvalues (negative);

yj-eigenvalues with j not in G are positive if yj is sx⋆
i -compliant and negative else;

yj-eigenvalues with j in G but have a null biomass Yj(s
x⋆
i ) give negative eigenvalues.

For the remaining SB-species, and species xi, we obtain the following system:
{

ẋi = (αi(sin − xi −
∑

l yl) − D)xi

ẏj = (βj(sin − xi −
∑

l yl, yj) − D) yj

and the Jacobian matrix:




















−a0 −a0 . . . −a0 . . . −a0

−a1 −a1 − b1 . . . −a1 . . . −a1

...
...

. . .
...

...
−aj −aj . . . −aj − bj . . . −aj

...
...

...
. . .

...
−an −an . . . −an . . . −an − bn





















with a0 = ∂αi

∂s
x⋆

i > 0, aj =
∂βj

∂s
Yj(s

x⋆
i ) > 0 and bj = −

∂βj

∂yj
Yj(s

x⋆
i ) > 0 (for

j ∈ {1, · · · , n}). This matrix has exactly the same form has the one considered on
Appendix C.4. The only difference being that the there is no “b0” in the first element

116



34 PIERRE MASCI, FREDERIC GROGNARD, ERIC BENOÎT AND OLIVIER BERNARD

of the matrix. Defining a b0 = 0, we can then conclude that all eigenvalues are real
and negative because, following the development of Appendix C.4, we obtain

A < −min
j

bj = 0

Finally, only equilibrium E
(x,y)
1,{1,...,Ny}

can be stable if and only if s⋆ = sx⋆
1 .

C.6. Q-coexistive equilibria. In this section we consider equilibria E
(z,y)
k,G where

Q-species zk coexists with the SB-species in G, a subset of {1, . . . , Ny}, under
substrate concentration sz⋆

k .
We obtain here all the

• x-eigenvalues whose signs are the signs of sz⋆
k − sx⋆

i ;
• zl-eigenvalues (l 6= j) whose sign are the signs of sz⋆

k − sz⋆
l ;

• q-eigenvalues (negative);

yj-eigenvalues with j not in G are positive if yj is sz⋆
k -compliant and negative else;

yj-eigenvalues with j in G but have a null biomass Yj(s
z⋆
k ) give negative eigenvalues.

For the remaining SB-species, and species zk, we obtain the following model






ẏj = (βj(sin −
∑

l yl − qkzk, yj) − D)yj

żk = (γk(qk) − D)zk

q̇k = ρk(sin −
∑

l yl − qkzk) − fk(qk)

and, swapping the last two equations and using fk(qk) = γk(qk)qk, we get the
Jacobian matrix:
























−a1 − b1 . . . −a1 . . . −a1 −a1zk −a1qk

...
. . .

...
...

...
...

−aj . . . −aj − bj . . . −aj −ajzk −ajqk

...
...

. . .
...

...
−an . . . −an . . . −an − bn −anzk −anqk

−an+1 . . . −an+1 . . . −an+1 −an+1zk − bn+1qk − γ −an+1qk

0 . . . 0 . . . 0 bn+1zk 0

























with aj =
∂βj

∂s
Yj(s

z⋆
k ) > 0 and bj = −

∂βj

∂yj
Yj(s

z⋆
k ) > 0 for j ∈ {1, · · · , n}, with

an+1 = ∂ρk

∂s
and bn+1 = ∂γk

∂qk
. By using the definition of eigenvalue λ = (A + Bi)

(see (28)) we follow a similar path to that of Appendix C.4, we show that the
eigenvalues are real and negative.

Finally, only equilibrium E
(z,y)
1,{1,...,Ny}

can be stable if and only if s⋆ = sz⋆
1 .

Remark 6. The same work can be done for the whole system (7), where the
eigenvalues are the same, plus the −D eigenvalue which arises from mass balance
dynamics (8).
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Abstract: This paper proposes control laws for the continuous culture of microorganisms, which
make it possible to select species which maximize a criterion. In particular, by controlling the
dilution rate and the input substrate concentration, the species with the fastest growth rate in
chosen environmental conditions can be selected.
In a first step a control is proposed for Monod and Droop models in order to achieve
periodic substrate stresses, and a closed loop control is proposed to regulate the total biomass
concentration. We show that this biomass regulation causes the selection of the fastest growing
species if the system has a periodic behavior, and derive new selection criteria. Finally, the
method is simulated using the Droop model for selecting species which maximize these criteria.

Keywords: chemostat; microorganisms; competition; selection

1. INTRODUCTION

The chemostat is an open bioreactor where a microorgan-
ism can grow in suboptimal conditions of substrate limita-
tion. The chemostat model supports several ecological the-
ories (Jessup et al. [2005]) that were then extrapolated and
tested in real life. Among these theories, the competition
theory is one of the most famous. It states that if n compet-
ing species are introduced in a chemostat, generically (in
the adequate working modes) only one species will stay in
the chemostat, while the n − 1 other will disappear. This
principle was validated with real experiments in Hansen
and Hubell [1980] where the species that ”wins” the com-
petition could be predicted; it was the one that could grow
at a constant rate (equal to the dilution rate as detailed
further on) with the smallest amount of limiting substrate
s∗. This theoretical result could be used to select among
a blend of species, the ones of interest. This idea has been
used for diverse applications, such as Directed Evolution
for strain improvement (see the reviews of Dykhuizen and
Hartl [1983], Zelder and Hauer [2000] and Percival Zhang
et al. [2006]). By adjusting a particular stress such as an
inhibitor’s concentration, a substrate limitation, or the
dilution rate, it can lead to the isolation of species with
optimal yield. This is of particular importance since it is
a rather simple way of making a particular species emerge
within a population. However, in most biotechnological
applications, the selection criterion based on the idea of
”optimal yield” is not appropriate. A selection that would
e.g. select the microorganism with the highest growth
potential would be preferable, especially if one wants to
identify organisms that grow in hostile conditions. More
generally, the objective of this paper is to propose new
selection criteria. For this, the chemostat is not run in
open loop, but a control law is proposed to run the system
in closed loop. We show how the competition outcome is

modified and we propose new criteria that could be used
for species separation.

The paper is structured as follows. In a first part we recall
two classical models of microorganisms in the chemostat,
and the classical competition principle. Then we propose
control laws to generate periodic substrate stresses, and to
put the chemostat into a turbidostat mode. In the third
part we show that this last control causes the selection of
the fastest growing species if the system has a periodic
behavior, and infer new selection criteria. A simulation
example illustrates the benefit of the approach and shows
how three species can be separated on this principle.

2. SHORT REVIEW OF COMPETITION ON A
SINGLE SUBSTRATE IN THE CHEMOSTAT

2.1 Basic model for microorganisms in the chemostat

Monod model is the basic model for describing microor-
ganisms growth on a single substrate in a chemostat.











ṡ = D(sin − s) −

N
∑

i=1

1

yi
µi(s)xi

ẋi = (µi(s) − D)xi

(1)

where s stands for the substrate concentration in the
chemostat, sin its input concentration, and xi the ith
species biomass concentration. The µi functions represent
the growth rates of these species, and the yi constants are
their substrate conversion yields. D is the input/output
dilution rate. We control the system with sin and D.

In this model the growth rate functions µi are taken as
positive monotonic increasing functions

sa < sb ⇔ µi(sa) < µi(sb) (2)
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They are bounded by their supremum values µmi
:

µi(s) < µmi
and lim

s→+∞

µi(s) = µmi
(3)

2.2 Variable yield model

Droop model (Droop [1968]) is more complex, it describes
the internal substrate storage q of the microorganisms :



















ṡ = D(sin − s) −

N
∑

i=1

ρi(s)xi

q̇i = ρi(s) − µi(qi)qi

ẋi = (µi(qi) − D)xi

(4)

In this model the ρi functions represent the substrate ab-
sorption rates, while the µi functions represent the growth
rates. These functions are positive monotonic increasing
functions. They are upper-bounded by the supremum val-
ues ρmi

and µ̄i. The minimum absorption and growth rate
are ρi(0) = 0 and µi(qi) = 0 for qi ∈ [0, Kqi

].

Internal substrate storage behavior : For each fixed sub-
strate concentration s, the q̇i equation indicates that qi

goes toward Qi(s), defined as the unique solution of

µi(Qi(s))Qi(s) = ρi(s) (5)

The uniqueness of Qi(s) and its attractivity for a fixed s
are straightforward since µi(qi)qi is increasing in qi.

Let us define the maximum internal substrate storage

Qmi
= lim

s→+∞

Qi(s) (6)

Qmi
is thus the solution of µi(Qmi

)Qmi
= ρmi

.

Qi(s) is bounded in [Kqi
, Qmi

], and Kqi
and Qmi

are lower
and upper-bounds for qi along the solutions of (4). Indeed
for qi(t) = Kqi

(resp. qi(t) = Qmi
) then q̇i ≥ 0 (resp.

q̇i ≤ 0), so that the interval [Kqi
, Qmi

] is invariant for qi.
The fact that there is a minimum and a maximum internal
substrate storage for each species is biologically relevant.

