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Chapter 1

Résumé (Summary in French)

1.1 Introduction

Le développement tres rapide de nouvelles technologies ces dernieres années,
les exigences de plus en plus fortes des marchés internationaux, et la recherche
de rentabilité de plus en plus élevée par les entreprises multinationales ont donné
place a une tres forte concurrence au niveau mondial. Dans le monde de la mi-
croélectronique ou les principaux produits fabriqués (circuits et puces électroniques)
sont des éléments majeurs de la vie quotidienne!, proposer les meilleurs produits &

des prix compétitifs est vital pour les entreprises.

Plusieurs pistes sont explorées par les entreprises dans le but de réduire les
cotts de production sans impacter la qualité finale du produit. Parmi les différentes
pistes, une des principales concerne les controles durant la fabrication des circuits
électroniques. En effet, la taille des circuits ou puces électroniques a fabriquer
devient tellement petite (de I'ordre du nanometre)? que plusieurs controles sont
nécessaires pour s’assurer que les procédés de fabrication sont correctement réalisés
et que le produit satisfait aux spécifications du client. Cependant, parmi tous les

controles réalisés, certains sont principalement destinés a anticiper toute dérive po-

'On estime qu'une personne utilise environ 250 circuits électroniques par jour [40].

2La taille des composants électroniques (transistors, résistances, condensateurs, etc.) nécessaires
a la fabrication des circuits électroniques est environ 5000 fois plus petite que le diametre d’un
cheveu.
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tentielle et limiter les pertes potentielles en cas probleme durant la production. Ils
sont donc jugés non-obligatoires car ils n’ajoutent rien a la fonctionnalité finale du
produit a livrer au client. D’ou le challenge pour les entreprises d’arriver a mieux
maitriser, répartir, et limiter ce nombre de controles non-obligatoires sans augmenter

le risque (c’est-a-dire la perte potentielle) sur la production.

Différentes techniques d’échantillonnage existent et ont été développées par les
entreprises et dans la littérature dans le but de trouver le meilleur compromis entre le
nombre de controle et le risque toléré au sein de la production. Entre les techniques
statiques et dynamiques, les techniques d’échantillonnage dynamiques sont jugées
plus robustes de part leur capacité a intégrer la dynamique de la production et la
variabilité. Le probleme qui se pose concerne l'industrialisation de ces techniques
d’échantillonnage dynamiques. L’investissement requis (ressources informatiques,
formation des opérateurs et ingénieurs, systéeme de production, etc.) et la com-
plexité sont tels que la plupart des entreprises préferent rester sur des techniques
d’échantillonnage statiques alors que linefficacité de ces dernieres a anticiper les

dérives potentielles pour les entreprises multi-produits a déja été démontrée [78] [12].

Dans le cadre ma these, je m’intéresse a I’évaluation de efficacité des
différentes techniques d’échantillonnage, 1’identification des points de sur-
et sous-controles, et la mise en ceuvre concrete des plans de controles ou

d’échantillonnage dynamiques au sein de ’entreprise STMicroelectronics.

Ce premier chapitre est un résumé global en Francais de ma these qui est rédigée
en Anglais. Je commence par présenter rapidement le contexte industriel et la
problé-matique de ma these. Ensuite, je synthétise la révue de la littérature qui
généralise mon probleme et le positionne parmi les différentes techniques développées
au cours des 20 dernieres années. Apres cette synthese de la révue de la littérature,
je présente les solutions générales que je développe dans la cadre de ma these. Je
termine ensuite ce résumé en Francais en donnant un apercu des solutions spécifiques
que j’ai développées pour valider les solutions générales au sein du site de 300mm
de la société STMicroélectronics basée a Crolles, en France. L’originalité des

travaux de ma these repose sur le fait que toutes les solutions proposées et
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présentées dans ce manuscrit ont été validées industriellement et certaines
d’entr’elles ont été industrialisées sur le site de Crolles et les autres sites

de STMicroelectronics (Rousset, Italie-Catania).

1.2 Contexte Industriel et Problématique de la
these

La principale activité d’une entreprise de semiconducteurs est de fabriquer des
composants électroniques, les interconnecter, et obtenir ainsi des puces ou circuits
électroniques qui sont utilisés dans plusieurs domaines de la vie de tous les jours
(téléphone, voiture, régulateur de température, ordinateurs, etc.). La Figure 1.1
donne un apercu de l'utilisation des circuits électroniques dans la vie de tous les
jours. Dans quasiment toute activité, chaque produit, nous utilisons des puces ou

circuits électroniques.

Ailleurs :
Distributeur de
billets, Télephone

mobile... '

Ala maison:
machine a laver,
cD, TV, DVD, Blu-

Une
personne
Au travail : utilis!a
Imprimantes, chaqu_el jour

Scanners, PC...

En voiture :
ouverture de portes,
GPS, ABS, Air Baqg, Radio...

Figure 1.1: Circuits électroniques dans vie de tous les jours.
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1.2.1 Environnement de production

Les dimensions des composants électroniques fabriqués sont tellement petites
qu’un environnement spécial appelé “salle blanche” est nécessaire pour éviter toute
contamination et assurer un bon fonctionnement des circuits électroniques. La Fig-
ure 1.2 donne un apercu de ’environnement de production. Dans cet environnement,
les opérateurs et ingénieurs sont couverts de la téte aux pieds et l'air ambiant est
renouvellé toutes les 30 secondes. En comparaison avec une salle d’opération chirur-
gicale, la plus “crasseuse” des salles blanches est au moins 3 fois plus propre qu’une

salle de chirurgie [74].

Figure 1.2: Salle blanche.

1.2.2 Etapes de la fabrication

Le processus de fabrication des puces ou circuits électroniques® se résume en
deux principales étapes [101] : Front-End et Back-End. Le Front-End regroupe
les étapes de fabrication des éléments de base de la puce tandis que le Back-End

celui des interconnexions des éléments de base et la mise en boitier (Figure 1.3).

3Une puce électronique se compose de plusieurs composants électroniques qui sont fabriqués sur
des plaques de silicium. Ces composants électroniques sont interconnectées entr’elles de diverses
maniéres pour réaliser diverses fonctions.
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Front-end Back-end
processing processing

_»
Ingot of silicon Wafer Microchip Microchip
(#300mm) cutting packaging

Figure 1.3: Fabrication des puces électroniques.

Cette these est réalisée au sein du site 300mm de STMicroelectronics ou seule-
ment les opérations de Front-End sont réalisées. Nous ne nous intéresserons donc
qu’a la partie Front-End durant laquelle plusieurs opérations sont réalisées sur des
plaquettes circulaires de silicium appelées wafers. Parmi les principales opérations
du Front-End, nous pouvons citer [40] [101] :

1. Oxidation : on oxide la plaquette de silicium sur toute sa surface. Plusieurs

fours spécifiques sont utilisés.

2. Dépot de résine : on dépose de facon uniforme une couche de résine photo
sensible sur la couche d’oxide. Cette couche de résine se transforme sous

l'action de la lumiere.

3. Photolithographie : comme son nom l'indique, on utilise le principe de la
photo. On se sert des jeux de masque pour créer des motifs sur la plaquette
de silicium. On aligne le masque sur la plaquette et le tout est exposé a une
source de lumiere. La résine “s’impregne” comme une pellicule photographique

normale dans les zones laissées libres par le masque.

4. Développement : comme pour le développement photographique, on enleve
la résine qui a été exposée a la lumiere (dans les zones laissées libres par le

masque).

5. Gravure : on enleve 'oxyde laissé libre par la résine, sans attaquer le silicium
de départ.
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6. Dopage : on introduit des éléments chimiques pour modifier les caractéristiques

du silicium et le rendre capable de conduire le courant électrique.

Toutes ces opérations réalisées durant le Front-End se repetent plusieurs fois.
Avant, pendant, et apres chaque opération de fabrication, une ou plusieurs opérations
de controle sont nécessaires pour vérifier que le procédé a bien été réalisé et les

spécifications clients respectées.

1.2.3 Controles durant la fabrication et problématique de

la these
1.2.3.1 Controles durant la production

Plusieurs niveaux de controles existent durant la fabrication des composants
électroniques. Pour chaque niveau de controle, plusieurs types de controle existent.

Parmi les principaux niveaux de controle, nous pouvons citer :

1. Installations techniques : on controle les parametres liés a I’environnement
de production (température ambiante, contamination, luminosité, liquides,
gaz, etc.) pour garantir des conditions les plus optimales possibles au sein

de la production.

2. Capteurs sur les équipements de controle : on controle I’état des capteurs
placés sur les différents équipements de production pour s’assurer d’une re-

montée correcte des données au moment de I'analyse des différents parametres.

3. Mesures ou contrdles en ligne : on controle, tout au long de la pro-
duction, les wafers sur lesquelles les composants électroniques sont réalisés.
Plusieurs techniques sont utilisées (ellipsométrie, réflectivité, scatterométrie,
etc.) donnant lieu & plusieurs types de controles. La plupart des techniques
sont regroupées sous le nom “APC” (Advanced Process Control - Controle

avancé des procédés).

4. Tests paramétriques : on analyse les parametres électriques des composants
électroniques (courant de fuite, tension de claquage, tension de seuil des tran-

sistors, etc.).
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5. Tests finaux ou fonctionnels : ces tests interviennent a la fin du Front-End.
On vérifie que les circuits réalisés fonctionnent correctement avant leur mise

en boitier (Back-End) et envoie aux différents clients.

6. Caractérisations physiques : on évalue la durée de vie des différents com-
posants électroniques sous I'influence des perturbations extérieures (température,
humidité, corrosion, etc.).

Parmi ces 6 niveaux de controle, ma these s’intéresse au troisieme niveau de
controle et principalement aux controles défectivité ou un des principaux objectifs
est la détection des défauts générés par les équipements de production sur

les wafers.

1.2.3.2 Problématique de la these

Ma these aborde de maniere générale les différents controles qui ont lieu sur les
wafers et les lots* durant la fabrication des composants électroniques. Je me suis
focalisé sur les controles défectivité a cause de la forte complexité qui est princi-
palement due a la profondeur de controle et le champ d’investigation. La
profondeur de contrdle donne le nombre d’opérations de fabrication qui sont
couvertes® par une opération de controle, et le champ d’investigation donne le
nombre d’équipements a considérer lors de 'analyse des défauts détéctés sur les
wafers. Tous les équipements de production sont concernés car ils ont tous des

parties mécaniques qui génerent a la fois des particules et des défauts sur les wafers.

L’autre niveau de complexité vient du nombre de produits (plus de 200 pro-
duits différents sont fabriqués en parallele), des technologies (plus de 20 technolo-
gies différentes), ou encore des priorités a considérer (la criticité des produits, les
exigences clients, les délais de livraison, les cotits de production, I’environnement,
le management, etc.) lors de la sélection des wafers ou des lots a controler. Cela
constitue un véritable challenge pour I’échantillonnage. En effet, intégrer tous les

parametres est tout simplement impossible et I'’enjeu majeur réside donc dans la

4Un lot est un groupe d’au plus 25 wafers.
5Une opération de fabrication est dite couverte par une opération de contrdle lorsque cette
derniere permet d’avoir I'information sur l'opération de fabrication.



8 CHAPTER 1. RESUME (SUMMARY IN FRENCH)

capacité a utiliser de la maniere la plus optimale possible la capacité de controle

disponible.

L’objectif de ma these est d’arriver a comprendre le mécanisme d’échantillonnage
statique® en place au sein de STMicroelectronics, analyser son efficacité, détecter les
différents points de sur- et sous-controle, et arriver a proposer des solutions pou-
vant supporter la mise en place et le déploiement “concret” (industriel) des plans
de controle et d’échantillonnage dynamique. Un des principaux challenges étant
d’arriver a manipuler en temps réel un tres grand volume de données, et proposer
des algorithmes compréhensibles, maintenables, généralisables, et par-dessus tout

industrialisables.

6 Au début de ma these, I’échantillonnage était & 100% statique, c’est-a-dire qu’un certain nom-
bre de lots/wafers était désigné au lancement de la production pour subir des controles réguliers
tout au long du cycle de fabrication. Seuls ces lots “pré-désignés” pouvaient étre controlés et ce,
a toutes les étapes possibles de controle.
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1.3 (Généralisation de la Problématique : Révue

de la Littérature

L’échantillonnage n’est pas un concept récent dans le monde du semiconducteur

pour deux raisons principales [19] [23] [33] :

1. Un controle a 100% est impossible a cause du cotlt que cela engendre sur le
produit final [76].

2. Un controle a 100% ne pourra jamais garantir une qualité 100% dans le
semiconducteur a la cause de la taille des particules, des défauts, et de la
fiabilité des différents procédés de controle [23].

Il est donc indispensable de limiter le nombre de controle durant tout processus de
fabrication tout en s’assurant de faire les bons controles au bon moment. Plusieurs
types ou méthodes d’échantillonnage existent en fonction des objectifs recherchés.

On en distingue trois principaux [48] :

1. Controle du matériel a risque et gestion des excursions’ [83] [9] [61]
: le but est de sélectionner des lots a controler suivant une fréquence bien
définie pour d’'un coté limiter la perte potentielle en cas de probleme, et de
I’autre coté arriver a détecter le plus rapidement possible les différents défauts

générés au cours de la production.

2. Intégration de nouveaux procédés et amélioration du rendement [46]
: le but est d’ajuster le pourcentage des lots a controler pour mieux identifier
les principaux détracteurs pour les différentes technologies et les éliminer au
fur et a mesure. Dans les usines de petite taille, on cherche a ajuster le nombre

de lots lancés au début de la production pour compenser les pertes éventuelles.

3. Statistiques et apprentissage [26] : le but est d’apprendre sur les différents

types des défauts détectés ainsi que leur mécanismes.

"Une excursion se produit lorsqu’un probléme est détecté sur un wafer, un lot, ou un équipement
apres une opération de controle.
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Dans ma these, je m’intéresse au premier groupe d’échantillonnage
qui vise a controler le matériel a risque durant la production et détecter
le plus rapidement possible les différentes excursions. L’objectif est double
. limiter le nombre de controle (par échantillonnage) sans augmenter le matériel a
risque en cas de probleme, et détecter tres rapidement les différents problemes. Il y a
un compromis nécessaire a trouver car, si d’un coté on se focalise sur la réduction du
nombre de controle (ce qui permet de réduire le cott final du produit), on prend le
risque de ne pas détecter rapidement les différents défauts et donc d’avoir des pertes
significatives en cas de probleme. D’un autre coté, si on se focalise uniquement sur
la détection rapide des défauts, on risque d’augmenter le nombre de controle et donc

augmenter le cout du produit final.

Plusieurs politiques d’échantillonnage ont été développées dans la littérature.
Nous les classifions en trois principaux groupes : statiques, adaptatives, et dy-

namiques.

1.3.1 Echantillonnage statique

Un échantillonnage statique consiste a définir un nombre fixe et limité des lots a
controler tout au long de la production. Le nombre de lots a controler est fixé par la
capacité disponible de controle. Les lots a controler sont pré-sélectionnés au début
de la production et subissent systematiquement une opération de controle devant

chaque étape de controle [45] [70].

Cette politique d’échantillonnage a été largement utilisée par les entreprises dans
les années 1990 car en controlant toujours les mémes lots, il est possible de quantifier
les défauts apportés par chaque opération de fabrication et donc identifier rapide-
ment la source des défauts [31]. De nos jours, cette politique d’échantillonnage
statique est fortement critiquée a cause de son incapacité a ajuster les parametres
d’échantillonnage en fonction de la dynamique de la production [12]. Ceci est
d’autant plus vrai dans les entreprises multi-produits ou plusieurs produits sont
fabriqués en parallele et ou la production n’est jamais linéaire, c’est-a-dire que le

premier produit qui entre dans la chaine da fabrication n’est pas toujours le premier
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a en sortir [57].
Pour prendre en compte la dynamique de la production, de nouvelles politques

d’échantillonnage appelées “adaptatives” ont été dévéloppées.

1.3.2 Echantillonnage adaptatif

Un échantillonnage adaptatif est basé sur un échantillonnage statique mais la
différence majeure avec cette derniere est que le nombre de lots a controler est
ajusté en fonction de 1’état de la production [98]. Lorsque la production est con-
sidérée comme étant “sous-controle”, le taux d’échantillonnage est réduit, et lorsque
il y a suspicion de dérive, le nombre de lots a controler est augmenté pour confirmer

rapidement la dérive et limiter ainsi les pertes potentielles [99] [71].

Cette technique d’échantillonnage s’avere plus efficace que la technique d’échan-
tillonnage statique mais le probleme ici est que 'on ne maitrise plus la charge de
travail (ou ressources nécessaires) des ingénieurs responsables des opérations de
controle. Le nombre de lots a controler n’étant plus constant en fonction de 1'état
de la production, le risque est d’avoir des périodes avec beaucoup de lots a controler,

ce qui remettrait en cause l'efficacité des controles [58].

Pour faire face a ce probleme de gestion de ressources, de nouvelles politiques
d’échantillonnage (tres récentes) dites “dynamiques ou intelligentes” ont été dé-

veloppées.

1.3.3 Echantillonnage dynamique

Un échantillonnage dynamique consiste a la sélection en temps réel des lots
a controler. Le nombre total de controles est fixé par la capacité de controle
disponible [79]. Contrairement aux techniques d’échantillonnage précédentes (sta-
tiques et adaptatives), aucun lot n’est pré-sélectionné a I'avance. La sélection se fait
lorsque le lot arrive devant une opération de controle. En fonction de I'information
contenue dans le lot, de la capacité disponible de controle, ou des priorités au sein
de la production, le lot est soit controlé, soit dirigé directement a I'opération de fab-

rication suivante [29] [78] [50]. L’avantage d’'une telle technique est qu’en prenant
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en compte 1’état réel de la production et en choisissant dynamiquement les bons
lots a controler, il est possible de détecter tres rapidement toute dérive potentielle
sans augmenter le risque sur la production ou la charge de travail des ingénieurs

responsables des opérations de controle [20].

Ma these se focalise donc sur cette troisieme technique et ’enjeu est
d’arriver a mettre concrétement en place une telle technique au sein du
site 300mm de STMicroelecronics. La technique est tres récente et les auteurs
qui ont travaillé dessus ne donnent pas toujours assez de détails sur la complexité
technique de la mise en ccuvre d’une telle technique au sein d'une usine ou plus
de 200 produits différents sont fabriqués en parallele. De plus, ’environnement du
semiconducteur est tellement particulier qu'une technique peut s’avérer efficace dans

une usine A et s’avérer inutilisable pour une usine B.

Pour arriver a mettre en oeuvre une telle technique d’échantillonnage et donc des
plans de controle dynamiques, il a fallu proposer succissevement un indicateur per-
mettant de manipuler en temps réel un tres grand nombre de données sans consom-
mer trop de ressources informatiques, développer un indicateur pour arriver a choisir
dynamiquement les bons lots a controler, et optimiser les différents parametres pour
s’assurer de la robustesse de la solution. Je résume dans la section suivante les prin-
cipales solutions générales que je propose dans ma these pour la mise en ceuvre des
techniques de controle dynamiques. Le lecteur pourra trouver plus de détails dans

les chapitres 5, 6, et 7 de ce manuscrit de these.
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1.4 Solutions Générales : IPC - GSI - MILP

Dans ma these, je propose trois solutions générales permettant de mettre en ceu-
vre des plans des controles dynamiques dans une unité avancée de fabrication des
semiconducteurs. Ce trois solutions sont : 'TPC (Indice Permanent par Contexte),
le GSI (Global Sampling Indicator), et un modele MILP (Mixed Integer Linear
Programming). L'TPC est un indicateur qui permet de manipuler un volume im-
portant de données avec une tres faible consommation de ressources informatiques.
Cet indicateur permet de simplifier I’analyse de plusieurs types de risques et donc
de supporter 'industrialisation des algorithmes de controles ou d’échantillonnage
dynamiques qui manipulent un volume important de données. Le GSI est un in-
dicateur qui permet de choisir dynamiquement le meilleur lot a controler et défnir
la priorité de controle sur les équipements de controle. Le MILP est un modele
qui calcule les parametres clés utilisés par le GSI pour une sélection dynamique et

optimisée des lots a controler.

Avant de pouvoir proposer les solutions générales résumées dans cette section, il
était nécessaire d’analyser l'efficacité du plan de controle “statique” en place pour

en cerner les avantages et inconvénients.

1.4.1 Analyse et évaluation d’un échantillonnage statique

[’analyse du plan de controle statique en place chez STMicroelectronics a été
faite en partant de I’hypothese selon laquelle “un contréle sans valeur ajoutée est
a la fois une perte de temps et une perte d’argent”. Considérons 'exemple de la
Figure 1.4 qui met en évidence un des principaux inconvénients de 1’échantillonnage

statique.

Iy a6lots (L1, L2, L3, L4, L5, et L.6) qui arrivent dans I’atelier 1 pour subir di-
verses opérations de fabrication avant d’aller dans I’atelier 2 pour d’autres opérations
de fabrication. Le plan de controle statique défini par les ingénieurs au début de la
production est de controler un lot sur deux. Dans le cas de la Figure 1.4, les lots L2,
L4, et L6 ont été identifiés au début de la production pour des controles ponctuels

devant chaque étape de controle. Cela signifie qu’une fois passés dans l'atelier 1, ces
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Figure 1.4: Probleme de I’échantillonnage statique.

lots (L2, L4, L6) doivent subir une opération de controle dans 'atelier de défectivité

avant de subir d’autres opérations de fabrication dans 'atelier 2.

Comme introduit dans les sections précédentes, un controle en défectivité a pour
objectif de détecter les défauts ou particules générées par les équipements de pro-
duction sur les wafers, c’est-a-dire qu’a chaque fois qu'un controle en défectivité
est réalisé sur un lot ou plusieurs wafers, on analyse le nombre de particules ou des
défauts présents sur les wafers. Si aucune alarme n’est déclenchée (nombre de partic-
ules en dessous d’'un certain seuil ou défauts non critiques), on relache l'incertitude
sur 'ensemble des équipements de production sur lesquels les wafers controlés ont
subis des opérations de fabrication avant d’arriver au controle défectivité. Dans le
cas décrit dans la Figure 1.4, un plan de controle optimal consisterait a faire passer
sur chaque équipement (TOOL1 et TOOL2) au moins un lot échantillonné (c¢’est-a-
dire L2 ou L4 ou L6), ce qui permettrait, en cas de controle “bon” en défectivité,

de relacher l'incertitude sur ’ensemble des équipements de I'atelier 1.

Cependant, dans un environnement multi-produits (cas du site de 300mm de
STMicroelectronics) ou plusieurs produits différents sont fabriqués simultanément
sur les mémes équipements, le cas tel que celui décrit sur la Figure 1.4 s’est avéré
étre un cas fréquent. Tous les lots échantillonnés (c’est-a-dire pré-sélectionnés pour
un controle en défectivité) passent sur un seul équipement (TOOL1) alors que sur

lautre équipement (TOOL2) il n’en passe aucun. Cela résulte donc, apres un
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controle défectivité, a un sur-controle pour ’équipement TOOL1 et un manque de
controle pour I'équipement TOOL2. Le phénomeéne est encore plus accentué avec
le nombre d’équipements disponibles en production (plus de 300 équipements chez

STMicroelectronics).

Pour éviter ce phénomene, une solution simple serait de définir une limite max-
imale de lots échantillonnés pour chaque équipement de production. Le probleme
qui se pose concerne la disponibilité des équipements et leur qualifications respec-
tives car, tous les lots ne peuvent pas passer sur tous les équipements et tous les
équipements ne peuvent pas réaliser les mémes opérations de fabrication a la méme
vitesse. De plus, en fonction du produit, de 'opération a laquelle se trouve chaque
lot, de la technologie, de I’état de la production, les responsables de la production ne
peuvent pas se permettre d’arréter un équipement pour respecter un taux prédéfini

d’échantillonnage. D’ou I'intéréet méme d’un échantillonnage en mode dynamique.

Convaincu alors de la nécessité d'un échantillonnage en mode dynamique, plusieurs
questions ont été soulévées : comment arriver a analyser en temps réel un tres grand
volume de données (300 équipements, 200 produits, 20 technologies, plusieurs con-
traintes de production, etc.) et arriver a identifier “instantanément”, en temps réel
le meilleur lot a controler 7 Quel cotit cela engendrerait-il en terme d’investissement

et de ressources informatiques 7 Serait-ce vraiment rentable pour I'entreprise ?

Pour répondre a cette question, I'indicateur IPC a été dévéloppé pour accélérer
les calculs, généraliser les solutions et supporter les différentes décisions en mode dy-
namique. La section suivante décrit brievement cet indicateur IPC, son utilisation,

et sa généralisation a plusieurs types de risques au sein de la production.

1.4.2 Gestion dynamique des controles : indicateur IPC

L’TPC est un compteur qui est incrémenté a chaque fois qu’un contexte est vérifié.

Le contexte peut étre un équipement, une chambre®, une recette’, une technologie,

8Une chambre est une partie a lintérieur d’un équipement ot est réalisé une opération de
fabrication.

9Une recette est un ensemble de données nécessaires & un équipement pour le traitement
physique d’un wafer ou d’un lot.
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un type de résine, la combinaison d’une opération de fabrication et d’une technolo-
gie, etc. Ce compteur n’est jamais remis a zéro sauf lorsqu'un événement parti-
culier se produit (maintenance préventive, qualification d'un équipement, change-
ment de recette, etc.). Le but de 'IPC est d’avoir un indicateur général, standard,
et simple qui permette d’évaluer tres rapidement différents types de risques en fonc-
tion du contexte sans consommer trop de ressources informatiques ni nécessiter des

développements informatiques complexes.

Lors de la premiere implémentation dans le cadre de la validation industrielle
de I'TPC, le contexte avait été défini au niveau de I'équipement, c’est-a-dire qu’on
s’'intéressait a évaluer en temps réel le risque de faire passer un lot sur un équipement
de production. Ce risque s’appelle Wafer-At-Risk et représente le nombre de wafers
qui ont subis une opération de fabrication entre deux opérations de controle. A
chaque lot [ et équipement de production m est associé un I PC, qui est égale a 0
si [ n’a subi aucune opération de fabrication sur I’équipement m. Définissons M
comme le nombre d’équipements de production, et NW(l) comme le nombre de
wafers contenus dans le lot [. L’objectif est de mettre a jour les parametres suivants

en temps réel :

e LLM(m) : indice du dernier lot qui a été contrdlé pour valider 1'équipement

de production m.
e [PC}" : IPC dulot | pour I'équipement de production m.
e RI,, : indicateur du risque sur I’équipement de production m.

e NI" : nombre de wafers potentiellement impactés sur I’équipement m si le

lot [ est controlé.

e NI, : nombre de wafers potentiellement impactés dans 1’ensemble de la pro-

duction si le lot [ est controlé.

Quand le lot [ passe sur I’équipement de production m, un I PC' est associé a I.
Cet IPC du lot [ est égal a 'l PC' du lot I’ passé juste avant [ sur m plus le nombre
de wafers contenus dans [ (NW (1)) :
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IPCT" = IPCT + NW (1) (1.1)

L’indicateur du risque (c’est-a-dire le matériel a risque ou Wafer-At-Risk) sur

I’équipement de production m est donc donné par :
RI, = IPCT" — IPCT pom) (1.2)

L’utilisation de I'TPC simplifie largement les calculs des différents types de risque
car tout est réduit a une simple différence entre deux valeurs entieres. Cela implique
une faible consommation des ressources informatiques, la possibilité d’analyser en
temps un tres grand nombre de types de risques sans passer par des développements
complexes. Au lieu d’aller rechercher a chaque fois I'historique de la production
pour analyser le risque en temps réel, on assigne a chaque lot un indice (I PC du

lot) lorsque le contexte est vérifié.

La Figure 1.5 montre une séquence des lots ayant subis des opérations de fabri-

cation sur I’équipement de production m.

IPC™
e D))
(L7
o8
(13]
1o o] SR——
(L1
t.Z tq t‘i Processing tune

Figure 1.5: Mécanisme IPC.

Les lots L1, L2, ..., L9 sont passés sur m. Parmi ces lots, L2 et L5 ont été



18 CHAPTER 1. RESUME (SUMMARY IN FRENCH)

validés par un controle “bon” en défectivité et dans le cas décrit dans la Figure 1.5,
L5 correspond au dernier lot qui a été controlé, c’est-a-dire Lb = LLM (m). Selon

les équations (1.1) et (1.2), 'indicateur du risque sur m a t9 est donné par :
RI,, = IPCTy — IPCY
ou :
IPCTy > IPCYY

En utilisant 'TPC, il est aussi possible d’identifier rapidement le meilleur lot [ a
controler devant une étape de controle. Ce lot [ est choisi tel que son I PC' vérifie

la propriété suivante :

IPC" = Maz{0,{IPC}} \ IPC}} > IPC7;,;,ll € LM}} (1.3)

ou LM est I'ensemble des lots en attente devant une étape de controle.

Dans la Figure 1.5, les lots L6 et L8 sont passés sur m et sont en attente devant
une étape de controle. Selon (1.3), le meilleur lot a controler pour m sera L8 car
IPCTy > IPCYy et IPCY > IPCYs.

Un controle est défini comme une opération de mesure plus une action [7]. Cela
signifie qu’il est primordial d’étre capable d’évaluer en temps réel le nombre de lots
potentiellement impactés si un probleme est détecté apres une opération de mesure
sur un lot [. Ce nombre peut étre déterminé pour chaque équipement de production
m (NI}") et pour 'ensemble de la production (NI;) :

NI = Maz{0,IPC* — IPC" ., (1.4)

et

NI, =Y NI (1.5)
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Dans la Figure 1.5, a t9, NI]" sera donné par (I PC7Ty — [ PC7%) correspondant

a la somme des wafers contenus dans L6, L7, L8, et L9.

Ce mécanisme d’IPC a été implémenté dans un prototype et déployé
en production pour un atelier avant d’étre industrialisé sur I’ensemble de
la production. Une fois industrialisé, ce mécanisme IPC a été utilisé pour sup-
porter I'implémentation des algorithmes intelligents d’échantillonnage dynamique

dont le principe est décrit dans la section suivante.

1.4.3 Echantillonnage dynamique : GSI

Un échantillonnage dynamique ou intelligent consiste a sélectionner en temps
réel et au meilleur moment des lots a controler. “Aucune regle” n’est définie au
début de la production et les lots a controler sont sélectionner a leur arrivée devant
une étape de controle. Trois types de décisions sont nécessaires pour réaliser ce type
d’échantillonnage : le sampling, le skipping, et le scheduling. Ces trois décisions sont
liées aux contraintes de la production et a la capacité de controle disponible. L’ordre
des différentes décisions n’est pas nécessairement séquentielle, c¢’est-a-dire d’abord
le sampling, ensuite le skipping, et finalement le scheduling. Certaines décisions
peuvent étre prises simultanément. Le principal objectif est de choisir des lots a
controler pour minimiser le risque dans la production en fonction de la capacité de

controle disponible.

A. Mécanisme de sampling

Le sampling consiste a sélectionner un lot pour le controle et le placer dans la
file d’attente d’inspection. La Figure 1.6 nous donne une illustration du sampling.
A chaque fois quun lot Lx arrive devant une étape de controle (défectivité), une

décision est prise quant a ’ajout de Lx dans la liste des lots déja en attente.
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u Sample
n Lot LX?
1 ] ’
Lot LX
WORKSHOP 1 YES
E
u DEFECTIVITY
) WORKSHOP
Inspection

Queue

Figure 1.6: Mécanisme de sampling.

B. Mécanisme de skipping

Le skipping consiste a ne pas mesurer ou controler un lot Lx déja présent dans la
file d’attente d’inspection (Figure 1.7). Le lot est rétiré de la file d’attente et dirigé

a la prochaine étape de fabrication. Ce type de décision peut se produire lorsque :

(1) La taille maximale de la file d’attente est atteinte et un lot “important” et
prioritaire vient d’arriver devant I’étape de controle et doit étre absolument

controlé,

(2) La capacité de controle disponible est réduite a cause d'un équipement qui

vient de tomber en panne,

(3) Certains lots viennent d’étre mesurés et par conséquent, un ou plusieurs lots

présents dans la file d’attente d’inspection perdent leur valeur ajoutée.
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Figure 1.7: Mécanisme de skipping.

C. Mécanisme de scheduling

Le scheduling consiste a ordonnancer les lots présents dans la file d’attente, c’est-
a-~dire définir la priorité de passage sur les équipements de controle. En fonction du
gain (en terme de réduction du risque) apporté par chaque lot et des contraintes de

la production, certains lots sont plus prioritaires que d’autres.

Ces trois décisions (sampling, skipping, scheduling) sont prises en
utilisant un indicateur (GSI) qui donne un score permettant d’évaluer le

niveau de risque “futur” si un lot ou un ensemble de lots était mesuré.

1.4.3.1 Global Sampling indicator GSI

Le GSI est un indicateur qui donne un score a différents ensembles de lots. A
chaque ensemble des lots S est associé un niveau de risque attendu au sein de la
production si les lots dans S étaient sélectionnés pour une inspection ou un controle.

Considérons les exemples dans Table 1.1 et Table 1.2. Table 1.1 correspond a une
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situation initiale ou aucun lot n’est sélectionné. Table 1.2 montre deux situations si

deux ensembles différents de lots S1 et S2 sont sélectionnés pour une inspection.

Equipements de production | Niveau de risque
M1 300
M2 250
M3 450
M4 450

Table 1.1: Situation initiale.

Equipements | Niveau de risque Equipements | Niveau de risque
M1 M1
M2 M2
M3 450 M3
M4 450 M4

(a) Ensemble des lots S1 sélectionné. (b) Ensemble des lots S2 sélectionné.

Table 1.2: Exemple si deux ensembles des lots S1 ou S2 sont sélectionnés pour une
inspection.

Si I’ensemble des lots S1 est sélectionné et inspecté, le niveau de risque résultant
sera celui décrit dans Table 1.2a, c’est-a-dire une réduction du niveau de risque sur
les équipements de production M1 et M2. Si I’ensemble des lots S2 est sélectionné,
on observe une réduction du niveau de risque sur tous les équipements (M1, M2,
M3, and M4). Dans le premier cas, lorsque S1 est sélectionné, le niveau de risque est
fortement réduit pour les équipements de production M1 (=50) et M2 (=10) alors
que M3 et M4 conservent un niveau de risque tres élevé (=450). Dans le second
cas, quand ’ensemble S2 est sélectionné, le niveau de risque est réduit pour tous les
équipements. Cependant, dans ce deuxieme cas, le niveau de risque reste tres élevé
pour les équipements M1 et M2 en comparaison au premier cas ou l’ensemble S1

est sélectionné. D’ou la question suivante : est-il plus intéressant de sélectionner un
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ensemble des lots dont la mesure ou l'inspection permettrait de fortement réduire le
niveau de risque sur un ou deur équipements, ou bien sélectionner un ensemble de
lots qui permettrait de réduire de tres peu le niveau risque sur tous les équipements
¢

Pour répondre a cette question, l'indicateur GSI a été développé pour donner
un poids ou score a chaque ensemble des lots S en fonction des parametres de

controle et de la capacité de controle disponible. L’ensemble des lots S peut étre
vide (Table 1.1) ou non (Table 1.2).

Notations :

e R : nombre de risques,

o WL,: Warning Limit pour le risque r,

e [L, : Inhibit Limit pour le risque r,

e RV, : valeur actuelle pour le risque 7,

e G, : gain sur le risque r si le lot [ est inspecté,

e NRV,;: nouvelle valeur du risque si le lot [ est inspecté, c’est-a-dire NRV,.; =
RV, — G,;.

e NRV,.(S) : nouvelle valeur du risque si les lots dans I’ensemble S sont in-
spectés, c’est-a-dire NRV,.(S) = MiniesNRV,,.

Pour les controles défectivité, le risque RV, correspond au Wafer-At-Risk (W AR)
pour I’équipement de production r. Le W AR est le nombre de wafers ayant subi
une opération de fabrication sur I’équipement de production r depuis le dernier
controle réalisé en défectivité. Le gain G, est la valeur de réduction du WAR sur
I’équipement r si le lot [ est controlé. Deux parametres de controle sont définis :
Warning Limit et Inhibit Limit. La Warning Limit W L, correspond a la valeur
du WAR au-déla de laquelle la situation commence a devenir critique en terme
de controle. L’Inhibit Limit IL, est le nombre maximum de wafers qui peuvent

subir une opération de fabrication sur un équipement de production entre deux
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opérations de controles. Le dépassement de cette limite (IL,) pour le WAR peut

entrainer ’arrét de 1’équipement de production r.

En utilisant les parametres ci-dessus, deux formules GSI calculant un score ont
été proposées (voir Chapter 6 pour plus de détails). Plus faible est le score GSI
associé a un ensemble S, meilleure sera la situation au sein de la production si
I’ensemble S est sélectionné et inspecté. La premiere formule GSI ne considere que
la valeur I L, dans la détermination du score ou poids a associer a chaque ensemble
des lots S':

GSI(S)=>_

r=1

IL, IL,

(M)”B . (M)]

La deuxieme formule GSI integre, en plus de la valeur de ' L,., la valeur de W L,

dans le calcul du score a associer & S :

. NRV\ \ V/# NRV, WL \\*
GSI(S) = Z Min | 1, % + | Maz |0, LLy WLIL’“
— r 1 . r
' L. L.
ou

R 1/8 @
NRV, NRV, — WL,
GSI(S) = Min | 1, —— M 0, —————
=3 (o (13752)) (oo (0250 |

Les deux formules GSI sont utilisées dans deux algorithmes GSI (GSI-SA-1
et GSI-SA-2) pour I’échantillonnage dynamique et intelligent des lots (c¢’est-a-dire

sampling, skipping, et scheduling).

