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Abstra
tThe subje
t of this work is image 
oding and restoration in the 
ontext of satelliteimaging. Regardless of re
ent developments in image restoration te
hniques andembedded 
ompression algorithms, the re
onstru
ted image still su�ers from 
odingartifa
ts making its quality evaluation di�
ult. The obje
tive of the thesis is toimprove the quality of the �nal image with the study of the optimal stru
ture ofde
oding and restoration regarding to the properties of the a
quisition and 
om-pression pro
esses. More essentially, the aim of this work is to propose a reliablete
hnique to address the optimal de
oding-de
onvolution-denoising problem in theobje
tive of global optimization of the 
ompression/restoration 
hain.The thesis is organized in three parts. The �rst part is a general introdu
tionto the problemati
 addressed in this work. We then review a state-of-the-art ofrestoration and 
ompression te
hniques for satellite imaging and we des
ribe the
urrent imaging 
hain used by the Fren
h Spa
e Agen
y (CNES1) as this is thefo
us of the thesis.The se
ond part is 
on
erned with the global optimization of the satellite imaging
hain. We propose an approa
h to estimate the theoreti
al distortion of the 
omplete
hain and we present, for three di�erent 
on�gurations of 
oding/restoration, analgorithm to perform its minimization. Our se
ond 
ontribution is also fo
usedon the study of the global 
hain but is more aimed to optimize the visual qualityof the �nal image. We present numeri
al methods to improve the quality of there
onstru
ted image and we propose a novel imaging 
hain based on the imagequality assessment results of these te
hniques.The last part of the thesis introdu
es a satellite imaging 
hain based on a newsampling approa
h. This approa
h is interesting in the 
ontext of satellite imagingas it allows to transfer all the di�
ulties to the on-ground de
oder. We re
all themain theoreti
al results of this sampling te
hnique and we present a satellite imaging
hain based on this framework. We propose an algorithm to solve the re
onstru
tionproblem and we 
on
lude by 
omparing the proposed 
hain to the one 
urrently usedby the CNES.

1Centre National d'Etudes Spatiales





RésuméLe sujet de 
ette thèse 
on
erne le 
odage et la restauration d'image dans le 
on-texte de l'imagerie satellite. En dépit des ré
ents développements en restaurationet 
ompression embarquée d'images, de nombreux artéfa
ts apparaissent dans lare
onstru
tion de l'image. L'obje
tif de 
ette thèse est d'améliorer la qualité del'image �nale en étudiant la stru
ture optimale de dé
odage et de restauration enfon
tion des 
ara
téristiques des pro
essus d'a
quisition et de 
ompression. Plusglobalement, le but de 
ette thèse est de proposer une méthode e�
a
e permet-tant de résoudre le problème de dé
odage-dé
onvolution-débruitage optimal dansun obje
tif d'optimisation globale de la 
haîne 
ompression/restauration.Le manus
rit est organisé en trois parties. La première partie est une introdu
-tion générale à la problématique traitée dans 
e travail. Nous présentons un étatde l'art des te
hniques de restauration et de 
ompression pour l'imagerie satellite etnous dé
rivons la 
haîne de traitement a
tuellement utilisée par le Centre Nationald'Etudes Spatiales (CNES) qui servira de référen
e tout au long de 
e manus
rit.La deuxième partie 
on
erne l'optimisation globale de la 
haîne d'imageriesatellite. Nous proposons une appro
he pour estimer la distorsion théoriquede la 
haîne 
omplète et développons, dans trois 
on�gurations di�érentes de
odage/restauration, un algorithme pour réaliser la minimisation. Notre deuxième
ontribution met également l'a

ent sur l'étude la 
haîne globale mais est plus 
ibléesur l'optimisation de la qualité visuelle de l'image �nale. Nous présentons des méth-odes numériques permettant d'améliorer la qualité de l'image re
onstruite et nousproposons une nouvelle 
haîne image basée sur les résultats d'évaluation de qualitéde 
es te
hniques.La dernière partie de la thèse introduit une 
haîne d'imagerie satellite baséesur une nouvelle théorie de l'é
hantillonnage. Cette te
hnique d'é
hantillonnage estintéressante dans le domaine du satellitaire 
ar elle permet de transférer toutes lesdi�
ultés au dé
odeur qui se situe au sol. Nous rappelons les prin
ipaux résultatsthéoriques de 
ette te
hnique d'é
hantillonnage et nous présentons une 
haîne image
onstruite à partir de 
ette méthode. Nous proposons un algorithme permettant derésoudre le problème de re
onstru
tion et nous 
on
luons 
ette partie en 
omparantles résultats obtenus ave
 
ette 
haîne et 
elle utilisée a
tuellement par le CNES.





Part IIntrodu
tion





Chapter 1Presentation of the thesis
1.1 Context and motivationsSatellite imaging has been the fo
us of intense works in the remote sensing 
om-munity for the last years. The ability of satellite opti
al systems to produ
e highresolution images has indeed been of a great interest in appli
ations su
h as 
hangedete
tion or image 
lassi�
ation. It has however out
omed to be quite 
halleng-ing for the design of satellite imaging 
hains. The dimension of images a
quiredby high-resolution satellites keeps growing as the image resolution, i.e. the spatialdistan
e between two adja
ent pixels, gets smaller while the swath maintains. Forexample, one image of the PLEIADES-HR satellite 
overs an area of 20 km × 20km with a resolution of 70 
m, giving an image size of almost 30000× 30000 pixels.These images are quantized on 12 bits, whi
h represents 1.35 Gb of raw data perimage! In addition, a satellite is not able to 
ontinuously transmit the a
quiredimages as ground stations are not always a

essible for a transmission. It has tostore the a
quired images on the on-board mass storage to transmit them later. Butthe on-board storage 
apa
ity of a satellite is highly limited (about 500 Gb for thePLEIADES-HR satellite [Lier 2008℄) su
h that the on-board memory needs to be
leared frequently; the step of image 
oding is then important and stands as a majorelement of the satellite imaging 
hain. The step of restoration is also very important.Due to the 
onstraint on the size of the opti
s, the a
quired image is blurred and ade
onvolution/denoising pro
ess is always required to produ
e an image whi
h 
anbe exploited.Despite the re
ent advan
es in image 
oding, many artifa
ts appear on the re
on-stru
ted image. These artifa
ts appear as spe
i�
 patterns whi
h 
learly interferewith the image quality assessment. In this sense, the obje
tive of the thesis is toimprove the quality of the �nal image with the study of the optimal de
oding stru
-ture regarding to the 
hara
teristi
s of the a
quisition and 
ompression 
hains. Moregenerally, the aim of this work is to bring a methodologi
al 
ontribution to the op-timal de
oding-de
onvolution-denoising problem and 
onsists in a 
hara
terizationand an optimization of the 
ompression/restoration 
hain 
onsidering the instru-mental 
hara
teristi
s. As part of the thesis, we do not 
onstrain the 
omplexity ofproposed on-board algorithms et we assume that future ele
troni
s ar
hite
tures willallow to embed these algorithms. Works on this subje
t are 
urrently in progress atthe Fren
h Spa
e Agen
y (CNES).To formulate this spe
i�
 global optimization problem, we 
onsider the imaging
hain showed Fig. 1.1. We denote by x the analog s
ene. Depending on the 
ontext,



10 Chapter 1. Presentation of the thesis
x may also be referred in the thesis to the referen
e or target image whi
h is the
losest dis
rete representation of the true analog s
ene that we 
an obtain (we willdetail this aspe
t in Chapter 3). The a
quired image y is the image 
olle
ted afterthe sampling and the analog-to-digital 
onversion. This image is the dire
t ouputof the opti
al instrument and therefore will be referred as the instrumental image.This image is en
oded on-board of the satellite to form a 
ompressed bitstreamsu
h that it 
an be e�
iently stored then transmitted to the ground station. The
omplexity of the 
oding s
heme is strongly 
onstrained by the resour
es availableon board whi
h remain highly limited, su
h that the design of this step is usually adi�
ult task. The evolution of ele
troni
s parts and on-board satellite ar
hite
turesmay however allow more 
omplex algorithms for future missions.On
e the en
oded image has been transmitted to the ground station, it is de
odedand a restoration is applied to redu
e the degradations due to the a
quisition andthe 
oding pro
esses. The restored image is the �nal image and is denoted x̂. Thisimage is the image obtained after the 
oding/de
oding C and the restoration T andshould be the 
losest representation (following some distan
e that we will de�ne) ofthe referen
e image.We denote by D(x, x̂) some measure of the distan
e between the referen
e imageand the restored one. In the 
onsidered 
hain, the 
oded/de
oded image is C(y)(the de
oding operator is in
luded in C for more 
larity in the notations) and we willdenote R(C(y)) some measure of the 
oding rate of the 
oded image. The restoredimage is obtained by applying the restoration operator T on the 
oded/de
odedimage C(y). It 
an then be expressed as a fun
tion of the 
oding and the restorationby x̂ = T (C(y)). The problem of global optimization 
onsists in �nding the optimal
C∗ and T ∗ whi
h minimize the distan
e D(x, x̂) under the 
onstraint that the targetrate Rc is not ex
eeded. This 
an be formulated as

C∗, T ∗ = arg min E [D(x, T (C(y)))]subje
t to C, T

R(C(y)) ≤ Rc

, (1.1)where E is the expe
ted value with respe
t to the distribution law of x, meaningthat we want to minimize on average the distan
e D(x, x̂) for all images x whi
hfollow a 
ertain probability distribution.Solving problem (1.1) is very di�
ult in many aspe
ts. Firstly, problem (1.1)sear
hes for the optimal 
oder and restoration among all te
hniques, whi
h is nottra
table. Se
ond, even if the 
oding and restoration methods are given and perfe
tlyknown, an analyti
 expression of the global distortion is usually not available as the
oder and the restoration are highly 
omplex and 
an rarely be expressed in 
losed-form. Moreover, the global distortion depends on the knowledge of the real unknownimage x (or its statisti
s) and on the distan
e measure D. Ideally, D should evaluatethe image quality with the same a

ura
y as image analysis experts. Designing su
h
riterion is however di�
ult and out of the topi
 of the thesis. In this work, we willalways take D to be equal to the mean square error sin
e it is a tool that we 
aneasily manipulate. We are aware that the mean square error is not the best 
riterion



1.1. Context and motivations 11that we 
an use, we will see however that its �exibility is very interesting to developglobal optimization te
hniques. But as we 
an see, the problem (1.1) is di�
ult tosolve in a general 
ontext.The 
ontribution of the thesis is then to bring some insights on the global op-timization of the imaging 
hain. We will �rst fo
us on the theoreti
al optimizationof the global distortion in the 
ase of a simple imaging 
hain. Even if the 
onsid-ered 
hain is overly simple, the proposed method appears to be original and ta
klesa major di�
ulty in formulating a 
losed-form expression of the global distortion.Be
ause of the 
omplexity of a true satellite imaging 
hain, we will then presentseveral experiments to optimize the quality of the �nal image. This numeri
al studyaddresses 
ommon questions in the design of the imaging 
hain su
h as the positionof the restoration (i.e. on-board before 
oding or on-ground after de
oding) andhow to pro
ess the 
oding artifa
ts whi
h interfere with the interpretation of theimage. To 
on
lude the thesis, we will study a new imaging 
hain based on re
entadvan
es in the theory of sampling. This theory appears at �rst slightly opposingthe 
urrent imaging 
hain. But the bene�t in term of embedded resour
es 
learlyjustify our interest to this method.

Figure 1.1: Current pro
essing 
hain for satellite imaging.



12 Chapter 1. Presentation of the thesis1.2 Organization of the thesisThis do
ument is divided in three parts. Part I is a general introdu
tion to the thesis.In this part, Chapter 1 des
ribes the 
ontext and the organization of the manus
ript.The 
hapter 2 presents a state-of-the-art of restoration and 
ompression te
hniquesfor satellite images. Chapter 3 
loses the part by the te
hni
al des
ription of the
urrent imaging 
hain used by the CNES, whi
h is the fo
us of the thesis.Part II is the 
ore of the thesis and is 
on
erned with the global optimization ofthe satellite imaging 
hain. This study is our main 
ontribution and is divided intwo 
hapters. Chapter 4 is fo
ussed on the theoreti
al optimization of the 
hain. Inthis 
hapter, we 
onsider a simple 
ase of imaging 
hain and we propose a model toestimate the global distortion. This estimation is then minimized with respe
t tothe parameters of the 
hain to get the minimum global distortion (and the optimalparameters) given a target 
oding rate. The main result of this optimization is thatthe quality of the �nal image 
an be highly improved if we address the problem ofthe satellite imaging 
hain optimization in its globality. This 
hapter also addressestheoreti
ally the question of the position of the restoration in the imaging 
hain.The other part of our work is des
ribed in Chapter 5 and is also fo
used on theoptimization of the 
hain but the true satellite imaging 
hain is now 
onsidered. Dueto the di�
ulty to extend the previous study to this 
hain, we present in Chapter 5 aset of numeri
al experiments whi
h improve the quality of the �nal image. Throughthis experimental study, Chapter 5 addresses re
urrent open questions su
h as theposition of the restoration in the 
hain and how to deal with the 
oding noise. Fromthe obtained results, we propose a new satellite imaging 
hain based on an on-board restoration 
oupled with a subtra
tive dithering te
hnique. Compared to the
urrent imaging 
hain, the proposed approa
h eliminates several 
urrent problemsin the observation of the �nal image su
h as stru
tured 
oding artifa
ts.Finally Part III introdu
es a satellite imaging 
hain based on the 
ompressedsensing approa
h. In Chapter 6, we re
all the main results of the 
ompressed sensingtheory and we present a satellite imaging 
hain based on this framework. We proposean algorithm to solve the re
onstru
tion problem and we 
on
lude by 
omparing theproposed 
hain to the 
urrent imaging 
hain.1.3 Publi
ationsJournal papers
• M. Carlavan, L. Blan
-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y.Bobi
hon. Joint 
oding-denoising optimization of noisy images. Submitted toIEEE Transa
tions on Image Pro
essing.
• M. Carlavan, L. Blan
-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y.Bobi
hon. On the optimization of the satellite imaging 
hain. Submitted toIEEE Transa
tions on Geos
ien
e and Remote Sensing.
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Chapter 2State-of-the-art of optimizationte
hniques for satellite imaging
In this 
hapter, we make a brief review of optimization te
hniques applied to thesatellite imaging 
hain. We distin
t here two types of optimization te
hniques:

• The te
hniques whi
h optimize only one 
omponent of the 
hain regardless tothe other ones. This type of optimization is referred in this thesis as separateor disjoint optimization.
• The te
hniques whi
h optimize one 
omponent of the 
hain by taking intoa

ount the 
hara
teri
s of the other ones. This type of optimization is referredin this thesis as joint optimization.We organized this 
hapter in two se
tions and we dis
uss ea
h type of optimiza-tion te
hnique in ea
h se
tion. Se
tion 2.1 starts this review by presenting advan
ed
oding and restoration te
hniques. Although the mentioned te
hniques have notbeen spe
i�
ally designed for satellite imaging, they are often used as basis in thedesign of these parts. Se
tion 2.2 is dedi
ated to 
oding and restoration te
hniquesdesigned to globally optimize the satellite imaging 
hain. In this part, we presentthe methods proposed in [Parisot 2000a℄ and in [Tramini 1998℄ whi
h are, to thebest of our knowledge, the two main existing 
ontributions in this domain.2.1 Disjoint optimization te
hniques2.1.1 Advan
ed 
ompression algorithmsThe information inside an image (and more spe
i�
ally in a high resolution one) isstrongly redundant (refer, for example, to the image of Cannes harbour Fig. 2.2). Itis then possible to 
ompress a satellite image by redu
ing this redundan
y withoutlosing important features. It is indeed unusual that the totality of an image bringsrelevant information and one 
an rea
h signi�
ant 
ompression rates if one a

eptsto slightly deteriorate its quality. This is the pro
ess of lossy 
ompression. Su
h a
ompression te
hnique is 
omposed of several steps as shown on the Fig. 2.1.The �rst step of a lossy 
ompression s
heme is to de
orrelate the data. The ideaof the de
orrelation step is to redu
e the redundan
y in an image by using a (mostof time linear) transform whi
h gathers all its energy in a small number of non-null
oe�
ients, usually lo
ated in the low frequen
ies of the signal. These transforms
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Figure 2.1: Stages of lossy image 
oding.are named sparse transforms and provided auto
orrelation matri
es whi
h tend tobe diagonal. The optimal transform for the data de
orrelation is the Karhunen-Loève transform1 (KLT) as it provides a stri
t diagonal auto
orrelation matrix.Its implementation is however di�
ult as the signal dependen
y of this transformmakes it time-
onsuming to 
ompute [Andrews 1971℄. Until very re
ently, as on theSPOT 5 satellite, the dis
rete 
osine transform (DCT), whi
h is a signal-independentapproximation of the KLT transform, was used [Walla
e 1992℄.

Figure 2.2: Referen
e image, Cannes harbour (12 bits, 30 
m resolution, 1024×1024pixels).However, image quality evaluation of the DCT-based 
ompression te
hnique1For signals whi
h 
an be expressed as �rst-order Markov pro
esses.
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hniques 17showed an a

eptable 
ompression rate of approximately 3 : 1 on SPOT5 remotesensing images (8 bits, 5 m resolution) [Thiebaut 2011℄, i.e. the 
ompressed image is
3 times lighter than the original one. Higher 
ompression rates wipe out the detailsof the image and 
reate blo
king artifa
ts on uniform zones. Su
h phenomenon isillustrated on Fig. 2.3 whi
h shows the referen
e image (displayed Fig. 2.2) en
odedat a rate of 2.5 bits/pixel (
ompression rate of almost 5 : 1). These artifa
ts appearbe
ause the DCT-based 
oding te
hnique works on the image at a lo
al level, i.e.on small 8×8 blo
ks. In order to bypass this 
ompression bound for new generationhigh resolution satellites, like the PLEIADES-HR satellite, a new approa
h basedon global transforms, su
h as the wavelet transform, has been adopted.

(a) (b) (d)
(e) (f) (h)Figure 2.3: Visual 
omparison of the DCT-based 
ompression te
hnique. Displayedimages have a size of 200× 200 pixels. The �rst line shows zooms of di�erent zonesof the referen
e image. The se
ond line represents the same zones but for the DCT-based de
oded version of the referen
e image (PSNR = 46.75 dB). The target rateis 2.5 bits/pixel (the dynami
 range of the referen
e image is en
oded on 12 bits).The image range has been extended to point out the image re
onstru
tion artifa
ts.Unlike the Fourier transform whi
h is lo
alized in frequen
y domain but not inspatial domain and the usual representation whi
h is lo
alized in spatial domain butnot in frequen
y domain, the wavelet transform appears to be (more or less) lo
alizedboth in spa
e and in frequen
y. The multiresolution analysis algorithm proposed in[Mallat 1989℄ is re
ommended to pro
ess the wavelet transform of the image. Thiss
heme is illustrated Fig. 2.4 for a one dimensional signal. It de
omposes the image



18 Chapter 2. State-of-the-art of optimization te
hniques for satelliteimagingin low and high frequen
ies by applying, in parallel, a low-pass �lter h and a high-pass �lter g both followed by subsampling operators. Two sets of 
oe�
ients are thenobtained: The approximation 
oe�
ients whi
h 
orrespond to the low frequen
iesof the signal and whi
h 
an be interpreted as a zoomed out version of the originalsignal and the details 
oe�
ients whi
h 
orrespond to the high frequen
ies of thesignal. This de
omposition pro
ess is then iterated on the approximation 
oe�
ients
L times, L being referred as the number of levels de
omposition.

Figure 2.4: Filter banks for of a one level multiresolution analysis algorithm.A wavelet transform 
an be extended to multidimensional signals using separablewavelets. Images 
an then be de
omposed using the s
heme des
ribed Fig. 2.4iteratively on the rows and the 
olumns of the image. The interested reader mayrefer to [Mallat 2008℄ for more details.Di�erent families of wavelets 
an be used for the de
omposition of the image.The Cohen-Daube
hies-Feauveau (CDF) 9/7 wavelet is often used in the image
oding 
ommunity as it owns interesting properties for image 
ompression su
has symmetri
 �lters and enough number of vanishing moments whi
h 
reate shortlength �lters while giving e�
ient sparse representations for most smooth images[Cohen 1992℄. The de�nition of the 
orresponding �lters h and g is given in Table 2.1for the analysis of the image. Note that the CDF 9/7 wavelet transform is a
tuallythe wavelet transform re
ommended in the re
ent JPEG-2000 standard and is alsothe transform used by the PLEAIDES-HR satellite for image 
oding [Lier 2008℄.
k Low-pass �lter hk High-pass �lter gk

0 0.852698679009 −0.788485616406

±1 0.377402855613 0.418092273222

±2 −0.110624404418 0.040689417609

±3 −0.023849465020 −0.064538882629

±4 0.037828455507Table 2.1: Analysis �lters for the 9/7 Cohen-Daube
hies-Feauveau wavelet trans-form.A wavelet transform is very sparse [Antonini 1992℄, meaning that it repre-sents the image with a few number of non-null 
oe�
ients. This representationis very attra
tive for the en
oders that follow the transform as they take bene�t
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hniques 19of its sparsity to only en
ode the 
oe�
ients whi
h bring information to the im-age and dis
ard all the small wavelet 
oe�
ients. The statisti
al 
hara
teristi
s of awavelet transform 
an also be taken into a

ount to in
rease the 
oding performan
e[Shapiro 1993, Said 1996, Taubman 2000℄.On
e the image has been transformed, its 
oe�
ients need to be en
oded to formthe output bitstream. This en
oding is usually done in two steps. The �rst step is thequantization of the 
oe�
ients whi
h redu
es the set of their values (usually reals)to a smaller set (usually integers). It also introdu
es a small 
orrelation betweenthe 
oe�
ients to improve the performan
es of the entropy 
oding that follows thequantization. This entropy en
oding is then the se
ond step of this pro
ess and
onverts the quantized 
oe�
ients into a binary stream. This 
onversion does notintrodu
e any degradation and 
onsequently is rarely displayed on 
oding s
hemes.The quantization is the part of the en
oding pro
ess whi
h introdu
es an irreversibledegradation of the 
oe�
ients. This quantization 
an be expli
itly performed as inthe DCT-based 
ompression system [Walla
e 1992℄ or impli
ity, as the 
onsequen
eof a bitstream trun
ature, for advan
ed en
oders su
h as [Shapiro 1993, Said 1996,Taubman 2000℄. We des
ribe these en
oders in the next lines. The en
oder usedon-board of 
urrent satellite imaging systems will be des
ribed in Chapter 3.2.1.1.1 Embedded Zerotree Wavelet (EZW) en
oderThe en
oders proposed in [Shapiro 1993, Said 1996℄ are similar in the sense that theyare both based on the hierar
hi
al representation of a wavelet transform and exploitthe self-similarity a

ross wavelet subbands (displayed Fig. 2.5). More pre
isely, theEZW en
oder proposed in [Shapiro 1993℄ relies on the hypothesis that if a wavelet
oe�
ient magnitude is below a given threshold T (it is said to be insigni�
ant),then all the 
oe�
ients of the same orientation in the same spatial lo
ation at �ners
ales are likely to be insigni�
ant too with respe
t to T . The EZW en
oder thenuses this hypothesis to 
reate a signi�
an
e map that only retain 
oe�
ients thatbring information to the image.This hierar
hi
al notion allows to link the 
oe�
ients that belong to the samelo
ation and orientation together su
h that they 
an be represented by a zerotreestru
ture. The obje
tive of this stru
ture is to lo
ate the 
oe�
ients in the �ners
ales that are insigni�
ant based on the magnitude of the 
oe�
ient 
urrentlys
anned. The en
oder 
an then predi
t the absen
e of signi�
ant 
oe�
ients at�ner s
ales and stops the 
oding of the 
urrent tree. This te
hnique is parti
ularlye�
ient to qui
kly en
ode a wavelet transform as it 
ontains many 
oe�
ients 
loseto zero that do not bring mu
h information to the image. This end-
oding method isvery similar to the end-of-blo
k symbol used by the DCT-based 
ompression systemto stop the en
oding of blo
k when no more non-null 
oe�
ients are dis
overed.However in the EZW 
ase, the en
oder works on the whole image instead of small
8×8 blo
ks and therefore many more 
oe�
ients 
an be predi
ted to be insigni�
antusing one symbol.As mentioned earlier, the 
reation of the signi�
an
e map depends on the value of
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Figure 2.5: Coe�
ients dependen
ies through subbands on a 3-levels de
omposition.The �gure shows the same lo
ation at di�erent s
ales.the threshold T . In order to en
ode both large and small 
oe�
ients, this thresholdneeds to be de
reased iteratively. This is the pro
ess of su

essive-approximationquantization (SAQ) [Shapiro 1993℄. The SAQ 
reates a sequen
e of thresholds Ti, i ∈
{0, 1, . . . ,M}, where M is the number of iterations (usually set to the number ofbits required to represent the maximum absolute value of the wavelet 
oe�
ients),and produ
es signi�
an
es maps for ea
h threshold Ti. Usually, the threshold atthe iteration i is de�ned as the half of the previous threshold to mat
h the binaryrepresentation of wavelet 
oe�
ients

Ti =
Ti−1

2
, (2.1)with T0 is half of the �rst power of two greater than the maximum absolute valueof the wavelet 
oe�
ients to en
ode.During this iterative en
oding pro
edure, two separate lists of wavelet 
oe�
ientsare used to tra
k the 
oe�
ients that have previously been marked as signi�
ant:The dominant and the subordinate lists. The dominant list 
ontains the 
oordinatesof the 
oe�
ients that have not been found to be signi�
ant yet while the surbor-dinate list 
ontains the magnitudes of the 
oe�
ients that have been found to besigni�
ant.The overall EZW algorithm is as follows. For ea
h threshold, the dominantlist is s
anned and the signi�
an
e map is produ
ed. This map is then zerotreeen
oded using an algorithm des
ribed in [Shapiro 1993℄. During this en
oding, ea
h
oe�
ient marked as signi�
ant is removed from the dominant list and its magnitudeis appended to the subordinate list. The 
oe�
ient is then set to zero in the data
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hniques 21to not disturb the 
omputation of zerotrees of future iterations. On
e the dominantlist s
an is 
ompleted, the magnitude of ea
h 
oe�
ient of the subordinate list isre�ned. More pre
isely, a symbol is outputted to indi
ate if the true value of theen
oded 
oe�
ient belongs to the upper or lower half of the 
urrent threshold. Theen
oding stops when the target rate has been rea
hed.The very good results obtained with this 
oder 
an be explained by the e�
ien
yof the zerotree stru
ture 
oupled with the SAQ te
hnique, whi
h in fa
t is almostequivalent to order the wavelet 
oe�
ient and to transmit �rst the large ones. Thisallows to de
ode the best possible image at any point in the binary stream: This isthe pro
ess of progressive transmission. The Set Partitioning In Hierar
hi
al Trees(SPIHT) en
oder proposed in [Said 1996℄ is very similar to the EZW en
oder as italso owns this feature of progressive transmission. However, the te
hnique used bythe SPIHT en
oder to 
ode the 
oe�
ients is radi
ally di�erent.2.1.1.2 The Set Partitioning In Hierar
hi
al Trees (SPIHT) en
oderThe SPIHT algorithm also fo
usses on this aspe
t of progressive transmission butexpli
itly orders the wavelet 
oe�
ients and en
odes �rst the large ones su
h thatthe mean square error (MSE) is minimized. Let y be the image to en
ode and ŷ thede
oded image, the MSE then writes
D =

1

N
‖y − ŷ‖2, (2.2)where N is the number of pixels. Using an orthonormal wavelet transform, thede�nition of the MSE 
an be futher developped

D =
1

N
‖w − ŵ‖2 =

1

N

N−1
∑

i=0

(wi − ŵi)
2, (2.3)where wi are the wavelet 
oe�
ients to en
ode and ŵi the de
oded 
oe�
ients.As mentioned in [Said 1996℄, it is 
lear that if the exa
t value of a 
oe�
ient wiis transmitted, i.e. ŵi = wi, then the MSE de
reases by w2
i

