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Thèse présentée pour obtenir le grade de

DOCTEUR DE L’ECOLE POLYTECHNIQUE
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Abstracts

French Abstract

La thèse porte sur l’étude des propriétés dynamiques de grands réseaux de

neurones. Nous étudions des neurones à taux de décharge, dotés d’une

dynamique intrinsèque linéaire, et prenons en compte différents types de

bruit microscopique affectant le comportement des neurones individuels.

L’approche ”champ moyen” consiste à étudier la limite du système d’équations

différentielles stochastiques décrivant le réseau, lorsque le nombre de neurones

tend vers l’infini. Le bruit est soit additif, soit multiplicatif s’il affecte les poids

synaptiques, et ceux-ci sont soit figés au début de l’évolution, soit dynamiques.

Nous obtenons donc trois types d’équations qui sont étudiées dans cette thèse.

Un résultat important est qu’ à chaque fois la propriété de propagation du

chaos est vérifiée. Nous analysons tout particulièrement l’influence du bruit

sur la dynamique (en montrant par exemple le rôle de celui-ci dans la création

de cycles) et discutons des implications en neurosciences.

English Abstract

This thesis deals with the study of the dynamical properties of large neu-

ronal networks. We study neurons described by their firing rate with a linear

intrinsic dynamics, and take into account several types of microscopic noise

impacting the behavior of individual neurons. The ”mean field” approach

consists in studying the limit of the system of stochastic differential equations

describing the network, when the number of neurons tends to infinity. The

noise is either additive, or multiplicative if it affects the synaptic weights, and

these ones are either fixed at the beginning, or dynamic. Therefore we obtain

three types of equations that we study in this thesis. One of the main result

is that in each case the propagation of chaos property holds. We analyze par-

ticularly the influence of the noise on the dynamics (we show for example its

role in the creation of cycles) and we discuss the implications in neuroscience.
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4 Chapter 0. Epistemological introduction

The work presented here pertains to the field of mathematical neuro-

science. We may define neuroscience as the scientific study of the structure

and functioning of the nervous system at all scales (from the molecular level

up to the level of organs). As such neuroscience, initially almost identified

with neurobiology, has become more and more interdisciplinary to include

specific contributions from chemistry, physics, computer science and mathe-

matics. We may make a slight distinction between mathematical neuroscience

and computational neuroscience. Computational neuroscience focuses on the

information processing properties of the nervous system, it emphasizes real-

istic descriptions of the neurons and often makes extensive use of computer

simulations. On the contrary, for example in the work of Jean Petitot on

neurogeometry [Petitot, 2008], mathematical structures play an essential

role in unravelling the functioning of the brain; they are not used only as a

tool. But whatever the ultimate epistemic value granted to mathematics it

remains that building mathematical models seems necessary to discover func-

tioning principles in the midst of an increasing amount of biological data. As

René Thom [Thom, 2009] put it, science exists only insofar as scientists are

able to build a virtual and controlled theoretical framework.

One of the early advocate of the use of mathematics to understand the brain

was Michael Arbib in a book [Arbib, 1964] dating back to 1964. In his preface

he explains the benefits of using the mathematicodeductive method in neu-

roscience. First, though the neurophysiological theories evolve and become

more and more intricate, it is possible, starting from a grossly simplified view

of the brain, to demonstrate that purely electrochemical mechanisms possess

a wide range of interesting properties (pattern recognition in the case of the

perceptron, reliability despite component malfunction in the Cowan-Winograd

theory of reliable automata). As Arbib explains: “We may not yet have mod-

eled the mechanisms that the brain employs, but we have at least modeled

possible mechanisms.” Second a comparison may be made with physics: in

the modern era the physical sciences have developed thanks to the dialog be-

tween the mathematicodeductive method and the experimental method, and

reciprocally mathematics (even pure mathematics) has vastly developed from

the needs of physics. We may hope that a similar dialog between mathematics

and biology will benefit both fields, and that biological mathematics, in its

very infancy, will one day bear as many fruits as mathematical physics.

In this thesis, we will mainly apply mathematical results to derive proper-

ties of models based on neurophysiological data. The two basic theories that

we will use are the bifurcation theory, to study qualitative changes in dynam-

ical systems, and the theory of stochastic differential equations, to include
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the effect of randomness. In the debate opposing realistic to abstract mod-

els (bottom-up vs top-down), we will be closer to realistic biological models,

since we will take descriptions of biological neurons as our elementary build-

ing bricks, but we will make simplification assumptions to allow an analytical

mathematical treatment. Our main object of analysis will indeed be models of

neural networks, whose characteristics are derived from neurophysiology and

whose dynamical properties are studied mathematically.

Cognitive science is an interdisciplinary field studying mind and its pro-

cesses. Neuroscience is just a subfield of cognitive science along with, for

example, artificial intelligence, linguistics or psychology. In its attempt to

naturalize the mind, cognitive science has developed many approaches, based

on two main conflicting paradigms1. For the first one, cognitivism, the cogni-

tion comes under information processing: it is the manipulation of symbols,

based on rules. The second one, termed connectionism, defines cognition as

the emergence of global states in a network of simple elements. Though the

perspective of information processing has permeated most of neurobiology (so

that the brain is often seen as an aggregate of cells receiving information,

working it out and perceiving it in order to take decisions) without ques-

tioning the origins and presuppositions of such perspective, we may say that

connectionism is the natural framework for the study of neural networks. This

is particularly true in our case, since we will be interested in this thesis in the

global behavior of neural populations emerging from the interactions of many

individual neurons.

1For a detailed analysis of these paradigms and the proposal of a third one called enaction

see the book [Varela et al., 1993] by Francisco Varela, Evan Thompson and Eleanor Rosch.





Chapter 1

Introduction to computational

neuroscience

Overview
In this chapter we give a very brief introduction to some concepts used in

theoretical neuroscience, focusing first on neurobiology, then on rate mod-

els and eventually on the concept of noise. The main reference books that

we have used are the ones by Dayan and Abbot [Dayan and Abbott, 2001],

Gerstner and Kistler [Gerstner and Kistler, 2002], Petitot [Petitot, 2008], and

Ermentrout and Terman [Ermentrout and Terman, 2010].
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1.1 Neurobiology

1.1.1 The neuron and the brain

The brain is the center of the nervous system for all vertebrates and most

invertebrates and only primitive animals like jellyfish and starfish have no

brain, their nervous system being decentralized. Since the pioneering work of

the Spanish anatomist Ramón y Cajal (see one of his drawing in Figure 1.1)

at the beginning of the twentieth century, the neuron is seen as the main

functional unit of the nervous system. Note anyhow that glial cells that were

thought for over a century to assume only supporting functions for neurons

(keeping them in place, maintaining homeostasis and providing them energy)

are now believed to affect neurotransmission though the exact mechanism is

poorly understood [Gourine et al., 2010]. Most animals possess neurons and

only sponges and a few other simpler animals have no neurons. As cells,

neurons are very diverse and there may be exceptions to nearly every rule.

We will focus here on a schematic description of the structure and function

of a ”typical” neuron. Neurons are cells that generate characteristic electrical

pulses, called action potentials or spikes, that propagate along nerve fibers.

An anatomical description of a neuron is presented in the figure 1.2. As a

cell the neuron has a nucleus located in the soma. Dendrites may be seen as

constituting a very fine filamentary bush. The stereotypical impulse called

spike propagates down along the axon through the movement of ions across

the cell membrane. The axon splits at the end in a fine arborization. Each

branch then almost makes contact with the dendrites of another neuron at

a place called the synapse. The transmission of the signal in the synaptic

cleft is either electrical in nature or chemical in nature. In the electrical case,

a gap junction channel allows a ionic current flow initiated by the arrival of

the spike. However chemical synapses are more widely represented and they

involve neurotransmitters.

Depending on the type of the neurotransmitters in the synapse, each im-

pulse may either facilitate or hinder the firing of the postsynaptic neuron.

Indeed the arrival of a spike at a synapse triggers the release of neurotrans-

mitters that will diffuse across the synaptic cleft, bind to receptors on the

postsynaptic neuron and elicit either a depolarizing voltage pulse, increasing

the probability of spikes in the postsynaptic neuron, or a hyperpolarizing volt-

age pulse decreasing this probability. In this schematic view the neuron is seen

as an integrator of its inputs with a crucial distinction between excitatory and

inhibitory neurons. Actually the Dale’s Principle (as rephrased by Eccles in
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1976) states that at all the axonal branches of a neuron, there is liberation of

the same transmitter substance or substances. This allows the liberation of

more than one type of neurotransmitter (co-release) but states that the same

set is liberated at all synapses1. In the following we will make the assumption

that a neuron is either excitatory or inhibitory.

Figure 1.1: Anatomical drawing of a Purkinje cell by Ramón y Cajal. These

cells found in the cerebellum are characterized by an intricate dendritic tree

presenting many dendritic spines.

1.1.2 Action potentials and channel noise

Let us explain in more details the formation of action potentials. The rel-

evant signal is the difference in electrical potential between the interior and

the exterior of the neuron. At rest the potential inside is about −70 mV if

we set by convention the extracellular environment at 0 mV. Ion channels,

embedded in the membrane, control the flux of ions and therefore, thanks

to this gradient, the difference in electrical potential between the inside and

the outside. These channels are voltage-gated: some ion channels begin to

open more and more when the value of the membrane potential increases in

1There are exceptions to this rule: for example dopamine neurons may also release

glutamate as a neurotransmitter, but at separate release sites [Sulzer and Rayport, 2000]
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Figure 1.2: Anatomical drawing of a typical neuron. We see the respective

arborization of the dendrites and of the axon.

response to a sufficiently large input current, which causes the membrane po-

tential to increase: this is called depolarization. If this positive feedback is

strong enough the neuron generates an action potential, i.e a positive impulse

of about 100 mV lasting about 1 ms and able to propagate across long dis-

tances. Smaller fluctuations are in fact too much attenuated to propagate

whereas action potentials are regenerated along axons. When the voltage is

high enough competitive channels open so that the membrane potential be-

gins to hyperpolarize until it goes back approximately to its rest value. Just

after the emission of a spike it is impossible to initiate another one: this delay

is called the absolute refractory period. There is also a longer time during

which it is harder to initiate a new spike: this is the relative refractory period.

What will be of central interest for us is that ion channels are macro-

molecules whose conformational changes are subject to thermal noise. Hence

one of the main intrinsic stochasticity in spike generation is due to the fluctu-

ations of the membrane potential induced by the random opening and closing

of ion channels. This source of noise is called channel noise. One of the

goal of our thesis will be to understand the resulting dynamics in large scale

population of neurons of this type of microscopic noise.

1.1.3 Cortical columns and the mesoscopic scale
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The number of neurons in the brain varies of course dramatically from

species to species. A recent study [Azevedol et al., 2009] in comparative neu-

rology asserts that the human brain contains approximately 86 billion neurons,

with 17 billion in the cerebral cortex and 69 billion in the cerebellum. As each

neuron may be synaptically connected up to 10000 other neurons, the human

brain forms a very complex system. The biophysical understanding of individ-

ual neurons and synapses has made considerable progress, but it is way harder

to understand the global picture emerging from so many interactions. Mean

field approaches in neuroscience are precisely an attempt at deciphering

this problem.

The models introduced in this thesis depict idealized and simplified neu-

ronal networks that can encompass a large biological diversity. However some

features that will be mentioned in the models, like the columnar organiza-

tion, are more specific to the mammalian cerebral cortex. The cerebral cortex

is also called gray matter, it is a tissue at the surface of the mammalian brain,

its thickness being approximately of 4 mm in humans. The axons connecting

various regions of the cerebral cortex form the best part of the white matter

located below. In large mammals the gray matter is folded. The neocortex is,

from the phylogenetic viewpoint, the most recent part of the cerebral cortex.

The neocortex posses a laminar structure: it is organized in six different hori-

zontal layers. Moreover anatomical data reveal that neurons in various layers

connect vertically to form small microcircuits, called columns. These cortical

columns may have specific functions.

One of the best example of this columnar functional organization is ex-

emplified in the work of Hubel and Wiesel (see for example the arti-

cle [Hubel and Wiesel, 1962]), for which they were granted the Nobel Prize

in 1981, and where they showed that the coding of a particular orientation of

an element in a visual scene is related to the activity of specific populations in

the primary visual cortex. More precisely they showed that certain neurons,

called simple cells, located in the area V1 of the visual cortex (of a cat) were

sensitive to two characteristics: the retinian position and the orientation at

this position. Moreover when an electrode was put perpendicularly to the

surface of the cortex to record the activity of the column, they found that the

preferred location and orientation remained more or less constant (with only

the spatial phase varying). A cortical column, perpendicular to the surface of

the cortex, gathers neurons that have nearly identical receptive fields. This

is a functional definition. We may make a distinction between minicolumns

encoding only one feature, whereas hypercolumns gather horizontally several
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minicolumns. For instance in the original model of Hubel and Wiesel, a mini-

column encodes a position and an orientation whereas an hypercolumn is made

of several minicolumns encoding the same position but with the whole range

of orientations2.

The order of magnitude of the number of neurons in an hypercolumn is

approximately 10000. The mean field methods presented in this thesis, though

they will not be applied to detailed biophysical models of columns, constitute

the right framework to understand the dynamics resulting from the interplay

of so many neurons at a mesoscopic scale.

1.1.4 The neural code

Once these basic groundings have been mentioned, a very significant ques-

tion must be asked: what is the neural code? Since there is a consensus in the

neuroscience community saying that information is carried by the spikes, we

must understand how the information is represented and coded into spikes (if

you look at an African mask, a precise spike pattern in the brain’s neurons is

assumed to represent it). There are many conflicting views on this topic.

One of the most common assumption is that the neural code is a popula-

tion rate code. Indeed in most experiments where a stimulus is presented

to an animal it is usually possible to find a group of neurons whose firing

rate (defined as the number of spikes in a certain time window) will increase

compared to the background activity. This view can be challenged in two

ways.

First it may be possible that only a single neuron is sensitive to a particular

complex object or concept. We speak in this case of a “grandmother cell”

to mean that a single cell “represents” your grandmother. Highly specific

neurons have been found in the inferior temporal cortex of the monkey for

example.

Second, if the precise spike pattern must be taken into account, i.e if precise

spike timing or high-frequency firing-rate fluctuations carry information, we

speak of a temporal code (rather than rate code). In some experiments, the

temporal resolution of the neural code (determined by the precision necessary

in the measurement of spike times to extract the information) has been found

to be high, so there must be some sort of temporal coding.

2actually, angles varying from 0 to π
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Furthermore we must take into account the possibility of correla-

tions. At the single neuron level, if all the information is coded in the

time-dependent firing rate r(t), the code is called an independent-spike

code [Dayan and Abbott, 2001]. But it may be that correlations between

spike times carry also information (though recent experiments show that this

correlation-encoded information is only of the order of 10 percent). One of the

simplest example of a correlation code is to have some information coded in

the interspike interval. In the independent-spike hypothesis, all the temporal

characteristics of the neural code are given by the evolution of r(t), so that if

it does not evolve too rapidly, the code is typically a rate code, and otherwise

it is a temporal code.

Eventually correlations may also exist between different neurons within a

population. Our contribution to this topic will be addressed in section 8.2.1.

1.2 Firing-Rate models

In order to allow an analytical treatment of the mean field equations that

we will derive in part II, we will restrict ourselves to neurons described by

firing-rate models and assume therefore implicitly a rate code.

In computational neuroscience, there are models describing the dynamics of

individual neurons in terms of the action potentials generation. By contrast

to firing-rate models they are called spiking neuron models. One of the most

famous and elaborate spiking neuron models is given by the Hodgkin and

Huxley equations (for which they were granted the Nobel Prize in 1963). It is

a set of nonlinear coupled ordinary differential equations. The main variable

of interest is the value of the membrane potential V , which is coupled to three

other variables (n, m, and h) describing the activation of the different ionic

currents involved in spike generation. These equations are precise but hard

to study, so different reductions to models involving only two state variables

(the membrane potential V and an adaptation variable w) have been proposed.

The celebrated Fitzhugh-Nagumo model is an example of such a reduction.

Other types of models are integrate-and-fire neurons where the membrane

potential is described by a (stochastic) differential equation and spikes are

emitted when this potential reaches a threshold (the potential is then reset).

Rate models are often considered valid at the macroscopic level as de-

scribing population activity, and as such might not be good models of sin-

gle cells. However, defining the instantaneous firing rate as a trial aver-



1.3. What is noise? 15

age [Gerstner and Kistler, 2002, Dayan and Abbott, 2001] can be more rel-

evant from this viewpoint. The approximation will be all the more accurate

that the synapses are relatively slow and that the synaptic inputs are mostly

uncorrelated so that we can effectively replace the input spike trains by in-

stantaneous firing rates.

We can now give the very simple equation giving the evolution of the mem-

brane potential V i of a neuron i coupled to other neurons through the synaptic

weights Jij. Neurons interact through their firing rates, classically modeled as

a sigmoidal transform of their membrane potential. These sigmoidal func-

tions are assumed to be smooth (Lipchitz continuous), increasing functions

that tend to 0 at −∞ and to 1 at ∞. The firing rate of the presynaptic neuron

j, modulated by the synaptic efficiency Jij, is an input to the postsynaptic

neuron i. The firing rate exponentially relaxes to zero with a time constant τ

when it receives no input, and otherwise the neuron integrates both external

input I(t) and the current generated by its neighbors. Therefore the evolution

of V i(t) is given by:

dV i(t)

dt
= −V i(t)

τ
+

N∑

j=1

JijS(V j(t)) + I(t) (1.1)

1.3 What is noise?

We must now explain what are the possible sources of noise at the neu-

ronal level in order to include it in our equations. Careful definitions must

be given. The three main recent reviews that we will use are the ones by

Yarom [Yarom and Hounsgaard, 2011], Ermentrout [Ermentrout et al., 2008]

and Faisal [Faisal et al., 2008].

1.3.1 Definition

The question of the nature and meaning of randomness in the natural sci-

ences pertains to epistemology. For example, Claude Bernard, considered

as the founder of experimental medicine wrote in 1865 in his most famous

book [Bernard, 1966]: “Il y a un déterminisme absolu dans tout phénomène

vital; dès lors il y a une science biologique” 3. In physics, the reluctance of

Einstein to accept the probabilistic nature of quantum mechanics is also well-

known. However noise, or randomness, is nowadays mentioned in numerous

3“There is an absolute determinism in every vital phenomenon, hence there is a biological

science”
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neuroscience papers. Quantum noise is even considered by researchers like

Penrose [Penrose, 1989] as a possible explanation of consciousness 4.

Indeed fluctuations are present at all scales in neurobiology. Cortical

neurons fire very irregularly in vivo, as measured by a coefficient of vari-

ation Cv very close to 1, nearly consistent with a completely random pro-

cess [Softy and Koch, 1993]. Neurons in vivo in awake animals and anes-

thetized animals [Destexhe and Paré, 1999] are spontaneously active and emit

spikes at rates of about 10 Hz in an approximately Poissonian way. Similarly

a high trial-to-trial variability is observed in the spike trains of cortical neu-

rons when they are submitted to identical stimuli. If some characteristics of

spike trains are not reliable (e.g. the spike times) this poses constraints on

the neural code. For example information may not be encoded in the exact

spike times, but in the probability distribution of spike trains. Let us now

define what we mean by noise.

The concept of noise is closely related to the one of a signal. Noise is

a random perturbation (fluctuation) to a meaningful signal. How-

ever this definition raises some questions. First it is not easy to properly

isolate the signal from the noise in neural processing. Second these random

fluctuations are not necessarily detrimental and we will see in the following

many examples where this noise term may be useful at the functional level.

Eventually it must be noted that in a system as complex as the brain, high

irregularity is not necessary the mark of a random process, though many stud-

ies have found that spike trains can be described quite accurately by random

Poisson processes. This irregularity may be the sign of deterministic chaos

([Faure et al., 2000]), so that if every law was known up to the molecular

level, we could describe the spike dynamics in purely deterministic terms 5.

This distinction depends also on the scale of the measurement: for exam-

4This trend of research is called quantum mind hypothesis. In his first book on con-

sciousness [Penrose, 1989], published in 1989, Penrose asserted, thanks to a controversial

interpretation of Godel’s incompleteness theorem, that the brain can perform functions that

no computers can perform and called these types of processing non-computable. He then

argued that random quantum wave collapse may be the support of this non-computability,

without exhibiting any plausible biological counterparts. Later, in collaboration with Stu-

art Hameroff, they proposed that microtubules be the seat of quantum processing. This

theory is now outdated as it was shown that the coherent quantum condensates envisaged

cannot exist at the usual temperature of biological tissue. Though most physicists think

that quantum systems would decohere too quickly in the brain and therefore that quantum

states cannot be invoked in cognitive science, new quantum mind theories have emerged.
5For the French mathematician Emile Borel: “Le hasard, ce sont les lois que nous ne

connaissons pas.”
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ple macroscopic variables such as EEG or local field potentials display more

coherent behavior and seem to be described accurately by low or high dimen-

sional chaos (respectively in the case of epileptic and awake cortex), whereas

the microscopic neuronal dynamics is better described by stochastic random

processes [El-Boustani and Destexhe, 2009a]. We now turn to the list of the

different possible sources of noise in the central nervous system.

1.3.2 Sources of noise

A classification of the different types of noise in the nervous system can be

found for example in [Faisal et al., 2008]. First there is the sensory noise,

taking into account the fact that external sensory stimuli are intrinsically

noisy and also the fluctuations at the level of the transducers. There is also

the cellular noise integrating, at both the biophysical and biochemical level,

all the seemingly random processes inside the cellular machinery. Noise is all

the more important that characteristic length scales are small, so that there

is a high fluctuation in the number of molecules involved in these processes.

There is also electrical noise whose dominant form is channel noise, that

we have already introduced in section 1.1.2. Channel noise (i.e. the electrical

current produced by the random opening of voltage-gated ion channels) and its

impact on the dynamics of the membrane potential has mathematically been

studied in Gilles Wainrib’s PhD thesis [Wainrib, 2010], in the framework of

piecewise deterministic Markov processes. Other forms of electrical noise like

Johnson noise and shot noise are two or three orders of magnitude smaller

than channel noise.

A recent study [Goldwyn and Shea-Brown, 2011] deals with the best way

to incorporate channel noise in the usual deterministic Hodgkin-Huxley (HH)

equations. The authors consider various possibilities: an additive white noise

in the input (current noise) , subunit noise (affecting the dynamics of the

gating variables n, m, and h) and conductance noise (affecting the total con-

ductances for Na+ and K+ currents) and conclude that the addition of fluc-

tuations in conductance terms is the best solution. Conductance noise is

multiplicative since the conductances are multiplied by the voltage in the

HH equations. In this thesis we will incorporate noise in firing-rate models,

hence we do not consider subunits, since we have only one state variable, the

potential V . In chapter 4, we will use an additive white noise, but in chap-

ter 6, we will also introduce a multiplicative noise, by considering fluctuating

synapses.
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Eventually one type of noise we will be very interested in this thesis (see in

particular chapter 6) is synaptic noise: e.g. when a presynaptic cell in vitro

is driven repeatedly with identical stimuli, there is variability across trials in

the postsynaptic potentials. This synaptic variability has many causes: the

spontaneous miniature postsynaptic currents [Fatt and Katz, 1952], the fact

that the number of vesicles and neurotransmitters involved is finite and quite

low, hence subject to fluctuations from trial to trial, the randomness of the

diffusion in the synaptic cleft and the probabilistic nature of the molecules’

release. Hence noise accumulates and all the biological phenomena described

above seem to explain the trial-to-trial variability. In this context, approxi-

mating noise by some additive random processes, such as Poisson or Gaussian

processes is the simplest mathematical approach and the best assumption

when data is lacking.

Furthermore all the types of noise mentioned above were mainly dealing

with one isolated neuron. We must also take into account the fact that a

neuron embedded in a neural network receives inputs from approximately

10000 afferents neurons. Therefore each neuron is submitted to an intense

synaptic bombardment. This background synaptic activity is often modeled

in computational studies by a noise term as it seems the best assumption to

capture the complexity originating from so many inputs. Nevertheless we must

never forget that intricate dynamics can also be the signature of deterministic

chaos and the fact of modeling our “ignorance” by noise is an hypothesis that

must be made clear.

1.3.3 Role of noise in the brain

The question of the role of the noise in the brain is heavily debated. The first

question that we may ask is indeed: “How a reliable behavior is possible if the

brain is so noisy?”. Yet, recently, several studies ([Ermentrout et al., 2008],

[Faisal et al., 2008], [Yarom and Hounsgaard, 2011]) have given interesting

insights into this topic. They all stress that the noise has not only purely

disruptive effects and may on the contrary play a positive functional role.

In a recent paper [Deco et al., 2009], Gustavo Deco even proposes “stochastic

dynamics as a principle of brain function”, highlighting the functional benefits

of noise. We list below several of them.

Computational studies [Lindner et al., 2004] have underlined for example

the concept of stochastic resonance. Stochastic resonance corresponds to

the fact that there exists a particular level of noise maximizing the regularity
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of an oscillatory output related to periodic forcing. This is a universal phe-

nomenon with many applications and benefits [Wiesenfeld and Moss, 1995].

In neuroscience it contributes to a better signal detectability, when noise is

added to a subthreshold signal.

Computational studies have also exhibited the phenomenon of coherence

resonance [Pakdaman et al., 2001]. In this case adding noise increases the

regularity of an output (in the absence of a periodic forcing). Theoretical mod-

els predict therefore that noise can lead to more patterned firing, but coherence

resonance has not yet been observed in real neurons [Ermentrout et al., 2008].

As we have already seen, noise may have a lot of counterintuitive effects.

Noise can increase the regularity of a signal. But it can also increase its

reliability. This is shown in the Figure 1.3 published in a paper by Mainen

and Sejnowski [Mainen and Sejnowski, 1995]. If a cortical neuron is submitted

repeatedly to a constant input, the first spike will occur more or less at a fixed

time, but there will be high variability in the timing of subsequent spikes.

Quite surprisingly, if we add to the stimulus a Gaussian white noise, the

response of the cell is way more reliable.

Many theoretical models have also studied, using the Phase Response

Curve (PRC), how oscillators driven by noise may synchronize. Corre-

lated noise can induce synchronization even when neurons are not directly

connected [Galán et al., 2006]. Moreover two uncoupled nonlinear oscillators

can synchronize if driven by identical weak noise [Rosenblum et al., 1996].

And it turns out that these synchronization phenomena are really significant

from a biological viewpoint. Indeed macroscopic measurements like Local

Field Potentials and EEG display high-amplitude oscillatory patterns, a sign

of oscillatory synchronization of many neurons at the microscopic level. Os-

cillatory synchronization is also observed in pathological cases, like during

epileptic seizures. Besides, though controversial, it has been proposed that

oscillatory synchronization encodes information about stimuli and even plays

a crucial role in awareness. This hypothesis, called temporal binding, suggests

that “neural synchrony with a precision in the millisecond range is crucial for

conscious processing, and may be involved in arousal, perceptual integration,

attentional selection and working memory” [Engel et al., 1999].

On a more global scale, some of the arguments proposed in

favor of a positive functional role of noise are the following.

Yarom [Yarom and Hounsgaard, 2011] points that variation may reflect
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Figure 1.3: Reliability of spike trains when a Gaussian white noise

is added to the constant stimulus. Reproduced from Mainen and Se-

jnowski [Mainen and Sejnowski, 1995]
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“alternative versions of goal-directed responses in the execution of accurate

performance albeit in different ways with each repetition.” Hence noise

may provide adaptability through a more comprehensive exploration of

alternate behaviors. A probabilistic behavior has also advantages in decision-

making [Deco et al., 2009] by preventing deadlocks. Besides, neuronal

networks that have developed in the presence of noise will be more robust

and explore more states, which is an advantage for learning in a perpetually

changing environment [Krogh and Hertz, 1992].

The analysis of the influence of the noise parameter in the mean-field equa-

tions developed in the second part of this thesis will shed some light on the

question of the functional role of noise.





Chapter 2

Goal and Organization of the

thesis

Overview
In this chapter we explain why mean field equations are of central importance

in neuroscience. First they correspond to the level of investigation of most

imaging techniques. Second they are also suited to the columnar orga-

nization of the cortex, which plays a tremendous functional role. As they

are limit equations describing the behavior of an arbitrarly large number of

neurons, we recall also elementary convergence theorems (the law of large

numbers and the central limit theorem) that allow us to grasp the meaning of

some equations that will be introduced later in this thesis (chapters 4 and 5).

However these theorems are based on independence hypotheses that are obvi-

ously not checked due the neurons’ interactions. We present nevertheless the

concept of “propagation of chaos”, a form of asymptotic independence.

The main focus of this thesis will be to understand the qualitative influence

of various sorts of noise in mesoscopic neural dynamics given by mean field

equations. A link can therefore be made with the theory of stochastic bi-

furcations (see Appendix D).
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2.1 Motivation and goal

The motivation of this thesis is the modeling of neural activity at scales

integrating the effect of thousands of neurons, i.e at a mesoscopic scale.

The mean field approach allows us to extract the effective process in play

emerging from the interaction of a very large number of neurons. This is of

central importance in neuroscience for several reasons.

First, we must note that most non-invasive imaging techniques (EEG,

MEG, fMRI, optical imaging) provide different spatial and temporal reso-

lutions (with a characteristic trade-off between these two resolutions for each

type of measure) but are not able to measure individual neuron activity, i.e

activity at a microscopic scale. Instead they are measuring mesoscopic ef-

fects resulting from the interplay of several hundreds to several hundreds of

thousands of neurons.

Second, the columnar organization of the cortex is of tremendous impor-

tance to understand the functions it performs. We have already mentioned

columns and hypercolumns in section 1.1.3. A drawing of columns, repre-

sented as cylindric units perpendicular to the surface of the cortex, is shown

in Figure 2.1. These columns can be subdivided in layers. Within a column

neurons can also be gathered according to neuroanatomy (e.g. pyramidal neu-

rons, interneurons). Hence we view the column as a collection of homogeneous

populations. Within each population, the neurons share the same statistical

parameters and the same inputs. The mean field approach we propose can

consequently be considered as a theoretical attempt to model a cortical col-

umn, keeping in mind two hypotheses: the column is made of interacting

populations, and the total number of neurons in a column (and also in each

population) is very large. Alternatively, our models can be seen as hypercol-

umn models, where the activity of a whole cortical column is modeled by the

classical Wilson and Cowan equations (see section 3.1).

Another advantage of our mean field modeling is that, once we will have

established the mean field equations, we will be able to quantify the effect

of the noise. Indeed starting from microscopic descriptions that integrate the

various types of noise listed above, we will obtain equations where the amount

of microscopic noise, for example synaptic noise, appears as a parameter.
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Figure 2.1: Representation of five cortical columns in the cortex. Note the

subdivision in 6 layers.

2.2 Elementary mathematical overview

We give here a very informal glimpse into the mathematical facts under-

pinning our approach, in the case of one population of interacting neurons.

Rigorous proofs and formalization will be given in part II.