1.4.3.2 Algorithmes du GSI (GSI-SA-1 et GSI-SA-2)

Les algorithmes GSI sont basés sur les formules GSI, la Warning Limit, 1’ Inhibit
Limat, et certaines valeurs de seuil appelées thresholds. Les valeurs de seuil permet-
tent de maitriser le temps de cycle des lots en évitant de sélectionner et placer dans

la file d’attente des lots ayant un gain, mais qui risquent de ne jamais étre mesurés
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a cause de l'arrivée sans cesse des lots ayant une valeur ajoutée plus importante.

L’objective est double :

1. Echantillonner dynamiquement les lots tout en assurant une utilisation opti-

male de la capacité de controle disponible.

2. Minimiser le risque sur I’ensemble de la production tout en évitant au maxi-
mum d’atteindre ou dépasser la valeur de I’ Inhibit Limit qui pourrait entrainer

I’arrét des équipements de production.

Trois différents seuils (threshold) ont été définis. Ils correspondent a des valeurs

au-déla desquelles des actions spécifiques doivent étre prises rapidement :

1. Seuil minimum (7};,) = gain minimum que doit apporter la mesure d’un
lot pour que le lot soit sélectionné et placé dans la file d’attente lorsque cette

derniere est vide.

2. Seuil maximum (7),,) = gain minimum que doit apporter la mesure d’un
lot pour que le lot soit sélectionné et placé dans la file d’attente lorsque cette

derniere est pleine.

3. Metrology threshold (7)ctr0) = gain minimum que doit apporter la mesure
d’un lot pour rester dans la file d’attente lorsqu’un autre lot vient d’étre

mesuré'?.

Le seuil minimum (7,,) est utilisé lorsque la file d’attente est vide. Le seuil maxi-
mum (74, ) est utilisé lorsque la file d’attente est pleine. Lorsque la file d’attente est
partiellement remplie, le seuil utilisé est proportionnelle la taille de la file d’attente,

c’est-a-dire :

NBQ

Threshold = Thiim + W

* (TMam - TM@n)

107 chaque fois qu'un lot est mesuré, les gains apportés par les lots présents dans la file d’attente
sont impactés et donc recalculés.
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ou NBQ est le nombre des lots dans la file d’attente, et SQ la taille maximale de
la file d’attente.

Les trois seuils (Thsin, Thiae €6 Thretro) sont basés sur le GSI, c’est-a-dire que le

gain de chaque lot [ est toujours évalué parmi un ensemble S des lots :

 asIsu{ly

Gain(l) =1 GSI(S)

€ [0,1].

Gain(l) est strictement positif car l'inspection d’un lot ne peut qu’améliorer la
situation au sein de la production. En d’autres termes, I'inspection d’un lot ne peut

pas augmenter le niveau de risque dans la production.

Les deux algorithmes GSI présentés dans cette section ont été implementés et
évalués en utilisant le simulateur S5 développé par 'Ecole des Mines de Saint-
Etienne [104] dans la cadre du projet Européen IMPROVE!!. Plus de détails sont
disponibles dans Chapter 6.

Notations :

e Sinitia - ensemble des lots présents dans la file d’attente,

e NBQ : nombre de lots dans Siniiar (NBQ = |Sinitial]), ¢’est-a-dire le nombre
des lots dans la file d’attente,

e S() : taille de la file d’attente,

e NbHIL(S) : nombre des Inhibit Limits violés (c’est-a~-dire NRV, > IL,) si

I’ensemble des lots S est sélectionné pour une inspection,

e NOWL(S) : nombre des Warning Limits violés (c’est-a-dire NRV, > WL,) si

I’ensemble des lots S est sélectionné pour une inspection.

A. Algorithme du GSI-1

Le premier algorithme GSI (GSI-SA-1) détermine le meilleur ensemble des lots

S* et utilise la formule GSI-1, c¢’est-a-dire :

HImplementing Manufacturing science solutions to increase equiPment pROductiVity and fab
pErformance.
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(M) ()]

Si le nombre des lots déja présents dans la file d’attente d’inspection est stricte-

GSI(S)=>_

R
=1

T

ment inférieure a la taille maximale de file d’attente, c¢’est-a-dire NB(Q) < S, alors
seul I'ajout d’un lot [ dans Si,ina est évalué et comparé au non-ajout de [. Sinon,
c’est le cas ou NB(@Q = S(@Q, et donc toutes les combinaisons associées au retrait d’'un

lot I € Sipitiar dans Sipitiar €t Pajout de | dans Sjpiiq sont évaluées.

Dans I’algorithme ci-dessous, SS représente un ensemble d’ensembles des lots.

GSI-SA-1 — Sélection du meilleur ensemble des lots S* en utilisant
IL, WL, et la formule GSI-1

1:  Initialisation : S* = 95,1

2:  Si NBQ = SQ alors

3: SS =10

4: Pour chaque lot I’ € Sipitia

5: SS =55U {Sinitial \ {l/} U {l}}
6: Fin Pour

7:  Sinon si NBQ < SQ alors

8: SS = {Sinitiat U {l}}

9: Fin Si

10: Pour chaque ensemble des lots S € SS
11: Si NbIL(S) < NbIL(S*) alors

12: S*r=S5

13: Sinon si NbIL(S) = NbIL(S*) et NbW L(S) < NbW L(S*) alors
14: S*=8

15: Sinon si NbIL(S) = NbIL(S*) et NbW L(S) = NbW L(S*) alors
16: Si GSI(S) < GSI(S*) et

NB
[1 — GS[(S)/GS[(Smnwl)] > TMin + S—C2Q *x (TMa:c — TMm) alors
17: S =9
18: Fin Si
19: Fin Si

20: Fin Pour
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B. Algorithme du GSI-2

Le second algorithme GSI (GSI-SA-2) utilise la formule GSI-2 :

NRV\ \ /* NRV, WL, \\*
GSI(S) = Z Min | 1, % + | Max | 0, LLy WL]LT
—1 T 1— T
IL, IL,

Contrairement au premier algorithme GSI, les valeurs de Warning Limit et In-

hibit Limit ne sont plus des limites a éviter.

GSI-SA-2 — Sélection du meilleur ensemble des lots S* en utilisant
la formule GSI-2

Initialisation: S* = S;,itia
Si NBQ = SQ alors
SS =10
Pour chaque lot I’ € Sinitia
SS = SSUA{Sinitia \ {U'} U{l}}
Fin Pour
Sinon Si NBQ@ < S(Q alors
SS = {Sinitia U{l}}
Fin Si
FPour chaque ensemble des lots S € SS
Si GSI(S) < GSI(S*) et

[1 —GSI(S)/GSI(Sinitiat)] = |Trrin +

12: S*=9
13: Fin Si
14: Fin Pour

e S N S A A > e

= O

NBQ
SQ

% (Thviaz — Thiin) | alors

La prochaine section présente un résumé du programme MILP développé pour
calculer les valeurs optimales de Warning Limit et Inhibit Limit dans le but d’optimiser

I’échantillonnage dynamique au travers des algorithmes GSI.
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1.4.4 Optimisation d’échantillonnage dynamique : MILP

Cette section présente un partie du programme linéaire mixte que je propose
dans ma these pour calculer les valeurs de Warning Limit et Inhibit Limit pour
chaque équipement de production en fonction d’un historique de production. Deux
autres versions améliorées du programme intégrant le délai entre les opérations de
fabrication et les qualifications des équipements ont été proposées et le lecteur pourra

trouver plus de détails dans Chapter 7.

L’objectif est de déterminer des limites “réalistes” qui permettent aux algo-
rithmes GSI de prendre des décisions pertinentes et donc sélectionner les meilleurs
ensembles des lots a controler. On cherche donc a minimiser 1’ezposure (risque
global) en prenant en compte le volume total de la production, la criticité de chaque

équipement, et le temps nécessaire pour valider chaque équipement.

Parametres :

e [, : exposure pour 'équipement de production ¢ (c’est-a-dire le cout financier
associé a chaque wafer ayant subi une opération de fabrication sur un équipement

de production t).
e V, : volume de la production sur I’équipement t.
e Pmy; : temps de mesure pour valider I’équipement de production ¢.
e Kjax : nombre maximum de mesure pour chaque équipement de production.

e CAPA : capacité totale (donnée en temps) pour la mesure.

M : nombre des équipements de production.

Variables :

o [L;: Inhibit Limit de ’équipement de production t.

e d¥ : variable binaire égale & 1 si le nombre de mesure pour valider 1’équipement

de production ¢ est k, 0 sinon.
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o Fyax : exposure maximum.

Le modele MILP est le suivant :

Minimiser Eyax (1.6)
Sujet a :
Eyax > E¢xILy Vte{l...M}. (1.7)
Kpmax v
ILy> > —xdf vte{l...M}. (1.8)
k
k=1
Kpax
> odf=1 vte{l...M}. (1.9)
k=1
M Kyax
S > Pmyskxdf <CAPA. (1.10)
t=1 k=1
IL; >0 Vte{l...M}. (1.11)
d¥ € {0,1} Vvte{l1...M}, Vke{l...Kpax} (1.12)
Eyax > 0. (1.13)

Les contraintes 1.7 définissent 1’ ezposure maximum parmi tous les équipements
de production. Cet ezposure est minimisé dans la fonction objectif. Les con-
traintes 1.8 expriment que 'Inhibit Limit de I’équipement de production ¢ (IL;)
est supérieur ou égal au volume de la production sur t divisé par le nombre de
mesure sélectionné pour valider 1’équipement de production ¢. Les contraintes 1.9
spécifient le nombre de mesure pour I’équipement de production t, c¢’est-a-dire que
une et une seule variable doit étre égale a 1. La contrainte 1.10 assure que la capacité

disponible de mesure ou de controle est respectée.
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1.5 Solutions Spécifiques : Prototypes et Indus-

trialisation

Dans cette section, je donne un apercu des solutions spécifiques que j’ai développées
dans la cadre de ma these pour valider les solutions générales que je propose.
Plusieurs prototypes ont été développés mais je ne donne qu’un apercu des deux
principaux (Figure 1.8 et Figure 1.9) qui ont conduits & une industrialisation des

concepts généraux de la these.

Last update : 20110824 14:00:00
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Figure 1.8: Vue générale du prototype CMP-WAR.

Le premier prototype (Figure 1.8) a été développé pour I’évaluation en temps réel
du risque ( Wafer-At-Risk) et 'amélioration du dispatching (c’est-a-dire la répartition
des wafers ou lots sur les équipements de production) au sein de la production. Le
second prototype (Figure 1.9) a été développé pour optimiser la gestion des excur-
sions'? en fournissant d’une part la liste des équipements de production les probables

de la source de ’excursion, et d’autre part, la liste des lots a controler rapidement

12Une excursion intervient dans la production lorsque le contréle sur un lot ou un équipement
est jugé hors spécifications.
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Figure 1.9: Vue générale du prototype de gestion des excursions.

pour confirmer ou infirmer ’excursion.
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1.6 Conclusion et Perspectives

Dans ma these, je me suis intéressé au probleme de la mise ccuvre industrielle
des plans de controle dynamique. Apres avoir analysé et mis en évidence la com-
plexité de la conception des plans de controle dans une industrie multi-produits,
j’ai développé et proposé de nouvelles solutions que j’ai fait validé au travers des
prototypes, simulations, et intéractions avec différents experts. Toutes les solutions
proposées ont été validées industriellement et certaines ont été industrialisées au sein
du site 300mm de STMicroelectronics a Crolles, en France. Les différentes solutions
ont été comminquées et publiées dans des congres, conférences et journaux interna-
tionaux. Une des communications a été recompensée avec le prix de Best Student
Paper Award [60].

Plusieurs pistes ont été explorées ouvrant la voie a diverses perspectives. Les
deux principales perspectives concernent 'optimisation de la gestion des ex-
cursions et ’échantillonnage prédictif. Concernant la gestion des excursions, le
champ d’analyse (investigation ou recherche de la source du probleme) pourrait étre
réduit en utilisant la notion d’ensemble dominant ou le lot prioritaire a inspecter
serait celui qui apporte le maximum d’informations sur I’ensemble des lots poten-
tiellement impactés. En ce qui concerne ’échantillonnage prédictif, 'idée serait de
ne plus sélectionner les lots en considérant uniquement les lots devant une étape de
controle mais d’intégrer aussi des “lots futurs” c’est-a-dire des lots supposés arriver

devant 1’étape de contdle dans un “futur” tres proche.
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General Introduction

Semiconductor manufacturing is made of numerous and repetitive processing
steps resulting in cycle times of more than two months. With the reduction in de-
vice sizes, re-entrant flows (repetition of similar processing steps), and the variety of
products to be manufactured (more than 200 products in high-mix plants), the com-
plexity has strongly increased in recent years. This complexity brings semiconductor
manufacturers to introduce several layers of controls in order to guarantee high yield
within production. However, most control operations are considered as non-added
value and thus, when a control operation is introduced, cycle times increase with
consequences on the final product costs. In the context of worldwide competition,
companies have to provide pricing power against competitors. This implies that
companies have to be able to sustain high yield with a minimum number of control
operations.

Several works have been conducted on sampling techniques with the aim of min-
imizing the number of control operations without increasing the risk (i.e. material
at risk) in production. Compared to static techniques, dynamic sampling tech-
niques are more suitable for modern and high-mix semiconductor plants because
they integrate factory dynamics and variability. However, the problem is in the
industrial implementation of dynamic sampling approaches. The specificity of each
semiconductor plant, the I'T infrastructure, the variability of production flows, the
heterogeneity of information systems, and the customer requirements are factors
that strongly increase the complexity, leading to impracticability of many sampling
algorithms proposed in the literature. The required investments are such that com-

panies prefer to keep static sampling strategies whereas their inability to quickly
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detect process drifts has already been pointed out.

This thesis aims at analyzing the efficiency of sampling policies, identifying
breaches of controls, i.e. places throughout the process flow where control oper-
ations might be introduced or removed, assessing the added-value of each control
operation, understanding why dynamic sampling techniques are seen efficient but
most of the time impracticable, and providing novel solutions and approaches that
can be industrialized. The thesis is realized within the framework of the Conven-
tions Industrielles de Formation par la REcherche (CIFRE), in accordance with
the Association Nationale de la Recherche Technique (ANRT) which supports com-
panies that hire PhD students. The thesis is also written as a part of the Euro-
pean Union project IMPROVE (Implementing Manufacturing science solutions to

increase equiPment pROductiVity and fab pErformance).

Reading plan

Generally, a scientific work is done according to the following schema [14]:

1. Problem definition,

2. State of the art review (literature review),
3. Case study,

4. Solution proposal,

5. Tests and validation,

6. Generalization and perspectives.

However, this is a thesis in an industrial context through a joint collaboration
between industry and academics. There is an industrial problem and a research cen-
ter must define the problem and propose innovative solutions. The case study comes
before the literature review and proposed solutions are based on existing systems.

Our work is thus structured into 7 main chapters:
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- Chapter 1: Industrial Context.

- Chapter 2: Problem Identification and Research Issues.

- Chapter 3: Literature Review on Sampling Techniques.

- Chapter 4: Analyzing and Optimizing Control Plans.

- Chapter 5: Implementing Smart Sampling Policies.

- Chapter 6: Optimizing Smart Sampling Policies.

- Chapter 7: Industrial Developments and Implementations.

This decomposition can be linked to the TRIZ' approach [4] developed in 1946
by Genrich S. Altshuller for solving technical problems. The TRIZ approach is

characterized by four main steps (Figure 1.10):

1. Problem identification and formulation.
2. Concept generation and comparison.
3. General solution.

4. Specific solution embodiment.

Correlation
) Operators ) )
Generic Problem Generic Solution
Category Category
-
Classifigation Specialisation
k.
Specific Problem Specific solution

Figure 1.10: General problem solving model (TRIZ approach) [90].

Using the TRIZ approach, we can classify our work into these four main steps:

- Chapters 1 and 2 refer to problem identification and formulation.

- Chapter 3 refers to concept generation and comparison.

BTeoriya Resheniya Izobretatelskikh Zadatch. In English, it is defined as Theory of Inventive
Problem Solving (TIPS).
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- Chapter 4, 5, and 6 refer to general solutions.

- Chapter 7 refers to specific solution and embodiment.

Conceptgeneration and
comparison

Chapter 5

Probhlem identification and
formulation

Specific solutions and
embodiment

Figure 1.11: Thesis reading plan.

Chapter 1 introduces the industrial context. A description of the semiconduc-
tor industry is given, the main manufacturing steps are introduced, and controls

performed throughout the production are presented.

Chapter 2 describes the problem tackled in this thesis. The specificities of STMi-
croelectronics Crolles are presented, and the thesis questions are introduced.

Chapter 3 surveys the literature on sampling techniques for controls in semicon-
ductor manufacturing. Each sampling technique is reviewed through statements,

critical analyses, and discussions on industrial deployments.
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Chapter 4 analyses the impact of variability on static control plans, and intro-
duces the fab-wide indicator (IPC) that has been developed to support the industrial

implementation of dynamic control plans.

Chapter 5 introduces the dynamic sampling algorithms that have been developed
within the framework of the European project IMPROVE.

Chapter 6 is devoted to optimizing solutions presented in chapter 4 and chapter
5.

Chapter 7 presents some prototypes that have been developed and deployed
within the company during the thesis. These prototypes have been used to vali-
date the novel approaches and algorithms that have been industrialized throughout
the thesis.

The last part of the document is dedicated to a general conclusion and perspec-

tives for further research.
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Chapter 2

Industrial Context

This chapter introduces the context of the thesis: Semiconductor manufacturing
and controls during the production. The focus is put on controls and especially on
in-line measurements that aim at monitoring process and tool variations. The de-
scription of the different types of controls shows an important complexity linked to
the size of manufactured products (Integrated Circuits). This thesis mainly addresses
Defectivity controls where the objective is to detect and reduce particles generated on
wafers during the production. All production tools are concerned and the variability
within the production environment is such that the efficiency of a Defectivity control

plan is never guaranteed. Hence our interest for this challenging problem.

2.1 Introduction
2.2 Semiconductor Manufacturing
2.3 Controls in Semiconductor Manufacturing

2.4 Conclusion
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2.1 Introduction

Semiconductor industry is driven by the increasing demand of Integrated Circuits
(ICs) in almost all domains (Automotive, communication, entertainment, multime-
dia, health care, energy saving, etc.). This strong demand leads to the pressure
of delivering more and more products within reduced periods. However, manufac-
turing an IC requires more than 300 processing steps with a cycle time of at least
two months. Moreover, with the device sizes reduction, the complexity is such that
several types of controls are necessary to maintain high yield and high quality of
products. Before, during, and after each processing step, several types of controls
are performed to verify that the process is still under control and that products
meet customer requirements. The challenge is therefore in finding the best trade-off
between controls and risk! on the production. This chapter introduces the semicon-
ductor environment, describes the main steps of fabrication, and the different types

of controls.

Section 2.2 presents the production environment, the manufacturing stages, and
the IC characteristics. In Section 2.3, we describe the levels and types of controls,

and precise our focus within the framework of this thesis.

2.2 Semiconductor Manufacturing

The main activity of a semiconductor industry is to realize electronic compo-
nents, interconnect them, and obtain chips or ICs. These ICs are used in quite di-
verse domains of everyday’s life to perform different kind of functions (Temperature
regulation, autopilot, television, smart-phones). Figure 2.1 shows how electronic
chips drive our daily life. In almost each activity or each product, we use electronics

chips.

!The concept of risk and associated actions is historically linked in industry to the area of
quality and process control [7] [53]. In this thesis, the term risk is related to the material at risk,
i.e. the potential loss if a problem occurs in production.
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Elsewhere:

Cash dispenser,
Smart phone,
Tablet. ..

At home Washing
machine, CD, TV,
DVD, Blue-Ray...

At work:
Printers,
scanners,
PC...

In car Door opening,
GPS ABS, Air Bag,
Digital Radio...

Figure 2.1: Integrated Circuits or chips in everyday’s life.

The type and size of each IC varies depending on the targeted application. The
trend toward mobility (reduced energy consumption) and the need for ever increasing
computing power (increased speed) drives the race toward ever shrinking dimensions.

The dimensions become so small that a special environment is required to avoid all
kind of contamination.
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2.2.1 Production environment

Integrated Circuits are manufactured in a specific environment called clean
room (Figure 2.2). In the clean room, operators and engineers are covered from
head to feet, and air is filtered and renewed every thirty seconds. Particles of a
few hundredths of a micron in size are like meteors in this environment and might
cause circuit faults and product failure. The average surgical operating room is

three times dirtier than the dirtiest clean room in the world [74].

Figure 2.2: Clean room.

Several types or classes of clean rooms exist depending on the IC to be manufac-
tured. The classification is performed based on the number of particles allowed per
m? of air into the production environment. For example, a clean room of class 2
corresponds to a clean room where 10? particles greater than 0.1um of diameter
are allowed. An ISO standard classification is provided in Annex B.1 and further
details can be found in [97]. Several standards exist and the classification may vary

from a country to another.

ICs are manufactured on silicon wafers that are sliced with a circular shape in
order to minimize losses due to the wafer handling during the production. Figure 2.3

shows the evolution of the size of wafers through years. The trend is in increasing
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the wafer size for producing more and more chips simultaneously (i.e. on the same

wafer)?.

4inches

1975 5inches
1985

Figure 2.3: Wafer size evolution.

2.2.2 Manufacturing stages

Manufacturing stages for ICs are usually divided in two main parts [101]: Front-
End (FE) processing and Back-End (BE) processing.

1. Front-End processing consists of several process steps that are repeated many

times throughout the production® (Figure 2.4):

— Ozidation. Silicon dioxide (Si0,) is produced by heating the wafer to

very high temperatures in the presence of oxygen.
— Photolithography. Circuit patterns are formed by masking and etching
processes.

— Implantation or doping. After etching is completed, the exposed surfaces
may be doped. Different types of dopants are added by ion implementa-

tion followed by diffusion processes.

2The more the number of chips produced on a wafer, the larger the reduction in the cost per
die (or circuit).
3During the Front-End processing, wafers are manufactured by lots of 12, 25, or 50 wafers.
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— Chemical deposition. Thin films of various material are deposited on the

wafer through several processes (e.g. Chemical Vapor Deposition [CVD]).

— Interconnect creation. Sputtering or evaporation is used to create con-

ducting circuits between individual electronic components and devices.

Ingot

\Mely )
] \ Ingot

o’ (000
growth '

Wafer slice |
and polish s @ — \Z
o Dope Wafer
Oxidize, diffuse Pattern test
implant,
evaporale,
y  depaosit

Waler processing

Figure 2.4: Front-End Processing [101].

2. Back-End processing refers to the testing, assembling, and packaging. It is
performed at the end of the Front-End processing. During this second phase
of fabrication, wafers are electronically tested for functionality and separated
into individual dice (Figure 2.5). Each die is set into a chosen package, wire-
bonded to the outer perimeter of the package, and finally tested for assembly
onto a printed circuit board. Two main steps are defined: Testing-separation

and Attachment-Wire Bonding-Packaging.

— Testing and separation. During the Front-End processing, several tests
are performed after each processing step (oxidation, etching, layering,
and doping). During the Back-End processes, these test dice are put
through an additional series of computer-controlled tests in which fine,

needle like probes contact the aluminum bonding pads of the test dice. If
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results indicate that the processing parameters were within proper limits,
then each die is tested for functionality. Dice that need to be rejected are

marked with an ink spot.

— Attachment and Wire Bonding. Good dice are seated into a desired pack-
age. Wire bonding makes the electrical contacts between the top of the
die and the surrounding lead frame of the package. The package and
packaging material chosen for a chip depend on the IC’s size, number
of external leads, power and heat dissipation, and intending operating
environment.

Molding compound

Bond wires
Die

Dic-support paddle

Lead frame —" \_ spot plate

Figure 2.5: Back-End Processing [101].

In STMicroelectronics Crolles in France, only Front-End processing
steps are performed. Therefore, within the framework of this thesis, we
focus only on the Front End processing and especially on controls between

processing steps (oxidation, etching, layering, doping, etc.).

2.2.3 Integrated circuit

An IC is generally made of four main components: Resistances, diodes, capac-
itors, and transistors [14]. These four main components are firstly realized on the
silicon wafer before being interconnected to perform specific functions (e.g. auto-
matic switch or regulation). Among these four components, the transistor is the

principal component because of its ability of amplifying solids [73].
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2.2.3.1 Transistor

A transistor is a combination of two diodes sharing a common region. There
are two main types of transistors: Bipolar and Metal Oxide Semiconductor (MOS)
transistors. Bipolar transistors are used to perform analog functions of power at
very high frequency. MOS transistors are used for counting or memorizing i.e. per-
forming logical or binary functions. Most of the integrated circuits are based on
MOS transistors and in the 300mm site of STMicroelectronics Crolles, only MOS

transistors are used?.

A transistor is made of four terminal devices including a gate, a source, a
drain, and the bulk (silicon). Among these four terminals, the gate is the one
that determines the technology node. Figure 2.6 gives a scale factor of the gate

length in today’s transistors.

@ 13500 km 1000 km 4m 1m

& 300 mm 90 nm 22 nm
Wafer Circuit Standard cell Transistor

Figure 2.6: Transistor size - scale factors.

4In the 200mm site of STMicroelectronics, BICMOS (Bipolar + MOS) transistors are used.
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2.2.3.2 Technological evolution

The technological evolution in semiconductor manufacturing is linked to the
transistor gate length which determines the technology node. This length decreases
regularly following Moore’s Law [6]. The Moore’s law has been edited in 1965 by
Gordon E. Moore. It states that the number of transistors placed in the IC will
double every two years due to the size reduction. Since its edition, the Moore’s law
has become one of the driving principle of the semiconductor industry. All manu-
facturers are challenged with delivering annual breakthroughs ensuring compliance
with Moore’s law. In 1975, the law has been rectified by bringing to 18 months
the rhythm of doubling the number of transistors within an IC. In 1997, Gordon E.
Moore predicted the end of his law in 2017 because of the physical limits. Today,
the trend is to do “More than Moore” by focusing on the system integration
rather than the transistor density within the IC. For example integrating a camera
into a cellphone or a cellphone into a PDA®. One of the main consequences of the

Moore’s law is the significant reduction in product prices (Figure 2.7).

Figure 2.7: Impact of Moore law (Cost of 1MB of memory on silicon).

5Personal Digital Assistant.
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2.3 Controls in Semiconductor Manufacturing

In semiconductor manufacturing, controls are necessary evils because of the pro-
hibitive amount of time required to manufacture a chip [58]. Different levels of
controls are defined and, for each level of control, several types of control are per-

formed.

2.3.1 Levels of controls

Six main levels of controls can be defined [8]:

1. Facilities or technical installations. To guarantee the best possible envi-
ronment for the fabrication of wafers, a huge number of parameters have to

be monitored regarding the technical installations:

— Clean-room ambient characteristics (temperature, humidity, pressure,

contaminants).

— Fluids, liquids, and gases (temperature, pressure, flow, contamination,
etc.).

— Energy (load, intensity, voltage, consumption, etc.).

— Process outputs, wastes, gases, etc.

2. Equipment sensors. To ensure efficient processing operations, all variations
have to be detected and analyzed. For that, several types of sensors are placed
on different production tools to trigger alarms and actions in manufacturing

systems.

3. Fab or In-Line measurements. This level of control groups measurements
that are performed on silicon wafers with a large variety of techniques: Ellip-
sometry, reflectivity, scanning electron microscopy, visual inspection, pixel to
pixel comparison, resistivity, scatterometry, etc. Measurements are classified

according to the following characteristics®:

6The list is not exhaustive.
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— Impact: Destructive or non-destructive.

— Support: Product wafers, Non-Product Wafers (NPW), monitoring wafers,

dummy wafers, or test wafers.
— Throughput or capital cost of the measurement.

— Easiness of the required qualifications.

4. Parametric testing. Once transistors and other various devices are connected
through metalization on the wafer, it is possible to control their performance
versus their specifications. These measurements generally address basic pa-
rameters of electrical devices: Transistor voltage thresholds, leakage current,
oxide breakdown voltage, via resistance, etc. Measurements are done on stan-
dard test structures placed in wafers scribe lines. All the wafers are measured

on a limited number of sites per wafer.

5. Final or Functional tests. Once the front-end process is completed, semi-
conductor devices are subjected to a variety of electrical tests to determine
if they function properly. The proportion of devices on the wafer found to
perform properly is referred to as the yield. The fab tests the chips on the

wafer with an electronic tester that presses tiny probes against the chip.

6. Physical Characterization and Wafer level Reliability. This last level
of controls is used to evaluate component life time under various stressing

conditions (humidity, temperature, corrosion, etc).

2.3.2 Types of controls

Several types of controls exist depending on the level of control. In this thesis, we
focus on In-Line measurements and especially on the types of controls related to
the process and equipment monitoring. There are five main types of controls: Fault
Detection and Classification (FDC), Statistical Process Control (SPC), Run-to-Run
(R2R), Virtual Metrology (VM), and Defectivity controls. The four first types of
controls (FDC, SPC, R2R, and VM) are elements of Advanced Process Control
(APC) [85] (Figure 2.8).
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Figure 2.8: Interaction of APC elements [85].

1. Statistical Process Control consists in using statistical methods to analyze

the process stability (Figure 2.9). Depending on the process state, different
actions (stop the process tool, adjust the process parameters, etc.) are taken
to achieve or maintain a state of statistical control. The objective is to con-
tinuously improve the process capability [55] [75]. Several SPC tools exist and
they are based on the so-called Western Electric Rules” [96].

. Fault Detection and Classification consists in statistically monitoring pro-

cess variations by analyzing the process tool parameters (temperature, pres-
sure, gas flow, optical emissions, etc.) [75] (Figure 2.10). During the process
fabrication, all the tool parameters are collected for each processed wafer. A
series of curves representing the evolution of these parameters during the time
of the process are plotted for each wafer. Based on these data collected on

both the tool and on wafers during their processing, different correlations are

"Western Electric Rules are decision rules for detecting “out-of-control” or “non-random” con-

ditions on control charts (control charts are tools graphically displaying the process stability or
instability over time).
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Figure 2.9: Statistical Process Control [75].

automatically computed. Whenever a problem is detected, the process tool
is automatically stopped and actions immediately taken. The main difference
between SPC and FDC is that FDC is a real-time based solution and can stop

the process tool before the end of a processing step [2].

e — DATA :> STATISTICAL
T COLLECTION ANALYSIS
)
PROCESS
TOOL

Stop the process tool if necessary

Figure 2.10: Fault Detection and Classification [75].

3. Run-to-Run is a closed-loop control solution to correct for process deviation
from the desired target (Figure 2.11). The technique consists in modifying
recipe parameters between production runs® to improve processing perfor-

mance. In serial processing, this method can just be applied between two

8A run can be a batch, lot, or an individual wafer.
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measurements [2]. It is an in-line technique like the FDC system. As illus-
trated in Figure 2.11, R2R controller is a supervisor that indicates whether
the automatic controller needs adjustment. It consists in manipulating the
set points (also know as recipes) of the underlying automatic controller in a
supervisory manner in an attempt to reduce the output variability. Two types
of control loops are used: Feed-Forward and Feed-Back. Feed-Forward
control loops are used to reduce the impact of variability observed on run N
by modifying the parameters of run N+41. Feed-Back control loops are used
to counteract possible process drift. Using a predefined model [2], the differ-
ence between the desired target and the actual measurement value on run N
is computed. This difference is used to adjust the parameters of run N+1 and

ensure that the desired target will be reached.

Process Qutputs
Process 2 >

Process 1

v

Automatic
Controller

Set Points
(Recipes)

Feed-Forward | RUD-to-Run | Feed-Back
Controller

Process Targets

Figure 2.11: Run-to-Run.

. Virtual Metrology consists in predicting measures, hence the term virtual

metrology, based on previous metrology measurements and FDC data [15]
(Figure 2.12). Wafer parameters are derived from upstream metrology (e.g.
process state, additional sensors, temperature, pressure, gas flow, etc.) by
using physical or statistical models, or hybrids models [26]. The objective is
to reduce direct measurements on the wafers and to provide additional virtual
measures to help alerting earlier when a process is drifting. The technique is
based on predictive models that can forecast the electrical and physical param-

eters of wafers, based on data collected from the relevant process tools [39].
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Figure 2.12: Virtual Metrology [39].

5. Defectivity control consists in detecting, analyzing, and reducing the num-
ber of defects generated on wafers during production (Figure 2.13). The phases
of analysis and reduction are also known as the review phase where defects

are first analyzed and then classified by type or class [46] [22].

(a)  Embedded (b) Simple parti-
particle. cle.

Figure 2.13: Examples of defects on wafers.

Detecting defects means deploying different tools and methods to capture
defects generated by production tools on product or non-product wafers. Two
kinds of detection are used: Optical Detection and Scanning Electron Micro-
scope (SEM).

Analyzing defects means deploying methods to examine defects detected on
wafers. Three main steps are performed during the analysis phase: Review,

classification, and source identification. The review phase consists in verifying
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if the defect found on a wafer is a known defect, i.e. if the defect has already
been encountered in the past and classified into a specified group of “known
defects”. The classification phase consists in defining new groups for new types
of defects or classifying them into existing groups. The source identification
phase consists in locating the source of the defect, i.e. identifying the produc-
tion tool that has generated the defect [61].

Reducing the number of defects means developing and deploying different
tools and methodologies in order to lower the number of classified or known
defects that may appear on wafers during processing steps. The main objec-
tive is to increase yield by reducing the number of bad wafers that may be

discarded during the final tests.

Compared to other types of controls, defectivity controls have the

specificity to potentially address all workshops and all production tools

within the Fab (Chapter 3). This specificity leads to an increasing com-

plexity when designing control plans because of the factory dynamics and

variability during production (Chapter 5). This explains our interest and

focus within the framework of this thesis.
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2.4 Conclusion

In this chapter, we have rapidly presented the context of this thesis: The Semi-
conductor industry. The main activity of this industry is to design and produce ICs
that are used in quite diverse domains of everyday’s life. The production is divided
into two main areas called Front-End and Back-End. The Front-End part consists
in manufacturing and interconnecting different components on wafers in order to
obtain ICs. In the Back-End part, ICs are individually tested, assembled, and pack-
aged depending on the targeted operating environment. In STMicroelectronics in
Crolles, France, the production is focused on the Front-FEnd part, and more than 300
processing steps are necessary to realize a functional IC. This huge number of steps,
combined the size of ICs (nanometer) and the non-reversibility of some processing

steps explain the importance of controls in such an environment.

The description of the different levels and types of controls helped us to un-
derstand the source of complexity linked to both the environment and the size of
products to be manufactured. In this thesis, we focus on controls related to the
process and tool monitoring, and especially on one of the most complex type of
control: Defectivity measurements. The particularity of defectivity controls is that
all the production tools and all areas of production may be concerned. In the next
chapter, we go in depth regarding defectivity controls and especially defectivity con-
trols in STMicroelectronics in Crolles France. We aim at identifying the problem

and defining methods to solve it efficiently.
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Chapter 3

Problem Identification and

Research Issues

Industrial research problems are not tackled the same way than theoretical re-
search problems. The problem must be clearly identified and formulated in order
to propose general solutions that can be industrialized. This chapter introduces De-
fectivity controls, specificities of STMicroelectonics Crolles in France, and research
issues in the industrial context. We aim at concretely understanding the problem,

formulating it, and defining strategies to solve it efficiently.

3.1 Introduction
3.2 Defectivity Controls and ST Microelectronics Specificities
3.3 Research Issues and Solving Approaches

3.4 Conclusion
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3.1 Introduction

The strong competition in semiconductor industry is such that companies are
called to search for different avenues to reduce production costs without impacting
quality of final products. One of the identified tracks is controls throughout produc-
tion. As more than 300 processing steps are required to produce a functional IC, the
trend is to include additional control steps in order to detect as quickly as possible
potential drifts. However, each additional control has impacts on the final product
costs and, therefore, missing to find the right trade-off between controls and risk i.e.
material at risk in production can lead to significant losses. The larger the num-
ber of products to be manufactured, the more finding a trade-off between controls
and risk becomes complex. This is especially true in high-mix semiconductor plants

where more than 200 products are run concurrently on hundreds of production tools.

In this thesis, we focus on defectivity controls that have the particularity to
address all production tools in all process areas. Each time a defectivity control
is performed, the risk related to one or several production tools is impacted i.e.
reduced. The danger of having redundant controls is thus increased with the number
of processing tools. Hence it is necessary to identify the right position for control
operations, remove redundant controls, and optimize the use of inspection capacity.
This chapter introduces defectivity controls, explains the complexity, and brings out
the challenges when designing an efficient and optimized control plan. Section 3.2
introduces in depth defectivity controls and, in Section 3.3, we present research

issues and solving approaches.

3.2 Defectivity Controls and STMicroelectronics

Specificities

Defectivity controls consist in detecting and reducing defects generated on wafers
throughout production. The aim is to increase yield and provide support for new
technologies or products. As introduced in Chapter 2, a defectivity control is a type

of in-line measurement performed between process operations during the fabrica-
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tion process. This type of control was originally used to understand the integration
issues of the main bricks' for a given product or, identify the main causes of yield
losses. Nowadays, the control of defectivity on products is seen as the most efficient
way to master yield excursions? in a production line. This is because measurements
done on bare wafers i.e. Non Production Wafers (NPW) or without pattern, are not
representative of the actual operation of a process step. Moreover, by using product
wafers for defectivity controls, there is no waste of productive time (machine) or

material (NPW, monitoring wafers).