N
. The SPIHT en
oderis then based on the fa
t that the large wavelet 
oe�
ients need to be transmitted�rst so an image with the best quality (in the MSE sense) 
an be re
onstru
ted atany time.This en
oder uses the binary representation of the 
oe�
ients and pro
essesthe data iteratively bit plane by bit plane through two passes: The sorting passwhi
h orders the 
oe�
ients from the larger to the smaller and the re�nement passwhi
h outputs the bit value of 
urrent bit plane for ea
h signi�
ant 
oe�
ient. Thekeypoint of this algorithm is that the 
oordinates of the sorted 
oe�
ients do notneed to be transmitted as both en
oder and de
oder share the same exe
ution path.In detail, the strength of the sorting pass of the SPIHT en
oder lies in the fa
tthat it does not sort all 
oe�
ients but only sele
ts the one that are signi�
ant withrespe
t to a threshold Tn where n is the nth iteration (or sorting pass). To sele
tthese signi�
ant 
oe�
ients, the sorting pass divides all the pixels into partitionning
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hniques for satelliteimagingsubsets Tm and evaluates the signi�
an
e of ea
h subset. If none 
oe�
ient of thesubset Tm is signi�
ant, then the subset is 
onsidered as insigni�
ant and is not pro-
essed any further. Otherwise, if at least one 
oe�
ient of the subset is signi�
ant,then the subset Tm is 
onsidered as signi�
ant and a spe
i�
 rule is applied to dividethe subset into new partition subsets Tm,l [Said 1996℄. The signi�
an
e test is thenperformed on these new subsets Tm,l and so on. This pro
ess is a
hieved iterativelyuntil ea
h subset is redu
ed to a single 
oe�
ient su
h that ea
h 
oe�
ient has beenfound signi�
ant or not.This signi�
an
e map is then stored in three lists: The list of insigni�
ant sets(LIS), list of insigni�
ant pixels (LIP) and list of signi�
ant pixels (LSP). The LIPand LSP lists are used to respe
tively store the 
oordinates of insigni�
ant andsigni�
ant pixels. The LIS list is used to spe
ify the type of subset asso
iated to the
oordinates of ea
h 
oe�
ient.The overall algorithm is as follows. It starts by initializing the number of it-erations n to the number of bits required to represent the maximum value of the
oe�
ients. For ea
h entry of the LIP (whi
h stores the 
oordinates of pixels whi
hwere evaluated as insigni�
ant at the previous iteration), the signi�
an
e is evalu-ated. The signi�
ant 
oe�
ients are moved to the LSP and their sign is outputted.The signi�
an
e of the set of ea
h entry of the LIS is then evaluated. If the set isfound to be insigni�
ant, it is added ba
k to the LIS for the next iteration. Other-wise, it is further partionned. The resulting subsets are added ba
k to the LIS andthe single 
oe�
ient subsets are added either to the LIP or LSP depending on theirsigni�
an
e. Ea
h entry of the LSP is then pro
essed by the re�nement pass whi
houtputs the nth most signi�
ant bits of the absolute value of the 
oe�
ients (thesign has already been outputted during the sorting pass). The value of n is thende
remented by 1 to pro
ess the next bit plane.As for the EZW en
oder, the SPIHT en
oder stops the en
oding pro
edure on
ethe bit budget has been exhausted. The quality 
an also be 
ontrolled by stoppingthe en
oding pro
edure on
e the evaluation of (2.3) rea
hes the desired target value.Note that, 
ontrary to the EZW algorithm, the SPIHT en
oder dire
tly produ
esthe bitstream without using an entropy 
oding. As mentioned by [Said 1996℄, usingan entropy 
oding does not bring mu
h improvement and strongly in
reases the
oding time. In the next part, we des
ribe another well-known 
oding algorithmused in the JPEG-2000 standard.2.1.1.3 Embedded Blo
k Coding with Optimized Trun
ation (EBCOT)en
oderThe JPEG-2000 standard is a re
ent re
ommendation for imaging 
oding and isalso based on the wavelet transform des
ribed in Se
tion 2.1.1. The JPEG-2000entropy 
oder is based on the Embedded Blo
k Coding with Optimized Trun
a-tion (EBCOT) 
ontextual en
oder proposed in [Taubman 2000℄. This en
oder is ablo
k-based en
oder organized in two layers named Tiers. The Tier 1 divides ea
hwavelet subband in small blo
ks and en
odes ea
h blo
k using a 
ontextual en
oder.
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hniques 23The se
ond layer, Tier 2, 
omputes the optimal trun
ation points of the en
odedbitstreams su
h that the global rate-distortion is minimized.During the Tier 1, the en
oder divides ea
h wavelet subband into small 32× 32blo
ks and pro
esses ea
h blo
k bit plane by bit plane. During this bit plane en-
oding pro
edure, the en
oder s
ans ea
h 
oe�
ient and pro
esses through threedi�erent 
oding passes: The Signi�
an
e Propagation pass, the Magnitude Re�ne-ment pass and the Cleanup pass. During ea
h of these passes, four primitives areused: The Run-Length Coding (RLC) primitive, the Zero Coding (ZC) primitive,the Magnitude Re�nement (MR) primitive and the Sign Coding (SC) primitive.These primitives are used to sele
t the most appropriate 
ontext of the 
oe�
ients
anned depending on its neighbors. In detail, for ea
h s
anned 
oe�
ient, theeight adja
ent neighbors are observed. Ea
h neighboring 
on�guration produ
es aspe
i�
 
ontext whi
h is 
onverted by the sele
ted primitive to a parti
ular outputsymbol. To limit the 
omplexity of the 
oder, all the possible 
on�gurations havebeen redu
ed to eighteen 
ontexts for all the primitives, one for the RL primitive,nine for the ZC primitive, �ve for the SC primitive and three for the MR primitive[Taubman 2000℄.The 
oding of a bit plane is as follows. The Signi�
an
e Propagation pass isused to lo
ate the signi�
ant 
oe�
ients or the 
oe�
ients that have signi�
antneighbors. On
e these 
oe�
ients have been lo
ated, the RL and ZC primitives areinvoked to identify the ones whi
h be
ome signi�
ant in the 
urrent bit plane. If so,the SC primitive is applied to en
ode their sign. During the Magnitude Re�nementpass, the MR primitive is applied. This primitive is intended to re�ne the magnitudeof the 
oe�
ients identi�ed as signi�
ant by the Signi�
an
e Propagation pass, byen
oding the 
orresponding bits of the 
urrent bit plane. Finally, the Cleanup passis used to en
ode the 
oe�
ients that have not been 
onsidered during the previouspasses. The RL primitive is applied and the SC primitive is invoked if 
oe�
ients arefound to be signi�
ant. Ea
h outputted symbol is then en
oded using an arithmeti

oder.On
e ea
h blo
k has been en
oded using the 
ontextual en
oder, the Tiers 2
omputes the optimal trun
ation points of the en
oded bitstream su
h that thetrun
ation points lie on the rate-distortion 
onvex hull. Let Dni

i be the 
odingdistortion of the blo
k Bi whose bitstream has been trun
ated to the point ni givingthe 
oding rate Rni

i . As ea
h blo
k is en
oded independently, the overall 
odingdistortion D 
an be expressed as
D =

I−1
∑

i=0

Dni

i , (2.4)where I is the number of blo
ks. Similarly, the overall 
oding rate R writes
R =

I−1
∑

i=0

Rni

i . (2.5)The rate-distortion problem 
onsists here in �nding the optimal trun
ationpoints n∗i whi
h minimize the 
oding distortion D over the set Ni of all possible
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ation points, under the 
onstraint that the 
oding rate R does not ex
eed thetarget rate Rc. It 
an be formalized as follows
ni

∗ = arg min
∑I−1

i=0 D
ni

isubje
t to ∑I−1
i=0 R

ni

i ≤ Rc

ni ∈ Ni

. (2.6)For some value of the Lagrange multiplier λ [Everett 1963℄, the problem (2.6)
an be written in an un
onstrained form [Taubman 2000℄
nλ

i

∗
= arg min

∑I−1
i=0

(

D
nλ

i

i + λR
nλ

i

i

)subje
t to nλ
i ∈ N λ

i

. (2.7)The rate-distortion optimization performed by the Tiers 2 
onsists thus in �nd-ing the value of λ su
h that the optimal trun
ation points nλ
i

∗ in (2.7) satisfy
∑I−1

i=0 R
nλ

i

∗

i = Rc. The optimization (2.7) 
an be performed numeri
ally by �nd-ing, for a given λ, the minimal trun
ation point j ∈ {1, 2, 3, . . . } whi
h veri�es forea
h blo
k Bi

∆Dj
i

∆Rj
i

= −λ, (2.8)where
∆Dj

i = Dj−1
i −Dj

i , (2.9)
∆Rj

i = Rj−1
i −Rj

i . (2.10)Until now, the EBCOT en
oder des
ribed here allows to rea
h the state-of-the-art image 
oding performan
es [Taubman 2000℄. Its high 
omputational 
ost makeit di�
ult to use it on-board of a satellite. The en
oders presented in [Shapiro 1993,Said 1996℄ are less expensive in term of 
omputational resour
es and are frequentlyused as the basis of satellite embedded image 
oder (see Se
tion 3.2.2).2.1.2 Restoration te
hniquesIn this part, we des
ribe the te
hniques used for the restoration of the de
oded image.Note that we only fo
us on the methods whi
h de
ompose the restoration in a dire
tde
onvolution followed by a threshold operation of some sparse representation. Wedo not in
lude the methods based on a variational framework su
h as [Be
t 2004℄as they are time 
onsuming to 
ompute.2.1.2.1 Wavelet thresholding estimatorsMost of restoration te
hniques used in satellite imaging are based on the te
hniqueproposed in [Kalifa 2003b℄. These methods 
onsider that the observed image y isthe result of the real s
ene x blurred by the point spread fun
tion (PSF) h of theopti
s and noised by an additive random noise n
y = h ∗ x+ n, (2.11)
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hniques 25where ∗ denotes the 
onvolution produ
t. To simplify the notation, the samplingoperation does not appear in the model (2.11) and we assume that all the variablesare dis
rete.The PSF h of the opti
s a
ts as a low-pass �lter whi
h attenuates the highfrequen
ies of the image (edges and sharp textures) making it blurry. Retrievingthe true image x from the observed one y is an ill-posed problem whi
h requiresprior information on the image x and on the noise n [O'Sullivan 1986℄. As mentionedpreviously, one te
hnique to address this problem is to formalize this estimation as aminimization problem using a variational approa
h. In detail, a variational approa
h
onsists in formulating the inverse problem as a minimization problem 
omposed ofa data �delity term built from the noise model and a regularizing fun
tion suited torepresent the image x [Chambolle 1997℄. A general framework for the formulationof inverse problems using variational approa
hes has been proposed in [Be
t 2004℄.The resulting algorithms appear however to be quite time 
onsuming and are thusinadapted to high resolution satellite imaging.Here, we fo
us instead on methods similar to [Kalifa 2003b℄ whi
h proposes toinvert the problem (2.11) in two steps. The �rst step 
onsists in dividing, in theFourier domain, the observed image by the opti
al transfer fun
tion (OTF) to removethe attenuation of the �lter h. This dire
t inversion tends however to amplify thenoise, so the de
onvolved image is usually de
omposed in some sparse basis and its
oe�
ients are then thresholded to redu
e the energy of the ampli�ed noise. Thesete
hniques belong to the 
lass of thresholding estimators [Donoho 1994℄.In the 
ase of an image only degraded by an additive Gaussian noise,[Donoho 1994℄ showed that the maximum risk of these thresholding estimators isminimized if the ve
tor basis of the de
omposition 
on
entrate the energy of theimage over few 
oe�
ients and if the noise 
oe�
ients are nearly independent. Itis well-known that wavelet basis own this property of sparsity as they are widelyused for image 
ompression [Antonini 1992℄. As these transforms are orthogonal (orbiorthogonal), the nearly independen
e between noise 
oe�
ients is a
hieved.When the image is also degraded by blur, [Kalifa 2003b℄ showed that thesholdingestimators based on wavelet basis may not be e�
ient as the de
onvolved noise is
olored. Let h−1 be the pseudo-inverse �lter whose Fourier transform F(h−1)(u) isde�ned by
F(h−1)(u) =

{

1
F(h)(u) , ifF(h)(u) 6= 0

0, otherwise . (2.12)The de
onvolved image x̃ is obtained by applying the pseudo-inverse �lter h−1to the observed image y
x̃ = h−1 ∗ y = w ∗ x+ z, (2.13)where z is the de
onvolved noise and w is some regularizing fun
tion whi
h
an
els the frequen
y of the image where F(h) vanishes

F(w)(u) =

{

1, ifF(h)(u) 6= 0

0, otherwise . (2.14)
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hniques for satelliteimagingThe power spe
trum Sz of the de
onvolved noise z 
an be expressed as
Sz(u) =

{

Sn(u)
|F(h)(u)|2 , ifF(h)(u) 6= 0

0, otherwise. (2.15)From (2.15), we see that the power of the noise will be higher in the high fre-quen
ies where the magnitude of the Fourier transform of the �lter h is low. Athresholding of some sparse de
omposition is then required to redu
e the inten-sity of the de
onvolved noise. For de
onvolution problems where the magnitude ofthe Fourier transform of the �lter h de
reases slowly, [Donoho 1995b℄ showed thatwavelet basis still lead to e�
ient thresholding estimators for this 
lass of de
onvo-lution problems.If the magnitude of the Fourier transform of the �lter h vanishes, then theshold-ing in wavelet basis does not lead to satisfying results [Kalifa 2003b℄. As the Fouriertransform of h vanishes, the pseudo-inverse �lter h−1 deals with important variationsin the high frequen
y domain where the magnitude of the OTF goes near zero. Un-fortunately, the high frequen
y subbands of wavelet basis do not have a su�
iently�ne frequen
y resolution to 
on
entrate the energy of the de
onvolved noise in few
oe�
ients. A wavelet pa
ket de
omposition [Coifman 1992℄ needs to be used toa
hieve an e�
ient estimation [Kalifa 2003b℄. Hybrid Fourier-Wavelet approa
hes[Neelamani 2004℄ 
an also be used to deal with the frequen
ial representation of the
olored noise.A wavelet pa
ket de
omposition extends the dis
rete wavelet transform by iterat-ing the de
omposition both on the low frequen
y and the high frequen
y subbands.An exemple of su
h de
omposition is illustrated Fig. 2.6 in 
omparison to a 
las-si
al dyadi
 wavelet transform. We see that a wavelet pa
ket transform leads toa representation with a �ner frequen
y resolution in the high frequen
y subbands.For bounded variations signals, [Kalifa 2003a℄ showed that thresholding estimatorsbased on wavelet pa
ket de
ompositions are nearly minimax optimal for this 
lassof de
onvolution problems.Thresholding estimators based on real wavelet pa
ket transforms produ
e how-ever artifa
ts on the re
onstru
ted image. These artifa
ts 
ome from the fa
t thatreal wavelet pa
ket transforms su�er from a la
k of shift invarian
e and a poor di-re
tionality. The la
k of shift invarian
e 
an be worked around by applying thetransform on shifted version of the de
onvolved image. This however tends to sig-ni�
antly slow down the algorithm. The poor dire
tionality 
omes from the fa
tthat wavelet transforms are extended to the two-dimensional 
ase using separablewavelets. This allows e�
ient de
omposition algorithms whi
h apply the wavelettransform independently on ea
h dimension (rows and 
olumns) of the image. Con-sequently, a two-dimensional wavelet transform only sele
ts horizontal and verti
alfrequen
ies of the image but does not 
orre
tly represent the diagonal frequen
ies(oriented obje
ts). This la
k of dire
tional sele
tivity 
reates aliasing artifa
ts whi
hare parti
ularly visible on the oriented obje
ts (buildings, roads) of the re
onstru
tedimage.



2.2. Joint optimization te
hniques 27

Figure 2.6: On the left, absolute value of a 2-levels wavelet de
omposition of thereferen
e image presented Fig. 2.2. On the right, absolute value of a 2-levelswavelet pa
kets de
omposition of the same image. Both transforms use orthogo-nal Daube
hies DB6 �lters set [Daube
hies 1992℄.Redundant wavelet transforms 
an be used to deal with the la
k of shift in-varian
e and the poor dire
tionality, at the 
ost of more 
omplex algorithms. Anextension of the real wavelet pa
ket transform to the 
omplex 
ase has been pro-posed in [Jalobeanu 2003℄. This 
omplex wavelet pa
ket transform is based from the
omplex wavelet framework proposed in [Kingsbury 1998℄ whi
h o�ers nearly shiftinvarian
e and a better dire
tional sele
tivity with a limited redundan
y. Advan
edredundant wavelet transforms su
h as [Labate 2005℄ and [Candès 2005℄ 
an be usedto 
apture spe
i�
 features of the image (
urves, oriented obje
ts). Finally, notethat all the referred methods 
an also take bene�t of risk optimization te
hniquesto estimate the optimal threshold parameters whi
h minimize the MSE without theknowledge of the true image [Pesquet 2009℄, [Chesneau 2010℄. A 
omparison of thestate-of-the-art sparse transforms for image restoration will be presented in part II.2.2 Joint optimization te
hniquesIn this part, we brie�y des
ribe the methods whi
h optimize one part of the imaging
hain by taking into a

ount the 
hara
teristi
s of the other 
omponents.2.2.1 Optimal rate-allo
ation based modelsTo the best of our knowledge, the main 
ontribution on joint optimization for im-age 
oding is the te
hnique proposed in [Parisot 2002℄. In this work, the authorsproposed to 
ompute a rate-allo
ation based on a wavelet subband model. The in-teresting point in the proposed method is that the global distortion 
an be weightedto take into a

ount the post-pro
essing steps. As explained in Se
tion 2.1.2.1,the restoration done on-ground �rst performs a de
onvolution to enhan
e the highfrequen
ies of the image. It seems then interesting to weight the high frequen
y
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hniques for satelliteimagingsubbands during the rate-allo
ation su
h that they are preserved from the quan-tizing [Parisot 2001℄. More pre
isely, [Parisot 2002℄ proposed to write the 
odingdistortion D as
D =

J−1
∑

j=0

∆jπjDj, (2.16)where J is the number of wavelet subbands, Dj is the 
oding distortion in thesubband j and πj are weighting 
oe�
ients whi
h depend on the �lters and thede
imation fa
tors used in the wavelet transform [Usevit
h 1996℄. Note that theseweighting 
oe�
ients are only required if one 
onsiders biorthogonal wavelet trans-forms su
h as the CDF 9/7 wavelet transform [Cohen 1992℄. They are equal to 1for an orthogonal wavelet transform. The weighting 
oe�
ients ∆j allow to favorone subband (i.e. one range of frequen
ies) during the rate-allo
ation problem. Alow value of this weight will preserve the 
orresponding subband while a high valuewill penalize it.Similarly, the 
oding rate R 
an be expressed as a fun
tion of ea
h subband rate
Rj

R =

J−1
∑

j=0

ajRj, (2.17)where
aj =

Nj

N
, (2.18)is the weight of the subband j in the whole image, that is the ratio between thesize Nj of the subband j and the size N of the image.The authors of [Parisot 2002℄ further proposed to modelize ea
h wavelet subbandusing a 
entered generalized Gaussian distribution (GGD) law (the low frequen
ysubband mat
hes this model if a di�erential 
oding is �rst applied). Ea
h subband isthen parametrized by a standard deviation σj and a shape parameter αj . Althoughseveral quantization models are 
onsidered in [Parisot 2002℄, ea
h of them 
an bede�ned by the quantized step qj and the size of a dead-zone zj. A dead-zone is thequantizing interval whi
h outputs a zero value. As shown in [Parisot 2002℄, usinga dead-zone larger than the quantizing step gives better 
ompression performan
es.The 
oding distortion D and the 
oding rate R 
an be expressed analyti
ally as afun
tion of the GGD and the quantization parameters [Parisot 2002℄

D =

J−1
∑

j=0

∆jπjσ
2
jDj

(

αj,
zj
σj
,
qj
σj

)

, (2.19)
R =

J−1
∑

j=0

ajRj

(

αj ,
zj
σj
,
qj
σj

)

. (2.20)The rate-allo
ation problems 
onsists here in �nding the optimal quantizingparameters (quantizing step q∗j and size of the deadzone z∗j ) whi
h minimize the
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oding distortion D under the 
onstraint that the 
oding rate R does not ex
eedthe target rate Rc

q∗j , z
∗
j = arg min

∑J−1
j=0 ∆jπjσ

2
jDj

(

αj ,
zj

σj
,

qj

σj

)subje
t to ∑J−1
j=0 ajRj

(

αj ,
zj

σj
,

qj

σj

)

≤ Rc

qj, zj

. (2.21)
We immediately see that if ∆j = 0 then the 
orresponding subband j will notbe in
luded in the minimization of the distortion, leading to the minimal valueof quantizing step (qj = 1). High frequen
y subbands may then be preserved fromex
essive quantizing, whi
h is preferable for the restoration that follows. The 
odingte
hnique proposed in [Parisot 2002℄ is jointly optimized in this sense.One 
an show that for some value of the Lagrange multiplier λ [Everett 1963℄,the rate-allo
ation problem (2.21) 
an be written in an equivalent un
onstrainedform

q̃∗j , z̃
∗
j = arg min

∑J−1
j=0 ∆jπjσ

2
jDj (αj , z̃j , q̃j)

+λ
(

∑J−1
j=0 ajRj (αj , z̃j , q̃j) −Rc

)subje
t to q̃j, z̃j

. (2.22)where z̃j =
zj

σj
and q̃j =

qj

σj
. Ex
ept under high 
oding rate assumption, the prob-lem (2.22) 
annot be solved in 
losed-form. The algorithm proposed in [Parisot 2002℄to solve (2.22) is based on the resolution of the simultaneous equations obtainedfrom the Karush-Kuhn-Tu
ker (KKT) 
onditions [Kuhn 1951℄ of problem (2.22).The KKT 
onditions are the ne
essary �rst order 
onditions for a solution of an op-timization problem to be optimal. In 
lear, the KKT 
onditions state that the �rstderivatives of the fun
tion to minimize, taken at an optimal point, have to 
an
el.Note that these 
onditions are usually not su�
ient and the analysis of the se
ondderivatives is sometimes required to determine if the extremum found is a maximum,a minimum or a saddle point. Due to the 
omplexity of problem (2.22), the authorsof [Parisot 2002℄ expli
itly assume that a mimimum exists and is unique. Only onepoint 
an then verify the KKT 
onditions of problem (2.22). These 
onditions write

∆jπjσ
2
j

∂Dj

∂z̃j
(αj , z̃

∗
j , q̃

∗
j ) + λ∗aj

∂Rj

∂z̃j
(αj , z̃

∗
j , q̃

∗
j ) = 0, (2.23)

∆jπjσ
2
j

∂Dj

∂q̃j
(αj , z̃

∗
j , q̃

∗
j ) + λ∗aj

∂Rj

∂q̃j
(αj , z̃

∗
j , q̃

∗
j ) = 0, (2.24)

J−1
∑

j=0

ajRj(αj , z̃
∗
j , q̃

∗
j ) −Rc = 0. (2.25)The solution z̃∗j 
an be expressed as a fun
tion of the quantizing step q̃∗j and theshape parameter αj , and therefore 
an be noted as [Parisot 2002℄

z̃∗j = gαj
(q̃∗j ). (2.26)



30 Chapter 2. State-of-the-art of optimization te
hniques for satelliteimagingProblem (2.22) is then redu
ed to �nd λ∗, q̃∗j whi
h verify
hαj

(q̃∗j ) = − λ∗aj

∆jπjσ
2
j

, (2.27)
J−1
∑

j=0

ajRj(αj , gαj
(q̃∗j ), q̃

∗
j ) = Rc, (2.28)where

hαj
(q̃j) =

∂Dj

∂q̃j
(αj , gαj

(q̃j), q̃j)

∂Rj

∂q̃j
(αj , gαj

(q̃j), q̃j)
. (2.29)The monotoni
ity of fun
tions hαj

and Rj allows to solve numeri
ally (2.27) and(2.28) using root-�nding algorithms su
h as binary sear
h pro
edures. From (2.29),we see that the fun
tion hαj
only depends on the shape parameter αj and q̃j, the ratiobetween the quantizing step qj and the standard deviation σj of the 
urrent subband.Without knowing expli
itly the values of qj and σj, one 
an numeri
ally 
ompute

hαj
for a given αj and several values of q̃j. Eq. (2.27) 
an then be solved using thegenerated lookup table (LUT) and a binary sear
h pro
edure [Parisot 2002℄. Thesame te
hnique is applied to (2.28) to �nd λ∗. Solutions q∗j , z∗j and then dedu
edfrom q̃∗j and z̃∗j given σj.In terms of 
oding performan
es, the te
hnique proposed in [Parisot 2002℄ equals(and sometimes outperforms) JPEG-2000, whi
h is the state-of-the-art of 
odingalgorithm. The 
omplexity of the algorithm [Parisot 2002℄ is however 5 times lowerthat JPEG-2000. These features make the method proposed in [Parisot 2002℄ to bevery suitable for future high-resolution satellite 
ompression s
heme [Parisot 2000b℄.2.2.2 Optimal joint de
oding/deblurringAs mentioned in the Se
tion 2.1.2.1, the restoration performed on-ground after de-
oding usually does not take into a

ount the quantizing noise and 
onsiders theimage formation model (2.11). But the 
oding step 
annot be negle
ted at low 
od-ing rates and introdu
es a quantizing error. The method presented in [Tramini 1999℄fo
usses on this aspe
t and proposes a restoration method whi
h 
onsiders all thedegradation of the imaging 
hain.Let W be the wavelet transform used in the 
oding step, Q the quantizingoperator and S the set of 
oordinates of the N pixels of the image. The quantizedimage ŵ in the transformed domain writes

ŵ = Q (W (Hx+ n)) , (2.30)where x is the real s
ene, H is the matrix notation of a �ltering pro
ess h (whi
hstands as the PSF of the opti
s of the satellite) and n is the instrumental noise.In [Tramini 1999℄, the noise n is assumed to be 
entered, bounded, non-stationaryand following a uniform distribution. But other 
onsiderations 
an be made toadapt the method to the 
onsidered 
hain. The varian
e σ2
i at the pixel i of the
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hniques 31instrumental noise relies on the value of the observed pixel (Hx)i and 
an be writtenas [Tramini 1999℄
σ2

i = α+ β(Hx)i + γ(Hx)2i , ∀i ∈ S (2.31)where α, β and γ are three 
onstants whi
h depend on the a
quisition parameters.The noise n is assumed to be uniformly distributed; its probability density fun
tion
pn 
an be expressed as a fun
tion of the varian
e σ

pn(n) =

{

1
2σ

√
3
, if − σ

√
3 ≤ n < σ

√
3

0
. (2.32)Ea
h pixel noise (n)i is then bounded by

− σi

√
3 ≤ (n)i < σi

√
3, ∀i ∈ S. (2.33)Let b be the quantizing noise in the transformed domain, (2.30) 
an be writtenas

ŵ = W (Hx+ n) + b. (2.34)Under the 
onsideration that a subband uniform s
alar quantizer is used, ea
hpixel of a quantizing noise subband bj is bounded by the quantized step qj appliedto the subband j
− qj

2
≤ (bj)i <

qj
2
, ∀i ∈ Sj . (2.35)where Sj is the set of 
oordinates of the Nj 
oe�
ients of the subband j. Eq.(2.34) 
an be further redu
ed to

ŵ = WHx+ ε, (2.36)where ε = Wn + b. As mentioned in [Tramini 1999℄, the di�
ulty here is tobound the wavelet transform of a non-stationary noise. Under some stationaryapproximation of the instrumental noise in the transformed domain, the authorsof [Tramini 1999℄ proposed to 
ompute numeri
ally the bound ωj for ea
h waveletsubband j of the instrumental noise. Ea
h pixel of a subband εj of the global error
ε then veri�es

−
(qj

2
+ ωj

)

≤ (εj)i <
(qj

2
+ ωj

)

, ∀i ∈ Sj . (2.37)From equation (2.37), one de�nes for ea
h subband j the interval [Tramini 1998℄
Ij =

{

x ∈ R
Nj ,−

(qj
2

+ ωj

)

≤ (x)i <
(qj

2
+ ωj

)

,∀i ∈ Sj

} (2.38)su
h that εj ∈ Ij. From (2.36), it is 
lear that
(ŵ −WHx) ∈ I, (2.39)where

I =
{

x ∈ R
N , xj ∈ Ij ,∀j ∈ {0, 1, . . . , J − 1}

}

, (2.40)
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hniques for satelliteimagingwhere J is the number of wavelet subbands. The restoration method proposedin [Tramini 1999℄ is based on a variational approa
h and 
onsists in minimizing thesum of two 
onvex fun
tions under the 
onstraint that the global error belongs to
I. This writes

x∗ = arg min f1(x) + f2(x)subje
t to (ŵ −WHx) ∈ I,

x ∈ R
N

, (2.41)where f1 is the data �delity term and f2 is the regularizing term. The data�delity term usually depends on the statisti
s of the noise. Here, the authors of[Tramini 1999℄ proposed to write the data �delity term as
f1(x) =

J−1
∑

j=0

∑

i∈Sj

1

2σ2
j

πj (WHx− ŵ)2i , (2.42)where σ2
j is the varian
e of the instrumental noise, approximated as stationary, inthe subband j, and πj are weightings 
oe�
ients required for biorthogonal wavelettransforms [Usevit
h 1996℄. The purpose of the regularizing term f2 is to avoidthe explosion of the noise during the de
onvolution. It is built following someassumptions on the image. Here, the image is supposed to be a pie
ewise smoothfun
tion; the norm of its gradient is then assumed to be low [Rudin 1992℄. Theregularizing term proposed in [Tramini 1999℄ writes

f(x) =
∑

i∈S

(Gλ)iΨ (| (∇x)i |) , (2.43)where Ψ is an edge-preserving regularization fun
tion [Charbonnier 1997℄ and
∇ is the gradient operator. The regularizing term in (2.43) is 
ontrolled by theparameter λ whi
h weights the regularization 
ompared to the �delity to the data.Usually, this parameter is a s
alar su
h that the regularization is the same all overthe image. The authors of [Tramini 1999℄ proposed to use a regularizing map (builtby 
lassi�
ation) su
h that the sensitive zones are not too smoothed. As this reg-ularizing map is not di�erentiable, it is then smoothed using a 
onvolution with aGaussian kernel G. The minimization of the problem (2.41) is obtained from the nu-meri
al resolution, using the sear
h method proposed in [Tramini 1998℄ and derivedfrom [Uzawa 1958℄, of Euler-Lagrange equations asso
iated to (2.41). As shown bythe results of the method [Tramini 1999℄, taking into a

ount the 
oding noise inthe restoration allows to slightly improve the quality of the re
onstru
ted image.The drawba
k of the method is that the prior used for the regularizing term tendsto 
reate �at homogeneous regions whi
h are not appre
iated from image analysisexperts as they 
annot be interpreted physi
ally [Dherete 2003℄.