If we add into the equation 1.1 an additive white noise of intensity λ(t),

the mean field approach boils down to finding the limit, when the number

of neurons, N , tends to infinity, of a set of interacting diffusion processes

described by the following equations, for i = 1...N

dV i(t) =

(
−1

τ
V i(t) + I(t) +

N∑

j=1

JijS(V j(t))

)
dt + λ(t)dBi

t (2.1)

Informally, the main question is therefore to find the limit of the sum∑N
j=1 JijS(V j(t)) when N → ∞. We see first that in order to remain finite

(but nonzero), the mean of each Jij must scale as 1
N

.

2.2.1 The Law of Large Numbers

In the first case, treated in details in chapter 4, there is no variability in

the synaptic weights and each one is set to a fixed value J̄ , characteristic of

the population, scaled by N .

If we make the assumption that the V j are independent (and identically

distributed within the same single population), then, according to the Law of
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Large Numbers (LLN):

J̄
N∑

j=1

1

N
S(V j(t))

converges towards:

J̄E[S(V̄ (t))]

And we would get the mean field equation, giving the evolution of a charac-

teristic neuron V̄ by replacing the sum by the expectation in equation 2.1.

However since all the neurons are interacting we cannot assume a priori the

independence of the V j.

2.2.2 The Central Limit Theorem

A way more complex case, treated in details in chapter 5, consists in mod-

eling each Jij by a random variable. Each Jij is the realization of a Gaussian

random variable of mean J̄
N

and of standard deviation σ√
N

1. This model ac-

counts for the inhomogeneity of the weights and the equations are more

difficult to establish since, contrary to the preceding case, we have lost the

exchangeability property.

However the equation can be guessed if we make once more an indepen-

dence assumption: if we suppose that the V j are pairwise independent,

identically distributed within the same population, and that the Vj are also

independent of the weights Jij, we can apply the Central Limit Theorem

(CLT) to show that
N∑

j=1

JijS(Vj(t))

converges towards a Gaussian Process of mean J̄E[S(V̄ (t))] and covariance

σ2
E[S(V̄ (t))S(V̄ (s))].

Proof. Indeed let’s denote by Xj the random variable Xj = JijS(V j). For

convenience we do not consider here the dependence on time. According to

the central limit theorem and to our independence assumption:

√
N

1/N
∑N

j=1 Xj − E[Xj]
√

V ar[Xj]

converges in law to the Gaussian N (0, 1).

1Note in the following proof that this scaling of the variance is necessary to get a nonzero

and finite limit when N → +∞.
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It remains to evaluate E[Xj] and V ar[Xj], keeping in mind our indepen-

dence assumption.

E[Xj] = E[Jij]E[S(V j)] =
J̄

N
E[S(V̄ )]

Similarly:

V ar[Xj] = E[J2
ijS(V j)2] − (E[JijS(V j)])2 = E[J2

ij]E[S(V̄ )2] − J̄2

N2
(E[S(V̄ )])2

= (V ar[Jij] + (E[Jij])
2)E[S(V̄ )2] − J̄2

N2
(E[S(V̄ )])2

=
σ2

N
E[S(V̄ )2] +

J̄2

N2
V ar[S(V̄ )]

Putting all things together we obtain that:

∑N
j=1 Xj − J̄E[S(V̄ )]

√
σ2E[S(V̄ )2] + J̄

N
V ar[S(V̄ )]

converges in law to the Gaussian N (0, 1). Hence:

N∑

j=1

Xj =
N∑

j=1

JijS(V j) → N (J̄E[S(V̄ )], σ2
E[S(V̄ )2])

when N → +∞. �

And we would get the mean field equation, giving the evolution of a charac-

teristic neuron V̄ by replacing the sum by the Gaussian Process (completely

characterized by its mean and covariance) in equation 2.1. However, since all

the neurons are interacting through their synaptic weights, we cannot assume

a priori this independence.

2.2.3 Propagation of chaos

We have proposed above two heuristic derivations of mean field equations

based on different assumptions on the synaptic weights. These derivations are

simply based on the LLN and the CLT. However both make a crucial use of

an a priori independence hypothesis. In reference to the work of Boltzmann

in statistical physics these assumptions can be called “molecular chaos”. The

term chaos is here understood in the statistical physics sense: Boltzmann’s

molecular chaos (”Stoßzahlansatz”) corresponds to the independence between

the velocities of two different particles before they collide. This is very different

from the notion of chaos in deterministic dynamical systems.
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We will show in the remaining of the thesis that, for all the models con-

sidered, the propagation of chaos property applies. This property

states that, provided the initial conditions are independent and identically

distributed for all neurons2, then in the limit N → ∞, all neurons, cho-

sen among a finite subset, will behave independently, and have the same law

which is given by an implicit equation (mean field equation) on the law of the

limiting process (the chaos of the initial condition is propagated for all time

t > 0). In details, the law of (V i1(t), . . . , V ik(t), t ≤ T ) for any fixed k ≥ 1

and (i1, . . . , ik), converges towards ν ⊗ . . .⊗ ν when N → ∞, where ν denotes

the law of the solution of the mean field equation.

However showing the propagation of chaos property is not enough to derive

the equations. Indeed the propagation of chaos is only valid for a finite number

of neurons3, and is only true asymptotically. It is hence not rigorous to assume

a priori the molecular chaos hypothesis, though it allows us to guess the right

equations.

2.3 Organization of the thesis

In chapter 3, we will review various mean field approaches used in com-

putational neuroscience. The point is that the term mean field is used in

many different contexts and we need to clarify the assumptions between rival

mean field models. One of the most important criterion is the exchangeabil-

ity property of the sequence of the random variables V j, j = 1...N . We will

also describe models aiming at going “beyond mean field”, i.e. computing the

fluctuations associated with finite-size corrections.

In the three remaining chapters, that constitute the core of our contribution,

we will mainly be interested in the influence of noise levels on neural mean

field dynamics. The difference between these three chapters lies mainly in

the modeling of the noise.

In chapter 4, the microscopic dynamics is described by equations similar

to 2.1, except that we consider multiple populations interacting. The noise

source is modeled by an additive white noise. In this case, we derive rigor-

ously the mean field equations associated and show the propagation of chaos.

We study extensively the impact of the noise on the dynamics, especially its

role in generating oscillations.

2Such initial conditions are said to be “chaotic”.
3or at best for k = o(

√
N) neurons
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In chapter 5, we add an uncertainty on the synaptic weights that

are modeled by random variables (frozen at the beginning of the evolution).

The resulting equation is more complex since, contrary to the preceding case,

it is not Markovian. An analytical treatment of the influence of the noise

parameter (i.e. the variance of the synaptic weights) is therefore difficult, but

we exhibit interesting simulations of these equations.

In chapter 6, we consider a different type of synaptic noise affecting the

weights. This time the weights are modeled by stochastic processes. Here

again we derive the resulting mean field equation, which is Markovian, and

study the influence of the noise on the dynamics.

In the Conclusion III, we summarize the different results and dwell on the

different dynamical behaviors generated by different types of noise. We pro-

pose ideas to extend these models so that they are more biologically plausible:

this gives rise to more intricate mathematical equations, a priori preventing

the kind of qualitative understanding of the influence of the noise parameter

we have achieved in this thesis. Eventually we discuss the implications of

our mathematical findings at the biological level, stressing the possible func-

tional role of noise. In Appendix (IV), we give some technical results and

present detailed bifurcation diagrams related to the text, before presenting

also an elementary approach to stochastic bifurcations in D.



Chapter 3

Review of the literature on

mean field equations in

neuroscience

Overview
The brain is composed of a very large number of neurons interacting in a

complex nonlinear fashion and subject to noise. Arising from this interaction,

emergent coherent responses are provided to stimuli, presenting an impor-

tant reliability. The problem of understanding the emergence of reliable and

complex behaviors from such interacting neurons has been a longstanding

problem in neuroscience. Generally, we will denote by mean field equa-

tions the ones obtained when the number of neurons in a network becomes

arbitrarly large. We will distinguish between three different approaches

that can be found in the computational neuroscience community, and that

are mainly based on the statistical physics literature. First an approach de-

scribing sparsely connected networks of excitatory and inhibitory spiking

neurons and relying on a diffusion approximation, which allows to describe

the network by a Fokker-Planck equation. Second, an approach coming from

the study of spin-glasses which gives a non-Markovian description of the

network. Eventually we will present an approach based on a master equa-

tion, and designed to understand the corrections to mean field in a finite size

network.
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3.1 What is the mean field approach?

Mean field methods may be related to the century-old works of Boltzmann

about the kinematic gas theory in statistical physics. We give here a definition

of mean field covering most approaches in neuroscience: mean field analysis

deals with the description of the activity of large populations of neurons

(the number of neurons can be arbitrarily large).

Indeed, most models describing the emergent behavior arising from the

interaction of neurons in large-scale networks have relied on continuum lim-

its since the seminal works of Wilson and Cowan and Amari [Amari, 1972,

Amari, 1977, Wilson and Cowan, 1972, Wilson and Cowan, 1973].

The Wilson-Cowan equations are coupled nonlinear differential equations

describing the dynamics of populations of excitatory and inhibitory neurons.

In their original form, these equations are 1:

τe
dE

dt
= −E + Se(c1E − c2I + P )

τi
dI

dt
= −I + Si(c3E − c4I + Q)

In theses equations, the cj, j = 1, 2, 3, 4 are (positive) connectivity coeffi-

cients, representing the average number of excitatory or inhibitory synapses

per excitatory or inhibitory cell. The Sj, j = i, e are non linear sigmoidal

response functions. P and Q represent exterior inputs and τj, j = i, e are

time constants. Eventually, E(t) and I(t) are the proportion of excitatory

(respectively inhibitory) cells firing per unit time at the instant t. Such

models represent the activity of the network through a global variable, like

the population-averaged firing rate, which is generally assumed to be de-

terministic. Many analytical properties and numerical results have been

derived from this type of equations and related to cortical phenomena, for in-

stance in the case of the problem of spatio-temporal pattern formation in spa-

tially extended models (see e.g. [Coombes and Owen, 2005, Ermentrout, 1998,

Ermentrout and Cowan, 1979, Bressloff et al., 2002]). This approach implic-

itly makes the assumption that the effect of noise vanishes in large popula-

tions.

1We give them here for spatially localized populations, with an absolute refractory period

set to zero. Extensions to spatial interactions and inclusion of time delays are possible.
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However, as mentioned in the section 1.3.3, increasingly many researchers

now believe that the different intrinsic or extrinsic noise sources partici-

pate in the processing of information. Rather than having a pure dis-

turbing effect there is the interesting possibility that noise conveys in-

formation and that this can be an important principle of brain function

[Rolls and Deco, 2010]. In order to study the effect of the stochastic nature

of the firing in large networks, many authors strived to introduce random-

ness in a tractable form. A number of computational studies that success-

fully addressed the case of sparsely connected networks of integrate-and-fire

neurons are based on the analysis of large assemblies that fire in an asyn-

chronous regime [Abbott and van Vreeswijk, 1993, Amit and Brunel, 1997,

Brunel and Hakim, 1999]. Because of the assumption of sparse connectivity,

correlations of the synaptic inputs can be neglected for large networks. The re-

sulting asynchronous irregular state resembles the discharge activity recorded

in the cerebral cortex of awake animals [Destexhe, 2008].

Other models have been introduced to account for the presence of noise

in neuronal networks, such as the population density method and related

approaches [Cai et al., 2004], allowing efficient simulation of large neuronal

populations. In order to analyze the collective dynamics, most population

density-based approaches involve expansions in terms of the moments of the

resulting random variables, and the moment hierarchy needs to be truncated

in order to get a closed set of equations, which can raise a number of technical

issues (see e.g. [Ly and Tranchina, 2007]).

Yet other models of the activity of large networks are based on the definition

of a Markov chain governing the firing dynamics of the neurons in the net-

work, where the transition probability satisfies a differential equation called

the master equation. Seminal works of the application of such modeling for

neuroscience date back to the early 90s and have been recently developed by

several authors [Ohira and Cowan, 1993, El-Boustani and Destexhe, 2009b].

Most of these approaches are proved correct in some parameter regions using

statistical physics tools such as path integrals [Buice and Cowan, 2007] and

Van-Kampen expansions [Bressfloff, 2009]. They motivated a number of in-

teresting studies of quasicycles [Bressloff, 2010] and power-law distribution of

avalanche phenomena [Benayoun et al., 2010]. In many cases the authors con-

sider one-step Markov chains, implying that at each update of the chain, only

one neuron in the whole network either fires or stops firing, which raises bio-

logical plausibility issues. Moreover, analytical approaches mainly address

the dynamics of a finite number of moments of the firing activity, which

can also raise such issues as the well-posedness [Ly and Tranchina, 2007]
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and the adequacy of these systems of equations with the original Markovian

model [Touboul and Ermentrout, 2011].

Eventually other approaches have been mainly interested in the synchro-

nization of oscillators, characterized by their phase θi. The typical equa-

tions describing the network of oscillators are for example:

dθi

dt
= wi −

N∑

j=1

Kij sin(θi − θj) (3.1)

Here, wi is the intrinsic frequency of each oscillator and the Kij are coupling

constants. The study of such equations has been initiated by Kuramoto,

using statistical physics tools [Kuramoto and Nishikawa, 1987]. For example

in the case where there is only one global coupling constant Kij = K
N

, we

can introduce the order parameter Z(t) = |Z(t)|eiθm(t) = 1
N

∑N
j=1 eiθj(t), and

show that for weak coupling the oscillators behave independently (|Z| → 0),

whereas a strong coupling creates a coherent state (|Z| → 1). Understanding

such “Kuramoto models” is still an active area of research as exemplified by

the recent article [Giacomin et al., 2011]. We will compare our own approach

of mean field with classical Kuramoto models in 7.2.4.

3.2 The asynchronous irregular state in sparsely

connected networks

The dynamics of sparsely connected networks of binary excitatory and in-

hibitory neurons has been studied by van Vreeswijk and Sompolinsky. In

particular, in a seminal paper [van Vreeswijk and Sompolinsky, 1996], it is

proposed that an approximate balance between the excitatory and inhibitory

inputs to a neuron results in the very irregular neuronal firing patterns ob-

served in vivo. The assumptions are simple. The connection is random and

sparse: on average each neuron is connected to K excitatory neurons, K in-

hibitory neurons and K external neurons, with K large but much smaller than

the total number of neurons in the network N . The sparseness assumption

implies that the number of inputs shared by two cells is very low, so that the

firing patterns of these two cells will be only weakly correlated. Hence we can

consider the inputs to a single cell as being independent and apply the central

limit theorem for large K: the mean input will be of order K and the fluctua-

tions of order
√

K. The second assumption is that the individual connections

are strong and that only
√

K excitatory inputs are necessary to cross the
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firing threshold. Hence the total synaptic input would always massively hy-

perpolarize or depolarize the cell, unless we suppose that the mean excitatory

input nearly equals the inhibitory one. In this regime the fluctuations will be

dominant and of the same order of magnitude of the threshold: this will lead

to the very irregular firing. The balanced state in this simple model has

many advantages: the balance condition can naturally emerge without a fine

tuning of parameters in simulations and it provides networks with a response

time much faster than the integration time of single neurons.

It is noteworthy that the irregular firing in the balanced state emerges

without the addition of any stochastic inputs. The dynamics is more akin to

deterministic chaos even when the external input is constant. Contrary to

the Wilson-Cowan equations, fluctuations are not averaged away, and there is

no need of computing finite-size corrections to classical mean field results to

understand why the brain seems so noisy.

Nicolas Brunel [Brunel, 2000] developed a similar analytical approach for

sparse networks of integrate-and-fire neurons. This time a diffusion approx-

imation applies when individual neurons receive a large number of inputs

per integration time and when each input makes a small contribution rel-

ative to the firing threshold. The network is hence again assumed to be

sparse but synapses are not assumed to be strong. In that case, the dy-

namics of the network can be described by a Fokker-Planck equation.

Depending on the synaptic time distributions, the external input frequency

and the balance between excitation and inhibition, four regimes are distin-

guished [Fourcaud and Brunel, 2002, Brunel, 2000]. These four regimes are

the synchronous regular state, the asynchronous irregular, the asynchronous

regular and the asynchronous irregular. The asynchronous state is defined by

a stationary global activity (the global firing frequency is constant) and the

synchronous state by an oscillatory global activity. In the irregular state the

individual firing is strongly irregular. The asynchronous irregular state

(when inhibition dominates excitation in an intermediate range of external

frequencies) is the one that most closely matches spontaneous cortical activ-

ity [Destexhe and Paré, 1999].

3.3 The spin glass approach

We start by summing up, without going into the technical details

and assumptions, the mathematical theory of spin glasses, which is

very intricate. We then present the statistical physics viewpoint that
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was applied to neural networks by Sompolinsky, Crisanti and Som-

mers [Crisanti and Sompolinsky, 1987, Sompolinsky et al., 1988].

3.3.1 The mathematical setting

In [Arous and Guionnet, 1995], Ben Arous and Guionnet study the asymp-

totic behavior of asymmetrical spin glass dynamics. The Jij are standard

centered i.i.d. random Gaussian variables. U(x) is defined on a bounded

interval [−A, A] and tends to infinitely sufficiently fast to ensure that the

spins remain in this bounded interval. The dynamics is given by the following

equations, where a particular realization of the Jij specifies the disorder of

system: {
dxi

t = −∇U(xi
t)dt + dBi

t + β√
N

∑N
j=1 Jijx

j
tdt

Law of x(0) = µ⊗N
o

(3.2)

We remark that in this model the variance scales as 1
N

. For any number N of

particles, any temperature T = 1/β and J = (Jij)1≤i,j≤N , the system defined

by 3.2 has a unique weak solution. We designate this probability measure

by PN
β (J) (until a fixed time T ). The classical object one wishes to study

is the empirical measure defined by: µ̄N = 1
N

∑N
i=1 δxi . It has the advantage

of living in a fixed space whatever the value of N . However, contrary to the

problem of McKean-Vlasov interacting diffusion processes (studied e.g. by

Sznitman [Sznitman, 1984b]) and that we have developed in 4, the variables

are not exchangeable for a fixed interaction. In that case there is not the

same amount of information in the empirical measure as in (x1, ..., xn). A

strategy is hence to study the law of the empirical measure µ̄N = 1
N

∑N
i=1 δxi ,

averaged on the interactions, to get what is called annealed results. Quenched

results, i.e. results for a given interaction (the J-almost sure properties) are

harder to obtain.

Let (Ω, F̄ , γ) be a probability space and Jij i.i.d. random variables on Ω

such that they are standard centered Gaussian variables under γ. One can

define an averaged probability measure:

QN
β =

∫
PN

β (J(ω))dγ(ω)

ΠN
β,T is the law of the empirical measure under QN

β , i.e:

ΠN
β,T (B) = QN

β (µ̄N ∈ B) =

∫
PN

β (J(ω))(µ̄N ∈ B)dγ(ω)
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The main result of [Arous and Guionnet, 1995] is that ΠN
β,T satisfies a full

Large Deviation Principle (LLP) with a rate function H2. The conver-

gence of ΠN
β,T is then obtained by studying the minima of H. It turns out

that H achieves its minimal value at a unique non Markovian probabil-

ity measure Q, solution of an intricate implicit stochastic differential system.

As a consequence, Ben Arous and Guionnet prove an averaged propagation of

chaos result (in a high temperature and short time regime) in the sense that,

if β2A2T < 1, for any k ∈ N and continuous bounded functions (f 1, ..., fk):

lim
N→+∞

∫ (∫
f 1(x1)...fk(xk)PN

β (J(ω))(dx)
)
dγ(ω) = Πk

i=1

∫
f i(xi)dQ(x)

This means that, averaged on the interactions, the distribution of (x1, ...xk)

converges to Q⊗k
.

In [Guionnet, 1997], Alice Guionnet studies the laws of a particle for a spin

glass dynamics, with no restriction on time or temperature. Furthermore with

supplementary hypotheses on the function U and the law µ0 (corresponding to

the absence of an external magnetic field) she gets a quenched propagation

of chaos result. Indeed, if U is even and µ0 is symmetric, then for any

bounded continuous functions (f 1, ..., fk):

∫
f 1(x1)...fk(xk)dPN

β (J) converges in probability to Πk
i=1

∫
f i(x)dQ(x)

3.3.2 Application to neural networks

The statistical study of neural networks interacting through i.i.d. random

synaptic weights was pioneered by Amari [Amari et al., 1977]. Later Som-

polinsky and collaborators [Crisanti and Sompolinsky, 1987] studied, with

statistical physics tools, a network satisfying the following equations:

dhi
t

dt
= −hi

t +
N∑

j=1

Jijφ(hj
t) (3.3)

where hi is a local field associated to neuron i, φ is a nonlinear gain func-

tion (e.g. φ(x) = tanh(gx)) and the Jij are centered Gaussian random

variables of variance β2

N
. Up to some modifications, this is a form of the

equation 3.2 (take for instance U(x) = x2/2 and add the nonlinearity φ).

In [Sompolinsky et al., 1988], the long-time properties of the dynamical sys-

tem 3.3 are studied in the limit N → +∞. The main finding is that there

2Rather informally it means that for large N , ΠN
β,T (B) behaves as e−N infB H
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is a critical value of disorder above which the dynamics is chaotic. More

precisely, there is a transition between a stationary phase to a chaotic phase

when the gain parameter gJ crosses a critical value. Note that here chaos is

to be understood in the dynamical system sense (e.g. as measured by positive

Lyapunov exponents).

In [Cessac et al., 1994], Cessac and collaborators studied the pre-

cise route to chaos for discrete neural networks. Moynot and

Samuelides [Moynot and Samuelides, 2002], using the same techniques as Ben

Arous and Guionnet, i.e. thanks to a Large Deviation Principle, have proven

that if the connection weights satisfy a general condition of domination by

gaussian tails, then the distribution of the activation potential of each neuron

converges weakly towards an explicit gaussian law, the characteristics of which

are contained in the mean-field equations stated in [Cessac et al., 1994]. The

idea of using LLP for finding mean field equations is hence very fruitful.

3.4 The master equation approach: finite-size ef-

fects

The third approach we wish to comment on is inspired by statistical physics

and is based on a phenomenological master equation describing the evolu-

tion of the network. It has mostly been developed by Michael Buice, Car-

son Chow, Paul Bressloff, Jack Cowan, Sami El Boustani and Alain Des-

texhe [Buice and Cowan, 2007, Buice and Cowan, 2009, Buice et al., 2010,

Bressfloff, 2009, El-Boustani and Destexhe, 2009b]. This approach is designed

to take into account the finite size corrections to the standard mean field mod-

els that are obtained in the thermodynamic limit N → +∞. Whereas this

large N limit is deterministic (we recover variants of the standard Wilson-

Cowan equations), second-order statistics appear for finite N .

Typically (see [Bressfloff, 2009]) the model can be summarized as follows.

The configuration of a network composed of M populations is described by a

vector m(t) = (m1(t), m2(t), ...,mM(t)) where mi(t) is the number of active

neurons in population i in the interval [t, t+dt[. Neurons can indeed be either

quiescent or active (i.e. emitting an action potential). The stochasticity of the

variable mi(t) is introduced by describing it by a one-step jump Markov

process. The rate of the transitions are precisely chosen such that in the

thermodynamic limit usual equations of the Wilson-Cowan type are recovered.

The master equation expresses the evolution of the probability for the network
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to be in the state m(t) = n = (n1, n2, ..., nM):

dP (n, t)

dt
=

1

τ

∑

i

[
(ni + 1)P (ni+, t) − niP (n, t)+

Nf
(
(Wii(ni − 1)/N +

∑

j 6=i

Wijnj/N
)
P (ni−, t)−Nf

(∑

j

Wijnj/N
)
P (n, t)

]

for 0 ≤ ni ≤ N . τ is the time constant, f the nonlinear gain function, Wij the

synaptic strength (independent of N) and eventually ni+ or ni− denote the

state of the network where ni has been replaced by ni+1 or respectively ni−1.

Starting from this type of equation various techniques exist to derive,

for large but finite N , the lowest order corrections to the standard rate

equations. There are the path integral method [Buice and Cowan, 2007,

Buice and Cowan, 2009, Buice et al., 2010] coming from quantum field the-

ory and the Van Kampen system-size expansion [Bressfloff, 2009] coming

from the study of chemical reactions. These techniques are relatively in-

tricate and care must be taken when truncating the successive moments

in order to get at the end a closed system of equations. A comparison of

the dynamics resulting from these two types of derivations has been done

in [Touboul and Ermentrout, 2011]. To conclude, let’s emphasize that one of

the most important feature of this master equation approach is that, due to

its founding microscopic assumptions, it results in a Markovian dynamics.



Part II

Derivation and study of some

mean field equations





Chapter 4

A mean field equation with

additive noise

Overview
Based on the analysis of a simple neuronal network, we are interested in the

emergent properties in large networks of interconnected neurons. In order to

study these phenomena in large-scale assemblies of neurons, we consider net-

works of firing-rate neurons receiving noisy additive currents. Asymptotic

equations are derived based on propagation of chaos techniques developed

for instance by McKean, Sznitman, Tanaka and coworkers. These equations

are implicit on the probability distribution of the solutions which generally

makes their direct analysis difficult. However, in our case, the solutions

are Gaussian, and their moments satisfy a closed system of nonlinear ordi-

nary differential equations (ODEs), which are much easier to study than the

original stochastic network equations, and the statistics of the empirical pro-

cess uniformly converge towards the solutions of these ODEs. Based on this

description, we analytically and numerically study the influence of

noise on the collective behaviors, and compare these asymptotic regimes

to simulations of the network. We observe that the mean field equations

provide an accurate description of the solutions of the network equations for

network sizes as small as a few hundreds of neurons. In particular, we observe

that the level of noise in the system qualitatively modifies its collective be-

havior, producing for instance synchronized oscillations of the whole network,

desynchronization of oscillating regimes, and stabilization or destabilization

of stationary solutions. These results shed a new light on the role of noise in

shaping collective dynamics of neurons, and gives us clues for understanding

similar phenomena observed in biological networks. The main results of this

chapter are presented in a paper [Touboul et al., 2011] written in collabora-

tion with Jonathan Touboul and Olivier Faugeras, which has been accepted

for publication in the SIAM Journal on Applied Dynamical Systems.
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4.1 Introduction

In the present chapter, we apply a probabilistic method to derive the

limit behavior resulting from the interaction of an infinite number of firing-

rate neurons nonlinearly interconnected. This approach differs from other

works in the literature presented in chapter 3 on several points. First, un-

like [Buice and Cowan, 2007] it relies on a description of the microscopic dy-

namics without taking as granted the description of the dynamics by a phe-

nomenological equation. Second, unlike [Brunel and Hakim, 1999], it does not

make the assumption of a sparse connectivity and considers a network globally

coupled. Eventually, unlike [Sompolinsky et al., 1988], the synaptic weights

are not drawn from a distribution, but considered constant and depending

only on the populations they are coupling. Our model takes into account the

fact that cortical columns feature different populations.

The approach consists in deriving the limit equations as the total number of

neurons tends to infinity, based on results obtained in the field of large-scale

systems of interacting particles. This problem has been chiefly studied for

solving statistical physics questions, and has been a very active field of research

in mathematics during the last decades [McKean, 1966, Dobrushin, 1970,

Tanaka, 1978, Tanaka, 1984, Sznitman, 1989]. The problem of propagation

of chaos for mean field interacting diffusions has been particularly studied by

Alain-Sol Sznitman [Sznitman, 1984a, Sznitman, 1984b, Sznitman, 1986]. In

general, the equations obtained by such rigorous approaches are extremely

hard to analyze. They can be either seen as implicit equations in the set of

stochastic processes, or as non-local partial differential equations on the prob-

ability distribution through the related Fokker-Planck equations. But in both

cases, understanding the dynamics of these equations is very challenging, even

for basic properties such as the existence and uniqueness of stationary solu-

tions and a priori estimates [Herrmann and Tugaut, 2010]. It appears even

more difficult to understand qualitatively the effects of noise on the solutions

and to interpret them in terms of the underlying biological processes.

Yet, we aim at answering this question. In the case we address, the problem

is rigorously reducible to the analysis of a set of ordinary differential equa-

tions. This is because the solution of the mean field equations is a Gaussian

process. It is therefore completely determined by its first two moments which

we prove to be the solutions of ordinary differential equations. This allows us

to go much deeper into the analysis of the dynamical effects of the parame-

ters, in particular those related to the noise, and to understand their influence

on the solutions. The analysis of this Gaussian process also provides a rich
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amount of information about the non-Gaussian solution of the network when

its size is large enough.

This chapter is organized as follows. In the first section 4.2 we deal with

the modeling, the derivation of the mean field equations and of the related

system of ordinary differential equations. We then turn in section 4.3 to

the analysis of the solutions of these equations and the influence of noise.

We show in details how noise strongly determines the activity of the cortical

assembly. We then return to the problem of understanding the behavior of

finite-size (albeit large) networks in section 4.4 and compare their behavior

with those of the solutions of the mean field equations (infinite-size network).

The analysis of the network behaviors in the different regimes of the mean field

equations provides an interpretation of the individual behaviors responsible

for collective reliable responses.

4.2 Model and mean field equations

In all this chapter, as well as in the remaining of this thesis, we work in a

complete probability space (Ω,F , P) assumed to satisfy the usual conditions.

We are interested in the large scale behavior arising from the nonlinear

coupling of a large number N of stochastic diffusion processes representing

the membrane potential of neurons in the framework of rate models (see

e.g. [Dayan and Abbott, 2001, Gerstner and Kistler, 2002]) introduced in sec-

tion 1.2. Hence the variable characterizing the neuron state is its firing rate,

that exponentially relaxes to zero when it receives no input, and the neuron

integrates both an external input and the current generated by its neighbors.

The network is composed of P neural populations that differ by their intrinsic

dynamics, the input they receive and the way they interact with the other

neurons1. Each population α ∈ {1, . . . , P} is composed of Nα neurons, and

we assume that the ratio Nα/N converges to a constant δα in ]0, 1[ when the

total number of neurons N becomes arbitrarily large. We define the popula-

tion function p that maps the index i ∈ {1, . . . N} of any neuron to the index

α of the population neuron i belongs to: p(i) = α.

For any neuron i in population α, the membrane potential V i
t has a lin-

ear intrinsic dynamics with a time constant τα. The membrane potential of

1Our model can be viewed as a column model but, alternatively, it can be seen as a

hypercolumn model, each diffusion process characterizing the activity of a whole cortical

column modeled by Wilson and Cowan equations.
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each neuron returns to zero exponentially if it receives no input. The neu-

ron i in population α receives an external current, which is the sum of a

deterministic part Iα(t) and a stochastic additive noise modulated by λα(t)

and driven by Bi(t) where the Bi are N independent adapted Brownian mo-

tions. This additive noise term accounts for different biological phenom-

ena [Faisal et al., 2008], such as sensory noise (the external inputs being in-

trinsically noisy), cellular noise (accounting for the inherent variability in the

biochemical functioning of the neural cell), and most importantly channel

noise [White et al., 2000] produced by the random opening and closing of ion

channels. All these phenomena have been described in section 1.3.2 and we

choose to model them by additive independent white noise 2.