Corresponding to the maximum internal substrate storage,
there is a maximum growth rate µmi

for each species

µmi
= µi(Qmi

) (7)

2.3 The Competitive Exclusion Principle (CEP)

Under constant D and sin, for some xi species, there exists
a substrate concentration s⋆

i for which the growth rate µi

at equilibrium is equal to the dilution rate D :

µi(s
⋆
i ) = D in the Monod model

µi(Qi(s
⋆
i )) = D in the Droop model

(8)

If this substrate concentration does not exist for a given
species, it means that µi(s) or µi(Qi(s)) < D ∀s, and
the species will be washed out of the chemostat. If
µi(sin) or µi(Qi(sin)) < D for a particular species, that
species will also be washed out of the chemostat because
we will have s(t) < sin after some finite time t0, and then
µi(s(t)) or µi(Qi(s(t))) < D for all t > t0.

With no loss of generality, we order the species so that
their s⋆

i satisfy : s⋆
1 < s⋆

2 < ... < s⋆
N .

Hypothesis 1. s⋆
1 < sin and x1(0) > 0

The CEP stipulates that in a chemostat with single sub-
strate growth limitation, constant controls D and sin, and
under hypothesis 1, only species 1 stays in the chemostat:

lim
t→+∞

x1(t) > 0

∀i ∈ [2, N ], lim
t→+∞

xi(t) = 0
(9)

Criterion 2. CEP’s Competitiveness Criterion
Under hypothesis 1, the species with smallest s⋆

i , who
needs less substrate than the others for obtaining an
equilibrium growth rate µi(s) or µi(Qi(s)) equal to the
dilution rate D, wins the competition and excludes all
others from the chemostat.

Proof : A demonstration can be found in Smith and
Waltman [1995] for the Monod model with N species and
for the Droop model with 2 species. It has been validated
with several species (Hansen and Hubell [1980] - Ducobu
et al. [1998]). 2

The CEP is crucial for the understanding of natural
ecosystems. Some authors (Li and Smith [2003] - Hesseler
et al. [2006] - Lobry and Harmand [2006]) developped
alternative models for which the CEP is not verified, in
order to explore some coexistence cases.

Motivations for this work
Some works have already been done to control the compe-
tition in the chemostat, generally to enable the coexistence
of several species (Rao and Roxin [1990] - de Leenheer
et al. [2003] - Gouzé and Robledo [2005]). Here we aim at
finding controls which change the result of the competition
keeping a single species. More precisely, we want to select
species of interest who maximize a criterion other than the
smallest s⋆

i , by imposing a periodic behavior to the system.

Bernard et al. [1996] have studied the effect of periodic
substrate stresses, which is a realistic ecological situation.
In section 3.1 we propose controls which permit to repro-
duce such stresses, and in section 4.3 we show that this
can cause a new selection criterion.

3. CONTROLS FOR SELECTING SPECIES

3.1 Periodic substrate stresses

We propose an approach for the generation of periodic
substrate stresses. It consists in periodically imposing a
phase of rising substrate concentration, followed by a phase
of falling substrate concentration. The reference period is
T = trise + tfall.

Rising phase during time trise

We choose sin to obtain the dynamics ṡ = λ(sM − s) :

sin = s +
1

D

(

λ(sM − s) +

N
∑

i=1

ρi(s)xi

)

(10)

Control sin is positive because sM > s.

We obtain s(t) = sM (1 − e−λt) with s(0) = 0

Notice that
∑N

i=1 ρi(s)xi is generally not available from
measurements so that an observer may be built.
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Falling phase during time tfall

Let us define the total biomass concentration XT =
∑N

i=1 xi. We choose sin such that ṡ = −γφ(s).

sin = s +
1

D

(

XT

(

N
∑

i=1

xi

XT
ρi(s)

)

− γφ(s)

)

(11)

For sin to be positive, we need XT

∑N
i=1

xi

XT
ρi(s) ≥ γφ(s).

Since
∑N

i=1
xi

XT
ρi(s) is a convex combination of the ρi(s),

we have for all s : XT

∑N
i=1

xi

XT
ρi(s) ≥ XT mini ρi(s). Then

φ(s) ≤ mini ρi(s) for s ∈ [0, sM ] and γ ≤ XT are sufficient
conditions for the positivity of sin.

If γ is high enough and tfall is long enough, s(kT )
can reasonably be considered null, which ensures the
periodicity of s(t) when periodically imposing control (10)
followed by (11).

Periodic substrate stresses cause periodic growth rates
In this subsection we show that periodic s(t) causes
periodic qi(t), and thus periodic growth rates µi(qi(t)).

Let us remind

q̇i = ρi(s) − µi(qi)qi (12)

Lemma 3. Under any T -periodic s(t), there exists a
unique periodic solution q̄i(t) to (12). This solution is
attractive for any initial condition qi(0) inside [Kqi

, Qmi
]

Proof : First we demonstrate that q̄i(t) exists. Then we
prove its attractivity.

As the qi-attractive Qi(s) is bounded in [Kqi
, Qmi

], initial
condition qi(0) = Kqi

causes qi(T ) ≥ qi(0), and qi(0) =
Qmi

causes qi(T ) ≤ qi(0). Thus by continuity of qi(T )
with regard to the initial condition, there exists an initial
condition qi(0) = q̄i(0) in [Kqi

, Qmi
] such that q̄i(T ) =

q̄i(0) and qi is T -periodic under controls (10) and (11)

For the attractivity, Vi(t) = |qi(t) − q̄i(t)| is decreasing

along the solutions : V̇i(t) = sign(qi(t) − q̄i(t))(q̇i(t) −
˙̄qi(t)) < 0 because sign(q̇i − ˙̄qi) = sign(−µi(qi)qi +
µi(q̄i)q̄i) = −sign(qi − q̄i). Vi being a Lyapunov function
converging to zero, limt→+∞ qi(t) = q̄i(t). 2

Therefore, under controls (10) and (11) qi converges to-
wards a T -periodic behavior, and so does µi(qi(t)). We will
see in section 4.3 that this periodic behavior, caused by the
periodic stresses, can lead to a new selection criterion.

3.2 Regulation of the total biomass concentration

To achieve the effective selection of one species, XT must
be lower bounded so that at least one microorganisms
species remains in the chemostat, and it must be upper
bounded to avoid saturation of the chemostat by microor-
ganisms. That is why we propose a control D to obtain
the dynamics

ẊT = D(X⋆
T − XT ) (13)

so that XT converges towards a chosen concentration X⋆
T .

In both models this leads us to
∑N

i=1 µi(.)xi − DXT =
D(X⋆

T − XT ) and

D =

N
∑

i=1

xi

X⋆
T

µi(.) (14)

For the positivity of (11) we need γ ≤ XT . It is now
possible to choose γ ≤ min(X⋆

T , XT (0)).

Implementation : In practice
∑N

i=1 µi(.)xi is often an
indicator of the microorganisms activity that can be mea-
sured through the evolution of influent and effluent gas
composition and flow rate. For example in the case of
anaerobic digestion, this would be the CH4 flow rate; in
the case of microalgae, this would be the O2 production
(or CO2 uptake).

Remark : It is also possible to regulate KT =
∑N

i=1 kixi

with ki coefficients who can represent turbidity coeffi-
cients. This is what is approximatively done in a particular
family of chemostat, the turbidostat.

4. SELECTION OF THE FASTEST GROWING
SPECIES

4.1 Selection theorem in the XT -regulated chemostat

We have shown how to obtain periodic growth rates, and
regulated XT . In this section we will suppose that these
controls or others are applied to the system so that XT

is bounded in a fixed positive interval [X0, Xm], and the
growth rates are Ti-periodic functions µi(t).

Hypothesis 4. XT is bounded in [X0, Xm] with X0 > 0,
and the µi(t) are Ti-periodic functions.

We use the following notation for the mean growth of the
species :

µmeani
=

1

Ti

Ti
∫

0

µi(t)dt (15)

Hypothesis 5. Let us assume that
∃j ∈ [1;N ] such that µmeanj

> µmeani
∀i 6= j

Theorem 6. Selection Theorem for any periodic behavior
Under hypotheses 4 and 5, species j with highest mean
growth µmeanj

is selected and excludes all others.