One of the main characteristics of defectivity controls is that all production tools
are concerned. Each and every tool is a potential contributor to defectivity (even
the simplest tool has mechanical parts moving). By performing a defectivity control
on wafers of a lot, information is collected on the various tools that have been used

to process the considered lot so far.

3.2.1 Defectivity activity and defects types

The main target addressed by defectivity controls or measurements is the re-
duction of the average level of defects per cm? and per photo-layer (also known as
“D¢”), thus yield improvement. The activity of defectivity operators and engineers
is twofold: Inspection which consists in the detection of defects (number of defects
per wafer) and Review where subset of defects are analyzed and then classified by
type or class (Section 2.3.2). Several types of defects may appear depending on the

production step:

- Particles and arcing in the active zone (Figure 3.1),
- Voids (Figure 3.2),

- Scratches (Figure 3.3),

- Extra and missing patterns (Figure 3.4),

- Corrosions and plate-block (Figure 3.5),

!The term brick refers to a set of process operations that need to be performed for a given
technology.

2 An excursion is a deviation in process or product specifications. In other words, when a process
or production tool is out of specifications, an excursion happens.
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- Residues (Figure 3.6),
- Back-end type defects (Figure 3.7), etc.

(a) Embedded parti- (b) Simple particle.
cle.

Figure 3.1: Particles and arcing on wafers.

(b) Void type 2. (c) Void type 3.

Figure 3.2: Voids on wafers.

v T <o

(a) Scratch type 1. (b) Scratch type 2. (c) Scratch type 3.

Figure 3.3: Scratches on wafers.

All defects on wafers have consequences on the final products. If they are not
early detected, they can go through the production (Figure 3.7) and damage the
functionality of the final product (IC). Hence it is critical to develop and set up

specific methods and tools to capture the main defects as quickly as possible.
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Figure 3.4: Extra and Missing patterns on wafers.

(a) Corrosion 1. (b) Corrosion 2.

Figure 3.5: Corrosions and plate-block on wafers.

(a) Evolution of a defect. (b) Particle after de-
position.

Figure 3.7: Other types of defects.
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3.2.2 Techniques and tools

The diversity of defects generated by production tools on wafers is such that
several types of inspection tools are necessary to capture all potential defects. The
variety of tools and methodologies vary from one plant to another. Nevertheless, two
main systems can be distinguished [89] [21]: Dark-Field and Bright-Field. Both sys-
tems consist in collecting scattered and reflected light on the wafer. The Bright-Field
system collects both the scattered and reflected light through the same aperture to
obtain an image (Figure 3.8b). The Dark-Field system only collects the scattered
light. No part of the reflected light falls within the collection angle (Figure 3.8a).
The difference between these two systems allows both small defects (Dark-Field sys-
tem) and large defects (Bright-Field system) to be captured. The Dark-Field system
has a high throughput compared to the Bright-Field system [31].

U
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(a) Dark-Field system. (b) Bright-Field system.

Figure 3.8: Dark-Field and Bright-Field systems [31].

Most of the tools used today for defectivity controls work on image comparison.
Chips (on wafers) supposed to have the same image are compared. Based on the
difference detected between images, it is possible to identify and localize defects
on wafers [1]. This technique which was very expensive some years ago has been
greatly enhanced with the available computing power. Nevertheless, as the technique
is based on comparison of images, the set-up of measurement recipes is extremely

complex and specific to each product operation (pattern, contrast, color, etc.).
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Each time a defect is detected, several analyses need to be performed to identify
the source of the defect, i.e. the processing tool that has generated the defect on
the wafer [61] (Section 5.5).

3.2.3 Defectivity control plans and complexity

Defectivity control is instrumental to yield improvement when developing or
ramping up a technology in volume (engineering phase). Once the main issues are
identified and fixed, controls are relaxed and measurements are used to monitor
and control production tools. These controls are considered as non-mandatory since
they are not explicitly required to manufacture a functional IC. If they contribute
in maintaining high yield within the production, they increase cycle times. That is
why sampling is required to find a trade-off between yield and cycle time. Sampling
rates are usually set by technology, at the start of production, and take into account
different parameters such as the process criticality, the phase of integration, the ma-
turity of products, or the customer requirements. For example, an old technology
(e.g. CMOS120) will have a much lower sampling rate than a recent technology
(e.g. CMOS028). Failing to find the right trade-off between yield and cycle time

may lead to significant losses.

In a high-mix environment as in the 300mm fab of STMicroelectronics in Crolles,
more than 20 technologies are run simultaneously, production tools are sometimes
qualified to process more than 5 different technologies, process criticality varies from
one technology (or operation) to another, processing throughput is different from
one tool to another, each processing step requires a specific recipe for measurement,
and customer requirements are varying. Furthermore, to each technology is asso-
ciated one or several products. Each time a new measurement is introduced for
a new product or operation, the corresponding recipe has to be created and engi-
neered. Because of the variety of products running at the same time in the so-called
“high-mix fab”, doing this for every product is an overwhelming task. So, in such

production lines, products® are divided into two main groups: Measurable and

3The cost of recipe set-up is so high that the only products targeted are the so called “big
runners”’. As they are supposed to last a few months, they are seen as economically viable.
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non-measurable products. By extension, lots of a product which can be measured
in defectivity are said to be “measurable”, and the others are “not measurable”.
Moreover, because of the cost of defectivity measurement tools and of the ever vary-
ing volumes of products (customer demands), it is not possible or interesting to
measure all the lots of a given product. It implies that, among measurable lots, only
a limited number will be chosen for a control and only at some pre-defined steps.
The sampling is therefore done at lot start (beginning of the production flow)?* and is
mainly based on the experience of the engineering team. The objective is to control

at least 90% of production tools in less than 24 hours.

3.2.3.1 Defectivity control plans: STMicroelectronics Crolles

In the 300mm site of STMicroelectronics in Crolles, the number of products and
tools to be monitored is such that defectivity control plans are designed by tech-
nology depending on product specificities. For each technology, two matrices are
designed. One matrix giving the set of control operations activated for each group
of lots (Figure 3.9), and another matrix giving the depth of control, i.e. the set

of process operations validated or covered by control operations (Figure 3.10).

Figure 3.9 shows an example of the control plan for the CMOS065 technology in
the 300mm fab of STMicroelectronics. The column GENERIC_OPERATION gives
the list of control operations performed in the defectivity area. Different attributes
(DEF_C065_STANDARD, DEF_C065_FASTT, DEF_C065_FAST2,
DEF_C065_FAST3, DEF_C065_FAST4, DEF_C065_.FAST5, DEF_C065_OPTION)
are defined. These attributes are associated to different measurable lots corre-
sponding to a product of the CMOS065 technology. For each attribute, only a
certain number of control operations will be performed on the lot (see the “X”
in the graph). For example, if, to a measurable lot is associated an attribute
“DEF_C065_OPTION”, it implies that during the processing flow, only one con-
trol operation (18-O_STRIP_NSD) will be performed on this lot. This is the case

4Selecting lots at the start also guarantees that the same wafers will be inspected at operation
N and N+X, thus enabling an easy identification of “added defects” and simplifying the analysis
in the case a problem occurs.
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for all technologies running within the fab. The processing flow varies from one
technology to another, the names of attributes are different and specific to each
technology, and the number of control operations activated by attributes is differ-
ent. Some technologies can have more than 10 attributes. Considering an average
of 20 technologies with at least 6 different attributes per technology, the engineering
task consists in defining and updating 20 matrices with at least 120 attributes. This

is a challenging task considering the high probability of missing key parameters.

GENERIC_OPERATION

DEF_C065_OPTION

DEF_C065_FAST1
DEF_C065_FAST2
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Figure 3.9: Example of a control plan for the CMOS065 technology.

As defects created at operation X may still be observable at operation X+D (de-

pending on the “transparency” of successive process layers), one single defectivity
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measurement may validate several process operations (tools). So, a second matrix
giving the depth of control has to be designed. Figure 3.10 shows an example of this
second matrix for the CMOS065 technology. Defectivity control operations (G, I,

GENERIC_OPERATION

O_OXID_PAD
O_DEP_NIT_ACTIVE
O_DEP_HMASK_ACTIVE
O_DEP_AC_ACTIVE
O_DEP_OXIDE_ACTIVE
O_PHOTO_ACTIVE
0O_PHOTO_ACTIVE
O_ETCH_ACTIVE X X
O_ETCH_ACTIVE
O_OXID_LINER X
O_DEP_GAPFILL_STI X X
O_DEP_GAPFILL_STI
O_ANN_STI
O_CMP_STI
O_ETCH_ON
O_OXID_SACOX
0_OXID_SACOX
O_PHOTO_NISO
O_IMPL_NISO
O_STRIP_NISO
O_PHOTO_NWELL
O_IMPL_NWELL
O_STRIP_NWELL

== === ==

mrlm|—|=|T (MM |m@|=

=

= = ==

Z |Cl= (o= |a |2

=

Figure 3.10: Example of depth of control for the CMOS065 technology.

L, Q) are those reported in the first matrix (Figure 3.9) (1, 2, 3, 4). For example,
when a defectivity control operation is performed at “O_OXID_SACOX (Q)”, six
process operations are covered or validated (Figure 3.10): P, O, N, K, H, F. The
process operation “O_ANN_STI (M)” is not validated because of the experience of
the engineering team that concluded that no defect could be detected for that pro-
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cess operation when measuring at “O_OXID_SACOX (Q)”. Each technology has its

own matrix giving the depth of control.

Consequently, during the processing flow, whenever there is a need to know if
a lot has been flagged (i.e. selected for measurement at the start of production)
or sampled for a defectivity measurement in the next defectivity control operation,

four main steps need to be performed:

1. Identify the attribute associated to the lot.
2. Locate the current process operation of the lot.

3. Utilize the “depth-of-control” matrix (Figure 3.10) to determine whether there
is a defectivity control operation or a set of defectivity control operations that

can validate the process operation.

4. If there is a defectivity control operation that can validate the current process-
ing step, then use the matrix (Figure 3.9) giving the set of defectivity control
operations to be activated by each attribute to see whether the lot is flagged
(“X”).

Let us consider lot L1 currently in process operation O_CMP_STT (N) and hav-
ing O_DEF_C065_FAST1 as attribute. To know if lot L1 can be validated in the

next defectivity operation, four steps will be performed:

1. Identify the attribute associated to the lot: O_DEF_C065_FAST1I.
2. Locate the current process operation: O_-CMP_STT (N).

3. Utilize the depth-of-control matrix in Figure 3.10 to determine whether the
process operation O_CMP_STI (N) is validated by a control operation in de-
fectivity. In the matrix, we can see that O_CMP_STI (N) is validated by the
defectivity operation O_OXID_SACOX (Q) (“X” in the table).

4. Use the matrix in Figure 3.9 to see if the lot has a flag (or has been sampled)

for a control in the next defectivity operation. We check if there is a “X”
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indicating that lots having the attribute O_DEF_C065_FAST1 are sampled
for a control in the defectivity operation O_OXID_SACOX (4). Since this is
the case, lot L1 will be validated by a defectivity control in the next

operation. Lot L1 is “flagged” or “sampled” for the next defectivity operation
(O_OXID_SACOX).

The complexity very quickly increases depending on the number of technologies

that are run simultaneously and the number of products associated to each tech-

nology. Other parameters such as the process criticality and the capture rate® also

play an important role in the design of the defectivity control plan. They are not

explicitly modeled in the sampling or control plan but they contribute in increasing

or reducing the priority of lots depending on the production state. The next section

presents some of these parameters.

3.2.3.2 Factors increasing the complexity of designing control plans

Here are the main characteristics that contribute in increasing the complexity of

designing defectivity control plans: Production tool qualifications, kill ratio, capture

rate, Defect Work Request. These characteristics are discussed below.

e Production tool qualifications [36] [37] are related to the ability of pro-

duction tools to perform some predefined process operations. One of the main
goals when qualifying production tools is to ensure that tools are optimally
used and provide flexibility for the entire production. However, by doing this,
the focus is put on production tools, not on metrology or defectivity tools.
The problem is that, when the sampling strategy is defined at the start of
production, there is no information on the arrival of sampled lots in front of
defectivity tools. As defectivity controls address the uncertainty of processing
lots on production tools, some tools may have a high level of uncertainty while
others will keep a low level of uncertainty. Figure 3.11 shows examples of qual-
ifications of production tools for various operations. Operation O_OXID_PAD
can be performed by three different production tools: WOASIO1, WOASIO02,

5The capture rate represents the sensibility in detecting defects for a given processing operation.
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and WOASI03. These tools are also qualified for other types of operations (e.g.
O_OXID_LINER). Depending on the availability of tools or types of products
within the production, the priority will vary, some tools may be preferred

compared to others, and it will impact the defectivity control plan.

NERIC_OPERATION [EQPT NAWMET  [EQPT NAMEZ  [EQPT NAW
0_OXID_PAD WoAsID1 WOASID2 _WOASI03
0_DEP_NIT_ACTIVE _TASMI03 TINDYDZ -TASMID1({Ch)
0 DEP_HMASK_ACTIVE _TASMIO6
0 DEP_AC _ACTIVE WSS3001 WS53002 JWSS3003
0_DEP_OXIDE_ACTIVE .DPROF03 .DPROF06
0_PHOTO_ACTIVE L193cn4 _L193CD5 -L193C03(Re Pg)
0_ETCH_ACTIVE EL23503 JEL23504 JEL23505
0_OXID_LINER WOASID1 WOASIDZ _WOASI03
0 DEP_GAPFILL STI _DCENF03 _DCENF04
0_DEP_GAPFILL_STI _DCENF03 _DCENF04
0 _ANN_STI WFC3002 WoAsID1 _WOASI02
0 _CMP_STI .CREFAD1 _CREFADS
0 ETCH_ON WFC3003
0_OXID SACOX JWFC3002 JWOASID1 _WOASI02
0_OXID_SACOX JWFC3002 WOoASID1 _WOASI02

D PHOTO NISO JWWSS3001 JWSS3002 JWSS3003

Figure 3.11: Example of qualified tools per process operation.

¢ Kill Ratio (KR) defines the criticality of defects on wafers regarding the size
of patterns [1]. It is generally between 0 and 1 [72] and defines whether a defect
detected on a wafer is killer® (Figure 3.12) or not (Figure 3.13). Defectivity
control plans designed by technology do not explicitly include this parameter
(KR). Some process operations may be more critical than others because of the
size of patterns, the product types, or the types of operations to be performed.
Impacts on control are thus observed when there is a need to prioritize lots on
defectivity tools or perform additional control operations. The start sampling

plan is no longer respected.

e Capture Rate (CR) gives the percentage of defects that can be captured
or detected at a given control operation [86]. All control operations (e.g.
Figure 3.9) do not have the same CR because of the depth of control (e.g.
Figure 3.10) and the criticality (KR) of some process operations. The priority

6A defect is identified as “killer” when it will definitively hinder the circuit functionality. This
is linked to the size of the defect, hence its location in the circuit.
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Defects, Defectivity

KR is wvery critical because the
defect size is close tothe pattern
size.

Figure 3.12: Killer defects.
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Figure 3.13: Non killer defects.

is thus different when defining sampling rate per product or technology. Hence

an additional level of complexity.

Defect Work Request (DWR) is a specific term used in STMicroelectronics
Crolles to identify a lot that is sampled by the engineering team but informa-
tion is not recorded in the Manufacturing Executing System (MES). A DWR
is necessary when there is a suspicion in production and there is a need to
quickly analyze a lot. This lot should normally contribute to reduce the risk
level but, as no information is recorded in the MES, it is difficult to quantify
the risk reduction. Moreover, this is an additional task for engineers regarding

the sampling rate defined at the start of production.
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All these additional factors or parameters are not explicitly included in the initial
defectivity control plan but, they play an important role. They are considered by
engineers when defining sampling rates, and when performing controls throughout
production. It is hard to analyze and understand reasons for different sampling
rates without being a member of the defectivity engineering team or working in
close collaboration with defectivity experts. The large number of parameters to
consider requires a high level of expertise to assess the efficiency of the control plan.
This is one of the main motivations of this thesis: Try to think in a different way

and find smart solutions for such problems.
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3.3 Research Issues and Solving Approaches

In the previous sections, we saw that the complexity of designing a defectivity
control plan increases with the number of parameters (types of products, technolo-
gies, process operations, criticality, etc.) to include or consider depending on the
production state. There are situations where some controls need to be introduced
throughout production, other controls need to be removed or released, and others
are not even recorded in the automation system. One of the worst cases is when
additional control operations do not contribute to reduce the risk at all. Increasing
the number of control operations lead to instability because of the limited metrology
capacity. The workload for defectivity engineers varies depending on the production
state, there is no “standard” rule for prioritizing lots on defectivity tools, and the
level of integration (number of parameters to consider) is such that it is impossible

to assess the actual added value of controls or the efficiency of the entire control plan.

If there exist controls without actual added-value because of the complexity,
can we say that there are too much controls or lack-of-control? Can we identify
where control operations might be added or removed? What can we propose
to model and solve these issues? Is it possible to have a general solution that
could be understood by everybody and generalized for other types of controls than

defectivity?

3.3.1 Research issues

This thesis, linked to the efficiency of control plans (especially defectivity control

plans) tries to answer the three following main questions:
1. Over- or lack-of-control? And why?
2. Which kind of solution can be proposed, generalized, and industrialized?

3. How can the solution be optimized?
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3.3.2 Solving approaches

This is a thesis in an industrial context. The objective is to propose solutions
that can be, not only generalized, but also industrialized. We use the three following

premises of the TRIZ approach to characterize our problem [4]:

1. The ideal design with no harmful functions is a goal.
2. An inventive solution involves wholly or partially eliminating a contradiction.

3. The inventive process can be structured.

Based on these three premises of the TRIZ approach, we choose as supports for

the research: Interaction with experts and development of prototypes.

1. Interacting with experts helps us in understanding the industrial context,
the origin of the problem, and the complexity we may face. We aim at avoiding

traps and focusing on the final objective.

2. Developing prototypes helps us in testing and validating new algorithms
or techniques in an industrial context. We aim at progressively validating our
solutions in a production environment. As the efficiency of an algorithm or
technique may vary depending on its application, we aim at avoiding develop-
ing theoretically efficient algorithms that are impracticable when aiming for

industrial implementation.
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3.4 Conclusion

In this chapter, we presented the problem tackled within the framework of this
thesis and introduced our solving approaches. We described the defectivity con-
trol plan in the 300mm fab of STMicroelectronics in Crolles, and discussed the
complexity that motivates our research. The focus is on the efficiency of controls
throughout production. This thesis tries to answer whether there is over- or lack-of-
control regarding the current control plan, and propose general solutions that can

be industrialized and optimized.

In the next chapter, we survey the literature. We aim at identifying problems
related to our thesis questions especially on sampling techniques, classifying these
problems, and positioning our problem among solutions that have already been

proposed.



Chapter 4

Literature Review on Sampling

Techniques

This chapter provides a state-of-the-art' on sampling techniques (at lots and
wafers level) for non-mandatory controls in semiconductor manufacturing, and po-
sitions our problem in the literature. We observed that the specificities of each semi-
conductor plant is such that the efficiency of a sampling technique is directly linked
to the production environment. Hence, our focus is on adaptive and dynamic sam-

pling techniques that respond to the factory dynamics and variability.

4.1 Introduction

4.2 Sampling Techniques in Semiconductor Manufacturing
4.3 Static or Start Sampling

4.4 Adaptive Sampling

4.5 Dynamic Sampling

4.6 Conclusion

IPart of this chapter has been submitted for publication in IEEE Transactions on Semi-
conductor Manufacturing [67].
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4.1 Introduction

Sample measurement for a process parameter is a necessity in semiconductor
manufacturing because of the prohibitive amount of time involved in 100-percent
inspection while maintaining sensitivity to all types of defects and abnormality [91].
Moreover, a 100-percent inspection (or metrology) rate does not guarantee 100-
percent quality since, in semiconductor manufacturing, inspection is never totally
reliable and can easily introduce an error of almost the same order as the fraction
of defectives [76]. If the development of sampling techniques is not recent in semi-
conductor manufacturing [23] [19] [33], significant improvements have been observed
and, today, new challenges are being faced. Current computers offer the possibility
to handle applications that were judged “infeasible” five or ten years ago. This
opens the way for the development and implementation of very complex sampling

techniques.

This chapter surveys the literature on sampling techniques for inspection or
metrology steps (defect inspection or defectivity controls, critical dimension mea-
surements, overlay, thickness, and step height measurements) in semiconductor man-
ufacturing. We aim at identifying works related to our problem, and an-
alyzing solutions that have been proposed. We discuss the trade-off between
the cost of a measurement and the related cost in term of risk reduction, and the
development of effective sampling techniques. We collected the literature from dis-
sertations, working papers, technical reports, conference papers (Advanced Semi-
conductor Manufacturing and International Symposium on Semiconductor Manu-
facturing), and also from journals on Semiconductor Manufacturing, process control,
and operational research. Each article is reviewed through statements, critical anal-
ysis, and also discussions on industrial deployments of various sampling techniques

in semiconductor plants.

Through all of the papers browsed in our review, we observe that sampling tech-
niques can be classified into three main groups: Static or start, adaptive, and

dynamic sampling. Static or start sampling techniques are based on fixed rules
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not changed throughout the production. Adaptive sampling techniques consist in
adapting sampling rules defined at the start of the production. Depending on infor-
mation brought by other types of controls (statistical analysis, process variations,
maintenance, etc.), rules are adjusted in order to prevent potential drifts or reduce
the material at risk. Dynamic sampling techniques consist in selecting in real time
the best lots or wafers to inspect depending on the inspection capacity and the actual
situation within the production. No rule is defined at the start of the production
and the decision of selecting or not a lot is directly taken in front of the inspection

step, and based on information brought by the lot.

Section 4.2 presents a general overview of sampling techniques in semiconductor
manufacturing. In Section 4.3, we discuss static or start sampling techniques. Sec-
tions 4.4 and 4.5 are devoted to adaptive and dynamic sampling techniques respec-
tively. For each group in our classification (static, adaptive, and dynamic sampling
techniques), we analyze the different papers and articles using the six following indi-
cators: Year, mathematical technique, rule-based technique, industrial deployment,

simulation, and comparison with other techniques.

4.2 Sampling Techniques in Semiconductor Man-

ufacturing

In semiconductor manufacturing, sampling techniques vary depending on the set
of parameters to be monitored or production objectives. Three main groups are
defined in the literature [48]:

e Excursion monitoring and control aim at frequently monitoring the pro-
cess so that any process deviations are caught and the causes for the process

excursion are fixed.

e Process integration and yield improvement aim at adjusting the per-
centage of lots flagged at the start of their production (baseline lots) in order

to identify the main detractors for a given technology and eliminate them.
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For low-mix semiconductor plants, the percentage of lots flagged at the start
of production is adjusted in order to compensate the potential loss based on

measurement results.

e Defect detection and learning aim at learning on different defect types
and their mechanisms: Killer rates. The sampling rate has to enable defect
detection at a rate that is matched to the one of root-cause analysis and

problem fixing.

Among these three groups of sampling techniques, we only focus on excur-
sion monitoring and control, and therefore, the classification we propose (static,
adaptive and dynamic sampling techniques) concern this first group of sampling
techniques that includes defectivity controls. The objective is twofold: Reduce
the number of measurements without increasing the risk in production, and detect
as quickly as possible potential excursions. Missing to reach these two objectives
can lead to significant losses. Indeed, if the focus is only on the reduction of mea-
surements, the danger can be to miss the detection of potential excursions. When
a process is likely to be out of control, increasing the number of measurements can
help to detect excursions as quickly as possible. Similarly, if the focus is only on
excursion monitoring, the danger is to increase the number of measurements leading

to increased cycle times, and therefore increased product costs.
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4.3 Static or Start Sampling

Static or start sampling consists in determining a fixed number of lots to measure
at different manufacturing stages. The number of lots to measure depends on the
available inspection capacity, the maturity of the technology, and the process step
criticality [12]. The frequency and the sensitivity of the measurement are selected
in advance, at the start of production. The objective is to monitor and detect pro-
cess drifts and limit the material at risk [9] between controls. For example, if the
sampling plan specifies to control one lot every five lots, the objective is to limit the
material at risk to not more than five. Always measuring the same lots or wafers
enables the identification of the added defect density between sequential inspection
steps [30]. Another advantage is the simplicity of implementation and adequate

management of resources [12].

Static sampling is being widely used in most semiconductor plants. However,
it does not fit high-mix semiconductor plants because of its main drawbacks of not
taking into account the factory dynamics and variability. By always selecting the
same lots to measure, there is, for the selected lots, a strong impact on the cycle time
and an increased risk of yield losses due a higher number of steps and the significant
time spent in front of each inspection step. Nevertheless, start sampling is still used
during the phase of integration for some specific products. In some semiconductor
industries, especially in a low-mix context, where a production tool can be qualified
to process only a specific type of product, start sampling remains valid and some

optimized solutions can be designed.

Among papers surveyed in Table 4.1, note that, even if all papers are ap-
plied to a case study of a semiconductor plant, very few provide industrial deploy-
ments [94] [87] [43]. In [94], the study performed in an IBM plant to determine the
optimal sampling plan for the poly etch module is described. The goal is to minimize
both the risk for the product and the cost of inspection. Three decision variables
are considered in the study: Lot sampling interval, number of wafers per lot, and

process control limits. Results indicate that an optimal sampling plan may require
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Nurani et al. [68 1996 | *
Mclntyre et al. [52] 1996 * *
Tomlinson et al. [94] | 1997 oo
Scanlan et al. [84] 1998 *
Elliott et al. [25] 1999 *
Chien et al. [18] 2000 | *
Lee et al. [48] 2001 | *
Chien et al. [17] 2001 * *
Shumaker et al. [87] 2003 O
Xumei et al. [103] 2003 *
Wu and Pearn [102] 2006 | *
Kwang and Chin [43] | 2008 O

Table 4.1: Survey on static or start sampling

additional inspection capacity whose cost is much lower than the benefits. In [87],
a sampling method developed at Motorola is discussed. The method is based on
two steps: The first step consists in determining products that are good candidates
for sampling, and the second step performs analysis to determine the break-even
operating constraints. The method is developed and validated against historical
data. Results indicate a reduction of wafer test costs by a factor of 10. Kwang and
Chin [43] worked on data management. They present an industrial deployment of
an automatic push-pull sampling methodology. The methodology consists in the
transition from manual to automated sampling controls in order to propagate the
correct sampling data to the operators and reduce sampling errors due to human

interventions. Results indicate an increase of two percent in productivity.

The efficiency of an algorithm depends on its application. This is the case in

semiconductor manufacturing where the environment completely changes from one
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factory to another and the degree of complexity is not always the same. Differ-
ent mathematical techniques have been proposed but none of them has actually
been deployed. Table 4.2 presents mathematical techniques and approaches sur-

veyed in the literature. The complexity is such that most static or start sampling

Algorithms or Mathematical Techniques

Nurani et al. [68] Heuristic approach
Chien et al. [18] Bayes’ theorem
Lee et al. [48] Self-Organizing Feature Map (SOFM) network

Wu and Pearn [102] | Process capability index Cpmk

Table 4.2: Mathematical techniques or approaches for static or start sampling

techniques are rule-based and take into account some observations within the fab,
personal experiences, and statistical analysis. Lazaroff et al. [45] present an evalua-
tion of different defect sampling techniques using linear regression. A discussion on
the strengths and weaknesses of various sampling techniques for Critical Dimension
(CD) measurement is presented by Elliott et al. [25]. Chien et al. [17] and Xumei et
al. [103] worked on optimizing sampling techniques for overlay measurements and
validated their experiments through simulations using historical data from semi-
conductor plants. Nurani et al. [70] present an economic model for optimizing a
sampling plan. The model aims at specifying the number of lots to inspect, the
number of wafers within a lot, and the number of dies per wafer. Increasing the
cost of inspection (number of lots or wafers to inspect) leads to an increased benefit
by detecting excursions very quickly. However, above a certain limit, if the cost of
inspection is still increasing, all revenues gained by inspections will be offset by the
increased learning and subsequent defect reduction. Close to the work of Nurani
et al. [70] are the works of Mclntyre et al. [52] and Scanlan et al. [84]. Mclntyre
et al. [52] discuss key factors that influence the cost of an optimal sampling plan
and Scanlan et al. [84] identify the use of baseline lots as a key in cost inspection

reduction.

In the papers on static or start sampling, the authors try to find the best trade-off
between the cost of inspections and the cost related to the material at risk. However,

decisions are only taken at the start of production and do not consider unexpected
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events that may occur during the production. When the process is likely to be out-
of-control for example, it could be more interesting to sample more lots or wafers in
order to detect potential drifts as quickly as possible. When the process is within
control, metrology capacity could be saved by reducing the number of sampled lots.
These main drawbacks of static sampling led to the introduction and development

of adaptive sampling strategies.
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4.4 Adaptive Sampling

Adaptive sampling consists in adjusting sampling decisions defined at the start
of production, i.e. the number of lots or wafers to select is adjusted throughout
production depending on the process state. Table 4.3 presents a survey of adaptive

sampling techniques in semiconductor manufacturing.
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Prahbu et al. [77] 1994 | * *oOx
Nurani et al. [69] 1995 * *
Kuo et al. [42 1996 * *
Kuo et al. [41 1997 | *
Babikian and Engelhard [5] 1998 *
Williams et al. [99 1999 oo
Williams et al. [98 1999 o
Langford et al. [44 2000 * *
Nurani and Shantikumar [71] | 2000 | * oo
Lee et al. [49] 2001 | * *
Wootton et al. [100] 2001 *oox
Allebé el al. 3] 2002 | * G
Lee [47] 2002 | * %
Song-Bor et al. [88] 2003 Koo
Sullivan et al. [92] 2004 | * *
Moon et al. [56] 2005 | * *
Boussetta and Cross [12] 2005 Ko ox
Mouli [57] 2005 *
Shantikumar [86] 2007
Mouli et al. [58] 2007 | * *
Bunday et al. [13] 2008 *
Veetil et al. [95] 2009 x| Ox
Chen et al. [16] 2009 | * %
Sahnoun et al. [83 2010 | * *
Sahnoun et al. [82 2010 | * *lox
Good et al. [28] 2010 | * *
Nduhura Munga et al. [60] 2011 | * *

Table 4.3: Survey on adaptive sampling
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The transition from static to adaptive sampling started in the second part of the
1990’s [77] and a great contribution can be noticed between 1995 and 2005. First
industrial deployments can be observed in the beginning of the 2000’s [99] [98] [100].
However, among twenty-seven papers browsed in this review (Table 4.3), only eight
indicate an industrial deployment. Moreover, among these eight papers, no indica-
tion or comparison with other techniques or technologies is given. This shows the
complexity and the particularity of the semiconductor environment. Depending on
the amount of data to handle, and the strategies in semiconductor plant, a solution
can be efficient when simulated but not practical because of unexpected events or
factory dynamics. The specificity of each factory is such that a given solution can
be efficient in a factory A and be completely impracticable for a factory B. This
explains why no comparison is presented in the literature. Moreover, strong compe-
tition and confidentiality reasons explain why many works are not published. Most
of the works published or patented do not detail the technical aspects, and actual

performances are never published.

Among papers that indicate industrial deployments, Williams et al. [99] [98]
present the results of a joint research project between Intel Corporation and KLA-
Tencor. The project consists in evaluating and optimizing the defect inspection sam-
pling plan for an advanced semiconductor manufacturing process. A Sample Plan-
ner is developed by KL A-Tencor to assist in the development of cost-effective defect
inspection sampling strategies, and to provide an accurate assessment of whether
monitor reduction and/or elimination should be pursued for cost savings. The re-
sults of the project indicate that the costs due to defect excursions could completely
eradicate any projected savings from monitor reduction activities, due to the addi-
tional defect excursions that would be missed by the reduced inspection sampling

plan.

Wootton et al. [100] present a study performed between KLA-Tencor and Mo-
torola. The study consists in finding the best sample criteria providing the best
representation of existing problems in the inspected wafers. The main drawbacks
of random selection are presented and the proposed solution consists in adapting

the sample size based on in-line information and priority rules (defect size). Re-
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sults indicate an improvement of yield, analysis time, and sampling resolution at

Motorola.

Boussetta and Cross [12] analyze the key parameters that have to be monitored
for an efficient adaptive sampling plan. Their results indicate three key parameters:
The variance ratio, the excursion frequency, and the normalized mean shift. They
propose a general adaptive sampling plan and recommend a fab-wide strategy, a
very good understanding of inspection requirements, and capacity constraints for

an efficient adaptive sampling plan.

Song-Bor et al. [88], Sullivan et al. [92], Mouli et al. [58], and Nduhura Munga et
al. [60] present industrial deployments of adaptive sampling plans in four different
semiconductor companies: TSMC, IBM Microelectronics, Intel Corporation, and
STMicroelectronics respectively. Song-Bor et al. [88] at TSMC present a capacity-
dependence sampling strategy, based on the utilization rate of the capacity of defect
inspection tools and on the WIP (Work-In-Progress) management. If the utiliza-
tion of defect detection rises too high, then an automatic function that allows the
execution of defect inspection is temporarily turned off and another function that
allows skipping the execution of defect inspection is turned on until the utilization
drops to the expected threshold pre-settled by users. If the utilization of defect
detection drops too low, the function to force the execution of defect inspection is
turned on to bring back the utilization level up to the threshold. Results indicate

10% enhancement in tool utilization compared to the previous static sampling plan.

Sullivan et al. [92] present an adaptive sampling technique for overlay measure-
ments. The technique is based on a sampling capability ratio (CsK) analogous to
the traditional CpK index?. The difference between the process capability (CpK)
and the proposed CsK is in the selection of historical data. CpK is the process per-

formance whereas CsK only considers data from lots that would have been available

2The CpK index is the process capability index. CpK takes into account both accuracy (cen-
tering) and precision (dispersion) and helps to determine the cause of failures and the need for
changes in the product design, tooling, or the manufacturing process. The larger the CpK value,
the greater the indication that the process is consistently under control (is within specification
limits) [75].
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for skipping through metrology. A sampling/skipping plan is implemented based on
the results of the CsK. Results indicate significant cost savings. However, authors do
not give percentage enhancement. Mouli et al. [58] present an Adaptive Metrology
Sampling (AMS) based on a risk score evaluation. The concept consists in weighting
each lot and wafer within a lot to make metrology sampling decisions and processing
sequence (or priority) on metrology tools. The score varies between 0 and 1 and
it is calculated based on Advanced Process Control (APC) and Statistical Process
Control (SPC) analysis and observations. Results indicate a reduction of 30% of
excursions without increasing tool capacity or sampling rates. Nduhura Munga et
al. [60] present an adaptive sampling strategy based on the real time computation
of the material at risk. In order to optimize the computational time, a Permanent
Index per Context (IPC') is developed to reduce risk computation by simple subtrac-
tions or additions. Results indicate a risk reduction of more than 30% of material

at risk compared to the previous static sampling strategy:.

Concerning the technical aspects of proposed solutions, some papers are only
rule-based while others are mathematical based. Table 4.4 summarizes the different

mathematical techniques or approaches browsed in this review.

Algorithms or Mathematical Techniques
Babikian and Engelhard [5] Skip-Lot algorithm (CpK)
Nurani and Shantikumar [71] | Explicit Search algorithm
Lee et al. [49] Self-Organizing Feature (SOFM) network
Lee [47] Artificial Neural Network (ANN)
Sullivan et al. [92] Skip-lot algorithm
Mouli et al. [58] Risk-Score evaluation algorithm
Chen et al. [16] Integer Linear Programming
Sahnoun et al. [83 Skip-Lot algorithm (risk reduction)
Sahnoun et al. [82 Skip-Lot algorithm (risk reduction)
Good et al. [28] Sampling Compensation Algorithm (SCA)
Nduhura Munga et al. [60] Permanent Index per Context (IPC)

Table 4.4: Mathematical techniques or approaches for adaptive sampling

An important point to note is that, among all papers with a mathematical tech-
nique or an algorithm, only three indicate industrial deployments [92] [58] [60]. Most

works only use simulations to validate models [41] [95] but very few are industrial-
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ized.

Through papers surveyed for adaptive sampling strategies, the specificities of
semiconductor plants can be highlighted once again. Most of the sampling tech-
niques browsed in this review are different. This is because of the specificity of
each factory: Lot or wafer management, data storage, production tool manage-
ment or qualifications, I'T infrastructure, expert knowledge, company culture, etc.
Therefore, the efficiency of a sampling technique varies depending on its

application [12] [69].

Compared to static sampling strategies, adaptive sampling strategies offer two
main advantages which lead to an increase in yield. The first advantage is the quick
response to process variation by an increase of the number of lots to inspect when
the process is likely to be out-of-control. The second advantage is a better use of
metrology capacity through the reduction of the number of lots to inspect when the
risk reduction is not significant or when the process is really under control. However,
some drawbacks can be pointed out regarding the management of resources, the
complexity of algorithms, and the industrial deployment. By modifying the number
of lots to sample (increasing or reducing this number depending on the process
state), the workload in metrology is no longer the same throughout production. The
complexity of algorithms is such that the validation is most of the time performed
through simulation and algorithms are never industrialized. To tackle the problems
faced by adaptive sampling strategies, dynamic or smart sampling strategies have

been introduced.
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4.5 Dynamic Sampling

Dynamic sampling consists in selecting in real time the best lot or wafer to
measure depending on the production state, metrology capacity, and the factory
dynamics. The main difference with adaptive sampling is that no rule is defined at
the start of production and the decision to sample or not a lot is taken when the lot
can be selected for metrology. The metrology workload remains balanced contrary
to adaptive sampling. The objective is to measure the lot that brings as much as
possible information on both the risk reduction and the process variation. In high-
mix semiconductor plants, where more than 200 products can be run concurrently,
dynamic sampling techniques are seen as more suitable. Table 4.5 presents a survey

on dynamic sampling in semiconductor manufacturing.
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Purdy et al. [79] 2005 | * *
Lensing and Stirton [50] | 2007 * O
Holfeld et al. [32] 2007 x| O*
Good and Purdy [29] 2007 | * x| x
Purdy et al. [78] 2007 | * *
Kaga et al. [38] 2008 o Ox *
Jansen et al. [35] 2008 *Ox *
Hyung [34] 2008 | * *
Sun et al. [93] 2008 | *
Lin et al. [51] 2010 *
Dauzere-péres et al. [20] | 2010 | * *

Table 4.5: Survey on dynamic sampling

The first research works have been published in 2005 and a pioneer is this domain

is M. A. Purdy who has authored or co-authored most of the papers found in the
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literature. His works include industrial deployments [79] [32] [29] [78] and a patent
can be found in [80]. Compared to adaptive sampling, dynamic sampling is mainly
mathematically-based because of the levels of decision. Industrial deployments in
semiconductor plants have been achieved thanks to the computing power that has

strongly increased.