Neurons interact through their firing rates, given by sigmoidal transforms

of the potentials. The firing rate of the presynaptic neuron j, multiplied by

the synaptic weight Jij, is an input current to the postsynaptic neuron i. We

classically assume that the synaptic weight Jij is equal to Jp(i)p(j)/Np(j). In

practice this synaptic weight randomly varies depending on the local prop-

erties of the environment. Models including this type of randomness will be

introduced in chapter 6. The scaling assumption is necessary to ensure that

the total input to a neuron does not depend on the network size.

The network behavior is therefore governed by the following set of stochastic

differential equations:

dV i(t) =



− 1

τα

V i(t) + Iα(t) +
P∑

β=1

Jαβ

Nβ

∑

j: p(j)=β

Sβ(V j(t))



 dt + λα(t)dBi
t

(4.1)

As already mentioned, we see that these equations represent a set of inter-

acting diffusion processes. Such processes have been studied for instance by

McKean, Tanaka and Sznitman among others [McKean, 1966, Tanaka, 1983,

Tanaka, 1978, Sznitman, 1989]. It is essential to point out that in our case

the sequence of the V i(t) belonging to the same population (i.e. for p(i) = α)

constitute an exchangeable sequence of random variables. This means that

for a finite or infinite sequence (V i(t) : p(i) = α), any finite permutation σ

2This will be a quite accurate description if cellular and channel noise are predominant.

Indeed as they are intrinsic to the cell, we can in first approxiation model them as inde-

pendent. On the contrary the noise originating from the input is shared by many neurons.

Hence the independence hypothesis is a simplifying one, and extensions to colored noise

should be considered in more subtle models.
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of the indices i : p(i) = α (i.e. any permutation σ that leaves all but finitely

many indices fixed for neurons in population α), the joint probability distri-

bution of the permuted sequence (V σ(i)(t) : p(i) = α) is the same as the joint

probability distribution of the original sequence.

We now show that the resulting dynamics is encapsulated in a Markovian

equation, of McKean-Vlasov type, and that the propagation of chaos prop-

erty (see 2.2.3) applies.

The limit mean field equation and the propagation of chaos property are

the subject of the following theorem:

Theorem 4.2.1. Let T > 0 a fixed time. Under the previous assumptions, we

have:

(i). The process V i for i in population α, solution of equation (4.1), con-

verges in law towards the process V̄ α solution of the mean field implicit

equation:

dV̄ α(t) =

[
− 1

τα

V̄ α(t) + Iα(t) +
P∑

β=1

JαβE
[
Sβ(V̄ β(t))

]
]

dt+λα(t)dBα(t)

(4.2)

as a process for t ∈ [0, T ], in the sense that there exists (V̄ i
t )t≥0 dis-

tributed as (V̄ α
t )t≥0 such that

E

[
sup

0≤t≤T
|V i

t − V̄ i
t |
]
≤ C̃(T )√

N

where C̃(·) is a function of time depending on the parameters of the

system. As a random variable, it converges uniformly in time in the

sense that:

sup
0≤t≤T

E
[
|V i

t − V̄ i
t |
]
≤ C√

N

where C does not depend on time. In equations (4.2), the processes

(Bα(t))α=1...P are independent Brownian motions.

(ii). Equation (4.2) has a unique (pathwise and in law) solution which is

square integrable.
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(iii). The propagation of chaos applies, i.e. provided that the initial condi-

tions of all neurons are independent and population-wise identically dis-

tributed 3, the law of (V i1(t), . . . , V ik(t), t ≤ T ) for any fixed k ≥ 2 and

(i1, . . . , ik), converges towards νp(i1) ⊗ . . . ⊗ νp(ik) when N → ∞, where

we denoted να the law of the solution of equation (4.2) corresponding to

population α. This means that (V i1(t), . . . , V ik(t)) become independent

processes.

We underline the fact that the expectation term in equation (4.2) is the clas-

sical expectation of a function of a stochastic process. In details, if pβ
t is the

probability density of V̄ β(t), E
[
Sβ(V̄ β(t))

]
is equal to

∫
R

Sβ(x)pβ
t (x) dx.

The proof of this theorem essentially uses results from the works of

Tanaka and Sznitman, summarized in [Sznitman, 1989] and also presented

in [Villani, 2001]. A distinction with these classical results is that the net-

work is not totally homogeneous but composed of distinct neural populations.

Thanks to the assumption that the proportion of neurons in each population

is non-trivial (Nα/N → δα ∈]0, 1[), the propagation of chaos occurs simulta-

neously in each population yielding our equations.

The main deep theoretical distinction is that the theorem claims a uniform

convergence in time: most of the results proved in the kinetic theory domain

show propagation of chaos properties and convergence results only for a finite

time, and convergence estimates diverge as time increases. Uniform propaga-

tion of chaos is an important property as commented in [Cattiaux et al., 2008],

and particularly in our case as we will further comment. Methods to prove

uniformity are generally involved (see e.g. [Mischler et al., 2011] where uni-

formity is obtained for certain models using a dual approach based on the

analysis of generator operators). Due to the linearity of the intrinsic dynam-

ics, we provide here an elementary proof of this property in our particular

system.

Proof. The existence and uniqueness of solutions can be performed in a

classical fashion using Picard iterations of an integral form of equation (4.2)

and a contraction argument. The proof of the convergence towards this law,

and of the propagation of chaos can be performed using Sznitman’s powerful

coupling method (see e.g. [Sznitman, 1989]) 4, that consists in exhibiting

an almost sure limit of the sequence of processes V i
t as N goes to infinity by

coupling the mean field equation with the network equation as follows. We

3The initial conditions are said to be chaotic.
4This method had already been introduced by Dobrushin [Dobrushin, 1970])
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define the different independent processes V̄ i solution of equation (4.2) driven

by the same Brownian motion (Bi
t)t as involved in the network equation (4.1),

and with the same initial condition V i(0) as neuron i in the network. It is clear

that these processes are independent (since the (Bi
t) are pairwise independent)

and have the same law as the solution of the mean field equation (4.2). The

almost sure convergence of (V i
t ) towards (V̄ i

t ) will therefore imply the conver-

gence in law towards the mean field equation. For a neuron i belonging to

population α:

V i
t − V̄ i

t =
P∑

β=1

Jαβ

∫ t

0

e−(t−s)/τα
1

Nβ

∑

j: p(j)=β

{(
Sβ(V j

s ) − Sβ(V̄ j
s )
)

+
(
Sβ(V̄ j

s ) − E
[
Sβ(V̄ j

s )
] )
}

ds

We have, denoting by τ the maximal value of (τβ, β = 1 . . . P ):

|V i
t − V̄ i

t | ≤ Kα

∫ t

0

e−(t−s)/τ max
j=1...N

|V j
s − V̄ j

s | ds

+ K ′
α

∣∣∣∣∣
1

N

∫ t

0

e−(t−s)/τα

N∑

j=1

(
Sp(j)(V̄

j
s ) − E

[
Sp(j)(V̄

j
s )
] )

ds

∣∣∣∣∣ , (4.3)

where Kα =
∑

β |Jαβ|L. L is the largest Lipschitz constant of the sigmoids

(Sβ, β = 1 . . . P ), and K ′
α = maxβ |Jαβ|N/Nβ, quantity upperbounded, for N

sufficiently large, by maxβ |Jαβ|2/δβ.

Since the righthand side of (4.3) does not depend on the index i, taking the

maximum with respect to i and the expected value of both sides of (4.3), we

obtain

E

[
max

i=1...N
|V i

t − V̄ i
t |
]
≤ K

∫ t

0

e−(t−s)/τ
E

[
max

j=1...N
|V j

s − V̄ j
s |
]

ds

+ K ′
E

[
max

α=1,...,P

∣∣∣∣∣
1

N

∫ t

0

e−(t−s)/τα

N∑

j=1

(
Sp(j)(V̄

j
s ) − E

[
Sp(j)(V̄

j
s )
] )

ds

∣∣∣∣∣

]
(4.4)

Since the random variables Aj(s) = Sp(j)(V̄
j
s )−E

[
Sp(j)(V̄

j
s )
]

are independent

and centered, using the fact that the sigmoids Sβ take their values in the

interval [0, 1], using Cauchy-Schwartz and posing τ̄ = maxα τα + 1 = τ + 1,
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we have:

E



max
α

(
1

N

∫ t

0

e−(t−s)/τα

N∑

j=1

(
Sp(j)(V̄

j
s ) − E

[
Sp(j)(V̄

j
s )
] )

ds

)2




=
1

N2
E



max
α

(∫ t

0

(
e−(t−s) τ̄−τα

τ̄τα

)( N∑

j=1

e−(t−s)/τ̄Aj(s)

))2

ds





≤ 1

N2
E

[
max

α

(∫ t

0

e−2(t−s) τ̄−τα
τ̄τα ds

)(∫ t

0

e−2(t−s)/τ̄
( N∑

j=1

Aj(s)
)2

ds

)]

≤ 1

N2
E

[(∫ t

0

e−2(t−s)/(τ(τ+1))ds

)(∫ t

0

e−2(t−s)/(τ+1)
( N∑

j=1

Aj(s)
)2

ds

)]

=
1

N2

τ(τ + 1)

2
(1 − e−2t/(τ(τ+1)))

∫ t

0

e−2(t−s)/(τ+1)
E

[
N∑

j=1

Aj(s)
2

]
ds

≤ 1

N

τ(τ + 1)

2

∫ t

0

e−2(t−s)/(τ+1)ds

≤ 1

N

τ(τ + 1)2

4
=

τ ′

N

By Cauchy-Schwartz inequality, we can upperbound the second term of

the righthand side of inequality (4.4) by
√

τ ′/N . Therefore, defining Mt =

E
[
maxi |V i

t − V̄ i
t |
]
, K = maxα Kα and K ′ = maxα K ′

α we have:

Mt ≤ K

∫ t

0

e−(t−s)/τMs ds + K ′
√

τ ′

N

implying, using Gronwall’s lemma,

Mt ≤
K ′√τ ′eKτ

√
N

.

This inequality readily yields the almost sure convergence of V i
t towards V̄ i

t

as N goes to infinity, uniformly in time, and hence convergence in law of V i
t

towards V̄ α
t .

The almost sure convergence of (V i
t )t∈[0,T ] (considered as a process) towards

(V̄ i
t )t∈[0,T ] can be proved in a similar fashion. Indeed, upperbounding the

exponential term in (4.3) by 1 and taking the supremum, it is easy to see

that:

E

[
sup

0≤t≤T
max

i=1...N
|V i

t − V̄ i
t |
]
≤ K

∫ T

0

E

[
sup

s∈[0,t]

max
j=1...N

|V j
s − V̄ j

s |
]

dt +
K ′ T√

N
,
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using the fact that:

E



max
α

sup
t∈[0,T ]

(
1

N

∫ t

0

e−(t−s)/τα

N∑

j=1

(
Sp(j)(V̄

j
s ) − E

[
Sp(j)(V̄

j
s )
] )

ds

)2




≤ T

N2

∫ T

0

E




∣∣∣∣∣

N∑

j=1

(
Sp(j)(V̄

j
s ) − E

[
Sp(j)(V̄

j
s )
] )
∣∣∣∣∣

2


 ds

=
T

N2

N∑

j=1

∫ T

0

E

[∣∣∣Sp(j)(V̄
j
s ) − E

[
Sp(j)(V̄

j
s )
] ∣∣∣

2
]

ds

≤ T 2

N

using the independence of the V̄ j and Cauchy-Schwartz inequality. This last

estimate readily implies, using Gronwall’s inequality:

E

[
sup

0≤t≤T
max

i=1...N
|V i

t − V̄ i
t |
]
≤ K ′ TeK T

√
N

.

The propagation of chaos property (iii) stems from the almost sure conver-

gence of (V i1(t), . . . , V ik(t), t ≤ T ) towards (V̄ i1(t), . . . , V̄ ik(t), t ≤ T ), which

are independent, as a process and uniformly for fixed time, and is proved in

a similar fashion.5. �

The P equations (4.2), which are P implicit stochastic differential equations,

describe the asymptotic behavior of the network. However, the characteriza-

tion and simulation of their solutions is a challenge. Fortunately, due to their

particular form in our setting, these equations can be substantially simplified.

Indeed, under some assumptions, the solutions of the mean field equations are

shown to be Gaussian, allowing to exactly reduce the dynamics of the mean

field equations to the study of coupled ordinary differential equations

as we now show.

Proposition 4.2.2. Let us assume that V̄ (0) = (V̄ α(0))α=1...P is a P-

dimensional Gaussian random variable. We have:

• The solutions of the P mean field equations (4.2) with initial conditions

V̄ (0) are Gaussian processes for all time.

• Let µ(t) = (µα(t))α=1...P denote the mean vector of the process

(V̄ α(t))α=1...P and v(t) = (vα(t))α=1...P its variance. Let also fβ(x, y)

5In fact it is easily seen that the propagation of chaos would still hold not only for k

neurons (in fixed number), but also for k = o(
√

N), for example k = log(N).
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denote the expectation of Sβ(U) for U a Gaussian random variable of

mean x and variance y. We have:

{
µ̇α(t) = − 1

τα
µα(t) +

∑P
β=1 Jαβfβ(µβ(t), vβ(t)) + Iα(t) α = 1 . . . P

v̇α(t) = − 2
τα

vα(t) + λ2
α(t) α = 1 . . . P

(4.5)

with initial condition µα(0) = E
[
V̄ α(0)

]
and vα(0) =

E
[
(V̄ α(0) − µα(0))2

]
. In equation (4.5), the dot denotes the dif-

ferential with respect to time.

Proof. The unique solution of the mean field equations (4.2) starting from

a square integrable initial condition V̄ (0) measurable with respect to F can

be written in the form:

V̄ α(t) = e−
t

τα V̄ α(0) + e−
t

τα

(∫ t

0

e
s

τα (Iα(s) +
P∑

β=1

JαβE
[
Sβ(V̄ β(s))

]
)ds

+

∫ t

0

e
s

τα λα(s) dBα
s

)
. (4.6)

We observe that if V̄ α(0) is a Gaussian random variable, then the righthand

side of (4.6) is necessarily Gaussian as the sum of a deterministic term and

an Itô integral of a deterministic function, and hence so is the solution of the

mean field equation. Its law is hence characterized by its mean and covariance

functions. The formula (4.6) involves the expectation E
[
Sβ(V̄β(s))

]
, which,

because of the Gaussian nature of V̄ β, only depends on µβ(s) and vβ(s), and

is denoted by fβ(µβ(s), vβ(s)). Taking the expectation of both sides of the

equality (4.6), we obtain the equation satisfied by the mean of the process

µα(t) = E
[
V̄ α(t)

]
:

µα(t) = e−
t

τα

(
E
[
V̄ α(0)

]
+

∫ t

0

e
s

τα

(
P∑

β=1

JαβE
[
Sβ(V̄ β(s)

]
+ Iα(s)

)
ds

)
.

Taking the variance of both sides of the equality (4.6), we obtain the following

equation:

vα(t) = e−
2t
τα

(
vα(0) +

∫ t

0

e
2s
τα λ2

α(s) ds

)
,

and this concludes the proof. �

Remark 1.

• In order to fully characterize the law of the process V̄ , we need to com-

pute the covariance matrix function Cov(V̄ α(t1), V̄
β(t2)) for t1 and t2 in
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R
+∗. For α 6= β this covariance is clearly zero using equation (4.6), and

we have:

Cov(V̄ α(t1), V̄
α(t2)) = e−

t1+t2
τα Var(V̄ α

0 ) +

∫ t1∧t2

0

e
2s
τα λ2

α(s) ds (4.7)

for t1, t2 ∈ R
+∗, hence only depends on the parameters of the system and

is in particular not coupled to the dynamics of the mean. The descrip-

tion of the solution given by equations (4.5) is hence sufficient to fully

characterize the solution of the mean field equations (4.2).

• The uniformity in time of the propagation of chaos has deep implications

in regard of equations (4.5). Indeed, we observe that the solution of the

mean field equation is governed by the mean of the process, the expecta-

tion being a deterministic function depending on the parameters of the

system. The uniformity in particular implies that, for i in population α:

sup
t≥0

∣∣E
[
V i

t

]
− µα(t)

∣∣ ≤ sup
t≥0

E
[
|V i

t − V̄ i
t |
]
≤ C√

N
(4.8)

implying uniform convergence of the empirical mean, as a function of

time, towards µα(t).

• If V̄ 0 is not Gaussian, the solution of equation (4.2) asymptotically con-

verges exponentially towards a Gaussian solution. The important uni-

formity convergence property towards the mean field equations ensures

that the Gaussian solution is indeed the asymptotic regime of the net-

work, which strengthens the interest of the analysis of the differential

system (4.5).

The functions fβ depend on the choice of the sigmoidal transform. A par-

ticularly interesting choice is the erf sigmoidal function Sα(x) = erf(gαx+γα).

In that case we are able to express the function fβ in closed form, because of

the following lemma:

Lemma 4.2.3. In the case where the sigmoidal transforms are of the form

Sα(x) = erf(gαx + γα), the functions fα(µα, vα) involved in the mean field

equations (4.5) with a Gaussian initial condition take the simple form:

fα(µ, v) = erf

(
gα µ + γα√

1 + g2
αv

)
. (4.9)

Proof. The proof is given in Appendix A.1. �
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In summary, we have shown that, provided that the initial conditions of each

neuron are independent and Gaussian, the large-scale behavior of our linear

model is governed by a set of ordinary differential equations (theorem 4.2.1

and proposition 4.2.2). This is very interesting since it reduces the study of

the solutions to the very complex implicit equation (4.2) bearing on the law of

a process to a much simpler setting, ordinary differential equations. As shown

below this allows us to understand the effects of the system parameters on the

solutions. For this reason we assume from now on that the initial condition is

Gaussian, and focus on the effect of the noise on the dynamics.

4.3 Noise-induced phenomena

We will see that the noise leads to an effective noise-dependent scaling of the

gain of the nonlinear firing rate function and we will explore how this noise-

dependent gain affects the bifurcation structure of one and two-population

models.

In this section we mathematically and numerically study the influence of

the noise levels λα on the dynamics of the neuronal populations. Thanks to

the uniform convergence of the empirical mean towards the mean of the mean

field system (equation (4.8)) and the propagation of chaos property for the

network process, it is relevant to study such phenomena through the thorough

analysis of the solutions of the mean field equations given by the ODEs (4.5).

This is what we do in the present section.

As observed in equation (4.5), in the case of a Gaussian initial condition,

the equation of the variance v is decoupled from the equation on the mean µ

in. The variance satisfies a non-autonomous equation:

v̇α = − 2

τα

vα + λ2
α(t).

which is easily integrated as:

vα(t) = e−
2t
τα

(
vα(0) +

∫ t

0

e
2s
τα λ2

α(s) ds
)
.

vα(t) is therefore independent of the mean µ. This implies that the equations

on µ are a set of non-autonomous ordinary differential equations.
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These ordinary differential equations are similar to those of a single neuron.

They differ in that the terms in the sigmoidal functions depend on the external

noise levels λα(t). They read:

µ̇α = −µα

τα

+
P∑

β=1

Jαβerf




gβ µβ + γβ√
1 + g2

βe−2t/τβ

(
vβ(0) +

∫ t

0
e2s/τβλ2

β(s) ds
)


+ Iα

hence the slope gβ and the threshold γβ are scaled by a time-varying coefficient

which is always smaller than one.

We now focus on the stationary solutions when the noise parameter λ does

not depend upon time. In that case, the variance is equal to:

vα(t) = ταλ2
α/2 + e−

2t
τα (vα(0) − ταλ2

α/2),

and converges exponentially fast towards the constant value ταλ2
α/2. Asymp-

totic regimes of the mean field equations are therefore Gaussian random vari-

ables with constant standard deviation. Their mean is solution of the equa-

tion:

µ̇α = −µα

τα

+
P∑

β=1

Jαβerf



 gβ µβ + γβ√
1 + g2

βτβλ2
β/2



+ Iα α = 1, · · · , P

In other words, the presence of noise has the effect of modifying the slope

gα and the threshold γα of the sigmoidal erf function, but the type of the

equations is the same as that of the equation of each individual neuron, it is

a rate equation.

We observe that the larger the noise amplitude λ, the smaller the slope

of the sigmoidal transform. Noise has the effect of smoothing the sig-

moidal transform. This will have a strong influence on the bifurcations of

the solutions to the mean field equations and hence on the behaviors of the

system. We demonstrate these effects for two simple choices of parameters in

one- and two-populations networks.

4.3.1 The external noise can destroy a pitchfork bifurcation

Let us start by considering the case of a one-population network. We drop

the index α since no confusion is possible. We assume for simplicity that the

threshold γ of the sigmoid is null and that the time constant τ is equal to
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one. By doing so, we do not restrict the generality of the study, since τ can

be eliminated by rescaling the time and γ can be absorbed into I by a simple

change of origin for µ. The network equations read:

dV i
t =

(
−V i

t +
J

N

N∑

j=1

erf
(
g V j

t

)
+ I(t)

)
dt + λdBi

t i = 1, · · · , N,

and we are interested in the limit in law of their solutions as the number of

neurons N tends to infinity.

In order to analytically study the effect of the parameter λ, we set I ≡ −J
2
.

In that case, and in the absence of noise, the solution V = 0 is a fixed point of

the network equations. The following proposition characterizes their solutions

in the deterministic and stochastic cases.

Proposition 4.3.1. In a non-stochastic finite-size network, the null solution

is:

• stable if J < 0 or if J > 0 and g < gc :=
√

2π/J ,

• unstable for J > 0 and g > gc.

• For J > 0, the system undergoes a pitchfork bifurcation at g = gc.

In the mean field limit of the same stochastic network, the pitchfork bifurcation

occurs for a new value of g = g∗ =
√

2π√
J2−πλ2 > gc if J > 0 and λ < J/

√
π.

Furthermore the null solution is:

• stable if:

– J < 0 or

– J > 0 and λ > J/
√

π (large noise case) or

– J > 0, λ < J/
√

π and g < g∗,

• unstable for J > 0, λ < J/
√

π and g > g∗, and

• the system undergoes a pitchfork bifurcation at g = g∗ when J > 0 and

λ < J/
√

π.
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This proposition is a bit surprising at first sight. Indeed, it says that noise

can stabilize a fixed point which is unstable in the same non-stochastic system.

Even more interesting is the fact that if the system is driven by a sufficiently

large noisy input, the zero solution will always stabilize. It is known,

see, e.g., [Mao, 2008], that noise can stabilize the fixed points of a determin-

istic system of dimension greater than or equal to 2. The present observation

extends these results to a one-dimensional case, in a more complicated setting

because of the particular, non-standard, form of the mean field equations.

Also note that this proposition provides a precise quantification of the value

of the parameter that destabilizes the fixed point. This is a stochastic bifur-

cation of the mean field equation (a P-bifurcation –P for phenomenological–

in the sense of [Arnold, 1998]). This estimation will be used as a yardstick

for the evaluation of the behavior of the solutions to the network equations in

section 4.4.

Proof. We start by studying the finite-size deterministic system. In the

absence of noise, it is obvious because of our assumptions that the solution

V i = 0 for all i ∈ {1, . . . , N} is a fixed point of the network equations. At this

point, the Jacobian matrix reads −IdN + J
N

g√
2π
1N , where IdN is the N × N

identity matrix and 1N is the N × N matrix with all elements equal to one.

The matrix 1N is diagonalizable, all its eigenvalues are equal to zero except

one which is equal to N . Hence, all eigenvalues of the Jacobian matrix are

equal to −1, except one which is equal to J g√
2π

− 1. The solution where all V i

are equal to zero in the deterministic system is therefore stable if and only if

g J <
√

2π. The eigenvalue corresponding to the destabilization corresponds

to the eigenvector
−→
1 whose components are all equal to 1. Interestingly,

this vector does not depend on the parameters, and therefore it is easy to

check that at the point g = gc the system loses stability through a pitchfork

bifurcation. Indeed, because of the symmetry of the erf function, the second

derivative of the vector field projected on this vector vanishes, while the third

derivative does not (it is equal to −(1 + g2)).

Considering now the stochastic mean field limit, the stationary mean firing

rate in that case is solution of the equation:

µ̇ = −µ + Jerf

(
g µ√

1 + g2λ2/2

)
+ I

Here again, the null firing rate point µ = 0 is a fixed point of the mean

field equations, and it is stable if and only if −1 + J g√
2π(1+g2λ2/2)

< 0. The

remaining of the proposition readily follows from the fact that the stability

changes at g = g∗ where J g∗√
2π(1+g∗2λ2/2)

= 1. �
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Note that the results in this proposition only depend on λ and its effect

on the slope of the sigmoid. It is a general phenomenon that goes beyond

the example in this section: increasing λ decreases the slope of the sigmoidal

transform and the threshold. In section 4.4 we will see that this phenomenon

can be observed at the network level, and a good agreement will be found

between the finite-size network behavior and the predictions obtained from

the mean field limit.

We now turn to an example in a two-dimensional network, where the

presence of oscillations will be modulated by the noise levels.

4.3.2 The external noise can destroy oscillations

The same phenomenon of nonlinear interaction between the noise intensity

and the sigmoid function can lead, in higher dimensions, to more complex

phenomena such as the disappearance or appearance of oscillations. In or-

der to study phenomena of this type, we instantiate a simple two-populations

network model in which, similarly to the one-dimensional case, all the cal-

culations can be performed analytically. The network we consider consists

of an excitatory population, labeled 1, and an inhibitory population, labeled

2. Both populations are composed of the same number N/2 of neurons (N

is assumed in all the subsection to be even), and have the same parameters

τ1 = τ2 = τ , g1 = g2 = g and λ1 = λ2 = λ. We choose for simplicity the

following connectivity matrix:

M = J
2

N

(
1 −1

1 1

)
,

and we assume that the inputs are set to I1 = 0 and I2 = −J . The zero

solution where all neurons have a zero voltage is a fixed point of the equations

whatever the number of neurons N in each population. We have the following

result:

Proposition 4.3.2. In the deterministic finite-size network, the null solution

is:

• stable if J < 0 or if J > 0 and g < gc :=
√

2π/J ,

• unstable for J > 0 and g > gc and the solutions are oscillating on a

periodic orbit.

• For J > 0 the system undergoes a supercritical Hopf bifurcation at g =

gc.
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In the mean field limit of the same stochastic network, the Hopf bifurcation

occurs for a new value of the slope parameter g = g∗ =
√

2π√
J2−πλ2 > gc.

Furthermore the null solution is:

• stable if:

– J < 0 or

– J > 0 and λ > J/
√

π (large noise case) or

– J > 0, λ < J/
√

π and g < g∗,

• unstable for J > 0, λ < J/
√

π and g > g∗, and the system features a

stable periodic orbit.

• The system undergoes a supercritical Hopf bifurcation at g = g∗ when

J > 0 and λ < J/
√

π.

Note that proposition 4.3.2 is quite similar to proposition 4.3.1, the qualita-

tive difference being that the system is oscillating. The proof is closely related

and is presented in less details.

Proof. In the deterministic network model, the Jacobian matrix at the null

equilibrium can be written as

A = −IdN +
g√
2π

M ⊗ 1N/2

where ⊗ denotes the Kronecker product (see e.g. [Neudecker, 1969,

Brewer, 1978]), i.e. the Jacobian matrix is built from N/2 blocs of size 2 × 2

and each of these blocks is a copy of g√
2π

M . The eigenvalues of a Kronecker

product of two matrices are all possible pairwise products of the eigenvalues of

the matrices. Since the eigenvalues of M are equal to 2 J
N

(1±i) where i2 = −1,

and as noted previously, the eigenvalues of 1N/2 are 0 with multiplicity N/2−1

and N/2 with multiplicity 1, we conclude that the Jacobian matrix A has N−2

eigenvalues equal to −1, and two eigenvalues equal to −1 + g J/
√

2π(1 ± i).

The null equilibrium in this deterministic system is therefore stable if and only

if the real parts of all eigenvalues are smaller than 0, i.e. gJ <
√

2π. There-

fore, for a fixed J , the system has a bifurcation at gc =
√

2π/J . The analysis

of the eigenvectors allows to check the genericity and transversality conditions

of the Hopf bifurcation (see e.g. [Guckenheimer and Holmes, 1990]) in a very

similar fashion to the proof of proposition 4.3.1.

In the mean field model, the same analysis applies and, as in the one-

dimensional case, the bifurcation point is shifted to g∗ when this value is

well-defined, which concludes the proof of the proposition 4.3.2. �
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We have therefore shown that noise can destroy the oscillations of the net-

work. The results of propositions 4.3.1 and 4.3.2 are summarized in figure 4.1.
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Figure 4.1: Summary of the results of propositions 4.3.1 and 4.3.2, see text.

The additive noise parameter λ smoothly modifies the pitchfork or the Hopf

bifurcation curve in the (g, J) plane. For λ large enough, the null solution

of the mean field equation is always stabilized whatever g. MF: mean field

limit, Deterministic: finite-size deterministic network. The blue (respectively

red) curve is one branch of the hyperbola of equation gJ =
√

2π (respectively

g
√

J2 − πλ2 =
√

2π).

An even more interesting phenomenon is that noise can also produce reg-

ular cycles in the mean part of the solution of the mean field equations, for

parameters such that the deterministic system presents a stable equilibrium.

This is the subject of the following section.

4.3.3 The external noise can induce oscillations

In order to uncover further effects of the noise on the dynamics, we now

turn to the numerical study of a two-populations network including excitation

and inhibition. The time constant τ , sigmoidal transforms S, noise intensity

λ and the initial condition on the variance are chosen identical for both pop-

ulation. Under these hypotheses, the variances of the two populations are

identical and denoted by v(t). We further assume that S(x) = erf(g x), (we
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set g = 1) and hence the mean-field nonlinear function f(µ, v) is given by

lemma 4.2.3. The connectivity matrix is set to J = 1
N

(
15 −12

16 −5

)
. The

inhibitory population inhibits itself in this case. The input currents I1 and I2

are considered constant. The mean field equations in that case read:





µ̇1 = −µ1

τ
+ J11f(µ1, v) + J12f(µ2, v) + I1

µ̇2 = −µ2

τ
+ J21f(µ1, v) + J22f(µ2, v) + I2

v̇ = −2 v
τ

+ λ2

The codimension two bifurcation diagram of the system, obtained

when the noise parameter and the input on the first population are varied

(setting I2 to a fixed value: I2 = −3), is displayed in Figure 4.2 (qualita-

tive results turn out to change smoothly when I2 is also allowed to vary). It

features two cusps (CP) and one Bogdanov-Takens bifurcations (BT). In addi-

tion to these local bifurcations, we observe that the Hopf bifurcation manifold

(shown in pink in Figure 4.2) and the saddle-homoclinic bifurcation curve

(green line) present a turning point, i.e. change monotony as a function of λ.

The diagram can be decomposed into 4 different regions depending

on the dynamical features (number and stability of fixed points or cycles):

the “trivial” zone where the system features a unique stable fixed point (not

colored), a zone with 2 unstable and 1 stable fixed point (green zone (a))

separated by the saddle-homoclinic bifurcation curve from region (b) (yellow)

where an additional stable cycle exists. Zone (c) (orange) features a stable

cycle and an unstable fixed point, and zone (d) (green, again) features 2 stable

and 1 unstable fixed points.