Proof : We denote di = ln
(

xj

xi

)

.With ẋi = (µi −D)xi we

obtain ḋi(t) =
ẋj(t)
xj(t)

− ẋi(t)
xi(t)

= µj(t) − µi(t) and

di(t) = di(0) +
∫ t

0
µj(τ)dτ −

∫ t

0
µi(τ)dτ

We then use the following notations :

pi(t) =
t − mod(t, Ti)

Ti
ri(t) = mod(t, Ti)
t = pi(t)Ti + ri(t)

(16)

where pi(t) is the number of Ti-periods for species i until
time t. which leads us to
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t
∫

0

ḋi(τ)dτ = pj(t)

Tj
∫

0

µj(τ)dτ − pi(t)

Ti
∫

0

µi(τ)dτ + Rj
i (t)

= pj(t)





Tj
∫

0

µj(τ)dτ −
pi(t)

pj(t)

Ti
∫

0

µi(τ)dτ



+ Rj
i (t)

= pj(t)

(

Tjµmeanj
−

pi(t)

pj(t)
Tiµmeani

)

+ Rj
i (t)

with notation Rj
i (t) =

∫ rj(t)

0
µj(τ)dτ −

∫ ri(t)

0
µi(τ)dτ .

Since pi(t)
pj(t)

= t−mod(t,Ti)

t−mod(t,Tj)

Tj

Ti
, limt→+∞

pi(t)
pj(t)

=
Tj

Ti
and

limt→+∞ di(t) = di(0)+pj(t)Tj

(

µmeanj
− µmeani

)

+Rj
i (t).

Then as di(0) and Rj
i (t) are bounded, limt→+∞ di(t) =

+∞ because limt→+∞ pi(t) = +∞ and µmeanj
> µmeani

.

Thus limt→+∞

xj(t)
xi(t)

= +∞ and, as xj is upper bounded by

the upper-bound on XT , then limt→+∞ xi(t) = 0. As XT

is also lower bounded by X0 > 0, then lim inft→+∞ xj(t) ≥
X0 > 0 and the proof is complete. 2

4.2 Selection of the species with highest µmi

We have shown that it is possible to select a species with
fastest mean growth in given environmental conditions.
Here we determine conditions for selecting the species with
highest µmi

. Bennett and Boraas [1988] have realized such
a selection by using a turbidostat culture.

Criterion 7. µmi
Selection Criterion

With a bounded total biomass concentration XT , and with
µi(t) ≈ µmi

∀t, the species with highest µmi
is selected

Proof : The demonstration of Criterion 7 is the same as
for Theorem 6, with µmeani

= µmi
. 2

Implementation : In order to have µi(t) ≈ µmi
, we regu-

late s at a large value s0 (so that µi(s0) or µi(Qi(s0)) ≈
µmi

) by imposing ṡ = D(s0−s) which is achieved through

sin = s0 + 1
D

∑N
i=1 ρi(s)xi.

Remark : From a practical point of view, as
∑N

i=1 ρi(s)xi

is not always measurable, we have imagined a simpler way
to realize µi(s) or µi(Qi(s)) ≈ µmi

: with a high constant
sin and a small X⋆

T we have ṡ ≈ D(sin − s) and the
substrate concentration will converge close to sin, which is
chosen high enough to have µi(sin) or µi(Qi(sin)) ≈ µmi

.

4.3 Periodic stresses and new selection criterion

In this section we present the results that we obtained with
controls (10), (11), and the Selection Theorem 6.

Functions used for the study
We have used Michaelis-Menten absorption rates ρi(s) and
Droop growth rates µi(qi) :

ρi(s) = ρmi

s

s + Ksi

µi(qi) = µ̄i

(

1 −
Kqi

qi

) (17)

Rectangular shaped stresses
With functions (17) and controls (10) and (11), we have
obtained pseudo-rectangular shaped stresses of Figure 1.

Fig. 1. Pseudo-rectangular shaped regular periodic stresses

The way to approach this regular rectangular shape as
much as possible is described in section 5.

It is then reasonable (with sM ≫ Ksi
such that ρi(sM ) ≈

ρmi
) to approximate the stresses by (18)

ρi(s(t)) =

{

ρmi
if mod(t, T ) ≤ τ

0 if mod(t, T ) > τ
(18)

The ratio τ/T is the proportion of time the microorgan-
isms are fed, and (T−τ)/T is the proportion of time during
which they are stressed.

Determination of a new selection criterion
Under control (18) we have calculated the periodic be-
havior of the internal substrate storage q̄i(t) presented in
Appendix A, with limt→+∞ qi(t) = q̄i(t) (see Lemma 3)

We have then calculated :

µmeani
=

1

T

µmi

µ̄i
ln



1 +
Qmi

/Kqi

1
eµ̄iτ

−1 +
Qmi

/Kqi
−1

eµ̄iT
−1



 (19)

This criterion can be simplified in the specific case where
τ is small compared to T :

Hypothesis 8. τ/T ≪ 1
Qmi

/Kqi
−1 and τ ≪ 1

µ̄i·Qmi
/Kqi

Criterion 9. Selection Criterion under periodic stresses
Under control (18) and hypothesis 8, the species with

highest T
τ µmeani

≈ µmi

Qmi

Kqi

is selected.

where
Qmi

Kqi

represents the capacity of the species to in-

crease its internal substrate storage.

Consequently, periodic stresses with a small τ make it
possible to select a species which can both grow fast and
increase significantly its internal substrate storage.

5. SIMULATIONS WITH THREE SPECIES

These simulations have been carried out on the Droop
model (4) with control (14) so that the total biomass
concentration converges toward X⋆

T .

We have used (17) with the parameters of Table 1 for the
species, whose values come from Vatcheva et al. [2006].
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species 1 2 3

Ks (µmol/L) 0.01 0.15 0.10

ρm (10−9
· (µmol/(µm)3)/day) 9 14 8

Kq (10−9
· µmol/(µm)3) 1.5 5 2

µ̄ (1/day) 1.5 6 3

µm (1/day) 1.2 1.91 1.71

µm · Qm/Kq (1/day) 6 2.8 4

Table 1. Parameter values of the species

5.1 Selection of the highest µmi
with a XT -regulation

For this simulation we have chosen a large sin and a small
X⋆

T to ensure a large s, and thus we meet the conditions
of Criterion 7 (sin = 10µmol/L, X⋆

T = 1 · 109 · (µm)3/L)

Figure 2 shows the result of the simulation, where species
2 with highest µmi

excludes all others.

Fig. 2. Selection of the species with highest µmi

Lines & species : Solid-1, Dashed -2, Dotted -3

5.2 Selection under periodic substrate stresses

For these simulations we have used controls (10) and (11)
with T = 1 day, and sM ≫ Ksi

so that ρi(sM ) ≈ ρmi

(sM = 5µmol/L)

Approaching rectangular shaped stresses
We chose a high λ so that s rises fast (λ = 1000). In the
presence of perturbations, λ should not be taken that high,
in order to avoid amplifying them.
For a fast fall we have chosen a high X⋆

T , and a XT (0)
close to X⋆

T (this can be achieved by using control (14)
long enough before starting the sin control), which allowed
us to choose a high γ ≤ min(X⋆

T , XT (0)) :
X⋆

T = 400 · 109(µm)3/L), XT (0) = 220 · 109(µm)3/L,
γ = 100 · 109(µm)3/L.
We also used φ(s) = ρmφ

s
s+Ksφ

with ρmφ
= 5 ·

109µmol/(µm)3 < ρmi
and Ksφ

= 1µmol/L > Ksi
so

that φ(s) < ρi(s) ∀i ∈ {1, ..., N}, ∀s.
The method to obtain sM -phases with duration τ is pre-
sented in Appendix B.

Selecting a species by choosing a τ value
Figure 3 shows that different species can be selected
with different environmental condition τ , because for each
species i here (see Table 1 for their parameter values),

there exists a τ value such that µmeani
is higher than the

other species’ mean growth.

Fig. 3. µmeani
(τ) for the three species. The species with

highest µmeani
will be selected. It is thus possible to

select each of the three species, by using different τ
Lines & species : Solid-1, Dashed -2, Dotted -3

Finally, Figure 4 illustrates the possibility of selecting any
of the three species by choosing an adequate τ .

6. CONCLUSION

This work shows that it is in theory possible to select
species exhibiting a desired feature in the chemostat :
under turbidostat-like control in constant or periodic con-
ditions, the species with the fastest mean growth rate is
selected. We have proposed two possible applications : the
selection of a species that can grow faster than any other,
and the selection of a species which can both grow fast
and increase its internal substrate storage.

This method makes it possible to select quite easily a
species for its study or culture. It could be used to identify
species which grow in hostile conditions, to amplify and
verify the presence of a species in a medium, to deter-
mine conditions which permit a species to be resistant
to invaders, to select a species which is interesting for a
specific biotechnological objective, or to improve strains
by directed evolution. The selection criterion, which is
the maximum mean growth rate in chosen environmental
conditions, seems very promising.