Among papers that indicate industrial deployments, Purdy et al. [79] present
a Dynamic Sampling System (DSS) that combines a number of separate sampling
rules into a single sampling decision. The first step consists in removing all sampling
rates, i.e. making all lots measurable. For that, some defect inspection operations
are defined so that all lots can enter the metrology queue. The next step consists in
selecting lots to introduce in the metrology queue and lots to skip depending on the
metrology capacity and on the information brought by each lot. The selection of
lots to introduce in the metrology is performed based on an algorithm that analyses
all rules (for example metal etchers at 30%, plasma etch at 10%, and a given prod-
uct at 25%) and tries to ensure that each rule is satisfied with the minimum overall
sampling rate when there are overlapping rules. The Last-In-First-Out (LIFO) prin-
ciple is also used to ensure that the lots most recently added to the queue will be
measured first. The aim is to get the greatest probability that the measurement of
the current lot will allow for one or more other lots to be removed from the queue.
Results indicate that the DSS has been rapidly adopted within the AMD company

and only a small percentage of lots that entered the metrology queue were removed.

Lensing and Stirton [50], Holfeld et al. [32], and Purdy et al. [78] present and
discuss the fab-wide APC sampling deployed within an AMD fab. This APC sam-
pling system is based on the algorithm introduced by Good and Purdy [29]. The
algorithm aims at selecting the best wafers to measure given a sampling rule set
that can be infeasible, by assigning a penalty to each rule that is violated. This
penalty is chosen such that it is larger for critical rules. The problem is written as a
Mixed-Integer Linear Program (MILP) and the best wafers to measure correspond
to the set that minimizes the sum of penalties. Results indicate rapid deployments

within the fab and increased product yields. However, authors do not give compar-
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isons with the previous system and percentage enhancement in terms of risk or cycle

time reduction.

Kaga et al. [38] and Jansen et al. [35] discuss the use of design information to
dynamically improve sampling for defect review. Lin et al. [51] discuss the benefit
of developing a dynamic and intelligent sampling system in semiconductor manufac-
turing. Based on their experience, they point out three main benefits of a dynamic
sampling system: Sampling stability, satisfactory coverage of in-line products, and
comprehensive inclusion of process tools. Hyung [34] presents a model that com-
bines the cost of sampling with the performance of control in terms of yield and
cycle time. Tests are performed on different areas such as CVD (Chemical Vapor
Deposition), PVD (Physical Vapor Deposition), and Photo-Lithography. Results
show that the performance of dynamic sampling depends on the characteristics of
the process. When the process is very stable, dynamic sampling has no effects,

whereas it is effective when data set have large step disturbances.

Sun et al. [93] present a scoring algorithm based on weighted objectives to de-
termine the optimal wafer sampling for maximum coverage. The algorithm is a
multi-stage approach. The first stage consists in setting up various numbers of
wafer samples and various numbers of equipment units. The aim is to ensure that
all possible, but not redundant, combinations of wafers are captured. The second
stage consists in using the scoring algorithm to evaluate and determine the preferred
wafer sample based on pre-defined objectives and weighting factors. The score is cal-
culated by multiplying individual normalized scores by associative weighted factors
and summarizing them. The last stage uses the second stage results and designs a set
of algorithms based on the number of experimental design group. This set of algo-

rithms is used to select wafers in each group. No industrial assessment is mentioned.

Dauzere-péres et al. [20] present a sampling, scheduling, and skipping algorithm
to minimize risk dynamically. The algorithm is based on a Global Sampling Indica-
tor (GSI) that gives a weight to each lot arriving at the measurement step, i.e. in

front of metrology. This weight is computed based on the lot history and on two key
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parameters, called Warning Limit (WL) and Inhibit Limit (IL). The WL indicates
when the situation starts to become critical, and the IL corresponds to the maxi-
mum risk that can be tolerated for each production tool regarding the metrology
capacity and production state. An Integer Linear Programming is provided in [63],
and helps to compute the values of WL and IL depending on the production state.
The sampling, scheduling, and skipping algorithm has been embedded in a proto-
type and simulated with actual data from STMicrolectronics. Results indicate a
risk reduction of more than 70% compared to Fab sampling without any additional

metrology capacity.

Table 4.6 summarizes the main mathematical techniques, approaches or algo-

rithms developed for dynamic sampling.

Algorithms or Mathematical Techniques
Good and Purdy [29] Mix Integer Linear Programming (MILP)

Sun et al. [93] Risk Scoring Algorithm

Dauzere-péres et al. [20] | Global Sampling Indicator (GSI) algorithm

Table 4.6: Mathematical techniques or approaches for dynamic sampling

It is clear that dynamic sampling techniques are the most suitable techniques
for modern and high-mix semiconductor fabs because of their ability to consider
real-time information. Qur research is thus focused on developing and im-
plementing dynamic sampling techniques which are one of the best ways
to master the added value of each control, avoid redundant controls, and
optimize the use of metrology capacity. Between sampling at the lot level and
wafer level, we focus on sampling at the lot level because the lot-to-lot variation is
much higher than the wafer-to-wafer variation [94], and the processes of uploading
and downloading a lot into a production tool spend more time than inspecting a
wafer does [52].

The challenge is now in finding how a complex but efficient sampling algorithm

can be industrialized in a high-mix semiconductor plant.
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4.6 Conclusion

In this chapter, we surveyed the literature on sampling techniques in semicon-
ductor manufacturing. We defined three main groups: Start or static, adaptive, and
dynamic sampling techniques. Adaptive and dynamic sampling are more suitable
for modern and high-mix semiconductor fabs. Our research is thus focused on mod-

eling and implementing dynamic sampling control plans.

In the next chapter, we analyze the impact of variability and factory dynamics
on the efficiency of a sampling plan, and introduce a fab-wide indicator that will
support the implementation of dynamic and smart sampling approaches (Chapter 6
and Chapter 7).



Chapter 5

Analyzing and Optimizing Control

Plans

This chapter' analyzes the impact of a static control plan in a high-miz environ-
ment, highlights its main drawbacks, and introduces a fab-wide indicator called TPC?
to support the industrial tmplementation of dynamic control plans. This IPC allows
a very large amount of data to be managed, and several types of risk® indicators to
be computed in real time. The simplicity and efficiency of the IPC' led to its indus-

trialization in the entire production.

5.1 Introduction

5.2 Factory Dynamics and Variability

5.3 Permanent Index per Context (IPC)

5.4 Real-Time Risk Assessment: CMP-WAR
5.5 Excursion Management

5.6 Conclusion

IPart of this chapter has been submitted for publication to the International Journal of
Production Research [64].

2IPC: Indice Permanent par Contexte. In English: Permanent Index per Context.

3In this chapter, the risk is defined as the number of wafers processed on a production tool
between two control operations. It corresponds to a potential loss in the case a problem occurs.




96 CHAPTER 5. ANALYZING AND OPTIMIZING CONTROL PLANS

5.1 Introduction

What is the efficiency of an algorithm, approach, or technique if it cannot be gen-
eralized or industrialized? In the previous chapter we saw that the complexity in
modern semiconductor plants is such that dynamic control plans are more suitable
because of the variability throughout production. In this chapter, we first analyze
the impact of variability and factory dynamics on the efficiency of control plans and
then propose a global indicator (IPC) that can support the industrial implementa-
tion of dynamic control plans. The main goals of the IPC is to have a solution that
can be generalized to several types of risks and simplify computations. We aim at
developing solutions that can be supported by any IT infrastructure and generalized
to other types of fabs, especially to the other sites of STMicroelectronics (Rousset,
Italy, etc.).

Section 5.2 discusses the impact of variability in production. In section 5.3, we
introduce and describe the IPC. Section 5.4 presents an industrial application where
the risk i.e. material at risk is computed in real time using the IPC. In section 5.5,

we present the way the IPC can be used to optimize the management of excursions.

5.2 Factory Dynamics and Variability

A high-mix semiconductor environment is characterized by several types of changes
occurring in production. The qualifications as well as the availability of production
tools vary depending on the production state, the number of products to be man-
ufactured is never constant and, most of the time, changes come from intentional
operational changes such as the lengthening of process flows or the addition of engi-
neering lots. All these changes impact the static control plan that does not consider

factory dynamics.

In order to concretely understand the impacts of all of these changes on a static
control plan, we made some observations in the Chemical Metal Polishing (CMP)

area regarding the defectivity control plan. We stated our working hypothesis on
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added value of controls i.e. “A control without a real added value is a waste of time
and money”. Observations showed us that the static sampling plan designed by the
defectivity engineering team at the start of the production was completely affected

( “destroyed”) by the factory dynamics and variability.

T
L1 [ce[al2[ TOOL 1
> s
I|:2 >_:> [L6]L4[L2] petectivity
LS
L6
7 Lack-of-control

CMP Workshop DIEL Workshop

Figure 5.1: Drawbacks of static sampling.

Figure 5.1 illustrates the main drawbacks of a static sampling plan for defec-
tivity controls. Six lots (L1, L2, L3, L4, L5, and L6) are coming into the CMP
workshop to be processed. The control plan, designed by the defectivity engineering
team at the start of the production is to control one lot every two lots. In this case,
lots L2, L4, and L6 are flagged for a defectivity control after the CMP processing
operation. A control on a lot is called to reduce the risk on the production tool
regarding the number of wafers processed on the tool since the latest control per-
formed. In other words, if a defectivity control performed on a lot is validated, i.e.
no critical defects are detected, the risk (i.e. the material at risk) is released on the
wafers of all the lots processed in the same production tool since the latest control
performed. In the case described in Figure 5.1, an optimal control plan would be
to process at least one lot flagged on each production tool. But, because of the
variability, the availability of production tools, and the complexity of process flows
in high-mix semiconductor plants, situation such as the one described in Figure 5.1
is frequent. TOOL 1 processes all flagged lots i.e. L2, L4, L6 whereas TOOL 2

does not process any. This results in over-control for production tool TOOL 1 and



98 CHAPTER 5. ANALYZING AND OPTIMIZING CONTROL PLANS

lack-of-control for production tool TOOL 2. As quality control is defined at prod-
uct level, without taking into account tool information, the information is biased
to monitor tool drifts. A simple solution could be to impose a limit set for each
tool. This means to control L3, or L1 and L5 for example. The problem of this
solution is that control capacity is limited. A better solution would be to release
the control on L4 and control L3. This implies to flag L3 for a defectivity control
operation at the next step. The question here is: What if potential defects generated
by the current processing operation cannot be captured at the next control operation
for L3? This situation is frequent since a lot, depending on its technology, will not

be measurable at all (defectivity) control steps.

Another point is the variability of the delay or travel time between processing
and measurement steps (Figure 5.2). Production tools are most of the time qualified
to process more than one processing operations of different products [36]. The
processing time varies depending on the processing operation to be performed and,
for some products or technologies, additional processing steps are required in other
workshops before a control in the defectivity workshop as illustrated in Figure 5.2.
Consequences are such that production tools are no longer monitored by the “static

(or start) sampling plan” and the situation becomes critical for all of production

tools (TOOL1 and TOOL2).

These situations (Figure 5.1 and Figure 5.2) led designers and defectivity engi-
neers to put in place additional controls often redundant whereas a good repartition
of different lots on production tools could allow efficient sampling rates. This results

in increasing the number of controls and, most of the time, without real added value.

To overcome this problem, the risk on different production tools should be known
in real time and took into account when dispatching lots on production tools. The
problem lies in the large amount of data to manage. The complexity of process flows
and the huge number of parameters to consider often lead many dynamic sampling
algorithms to be too difficult to implement in practice. This also explains the par-

ticularity of the sampling techniques analyzed in the previous chapter.
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Figure 5.2: Impact of delay between process and measurement steps.

To answer this question, we developed an indicator called Permanent

Index per Context (IPC) to allow very quick and fast computations of

risk indicators. The risk depends on the context as described in the next section.

This indicator is based on industrialization constraints and on the KISS* principle.

We aimed at keeping things as simple as possible, minimizing the computing times

of risk indicators, and thus minimizing the resource utilization.

4Keep It Simple Stupid. This principle states that simplicity is a key goal in design and that
unnecessary complexity must be avoided.
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5.3 Permanent Index per Context (IPC)

The Permanent Index per Context (IPC)® is a counter which is increased
each time a context is verified. The context can be a tool, a chamber, a recipe, a
technology, a resin, the combination of an operation and a technology, etc. This
counter is never reset except when a special event occurs (Preventive Maintenance,
intermediary qualification, etc.). The I PC has been introduced to allow both very
quick and easy computations for any given context. In our first implementation, the
context has been defined at the tool level to control the risk on production tools.
Therefore, the risk is evaluated as the number of wafers processed on a production
tool since the latest control performed. This is called Wafer at risk. To each lot
[ and tool m is associated an I PC', which is equal to 0 if [ is not processed on m.
Let M be the number of production tools, and NW (l) be the number of wafers

contained in lot [. The goal is to update in real time the following parameters:

e LLM(m): Index of the Last Lot that has been Measured for the production

tool m.

IPCT": IPC of lot [ for production tool m.

RI,,: Risk Indicator on production tool m.

NI;": Number of wafers potentially Impacted on tool m if lot | was measured.

e NI;: Number of wafers potentially impacted in the entire production if lot [

was measured.
When lot [ is processed on production tool m, an [ PC' is associated to [. The

IPC of the lot [ is equal to the IPC of the lot I’ processed just before [ on m plus
the number of wafers in | (NW (1)):

IPC" = IPC + NW (1) (5.1)

5Part of this section has been communicated to the 13th Scientific and Technical Meeting
of ARCSIS [59].
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The risk indicator (i.e. material at risk) on production tool m is then given by:
RI,, = IPC" — IPCT () (5.2)

The use of the I PC' simplifies the computations of the risk indicators since these
computations are reduced to calculating differences between two integer values. This
implies very low resources usage, the possibility to manage a very large amount of
data and quickly compute risk indicators for all of production tools. Instead of com-
puting each time the risk indicators with complex algorithms using historical data,

we assign to each lot an index (I PC of the lot) when the context is verified.

Figure 5.3 represents a sequence of different lots processed on a production tool

m. Lots L1, L2, ..., L9 are processed on tool m.
P
IFC, {1__0)
( !Z:)
IPCy,
jo)
L.L_S:/' ;
P12 iy NOS—
(L1
tlZ lR tQ Processing tune

Figure 5.3: IPC mechanism.

L2 and L5 were validated by a defectivity control and, in this case, L5 cor-
responds to the last lot that has been measured LLM(m). According to (5.1)

and (5.2), the risk indicator on tool m at time to is given by:
RI,, = [PC™ — [PC™-

Where:
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IPCT, > IPCT,

It is also possible to quickly identify the best lot [ to validate at the metrology
step. This lot [ is chosen such that its I PC' verifies the following property:

IPCT = Maz{0,{IPCJ'\ IPC? > IPCT, .1l € LMY}} (5.3)

Where LM is the set of lots waiting at the metrology step.

In Figure 5.3, lots L6 and L8 are processed on tool m and are waiting at the
metrology step. According to (5.3), the best lot to select for m will be L8 since
IPCYs > IPCT and IPCYy > IPCT.

A control is defined as a measurement plus an action[7]. It is then crucial to be
able to evaluate in real time the number of lots potentially impacted whenever a
problem occurs on a lot [. This number can be determined for a given production
tool m (NI}") and for the entire production (N1I;):

NI = max{0,IPC}" — IPCT,, (5.4)

And

NI, =Y NI (5.5)

In Figure 5.3, at time t9, NI;" will be given by (I PC}y — I PCT%) corresponding
to the sum of wafers in L6, L7, L8, and L9.

This IPC mechanism has been embedded in a prototype and first
deployed for the CMP workshop before being industrialized in the entire
fab. The next section describes the implementation of the IPC mechanism for

real-time risk assessment within the CMP workshop.
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5.4 Real-Time Risk Assessment: CMP-WAR

CMP-WAR is the name of an internal project that took place within the 300mm
site of STMicroelectronics. The project has been initiated based on both the thesis
and the European project IMPROVE. The main goal of the project was to master
the risk level in production and ensure that the maximum risk (at the tool level)
expected by the company would not be exceeded. For that, a solution had to be

proposed to avoid cases of under-control as well as cases of over-control®.

Two challenges had to be faced: Industrialization constraints and simplicity
of solutions. Concerning industrialization constraints, the solution to be provided
should be real time based and generalizable to other types of risks (chamber, recipe,
resin, etc.). Concerning the simplicity of the solution, information should be gath-

ered and presented in a way such that it could be easily understood by everybody.

These two challenges offered us a good opportunity to test, assess, and validate
the IPC mechanism introduced in the previous section. We thus embedded the IPC
mechanism in a prototype that we deployed for the CMP workshop. Figure 5.4 gives
an overview of the CMP-WAR prototype that has been developed and deployed in-
line during the CMP-WAR project. The prototype has been implemented in Visual
Basic for Application (Excel-VBA). It shows, for each production tool, the real-time
risk level value. The description of the prototype aims at illustrating the significant
amount of data that had to be handled, showing the added value and efficiency of
the IPC mechanism.

For the simplicity of use, three levels of alert associated to three different colors

were defined:

e Green: The maximum risk level allowed by the company is not reached and

the situation is under control for the production tool.

SPart of this section was presented at the IEEE/SEMI Advanced Semiconductor Man-
ufacturing Conference. The presentation has been awarded with the Best Student Paper
Award [60].
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Figure 5.4: Overview of the CMP-WAR prototype.

e Orange: The risk level is very close to the maximum level specified by the
company, and actions must be taken to reduce the risk.

e Red: The maximum risk level allowed by the company is reached and the tool

must be stopped or actions immediately taken.

RI represents the Risk Indicator on the production tool. It corresponds to the
number of wafers processed on the production tool since the latest control performed
for this tool. Tt is also called Wafer at Risk (WAR).

To each production tool, two boxes are associated (Figure 5.5). The first box
gives the value of the risk indicator and the second box gives the best lot to validate
or control in the next defectivity step. This information is computed based on
the IPC mechanism (Section 5.3). The maximum RI tolerated by the company is
denoted A:

- If RI > A, the production tool is in red.
- If (0.6 x A) < RI < A, the production tool is in

- If RI < (0.6 « A), the production tool is in green.
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Figure 5.5: Risk Indicator and best lot for control.

RI is defined at the tool level. This means that the context in the IPC' is the
production tool. Therefore, each time a lot [ is processed on a production tool m, an
IPCT" is attached to the lot [. This IPC' is equal to the IPC of the lot " processed
just before [ on m plus the number of wafers of [ (NW(I)) according to (5.1). Let us
consider the example in Table 5.1. The context is the production tool TOOLS5. Each
time a lot (L1, L2, L3, L4, or L5) is processed on TOOL5, an IPC is associated
to the lot for the considered context (TOOLS5). This value is never reset. If, for
example, L4 is processed on another tool (e.g. TOOL3), another IPC (I PCT9L3)
will be attached to L4.

Once computed and assigned to each lot, the I PC' information is then used to
compute and update RI by performing simple differences between integer values.
According to (5.2), RI is given by the difference between the I PC' of the latest lot
[ processed on production tool m and the latest lot LLM validated by a defectivity

control after being processed on m.

Let us consider the example in Table 5.2 that illustrates the way R is computed:
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Process date | Context | Lot ID | Number of wafers (NW) IPC
T1 TOOL5 | L1 12 IPCTO%% = 12
T2 TOOL5 | L2 23 IPCTIOM =12 423 = 35
T3 TOOL5 | L3 15 IPCTYOM = 35 415 = 50
T4 TOOL5 | L4 15 TPCTOOL = 50 + 15 = 65
T5 TOOL5 | L5 25 [PCTIOL5 = 65 425 = 90

Table 5.1: IPC computation and mechanism

- At time T1, RI = IPCTY9% = 12.

- At time T2, RI = IPC}J9% = 35.

- At time T3, RI = IPCT99% = 50.

- At time T4, IPCTY9 = 65 and lot L2 is validated at the defectivity step,
hence LLM(TOOL5) = L2. Therefore, RI is computed following the formula
described in (5.2), i.e. RI = IPCTYOM — [PCTIOM = 65 — 35 = 30.

- At time T5, RI = [PCTIO — [PCTOOM = 90 — 35 = 55.

- At time T6, LLM(TOOL5) becomes L5 = RI = IPCTOO — pCto0Ls —
114 — 90 = 24.

- At time T7, RI = IPCTI9 — [PCTOOL — 136 — 90 = 46.

RI can be computed for each context. In the CMP-WAR prototype, the context

was defined at the tool level. Therefore, RI was computed for each production tool.
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Process date | Context | Lot ID IPC LLM RI
T1 TOOL5 | L1 | IPCTY9M =12 RI =12
T2 TOOL5 | L2 | IPCT99 =35 RI = 35
T3 TOOL5 | L3 IPCTIO — 50 RI =50
T4 TOOL5 | L4 | IPCTY9" =65 | L2 | RI=65—35=30
T5 TOOL5 | L5 | IPCTI9M =90 RI =90 — 35 = 55
T6 TOOL5 | L6 |IPCTO? =114 | L5 | RI=114—90 =24
T7 TOOL5 | L7 | IPCTO9M = 136 RI =136 — 90 = 46

Table 5.2: RI computations

A defectivity control on a lot may validate more than one production tool de-
pending on the lot history”. Let us consider the example of Figure 5.6, where a lot
L1 is processed on three different production tools (from three different workshops:
CMP, PHOTO, and ETCH) before being validated by a defectivity control.

The control performed on lot L1 gives information on the three production tools
on which L1 was processed. If the control is OK, i.e. no critical defects are de-

tected on L1, then RI can be reduced on the three production tools on which L1

"This is called “depth of control”. See Section 3.2.3 for further details.
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Figure 5.6: Depth of control.

was processed (CMP(M1), PHOTO(M2), and ETCH(M3)). The number of
production tools that can be validated by a lot at a defectivity step depends on
both the lot history and the defectivity matrices (Chapter 3). Depending on the
production tool, we may have situation such that a lot I’ processed after L1 ar-
rives in front of a defectivity control before L1. This is the case for production
tool ETCH(M3) (LLM grep). Lot LLM greop was processed at 14:30, after L1
(processed at 12:30), but validated before L1. In such a situation, L1 validated by
the defectivity step does not bring additional information for the production tool
ETCH(MS3). In Figure 5.6, at 15:00, the new RI will be given by:

- CMP(M1): Rlcypany = IPCYy — IPCH.
- PHOTO(M2): RIpporoms) = IPCYS — IPCY.
- ETCH(M3): RIprcms) = IPCYY — IPCY vy, -

With the I PC' information and using the equation (5.3), it is possible to directly
and easily access the information giving the best lot to control at defectivity steps.
This helps to avoid performing a control on a lot that does not bring any added
value. In the CMP-WAR prototype, the depth of control has not been considered
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when displaying the best lot to control. The lot displayed in Figure 5.5 gives the best

lot to validate considering tools separately.

For the sake of simplicity, by clicking on the box giving the best lot to validate
(Figure 5.7), the operator can directly access to the list of lots processed on the
production tool since the last control. This production tool history explains why
lot KKOCCC displayed is the best lot to control. In Figure 5.7, three lots are
highlighted in yellow and one lot in gray. For these four lots, there is a “X” in the
eighth column. This means that these four lots were flagged at the start of pro-
duction by the defectivity engineering team for a control after the CMP workshop.
Among these four lots, one has already been skipped (the one in gray), most prob-
ably because of capacity needs. The three lots in yellow (TTOOLR, PPPPPP,
KKOCCCQC) were flagged for defectivity control and are not yet skipped. Among
these three lots in yellow, KKOCCC is the most recent lot processed on production
tool TOOL11. It implies that measuring KKOCCC will allow skipping two lots
(TTOOLR and PPPPPP) processed just before and not yet skipped. This is why
KKOCCC is displayed as the best lot to control. This information is computed in
real time based on the IPC associated to each lot and stored in a database. The

displayed information was adjusted to be easily understandable by operators.

When a tool is in an orange status and there is no lot associated below the tool
(see TOOLS in Figure 5.4), it means that, among all lots processed on the tool,
there are no lots waiting at the defectivity step or there are no “flagged” lots that
can be validated at the next defectivity step. As the situation starts to become
critical (orange status), information is provided on lots waiting to be processed in
the CMP area (WIP - Step N). If such situation arises, the operator is called to
check (by a simple click) on “WIP(CMP)-Step N” (Figure 5.8) to identify a lot
that is flagged for the next defectivity control step and direct this lot to the tool
which is in “orange status”. Processing such a lot on a tool in “orange status” will
allow RI to be reduced for the tool once the lot is validated at the defectivity step.

In the list of lots provided in Figure 5.8, lots in yellow are flagged for a Defectivity
control after the CMP area. However, this list concerns all production tools in CMP.

Knowing that all lots cannot be processed on all production tools and for the sake
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Figure 5.7: Production tool history.
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Figure 5.8: Lots waiting in front of the CMP area.

of simplicity, we separate this list of lots by usage, tools, and processability. The

operator can therefore access to the list of lots waiting to be processed (by a specified
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group of tools) by directly clicking on the box displaying the name of the tool. The
list is sorted such that lots that are flagged appear first in the list (in yellow), followed
by other lots (Figure 5.9).

TOOLS8
Rl = 0.T"A

PROD 300 wait 140 CMP_CU_

PROD 0 Wait 140 CMP_CU_
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Figure 5.9: Lots waiting in front of the tool.

In a high mix environment as in the 300mm site of STMicroelectronics in Crolles,
the factory dynamics is such that we may have situations where a tool is in an or-
ange status and there is no flagged lot waiting in front of the CMP area. This is
why we provide the set of lots waiting to be processed or currently being processed
in the area before the CMP: “WIP(CMP)—-Step (N-1)”. If such situation arises,
the operator is called to click on the box “WIP(CMP)—-Step (IN-1)” to identify a
flagged lot for the tool in CMP that is in an orange status. This allows anticipating

and accelerating some lots® in order to reduce RI on production tools.

If there are no flagged lots in WIP(N) and WIP(N-1), the information is directly
sent to the defectivity engineers who take the decision to force a lot that is not

8 Accelerating a lot consists in increasing the priority of lots on some processing steps.
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flagged for a defectivity control to reduce RI. This forced lot is called DWR’.
If the result of Defectivity control is validated, then the defectivity engineer resets
RI using the box “RESET”!°. An additional box “Lots Waiting in DEF” is

also provided to show the RI reduction of each lot waiting in front of the defectivity.

Computing all of the information described above may require significant com-
puting power if data are not optimally organized. This is why the IPC mechanism
is very efficient since all computations are reduced to simple additions and sub-
tractions between integer values. The mechanism was easily understood and the
computing time strongly reduced compared to other algorithms previously imple-
mented where computing R/ required to manage the tool history (list of lots, number

of wafers, processing time, technology, etc.) in real time.

Based on the simplicity and efficiency of the IPC mechanism, we decided to
use it for excursion management, i.e. when a process or a production tool falls out
of specifications. This is the case when a defectivity control on a lot is not validated,
i.e. the result of the control is judged out of specifications. The source of the defect

must be isolated as quickly as possible.

9Defect Work Request.
10 Authentication is required to restrict the use of the prototype and to avoid an increase workload
for defectivity engineers.



5.5. EXCURSION MANAGEMENT 113

5.5 Excursion Management

An excursion happens in production when a process or tool falls outs of specifi-
cation'!. Since defectivity controls are performed on wafers, when the sum of defects
on wafers exceeds a given threshold, an excursion occurs. The production tool gen-
erating the defects has to be identified and stopped as quickly as possible before
too many lots are impacted. Let us consider the simplified example of Figure 5.10
where lot L1 is successively processed on three different tools (from three different
workshops: CMP, PHOTO, and ETCH) before arriving in the defectivity workshop

for a control operation.

PHOTO (M2) ::> ETCH (M3)
75 wafers/hour 50 wafers/hour

=

CMP (M1) ::
25 wafers/hour

- 11:00 L 12:10 - 12:30

Origin of the problem: CMP, PHOTO, or ETCH?

EFECTIVITY ¢
WORKSHOP

.- 15:00

Figure 5.10: Example of an excursion management problem.

If L1 is judged out of specifications, the challenge is to:

1. Isolate the most probable source of excursion: CMP, PHOTO, or ETCH,
2. Select the best set of lots to measure in order to contain the excursion,

3. And quantify the number of lots potentially impacted.

1Part of this section was presented at the 7¢" International Conference on Modeling and Analysis
of Semiconductor Manufacturing (included in the 2011 Winter Simulation Conference) [61].
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Depending on the time elapsed between the excursion detection (on L1) and
the source detection, the impact can be significant. In Figure 5.10, the throughput
on the CMP production tool is 25 wafers/hour, 75 wafers/hour for the PHOTO
production tool, and 50 wafers/hour for the ETCH tool. L1 is processed on the
CMP tool at 11:00 and controlled in defectivity at 15:00. It means that 4 hours
elapsed between the process of L1 on the CMP tool and its control in defectiv-
ity. This corresponds to the process of 25 x 4 = 100 wafers on the CMP tool. In
other words, related to the CMP tool, we have at least 100 wafers potentially im-
pacted. If the defect source is isolated 10 hours later, there are 14 hours (4 + 10)
between the process of L1 on the CMP tool and the control operation in defec-
tivity. This implies that, instead of having 100 wafers potentially impacted, there
are 25*%14 = 350 wafers. If the process operation is non reversible, it results in 350
wafers impacted on the CMP tool. This is similar for all production tools on which

L1 was processed before arriving in the defectivity workshop for a control operation.

One of the complexities in identifying the source of excursions in high mix semi-
conductor manufacturing lies in the large amount of data to handle as quickly as
possible. Most of the time, engineers are used to navigate between different IT tools
and use their experience to identify the most probable cause of an excursion. Once
the source of defects is identified, the next step consists in determining and selecting
a lot or a set of lots to measure in order to confirm or deny the source of the excur-
sion. Depending on the current processing step of a lot, the recipe, the technology,
the WIP, the lot history, the product, etc., a commonality analysis!? is performed
to identify the lot or set of lots most likely to confirm or deny the excursion source.
The aim is to find a lot that has the same characteristics than the lot on which
the excursion has occurred. This implies manipulating a significant amount of data

leading to an overwhelming task for defectivity engineers.

To optimize the management of excursions and thus reduce the potential impact

by quickly detecting the source of defects, using the IPC is once again very

12A commonality analysis consists in identifying different links that exist among lots. These
links concern lot history, product, quantity, technology, mask, etc.
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effective. Indeed, by simplifying the computations of several types of risk, a lot of
information can quickly be gathered with little CPU effort. Let us consider another
example based on Figure 5.10. We consider that an IPC is attached to each lot

processed on production tools.

CMP (M1) PHOTO (M2) ETCH (M3)
] . -08: M3
LIM oy pci, LIM rgoro Pc, LSs: 08:30 IPC};
05:00 :11:10 LT- 09-00 Py
LA 06:00 PC u-az0 | IPCY IPCE
LB: 07:00 IPCry k1150 | IPCHY e e
e o = LU: 10:00 IPC;y:
- 0B Ic L1:12:10 IR - TPCM3
LD: 09:00 Pt e oo -
-u= Ip LF: 12:30 IPC}; . PO DEFECTIVITY
T IPCH i LV-11:30 w CONTROL
:113 I LB: 12:50 IPCi, TE
il 1 LW: 12:00 IPC
LE: 12:00 IPC; tm: 1310 | IPCL;
13 M1 T L1230 | IPCYY
LF: 13:00 IPCr IN-13:30 | IPCYY IPCH
i . LA: 13:30 Te
LG: 14:00 IPCiy o:13:50 | IPCE M3
LF: 14:00 IPC;

LH: 1500 IPCyy 1410 | IPCE
LQ: 14:30 IPC;‘E
A 1450 | IPCY w100 | IPCY

Figure 5.11: Example of excursion analysis.

Figure 5.11 illustrates how the scope of analysis can be reduced based on the
IPC. L1 has been processed on three different production tools before being judged
as out of specifications after a control operation in the defectivity workshop. Based
on the history of tools and the information brought by the IPC, it is possible to
quickly identify the set of tools that was validated by a control operation after the
process of L1. This helps in removing this set of tools from the initial scope of
analysis, and thus reducing the scope of analysis. For example, considering tool
ETCH(MS3), a control was performed on lot LLM grcp processed after L1. As
LLM greg was judged within specification, ETCH(M3) can be removed from the

initial set of analysis. To be more general, let us introduce the following notations:

e LE: Index of the Lot on which an Excursion has occurred,

e M;g: Set of Machines on which lot LE was processed,
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According to (5.1), (5.2), and (5.3), we have:

LPIT, ={le{1,...,L}\ IPC}* < IPC" and NI/* > 0} (5.7)
MLE

LPI.p= | JLPI}, (5.8)
m=1

Where:
e MIpg in (5.6) is the set of Machines to be considered in the analysis,

e LPIT: in (5.7) is the set of Lots Potentially Impacted regarding lot LE on

production tool m,

e LPI; g in (5.8) is the set of Lots Potentially Impacted regarding lot LE in

the entire production.

For the case illustrated in Figure 5.11, the set of lots potentially impacted is
given by:
LPI;, = {LPI*\JLPI}?\JLPI}?
={LA,LB,LC,LD,LE,LF,LG,LH}\J{LJ,LK,LF,LB,LM,LN,LO,LP,LQ,LA}J@
={LA,LB,LC,LD,LE,LF,LG,LH,LJ, LK, LM, LN, LO,LP, LQ}

Tool ETCH(M3) is not included in the initial set of analysis since NI7* < 0.
The number of lots to analyze is therefore reduced by reducing the set of tools to
consider. A prototype based on the IPC information was developed to
help quickly identifying the set of tools most likely to be the source of
the excursion. Figure 5.12 gives an overview of the software prototype that was

developed. More details on the prototype are provided in Chapter 8.
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Figure 5.12: Overview of the Excursion Management prototype.

Other avenues can be explored regarding the best lot to prioritize on defectivity
tools in order to contain the excursion. The lot has to be selected among the set of

lots to consider in the scope of analysis as described above (see LPI1;)"

1. The first approach could be to select lots based on the probability of a pro-
duction tool to be most likely the source of the excursion. This probability is
defined based on the type of defects detected on wafers in the lot. Let us con-
sider the example introduced in Figure 5.11. If we focus on tool CMP(M1),

we may have the three following cases:

a. If the probability for tool CMP(M1) to be the source of defects is very
high, then the best lot to measure would be LA to confirm the excursion

and then to stop all of the lots processed on the tool after LA i.e.:
Stop the set of lots { LB, LC, LD, L1, LE, LF, LG, LH}.

b. If the probability for tool CMP(M1) to be the source of defects is very
low, then the best lot to measure would be LH to quickly validate all

BThese avenues were not explored in depth in this thesis.
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the lots processed before LH and thus exclude tool CMP(M1) from the

scope of analysis.

c. If the probability for tool CMP(M1) to be the source of defects is av-
erage, then it would be interesting to choose a lot between LA and LH.
This lot could be for example LE.

The selection of lots based on probabilities linked to production tools would

be performed using the IPC.

2. The second approach would be to use the concept of dominating sets with the
aim of identifying and selecting the lot that covers the maximum number of

lots and production tools as illustrated in Figure 5.13. In this case, it would
be lot LA.

The two perspectives described above will strongly contribute in improving the
management of excursions in dynamic sampling. Indeed, using a static sampling
plan, the same lots are measured throughout production. It implies that, when a
problem occurs, it is possible to reduce the scope of analysis only based on the lot
history. The added defects of each processing step can be quantified. However,
in dynamic sampling, the selection of lots is based on the added value in term of
control. A lot does no longer have to be inspected at all stages of inspection. Hence
the challenge lies in identifying the best lot to inspect or measure in order to contain

the excursion.
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Figure 5.13: Concept of dominating sets.

5.6 Conclusion

In this chapter, we pointed out the drawbacks of static control plans, analyzed
the impact of variability in a high-mix semiconductor plant, and introduced a fab-
wide indicator that can support both the implementation of dynamic control plans,
and the optimization of excursion management. This fab-wide indicator called IPC
is based on industrial constraints and its efficiency is in the ability to compute in a

very simple way several risk indicators with little CPU effort.

In the next chapter, we introduce dynamic sampling algorithms that have been
developed within the framework of the European project IMPROVE, and industri-

alized using the IPC mechanism.
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Chapter 6

Implementing Smart Sampling

Policies

This chapter introduces the sampling algorithms that have been developed within
the framework of the European project IMPROVE". The aim is to dynamically sam-
ple lots in front of metrology or inspection steps. By evaluating through simula-
tions the different sampling algorithms, results indicate a risk reduction of more
than 70% compared to Fab sampling. By defining financial metrics to assess the
return on investment of such algorithms, potential gains are estimated to more than

US$1,000,000.