Let us for instance fix I1 = 0. As λ is increased, several noise-induced tran-

sition occur leading the system successively in zone (a), (b), (c) and the trivial

zone (see codimension one bifurcation diagram in Figure 4.2 (i)). In details,

for small noise levels the system features a unique stable fixed point (zone

(a)). A family of large amplitude and small frequency periodic orbits appears

from the saddle-homoclinic bifurcation yielding a bistable regime (zone (b))

before the stable fixed point disappears through a saddle-node bifurcation

(zone (c)). The amplitude of these cycles progressively decreases and their

frequency progressively increases as the noise intensity is increased, and they

eventually disappear through a supercritical Hopf bifurcation leading to the

trivial behavior with a single fixed point. We emphasize here the fact that the

sudden appearance of large amplitude slow oscillations can be com-

pared to epileptic spikes, which are characterized by the presence of collective
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Figure 4.2: Codimension two bifurcation diagram (upper left) and zooms

(subfigures (ii) and (iii)) for the mean field equations as I1 and λ are var-

ied. We distinguish, apart from the trivial regime with a single fixed point,

three dynamical regimes labeled (a), (b) and (c) (see text) and 6 ranges

of λ, labeled (A) through (F). Blue: saddle-node bifurcations, pink: Hopf

bifurcations, green: saddle homoclinic bifurcations, BT: Bogdanov Takens

bifurcation, CP: cusp. Individual behaviors in each zone are summarized

in appendix A.2. (i): Codimension 1 bifurcation diagram for I1 = 0 as

a function of λ: we observe a saddle-node (LP), a Hopf (H) and a sad-

dle homoclinic bifurcation (green circles). There are three main different

noise regimes: a high-state equilibrium regime, a periodic regime and a low-

state equilibrium regime. A small interval of values of λ corresponds to the

co-existence of cycles and a fixed point close to the saddle-homoclinic or-

bit. Diagrams obtained with XPPAut [Ermentrout, 2002] and MatCont pack-

age [Dhooge et al., 2003b, Dhooge et al., 2003a].
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oscillations of large amplitude and small frequency suddenly appearing in a

population of neurons (see [Touboul et al., 2010]). This comparison will turn

out to be relevant from the microscopic viewpoint: network simulations of

section 4.4 will indeed show a sudden synchronization of all neurons at this

transition.

The diagram can also be decomposed into six different noise levels in-

tervals (labels (A) through (F) in Figure 4.2) corresponding to qualitatively

different codimension 1 bifurcation diagrams as I1 is varied (the six corre-

sponding bifurcation diagrams are presented in appendix A.2). The presence

of these different zones illustrate how noise influences the response of the neu-

ral assembly to external inputs. For instance, for λ large enough, no cycles

exist whatever I1 (zones (E-F)), whereas for λ small enough (zones A-D), cy-

cles always exist for some values of the input. Such partitions may provide

an experimental design for evaluating a noise level range as a function of the

observed dynamics when varying the input to the excitatory population for

instance.

We therefore conclude from the analysis of these simulations that noise

does not only destroy structures and regularity, it can also generate os-

cillations. These noise-induced oscillations are very interesting from the bi-

ological viewpoint. Indeed, oscillations are essential for the brain function.

The link between oscillations and noise level is therefore a very relevant piece

of information, that strengthens interpretations of the functional role of the

noise. We will comment further on this topic in the Conclusion III.

4.4 Back to the network dynamics

Thus far, we studied the dynamics of the mean field equations representing

regimes of the network dynamics in the limit where the number of neurons

is infinite. We now compare the regimes identified in this analysis with sim-

ulations of the finite-size stochastic network. We are particularly looking for

potential finite-size effects, namely qualitative differences between the solu-

tions to the network and the mean field equations. This will provide us with

information about the accuracy of an approximation of the network dynamics

by the mean field model, as function of the size of the network.
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Figure 4.3: Computation time for the simulation of the stochastic network in

logarithmic scale as a function of the network size.

4.4.1 Numerical simulations

Numerical simulations of the network stochastic differential equations (4.1)

are performed using the usual Euler-Maruyama algorithm (see e.g.

[Maruyama, 1955, Mao, 2008]) with fixed time step (less than 0.01) over an

interval [0, T ]. In order to observe oscillations, we choose T between 50 and

70. The simulations are performed with Matlab R©, using a vectorized imple-

mentation that has the advantage to be very efficient even for large networks.

The computation time stays below 1s for networks up to 2 000 neurons, and

appears to grow linearly with the size of the network once the cache memory

saturates (see Figure 4.3). For instance, for T = 20, dt = 0.01, the simulation

of a 2 000 neurons network takes 0.89s, and for 525 000 neurons, 600s on a HP

Z800 with 8 Intel Xeon CPU E5520 @ 2.27 GHz 17.4 Go RAM. The main

limitation preventing the simulation of very large networks is the amount of

memory required for the storage of the trajectories of all neurons.

An important property arising from theorem 4.2.1 is that asymptotically,

neurons behave independently and have the same probability distribution. In

our numerical simulations, we will make use of this asymptotic independence

and, in order to evaluate an empirical mean of the process related to a given

neuron in population α, will compute both the empirical mean over all neu-

rons in that population and a mean over different independent realization of

the process. This method allows to reduce sensitively the number of indepen-

dent simulations in order to obtain a given precision in the empirical mean

evaluation.
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4.4.2 A one population case

We start by addressing the case discussed in section 4.3.1 where we showed

analytically that the loss of stability of the null fixed point as the slope of the

sigmoid was varied depended on the noise parameter λ. We now investigate

numerically the stability of the 0 fixed point of the network equations. In

order to check for the presence of a pitchfork bifurcation, we compute, for

each value of the noise and for each value of the slope of the sigmoid, an

estimated value of the mean of the membrane potential. This estimate is

calculated by averaging out over 500 independent realizations the empirical

mean of the membrane potentials of all neurons in the network at the final

time. We display the average value and then compare these simulations with

those of the mean field equations stopped at the same time as the network.

We observe that both are very similar and show some differences with the

bifurcation diagram that corresponds to the asymptotic regimes.

The results of the simulations, where we have also varied N , are shown in

Figure 4.4 and reveal two interesting features. First, because we simulate over

a finite time, we tend to smooth the pitchfork bifurcation: this is perceptible

for both the network and the mean field equations. Second, we observe that

the loss of stability of the zero fixed point arises at the value of λ predicted by

the analysis of the mean field equations for networks as small as 50 neurons.

The value reached by the simulations of the network is very close to that

related to the mean field equation as soon as N becomes greater than 250.

4.4.3 Two populations case and oscillations

We now investigate the case shown in Figure 4.2(i) where cycles are created

(through homoclinic bifurcation) or destroyed (through Hopf bifurcation) as

the additive noise intensity parameter λ is increased.

Looking at Figure 4.2(i), we observe that for λ ∈ [1.12, 1.33], stable periodic

orbits coexist with stable fixed points in the mean field system. For smaller

values of λ, the mean field system features a unique stable fixed point, while

for λ ∈ [1.33, 1.97], it features a unique stable limit cycle, and for λ > 1.97, the

dynamics is reduced to a unique attractive fixed point. Numerical simulations

confirm this analysis. Let us for instance illustrate the fact that the network

features the bistable regime, the most complex phenomenon. Figure 4.5 shows

simulations of a network composed of 5 000 neurons in each population (time

step dt = 5 · 10−3, total time T = 50). Depending on the mean and on the

standard deviation of the initial condition, we observe that the network either
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(b) Network simulations vs mean field simulations,

different N , λ = 0.4

Figure 4.4: Comparison of the pitchfork bifurcations with respect to the slope

parameter g for the network and the mean field equations, T = 40, dt = 0.001,

number of sample paths: 100, initial condition V 0 = 0.5 (hence we only see

the positive part of the pitchfork, symmetrical solutions are found for negative

initial conditions, and are not plotted for legibility). (a): 50 000 neurons.

Continuous curves correspond to network simulations, dashed curves to mean

field simulations. When λ increases, as predicted by proposition 4.3.1, we

observe that the value of the parameter g related to the pitchfork bifurcation

increases as well, until the pitchfork disappears: red: λ = 0, blue: λ = 0.4,

green: λ = 0.8 >
√

2π/J ∼ 0.56. (b): λ = 0.4. The solution to the mean

field equation undergoes a pitchfork bifurcation at g = 3.55. Large dotted

red: theoretical pitchfork bifurcation. Large black: endpoint of mean field

simulation at time T = 40. The other colored curves show the results of the

network simulation for different values of the size of the network N . The 0

solution, which loses stability, is displayed in thin dashed black. We see that as

N increases, the mean field equation describes accurately the network activity.

For N ≥ 50 (red, green, dotted blue and dotted cyan curves) the bifurcation

diagram is quite close to the one predicted by the mean field analysis.
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converges to the mean field fixed point or the periodic orbit. Both mean field

equations show very close behaviors.

In the fixed point regime corresponding to small values of λ we observe that

the membrane potential of every neuron randomly varies around the value cor-

responding to the fixed points of the mean field equation (see Figure 4.6, cases

(a) and (b))), with a standard deviation that converges toward the constant

value λ2/2 as predicted by the mean field equations. The empirical mean and

standard deviation of the voltages in the network show a very good agreement

with the related mean field variables. For larger values of λ corresponding to

the oscillatory regime (Figure 4.6, cases (c) and (d)), all neurons oscillate in

phase. These synchronized oscillations yield a coherent global oscil-

lation of the network activity. The statistics of the network are again in

good agreement with the mean field solution. The standard deviation con-

verges towards the constant solution of the mean field equation. This is visible

at the level of individual trajectories, that shape a “tube” of solutions around

the periodic mean field solution, whose size increases with λ. The empirical

means accurately match the regular oscillations of the solution of the mean

field equation. A progressive phase shift is observed, likely to be related with

the time step dt involved in the simulation. Note that the phase does not

depend on the realization. Indeed, according to theorem 4.2.1, the solution

of the mean field equations only depends on the mean and the standard devi-

ation of the Gaussian initial condition, which therefore governs the phase of

the oscillations on the limit cycle (see Figure 4.7).

In the fixed point regime related to large values of λ, very noisy trajectories

are obtained because of the levels of noise involved (see Figure 4.6, cases (e)

and (f)). Though the individual neurons show very fluctuating trajectories,

the empirical mean averaged out over all neurons in the network fits closely

the mean field fixed point solution.

Eventually, we study the switching between a fixed-point regime and an

oscillatory regime by extensively simulating the 10 000 neurons network for

different values of λ and computing the Fourier transform of the empirical

mean (see Figure 4.8). The three-dimensional plots show that the appearance

and disappearance of oscillations occur for the same values of the parameter λ

as in the mean field limit, and the route to oscillations is similar: at the

homoclinic bifurcation in the mean field system, arbitrarily small frequencies

are present, this is also the case for the finite-size network. At the value of λ

related to the Hopf bifurcation, the system suddenly switches from a non-zero
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(a) λ = 1.2. Oscillatory regime. Statistics of the network

compared to the mean field.
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(b) λ = 1.2. Fixed-point regime Statistics of the network

compared to the mean field.

Figure 4.5: Featuring bistability. In both cases λ = 1.2. The initial

conditions for the mean field equation are chosen in agreement with the initial

conditions of the network. The initial value of the membrane potential of each

individual neuron in the network is drawn independently from a Gaussian

distribution of variance 1 whose mean varies: (a) mean = 0.5. (b) mean = 4.

Cyan (resp. magenta) curves: value of the mean variable of the mean field

solution for population 1 (resp. 2). Dashed blue (resp. red) curves: empirical

mean of population 1 (resp. 2). Yellow: value of the variance of the mean

field solution. Dashed black (resp. green): empirical variance of population 1

(resp. 2).
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(a) λ = 0.6. Fixed-point

regime. Individual trajectories vs

mean field.
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(b) λ = 0.6. Fixed-point

regime Empirical network statis-

tics vs mean field.
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(c) λ = 1.2. Oscillatory regime.

Individual trajectories vs mean

field.
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(d) λ = 1.2. Oscillatory regime

Empirical network statistics vs

mean field.

(e) λ = 2.5. Noisy fixed point

regime. Individual trajectories vs

mean field.
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(f) λ = 2.5. Noisy fixed point

regime Empirical network statis-

tics vs mean field.

Figure 4.6: Solution of the network dynamics for different values of the noise

parameter λ compared to the mean field solution. Simulations are run for

10 000 neurons, 5 000 in each population. (a), (c), (e): 40 individual trajecto-

ries of the membrane potentials of 40 neurons arbitrarily chosen in the network

(20 in each population) compared to the solution of the mean field equations.

Blue: population 1 (excitatory). Red: population 2 (inhibitory). Cyan (resp.

magenta): mean of the mean field solution for population 1 (resp. 2). (b),

(d), (f): Empirical statistics of the network compared to the mean field. Cyan

(resp. magenta): mean of the mean field solution for population 1 (resp. 2).

Yellow: variance of the mean field solution. Dashed blue (resp. red): empir-

ical mean of population 1 (resp. 2). Dashed black (resp. green): empirical

variance of population 1 (resp. 2). For λ = 2.5, due to the amplitude of noise,

the statistics were computed over 10 realizations of the process.
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Figure 4.7: Different realizations of the stochastic network dynamics: the

membrane potentials of 5 neurons among 5 000 of population 1 are plotted for

12 different realizations represented in different colors. All neurons oscillate

in phase, and this phase does not depend on the realization.

frequency to a zero frequency in a form that is very similar to the network case.

Therefore we conclude that the mean field equations accurately reproduce the

network dynamics for networks as small as 10 000 neurons, and hence provide

a good model, simple to study, for networks of the scale of typical cortical

columns. As a side remark, we note that at a homoclinic bifurcation of the

mean field system, very small frequencies appear and a precise description

of the spectrum of the network activity would require very large simulation

times to uncover precisely the spectrum at this point, even more so since the

large standard deviation of the process disturbs the synchronization.

We conclude this section by discussing heuristic arguments explaining

the observed regular oscillations. Let us start by stating that this phe-

nomenon is a pure collective effect: indeed, two-neurons networks (one per

population) do not present such regular oscillations as noise is varied. We

observe that individual trajectories of the membrane potential of a 2-neurons

networks for small noise levels stay close to the deterministic fixed point. How-

ever, when noise is increased, the system starts making large excursions with a

typical shape resembling the cycle observed in the mean field limit, and these

excursions occur randomly. Such excursions are typical of the presence of a

homoclinic deterministic trajectory: when perturbed, the system catches the

homoclinic orbit responsible for such large excursions. The codimension one
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Figure 4.8: Squared moduli of the Fourier transforms (a) of the empirical

mean for simulations of the network and (b) of the mean variable of the so-

lution to the mean field equations as functions of the frequency (Hz) and the

noise parameter λ. We observe that oscillations appear in the network for the

same value of λ as in the mean field equations (Figure 4.2), first through what

appears to be a homoclinic bifurcation (arbitrary small frequencies) and also

disappear for the same value of λ through what seems to be a Hopf bifurca-

tion (discontinuity in the power spectrum). (c) Magnitude of the difference

between the two diagrams: we note that the frequency distribution reaches

its maxima for these same values of λ, and the main differences are observed,

as expected, around the putative homoclinic bifurcation point.
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bifurcation diagram of the 2-neurons system indeed illustrates the presence

of a homoclinic orbit as a function of I1 (see diagram 4.2, and Figure A.2

(A))6. Noise can be heuristically seen as perturbing the deterministic value

of I1. For sufficiently small values of the noise parameter, the probability

of I1 to visit regions corresponding to the presence of a cycle is small. But

as the noise amplitude is increased, this probability becomes non-negligible

and individual trajectories will randomly follow the stable cycle. Such excur-

sions produce large input to the other neurons which will either be inhibited

or excited synchronously at this time, a phenomenon that may trigger syn-

chronized oscillations if the coupling is strong enough and the proportion of

neurons involved in a possible excursion large enough. If the noise parameter

is too large, the limit cycle structure will be destroyed.

Another way to understand this phenomenon consists in considering the

phase plane dynamics of the two-neurons network with no noise (see Fig-

ure 4.9). The system presents three fixed points, one attractive, one repulsive,

and a saddle. The unstable manifold of the saddle fixed point connects with

the stable fixed point in an heteroclinic orbit. The stable manifold of the sad-

dle fixed point is a separatrix between trajectories that make small excursions

around the stable fixed point, and those related to large excursions close to the

heteroclinic orbit. As noise is increased, the probability distribution of each

individual neuron, centered around the stable fixed point, will grow larger un-

til it crosses the separatrix with a non-negligible probability, resulting in the

system randomly displaying large excursions around the heteroclinic cycle.

The fact that a homoclinic path to oscillations is found in the mean field limit

can be accounted for by these observations, considering the fact that crossing

the separatrix, when noise is of small amplitude, can take an arbitrary long

time. The rhythmicity of the oscillations we found and the synchronization

are related to the coupling in a complex interplay with the probability of large

excursions.

4.5 Summary

We have been interested in the large-scale behavior of networks of firing

rate neuron models with additive noise. Using a probabilistic approach, we

addressed the question of the behavior of neurons in the network as its size

tends to infinity. In that limit, we showed that the propagation of chaos prop-

erty was checked and that the behavior of all neurons boiled down to a mean

6Indeed, the mean field equations with λ = 0 are precisely the equations of a two-neurons

network since in that case f(µ, λ2/2) = S(µ).
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Figure 4.9: Trajectories in the phase plane for different values of λ super-

imposed on the phase diagram. Red curve: µ1-nullcline, Green curve: µ2-

nullcline, Orange cycle: unstable manifold of the saddle fixed point (hetero-

clinic orbit) and Cyan curve: stable manifold of the saddle fixed point (note

that it is almost superposed with part of the µ1-nullcline), constituting the

separatrix between those orbits that directly return to the stable fixed point

and those following the heteroclinic cycle. Black: noisy trajectories. Upper

left: λ = 0.2: no excursion, corresponds to the fixed point regime. Upper

right: λ = 1: rare excursions do occur, corresponding to the bistable regime.

Bottom left: λ = 1.6: excursions are frequent but occur irregularly (corre-

sponding to the oscillatory regime). Bottom right: λ = 5: the heteroclinic

cycle structure is lost, corresponding to the fixed point regime.
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field equation whose solutions are Gaussian processes such that their mean

and variance satisfy a closed set of nonlinear ordinary differential equations.

Uniform convergence properties were obtained. We started by studying the

solutions of the mean field equations, in particular their dependence with re-

spect to the noise parameter using tools from dynamical systems theory. We

showed that the noise had non-trivial effects on the dynamics of the network,

such as stabilizing fixed points, inducing or canceling oscillations. A codimen-

sion two bifurcation diagram was obtained when simultaneously varying an

input parameter and the noise intensity. The analysis of this diagram yielded

several qualitatively distinct codimension one bifurcation diagrams for differ-

ent ranges of noise intensity. Noise therefore clearly induces transitions in the

global behavior of the network, structuring its Gaussian activity by inducing

smooth oscillations of its mean. These findings have several implications that

will be discussed in the conclusion of this thesis (8.2.2).

These classes of behaviors were then compared to simulations of the original

finite-size networks. We obtained a very good agreement between the simula-

tions of the finite-size system and the solution of the mean field equations, for

networks as small as a few hundreds to few thousands of neurons. Transitions

between different qualitative behaviors of the network matched precisely the

related bifurcations of the mean field equations, and no qualitative systematic

finite-size effects were encountered. Moreover, it appears that the convergence

of the solution to a Gaussian process as well as the propagation of chaos prop-

erty happen for quite small values of N , as illustrated in Figure 4.10. This fig-

ure represents the distribution of the voltage potential at a fixed time T = 40

for N = 500, simulated for 20 sample trajectories. The Kolmogorov-Smirnov

test validates the Gaussian nature of the solution with a p-value equal to

7 · 10−4. In order to test for the independence, we used the Pearson, Kendall

and Spearman tests of dependence. We obtain the correlation values 0.0439

(p-value 0.33) for the first population, 0.0212 (p-value 0.4785) for the second,

and 0.0338 (p-value 0.45) for the cross-correlation between populations, all

of them clearly rejecting the dependence null hypothesis. This independence

has deep implications in the efficiency of neural coding, an idea that we will

further develop in the conclusion ( 8.2.1) of this thesis.
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Figure 4.10: Empirical distribution of the values of (V i(T ))i=1...N for N =

1000 (500 neurons per population) in each population (blue and green filled

distribution) versus theoretical mean field distribution. The Kolmogorov-

Smirnov validates the fit of the distributions (see text).



Chapter 5

A mean field equation with

inhomogeneity at the synaptic

level

Overview
In this chapter, we are interested in characterizing the solutions of

the mean-field equations obtained by Faugeras, Touboul and Ces-

sac [Faugeras et al., 2009]. This model features random synaptic connections:

the synaptic couplings between a neuron of population α and a neuron of

population β are independent and distributed according to a Gaussian law

of standard deviation σαβ. In the first section 5.1, we discuss the meaning

of this synaptic inhomogeneity and present an heuristic derivation of the

corresponding mean field equations. We then present in section 5.2 simula-

tions of the mean field equations and of the related finite size network, in

order to unravel the influence of σ on the dynamics. We observe that σ also

has a structuring effect on the dynamics and can induce synchronized

oscillations at the network level. However, due to the non-Markov nature of

the equations, analytical results are difficult to obtain.
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5.1 Model and mean field equations

5.1.1 Synaptic inhomogeneity

In this chapter we still consider networks of firing-rate neurons with a linear

intrinsic dynamics. However we now model the synaptic weights by indepen-

dent and population-wise identically distributed Gaussian random variables.

The standard deviation of these random variables introduces a disorder term

at the synaptic level. The statistics of these random variables depend only

on the pre- and postsynaptic populations but two synaptic weights coupling

together the same populations may take different values. We have:

Jij ∼ N
(

Jαβ

Nβ

,
σαβ√
Nβ

)
(5.1)

Keeping the same notations as before, the equations describing the network

are hence:

dV i(t) =
(
− 1

τα

V i(t) +
P∑

β=1

U
Nβ

iβ (t) + Iα(t)
)
dt + λαdBi(t) (5.2)

where:

U
Nβ

iβ (t) =

Nβ∑

j=1

JijS(V j(t))

is the interaction process. We recall that τα is the time constant characteristic

of population p(i) = α, and λα is the (stationary) intensity of the additive

noise. The network is made of P distinct populations and Nβ is the number

of neurons in population β.

The standard deviation σαβ is a parameter that accounts for the level of

disorder of the network, i.e. the dispersion of individual synaptic weights.

If this parameter is very small, the network is almost homogeneous. We

stress that the type of randomness considered here is totally different from

the additive dynamic noise introduced in the preceding chapter 4. Here, the

weights are drawn in a Gaussian law at initial time and then frozen during

the whole evolution. The parameter σαβ, whose influence on the dynamics of

the network will be our main focus in this chapter, can be called synaptic

inhomogeneity.
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5.1.2 Heuristic derivation of the mean field equations

The mean field equations corresponding to the network 5.2 with synap-

tic inhomogeneity have been presented by Faugeras, Touboul and Ces-

sac [Faugeras et al., 2009]. The foundation of their result uses large deviation

techniques, as discussed in section 3.3.1. We recall that Ben Arous and Guion-

net [Arous and Guionnet, 1995, Arous and Guionnet, 1997, Guionnet, 1997]

proved the annealed (averaged on all possible interactions) and quenched (J-

almost surely) propagation of chaos in a similar setting applied to spin glasses.

In [Faugeras et al., 2009] the resulting mean field equation obtained is

shown to have one and only one solution under some non-degeneracy con-

ditions on the initial condition and the noise. Combined with a quenched

propagation of chaos result, this means that provided that the initial condi-

tions of all neurons are Gaussian, independent and population-wise identically

distributed, the law of (V i1(t), . . . , V ik(t), t ≤ T ) for any fixed k ≥ 2 and

(i1, . . . , ik), converges towards νp(i1) ⊗ . . . ⊗ νp(ik) when N → ∞, where we

denoted να the law of the solution of the corresponding mean field equation

for population α. We will now present an heuristic derivation of the resulting

mean field equation.

An overview of this heuristic derivation was given in the introduction 2.2.2.

Basically, it consists in applying a central limit theorem, provided a certain

independence hypothesis. This hypothesis is called Amari’s local chaos hy-

pothesis and states that:

For N sufficiently large, all the V i are pairwise stochastically independent,

are independent of the connectivity parameters Jij, and have a common dis-

tribution population per population.

Due to the form of the network equations, we obviously cannot assume a

priori that this is true. Nevertheless it will allow us to derive the right mean

field equations.

Indeed, under the local chaos hypothesis, the interaction process U
Nβ

iβ (t) :=
∑Nβ

j=1 JijSβ(V j(t)) is the sum of independent identically distributed random

variables. The functional central limit theorem applies, provided the con-

vergence of the two first moments of the sum. The problem reduces to the

computation of the limits of the mean and standard deviation of the interac-

tion process when the number of neurons tends to infinity and was treated in

section 2.2.2. From the convergence of the two first moments of the interac-

tion process and the central limit theorem, we conclude to the convergence
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of the sequence of processes U
Nβ

iβ (t) to the effective Gaussian interaction

process U
V̄β

αβ (t), a Gaussian process of parameters:






E

[
U

V̄β

αβ (t)
]

= JαβE[Sβ(V̄β(t))];

Cov(U
V̄β

αβ (t), U
V̄β

αβ (s)) = σ2
αβE

[
Sβ(V̄β(t))Sβ(V̄β(s))

]
;

Cov(U
V̄β

αβ (t), U V̄δ
γδ (s)) = 0 if α 6= γ or β 6= δ.

where V̄β(t) is the stochastic process giving the membrane potential of a neu-

ron in population β.

We can now conclude our heuristic derivation. This is the subject of the

following theorem.

Theorem 5.1.1.Under the local chaos hypothesis, the process V i(t) for i in

population α, solution of equation 5.2, converges in law towards the process

V̄ α solution of the mean field implicit equation:

dV̄ α(t) =
[
− 1

τα

V̄ α(t) +
P∑

β=1

U
V̄β

αβ (t) + Iα(t)
]
dt + λαdBα(t) (5.3)

Proof. : The solution of the network equations can be written:

V i(t) = V i(0)e−t/τα +
P∑

β=1

∫ t

0

e(s−t)/ταU
Nβ

iβ (s)ds

+

∫ t

0

e(s−t)/ταIα(s)ds + λα

∫ t

0

e(s−t)/ταdBα(s)

Because of the convergence in law of the interaction process, we have

the convergence in law of the integral term
∫ t

0
e(s−t)/ταU

Nβ

iβ (s)ds towards the

effective term
∫ t

0
e(s−t)/ταU

V̄β

αβ (s)ds provided that Lebesgue’s theorem applies.

Therefore, for any neuron i in population α, the potential converges in law

towards the solution V̄ α of the stochastic fixed-point equation:

V̄ α(t) = V̄ α(0)e−t/τα +
P∑

β=1

∫ t

0

e(s−t)/ταU
V̄β

αβ (s)ds

+

∫ t

0

e(s−t)/ταIα(s)ds + λα

∫ t

0

e(s−t)/ταdBα(s) (5.4)

�



82
Chapter 5. A mean field equation with inhomogeneity at the

synaptic level

By definition, under local chaos hypothesis, in the limit where the number

of neurons tends to infinity, all the neurons of the same population have the

same distribution and behave independently and we have proved that for any

neuron in population α, its membrane potential is solution of the mean field

equation 5.3.

The P equations 5.3, which are P implicit stochastic differential equations,

describe the asymptotic behavior of the network. The characterization and

simulation of their solutions is a real challenge. The effective interaction pro-

cess is indeed an intricate functional of the solution of the equation. However,

similarly as in the preceding chapter, we can show that the solutions of these

new mean field equations are Gaussian processes, provided that the initial

conditions are Gaussian. To characterize the solutions we need therefore only

to compute their means and covariances. But this time, contrary to the case

of a purely additive noise, we cannot reduce the mean field dynamics to a

system of coupled ordinary differential equations. In fact the interplay be-

tween the mean and the covariance is way more complex since the covariance

of the process depends on the whole history of the solutions. The detailed

equations satisfied by the mean and covariance of a solution are the subject

of the following proposition:

Proposition 5.1.2. Let us assume that V̄ (0) = (V̄ α(0))α=1...P is a P-

dimensional Gaussian random variable. We have:

• The solutions of the P mean field equations 5.3 with initial conditions

V̄ (0) are Gaussian processes for all time.

• Let µ(t) = (µα(t))α=1...P denote the mean vector of the process

(V̄ α(t))α=1...P and C(t, s) = (Cαβ(t, s))α=1...P,β=1...P its covariance. V̄ (t)

is a diagonal process so Cαβ(t, s) = δαβCα,α(t, s) and we write Cα(t, s)

to alleviate notations. We have:





µ̇α(t) = − 1
τα

µα(t) +
∑P

β=1 Jαβ

∫
R

Sβ

(
x
√

Cβ(t, t) + µβ(t)
)

Dx + Iα(t)

Cα(t, s) = e−(t+s)/τα

[
Cα(0, 0) + ταλ2

α

2

(
e2(t∧s)/τα − 1

)

+
∑P

β=1 σ2
αβ

∫ t

0

∫ s

0
e(u+v)/τα∆β(u, v)dudv

]
,

∆β(u, v) =
∫

R

∫
R

Sβ

(√
Cβ(u,u)Cβ(v,v)−Cβ(u,v)2√

Cβ(u,u)
x +

Cβ(u,v)√
Cβ(u,u)

y + µβ(v)

)

Sβ

(
y
√

Cβ(u, u) + µβ(u)
)

Dx Dy.

(5.5)

with initial condition µα(0) = E
[
V̄ α(0)

]
and vα(0) = Cα(0, 0) =

E
[
(V̄ α(0) − µα(0))2

]
. In equation 5.5, the dot denotes the differential
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with respect to time and Dx is the probability density of a centered Gaus-

sian variable of variance unity: Dx = e−x2/2√
2π

dx

Proof. When written under the integral form 5.4, it is clear that the solu-

tion is a Gaussian process provided the initial condition is a Gaussian random

variable, due to the Gaussian nature of the effective interaction process and

the property of the stochastic Itô integral.

Taking the expectation of both sides of the equality 5.4, we obtain the

equation satisfied by the mean of the process µα(t) = E
[
V̄ α(t)

]
:

µ̇α(t) = −µα(t)

τα

+
P∑

β=1

E

[
U

V̄β

αβ (t)
]

+ Iα(t) =

− µα(t)

τα

+
P∑

β=1

JαβE[Sβ(V̄β(t))] + Iα(t) =

− µα(t)

τα

+
P∑

β=1

Jαβ

∫

R

Sβ(x)N(µβ(t), Cβ(t, t), x)dx + Iα(t)

where N(µβ(t), Cβ(t, t), x) denotes the one-dimensional Gaussian law in vari-

able x of mean µβ(t) and variance Cβ(t, t).