This work could be extended by using other controls such
as an inhibitor’s concentration. This would lead to other
selection criteria.
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Appendix A. PERIODIC INTERNAL SUBSTRATE
STORAGE CAUSED BY PERIODIC STRESSES (18)

We have demonstrated that (A.1) is the unique solution
of (12) under periodic substrate stresses (18)

q̄i(t) =

{

Qmi

(

1 − e−µ̄it
)

+ q̄i(0)e−µ̄it if mod(t, T ) ≤ τ

Kqi

(

1 − e−µ̄i(t−τ)
)

+ q̄i(τ)e−µ̄i(t−τ) else

with q̄i(0) = Qmi
− (Qmi

− Kqi
)
1 − e−µ̄i(T−τ)

1 − e−µ̄iT

and q̄(τ) = Kqi
+ (Qmi

− Kqi
)
1 − e−µ̄iτ

1 − e−µ̄iT

(A.1)

Appendix B. OBTAINING τ FOR (18)

To obtain regular stresses (18), we need to predict τfall,
the time needed, starting from s = sM , to obtain s = s0

where s is negligeable (s0 = 0.005µmol/L).
ds
dt = −γφ(s) = γρmφ

s
s+Ksφ

leads us to dt = − 1
γρmφ

(1 +

Ksφ

s )ds and to τfall = 1
γρmφ

(

sM − s0 + Ksφ
ln
(

sM

s0

))

. If

the stresses are rectangular shaped (s ≈ sM during most
of the time interval [0, trise]), it is thus possible to choose
trise so that τ = trise +τfall, and to approach control (18).
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Driving competition in a complex ecosystem:

application to anaerobic digestion

P. Masci, O. Bernard, F. Grognard, E. Latrille and J.-B. Sorba and J.P. Steyer

Abstract— Anaerobic digestion is a wastewater treatment
process where bacteria degrade an organic substrate and
produce methane, which can be used as a biofuel. The first
task when starting up an anaerobic digester is the increase
of its microbial population. It is a delicate phase, which is
still not well understood, and its influence on the digester’s
future performance is not well known. During this phase, we
show that a competition between the various species occurs
and finally some species become dominant. In this paper,
extending the competitive exclusion principle, we propose
to drive the competition during this start-up phase, by
regulating the volatile fatty acids concentration, with the aim
of selecting species with good performance in the standard
operating mode of the process. This new ”selective” start-up
strategy should lead to more efficient ecosystems.

Keywords: Anaerobic digestion; Bioreactors;Biological

systems; Competition; Selection; Directed Evolution

I. INTRODUCTION AND MOTIVATION

Anaerobic digestion is a more and more widely used

bioprocess for wastewater treatment. This complex ecosys-

tem involves several hundreds of bacterial and achaeal

species [1] that progressively degrade organic matter into

methane and CO2. It has many advantages compared

to the more widespread activated sludge process: it can

handle concentrated substrates, produces few sludge, and

methane can be recovered and used as a biofuel. However

this process is difficult to manage since the steady state

associated to the operating mode is not globally stable

[2]. As a corollary, the start-up of the digester is a long

and risky phase [3] during which the digester loading

is progressively increased in order to let the bacterial

population adapt, grow and settle the reactor. Reactor start-

up is then a long procedure (from one month to almost

one year) that is essential to achieve a high treatment

capacity at steady-state [4], and therefore this phase should

be better understood and controlled.

Despite its key role, this phase did not receive so far

much attention, perhaps because it is quite difficult to

properly characterise since biomass measurements are not

available. In [5], it was shown that disturbing the microbial

community in a ”bang bang” like approach leads to better

P. Masci, O. Bernard and F. Grognard are with INRIA Sophia
Antipolis, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis,
France olivier.bernard@inria.fr

J.B. Sorba, E. Latrille and J.P. Steyer are with LBE, UR050, INRA,
Avenue des étangs 11100 Narbonne, France

diversity and thus improves the bioprocess when facing a

toxicant.

In this paper, we propose a new model for the start-

up phase, including biodiversity. We assume that, at the

beginning, N species are competing for the substrate. We

show that, depending on the way the digester is started

up, some populations will be enhanced and will prefer-

entially remain in the digester. The underlying idea relies

on the competitive exclusion principle, which has been

theoretically studied and experimentally demonstrated in

various conditions [6], [7]. We exploit the idea proposed

in [8] to drive the competition during the start-up phase,

by regulating the volatile fatty acids (VFA) concentration

around a fixed value, which is determined by the normal

operating mode of the digester. By doing so, we act

upon the ecosystem in order to enhance the process

efficiency. Also, bacterial biomass extinction, which is one

of the main risks of the start-up phase, is avoided, and

the obtained ecosystem presents an interesting steadiness

property. Simulations and a first experiment are presented

for supporting this start-up strategy.

II. PROCESS MODELLING

A. Presentation of the model

We propose here a simple macroscopic model (derived

from [9]) in order to be able to handle the involved

mathematics. We assume that, in a first acidogenesis step,

the dissolved organic substrate, of concentration s1, is de-

graded by a population made of Na species of acidogenic

bacteria (yj , with j ∈ [1;Na]) into volatile fatty acids

(VFA, denoted s2). The growth rate of these bacteria is

γj(s1):

k1 s1
γj(s1)yj
−−−−−→ yj + k2 s2 + k5 CO2

where k1, k2 and k5 are pseudo-stoichiometric coefficients

which represent the transfer from substrate to acidogenic

biomass, VFA and CO2. They are assumed to be constant

between the various acidogenic species.

In a second step (methanogenesis), the VFA are de-

graded into CH4 and CO2 by Nm methanogenic archae-

abacteria (xi, with i ∈ [1;Nm]) with growth rate µi(s2):

k3 s2
µi(s2)xi
−−−−−→ xi + k4 CH4 + k6 CO2
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where k3, k4 and k6 represent the transfer from substrate

to methanogenic biomass, methane and CO2. They are

also assumed to be constant between all the methanogenic

species.

We assume that the concentrations are perfectly dis-

tributed throughout the reactor, and the dilution rate for the

dissolved components is D. Since a part of the bacteria are

attached on a fixed biofilm within the digester, the dilution

rate for the yj and xi biomasses are βjD and αiD (i.e.

the biomasses have a retention time 1/(βjD) or 1/(αiD)).
The dynamical mass-balance model in a continuous stirred

tank reactor is then straightforwardly derived [10], [9]:



































ṡ1 = D(sin
1 − s1) − k1

∑Na

j=1 γj(s1)yj

ẏj = γj(s1)yj − βjDyj

ṡ2 = D(sin
2 − s2) + k2

∑Na

j=1 γj(s1)yj

−k3

∑Nm

i=1 µi(s2)xi

ẋi = µi(s2)xi − αiDxi

qm = k4

∑Nm

i=1 µi(s2)xi

(1)

where sin
1 and sin

2 are respectively the concentration of

the influent organic substrate and influent VFA, and qm

is the methane flow rate.

We consider a Monod kinetics (2) for the growth rate

of acidogenic bacteria

γj(s1) = γ̄j
s1

s1 + h1
j

(2)

and an Haldane function (3) for the methanogenesis, to

represent the possible inhibition by an accumulation of

VFA [9]:

µi(s2) = µ̄i
s2

s2 + h2
i + (s2/h2∗

i )2
(3)

where γ̄ is the maximal growth rate of the acidogenic

bacteria and µ̄ is the potential maximum growth rates of

the methanogenic bacteria, h1
j and h2

i the half-saturation

constants associated to substrates s1 and s2, and h2∗
i the

inhibition constants associated to substrate s2.

III. THE ”SELECTIVE” START-UP STRATEGY

A. Standard start-up strategy

The main danger during the start-up phase is imposing

too high a dilution rate D, such that the VFA concentration

becomes high and inhibitory, and all the methanogenic

biomasses are washed out of the digester (see [2] for a

study of the two stable equilibria attraction bassins, in the

mono-specific case). In order to avoid such a dramatic

scenario, the plant operator often starts the digester

with a very low dilution rate. Under such a control, the

outcome of competition between bacterial species can be

predicted in the case where ∀j ∈ {1, · · · , Na}, βj = β
and ∀i ∈ {1, · · · , Nm}, αi = α for some α, β > 0.

Any acidogenic species whose maximum growth rate γ̄j

is lower than the dilution rate βD will be excluded from

the digester, because for such a species ẏj < −Kjyj , with

Kj = −γ̄j +βD > 0, and then yj(t) < yj(0)e−Kjt tends

to zero. The same exclusion applies for all methanogenic

species such that maxs2
µi(s2) < αD.