Chapter 3Current CNES earth observingimaging 
hain systems
In this part, we des
ribe the 
omposition of a satellite imaging 
hain. A simpli�edrepresentation of this 
hain is displayed �gure 1.1. The role of ea
h 
omponentof the imaging 
hain has already been des
ribed in Chapter 1. We fo
us in this
hapter to the te
hni
al features of ea
h of these 
omponents. The data presentedin the thesis are provided by the CNES and are simulations of the post-PLEIADESnew generation high-resolution satellites. We then fo
us only on the imaging 
hainsystem used by the CNES but the methods we propose are more general and 
anbe easily extended to the 
hara
teristi
s of other 
hains.3.1 Chara
teristi
s and instrument model3.1.1 Transfert fun
tion of the opti
sThe opti
s of a satellite is built from a 
omplex 
ombination of mirors. The lightemitted from the s
ene is re�e
ted by these su

essive mirors and is then fo
alizedon the dete
tor. Several design of opti
s exist, su
h as the Kors
h teles
ope wi
h is athree mirors teles
ope. The 
hara
teristi
s of the teles
ope depends on spe
i�
ationssu
h as the magnitude of the opti
al transfer fun
tion or the target sampling rate.For example, the PLEIADES-HR satellite uses a Kors
h teles
ope [Lier 2008℄ witha 65 
m pupil of 12.9 m fo
al length. It allows to 
apture pan
hromati
 images witha resolution of 70 
m and multispe
tral images with a resolution of 2.80 m. For thepost-PLEIADES new generation satellites, a target resolution of 30 
m is planned.The a
quired signal is pro
essed as follows. It is �rst sampled and transmittedto the eletroni
 parts to be shaped su
h that it is not too noisy. The signal is laterampli�ed to �t all the available range and to limit the e�e
t of the quantizationduring the analog-to-digital 
onversion. The analog-to-digital 
onverter is the lastpart of the a
quisition pro
ess. It quantizes the ampli�ed signal on 12 bits, givinga digital image whose pixels vary from 0 to 4095.This a
quisition pro
ess a�e
ts the quality of the true image by adding blur andinstrumental noise. The blur is mainly 
aused by the natural environment and theimperfe
tion of the a
quisition 
omponents. The atmosphere, the opti
s and thesensor all own a transfer fun
tion whi
h attenuate the high frequen
ies of the image(edges, sharp textures) making it blurry. Let ha, ho and hd respe
tively be thetransfer fun
tions of the atmosphere, the opti
s and the sensor. We assume that
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hain systemsall these operators are linear and translation invariant. The global point spreadfun
tion h is then the 
onvolution produ
t of all the intermediate transfer fun
tions
h = ha ∗ ho ∗ hd. (3.1)Note that the Fourier transform of the global PSF, namely the opti
al transferfun
tion, does not 
an
el at the Nyquist frequen
y and thus adds aliasing on theimage. This aliasing phenomenon remains however limited as the magnitude of theopti
al transfer fun
tion (the MTF) at the Nyquist frequen
y is usually low. Forexample, the MTF is equal to 0.1 at the Nyquist frequen
y on the PLEIADES-HRsatellite. This 
hara
teristi
 is one of the major point of the spe
i�
ations of satelliteopti
s.3.1.2 Instrument noise modelThe instrumental noise is also the 
omposition of several noise sour
es su
h as aphoton noise, an ele
troni
 noise and a quantizing noise due to analog-to-digital
onversion. It is assumed to be 
entered and Gaussian with a varian
e σ2

i whi
hdepends on the observed pixel. Let σ2
pi
, σ2

ei
, σ2

qi
be respe
tively the varian
es ofthe photon noise, the eletroni
 noise and the quantizing noise at the pixel i. Thevarian
e of the global noise σ2

i at this pixel is expressed as the sum of the varian
esof the di�erent noises
σ2

i = σ2
pi

+ σ2
ei

+ σ2
qi
. (3.2)By taking into a

ount the mathemati
al expression of ea
h varian
e, one 
anapproximate the varian
e σ2

i of the global noise at the pixel i as a linear fun
tion ofthe observed luminan
e h ∗ x sampled at the same pixel i [Lier 2008℄
σ2

i = α2 + β(h ∗ x)i, (3.3)where α and β are two given 
onstants (i.e. not pixel dependent). These two
onstants rely on the target signal-to-noise ratio (SNR) (whi
h is fun
tion of theluminan
e) and dire
tly derive from the parameters of the ele
troni
 
hain su
h asthe ampli�
ation fa
tor or the quantizing step of the analog-to-digital 
onverter.Two target luminan
es are usually used to 
ompute the value of α and β: Themean luminan
e of the image, namely L2, whi
h is de�ned as 97 W.m−2.sr−1.µm−1and the luminan
e L1 de�ned as 14 W.m−2.sr−1.µm−1. These luminan
es 
anbe 
onverted in pixel values by multiplying them by the ratio between the pixelmaximum value (4095) and the maximum luminan
e value (370 W.m−2.sr−1.µm−1).In pixels values, these luminan
es are then de�ned as L1 = 154.94 and L2 = 1073.54.Given the target signal-to-noise ratios asso
iated to L1 and L2, one dedu
es thestandard deviation of the global noise at the two target luminan
es
σL1 =

L1

SNR(L1)
, (3.4)

σL2 =
L2

SNR(L2)
. (3.5)
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essing: Image 
oding 35From equation (3.3), we also have
σ2

L1 = α2 + βL1, (3.6)
σ2

L2 = α2 + βL2. (3.7)Using (3.4) and (3.6), one 
an 
ompute the 
onstants α and β. Table 3.1 showsthe values of these 
onstants for several operating points (OP) simulated by theCNES on the referen
e image presented Fig. 3.1.OTF Resolution Coding rate SNR (L1-L2) α βOP 61 0.1 30 
m 4.0 bpp 30-100 3.2866 0.097780OP 62 0.1 30 
m 2.5 bpp 30-100 3.2866 0.097780OP 63 0.1 30 
m 4.0 bpp 30-150 4.6220 0.028128OP 64 0.1 30 
m 2.5 bpp 30-150 4.6220 0.028128OP 65 0.1 30 
m 4.0 bpp 50-150 1.5286 0.045790OP 66 0.1 30 
m 2.5 bpp 50-150 1.5286 0.045790Table 3.1: Parameters of the a
quisition 
hain for several simulated operating points(OP). The 
olumn OTF displays the value of the OTF at Nyquist frequen
y. The
olumn 
oding rate indi
ates the number of bits per pixel (bpp) a
hieved at theoutput of the 
ompression algorithm.Finally, we 
an modelize the dis
rete a
quired image y (
onsidered as a ve
torof length N , where N is the number of pixels) at the output of the a
quisition 
hainas the 
onvolution produ
t of the real analog image x and the global PSF h (3.1),sampled on a grid ∆, and noised by the dis
rete instrumental noise n. This writes
y = (h ∗ x)∆ + n. (3.8)We assume the grid ∆ to be the usual square sampling grid. The variable h nowrefers to the dis
retization of the analog PSF on the grid ∆ and x represents the
onvolution of the analog image with a target PSF (see Se
tion 3.3.2), sampled on

∆. Note that this image x is the 
losest dis
rete approximation of the true analogimage that we 
an obtained. Model (3.8) rewrites
y = h ∗ x+ n. (3.9)The instrumental noise n is assumed to follow a normal zero-mean distributionwhose varian
e σ2

i at the pixel i depends on the observed pixel and is given by themodel (3.3).3.2 On-board pro
essing: Image 
odingOn
e the image has been a
quired, it needs to be 
ompressed for an e�
ient storageand transmission. The 
ompression system embbeded on-board of PLEIADES-HRsatellite pro
esses the image in three steps, similarly to the 
oding s
heme depi
ted
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Figure 3.1: Referen
e image, Cannes harbour (12 bits pan
hromati
 image, 30 
mresolution, 1024 × 1024 pixels).
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essing: Image 
oding 37Fig. 2.1. A wavelet transform is �rst applied to the image to redu
e its 
orrelation.A bit plane en
oder is then used to en
ode the transformed data. The en
oded
oe�
ients are then 
onverted by an entropi
 en
oder to form the binary stream.We detail ea
h step in the following.3.2.1 Wavelet transformSe
tion 2.1.1 showed that the state-of-the-art image 
oding algorithms use wavelettransforms to de
orrelate the data. Based on this observation, the ConsultativeCommittee for Spa
e Data Systems (CCSDS), whi
h produ
es system standardsfor spa
e�ight, proposed a new image 
oding re
ommandation based on a wavelettransform [CCSDS 2005℄. For example, the 
oding s
heme of the PLEIADES-HRsatellite highly relies on the latter. For implementation issues, the wavelet trans-form is however performed �on the �y� [Parisot 2000b℄ on-board of this satellite.The re
ommandation [CCSDS 2005℄ is very 
lose to the SPIHT en
oder and uses athree levels Cohen-Daube
hies-Feauveau (CDF) 9/7 wavelet transform [Cohen 1992℄followed by a bit plane en
oder (BPE).The purpose of the bit plane en
oder proposed by the CCSDS 
onsists in en
od-ing the binary representation of the wavelet 
oe�
ients through a su

essive pro
essof the bit planes. This en
oder is des
ribed in the next part.3.2.2 CCSDS Bit plane en
oder (BPE)The en
oder proposed by the CCSDS is similar to the en
oders EZW and SPIHT.It exploits the hierar
hi
al representation of the wavelet transform to pro
eed �rstwith the 
oe�
ients that bring information to the image. It is however a simpli�edversion of these en
oders to mat
h the limited 
omputing resour
es available on-board.3.2.2.1 Stru
ture of the BPEOn
e the wavelet transform is 
ompleted, the 
oe�
ients are �rst rounded to thenearest integers and are then divided in blo
ks of 64 
oe�
ients ea
h (the 
ompo-sition of a blo
k is detailed in Se
tion 3.2.2.3). Fig. 3.5 displays this notion ofblo
k arrangement. We see that, in order to form a blo
k, the en
oder sele
ts thesame geographi
al zone for ea
h frequen
y bands of ea
h de
omposition level. Thepurpose of this blo
k arrangement is then to represent the same spatial zone fordi�erent frequen
y bands. This allows to 
ontrol the en
oding of a zone dependingon its frequen
y 
ontent. A homogeneous zone may require less high frequen
iesthan the zone 
overing the edges of a building, for example. A blo
k arrangementis then e�
ient in this sense.A blo
k is 
omposed of a single low frequen
y 
oe�
ient and 63 high frequen
y
oe�
ients taken a

ross the high frequen
y subbands. To in
rease the 
oding per-forman
es of the en
oder, S blo
ks are gathered into a segment. The image is thenpro
essed segment by segment. Usually the number of blo
ks S is 
hosen su
h that
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hain systemsa segment represents a thin horizontal strip of the image. In that 
ase, a strip 
om-pression is performed [Yeh 2005℄. This type of 
ompression is e�
ient for memorylimited implementations.The overall pro
edure of a segment en
oding is given in Table 3.2. For ea
hsegment, the en
oder starts by produ
ing a segment header. This header in
ludesimportant information on the 
oding parameters and is therefore required for thede
oding. This step is not detailed here but 
an be found in [Yeh 2005℄. The se
ondstep of the pro
edure 
onsists in en
oding the low frequen
y 
oe�
ients. Due tothe major role that play these 
oe�
ients in the wavelet re
omposition algorithm,they should remain the most un
hanged as possible. A spe
i�
 en
oding rule is
onsequently applied on these 
oe�
ients. Se
tion 3.2.2.2 is dedi
ated to this aspe
t.The last step of the segment 
oding pro
edure 
onsists in en
oding the bit planesof the high frequen
y 
oe�
ients from the most signi�
ant bit plane (MSB) to theleast signi�
ant bit plane (LSB). A bit plane b is a binary image 
reated from the bthbit of the two's-
omplement binary representation of ea
h low frequen
y 
oe�
ientand the bth bit of the binary representation of ea
h high frequen
y 
oe�
ient. Toillustrate this notion of bit plane, let us 
onsider the blo
k displayed Fig. 3.2.

Figure 3.2: Illustration of a blo
k.The 
oe�
ient in grey is the low frequen
y 
oe�
ient and will be ignoredfor this example. We see that the highest 
oe�
ient among the high frequen
y
oe�
ients is equal to 49. There are then 6 bit planes to en
ode as the highest
oe�
ient is greater than 25 = 32 but lower than 26 = 64 (for that follows, theleast signi�
ant bit will be referred to the zeroth bit). The �rst bit plane is b = 5(the MSB). This bit plane is formed by the value of the �fth bit of ea
h 
oe�
ient.On this example, only three 
oe�
ients have a �fth bit: −34, 49 and 37. The �fthbit plane is then the binary image 
omposed of the value of the �fth bit of these
oe�
ients (respe
tively −1, +1 and +1, the sign is also taken into a
ount). Thisgive the binary image displayed Fig. 3.3.Bit plane en
oders are parti
ularly e�
ient to en
ode signals when resour
es are
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Figure 3.3: Illustration of the �fth bit plane of the blo
k presented Fig. 3.2.limited [CCSDS 2005℄. Se
tion 3.2.2.3 des
ribed the te
hnique used to a
hieve thisbit plane en
oding. Produ
e segment headerEn
ode low frequen
y 
oe�
ientsEn
ode bit plane b = bmax − 1 (MSB)En
ode bit plane b = bmax − 2

. . .En
ode bit plane b = 0 (LSB)Table 3.2: Segment en
oding pro
edure, bmax is the number of bit planes requiredto en
ode the magnitude of high frequen
y 
oe�
ients.3.2.2.2 Coding of the low frequen
y 
oe�
ientsPreserving the low frequen
y 
oe�
ients from ex
essive quantizing is vital to re-
onstru
t an image with a satisfying visual quality. As they initialize the waveletre
omposition algorithm, an error on the low frequen
y 
oe�
ients has an impor-tant impa
t on the �delity of the de
oded image. But their magnitude is very high(higher than the magnitude of the high frequen
y ones). A lossless en
oding of these
oe�
ients may then 
onsume a lot of the bit budget, espe
ially when the target rateis low. To allow this 
ase, the en
oder 
onsiders that the least signi�
ant bit planesof the low frequen
y 
oe�
ients 
an be slightly deteriorated without impa
ting thequality of the de
oded image.The en
oder then pro
esses the low frequen
y 
oe�
ients through a losslessen
oding of their most signi�
ant bit planes using an expli
it quantization followedby a di�erential 
oding s
heme [CCSDS 2005℄. The quantization step is 
hosen as apower of two su
h that the quantization of the 
oe�
ients is equivalent in shiftingtheir bit planes. The remaining bits are then represented on bmax bit planes andare in
luded in the bit plane en
oding pro
edure des
ribed in Se
tion 3.2.2.3.
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hain systems3.2.2.3 Bit planes en
odingThe bit planes en
oding is the last step of the segment 
oding pro
edure. It pro
essesthe 
oe�
ients bit plane by bit plane following the �ve stages pro
edure depi
ted onFig. 3.4. Ea
h bit plane is pro
essed separately. The blo
ks inside a bit plane arealso treated independently one by one. This segment 
oding pro
edure is displayedFig. 3.4.

Figure 3.4: En
oding pro
edure of a bit plane.The stage 0 simply 
onsists in appending the bth bit of the remaining bits of thelow frequen
y 
oe�
ients to the output bitstream. The stages 1 to 4 are dedi
atedto the en
oding of the high frequen
y 
oe�
ients.The te
hnique used to en
ode these 
oe�
ients is very similar to the te
hniqueproposed in [Shapiro 1993℄ whi
h is based on the hierar
hi
al representation of thewavelet transform to en
ode trees of non signi�
ant 
oe�
ients with respe
t to athreshold T . Here the en
oder relies on the binary representation of the 
oe�
ients,pro
essed bit plane by bit plane. We dire
tly dedu
e that the threshold T is impli
itythe de
imal value asso
iated to the 
urrent bit plane b and is equal to 2b. To evaluateif the 
oe�
ients are signi�
ant, the BPE simply tests their magnitude. It produ
es a
odeword tb(wi) named type whi
h indi
ates if the s
anned 
oe�
ient wi has alreadybeen found signi�
ant in the previous bit plane (type 2), be
omes signi�
ant in the
urrent bit plane (type 1) or is not signi�
ant (type 0). The rule is as follows
tb(wi) =















0 if |wi| < 2b

1 if 2b ≤ |wi| < 2b+1

2 if 2b+1 ≤ |wi|
. (3.10)At the bit plane b, only the 
oe�
ients whi
h be
ome signi�
ant (type 1) areen
oded in stage 1-3. The 
oe�
ients whose type is 0 are not signi�
ant yet and are
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essing: Image 
oding 41passed over. The 
oe�
ients evaluated as type 2 have already been found signi�
antin the previous bit planes and have therefore been already en
oded in stages 1-3.The en
oder just needs to re�ne their magnitude by appending their bth bit to theoutput bitstream. This is the stage 4 of the pro
ess. To rea
h high 
ompressionrates, the BPE uses the same te
hnique as [Shapiro 1993℄ and sets up a tree stru
tureto e�
iently en
ode trees of non signi�
ant wavelet 
oe�
ients. This tree is builtusing the blo
k arrangement displayed Fig. 3.5.

Figure 3.5: Wavelet blo
k arrangement. This illustration is the property of theCCSDS.A blo
k is 
omposed of one low frequen
y 
oe�
ient and 63 high frequen
y 
o-e�
ients. To ensure some frequen
y sele
tion, these 63 
oe�
ients are partionedinto three families F0, F1 and F2. A family represents the same spatial informa-tion through the three (as the wavelet transform is performed on three levels ofde
omposition) di�erent s
ales. Ea
h family Fi is then made of
• One parent 
oe�
ient pi.
• A group of four 
hildren 
oe�
ients Ci.
• A group of sixteen grand
hildren 
oe�
ients Gi partitioned into four groups
Hij, j ∈ {0, 1, 2, 3}.This family hierar
hy is similar to the zerotree stru
ture of the EZW en
oder[Shapiro 1993℄ and is used to e�
iently dete
t trees of non signi�
ant 
oe�
ients.These non signi�
ant trees 
an then be en
oded using few bits, allowing to rea
hhigh 
ompression rates. To en
ode these families, several lists are de�ned

• The list of parents P = {p0, p1, p2}. For example, the list of parents 
orre-sponding to the blo
k presented Fig. 3.2 is P = {−34,−31, 23}.



42 Chapter 3. Current CNES earth observing imaging 
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• The list of des
endants Di in a family i whi
h in
ludes the 
hildren and thegrand
hildren 
oe�
ients, Di = {Ci, Gi}.
• The list of des
endants B of a blo
k whi
h in
ludes the des
endants lists ofall families, B = {D0,D1,D2}.For ea
h bit plane b, the BPE en
odes the 
oe�
ients whi
h be
ome signi�
ant(type 1) of the three families using a three stages pro
edure. Stage 1 s
ans the par-ents list P and evaluates the signi�
an
e of ea
h parent using the fun
tion (3.10). Itthen produ
es two 
odewords typesb[P ] and signsb[P ]. Let L be a list of 
oe�
ients
• typesb[L] is the binary 
odeword 
onsisting of the bth magnitude bit of ea
h
oe�
ient wi of L su
h that tb(wi) ∈ {0, 1}.
• signsb[L] is the binary 
odeword 
onsisting of the sign bit of ea
h 
oe�
ient
wi of L su
h that tb(wi) = 1. The sign of a 
oe�
ient is only 
oded on
e at thebit plane it be
omes signi�
ant. The sign of a negative 
oe�
ient is representby a 1 and the sign of a positive 
oe�
ient is represent by a 0.

• Given a list of types values T = {t0, t1, . . . , tl}, tword[T ] is the binary 
ode-word 
onsisting of the sequen
e of type values ti that verify ti ∈ {0, 1}.On the parents list of the example blo
k displayed Fig. 3.2, we have t5(−34) = 1(sin
e 34 veri�es 32 < 34 < 64), t5(−31) = 0 and t5(23) = 0. Therefore only the
oe�
ient equal to −34 is signi�
ant for the bit plane b = 5, so the BPE produ
es
typesb[P ] = {1, 0, 0} and signsb[P ] = 1 (−34 is negative).On
e the BPE has s
anned the parents list, it seeks some signi�
ant des
endants.This is the stage 2. It �rst looks if there is any signi�
ant 
oe�
ient among the
hildren and the grand
hildren. It produ
es the tranB 
odeword

tranB =















∅ if tranB = 1 at any previous bit plane b
1 if∃wi ∈ B, tb(wi) = 1

0 otherwise .This transition 
odeword may be di�
ult to grasp and needs further explana-tions. The idea of the 
odeword tranB is to indi
ate if there exists at least onesigni�
ant des
endant. To do so, the BPE tests the signi�
an
e of ea
h 
oe�
ientthat belongs to the des
endants list B. If a 
oe�
ient wi is found signi�
ant, thetest fun
tion tb(wi) will be equal to 1, 0 otherwise. The BPE takes then the maxi-mum value over all signi�
an
e tests to generate tranB. If at least one des
endantis signi�
ant, the BPE will then produ
es tranB = 1. Note that this 
odeword isnot generated if it has been previously produ
ed equal to 1. It is indeed useless togenerate this 
odeword for ea
h bit plane if the BPE has already mentioned thatsigni�
ant des
endants exist.On the example illustrated Fig. 3.2, two des
endants are signi�
ant for the bitplane b = 5 (49 and 47). The BPE produ
es then tranB = 1.
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oding 43On
e at least one des
endant has been found signi�
ant, one needs to lo
ate inwhi
h family this des
endant is. The BPE produ
es the 
odeword tranD to a
hievethis goal
tranD = tword

[

{max(tb(Di))},∀i ∈ {0, 1, 2} su
h that max(tb(Di)) 6= 1in previous bit planes].The behavior of this 
odeword is similar to tranB: It indi
ates in whi
h family
i the des
endants have been found. This 
odeword is not produ
ed if tranB = 0,meaning that there does not exist any signi�
ant des
endants. The last step of thestage 2 is to produ
e the magnitude typesb[Ci] and the sign signsb[Ci] 
odewords ofthe signi�
ant 
hildren. Note that the BPE only en
odes the 
hildren of the familiesthat have been marked as signi�
ant by the tranD 
odeword.On the example Fig. 3.2, two des
endants are signi�
iant for the bit plane
b = 5. These 
oe�
ients belongs to the des
endant lists D0 (for the 
oe�
ient 49)and D1 (for the 
oe�
ient 47). We then have tranD = {1, 1, 0}. As tranD hasbeen generated, the BPE looks for some des
endants in the 
orresponding 
hildrengroups C0 and C1. The 
oe�
ient 49 is the zeroth bit of the 
hildren group C1while the 
oe�
ient 47 does not belong to the 
hildren group C1 (but it belongsto one of the grand
hildren groups whi
h are pro
essed in stage 3). Therefore theBPE produ
es typesb[C0] = {1, 0, 0, 0}, typesb[C1] = {0, 0, 0, 0} and signsb[C0] = 0(49 is postive). Codeword signsb[C1] is empty be
ause no 
oe�
ients have beenfound signi�
ant in the 
hildren group C1.The stage 3 is dedi
ated to the en
oding of the grand
hildren. Of 
ourse, thisstage is omitted if the BPE produ
ed tranB = 0 at stage 2 implying that it is notne
essary to look for signi�
ant grand
hildren. Similarly to stage 2, stage 3 produ
esthe 
odeword tranG to indi
ate in whi
h family one may �nd signi�
ant 
oe�
ients

tranG = tword
[

{max(tb(Gi))},∀i ∈ {0, 1, 2} su
h that max(tb(Di)) > 0in 
urrent or previous bit planes].As the grand
hildren Gi of ea
h family are further partitioned into four groups
Hij, j ∈ {0, 1, 2, 3}, the BPE needs to produ
e one more transition 
odeword tolo
ate the signi�
ant 
oe�
ients

tranH = tword
[

{max(tb(Hij))},∀j ∈ {0, 1, 2, 3}
]

∀i ∈ {0, 1, 2}.The last step of the stage 3 is to produ
e the magnitude typesb[Hij] and the sign
signsb[Hij] 
odewords of the signi�
ant grand
hildren. Again, note that the BPEonly en
odes the grand
hildren of the families that have been marked as signi�
antby the tranG and tranH 
odewords.On the example Fig. 3.2, the BPE has already produ
ed, during stage 2, tranD =

{1, 1, 0} meaning that signi�
ant 
oe�
ients exist in families 0 and 1. the BPE
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hain systemsnow looks if these signi�
ant 
oe�
ients belong the grand
hildren groups of thesefamilies. At the bit plane b = 5, the 
oe�
ient 47 belongs to a gran
hildren group ofthe family 1. No 
oe�
ient are signi�
ant in the gran
hildren groups of the family
0. Therefore, the BPE produ
es tranG = {0, 1} and tranH1

= {0, 1, 0, 0} sin
e the
oe�
ient 47 is the bit 1 of the H11 group. We also have typesb[H11] = {0, 1, 0, 0}and signsb[H11] = 0 (47 is positive).Table 3.3 summarizes the generated 
odewords. To form the �nal output bit-stream, these 
odewords are en
oded by a variable length entropy 
oder. As men-tioned previously, the last stage (stage 4) of the 
oding pro
edure 
onsists in in
lud-ing the bth magnitude bit of ea
h type 2 high frequen
y 
oe�
ient. If the target
ompression rate does not allow a lossless 
oding of the wavelet 
oe�
ients, the en-
oder trun
ates the output bitstream of ea
h segment to rea
h the target rate. The
oder also provides a quality 
ontrol whi
h 
onsists of setting a maximum number ofbit planes to en
ode. This option does not allow however to 
ontrol the 
ompressionrate. Stage 1 (parents) typesb[P ], signsb[P ]Stage 2 (
hildren) tranB

tranD

typesb[Ci], signsb[Ci]Stage 3 (grand
hildren) tranG

tranHi

typesb[Hij], signsb[Hij]Table 3.3: Generated 
odewords for ea
h 
oding stage.3.3 On-ground pro
essing: Image de
oding and restora-tion3.3.1 Image de
oding and re
onstru
tionOn
e the bitstream has been transmitted, the de
oder needs to re
onstru
t the im-age. The bitstream may have been trun
ated due to some 
oding rate 
onstraint.To re
onstru
t the image, the de
oder �rst 
ompletes the bitstream by adding ze-ros bits and then applies the inverse of the 
oding pro
edure des
ribed in Se
tion3.2.2.3. An inverse wavelet transform is then applied on the de
oded 
oe�
ients tore
onstru
t the image.The inverse transform s
heme used to re
onstru
t the image is also based onthe multiresolution analysis proposed in [Mallat 1989℄. The obtained algorithm isillustrated on Fig. 3.6. This s
heme is initialized with the low frequen
y 
oe�
ientsof the de
oded signal. These 
oe�
ients are upsampled and �ltered by the low-pass �lter h̃. The same pro
ess is applied to the details 
oe�
ient of the lastde
omposition level with the high-pass �lter g̃. These �lters are given in Table 3.4.
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Figure 3.6: Filter banks for of an one level multiresolution synthesis algorithm.The obtained two sets of 
oe�
ients are later added to re
onstru
t the signal.This re
onstru
ted signal is then used as the intialization of the next level re
om-position and so on. This pro
ess is iterated L times (L is the number of levelsde
omposition �xed to 3 in the 
ase of the CCSDS re
ommandation) until all levelshave been re
onstru
ted.

k Low-pass �lter h̃k High-pass �lter g̃k

0 0.788485616406 −0.852698679009

±1 0.418092273222 0.377402855613

±2 −0.040689417609 0.110624404418

±3 −0.064538882629 −0.023849465020

±4 −0.037828455507Table 3.4: Synthesis �lters for the 9/7 Cohen-Daube
hies-Feauveau wavelet trans-form.Similarly to the de
omposition s
heme, the re
omposition algorithm 
an be ex-tended to two dimensional signals using the s
heme des
ribed Fig. 3.6 iterativelyon the rows and the 
olumns of the image.On
e the image has been de
oded and re
onstru
ted, it needs to be restored.Indeed, at this point, the re
onstru
ted image 
ontains all the a

umulated degra-dations of the imaging 
hain su
h as blur, instrumental and quantizing noise; thestep of restoration is then 
ru
ial to produ
e an image whi
h 
an be exploited.3.3.2 De
onvolution and denoisingThe restoration te
hnique used by the CNES to improve the quality of the de
odedimage is based on the method proposed in [Kalifa 2003b℄ and des
ribed in Se
tion2.1.2.1. The restoration is then performed in two steps: The de
oded image is �rstde
onvolved to redu
e the blur of the opti
s and is then denoised to limit the growthof the instrumental noise power due to the de
onvolution. The a
quisition model
onsidered by the restoration method of the CNES is the same than the one usedin [Kalifa 2003b℄ and writes
ŷ = h ∗ x+ n, (3.11)
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hain systemswhere ŷ is the de
oded image, x is the real s
ene, h is the PSF of the opti
sdes
ribed in Se
tion 3.1.1, and n is the instrumental noise whose model is givenin 3.1.2. Note that the 
oding noise is not 
onsidered in this model. The de
on-volution te
hnique used by the CNES is slightly di�erent from the one proposedin [Kalifa 2003b℄. Rather than using the pseudo-inverse �lter h−1 of h, a spe
i�
de
onvolution fun
tion h̃ is applied on the re
onstru
ted image to redu
e the blur ofthe opti
s. To avoid strong aliasing artifa
ts, this de
onvolution fun
tion is not thedire
t inverse of the PSF h but a fun
tion su
h that the de
onvolved image wouldbe similar to the ouput of an ideal instrument with the target PSF ht [Lier 2008℄
h̃ ∗ h = ht. (3.12)The idea of using a target PSF ht is to enfor
e some spe
i�
ations on the �nalimage su
h as the sampling grid and the value of the MTF at the Nyquist frequen
y.The de
onvolution fun
tion h̃ is then fully 
hara
terized by the target PSF ht whi
his mainly obtained from image analysis of empiri
al results [Lier 2008℄. This de
on-volution fun
tion redu
es the blur of the image and enhan
es the high frequen
ies ofboth the image and the noise. The de
onvolved image appears thus to be sharp butnoisy. The se
ond step of the restoration 
onsists then in a denoising te
hnique onthe de
onvolved image to redu
e the ampli�ed noise. Due to the spe
i�
 frequentialaspe
t of the de
onvolution fun
tion ht, the de
onvolved noise is 
olored, meaningthat it o

upies a 
ertain band of high frequen
ies.State-of-the-art denoising te
hniques are usually based on the 
lassi
al wavelettransform whi
h does not have a spe
tral representation �ne enough to 
apture thesebands of high frequen
ies. For this reason, the denoising te
hnique used by theCNES is based on the method proposed in [Kalifa 2003b℄ and uses a wavelet pa
kettransform 
oupled with a (soft-)thresholding of the wavelet 
oe�
ients [Lier 2008℄.The wavelet pa
ket transform is an extension of the 
lassi
al wavelet transformand performs iteratively the de
omposition on both the low and the high frequen
iesof the image, 
ontrary to the 
lassi
al wavelet transform whi
h iterates the de
ompo-sition only on the low frequen
y. As mentioned in Se
tion 2.1.2.1, a wavelet pa
kettransform allows to obtain a �ner frequential resolution of the image and to 
apturespe
i�
 bands of frequen
ies. The frequen
ies bands that are assumed to be noisedare then thresholded to redu
e the noise power.To 
ompute the threshold parameters, an image of noise is generated and de
on-volved using the de
onvolution fun
tion h̃. The varian
e of the de
onvolved noise is
omputed in ea
h subband and 
ompared to the varian
e of the de
onvolved imagein the same subband. If these varian
e are almost the same, then it is assumed thatthe 
orresponding subband only 
ontains noise and 
an be thresholded. The thresh-old parameter is then 
omputed su
h that a �xed signal-to-noise ratio is obtainedat the output of the restoration. Some re
onstru
tion results of the 
omplete image
hain are displayed on Fig. 3.7.
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(a) (b) (
)
(d) (e) (f)
(g) (h) (i)
(j) (k) (l)Figure 3.7: Visual result of the imaging 
hain used by the CNES. Displayed imageshave a size of 200×200 pixels. For ea
h ligne, the image on the left is a zoom of the
lean referen
e image, the image in the middle is a zoom of the instrumental image,and the image on the right is a zoom of the �nal image provided by the CNES. Thetarget rate is 2.5 bits/pixel and the simulated SNR is 30-100. The image range hasbeen extended to point up the image re
onstru
tion artifa
ts.
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Chapter 4Optimization of the 
hain: Atheoreti
al study
In this 
hapter, we study the theoriti
al optimization of the global imaging 
hain.As mentioned in Se
tion 1.1, solving theoriti
ally the global optimization problem(1.1) is a di�
ult task. Thus, we �rst redu
e the study to the 
ase the image isonly degraded by noise and we fo
us on the optimization of the imaging 
hain, forthree di�erent 
on�gurations of 
oding and restoration, where the global distortion ismeasured by the mean square error (MSE). We present in Se
tion 4.1 our hypothesesand notations. Se
tion 4.2 is dedi
ated to the analysis and the optimization of theglobal distortion for di�erent 
on�gurations of the imaging 
hain. We 
on
lude inSe
tion 4.5 and present perspe
tives of the study.4.1 Notations and hypotheses4.1.1 NotationsFor the study, we denote the operators (
oding and restoration) applied to the imagewith a bold upper
ase letter. The non-bold upper
ase letters represent randomvariables whose realizations are denoted by a lower
ase letter. With this notation,
x is a realization of the random variable X. (X)i denotes the ith element of therandom variable X. These variables are multidimensional x ∈ R