A similar computation for the covariance shows that:

Cα(t, s) = e−(t+s)/τα

[
Cα(0, 0) +

ταλ2
α

2

(
e2(t∧s)/τα − 1

)

+
P∑

β=1

∫ t

0

∫ s

0

e(u+v)/ταCov(U
V̄β

αβ (u), U
V̄β

αβ (v))dudv
]

=

e−(t+s)/τα

[
Cα(0, 0) +

ταλ2
α

2

(
e2(t∧s)/τα − 1

)

+
P∑

β=1

∫ t

0

∫ s

0

e(u+v)/τασ2
αβE

[
Sβ(V̄β(u))Sβ(V̄β(v))

]
dudv

]
=

e−(t+s)/τα

[
Cα(0, 0) +

ταλ2
α

2

(
e2(t∧s)/τα − 1

)

+
P∑

β=1

σ2
αβ

∫ t

0

∫ s

0

e(u+v)/τα∆β(u, v)dudv
]

where:

∆β(u, v) =

∫

R

∫

R

Sβ(x)Sβ(y)N(µβ(u), µβ(v), Σβ(u, v), x, y)dx dy
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This time N(µβ(u), µβ(v), Σβ(u, v), x, y) denotes the two-dimensional Gaus-

sian law in variable x and y of mean µβ =

(
µβ(u)

µβ(v)

)
and of covariance matrix

Σβ(u, v) =

(
Cβ(u, u) Cβ(u, v)

Cβ(u, v) Cβ(v, v)

)
. We conclude the proof by a simple change

of variable. �

We obtain therefore coupled equations on the mean and the covariance of

the process. The mean is given by a differential equation, whereas the co-

variance is given by an intricate integral equation (a non-linear Volterra

equation, see [Burton, 2005]). The mean satisfies obviously the same equa-

tion as in the chapter 4, corresponding to the case σαβ = 0. Indeed the

mean field equation 4.2 can be rewritten, using the definition of the effective

interaction process:

dV̄ α(t) =
[
− 1

τα

V̄ α(t) +
P∑

β=1

E[U
V̄β

αβ (t)] + Iα(t)
]
dt + λαdBα(t)

However, the system defined by 5.1.2 is way more difficult to analyze than

the one defined in 4.2.2. This is due to the fact that the covariance function

Cα(t, s) depends this time on the whole history of the system from the

initial time up to t and s as can be seen in the integral form of the equation

giving the covariance. This is a signature of the non-Markovian nature of

the system. Furthermore, though the equation of the mean involves only

the variance vα(t) = Cα(t, t), it is necessary in order to compute it to know

the whole covariance functions Cβ(u, v) and mean functions µβ(u), µβ(v) for

(u, v) ∈ [0, t]2.

5.2 Simulations of the equations and comparison

with a finite-size network

In order to understand the influence of the synaptic inhomogeneity σαβ on the

behavior of the solution of 5.3, we have simulated the system given in 5.1.2 for

different values of the parameter. However, compared to the case presented

in chapter 4, even the simulation of these equations is quite challenging due

mainly to their non-Markovian nature. We nevertheless simulated these equa-

tions using a Picard iteration method, inspired by the constructive proof which

gives existence and uniqueness of the solution. We spent much time in this

thesis trying to optimize this simulation code in Matlab R©, but were never to-

tally satisfied by the results, as the simulation was very time-consuming and
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sometimes failed to reach the level of precision desired, especially for large

time. This may be due to the accumulation of numerical instabilities involved

in the computation of the integrals (a quadruple integral at each time step).

For relatively small time (e.g. T = 20), we yet succeeded in computing the

whole covariance function and we now present these results.

5.2.1 The synaptic inhomogeneity can destroy oscillations

5.2.1.1 Simulations of the mean field equations

Here, we present the simulations for a network of 2 populations where the pa-

rameters (the synaptic weights J̄αβ and the external inputs Iα) are chosen such

that the noiseless system (neither additive noise nor synaptic inhomogeneity)

presents a limit cycle. We set λα to zero1, as we have already studied sep-

arately the influence of the additive noise and are here only interested in the

influence of the parameters σαβ. To simplify, we assume that all the elements

of the 2 ∗ 2 synaptic variance matrix are equal to σ and we are interested in

the behavior of the system when this parameter σ is varied. The main result

is that the periodic structure of the solution is lost when σ is increased. This

is shown in Figure 5.1, concerning the covariance. We have of course checked

that the periodicity of the mean was lost for the same value of σ.

5.2.1.2 Simulations of a finite network

We have also simulated the corresponding 2-populations finite-size network.

All the parameters are the same as in the preceding section and the network

is composed of 200 neurons, one hundred in each population. If the mean field

is an accurate description of the network we expect to find that the periodic

structure of the solutions will be destroyed for the same value of σ. We observe

that for large values of σ the cycle is always lost but for intermediate values it

is not possible to conclude unequivocally. Indeed, the network can either con-

verge towards a fixed point or present oscillations, for the same value of σ, and

the same initial conditions. This is linked to the particular realization of the

Gaussian synaptic weights (which obviously changes at each new simulation

of a finite network). This ambivalence, where the finite network may present

different behaviors, whereas the limiting mean field equation presents only one

possible behavior (for a given initial condition), is a finite-size effect. In the

next Figure 5.2, we present the 4 covariance functions Cαβ(t, s) for α, β = 1, 2

for the same value of σ set to 2 for which the mean field solution still presents

1Rigorously the mean field equations are well posed only for a non-vanishing λ but we

can take it arbitrary small in the simulations.
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(a) Covariance C1(t, s) for σ = 2. The periodic

structure is preserved. The variance is the diagonal

of this matrix and we have checked that it has the

same period as the mean.

(b) Covariance C1(t, s) for σ = 2.5. The periodic

structure of the covariance tends to disappear with

time. A simulation on a longer time scale would

be necessary to see how evolve the damped oscil-

lations.

(c) Covariance C1(t,s) for σ = 4. The covari-

ance reaches a plateau and is stationary, for large

enough time. Meanwhile the means have con-

verged to fixed point values.

Figure 5.1: Simulation of the covariance function solution of the mean field

equation, for increasing values of σ. When this parameter is too high, the

oscillations (that were present in the deterministic system) are destroyed.
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oscillations. We have also checked that the covariance between two distinct

populations is null.

5.2.2 The synaptic inhomogeneity can induce oscillations

Eventually in order to check if the synaptic inhomogeneity could also create

cycles, as it was observed in the additive noise case, we extensively simulated

a large network (10 000 neurons with 5000 neurons in each population) for

different values of σ and computed the Fourier transform of the empirical

mean (see Figure 5.3). We also averaged the results over several Monte-

Carlo simulations to reduce possible finite-size effects. We chose exactly the

same parameters as those of Figure 4.8. The only difference is hence that in

spite of varying λ, it is σ that is gradually increased. It turned out that we

found very similar results in both cases which seems quite surprising at first

when we think at the very different microscopic dynamics. Indeed not only

did we find appearance and disappearance of oscillations, but the route to

oscillations is the same in both cases with in 5.3 the onset of oscillations

through a seemingly homoclinic bifurcation (arbitrary small frequencies are

present) and their disappearance through a seemingly Hopf bifurcation (with

a sudden switch in frequency). When oscillations are present at the network

level, individual trajectories tend to synchronize (although less sharply than

in the additive noise). Simulations of the trajectories of a finite network of 500

neurons with the same choice of parameters, as a function of σ, are presented

in Figure 5.4.

5.2.3 Simulations of a one-population network

In this section we want to illustrate the proposition of Sompolinsky and

colleagues [Sompolinsky et al., 1988] that for a one-population network with

weights described by centered Gaussian variables of standard deviation σ and

whose sigmoidal transform is centered (S(0) = 0), there is a transition between

a stationary regime and a chaotic regime2 for σ large enough at σ∗ × S ′(0) =

1/τ . The simulations of Figure 5.5 will allow us to better visualize the type

of dynamics corresponding to these two regimes.

2in the dynamical system sense
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(a) Stationary case. We have plotted the 4 covariances Cαβ(t, s)

for σ = 2. Top left: C11(t, s). Top right: C12(t, s). Bottom left:

C21(t, s). Bottom right: C22(t, s).

(b) Oscillatory case. We have plotted the 4 covariances Cαβ(t, s) for

σ = 2. Same legend as above.

Figure 5.2: Simulation of a 2-populations finite network with 100 neurons in

each population. Two distinct behaviors are observed for the same value of

σ and the same initial conditions. This is linked to various realizations of the

spectrum of the random connectivity matrix. We remark that the covariance

matrix between distinct populations is null, as expected.
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Figure 5.3: Squared modulus of the Fourier transforms of the empirical mean

for simulations of the network as function of the frequency (Hz) and the noise

parameter σ. We observe that oscillations appear in the network first through

what appears to be a homoclinic bifurcation (arbitrary small frequencies) and

also disappear through what seems to be a Hopf bifurcation (discontinuity in

the power spectrum).
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Figure 5.4: Red and blue curves: trajectories of 10 neurons in each popula-

tion (respectively population 1 and 2). The corresponding empirical mean of

the network are the thicker curves in cyan and magenta.
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In fact it is possible to find the critical value of σ by applying Girko’s circular

Law 3. The Jacobian matrix of the finite-size network at 0 can be written:

Jac(0) = diag(−1/τ) + S ′(0) × (Jij)i,j=1...N

and in the limit N → +∞ the eigenvalues of Jij will be uniformly distributed

in the complex plane on the disk centered at the origin and of radius σ, so that

the null solution will be destabilized for a σ such that at least one eigenvalue

has a positive real part, and this happens for −1/τ + σ∗ × S ′(0) = 0.

Thanks to numerical studies we conjectured that this criterion was in fact

still true for non-centered weights, i.e. J 6= 0. Our conjectured proposition is:

Proposition 5.2.1.

• The mean µ0 = 0 is stable if and only if α = − 1
τ

+ JS ′(0) < 0

• The variance C0(t, t) = 0 is stable if and only if α < 0 and σS ′(0) < 1/τ

The statement on the mean is obvious by a linear stability analysis. However

Girko’s Law on centered random matrices does not apply here. Our goal was

to linearize the system 5.1.2 about the null solution. We managed to obtain an

equation (of Volterra type) giving us the evolution of the perturbation on the

variance. This equation can even be explicitely solved using Bessel functions.

However we were not able to find the right results and this is likely linked

to the fact that for C(t, s) = 0 the equation becomes singular (a Gaussian

random variable of null variance is a Dirac).

We also tried to linearize the system 5.1.2 about the solution

(µ0(t), C0(t, s) = e−2(t+s)/τα) corresponding to λ = 0 and σ = 0, to obtain

an equation depending on σ for the perturbation δµ(t) and to study its sta-

bility. Though we managed to do all the (involved) calculations and obtained

a linear Volterra integro-differential equation for δµ, usual stability theorems

for Volterra equations (e.g. [Burton, 2005]) did not apply.

3Let λ be (possibly complex) eigenvalues of a set of random N × N real matrices with

entries independent and taken from a standard normal distribution. Then as N → +∞,

λ/
√

N is uniformly distributed on the unit disk in the complex plane.
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As we have already mentioned the analytical study of the system 5.1.2

is way more difficult than in the case of additive noise where the dynamics

was summed up in a system of ordinary differential equations. It was then

possible to apply the usual bifurcation theory to unravel the influence of the

parameters, especially the noise λ. But this time, due to the non-Markovian

nature of the equations, the variance at time t is an intricate functional of the

mean µ(u) for u ∈ [0, t]. It would then be necessary to develop a bifurcation

analysis in an infinite-dimensional setting. We have presented therefore in this

section only numerical results. However we present in Appendix B.1 a way

to reduce the non-linear Volterra equation giving the covariance to a simpler

linear Volterra equation when σ is small.

We hence study numerically a one-population finite network. The centered

sigmoidal transform has a slope at the origin of g = S ′(0) = 1/
√

2π ≈ 0.4.

We set λ = 0 and τ = 1. With these values of the parameters we expect,

if α = − 1
τ

+ JS ′(0) ≈ −1 + 0.4J < 0, the null mean and null variance to

be stable. Both will be destabilized for α > 0, i.e. J > 2.5. However, if

α < 0, i.e. J < 2.5, we expect the null mean to remain stable while the null

variance to be destabilized for σS ′(0) > 1/τ , i.e for a synaptic inhomogeneity

large enough: σ >
√

2π. This is illustrated in the following Figure 5.5 where

we have run the simulations for a network of 300 neurons (the total time

of simulation is T = 60 and the time step is dt = 0.01). We averaged the

empirical mean and variance over 3 successive Monte-Carlo simulations to get

rid off the finite-size effects.

It is interesting to note the differences in the individual trajectories for a

large synaptic inhomogeneity compared to the trajectories of a network sub-

mitted only to additive noise. In this last case the variance converges in the

stationary regime to λ2 τ
2

and hence increases smoothly with the noise parame-

ter λ whereas in the simulations presented in Figure 5.5, the variance abruptly

switches from a null value to a strictly positive value when we increase σ. The

high-σ regime corresponds to the chaotic regime described by Sompolinsky

in [Sompolinsky et al., 1988].

5.3 Summary

In this chapter we have explained heuristically how to derive the mean field

equations when the synaptic weights coupling the neurons are drawn at the

beginning of the evolution in a Gaussian law with a non-zero standard devia-

tion σ. Basically if we assume Amari’s local chaos hypothesis we just have to
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(a) Empirical mean (in blue) and variance (in

black) for J = 1 and σ = 0.9
√

2π. Both the

zero mean and zero variance are stable.

(b) Corresponding trajectories of 10 individ-

ual neurons in the network. Despite initial

fluctuations they converge to a stationary

null value.

(c) Empirical mean (in blue) and variance (in

black) for J = 1 and σ = 1.1
√

2π. The zero

mean is still stable (though we observe fluctu-

ations due to finite-size) but the zero variance

is destabilized.

(d) Corresponding trajectories of 10 individ-

ual neurons in the network. Due to a non-zero

variance, the trajectories fluctuate about the

mean value.

(e) Empirical mean (in blue) and variance (in

black) for J = 3 and σ = 0.9
√

2π. Both

the zero mean and zero variance have been

destabilized.

(f) Corresponding trajectories of 10 individ-

ual neurons in the network.

Figure 5.5: Illustration of proposition 5.2.1 for a finite network of 300 neu-

rons.
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apply a functional central limit theorem. The real proof uses large deviation

techniques which are rather intricate. Moreover the resulting equations are

non-Markovian which makes them difficult to simulate and analyze.

We have nevertheless simulated these equations (this time it is necessary to

compute the whole covariance of the process) and when extensive simulations

were out of reach we looked at a large but finite network. We found that

the parameter σ had a structuring effect on the dynamics, in particular that

it was able to generate oscillations of the mean solution of the mean field

equations, which corresponds to the onset of regular synchronous oscillations

at the network level. The synaptic inhomogeneity induces transitions in the

global behavior of the network, structuring its Gaussian activity by inducing

smooth oscillations of its mean and its variance. These findings have several

implications that will be discussed in the conclusion of this thesis (8.2.2),

where they will also be compared with findings of chapter 4. But, unlike the

case of additive noise, it seems difficult to provide, even at a phenomenological

level, an explanation for the structuring effect of σ.



Chapter 6

A mean field equation with

synaptic noise

Overview
In this chapter we shall consider the effect of the stochastic variation of the

synaptic efficiency on the mean field behavior. We first model synaptic noise

in section 6.1. In order to study the effect of this noise in large-scale networks,

we consider, as in the previous chapters, firing-rate neurons. Asymptotic equa-

tions as the number of neurons tends to infinity are derived in section 6.2. In

the case of synaptic weights whose fluctuations are modeled by white noise,

the dynamics again reduces to two coupled ordinary differential equations on

the moments of the Gaussian solution, allowing to deal with the dynamics in

a tractable form. We study the influence of synaptic noise on the collective

behaviors, and compare these asymptotic regimes to simulations of the net-

work in section 6.3. We study in particular the complex codimension two

bifurcation diagram of the system as the external input and the level of

synaptic noise are varied. We conclude by observing that, similarly to the

previous cases, synaptic noise can trigger collective synchronized oscillations

at the network level. However in that case, neurons will show a high level

of synchrony, related to the fact that the standard deviation periodically

vanishes.
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6.1 Models of synaptic noise

Synaptic noise refers to the random fluctuations of the synaptic efficiency.

The sources of this type of noise have been mentioned in the introduction

part 1.3.2. For example, in a seminal paper [Fatt and Katz, 1952], the au-

thors evidence the presence of spontaneous subthreshold activity at a normal

synapse: miniature postsynaptic potentials are recorded in the absence of

presynaptic input and they attribute it to the spontaneous release of neuro-

transmitters vesicles. Synaptic noise arises mainly from two factors: first the

biochemical and biophysical process of synaptic transmission are inherently

probabilistic, second the number of elements at stake in such processes (such

as the number of neurotransmitters released) is finite and small and hence

subject to important fluctuations from trial to trial1.

6.1.1 White noise

In order to account for the stochasticity of the synaptic weights, the simplest

model we can think of consists in considering that the synaptic weights fluc-

tuate around the deterministic value Jp(i)p(j)/Np(j), and, due to the stochastic,

and presumably uncorrelated nature of the random phenomena involved, use

a white noise model to account for the fluctuations. This white noise will be

assumed, for technical reasons, to only depend on the postsynaptic neuron

and on the presynaptic population, considering that most of the variability is

due to random local properties of the environment at the level of the postsy-

naptic cell. Rigorously, it also depends on the presynaptic neuron, but taking

into account this dependency would considerably increase the complexity of

the mathematical analysis.

We therefore model the network’s synaptic weights Jij, for p(i) = α and

p(j) = β, as the sum of a deterministic value and a white noise:

Jij =
Jαβ

Nβ

+
σαβ

Nβ

dW iβ(t)

dt

where the W iβ are a family of independent standard Brownian motions and

σαβ models the amplitude of the noise (the notation dW iβ(t)
dt

is an abuse of no-

tation, it will be made rigorous in equation 6.2). Note also that, contrary to

1Of course we cannot rule out the presence of deterministic chaos. But since it would

result from the conjunction of very intricate deterministic processes extremely dependent

on initial conditions, we think that modeling synaptic fluctuations by stochastic processes

can be a suitable approximation.
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the preceding chapter 5, where the synaptic weights were drawn at the begin-

ning of the evolution in a Gaussian law, the standard deviation of the weights

scales here as 1/Nβ and not 1/
√

Nβ. This is important for the asymptotic

limit to exist.

6.1.2 Ornstein-Uhlenbeck process

Alternatively we can also choose to model the synaptic weights by solutions

of stochastic differential equations. Here again one of the simplest model

would be to use an Ornstein-Uhlenbeck process because it is a stationary

Gaussian process. We would therefore introduce the variable Xij(t) obeying:

dXij(t) = θ(Jαβ − Xij(t))dt + σαβdW iβ(t)

and model the synaptic weights by Jij = Xij/Nβ to get the proper scaling.

Here again W iβ(t) are a family of independent standard Brownian motions

and σαβ accounts for the level of synaptic noise. Note that here again, for

technical reasons, the Brownian motion depends on the postsynaptic neuron

indexed by i and on the presynaptic population (β).

The main drawback of the two precedents models for the weights is that

weights may change sign, which does not fit with the fact that the (overall

majority of) synapses are either excitatory or inhibitory. However their means

remain of constant sign and a parameter like θ allows us to control the average

time during which the weights keep a constant sign.

6.1.3 CIR process

There is therefore the need of introducing stochastic processes that remain

of constant sign. We can for example take a CIR process, named after John C.

Cox, Jonathan E. Ingersoll and Stephen A. Ross, and defined by the following

stochastic differential equation:

dXij(t) = θ(Jαβ − Xij(t))dt + σαβ

√
Xij(t) dW iβ(t)

and define Jij = Xij/Nβ for the scaling. In this case the synaptic weights are

no longer Gaussian.

6.1.4 Bounded stochastic processes

However the drawback of modeling synaptic weights by Ornstein-Uhlenbeck

or CIR stochastic processes is that the processes Xij(t) are not bounded,
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though their expectation remains bounded for all time. As we will see the

boundedness of the synaptic weights is required from a biological viewpoint,

but it is also a crucial assumption in the propagation of chaos proof that we will

present. Hence we will consider synaptic weights defined by bounded stochastic

processes. There are many possible choices. We may cite, for instance, any

bounded function of a stochastic process or almost surely bounded diffusions.

For concreteness, we may take Jij = Xij/Nβ with:

Xij(t) = Jαβ + σαβF (W iβ(t)) (6.1)

where F is a bounded function, e.g. a centered sigmoidal function. In the

following we will assume:

|Xij(t)| ≤ M a.s.

6.2 The Mean-field equations

6.2.1 Network model with “white noise” synaptic weights

The microscopic network model is the same as in chapter 4, except that

the fluctuations of the weights about a constant value are modeled by white

noise.

The network behavior is therefore governed by the following set of stochastic

differential equations:

dV i(t) =

(
− 1

τα

V i(t) + Iα(t) +
P∑

β=1

Jαβ
1

Nβ

∑

j, p(j)=β

Sβ(V j(t))

)
dt+

λα(t)dBi
t +

P∑

β=1

σαβ

(
1

Nβ

∑

j, p(j)=β

Sβ(V j(t))

)
dW iβ

t (6.2)

where the Brownian motions W iβ are independent of the Bi.

These equations represent a set of interacting diffusion processes. As for

the precedent chapters we can prove a propagation of chaos result and derive

the limit mean field equation. This is the subject of the following theorem:

Theorem 6.2.1. Under the above assumptions:
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(i). The equations (6.2) converge towards the mean-field implicit equations:

dV̄α(t) =

[
− 1

τα

V̄α(t) + Iα(t) +
P∑

β=1

JαβE
[
Sβ(V̄β(t))

]
]

dt+

P∑

β=1

σαβE
[
Sβ(V̄β(t))

]
dWαβ(t) + λα(t)dBα(t) (6.3)

where W αβ(t), Bα(t) are independent Brownian motions for α, β =

1 . . . P .

(ii). Equation (6.3) has a unique (pathwise and in law) solution which is

square integrable.

(iii). The propagation of chaos applies, i.e. provided that the initial con-

ditions of all neurons are independent and population-wise identically

distributed (the initial conditions are said to be chaotic), then the law of

(V i1(t), . . . , V ik(t), t ≥ 0) for any fixed k ≥ 2 and (i1, . . . , ik) converges

in the limit N → ∞ to νp(i1) ⊗ . . . ⊗ νp(ik) where να is the law of the

solution of equation (4.2) corresponding to population α, meaning that

(V i1(t), . . . , V ik(t)) are independent processes.

The proof of this theorem is very similar to the one presented in chapter 4 and

uses a coupling argument. The only difference lies in the fact that interactions

occur in a stochastic term, which can be treated using Burkholder-David-

Gundy theorem.

We now turn our attention to the case where synaptic weights are mod-

eled by bounded stochastic processes and each neuron’s intrinsic dynamics is

nonlinear.

6.2.2 Network model with synaptic weights defined by

bounded stochastic processes

The weights Jiβ are scaled by Nβ, the number of neurons in the population β,

so that the mean-field limit remains finite. The intrinsic dynamics is given by

the function fα which is not assumed linear any more. Similarly the additive

noise is governed by the function gα. The microscopic equations describing
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the network are:

dV i(t) =

(
fα(V i(t))+Iα(t)+

P∑

β=1

∑

j:p(j)=β

Jiβ(t)Sβ(V j(t))

)
dt+gα(V i(t))dBi(t)

=

(
fα(V i(t))+Iα(t)+

P∑

β=1

Xiβ(t)
∑

j:p(j)=β

1

Nβ

Sβ(V j(t))

)
dt+gα(V i(t))dBi(t)

(6.4)

with Xiβ(t) a stochastic process dependent on W iβ(t), such that:

|Xiβ(t)| ≤ M ∀t a.s.

We assume that the functions fα and gα are Lipschitz continuous. We note

also that, in contrast with chapter 5, we have here an exchangeability property,

if we consider the state vector of size P +1 constituted by V i and (Jiβ)β=1,..P .

The propagation of chaos result and the resulting mean field equation are the

subject of the following theorem:

Theorem 6.2.2. Under the above assumptions:

(i). The process V i(t) for i in population α, solution of equation (6.4), con-

verges in law towards the process V̄ α solution of the mean-field implicit

equation:

dV̄ α(t) =

(
fα(V̄ α(t)) + Iα(t) +

P∑

β=1

Xαβ(t)E[Sβ(V̄ β(t))]

)
dt+

gα(V̄ α(t))dBα(t) (6.5)

as a process for t ∈ [0, T ], in the sense that there exists (V̄ i
t )t≥0 dis-

tributed as (V̄ α
t )t≥0 such that

E

[
sup

0≤t≤T
|V i

t − V̄ i
t |2
]
≤ C̃(T )

N

where C̃(·) is a function of time depending on the parameters of the

system. And the variable Xαβ is a stochastic process defined in the same

way as Xiβ(t) but dependent only on W αβ(t). Bα(t) and W αβ(t) are

independent Brownian motions for α, β = 1 . . . P .

(ii). Equation (6.5) has a unique (pathwise and in law) solution which is

square integrable.
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(iii). The propagation of chaos applies, i.e. provided that the initial con-

ditions of all neurons are independent and population-wise identically

distributed (the initial conditions are said to be chaotic), then the law of

(V i1(t), . . . , V ik(t), t ≥ 0) for any fixed k ≥ 2 and (i1, . . . , ik) converges

in the limit N → ∞ to νp(i1) ⊗ . . . ⊗ νp(ik) where να is the law of the

solution of equation (6.5) corresponding to population α, meaning that

(V i1(t), . . . , V ik(t)) are independent processes.

Proof. The existence and uniqueness of solutions can be performed in a

classical fashion using Picard iterations of an integral form of equation 6.5 and

a contraction argument. The proof of the convergence towards this law, and

of the propagation of chaos uses a coupling argument that consists in defining

independent processes V̄ i(t) solution of equation (6.5) driven by the same

Brownian motions W iβ(t) defining the stochastic weights, the same Brownian

motion Bi(t) as involved in the network’s equation (6.4) and with the same

initial condition V i(0) as neuron i in the network.

We want to estimate Nt = maxi=1...N M i
t where:

M i
t = E[ sup

0≤s≤t
|V i(s) − V̄ i(s)|2]

By writing the equation in the integral form, we have:

|V i(t) − V̄ i(t)|2 ≤ 4

(
|
∫ t

0

(fα(V i(s)) − fα(V̄ i(s)))ds|2+

|
∫ t

0

P∑

β=1

Xiβ(s)
∑

p(j)=β

Sβ(V j(s)) − Sβ(V̄ j(s))

Nβ

ds|2+

|
∫ t

0

P∑

β=1

Xiβ(s)
∑

p(j)=β

Sβ(V̄ j(s)) − E[Sβ(V̄ j(s))]

Nβ

ds|2+

|
∫ t

0

(gα(V i(s)) − gα(V̄ i(s)))dBi(s)|2
)

=

4(A2
t + B2

t + C2
t + D2

t ).

By using Cauchy-Schwartz and the Lipschitz property of fα (whose Lipschitz

constant is denoted by Kf (α)), we have:

A2
s ≤ s

∫ s

0

|fα(V i(u)) − fα(V̄ i(u)))|2du ≤ sKf (α)2

∫ s

0

|V i(u) − V̄ i(u)|2du
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Hence we get taking the expectation and the supremum:

E[sup
s≤t

A2
s] ≤ tKf (α)2

∫ t

0

E|V i(u) − V̄ i(u)|2du

≤ tKf (α)2

∫ t

0

E[ sup
0≤v≤u

|V i(v) − V̄ i(v)|2]du = tKf (α)2

∫ t

0

M i
udu

The upperbounding of Bs uses critically the fact that Xiβ(t) is bounded.

Otherwise, we use Cauchy-Schwartz (C.S.) and the Lipschitz property of Sβ

whose Lipschitz constant is denoted by Lβ to get:

E[sup
s≤t

B2
s ] = E[sup

s≤t

(∫ s

0

P∑

β=1

Xiβ(u)
∑

j:p(j)=β

Sβ(V j(u)) − Sβ(V̄ j(u))

Nβ

du

)2

]

(C.S.) ≤ E[sup
s≤t

s

∫ s

0

(
P∑

β=1

Xiβ(u)
∑

p(j)=β

Sβ(V j(u)) − Sβ(V̄ j(u))

Nβ

)2

du]

(C.S. + |X| < M) ≤ t P

∫ t

0

P∑

β=1

M2
E[

(
∑

j:p(j)=β

Sβ(V j(u)) − Sβ(V̄ j(u))

Nβ

)2

]du

(C.S.) ≤ t P M2

∫ t

0

P∑

β=1

E[Nβ

∑

j:p(j)=β

(
Sβ(V j(u)) − Sβ(V̄ j(u))

Nβ

)2

]du

(SβLip.) ≤ t P M2

∫ t

0

P∑

β=1

1

Nβ

P∑

j:p(j)=β

E[L2
β|V j(u) − V̄ j(u)|2]du

≤ t P M2

∫ t

0

P∑

β=1

L2
β

Nβ

P∑

j:p(j)=β

E[ sup
0≤v≤u

|V j(v) − V̄ j(v)|2]du

≤ t P M2

∫ t

0

P∑

β=1

L2
β max

j:p(j)=β
M j

udu

≤ t P M2

∫ t

0

P∑

β=1

L2
β max

i=1...N
M i

udu

The upperbounding of Cs uses Cauchy-Schwartz, and the fact that the random
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variables cj
β(s) = Sβ(V̄ j(s)) − E[Sβ(V̄ j(s))] are independent and centered.