6.1 Introduction

6.2 Smart sampling mechanism

6.3 Global Sampling Indicator (GSI)
6.4 GSI sampling algorithms

6.5 Numerical experiments

6.6 Conclusion

IIMPROVE: Implementing Manufacturing science solutions to increase equiPment
pROductiVity and fab pErformance.
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6.1 Introduction

Premature optimization is the root of all evil 2. In the previous chapter, we
analyzed the particularities of a static sampling plan, identified its main drawbacks,
and proposed an indicator (IPC) to support industrial implementation of dynamic
control plans. In this chapter, we propose a smart sampling approach to optimize
fab-wide sampling. It is based on a Global Sampling Indicator (GSI) that helps to
dynamically identify the best set of lots to measure, skip, or prioritize on metrology

tools.

The chapter is structured as follows. Section 6.2 describes the smart sampling
approach. In section 6.3, we present the different GSI formulas. Section 6.4 intro-
duces the GSI sampling algorithms that are based on GSI formulas and additional
constraints linked to the production environment. Section 6.5 is devoted to numer-
ical experiments. We analyze the efficiency of the GSI sampling algorithms versus
fab sampling, and discuss the impact of GSI parameters in the case of STMicroelec-

tronics in Crolles, France. Section 6.6 concludes the chapter.

6.2 Smart sampling mechanism

Smart sampling consists in dynamically selecting in an intelligent way the lots
to inspect or measure®. Three types of decisions are performed: Sampling, skipping,
and scheduling. These three decisions are taken based on control parameters and
metrology capacity. The order of decisions is not necessarily sequential, i.e. sample,
skip, and finally schedule. Some decisions can be taken simultaneously. The aim
is to sample and measure lots in order to minimize some objectives based on the

risks?.

?Donald Ervin Knuth.

3In this chapter, inspecting a lot is equivalent to measuring a lot. The same for inspection steps
and metrology steps.

4In this chapter, the risk is the number of wafers processed between two control operations. It
is called Wafer at risk and denoted WAR in the sequel.
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6.2.1 Sampling mechanism

Sampling a lot is based on how much is gained when adding the lot to the set
of lots already waiting to be inspected. As illustrated in Figure 6.1, each time a lot
Lx arrives in front of an inspection step (Defectivity workshop), it must be decided
whether or not to include the lot in the set of lots already waiting for inspection. If

the lot is selected and introduced in the queue, then the lot is sampled.

Sample
Lot LX?

Lot LX

WORKSHOP 1 YES

DEFECTIVITY
WORKSHOP

_}u —_— |

Inspection
Queue

Figure 6.1: Sampling mechanism.

6.2.2 Skipping mechanism

Skipping a lot consists in avoiding inspecting a lot Lx that has been sampled
(Figure 6.2). The lot is removed from the inspection queue and directed to the next
process step (next workshop). This type of decisions may happen when: (1) The
maximum size of the inspection queue is reached and there is a new lot that need
to be sampled because of the significant gain, (2) when the inspection capacity is
reduced because of the unavailability of an inspection tool, or (3) when the result

of another inspection is within specifications.
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5
5

YES

NO

>

Skip Lot

LX? DEFECTIVITY
WORKSHOP

Inspection
Queue

Figure 6.2: Skipping mechanism.

1. Arrival of a new lot. When a new lot arrives in front of an inspection step

and there is no more places in the queue, it may be interesting to skip a lot
already waiting in the queue and replace it by the new lot if it brings more
information. This helps keeping the queue size smaller than a maximum value
while inspecting the best possible lots.

. Unavailability of an inspection tool. When an inspection tool is down or

unavailable (preventive or corrective maintenance for example), the inspection
capacity is reduced. The queue size has to be adjusted to avoid increasing the
waiting time of lots for inspection. The more a lot waits for inspection, the
more its cycle time increases. Therefore, if the inspection capacity is reduced,
some lots should be skipped.

. Inspection of another lot. Each time a lot is inspected, the situation in

term of risks changes. Depending on the results of the inspection, the priority
of lots may be modified or further analysis requested. Some lots may thus be

prioritized and others skipped.
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6.2.3 Scheduling mechanism

Scheduling lots consists in assigning sampled lots on inspection tools and se-
quencing them. This is performed each time an inspection tool becomes available.

The objective is to prioritize lots having the largest gains.

To dynamically perform these three types of decisions, i.e. sampling, skipping,
and scheduling, an indicator called GSI (Global Sampling Indicator) has been

developed [20] as described in the next section.
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6.3 Global Sampling Indicator (GSI)

To each
set of lots S is associated an expected level of risk on the entire production if the

The GSI is an indicator that gives a score to different sets of lots.

lots in S are selected for inspection. Let us consider examples in Table 6.1 and
Table 6.2. Table 6.1 corresponds to the initial situation where no lot is selected.
Table 6.2 shows two outcomes if two different sets of lots S1 and S2 are selected for

inspection.

Production tools | Risk Level
M1 300
M2 250
M3 450
M4 450

Table 6.1: Initial situation.

(a) Set of lots S1 selected.

Production tools | Risk Level Production tools | Risk Level
M1 M1
M2 M2
M3 450 M3
M4 450 M4

(b) Set of lots S2 selected.

Table 6.2: Example if sets of lots S1 or S2 are selected for inspection.

If the set of lots S1 is selected and inspected, the resulting risk will be the one
in Table 6.2a, i.e. the risk levels of production tools M1 and M2 are reduced. If
the set S2 is selected, the resulting risk will be the one in Table 6.2b, i.e. the risk
levels of all production tools (M1, M2, M3, and M4) are reduced. In the first case,
when S1 is selected, the risk level is strongly reduced for production tools M1 (=50)
and M2 (=10) whereas M3 and M4 keep a high level of risk (=450). In the second
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case, when the set S2 is selected, the risk level is reduced for all production tools.
However, in this case, the risk levels are much higher than the risk levels of tools
M1 and M2 compared to the first case where S1 is selected. Hence the following
question: Is it better to select and inspect a set of lots that strongly reduces the risk
level of one or two production tools, or to select and inspect a set of lots that reduces
only a little the risk level of all production tools? To answer this question, a GSI has
been developed to give a weight or score to each set of lots S depending on control
parameters and inspection capacity. The set of lots S can be empty (Table 6.1) or
not (Table 6.2).

The GSI is computed for different sets of lots and not for each lot
separately. These sets of lots correspond to different possible combinations of lots
to be inspected. Let us consider the example in Figure 6.3. In the queue, there are
4 lots {L1, L2, L3, L4} selected and waiting to be inspected. A lot LX arrives in
front of the defectivity inspection and we need to decide whether the lot LX must

be sampled or not.

b | | BB (oo o
0 — 9wl

» Vo
nm
DEFECTIVITY

WORKSHOP

Lot LX

Queue

Figure 6.3: GSI combinations.

In the case illustrated in Figure 6.3, the queue is full. This means that sampling
lot LX will lead to skipping another lot waiting in the queue. Let us denote by
Sinitiar the set of lots already waiting for a defectivity inspection, i.e. Siitiaq =
{L1, L2, L3, L4}. To decide whether or not LX must be sampled, we need to analyze
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five different combinations with the GSI:

1. GS[(Sinitial) - GSI({Ll, L2, L3, L4})

2. GST({Simitiar \ L1Y U{LX}) = GSI({LX, L2, L3, L4})
3. GSI({Simitia \ L2} U{LX}) = GSI({L1,LX, L3, L4})
4. GST({Simitiar \ L3Y U{LX}) = GSI({L1, L2,LX, LA})
5. GSI({Simitia \ LAY U {LX}) = GSI({L1, L2, L3,LX})

The set with the smallest GSI is selected. For example, if the third
combination gives the smallest GSI, then it is better to inspect the set of lots
{L1,LX, L3, L4}, i.e. sampling LX and skipping L2. If the first combination gives
the smallest GSI, then it is better to not sample LX), i.e. to inspect the set of lots
{L1, L2, L3, L4} already waiting in the queue.

The same type of combinations is computed for scheduling lots on inspection
tools. However, our approach is different than the one used when sampling/skipping
lots, in which the set of lots with the smallest GST is selected. When scheduling
lots on inspection tools, the priority of a lot L, denoted by LSI(L) (Lot Scheduling
Indicator), is defined by the difference between GSI(Sinitiar \{L}) and GSI(Sinitiar)-
LSI(L) is always positive since, by definition, GSI(Sinitiar \ {L}) > GSI(Sinitial)-
The principle is to evaluate the impact of L in Sj,iiq by determining how much
would be lost in terms of GSI if L was not measured. The larger LSI(L), the
greater the priority of lot L on inspection tools. Let us consider the example in
Figure 6.3 with four lots {L1, L2, L3, L4} waiting to be inspected. To define the
priority of these lots on inspection tools, five combinations of lots are evaluated.
These five combinations are obtained by successively removing one by one one lot

from the initial set of lots Sinitiar, 1.€.:
1. GS[(Sinitial) = GSI({Ll, L2, L3, L4})

2. LSI(L1) = GSI(Simitia\{L1V)—GSI(Simitiat) = GSI({L2, L3, L4})—GSI({L1, L2, L3, L4})
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3. LSI(L2) = GSI(Simitia\{L2V)—GSI(Simitiat) = GSI({L1, L3, L4})—GSI({L1, L2, L3, LA})
4. LSI(Lg) == GSI(Sznltzal\{L3}>_GSI(Sznztzal) == GSI({Ll, L2, L4}>—GSI({L1, LQ, LS, L4})

5. LSI(L4) = GSI(Simitiar\{LA}) —GSI(Simitiat) = GSI({L1, L2, L3})—GSI({L1, L2, L3, L4})

The larger LSI(L) of L (LSI(L1), LSI(L2), LSI(L3), or LSI(L4)), the greater
the priority of L on inspection tools. This means that the larger the difference with
the initial GSI (G'SI(Sinitiar)), the more not inspecting the lot degrades the GSI. In
the example illustrated above, if LSI(L1) > LSI(L2) > LSI(L3) > LSI(L4), the
priority on inspection tools is: L1, L2, L3, and finally L4. If LSI(L2) > LSI(L4) >
LSI(L1) > LSI(L3), then the priority is L2, L4, L1, and finally L3.

To be more general, a risk array (same type for several tools and/or several risk
types) is assigned to each lot [20]. This array contains the new value of each risk (or

of the risk reduction) if the lot is inspected. Let us consider the following notations:

e R: Number of risks,

e W L,: Warning Limit for risk r,

IL,: Inhibit Limit for risk 7,

RV,.: Current risk value for risk r,

Gr;: Gain on risk r if lot [ is inspected,

NRV,;: New risk value if lot [ is inspected, i.e. NRV,; = RV, — G,,.

NRV,(S): New risk value if lots in set S are inspected. The new risk value if

lots in set S are inspected is calculated as follows:
NRV;(S) = MZ'TLZGSNRV;,Z.

For defectivity controls, the risk RV, corresponds to the Wafer at Risk (W AR)

for production tool . The W AR is the number of wafers processed on tool r since
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the process of the latest lot inspected in defectivity. This can be seen as the number
of wafers which have been processed on a tool r since the latest good defectivity
control. In this case, the gain G,; is the W AR reduction of the tool r if lot [ is
inspected. Two control parameters are defined: Warning Limit and Inhibit Limit.
The Warning Limit W L, corresponds to the value of the W AR beyond which the
situation starts to become critical in term of control. The Inhibit Limit IL, is the
maximum number of wafers that can be ran between two defectivity inspections for
the considered tool. Exceeding this limit for the W AR may lead to stopping the

production tool.

Using parameters described above, two GSI formulas (GSI-1 and GSI-2) com-
puting two different scores have been proposed. These two GSI formulas are used
in different GSI algorithms (Section 6.4) for sampling, skipping, and scheduling
lots dynamically.

6.3.1 GSI1

The first formula of the GSI aims at selecting sets that contain lots that help to
reduce risk values that are closer to their Inhibit Limits I L,. The Inhibit Limit 1L,
represents the maximum risk value that the company tolerates to ensure that, when
a problem occurs, the potential loss will not exceed this limit. The focus is thus put
on the ratio N RV, /I L, and the goal is to increase the priority of lots with significant
gain, i.e. lots for which NRV,./IL, is very small (parameter 1/3), and decrease the
priority of lots for which NRV,./IL, is close or higher than 1 (parameter «).

() ()

GSI(S)=>_ 7 i

r=1

The two parameters o (> 1) and 8 (> 1) in the GSI formula are thus used to put
more or less emphasis on getting as far as possible from the Inhibit Limit for which
the current risk value is closer. Figure 6.4 shows the evolution of the GSI depending
on the ratio between the new risk value N RV, if lots in the set S are inspected and

the Inhibit Limat IL,, with o set to 6 and § to 2. These two parameter values are
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based on numerical experiments presented in Section 6.5. They (o =6 and § = 2)
guarantee the expected trend of the curve (Figure 6.4). However, their values may

vary depending on the factory dynamics.

GSI-1 Evolution
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Current risk value[MRV)/Inhibit limit {IL)

Figure 6.4: GSI-1 Evolution.

Between 0 and 0.5 (see X-axis), the shape of the curve is mostly driven by the
parameter 3 (1/3). Beyond 0.5, the parameter « penalizes the fact that NRV, is
close to the Inhibit Limit. For example, if NRV,/IL. = 0.1, NRV, is ten times
smaller than IL,. In other words, by selecting and inspecting a given set S of
lots, the new risk value (N RV,) is much smaller than the Inhibit Limit. Since the
objective is to stay as much as possible below the Inhibit Limit, the set S of lots needs
to be prioritized. This is why, in Figure 6.4, a smaller GSI (=0.3) is associated to the
ratio NRV,/IL, = 0.1. Similarly, NRV,/IL, = 0.9 means that, when inspecting a
set S of lots, N RV, is very close to I L,.. This is not interesting, since it corresponds
to a significant GST (=1.5) that reduces the priority of selecting such a set of lots.
In Figure 6.4, note that, when the ratio NRV,/IL, is very small (i.e. the new risk
value is very far from the Inhibit Limit), the priority increases with a small GSI.
When the ratio NRV,./IL, increases, the priority is decreased with a significant
GSI. Let us consider the example in Table 6.3 already introduced in the previous

section.
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Production tools | NRV, | IL, Production tools | NRV, | IL,
rl o0 500 rl 200 | 500
r2 10 500 r2 200 | 500
r3 450 | 500 r3 200 | 500
rd 450 | 500 r4 200 | 500
(a) Set of lots S1 selected. (b) Set of lots S2 selected.

Table 6.3: Examplel - Evaluating two different set of lots S1 and S2 with the GSI.

We want to select a set of lots (S1 or S2) to inspect in order to reach the best
possible state in production. The Inhibit Limit is set to 500 for all production tools.
Inspecting the set of lots S1 will strongly reduce the risk level of two production
tools (rl and r2) while keeping the risk level of two other tools (r3 and r4) close
to their Inhibit Limits. Inspecting the set of lots S2 will reduce the risk level of
all production tools while ensuring to stay well below the Inhibit Limit. Without
any computation, we can see that it would interesting to select and inspect the lots
in set S2 and keep all risk levels far from the Inhibit Limit. This decision can be
verified with the GST formula using « = 6 and § = 2:

e Selecting S1:

50 \ /2 50\ ° 10 \ /2 10 \°
I(S1) = | [ 2= Y 10 10
Gsi(s1) [(500) ) |+ | G) () |+
450 1/2+ 150\°| [ (450 1/2+ 150\ _, 4y
500 500 500 500 e
e Selecting S2:
200\ % /200\° 200\ % /200\°
GSI(S2) = || = = = =
(52) [(500) +(5oo) + (500) +(500) +

200 1/2+ 200\°| , (200 1/2+ 200\°| _, ..
500 500 500 500) |
The GSIT associated to S2 is smaller than the one associated to S1. Selecting

and inspecting the lots in set S2 ensures the best possible resulting state in terms
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of risk. Let us consider another example (Table 6.4) where inspecting two different
sets of lots 53 and S4 allows staying below the Inhibit Limit but we need to select
the best set.

Production tools | NRV, | IL, Production tools | NRV, | IL,
rl 350 500 rl 350 500
72 300 500 r2 350 500
r3 400 500 r3 350 200
rd 300 500 rd 350 500
(a) Set of lots S3 selected. (b) Set of lots S4 selected.

Table 6.4: Example2 - Evaluating two different sets of lots S3 and S4 using the
GSI.

The resulting states (Table 6.4a and Table 6.4b) are very similar and it is not
easy to identify the best set. Using the G ST formula, we have:

e Selecting S3 gives:
350\ 2 /350\° 300\ 2 /400\°
I — | == oo o =
GSI(S3) [(500) +(500) + (500) +(500)
400\ % (400\°| | [ (300\"* /300\°| o
500 500 500 500 e
e Selecting S4 gives:
350\ 2 /350\° 350\ 2 /350\°
1(54) = | [ 2= et dind i
GSI(54) [(500) +(500) + (500) +(500>
350\* | (350\°| L [(330)"*, (350\"| |4
500 500 500 500 T

Therefore, it is better to select and inspect the lots in S3 since it has the smallest

+

_|_

GSI. In order to understand why S3 provides the smallest GSI, let us separately

analyze the impact of parameters § and « using two different cases.
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6.3.1.1 Impact of parameter [

Parameter § plays an important role when we need to analyze what happens
when N RV, is well below IL,. Let us consider the example in Table 6.5.

Production tools | NRV, | IL, Production tools | NRV, | IL,
rl 200 | 500 rl 10 500
r2 200 | 500 r2 280 | 500
r3 200 | 500 r3 280 | 500
rd 200 | 500 r4 280 | 500
(a) Set of lots S5 selected. (b) Set of lots S6 selected.

Table 6.5: Example3 - Evaluating two different sets of lots S5 and S6 using the
GSIL.

There are two different sets of lots S5 and S6 where the maximum value of
N RV, for each set is well below /L, (= 500). In this case, it could be interesting to
compare the total gain that each set brings, i.e.:

o 11(55) — r1(56) =200 — 10 = +190
o 15(55) — r4(56) = 200 — 280 = —80
o 73(55) — r3(S6) = 200 — 280 = —80

o 14(55) — r4(56) = 200 — 280 = —80

This means that selecting and inspecting the lots in set S5 will bring a gain
of +190 — 80 — 80 — 80 = —50 compared to the lots in set S6. In other words,
inspecting the lots in S5 will reduce the total risk by 50 more than inspecting the
lots in S6. Therefore, the best choice would be to select S5 because of the gain in
risk reduction. However, as the objective is to stay well below the Inhibit Limit,
f (in the GSI formula) will prioritize the set of lots where the risk level of one
production tool can be strongly reduced since, in both cases, we stay below and far
from the Inhibit Limit. This can be verified using the GSI formula:
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e Selecting SH gives:
200\ % /200\° 200\ % /200\°
GSI(S5) = | == it i <
(55) [(500) +(500) + (500) +(500>
200\ (200N F 200V 200N
500 500 500 500 T
e Selecting S6 gives:
10 \ /2 10 \° 280\ 2 /280\°
GSI(S6) = || — — kg =0
oo -G+ o) |+ [ Go) "+ ) ]+
280\ /2 /280\° 280\ /2 /280\°
= = i ) | =24
[(500) +(500) + (500) +(500> 8

S6 is prioritized because of the significant risk reduction on production tool ry.

_|_

6.3.1.2 Impact of parameter «

Contrary to (3, a penalizes cases where NRV, is close to [L, values. Let us
consider the example in Table 6.6.

Production tools | NRV, | IL, Production tools | NRV, | IL,
rl 200 500 rl 300 500
72 200 500 r2 300 500
r3 450 500 r3 300 500
rd 200 500 rd 300 200
(a) Set of lots S7 selected. (b) Set of lots S8 selected.

Table 6.6: Exampled - Evaluating two different sets of lots S7 and S8 using the
GSL

As for parameter 3, we can compare the total gain of selecting lots in S7 versus
selecting lots in S8:

o r1(S7) — r1(S8) = 200 — 300 = —100
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o 75(S7) — 15(S58) = 200 — 300 = —100
o r3(S7) — r3(S8) = 450 — 300 = +150
o 74(S7) — r4(S8) = 200 — 300 = —100

We obtain: —100 — 100 + 150 — 100 = —150. This means that selecting and
inspecting the lots in set S7 will help reducing the global risk of —150 more than by
selecting and inspecting the lots set S8. In this case, the best decision is to select
and inspect the lots in set S7. However, when looking to the NRV, values if S7
is selected (Table 6.6a), we can see that, for r3, NRV,, (= 450) is very close to
IL,, (=500). Using the GSI formula, this is strongly penalized with o (NRV, very
close to IL,). Therefore, the GSI formula indicates that S8 is the best set of lots to

inspect even if S7 brings the largest gain in term of risk reduction:

e Selecting S7 gives:
200\ % /200\° 200\ % /200\°
7 — - - - -
GSI(ST) [(500) +(500> + <500) +(500> +
450\ "7 | (450\°| |20\ r200\°| o0
500 500 500 500 e

e Selecting S8 gives:
300\"*  /300\° 300\"*  /300\°
GS[(SS) = [(ﬁ) + (%) ] + [(ﬁ) + (%) ] +
)" ()] () v
500 500 500 500

Hence, using the G'ST formula, it is always possible to identify and select the best
set of lots to inspect. However, in this first GSI formula, the Warning Limit that
represents a limit above which the situation starts to become critical is not taken
into account. Depending on the criticality of some processing steps, or the cycle
time between process and inspection tools, some lots may be prioritized to avoid
reaching the Inhibit Limit. Missing to consider the Warning Limit may lead to

situations where the Inhibit Limit will be reached because of delayed actions. This

is why a second GSI formula integrating the Warning Limit was proposed.



6.3. GLOBAL SAMPLING INDICATOR (GSI) 137

6.3.2 GSI 2

The GSI-2 formula is based on the GSI-1 formula but integrates the Warning
Limat that represents a threshold above which the situation starts to become critical
in term of control. The objective is to select sets of lots that allow staying well below
the Inhibit Limat and if possible below the Warning Limit. Parameters o and 3, as
in the GSI-1 formula, are used to give more or less priority depending on sets of lots

S to analyze. The score is given by:

. NRV,\ \ V/# NRV, WL, \\*
Gs](s)zz Min 1,% + | Max | 0, LLy WL]LT
— r 1_ r
! 1L, 1L,
Or

R 1/8 — @
asis) =3 |(arn (1375)) o (arae (0 1)) |

r=1

With this new formula, the aim is not only to stay well below the Inhibit Limit
but also penalize sets of lots where risk values (INRV,) are larger than Warning
Limats. When NRV, < WL,, the GSI is given by:

R 1/8
NRY,
GSI(S) = :(WL )

r=1

Parameter [ increases the priority of sets of lots that allow staying below W L,.. The
smaller NRV,./W L,, the smaller the associated GSI (Figure 6.5).

When NRV, > WL,, the associated set of lots is strongly penalized with pa-
rameter «. In this case, the GSI is given by:
n NRV, WL\ *“
_ L, IL, NRV, - WL,
GSI(S)—1+Z WL _1+Z( WL )
IL,
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Figure 6.5: GSI-2 Evolution.

Figure 6.5 shows the evolution of this new GSI formula when WL, = 0.7 % [ L,.
Contrary to the GSI-1 formula, sets of lots where N RV, are close to I L, are strongly
penalized with a very large value of the GSI.

Let us consider the example in Table 6.7. The same example has been evaluated
with the GSI-1 formula (see Table 6.6). The best set was S8 because, with S7, the

new risk value (N RV,.) associated to tool 73 is very close to the Inhibit Limit IL,.

Tools | NRV, | WL, | IL, Tools | NRV, | WL, | IL,
rl 200 350 | 500 rl 300 350 | 500
r2 200 350 | 500 r2 300 350 | 500
r3 450 350 | 500 r3 300 350 | 500
rd 200 350 | 500 rd 300 350 | 500
(a) Set of lots S9 selected. (b) Set of lots S10 selected.

Table 6.7: Example5 - Evaluating two different sets of lots S7 and S8 using the
GSIL.

Using the GSI-2 formula and defining Warning Limits based on the Inhibit Limits
(WL, =0.7«IL, = 0.7 %500 = 350), we obtain (with o =6 and § = 2):
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e Selecting S9 gives:
200 200 — 350
GSI,(59) = ) 02— =%
2(59) [( ( 350 ) +( ( 1500 350)>]+
[ 200\ /2 200 — 350
(vrn (1355)) (v (0 5=350) ) |
450\ \ '/ 450 — 350
Min (1,22 Maz (0, 22—
( m(’350)> ( “r (0 500—350)) i
i / .
200 200 — 350
Min (1 M i — 3.
[( m< 350)) +( a$(0’500—350>)] 336

e Selecting S10 gives:

300 300 — 350\ \°
GSI1,(S10) M 1, — M 0, ———
2 [( m(’350>> J“( M(’500—35o)> ]J“
[ 300 300 — 350\ \ ]
M — M —
( m(’350 > +( ax(0’500—350)> -
[ 300 300 — 350\ \ |
M OUY T 09Y
( ( ' 350 ) ( ‘“E(O’500—350)> +
300 300 — 350\ \°
M 1 M — = 3.
[( m( 350)) ( “r <O’ 500—350)) ] 370
Contrary to the GSI-1 formula, the GSI-2 selects S9 as the best set of lots for
inspection. The set of lots S10 where N RV, values are close to WL, (r; = ry =
ry = r4 = 300 and WL, = 350) are penalized. Depending on the GSI formula, the

set of lots that is selected is different:

v\/

e GSI-1 formula = S8. States where N RV is close to I L, are strongly penalized.

e GSI-2 formula = S7. States where N RV, is close to WL, and IL, are penal-

ized.

When looking at Table 6.7, the solutions provided by the two GSI formulas
(GSI-1 and GSI-2) can be discussed. If the values of parameters o and 8 are not
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the same for the two GSI formulas, only using the GSI formulas to select lots is not
enough. Therefore, there is a need to consider additional parameters to ensure ef-
ficient sampling, skipping, and scheduling of lots on inspection tools. For example,
increasing the priority of some lots based on their processing history, or defining
threshold values below which a lot that has been sampled cannot be skipped.

To consider additional parameters, two different GSI sampling algorithms are
proposed. They are based on the GSI formulas (GSI-1 and GSI-2) and production
constraints such as prioritizing lots that minimize the number of Inhibit Limits that
are not satisfied, or not sampling lots that bring less than a given percentage of
gain on the GSI. The next section describes these two algorithms and section 6.5.2

presents the performance of each algorithm based on simulations.
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6.4 GSI sampling algorithms

GSI sampling algorithms are based on GSI formulas, Warning Limits, Inhibit
Limits, and some thresholds. Thresholds help mastering the cycle time of lots by
avoiding sampling lots that may be skipped later because of the arrival of new lots

containing more information. The objectives are twofold:

1. Sample, skip, and dynamically schedule lots on inspection tools while ensuring

an optimal use of the inspection capacity.

2. Minimize the risks on the entire production while ensuring a maximum risk
level below the Inhibit Limits.

In this section, we first define the different types of thresholds and then present
the GSI sampling algorithms that are evaluated through simulations (Section 6.5.2).

6.4.1 Threshold definitions

A threshold can be defined as a limit above or below which an action may be

taken. For dynamically sampling, skipping, and scheduling lots, three different
thresholds are defined:

1. Minimum threshold (7}y;,) = Minimum gain required for a lot to enter the

inspection queue when the latter is empty.

2. Maximum threshold (7},,) = Minimum gain required for a lot to enter

the inspection queue when the latter is full.

3. Metrology threshold (T/ctr0) = Minimum gain required for a lot to remain

in the inspection queue after completing the inspection of another lot.

Thrin and Ty, are used in the entrance of the inspection queue to help deciding
whether or not a lot should be sampled. Ty et is used for lots already in the
inspection queue. The three thresholds (Tasin, Taaz, Thietro) are based on the GSI,
i.e. the gain of a lot [ is always evaluated within a set S of lots (section 6.3). This

gain for a lot [ in a set S is given by:
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GSI(SU 1Y)

Gain(l) =1 — GSI(9)

€ [0,1].

Gain(l) is strictly positive since inspecting an additional lot cannot worsen the
GSIL

e Minimum threshold (7);,) and Maximum threshold (7/4.). Thin and
Thrar are fixed values that never vary. When the inspection queue is empty,
Thrin is used and, when the queue is full, T),, is used. When the inspection
queue is partially filled, the threshold used is proportional to the size of the

inspection queue. The threshold is defined with the following formula:

NBQ
—— %

Threshold = Ty + S0

(Tvaz — Thrin)

where N B() is the number of lots in the inspection queue and S the inspec-
tion queue size (i.e. capacity). All thresholds are given in percentages. Let
us consider Figure 6.6 and Figure 6.7. There are three possible cases: The
inspection queue is full (Figure 6.6a), partially filled (Figure 6.6b), or empty
(Figure 6.7). For these three cases, a decision must be taken regarding the
sampling of a lot LX that arrives in front of the inspection step. Two steps are
performed: Compute the GSI and verify if the gain associated to LX satisfies
the threshold limits.

Example: Ty, = 5%, Thee = 20%.

A. Figure 6.6a — The queue is full. In this case, sampling LX leads to
skipping another lot in the inspection queue. Therefore, we need to analyze

all possible combinations and select the best one. This means evaluating:

GSI, = GSI({L1, L2, L3, L4})
GSI, = GSI({LX, L2, L3, L4}
GSI; = GSI({L1,LX, L3, L4}
GSI, = GSI({L1,L2,LX, L4}
GSI; = GSI({L1,L2,L3,LX}

~— — ~—
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GS1 is the reference, i.e. the score associated to the set of lots { L1, L2, L3, L4}
already in the inspection queue. If GSIy, GSI3, GS14, or GSI5 is lower than
G S, then sampling LX and skipping another lot in the queue is valuable.
For example, if GSI3 < GSI;, sampling LX and skipping L2 is interesting.
But, before performing such a decision, we need to verify that the gain associ-
ated to sampling LX satisfies the threshold. Since the inspection queue is full

(Figure 6.6a), the maximal threshold Ty, = 20% is used and it is necessary
to verify that:
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GSI;
GSIL

Gain(LX) = {1 - ] * 100% > 20%
If Gain(LX) > 20%, then sampling LX and skipping L2 improves the GSI
score by at least 20%.

B. Figure 6.6b — The queue is partially filled. Three lots are waiting
in the inspection queue and the queue size is 4. It means that there is an
available place and LX can be sampled. However, as we want to optimally
use all inspection tools, we want to ensure that inspecting an additional lot

improves the situation (in term of risk) enough. Therefore, we verify that:
GSI({L1,L2,L3,LX})
GSI({L1,L2,L3})

NBQ
T in e T, az_T n
Min + SO s (T Min)

Gain(LX)=1— * 100% >

1.e.
_ GSI({L1,L2,L3,LX})
GSI({L1,L2,L3})

Gain(LX) = [1 } *100% = 5 + (3/4) * (20 — 5)%

GSI({L1,12,13,LX})
GSI({L1,L2,L3})

= Gain(LX) = [1 - } «100% > 16.25%
If Gain(LX) > 16.25%, then LX is sampled and added to the inspection

queue, otherwise, LX will not be sampled.

C. Figure 6.7 — The queue is empty. There are 4 available places into
the queue but we need to verify that inspecting LX improves the situation
enough. The case where LX is inspected (GSI({LX}) is compared to the
case where no lot is inspected (GS1(2)), i.e.:

GSI({LXY)

Gain(LX)=1— GSI(2)

% 100% = Thrin

 GSI({LX})

= Gain(LX) =1 GSI(2)

* 100% > 5%
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If Gain(LX) > 5%, then LX is sampled and added to the inspection queue.

e Metrology threshold (Tasetro). Thetro is a fixed value in percentage that
helps mastering the number of lots skipped after the inspection of other lots.
Each time a lot is inspected, the gain associated to lots in the inspection queue
is modified. Depending on the time spent in the inspection queue, the gain
of some lots may strongly decrease and, thus, it may be interesting to skip
these lots to avoid increasing their cycle time for nothing. Let us consider the
example in Figure 6.8. Lot L1 has been inspected and there is a need to define
whether or not a lot (LX, or L3, or L4) in the queue should be skipped. To
skip a lot [ after an inspection, the gain having [ in a set S of lots must be

lower than Thjero. This means:

GSI(S\{1})
GSI(S)

Gain(l in S) = — 1 < Thyretro-

LotlLl
:| -

;|
2| -

Inspection DEFECTIVITY
WORKSHOP
Queue

L1isinspected
- Skip LX, L3, or L4?

Figure 6.8: Threshold metrology (Tasetro) - Skipping lots after inspection.

For example, if Thretro = 10% and L1 has just been inspected, to decide
whether a lot should be removed from the inspection queue, we need to assess
the gain of each lot in the queue i.e. in the set S = {LX, L3, L4}. This means

evaluating:

. ‘ _ GSI({L3,L14})
Gain(LX in S) = GSI(LX.I3.I41) 1




146 CHAPTER 6. IMPLEMENTING SMART SAMPLING POLICIES

. GSI{LX,L4})
Gain(L3 in S) = GSILX. L3.11}) 1

: : ~ GSI({LX,L3})
Gain(L4 in S) = GSI(LX. L3141 1

If there is a lot [ such that Gain(l in S) < Threrro, then [ will be skipped,
removed from the inspection queue and directed to its next processing opera-
tion. For example, if Gain(LX in S) < 10%, then lot LX will be skipped.

These three thresholds (Thraz, Torin, Thretro) Were progressively introduced based on
simulations results (Section 6.5). The threshold Ty, was introduced to reduce the
number of lots skipped. By using the GSI formulas to sample lots, we observed that
some lots were sampled because of their gains but never inspected because of the
arrival of new lots bringing more information. Consequences were the increasing of
the cycle times of those lots that were stopped at inspection steps without being
inspected. By defining a minimum gain (7)., ) to satisfy before sampling a lot, we
could reduce the number of sampled lots and thus the number of skipped lots. Ty,
was defined to ensure that, even if the inspection queue is empty, sampling a lot will

always improve the situation within production.

Thretro Was defined to master the number of skipped lots due the reduction of the
gain after each inspection. This threshold was introduced to dissociate the thresh-
old in the entrance of the queue (Th4,) and the threshold required for lots to stay
in the queue after each inspection. Increasing the threshold in the entrance of the
queue leads to the reduction of the number of sampled lots, and thus the number
of skipped lots, while increasing the threshold required for each lot to stay in the
queue leads to increasing the number of skipped lots because of the incompressible
waiting time in front of inspection tools. By separating the two thresholds (T4

and Thetro), we could master both the number of sampled lots and skipped lots.

In the next sections, we present the different GSI sampling algorithms that have

been developed based on GSI formulas, Warning Limits, Inhibit Limits, and the
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different thresholds.

6.4.2 GSI sampling algorithm 1 (GSI-SA-1)

Sampling a lot [ is based on how much is gained when adding [ to the set of lots
Sinitia already in the inspection queue. We compare the number of inhibit limits
that are violated, the number of warning limits that are violated and the GSI of the
sets of lots obtained by adding [ in Sinitiar, 1.6 Sinitiar U {{}, or by removing I’ from
Sinitiar and adding 1, i.e. Siniriar \ {U'} U {l}. Let us consider the following notations:

o Sinitiar: Set of lots already in the inspection queue,

e NBQ: Number of lots in Si,itiar (NBQ = |Sinitial|), i-€. number of lots already

in the inspection queue,
e S(@): Size of the inspection queue,

e NbIL(S): Number of Inhibit Limits that are violated if the set of lots S is

selected for inspection,

e NOWL(S): Number of Warning Limits that are violated if the set of lots S is

selected for inspection.

The first GSI sampling algorithm (GSI-SA-1) determines the best set of lots S*
and uses the GSI-1 formula (section 6.3.1), i.e

() (5

If the number of lots already in the inspection queue is strictly smaller than

R

GSI(S Z

the size of the inspection queue, i.e. NBQ@Q < SQ, then only adding [ in S;,ia is
evaluated and compared to not adding [. Otherwise, i.e. NBQ = S@), all combina-
tions associated to removing each I' € Sy, iviar from Sinivia and adding [ in Sjyi0 are

evaluated.

In the description below, S.S denotes a set of sets of lots.
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GSI-SA-1 — Selecting the best set of lots S* using IL, WL and GSI-1

1:  Initialization: S* = S;nitial
2: If NBQ = SQ then
3: SS =1
4: For each lot I’ € Sipnitial
5: SS = SSUA{Sinitiar \ {U'} U{l}}
6: End for
7 Elself NBQ < S@Q then
8: SS = {Sinitial U {l}}
9: End if
10:  For each set of lots S € SS
11: If NOIL(S) < NbIL(S*) then
12: S*=S8
13:  Elself NbIL(S) = NbIL(S*) and NoW L(S) < NbWL(S*) then
14: S*r=1S5
15:  Elself NbIL(S) = NbIL(S*) and NoWL(S) = NoW L(S*) then
/% Only gains that satisfy threshold values are accepted. */
16: If GSI(S) < GSI(S*) and
NBQ
[1 — GSI(S)/GSI(Smthl)] > TMm + W * (TMa:c — TMzn> then
17: S* =S85
18: End If
19: End If
20: End for

6.4.3 GSI sampling algorithm 2 (GSI-SA-2)

Contrary to the first algorithm, the second GSI sampling algorithm ((GSI-SA-2)
uses the GSI-2 formula (section 6.3.2). Since Warning Limits are already included
in the GSI-2 formula, this second algorithm does not start by ranking solutions in a
lexicographical order, i.e. verifying the number of Inhibit Limit and Warning Limit
that are violated. The selection of the best set of lots is directly performed by using
the GSI-2 formula and threshold limits:
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N NRV.A \ V° NRV, WL, \\*
GSI(S) = Z Min | 1, % + | Max | 0, L Ly WL{LT
! L. =7

Warning Limits and Inhibit Limits are no longer thresholds to avoid in this

second algorithm.