For the other acidogenic species, it is possible to define

equilibrium substrate concentration s∗1j such that

γj(s
∗
1j) = βD

where the s∗1j concentration depends on D:

∂

∂D
s∗1j ≥ 0

For the other methanogenic species, it is possible to

define s∗2i and s†2i ≥ s∗2i such that

µi(s
∗
2i) = µi(s

†
2i) = αD

where the s∗2i and s†2i concentrations depend on D:

∂

∂D
s∗2i ≥ 0 and

∂

∂D
s†2i ≤ 0

In order to prove the next property, we can then define

a dilution rate D∗ low enough such that:

min
i

(s†2i) = max
i

(s∗2i)

and, for any S > 0, there exists DS < D∗ such that

∀D < DS ,

min
i

(s†2i) > S > max
i

(s∗2i) (4)

The following property determines the outcome of the

competition when the dilution is small enough and when

there is enough substrate in the input to avoid the straight-

forward wash-out of all species:

Property: If ∀j, βj = β, ∀i, αi = α, the dilution

satisfies D < D∗, and sin
1 > minj(s

∗
1j) then

• the species with lowest s∗1j is selected among all

acidogenic species (with limt→∞yj = y∗
j ),

if, moreover, S = sin
2 + k2

k1

(sin
1 − s⋆

1j) satisfies (4)

• the species with lowest s∗2i is selected among all the

methanogenic species.

Proof : Under such a constant low dilution rate, the theory

of competitive exclusion predicts (with Monod-like growth

functions) that the most efficient species for the growth

βD, i.e. the acidogenic species with lowest s∗1j , is selected

[6]. This is also true with Haldane-like growth functions

when (4) is satisfied [11]: the methanogenic species with

lowest s∗2i wins the competition. �

Then if a constant dilution rate D < D∗ is imposed,

two independent selection processes occur, which do not

depend on the sin
1 and sin

2 input concentrations. Note

that the trait which is optimized is the lowest substrate

requirement, and that it is not possible to choose the s∗1j
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and s∗2i concentrations: selection occurs but it is not con-

trolled. That is a major problem of this start-up strategy:

species which would grow fast in the standard operating

mode can be washed out; uncontrolled competition can

lead to the selection of species with low growth rate in

the standard operating mode, thus slowing the pollution

removal process.

We propose an alternative strategy which permits to

control the competition and select the most efficient

species in the standard operating mode.

B. Objective of the proposed strategy

A reasonable objective for an anaerobic digester is to

consume the pollutant substrate and obtain a constant VFA

output concentration s̄2 (VFA is necessary for the process,

but it is also a pollutant), with the highest possible dilution

rate D, which corresponds to the wastewater treatment

rate.

The objective of the strategy that we want to explore

is to preserve and select the species whose equilibrium

µi(s̄2)/αi (denoted ”relative growth rate”) is maximal,

thus optimizing the wastewater treatment rate (at equi-

librium D = µi(s̄2)/αi). More than that, we propose

to drive this selection since the beginning of the start-up

phase, which may have a positive impact on the biofilm

composition, thus resulting in better performances. For

achieving this goal we regulate s2 and show that it leads

to the desired competition outcome.

C. Control design for the regulation of s2

Here we assume that a control strategy has been set-up

which ensures the convergence of s2 towards the setpoint

s̄2 < sin
2 . Because of space limitation, we won’t detail

the considered control law, nor prove its convergence.

However we refer the reader to other works aiming at

the substrates regulation in an anaerobic digestion process

[10], [12], [13]. In the sequel, the used controller is

presented and its convergence is shown on a real plant.

D. Selection of archaeal species with maximal µi(s2)/αi

The principle of driving the competition for selecting

species or individuals which maximize a chosen criterion

is presented in [8], where a general law is given for

this selection, and specific selection criteria are given for

Monod and Droop models. This theory can also be adapted

and applied to system (1) if the VFA concentration is

regulated to a constant value.

Main Theorem : In system (1), if a controller achieves

the regulation of s2 to s̄2 < sin
2 , then the methanogenic

species xk with highest relative growth rate µk(s̄2)/αk is

selected and all the others are excluded.

Proof In a first step we will prove that the regulation

of s2 to s̄2 < sin
2 leads to the boundedness of the total

methanogenic biomass
∑Nm

i=1 xi(t) (denoted XT (t)) in

[X0;Xm] with X0 > 0. Therefore the total methanogenic

biomass XT cannot diverge, and its complete washout

cannot occur (at least one methanogenic species will

remain in the chemostat). In a second step, we will show

that the difference in relative velocity between species lead

to the survival of only one species, with maximal relative

growth rate.

First, s2 regulation causes the total methanogenic

biomass boundedness. Indeed, defining the variable z =
s1 + k1

k2

s2 + k3k1

k2

XT and zin = sin
1 + k1

k2

sin
2 , we have

ż = Dzin − Ds1 −
k1

k2
Ds2 − D

k3k1

k2

∑

i

αixi

so that

D(zin − z) ≤ ż ≤ D(zin − αz) (5)

where α = mini αi. We directly conclude that an upper-

bound on XT is deduced from an upperbound on z, so

that

Xm =
k2

k3k1
max

(

zin

α
, z(0)

)

We can deduce from this upperbound that
∫∞

0
D(τ)dτ is

unbounded. Indeed, if it was not the case and knowing that

s2 converges to s̄2, any ẋi equation aymptotically yields

ẋi = (µ(s̄2) − D(τ))xi

whose solution is unbounded when the aforementionned

integral is bounded, which is in contradiction with the

existence of Xm.

Also, the unboundedness of
∫∞

0
D(τ)dτ and (5) yield

lim inft→∞ z ≥ zin, so that, having limt→∞s2 = s̄2 and

using the fact that s1(t) ≤ sin
1 for all times

lim inf
t→∞

XT ≥
1

k3
(sin

2 − s̄2)

so that there is a lower-bound X0 on XT .

Secondly, XT being lower and upper bounded, let

us show that the difference in relative growth rates

between the species lead to competitive exclusion. We

denote xk the species with maximal µk(s̄2)/αk, such that

µk(s̄2)/αk > µi(s̄2)/αi,∀i 6= k and ts a time such that

µk(s2(t))/αk > µi(s2(t))/αi,∀i 6= k,∀t ≥ ts. Let us

define

ri = ln

(

x
1/αk

k

x
1/αi

i

)

which leads to

ṙi(t) =
ẋk

αkxk
−

ẋi

αixi
=

µk(s2(t))

αk
−

µi(s2(t))

αi
> 0

for all t ≥ ts. Then ri(t) will increase, so that

limt→+∞ ri(t) = +∞. This means that the ratio
x
1/αk
k

x
1/αi
i

will tend to infinity.
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As xk is upper bounded by Xm, it cannot diverge,

which implies that

lim
t→+∞

xi(t) = 0,∀i 6= k

As xk is also lower bounded by X0, then

lim inf
t→+∞

xk(t) > 0

and we obtain that only methanogenic species xk is not

excluded from the chemostat. �

Thus, if one can regulate the VFA concentration s2

so that it remains constant at a given s̄2 value, then the

selection of the species with maximal relative growth rate

µk(s̄2)/αk will occur, thus shaping the ecosystem and

optimizing the wastewater treatment rate at equilibrium

D = µk(s̄2)/αk.

IV. SIMULATIONS

Even though, as previously said, several hundreds of

microbial species are present in anaerobic digesters, we

have simulated system (1) with only 3 acidogenic species

and 4 methanogenic species to keep the system under-

standable. Species-specific parameters are taken from [9]

with ±50% values. The substrate and VFA inputs were

sin
1 = 5g/L and sin

2 = 5mmol/L. The relative growth

functions µi(s2)/αi of the various methanogenic species

is presented in Fig. 1. Species 1 grows better with low

VFA concentration, species 3 grows faster under high VFA

concentration, and species 2 is better for medium ones.

Species 4 is less efficient than the others for any VFA

concentration, so that it should be excluded whatever the

start-up strategy.

Fig. 1. Relative growth functions µi(s2)/αi of the 4 methanogenic
species used in simulation. Species 1 (Solid), species 2 (Dashed), species
3 (Thick), species 4 (Dashdot)

A. Interest of the ”selective” start-up strategy

In this section we show the interest of the selective start-

up strategy, by comparing it with two other strategies.

The first strategy is the standard start-up strategy where

D is chosen low (D = 0.05) to avoid bacterial wash

out. The result is presented in Fig. 2, where we can

see that species 1, which grows slowly for high VFA

concentrations, is selected. The digester was started safely

but the obtained ecosystem is such that the digester’s

performance will not be optimal.

Fig. 2. Standard start-up strategy with low D = 0.05, to avoid archaeal
washout. This strategy leads to the selection of species 1, which is not
optimal for VFA concentrations higher than 2mmol/L (see Fig. 1)

The second strategy is the selective start-up strategy

where the species which grows faster at VFA concen-

tration s̄2 is favored. In Fig. 3 we use a controller to

regulate s2 to s̄2 = 3mmol/L, and species 2 is selected.

We see on Fig. 1 that it is the most efficient species at

this concentration.

For this strategy we used the following pseudo-linearizing

Fig. 3. Selective start-up strategy : species 2, which is the most efficient
under VFA concentration s̄2 = 3mmol/L, is selected.

controller

D =
λ1(s̄2 − s2) + k3

k4

qm

sin
2 − s2

+ λ2

∫ t

0

(s̄2 − s2(τ))dτ (6)
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(λ1 and λ2 are two gains) where the non-measured acido-

genic activity is replaced by a PI correction.