N where N is thenumber of pixels. Wx is a random variable asso
iated to the wavelet transform of
x and we denote Wx,j, j ∈ {0, . . . , J − 1} (J being the number of subbands) the
jth subband of the random variable Wx. A wavelet subband of x is then noted
wx,j ∈ R

Nj where Nj is the size of the subband. Finally, we suppose that a waveletsubband wx,j follows a generalized 
entered Gaussian distribution law of parameter
αwx,j

> 0 and varian
e σ2
wx,j

> 0 [Antonini 1992℄. The probability density fun
tion
pwx,j

asso
iated to the wavelet subband wx,j 
an then be modeled as
pwx,j

(wx,j) =
A
(

αwx,j

)

σwx,j

e
−

˛

˛

˛

˛

B(αwx,j )
wx,j

σwx,j

˛

˛

˛

˛

αwx,j

, (4.1)
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A
(

αwx,j

)

=
αwx,j

B
(

αwx,j

)

2Γ
(

1/αwx,j

) (4.2)
B
(

αwx,j

)

=

√

Γ
(

3/αwx,j

)

Γ
(

1/αwx,j

) , (4.3)and Γ is the usual Gamma fun
tion. The parameters σ2
wx,j

and αwx,j
of thedistribution law will be estimated using the kurtosis-based te
hnique proposed in[Kasner 1999℄. Note that the same assumption will be applied to all wavelet trans-forms in the 
hain with, of 
ourse, di�erent distribution parameters.4.1.2 Coding and denoising operatorsAs mentioned previously, we study the 
ase the image is only degraded by an in-strumental noise z that we assume to be independent, identi
ally distributed andto follow a 
entered normal distribution with varian
e σ2

z . We 
onsider the spe
ial
ase of 
oding te
hniques based on wavelet transforms [Shapiro 1993, Said 1996℄and [Taubman 2000℄. The 
oding step is then approximately de
omposed in a non-redundant wavelet transform followed by a s
alar subband quantizer. Note that thisapproximation is a
tually 
lose to the 
oding s
hemes presented in the 
ited works.The wavelet transform is then denoted W and W̃ for the inverse transform.Ea
h wavelet subband of the image to en
ode will be quantized using an in�nitemid-tread s
alar subband quantizer Q of step ∆j > 0 de�ned as
Q(wj) = ∆j

⌊

wj

∆j
+

1

2

⌋

, (4.4)where ⌊ ⌋ is the �oor fun
tion whi
h returns the greatest integer less than orequal to its argument. Ea
h quantized subband will then be 
oded using an en-tropy en
oder. Note that the entropy en
oding operation does not introdu
e anydegradation in the 
hain.For the �rst part of the study, we also 
onsider that the denoising step is per-formed in the same wavelet basis than the 
oding. This 
hoi
e may however needfurther explanations. Usually, an e�
ient wavelet transform for image denoisingstrongly di�ers from a wavelet transform suited for image 
oding. Image denoisingte
hniques a
tually require redundant wavelet transforms to represent the 
hara
ter-isti
s of an image su
h as 
ontours and oriented details while in
reasing the numberof 
oe�
ients in image 
ompression may be problemati
 [Chappelier 2006℄. Hen
e,a non-redundant wavelet transform leads most of the time to poor denoising results.We are however very 
on�dent that using the same basis for both 
oding and de-noising may provide a de
oding-denoising stru
ture gathered in a single fast andlow resour
es algorithm. Extending the 
urrent work to 
omplex denoising s
hemessu
h as [Donoho 1995a℄ is a di�
ult task that still need to be addressed.The denoising algorithm R that we propose to use is then a Tikhonov regularizedalgorithm whi
h operates independently on the wavelet 
oe�
ients of ea
h subband
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j of the image. Let w̃j be some noisy wavelet subband (of size Nj), its denoisedversion ŵj writes

ŵj = arg min ‖w − w̃j‖2
2 + λj‖w‖2

2subje
t to w ∈ R
Nj

, (4.5)where λj > 0 is a regularizing parameter. The restoration algorithm (4.5) has a
losed-form solution whi
h writes
ŵ =

w̃

1 + λj
. (4.6)We are aware of the simpli
ity of the 
onsidered algorithm, it appears howeverthat the linearity of the restoration algorithm R is required if one wants to writethe global distortion in 
losed-form. As mentioned previously, mu
h work need tobe addressed to 
onsider state-of-the-art denoising algorithms. We now detail theproposed method to perform a global optimization of the global distortion.4.2 Global optimization of the imaging 
hainThis se
tion is dedi
ated to the analysis and the optimization of the global distor-tion. From Se
tion 3.3.2, we mentioned that, in a general 
ontext, the restorationmethod used by the CNES only deals with the blur and the additive Gaussian noiseof the instrument. It a
tually does not take into a

ount the fa
t that the trans-mitted image is also deteriorated with 
oding noise. The restoration te
hnique usedon-ground (i.e. after 
oding) is therefore also suitable to be used on-board justbefore 
oding on the intrumental image, as this image perfe
tly mat
hes the imageformation model 
onsidered by the restoration.From this remark, we de
line in this se
tion the theoriti
al study of the globaloptimization to the 
ase the restoration is performed before 
oding or splitted intwo parts (one part before 
oding to redu
e the instrumental noise and the otherpart after 
oding to pro
ess the 
oding noise).4.2.1 Optimization of the on-ground 
hain4.2.1.1 Presentation of the imaging 
hainWe �rst study the on-ground 
hain where the denoising is performed after 
od-ing/de
oding, i.e. �on ground�. This 
hain is represented in detail Fig. 4.1. Were
all that x is the original image, x̂ is the restored one. The instrumental image

y is a deteriorated version of the original image x where an additive instrumentalnoise z has been added. The wavelet subbands of the instrumental image are de-noted wy,j , j ∈ {0, . . . , J−1}. The quantized and restored version of these subbandsare respe
tively denoted wỹ,j and wx̂,j.We further introdu
e several notations. Let wb,j be the 
oding error of thesubband j
wb,j = Q(wy,j) − wy,j . (4.7)
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Figure 4.1: Considered on-ground imaging 
hainWe have

wỹ,j = Q(wy,j) = wy,j + wb,j

= wx,j + wz,j + wb,j

= wx,j + wε,j, (4.8)where wε,j = wz,j + wb,j is referred hereafter to the global error. The mainhypothesis of the proposed method is to 
onsider the �rst-order moments of theterm wε,j to be independent to the ones of wx,j, that is
E
[

Wm
ε,jW

n
x,j

]

= E
[

Wm
ε,j

]

E
[

W n
x,j

] (4.9)for any integer m > 0, n > 0 and where Wε,j and Wx,j are the random vari-ables asso
iated to wε,j and wx,j. This hypothesis is mainly based on the fa
tthat the quantizing part of the s
heme Fig. 4.1 
an be seen as a non-substra
tivedithering system where the Gaussian instrumental noise z a
ts as a dithering noise[Wannamaker 2000℄.We detail in the next part this hypothesis of de
orrelation.4.2.1.2 De
orrelation hypothesisA dithering system 
onsists in inserting a noise with a 
ertain probabilitydensity fun
tion prior to quantizing, to improve the de
orrelation property[Vanderkooy 1987℄. As mentioned in [Wannamaker 2000℄, a non-substra
tive dither-ing system (named non-substra
tive as the dithering noise is not substra
ted afterquantizing) allows the moments of the global error (that is the sum of the 
odingerror and dithering noise) to be fully de
orrelated to the moments of the 
odingsour
e.It happens that a Gaussian distribution, if its standard deviation is large enough[Vanderkooy 1987℄, stands among the probability density fun
tions whi
h allow anoise to be 
onsidered as a dithering noise. The idea here is then to take bene�t ofthe presen
e of the instrumental noise by 
onsidering it as a dithering noise. Withsu
h 
onsideration, we know that the m �rst-order moments of the global error arede
orrelated to the n �rst-order moments of the quantizing sour
e, giving property(4.9).Moreover, if the instrumental noise z meets the dithering noise requirements, we
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E [Wε,j] = 0, (4.10)

E
[

‖Wε,j‖2
]

= Njσ
2
wz,j

+Nj

∆2
j

12
, (4.11)where σwz,j

is the standard deviation of the distribution law of the wavelettransform wz,j. A more developed presentation of dithering te
hniques is in
ludedin Appendix B. The standard deviation required by a Gaussian noise to e�e
tivelya
ts as a dithering noise has been studied in [Vanderkooy 1987℄. In the present 
ase,the 
ondition (4.9) will be veri�ed if the following statement is true
σwz,j

>
∆j

2
. (4.12)As the standard deviation of instrumental noise is usually low in imaging sys-tems, the 
ondition (4.12) assumes that the proposed approa
h will be valid onlyfor high 
oding rates. We will however develop our method to 
onsider all 
odingrates.4.2.1.3 Analysis of the global distortionAs mentioned in the Se
tion 4.1, the studied imaging 
hain depends on two sets ofparameters: The denoising parameters λj in (4.6) and the quantizing steps ∆j in(4.4), for ea
h j ∈ {0, . . . , J − 1}. The global 
oding/denoising joint optimizationproblem 
onsists in �nding the sets {λ∗j} and {∆∗

j} of optimal parameters whi
hminimize, on average, the global distortion D under the 
onstraint that the 
odingrate R does not ex
eed the target rate Rc. This global rate-distortion-denoisingjoint optimization problem 
an be formalized as the following
{λ∗j}, {∆∗

j} = arg min D ({λj}, {∆j})subje
t to R ({λj}, {∆j}) ≤ Rc,

λj > 0,∀j ∈ {0, . . . , J − 1}
∆j > 0,∀j ∈ {0, . . . , J − 1}

. (4.13)
Under this form, the optimization problem (4.13) is di�
ult to solve so thatit is usually written under an un
onstrained form [Everett 1963℄. Let τ > 0 be aLagrange multiplier. The Lagrange dual fun
tion L writes

L(τ) = inf D({λj}, {∆j}) + τ (R({λj}, {∆j}) −Rc)

λj > 0, j ∈ {0, . . . , J − 1}
∆j > 0, j ∈ {0, . . . , J − 1}

. (4.14)Problem (4.13) 
an then be written [Boyd 2004℄
{λ∗j}, {∆∗

j} = max
τ>0

L(τ). (4.15)To solve the global distortion joint optimization problem (4.15), we need toexpress the mean global distortion D and the global 
oding rate R as a fun
tion ofthe sets of regularizing parameters {λj} and quantizing steps {∆j}.
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al studyProposition 1. If σwz,j
veri�es hypothesis (4.12) for ea
h j ∈ {0, . . . , J − 1}, thenthe mean global distortion D of the imaging 
hain displayed Fig. 4.1 writes

D({λj}, {∆j}) =
J−1
∑

j=0

πjajλ
2
j

(1 + λj)2
σ2

wx,j
+

πjaj

(1 + λj)2
σ2

wz,j
+

πjaj

(1 + λj)2
∆2

j

12
, (4.16)where

aj =
Nj

N
, (4.17)is the weight of the subband j in the whole image.Proof. We start from the fa
t that the mean global distortion writes

D({λj}, {∆j}) =
1

N
E
(

‖X − X̂‖2
)

, (4.18)where X̂ is the random variable asso
iated to the output �nal image x̂. Thanksto the orthogonality of the wavelet subbands, the global distortion 
an also beformulated as
D({λj}, {∆j}) =

1

N

J−1
∑

j=0

πjE
(

‖Wx,j −Wx̂,j‖2
)

, (4.19)where πj are weighting 
oe�
ients whi
h depend on the �lters and the de
ima-tion fa
tors used in the wavelet transform [Usevit
h 1996℄. Note that these weight-ing 
oe�
ients are only required if one 
onsiders biorthogonal wavelet transformssu
h as the CDF 9/7 wavelet transform [Cohen 1992℄. They are equal to 1 for anorthogonal wavelet transform.In the 
ase of the studied imaging 
hain displayed Fig. 4.1, the �nal image isthe output of the restoration and writes
wx̂,j = Rwỹ,j. (4.20)Using (4.6) and (4.8), the �nal image 
an be expressed as a fun
tion of the sour
eand the global error

wx̂,j =
wx,j

1 + λj
+

wε,j

1 + λj
. (4.21)From (4.19), (4.21) and using the moments de
orrelation hypothesis (4.9), wededu
e the global distortion

D({λj}, {∆j}) =
1

N
E
(

‖X − X̂‖2
)

=
1

N

J−1
∑

j=0

πjλ
2
j

(1 + λj)2
E
(

‖Wx,j‖2
)

+
πj

(1 + λj)2
E
(

‖Wε,j‖2
)

. (4.22)Finally, the global distortion (4.22) 
an be further developed using the results(4.11) to obtain the expression (4.16).
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hain 57Note that the global distortion (4.16) requires the knowledge of the varian
e ofea
h subband of the original image σ2
wx,j

. This varian
e is generally unknown but 
anbe roughly dedu
ed from the observed image. For an orthogonal or a biorthogonalwavelet transform, the varian
e of the noise in ea
h wavelet subband j is equal (oralmost equal in the 
ase of a biorthogonal wavelet transform) to the varian
e ofthe noise in the image domain, i.e. σ2
wz,j

= σ2
z , where σz is supposed to be known.Then, σ2

wx,j

an be approximately 
omputed during the rate-allo
ation of the 
oderfrom the observed subband varian
e σ2

wy,j
by

σ2
wx,j

= σ2
wy,j

− σ2
z . (4.23)The se
ond part of the problem (4.15) requires the expression of the global 
odingrate R. This rate 
an be expressed as the weighted sum of the rate in ea
h subband

Rj

R({λj}, {∆j}) =

J−1
∑

j=0

ajRj(∆j), (4.24)where aj is given in (4.17). As mentioned in Se
tion 4.1.2, we assume that ea
hquantized subband is en
oded using an entropy en
oder. The 
oding rate Rj of asubband j 
an then be estimated by its entropy [Shannon 1948℄
Rj(∆j) = −

+∞
∑

m=−∞
Pwy,j

(m,∆j) log2

(

Pwy,j
(m,∆j)

)

, (4.25)where Pwy,j
(m,∆j) is the probability to get the symbol m whi
h depends on thedensity probability fun
tion pwy,j

of the subband wy,j and on the quantizing step
∆j

Pwy,j
(m,∆j) =

∫ m∆j+
∆j

2

m∆j−
∆j

2

pwy,j
(wy,j)dwy,j . (4.26)From Se
tion 4.1.1, we assume that ea
h wavelet subband follows the generalized
entered Gaussian distribution law de�ned in (4.1). The density probability fun
tion

pwy,j
is then given by

pwy,j
(wy,j) =

A
(

αwy,j

)

σwy,j

e
−

˛

˛

˛

˛

B(αwy,j)
wy,j

σwy,j

˛

˛

˛

˛

αwy,j

, (4.27)with
A
(

αwy,j

)

=
αwy,j

B
(

αwy,j

)

2Γ
(

1/αwy,j

) (4.28)
B
(

αwy,j

)

=

√

Γ
(

3/αwy,j

)

Γ
(

1/αwy,j

) , (4.29)
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al studyand where σ2
wy,j

and αwy,j
are the parameters of the distribution law, estimatedusing the kurtosis-based te
hnique proposed in [Kasner 1999℄

σ2
wy,j

= E[w2
y,j ], (4.30)

αwy,j
=

1.447

log

(

E[w4
y,j]

E[w2
y,j]

2

)

− 0.345

. (4.31)Proposition 2. The global rate-distortion optimization problem (4.13) 
an be solvedby maximizing
L(τ) = inf φτ ({∆j}, {λj})

λj > 0, j ∈ {0, . . . , J − 1}
∆j > 0, j ∈ {0, . . . , J − 1}

, (4.32)with respe
t to τ > 0 and where
φτ ({∆j}, {λj}) =

J−1
∑

j=0

πjajλ
2
j

(1 + λj)2
σ2

wx,j
+

πjaj

(1 + λj)2
σ2

z +
πjaj∆

2
j

12(1 + λj)2

+ τ





J−1
∑

j=0

ajRj(∆j) −Rc



 . (4.33)Proof. This demonstration is straightforward. From (4.15), we de�ne
φτ ({∆j}, {λj}) = D({∆j}, {λj}) + τ (R({∆j}, {λj}) −Rc) , (4.34)and we substitute D and R with their respe
tive expressions (4.16) and (4.24).We further simplify (4.16) using the approximation σ2

wz,j
= σ2

z . The reformulationof problem (4.13) is then obtained using (4.14) and (4.15).We detail in the next part how to solve problem (4.13).4.2.1.4 Global rate-distortion-denoising optimizationUsing proposition 2, the optimization problem (4.13) be
omes
{∆∗

j}, {λ∗j} = max
τ>0















inf φτ ({∆j}, {λj})
λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}















. (4.35)The existen
e and uniqueness of solutions of problem (4.35) is not straightfor-ward but we 
an show that a solution of problem (4.35) exists and is unique (seeAppendix A.2). We propose a numeri
al algorithm to �nd this solution. This al-gorithm is based on the resolution of the simultaneous equations obtained from theKKT 
onditions [Kuhn 1951℄ of problem (4.35).
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hain 59Proposition 3. The KKT 
onditions of problem (4.35) admits only one solution({λ∗j}, {∆∗
j}, τ∗) whi
h veri�es

λ∗j =
σ2

z

σ2
wx,j

+
∆∗

j
2

12σ2
wx,j

, ∀j ∈ {0, . . . , J − 1} (4.36)
πj∆

∗
j

6(1 + λj)2
+ τ∗

∂Rj

∂∆j
(∆∗

j ) = 0, ∀j ∈ {0, . . . , J − 1} (4.37)
J−1
∑

j=0

ajRj(∆
∗
j ) = Rc. (4.38)Proof. From the KKT 
onditions of problem (4.35), we get (see Appendix A.2)

∂φ(∆∗
j , λ

∗
j , τ

∗)

∂∆j
=

ajπj∆
∗
j

6(1 + λ∗j )
2

+ τ∗aj
∂Rj

∂∆j
(∆∗

j ) = 0 (4.39)
∂φ(∆∗

j , λ
∗
j , τ

∗)

∂τ
=

J−1
∑

j=0

ajRj(∆
∗
j ) −Rc = 0 (4.40)

∂φ(∆∗
j , λ

∗
j , τ

∗)

∂λj
=

12ajπjλ
∗
jσ

2
wx,j

− 12ajπjσ
2
z − ajπj∆

∗
j
2

6(1 + λ∗j)
3

= 0 (4.41)(4.42)with
∂Rj

∂∆j
(∆j) = − 1

log(2)

+∞
∑

m=−∞

[

1 + log
(

Pwy,j
(m,∆j)

)]

×
[

pwy,j

(

m∆j +
∆j

2

)(

m+
1

2

)

− pwy,j

(

m∆j −
∆j

2

)(

m− 1

2

)]

. (4.43)The expression (4.36) and 
onditions (4.37) and (4.38) on the optimal parametersdire
tly follow from the optimality 
onditions (4.39). The existen
e and uniquenessof these parameters is mu
h longer and is addressed in Appendix A.2.As we 
an see from (4.36), (4.37) and (4.38), the parameters {∆∗
j} and τ∗ 
annot be 
omputed analyti
ally. But as mentioned in Appendix A.2, any root-�ndingalgorithms 
an be used to a
hieve this goal. For our simulations, binary sear
halgorithms will be used for the 
omputation of both {∆∗

j}, τ∗ and for the sake ofsimpli
ity, ea
h binary sear
h algorithm will be parametrized to the same givenpre
ision ρ = 0.1.The 
ase of the low frequen
y subband (j = J − 1) will be pro
essed di�erentlyas we do not want to degrade these 
oe�
ients. We will only use quantizing toround these 
oe�
ients to their nearest integers. Consequently, we will set
∆∗

J−1 = 1, (4.44)
λ∗J−1 =

σ2
z

σ2
wx,J−1

+
1

12σ2
wx,J−1

. (4.45)
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hain: A theoreti
al studyFinally, the overall joint optimization pro
edure for solving problem (4.13) isgiven in the Algorithm 1. Note that the binary sear
h sub-pro
edures are notdetailled in this pro
ess. The Algorithm 1 intends to be quite general and we letthe 
hoi
e of the root-�nding algorithms to the user.Algorithm 1 Global rate-distortion-denoising joint optimization algorithm for theon-ground imaging 
hainSet τ = 1.Set ρ = 0.1.while ∣∣
∣

∑J−1
j=0 ajRj −Rc

∣

∣

∣
> ρ dofor j from 0 to J − 2 doSet ∆j = 1.Compute the value of the regularizing parameter λj from (4.36).while ∣∣∣ πj∆j

6(1+λj )2
+ τ

∂Rj

∂∆j
(∆j)

∣

∣

∣ > ρ doIn
rease the value of ∆j .Compute the value of the regularizing parameter λj from (4.36).end whileend forSet ∆J−1 = 1.Compute the regularizing paramater λJ−1 from (4.45).if ∣∣
∣

∑J−1
j=0 ajRj −Rc

∣

∣

∣
> ρ thenIn
rease the value of τ .end ifend whileOutput the optimal regularizing parameters {λ∗j}.Output the optimal quantizing steps {∆∗

j}.4.2.1.5 ResultsWe simulate the joint optimization Algorithm 1 on the high-dynami
 range remotesensing image displayed Fig. 4.2. For this simulation, we set the wavelet transform
W to be a three levels CDF 9/7 wavelet transform [Cohen 1992℄ and the restoration
R is given by (4.6). The image has been noised with an additive white Gaussiannoise with di�erent standard deviations σz, as the e�
ien
y of the proposed es-timation depends on σz, see Eq. (4.12). The following 
ases have been tested
σz ∈ {25, 50, 75, 100}.For ea
h target rate, we simulate the imaging 
hain given Fig. 4.1 with the usualdisjoint optimization te
hnique, whi
h 
onsists in sele
ting the quantizing steps andthe regularizing parameters su
h that the 
oding and the restoration errors areindependently minimized. The 
oding error minimization has been a
hieved usingthe rate-distortion allo
ation based model proposed in [Parisot 2001℄. As for therestoration error, it has been minimized using an exhaustive sear
h of the optimal



4.2. Global optimization of the imaging 
hain 61

Figure 4.2: Referen
e image, Cannes harbour (12 bits pan
hromati
 image, 30 
mresolution, 1024 × 1024 pixels).
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al studyregularizing parameters. On
e the �nal image has been re
onstru
ted using theseparameters, we numeri
ally 
ompute the global distortion
D =

1

N
‖x− x̂‖2, (4.46)where x is the 
lean (i.e. noiseless) test image, assumed to be known in ournumeri
al experiments, and x̂ is the �nal image. The distortion (4.46) is the truedistortion and will be referred as the ground truth in our simulations. The estimationmodel (4.16) of the global distortion that we proposed has then been 
omputed withthe values of parameters obtained for the ground truth. This allows to verify thatthe estimation (4.16) of the global distortion is 
lose to the ground truth (4.46),implying the validity of the proposed method. And �nally, we use the proposed jointoptimization Algorithm 1 to 
ompute the optimal parameters, that we inserted intothe estimation model (4.16) to estimate the minimal distortion.

Figure 4.3: Comparison of the disjoint optimized distortion (ground truth andmodel-based estimation) to the joint optimized distortion (model-based estimation),
σz = 25.Results are given Fig. 4.3 to 4.6. We immediately see that the validity of theproposed estimation, as expe
ted by the hypothesis (4.12), is not always veri�edand depends on the target 
oding rate, for a given σz. As expe
ted, the proposedestimation approximates well the true distortion, on the simulated 
ases, for mediumto high 
oding rates but does not give satisfying results for low 
oding rates. This
an be explained by the fa
t that low target 
oding rates in
rease the subbandsquantizing steps. Consequently, the 
ondition (4.12) is not respe
ted anymore andthe moments of the global error 
annot be 
onsidered de
orrelated to the momentsof the sour
e.
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Figure 4.4: Comparison of the disjoint optimized distortion (ground truth andmodel-based estimation) to the joint optimized distortion (model-based estimation),
σz = 50.

Figure 4.5: Comparison of the disjoint optimized distortion (ground truth andmodel-based estimation) to the joint optimized distortion (model-based estimation),
σz = 75.
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Figure 4.6: Comparison of the disjoint optimized distortion (ground truth andmodel-based estimation) to the joint optimized distortion (model-based estimation),
σz = 100.To analyse more pre
isely the range of validity of the proposed estimation, we
ompute the error (in absolute value) between the ground truth distortion and itsmodel-based estimation (4.16) for the simulated values of standard deviation σz. Theresulting 
urve is displayed Fig. 4.7. When the standard deviation is low (σz = 25),we see that the proposed estimation is performant if the 
oding rate is around 3.5bits/pixel and more. However for this high 
oding rate, the 
oding step is almostlossless su
h that the global optimization problem is redu
ed to the optimization ofthe restoration only. Therefore, the joint and the disjoint optimization te
hniquesbe
ome the same and give then similar results.But the range of validity of the proposed estimation in
reases as the standarddeviation in
reases. For a high standard deviation (σz = 100), we 
an verify that theproposed estimation is valid for lower 
oding rates (around 2.2 bits/pixel and more).In that 
ase, the joint optimization displays signi�
ant improvement in 
omparisonto the disjoint optimization. It allows for example to rea
h the same global error thanthe disjoint optimized te
hnique but for a lower 
oding rate. For σz = 100 (Fig. 4.6),the joint optimization te
hnique rea
hes at 1.73 bits/pixel the same distortion thanthe one obtained at 2.04 bits/pixels for the disjoint optimization te
hnique, savingtherefore 15% of the bit budget. The bene�t in term of 
ompression performan
es ofthe joint optimization te
hnique appears then to be very signi�
ant. This simulated
ase is however slightly ex
essive in the 
ase of satellite imaging as the standarddeviation of the instrumental noise in a satellite 
hain is low and rarely ex
eeds tenon average.
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Figure 4.7: Di�eren
e (in absolute value) between the ground truth and model-basedestimation distortion for the simulated standard deviations of the instrumental noise.To �t the 
hara
teri
s of a true imaging 
hain, we simulate the 
ase σz = 10whi
h is mu
h more representative of the SNR obtained in satellite imaging (seeTable 3.1, Page 35). We do not display the rate-distortion 
urve of this simulationas, similarly to the 
ase σz = 25 displayed Fig. 4.3, the joint and the disjointoptimization te
hniques are equal in term of distortion. Visual results however di�eras shown by Fig. 4.8 to 4.11. We do not fo
us on the quality of the re
onstru
tedimages regarding to the referen
e one as the 
onsidered 
hain is ex
essively simple.Clearly, the presen
e of artifa
ts on the re
onstru
ted image is due to the simplehypothesis that we made on the restoration algorithm, see Eq. (4.5). On the
ontrary, we are more 
on
erned on the improvement of the image quality of thejoint optimized 
hain with respe
t to the disjoint optimized one. We 
an see thatthe global joint optimization of the 
hain always leads to a re
onstru
ted imagewhi
h 
ontains less blurry edges or ringing artifa
ts. This is parti
ularly visibleon the edges of the buildings Fig. 4.8 and 4.10. It is important to note that thepresented visual results have been simulated at a 
oding rate of 2.5 bits/pixel. Andwe know that the estimation of the global distortion is not valid at this rate, leadingto suboptimal 
omputed parameters. A �ner estimation of the global distortion willtherefore give better results that the ones displayed here.Finally, we see that the obtained results 
learly point that optimizing 
oding anddenoising separately is suboptimal. One needs instead to address the problem ofimaging 
hain design in its globality; the proposed method and the obtained resultsare en
ouraging in this sense. Extending the proposed method to lower 
oding ratesand to more 
omplex denoising s
hemes appears however to be di�
ult to address.
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(a) (b)

(
) (d)Figure 4.8: Visual 
omparison of re
onstru
tion results. Displayed images havea size of 200 × 200 pixels. (a) is the referen
e image, (b) is the noisy observedimage, (
) is the image re
onstru
ted with the parameters obtained by the disjointminimization of the ground truth distortion and (d) is the image re
onstru
ted withthe parameters obtained by the joint optimization, performed using Algorithm 1, ofthe model-based estimated distortion. The 
oding rate is 2.5 bits/pixel. The imagerange has been extended to point up the image re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 4.9: Visual 
omparison of re
onstru
tion results. Displayed images havea size of 200 × 200 pixels. (a) is the referen
e image, (b) is the noisy observedimage, (
) is the image re
onstru
ted with the parameters obtained by the disjointminimization of the ground truth distortion and (d) is the image re
onstru
ted withthe parameters obtained by the joint optimization, performed using Algorithm 1, ofthe model-based estimated distortion. The 
oding rate is 2.5 bits/pixel. The imagerange has been extended to point up the image re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 4.10: Visual 
omparison of re
onstru
tion results. Displayed images havea size of 200 × 200 pixels. (a) is the referen
e image, (b) is the noisy observedimage, (
) is the image re
onstru
ted with the parameters obtained by the disjointminimization of the ground truth distortion and (d) is the image re
onstru
ted withthe parameters obtained by the joint optimization, performed using Algorithm 1, ofthe model-based estimated distortion. The 
oding rate is 2.5 bits/pixel. The imagerange has been extended to point up the image re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 4.11: Visual 
omparison of re
onstru
tion results. Displayed images havea size of 200 × 200 pixels. (a) is the referen
e image, (b) is the noisy observedimage, (
) is the image re
onstru
ted with the parameters obtained by the disjointminimization of the ground truth distortion and (d) is the image re
onstru
ted withthe parameters obtained by the joint optimization, performed using Algorithm 1, ofthe model-based estimated distortion. The 
oding rate is 2.5 bits/pixel. The imagerange has been extended to point up the image re
onstru
tion artifa
ts.
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al studyFor this reason, we will propose in Chapter 5 an alternative te
hnique to performthe global optimization.4.2.2 Optimization of the on-board 
hain4.2.2.1 Presentation of the imaging 
hainAs mentioned in the beginning of Se
tion 4.2, we also studied the imaging 
hain inthe 
ase the denoising is performed before 
oding, as illustrated on Fig. 4.12. Forthis imaging 
hain, the transmitted image is the denoised one and the �nal imageis the one obtained after de
oding (we will dis
uss in Se
tion 4.2.3 the ne
essity ofusing a se
ond denoising step after de
oding).
Figure 4.12: Considered on-board imaging 
hainSimilarly to the 
hain presented in Se
tion 4.2.1, the instrumental image y is adeteriorated version of the original image x where an additive instrumental noise zhas been added. The wavelet subbands of the instrumental image are again denoted

wy,j, j ∈ {0, . . . , J − 1}. The restored and quantized version of these subbands arerespe
tively denoted wx̃,j and wx̂,j.Let wb,j be the 
oding error of the subband j
wb,j = Q(wx̃,j) − wx̃,j. (4.47)We have

wx̂,j = Q(wx̃,j) = wx̃,j + wb,j

=
wy,j

1 + λj
+ wb,j

=
wx,j

1 + λj
+

wz,j

1 + λj
+ wb,j

=
wx,j

1 + λj
+ wε,j, (4.48)where wε,j =

wz,j

1+λj
+ wb,j is the global error. We detail in the next part how toformulate an expression of the global distortion.4.2.2.2 De
orrelation hypothesisThe de
orrelation hypothesis (4.9) will also be used to 
ompute the global distortionof the imaging 
hain presented Fig. 4.12. The main di�eren
e is that the quantizedimage is now the restored one. As a 
onsequen
e of this restoration, the standard
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hain 71deviation of the instrumental noise is divided by a fa
tor 1+λj , see Eq. (4.48). Wehave
σ

′

wz,j
=

σwz,j

1 + λj
, (4.49)where σ′

wz,j
is the standard deviation of the residual instrumental noise. Weknow from (4.12) that the de
orrelation hypothesis (4.9) is valid only if the standarddeviation of the noise presented at the input of the quantizer is greater than half ofthe quantizing step, i.e.