GSI-SA-2 — Selecting the best set of lots S5* using GSI-2

Initialization: S* = S;,iial
If NBQ = SQ then
SS =10
For each lot I' € S;nitial
SS =SS U{Sinitiar \ {I'} U{l}}
End for
Elself NBQ < SQ then
SS = {Sinitia U {1} }
End if
For each set of lots S € SS
If GSI(S) < GSI(S*) and

[1 —GSI(S)/GSI(Sinitiar)] = |Trrin +

12: S* =35
13: End if
14: End for

e A A A > o

)

NBQ

W * (TMa:t — TM”L) then

These two GSI sampling algorithms could have been evaluated using a fab-wide
simulation as in Gissrau and Rose [27]. However, we wanted to use historical data
that were available and focus on the sampling mechanisms. Hence, we used a sim-
ulator called S5 (Smart Sampling Skipping Scheduling Simulator) [104] developed
by the EMSE within the framework of the European project IMPROVE, to test the
GSI sampling algorithms. S5 also helped to evaluate the sampling algorithms on

datasets from various European semiconductor fabs.

In the next section we discuss the performances of each sampling algorithm and

analyze the impact of input parameters in the GSI sampling performances.
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6.5 Numerical experiments

Simulations presented in this section were performed on actual data from the
300-mm site of STMicroelectronics in Crolles, France. We used six weeks of histori-
cal data. With 8 different technologies and 244 production tools, the time required
to simulate a fab-wide sampling policy is 7 minutes (4 minutes for simulation and 3
minutes to generate statistics). The characteristics of the computer are: 2.53GHz,
4GB of RAM, and Windows 7 as the operating system. For all simulations, we
defined the Warning and Inhibit Limits to 1000 and 2000 respectively for all pro-
duction tools. The impact of these Warning and Inhibit Limits are evaluated and

computed for each production tool in the next chapter (Chapter 7).

6.5.1 S5 simulator

The S5 (Smart Sampling Skipping Scheduling Simulator) simulator was de-
veloped within the framework of the European project IMPROVE [104]. It uses
historical data to simulate various sampling policies (see Appendix C.1 for further
details). For each sampling policy that is simulated, the simulator provides sev-
eral statistics and we use some of these statistics to assess the performance of GSI

sampling algorithms. Among these statistics, we use the following indicators:

1. Number of lots that are sampled: The number of lots that are selected

for measurement and placed in the metrology queue.

2. Number of lots that are measured: The number of lots that are processed

on metrology tools.

3. Number of lots that are skipped: The number of lots that are removed
from the metrology queue, i.e. the number of lots that are sampled but not

measured.

4. Number of lots that are skipped (entry queue): The number of lots that
are removed from the metrology queue due to the arrival of new lots having

more information.
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. Number of lots that are skipped (metrology): The number of lots that

are removed from the metrology queue due to the measurement of other lots.

. Medium WAR (average): The sum of the WAR of all production tools

NbTools

WAR,
divided by the number of tools. It is equal to Z — 9
= NbT ools

the W AR for production tool j, and NbT ools the number of production tools.

where WAR; is

. Maximum WAR (average): The sum of the maximum W AR of all produc-

NbTools .
MazximumW AR,
tion tools divided by th ber of tools. It 1 1t E J
ion tools divided by the number of tools. It is equal to 2. NoTools

. Number of wafers above Warning Limit: The number of wafers that are

processed on production tools when WAR is above the Warning Limit.

. Number of wafers above Inhibit Limit: The number of wafers that are

processed on production tools when WAR is above the Inhibit Limit.

6.5.2 Evaluating GSI sampling algorithms

To evaluate the performances of the GSI sampling algorithms (section 6.4) versus

Fab sampling, we define and consider the same parameter values for the two GSI

sampling algorithms. We first aim at evaluating and quantifying the performances of

each GSI sampling algorithm, and then analyzing the impact of different parameters

(o, By Tarazs Torin, Thietro) in the sampling policy performances. We define:

a=06and g =2.

TMaac = 4%
TMetro = 0%

WL = 1000 and IL = 2000 for all production tools.
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e Number of metrology tools = 2 and queue size = 4. In fact, in our historical
data, 13 metrology tools are used. However, these metrology tools are not
used at 100% because of maintenance, engineering actions, or qualifications.
To compare the GSI and Fab sampling policies, we need to have the same
number of measurements. This is why we adjust the number of metrology
tools as well as the measure time. By defining 2 metrology tools used at 100%
with a measure time of X, we ensure the saturation of our metrology capacity.
The queue size is set to be twice the number of metrology tools, i.e. two lots in
front of each metrology tool. This is a choice that can be discussed depending

on the factory dynamics or the historical data.

Table 6.8 shows the experimental results for the four cases: “Fab sampling”, “All
sampling”, “GSI algo-17, “GSI algo-2”. Fab sampling corresponds to the sampling
that was actually performed in production. All sampling corresponds to measuring
all lots. It gives indication on theoretical performances if all lots were measured, i.e.
infinite capacity. GSI algo-1 and GSI algo-2 correspond to the sampling obtained
with the two GSI sampling algorithms (Section 6.4.2 and Section 6.4.3). All results

are normalized based on Fab sampling results.

Note that, whatever the sampling policy, the four following performances indica-
tors are improved compared to Fab sampling: Medium WAR (average), Maximum
WAR (average), Number of wafers above WL, Number of wafers above IL.

The case of All sampling shows that, measuring all lots does not ensures zero
risk. Hence the importance of optimally using the metrology capacity. The two GSI
sampling algorithms (GSI algo-1 and GSI algo-2) provide better results compared
to Fab sampling for the same measurement capacity (see the number of measured
lots). GSI algo-2 provides the minimum “Medium and Maximum WAR” whereas
GSI algo-1 ensures the minimum “Number of wafers above WL and IL”. However,
the differences are not so significant and can thus be discussed depending on the
production environment. When exceeding IL may lead to stopping production tools,
then GSI algo-1 is preferable. When the primary goal is to minimize risk, i.e. the
“Medium and Maximum WAR”, then GSI algo-2 is more suitable.
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. Fab All GSI GSI

Indicators . .

sampling | sampling algo-1 algo-2
Number of sampled A 14.21*A 8.10%A 1.25*%A
lots
Number of measured A 14.21*A 0.98*A 0.98*A
lots
Number of skipped 0 0 7.12%A 0.27*A
lots
Number of skipped 0 0 4.65%A 0.01*A
lots (entry queue)
Number of skipped 0 0 2.47*A 0.26*A
lots (metrology)
Medium WAR B 0.11*B 0.36*B 0.35*B
(average)
Maximum WAR C 0.16*C 0.45*C 0.44*C
(average)
Number of wafers D 0.10*D 0.79*D 0.87*D
above WL
Number of wafers E 0.06*E 0.49*E 0.59*E
above IL

Table 6.8: Evaluating the GSI sampling algorithms.

Looking at the number of lots that are sampled and the number of lots that are
skipped, GSI algo-2 outperforms GSI algo-1. For the same measurement capac-
ity and approximatively the same performances in term of risk reduction (Medium
and Maximum WAR), GSI algo-2 samples only 1.25*%A lots whereas GSI algo-1
samples 6 times more lots (8.10*A). Consequences are the significant number of lots
that are skipped (GSI algo-1 skips 26 times more lots than GSI algo-2) since the
measurement capacity is constant. This may impact the cycle times of lots that are
sampled but never measured, i.e. skipped. The same for the “Number of skipped

lots (entry queue)” and “Number of skipped lots (metrology)”.

Considering all the performance indicators, the two GSI sampling algorithms

outperforms Fab sampling. With the same number of measurements, the GSI sam-
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pling algorithms help in strongly reducing both the risk, i.e. the WAR (Medium and
Maximum), and the number of wafers above WL and IL. However, no conclusion can
be taken regarding the GSI sampling algorithm that provides the best performances.
Depending on the production environment (automated or not) or the management
priorities (stopping production tools once IL is exceeded or minimizing the overall
risk, i.e. Medium and Maximum WAR), a sampling algorithm (GSI algo-1 or GSI

algo-2) may be more suitable than the other.

In the next section, we analyze the impact of the five following parameters that
are used in the GSI sampling algorithms: «, 8, Thrazs Trrin, Taretro- We aim at
understanding their real impact in the GSI sampling performances, verifying the
expected behavior of the sampling algorithms, and identifying values that ensure
good performances. We choose GSI algo-2 because of the reduced number
of skipped lots. However, this is just a choice, and the impact of parameters may

vary depending on the GSI sampling algorithm or the production constraints.

6.5.3 Analyzing the impact of GSI parameters

We successively and separately vary all the parameters. We first analyze the
impact of parameters o and 3 before analyzing the impact of threshold parameters
(Tntaz, Torin, and Thyero). « and (B are directly used in the GSI formulas to compute
scores that are associated to sets of lots, whereas Thraz, Thrin, and Thjesro are used
in the GSI sampling algorithms® to manage the filling of metrology queues, i.e. the

number of lots that are sampled and skipped.

Each parameter is separately analyzed, i.e. when we vary a parameter, we keep
all the other parameters constant. This choice can be discussed since the impact of
a parameter may be linked to the fixed values of the other parameters. However,
simulating all possible combinations is not possible because of the time of each
simulation (7 minutes). Moreover, since our primary goal is to verify that the GSI

sampling algorithms have the expected behavior whatever the parameter values,

5GSI sampling algorithms are a combination of GSI formulas, threshold values, and additional
constraints linked to metrology capacity and production environment.
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analyzing parameters one after another help us understand and assess the robustness

of the GSI sampling algorithms.

We focus on evaluating different situations with different parameter values rather
than trying to find the parameters values that provide the optimal performances of
the GSI sampling algorithms. We aim at identifying values that lead to a kind of
instability, and thus reduce the space of possible values that each parameter can take.
Our choice is also motivated by the fact the GSI sampling algorithms are to be used
in different manufacturing environments with different constraints and priorities.
The parameter values might not be the same in all situations. Hence our focus on
analyzing the impact of parameters, identifying abnormalities, i.e. parameter values
that make the GSI sampling algorithms unstable, and discussing the set of values

that each parameter should take.

6.5.3.1 Analyzing the impact of parameters o and [

Parameters o and ( are used in the GSI formulas to put more or less emphasis
on getting as far as possible from the Inhibit Limit for which the current risk value is
closer. « is used to penalize sets of lots for which the resulting risk values are closer
to the Inhibit Limits. [ prioritizes sets of lots fro which the associated risk values
are far from the Inhibit Limits. The goal is stay as far away as possible below Inhibit

Limit while minimizing the overall risk in the entire production (Section 6.3).

We use the S5 simulator [104] and the following performance indicators to assess

the impacts of a and f:
1. Number of lots that are sampled.
2. Number of lots that are measured.
3. Number of lots that are skipped.
4. Medium WAR (average).
5. Maximum WAR (average).

We set Thiae = Tarin = Thetro = 0%. We start by analyzing the impact of «

when g = 1. Then, we vary 3 for different values of o. Results show that, to ensure
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good performances with the GSI sampling algorithms, o must be lower than 13 and
p € [2,10]. For the case of the 300-mm fab of STMicroelectronics, the
values of a = 6 and § = 2 provide satisfactory results.

a ) Impact of parameter o. To analyze the impact of a, we vary its value

between 1 and 100 and consider the following parameters:

B=1

TMaz - TMzn = TMetro = O%

Warning Limait = 1000

Inhibit Limait = 2000

Figure 6.9 shows that o impacts the number of measured lots. Note that,
if a > 13, the number of measured lots decreases, i.e. metrology tools are no longer
fully used. This means that there are either lots that are not sampled when the
metrology queue is not full, or lots that are not measured when there are available
capacity on metrology tools. This can be explained by the fact that, when o > 13,
the GSI score (NRV /IL)* + ...) becomes very large and thus, differences between
sets of lots (GSI scores) are not so significant in term of gains. Hence the reduced
number of measured lots.

= Number of measured lots
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Figure 6.9: Impact of o on the number of measured lots.
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Since metrology tools should be fully used, we only consider values of a € [1,12]
and analyze the impact on the other performance indicators. Figure 6.10 and Fig-
ure 6.11 show the impact of a (€ [1,12]) on the WAR values and on the number of
sampled /skipped lots respectively.
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Figure 6.10: Impact of a on the Medium WAR and Maximum WAR.
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Figure 6.11: Impact of a on the number of sampled lots and skipped lots.

Note that the impact of « is negligible. The WAR values as well as the number of
lots that are sampled and skipped are not really impacted by a. The GSI sampling
algorithm ensures the measurement of the best possible sets of lots. Therefore, to
expect good performances from the GSI sampling algorithms, « should not be too

large. We thus only keep and consider o € [1,12] in the remaining simulations.
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b ) Impact of parameter . To analyze the impact of 5, we consider the

following parameters:
o a€[1,12] - {1,24,6,8,10,12}
® Tytazr = Trrin = Thsetro = 0%
e Warning Limit = 1000
e [nhibit Limat = 2000

Parameter 3 is used in the GSI formula (Section 6.3.2) as 1/3 (... + (NRV/IL)'/#).
This implies that, the higher 3, the lower its impact in the GSI score. For example,
if 8 = 20, it implies that 1/8 = 0.05, i.e. (NRV/IL)/# # 1.

For 3 to have an impact in the GSI formula, we only consider values of 3 below
10. Then, by varying (3 between 1 and 10 for o = {1,2,4,6, 8,10, 12}, we analyze
different performance indicators (Appendix C.2 - See the average value of each per-

formance indicator).

Results show that, when « increases, whatever the value of 3, the average
Medium WAR and Maximum WAR tend to increase whereas the number of lots
that are skipped decreases. As one of the primary goal is to minimize the risk in the
entire production without increasing the cycle time of lots (i.e. number of skipped
lots), we need to find a trade-off between the number of lots that are skipped and
the Medium and Maximum WAR. We thus choose the medium value of o between
1 and 12, i.e. a = 6.

To identify the value of g that ensures good performances for the GSI sampling
algorithms, we analyze our performances indicators when o« = 6. Table 6.9 shows
the impact of 3 when it varies between 2 and 10°.

Note that” the differences in the Medium and Maximum WAR can be neglected.

Therefore, we focus on the number of lots that are skipped. Results show that the

5We do not consider the value of 8 = 1 since, if 8 = 1, it does not impact the GSI formula
(Section 6.3.2).

7All results are normalized based on Fab sampling. A is the number of lots that are sampled,
B the Medium WAR (average), and C the Maximum WAR(average).
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Average Average
Values of # with a =6 | WIDTOL | Rmber S | o | Medium | Maximum

W@R WG@R

2 5.34*%A 0.98*%A 4.35%A 0.24*B 0.28*%C

3 5.58*%A 0.98*A 4.60*A 0.24*B 0.28*C

4 5.76%A 0.98*%A 4.78%A 0.24*B 0.28*%C

5 5.93%A 0.98*%A 4.95%A 0.24*B 0.28*C

6 6.05*%A 0.98*A 5.07*A 0.24*B 0.28*%C

7 6.23%A 0.98*%A 5.25%A 0.24*B 0.28*%C

8 6.26%A 0.98*%A 5.28%A 0.24*B 0.28*%C

9 6.37*A 0.98*%A 5.38%A 0.25*B 0.28*C

10 6.58%A 0.98*A 5.60%A 0.24*B 0.28*C

Table 6.9: Impact of 8 when a = 6.
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value of § = 2 ensures a good trade-off between the Medium WAR, the Maximum
WAR, and the number of lots that are skipped. Hence the choice of o = 6 and
£ = 2 for the case of the 300mm fab of STMicroelectronics. If these values

of @ and 8 may vary depending on the set of data or the production environment,

selecting o < 12 and f € [2,10] seem to ensure optimized sampling policies with the

GSI sampling algorithms.
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6.5.3.2 Analyzing the impact of threshold parameters

Threshold parameters (Thraz, Tarin, and Thjerro) have been introduced in the
GSI sampling algorithms to master the number of sampled lots and skipped lots.
The aim is to ensure the measurement of the best possible lots for a fixed metrology
capacity (Section 6.4). Thrq, and Ty, are used at the entrance of the metrology
queue, whereas Thjetro 1S used each time a measurement is completed. Thsq, is the
minimum gain required for a lot to enter the metrology queue when it is full. Ty, is
the minimum gain required for a lot to enter the metrology queue when it is empty.
And Tyjetro 18 the minimum gain required for a lot to remain in the metrology queue

after the measurement of another lot is completed.

These three threshold parameters have direct impacts on the lots that are sam-
pled, skipped, measured, and thus on the sampling policy performances. For ex-
ample, if the threshold in the entrance of the queue (Thq,) is very high, only few
lots will be sampled because of the higher gain required to enter the queue. Con-
sequences can be the increase of the number of lots processed above Inhibit Limits

and thus an increase of the potential loss if a problem occurs in production.

To analyze the impact of the three threshold parameters, we use the S5 simulator

(Appendix C.1) and analyze the following indicators:
1. Number of lots that are sampled.
2. Number of lots that are measured.
3. Number of lots that are skipped.
4. Number of lots that are skipped (entry queue).
5. Number of lots that are skipped (metrology).
6. Medium WAR (average).
7. Maximum WAR (average).
8. Number of wafers above Warning Limits.

9. Number of wafers above Inhibit Limits.
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10. Average time spent in the queue before measurement.
11. Average time in the queue before skip (entry queue).

12. Average time in the queue before skip (metrology).

Results indicate that, T}, impacts the number of measured lots leading to
reducing the saturation of the metrology tools. T)s.. impacts the number of lots
that are skipped in the entrance of the queue leading to an increase of the
number of lots processed above Inhibit Limits, and Ty, impacts the number
of lots that are removed from metrology queue leading to an increase of the
cycle time of lots, i.e. the number of lots that are sampled but never measured.
For the case of the 300-mm fab of STMicroelectronics, the best trade-off
seems to be Thue = 1%, Trin = 0%, and Therro = 0%.
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a ) Impact of parameter T),,. Table 6.10 shows the impact of Ty, on the
GSI sampling performances. Let us focus on the first three indicators: The number
of sampled lots, measured lots, and skipped lots. When T}y, increases (0%, 1%, 2%,
10%, 20%), the number of lots that are sampled decreases leading to a reduction in
the number of lots that are skipped. The number of measured lots remains constant
(0.98 % A). The higher the value of Ty, the lower the number of skipped lots.

The number of skipped lots is the sum of the number of skipped lots at the
entrance of the queue and the number of skipped lots after a measurement is com-
pleted (see indicators 4 and 5). Ty, mainly impacts the number of skipped lots
at the entrance of the queue (indicator 4). Note that, when Ty, > 10, no lots are
skipped. This means that the gain required for each lot to enter the queue becomes
so large that, once a lot enters the queue, it is very difficult or impossible to remove

it from the queue, or find another lot that brings a gain which is large enough.

[ ] Thax [ 0% | 1% | 2% | 10% | 20% |
1 Number of sampled lots 5.34%A 1.12*%A 1.05*%A 1.00%A 1.00%A
2 | Number of measured lots 0.98%A | 0.98*%A 0.98%A | 0.98*%A 0.98*%A
3 Number of skipped lots 4.35*%A 0.14*A 0.07*A 0.02*A 0.02*A
4 | Number of skipped lots 4.33%A | 0.09*A | 0.01*A 0 0

(entry queue)
5 | Number of skipped lots 0.02*%A 0.05*%A 0.06*A 0.02*A 0.02*¥A
(metrology)
6 | Medium WAR (average) 0.24*B 0.31*B 0.32*B 0.36*B 0.37*B
7 | Maximum WAR (average) 0.28*C 0.40*C 0.42*C 0.47*C 0.48*C
8 | Number of wafers above WL | 0.67*D 0.82*D | 0.83*D 0.88*D | 0.89*D
9 Number of wafers above IL 0.20*E 0.47*E 0.51*E 0.63*E 0.65*E
10 | Average time spent in the X 1.07*X 0.98*X 0.83*X 0.81*X
queue before measurement
11 | Average time in the queue Y 4.15%Y 8.83*%Y - -
before skip (entry queue)
12 | Average time in the queue V/ 1.64*7Z 1.87*7Z 1.02%Z 1.09%Z
before skip (metrology)

Table 6.10: Impact of Ty, € [0,20%].

Consequences are the increasing of the WAR values (Medium and Maximum
WAR), and the number of wafers processed above Warning Limits and Inhibit Limits
(see indicators 6, 7, 8, and 9). As the gain becomes very large to enter the queue,
fewer lots are sampled. However, as the metrology capacity must be fully used, the
rest of capacity is wasted by the measurement of lots that do not satisfy the required

gain.
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The average time spent in the queue before measurement (indicator 10) decreases
since there is little waiting for lots in front of metrology tools because of the reduced
number of lots that are sampled. Lots that are sampled are quickly measured. The
time spent in the queue before skip (indicator 11) increases because lots that enter
the queue have large gains, and it is very difficult to find other lots with higher
gains. For The, = 10% and Thre = 20%, we do not report time since no lot is
skipped. The time spent in the queue before skip after a measurement is completed
(indicator 12) is impacted by Ty, but no conclusion can be taken at this stage

since this last indicator is mainly mastered with Th/etro-

Between 0 and 1%, the number of skipped lots in the entrance of the queue
(indicator 4) is reduced by more than 97% (4.35*A — 0.14*A). To understand what
happens between 0 and 1%, we performed simulations by varying Ths.. between 0
and 1% (see Table 6.11 and Table 6.12). The same kind of observations are made
as in Table 6.10, i.e. reduction of the number of skipped lots, increase of the WAR
values, increase of the number of wafers above WL and IL, reduction of the time

spent in the queue before measurement, and increase of the time before skip.

[ [ Tz [ 0% [ 01% [ 02% [ 03% [ 04% [ 05% |
1 Number of sampled lots 5.34%A 1.84*%A 1.55%A 1.42*%A 1.34*%A 1.27*A
2 | Number of measured lots 0.98%A | 0.98*%A 0.98%A | 0.98%A | 0.98*A | 0.98*%A
3 Number of skipped lots 4.35%A 0.86*A 0.57*A 0.44*A 0.36%A 0.29%A
4 | Number of skipped lots 4.33*A | 0.81*A | 0.51*A | 0.39*%A | 0.31*A | 0.23*A

(entry queue)
5 | Number of skipped lots 0.02*¥A 0.05*%A 0.06*A 0.05*%A 0.05*%A 0.06%A
(metrology)
6 Medium WAR (average) 0.24*B 0.28*B 0.29*B 0.29*B 0.29*B 0.30*B
7 | Maximum WAR (average) 0.28*C 0.36*C 0.37*C 0.37*C 0.37*C 0.39*C
8 | Number of wafers above WL | 0.67*D 0.76*D | 0.77*D | 0.78*D 0.80*D | 0.79*D
9 | Number of wafers above IL 0.20%E 0.36*E 0.39*E 0.41*E 0.42*E 0.43*E
10 | Average time spent in the X 1.13*X 1.08*X 1.08*X 1.07*X 1.06*X
queue before measurement
11 | Average time in the queue Y 1.58*Y 2.10%Y 2.28%Y 2.64%Y 2.79%Y
before skip (entry queue)
12 | Average time in the queue V/ 1.76%Z 1.53%Z 1.61*7Z 1.70%Z 1.99%7
before skip (metrology)

Table 6.11: Impact of Ty, € [0,0.5%].

By analyzing results reported in Table 6.11 and Table 6.12, we note that the

reduction in the number of lots that are skipped is rather constant between 0.1 and
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[ [ ThMax [ 05% [ 06% [ 07% [ 08% [ 09% [ 1% |
1 Number of sampled lots 1.27*A 1.23*A 1.20*A 1.17*A 1.16*A 1.12%A
2 Number of measured lots 0.98*%A 0.98*A 0.98%A 0.98*%A 0.98*%A 0.98*%A
3 | Number of skipped lots 0.29%A 0.25*%A 0.22*%A 0.19%A 0.18*%A 0.14*A
4 | Number of skipped lots 0.23*A | 0.19%A | 0.17*A | 0.13*A | 0.12*¥A | 0.09*A

(entry queue)
5 | Number of skipped lots 0.06*A 0.06%A 0.05%A 0.06%A 0.06*A 0.05%A
(metrology)
6 | Medium WAR (average) 0.30*B 0.30*B 0.31*B 0.31*B 0.31*B 0.31*B
7 | Maximum WAR (average) 0.39*C | 0.39*C | 0.40*C | 0.40*C | 0.40*C | 0.40*C
8 | Number of wafers above WL | 0.79*D 0.80*D 0.81*D 0.82*D 0.81*D 0.82*D
9 | Number of wafers above IL 0.43*E 0.44*E 0.46*E 0.47*E 0.47*E 0.47*E
10 | Average time spent in the | 1.06*X 1.07*X 1.03*¥X 1.04*X 1.01*X 1.07*X
queue before measurement
11 | Average time in the queue | 2.79*Y | 3.04*Y 3.27FY | 3.40%Y 3.98*%Y | 4.15*Y
before skip (entry queue)
12 | Average time in the queue 1.99*%7 1.62*7Z 1.80*Z 1.77*%7Z 1.65*Z 1.64*7
before skip (metrology)

Table 6.12: Impact of Thr.. € [0.5,1%].

1%. However, between 0 and 0.1%, there is a significant reduction of the number of
skipped lots (4.33*A — 0.81*A). We thus performed additional simulations between
0 and 0.1% (Table 6.13) to understand when Ty, starts impacting the number of
skipped lots. Results in Table 6.13 show that, as soon as there is a minimal gain
(Thaz = 0.00005%) to satisfy before entering the queue, the number of lots can be

strongly reduced without impacting too much the other indicators.

This value of Ty, will be strongly linked to the production environment. For
example, in a production environment where lots are manually transported by oper-
ators in front of metrology tools, skipping a lot may be very expensive because of the
time required to first transport the lot in front of metrology tools before transporting
it to the next process operation. In this case, having a high T)/,, value may be very
interesting to avoid skipping lots that enter the metrology queue without impacting
the sampling performances through the GSI sampling algorithm. For the case of
the 300mm fab of STMicroelectronics where transportation is automated,
a value of Ty, = 1% has been identified as a good trade-off between the

number of skipped lots and the other performance indicators.
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[ [ TMaz [ 0% [ 0.00005%] 0.0005% [ 0.005% [ 0.06% [ 0.1% |
1 Number of sampled lots 5.34%A 5.11*A 4.24%A 3.02*%A 2.07*A 1.84%A
2 Number of measured lots 0.98%A 0.98*%A 0.98%A 0.98*A 0.98%A 0.98*A
3 | Number of skipped lots 4.35%A 4.13*%A 3.25%A 2.04%A 1.09*A 0.86*%A
4 | Number of skipped lots 4.33*%A | 4.11*A | 3.21*%A | 1.96*A | 1.03*A | 0.81*A

(entry queue)
5 | Number of skipped lots 0.02*A 0.02*A 0.04*A 0.08*A 0.06*A 0.05%A
(metrology)
6 | Medium WAR (average) 0.24*B 0.24*B 0.24*B 0.24*B 0.27*B 0.28*B
7 | Maximum WAR (average) 0.28*%C | 0.28*C | 0.28*C | 0.28*C | 0.33*C | 0.36*C
8 | Number of wafers above WL | 0.67*D 0.68*D 0.68*D 0.67*D 0.75*D 0.76*D
9 | Number of wafers above IL 0.20*E 0.21*E 0.20*E 0.21*E 0.32*E 0.36*E
10 | Average time spent in the X 1.04*X 1.10¥X 1.17*X 1.17*X 1.13*X
queue before measurement
11 | Average time in the queue Y 1.04*Y 1.25%Y 1.37%Y 1.49%Y 1.58*Y
before skip (entry queue)
12 | Average time in the queue Z 1.15*%7Z 1.51*Z 1.66*Z 1.64*7Z 1.76*7
before skip (metrology)

Table 6.13: Impact of Ty, € [0,0.1%].

b ) Impact of parameter T);,. T, has been introduced in the GSI sampling
algorithms to master the number of lots that enter the metrology queue when the
latter is empty. The aim is to ensure that, whatever the situation in production, or

the size of the queue, measuring a lot always improves the situation.

Table 6.14 and Table 6.15 show the impact of Ty, when Thee = 1%. Note
that increasing Ty, leads to reducing the number of measured lots (indicator 2).
As larger and larger gains are required before entering the queue even when it is
empty, metrology tools are no longer fully used. Consequences are the increase of
the Medium WAR (indicator 6), the Maximum WAR (indicator 7), the number of
wafers above WL (indicator 8), and the number of wafers above IL (indicator 9).
However, differences are not so significant since the GSI sampling algorithm tries to
minimize the overall risk by selecting the best possible lots. The average time before
measurement (indicator 10) decreases because of the reduced number of lots that
are sampled and measured. The time before skip (at the entrance of the queue and
after a measurement is completed) decreases or increases depending on the number
of lots that are skipped (see indicators 3 and 4). This is because of the value of
Thviee = 1% that strongly reduces the number of skipped lots. As Tha. and Thzin

are used in combination with the size of the queue®, there is not direct link between

8When the queue is full, Thsq is used. When the queue is empty, Thrin is used. When the queue



166 CHAPTER 6. IMPLEMENTING SMART SAMPLING POLICIES

the number of skipped lots and the value of Tyy,.

[ [ Ttin [ 0% [ 01% [ 02% [ 03% [ 04% [ 05% |

1 Number of sampled lots 1.12*%A 0.75*%A 0.70%A 0.61*A 0.61*A 0.58*%A
Number of measured | 0.98%A | 0.62*A | 0.56*A | 0.50*A | 0.48%A | 0.46*A
lots

3 Number of skipped lots 0.14*A 0.13*A 0.14*A 0.11*A 0.13*A 0.12*A

4 | Number of skipped lots 0.09%A 0.10*A 0.10%A 0.08*%A 0.10*%A 0.09*A
(entry queue)

5 | Number of skipped lots 0.05%A 0.03*A 0.04*%A 0.03*A 0.03*A 0.03*A
(metrology)

6 | Medium WAR (average) 0.31*B | 0.35*B | 0.38*B | 0.40*B | 0.42*B | 0.42*B

7 | Maximum WAR (average) 0.40*C 0.44*C 0.48*C 0.51*C 0.53*C 0.53*C

8 | Number of wafers above WL | 0.82*D 0.92*D | 0.96*D 0.99*D 1.02*D 1.03*D

9 | Number of wafers above IL 0.47*E 0.60*E 0.67T*E 0.72*E 0.76*E 0.80*E

10 | Average time spent in the X 0.74*X | 0.69*X | 0.68*X | 0.68*X | 0.67*X
queue before measurement

11 | Average time in the queue Y 1.02¥Y | 0.87¥Y | 0.99*Y | 0.89*Y | 0.83*Y
before skip (entry queue)

12 | Average time in the queue Z 1.1*Z 1.16*Z 0.85%7Z 0.94%7 1.01*Z
before skip (metrology)

Table 6.14: Impact of Ty, € [0,0.5%].

To ensure the optimal use of metrology capacity, Ths;, must be as small as pos-
sible, the number of skipped lots being mainly mastered by the value of Th/,,. Nev-
ertheless, Ty, can be very important in the case of an unavailability of a metrology

tool that leads to a reduction of the metrology capacity.

For the case of the 300mm Fab of STMicroelectronics, the value of

Trrin = 0% seems to be the most effective.

NB
TQQ * (Thviaw — Thin)

where NBQ is the number of lots in the metrology queue and S@Q the metrology queue size (i.e.
capacity).

is partially filled, the threshold used is given by Threshold = Thsin +
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[ [ Thin [ 05% [ 06% [ 07% [ 08% [ 09% [ 1% |

1 Number of sampled lots 0.58%A 0.56*%A 0.54%A 0.53*A 0.52*%A 0.47*A
Number of measured | 0.46*%A | 0.45%A | 0.44%¥A | 0.41*A | 0.41*A | 0.38*%A
lots

3 | Number of skipped lots 0.12*%A 0.11*A 0.10*A 0.12*%A 0.11*A 0.08%A

4 | Number of skipped lots 0.09%A 0.08*%A 0.08*%A 0.10*A 0.08*%A 0.06*A
(entry queue)

5 | Number of skipped lots 0.03*A 0.03*A 0.02*¥A 0.02*A 0.03*A 0.02*%A
(metrology)

6 | Medium WAR (average) 0.42*B | 0.44*B | 0.45*B | 0.46*B | 0.47*B | 0.47*B

7 | Maximum WAR (average) 0.53*C 0.55*C 0.56*C 0.57*C 0.58*C 0.58*C

8 | Number of wafers above WL | 1.03*D 1.05*D 1.07*D 1.08*D 1.08*D 1.10*D

9 Number of wafers above 1L 0.80*E 0.83*E 0.85*E 0.88*E 0.90*E 0.92*E

10 | Average time spent in the | 0.67*X 0.64*X 0.60*X 0.61*X 0.66*X 0.64*X
queue before measurement

11 | Average time in the queue | 0.83*Y 1.04*Y 1.02*%Y 0.70*Y 0.93*Y | 0.98*%Y
before skip (entry queue)

12 | Average time in the queue 1.01*Z 0.89*Z 1.12*%7 0.94%7 1.07*Z 0.98%7Z
before skip (metrology)

Table 6.15: Impact of Ty, € [0.5,1%].

c ) Impact of parameter Thjeiro. Thretro is the minimum gain that must be
satisfied by lots to remain in the metrology queue each time a measurement is com-
pleted. The aim is to optimally use the metrology capacity by avoiding keeping in
the queue lots that are covered by other lots (i.e. lots that bring less information
than other lots). Indeed, our studies focused on defectivity controls where a control
operation on lots may cover or provide information on several production tools. As
lots are processed on different tools before arriving in front of metrology tools for
control, the risk of having lots that bring approximatively the same information is
increased with the number of products that are run concurrently. This is the case
in the 300mm fab of STMicroelectronics where more than 200 products are run in

production. This is why Thjero Was introduced.

To understand its impact on the GSI sampling performances, we performed
simulations by varying Thseiro between 0 and 1%. Thy, and Thze, are set to 0% and
1% respectively. Table 6.16 and Table 6.17 show that Ty, impacts the number of
skipped lots after measurement (indicator 5). Increasing Thseuro leads to increasing
the number of lots that are skipped (metrology). As larger gain is required to stay

in the queue after each measurement, the number of lots that are skipped increases.
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[ Tatetro [ 0% [ 01% [ 02% [ 03% | 04% [ 05% |
1 Number of sampled lots 1.12*%A 1.26%A 1.28*%A 1.31*A 1.35%A 1.40*A
2 Number of measured lots 0.98%A 0.98*%A 0.98%A 0.98*%A 0.98*%A 0.98*%A
3 | Number of skipped lots 0.14*A 0.27*A 0.30%A 0.33*A 0.37*A 0.42*%A
4 Number of skipped lots 0.09*A 0.08*A 0.08*A 0.08*A 0.09*A 0.09*A

(entry queue)
5 | Number of skipped lots 0.05*A | 0.19%A | 0.22*¥A | 0.25*%A | 0.28*A | 0.33*A

(metrology)
6 | Medium WAR (average) 0.31*B 0.31*B 0.31*B 0.31*B 0.30*B 0.31*B
7 | Maximum WAR (average) 0.40*C | 0.40*C | 0.39*C | 0.40*C | 0.40*C | 0.40*C
8 | Number of wafers above WL | 0.82*D 0.80*D 0.80*D 0.81*D 0.80*D 0.81*D
9 | Number of wafers above IL 0.47*E 0.46*E 0.46*E 0.46*E 0.46*E 0.47*E
10 | Average time spent in the X 0.84*X 0.82*%X 0.79*X 0.76*X 0.72*X
queue before measurement
11 | Average time in the queue Y 0.97*Y 0.92*Y | 0.90*Y 0.83*Y | 0.76*Y
before skip (entry queue)
12 | Average time in the queue Z 0.76*7Z 0.73*%Z 0.70%Z 0.70*Z 0.70%Z

before skip (metrology)

Table 6.16: Impact of Tyserro € [0,0.5%].

[ [ Tatetro [ 05% [ 06% [ 07% [ 08% [ 09% [ 1% |
1 Number of sampled lots 1.40*A 1.40*A 1.43%A 1.45%A 1.49%A *A
2 Number of measured lots 0.98%A 0.98*%A 0.98%A 0.98*%A 0.98*%A *A
3 | Number of skipped lots 0.41*A 0.42*%A 0.45%A 0.47*A 0.51*%A *A
4 | Number of skipped lots 0.09*%A 0.06*A 0.07*A 0.07*A 0.08*%A *A

(entry queue)
5 | Number of skipped lots 0.33*A | 0.36*A | 0.38%A | 0.40*%A | 0.43*A *A

(metrology)
6 | Medium WAR (average) 0.31*B 0.31*B 0.31*B 0.30*B 0.30*B *B
7 | Maximum WAR (average) 0.40*C | 0.39*C | 0.40*C | 0.39*C | 0.39*C *C
8 Number of wafers above WL | 0.81*D 0.81*D 0.81*D 0.80*D 0.80*D *D
9 | Number of wafers above IL 0.47*E 0.46*E 0.47*E 0.45*E 0.45*E *BE

10 | Time spent in the queue be- | 0.72*X 0.73*X 0.70*X 0.70*X 0.68*X 0.68*X
fore measurement
11 | Time spent in the queue be- | 0.76*Y | 0.75*Y 0.60*Y | 0.59*Y 0.53*Y | 0.44*Y
fore skip (entry queue)
12 | Time spent in the queue be- | 0.70%Z 0.65*Z 0.64*Z 0.63*Z 0.62*Z 0.63*Z
fore skip (metrology)

Table 6.17: Impact of Thserro € [0.5,1%].