The last one is a naive start-up strategy where the

value of D is constant and equal to µ2(s̄2). The objective

of this strategy is to obtain the same result as in the

selective strategy, but the simulation of Fig. 4 shows that

it leads to process failure: the VFA were accumulated

such that they became inhibitory (≈ 100mmol/L), and

the methanogenic biomasses were washed out.

Fig. 4. Naive start-up strategy : by choosing D high (D = µ2(s̄2))
since the beginning of start-up, the methanogenic biomasses became
inhibited and were washed out.

These simulations show that the selective start-up strat-

egy avoids bacterial extinction, while selecting efficient

species for the digester in the standard operating mode.

B. Selecting a population optimal for a given VFA con-

centration

Let us suppose now that we want an anaerobic digester

whose VFA concentration in the standard operating mode

is s̃2 = 8mmol/L. Using linearizing controller (6) to

regulate s2 to s̃2, we obtain the simulation of Fig. 5

where species 3 (the most appropriate at concentration

8mmol/L) is selected.

This simulation emphasizes that depending on the digester

VFA concentration in the standard operating mode, differ-

ent species should be selected during the start-up phase,

so that the obtained ecosystem will be more efficient.

C. The selective process consolidates the ecosystem

On Fig. 6 we can see that the dilution rate, during the

s̃2 selective start-up, rises until selection occurs and then

becomes almost constant and equal to µ2(s̃2)/αi. Then,

after time t = 100days, the controller is turned off and

the dilution rate is kept constant with no consequence

for the digester, as the VFA concentration stays almost

constant: the ecosystem is settled and composed of the

most efficient population in the standard operating mode,

such that it became naturally stable around the desired

Fig. 5. Start-up selection, under the closed loop control, of species
which maximize µ2(s̃2)/αi, with s̃2 = 8mmol/L. Depending on the
VFA concentration in the standard operating mode, different populations
should be selected to optimize the process.

equilibrium (s2 = s̃2). This result is of great importance

and must be verified experimentally : the selective start-up

strategy gives birth to a stable ecosystem involving bacte-

rial species such that the natural steady state is exactly

the requested one, without needing a control feedback

anymore.

Fig. 6. The dilution rate (top) in the s̃2 experiment was kept
constant after time t = 100days with negligible consequence on the
VFA concentration (bottom), showing that selection leads naturally to
a consolidated ecosystem where the desired equilibrium (s2 = s̃2) is
stable.

V. APPLICATION TO A REAL ANAEROBIC DIGESTER

START-UP PHASE

In order to verify the proposed selection principle and

to assess the effect of a controller that regulates the VFA

during the start-up phase, experiments have been carried

out at the LBE-INRA Laboratory in Narbonne (France).

A. Experiment design

The process is an up-flow anaerobic fixed bed reactor

with a useful volume of 0.548 m3. The reactor is highly
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instrumented and many variables were measured during

the experiments [9]. More details about the process and

evaluation of its on-line instrumentation are available in

[14].

B. Experimental results and discussion

Control (6) was applied, with command s̄2 = 4 g/L,

and control parameters k3 = 116.5 mmol/g, k4 = 453
mmol/g, λ1 = 12 day−1 and λ2 = 0.05 mmol−1 day−1 .

The experimental results are presented in Fig. (7).

Time (days)

Time (days)

V
F

A
 (

g/
L)

Q
in

(L
/h

)

Fig. 7. Start-up experiment where s2 is regulated at s̄2 = 4g/L. The
influent flow rate (Qin = D/V ) and the VFA concentration are plotted.

We can see on this figure that our control objective

was attained : the VFA concentration was well driven

towards s̄2 despite many disturbances related to failures

and disturbances in the process. It is worth noting that

the more the ecosystem is selected, the more efficient the

regulation. At the end, when the interesting species have

probably been selected in the digester, the regulation is

more and more efficient.

Finally, the proposed strategy enabled us to reach a high

dilution rate D = 0.78 while avoiding start-up failure.

VI. CONCLUSIONS

We proposed a start-up strategy for an anaerobic di-

gester, whose aim is to influence the structure of the

ecosystem, so that the obtained ecosystem in the end of

start-up will be optimal for a given VFA concentration.

For implementing such a selective process, we drive the

competition by regulating the VFA concentration at a fixed

value. We showed how the obtained ecosystem should also

be consolidated because of the selection that occurs during

the start-up phase.

According to model (1), a control law was proposed and

a mathematical demonstration was given for predicting the

competition outcome. Simulations were used to verify and

explain the utility of the method, and a real experiment

was presented where the start-up strategy was tested.

We emphasize that the aim of this strategy is not

to minimize the start-up duration, but rather to build

an efficient ecosystem. This kind of start-up strategy,

where the objective is to act on the bacterial community’s

structure for optimizing a particular process, was never

(to our knowledge) proposed before for anaerobic diges-

tion. Further investigations in this direction are presently

performed.
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Chapter 5

Conclusion

Microbial ecosystems play key roles in our biosphere: they highly contribute to
harvest light energy from the sun and to recycle nutrients. They should therefore
be better understood, both for a better apprehension of natural ecosystems but
also for developing cleaner biotechnologies. The implications of the ecosystems
studied in this thesis are multiple:

• microalgal and anaerobic ecosystems both play an important role in global
warming since they respectively consume CO2 and produce CH4. Thus,
they should be better understood and models must quantify the associated
carbon and energy fluxes.

• some microalgae, like spirulina, can be eaten and are great potential
sources of proteins, vitamins and minerals [42];

• some microalgae produce pharmaceutics and neutraceutics [38];

• some others produce oil which can be used as a biofuel, and high produc-
tivities seem possible [8];

• anaerobic bacteria can clean wastewater, and degrade low biodegradable
substrates,

• methanogenic bacteria produce methane which is also a renewable biofuel.

Our first step to better apprehend these ecosystems was to develop models
for microalgae populations in photobioreactors (chapter 2.1). The model needed
to include enough ingredients to reproduce the main process behavior, but had
to be kept simple enough to be validable, identifiable, and to be mathematically
tractable. Our model represents nutrients absorption and storage. This is a key
issue for biofuel production since nitrogen influences lipids synthesis (see our
lipid synthesis model in [33]). It also represents light attenuation and respira-
tion which are crucial when biomass concentration is high, which is often the
case in real bioprocesses. The last ingredients are photoinhibition (high light
intensities inhibit growth) and photoacclimation (Chl/C ratio variations de-
pending on the received light) which is important when light or biomass vary in
the photobioreactor. While representing all these phenomena, the model stays
relatively simple, based on only four dynamical equations representing nitrogen
in the medium, biomass, internal nitrogen quota, and chlorophyll evolutions.
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A parameter calibration procedure is proposed and used to validate the
model on a dataset. Analytical results demonstrate that high density cultures,
when subject to photoinhibition under strong light, show no apparent photoin-
hibition, as only the little proportion of microalgae near the reactor’s incident
surface are photoinhibited. This explains why photoinhibition is not always ob-
served in high density cultures. However, photoinhibition induces a hidden loss
that must be considered and, if possible, avoided.

With a variant of this model, where photoadaptation was assumed to be at
equilibrium, we proceeded to an optimization of biomass surface productivity at
equilibrium (chapter 3.1). We showed that a key parameter is surface biomass
X: the photobioreactor acts like a solar panel where surface biomass enables
to gather light energy, but causes energy losses by respiration. An optimal
surface biomass is derived, as well as an optimal nitrogen/carbon quota. The
result is counter-intuitive, as it states that depending on the microalgal species
parameters, it might be optimal to grow microalgae in nutrient limited condi-
tions. Indeed, for a fixed high biomass, higher nitrogen/carbon ratio correspond
to higher chlorophyll concentration and thus strong light attenuation, causing
lower growth rate.

Productivity is the result of many biological and physical interacting phe-
nomena, the most important of which are represented in the DPM model. That
is why the productivity is a complex combination of several model parameters.
This results enables to compare microalgal species productivity, which can be
computed directly from their parameters.

As microalgae must be grown into natural light for biofuel production (for
high value products they are sometimes grown under artificial light), they en-
counter day-night light variations. In the case of nutrient profusion (chapter
3.2), we show that several optimal control scenarii must be applied for optimiz-
ing volumetric productivity, depending on the microalgal species parameters:
bang-bang, bang-singular-bang control, or constant maximal dilution if the mi-
croalgal growth rate is very high.