σ
′

wz,j
>

∆j

2
. (4.50)From (4.49) and (4.50), the 
ondition (4.9) will now be veri�ed if the followingstatement is true

σwz,j
>

∆j

2
(1 + λj). (4.51)In 
omparison to the on-ground imaging 
hain studied in Se
tion 4.2.1, we seethat a fa
tor (1 + λj) has been introdu
ed in the 
ondition (4.51). As λj > 0,∀j ∈

{0, . . . , J−1}, the de
orrelation hypothesis (4.9) may then be more di�
ult to verifyin the 
ase of the on-board imaging 
hain. If the instrumental noise z meets thedithering noise requirements, we also have [Wannamaker 2000℄
E [Wε,j] = 0, (4.52)

E
[

‖Wε,j‖2
]

= Nj

σ2
wz,j

(1 + λj)2
+Nj

∆2
j

12
. (4.53)4.2.2.3 Analysis of the global distortionSimilarly to the analysis of the global distortion performed in Se
tion 4.2.1.3, theglobal rate-allo
ation problem 
onsists in �nding the sets {λ∗j} and {∆∗

j} of optimalparameters whi
h solve
{λ∗j}, {∆∗

j} = arg min D ({λj}, {∆j})subje
t to R ({λj}, {∆j}) ≤ Rc,

λj > 0,∀j ∈ {0, . . . , J − 1}
∆j > 0,∀j ∈ {0, . . . , J − 1}

. (4.54)
Again, we need to express the mean global distortion D and the global 
odingrate R as a fun
tion of the sets of regularizing parameters {λj} and quantizing steps

{∆j} for the on-board imaging 
hain presented Fig. 4.12.Proposition 4. If σwz,j
veri�es hypothesis (4.51) for ea
h j ∈ {0, . . . , J − 1}, thenthe mean global distortion D of the imaging 
hain displayed Fig. 4.12 writes

D({λj}, {∆j}) =
J−1
∑

j=0

πjajλ
2
j

(1 + λj)2
σ2

wx,j
+

πjaj

(1 + λj)2
σ2

wz,j
+ πjaj

∆2
j

12
, (4.55)where
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aj =

Nj

N
, (4.56)is the weight of the subband j in the whole image.Proof. As shown previously, the global distortion 
an be written as

D({λj}, {∆j}) =
1

N

J−1
∑

j=0

πjE
(

‖Wx,j −Wx̂,j‖2
)

, (4.57)where πj are weighting 
oe�
ients whi
h depend on the �lters and the de
i-mation fa
tors used in the wavelet transform [Usevit
h 1996℄. In the 
ase of thestudied imaging 
hain displayed Fig. 4.12, the �nal image is the output of the
oding/de
oding and, from (4.48), writes
wx̂,j =

wx,j

1 + λj
+wε,j. (4.58)From (4.57), (4.58) and using the moments de
orrelation hypothesis (4.9), wededu
e the global distortion

D({λj}, {∆j}) =
1

N

J−1
∑

j=0

πjλ
2
j

(1 + λj)2
E
(

‖Wx,j‖2
)

+ πjE
(

‖Wε,j‖2
)

. (4.59)Finally, the global distortion (4.59) 
an be further developed using the results(4.53) to obtain the expression (4.55).The se
ond part of the global rate-allo
ation problem (4.54) requires the expres-sion of the global 
oding rate R. This rate 
an be expressed as the weighted sum ofthe rate in ea
h subband Rj , estimated by its entropy [Shannon 1948℄
R({λj}, {∆j}) =

J−1
∑

j=0

ajRj(∆j), (4.60)where aj is given in (4.56) and
Rj(∆j) = −

+∞
∑

m=−∞
Pwx̃,j

(m,∆j) log2

(

Pwx̃,j
(m,∆j)

)

, (4.61)where Pwx̃,j
(m,∆j) is the probability to get the symbol m whi
h depends on thedensity probability fun
tion pwx̃,j

of the subband wx̃,j and on the quantizing step
∆j

Pwx̃,j
(m,∆j) =

∫ m∆j+
∆j

2

m∆j−
∆j

2

pwx̃,j
(wx̃,j)dwx̃,j. (4.62)From Se
tion 4.1.1, we assume that ea
h wavelet subband follows the generalized
entered Gaussian distribution law de�ned in (4.1), where the parameters σ2

wx̃,j
and

αwx̃,j
of the distribution law will be estimated using the kurtosis-based te
hniqueproposed in [Kasner 1999℄.
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hain 73Proposition 5. The global rate-distortion optimization problem (4.54) 
an be solvedby maximizing
L(τ) = inf φτ ({∆j}, {λj})

λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}

, (4.63)with respe
t to τ > 0 and where
φτ ({∆j}, {λj}) =

J−1
∑

j=0

πjajλ
2
j

(1 + λj)2
σ2

wx,j
+

πjaj

(1 + λj)2
σ2

z + πjaj

∆2
j

12

+ τ





J−1
∑

j=0

ajRj(∆j) −Rc



 . (4.64)Proof. This proof is similar to the one given in proposition 2 where the globaldistortion D is now given by (4.55).We detail in the next part how to solve problem (4.54) for the on-board imaging
hain.4.2.2.4 Global rate-distortion-denoising optimizationUsing proposition 5, the optimization problem (4.54) be
omes
{∆∗

j}, {λ∗j} = max
τ>0















inf φτ ({∆j}, {λj})
λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}















. (4.65)where φτ is given in (4.64). We 
an show that a solution of problem (4.65) existsand is unique (see Appendix A.3). To �nd this solution, we propose to use the te
h-nique presented in Se
tion 4.2.2.4 and based on the resolution of the simultaneousequations obtained from the KKT 
onditions [Kuhn 1951℄ of problem (4.65).Proposition 6. The KKT 
onditions of problem (4.65) admits only one solution({λ∗j}, {∆∗
j}, τ∗) whi
h veri�es

λ∗j =
σ2

z

σ2
wx,j

, ∀j ∈ {0, . . . , J − 1} (4.66)
πj∆

∗
j

6
+ τ∗

∂Rj

∂∆j
(∆∗

j ) = 0, ∀j ∈ {0, . . . , J − 1} (4.67)
J−1
∑

j=0

ajRj(∆
∗
j ) = Rc. (4.68)
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al studyProof. From the KKT 
onditions of problem (4.65), we get (see Appendix A.3)
∂φ(∆∗

j , λ
∗
j , τ

∗)

∂∆j
=
ajπj∆

∗
j

6
+ τ∗aj

∂Rj

∂∆j
(∆∗

j) = 0 (4.69)
∂φ(∆∗

j , λ
∗
j , τ

∗)

∂τ
=

J−1
∑

j=0

ajRj(∆
∗
j ) −Rc = 0 (4.70)

∂φ(∆∗
j , λ

∗
j , τ

∗)

∂λj
=

12ajπjλ
∗
jσ

2
wx,j

− 12ajπjσ
2
z

6(1 + λ∗j)
3

= 0 (4.71)(4.72)with
∂Rj

∂∆j
(∆j) = − 1

log(2)

+∞
∑

m=−∞

[

1 + log
(

Pwx̃,j
(m,∆j)

)]

×
[

pwx̃,j

(

m∆j +
∆j

2

)(

m+
1

2

)

− pwx̃,j

(

m∆j −
∆j

2

)(

m− 1

2

)]

. (4.73)The expression (4.66) and 
onditions (4.67) and (4.68) on the optimal parametersdire
tly follow from the optimality 
onditions (4.69). The existen
e and uniquenessof these parameters is detailled in Appendix A.3.As we 
an see from (4.67) and (4.68), the parameters {∆∗
j} and τ∗ still 
an notbe 
omputed in 
losed-form and will be estimated numeri
ally using binary sear
halgorithms of pre
ision ρ = 0.1. The 
ase of the low frequen
y subband (j = J − 1)will be also pro
essed di�erently to prevent ex
essive quantizing on these 
oe�
ients.We set

∆∗
J−1 = 1, (4.74)
λ∗J−1 =

σ2
z

σ2
wx,J−1

. (4.75)Finally, the joint optimization pro
edure for solving problem (4.54) is given inthe Algorithm 2. We do not in
lude here the results of this algorithm as we havealready shown in Se
tion 4.2.1.5 that the proposed method was e�
ient to formulatean estimation of the global distortion for the on-ground imaging 
hain. Using anon-board restoration does not however a�e
t the reliability of the proposed method,as shown in Se
tion 4.2.2.3. Instead, we will show some results of this algorithmin the se
tion dedi
ated to the 
omparison of the performan
es of the three 
hains(on-ground, on-board and hybrid that we present in the next part).4.2.3 Optimization of the hybrid 
hain4.2.3.1 Presentation of the imaging 
hainAs mentioned in the beginning of Se
tion 4.2.2.1, it may be interesting to extendthe on-board imaging 
hain by adding a supplementary denoising step, after 
oding,
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Algorithm 2 Global rate-distortion-denoising joint optimization algorithm for theon-board imaging 
hainSet τ = 1.Set ρ = 0.1.while ∣∣∣∑J−1
j=0 ajRj −Rc

∣

∣

∣ > ρ dofor j from 0 to J − 2 doSet ∆j = 1.Compute the value of the regularizing parameter λj from (4.66).while ∣∣
∣

πj∆j

6 + τ
∂Rj

∂∆j
(∆j)

∣

∣

∣
> ρ doIn
rease the value of ∆j .Compute the value of the regularizing parameter λj from (4.66).end whileend forSet ∆J−1 = 1.Compute the regularizing paramater λJ−1 from (4.75).if ∣∣∣∑J−1

j=0 ajRj −Rc

∣

∣

∣ > ρ thenIn
rease the value of τ .end ifend whileOutput the optimal regularizing parameters {λ∗j}.Output the optimal quantizing steps {∆∗
j}.
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al studyto redu
e the quantizing noise. This �hybrid� 
hain is depi
ted Fig. 4.13. Theinstrumental image y is still a deteriorated version of the original image x where anadditive instrumental noise z has been added.
Figure 4.13: Considered hybrid imaging 
hainThe wavelet subbands of the instrumental image are again denoted wy,j, j ∈

{0, . . . , J − 1} and their denoised version wx̃,j. The quantized version of thesedenoised subbands are denoted wx̌,j. An additional denoising algorithm S has beenadded at the end of the 
hain to redu
e the 
oding noise. This Algorithm is similarto the one used for the operator R and writes
wx̂,j =

wx̌,j

1 + µj
. (4.76)where wx̂,j is the �nal denoised subband and µj > 0 is a regularizing parameter.Let wb,j be the 
oding error of the subband j

wb,j = Q(wx̃,j) − wx̃,j. (4.77)We have
wx̌,j = Q(wx̃,j) = wx̃,j + wb,j

=
wy,j

1 + λj
+ wb,j

=
wx,j

1 + λj
+

wz,j

1 + λj
+ wb,j,and, from (4.76)

wx̂,j =
wx̌,j

1 + µj
,

=
wx,j

(1 + λj)(1 + µj)
+

wz,j

(1 + λj)(1 + µj)
+

wb,j

1 + µj
,

=
wx,j

(1 + λj)(1 + µj)
+ wε,j. (4.78)where wε,j =

wz,j

(1+λj )(1+µj ) +
wb,j

1+µj
is the global error. We detail in the next parthow to formulate an expression of the global distortion.4.2.3.2 De
orrelation hypothesisThe de
orrelation hypothesis (4.9) will also be used to 
ompute the global distortionof the imaging 
hain presented Fig. 4.13. It is important to note that the hybrid
hain is an extension of the on-board 
hain and only adds a post pro
essing after
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oding; all the on-board pro
ess remain therefore the same. From this remark,it seems 
lear that the 
ondition for the validity of the de
orrelation hypothesisremains identi
al and writes
σwz,j

>
∆j

2
(1 + λj). (4.79)If the instrumental noise z meets the dithering noise requirements, we have[Wannamaker 2000℄

E [Wε,j] = 0, (4.80)
E
[

‖Wε,j‖2
]

= Nj

σ2
wz,j

(1 + λj)2(1 + µj)2
+Nj

∆2
j

12(1 + µj)2
. (4.81)4.2.3.3 Analysis of the global distortionThe global rate-allo
ation problem 
onsists now in �nding the sets {λ∗j}, {µ∗j} and

{∆∗
j} of optimal parameters whi
h solve

{λ∗j}, {µ∗j}, {∆∗
j} = arg min D ({λj}, {µj}, {∆j})subje
t to R ({λj}, {∆j}) ≤ Rc,

λj > 0,∀j ∈ {0, . . . , J − 1}
∆j > 0,∀j ∈ {0, . . . , J − 1}
µj > 0,∀j ∈ {0, . . . , J − 1}

. (4.82)
In 
omparison to the analysis performed in Se
tion 4.2.2.3, the expression of theglobal distortion D 
hanges and is now fun
tion of two sets of regularizing param-eters {λj}, {µj} and, of 
ourse, is also fun
tion of the quantizing steps {∆j}. Theexpression of the global 
oding rate R remains however un
hanged as the denoisingstep that we introdu
ed a
ts after the 
oding step.Proposition 7. If σwz,j

veri�es hypothesis (4.79) for ea
h j ∈ {0, . . . , J − 1}, thenthe mean global distortion D of the imaging 
hain displayed Fig. 4.13 writes
D ({λj}, {µj}, {∆j}) =

J−1
∑

j=0

πj (λj + µj + λjµj)
2

(1 + λj)2(1 + µj)2
σ2

wx,j
+

πjaj

(1 + λj)2(1 + µj)2
σ2

wz,j

+ πjaj

∆2
j

12(1 + µj)2
, (4.83)where

aj =
Nj

N
, (4.84)is the weight of the subband j in the whole image.
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al studyProof. Using the orthogonality of wavelet subbands, the global distortion 
an beformulated as
D ({λj}, {µj}, {∆j}) =

1

N

J−1
∑

j=0

πjE
(

‖Wx,j −Wx̂,j‖2
)

, (4.85)where πj are weighting 
oe�
ients whi
h depend on the �lters and the de
i-mation fa
tors used in the wavelet transform [Usevit
h 1996℄. In the 
ase of thestudied imaging 
hain displayed Fig. 4.13, the �nal image is the output of these
ond denoising step whi
h, from (4.78), writes
wx̂,j =

wx,j

(1 + λj)(1 + µj)
+ wε,j. (4.86)From (4.85), (4.86) and using the moments de
orrelation hypothesis (4.9), wededu
e the global distortion

D ({λj}, {µj}, {∆j}) =
1

N

J−1
∑

j=0

πj (λj + µj + λjµj)

(1 + λj)2(1 + µj)2
E
(

‖Wx,j‖2
)

+ πjE
(

‖Wε,j‖2
)

.(4.87)Finally, the global distortion (4.87) 
an be further developed using the results(4.81) to obtain the expression (4.83).The se
ond part of the global rate-allo
ation problem (4.54) requires the expres-sion of the global 
oding rate R. As the on-board pro
esses of the hybrid imaging
hain remain the same, the 
oding rate R is given by (4.60) and (4.61).Proposition 8. The global rate-distortion optimization problem (4.82) 
an be solvedby maximizing
L(τ) = inf φτ ({∆j}, {µj}, {λj})

λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}
µj > 0, ∀j ∈ {0, . . . , J − 1}

, (4.88)
with respe
t to τ > 0 and where

φτ ({∆j}, {µj}, {λj}) =

J−1
∑

j=0

πjaj (λj + µj + λjµj)
2

(1 + λj)2(1 + µj)2
σ2

wx,j
+

πjaj

(1 + λj)2(1 + µj)2
σ2

wz,j

+ πjaj

∆2
j

12(1 + µj)2
+ τ





J−1
∑

j=0

ajRj(∆j) −Rc



 . (4.89)Proof. This proof is similar to the one given in proposition 2 where the globaldistortion D is given by (4.83) and R is given by (4.60) and (4.61).We detail in the next part how to solve problem (4.82) for the hybrid imaging
hain.
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hain 794.2.3.4 Global rate-distortion-denoising optimizationUsing proposition 8, the optimization problem (4.82) be
omes
{∆∗

j}, {µ∗j}, {λ∗j} = max
τ>0























inf φτ ({∆j}, {µj}, {λj})
λj > 0, ∀j ∈ {0, . . . , J − 1}
∆j > 0, ∀j ∈ {0, . . . , J − 1}
µj > 0,∀j ∈ {0, . . . , J − 1}























. (4.90)
where φτ is given in (4.89). The situtation here is slightly di�erent than theon-ground or on-board 
hains sin
e problem (4.82) does not have any solution (seeAppendix A.4). This means that we are not able to optimize in the same time theparameters of the two restorations (on-board and on-ground) used by this 
hain.We 
hosed therefore to enfor
e the value of λ∗j as the same than for the on-board
hain and we dedu
e the 
onditions of the three other parameters (see AppendixA.4)

λ∗j =
σ2

z

σ2
wx,j

, ∀j ∈ {0, . . . , J − 1} (4.91)
µ∗j =

∆∗
j
2

12σ2
wx,j

(

1 +
σ2

z

σ2
wx,j

)

, ∀j ∈ {0, . . . , J − 1} (4.92)
πj∆

∗
j

6
+ τ∗

∂Rj

∂∆j
(∆∗

j) = 0, ∀j ∈ {0, . . . , J − 1} (4.93)
J−1
∑

j=0

ajRj(∆
∗
j) = Rc. (4.94)As we 
an see from (4.93) and (4.94), the parameters {∆∗

j} and τ∗ still 
an notbe 
omputed in 
losed-form and will be estimated numeri
ally using binary sear
halgorithms of pre
ision ρ = 0.1. The 
ase of the low frequen
y subband (j = J − 1)will be also pro
essed di�erently to prevent ex
essive quantizing on these 
oe�
ients.We set
∆∗

J−1 = 1, (4.95)
λ∗J−1 =

σ2
z

σ2
wx,J−1

, (4.96)
µ∗J−1 =

1

12σ2
wx,J−1

(

1 +
σ2

z

σ2
wx,J−1

)

. (4.97)Sin
e the on-board denoising parameter has been �xed, the optimization algo-rithm 
an be dedu
ed from the one presented for the on-ground 
hain. We thereforeget the suboptimal algorithm presented in Algorithm 3. The results of this algo-rithm are given in Se
tion 4.3 whi
h is dedi
ated to the 
omparison of the threeimaging 
hains des
ribed in Se
tion 4.2.1, 4.2.2 and 4.2.3.
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Algorithm 3 Rate-distortion-denoising optimization algorithm for the hybrid imag-ing 
hainSet τ = 1.Set ρ = 0.1.while ∣∣
∣

∑J−1
j=0 ajRj −Rc

∣

∣

∣
> ρ dofor j from 0 to J − 2 doSet ∆j = 1.Compute the value of the regularizing parameters λj from (4.91) and µj from(4.92).while ∣∣∣πj∆j

6 + τ
∂Rj

∂∆j
(∆j)

∣

∣

∣ > ρ doIn
rease the value of ∆j .Compute the value of the regularizing parameters λj from (4.91) and µjfrom (4.92).end whileend forCompute the quantizing step ∆J−1 from (4.95).Compute the regularizing paramaters λJ−1 from (4.96) and µJ−1 from (4.97).if ∣∣
∣

∑J−1
j=0 ajRj −Rc

∣

∣

∣
> ρ thenIn
rease the value of τ .end ifend whileOutput the regularizing parameters {λ∗j} and {µ∗j}.Output the quantizing steps {∆∗

j}.



4.3. Comparison of the three imaging 
hains 814.3 Comparison of the three imaging 
hainsThis part is dedi
ated to the 
omparison of the three 
hain (on-ground, on-boardand hyrid) visually and in a rate-distortion sense. For this 
omparison, the referen
eimage (displayed Fig. 3.1) has been noised with an additive white Gaussian noisewhose standard deviation is equal to 10. The other parameters are the same thanthe ones des
ribed in Se
tion 4.2.1.5. For ea
h target rate, we simulate ea
h imaging
hain with the usual disjoint optimization te
hnique in 
omparison to the proposedjoint optimization algorithm.

Figure 4.14: Comparison of the disjoint optimized distortion (ground truth) to jointoptimized distortion (model-based estimation) for the three imaging 
hains, σz = 10.The obtained rate-distortion 
urve is given Fig. 4.14. Sin
e we simulate the
ase σz = 10, it is not suprising to observe that the joint optimization is slightlybetter than the disjoint optimization te
hnique, in terms of global distortion, onlyfor very high 
oding rates. This behavior is quite expe
ted for the simulated levelof instrumental noise sin
e, as mentioned previously, the validity of the proposedmethod depends on the power of the instrumental noise. For σz = 10, we 
learlyknow that the proposed approa
h will be valid only for high 
oding rates. However,for these rates, the 
oding step is almost transparent and therefore disjoint and jointoptimized te
hniques are almost the same. At low 
oding rates, the de
orrelationhypothesis does not hold anymore and the proposed method does not give a goodestimation of the global distortion.We also see on Fig. 4.14 that the on-board and on-ground 
hains give similarresults, the on-ground 
hain being slightly better in term of global distortion. Thisis a
tually not suprising if we look at the estimation of the global distortion (4.16)
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hain: A theoreti
al studyand (4.55), we see that one term is not attenuated by the regularizing term forthe on-board 
hain. This remark a
tually leaded us to propose the hybrid 
hain.But we see on Fig. 4.14 that the joint optimization of this 
hain does not givesatisfying results whi
h is not suprising sin
e the global optimization of this 
hainis not a
hievable (see Se
tion 4.2.3.4).The re
onstru
ted images are given Fig. 4.15 to 4.18. The value of the peaksignal-to-noise ration (PSNR) is given for indi
ation. It is de�nes, for 12 bits dy-nami
 images, by
PSNR(x, x̂) = 20 log10

(

4095
1
N
‖x− x̂‖2

)

, (4.98)where N is the number of pixels, x is the referen
e image and x̂ is the re
onstru
ted�nal image.The visual results are also similar, although we 
an observe on Fig. 4.16 asigni�
ant di�eren
e on the re
onstru
ted images. On this zone, we observe thatthe on-board 
hain gives an image with less blur and artifa
ts than the ones obtainedwith the other 
hains. This result may however di�er for other restoration algorithmssin
e we used a Wiener like te
hnique whi
h is well adapted to pro
ess Gaussiannoise but not 
oding noise.We �nally see that, visually, the re
onstru
ted image with the joint optimizationis better, for ea
h 
hain, than the one re
onstru
ted with the disjoint optimizationte
hnique. This result is a
tually quite surprising sin
e the simulated 
oding rateis 2.5 bpp for whi
h the dithering hypothesis does not hold anymore. This result isinteresting and suggests that, even for medium 
oding rates, the 
orrelation betweenthe global error and the sour
e may be negliged, su
h that our estimation of theglobal distortion also holds for this range of 
oding rates.To 
on
lude, we see that the obtained results point out on
e again that optimiz-ing 
oding and denoising separately is suboptimal and that the problem of imaging
hain design need to be treated in its globality. The proposed approa
h is inter-esting in this sense and allows to perform the optimization of the global 
hain, i.e.from the true s
ene to the �nal re
onstru
ted image. Some works need however tobe done to improve the proposed method and we address in the next se
tion thequestion of extending the proposed approa
h to the 
urrent imaging 
hain used bythe CNES.4.4 Extension of the proposed method to the CNESimaging 
hainThe 
urrent imaging 
hain used by the CNES di�ers from the one we used in this
hapter mainly on three points:
• the presen
e of the PSF whi
h requires a de
onvolution,
• the presen
e of the dead-zone on the quantizer,



4.4. Extension of the proposed method to the CNES imaging 
hain 83

(a) (b)
(
) (d) (e)
(f) (g) (h)Figure 4.15: Visual 
omparison of re
onstru
tion results. Displayed images have asize of 200 × 200 pixels. (a) is the referen
e image, (b) is the noisy observed image(PSNR = 52.25 dB). (
) and (d) are the images re
onstru
ted with the parametersobtained respe
tively by the disjoint minimization of the ground truth distortion(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion(PSNR = 45.81 dB) for the on-board 
hain. (e) and (f) are the images re
on-stru
ted with the parameters obtained respe
tively by the disjoint minimization ofthe ground truth distortion (PSNR = 46.99 dB) and by the joint optimization ofthe estimated distortion (PSNR = 44.47 dB) for the hybrid 
hain. (g) and (h) arethe images re
onstru
ted with the parameters obtained respe
tively by the disjointminimization of the ground truth distortion (PSNR = 47.01 dB) and by the jointoptimization of the estimated distortion (PSNR = 45.76 dB) for the on-ground
hain. The 
oding rate is 2.5 bits/pixel. The image range has been extended topoint up the image re
onstru
tion artifa
ts.
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(a) (b)
(
) (d) (e)
(f) (g) (h)Figure 4.16: Visual 
omparison of re
onstru
tion results. Displayed images have asize of 200 × 200 pixels. (a) is the referen
e image, (b) is the noisy observed image(PSNR = 52.25 dB). (
) and (d) are the images re
onstru
ted with the parametersobtained respe
tively by the disjoint minimization of the ground truth distortion(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion(PSNR = 45.81 dB) for the on-board 
hain. (e) and (f) are the images re
on-stru
ted with the parameters obtained respe
tively by the disjoint minimization ofthe ground truth distortion (PSNR = 46.99 dB) and by the joint optimization ofthe estimated distortion (PSNR = 44.47 dB) for the hybrid 
hain. (g) and (h) arethe images re
onstru
ted with the parameters obtained respe
tively by the disjointminimization of the ground truth distortion (PSNR = 47.01 dB) and by the jointoptimization of the estimated distortion (PSNR = 45.76 dB) for the on-ground
hain. The 
oding rate is 2.5 bits/pixel. The image range has been extended topoint up the image re
onstru
tion artifa
ts.
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(a) (b)
(
) (d) (e)
(f) (g) (h)Figure 4.17: Visual 
omparison of re
onstru
tion results. Displayed images have asize of 200 × 200 pixels. (a) is the referen
e image, (b) is the noisy observed image(PSNR = 52.25 dB). (
) and (d) are the images re
onstru
ted with the parametersobtained respe
tively by the disjoint minimization of the ground truth distortion(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion(PSNR = 45.81 dB) for the on-board 
hain. (e) and (f) are the images re
on-stru
ted with the parameters obtained respe
tively by the disjoint minimization ofthe ground truth distortion (PSNR = 46.99 dB) and by the joint optimization ofthe estimated distortion (PSNR = 44.47 dB) for the hybrid 
hain. (g) and (h) arethe images re
onstru
ted with the parameters obtained respe
tively by the disjointminimization of the ground truth distortion (PSNR = 47.01 dB) and by the jointoptimization of the estimated distortion (PSNR = 45.76 dB) for the on-ground
hain. The 
oding rate is 2.5 bits/pixel. The image range has been extended topoint up the image re
onstru
tion artifa
ts.
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(a) (b)
(
) (d) (e)
(f) (g) (h)Figure 4.18: Visual 
omparison of re
onstru
tion results. Displayed images have asize of 200 × 200 pixels. (a) is the referen
e image, (b) is the noisy observed image(PSNR = 52.25 dB). (
) and (d) are the images re
onstru
ted with the parametersobtained respe
tively by the disjoint minimization of the ground truth distortion(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion(PSNR = 45.81 dB) for the on-board 
hain. (e) and (f) are the images re
on-stru
ted with the parameters obtained respe
tively by the disjoint minimization ofthe ground truth distortion (PSNR = 46.99 dB) and by the joint optimization ofthe estimated distortion (PSNR = 44.47 dB) for the hybrid 
hain. (g) and (h) arethe images re
onstru
ted with the parameters obtained respe
tively by the disjointminimization of the ground truth distortion (PSNR = 47.01 dB) and by the jointoptimization of the estimated distortion (PSNR = 45.76 dB) for the on-ground
hain. The 
oding rate is 2.5 bits/pixel. The image range has been extended topoint up the image re
onstru
tion artifa
ts.
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• and the denoising whi
h is usually performed using shrinkage estimators in-stead of Wiener like te
hniques.Introdu
ing a de
onvolution in the restoration algorithm that we used may bethe easiest point to a
hieve. A de
onvolution is usually performed in the Fourierdomain and we expressed our global distortion in the wavelet domain. Moving fromone domain to the other one may be di�
ult so one way to in
lude this de
onvolutionis to use a wavelet pa
ket denoising su
h that the variation of frequen
y inside apa
ket is low enough to be approximated by a 
onstant. The de
onvolution 
ouldthen be approximated, for ea
h pa
ket, as a division by this 
onstant.The presen
e of a dead-zone in the quantizer is also a point that may be ad-dressed. Theoreti
ally, the dead-zone of the quantizer prevents the moments of theglobal error to be de
orrelated to the moments of the sour
e, as the dithering hy-pothesis requires an equally spa
ed quantizer. We are however 
on�dent that the
orrelation introdu
ed by this dead-zone may be negliged su
h that the proposedapproa
h 
an still be applied.The main di�
ulty for extending this work to the imaging 
hain used by theCNES 
omes from the use of shinkage estimators. The non-linearity of these esti-mators makes our approa
h very di�
ult to extend to this 
ase. Moreover, the la
kof statisti
s on the re
onstru
ted image of these estimators 
omplexify the problemof global distortion estimation.For these reasons, we propose in the next 
hapter a di�erent approa
h to performthe global optimization of the 
hain.4.5 Con
lusions and perspe
tivesWe studied in this 
hapter the global optimization of the 
hain from a theoreti
alpoint of view. We 
onsidered a simple 
ase of imaging 
hain and we proposed ate
hnique to estimate the global distortion. We also presented an algorithm to getthe optimal 
oding and denoising parameters by minimizing the estimated globaldistortion with respe
t to the parameters of the 
hain, given a target 
oding rate.We simulated this joint optimization te
hnique on a satellite image and weshowed this approa
h allows a signi�
ant improvement on the quality of the �-nal image. In detail, our joint 
oding/denoising optimization approa
h 
an eitherallows to rea
h the same quality at lower rates or to improve the quality of there
onstru
ted �nal image for the same rates, in 
omparison to the image obtainedusing the 
lassi
al disjoint optimization te
hnique. The main 
on
lusion obtainedin this 
hapter is that the quality of the �nal image 
an be highly improved if weaddress the problem of the satellite imaging 
hain optimization in its globality andthe proposed method is interesting in this sense.We also developed our study to three 
on�gurations of the imaging 
hain wherethe restoration is either performed after 
oding, before 
oding or splitted in twoparts: One part before 
oding and one part after 
oding. The 
omparison of these
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hain: A theoreti
al studythree imaging 
hains showed that it is more interesting, in term of image quality, topla
e the restoration before 
oding, i.e. on-board of the satellite.The imaging 
hain that we 
onsidered remains however simple and is far fromthe true satellite imaging 
hain whi
h is mu
h more 
omplex. We dis
ussed inChapter 4.4 the main di�eren
es between the 
onsidered imaging 
hain and thesystem 
urrently used by the CNES. The main di�
ulty to extend our method tothat 
hain 
omes from the shrinkage-based restoration algorithm used by the CNES.Due to the la
k of statisti
s on this type of algorithm, it seems highly di�
ult toformulate an expression of the �nal image. This however may be a
hieved if oneallows to introdu
e more prior information that we used in this 
hapter.