E[sup
s≤t

C2
s ] = E[sup

s≤t

(∫ s

0

P∑

β=1

Xiβ(u)
∑

p(j)=β

cj
β(u)

Nβ

du

)2

]

(C.S.) ≤ E[sup
s≤t

s

∫ s

0

(
P∑

β=1

1

Nβ

∑

j:p(j)=β

Jiβ(u)cj
β(u)

)2

du]

(C.S.) ≤ t P
P∑

β=1

∫ t

0

E[

(
1

Nβ

Xiβ(u)
∑

j:p(j)=β

cj
β(u)

)2

]du

(|X| < M) ≤ t P M2

P∑

β=1

∫ t

0

1

N2
β

E

[ ∑

j:p(j)=β,k:p(k)=β

cj
β(u)ck

β(u)
]
du

Thanks to the fact that the cj
β(u) are independent for j 6= k and bounded

by 1 and that N
Nβ

is bounded for large N by 2
δβ

(since we assumed that
Nβ

N

converges to a constant δβ in ]0, 1[), we get:

E[sup
s≤t

C2
s ] ≤ t P M2

P∑

β=1

∫ t

0

1

N2
β

E

[ ∑

j:p(j)=β,

(cj
β(u))2

]
du

≤ t2 P M2

P∑

β=1

1

Nβ

≤ 2
t2 P 2 M2

N
max

β

1

δβ

Concerning Ds, we use Burkholder-Davis-Gundy and the Lipschitz prop-

erty of gα (whose Lipschitz constant is denoted by Kg(α)) to get:

E[sup
s≤t

D2
s ] = E[sup

s≤t

(∫ s

0

(gα(V i(u)) − gα(V̄ i(u)))dBi(u)

)2

]

≤ 4E

∫ t

0

|gα(V i(u)) − gα(V̄ i(u))|2du

≤ 4Kg(α)2

∫ t

0

E[ sup
0≤v≤u

|V i(v) − V̄ i(v)|2]du

≤ 4Kg(α)2

∫ t

0

M i
udu

To sum up, we have, recalling that t ≤ T , and obviously that M i
u ≤ Nu:

E[sup
s≤t

A2
s] ≤ T Kf (α)2

∫ t

0

Nudu,
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E[sup
s≤t

B2
s ] ≤ T P 2 M2 max

β
L2

β

∫ t

0

Nudu,

E[sup
s≤t

C2
s ] ≤ 2

T 2 P 2 M2

N
max

β

1

δβ

,

E[sup
s≤t

D2
s ] ≤ 4Kg(α)2

∫ t

0

Nudu

Putting everything together, we get:

Nt ≤ K1

∫ t

0

Nudu +
K2

N

where:

K1 = 4
(
T max

α
Kf (α)2 + 4 max

α
Kg(α)2 + T P 2 M2 max

β
L2

β

)

and:

K2 = 8 T 2 P 2 M2 max
β

1

δβ

We conclude using Gronwall’s lemma that ∀t ∈ [0, T ]:

Nt ≤
K2

N
exp(K1t)

The propagation of chaos property (iii) stems from the almost sure conver-

gence of (V i1(t), . . . , V ik(t), t ≤ T ) towards (V̄ i1(t), . . . , V̄ ik(t), t ≤ T ), which

are independent, as a process and uniformly for fixed time, and is proved in

a similar fashion. �

We note that the assumption that the stochastic processes describing the

weights are bounded is crucial. Indeed in the general case we could have

introduced the stopping time τN(n) defined as follows for a natural number

n:

τN(n) = inf{t ∈ [0, T ]; max
i=1...N,β=1...P

|Jiβ(t)| ≥ n}

with the convention inf{∅} = T . Obviously, this sequence of stopping times

is non-decreasing. And we would have got an upperbound of the form:

E[ sup
s≤t∧τN (n)

B2
s ] ≤ (t ∧ τN(n)) P n2

∫ t∧τN (n)

0

P∑

β=1

L2
β max

j:p(j)=β
M j

s ds

We assume here that the synaptic weights have a first moment. Then for a

given N , for almost all ω in Ω, there exists n0(ω) such that τN(n)(ω) = T for
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every n ≥ n0(ω). Since t ∈ [0, T ], t∧ τN(n0)(ω) = t and we have the following

upperbound for every n ≥ n0(ω):

E[sup
s≤t

B2
s ] = E[ sup

s≤t∧τN (n0)

B2
s ] ≤ Ptn2

0

∫ t

0

P∑

β=1

L2
β max

j:p(j)=β
M j

s ds

However, when we take the limit N → +∞, we cannot find a finite n0, such

that τN(n0)(ω) = T for every n ≥ n0(ω). We can even expect that for a finite

n0,

lim
N→+∞

τN(n0) = 0

as soon as τ1(n0) charges arbitrarily small times, which is the case of the

Ornstein-Uhlenbeck process for instance.

We have checked that the upperbounding of E[sups≤t C
2
s ] would work (with

a slightly different argument) provided that the synaptic weights have a second

moment. But assuming that all the weights have a first and second moment

is not enough, in our framework, to prove a propagation of chaos result valid

on t ∈ [0, T ]. In fact the classical proof of Sznitman concerning interacting

particle systems uses the fact that the interaction kernel between two particles

is globally Lipschitz. In our case this interaction kernel is given by:

bαβ(V i(t), V j(t), t) = Xαβ(t)S(V j(t))

and is only locally Lipschitz continuous with respect to the second variable,

since the variation in the second variable is unbounded if Xαβ(t) is allowed

to take arbitrarily large values. We have insisted on this subtlety, because,

at first sight, we could have thought that assuming that the synaptic weights

possess a second moment is enough. But in fact we have to make the stronger

assumption that they are bounded. In the simulations we will see that the

equation 6.5 provides nevertheless a good approximation of the network be-

havior in finite time when the weights have a second moment (e.g. are modeled

by Ornstein-Uhlenbeck processes). In that case, for fixed N , τN(n0) will tend

to T when n0 becomes arbitrarily large.

6.2.3 Reduction to a system of ODEs in the white noise

model case

If the stochasticity of the synaptic weights is modeled by a white noise, the

weights are Gaussian. In this case, we easily see that since the intrinsic dy-

namics is linear fα(V ) = − V
τα

, the mean-field solution of 6.3 is itself Gaussian,

provided the initial condition is Gaussian. This can be seen by writing the
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solution of the mean field equation in the integral form. The Gaussian solu-

tions are then entirely characterized by their mean and standard deviation.

We also make the simplifying assumption that gα(V ) = λα, i.e. the parameter

modulating the additive noise is a constant. The system of coupled differential

equations giving the mean and the variance of the Gaussian solution is the

subject of the following proposition:

Proposition 6.2.3. Let us assume that the initial condition is a Gaussian

random variable and that the weights are modeled by white noise (see sec-

tion 6.1.1). We have:

• The solutions of the mean-field equations 6.3 are Gaussian processes for

all time.

• Let µ(t) = (µα(t))α=1...P denote the mean vector of the process (Vα, α =

1 . . . P ) and v(t) = (vα(t))α=1...P its standard deviation. Let also fβ(x, y)

denote the expectation of Sβ(U) for U a Gaussian random variable of

mean x and standard deviation y. We have:

{
µ̇α(t) = − 1

τα
µα(t) +

∑P
β=1 Jαβfβ(µβ, vβ) + Iα(t) α = 1 . . . P

v̇α = − 2
τα

vα +
∑P

β=1 σ2
αβfβ(µβ, vβ)2 + λ2

α α = 1 . . . P
(6.6)

with initial condition µα(0) = E [X0
α] and vα(0) = E [(X0

α − µα(0))2]. In

equation (6.6), the dot denotes the differential with respect to time.

The proof is exactly similar to the one provided in chapter 4, and consists

in writing the solution in the integral form. We recall that the functions fβ

depend on the choice of the sigmoidal transform. A particularly suitable case

is the erf sigmoidal function Sα(x) = erf(gαx + γα). In that case we are able

to express the function fβ in closed form (see lemma 4.2.3).

The solutions of 6.5 would also be Gaussian if the weights were Gaussian

processes. But this is not possible since these equations are only valid for

bounded weights, and Gaussian processes are not bounded: they can take

arbitrarily large values (though with small probability).

In the case of weights described by Gaussian stochastic processes, if the

equations 6.5 were valid, we could also reduce the dynamics to a system of

non-autonomous ordinary differential equations given by:

{
µ̇α(t) = − 1

τα
µα(t) +

∑P
β=1 E[Xαβ(t)]fβ(µβ, vβ) + Iα(t) α = 1 . . . P

v̇α = − 2
τα

vα +
∑P

β=1 V ar[Xαβ(t)]fβ(µβ, vβ)2 + λ2
α α = 1 . . . P

(6.7)
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These two systems (6.6 and 6.7) of coupled ordinary differential equa-

tions are very similar, except that the second one is non-autonomous. If

we choose weights modeled by Ornstein-Uhlenbeck processes, with θ = 1

(see section 6.1.2) we see that the non-autonomous coefficients E[Xαβ(t)] and

V ar[Jαβ(t)] converge exponentially fast towards the coefficients of the first

system: Jαβ and σ2
αβ respectively. Furthermore if we set Xαβ(0) = Jαβ and

V ar[Xαβ(0)] = σ2
αβ the mean and variance of the Ornstein-Uhlenbeck pro-

cess are equal to their stationary values. In the next section we will study

the bifurcation diagram of 6.6, which describes weights whose fluctuations are

modeled by white noise.

6.3 Noise-induced phenomena and network dy-

namics

In this section we numerically study the influence of the synaptic noise level

σ on the dynamics of the neuronal populations in the case of the white noise

model. The results obtained are then compared to the numerical simulations

of a finite network.

In the chapter 4, devoted to the case of a purely additive noise (no variation

in the synaptic weights was considered), we observed that a global behavior

appeared resulting from the interactions. This behavior was described by a

Gaussian process whose variance (dependent on the variance of the initial

value and of the additive noise parameter) was uncoupled with the mean vari-

able which satisfied a deterministic ordinary differential equation. But, even

in that case, the presence of noise was shown to have a non-trivial effect on

the dynamics. We now turn to study the more complex case where noise in

the synaptic transmission is taken into account. In that case, the dynamics

of the variance is no more uncoupled with the mean variable (see

the equation on the variance in 6.6), and we expect the nonlinear coupling

between the mean and the standard deviation to produce non-trivial new be-

haviors. We explore in this section the behavior of the system as a function of

the synaptic noise parameter σ. Note that in the present case, the nonlinear

coupling and the complexity of the equations prevents from performing ana-

lytical studies. In particular, it is very difficult to identify fixed points, which

precludes any stability analysis. This section is therefore mostly concerned

with numerical bifurcation analysis.
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6.3.1 How the synaptic noise does influence the dynamics

of the population?

We take a two-populations network with the same parameters’ values as in

section 4.3.3. We consider a synaptic noise intensity σαβ independent on the

population (and denoted by σ). The value of the additive noise is set to zero

for each population. We study the codimension two bifurcation diagram as I1

and σ are varied.

The corresponding bifurcation diagram is displayed in Figure 6.1. We divide

the diagram into 11 zones labeled A through K. Each of these zones is defined

by a range of values of the noise parameter σ in which the codimension one

bifurcation diagrams as a function of I1 are qualitatively similar. The 11

corresponding codimension 1 diagrams are given in the Annex C.1.

In other words, for any of the 11 zones, the variation of σ does not modify the

qualitative codimension 1 bifurcation diagram of the system as a function of

I1.

The diagram features seven codimension two bifurcation of equilibria: 3

Bogdanov-Takens (BT) points, 3 cusps (CP) and one generalized Hopf (GH),

which are labeled by red stars. The BT bifurcations give rise to saddle-

homoclinic bifurcation curves (the green curves in the diagram) that either

undergo bifurcations or present turning points as a function of σ.

For small values of σ, the system is characterized by a supercritical Hopf

bifurcation and four saddle-node bifurcations. Note that two saddle-node bi-

furcations and a Hopf bifurcation appear in a very small range of parameter

value (I1 ≈ −2.2), as displayed in the zoomed diagram at the bottom center

of Figure 6.1. The Hopf bifurcation is supercritical, and hence is related with

the presence of stable periodic orbits of the system that disappear through a

saddle-homoclinic bifurcation (zone A). One of the branches of saddle-node

bifurcations undergoes a supercritical Bogdanov-Takens bifurcation, yielding

the appearance of a second family of stable limit cycles that disappear through

a saddle-homoclinic bifurcation. This curve of saddle-homoclinic bifurcations

presents a turning point (see the zoom on the bottom left of Figure 6.1),

separating zone B and zone C where the two families of limit cycles are su-

perimposed.

As σ is further increases, two saddle-node bifurcations merge into a cusp

bifurcation and disappear, yielding zone D. In that zone, two Hopf and two
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Figure 6.1: Codimension two bifurcation diagram as σ and I1 are varied.

Eleven different ranges of the parameter σ are identified, in which the bifur-

cation diagrams with respect to I1 are qualitatively the same. Each zone

differs in the number or stability of fixed points and limit cycles. Blue

curves: saddle-node bifurcation manifolds. Pink curves: Hopf bifurcation

manifolds. Green curves: saddle-homoclinic bifurcations. Dashed green

curve: saddle-node homoclinic bifurcations. Orange curve: folds of limit cy-

cles. BT: Bogdanov Takens bifurcation. CP: Cusp bifurcation. GH: Bautin

(Generalized Hopf) bifurcation. Blue stars: homoclinic bifurcations or spe-

cial point on the homoclinic bifurcation curve. Individual behaviors in each

zone are commented in appendix C.1. Diagrams obtained MatCont pack-

age [Dhooge et al., 2003b, Dhooge et al., 2003a].
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saddle-node bifurcations exist. However, as σ is further increased, a homo-

clinic bifurcation appears yielding zone E. At this point, a saddle-homoclinic

bifurcation arising from a forthcoming Bogdanov-Takens bifurcation reaches

a saddle-node bifurcation curve, and bifurcates into a saddle-node homoclinic

and a saddle-homoclinic curves. This bifurcation separates the family of limit

cycles into two distinct families as shown in Figure C.3 presented in the Annex.

As σ keeps increasing, a Bogdanov-Takens bifurcation arises, and the lower

branch of cycles disappears. The system is left, in zone F, with two saddle-

node bifurcations, a supercritical Hopf bifurcation and a saddle-node homo-

clinic bifurcation. The supercritical Hopf bifurcation becomes subcritical at a

Bautin bifurcation (GH, for Generalized Hopf), yielding a fold of limit cycles

in the diagram in zone G. Zone H is characterized by the fact that one of the

branches of saddle-node bifurcations undergoes a cusp. As σ is further in-

creased, the fold of limit cycles arising from the Bautin bifurcation bifurcates

with a saddle-homoclinic bifurcation that will arise from a Bogdanov-Takens

bifurcation corresponding to the extinction of the last Hopf bifurcation (see

the zoom at the bottom right of Figure 6.1). At this point, in zone I, the

system is left with no stable limit cycles. As σ increases further, the system

undergoes a Bogdanov-Takens, then a cusp bifurcations, and is left in zone K

with two saddle-node bifurcations. We found numerically this to be the case

for all larger values of σ.

This bifurcation diagram also provides very interesting information about

the behavior of the system as a function of the noise level, for fixed

values of I1. For example, let us fix I1 = 0. For σ = 0, the system features a

single stable equilibrium and two unstable equilibria, therefore all the trajec-

tories converge towards the unique stable fixed point. When σ is increased,

a branch of periodic orbit appears through a saddle-homoclinic bifurcation.

In a small interval of values of σ, cycles coexist with the stable fixed point.

This stable fixed point looses stability, as σ is further increased, through a

saddle-node bifurcation, and the system is left with an attractive limit cycle

and an unstable fixed point, and hence presents an oscillatory behavior in

a large range of values of σ. In this range of values, the solutions of the

mean-field equations are Gaussian processes with oscillating mean and stan-

dard deviation. As σ is further increased, the limit cycles disappear through

a supercritical Hopf bifurcation, and the unstable fixed point becomes stable.

This corresponds to the fact that in the large noise regime, the solution of the

mean-field equation converges towards a stationary Gaussian process with

constant mean and standard deviation. The synaptic noise can therefore
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induce oscillations, oscillations that then disappear for larger noise

values (see figure 6.2).
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Figure 6.2: Creation and destruction of cycles through variations of the synap-

tic noise: Codimension one bifurcation diagram with respect to σ of the vari-

able µ1 for I1 = 0. The diagram presents three bifurcations: a saddle-node bi-

furcation (or limit point, LP), a Hopf bifurcation (H) and a saddle homoclinic

bifurcation accounting for the creation of cycles, separating the behaviors in

three different regimes (see text).

As the system studied is more complex it is not a surprise to find that the

codimension 2 bifurcation diagram presented in Figure 6.1 is more intricate

than the one corresponding to purely additive noise presented in Figure 4.2.

However the same qualitative conclusions can be drawn. First it is possible

to separate the diagram in several zones defined by the noise interval, where

the codimension 1 bifurcation diagrams as function of I1 (i.e. the way the

system reacts to an external input) are qualitatively the same. As could be

expected, we found more zones in the synaptic noise case than in the purely

additive noise case, so if we could obtain by an experiment the bifurcation

diagram of µ1 as a function of the external input I1, it would be possible to

guess the level of noise the system is submitted to with a better precision than

in the additive noise case.
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And, most importantly, as in the case of the additive noise, we observe

that the synaptic noise has a strong impact on the behavior of the system, in

particular it is able to create or destroy oscillations.

6.3.2 Back to the network dynamics

Thus far, we studied the dynamics of the mean-field equations representing

regimes of the network dynamics in the limit where the number of neurons is

infinite. We now compare the regimes identified in this analysis with numerical

simulations of the finite-size stochastic network and will be particularly inter-

ested in finite-size effects. We will perform simulations of the network in two

cases: the case where the fluctuations of the weights are modeled by white

noise, and the case where the weights are modeled by Ornstein-Uhlenbeck

processes.

6.3.2.1 The case of weights modeled by white noise

We start by the case of finite-size networks with noisy synaptic weights

whose fluctuations are modeled by white noise. We study the three different

regimes observed in diagram 6.2. These regimes are: an equilibrium regime

for σ < 0.952, a bistable regime with very slow oscillations and a stable fixed

point for σ ∈ [0.95, 0.96], a purely oscillating regime for σ ∈ [0.96, 4.40], and

again an equilibrium regime for σ > 4.40.

The results of the simulations of a finite network composed of 5 000 neurons

in each population are shown in Figure 6.3. For large σ, we used 10 Monte-

Carlo simulations to smooth the finite-size effects. In the fixed points regimes

(Figure 6.3 (a), (b), (e) and (f)), each neuron ends up stochastically varying

around the equilibrium value of the mean-field equation. The empirical mean

and standard deviation of each population closely match the solution of the

mean-field equations. The oscillatory regimes show an additional effect the

additive noise case did not feature. Indeed, in that case the variance variable

of the mean-field equations, whose dynamics is nonlinearly coupled to the

mean, oscillates with the same period. Along these cycles, the variance

periodically reaches zero, and is minimal at the switching between the up-

state and down-state of the oscillations. This small variance results in the

fact that all neurons tend to switch in a very synchronized way, producing

a seemingly sharper synchronization than the purely additive noise

case when comparing Figure 4.6(c) and Figure 6.3(c). Synaptic noise has

therefore the effect of producing a better synchronization, which is a very

desirable property in a stochastic oscillating system.
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(a) σ = 0.7. Fixed-point regime. In-

dividual trajectories vs mean-field.
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(b) σ = 0.7. Fixed-point regime Em-

pirical network statistics vs mean-field.
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(c) σ = 1.2. Oscillatory regime. Indi-

vidual trajectories vs mean-field.
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(d) σ = 1.2. Oscillatory regime Em-

pirical network statistics vs mean-field.
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(e) σ = 6. Noisy fixed point regime.

Individual trajectories vs mean-field.
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(f) σ = 6. Noisy fixed point regime

Empirical network statistics vs mean-

field.

Figure 6.3: Solution of the network dynamics for different values of the noise

parameter σ in the case of synaptic weights whose fluctuations are modeled

by white noise. Same network characteristics, plotted curves and color code

as in Figure 4.6.
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In order to determine the precise value of σ corresponding to the appearance

and to the disappearance of oscillations, we again perform extensive simula-

tions of the network for different values of the synaptic noise parameter σ and

computed the Fourier transform of the empirical mean. We recovered in the

simulation of the network these different behaviors for very close values of the

parameter σ, as explained in Figure 6.4, where we have compared the spec-

trum of the empirical mean of the network and of the mean of the mean-field

solution for different values of σ. Moreover, though the interval corresponding

to the bistable regime is rather small, we recovered this bistability in a finite

network (similar to the λ case, result not shown).

6.3.2.2 The case of weights modeled by Ornstein-Uhlenbeck processes

We present in this section the simulation of a finite-size stochastic network

whose weights are modeled by Ornstein-Uhlenbeck processes of standard devi-

ation σ. Though we have seen that the system 6.7 is not a rigorous description

of the network, since Gaussian weights cannot be bounded, we will compare

simulations of solutions to the system 6.7 with computations of the empirical

mean and the empirical variance of the stochastic network, and observe that

the results match relatively well, except for a progressive phase shift and a

slight difference in the amplitudes of the oscillations (see Fgure 6.5 (d)). The

results of the simulations of a finite network composed of 5 000 neurons in

each population are shown in Figure 6.5.

As in the preceding subsection, we have again performed extensive simu-

lations of a stochastic network of 5000 neurons whose synaptic weights are

Ornstein-Uhlenbeck processes, for different values of the synaptic noise pa-

rameter σ, and computed the Fourier transform of the empirical mean. The

results are displayed in Figures 6.6, 6.7, and 6.8.

Eventually there is an interesting phenomenon that discriminates between

the three models proposed in this thesis: additive noise, synaptic inhomo-

geneity and synaptic noise. In the three cases we observed that the noise

parameter had similar effects on the dynamics: compare Figures 4.8, 5.3

and 6.4 where the route to oscillations is almost the same. Neverthe-

less in the case of synaptic noise there is a distinctive feature: the amplitude

of the Fourier transform presents a clear maximum as a function of the noise

level whereas in the additive noise case or synaptic inhomogeneity the corre-

sponding curve is less peaked. We have hence a resonance phenomenon

in the synaptic noise model.
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Figure 6.4: Squared modulus of the Fourier transform of the empirical mean

for simulations of the network with synaptic weights whose fluctuations are

modeled by white noise (a) compared with the mean variable of the solution

of the mean-field equations (b), as a function of the frequency (Hz) and the

synaptic noise parameter σ. We observe that oscillations in the network ap-

pear for the same value of σ as in the mean-field equations (Fig. 6.2), first

through a seemingly homoclinic bifurcation (arbitrary small frequencies) and

disappear also for the same value of σ through a seemingly Hopf bifurcation

(discontinuity in the power spectrum). (c) Absolute difference between the

two diagrams: we remark that the frequency distribution is precisely peaked

at the same value, and the main differences are observed, as expected, at the

bifurcation points.
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(a) σ = 0.7. Fixed-point regime. In-

dividual trajectories vs solutions of 6.7
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(b) σ = 0.7. Fixed-point regime Em-

pirical network statistics vs solutions 6.7
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(c) σ = 2. Oscillatory regime. Indi-

vidual trajectories vs solutions of 6.7
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(d) σ = 2. Oscillatory regime Empiri-

cal network statistics vs solutions of 6.7
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(e) σ = 5. Noisy fixed point regime.

Individual trajectories vs solutions of 6.7
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(f) σ = 5. Noisy fixed point regime

Empirical network statistics vs solutions

of 6.7

Figure 6.5: Solution of the network dynamics for different values of the noise

parameter σ in the case of synaptic weights modeled by Ornstein-Uhlenbeck

processes. Same network characteristics, plotted curves and color code as in

Figure 6.3 except that the cyan and magenta curves are not the mean field

solutions, but solutions of the system 6.7.
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Figure 6.6: Squared modulus of the Fourier transform of the empirical mean

for simulations of the network with synaptic weights modeled by Ornstein-

Uhlenbeck processes as a function of the frequency (Hz) and the synaptic

noise parameter σ.
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Figure 6.7: Squared modulus of the Fourier transform of the mean for simu-

lations of the system 6.7 as a function of the frequency (Hz) and the synaptic

noise parameter σ.
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Figure 6.8: Difference between the two diagrams (system 6.7 and network): we

remark that the frequency distribution is precisely peaked at the same value,

and the main differences are observed, as expected, at the bifurcation points.

Though there is a slight phase difference, the oscillations in the network ap-

pear for the same value of σ as in the system 6.7, first through a seemingly

homoclinic bifurcation (arbitrary small frequencies) and disappear also for the

same value of σ through a seemingly Hopf bifurcation (discontinuity in the

power spectrum).
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6.4 Summary

In this chapter, we have been interested in the large-scale behavior of net-

works of firing rate neuron models, including models of synaptic noise. Using

a probabilistic approach based on the mathematics of interacting particle sys-

tems, we derived the equations corresponding to the behavior of a given neuron

in the network. In that limit, all neurons behave independently (propagation

of chaos property) and satisfy a mean-field equation, whose solutions are Gaus-

sian processes with their mean and variance exactly satisfying a closed set of

nonlinear ordinary differential equations, provided that the synaptic weights

fluctuations are modeled by white noise.

We then numerically studied the resulting system of equations as a function

of the intensity of the synaptic noise σ. A complex codimension two bifurca-

tion diagram was obtained when simultaneously varying an input parameter

and the noise intensity. The analysis of this diagram yielded several quali-

tatively distinct codimension one bifurcation diagrams for different ranges of

noise intensity, displayed in Annex C.1.

These classes of behaviors were then compared to simulations of the original

finite-size networks. We obtained a very good agreement between simulations

of the finite-size system and the mean-field equations. Transitions between

different qualitative behaviors of the network matched precisely the related bi-

furcations of the mean-field equations (see Figure 6.4). Regular oscillations in

the mean activity, linked with a synchronization of all neurons in the network,

appear in the system for some precise values of the noise. But as the vari-

ance is oscillating with the same period than the mean, the synchronization

of the neurons in the network is sharper in the case of synaptic noise than in

the case of purely additive noise. For weights modeled by Ornstein-Uhlenbeck

processes, there was also a good agreement between the network behavior and

simulations of 6.7 (see Figure 6.8).

Noise therefore clearly induces transitions in the global behavior of the

network, structuring its Gaussian activity by inducing smooth oscillations of

its mean and its variance with a sharp synchronization at the network level.

These findings have several implications in neuroscience that will be discussed

in the conclusion of this thesis (8.2.2).
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Overview
In the fist part of the conclusion (see chapter 7), we present a summary

of the main results of this thesis, namely the derivation of three different

mean field equations, related to three distinct microscopic descriptions of the

network, and the study of the dependency of their solutions with respect to

the three parameters underlying the microscopic description: the additive

noise, the synaptic inhomogeneity and the synaptic noise. We also

compare our results with other usual mean field approaches and underline

the specificity of our results. Eventually, we present the perspectives opened

by our work in chapter 8. First we list several possible extensions of the

reference model that lead to new mean field equations. However the precise

analysis of their dynamics seems for now mathematically intractable. That’s

why we stress particularly in our conclusion the biological relevance of the

noise-induced phenomena we have been able to evidence in our more simple

models, that can serve as a proof of concept for the functional role

of noise in models more biologically plausible, but much more complex to

analyze.





Chapter 7

Summary of the main results

7.1 Summary

The main findings of chapter 4 are presented in an article that has been ac-

cepted for publication [Touboul et al., 2011] in the SIAM Journal on Applied

Dynamical Systems. We plan to submit soon, as first author, an article com-

paring the mean field dynamics described in chapter 5 and 6.

7.1.1 The three models exhibit propagation of chaos

In this thesis we have presented three different models of networks of firing-

rate neurons. We have used three different versions of “randomness”1 at the

neuronal or synaptic level. First (chapter 4) an additive noise that can be

best thought as accounting for channel noise. In chapter 5, we have introduced

a frozen disorder at the synaptic level, i.e. a degree of synaptic inhomo-

geneity accounting for individual variations in the biological characteristics

of synapses. Eventually, in chapter 6, we have modeled the synaptic weights

by dynamically evolving stochastic processes in order to include synaptic

noise.

We were interested in the dynamical properties of these networks in the

thermodynamic limit, i.e. when the number of neurons tends to +∞. In

simulations we have also checked that the limiting equations, i.e. our mean

field equations, were a good approximation of the network behavior when

the number of neurons is sufficiently large. In the three cases we have stated

a propagation of chaos property, which means that any finite number of

neurons with independent and population-wise identically distributed initial

conditions will remain independent during the evolution in the thermody-

namic limit and have the same probability distribution (depending only on

the population they belong to) solution of an implicit mean field equation.

1 We use hereafter the term “randomness” in inverted commas, as in the case of synaptic

inhomogeneity this term is not well adapted since, if we removed the additive noise source,

the microscopic equations for each realization of the Jij would be deterministic. In this case

“randomness” refers to the disorder introduced at initial time in the system which accounts

for inhomogeneities in the synaptic weights.
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7.1.2 The influence of the noise level and of the inhomo-

geneity level

Our main topic of investigation was to understand the influence of these pa-

rameters in the resulting mean field equations. We found two relatively

unexpected results.

First, we have seen that the presence of noise or inhomogeneity in the sys-

tem induces different qualitative behaviors. For instance, regular oscillations

of the mean firing rate, linked with a synchronization of all neurons in the

network, appear in the system at some precise values of the noise parame-

ter, in particular for systems that feature a stable fixed point in a noiseless

context. This means that noise has a strong structuring effect on the

global behavior of a cortical assembly, which is rather a counterintu-

itive phenomenon, since noise is usually chiefly seen as altering structured

responses. Of course, in the additive noise case for example, our mean-field

equations form a set of nonlinear ordinary differential equations and as such,

oscillations are likely to appear by modifying one of the parameters. However,

when thinking to the underlying microscopic model, we believe that

this is a relatively original and unexpected result: a set of stochastic processes

in interaction starts oscillating synchronously for a very specific range of val-

ues of the noise. This phenomenon is also rather surprising when thinking at

the underlying models corresponding to synaptic inhomogeneity or synaptic

noise, all the more that these oscillations are synchronous and regular.

The second relatively unexpected conclusion is that we have observed

the same qualitative behaviors in all our three models, be the “ran-

domness” modeled by an additive noise, by synaptic inhomogeneity or by

synaptic noise. In the first case some analytical results have been obtained

(see e.g. sections 4.3.1 and 4.3.2), but in more general cases we relied on

numerical computations of bifurcation diagrams. This similarity between the

three models is striking when we compare the three Figures 4.8, 5.3 and 6.7

obtained by computing the squared modulus of the Fourier transform of the

empirical mean of the network as a function of the frequency and the noise

parameter.

We have nevertheless observed slight differences in the simulation of

these three models. In the additive noise case the variance of the Gaussian

process solution of the mean field equation converges to a constant fixed value

proportional to the square of the noise parameter. On the contrary in the cases

including synaptic inhomogeneity or synaptic noise, the variance is coupled
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with the mean and may oscillate synchronously with the mean. Hence, the

synchronization of all the neurons in the network will be sharper

in these two last cases. We also observed by comparing the Figures 4.8, 5.3

and 6.7 that in the last case the modulus of the Fourier transform presents a

sharp and clear peak as a function of the synaptic noise parameter. Hence in

this last case, there is a resonance phenomenon.

These similarities are striking when thinking to the underlying microscopic

models which are very different in the three cases and which result in dis-

tinct mean field equations. This is especially true when we compare the

synaptic inhomogeneity case to the two others. Indeed the microscopic model

is here, if we except the additive noise source, deterministic 2. The resulting

mean field equation is also non-Markovian. Eventually the case of synaptic

noise is more involved than the one of additive noise since, even when we

do the simplifying assumption that the weights’ fluctuations are modeled by

white noise, so that the solution is Gaussian, the resulting system of ordinary

differential equations is non-autonomous and couples the variance with the

mean, whereas for additive noise the system is autonomous and the variance

is not coupled with the mean.

The noise-induced phenomena evidenced in this thesis appear hence quite

universal. We think that our results can be seen as a proof of concept, and

it seems reasonable to extrapolate that such noise-induced transitions will

occur in other mean-field equations of more complex, but more biologically

plausible systems. The type of extensions that can be envisaged are presented

in chapter 8.