Finally we gave some key results for competition study and control. The
analysis of mixed competition between several Monod, Droop and Contois species
(section 4.1) introduces a new paradigm for competition, where both competi-
tive exclusion or coexistence can happen, depending on both species parameters
and controls. Thus in this paradigm, neither competitive exclusion nor coexis-
tence are the rule; one or the other can happen, depending on the species and
environmental conditions. More precisely, in some cases the most competitive
Monod or Droop species wins the competition alone. In other cases one or
several Contois species are able to coexist with or without the best Monod or
Droop competitor. The pessimization principle of Adaptive dynamics, based
on the competitive exclusion principle, is contradicted by this result: instead of
leaving the environment with the worst (lowest) possible substrate concentra-
tion, we see that some Contois-species could live in worse environments, but if
there is more substrate than the minimal concentration they need, then some
other species can coexist. This is due to the fact that higher input substrate
concentration induces higher equilibrium biomass, and thus higher equilibrium
substrate concentration needed to have growth rate β(s, x) equal to the dilution
rate D.
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Then (section 4.2) we demonstrate rigorously that in the periodic turbido-
stat, the species with highest mean growth rate wins the competition. This
gives us the possibility to control competition in order to select species with
diverse characteristics. In particular, we prove that in the classical turbidostat
(nutrient replete conditions), the species with highest maximum growth rate
is selected. In the pulsed turbidostat we show that the selected species maxi-
mizes a criterion which is a trade-off between high maximum growth rate (µm),
and high potential increase of its internal substrate storage (Qm/Q0). These
applications had already been validated in three previous distinct experiments
concerning different types of microorganisms (zooplankton [4], yeast [18], and
microalgae [20]).

We extended this methodology to the more complex anaerobic ecosystem
during its start-up phase (chapter 4.3), in order to favour an efficient biofilm
which would maximize the wastewater treatment rate. This should also increase
the methane production rate.

This work is a whole that can be continued in each of these three directions:
modelling, optimization, competition study and control.

The DPM and lipid synthesis models must be confronted with experiments,
in order to be validated or improved. In particular, the simulated result that
photoinhibition is not perceptible but present in high density cultures should
be validated by a devoted experiment.

The optimization result, that for some microalgal population parameters,
nitrogen limited cultures could have higher biomass productivities than nitro-
gen replete ones, should also be explored experimentally. Many optimization
research remains to be done under day-night cycles with non-nitrogen replete
culture, as well as for lipids production maximization. Some factors, like tem-
perature or pH, could also be added to the DPM model in order to explore their
effect on productivity. Much work and experiments remain to be done in this
direction.

For competition theory, it would be interesting to validate the mixed com-
petition result, by doing an experiment with Monod/Droop species and Contois
species and verifying if the diverse competitive exclusion and coexistence out-
comes can be produced and precisely controlled.

Then, the proposed selection procedures in microalgal and methanogenic
bacteria ecosystems should be tested both on the short term (validation of
the predicted outcome of competition), and on the long run: to see if species /
biofilms with improved characteristics can be selected with these methods. Such
results would gives some hope for alternative techniques to GMO organisms, in
order to improve ecosystem’s efficiency. This method could also be used to iden-
tify species which grow in hostile conditions, to amplify and verify the presence
of a species in a medium, or to determine conditions which permit a species to
be resistant to invaders. The selection criterion, which is the maximum mean
growth rate in chosen environmental conditions, seems very promising and can
take different forms depending on the imposed environmental conditions: this
work could be extended by using other controls such as an inhibitor’s concen-
tration, or light in the case of microalgae. This would lead to new selection
criteria.

135



We stress again that many factors should be taken into account for choosing
a microalgal species that maximizes surface productivity: microalgal resistance
to temperature shifts or to predation, and the various effects of the local en-
vironment affecting growth of a specific microalgal species. For this purpose,
models including additional factors, like temperature or pH, must be developed
and explored analytically. The steps of modelling, optimization and competi-
tion prediction and control must then be revisited with these new factors. We
hope to have participated in creating solid bases for the undertaking of such a
long term task.

Both the competition prediction and controls works presented here show the
beauty of mathematics. We have highlighted the ability of mathematical mod-
elling for giving ecological insight in a very general sense: the same equations
and methodologies enable to successfully describe different ecosystems, from
microalgae to bacteria and yeast.

136



Conclusion

Les écosystèmes microbiens jouent un rôle clé dans notre biosphère: ils con-
tribuent significativement à intégrer l’énergie lumineuse du soleil au cycle de la
vie, et à recycler les éléments nutritifs. Ils devraient donc être mieux compris,
à la fois pour une meilleure appréhension des écosystèmes naturels, mais égale-
ment pour le développement de biotechnologies propres. Les implications des
écosystèmes étudiés dans cette thèse sont multiples:

• les écosystèmes de microalgues et de digestion anaérobie jouent un rôle
important dans le réchauffement climatique, car les premiers consomment
du CO2 et les seconds produisent du CH4. Ainsi, les modèles doivent
quantifier les flux de carbone et d’énergie;

• certaines microalgues, comme la spiruline, peuvent être consommées et
sont potentiellement de grandes sources de protéines, vitamines et miné-
raux [42];

• certaines microalgues produisent des composés chimiques utilisés dans des
produits pharmaceutiques et nutraceutique [38];

• d’autres produisent de l’huile qui peut être utilisée comme biocarburant,
et des productivités élevées semblent possibles [8];

• les bactéries anaérobies peuvent nettoyer les eaux usées, et dégrader des
substrats faiblement biodégradables,

• les bactéries méthanogènes produisent du méthane qui est un biocarburant
renouvelable.

Notre premier pas pour mieux appréhender ces écosystèmes a été de dévelop-
per des modèles de population de microalgues en photobioréacteur (chapitre
2.1), le modèle "DPM" (Droop Photobioreactor Model). Le modèle devait in-
clure les ingrédients clés permettant de reproduire les comportements principaux
du procédé, mais devait aussi être assez simple pour être validable, identifiable,
et mathématiquement analysable. Notre modèle représente l’absorption et le
stockage des nutriments. Il s’agit d’une question clé pour la production de bio-
carburants, puisque la synthèse de lipides est influencée par la disponibilité en
azote dans le milieu (voir la construction du modèle de synthèse des lipides au
chapitre 2.2). Il représente également l’atténuation de la lumière et l’influence
de la respiration qui sont essentiels lorsque la concentration de la biomasse
est élevée, ce qui est souvent le cas dans les bioprocédés réels. Les derniers
ingrédients sont la photoinhibition (les fortes intensités lumineuses inhibent la

137



croissance) et la photoacclimation (variations du rapport Chl / C en fonction de
la lumière reçue), qui sont importants quand la lumière ou la biomasse varient
dans le photobioréacteur. Tout en représentant tous ces phénomènes, le mod-
èle reste relativement simple, basé sur seulement quatre équations dynamiques
représentant l’évolution de l’azote dans le milieu, de la biomasse, du quota
d’azote interne, et de la chlorophylle.

Une procédure de calibration des paramètres est proposée et utilisée pour
valider le modèle sur un ensemble de données. Les résultats des analyses dé-
montrent que les cultures à haute densité, lorsqu’elles sont soumises à la pho-
toinhibition sous une forte lumière, ne montrent pas de photoinhibition appar-
ente, puisque seule la petite proportion de microalgues proches de la surface
d’incidence du réacteur sont photoinhibées. Cela explique pourquoi la photoin-
hibition n’est pas toujours observée dans les cultures à haute densité. Toutefois,
la photoinhibition induit une perte cachée qui doit être examinée et, si possible,
évitée.

À partir de données expérimentales obtenues au LOV, nous avons ensuite
construit un modèle qui reproduit fidèlement les évolutions des taux de lipides
et de sucres (chapitre 2.2).

Avec une variante de notre modèle DPM, où la photoadaptation était à
l’équilibre, nous avons procédé à une optimisation de la productivité surfacique
de la biomasse à l’équilibre (chapitre 3.1). Nous avons montré qu’un paramètre
clé est la biomasse surfacique X : le photobioréacteur agit comme un panneau
solaire où la biomasse permet d’exploiter l’énergie lumineuse mais provoque des
pertes d’énergie par respiration. Une biomasse surfacique et un quota interne
azote/carbone optimaux sont calculés. Le résultat est contre-intuitif, car il
indique que, selon les paramètres de l’espèce de microalgues considérée, il pour-
rait être optimal de faire pousser les microalgues dans des conditions limitées en
azote. En effet, pour une biomasse fixée élevée, un fort rapport azote/carbone
correspond à une forte concentration en chlorophylle et donc une plus forte
atténuation de la lumière, provoquant un taux de croissance plus faible.

La productivité est le résultat de nombreux phénomènes biologiques et phy-
siques qui interagissent, et dont les plus importants sont représentés dans le
modèle DPM. C’est pourquoi la productivité est une combinaison complexe de
plusieurs paramètres du modèle. On peut donc comparer la productivité de
différentes espèces de microalgues, en la calculant directement à partir de leurs
paramètres.