Chapter 5Numeri
al optimization of the
hain
In the previous 
hapter we presented a method to perform, under simplifying hy-potheses, a global joint optimization of the imaging 
hain whi
h showed signi�
antimprovements on the visual quality of the �nal image. This method is however dif-�
ult to extend to the true imaging 
hain of a satellite, due to the non-stationarityof the instrumental noise, the non-linearity of the restoration te
hnique and thepresen
e of a dead-zone on the quantizer.Although we are not able to express the global distortion as a fun
tion of theparameters of the 
hain, we will show in Se
tion 5.1 that a global optimization 
anbe approximately performed by simply shifting the position of the restoration in the
hain. Tuning the parameters of the restoration is however theoreti
ally di�
ult sowe propose in this part to address this question numeri
ally. This 
hapter fo
ussesthen on the global study of the satellite imaging 
hain, but mainly from a numeri
alpoint of view. We will �rst present in Se
tion 5.1 numeri
al experiments to improvethe quality of the �nal image by 
hanging the position and the te
hnique used forthe restoration step. For visual 
onsiderations, we will show then in Se
tion 5.2 howto deal with the stru
tured artifa
ts of the 
oding noise. We 
on
lude in Se
tion 5.4and give perspe
tives of the study.5.1 Global optimization using on-board restorationAs mentioned in the introdu
tion of the thesis (see Se
tion 1.1), the initial global op-timization problem 
onsists in �nding the optimal 
oding/de
oding C∗ and restora-tion T ∗ whi
h minimizes on average some measure D of the distan
e between thetrue s
ene x and the restored �nal image x̂ = T (C(y)), under the 
onstraint thatthe 
oding rate R(C(y)) does not ex
eed the target 
oding rate

C∗, T ∗ = arg min E [D(x, T (C(y)))]subje
t to C, T

R(C(y)) ≤ Rc

. (5.1)Problem (5.1) is highly 
omplex to solve as it looks for the optimal 
oding C∗ andrestoration T ∗ without any knowledge on the true image x and for any distan
e D.Clearly, solving (5.1) is very di�
ult to a
hieve in a general 
ontext. The authorsof [Wolf 1970℄ have however shown that some simpli�
ations 
an be made if the
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al optimization of the 
haindistan
e D is the mean square error (MSE). The main result of [Wolf 1970℄ statesthat, in the 
ase of the MSE, the global distortion 
an be separated in two terms asfollows
D = E

[

‖x− T (C(y))‖2
2

]

= E
[

‖x− E[x|y]‖2
2

]

+ E
[

‖E[x|y] − T (C(y))‖2
2

]

, (5.2)where E[x|y] is the 
onditional expe
tation of the original image x knowing thenoisy one y. The image E[x|y] is the best (in the MSE sense) estimator of the originalimage x from y. As this image does not depend on the on-ground restoration or the
ompression te
hnique used, the minimal distortion D∗ then writes [Wolf 1970℄
D∗ = E

[

‖x−E[x|y]‖2
2

]

+ min E
[

‖E[x|y] − T (C(y))‖2
2

]subje
t to C, T

. (5.3)We see that the global distortion 
an be expressed and optimized with respe
t tothe image E[x|y] instead of the original image x. Note that the problem (5.3) is notsimpler to solve as the 
omputation of the image E[x|y] is usually not a

essible.As mentioned previously, the image E[x|y] represents the restoration of the trueimage x from the instrumental one y. It is then very tempting to think that this idealimage is a
tually the result of the restoration T , moved on-board of the satellite,i.e. before 
oding (see Fig. 5.1). From this remark, we then propose to 
onsider theMSE as the distan
e D and to use the results of [Wolf 1970℄ on the problem (5.1).We further repla
e E[x|y] by T (y) su
h that the global optimization problem (5.1)
an be approximatively written as
C∗, T ∗ = arg min E

[

‖T (y) − C(T (y))‖2
2

]subje
t to C, T

R(C(T (y))) ≤ Rc

. (5.4)It is 
ertain that the problem (5.4) is not stri
tly equal to the initial optimizationproblem (5.1). Problem (5.4) seems however easier to treat as ea
h variable 
analmost be optimized separately. If T is �xed, problem (5.4) looks then for the optimal
oder C∗ whi
h minimizes the 
oding error under the 
onstraint that the 
oding ratedoes not ex
eed the target 
oding rate. This problem is well-known and referred asthe 
oding rate-allo
ation problem [Shannon 1948℄ whi
h has been addressed a lot inthe 
oding 
ommunity [Antonini 1992℄, [Ortega 1998℄, [Berger 1971℄ and referen
estherein.To be 
lear, the global joint optimization problem (5.1) is very di�
ult to ad-dress. But, in our opinion, we believe that moving the restoration on-board allows tooptimize the global imaging 
hain by optimizing separately ea
h pro
ess (restorationand 
oding) 1. Moreover, the fa
t that ea
h pro
ess needs to be optimized separatelya
tually �ts how these parts have been originally designed. This strengthens our1If we go ba
k to the theoreti
al study of the 
hain, in Se
tion 4.2.2.4, we observe that theoptimal parameters of the on-board 
hain are independent of ea
h others, whi
h is not the 
ase ofthe on-ground 
hain
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Figure 5.1: On-board restoration based satellite imaging 
hain.idea that moving the restoration on-board is a
tually a reliable method to performthe global optimization. So one way (but again this is not the only one) to addressthe problem of global joint optimization (5.1) is to use an on-board restoration su
hthat the global optimization problem 
an be approximatively splitted in two inde-pendent ones. The �rst problem is to optimize the on-board restoration su
h that itis 
lose to E[x|y]. The se
ond problem is to design a 
oder C whi
h minimizes the
oding error. As mentioned previously, the latter has been the fo
us of intense workin the imaging 
ommunity. So the di�
ulty here is to evaluate how 
lose to E[x|y]is T (y). As the ideal image E[x|y] depends on the original image x and is thereforenot a

essible, we will simulate several state-of-the-art restoration algorithms andobserve their impa
t on the global distortion and on the quality of the re
onstru
tedimage. This is the fo
us of the next part.5.1.1 Comparison of on-board and on-ground 
hainsWe are 
onsidering the on-board 
hain displayed Fig. 5.1 in 
omparison to the
lassi
al on-ground one illustrated Fig. 5.2 for several restoration algorithms.For the simulation, the 
oding step is �xed and is performed using the methodproposed in [CCSDS 2005℄ whi
h is the basis of satellite embedded 
oding algo-rithms. For example, the te
hnique implemented on-board of the re
ent PLEIADES-HR satellite is an extension of the method proposed in [CCSDS 2005℄. To be 
on-
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Figure 5.2: On-ground restoration based satellite imaging 
hain.



5.1. Global optimization using on-board restoration 93sistent with the te
hnique used by the CNES, we only fo
us here on restorationte
hniques whi
h pro
ess the image in two steps (we do not in
lude the methodsbased on a variational framework su
h as [Be
t 2004℄) as follows. First, a dire
tde
onvolution is performed using the target point spread fun
tion (PSF) providedby the CNES. This de
onvolution tends to in
rease the power of the instrumentalnoise su
h that a post-pro
essing denoising is always required as the se
ond step. Awavelet pa
ket de
omposition [Kalifa 2003b℄ is usually used for this denoising as it�ts the frequential 
hara
teristi
s of the de
onvolved noise [Lier 2008℄. However, an-other important point to take into a

ount for an e�
ient denoising is the de
reaserate of re
onstru
tion error from theM largest wavelet 
oe�
ients [Patel 2009℄. Thefaster the re
onstru
tion error de
reases, the better the denoising is. And on thispoint, a wavelet pa
ket transform may not be optimal [Mallat 2008℄.We propose here to perform the denoising using a variant of the wavelet trans-form named the Shearlet transform [Labate 2005℄. A wavelet transform 
an berepresented using a matrix with dyadi
 shifts and dilations as 
oe�
ients. As men-tioned in Se
tion 3.2.1, it is 
lassi
ally extented to the two dimensional 
ase usingseparable wavelets whi
h pro
ess ea
h dimension of the image independently. Thematrix representation of a two dimensional wavelet transform is therefore diago-nal. The Shearlet transform presented in [Labate 2005℄ proposes instead to use anon-diagonal matrix and more spe
i�
ally 
onsiders a �shear� matrix. A shear ma-trix is a matrix that 
ombines operations along its rows and 
olumns. This impliesthat a Shearlet transform uses 
ombinations of shifts and dilations of ea
h dimen-sion of the image. This o�ers the ability to 
apture oriented details and is, amongthe 
ontourlets [Do 2005℄ and the 
urvelets [Candès 2006a℄, an optimal transform(in term of re
onstru
tion error de
reasing rate with respe
t to the number of re-tained 
oe�
ients) for the representation of images [Patel 2009℄. A de
onvolutionmethod based on the Shearlet transform has been proposed in [Patel 2009℄. We willtherefore 
ompare the method [Patel 2009℄ to the 
urrent state-of-the-art restora-tion methods su
h as the ForWarRD method [Neelamani 2004℄, whi
h performs ade
onvolution followed by a regularization in both the Fourier and wavelet domains,or the method based on a Stein blo
k thresholding [Chesneau 2010℄ whi
h performsthe regularization in the Vaguelet-Wavelet domain followed by an adaptive blo
kthresholding.We simulate both on-board and on-ground 
hains on the image presented Fig.5.3 using the mentioned restoration algorithms. The re
onstru
ted images will be
ompared to the ones provided by the CNES whi
h, as mentioned in Se
tion 3.3.2,uses an on-ground restoration based on a dire
t de
onvolution followed by a waveletpa
ket thresholding. For the numeri
al experiments, the threshold parameters havebeen 
hosen su
h that the MSE is minimized. An exhaustive sear
h of these pa-rameters has been used to a
hieve this goal. In this simulation, the original image
x is known and the MSE 
an thus be 
omputed. Note that in a real environment,unbiased estimators of the MSE exist and do not require the knowledge of the trueimage [Ramani 2008℄. Other estimators su
h as generalized 
ross validation (GCV)te
hniques [Golub 1979℄ may also be used.
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Figure 5.3: Referen
e image, Cannes harbour (12 bits, 30 
m resolution, 1024×1024pixels).



5.1. Global optimization using on-board restoration 95The quality of the re
onstru
tion results will be estimated both visually andnumeri
ally using the PSNR 
riterion de�ned in (4.98). To evaluate visually theperforman
es of these algorithms, we will only display the re
onstru
ted images forthe a
quisition parameters des
ribed by the operating point 62 (whose SNR is 30-
100 and target 
oding rate is 2.5 bpp) in Table 3.1, page 35. This operating pointis very interesting to visually test the e�
ien
y of the restoration algorithms sin
eit gives the worst-
ase simulation parameters: An instrumental noise with a highstandard deviation (low SNR 30 − 100) and a low 
oding rate (2.5 bits/pixel).

Figure 5.4: Rate-distortion 
omparison of on-board and on-ground 
hains in ref-eren
e to the method 
urrently used by the CNES. The simulated SNR is 30-100.The 
omparison of the on-board and on-ground 
hains in a rate-distortion senseis given Fig. 5.4 to 5.6 for the di�erent restoration algorithms and for di�erentsimulated signal-to-noise ratios. We 
an see that for the simulated restoration te
h-niques, an on-board 
hain always performs better than its on-ground variants. Atlow 
oding rate, the di�eren
e between the two 
hains rea
hes almost 1 dB. We 
analso observe that ea
h restoration te
hnique outperforms the restoration te
hniqueused by the CNES in terms of PSNR. For a 
oding rate of 2.5 bpp, the improvement,in terms of PSNR, of these methods over the method of the CNES varies between 1and 1.5 dB. Note that the PSNR of the method used by the CNES is almost 
on-stant after the 
oding rate of 2.5 bits/pixel as this te
hnique leaves some residualnoise to give the image a physi
al sense. This residual noise simulates the instru-mental noise that one obtains at the output of a sensor. This phenomenon onlyappears from 2.5 bits/pixel, as at this rate the en
oder starts to e�
iently en
odethe instrumental noise instead of removing it. Also note that this image 
hara
ter-
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Figure 5.5: Rate-distortion 
omparison of on-board and on-ground 
hains in ref-eren
e to the method 
urrently used by the CNES. The simulated SNR is 30-150.

Figure 5.6: Rate-distortion 
omparison of on-board and on-ground 
hains in ref-eren
e to the method 
urrently used by the CNES. The simulated SNR is 50-150.
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 is highly appre
iated by image analysis experts. This feature will be the basisof the method proposed in Se
tion 5.3 to remove the 
oding artifa
ts inherent inwavelet-based 
ompression systems.Among the simulated te
hniques, the ForWarRD restoration algorithm[Neelamani 2004℄ gives the best PSNR for all 
oding rates. The di�eren
e withother methods is however very small su
h that it is di�
ult to 
on
lude only fromthe rate-distorsion 
urves. To better evaluate the di�eren
es between these algo-rithms, we show visual results on the Fig. 5.7 to 5.10.We 
an 
he
k on Fig. 5.7 for example that the on-board 
hain gives edges whi
hare slightly more blurred than the on-ground 
hain (parti
ularly visible around theedges of buildings). This is due to the fa
t that the edges of the image have beenenhan
ed by the de
onvolution. The high frequen
y subbands require then morebits to be properly en
oded.It is a
tually di�
ult to 
on
lude on the di�eren
e between the two 
hains asthey both give similar results, although the on-ground one seems to perform betteron low intensity areas. For example, on Fig. 5.9, we see that the on-board 
hainre
onstru
ts an image whi
h is more blurred (see the small square element at thebottom of the �gure) than the one we would have obtained with an on-ground 
hain(see also �gure 5.7). The on-board 
hain presents however the advantage to separatethe pro
ess of 
oding noise removal and we will exploit this ability later in Se
tion5.3.Visually, the Stein blo
k thresholding restoration te
hnique [Chesneau 2010℄does not give satisfying results and tends to oversmooth the image. If we observe there
onstru
ted images (Fig. 5.7 and 5.9 for example), we 
an verify that all the smalldetails are lost. The ForWaRD method [Neelamani 2004℄ seems also to su�er fromthe same behavior and provides slightly smooth re
onstru
ted images. The methodbased on the Shearlets [Patel 2009℄ seems to be slightly superior in term of imagequality. This method give satisfying results and re
over the small details of theimage without giving too many artifa
ts. A deeper evaluation of the re
onstru
tedimages, by image analysis experts, may be however required to 
on�rm this result.Finally, we see that many 
oding artifa
ts still appear in the re
onstru
ted im-ages. This phenomenon is parti
ularly visible on the re
onstru
tion results of theon-board 
hain as the 
oding noise is not treated at all by this 
hain. The on-board
hain may be therefore penalized by the presen
e of these artifa
ts, so we present inthe next part some of the state-of-the-art pro
essing methods to redu
e these 
odingartifa
ts.5.2 Coding noise removalAs mentioned in Se
tion 5.1.1, the 
oding step of the imaging 
hain degrades thequality of the transmitted image by introdu
ing stru
tured artifa
ts. These arti-fa
ts are due to the quantizing pro
ess of the 
oder whi
h sets to zero the wavelet
oe�
ients of low magnitude. This a
tion of quantizing to zero 
an be interpretated
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(a) (b) (
)
(d) (e) (f)
(g) (h) (i)Figure 5.7: Visual 
omparison of on-board and on-ground 
hains. Displayed imageshave a size of 200 × 200 pixels. (a) is the referen
e image, (b) is the instrumentalimage (output of the a
quisition, PSNR = 32.69 dB), (
) is the re
onstru
ted imageprovided by the CNES (PSNR = 45.93 dB), (d) and (e) are the re
onstru
tedimages respe
tively from the Shearlets based on-board (PSNR = 46.80 dB) andon-ground (PSNR = 46.69 dB) 
hains, (f) and (g) are the re
onstru
ted imagesrespe
tively from the blo
k thresholding based on-board (PSNR = 46.46 dB) andon-ground (PSNR = 46.24 dB) 
hains, (h) and (i) are the re
onstru
ted imagesrespe
tively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground (PSNR = 47.05 dB) 
hains. The target rate is 2.5 bits/pixel and thesimulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b) (
)
(d) (e) (f)
(g) (h) (i)Figure 5.8: Visual 
omparison of on-board and on-ground 
hains. Displayed imageshave a size of 200 × 200 pixels. (a) is the referen
e image, (b) is the instrumentalimage (output of the a
quisition, PSNR = 32.69 dB), (
) is the re
onstru
ted imageprovided by the CNES (PSNR = 45.93 dB), (d) and (e) are the re
onstru
tedimages respe
tively from the Shearlets based on-board (PSNR = 46.80 dB) andon-ground (PSNR = 46.69 dB) 
hains, (f) and (g) are the re
onstru
ted imagesrespe
tively from the blo
k thresholding based on-board (PSNR = 46.46 dB) andon-ground (PSNR = 46.24 dB) 
hains, (h) and (i) are the re
onstru
ted imagesrespe
tively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground (PSNR = 47.05 dB) 
hains. The target rate is 2.5 bits/pixel and thesimulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b) (
)
(d) (e) (f)
(g) (h) (i)Figure 5.9: Visual 
omparison of on-board and on-ground 
hains. Displayed imageshave a size of 200 × 200 pixels. (a) is the referen
e image, (b) is the instrumentalimage (output of the a
quisition, PSNR = 32.69 dB), (
) is the re
onstru
ted imageprovided by the CNES (PSNR = 45.93 dB), (d) and (e) are the re
onstru
tedimages respe
tively from the Shearlets based on-board (PSNR = 46.80 dB) andon-ground (PSNR = 46.69 dB) 
hains, (f) and (g) are the re
onstru
ted imagesrespe
tively from the blo
k thresholding based on-board (PSNR = 46.46 dB) andon-ground (PSNR = 46.24 dB) 
hains, (h) and (i) are the re
onstru
ted imagesrespe
tively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground (PSNR = 47.05 dB) 
hains. The target rate is 2.5 bits/pixel and thesimulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b) (
)
(d) (e) (f)
(g) (h) (i)Figure 5.10: Visual 
omparison of on-board and on-ground 
hains. Displayed imageshave a size of 200 × 200 pixels. (a) is the referen
e image, (b) is the instrumentalimage (output of the a
quisition, PSNR = 32.69 dB), (
) is the re
onstru
ted imageprovided by the CNES (PSNR = 45.93 dB), (d) and (e) are the re
onstru
tedimages respe
tively from the Shearlets based on-board (PSNR = 46.80 dB) andon-ground (PSNR = 46.69 dB) 
hains, (f) and (g) are the re
onstru
ted imagesrespe
tively from the blo
k thresholding based on-board (PSNR = 46.46 dB) andon-ground (PSNR = 46.24 dB) 
hains, (h) and (i) are the re
onstru
ted imagesrespe
tively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground (PSNR = 47.05 dB) 
hains. The target rate is 2.5 bits/pixel and thesimulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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hainas taking the original wavelet 
oe�
ients summed with negative impulses (wherethe magnitude of the impulses is equal to the value of the 
oe�
ients prior to quan-tizing). The inverse transform, performed after the transmission, displays then thewavelet responses.These artifa
ts visually look like 
he
kerboard (see Fig. 5.11) and are thus some-times referred that way in the literature [Selesni
k 2003℄. Clearly, these stru
turesare not appre
iated in the �nal image as they 
an not be related to some naturalimage features. The denoising of su
h 
oding noise is then important for the qualityof the �nal image and is the fo
us of this part.
Figure 5.11: Wavelet responses for the �rst level of a 3-levels CDF 9/7 de
omposi-tion. The �rst two wavelets are oriented in the verti
al and horizontal dire
tions.The third wavelet is a mix of two diagonal orientations and gives the �
he
kerboard�artifa
t.We start by giving in this se
tion a brief review of the state-of-the-art of quan-tization noise removal methods. We will then dis
uss in Se
tion 5.3 the integrationof these te
hniques in the satellite imaging 
hain.5.2.1 Variational methods for denoising quantization noiseSeveral methods have been re
ently proposed in [Durand 2003, Weiss 2008,Tramini 1998℄ to ta
kle the problem of quantization noise removal for wavelet-based
oder. They proposed to solve the problem of retrieving an image x0 from its 
odedversion x̃. The observed 
oded image x̃ 
an be modeled as

x̃ = W̃ (Q (Wx0)) , (5.5)where W stands for a wavelet transform (its inverse is denoted W̃ ) and Q is aquantizing pro
ess. Te
hniques [Weiss 2008℄ and [Tramini 1998℄ are a
tually verysimilar and, 
onsequently, we only present the methods proposed in [Durand 2003℄and [Weiss 2008℄. These methods are both based on a variational framework andboth rely on the minimization of the total variation (TV) prior [Rudin 1992℄.The TV prior assumes that an image 
an be modeled as a smooth fun
tionwith dis
ontinuities a
ross 
urves. The os
illations 
reated by the 
oding artifa
ts
annot therefore be 
onsidered to be natural and do not belong to an image. Theparti
ularity of these artifa
ts is that they exhibit important variations of intensitywhi
h tend to in
rease the magnitude of the gradient of the image, assumed to below by the smoothness hypothesis. Minimizing the l1-norm of the gradient of theimage, namely the TV, will then repla
e these os
illations by smooth homogeneous



5.2. Coding noise removal 103regions. Both methods [Durand 2003℄ and [Weiss 2008℄ 
ould globally be formalizedas the following minimization problem
x̂ = arg min ‖∇x‖1subje
t to x ∈ K

, (5.6)where x̂ is the denoised image and K is a set that 
onstrains the re
on-stru
ted image. Two di�erent approa
hes have been proposed in [Durand 2003℄and [Weiss 2008℄ to formulate this set. The authors of [Weiss 2008℄ proposed tode�ne the set K su
h that it 
onstrains the error between the observed and there
onstru
ted wavelet 
oe�
ients. In detail, let Q be the set of all possible outputquantized values Q = {qk; k ∈ Z, q0 = 0} and bk, bk+1 (bk+1 > bk) be the boundariesof ea
h quantization interval su
h that
(Wx̃)i = qk, if bk ≤ (Wx0)i < bk+1, ∀i ∈ {0, . . . , N − 1}. (5.7)From equation (5.7), we have
bk − qk ≤ (Wx0)i − (Wx̃)i < bk+1 − qk, ∀i ∈ {0, . . . , N − 1}. (5.8)For ea
h pixel i, we set the bounds αi = bk − qk and βi = bk+1 − qk, where

k veri�es (5.8) given i. Note that the bounds αi and βi 
an be estimated fromthe wavelet 
oe�
ients of the de
oded image and the knowledge of the quantizingmodel. The authors of [Weiss 2008℄ proposed to de�ne K as the following hyper
ube
K =

{

x ∈ R
N , αi ≤ (Wx)i − (Wx̃)i < βi, ∀i ∈ {0, . . . , N − 1}

}

, (5.9)su
h that problem (5.6) 
onsists in minimizing the TV of the image under the
onstraint that the error between the wavelet 
oe�
ients of the re
onstru
ted imageand the wavelet 
oe�
ients of the de
oded image belongs to the invervals de�nedby the boundaries (5.8).The method proposed in [Durand 2003℄ is slightly di�erent and 
onstrains thewavelet 
oe�
ients without any referen
e to the original image x0. They de�ne theset K as
K =

{

x ∈ R
N , (Wx)i = (Wx̃)i , ∀i ∈M

}

, (5.10)where M is the set of 
oe�
ients 
oordinates that have not been set to zero bythe quantizing
M =

{

i ∈ {0, . . . , N − 1}, |(Wx̃)i| > 0
}

. (5.11)The idea of the method proposed in [Durand 2003℄ is to re
onstru
t the small
oe�
ients that have been set to zero by the quantizing. The method relies on thefa
t that the minimization of the TV 
reates �at regions whi
h are represented bysmall wavelet 
oe�
ients. The presen
e of the 
onstraint (5.10) is to ensure thatonly these small 
oe�
ients are updated and that the large quantized 
oe�
ients,whi
h are likely to be 
lose to the original ones, remain un
hanged.
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al optimization of the 
hainA 
omparison of the two presented methods is given at the end of this part.We will see however that the �at homogeneous regions 
reated by the minimizationof the TV are not natural in the sense that they 
annot be interpreted as somephysi
al features of an image. The problem of quantization noise removal is a
tuallyvery di�
ult to address. The main di�
ulty lies in the fa
t that the quantizationnoise is highly 
orrelated to the signal sour
e and 
annot be modeled using 
lassi
alprobability distributions (ex
ept under high 
oding rate assumption). We presentin the next part methods to improve the statisti
al properties of the quantizationnoise.5.2.2 Dithering methods for removing quantization artifa
tsWe present in this part dithering te
hniques to redu
e the quantization artifa
ts.These te
hniques have been originally introdu
ed in the spee
h [Jayant 1972℄ andvideo [Roberts 1962℄ pro
essing 
ommunities to redu
e the per
eptual distortiondue to 
ompression. The parti
ularity of these te
hniques is that they 
onsist ininserting a noise prior to quantizing to improve the statisti
s of the quantizationerror. A review of the theory of dithering te
hniques is given in Appendix B.For the appli
ation of quantization artifa
ts, we will fo
uss here on the sub-tra
tive dithering system proposed in [S
hu
hman 1964℄ whose parti
ularity is tosubtra
t the added noise after quantizing. From Appendix B, we see that the non-subtra
tive dithering te
hnique only allows the moments of the global error ε to bede
orrelated to the sour
e w. An independen
e of the moments is however rarelyexploited by restoration algorithms, whi
h require the true signal independen
e,only provided by the subtra
tive variant. Let w be an original (i.e. prior to quan-tizing) wavelet subband and w̃ be the output 
orresponding subband whi
h, for asubtra
tive dithering system, writes
w̃ = Q(w + v) − v, (5.12)where Q is the quantizing operator and v is the dithering noise. The global error

ε of this sytem is de�ned as
ε = w̃ − w. (5.13)As mentioned by [Lipshitz 1992℄, a subtra
tive dithering system produ
es anindependent and uniformly distributed global error if the dithering noise v 
an beexpressed as the summation of re
tangular probability density fun
tions. This isan en
ouraging result as it implies that an on-board restoration 
oupled with asubtra
tive dithering s
heme will result in a restored image with a residual noisewhi
h is independent of the original image. Sin
e this residual noise is not stru
tured,it 
an be interpreted physi
ally (as the intrumental noise of the sensor for example)better than the residual noise obtained with the 
urrent imaging 
hain system. Thisaspe
t of residual noise is very important as it is one of the features seeked by theCNES for the design of restoration methods [Dherete 2003℄. We will dis
uss thisaspe
t later as this is the basis of the proposed imaging 
hain des
ribed in Se
tion5.3.