However, contrary to Ty, and Ty, where the other performance indicators were
impacted, Thserro does mot impact the Medium WAR, the Maximum WAR, the
number of wafers above WL, and the number of wafers above IL. The time spent in
the queue before measurement and skip are even improved. The problem is in the
number of lots that are skipped. As skipping too many lots may lead to increasing

the cycle time of some lots, a trade-off has to be found on the number of skipped
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lots and the other performance indicators.

As discussed for the other indicators, the value of Thser is also linked to the
production environment where the cost incurred by the skipping mechanism will
not be the same in an automated manufacturing environment or not. For the case
of the 300mm fab of STMicroelectronics, Ty/ero = 0% has been identified
as the best trade-off because of the reduced number of skipped lots.
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6.5.3.3 Discussions and perspectives

The different simulations performed in this section helped us to assess the ro-
bustness of the GSI sampling algorithms that always ensure the minimum risk value
within production whatever the parameter values. By successively varying the dif-
ferent parameters (o, 8, Thaz, Tarin, Thretro), results showed that sampling per-
formances can be strongly improved, but that a trade-off is necessary between the
different production objectives. There are no fixed values that can ensure perfect
performances but the choice depends on the production strategy or priorities. Nev-
ertheless, there are some values for which the GSI sampling algorithms may not be
as efficient and thus these values must be carefully chosen. These values mainly
concern « that must be lower than 13 and 3 lower than 10. The values of the other

parameters are strongly linked to the production environment.

Two main points are perspectives for further research. The first point concerns
the choice of the threshold parameters, and the second point is the anticipation of
the arrival of lots.

1. Threshold values. In the simulations presented and discussed in this sec-
tion, the value of threshold parameters (Thaz, Tarin, Thretro) Were defined in
percentage (%). The problem of such an approach is that the gain that brings
a lot strongly depends on the number of tools in production. In the case a lot
covers two tools in a production environment with more than 300 tools, the
gain of the lot (in %) will not be significant. If the production environment is
only made of 50 tools, the gain of the lot will be significant, and so the priority
on metrology tools. The sampling strategy or selection of lots will not be the
same in the two situations. In the first case, the risk is to have too many tools
exceeding their IL because of under-estimated gains. To ensure correct evalu-
ations of gains brought by each lot, the threshold values should be expressed
as a difference between a given situation in production and the new situation
if the lot is measured. For example, the number of tools for which the lot will
help avoid reaching or exceeding the IL. This approach was implemented and
provides better results. However, it has not been done within the framework

of this thesis and results are not presented in this manuscript.
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2. Anticipating the arrival of lots. By defining different threshold values
(Tviazs Thrins Thretro), we aimed at mastering the number of sampled and
skipped lots without impacting the sampling performances. However, through
simulations, we observed that if it is possible to strongly reduce the number of
sampled/skipped lots without impacting the sampling performances, there is a
trade-off between sampling lots with gains on the GSI and keeping lots already
sampled and waiting in the metrology queue. To improve the sampling policy,
the sampling of lots could be anticipated, i.e. not only sampling lots when
they arrive at a metrology step, but also lots that are still being processed and
will soon arrive at a metrology step. Some lots could be accelerated or some

special actions taken. This will avoid sampling a lot that will be skipped later.

Anticipating the arrival of lots might be modeled as a scheduling problem of
jobs with release dates and with multiple objectives, where minimizing the risk
and the waiting times of lots should be balanced. The resulting scheduling
problem could be solved using a multi-objective approach such as the one
proposed in Dugardin et al. [24]. This is an original scheduling problem
in semiconductor manufacturing, not mentioned for example in Ménch et

al. [54].
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6.6 Conclusion

In this chapter, we presented smart sampling policies based on two GSI sampling
algorithms. These algorithms are used to dynamically sample, skip, and schedule
lots on metrology tools. They are based on an indicator called GSI and on some
threshold values. The GSI gives a weight to set of lots to be selected for inspection,
and the threshold values are used to manage the filling of metrology queues with the
aim of mastering both the number of sampled lots and skipped lots. The evaluation
of the GSI sampling algorithms were performed through simulations that indicate
a risk reduction of more than 70% compared to Fab sampling. The two GSI sam-
pling algorithms outperform Fab sampling and the performance of each algorithm

is linked to the production environement and management priorities.

In the next chapter, a Mixed-Integer Linear Programming model is proposed to

optimize the WL and IL parameters that are used in the GSI sampling algorithms.



Chapter 7

Optimizing Smart Sampling

Policies

This chapter' introduces three versions of a Mixed-Integer Linear Programming
(MILP) model that we developed to compute the values of two parameters: Warning
Limit (WL) and Inhibit Limit (IL). These two parameters are used in the sampling
algorithms introduced in the previous chapter. They represent the level of the risks
that may be expected by a company depending on the available metrology capacity.
By varying these values in a sampling policy, results indicate that the average risk
level can be strongly impacted. By using the values of Warning Limit and Inhibit
Limat obtained with our MILP model, results show an overall risk reduction without

additional metrology capacity.

7.1 Introduction

7.2 Warning Limit and Inhibit Limit

7.3 Analyzing the impact of the Warning Limit and Inhibit Limit
7.4 Mixed-Integer Linear Programming model 1

7.5 Mizxed-Integer Linear Programming model 2

7.6 Mized-Integer Linear Programming model 3

7.7 Numerical experiments

7.8 Conclusion

IPart of this chapter is submitted for publication in the International Journal of Produc-
tion Economics [65].
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7.1 Introduction

The efficiency of an algorithm is directly linked to the quality of input parameters.
If these parameters are not optimally set, the strategy, mechanism, or algorithm can
lead to poor results. In the previous chapter, we proposed sampling algorithms that
use two main parameters (WL and IL) to dynamically select the best sets of lots
to measure. In this chapter, we assess the impact of these two parameters on the

efficiency of the algorithms, and propose a MILP model to optimize them.

The chapter is structured as follows. Section 7.2 introduces and defines WL
and IL. Section 7.3 analyzes, through simulations, the impact of WL and IL on
a sampling policy. In section 7.4, we present the MILP model we developed to
optimally compute the values of WL and IL. Section 7.5 and section 7.6 present two
improved versions of our MILP model that integrates additional constraints linked
to the production environment. Section 7.7 is devoted to numerical experiments. We
assess the performance of the results of the MILP model on the sampling algorithm
introduced in the previous chapter. Section 7.8 concludes the chapter and gives

perspectives for further works.

7.2 Warning Limit and Inhibit Limit

WL is the limit above which the situation starts to become critical in term of
control. IL is the limit above which production tools might be stopped if a control is
not performed. In term of wafers, IL represents the maximum number of wafers that
can be run between two controls, and WL is the number of wafers that needs to be
run on a production tool before increasing the priority of the tool for a control. IL is
the maximum risk that can be tolerated, and WL is an alarm that helps avoiding to
reach and exceed IL. WL and IL are defined per production tool and the objective

is twofold:

e Dynamically sample, skip, and schedule lots on metrology tools while ensuring

a maximum risk level lower than IL.
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e Reduce the number of measurements when the risk level is lower than WL,

and increase the priority of measurable lots when the risk level is closer to IL.

Let us consider the example in Figure 7.1. We have the evolution of the WQR for
a given production tool. When lots are processed on the production tool, the WQR
is increased of the number of wafers contained in the lot (Equipment W@QR). When
a control is performed, the WQR is decreased of the number of wafers processed on
the production tool since the last control and before the process of the lot that has
been measured (WQR reduction). WL and IL are set to A and 2%A respectively.
They help identifying and avoiding the two cases of Lack-of-control and Too-many-
controls. There is Lack-of-control when the value of the WQR exceeds the value of
IL, and Too-many-controls when controls are performed whereas the value of the
WG@R is very far from IL.

W@R
@ A Lack-of-control

4*A
Equipment . .
x v .
3 A W@R W@R "pissmnmfmuna®
IL=2*A
WL=A RITETTRREY L]

Too-many-controls Processing time

Figure 7.1: Evolution of the W@R on a production tool.

Defining WL and IL helps ensuring optimized sampling plan policies. However,
the problem is that these values are most of the time set based on the experience
of engineers or on historical data analysis. Since the sampling algorithm has to
consider these parameters to prioritize lots on metrology tools, it is clear that if

these values are over- or under-estimated, the efficiency of the sampling algorithm
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may be impacted. For example, if these values are under-estimated, the risk may
be to prioritize too many lots to avoid exceeding the value of IL. However, as the
metrology capacity is limited, consequences will be the increasing of the cycle time
of these lots that will be sample but never measured. To deeply analyze the role of
WL and IL, and understand how they may impact a sampling policy, we perform
several sampling policy simulations using different values of WL and IL. The next

section presents and discusses the different results obtained.



7.3. IMPACT OF THE WARNING LIMIT AND INHIBIT LIMIT 177

7.3 Analyzing the impact of the Warning Limit
and Inhibit Limit

We run simulations using six weeks of historical data?. With different values of
WL and IL, we simulate a sampling policy that uses the first GSI sampling algorithm
(Section 6.4.2) with the S5 simulator (Appendix C). For all the production tools,
we start by defining WL and IL to 1000 and 2000 respectively. Then, by varying

these values, we analyze the following indicators:

e Number of lots that are sampled,
e Number of lots that are measured,
e Number of lots that are skipped,
e Average medium W@R,

e Average maximum WQR.

Table 7.1 presents experimental results when WL and IL are varied together.
Note that, depending on the values of WL and IL, the results of the performance
indicators are different. Let us focus on the first three indicators: Number of sampled
lots, number of measured lots, and number of skipped lots. These three indicators
correspond to A, B, and C when WL = 1000 and IL = 2000. Considering these
latter values as a reference, let us analyze what happens in the case of over- or

under-estimation.

When WL and IL are over-estimated (+5%, +10%, +20%, etc.), the number of
lots that are sampled (0.94*A, 0.90*A, 0.79%A etc.) decreases. This is because the
maximum risk that is tolerated becomes very large. As long as WL and IL are not
reached, the situation is supposed to be under control, and thus only few lots are
sampled. This reduction of the number of sampled lots leads to a reduction of the
number of skipped lots (0.91*C, 0.85*C, 0.68*C, etc.) since the metrology capacity

2Part of this section has been communicated to the 4" International Conference on In-
dustrial Engineering and Systems Management [63].
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remains constant (B). The GSI sampling algorithm ensures that the metrology ca-
pacity is always used even if the maximum risk that is tolerated is very far from the
actual risk. Consequences are the waste of metrology capacity due to the measure-
ment of lots that do not bring any added value. This can be seen in the values of
the Medium (D, D, 0.99*D, 1.01*D, D, 1.02*D, 1.02*D) and Maximum W@R (E,
0.99*E, E, 1.01*E, 1.01*E, 1.01*E, 1.03*E) that tend to increase. Note that if the
variations of the Medium and Maximum WQ@R seem to be negligible, the impact
can be significant when dynamically sampling lots. Indeed, in our experiments, we
use 6 weeks of historical data. This means that the Medium and Maximum WQR
reported in Table 7.1 are based on 6 weeks of historical data. As the GSI sampling
algorithm aims at minmizing the overall risk within the production, this explains

why we do not have too much variations of the Medium and Maximum W@QR.

Variation of the WL and Number of Number of Number of Aver'age Ave'rage
IL values sampled lots | measured lots skipped lots Medium Maximum
WaR WaR
-90% = (100, 200) 1.38*A B 1.59*C 1.50*D 1.62*E
-80% = (200, 400) 1.41*A B 1.63*C 1.36*D 1.47*E
-60% = (400, 800) 1.39%A B 1.59*C 1.21*D 1.28*%E
-40% = (600,1200) 1.27*A B 1.41*C 1.03*D 1.07*E
-20% = (800,1600) 1.21*A B 1.33*C 1.02*D 1.05*E
-10% = (900,1800) 1.14*A B 1.21*C 1.02*D 1.02*E
-5% = (950,1900) 1.09*A B 1.14*C 1.02*D 1.02*E
(WL,IL) = (1000,2000) A B C D E
+5% = (1050,2100) 0.94%A B 0.91*C D 0.99*E
+10% = (1100,2200) 0.90%A B 0.85*C D E
+20% = (1200,2400) 0.79*%A B 0.68*C 0.99*D 0.99*E
+40% = (1400,2800) 0.68%A B 0.50*C 1.01*D 1.01*E
+60% = (1600,3200) 0.61*A B 0.40*C D 1.01*E
+80% = (1800,3600) 0.58%A B 0.36*C 1.02*D 1.01*E
+90% = (1900,3800) 0.55%A B 0.31*C 1.02*D 1.03*E

Table 7.1: Impact of the WL and IL values on the sampling plan policy.

When WL and IL are under-estimated (-5%, -10%, -20%, etc.), the situation
corresponds to an over-estimation of the metrology capacity. Note that the num-
ber of sampled lots (1.09*A, 1.14*A, 1.21*A, etc.) increases. This is because the
maximum risk that is tolerated becomes smaller and smaller. Hence the necessity
to sample more and more lots in order to reduce the risk level. However, as the

metrology capacity is limited (B), the more lots are sampled, the more the number
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of skipped lots (1.14*C, 1.21*C, 1.33*C, etc.). There is thus a negative impact on
the cycle time for these lots that are sampled but never measured. Moreover, the
overall risk is increased because of the inability of the sampling algorithm to take

relevant decisions (see the Medium and Maximum W@R).

In order to better understand the impact of WL as well as IL, we vary them
separately. In Table 7.2, we vary WL (first column) while keeping IL constant. In
Table 7.3, we vary IL (first column) while keeping WL constant.

Average Average
Variation of the WL value sgrl;;nl:(eirl(?tfs mﬁ;sngfeﬁ loof ts Sllj;)r;l:grl;fs Medium Maximum
WaR WaR
-90% of WL = (100,2000) 1.32*%A B 1.49*%C 1.08*D 1.10*E
-80% of WL = (200,2000) 1.33*A B 1.50*C 1.05*D 1.08*E
-60% of WL = (400,2000) 1.29*%A B 1.44*%C 1.02*D 1.05*E
-40% of WL = (600,2000) 1.20%A B 1.31*C 1.01*D 1.03*E
-20% of WL = (800,2000) 1.10*A B 1.15*C D 1.01*E
-10% of WL = (900,2000) 1.05%A B 1.08*C D E
-5% of WL = (950,2000) 1.04*A B 1.06*C D 1.01*E
(WL,IL) = (1000,2000) A B C D E
+5% of WL = (1050,2000) 0.96%A B 0.94*C D E
+10% of WL = (1100,2000) 0.96*%A B 0.93*C D 0.99*E
+20% of WL = (1200,2000) 0.90*A B 0.84*C 1.01*D 1.01*E
+40% of WL = (1400,2000) 0.78%A B 0.66*C 1.02*D E
+60% of WL = (1600,2000) 0.65%A B 0.46*C 1.01*D 1.01*E
+80% of WL = (1800,2000) 0.59*%A B 0.36*C 1.04*D 1.02*E
+90% of WL = (1900,2000) 0.55*%A B 0.30*C 1.05*D 1.03*E

Table 7.2: Impact of the WL value on the sampling plan policy.

Results reported in Table 7.2 shows that the value of WL may impact the per-
formance of the sampling policy. The same kinds of observations as in Table 7.1
can be made regarding the over- or under-estimation of WL, i.e. impact on cycle
time, instability, and inefficiency of the sampling algorithm. However, contrary to
Table 7.1 where WL and IL are varied together, Table 7.2 shows that the value of
WL does not impact too much the Medium and Maximum W@R. This because WL
is just a alarm that indicates that the situation starts to become critical. As long
as the value of IL is far from the actual risk, the sampling algorithm is still able to

take relevant decisions regarding the best lots to measure for reducing the risk. The
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main problem is in the cycle time of lots that are sampled because of the WL, but

never measured because of the IL.

In Table 7.3, we fix WL and analyze the impact of IL. We do not vary IL below
—40% since WL must be lower than IL. Varying IL below —40% would lead to
situations where the value of WL will be higher than the value IL, which does not

make sense.

Average Average
Variation of the IL value s?r?lgllzzrlgtfs mf;:ﬁloe‘j loof i sllji‘;)rg:;rh;fs Medium Maximum
WaR WaR
-40% of IL = (1000,1200) 1.01*A B 1.02*C 1.04*D 1.08*E
-20% of IL = (1000,1600) 1.13*A B 1.21*C 1.01*D 1.03*E
-10% of IL = (1000,1800) 1.08*%A B 1.13*C 1.01*D 1.01*E
-5% of IL = (1000,1900) 1.06*A B 1.09*%C 1.02*D 1.02*E
(WL,IL) = (1000,2000) A B C D E
+5% of IL = (1000,2100) 0.99*A B 0.98*C D E
+10% of IL = (1000,2200) 0.96*%A B 0.93*C D E
+20% of IL = (1000,2400) 0.93*A B 0.90*C D E
+40% of IL = (1000,2800) 0.86*%A B 0.79*%C 0.99*D 1.01*E
+60% of IL = (1000,3200) 0.86*A B 0.79*C 0.99*D 1.02*E
+80% of IL = (1000,3600) 0.85*%A B 0.77*C 0.99*D 1.03*E
+90% of IL = (1000,3800) 0.85%A B 0.77*C D 1.03*E

Table 7.3: Impact of the IL value on the sampling plan policy.

As in Table 7.1 and Table 7.2, over- or under-estimating the value of IL has an
impact on all the performance indicators, i.e. the number of lots sampled, skipped,
Medium W@R, and Maximum W@QR. However, results reported in Table 7.3 show
that if the value of IL is very close to the value of WL, the whole system be-
comes instable. This is the case when the value of IL is under-estimated of —40%
(WL = 1000 and IL = 1200). The number of sampled lots decreases instead of
increasing, and the Medium and Maximum W@R are strongly increased compared

to variations between —5% and —20%.

Through all of these experiments on varying WL and IL, note that if the values
of WL and IL are not optimally set, the entire sampling strategy can be impacted

and the resulting risk level can be significant. With the aim of minimizing the risk
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level on entire fab while ensuring an optimal use of metrology tools, we propose in
the next section a MILP model to compute optimally the two values of WL and IL

for each production tool.



182 CHAPTER 7. OPTIMIZING SMART SAMPLING POLICIES

7.4 Mixed-Integer Linear Programming model 1

The MILP model presented in this section aims at minimizing the maximum
exposure within the production, i.e. minimizing the maximum risk level that can
be incurred when processing a lot on a production tool®. The approach consists
in determining IL values by allocating controls to production tools such that the

maximum risk is minimized. The values of WL are deduced from the IL values.

Parameters:

Ey: Exposure for tool ¢ (i.e. the financial cost for each wafer processed on a

production tool t).

e V;: Production volume on tool t.

Pmy: Time of a measurement to validate production tool t.

Kyrax: Maximum number of measurements for any production tool.

CAPA: Total capacity (given in time) for measurement.

e M: Number of production tools.

Variables:

e [L,;: Inhibit Limit of production tool t.

e d*: Binary variable that is equal to 1 if the number of measurements for

production tool t is k, 0 otherwise.

o Fyax: Maximum exposure.

The MILP model is as follows:

Minimize Eyax (7.1)

3Part of this section has been communicated to the 13éme congres de la société Francaise
de Recherche Opérationnelle et d’Aide a la DEcision (ROADEF) [66].
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Subject to:
EMAXZEt*[Lt Vte{lM} (72)
Knax Vi
IL: > —xdF Vte{l...M}. (7.3)
k=1
Ky ax
> odf=1 Vte{l...M} (7.4)
k=1
M Kpapax
> > Pmuxkxdf <CAPA. (7.5)
t=1 k=1
IL; >0 Vte{l...M}. (7.6)
dF €{0,1} Vvte{l...M}, Vke{l...Kyax} (7.7)
Eyax 2 0. (7.8)

Constraints 7.2 define the maximum exposure among all production tools, which
is minimized in the objective function. Constraints 7.3 express that the IL of pro-
duction tool t (IL;) is larger than or equal to the production volume on ¢ divided
by the selected number of measurements for ¢t. Constraints 7.4 specify the number
of measurements for the production tool ¢, i.e. that one and only one variable must

be equal to 1. Constraint 7.5 ensures that the measurement capacity is satisfied.

This MILP model is evaluated in Section 7.7.1. Results indicate an optimized
sampling plan policy without additional metrology capacity. However, this first
MILP version presents some limitations that have been pointed out during simu-
lations. The delay or traveling time between production and metrology
tools has not been taken into account. Indeed, depending on the process type
or production state, a control operation can be performed either directly after the
process operation, five hours later, or sometimes one or two days after the process.
Moreover, the organization of the clean room is such that the distance between
production and metrology tools is not always the same. The availability or quali-
fication of production tools as well as metrology tools can also increase or reduce
the traveling time between tools. Hence the necessity of defining a kind of average
delay between tools. This delay can be expressed as an average time required be-
fore obtaining the result of a control operation, or as an average number of wafers

that are processed on a production tool between the time a decision is taken to
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perform a control, and the time the control is actually performed on a metrology
tool. The next section presents a second version of our MILP model that integrates

this average delay between production and metrology tools.
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7.5 Mixed-Integer Linear Programming model 2

The MILP model 2 is an evolution of the MILP model 1 where the main modifi-
cation concerns the delay or traveling between production and metrology tools. This
delay is defined as W D, and corresponds to the number of wafers that are processed
on the production tool ¢ between the end of a process operation on ¢ and the control
of this process operation on a metrology tool. It is expressed as WD, = TH; x C'Ty,

where:
e T'H; = Throughput of the production tool ¢.

e (T, = Average cycle time of lots that are processed on the production tool
t between the end of the process operation on ¢ and the end of the control

operation on a metrology tool.

The new version of the MILP model is as follows:

Minimize Eyax (7.9)
Subject to:
Enfax > Ee x 1Ly Vte{l...M}. (7.10)
Kyax v
IL > > f*derWDt vte{l...M}. (7.11)
k=1
Kpax
> odf=1 vte{l...M} (7.12)
k=1
M Kpnax
> > Pmyxkxdf <CAPA. (7.13)
t=1 k=1
IL; >0 Vte{l...M}. (7.14)
d¥ € {0,1} vte{1...M}, Vke{l...Kpax} (7.15)
Enmax > 0. (7.16)

The difference with the MILP model 1 is in the constraints 7.11 that express that
the IL of production tool ¢ (IL;) is larger than or equal to the production volume
on t divided by the selected number of measurements for ¢, plus the average delay

necessary to control the production tool ¢.
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This new version of our MILP model is evaluated in Section 7.7.2. Results show
an improved sampling policy compared to the first version of our MILP model. How-
ever, as the first version, this second version of our MILP model also presents some
limitations that have been highlighted when coming to the industrial implementa-

tion. The model does not include metrology tools qualifications and capabilities.

All control operations cannot be performed by all metrology tools. To each
metrology tool is associated a group of control operations. These control operations
are defined based on the capabilities of the metrology tools and, the time of a
control operation is linked to the metrology tool. This means that the metrology
capacity is not consumed in the same way depending on the metrology tool or the
set of metrology tools to be used. The same for the delay or traveling time between
production and metrology tools. Depending on the metrology tool availability or
qualifications, the time between process and control operations is not the same.
Hence the necessity of defining different group of metrology tools, with different

capacity, and different delays between tools.

The next section presents a third version of the MILP model that integrates

these new parameters.
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7.6 Mixed-Integer Linear Programming model 3

The MILP model 3 is an evolution of the MILP model 2 and integrates the

additional following parameters:

e D: Number of groups (one per capability) of metrology tools.

e CAPA®: Total capacity (given in time) for measurement for the group of

metrology tools with capability d.

e Pm, 4 Time of a measurement on a metrology tool with capability d to vali-

date production tool t.

o WD, 4 Average delay between a process operation (performed on a production
tool t) and the control operation performed on a metrology tool that belongs

to the group of tools with capability d.

The binary variable df becomes df ; that is equal to 1 if the number of measure-
ments on metrology tools with capability d to validate the production tool ¢ is k, 0

otherwise.

Model 3 is as follows:
Minimize EJ\/[AX (717)
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Subject to:
Enviax > EexILy Vte{lM} (718)
D Kmax
v D7D (WDpaxkxdf,)
t d=1 k=0
1L > Vit 1...M}. 7.19
Y= D Kaax + D Kymax €l } ( )
D (kxdiy) Do > (kxdfy)
d=1 k=0 d=1 k=0
Kyax
doodby=1 vte {1...M},
k=0
vd e {1...D}. (7.20)
M Knpax
ST > Pmyaxkxdf, < CAPA? vd e {1...D}. (7.21)
t=1 k=0
IL; >0 vie {1...M}. (7.22)
df 4 €{0,1} vie {1...M},
Vke{l...Knpax}
vde {1...D}. (7.23)
Enyrax > 0. (7.24)

Constraints 7.19 express that the IL of production tool ¢ (IL;) is larger than or
equal to the production volume on t divided by the selected number of measure-
ments for production tool ¢ on all the D groups of metrology tools, plus the sum of
delays necessary to control production tool ¢ on the right group of metrology tools.
Constraints 7.20 specify the number of measurements for production tool ¢ on all the
D groups of metrology tools, i.e. that one and only one variable d,’; 4 must be equal
to 1 for each production tool ¢t and each group of metrology tools. Constraint 7.21

ensures that the measurement capacity in each group d of metrology tools is satisfied.

This new model that integrates additional industrial constraints is no
longer linear. The problem comes from Constraints 7.19 and especially from
D Kyax
the term Z Z (k * dﬁ 4) in the denominator. To linearize our model, we define
d=1 k=0
new variable dtF such that:

(7.25)



7.6. MIXED-INTEGER LINEAR PROGRAMMING MODEL 3 189

where dtF = 1 if the number of measurements on the production tool ¢ is k, and 0

otherwise.

Counstraints 7.19 can be rewritten as:

Kpmax 1 1 D Kmax Kpax 1 1
ILi > Vix Y 5 +30 Y (WDpaxkxdf )« > D vte{l...M}. (7.26)
k=0 d=1 k=0 k=0
> dia > dia
d=1 d=1

By replacing 7.25 in 7.26, we obtain:

Kpax 1 D Kmax . Kymax .
IL; > Vi * ; %*dtf—i—z Z (W Dy q % kxdy 4) Z L rd vee{l.. M} (7.27)
=1 d=1 k=0 k=1
With
Kpax

Sodtf =1 vte{l...M}. (7.28)
k=1
dtf € {0,1} Vte{l...M}, Vke{l...Kpax} (7.29)

The model is still non linear because of the term dfi 4 in Constraints 7.27. We again

introduce a new variable ddf ’51 such that:

k,k k
ddy gt = dy o« dty (7.30)

where dolftC ’;1 = 1 if the number of measurements to validate production tool t is
equal to k; on group d of metrology tools, and %k on all metrology tools in all groups

of tools, and 0 otherwise.

Constraints 7.27 can be rewritten as:

Kyax 1 D Kyax Knax 1
IL; > Vi x ZxdtF + WDy 4 * kxdt )« Zxdtf vte{l...M}. 7.31
P2 Ver 3l YWD 3 (kedia)x Y ped Vee{1.) (7.31)

By defining parameter k; such that k; < k, Constraints 7.31 become:

Kpyax 1 D Kymax . Kpmax 1
ILe> Vix 0 wdti+3 WDiax > (kixdly)s > L xdtf Vee{l.. M} (7.32)
k=1 d=1 k1=0;k1 <k k=1



190 CHAPTER 7. OPTIMIZING SMART SAMPLING POLICIES

Or

1
ILt>Vt*f>kdtt+ZWDtd*Z(k1*d )*E*dtf vte{l...M},Vk € {l...Kprax} (7.33)
k1=0

Or

ki * WD
ILt>V}*—*dtt+ZZ% x(d xdtf) vte{l...M},vke {1...Kyax}. (7.34)

d=1k;=0

By replacing 7.30 in 7.34, we obtain:

ki * WD
ILy > Vix — *dtk + Z Z % «dd"M Vie{1...M},Vke{l...Kpax}. (7.35)
d=1k1=0
With
Kyax D Kyax

Z dtt_z Z de’”‘l vte{l...M}. (7.36)

k
Sddjt =1 vte{l...M}. (7.37)

ddyyt €{0,1} Vte{l...M}, Vde{1...D},
Vte{kl~-~k}, Vke{l...Kjqu}. (7.38)

Therefore, the final version of MILP model 3 is:

Minimize Eyax (7.39)
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Subject to:
Enrvax >Et*[Lt YVt € {IM} (740)
KMAX D Knax k ki« WD d*dd
ILi>Vix Y 7*dtt+2 >N tk vte{l...M}. (7.41)
k=1 d=1 k=1 k1=0
Kymax
> odty =1 vt e {1...M}. (7.42)
k=1

D Kyax k

SN Z vie{l...M}. (7.43)

d=1 k=1
Kyax D Kyax k
Satk =3 > S dapy vte{l...M}. (7.44)
k=1 d=1 k=1 k1=0
M Knpmax
> > Pmyaxkxdf, < CAPA? vd e {1...D}. (7.45)
t=1 k=1
IL; >0 vie{1...M}. (7.46)
dtf € {0,1} vte{l...M},
Vke{l...Kyax} (7.47)
k,k
dd;;' € {0,1} vte {1...M},
vde {1...D},
Vky € {1...k},
Vke{l...Kypax} (7.48)
Earax > 0. (7.49)

This model, which seems to be most suitable for industrial implementation, can
no longer be solved with a standard solver because of its complexity. It is thus
necessary to develop dedicated methods to solve the model. This has not been done
within the framework of this thesis. Nevertheless, a first approach and perspective

could be to relax some constraints or develop specific heuristic.
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7.7 Numerical experiments

We ran simulations using six weeks of historical data from the site of STMicro-
electronics in Crolles, France. The different versions of our MILP model are solved
with the commercial solver MP-XPRESS. Each version provides IL values (per pro-
duction tool) that we use to deduce the values of WL (WL = 0.5% IL). Then, with
the S5 prototype (Appendix C), we simulate GSI sampling policies (Section 6.4.2)
by using the WL and IL obtained with the MILP model. To assess the efficiency of
the values obtained with our model, we perform comparisons with a sampling policy
where WL and IL are set to 1000 and 2000 for all production tools *. We use the

following indicators:
e Number of sampled lots,
e Number of skipped lots,

Number of measured lots,

Average Medium WQR,

Average Maximum W@QR,

Number of wafers above WL,

Number of wafers above IL.

7.7.1 Evaluating MILP model 1

The first version of the MILP model was run on a computer of 2.8GHz, 12GB of
RAM, and with Windows 7 as the operating system. With 578,769 variables and 733

constraints, the computational time to obtain the optimal solution is 24,766 seconds.

Table 7.4 and Table 7.5 present the GSI sampling policy performances when the
WL and IL computed with the MILP model are used. We ran the model with dif-

ferent values of the exposure. We aimed at analyzing and quantifying the impact of

4The values of WL = 1000 and IL = 2000 are representative of the production.
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the tool criticality on the sampling policy. In Table 7.4, the performance indicators
are related to the values of WL and IL obtained for an exposure value which is equal
to 1 for all of the tools. In Table 7.5, the exposure is defined per workshop and per
tool. The different values of exposure are based on historical data where we use the
Medium W@R. The larger the Medium W@R, the lower the exposure value.

Table 7.4 presents a comparison of the sampling performances when WL = 1000
/ IL = 2000, and when WL and IL are obtained with the MILP model for an
exposure value of 1. Note that, with the same number of measured lots (C'), all the
performance indicators (except the Maximum W@R) are improved with the WL and
IL computed with the MILP model. This means that, the GSI sampling algorithm
is able to take relevant decisions regarding the lot to sample, skip, or measure. Only
few lots are sampled and skipped for an improved Medium W@R value. The case of
the Maximum W@R is explained by the production volume and exposure. Indeed,
all of the production tools do not produce or process the same quantity of wafers.
Some tools process twice or three times more wafers than others. As we define the
same exposure value for all tools, the situation is such that controls are allocated
in the same way for all tools. However, as the metrology capacity is limited, only
a fixed number of lots can be measured and, thus, the overall risk level cannot be
minimized for all tools. This is why there is an increased value for the average
Maximum W@R.

Performance indicators WL = 1000 and MILP-1 values

IL = 2000 (exposure = 1)
Number of sampled lots A 0.72*%A
Number of skipped lots B 0.56*B

Number of measured lots C C

Average Medium W@R D 0.99*D
Average Maximum W@R, E 1.01*E
Number of wafers above WL F 0.62*F
Number of wafers above IL G 0.43*G

Table 7.4: Evaluating the WL and IL obtained with the MILP model 1 (Exposure=1
for all production tools).

The number of lots above WL and IL is also reduced but we still have lots pro-
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cessed on production tools above IL (0.43 * ). This means that the GSI sampling
algorithm cannot satisfy the WL and IL optimized by the MILP model. Therefore,
although the sampling policy can be improved, defining the same exposure value for
all production tools does not provide WL and IL that can ensure optimal sampling
decisions with the GSI sampling algorithm. There is a need to adjust this value of

exposure depending on the tool or set of tools.

Table 7.5 shows the sampling performances obtained for an exposure defined per
workshop and per tool. Note that, when the exposure is defined per workshop, the
number of lots above IL is divided by more than two (0.18 x G'). When the exposure
is defined per tool, this number is almost zero (0.02 x G). This means that the
exposure must be defined per tool, and that the WL and IL provided by our MILP
model help ensuring optimized sampling decisions. No lot is processed above IL, and
the number of lots that are sampled and skipped is reduced. However, the values
of the Medium and Maximum W@R are increased compared to the case where the

exposure is set to 1 (Table 7.4). This can be explained as follows.

N WL = 1000 and MILP-1 MILP-1
Performance indicators (Exposure per (Exposure per
IL = 2000
workshop) tool)
Number of sampled lots A 0.66*A 0.70*A
Number of skipped lots B 0.47*B 0.53*B
Number of measured lots C C C
Average Medium WQR, D 1.20*D 1.65*D
Average Maximum W@QR E 1.19*E 1.57*E
Number of wafers above WL F 0.43*F 0.28*F
Number of wafers above IL G 0.18*G 0.02*G

Table 7.5: Evaluating the WL and IL obtained with the MILP model 1 for different
values of the exposure.

When the exposure is set to 1, the risk is minimized in the same way for all tools.
This is why the Medium and Maximum W@R are decreasing. However, the problem
of defining the same exposure for all tools is that a very bad or less critical tool may
relax all the other tools. On the contrary, by defining an exposure per tool, we

minimize the overall risk taking into account the criticality of production tools. The
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overall risk is thus increased because of less critical tools for which we tolerate a high
level of risk. This increased level of risk (Medium and Maximum W@R) may also
be impacted by the distance between tools. As the delay or traveling time between
process and metrology tools may vary depending on the process operation to be
performed, or the process tool to be used, missing to consider such a parameter in
the model may also explain the increased level of the Medium and Maximum W@R.
This is why we proposed a second version of the MILP model to integrate the delay
between tools. The next section presents numerical experiments related to this new
version of the MILP.

7.7.2 Evaluating the MILP model 2

This second version of the MILP model was run on a computer of 2.8GHz, 12GB
of RAM, and with Windows 7 as the operating system. With 578,769 variables and
733 constraints, the computational time to obtain the optimal solution is 24,766

seconds.

We ran the MILP model by defining an exposure per tool and an average delay
between tools. This delay is expressed as an average number of wafers. Table 7.6
presents the GSI sampling performances obtained with the WL and IL computed
with this new version of the MILP model. We compare the case where the delay
is defined per workshop and the case where delay is defined per tool. Note that,
for both cases, the number of lots above IL is equal to zero. This shows that the
values or WL and IL provided by the second MILP model are optimized values since
the GSI sampling algorithm is able to satisfy these limits. Moreover, the Medium
and Maximum W@QR are reduced compared to the first model where delays between
tools are not taken into account (Table 7.5). The GSI sampling algorithm is able to

select a reduced number of lots while minimizing the overall risk.

Using the WL and IL computed with the MILP model helps ensuring optimized
GSI sampling decisions. However, the model presents some limitations that need
to be highlighted. First, the model is based on historical data. The values of WL
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Performance indicators ‘WL = 1000 and MILP-2: Delay MILP-2: Delay
IL = 2000 per workshop per tool
Number of sampled lots A 0.44%A 0.46*%A
Number of skipped lots B 0.13*B 0.16*B
Number of measured lots C C C
Average Medium WQR D 0.96*D 1.15*D
Average Maximum WQ@R E 1.04*E 1.23*E
Number of wafers above WL F 0.02*F 0.02*F
Number of wafers above IL G 0 0

Table 7.6: Evaluating the WL and IL obtained with MILP model 2 (delay defined
per workshop and per tool).

and IL are thus only valid for some specific periods, i.e. when the mix of products
or fab loading does not change too much. In the case of a significant change of
the production volume for example, there will be a necessity to compute again these
values. Second, the model computes WL and IL based on the actual control plan. It
gives indication on the level of the risk (IL) that may be expected by the company,
but do not provide solutions to reduce this expected level of risk. The GSI sampling
algorithm tries to minimize the risk on the entire fab, but the mechanism is based on
WL and IL that give indication on what can be expected. If WL and IL values are
arbitrarily set, the GSI sampling policy will lead to poor results because of incoherent
information. Therefore, the only way to improve or reduce the values of WL and IL
computed with our MILP model is to work directly on the control plan, and try to
define optimal positions of control operations. This is done within the framework
of the PhD thesis of B. BETTAYEB [10] [11] and G. RODRIGUEZ-VERJAN [81].