7.2 Comparison with other mean field approaches

7.2.1 The balanced state

As pointed out by Haim Sompolinsky, the chaotic (deterministic) nature of the

balanced state is similar in many respects to the chaotic state of spin-glasses

with random asymmetric connections. When the synaptic inhomogeneity σ

reaches a threshold, there is a bifurcation from a solution of null variance to

a solution with non-zero variance (recall section 5.2.3), corresponding to the

chaotic regime defined by Sompolinsky in [Sompolinsky et al., 1988]. As we

2The synaptic weights are drawn at the beginning of the evolution in a Gaussian law.

But once the synaptic connectivity matrix is set the synaptic weights keep their fixed values

and do not evolve stochastically like in the case of synaptic noise.
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have already mentioned the mean field equations with synaptic inhomogeneity

are rigorously derived only for a non-vanishing additive noise λ. But we can

also take a λ arbitrarily small, and in that case, the (deterministic) trajecto-

ries will be given by the realization of Gaussian processes whose mean and

covariance verify 5.1.2 where λ is set to zero.

7.2.2 Oscillations in one-population networks

The influence of noise in spiking one-population neural networks was stud-

ied in another context by Pham and collaborators in [Pham et al., 1998]

and Brunel and collaborators [Brunel, 2000, Fourcaud and Brunel, 2002].

In [Pham et al., 1998], the authors study randomly or fully connected one-

population networks of spiking neurons. They analyze the probability distri-

bution of spike sequences and reduce this analysis to the study of the proper-

ties of a certain map under an independence assumption and in the limit where

the number of neurons is infinite (which makes the independence assumption

particularly relevant).

They show that noise can trigger oscillations for certain values of the total

connectivity parameter in a one-population case. They end up with a parti-

tion of the parameter space in different zones where the system either shows

a single “high” fixed point, a “low” fixed point, oscillations, or multistabil-

ity between these different attractors. Similar phenomena are shown in the

study of sparse randomly connected integrate-and-fire neurons as shown in

[Brunel, 2000] where the system can present synchronous regular regimes. In

the mean field model studied in chapter 4, no oscillatory activity is possi-

ble in such one-population systems, since its dynamics can be reduced to a

one-dimensional autonomous dynamical system. Smooth nonlinearities in the

intrinsic dynamics or discontinuities such as the presence of a spiking thresh-

old in [Pham et al., 1998, Brunel, 2000] makes the dynamics of the mean field

equations more complex, in particular prevents reduction to a one-dimensional

autonomous system governing the mean of the solution. Such intricacies may

also be the source of oscillations in one-population systems.

In order to compare our results to these previous results, we adopt the same

presentation as in [Pham et al., 1998]. We consider the dynamics of the mean

field system presented in chapter 4 as a function of the connectivity strength j

and the noise, for a fixed value of the currents I1 = 0 and I2 = −3. The total

connectivity strength j3 is a particularly interesting parameter for applica-

3the connectivity matrix is taken in the simulations equal to j ×
(

15 −12

16 −5

)
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Figure 7.1: Codimension two bifurcation diagram of the mean field system

with respect to the noise intensity λ and the total connectivity j. The dia-

gram is partitioned into 5 different zones depending on the number and type

of stable attractors: L: Low fixed point, H: High fixed point, O: Oscillations.

Transitions between two zones are characterized by codimension one bifurca-

tions: Blue line: saddle-node bifurcation, red: Hopf bifurcation, green: saddle

homoclinic bifurcation.

tions, for it can account for such phenomena as the well established fact that

functional connectivity is increased in epilepsy (see e.g. [Bettus et al., 2008]).

The codimension two bifurcation diagram of our model with respect to j

and λ contains manifolds of saddle-node, Hopf and saddle-homoclinic bifur-

cations, and shows no codimension two bifurcation. The parameter space can

be partitioned into five qualitatively different zones where the system either

shows a “low” fixed point (L), a “high” fixed point (H), oscillations (O), or

multistability between these attractors (see Figure 7.1). The diagram is quite

similar to the one found in [Pham et al., 1998]. As in the case discussed in

section 4.3, the analysis of this diagram results in defining three regions of

values of the noise parameter λ in which the bifurcation diagrams as a func-

tion of j are qualitatively identical. These three regions make less sense here

as the total connectivity parameter is not easily controllable experimentally,

in contrast with the external input parameter I1.
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The resulting diagram has a number of similarities and dissimilarities with

the results of Pham and collaborators [Pham et al., 1998, Section V and

Fig.11]. Indeed, similarly to the spiking case, we observe that for small values

of the connectivity strength j the fully connected system is characterized by

a low fixed point, whereas large values of the connectivity parameter chiefly

correspond to the presence of a high fixed point, and the overall structure is

comparable. One of the main differences is that in our case, a two-population

network, the system does present oscillations as the only attractor for some

parameter values. Another interesting difference is that for small values of

the noise parameter, the spiking system studied in [Pham et al., 1998] never

presents oscillations, whereas the diagram 7.1 exhibits an oscillatory region

(O) and a bistable region (OH) for arbitrarily small values of the noise pa-

rameter. This is due to the fact that their system consists of a unique neural

population with purely excitatory interactions, whereas our network models

the interaction of an excitatory and an inhibitory populations, and can feature

deterministic oscillations.

7.2.3 Stochastic and coherence resonance

The phenomena observed in our analysis of large-scale neuronal net-

works can be related to the ones of stochastic resonance or coher-

ence resonance well documented in the neuro-computational literature (see

e.g. [Lindner et al., 2004] for a review of the effect of noise in excitable sys-

tems). These phenomena correspond to the fact that there exists a particular

level of noise maximizing the regularity of an oscillatory output related to pe-

riodic forcing (stochastic resonance) or maximizing the regularity of an output

without any periodic forcing (coherence resonance). Such situations are evi-

denced through the computation of the maximal value of the Fourier transform

of the output. Stochastic resonance was first discovered in cat visual cortex

and has attracted a lot of theoretical work (see e.g. [Longtin et al., 1991] and

references therein). Several papers have shown that a similar mechanism

can lead at the network level to the occurrence of synchronized oscillations.

For example in [Yu et al., 2003], the transition between asynchronous and

synchronous firing state is studied in a globally coupled stochastic Hodgkin-

Huxley neural network and is found to be analogous to a second-order phase

transition. In our models, the forcing is not periodic and, as we can see in

the Fourier transform plots, the maximal value of the Fourier transform does

present a clear peak as a function of the noise level (see Figure 6.7) only in

the synaptic noise case, hence the system does exhibit a form of coherence

resonance in this case. Besides this observation, the regularity of the oscil-

lation can be expected to be relatively high for large networks in our three
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frameworks, since the mean activity is asymptotically perfectly periodic.

7.2.4 The Kuramoto model

We can also compare our findings with the Kuramoto model that we in-

troduced in section 3.1. In fact the mean field approach we have presented

in chapter 4 applies also to some simple formulations of the Kuramoto mod-

els. We can for example consider neural oscillators, whose phase θi obey the

following network equations:

dθi(t) = dBi(t) −
[ N∑

j=1

K

N
sin(θi(t) − θj(t))

]
dt (7.1)

By using a coupling argument, we can show, provided that the Bi(t) are

independent Brownian motions, that when N → +∞, the network is described

by the following mean field equation:

dθ̄(t) = dB(t) − KEΓ[sin(θ̄(t) − Γ(t))]dt (7.2)

where Γ(t) is a process independent of θ̄(t) that has the same law.

One of the main question concerning Kuramoto models is to find regions of

parameters (most importantly the coupling constant K) where the neurons

will synchronize and oscillate in phase. This is usually the case when K is

strong enough. However we must emphasize that the synchronization observed

in Kuramoto models is rather different from ours since in the case we have

studied, neurons in the network may synchronize to produce an oscillatory

coherent behavior without the assumption that they are all already on a limit

cycle described by a phase variable θi. Furthermore, in contrast to many mod-

els studying the synchronization of oscillators (see [Ermentrout et al., 2008]

for references), in our models the neurons synchronize without requiring that

their noisy inputs be correlated.

7.2.5 Specificity of our approach

The type of phenomena we observed is fundamentally related to the ran-

domness we introduced, and will not be observed in particular in the mean field

equations of the Markovian approach developed by [Buice and Cowan, 2007,

Bressfloff, 2009]. Indeed, apart from the difference inherent to the fact that

they consider Markov chains governing the firing of individual neurons as

their microscopic model, the randomness and the correlations in the activity

is vanishing in the limit N → ∞ yielding the deterministic Wilson and Cowan

equation.
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Another important result of ours is the ability to define classes of parameter

ranges attached to a few generic bifurcation diagrams (see the Appendix A.2

and C.1) as functions of the input to a population. This property suggests fur-

ther some reverse-engineering studies allowing to infer from measurements

of the system’s responses to different stimuli the level of noise it is submitted

to.

We eventually emphasize the fact that the noise-induced transitions pre-

sented here are related to the nature of the mean-field equations, which is

not a standard stochastic differential equation. Such phenomena do

not generally occur in usual stochastic differential equations with a purely ad-

ditive noise, as for instance shown in [Horsthemke and Lefever, 1984] (see the

Appendix D.3 where we explain that under the approach of Horsthemke and

Lefever no transition occur in the additive noise case as there is no change in

the extrema of the stationary probability distribution obtained by the Fokker-

Planck equation).



Chapter 8

Perspectives

8.1 Mathematical perspectives

Many extensions to the microscopic models we have presented are possible.

However as they yield equations all the more involved that the underlying

model is sophisticated, it seems rather difficult to reach a mathematical un-

derstanding of the solutions, and especially of their dependence on the noise

parameter. In this thesis, as we were mainly interested in the consequences

of our work in the fields of neuroscience and cognitive science, we decided to

limit ourselves to models that remained at least partially mathematically

tractable. The main idea was to show that the solutions were Gaussian so

we could reduce the mean field dynamics to systems of coupled equations on

the mean and covariance.

The first possibility would be to include nonlinear intrinsic dynamics and

different ionic populations. For instance mean field equations can also be

derived for spiking neurons, using the Hodgkin-Huxley model or its sim-

plified version the Fizhugh-Nagumo model. This is what is done in this pa-

per [Baladron et al., 2011], where the authors introduce also a distinction be-

tween electrical and chemical synapses and random conductances. We note

that we have already presented in chapter 6 a proof close to this general set-

ting since we did not make the assumption of linear intrinsic dynamics. The

only necessary assumption on the intrinsic dynamics is that it is given by a

Lipschitz function. Concerning the Hodgkin-Huxley model, this is the case

and the state variable is of dimension 4. However it is much more complex

to study mathematically the behavior of the solutions of the resulting mean

field equations since the solutions are not Gaussian. In [Baladron et al., 2011]

the authors present simulations indicating that the mean field equations are

a good representation of the mean activity of a finite size network, however

this requires simulations with elaborated numerical schemes on GPUs.

In two forthcoming papers [Touboul, 2011b, Touboul, 2011a], Jonathan

Touboul has also derived and studied mean field equations taking into ac-

count the spatial extension of the cortex and the delays resulting from the

propagation of neural information. This results in stochastic neural fields
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equations with delays. They are complex stochastic integro-differential

equations. The core idea of the proof to establish a propagation of chaos is

the same (to use a coupling argument) but the technical details are more in-

volved than what we presented in this thesis. Furthermore, except in the case

of linear intrinsic dynamics, these equations seem very difficult to understand

and simulate.

Eventually one last improvement would be to include learning in these

neural fields equations. Learning is usually modeled in computational neu-

roscience by laws governing the evolution of the values of synaptic weights,

the most famous being Hebb’s law. In our chapter 6, we have introduced dy-

namically evolving synaptic weights. However a new mathematical framework

would be necessary to include learning as learning involves a different time

scale (i.e. it is much slower than the evolution of the membrane potential).

It would then be necessary to develop a mean field theory with time scale

separation.

Other refinements to our reference model would consist in introducing col-

ored noise (i.e. correlated noise) and consider a network that is not globally

coupled. However, as we have already explained, we consider, for now, that

the majority of these extensions pertain rather to the mathematical field than

to neuroscience. Indeed new and exciting equations can be derived exhibiting

likely very rich dynamics. General approaches to study them consist either in

studying their properties as random processes, or in describing their probabil-

ity distribution. In the first case, one is led to investigate an implicit equation

in the space of stochastic processes, and in the second case, one is led to study

a complex non-local partial differential equation (through Fokker-Planck), as

done in a recent paper by Careers and collaborators [Caceres et al., 2011].

But in both cases one faces a difficult challenge, and the dependency of the

solutions with respect to parameters is extremely hard to describe.

8.2 Implications in neuroscience

8.2.1 Propagation of chaos and correlations

Our propagation of chaos results have two implications. First, as we have

already noted, in spite of the asymptotic independence, synchronization effects

are possible between individual neurons of the same population as they are

governed asymptotically by the same law. And the fact that neurons become
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asymptotically independent (i.e uncorrelated) does not rule out the fact that

they fluctuate about their mean value.

Second, one of the specificity of our mean field approach is that it states that

any finite number of neurons whose initial conditions are independent will

remain independent. This is of great importance for the understanding of

the neural code, as independent neurons may encode more information than

correlated neurons. A recent study published in Science [Ecker et al., 2010]

has precisely found that neuronal firing in cortical microcircuits was almost

decorrelated in vivo. This is in agreement with the propagation property. By

contrast, though their influence on the mean vanishes for large N , correlations

are present in the mean field model presented by Bressloff [Bressfloff, 2009]

(see its equations 3.35 to 3.37).

However there are some limitations to the applicability of the propagation of

chaos property. First it is true only for a finite number k of neurons (or at best

k = o(
√

N)) when N tends to +∞. This property is only asymptotic and may

not be checked when we consider small microcircuits. Second the propagation

of chaos would not be verified for colored noise, e.g. if the Brownian motions

in 4.1 were not assumed independent.

8.2.2 Noise-induced synchronized oscillations

In this last section we wish to emphasize qualitatively the functional rele-

vance of noise-induced transitions. The question of the functional role of

noise in the brain is indeed widely debated today since noise clearly affects

neuronal information processing. A key point is that the presence of noise is

not necessarily a problem for neurons: as an example, stochastic resonance

helps neurons detecting and transmitting weak subthreshold signals. Further-

more neuronal networks that have evolved in the presence of noise are bound

to be more robust and able to explore more states, which is an advantage for

learning in a dynamic environment.

The fact that noise can trigger synchronized oscillations at the network level

enriches the possible mechanisms leading to rhythmic oscillations

in the brain, directly relating it to the functional role of noise. Rhythmic

patterns are ubiquitous in the brain and take on different functional roles.

Among those, we may cite visual feature integration [Singer and Gray, 1995],

selective attention, working memory and even consciousness1.

1Indeed some authors have proposed that regular synchronous oscillations in the gamma

band may provide a “neural basis” for consciousness. See for example [Llinas, 1998].
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Abnormal neural synchronization is present in various brain disor-

ders [Uhlhaas and Singer, 2006]. This means that oscillations themselves can

signal a pathological behavior. For instance, epileptic seizures are character-

ized by the appearance of sudden, collective, slow oscillations of large ampli-

tude, corresponding at the cell level to a synchronization of neurons, and visi-

ble at a macroscopic scale through EEG/MEG recordings. This phenomenon

is very close to what we observed in our model (as noise is slowly increased,

the solutions of the mean field equations undergo a saddle-homoclinic bifur-

cation abruptly yielding large amplitude and small frequency oscillations).

The collective phenomena we described thus resemble the onset of epileptic

seizures, that could be triggered by a sudden increase of the noise parameter

in epileptic brain areas.

The mean field models we have developed in this thesis, based on rela-

tively simple descriptions of neural activity, are therefore able to account

for complex biologically relevant phenomena, in a mathematically and

computationally tractable way while including noise effects. This observa-

tion suggests to use these new models as cortical mass models and compare

them to more established cortical column models such as Jansen and Rit’s or

Wendling and Chauvel’s [Touboul et al., 2010, Wendling and Chauvel, 2008,

Jansen and Rit., 1995]. Fitting the microscopic model to biological measure-

ments would yield a new neural mass model for large scale areas and we could

then study the appearance of stochastic seizures and rhythmic activity in

relationship with different parameters of the model.

Though we cannot decide exactly what may be the functional role of the

noise-induced oscillations we found, since such regular synchronous oscilla-

tions may be as well the signature of a healthy as of a pathological behavior,

we underline that we have integrated the presence of noise in a math-

ematically and biologically relevant manner. All these findings point

towards the idea that there must be a carefully controlled optimal level of

noise in the brain.
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Appendix A

A mean field equation with

additive noise

A.1 Proof of lemma 4.2.3

In this appendix we prove lemma 4.2.3 stating that in the case where the

sigmoidal transforms are of the form Sα(x) = erf(gαx + γα), the functions

fα(µα, vα) involved in the mean field equations (4.2) with a Gaussian initial

condition take the simple form (4.9).

Proof. We have, using the definition of the erf function

E [Sα(Xα)(t)] =

∫

R

erf
(
gα

(
x
√

vα(t) + µα(t)
)

+ γα

) e−x2/2

√
2π

dx

=

∫

R

∫ gα

“
x
√

vα(t)+µα(t)
”
+γα

−∞

e−(x2+y2)/2

2π
dxdy

This integral is of the form:

∫

R

∫ a x+b

−∞

e−(x2+y2)/2

2π
dxdy

and therefore, the integration domain has an affine shape as plotted in figure

A.1. In order to compute this integral, we change variables by a rotation of
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Figure A.1: Change of variable for the erf function.

the axes (x, y) and align the affine boundary of our integration domain with



140 Appendix A. A mean field equation with additive noise

our new variables (u, v) (see figure A.1). Simple geometric analysis shows

that the rotation angle θ for this change of variable is such that tan(θ) = a.

The new integration domain is in the new coordinates given by v ≤ vm =

b cos(θ) = b√
1+a2 :

∫

R

∫ a x+b

−∞

e−(x2+y2)/2

2π
dxdy =

∫

R

∫ g b√
1+g2a2

−∞
e−(u2+v2)/2 1

2π
dudv

= erf

(
gb√

1 + g2a2

)

which reads with the parameters of the model:

fα(µ, v) = erf

(
gα µ + γα√

1 + g2
αv

)

�

A.2 Bifurcation Diagrams as a function of λ

In section 4.3, we observed that six different bifurcation diagrams appear as I1

is varied, depending on the value of λ characterizing the additive noise input.

For the particular choice of parameters of that section, the different zones are

segmented for values of λ given in table A.1.

Type C BT Hom TP H TP C

λ 0.16 2.934 2.948 2.968 3.74

Table A.1: Numerical values of the separation into six λ zones for Figure 4.2.

C stands for Cusp, BT: Bogdanov-Takens, Hom TP: turning point of the

Homoclinic bifurcations curve, H TP: Hopf bifurcation curve turning point.

In each of these zones, typical codimension 1 bifurcation diagrams as the

input I1 is varied are depicted in figure A.2. We now describe the behavior of

the system in each of these zones.

(A) For very small values of λ, the system features four saddle-node bifurca-

tions and one supercritical Hopf bifurcation, associated to the presence

of stable limit cycles that disappear through saddle-homoclinic bifur-

cation arising from the Bogdanov-Takens bifurcation (after the turning

point). In an extremely limited range of parameter, the occurrence of

two saddle-node bifurcation relates to a bistable regime in that small

parameter region.
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Figure A.2: Typical behavior of the system in each zone (A) through (E).

(A): λ = 0, (B): λ = 1, (C1): λ = 2.945, (C2):λ = 2.955, (D): λ = 3,

(E): λ = 4. Red stars: bifurcations, SN: Saddle-Node, H: Hopf, green circle:

Saddle-Homoclinic bifurcation. Thick blue line: stable fixed point, thin blue

line: unstable fixed point, thick pink line: stable cycle. See text for precise

description.
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(B) In zone (B), the system differs from zone (A) in that the two inferior

saddle-node bifurcation disappeared through Cusp bifurcation. Glob-

ally the same behavior are observed, except for the bistable behavior

commented above (which was not a prominent phenomenon due to the

reduced parameter region concerned).

(C1) On the upper branch of saddle nodes, the systems undergoes a

Bogdanov-Takens bifurcations, yielding the presence in zone (C1) of

a supercritical Hopf bifurcation and of a saddle-homoclinic bifurcation

curve. This BT bifurcation accounts for the family of Hopf bifurcations

observed in zones (A-B) and for the saddle-homoclinic bifurcations, be-

cause of the turning points observed in the full bifurcation diagrams. In

region (C1), two families of limit cycles coexist, both arising from su-

percritical Hopf bifurcation and disappearing through saddle-homoclinic

bifurcation.

(C2) Because of the topology of the bifurcation diagram, the turning point of

the saddle-homoclinic bifurcations curve occurs before the turning point

of the Hopf bifurcations curve. This difference yields zone (C2) between

the two turning points. In that zone, we still have two supercritical Hopf

bifurcations, but no more homoclinic bifurcation. The families of limit

cycles corresponding to each of the Hopf bifurcations are identical.

(D) After the turning point of the Hopf bifurcations manifold, we are left

with two saddle-node bifurcations, hence a pure bistable behavior with

no cycle.

(E) Both saddle-node bifurcation disappear by merging into a cusp bifurca-

tion. After this cusp, the system has a trivial behavior, i.e. it features

a single attractive equilibrium whatever I1.



Appendix B

A mean field equation with

inhomogeneity at the synaptic

level

B.1 Reduction to a linear Volterra equation for

small σ

We show here how to simplify the system 5.1.2 in the limit of low synaptic

inhomogeneity σ. We will show that for small σ, the whole dynamics can

be reduced to an integro-differential equation on the mean. We recall that

the mean and covariance of the Gaussian process solution of the mean field

equations verify the following differential and integral equations:

µα(t) satisfies the differential equation:

dµα(t)

dt
= −µα(t)

τα

+
P∑

β=1

Jαβmβ(t) + Iα(t),

with

mβ(t) =

∫

R

Sβ

(
x
√

Cβ(t, t) + µβ(t)

)
Dx.

The covariance Cα(t, s) obeys:

Cα(t, s) = e−(t+s)/τα

[
Cα(0, 0) +

ταλ2
α

2

(
e2(t∧s)/τα − 1

)

+
P∑

β=1

σ2
αβ

∫ t

0

∫ s

0

e(u+v)/τα∆β(u, v)dudv
]
,

where ∆β is given by

∆β(u, v) =

∫

R

∫

R

Sβ

(√
Cβ(u, u)Cβ(v, v) − Cβ(u, v)2

√
Cβ(u, u)

x+
Cβ(u, v)√
Cβ(u, u)

y+µβ(v)

)

Sβ

(
y
√

Cβ(u, u) + µβ(u)

)
Dx Dy.
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In the sequel we set σα,β = ε × σ̂α,β, where ε is a scaling factor, and we

take also into account a very small additive noise1 of the same order λα = ελ̂α.

We analyze the dynamical mean-field equations when ε is varying from ε = 0

to some positive value. Consider first the case ε = 0. Then σ2
α,β = 0 and the

covariance reads:

Cα(t, s) = e−(t+s)/ταCα(0, 0)

If we take Cα(0, 0) = 0, Cα(t, t) = 0, we get:

mβ(t) =

∫

R

Sβ(µβ(t)) Dx = Sβ(µβ(t))

The mean-field equations reduce then to a set of differential equations on

the mean µα(t) of the Wilson-Cowan type.

dµα(t)

dt
= −µα(t)

τα

+
P∑

β=1

JαβSβ(µβ(t)) + Iα(t)

B.1.1 Perturbation expansion about ε = 0

Here we set Cα(0, 0) = 0 and consider a very small additive noise of order

ε. Concerning the covariance, we have:

Cα(t, s) = e−(t+s)/ταε2 ταλ̂2
α

2

(
e2(t∧s)/τα − 1

)
+

e−(t+s)/ταε2

P∑

β=1

σ̂2
α,β

∫ t

0

∫ s

0

e(u+v)/τα∆β(u, v)dudv,

so we can pose:

Cα(t, s) = ε2 × Ĉα(t, s).

We write the function ∆β(u, v) in the following form:

∆β(u, v) =

∫

R2

Sβ

(
Ax + By + µβ(v)

)
Sβ (Cy + µβ(u)) Dx Dy. (B.1)

with: A =

√
Cβ(u,u)Cβ(v,v)−Cβ(u,v)2√

Cβ(u,u)

B =
Cβ(u,v)√
Cβ(u,u)

1We can do all the computation with λα = 0, but this would correspond to a degenerate

case as the presence of this noise term is necessary to establish the mean field equations,

even if it is arbitrary small.
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C =
√

Cβ(u, u)

Having introduced the parameter ε, we see that we have:

A =

√
ε4Ĉβ(u, u)Ĉβ(v, v) − ε4Ĉβ(u, v)2

√
ε2Ĉβ(u, u)

= ε×

√
Ĉβ(u, u)Ĉβ(v, v) − Ĉβ(u, v)2

√
Ĉβ(u, u)

= ε×Â.

Similarly we have B = ε × B̂ and C = ε × Ĉ with B̂ =
cCβ(u,v)√

cCβ(u,u)
and

Ĉ =

√
Ĉβ(u, u). Now we can expand Sβ in series at µβ. For mβ(t), we have

to expand2 Sβ (Cx + µβ(t)).

Sβ (Cx + µβ(t)) =
+∞∑

n=0

S
(n)
β (µβ(t))

n!
Cnxn

where S
(n)
β is the n-th derivative of Sβ Hence:

mβ(t) =

∫

R

Sβ

(
x
√

Cβ(t, t) + µβ(t)

)
Dx =

+∞∑

n=0

S
(n)
β (µβ(t))

n!
Cn

∫

R

xnDx

But the moments of a gaussian are well-known: if we put Mk =
∫

R
xkDx, we

have:

M2k+1 = 0

M2k =
(2k)!

2kk!
So

mβ(t) =
+∞∑

k=0

S
(2k)
β (µβ(t))

(2k)!
C2k (2k)!

2kk!
=

+∞∑

k=0

S
(2k)
β (µβ(t))

2kk!
Ck

β(t, t).

Eventually we get for the development in power of epsilon:

mβ(t) =
+∞∑

k=0

ε2k
S

(2k)
β (µβ(t))

2kk!
Ĉk

β(t, t). (B.2)

For ∆β(u, v), we have to extend Sβ(Ax + By + µβ(v)) × Sβ(Cy + µβ(u))

∆β(u, v) =
+∞∑

n=0

+∞∑

m=0

S
(n)
β (µβ(v))S

(m)
β (µβ(u))

n!m!

∫

R

∫

R

(Ax + By)n(Cy)mDxDy

=
+∞∑

n=0

+∞∑

m=0

S
(n)
β (µβ(v))S

(m)
β (µβ(u))

n!m!

n∑

n1, n2 = 0
n1 + n2 = n

n!

n1!n2!
An1Bn2Cm

∫

R

∫

R

xn1yn2+mDxDy.

2the whole series is written formally, but we will care only on the first terms.



146
Appendix B. A mean field equation with inhomogeneity at the

synaptic level

Since x, y are independent under DxDy we obtain:

∆β(u, v) =
+∞∑

n=0

+∞∑

m=0

S
(n)
β (µβ(v))S

(m)
β (µβ(u))

m!

n∑

n1, n2 = 0
n1 + n2 = n

An1Bn2Cm

n1!n2!
Mn1Mn2+m.

Therefore, in the series expansion of ∆, only terms such that n1 = 2k1, k1 ≥ 0,

n2 + m = 2k2, k2 ≥ m
2

are non zero. Since n1 + n2 = n in the sum above, one

has k1 + k2 = n+m
2

, requiring that n, m have the same parity. Denoting by∑+∞,∗
n,m=0 ≡

∑+∞
n=0

∑+∞
m=0, where n, m have the same parity, we finally obtain:

∆β(u, v) =

+∞,∗∑

n,m=0

S
(n)
β (µβ(v))S

(m)
β (µβ(u))

m!
Cm

n∑

k1 ≥ 0
k2 ≥ m

2
k1 + k2 = n+m

2

A2k1B2k2−m

(2k1)!(2k2 − m)!
M2k1M2k2 .

Eventually we get for the development in power of epsilon:

∆β(u, v) =

+∞,∗∑

n,m=0

εn+m
S

(n)
β (µβ(v))S

(m)
β (µβ(u))

m!
Ĉm

n∑

k1 ≥ 0
k2 ≥ m

2
k1 + k2 = n+m

2

Â2k1B̂2k2−m

(2k1)!(2k2 − m)!
M2k1M2k2 .

(B.3)

Let’s now keep only the lowest order in ε. For mβ(t) we get according

to (B.2):

mβ(t) = Sβ(µβ(t)) + ε2
S

(2)
β (µβ(t))

2
Ĉβ(t, t) = Sβ(µβ(t)) +

S
(2)
β (µβ(t))

2
Cβ(t, t).

(B.4)

For ∆β(u, v) we get according to (B.3) only the terms such that n = m = 0

and n = m = 1, the second condition implying k1 = 0 and k2 = 1. Hence at

this order the equation is:

∆β(u, v) = Sβ(µβ(u))Sβ(µβ(v)) + ε2S
(1)
β (µβ(u))S

(1)
β (µβ(v))B̂ĈM2

Remembering the definition of B̂ and Ĉ, we have:

∆β(u, v) = Sβ(µβ(u))Sβ(µβ(v)) + S
(1)
β (µβ(u))S

(1)
β (µβ(v))Cβ(u, v).
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We can now write an equation for the covariance:

Cα(t, s) = e−(t+s)/τα
ταλ2

α

2

(
e2(t∧s)/τα − 1

)
+

e−(t+s)/τα

P∑

β=1

σ2
α,β

∫ t

0

∫ s

0

e(u+v)/τα [Sβ(µβ(u))Sβ(µβ(v))+

S
(1)
β (µβ(u))S

(1)
β (µβ(v))Cβ(u, v)]dudv (B.5)

B.1.2 Reduction to an integro-differential equation on the

mean

For σ small, we have hence reduced the integral equation giving the covari-

ance to a linear Volterra equation. This will allow us to reduce the whole

dynamics to a unique integro-differential equation on the mean µ.

Let’s consider for the sake of simplicity that we have only one population.

We can write the equation on C(t, s) as follows:

C(t, s) = σ2f(t, s) + σ2

∫ t

0

∫ s

0

K(t, s, u, v)C(u, v)dudv

where:

f(t, s) = e−(t+s)/τ τλ2

2σ2

(
e2(t∧s)/τ − 1

)
+e−(t+s)/τ

∫ t

0

∫ s

0

e(u+v)/τ [S(µ(u))S(µ(v))]dudv

where λ2

σ2 = ε2bλ
ε2bσ = (

bλ
bσ )2 is of order 0 and gives the relative intensity of the two

parameters, and the kernel K is given by:

K(t, s, u, v) = e((u+v)−(t+s))/τS(1)(µ(u))S(1)(µ(v))

We consider the inhomogeneous integral Volterra equation of the second

kind (with two state variables):

C(t, s) = θ

∫ t

0

∫ s

0

K(t, s, u, v)C(u, v)dudv + θf(t, s)

with θ = σ2 = ε2σ̂2, an infinitely small of order 2.