5.2. Coding noise removal 105We would like also to mention the dithering te
hnique proposed in [Stamm 2011℄.This method is slightly di�erent from the dithering te
hniques presented in Ap-pendix B as it is more fo
used on the re
onstru
tion of the original wavelet sub-bands rather than improving the statisti
s of the quantization noise. More pre
isely,the main result of [Stamm 2011℄ states that the probability density fun
tion of awavelet subband 
an be re
overed exa
tly (assuming we know the parameters of itsmodel) from its quantized version by adding a dithering noise v to the quantized
oe�
ients.We assume that the quantizing model is the same than the one presented inSe
tion 5.2.1. The authors of [Stamm 2011℄ proposed to model a wavelet subband
w (ea
h subband 
an be treated separately) by a Lapla
e distribution [Li 1998℄

pw(w) =
λ

2
e−λ|w|, (5.14)where λ is the s
ale parameter that 
an be estimated using 
lassi
al estima-tion te
hniques su
h as least-squares minimization methods or maximum-likelihoodestimations. Similarly to (5.7), the quantized wavelet subband w̃ writes

w̃ = qk, if bk ≤ w < bk+1. (5.15)Using the wavelet subband model (5.14), we 
an express the probability densityfun
tion pw̃ of a quantized wavelet subband
pw̃(w̃ = qk) =















1
2

(

e−λbk − e−λbk+1
)

, if k ≥ 1

1 − 1
2

(

e−λb0 − e−λb1
)

, if k = 0
1
2

(

eλbk+1 − eλbk
)

, if k ≤ −1.

(5.16)As said previously, the method proposed in [Stamm 2011℄ 
onsists in adding adithering noise after quantizing. The �nal wavelet subband z is then given by
z = w̃ + v, (5.17)where w̃ is the quantized wavelet subband and v the dithering noise. The waveletsubband probability density fun
tion pz 
an be expressed using the law of totalprobability [Stamm 2011℄

pz(z) =

+∞
∑

k=−∞
pz|w̃(z|w̃ = qk)pw̃(w̃ = qk), (5.18)where

pz|w̃(z|w̃ = qk) = pv|w̃(v = z − qk|w̃ = qk), (5.19)
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hainis the probability density fun
tion of the dither noise v knowing the quantizedvalues w̃. The authors of [Stamm 2011℄ showed that the 
hoi
es
pv|w̃(v|w̃ = qk, k 6= 0) =

{

1
αk
e− sign(qk)λ̂v, if (bk − qk) ≤ v < (bk+1 − qk)

0, otherwise (5.20)
pv|w̃(v|w̃ = 0) =

{

1
α0
e−λ̂|v|, if b0 > v > b1

0, otherwise , (5.21)with ak being some normalization 
onstants and λ̂ an estimated value of thes
ale parameter λ, lead to the original wavelet subband probability density fun
tion
pw, under the 
ondition that the s
ale parameter has been estimated exa
tly, i.e.
λ̂ = λ [Stamm 2011℄

pz(z) =
+∞
∑

k=−∞
pz|w̃(z|w̃ = qk)py(w̃ = qk)

=
−1
∑

k=−∞

1

αk

eλ̂(z−qk) 1

2

(

eλ̂bk+1 − eλ̂bk

)

1(bk ≤ z < qk+1)

+
1

α0
e−λ̂|z|

(

1 − 1

2

(

eλ̂b0 − e−λ̂b1
)

)

1(b0 ≤ z < b1)

+

+∞
∑

k=1

1

αk
e−λ̂(z−qk) 1

2

(

e−λ̂bk − e−λ̂bk+1

)

1(bk ≤ z < qk+1)

=
λ

2
e−λ̂|z| = pw(z), (5.22)where
1(a ≤ z < b) =

{

1, if a ≤ z < b

0, otherwise . (5.23)Even if the re
onstru
ted and original subbands will numeri
ally di�er, thiste
hnique will remove the undesirable observed artifa
ts, due to the quantization,by �lling in the blanks. The fa
t that we also add dither noise on the null 
oe�
ientsmay also provide the residual noise appre
iated by image analysis experts.5.2.3 Comparison of removal methods for quantization artifa
tsWe simulate the behavior of the presented quantization removal methods dire
tlyon a 
oded version of the referen
e (i.e. without any blur or instrumental noise)satellite image shown Fig. 5.3. The simulation of the 
omplete imaging 
hainin
luding these te
hniques is done in the next part. To perform a fair 
omparison,the image will be 
oded using the biorthogonal 9/7 wavelet transform [Cohen 1992℄followed by the quantizer des
ribed in [Lipshitz 1992℄. As a 
onsequen
e, the method[Stamm 2011℄ has been adapted to this 
hoi
e. For the subtra
tive dithering method



5.3. Proposed imaging 
hain 107[Lipshitz 1992℄, we simulated a uniform dithering noise to limit the power of theresidual noise. This dithering noise will be applied to the wavelet subbands of theimage prior to quantizing. Therefore, after the inverse transform the residual noise(i.e. the error between the referen
e image and the output of the dithering system)is not uniformly distributed anymore but we found out experimentaly that this noiseappears, suprisingly, to be still independent and identi
ally distributed following a
entered Gaussian law.We only provide visual results as 
ommon 
riteria su
h as PSNR do not takeinto a

ount the appre
iated physi
al per
eption of residual noise.The results are given Fig. 5.12 to 5.15. Visually, we immediately see that thete
hniques based on the minimization of the TV 
reate large smooth homogenousregions and remove the small details of the image. This e�e
t is known as the 
artoone�e
t. These �at regions are not 
onsidered to be natural for a satellite image and arereally not appre
iated by image analysis experts who 
learly prefer a deteriorationthat 
an be interpreted physi
ally. As explained previously, this is for examplethe 
ase of an unstru
tured residual noise. The subtra
tive dithering te
hniqueand the method proposed in [Stamm 2011℄ give good visual results in this sense.Both images are well re
onstru
ted and do not present 
ommon artifa
ts su
h asringing or blurry edges. The quality of the image re
onstru
ted with the subtra
tivedithering te
hnique a
tually seems slightly better, parti
ularly on the small detailsof the image (
ars and zebras). As expe
ted, these methods leave a residual noiseon the re
onstru
ted image whi
h 
an be interpretated as the instrumental noise ofthe sensor.5.3 Proposed imaging 
hainIn the previous se
tion, we showed that the dithering te
hniques may be very in-teresting to remove the stru
tured artifa
ts of the 
oding step. As we have alsomentioned in Se
tion 5.2.3, these te
hniques leave a uniform residual noise whi
h ishighly appre
iated from the image analysis experts as it 
an be interpretated physi-
ally. More pre
isely, an ideal restored image (as de�ned by image analysis experts)should owns a residual blur 
hara
terized by a target PSF [Lambert-Nebout 2000℄along with a uniform residual noise with a �xed standard deviation [Dherete 2003℄.We also presented in Se
tion 5.1.1 an on-board restoration te
hnique whi
h givesan image with a residual noise (whose power is very small in 
omparison to the powerof the residual noise obtained from the dithering te
hniques) and a residual blur fully
hara
terized by the target PSF. If we 
ombine these two te
hniques, i.e. if we usean on-board restoration 
oupled with a subtra
tive dithering te
hnique, the imageobtained at the output of the 
hain will then present an unstru
tured residual noise(
oming from the dithering te
hnique) with the blur of the target PSF (
oming fromthe on-board restoration). And as mentioned previously, a �nal image with su
h
hara
teristi
s is the obje
tive of image analysis experts as it 
an be interpreted asthe dire
t output of an ideal instrument.
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(a) (b) (
)
(d) (e) (f)Figure 5.12: Visual 
omparison of quantizing removal te
hniques. Displayed imageshave a size of 200 × 200 pixels. (a) is the referen
e image, (b) is the de
ompressedimage, (
) is the image obtained using the post-pro
essing te
hnique proposed in[Durand 2003℄, and (d) is the image obtained using the post-pro
essing te
hniqueproposed in [Weiss 2008℄, (e) is the image re
onstru
ted using the post-pro
essingdithering te
hnique proposed in [Stamm 2011℄, (f) is the image re
onstru
ted usingthe subtra
tive dithering te
hnique [Lipshitz 1992℄ with an uniform dithering noise.The target rate is 2.5 bits/pixel. The image range has been extended to point upthe image re
onstru
tion artifa
ts.
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(a) (b) (
)
(d) (e) (f)Figure 5.13: Visual 
omparison of quantizing removal te
hniques. Displayed imageshave a size of 200 × 200 pixels. (a) is the referen
e image, (b) is the de
ompressedimage, (
) is the image obtained using the post-pro
essing te
hnique proposed in[Durand 2003℄, and (d) is the image obtained using the post-pro
essing te
hniqueproposed in [Weiss 2008℄, (e) is the image re
onstru
ted using the post-pro
essingdithering te
hnique proposed in [Stamm 2011℄, (f) is the image re
onstru
ted usingthe subtra
tive dithering te
hnique [Lipshitz 1992℄ with an uniform dithering noise.The target rate is 2.5 bits/pixel. The image range has been extended to point upthe image re
onstru
tion artifa
ts.
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(a) (b) (
)
(d) (e) (f)Figure 5.14: Visual 
omparison of quantizing removal te
hniques. Displayed imageshave a size of 200 × 200 pixels. (a) is the referen
e image, (b) is the de
ompressedimage, (
) is the image obtained using the post-pro
essing te
hnique proposed in[Durand 2003℄, and (d) is the image obtained using the post-pro
essing te
hniqueproposed in [Weiss 2008℄, (e) is the image re
onstru
ted using the post-pro
essingdithering te
hnique proposed in [Stamm 2011℄, (f) is the image re
onstru
ted usingthe subtra
tive dithering te
hnique [Lipshitz 1992℄ with an uniform dithering noise.The target rate is 2.5 bits/pixel. The image range has been extended to point upthe image re
onstru
tion artifa
ts.
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(a) (b) (
)
(d) (e) (f)Figure 5.15: Visual 
omparison of quantizing removal te
hniques. Displayed imageshave a size of 200 × 200 pixels. (a) is the referen
e image, (b) is the de
ompressedimage, (
) is the image obtained using the post-pro
essing te
hnique proposed in[Durand 2003℄, and (d) is the image obtained using the post-pro
essing te
hniqueproposed in [Weiss 2008℄, (e) is the image re
onstru
ted using the post-pro
essingdithering te
hnique proposed in [Stamm 2011℄, (f) is the image re
onstru
ted usingthe subtra
tive dithering te
hnique [Lipshitz 1992℄ with an uniform dithering noise.The target rate is 2.5 bits/pixel. The image range has been extended to point upthe image re
onstru
tion artifa
ts.
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al optimization of the 
hainFrom this remark, we propose the imaging 
hain shown Fig. 5.16.

Figure 5.16: Proposed satellite imaging 
hainThis 
hain in
ludes the on-board restoration based on the Shearlets transform[Patel 2009℄ and the subtra
tive dithering te
hnique [Lipshitz 1992℄ to de
orrelatethe quantizing noise. Note that, in this 
hain, the quantizer follows the modeldes
ribed in [Lipshitz 1992℄ to respe
t the subtra
tive dithering s
heme hypothesis.The 
oding step is then de
omposed in a 3-levels CDF 9/7 wavelet transform followedby an expli
it quantization of the wavelet 
oe�
ients and an entropy en
oding ofthe quantized 
oe�
ients. The results of the proposed imaging 
hain are given Fig.5.17 to 5.20.We immediately see that the re
onstru
ted images with the proposed 
hain donot present any 
ommon wavelet 
ompression artifa
ts (see �gures 5.17 and 5.18),that we observed on the re
onstru
ted image provided by the CNES. They exhibitinstead an unstru
tured residual noise whi
h is visually similar to the noise obtainedon the instrumental image at the ouput of the a
quisition 
hain. This is parti
ularlyvisible on the dark zones of the re
onstru
ted image, see �gures 5.18 and 5.19.It is 
lear that the proprosed 
hain tends to repla
e one type of residual noise(wavelet 
ompression artifa
ts) by another one. The obtained residual noise is how-
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(a) (b)

(
) (d)Figure 5.17: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 2.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 5.18: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 2.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 5.19: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 2.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 5.20: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 2.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.



5.3. Proposed imaging 
hain 117

(a) (b)

(
) (d)Figure 5.21: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 3.0 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.



118 Chapter 5. Numeri
al optimization of the 
hain

(a) (b)

(
) (d)Figure 5.22: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 3.0 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 5.23: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 3.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 5.24: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 3.5 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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(a) (b)

(
) (d)Figure 5.25: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 4.0 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.



122 Chapter 5. Numeri
al optimization of the 
hain

(a) (b)

(
) (d)Figure 5.26: Visual 
omparison of the proposed and the 
urrent imaging 
hains.Displayed images have a size of 200 × 200 pixels. (a) is the referen
e image, (b)is the instrumental image, (
) is the de
ompressed and restored image provided bythe CNES, (d) is the re
onstru
ted image from the Shearlets based on-board 
hainfollowed by a subtra
tive dithering s
heme. The target rate is 4.0 bits/pixel andthe simulated SNR is 30-100. The image range has been extended to point up theimage re
onstru
tion artifa
ts.
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tives 123ever better appre
iated by image analysis experts as it 
an be interpreted physi
ally.More pre
isely, the proprosed imaging 
hain produ
es a re
onstru
ted image whi
howns the two 
hara
teristi
s of an ideal image: Blur with the target PSF (obtainedby the on-board restoration) and a residual unstru
tured noise [Dherete 2003℄. Thedrawba
k of the proposed method is that the standard deviation of the residualnoise is fun
tion of the quantizing step (see Theorem 11) while it should be 
on-stant for all 
oding rates. Consequently, for a low 
oding rate, the proposed 
haingives an image whi
h is more noisy than the instrumental one. It gives however veryinteresting results for high 
oding rates as shown by Fig. 5.21 to 5.26. Futher worksneed thus to be done on this aspe
t.5.4 Con
lusions and perspe
tivesIn this 
hapter, we presented a numeri
al study on the satellite imaging 
hain op-timization problem. We presented several results whi
h showed that the quality ofthe re
onstru
ted image 
an be improved if one 
on
edes several 
hanges on theusual design of imaging 
hains.The �rst one would be to move the restoration step on-board of satellite, prior to
oding. The results we obtained here showed that an on-board restoration allows tore
onstru
t an image with less re
onstru
tion artifa
ts, spe
ially on shadows zones.On a more theoreti
al point of view, moving the restoration on-board seems to be areliable method to approximately optimize the global imaging 
hain sin
e it does notrequire to express the global distortion as a fun
tion of the parameters of the 
hainwhi
h, as dis
ussed in Chapter 4.4, is di�
ult for true satellite imaging systems.The se
ond point dis
ussed in this 
hapter deals with the problem of 
odingnoise removal. From the results we presented, we 
on
luded that the 
urrent state-of-the-art 
oding noise denoising algorithms do not give 
ompetitve results and thatthe best option may be to used dithering te
hniques to transform the stu
tured
oding noise in an unstru
tured residual noise. This property of residual noiseis highly appre
iated from photo interpreters sin
e it simulates the noise obtaineddire
tly at the output of the instrument. From these 
on
lusions, we proposed a newimaging 
hain based on an on-board restoration 
oupled with a subtra
tive ditheringte
hnique. We showed results on a real satellite data and we 
ompared the results ofthe proposed 
hain with the ones obtained with the 
urrent satellite imaging 
hainused by the CNES. We showed that the proposed 
hain gives interesting results andmay be parti
ularly e�
ient at medium and high 
oding rates (around 3.0 bits/pixeland more). The parti
ularity of the proposed imaging 
hain is that the �nal imageis fully 
hara
terized by the target blur (spe
i�ed by the CNES) and a residualunstru
tured noise. Su
h feature is interesting for images analysis experts sin
e
lassi
al defe
ts of the 
ompression and restoration steps do not appear in the �nalimage, su
h that these two steps appear then almost transparent in the 
hain.A drawba
k of the proposed method is that the power of this residual noisedepends on the target 
oding rate. At low 
oding rate (like 2.5 bits/pixel), the
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hain�nal image appears to be more noisy than the instrumental image and is thereforedi�
ult to exploit. It would be thus interesting to investigate how to limit theintensity of this residual noise su
h that 
ompetitive results 
an also be obtained atlow 
oding rates.
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Chapter 6Compressed Sensing for satelliteimaging
The last part of the thesis is dedi
ated to the study of Compressed Sensing (CS) forsatellite imaging. This study on the Compressed Sensing slightly di�ers from theglobal optimization te
hniques that we presented in part II and the purpose of thisstudy is mainly to evaluate the 
apability of CS applied to high resolution satelliteimaging. The CS te
hnique is interesting for satellite imaging as it simpli�es theresour
es required for the a
quisition of the image, whi
h are, in our 
ase performedon-board of the satellite. All the pro
essings on the image are then performed on-ground by a spe
i�
 de
oder and the quality of the �nal image entirely depends onthe reliability of this de
oder. Due to the limited 
apa
ity of embedded resour
es,this te
hnique 
learly appears to be adapted to our 
ontext.We �rst present in Se
tion 6.1 a brief introdu
tion of the CS framework. Wethen detail, in Se
tion 6.2, how to apply this te
hnique to satellite imging. Wepresent re
onstru
tion results of the proposed method in 
omparison to the resultsobtained with the 
urrent imaging 
hain and we 
on
lude this part.6.1 A short introdu
tion to Compressed Sensing6.1.1 MotivationsIn a 
lassi
al imaging system, the a
quired image is sampled at the Nyquist fre-quen
y to give N pixels. Any digital 
amera produ
es nowadays an image withdozen millions of pixels. By assuming that ea
h pixel is represented on 24 bits (8bits per 
olor 
hannel), ea
h image requires then almost 100 Mb of storage 
apa
ity.Some 
ompression algorithms, like the JPEG [Walla
e 1992℄ and JPEG2000 stan-dards, are then required to allow the user to take an important number of pi
tures,stored into a simple memory 
ard. In brief, the purpose of the 
oding step is toredu
e the redundan
y in the image and to remove insigni�
ant 
ontent to mat
hthe 
apa
ity of the storage devi
e. Compression algorithms require however thewhole image for, �nally, dis
arding an important part of (irrelevant) information.This may appear to be wasteful for appli
ations whose sampling s
heme is expensiveto perform. Many 
omputing resour
es 
ould then be saved up if the 
ompressed
oe�
ients were dire
tly a
quired out of the sensor.Re
ently, a new theory of sampling has been emerged in the signal pro
essing
ommunity. This theory, introdu
ed as the Compressive Sampling or Compressed



128 Chapter 6. Compressed Sensing for satellite imagingSensing [Candès 2006b, Donoho 2006℄, suggests that one 
an re
onstru
t perfe
tly asignal, supposed to be sparse in some basis, from a limited (i.e. fewer than Nyquist)number of in
oherent measurements. The motivation behind the CS te
hnique isto perform in the same time the a
quisition and the 
ompression of the signal. Wegive a qui
k overview of this te
hnique in this se
tion but more information 
an befound in the referred works.6.1.2 Main resultsLet x0 ∈ R
N be a Nyquist sampled version of the analog measured s
ene. The mainresult of the CS theory states that x0 
an be re
overed exa
tly from a small numberof measurements [Candès 2006a℄ dire
tly out
omed from the sensor. The key of theCS theory relies on the supposed sparsity of the original signal x0, meaning thatit 
an be perfe
tly represented in some basis Ψ : R

N → R
N with only S non-null
oe�
ients. This property of sparsity is a
tually well-known for natural images andwidely used by 
oding algorithms to represent the 
ontent of images on 
ompa
tbitstreams [Walla
e 1992℄.Based on this property of sparsity, the authors of [Candès 2006a℄ showed thatonly M (with M << N) measurements are required to perfe
tly re
onstru
t theoriginal signal x0 with a high probability. These M observations are obtained bythe proje
tion of the image x0 ∈ R

N on a measurement matrix Φ : R
N → R

M

y = Φx0. (6.1)Matrix Φ being not of full rank, it seems di�
ult to re
over x0 exa
tly. However,it appears that if one 
onsiders the image x0 to be sparse in some basis Ψ, then allthe information and the stru
ture of x0 is 
onserved in y with a high probability[Candès 2006a℄. More pre
isely, let α0 ∈ R
N be a S sparse ve
tor, that is a ve
torhaving S non-null 
oe�
ients, and let y ∈ R
M be the measurement ve
tor obtainedby

y = Φα0. (6.2)If we assume that we know the lo
ation of the S sparse 
oe�
ients, only Slinearly independent equations are then required to re
over α0 from y. In oth-erwords, one 
an re
over α0 exa
tly from y if the sub-matrix ΦK of size M × Sis full rank. The restri
ted isometry property (RIP) has been introdu
ed in[Candès 2006d, Candès 2006a℄ to generalize this notion of quasi-orthonormality. Let
θ ∈ R

N be a S sparse ve
tor, then the measurement matrix Φ owns the RIP of order
S if for any sub-matrix Φp of size M × p with p ∈ [1, . . . , S], one has

(1 − δK)‖θ‖2
2 ≤ ‖Φpθ‖2

2 ≤ (1 + δK)‖θ‖2
2, (6.3)where δK is the smallest 
onstant (known as the restri
ted isometry 
onstant)whi
h veri�es (6.3) for any p. The design of su
h measurements matri
es is how-ever a NP-
omplete task. Fortunately, it appears that most of random matri
es,su
h as Gaussian random matri
es or matri
es out
omed from Bernouilli pro
esses
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tion to Compressed Sensing 129[Candès 2006a℄, satisfy the RIP of order 2K (required to preserve the distan
e be-tween any two sparse signals) with a high probability [Baraniuk 2008℄.When no prior information on the lo
ation of the non-null sparse 
oe�
ients isavailable, re
overing α0 from y is more di�
ult. The authors of [Donoho 2006℄ ad-dressed this problem and showed that, if the RIP 
ondition is satis�ed, the image x0
an be re
overed with a high probability by minimizing the l0-norm of its 
oe�
ientsin Ψ, under the 
onstraint that its proje
tion on Φ is equal to the observed ve
tor
y. This however leads to a NP-
omplete algorithm [Donoho 2006℄. A strong result,due to [Candès 2006b℄, states that the l0-norm 
an be equivalently repla
ed by the
l1-norm. The re
onstru
tion problem is then formulated as follows [Candès 2006b℄Find x̃ ∈ arg min ‖Ψx‖1subje
t to x ∈ R

N

y = Φx

. (6.4)The optimization problem (6.4) is a parti
ular instan
e of the Basis Pursuitproblem [Chen 1998℄ whi
h 
an be e�
iently solved using 
lassi
al algorithms fromthe linear programming literature. Problem (6.4) 
an be interpreted as follows.The randomness of the measurement matrix Φ spreads the 
ontent of the imagein the measurement ve
tor y. If Φ satis�es the RIP, then the inverse solution Φ†y
ontains all the information of the image x0 but in disorder. Also remind that therepresentation of x0 in the basis Ψ is sparse or, in other words, strongly 
ompa
t.Minimizing the l1-norm of its 
oe�
ients will then put the non-null 
oe�
ients ba
kat the 
orre
t position, re
overing therefore the original image.It is shown in [Candès 2007℄ that solving problem (6.4) leads to an exa
t solu-tion if x0 is sparse enough in Ψ. Therefore, the more sparse is x0 the easier it willbe for the algorithm (6.4) to re
over the original signal. Re
overing the image x0highly depends on the link between the 
ompa
tness of the de
omposition basis Ψand the di�usion of the measurement matrix Φ. More generally, the algorithm (6.4)e�
iently re
overs the original image only if matri
es Φ and Ψ are 
ompletely un-
orrelated. A mutual 
oheren
e µ has been introdu
ed in [Candès 2007℄ to measurethis 
orrelation and more pre
isely, to measure the 
orrelation between ea
h ve
torbasis φi and ψj of Φ and Ψ. It is de�ned as
µ(Φ,Ψ) =

√
N max

i,j
|〈φi, ψj〉|. (6.5)This 
oheren
e measure belongs to [1,

√
N ] [Candes 2008℄; a small value of µmeaning that the matri
es Ψ and Φ are 
ompletely un
orrelated. For example,if Φ is the Fourier basis, then the minimal 
oheren
e is obtained with Ψ = I (thesampling operator) and is equal to 1. Su
h s
enario a
tually 
orresponds to magneti
resonan
e imaging for example, where the data is dire
tly a
quired in the Fourierdomain [Lustig 2007℄. More generally, solving (6.4) re
overs x0 exa
tly if

M ≥ Cµ2(Φ,Ψ)S log(N), C < 1 is a 
onstant. (6.6)
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lassi
al imaging systems, a
quired images are usually degraded by both blurand instrumental noise. As shown in [Jianwei 2009℄, the CS te
hnique is robust tothis s
heme. In the 
ase of blurred and noisy measurements, the a
quisition model(6.1) be
omes [Jianwei 2009℄
y = ΦHx0 + z, (6.7)where H : R

N → R
N is the blur matrix and n ∈ R

M is an additive noise. In the
lassi
al 
ase of an additive white Gaussian noise of varian
e σ2
n, the re
onstru
tionalgorithm may write [Jianwei 2009℄Find x̃ ∈ arg min ‖Ψx‖1subje
t to x ∈ R

N

‖y − ΦHx‖2
2 ≤Mσ2

z

. (6.8)Similarly to (6.4), the optimization problem (6.8) is a parti
ular instan
e of BasisPursuit Denoising whi
h 
an also be solved using linear programming te
hniques[Chen 1998℄. Of 
ourse, exa
t re
onstru
tion 
annot be a
hieved anymore due tothe error on the measurements introdu
ed by the noise. The re
onstru
tion error
an however be a

urately estimated (at least in the 
ase of measurements onlydegraded by noise) as a fun
tion of the restri
ted isometry 
onstant [Candès 2006
℄.Although the design of a sensor able to produ
e these random measurements isdi�
ult and beyond the s
ope of the thesis, the CS te
hnique 
learly appears to beadapted to the satellite imaging 
hain. It 
ould indeed drasti
ally simplify the pro-
ess of image a
quisition by providing a redu
ed number of measurements, dire
tlyout
omed from the sensor, therefore saving an important quantity of resour
es. It isalso valuable to point out that the CS framework provides an a
quisition te
hniquewhose performan
es depend mainly on the re
onstru
tion algorithm done on-ground.In 
omparison, the 
urrent a
quisition imaging 
hain is bounded by the e�
ien
y ofthe 
ompression s
heme embedded on-board. In that 
ase, if one wants to in
reasethe quality of the �nal image, one has to design a new image 
oder. This �universal�
oding feature [Candès 2006d℄ of the CS is thus very attra
tive. In the next part, wepropose therefore a satellite imaging 
hain based on this te
hnique. We formulatethe a
quisition model and we present an algorithm to re
onstru
t the image fromthe measurements ve
tor.6.2 Compressed Sensing based satellite imaging 
hain6.2.1 A
quistion model of the satellite imaging 
hainAs said previously, we assume that we have at our disposal a sensor able to pro-du
e in
oherent measurements, in the sense of the CS framework. We are inter-ested in evaluating the quality of the re
onstru
ted image in 
omparison to theimage obtained using the 
urrent a
quisition 
hain based on wavelet 
ompression[Antonini 1992℄.Though it is not a general result (see [Goyal 2008℄ for example), previous works[S
hulz 2009℄ have shown that the CS te
hnique may be 
ompetitive regarding to
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hain 131a wavelet-based 
ompression s
heme on smoothed 
lassi
al test images. But to thebest of our knowledge, no works have been dedi
ated to this 
omparison for high-resolution satellite imaging, taking into a

ount the degradations of the satelliteimaging a
quisition 
hain (blur, instrumental and quantizing noises).

Figure 6.1: Current satellite imaging 
hain.The 
urrent satellite imaging 
hain used by the CNES is re
alled Fig. 6.1. Inthe 
ase of a CS based a
quisition te
hnique, the instrumental image at the outputof the a
quisition 
an be written as the proje
tion of the blurred image on themeasurement matrix Φ, noised by an instrumental noise n
y = ΦHx+ n, (6.9)where H is the matrix notation for the PSF, n is the instrumental noise supposedto be a zero-mean Gaussian distribution with a known varian
e σ2. We assume thatthe varian
e of this noise is pixel dependent and we use the model (3.3) to expressthis dependen
e.In addition to blur and instrumental noise, the M measurements are also de-graded by quantizing noise. In a 
lassi
al satellite imaging 
hain, a wavelet transformis usually applied prior quantizing to de
orrelate the data. Sin
e, the a
quired datais random, in the CS te
hnique, and does not present any favored stru
ture, we pro-pose here to dire
tly quantize the 
oe�
ients y. We modelize this quantization Q as
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alar uniform quantization whi
h quantizing step ∆i depends on the 
oe�
ient
yi, i ∈ {1, . . . ,M} regarded

Q (yi) = ∆i

⌊

yi

∆i
+

1

2

⌋

, (6.10)where ⌊.⌋ is the �oor fun
tion whi
h returns the greatest integer less than or equalto its argument. The quantizing step ∆i 
an be transmitted with the image as inthe JPEG standard [Walla
e 1992℄ or 
an be dedu
ed during the de
oding algorithmfor more re
ent methods [Taubman 2000, Said 1996℄. Therefore, we assume in thefollowing that the quantizing steps ∆i are known. Let b = Q(y)−y be the quantizingerror. From (6.10), we have for ea
h 
oordinate bi of b
− ∆i

2
≤ bi <

∆i

2
, ∀i ∈ {1, . . . ,M} (6.11)or equivalently

b ∈ B, withB =

{

b ∈ R
M ,−∆i

2
≤ bi <

∆i

2
∀i ∈ {1, . . . ,M}

}

. (6.12)Using the previous de�nition of b, we propose to modelize the observed measure-ments as
ŷ = Q (ΦHx+ n) = ΦHx+ n+ b, (6.13)where ŷ is the measurements ve
tor.6.2.2 Proposed re
onstru
tion algorithmThe extension of the re
onstru
tion algorithm (6.8) to the a
quistion model (6.13)is simple. First, simply remark that the problem (6.8) 
an also be writtenFind x̃ ∈ arg min ‖Ψx‖1subje
t to x ∈ R

N , n ∈ R
M

‖ 1
σz
n‖2

2 ≤M

y = ΦHx+ n

. (6.14)
In our 
ase, the variable b needs to be added to the problem (6.14) to take intoa

ount the presen
e of the 
oding noise. Using (6.12) and (6.13), the re
onstru
tionproblem for a
quisition model (6.13) writesFind x̃ ∈ arg min ‖Ψx‖1subje
t to x ∈ R

N , n ∈ R
M , b ∈ R

M

‖Σn‖2
2 ≤M,

b ∈ B,

ŷ = ΦHx+ n+ b

. (6.15)
where Σ = diag( 1

σi

) is used to take into a

ount the pixel dependen
e of thevarian
e of the noise n. The problem (6.15) 
an be further simpli�ed by noting that
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hain 133the variable b 
an be repla
ed by ŷ − (ΦHx+ n). We �nally propose to formulatethe re
onstru
tion problem asFind x̃ ∈ arg min ‖Ψx‖1subje
t to x ∈ R
N , n ∈ R

M

‖Σn‖2
2 ≤M,

ŷ − (ΦHx+ n) ∈ B

. (6.16)
The optimization problem (6.16) is a 
onvex problem 
onstrained on 
onvexsets and thus admits a unique (
onvex) set of solutions [Boyd 2004℄. However, thepresen
e of the linear operators Ψ,Φ and H make it di�
ult to solve.We propose here to use the alternating dire
tion method of multipliers proposedin [Afonso 2011℄. The advantage of this algorithm is that it is very general and itgives satisfying 
omputing time. It solvesFind (ũ, ṽ) ∈ arg min f1(u) + f2(v)subje
t to Cu+Dv = a

u ∈ R
p, v ∈ R

q

, (6.17)where
• f1 : R

p → R∪{+∞} and f2 : R
q → R∪{+∞} are two 
losed 
onvex fun
tions.