The works of B. BETTAYEB mostly focus on allocating controls on pro-
duction tools with the aim of minimizing the global exposure. Depending on the
available metrology capacity and the mix of products, the goal is to define, for each
production tools the number of control operations that can be performed using some
predefined criteria. The works of G. RODRIGUEZ-VERJAN mostly focus on
defining the right positions of control operations throughout production. The goal
is to minimize the average delay or traveling time between control operations and
thus reduce the W@R, in production. The two works mainly address the modeling
and definition of an optimal control plan whereas in my thesis I am interested in

computing WL and IL using a predefined control plan.
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7.8 Conclusion

In this chapter, we presented three versions of a MILP model we developed to
optimize the values of two parameters: WL and IL. These two parameters are key in
the GSI sampling policies introduced in Chapter 6. We firstly discussed the impact
of these values on the sampling policy performances, and then analyzed their added
value through simulations. By simulating sampling policies with different values of
WL and IL, results indicate a direct impact on the sampling policy performances.
The average risk level can be increased and cycle time of lots impacted. If WL and
IL are arbitrarily set, the sampling mechanism becomes instable. By using the WL
and IL obtained with our MILP model in a GSI sampling policy, results show an

overall risk reduction on the entire Fab without additional metrology capacity.

However, the MILP model we propose is based on historical data and, whenever
there is a significant change in production (e.g. production volume or fab load-
ing), it will be necessary to update the different values. Moreover, when modeling
all the parameters that may interact in a real-time industrial implementation, the
model complexity has strongly increased. Therefore, one of the main perspectives
is in working in the source of the problem instead of focusing on the consequences,
i.e. identifying and defining optimized positions of control operations instead of

computing the expected levels of risk based on a static control plan.
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Chapter 8

Industrial Developments and

Implementations

This chapter' gives a general overview of specific solutions that have been pro-
posed within the framework of this thesis: Prototypes and financial metrics. These
specific solutions have supported the industrialization of the main concepts proposed
and developed in the thesis. This is one of the strengths of this thesis.

8.1 Introduction

8.2 CMP-WAR Prototype

8.3 Ezcursion Management Prototype
8.4 Financial Metrics

8.5 Conclusion

'Part of this section is accepted for publication in the proceedings of the 8 International
Conference on Modeling and Analysis of Semiconductor Manufacturing (included in
the 2012 Winter Simulation Conference) [62].
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8.1 Introduction

The company culture, production constraints, and resource management in a
high-mix manufacturing environment are such that, providing, developing, or de-
ploying a new concept or algorithm requires getting in touch with everybody. On
the one hand, even if a new software solution can contribute to increase yield or
reduce cycle time, it will also often impact other activities, workload of engineers,
or existing tools with consequences on product prices. On the other hand, the main
objective of a company is to go forward by developing and finding new strategies to
stay competitive in the market. This implies that each innovation within the com-
pany must be easily adopted and understood, otherwise it may be rejected. This is
why, within the framework of this thesis, we focused on interacting as much as pos-
sible with experts in the company, and on validating our algorithms and solutions

through simulations and prototypes that could be understood by everybody.

Section 8.2 presents a general overview of the CMP prototype introduced in
Chapter 5. In section 8.3, we describe the prototype that has been developed for
an optimized management of excursions using the IPC mechanism. Section 8.4 is
devoted to the financial metrics we proposed to assess the return on investment of

the dynamic sampling algorithms introduced in Chapter 6.

8.2 CMP-WAR Prototype

The CMP-WAR prototype described in Chapter 5 has been implemented using
data coming from different databases. Figure 8.1 shows an overview of the different
databases that are used and, Figure 8.2 the final user interface. Excel-VBA and

SQL languages were used for the main developments.

The prototype has been deployed for in-line use in the CMP and defectivity work-
shops. During the evaluation phase, the prototype was used only twice a day by the
engineering team. Figure 8.3 shows the first evaluation performed two weeks after
the prototype was deployed. Note that the number of lots processed on production

tools with a risk indicator larger than 0.33 (0.33 is the maximum risk allowed by
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Figure 8.2: Overview of the CMP WAR prototype.

the company) was reduced by more than 65%. 0.33 represents the maximum risk
allowed by the company.
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Figure 8.3: Results on global Risk Indicator (RI) reduction.

Figure 8.4 provides another evaluation of the prototype on several weeks. Note
the strong impact of the prototype on the risk reduction. Note also that, during the
holidays where the number of qualified operators is reduced, the risk significantly
increases until the prototype was used again.

These encouraging results led to additional analysis and observations within the
company. After 6 months of evaluations and analysis, the decision was
taken to industrialize the solution.
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Figure 8.4: Impact of the prototype on the overall risk.

8.3 Excursion Management Prototype

This second prototype has been developed based on the same types of data than
the CMP-WAR prototype. Figure 8.5 shows the final user interface that has been
deployed in the defectivity workshop. By entering the name of a lot for which an
excursion is detected, the prototype provides the set of tools that can be removed

from the initial scope of analysis. This information is computed in real time using
the IPC mechanism (see Chapter 5).
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Figure 8.5: Overview of the Excursion Management prototype.

8.4 Financial Metrics

To assess the added value of the dynamic sampling algorithms introduced in
Chapter 6, we proposed three different financial metrics, among which one was
deemed to be more suitable for defectivity controls. However, depending on the fab
or the type of the risk that is addressed, one metric may be more suitable than

another. The three metrics are:

1. The number of metrology tools that can be saved by using a GSI
sampling algorithm. The idea is to compute the number of metrology tools
required with the GSI algorithm to obtain performance indicators that are as
good as in current fab sampling. However, as our goal is not to reduce the
number of measured lots but to reduce the number of measurements without

added value, this first metric was not judged to be the most suitable.

2. The downtime costs incurred when Inhibit Limits are exceeded. The
idea is to consider that a financial cost is incurred when a production tool is

stopped because an Inhibit Limit is exceeded. The resulting downtime is a non
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productive time which costs money. We assume that the production tool stays
down until the WQ@QR becomes smaller than its corresponding Inhibit Limit.
However, the problem of this second metric is that, in practice, a production
tool will not always be stopped when its Inhibit Limit is exceeded. Therefore,

this second metric was not chosen.

3. The risk related costs incurred when Inhibit Limits are exceeded.
The idea is to consider that the risk of losing wafers is increased when the
W@R of a production tool is above its Inhibit Limit. Based on a probability
of failure, it is possible to calculate how much money could be saved. This

last metric was deemed to be the most practical.

Using the third metric, we introduce the following notations to compute the

gains of the GSI sampling algorithms:

o NW,; : Number of wafers above the Inhibit Limit (/L) with the fab sampling

(static sampling) for production tool t.

e NWy ;- Number of wafers above the Inhibit Limit (/L) with the GSI sam-

pling (dynamic sampling) for production tool t.
e P! : Cost of a wafer above the Inhibit Limit (IL) for production tool .

e G! : Gain in term of term of risk reduction (number of wafers) for production
tool t.

e PG, : Potential financial gain in term of money (€). This value represents the

global amount of money potentially saved with the GSI sampling.

Therefore, for a given production tool ¢, the gain in term of risk reduction (G?))

is given by:
G, = max(0, NW;IL - NWZ,IL)
The potential financial gain (PG.,) is:

PGGZZGZ}*P:U*PIOSS
t
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where P, is the probability of losing wafers when the W@QR of a production

tool is above its Inhibit Limit.

By considering the results in Table 6.8 (see Section 6.5.2), assuming a probability
of losing wafers P, = 1/2000, and an average wafer cost of 1500 €, the potential

financial gains are:

PG, = (9,517,277 - 7,759,743)*(1500) * (1/2000) = 1,318,150 €.

This significant potential gain, combined with the prototype results,
was one of the main drivers behind the industrialization of the GSI sam-

pling algorithms.



8.5. CONCLUSION 207

8.5 Conclusion

In this chapter, we summarized the main industrial solutions that have been
proposed within the framework of this thesis. We presented the two main proto-
types that have supported the industrialization of the IPC mechanism, and financial
metrics that helped in assessing the added value of the GSI sampling algorithms be-
fore a fab-wide industrialization. Several other prototypes have been developed and
deployed in the fab, but we did not describe them in this manuscript since they
are more or less based on the two main prototypes and algorithms described in the

previous chapters.
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General Conclusion and

Perspectives

General Conclusion

Not everything that is faced can be changed. But nothing can be changed until
it is faced®. In this thesis, we faced the problem of implementing dynamic control
plans in semiconductor manufacturing. We analyzed the complexity of designing
control plans, developed novel algorithms, and provided smart solutions to support
the change from static to dynamic control plans. Our different algorithms have been
validated through simulations and prototypes, before being industrialized within the
300mm fab of STMicroelectronics in Crolles, France. Some of the solutions proposed
in this thesis have been used in other sites of STMicroelectronics. The question re-

mains whether they can be extended to other types of industries or activities.

One of the important contribution of this thesis lies in the industrial imple-
mentation of dynamic control plans in a high-mix environment. Indeed, in such
an environment, the complexity is such that, if some critical parameters (product
types, tool specificities, production constraints, etc.) are not appropriately taken
into account, a dynamic control plan can lead to very poor results and worsen the
situation in production. This is why most of the solutions proposed in the literature
are usually impracticable for an industrial deployment. The required investment,
the resource management, or the huge amount of data to handle in real time are

factors that lead companies to prefer static control plans whereas dynamic con-

2James Arthur Baldwin.
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trol approaches have been shown to be more suitable. This thesis has offered new
approaches and solutions to support industrial implementation of dynamic control
plans, showing that it is the only way for modern companies to stay competitive by

increasing the yield without impacting the cycle time.

This thesis was conducted within the framework of a joint collaboration between
industry and academics. We thus started our research by modeling and understand-
ing the various control plan approaches within the 300mm fab of STMicroelectron-
ics. We focused on defectivity controls and especially on sampling techniques that
aim at finding a trade-off between yield and cycle time. We stated our working
hypothesis on the added value of controls. Observations helped us to understand
the main drawbacks of static sampling that often lead to several cases of over- and

lack-of-controls.

With the aim of generalizing our problem related to static sampling, we per-
formed a literature review to classify our problem and analyze previously proposed
solutions. We noted that dynamic sampling are more suitable for modern semicon-
ductor plants, but that the efficiency of each solution or approach is directly linked

to the production environment.

Once our problem was clearly understood, generalized, and classified, we pro-
posed dynamic sampling algorithms that we validated through simulations and pro-
totypes. To support industrial implementation of these dynamic sampling algo-
rithms (GSI algorithms), we developed the IPC (Permanent Index per Context)
indicator to handle a large amount of data with little CPU effort. The combination
of both the IPC and the GSI sampling algorithms led to the industrial implemen-
tation of dynamic control plans whose potential gains was estimated to more than

1,000,000 € and a return on investment of less than 6 months.

Perspectives

This thesis on dynamic control plans opened perspectives for further works.

These perspectives concern the optimized management of excursions using
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the IPC mechanism, and the implementation of predictive sampling.

Our first perspective is related to the management of excursions. By im-
plementing dynamic sampling policies, lots or wafers are no longer stopped at all
control steps. There is thus no quantification of defects whenever a problem occurs
throughout production. The amount of data to analyze in order to contain the ex-
cursion strongly increases. As the IPC is efficient to handle a very large amount
of data, we propose to formalize the problem using the concept of dominating sets
and, based on the IPC, select the lot that covers the maximum number of lots in
production. This will help in quickly reducing both the material at risk and the

scope of analysis.

Figure 8.6 gives an overview of the concept of dominating sets. The aim is to
contain as quickly as possible the excursion by selecting and measuring lots that
release the uncertainty on other lots. For example, selecting LB help to release
the uncertainty on lots LJ and LK, i.e. LB was processed after LLJ and LK on
the same production tools and/or with the same context?®. Selecting LH help to
release the uncertainty on the set of lots {LA, LB, LC, LD, LE, LF, LG, LT, LS},
and selecting LA provides information on the set {LJ, LK, LM, LN, LP, LQ, LO,
LU, LS, LT, LW, LV}. As LA covers the largest number of lots, the priority would
be given to measuring LA. If the control of LA does not reveal any problem, then
the uncertainty can be released on the set of lots covered by LA. If a problem is
detected on LA, then the set of lots covered by LA could be quickly stopped and

potentially saved with rework operations.

The second perspective involves the implementation of predictive sampling [67].
In dynamic sampling, lots are dynamically selected without taking into account the
arrival of future lots. There is no guarantee that a lot that has been sampled will
be measured since new lots bringing much more information may arrive in the near
future. We therefore think that it would be interesting to analyze sets of lots by
considering lots that are known to arrive in a near future. This could be done by

defining a time horizon where lots containing more information will be prioritized,

3A context can be a recipe, a technology, a process operation, etc.
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Figure 8.6: Concept of dominating sets.

and others directly sent to the next process operation.

This anticipation of the arrival of lots can be modeled as a scheduling problem of
jobs with release dates and with multiple objectives, where minimizing the risk and
the waiting times of lots should be balanced. The resulting scheduling problem could
be solved using a multi-objective approach such as the one proposed in Dugardin
et al. [24]. This is an original scheduling problem in semiconductor manufacturing,

not mentioned for example in Ménch et al. [54].
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A.1 Glossary

APC

Breach of control

Bottleneck

CMP

Cycle time

Advanced Process Control - A set of four control
techniques (FDC, R2R, SPC, VM) used for controlling

processes and machines.

A place in the control plan where a control operation
might be added or removed.

A place in the production chain where the capacity is
limited such that the capacity is reduced in the whole
production chain.

Chemical Metal Polishing - A work area where
wafers are mechanically and chemically polished.

The time a wafer or a lot stays in a work area or the
entire fab.
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Defectivity

Exposure

Excursion

Fab

FDC

FOUP

GSI

IC

IL

IMPROVE

APPENDIX A.

A term used to describe particles or defects generated
on wafers during the production. This is mainly due to
the mechanical parts of production tools, and the size
of ICs is such that every particle can be critical.

Financial cost incurred when processing a lot on a pro-
duction tool.

Deviation in process or product specifications.

A semiconductor fabrication plant - The factory where
integrated circuits are produced on silicon wafers.

Fault Detection and Classification - A technique of
monitoring statistically process variations by analyzing
process equipment parameters.

Front Opening Unified Pod - A box that contains
25 wafers.

Global Sampling Indicator - A score that helps se-
lecting the best set of lots to sample, measure, or skip.

Integrated Circuit - An electronic circuit built on a
single piece of substrate (typically silicon).

Inhibit Limit - A limit above which the production
may be stopped if no control is performed. In term of
wafers, IL represents the maximum number of wafers
that should be run on a production tool between two
controls.

Implementing Manufacturing science solutions
to increase equiPment pROductiVity and fab
pErformance - A 42-month European project that fo-
cuses on the development of virtual metrology, predic-
tive equipment behavior, and dynamic control plans.
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IPC

Lot

Measurable lot

Metrology

Qualification

Recipe

SPC

S5

Risk

R2R
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Index Permanent par Contexte or Permanent
Index per context - A counter increased each time a
context is verified. The context can be defined by cham-
ber, by recipe or recipe type level (e.g. photoresist), by
technology, by product, or by any combination of the
previous element.

A group of 25 wafers placed in a FOUP.

A lot for which the product is measurable i.e. a lot that
contains a product for which a recipe exists and has been
created on a metrology tool.

In this thesis, the term Metrology as well as Inspection
are related to control operations performed on metrology
or inspection tools.

The definition and approval of different recipes that can
be used on a process tool.

A set of data required for an equipment to physically
treat a wafer or a lot.

Statistical Process Control - A technique based on
statistical methods to analyze process stability.

Smart Sampling Skipping Scheduling Simulator
- A simulator that simulates several sampling policies
using historical data. It is implemented in Excel VBA.

In this thesis, the term risk is related to the material
at risk, i.e. the potential loss if a problem occurs in
production.

Run-to-Run - A closed-loop control solution to correct
for process deviation from the desired target.
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Throughput time

TRIZ

Toolset

VM

Wafer

WAR

WIP

WL

Workshop

APPENDIX A.

The production speed (of a recipe) on a tool.

Teoriya Resheniya Izobretatelskikh Zadatch. In
English, it is defined as Theory of Inventive Problem
Solving (TIPS) approach [4] developed in 1946 by Gen-
rich S. Altshuller for solving technical problems.

A group of tools in a workshop that can perform the
same or similar kinds of recipes.

Virtual Metrology - A technique for predicting mea-
surements based on previous metrology measurements
and equipment outputs.

A thin circular plate on which the integrated circuits are
produced.

Wafer at Risk - The number of wafers processed on a
production tool since the last control.

Work-In-Progress or Work-In-Process - The set of
lots that are awaiting to be processed.

Warning Limit - A limit above which a situation starts
to become critical in term of control. In term of wafers,
WL represents the number of wafers that needs to be
run on a production tool before increasing the priority
of the tool for a control.

A set of tools that are used for conducting a certain
production step.



Appendix B

B.1 Clean room - ISO standard Classification

Classification | Maximum concentration limits (particles/cm? of air) for particles

Numbers (N) equal to and larger than the considered sizes shown below
0.1pm 0.2pm | 0.3pum | 0.5pum 1pm 5.0pm

ISO1 10 2

ISO2 100 24 10 4

ISO3 1 000 237 102 35 8

ISO4 10 000 2 370 1 020 352 83

ISO5 100 000 23700 | 10200 | 3520 832 29

ISO6 1 000 000 | 237 000 | 102 000 | 35 200 8 320 293

ISO7 352 000 83 200 2 930

ISO8 3 520 000 | 832 000 29 300

ISO9 35 200 000 | 8 320 000 | 293 000

Table B.1: Clean room - ISO Standard Classification [97].




218 APPENDIX B.



Appendix C

C.1 S5 prototype

The prototype S5 (Smart Sampling Skipping Scheduling Simulator) was imple-
mented in Excel VBA by the EMSE. Figure C.1, Figure C.2, and Figure C.3 show

different user interfaces for defining the parameters of simulations.

e Figure C.1 shows the user interfaces for selecting data and a type of simulation.

The version of the prototype used in this thesis offers the possibility to simulate

six different sampling policies (Figure C.1b):

1.

Without sampling, i.e. a sampling policy where no lot is inspected.
This is not really a sampling policy but the aim is to evaluate the maxi-
mum risk that can be achieved within the production if no lot is sampled

for inspection.

. All sampling, i.e. a sampling policy where all lots are inspected. The

aim is to compare other policies to the ideal case.

Threshold sampling, i.e. a sampling policy where lots are sampled

only when a given risk threshold (Warning Limit) is reached.

GSI sampling, i.e. a sampling policy using the first GSI sampling algo-
rithm (Section 6.4.2).

. Fab sampling, i.e. the actual fab sampling policy (based on historical

data).
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6. Full GSI sampling, i.e. a sampling policy using the second GSI sam-
pling algorithm (Section 6.4.3).

e Figure C.2 shows the user interfaces for generating graphs after each simu-
lation, and for defining the values of parameters (o, 3, Thaz, Tarin, Tretro,
Measure time, Warning Limit, Inhibit Limit, Number of metrology tools, and

Inspection queue size).

e Figure C.3 shows the user interface for initializing data or for generating more

statistics.
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S5 PROTOTYPE

Dashboard - 55 V3.3.4 - By EMSE [

S5 - Simulator for Smart
Sampling, Scheduling !
and Skipping A

NE
Site Georges Charpak

g Ecole Nationale
n Supérieure des Mines

Data | Simulation | Graphs | Input| Misc. |

Actual data file:

C:\Users\Justin NDUHURA\Desktop\S5
_Parameters_Tuning_Simulationsilinput_data_
6_Weeks.xlsx

Prepare data for

Select Data simulation

(a) S5 - Module DATA INPUT.
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Dashboard - 55 V3.2.4 - By EMSE =

$5 - Simulator for Smart ¢ Ecole Nationale
Sampling, Scheduling ]‘] Supérieure des Mines
and Skipping ‘:-.ﬂfM

Site Georges Charpak

Data Simulation IGraphs I Inputl Misc. |

Simulations can be started.

— Simulations
™ Check/Uncheck all
I~ WithoutSampling

I~ AllSampling

[~ ThresholdSamplin
v 1GSSampling

¥ FabSampling

I¥ FullGSISampling

Start simulations |

(b) S5 - Module SIMULATIONS.

Figure C.1: S5 interfaces (Modules DATA INPUT and SIMULATIONS).

Dashboard - 55 V3.3.4 - By EMSE [

$5 - Simulator for Smart Ecole Nationale
Sampling, Scheduling ﬁ Supéricure des Mines
and Skipping E-.E’M

Site Gearges Charpak

Data| Simulation Graphs IInputl Misc. |
Graphs can be generated.

Simulations — Tools "
¥ Check/Uncheck | | Check alliUncheck ﬂ
v WithoutSamplng ¥ SGAMAD4

v Alsampling ¥ IVISMO3
¥ ThresholdSampli ¥ SMATAD2
¥ 1GSSampling ¥ WZETAO1
v FabSampling ¥ L248C09
¥ FulGSISampling ¥ WOASI02
Vv TCENTO8

Generate graphs |

(a) S5 - Module GRAPHS.

Dashboard - 55 V3.2.4 - By EMSE [

85 - Simulator for Smart ¢ Ecole Nationale
Sampling, Scheduling r upérieure des Mines

B L SAINT-ETIENNE
and Skipping | " Site Georges Charpak

Datal Simulation | Graphs  Input IMisc.l

— GSI parameters

Alpha |5—
Beta [
Threshold Entry % lo— l—
Threshold Metrology I—

— General parameters

Measure time (minutes)
Warning Limit

Inhibit Limit

Number of Metrology Tools
Queue size

All stats

(b) S5 - Module PARAMETERS.

Figure C.2: S5 interfaces (Modules GRAPHS and PARAMETERS).
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.
Dashboard - S5 V334 - By EMSE | [

85 - Simulator for Smart ¢ Ecole Nationale
Sampling, Scheduling y ] Supérieure des Mines

N . o SAINT-ETIENNE
and Skipping “L! " site Georges Charpak

Data I Simulation ] Graphs I Input  Misc. l

Delete temporary sheets Show hidden sheets
to minimize the file size I

Create Stats lI

Stats

Figure C.3: S5 (Module RESET).

C.1.1 Input data

Three main types of historical data are necessary to simulate a sampling policy:

1. Process input data (Figure C.4) that contains historical data of production
tools.

2. Measurement input data (Figure C.5) that contains historical data of in-
spection tools (Defectivity tools).

3. Defectivity models (Figure C.6) that defines the set of process operations

that can be validated by a control operation, and the set of control operations
that can validate a process operation.
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PROCESSTOOL |~ ‘ JOBIN_INST 'l LOT A LOT_QTY OUT |~ OPERATION_NAME A TECHNO_GROUP ~
SGAMADS 2/26/2011 5:00 Q104DHT 25 OQ_STRIP_NLDDGO2-07 €055
SMATADZ 2/26/2011 5:00 Q105DSA 25 O_ETCH_G02-02 €055

L248C09 2/26/2011 5:00 Q103BM) 24 O_PHOTO_PSD-13 €055
L248C09 2/26/2011 5:01 Q105NPC 25 0_PHOTO_PLDDGOZ-04 €055
WFC3002 2/26/2011 5:01 Q104BEK 25 O_ANN_WELL-14 1140
L248C09 2/26/2011 5:01 Q1065NEB 25 O_PHOTO_NVTZ2-08 €065
TCENT10 2/26/2011 5:03 Q103CKH 25 O_RTP_SALICIDE-02 €055
WFC3003 2/26/2011 5:03 Q1063XF 25 O_ETCH_ON-11 €055
L193C04 2/26/2011 5:03 Q052CHS.04 12 0_PHOTO_VIA2-08 1140
IVISLO3 2/26/2011 5:05 QO46ER).04 15 O_IMPL2_NPOCKCELL-01 Co28
SMATAD4 2/26/2011 5:05 Qo53IMV 25 O_ETCH_PSD-01 Co45
WSS53002 2/26/2011 5:05 Q052BMC 22 O_CMP_W-35 €055
Figure C.4: Process input data.
METROLOGY TOOLS| | STEP_QUT_INST |~ | LoT -

F236002 2/26/2011 6:38 QO53ERG

F236001 2/26/2011 6:43 Q105CWR

FCOMPO2 2/26/2011 7:03 Q101VED

F236002 2/26/2011 718 Q105AVE

F236001 2/26/2011 730 Q102JKM

FCOMPO2 2/26/2011 8:09 Q103DFR

F236001 2/26/2011 8:30 Qo53H

F280003 2/26/2011 8:32 QO51MVE

FCOMPO2 2/26/2011 847 Q105AEK

FES3201 2/26/20119:13 Q050YBK

FCOMPO1 2/26/2011 9:36 Q051PNE

F236001 2/26/2011 9:39 QO51IXAP

Figure C.5: Measurement input data.
'GENERIC OPERATION DEF_OPER
0_OXID_PAD 0_PHOTC_ACTIVE

O_DEP_NIT_ACTIVE

O_PHOTO_ACTIVE

0_DEP_HMASK_ACTIVE

Q_PHOTQ ACTIVE

0_PHOTO_ACTIVE

Q_PHOTO _ACTIVE

O_ETCH_ACTIVE

QO_ETCH_ON

Q_OXID_SACOX

QO_STRIP_PWGO2

0_PHOTO_ACTIVE

O_PHOTO_ACTIVE

0_ETCH_ACTIVE O_ETCH_ACTIVE O_ETCH_ON O_OXID_SACOX O_STRIP_PWGO2
O_ETCH_ACTIVE O_ETCH_ACTIVE

0_OXID_LINER O _DEP_GAPFILL_STI

0_OXID_LEB O_DEP_GAPFILL_STI

0_DEP_GAPFILL_STI O_DEP_GAPFILL_STI O_ETCH_ON O_OXID_SACOX O_STRIP_PWGO2

O_DEP_GAPFILL_STI

O_DEP_GAPFILL_STI

0_ANN_STI

0 _CMP_STI

Q ETCH ON

Q_OXID_SACOX

Q _STRIP_PWGO2

Figure C.6: Defectivity models.

C.1.2 OQutput results - Statistics

The S5 prototype provides several indicators that are used for further analysis.

Among these parameters, we have:

1. Number of lots that are sampled, i.e. the number of lots that are chosen to be

inspected and which are placed in the inspection queue.
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10.

11.

12.

13.

APPENDIX C.

. Number of sampled lots (directly inspected), i.e. the number of lots that do

not wait in the inspection queue. Once sampled, they are directly inspected.

. Number of sampled lots (directly queued), i.e. the number of lots that are

sampled when the inspection queue is not full.

. Number of sampled lots (exchanged), i.e. the number of lots that are sampled

when the inspection queue is full. These lots are exchanged with some lots

already waiting in the inspection queue.

. Number of lots that are inspected i.e. the number of lots that are actually

inspected or the number of lots processed on an inspection tool.

. Number of lots that are skipped, i.e. the number of lots removed from the

inspection queue or the number of lots that are sampled but not inspected.

Number of lots that are skipped (entry queue), i.e. the number of lots that

are skipped due to the arrival of new lots bringing more information.

. Number of lots that are skipped (metrology), i.e. the number of lots that are

skipped due to the inspection of other lots.

. Medium WAR (average) i.e. the sum of the WAR for all production tools

NbTools
divided by the number of tools, i.e. Z

=

W AR,

m where WARJ is the

W AR for the production tool j.

Maximum WAR (average), i.e. the sum of the maximum W AR of all produc-

Nbtools .
MaximumW AR
tion tools divided by the number of tools, i.e. :
ion tools divided by the number of tools, i.e Z NbTools

Number of lots above Warning Limit.
Number of wafers above Warning Limit.

Time spent above the Warning Limit. It corresponds to the sum of the times

that all lots spent above the Warning Limit.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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Number of lots above the Inhibit Limit.
Number of wafers above Inhibit Limit.

Time spent above the Inhibit Limit. It corresponds to the sum of the times
that all lots spent above the Inhibit Limit.

The average time spent by lots in the inspection queue before being inspected.

The maximum time spent by lots in the inspection queue before being in-

spected.

The average time spent by lots in the inspection queue before being skipped.
The maximum time spent by lots in the inspection queue before being skipped.
The set of control operations used to reduce the WAR during the simulation.
The number of times a control operation was used during the simulation.

The number of control operations used during the simulation.

C.2 Impact of parameter [
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. Number of Number of Number of Aver.age Ave.rage
Values of § with o =1 sampled lots measured lots skipped lots Medium Maximum
W@R WG@R
1 5.15%A 0.98%A 4.17*A 0.24*B 0.28*C
2 5.34%A 0.98*%A 4.35%A 0.23*B 0.28*%C
3 5.59%A 0.98%A 4.61*A 0.23*B 0.28*%C
4 5.7*A 0.98*%A 4.7T1*A 0.23*B 0.28*%C
5 5.8T*A 0.98*%A 4.89*%A 0.23*B 0.28*%C
6 6*%A 0.98*%A 5.02%¥A 0.23*B 0.28*%C
7 6.15*%A 0.98*%A 5.17*A 0.23*B 0.29*%C
8 6.27*A 0.98*%A 5.28%A 0.24*B 0.29*%C
9 6.33%A 0.98*%A 5.35%A 0.23*B 0.28*%C
10 6.43%A 0.98%A 5.45%A 0.23*B 0.28*%C
MIN 5.15*%A 0.98*%A 4.17*A 0.23*B 0.28*%C
MAX 6.43%A 0.98%A 5.45%A 0.24*B 0.29*%C
AVERAGE 5.88%A 0.98*%A 4.9%A 0.23*B 0.28*%C
Table C.1: Impact of f when o = 1.
. Number of Number of Number of Aver.age Avgrage
Values of § with o =2 sampled lots | measured lots skipped lots Medium Maximum
W@R WG@R
1 5.22%A 0.98*A 4.24*%A 0.24*B 0.27*C
2 5.34%A 0.98*%A 4.36%A 0.23*B 0.27*C
3 5.47FA 0.98%A 4.48%A 0.23*B 0.27*C
4 5.71*A 0.98*%A 4.73*%A 0.23*B 0.28*%C
5 5.9%A 0.98%A 4.92*%A 0.23*B 0.27*C
6 6.01%A 0.98*%A 5.02%A 0.23*B 0.28*%C
7 6.15%A 0.98%A 5.17T*A 0.23*B 0.28*%C
8 6.26%A 0.98*%A 5.28%A 0.23*B 0.28*%C
9 6.27*A 0.98*%A 5.29%A 0.24*B 0.28*%C
10 6.4%A 0.98*%A 5.42%A 0.23*B 0.28*%C
MIN 5.22*%A 0.98*A 4.24*%A 0.23*B 0.27*C
MAX 6.4%A 0.98*A 5.42%A 0.24*B 0.28%¢
AVERAGE 5.87*A 0.98*%A 4.89%A 0.23*B 0.28*%C

Table C.2: Impact of f when o = 2.
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. Number of Number of Number of Aver.age Ave.rage
Values of § with o = 4 sampled lots measured lots skipped lots Medium Maximum
W@R WG@R
1 5.21*%A 0.98%A 4.23%A 0.24*B 0.28*C
2 5.31%A 0.98*%A 4.33%A 0.24*B 0.28*%C
3 5.53%A 0.98%A 4.54*A 0.24*B 0.28*C
4 5.68%A 0.98*%A 4.7*A 0.24*B 0.28*%C
5 5.9%A 0.98*%A 4.91*A 0.24*B 0.28*%C
6 6.07*A 0.98*%A 5.09%A 0.24*B 0.28*%C
7 6.25%A 0.98*%A 5.27T*A 0.24*B 0.28*%C
8 6.27*A 0.98*%A 5.29%A 0.24*B 0.28*%C
9 6.35%A 0.98*%A 5.37*A 0.24*B 0.28*%C
10 6.46%A 0.98%A 5.48%A 0.24*B 0.28*%C
MIN 5.21*%A 0.98*%A 4.23*%A 0.24*B 0.28*%C
MAX 6.46%A 0.98%A 5.48%A 0.24*B 0.28*%C
AVERAGE 5.9%A 0.98*%A 4.92*%A 0.24*B 0.28*%C
Table C.3: Impact of § when a = 4.
. Number of Number of Number of Aver.age Avgrage
Values of § with o = 6 sampled lots | measured lots skipped lots Medium Maximum
W@R WG@R
1 5.21*%A 0.98*%A 4.23*%A 0.25*B 0.28*%C
2 5.34%A 0.98*%A 4.35*%A 0.24*B 0.28*%C
3 5.58%A 0.98%A 4.6%A 0.24*B 0.28*%C
4 5.76%A 0.98*%A 4.78%A 0.24*B 0.28*%C
5 5.93%A 0.98%A 4.95%A 0.24*B 0.28*%C
6 6.05*%A 0.98*%A 5.07*A 0.24*B 0.28*%C
7 6.23%A 0.98%A 5.25%A 0.24*B 0.28*%C
8 6.26%A 0.98*%A 5.28%A 0.24*B 0.28*%C
9 6.37*A 0.98*%A 5.38%A 0.25*B 0.28*%C
10 6.58%A 0.98*%A 5.6¥A 0.24*B 0.28*%C
MIN 5.21*%A 0.98*A 4.23*%A 0.24*B 0.28*%C
MAX 6.58%A 0.98*%A 5.6¥A 0.25*B 0.28*C
AVERAGE 5.93%A 0.98*%A 4.95%A 0.24*B 0.28*%C

Table C.4: Impact of f when o = 6.
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. Number of Number of Number of Aver.age Ave.rage
Values of § with o = 8 sampled lots measured lots skipped lots Medium Maximum

W@R WG@R

1 5.19%A 0.98%A 4.21*%A 0.24*B 0.28*C

2 5.26%A 0.98*%A 4.28%A 0.24*B 0.28*%C

3 5.57*A 0.98*%A 4.59*%A 0.24*B 0.28*%C

4 5.82%A 0.98*%A 4.83%A 0.24*B 0.28*%C

5 5.93*A 0.98*%A 4.95*%A 0.24*B 0.28*%C

6 6.07*A 0.98*%A 5.09%A 0.24*B 0.28*C

7 6.21*%A 0.98*%A 5.22%A 0.24*B 0.28*%C

8 6.24%A 0.98%A 5.26%A 0.25*B 0.29*C

9 6.39%A 0.98*%A 5.41%A 0.24*B 0.28*%C

10 6.46%A 0.98*%A 5.48%A 0.24*B 0.28*C

MIN 5.19%A 0.98*%A 4.21*%A 0.24*B 0.28*%C

MAX 6.46%A 0.98%A 5.48%A 0.25*B 0.29%C

AVERAGE 5.91*A 0.98*%A 4.93*%A 0.24*B 0.28*%C

Table C.5: Impact of § when a = 8.

Values of 8 with Number of Number of Number of Aver.age Avgrage
a=10 sampled lots | measured lots skipped lots Medium Maximum

W@R WG@R

1 5.17*A 0.98*%A 4.19*%A 0.25*B 0.28*%C

2 5.34%A 0.98*%A 4.36%A 0.24*B 0.28*%C

3 5.51%A 0.98%A 4.53*%A 0.24*B 0.28*%C

4 5.7T*A 0.98*%A 4.79*%A 0.24*B 0.29*%C

5 5.9%A 0.98%A 4.92*%A 0.24*B 0.28*%C

6 6.12*%A 0.98*%A 5.14%A 0.25*B 0.29*%C

7 6.25%A 0.98*%A 5.27*A 0.25*B 0.28*C

8 6.27%A 0.98*%A 5.29%A 0.25*B 0.28*C

9 6.39%A 0.98*%A 5.41*%A 0.25*B 0.29*%C

10 6.5%A 0.98*A 5.51*%A 0.25*B 0.28*C

MIN 5.17*A 0.98%A 4.19*%A 0.24*B 0.28*%C

MAX 6.5%A 0.98*%A 5.51*%A 0.25*B 0.29*C

AVERAGE 5.92%A 0.98*%A 4.94%A 0.25*B 0.28*%C

Table C.6: Impact of f when a = 10.
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Values of 8 with Number of Number of Number of Aver.age Avgrage
a=12 sampled lots measured lots skipped lots Medium Maximum

WaR WaR

1 5.19%A 0.98*%A 4.21*%A 0.24*B 0.27*C

2 5.39%A 0.98*%A 4.41*%A 0.24*B 0.28*%C

3 5.52%A 0.98%A 4.54*%A 0.24*B 0.28*%C

4 5.71*A 0.98*%A 4.73*%A 0.25*B 0.29*%C

5 5.95%A 0.98%A 4.97*A 0.25*B 0.29*C

6 6.05%A 0.98*%A 5.06%A 0.25*B 0.29*%C

7 6.18%A 0.98*%A 5.2%A 0.25*B 0.29*C

8 6.3¥A 0.98*%A 5.31%A 0.25*B 0.29*%C

9 6.45%A 0.98%A 5.47*A 0.25*B 0.29*C

10 6.41*%A 0.98*%A 5.43*A 0.25*B 0.28*%C

MIN 5.19%A 0.98*%A 4.21*%A 0.24*B 0.27*C

MAX 6.45%A 0.98*%A 5.4T*A 0.25*B 0.29*%C

AVERAGE 5.91%A 0.98%A 4.93%A 0.25*B 0.28*C

Table C.7: Impact of § when a = 12.
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