We know (see [Tricomi, 1957]) that the Volterra integral equation of the

second kind Φ(x) − θ
∫ x

0
K(x, y)Φ(y)dy = f(x) for 0 ≦ x ≦ h has one and es-

sentially one solution in the class L2 when the kernel K(x, y) and the function

f(x) belong to the class L2.
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The solution is given by the formula Φ(x) = f(x) − θ
∫ x

0
H(x, y; θ)f(y)dy

where H(x, y; θ), the resolvent kernel, is given by the series (converging almost

everywhere) of iterated kernels:

−H(x, y; θ) =
∞∑

ν=0

θνKν+1(x, y)

and the iterated kernels are defined by: K1(x, y) = K(x, y) and Kn+1(x, y) =∫ x

0
K(x, z)Kn(z, y)dz for n ≧ 1.

In our case, we can extrapolate the above formulas to functions of two

variables:

C(t, s) = θf(t, s) − θ2

∫ t

0

∫ s

0

H(t, s, u, v; θ)f(u, v)dudv

with H(t, s, u, v; θ) = −∑∞
ν=0 θνKν+1(t, s, u, v), the iterated kernels being de-

fined by:

K1(t, s, u, v) = K(t, s, u, v)

and

Kn+1(t, s, u, v) =

∫ t

0

∫ s

0

K(t, s, u′, v′)Kn(u′, v′, u, v)du′dv′

Hence if we consider only the lowest order, we have C(t, s) = θf(t, s). The

mean µ is therefore the solution of the following integro-differential equa-

tion:

dµ

dt
= −µ

τ
+ J

[
S(µ(t)) +

S(2)(µ(t))

2
C(t, t)

]
=

= −µ

τ
+JS(µ(t))+J

S(2)(µ(t))

2

[τλ2

2σ2

(
1 − e−2t/τ

)
+σ2

∫ t

0

∫ t

0

e
(u+v)−2t

τ S(µ(u))S(µ(v))dudv
]

If λ is infinitely smaller than σ, we can study separately the influence of the

parameter σ on the mean field dynamics by looking at the following equation:

dµ

dt
= −µ

τ
+ JS(µ(t)) + σ2J

S(2)(µ(t))

2

∫ t

0

∫ t

0

e
(u+v)−2t

τ S(µ(u))S(µ(v))dudv

The perturbative calculus that we have presented can of course be extended

at higher orders. The first corrections to B.4 and B.5 are given below,

without going into the details of the computation. Concerning the mean we

have:

mβ(t) = Sβ(µβ(t)) +
S

(2)
β (µβ(t))

2
Cβ(t, t) +

S
(4)
β (µβ(t))

8
C2

β(t, t).



B.1. Reduction to a linear Volterra equation for small σ 149

And the equation for the covariance Cα(t, s) reads:

Cα(t, s) = e−(t+s)/τα
ταλ2

α

2

(
e2(t∧s)/τα − 1

)
+

P∑

β=1

σ2
α,β

∫ t

0

∫ s

0

e(u−t+v−s)/τα

[
Sβ(µβ(u))Sβ(µβ(v))+S

(1)
β (µβ(u))S

(1)
β (µβ(v))Cβ(u, v)+

S
(2)
β (µβ(u))S

(2)
β (µβ(v))

2

(
C2

β(u, v) +
1

2
Cβ(u, u)Cβ(v, v)

)]
dudv

This time it is not anymore a linear Volterra equation due to terms like

Cβ(u, v)2.





Appendix C

A mean field equation with

synaptic noise

C.1 Bifurcation Diagrams as a function of σ

In section 6.3, we observed that when λ = 0, varying σ yielded eleven

different behaviors, each one therefore characteristic of the level of synaptic

noise. For the particular choice of parameters chosen in that section, the

different zones are segmented for values of σ given in table C.1.

In each of these zones, typical behaviors are depicted in the two following

figures: figure C.1 and figure C.2. They show all the different codimension one

bifurcation diagrams, obtained when varying the external input, correspond-

ing to the eleven zones highlighted. We will now give a precise description of

all these behaviors.

Type BT Hom TP CP G1 BT GH CP G2 BT CP

σ 2.464 2.545 2.908 7.482 9.111 ∼ 10.3 13.789 13.915 14.796 15.133

Table C.1: Numerical values of the separation into eleven σ zones for dia-

gram 6.1. C stands for Cusp, BT: Bogdanov-Takens, Hom TP: turning point

of the Homoclinic bifurcations curve,GH: generalized Hopf.

(A). In the region (A), for 0 < σ < σBT 1,, the system undergoes four saddle-

node bifurcations and one Hopf bifurcation. There is a very small input

interval where the system presents bistability. Indeed after the first

saddle-node the equilibrium loses stability and regains stability at the

second saddle-node until the Hopf. Hence in the input space, there is

a small region where two stable equilibria coexist. Depending on the

initial condition, the system will either converge to one or another fixed

point. Away from this region, the system either converges to a stable

fixed point or presents a stable cycle. This cycle appears through the

Hopf bifurcation and disappears via a saddle-homoclinic bifurcation.
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Figure C.1: Typical behavior of the system in each zone (A) through (F).

(A): σ = 0, (B): σ = 2.52, (C): σ = 2.7, (D):σ = 4.5, (E): σ = 8.6, (F):

σ = 10. LP stands for Limit Point bifurcation (also called fold or saddle-node

bifurcation). H: Hopf bifurcation. Plain blue: stable equilibria. Dashed blue:

unstable equilibria. Plain pink: stable cycles. Dashed pink: unstable. Green

circles: homoclinic orbits. See text for precise description.

(B). In the region (B), for σBT 1 < σ < σGlobal1 , the system undergoes four

saddle-node bifurcations and two Hopf bifurcations. There is one new

Hopf bifurcation compared to region (A): this manifold of supercriti-

cal Hopf bifurcations appears through the Bogdanov-Takens bifurcation
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BT 1. This Bogdanov-Takens bifurcation gives also birth to one curve of

saddle-homoclinic bifurcations and zone (B) is then also characterized

by the presence of two saddle-homoclinic bifurcations.

(C). In the region (C), for σGlobal1 < σ < σCP 1 , the system undergoes four

saddle-node bifurcations and two Hopf bifurcations . The difference

with the preceding case is the disappearance of the saddle-homoclinic

bifurcation at the turning point of the homoclinic bifurcation curve.

There are two small regions for the input I1 where the system presents

bistability. Otherwise the system either converges to a stable fixed point

or presents a stable cycle, depending on the value of I1.

(D). In the region (D), for σCP 1 < σ < σGlobal2 , the system undergoes two

saddle-node bifurcations and two Hopf bifurcations . Compared to the

preceding case, two saddle-node bifurcations vanished at the Cusp point

CP 1. Once again, there is a very small input interval where the system

presents bistability. Otherwise the system either converges to a stable

fixed point or presents a stable cycle, depending on the value of I1.

(E). In the region (E), for σGlobal2 < σ < σBT 2 , the system undergoes

two saddle-node bifurcations and two Hopf bifurcations . Compared

to the preceding case, a global codimension two bifurcation, that we

may call saddle saddle-node homoclinic, leads to the appearance of two

homoclinic orbits (one where the orbit joins a saddle point and the

other where the orbit joins a saddle-node). There are two stable cycles,

however they do not coexist for a given I1 as can be seen on figure 6.1.

The mechanism by which the stable cycle of region (D) gives birth to

two stable cycles is illustrated in figure. Once again, there is a very

small input interval where the system presents bistability. Otherwise

the system either converges to a stable fixed point or presents a stable

cycle, depending on the value of I1.

(F). In the region (F), for σBT 2 < σ < σGH , the system undergoes two

saddle-node bifurcations and one Hopf bifurcations. Compared to the

preceding case, one Hopf bifurcation disappeared at the Bogdanov-

Takens BT 2 bifurcation. There is no more bistability as the equilibrium

loses stability at the first saddle-node and remains unstable at the sec-

ond saddle-node to regain stability only at the Hopf bifurcation. Hence

the system either converges to a stable fixed point or presents a stable

cycle, depending on the value of I1.

(G). In the region (G), for σGH < σ < σCP 2 , the system undergoes two

saddle-node bifurcations and one Hopf bifurcation. Compared to the
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preceding case, the supercritical Hopf bifurcation becomes subcritical at

the generalized Hopf GH bifurcation. Hence the cycles emerging from

this Hopf are unstable. They meet stable cycles to form a fold of limit

cycles. The system does not present bistability. There is a small input

interval where unstable cycles coexist with stable cycles but the system

will either converge to a stable fixed point or present stable cycles.

(H). In the region (H), for σCP 2 < σ < σGlobal3 , the system undergoes four

saddle-node bifurcations and one Hopf bifurcation. Compared to the

preceding case, two saddle-node appear through the Cusp point CP 2

but the behavior of the system is the same as in region (G).

(I). In the region (I), for σGlobal3 < σ < σBT 3 , the system undergoes four

saddle-node bifurcations and one Hopf bifurcation. Compared to the

preceding case, the stable cycles disappear with the fold of limit cycles

++at the third global bifurcation point, that we may call saddle-fold.

Hence only the unstable cycles remain. The system has either one sta-

ble fixed point or two stable fixed points. No more oscillations can be

observed and input interval corresponding to bistability is larger than

in the previous cases.

(J). In the region (J), for σBT 3 < σ < σCP 3 , the system undergoes four

saddle-node bifurcations. Compared to the preceding case, the Hopf

bifurcation disappears at the Bogdanov-Takens BT 3. There is no more

cycles, even unstable. The system presents the same behavior as in

region (I).

(K). In the region (K), for σCP 3 < σ, the system undergoes two saddle-

node bifurcations. Compared to the preceding case, two saddle-node

bifurcation vanish at the cusp CP 3. The system presents the same

behavior as in region (J): it either converges to a stable fixed point or

presents bistability.
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Figure C.2: Typical behavior of the system in each zone (G) through (K).

(G): σ = 11.3, (H): σ = 13.84, (I): σ = 14.2, (J):σ = 14.95, (K): σ = 20. LP:

Limit Point bifurcation (also called fold or saddle-node bifurcation). H: Hopf

bifurcation. Plain blue: stable equilibria. Dashed blue: unstable equilibria.

Plain pink: stable cycles. Dashed pink: unstable. Green circles: homoclinic

orbits. Orange oval: fold of limit cycles.
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! ! !

!!!

Figure C.3: The cycles at the transition from region (D) to region (E). Left

image: there is a family of stable cycles delimited by two Hopf bifurcations

in region (D). Center image: at the transition a saddle-node homoclinic or-

bit appears. Right image: One saddle-node homoclinic bifurcation and one

saddle-homoclinic bifurcation have given birth to two families of stable cycles

in region (E).



Appendix D

Introduction to stochastic

bifurcations

In this thesis we have shown that noise at the microscopic level can induce

global coherent phenomena at the system level. These transition phenomena

present a fascinating subject of investigation since, contrary to all intuition,

the environmental randomness induces a more structured behavior of the sys-

tem. Our strategy in this thesis to unravel these kinds of transitions was

first to derive mean field equations summing up the behavior of the system,

and then to study the bifurcation diagrams as the noise parameter was var-

ied, when the mean field dynamics could be reduced to ordinary differential

equations.

In this chapter we will present several results concerning stochastic bifur-

cations1. First we will review the different definitions of stochastic sta-

bility, and show how noise can stabilize fixed points. This is based on the

book [Mao, 2008] by Xuerong Mao. We will then study in details the ef-

fect of a multiplicative noise on a pitchfork bifurcation. We present

two theorems that we have derived with Jonathan Touboul. Eventually

we present the approach to noise-induced transition by Horsthemke and

Lefever [Horsthemke and Lefever, 1984], based on the study of the Fokker-

Planck equation related to the stochastic differential equation describing

the system. We emphasize the crucial difference between additive and mul-

tiplicative noise.

D.1 Stochastic stabilization or destabilization

In this section we present, following Mao [Mao, 2008] the definitions of

stochastic stability. We present a proof showing that noise can stabilize a

system, for example a neural network.

1The formal definition of a random dynamical system can be found in [Arnold, 1998].
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• Stability of ordinary differential equations. We study the d-dimentional

ordinary differential equation on t ≥ t0:

x′(t) = f(x(t), t) (D.1)

We assume that for every initial value x(t0) = x0 ∈ Rd, there exits

a unique global solution which is denoted by x(t; t0, x0). We assume

furthermore that f(0, t) = 0 for all t ≥ t0. So the differential equation

has the solution x(t) = 0 corresponding to the initial value x(t0) = 0.

This solution is called the trivial solution or equilibrium position.

The trivial solution is said to be stable if, for every ε > 0, there exits

a δ = δ(ε, t0) such that |x(t; t0, x0)| < ε for all t > t0 whenever |x0| < δ.

Otherwise, it is said to be unstable.

If there exits a positive-definite function V (x, t) ∈ C2,1(Rd ×
[t0,∞), R+) such that Vt(x(t), t) + Vx(x(t), t) ∗ f(x(t), t) ≤ 0 for all

(x, t) ∈ R
d × [t0,∞), then the trivial solution of eq D.1 is stable.(A

continuous function V (x, t) is positive-definite if V (x, t) > µ(|x|) for µ

a positive nondecreasing function such that µ(0) = 0 and µ(r) > 0 for

r > 0). Such a V is called a Lyapunov function.

• Stability in probability. From now on we shall consider the stochastic

differential equation on t > t0 given by:

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) (D.2)

The trivial solution is said to be stochastically stable or stable in

probability if for every pair of ε ∈]0, 1[ and r > 0, there exists a

δ = δ(ε, r, t0) > 0 such that, P (|x(t; t0, x0)| < r for all t ≥ t0) ≥ 1 − ε

whenever |x0| < δ. Otherwise, it is said to be stochastically unstable.

The trivial solution is said to be stochastically asymptotically sta-

ble if it is stochastically stable and, moreover, for every ε ∈]0, 1[, there

exits a δ0 = δ0(ε, t0) > 0 such that P (limt→+∞ x(t; t0, x0) = 0) ≥ 1 − ε

whenever |x0| < δ0.

• A Lyapunov type theorem. What conditions should a stochastic Lya-

punov function satisfy?
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Define L by:

LV (x, t) = Vt(x(t), t)+Vx(x(t), t)∗f(x(t), t)+
1

2
tr(gT (x, t)Vxx(x, t)g(x, t))

If there exits a positive-definite function V (x, t) ∈ C2,1(Rd× [t0,∞), R+)

such that LV (x, t) ≤ 0 for all (x, t) ∈ R
d × [t0,∞), then the trivial

solution of equation D.2 is stochastically stable.

Proof. Itô formula gives:

dV (x(t)), t) = LV (x(t), t)dt + Vx(x(t), t)g(x(t), t)dB(t)

Let ε ∈]0, 1[ and r > 0 be arbitrary (without loss of generality we may

assume that r < h.) By the continuity of V (x, t) and the fact that

V (0, t0) = 0, we can find a δ = δ(ε, r, t0) > 0 such that:

1

ε
∗ sup

x∈Sδ

V (x, t0) ≤ µ(r)

where Sh = {x ∈ Rd; |x| < h}. It is easy to see that δ < r. Now fix the

initial value x0 ∈ Sδ arbitrarily and write x(t; t0, x0) = x(t) simply. Let τ

be the first exit time of x(t) from Sr, that is τ = inf{t ≥ t0 : x(t) /∈ Sr}.
For all t ≥ t0 V (x(t ∧ τ), t ∧ τ) =

V (x0, t0) +

∫ t∧τ

t0

LV (x(s), s)ds

︸ ︷︷ ︸
≤0

+

∫ t∧τ

t0

Vx(x(s), s) ∗ g(x(s), s)dB(s)

︸ ︷︷ ︸
Expectation=0

By taking the Expectation on both sides, we have E[V (x(t∧τ), t∧τ)] ≤
V (x0, t0). If τ ≤ t |x(t∧τ)| = |x(τ)| = r Hence, since V (x(t∧τ), t∧τ) =

1τ≤t × V (x(τ), τ) + 1τ>t × V (x(t), t)

E[V (x(t ∧ τ), t ∧ τ)] ≥ E[1τ≤t × V (x(τ), τ)]︸ ︷︷ ︸
≥µ(|x(τ)|)=µ(r)

≥ µ(r) × P (τ ≤ t)

Hence, V (x0, t0) ≥ E[V (x(t ∧ τ), t ∧ τ)] ≥
1

ε
× sup

x∈Sδ

V (x, t0) × P (τ ≤ t) ≥ 1

ε
× V (x0, t0) × P (τ ≤ t)

We conclude that P (τ ≤ t) ≤ ε so P (τ < ∞) ≤ ε which means:

P (|x(t)| < r for all t ≥ t0) ≥ 1 − ε. �

• Moment exponential stability. The trivial solution of equation D.2 is said

to be pth moment exponentially stable if there is a pair of positive

constants λ and C such that E[|x(t; t0, x0)|p] ≤ C|x0|pe−λ(t−t0) on t ≥ t0
for all x0 ∈ Rd. When p=2, it is usually said to be exponentially stable

in mean square.
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• Almost sure exponential stability. The trivial solution of equation D.2 is

said to be almost surely exponentially stable if

lim sup
t→+∞

1

t
log |x(t; t0, x0)| < 0

a.s. for all x0 ∈ Rd. Almost all sample paths of the solution will tend

to the equilibrium position x=0 exponentially fast.

Theorem D.1.1. Assume that there exits a function V ∈ C2,1(Rd ×
[t0,∞), R+) and constants p > 0, c1 > 0, c2 ∈ R and c3 ≥ 0, such

that for all x 6= 0 and t ≥0

(i)c1|x|p ≤ V (x, t)

(ii)LV (x, t) ≤ c2V (x, t)

(iii)|Vx(x, t)g(x, t)|2 ≥ c3V
2(x, t)

Then

lim sup
t→+∞

1

t
log |x(t; t0, x0)| ≤ −c3 − 2c2

2p

a.s.for all x0 ∈ Rd. In particular, if c3 > 2c2, the trivial solution of

equation D.2 is almost surely exponentially stable.

Proof. We give here a sketch of the proof. First we apply Itô formula to

get:

d log V (x(t), t) =
LV (x(t), t)

V (x(t), t)
dt+

Vx(x(t), t)g(x, t)

V (x(t), t)
dBt−

1

2

|Vx(x(t), t)g(x, t)|2
V (x(t), t)2

dt

Then we use the exponential martingale inequality applied to:

M(t) =

∫ t

t0

Vx(x(s), s)g(x(s), s)

V (x(s), s)
dBs =

∫ t

t0

h(s)dBs

which states that:

P ( sup
0≤t≤T

[

∫ t

0

h(s)dBs −
α

2

∫ t

0

|h(s)|2ds] > β) ≤ e−αβ

And we conclude with Borel-Cantelli Lemma. �

• Stochastic stabilization and destabilization. It is not surprising that noise

can destabilize a system but we will see in the following that multiplica-

tive noise can also stabilize a system.
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The general set up is the following. We consider the system:

y′(t) = f(y(t), t)

with f locally Lipschitz continuous such that for all (x, t) ∈ Rd × R+:

|f(x, t)| ≤ K|x| (D.3)

we use an m-dim Brownian motion such that:

dx(t) = f(x(t), t)dt +
m∑

i=1

Gix(t)dBi(t) (D.4)

where Gi are all d × d matrices.

Theorem D.1.2. Let D.3 hold. Assume that there are two constants λ > 0

and ρ ≥ 0 such that
∑m

i=1 |Gix|2 ≤ λ|x|2 and
∑m

i |xT Gix|2 ≥ ρ|x|4 for

all x ∈ Rd.

Then:

lim sup
t→+∞

1

t
log |x(t; t0, x0)| ≤ −(ρ − K − λ

2
)

a.s. for all x0 ∈ Rd. In particular, if ρ > K + λ
2
, the trivial solution of

equation D.4 is almost surely exponentially stable.

Proof. Take V (x, t) = |x|2.

LV (x, t) = 2xT f(x, t) +
m∑

i=1

|Gix|2 ≤ (2K + λ)|x|2

Since g(x, t) = (G1x, ..., Gmx) we have the upperbound:

|Vx(x, t)g(x, t)|2 = 4
m∑

i=1

|xT Gix|2 ≥ 4ρx4

We apply Theorem D.1.1 to conclude. �

Therefore any nonlinear system satisfying D.3 can be stabilized by a

(scalar) Brownian motion. It suffices to take m = 1 and G1 = σ1Id.

We have
∑m

i=1 |Gix|2 = σ2
1|x|2 and

∑m
i=1 |xT Gix|2 = σ2

1|x|4. By Theo-

rem D.1.2 we have:

lim sup
t→+∞

1

t
log |x(t; t0, x0)| ≤ −(

1

2
σ2

1 − K)

.

We can stabilize the system by a strong enough multiplicative per-

turbation.
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• We now consider an application to neural networks. We are interested

in the equation:

dx(t) = [−Bx(t) + Ag(x(t))]dt +
m∑

i=1

σix(t)dBi(t) (D.5)

where B = diag(b1, ..., bd), A is a d × d matrix and g(x) =

(g1(x1)), ..., gd(xd))
T with gi sigmoidal such that: xgi(x) ≥ 0 and

|gi(x)| ≤ 1 ∧ βi where βi is the slope of the sigmoid at 0.

Now let us see how we can stabilize this neural network. By taking

m = 1 and V (x) = |x|2, we see that if

2xT [−Bx + Ag(x)] + σ2
1|x|2 ≤ µ|x|2

lim sup
t→+∞

1

t
log |x(t; t0, x0)| ≤ −(σ2

1 −
µ

2
)

(see D.1.1).

But we have 2xT Ag(x) ≤ 2|x|||A|||g(x)| ≤ 2β||A|||x|2 where β =

maxk βk. So 2xT [−Bx + Ag(x)] ≤ 2(β||A|| − b)|x|2 where b = mink bk.

Hence we can take µ = 2(β||A|| − b) + σ2
1 and the system is stable

provided σ2
1 > 2(β||A|| − b).

D.2 Effect of multiplicative noise on a pitchfork

bifurcation

In this section we deal with the stability of the fixed point 0 in the stochas-

tic pitchfork normal form equation. The deterministic normal form of the

pitchfork bifurcation reads:

dx

dt
= λx + εx3 (D.6)

where λ is a real parameter and ε = ±1. The solution x = 0 is a stable fixed

point for all λ < 0, and is unstable for λ > 0. If ε = 1 (supercritical pitchfork

bifurcation), two stable equilibria ±
√

λ exist for λ > 0 and for ε = 1 the two

unstable fixed ±
√
−λ.
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From now on, we consider W =
(
Wt

)
t≥0

a standard Brownian motion de-

fined on a complete probability space (Ω,F , P) endowed with the natural

filtration
(
Ft

)
t

of the Brownian motion W . We are interested here in the

stability of the fixed point 0 for the stochastic pitchfork equation with mul-

tiplicative noise:

dXt = (λXt + εX3
t ) dt + σXt dWt (D.7)

with initial condition X0 at t = 0, and where σ is a constant non-negative pa-

rameter. This equation clearly has a unique strong solution since the functions

are locally Lipschitz-continuous (see e.g.[Karatzas and Shreve, 1998]).

The null process Xt(ω) = 0 for all t ≥ 0 for (almost) all ω ∈ Ω consti-

tutes a solution of the stochastic pitchfork equation. We are interested in the

stochastic stability of this solution as a function of the parameters (λ, σ).

We will address two notions of stability: the almost sure exponential stabil-

ity, defined by the property limsupt→∞
1
t
log |X(t)| < 0 almost surely for any

initial condition X0 ∈ R and almost surely exponential instability defined by

the property liminft→∞
1
t
log |X(t)| > 0 almost surely for any initial condition

X0 ∈ R (see e.g. [Mao, 2008] and the preceding section D.1). This definition

is quite strong.

We will also be interested in the weaker notion of (asymptotic) stability and

instability in probability (a.k.a. stochastic stability), defined by the property

that for all µ ∈]0, 1[ and r > 0 there exists δ depending on µ and r such that

P{|Xt| < r ∀t ≥ 0} ≥ 1 − µ whenever |X0| < µ. Otherwise it is said to

be unstable in probability. The solution 0 is stochastically (or in probability)

asymptotically stable if it is stable and for every µ ∈]0, 1[ there exists δ0

depending on µ such that P( lim
t→∞

Xt = 0) ≥ 1 − µ whenever |X0| < δ0

In order to show the stability or instability of the origin in the stochastic

system, we make use of the stochastic Lyapunov theory. We denote by L the

differential operator associated with Itô’s representation of the supercritical

pitchfork bifurcation (ε = −1) acting on twice differentiable functions V ∈
C2(R, R):

LV (x) = (λx − x3) V ′(x) +
σ2

2
x2V ′′(x).

and we will make use of the Lyapunov function V (x) = x2 which will simplify

all the calculations.
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Theorem D.2.1. The solution 0 of the equation (D.7) is almost surely ex-

ponentially stable if λ < σ2

2
. If λ > σ2

2
the solution is asymptotically unstable

in probability.

Proof. The proof of this theorem is based on the application of the stability

theorem D.1.1 (Theorem 3.3 of [Mao, 2008]) using the aforementioned function

V : x 7→ x2. The map V satisfies:

i. V (x) = x2,

ii. LV (x) = (2λ + σ2)x2 − 2 x4 ≤ (2λ + σ2)V (x),

iii. |V ′(x)σ x|2 = |2σx2|2 = 4σ2V (x)

Using the stochastic stability theorem D.1.1, we conclude that:

limsup
t→∞

1

t
log |X(t)| ≤ −4σ2 − 2(2λ + σ2)

4
= λ − σ2

2
almost surely.

By definition of the almost sure exponential stability, we conclude that the

solution 0 is almost surely exponentially stable for any λ < σ2

2
.

Let us now assume that λ > σ2

2
. In that case, LV (x) = (2λ+σ2)x2 −x4 is

positive definite and decrescent for all |x| <
√

2λ + σ2. Therefore the positive

function V satisfies the property that there exists a neighborhood of the origin

where LV > 0, which implies that the origin is asymptotically unstable in

probability (by application of a corollary of e.g. [Mao, 2008, Theorem 2.2]).

�

In the case of the subcritical stochastic pitchfork bifurcation, we show the

following:

Theorem D.2.2. The fixed point 0 of the subcritical stochastic pitchfork

equation is almost surely exponentially unstable for λ > σ2

2
, asymptotically

unstable in probability for λ > −σ2

2
and asymptotically stable in probability if

λ < −σ2

2
.

Proof. We use here the same function V (x) = x2 and Ls the differential

operator associated with the subcritical pitchfork bifurcation (ε = 1). We

have:

LsV (x) = (λ x + x3) 2x + σ2 x2 = (2λ + σ2) x2 + 2x4 ≥ (2λ + σ2)V (x)

and |V ′(x)σx|2 = 4σ2V (x)2. Therefore by application of [Mao, 2008, Theorem

3.5], we have:

liminf
t→∞

1

t
log |X(t)| ≥ 2 (2λ + σ2) − 4σ2

4
= λ − σ2

2
almost surely
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which proves the fact that 0 is almost surely exponentially unstable for λ > σ2

2
.

Moreover, if λ > −σ2

2
, then we have LsV ≥ 0 and positive-definite for all x ∈ R

which implies that the origin is stochastically unstable.

Let us now assume that λ < −σ2

2
. In that case, for all |x| ≤

√
−(2λ + σ2),

we have LsV < 0 and V decrescent which implies that the origin is asymp-

totically stable in probability (see e.g. [Mao, 2008, Theorem 2.2]). �

D.3 Noise-induced transitions in SDEs according

to the study of Fokker-Planck equations

We present here the approach by Horsthemke and

Lefever [Horsthemke and Lefever, 1984], based on Fokker-Planck equa-

tions.

We consider systems that can be modeled by a phenomenological equation

of the type: dX
dt

= fλt(x), where λt = λ + σξt, ξt being a white noise. If we

suppose that fλt = h + λtg is linear in the external parameter, the system is

described by the stochastic differential equation:

dXt = [h(Xt) + λg(Xt)]dt + σg(Xt)dWt = fλ(Xt)dt + σg(Xt)dWt (D.8)

and the corresponding Fokker-Planck equation governing the evolution of the

transition probability p(y, t|x) is:

∂tp(y, t|x) = −∂y[fλ(y)p(y, t|x)] +
σ2

2
∂yy[g

2(y)p(y, t|x)]

Since the random fluctuations have been modeled by a stationary random

process, we expect that for a sufficiently long time the system will also reach

a stationary behavior defined by the stationary probability density pstat(x)

solution of the stationary Fokker-Planck equation:

∂xJstat(x) = 0,

where the probability current is given by Jstat = fλ(x)pstat(x) −
σ2

2
∂x[g

2(x)pstat(x)]. Note that the state of the system in the stationary regime

does still fluctuate, but in a way such that Xt and Xt+τ have the same prob-

ability density.

The stationary solution is given by:

pstat(x) =
N

g2(x)
exp

[ 2

σ2

∫ x fλ(u)

g2(u)
du
]
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In [Horsthemke and Lefever, 1984], the authors then develop an argument

to explain why a study of noise-induced phenomena must focus on the extrema

of pstat(x). As a consequence additive and multiplicative noise will not have

the same effect.

In the case of additive noise, the influence of the environment random

fluctuations does not depend on the state of the system. We can set g(x) = c

where c is a constant. The extrema of pstat(x) will coincide with the deter-

ministic steady states. Indeed the highest maximum of

U(x) =

∫ x fλ(u)

g2(u)
du =

∫ x fλ(u)

c2
du

and hence of the stationary density:

pstat(x) =
N

c2
exp

[ 2

σ2
U(x)

]

coincide for all σ with the position of the deepest deterministic potential

well, which is given by the value of x minimizing:

Vλ(x) = −
∫ x

fλ(u)du =

∫ x

[h(u) + λg(u)]du

In the additive noise case, the potential is not qualitatively modified and no

shift occurs in the most likely value of x. The additive noise term has only a

disorganizing effect.

In the multiplicative case the picture is totally different. Indeed, as

U(x) 6= − 1
c2

Vλ(x), the highest maximum of the probability density pstat(x)

does not necessarily coincide with the deterministic steady state. For

small values of σ the potential does not change qualitatively but the stabil-

ity may change. However when σ is increased, the extrema of pstat(x) can

be essentially different in number and position from the deterministic case.

External multiplicative noise, by creating new potential wells, can therefore

induce new transitions.

To conclude we emphasize the fact that, in this thesis, we have found

noise-induced transitions in the additive noise case, in the equa-

tion 4.2.1. But this is due to the fact that our equation was precisely not

an ordinary stochastic differential equation like the one in D.8. Indeed our

mean field equation, even in the simplest case of a purely additive noise, is not

an ordinary stochastic differential equation, as the right hand side depends

on the law of the solution. This is why the study of their dynamics is so rich,

but it is also what precludes a thorough analytical study in more complicated

cases.
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