Comme les microalgues doivent être cultivées sous lumière naturelle pour la
production de biocarburants (les microalgues qui synthétisent des composants à
haute valeur ajoutée sont parfois cultivées sous lumière artificielle), elles subis-
sent les variations jour-nuit de la lumière. Dans le cas d’une profusion en élé-
ments nutritifs (chapitre 3.2), nous montrons que plusieurs scénarios de con-
trôle optimal peuvent être appliqué pour optimiser la productivité volumétrique,
selon les paramètres de l’espèce de microalgues considérée : bang - bang, bang
- arc singulier - bang, ou taux de dilution maximal si le taux de croissance des
microalgues est très élevé.

Enfin, nous avons donné quelques résultats clés pour l’étude et le contrôle
de la compétition. L’analyse de la compétition mixte entre plusieurs espèces
représentées par les modèles de Monod, Droop et Contois (section 4.1) introduit
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un nouveau paradigme de la compétition, où exclusion compétitive et coexis-
tence peuvent tous deux survenir, en fonction des paramètres des espèces et
des contrôles utilisés. Ainsi, dans ce paradigme, ni l’exclusion compétitive ni la
coexistence ne sont la règle; l’un ou l’autre peut se produire, selon les espèces
en compétition et les conditions environnementales. Plus précisément, dans
certains cas, la plus compétitive des espèces de Monod et de Droop remporte
seule la compétition. Dans d’autres cas une ou plusieurs espèces de Contois
sont capables de coexister avec ou sans le meilleur des concurrents de Monod
et Droop. Le "Pessimization principle" de la Dynamique Adaptative, basé sur
le principe de l’exclusion compétitive, est contredit par ce résultat : au lieu de
laisser l’environnement avec la pire (la plus basse) concentration du substrat
possible, nous voyons que certaines espèces de Contois pourraient vivre dans
de pires environnements, mais s’il y a plus de substrat que la concentration
minimale dont ils ont besoin, alors d’autres espèces peuvent coexister. Cela
est dû au fait qu’une concentration plus élevée de substrat en entrée provoque
une biomasse à l’équilibre plus élevée, et donc une concentration plus élevée de
substrat à l’équilibre pour avoir un taux de croissance β(s, x) égal au taux de
dilution D.

Ensuite (section 4.2) nous avons démontré de façon rigoureuse que dans un
turbidostat périodique, l’espèce avec le taux de croissance moyen le plus élevé
gagne la compétition. Cela nous donne la possibilité de contrôler la compétition
afin de sélectionner des espèces présentant diverses caractéristiques. En partic-
ulier, nous avons montré que dans le turbidostat classique (profusion d’éléments
nutritifs), l’espèce avec le taux de croissance maximal le plus élevé est sélection-
née. Dans le turbidostat pulsé nous avons montré que l’espèce sélectionnée
maximise un critère qui est un compromis entre un taux de croissance maxi-
mal élevé (µm), et une forte augmentation potentielle de son stock interne de
nutriment (Qm/Q0). Ces applications avaient déjà été validées dans trois ex-
périences distinctes précédentes portant sur différents types de micro-organismes
(zooplancton [4], levure [18], et les microalgues [20]).

Nous avons étendu cette méthodologie à l’écosystème plus complexe de la
digestion anaérobie au cours de sa phase de démarrage (chapitre 4.3), afin de
favoriser un biofilm efficace qui permettrait de maximiser la vitesse de traite-
ment des eaux usées. Cela devrait également augmenter le taux de production
de méthane.

Ce travail est un tout qui peut être poursuivi dans chacune de ces trois
directions : modélisation, optimisation, étude et contrôle de la compétition.

Les modèles DPM et de synthèse de lipides doivent être confrontés à d’avantage
d’expériences, afin d’être validés ou améliorés. En particulier, le résultat simulé
que la photoinhibition n’est pas perceptible, mais présente dans les cultures à
haute densité, devrait être validé par une expérience dédiée.

Le résultat d’optimisation, stipulant que pour certains paramètres de la pop-
ulation de microalgues, des cultures limitées en azote pourraient avoir des pro-
ductivités de biomasse supérieures à celles qui ne sont pas limitées, devrait égale-
ment être étudié expérimentalement. Beaucoup reste à faire pour l’optimisation
en cycles jour-nuit avec des cultures non limitées en azote, ainsi que pour la max-
imisation de la production de lipides. Certains facteurs, comme la température
ou le pH, peuvent également être ajoutés au modèle DPM afin d’explorer leurs
effets sur la productivité. Beaucoup de travail et d’expériences restent à faire
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dans cette direction.
Pour la théorie de la compétition, il serait intéressant de valider le résultat

de la compétition mixte, en faisant une expérience avec des espèces représentées
par les modèles de Monod, de Droop, et de Contois, et de vérifier si exclusion
compétitive et coexistence peuvent tous deux être obtenus et contrôlés avec
précision.

Ensuite, les procédures de sélection proposées pour les écosystèmes de mi-
croalgues, et de bactéries méthanogènes, devraient être testées à la fois sur le
court terme (validation de la prédiction du résultat de la compétition), et sur le
long terme : pour voir si des populations aux caractéristiques améliorées peu-
vent être sélectionnés avec ces méthodes. De tels résultats donnent un espoir
pour améliorer l’efficacité de ces écosystèmes sans avoir recours aux OGM. Cette
méthode pourrait également être utilisée pour identifier les espèces qui poussent
dans des conditions hostiles, pour amplifier et vérifier la présence d’une espèce
dans un milieu, ou pour déterminer les conditions qui permettent à une espèce
de résister aux envahisseurs. Le critère de sélection, qui est le taux de crois-
sance moyen maximal dans des conditions environnementales données, semble
très prometteur et peut prendre différentes formes selon les conditions imposées
à l’environnement : ce travail pourrait être étendu à l’aide d’autres contrôles tels
que la concentration d’un inhibiteur, ou la lumière dans le cas de microalgues.
Cela conduirait à de nouveaux critères de sélection.

Nous soulignons à nouveau que de nombreux facteurs doivent être pris en
compte pour le choix d’espèces de microalgues qui maximisent la productivité
surfacique : la résistance des microalgues aux variations de température ou à la
prédation, et les divers effets de l’environnement local qui affectent la croissance
d’une espèce particulière de microalgues. Dans ce but, des modèles incluant
d’autres facteurs, comme la température ou le pH, doivent être développés et
étudiés analytiquement. Les étapes de modélisation, d’optimisation et de prédic-
tion et contrôle de la compétition devront alors être revisitées avec ces nouveaux
facteurs. Nous espérons avoir participé à la création de bases solides pour la
réalisation de cette longue tâche.

Les résultats sur la prédiction de l’issue de la compétition et son contrôle
montrent la beauté des mathématiques. Nous avons mis en évidence la capacité
de la modélisation mathématique à développer la compréhension écologique dans
un sens très général : les mêmes équations et méthodes permettent de décrire
avec succès des écosystèmes différents, des microalgues jusqu’aux bactéries et
aux levures.
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Résumé

Des biocarburants alternatifs, utilisant des écosystèmes microbiens, sont actuelle-
ment étudiés dans le but de limiter la consommation non raisonnée de ressources
énergétiques et le rejet de gaz à effet de serre, qui modifient le climat. Dans cette
thèse, nous avons considéré des bioréacteurs à base de microalgues oléagineuses,
et des écosystèmes bactériens anaérobies qui décomposent des déchets et pro-
duisent du méthane. Ces travaux avaient pour objectif de mieux comprendre ces
procédés et d’en améliorer les performances. Nous avons tout d’abord modélisé
et étudié des cultures de microalgues en photobioréacteurs, dans lesquels les pig-
ments algaux induisent une forte atténuation lumineuse. Pour les écosystèmes
bactériens, nous avons utilisé un modèle précédemment développé. A l’aide de
ces modèles et de leur analyse mathématique rigoureuse, nous avons proposé
des stratégies pour optimiser leur productivité. Ensuite, l’étude de la sélection
naturelle entre plusieurs espèces de microorganismes dans ces deux écosystèmes
a permis de prédire quelles espèces remportent la compétition. Et finalement
nous avons montré comment il est possible, dans chaque écosystème, de con-
trôler la compétition pour diriger la sélection naturelle, de façon à avantager
des espèces ayant des caractéristiques permettant une performance accrue.

Abstract

Some alternative biofuels, produced by microbial ecosystems, are presently stud-
ied with the aim of limiting the unreasoned resource consumption of energetic
resources, and greenhouse gases emissions which modify the climate. In this
thesis we have considered bioreactors based on oleaginous microalgae, and on
anaerobic bacterial ecosystems which degrade wastes and produce methane. The
aims of these works were to better understand these processes and to improve
their performances. First we have developed and studied models of microalgal
cultures in photobioreactors, in which algal pigments cause strong light atten-
uation. For anaerobic digestion we have used an existing model. By rigorous
mathematical analysis of these models, we propose strategies for optimizing
their productivity. Then the study of natural selection between several micro-
bial species, in these two ecosystems, leads to the prediction of the species which
wins the competition. And finally we showed how it is possible in each ecosys-
tem to control competition and drive natural selection, in order to advantage
species with efficient characteristics, inducing better performances.
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