• C ∈ R
l×p and D ∈ R

l×q are two linear operators.
• a ∈ R

l is a given ve
tor.The alternating dire
tion algorithm relies on the augmented Lagrangian method.Let λ ∈ R
l be a Lagrange multiplier atta
hed to the linear 
onstraint (6.17), theaugmented Lagrangian writes

L(u, v, λ) = f1(u) + f2(v) + 〈λ,Cu+Dv − a〉 +
β

2
‖Cu+Dv − a‖2

2, (6.18)where β is a parameter whi
h 
ontrols the linear 
onstraint [Glowinski 1984℄.This parameter has to belong to the interval ]0, √5+1
2

[ to ensure that {(uk, vk)}
onverge to the set of minimizers [Glowinski 1984℄.This algorithm 
onsists in �nding a saddle point of the augmented Lagrangian,thereby solving (6.17), by minimizing it in an alternating way, subje
t to u, v, thento λ. The algorithm is given in algorithm 4.We now detail how to apply algorithm 4 to problem (6.16). To mat
h the 
lassof problem (6.17), we de�ne
u =





u1

u2

u3



 ∈ RN ×RM ×RM , v =

(

v1
v2

)

=

(

x

n

)

∈ RM ×RM ,

a =





0

0

−ŷ



 ∈ RN ×RM ×RM , (6.19)
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tion method of multipliers to solve (6.17)Set the number of iterations K.Set an initial point u0 ∈ R
p.Set an initial point v0 ∈ R
q.Set an initial point λ0 ∈ R
l.Set γ > 0 and β > 0.for k from 0 to K − 1 doCompute uk+1 = arg min L(u, vk, λk)subje
t to u ∈ R

p

.Compute vk+1 = arg min L(uk+1, v, λk)subje
t to v ∈ R
q

.Set λk+1 = λk + βγ(Cuk+1 +Dvk+1 − a).end forand
C = I, (6.20)
D =





Ψ 0

0 I

−ΦH −I



 , (6.21)where I is the identity matrix. Using these de�nitions, problem (6.16) 
an bereformulatedFind (ũ, ṽ) ∈ arg min ‖u1‖1subje
t to u ∈ R
N × R

M × R
M , v ∈ R

M × R
M

‖Σu2‖2
2 ≤M,

u3 ∈ B,

−u+Dv = a

. (6.22)
We further de�ne

f2(v) = 0, (6.23)
f1(u) = ‖u1‖1 + χG(u2) + χB(u3), (6.24)where χG is the indi
ator fun
tion on a weighted l2 ball
χG(u2) =

{

0, if ‖Σu2‖2
2 ≤M

∞, otherwise , (6.25)and χB is the indi
ator fun
tion on the hyper
ube B
χB(u3) =

{

0, ifu3 ∈ B

∞, otherwise . (6.26)
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hain 135Using these notations, it is straightforward to see that problem (6.16) �ts theformulation (6.17) and be
omesFind (ũ, ṽ) ∈ arg min f1(u)subje
t to u ∈ R
N × R

M × R
M , v ∈ R

M × R
M

−u+Dv = a

. (6.27)The �rst step of the algorithm 
onsists in 
omputing
uk+1 = arg min L(u, vk, λk)subje
t to u ∈ RN × R

M × R
M

, (6.28)where L is the augmented Lagragian whi
h, for problem (6.27), writes
L(u, v, λ) = f1(u) + 〈λ,Dv − u− a〉 +

β

2
‖Dv − u− a‖2

2. (6.29)We have
uk+1 = arg min f1(u) + 〈λ,Dvk − u− a〉 + β

2 ‖Dvk − u− a‖2
2subje
t to u ∈ R

N × R
M × R

M

= arg min 1
β
f1(u) + 1

2‖Dvk − a+ λk

β
− u‖2

2subje
t to u ∈ R
N × R

M × R
M

= prox 1
β

f1

(

Dvk − a+ λk

β

)

, (6.30)where prox is the proximal operator presented in [Combettes 2005℄. For anyfun
tion f : R
N → R ∪ {+∞}, the proximal operator proxf is de�ned by

proxf

(

x0

)

= arg min
x∈RN

f(x) +
1

2
‖x− x0‖2

2. (6.31)We re
all two results of [Combettes 2005℄ that we will use. Let X ⊆ R
N be a
losed 
onvex set and f(x) =

{

0 if x ∈ X
+∞ otherwise . Then

proxf = ΠX , (6.32)where ΠX is the eu
lidian proje
tor on the set X. It is straightforward to seethat the proximal operator generalizes the notion of proje
tion. If f(x) = τ‖x‖1,then proxf is the soft-thresholding operator and we have
proxτ‖·‖1

(

x0

)

= shrinkτ (x0) = sign(x0)max(|x0| − τ, 0). (6.33)Using results (6.32) and (6.33), we have
uk+1 =











shrink 1
β

(

Dvk − a+ λk

β

)

ΠG

(

Dvk − a+ λk

β

)

ΠB

(

Dvk − a+ λk

β

)











, (6.34)
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tion on a weighted l2 ball and ΠB is theorthogonal proje
tion on the hyper
ube B. The proje
tion ΠB is simple to 
omputeand writes
(ΠB(x0))i =















(x0)i if − ∆i

2 ≤ (x0)i <
∆i

2

−∆i

2 if (x0)i < −∆i

2
∆i

2 if ∆i

2 ≤ (x0)i

. (6.35)The proje
tion ΠG is more di�
ult to address and 
an be solved e�
iently usingan iterative s
heme. This proje
tion is detailled in [Weiss 2009℄ and we refer theinterested reader to this paper for the 
omputation of this proje
tion.The se
ond step of the algorithm requires to 
ompute vk+1. We have
vk+1 = arg min 〈λk,Dv − uk − a〉 + β

2 ‖Dv − a− uk‖2
2subje
t to v ∈ R

M × R
M

(6.36)
= arg min β

2 ‖Dv + λk

β
− a− uk‖2

2subje
t to v ∈ R
M × R

M

.

vk+1 is then the solution of the positive-semide�nite linear system
D∗Dv = D∗

(

a+ uk − λk

β

)

. (6.37)Equation (6.37) needs then to invert D∗D. Most of the time, the operator D∗Downs a parti
ular stru
ture whi
h 
an be numeri
ally exploited to solve (6.37). Thisremark has been used in [Ng 2010℄ for example to obtain fast algorithms. System(6.37) 
an also be solved using standard te
hniques su
h as 
onjugate gradient. Inour experiments we observe that 10 iterations of a 
onjugate gradient method aresu�
ient to solve (6.37). Note that sub-problems (6.28) and (6.36) 
an be solvedapproximately while preserving the 
onvergen
e of the algorithm [He 2002℄.The resulting algorithm is given in the algorithm 5.Algorithm 5 Alternating dire
tion method of multipliers to solve (6.16)Set the number of iterations K.Set an initial point u0 ∈ R
p.Set an initial point v0 ∈ R
q.Set an initial point λ0 ∈ R
l.Set γ > 0 and β > 0.for k from 0 to K − 1 doCompute uk+1 from (6.34).Compute vk+1 by solving (6.37).Set λk+1 = λk + βγ(Dvk+1 + uk+1 − a).end forOutput x̃ = v1.
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hain 1376.2.3 Numeri
al resultsWe evaluate the performan
es of the CS te
hnique for satellite imaging in 
omparisonto the 
hain used by the CNES and based on a wavelet 
ompression s
heme. Forthe numeri
al experiments, we 
hoose the measurement matrix Φ to be the noiselettransform [Coifman 2001℄ and set Ψ to be the gradient operator su
h that ||Ψx‖|1is the TV [Rudin 1992℄. We made the 
hoi
e of the TV as it is almost equivalentto a Haar basis whi
h, as required by the CS framework, shares a small mutual
oheren
e with the noiselet transform [Candes 2008℄.As mentioned previously, we 
ompare the CS a
quisition te
hnique to the 
las-si
al a
quisition 
hain whi
h 
onsists in sampling the real image at the Nyquistfrequen
y followed by a 
ompression s
heme. The 
onsidered 
ompression algo-rithm uses the biorthogonal CDF 9/7 wavelet transform des
ribed in [Cohen 1992℄followed by the same quantization pro
ess as the one de�ned in (6.10). In that 
ase,the aquisition model writes
ŷ = Q(W (Hx+ n)), (6.38)where W is the CDF 9/7 wavelet transform. As in the CS te
hnique, we 
andesign an algorithm to re
onstru
t the image from the noisy observed wavelet 
oef-�
ients ŷ Find x̃ ∈ arg min ‖Ψx‖1subje
t to x ∈ R

N , n ∈ R
N

ŷ −W (Hx+ n) ∈ B

‖Σn‖2
2 ≤ N

, (6.39)
where Ψ is the gradient operator. Note that the formulation (6.39) is not ex-pressed using any matrix Φ as, in this 
ase, the measurement matrix is the samplingoperator (Φ = I). We will 
ompare the results of te
hniques (6.16) and (6.39) visu-ally but also in a rate-distortion sense. As both te
hniques o�er di�erent ways to
ontrol the target 
oding rate, we now detail the 
hoi
e of the 
oding parameters inea
h 
ase.For the CS te
hnique, we take bene�t from the fa
t that the image 
an ideally bere
onstru
ted from less measurements than Nyquist. More pre
isely, for a low targetrate, we will restri
t the number of measurementsM to be small and when the targetrate is high, we will in
rease this number, the maximum number of measurementsbeing equal to the number of pixels N . This parti
ular 
hoi
e 
omes from the fa
tthat the distribution of the CS 
oe�
ients is quite large and that a high quantizationhas to be applied on these 
oe�
ients to rea
h low target rates [Flet
her 2007℄. Itseems then more appropriate to tune the number of measurements M instead oftuning the quantizing steps, for a given 
oding rate. Consequently, we will alwaystake ∆i = 1,∀i ∈ {1, . . . ,M} for all 
oding rates. Note that these measurementswill be taken randomly and that the position of the retained 
oe�
ients 
an beknown at ea
h side of the 
hain by transmitting the seed of the random generator.The imaging 
hain based on a wavelet s
heme does not however o�er su
h feature.More pre
isely, all the 
oe�
ients have to be retained to be able to re
onstru
t the
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hnique, we will keep all the 
oe�
ients and we willtune the quantizing steps to rea
h the target 
oding rate. For more simpli
ity, wewill take the same quantizing step for all 
oe�
ients ∆i = ∆,∀i ∈ {1, . . . , N}.As mentioned previously, we will evaluate the results in a rate-distortion sense.The distortion will be evaluated using the PSNR de�ned in (4.98). For the evaluationof the 
oding rate, we assume that the quantized 
oe�
ients will be en
oded usingan entropy en
oder. The 
oding rate R 
an then be measured using the entropy(expressed in bits/symbol) of the 
oe�
ients ŷ [Shannon 1948℄
R(ŷ) = −

∞
∑

m=−∞
pŷ(m) log2(pŷ(m)), (6.40)where pŷ(m) is the probability for a quantized 
oe�
ient to get the symbol m. Notethat for the imaging 
hain based on the CS te
hnique, we only retainM 
oe�
ients.Sin
e the sampling of these M is done randomly, one 
an transmit the seed of therandom generator to reprodu
e the same sampling s
heme. The position of the M
oe�
ients 
an thus be assumed to be known by the de
oder, without the need totransmit more information than a seed (whi
h holds on a few bytes), and does nothave to be taken into a

ount in the 
omputation of the entropy. The entropy ofthe quantized 
oe�
ients will be thus multiplied by the ratio between the numberof measurements and the number of pixels for that 
ase.We simulate the two imaging 
hains on the referen
e image depi
ted Fig. 6.2.The blur H used in this simulation is the PSF provided by the CNES and theinstrumental noise n is a zero-mean Gaussian noise with varian
e given by (3.3).Results are shown on Fig. 6.3 and 6.4. From the rate-distortion fun
tion dis-played on Fig. 6.3, we see that the CS te
hnique does not give 
ompetitive re
on-stru
tion results in 
omparison to the wavelet-based te
hnique, and stands 5− 6 dBbelow this te
hnique, for all 
ompression rates. Visually, the re
onstru
ted imagesare not very good as well. We 
an see on Fig. 6.4 that the CS re
onstru
tion al-gorithm overregularizes the solution and 
reates large patterns, therefore losing thedetails of the image. Although it seems 
lear that the CS is a good a
quisition te
h-nique as it better spreads the information than a wavelet transform, it also appearsthat high-resolution satellite images are not sparse enough, in usual basis, su
h thatthis te
hnique is di�
ult to apply.Moreover, as said previously the CS 
oe�
ients have a large distribution (largerthan wavelet 
oe�
ients) making their 
oding di�
ult to perform, even when oneonly retains a limited number of these 
oe�
ients. We have however strong thoughtsthat the CS 
ould be an e�
ient a
quisition strategy for satellite images as it has al-ready shown interesting results in appli
ation where the image is naturally stronglysparse, su
h as in MRI appli
ation [Lustig 2007℄. Following this idea, an imaging
hain based on the CS te
hnique may be interesting for galaxy observation mis-sions whi
h naturally give sparse images, as in astronomy where the CS exhibitsgreat performan
es [Bobin 2008℄. Due to time 
onstraint, this aspe
t has not beenaddressed in the thesis.
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Figure 6.2: Referen
e image, Cannes harbour (12 bits pan
hromati
 image, 30 
mresolution, 1024 × 1024 pixels).



140 Chapter 6. Compressed Sensing for satellite imagingHowever, in the 
ase of earth observation missions, the approximative sparsity ofsatellite images does not seem to be su�
ient to make the CS te
hnique 
ompetitiveregarding to the 
lassi
al wavelet approa
h.

Figure 6.3: Rate-distortion fun
tion for the two a
quisition te
hniques. The dashed
urve is the PSNR w.r.t. the 
ompression rate for the CS a
quisition te
hniquewhile the solid 
urve is the PSNR w.r.t. the 
ompression rate for the wavelet-basedmethod.6.3 Con
lusion and perspe
tivesIn this part, we have experimentaly studied the performan
es of the CS a
quisitionte
hnique in appli
ation to satellite imaging. We showed that this te
hnique isinteresting for satellite imaging 
hain sin
e it proposes a low-resour
es a
quisitionte
hnique whi
h mat
hes the redu
ed embedded 
omputational 
apa
ity of satellites.We proposed a novel imaging 
hain based on this framework and we formulateda de
oding algorithm whi
h takes into a

ount the main degradations of the satelliteimaging 
hain (blur, instrumental and quantizing noise). We showed re
onstru
tionresults, visually and in a rate-distortion sense, on a real satellite data and we per-formed a 
omparison of this method to the 
lassi
al a
quisition method based on awavelet transform.The obtained results showed that the CS a
quisition te
hnique does not give
ompetitive results for earth observation imaging sin
e satellite images of su
h ap-pli
ation 
an not be represented in a 
ompa
t form using 
lassi
al transform, i.e. theinformation of the image 
an not be 
ontained on a redu
ed number of 
oe�
ients.The CS a
quisition method 
ould be however interesting for galaxy observation
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(a) (b) (
)
(d) (e) (f)Figure 6.4: Re
onstru
tion results for the two a
quisition te
hniques at a 
om-pression rate of 2.5 bits/pixel. (a)-(d) are zooms of the original image, (b)-(e)are zooms of the re
onstru
ted image using the CS te
hnique (PSNR = 33.8 dB)and (
)-(f) are zooms of the re
onstru
ted image using the wavelet-based te
hnique(PSNR = 40 dB).missions whi
h give images whi
h are naturally 
ompa
t. There is also room forimprovements by 
onsidering more properly the distribution of satellite images toenhan
e usual priors, used by the de
oder, and quantizing strategies whi
h need tobetter �t the 
hara
teristi
s of the CS 
oe�
ients distribution.
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Chapter 7Con
lusion of the thesis
This 
hapter is the 
on
lusion of the thesis. It summarizes the 
ontributions of thethesis and dis
usses some perspe
tives of this work.7.1 Con
lusion and summary of the 
ontributionsIn this thesis we addressed the problem of imaging 
hain optimization in the 
ontextof satellite imaging and we proposed several methods whi
h fo
us on the problemof global optimization of the 
ompression/restoration 
hain.Formulating an expression of the global distortion is a di�
ult task sin
e manyintermediate variables are 
orrelated. In this thesis, we presented a method to solvethis problem and we a
hieved to theoreti
ally estimate the global distortion of asimple 
ase of imaging 
hain. We then proposed an algorithm to minimize theestimated distortion with respe
t to the parameters of the 
hain. We also developedthe proposed method for three di�erent 
on�guration of the imaging 
hain to addressthe question of the optimal position of the restoration in the imaging 
hain.We also presented, in the thesis, an alternative method to optimize of the qualityof the �nal image. Though this study is mainly experimental, we su

eeded toaddress re
urrent open questions su
h as the position of the restoration in the 
hainand how to deal with the 
oding noise. From the obtained results, we proposed a newsatellite imaging 
hain whi
h eliminates several 
urrent problems in the observationof the �nal image.Finally, we presented in the last part of the thesis a novel satellite imaging
hain based on a re
ent theory of sampling. We showed that low-resour
es samplingte
hnique is interesting for satellite imaging and we proposed an algorithm to solvethe re
onstru
tion problem.7.2 Perspe
tivesSeveral future investigations may be opened to improve the results obtained in thisthesis.The extension of the imaging 
hain that we 
onsidered in Chapter 4 to the truesatellite seems di�
ult to a
hieve. An alternative te
hnique to express the globaldistortion as a fun
tion of the 
hain parameters may then 
onsists in using theunbiased estimators presented in [Ramani 2008℄. In that 
ase, the di�
ulty is toextend these estimators to the a
quisition model of the satellite imaging 
hain whi
his 
omplex.



146 Chapter 7. Con
lusion of the thesisRegarding to the imaging 
hain that we proposed in Chapter 5, it would be veryinteresting to study how to limit the power of the residual noise on the �nal image.Sin
e this residual noise depends on the target 
oding rate, it may be interesting tofo
us on advan
es 
oding te
hniques with the 
hallenge to 
onserve the de
orrelationproperty of dithering te
hniques. Conversely, it would be worth extending the a
tualsubtra
tive dithering te
hniques, used by the proposed imaging 
hain, to mat
h more
omplex quantizing s
hemes, similarly to [Stamm 2011℄.Finally, an interesting investigation for the CS a
quisition te
hnique would be toevaluate its performan
es on naturally sparse satellite images like the ones obtainedfrom galaxy observation missions.
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Appendix AExisten
e and uniqueness ofoptimal parameters
We detail here the existen
e and uniqueness of optimal parameters of the imaging
hains addressed in Chapter 4.A.1 Notions in optimizationWe start by giving here some notions in optimization. The proofs of the followingtheorems 
an be found in [Ro
kafellar 1997℄.Let f : R

N → R be a twi
e 
ontinously di�erentiable fun
tion and let x =

(x1, x2, . . . , xN )T be a ve
tor.Theorem 1. A point x∗ ∈ R
N is a lo
al minimum of f if there is an ε > 0 su
hthat f(x) ≥ f(x∗) for all x ∈ R

N with ‖x− x∗‖ < ε.Corollary 1. If f(x) > f(x∗) for all x 6= x∗ with ‖x− x∗‖ < ε, then x∗ is a stri
tlo
al minimum of f .Theorem 2. A point x∗ ∈ R
N is a global minimum of f if f(x) ≥ f(x∗) for all

x ∈ R
N .Corollary 2. If f(x) > f(x∗) for all x 6= x∗, then x∗ is a stri
t global minimum of

f .De�nition 1. The gradient of f is the ve
tor
∇f(x) =

(

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xN
(x)

)

. (A.1)De�nition 2. The Hessian H of f is a N ×N matrix de�ned as
Hf (x) =















∂2f

∂x2
1

(x) ∂2f
∂x1∂x2

(x) · · · ∂2f
∂x1∂xN

(x)

∂2f
∂x1∂x2

(x) ∂2f

∂xN
2

(x) · · · ∂2f
∂x2∂xN

(x)... ... . . . ...
∂2f

∂xN∂x1
(x) ∂2f

∂x2∂xN
(x) · · · ∂2f

∂x2
N

(x)















. (A.2)Theorem 3. If x∗ is a lo
al minimum, then the following 
onditions hold1. ∇f(x∗) = 0,



158 Appendix A. Existen
e and uniqueness of optimal parameters2. dTHf (x∗)d ≥ 0 for all d ∈ R
N .The Hessian matrix Hf (x∗) is symmetri
 postive semi-de�nite, that is

xTHf (x∗)x ≥ 0 for any x ∈ R
N [Ro
kafellar 1997℄. It is positive de�nite if wehave a stri
t inequality: xTHf (x∗)x > 0 for any x ∈ R

N .Theorem 4. For any x∗ ∈ R
N , if ∇f(x∗) = 0 and Hf(x∗) is positive de�nite, then

x∗ is a stri
t lo
al minimum.We now introdu
e some results of 
onvex optimization, whi
h is a wide �eld ofoptimization.De�nition 3. A set Ω ⊂ R
N is said to be 
onvex if, for all x and y in Ω and all

t ∈ [0, 1], the following is veri�ed
tx+ (1 − t)y ∈ Ω. (A.3)De�nition 4. A fun
tion f : Ω → R de�ned on a 
onvex set Ω is said to be 
onvexif for every x and y in Ω and all t ∈ [0, 1], we have

f (tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y). (A.4)Theorem 5. Let f be twi
e 
ontinously di�erentiable, then f is 
onvex over a 
onvexset Ω 
ontaining an interior point if and only if the Hessian matrix Hf is positivesemi-de�nite in Ω.Theorem 6. Let f be a 
onvex fun
tion de�ned on a 
onvex set Ω. Then, the set
X∗ where f a
hieves its minimum is 
onvex. Furthermore, any lo
al minimum is aglobal minimum.A.2 Optimal parameters of the on-ground 
hainWe now give a proof of existen
e and uniqueness of optimal parameters of thefollowing problem

inf
λj>0,∆j>0

φτ (∆j , λj), (A.5)where
φτ ({∆j}, {λj}) =

J−1
∑

j=0

πjajλ
2
j

(1 + λj)2
σ2

wx,j
+

πjaj

(1 + λj)2
σ2

z +
πjaj∆

2
j

12(1 + λj)2

+ τ





J−1
∑

j=0

ajRj(∆j) −Rc



 . (A.6)To simplify the notations, we get rid of the 
onstant Rc and the sum over j (asea
h subband is independent) in φτ , whi
h now rewrites
φτ (∆j , λj) =

πjajλ
2
j

(1 + λj)2
σ2

wx,j
+

πjaj

(1 + λj)2
σ2

z +
πjaj∆

2
j

12(1 + λj)2
+ τajRj(∆j). (A.7)
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hain 159Proposition 9. Problem (A.5) admits an unique solution (∆∗
j , λ

∗
j ) whi
h veri�es

λ∗j =
σ2

z

σ2
wx,j

+
∆∗

j
2

12σ2
wx,j

(A.8)
πj∆

∗
j

6(1 + λj)2
+ τ∗

∂Rj

∂∆j
(∆∗

j) = 0 (A.9)Proof. To prove the existen
e and uniqueness of this solution, we propose to studythe 
onvexity of the fun
tion (A.7). We have
∂φτ

∂∆j
(∆j , λj) =

πjaj∆j

6(1 + λj)2
+ τaj

∂Rj

∂∆j
(∆j), (A.10)and

∂2φτ

∂∆2
j

(∆j , λj) =
πjaj

6(1 + λj)2
+ τaj

∂2Rj

∂∆2
j

(∆j). (A.11)We also have
∂φτ

∂λj
(∆j , λj) = πjajσ

2
wx,j

(

2λj(1 + λj)
2 − 2(1 + λj)λ

2
j

)

(1 + λj)4
− πjajσ

2
z

2

(1 + λj)3

− πjaj∆
2
j

2

12(1 + λj)3

=
2λjπjajσ

2
wx,j

(1 + λj)3
− 2πjajσ

2
z

(1 + λj)3
−

2πjaj∆
2
j

12(1 + λj)3

=
12λjπjajσ

2
wx,j

− 12πjajσ
2
z − πjaj∆

2
j

6(1 + λj)3
(A.12)and

∂2φτ

∂λ2
j

(∆j , λj) =
12πjajσ

2
wx,j

6(1 + λj)3
−

12λjπjajσ
2
wx,j

− 12πjajσ
2
z − πjaj∆

2
j

2(1 + λj)4

=
4πjajσ

2
wx,j

(1 + λj) − 12λjπjajσ
2
wx,j

+ 12πjajσ
2
z + πjaj∆

2
j

2(1 + λj)4

=
4πjajσ

2
wx,j

− 8λjπjajσ
2
wx,j

+ 12πjajσ
2
z + πjaj∆

2
j

2(1 + λj)4
(A.13)Finally, we have

∂2φτ

∂λj∂∆j
(∆j, λj) =

∂2φτ

∂∆j∂λj
(∆j , λj) =

−2ajπj∆j

6(1 + λj)3
=

−ajπj∆j

3(1 + λj)3
. (A.14)Using (A.10) and (A.12), we dedu
e the expressions (A.8) and (A.9) of thesolution (∆∗

j , λ
∗
j) whi
h satisfy the �rst-order 
onditions

∂φτ

∂∆j
(∆∗

j , λ
∗
j ) = 0, (A.15)

∂φτ

∂λj
(∆∗

j , λ
∗
j ) = 0. (A.16)
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e and uniqueness of optimal parametersTo ensure that this solution exists and is unique, we study the 
onvexity of φτthrough its Hessian matrix Hφτ
, whi
h writes

Hφτ
(∆j , λj) =





∂2φτ

∂∆2
j

(∆j, λj)
∂2φτ

∂∆j∂λj
(∆j , λj)

∂2φτ

∂λj∂∆j
(∆j , λj)

∂2φτ

∂λ2
j

(∆j, λj)



 . (A.17)Sin
e Hφτ
is a 2 × 2 matrix, we 
an 
on
lude that the fun
tion φτ is stri
tly
onvex if

∂2φτ

∂∆2
j

(∆j , λj) > 0, (A.18)
∂2φτ

∂λ2
j

(∆j , λj) > 0, (A.19)and if the determinant of Hφτ
is stri
tly positivedet (Hφτ

(∆j , λj)) =
∂2φτ

∂∆2
j

(∆j, λj)
∂2φτ

∂λ2
j

(∆j, λj) −
(

∂2φτ

∂∆j∂λj
(∆j , λj)

)2

> 0.(A.20)The 
oding rate Rj is a monotoni
ally de
reasing positive fun
tion with respe
tto ∆j [Shannon 1959℄, ∆j being positive. Its limits are zero when ∆j tends to in�nityand in�nity when ∆j vanishes to zero [Gish 1968℄. Its derivative ∂Rj

∂∆j
is negativeand monotoni
ally in
reasing, whose limits are minus in�nity when ∆j vanishes tozero and zero when ∆j tends to in�nity [Shannon 1959℄. Still from [Shannon 1959℄,we have that ∂2Rj

∂∆2
j

is positive and monotoni
ally de
reasing. Sin
e τ is positive, wededu
e from (A.11) that
∂2φτ

∂∆2
j

(∆j, λj) > 0, ∀(∆j, λj) (A.21)From equation (A.13), it is 
lear that ∂2φτ

∂λ2
j

is not always positive and we have
∂2φτ

∂λ2
j

(∆j , λj)















> 0, if 0 < λj < λh
j

= 0, ifλj = λh
j

< 0, otherwise, (A.22)with
λh

j =
1

2
+

12σ2
z + ∆2

j

8σ2
wx,j

. (A.23)We need now to 
ompute the determinant of the Hessian matrix Hφτ
. Let usassume that ∂2φτ

∂λ2
j

(∆j, λj) is stri
tly positive and let us de�ne
g(∆j , λj) =

πjaj

6(1 + λj)2
∂2φτ

∂λ2
j

(∆j , λj) −
a2

jπ
2
j ∆

2
j

9(1 + λj)6
. (A.24)
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hain 161Using equations (A.20) and (A.24), we havedet (Hφτ
(∆j , λj)) = g(∆j , λj) + τaj

∂2Rj

∂∆2
j

(∆j)
∂2φτ

∂λ2
j

(∆j , λj) (A.25)Sin
e τaj
∂2Rj

∂∆2
j

(∆j) is always stri
tly positive, we get the following inequalitydet (Hφτ
(∆j , λj)) > g(∆j , λj), (A.26)su
h that if g(∆j , λj) > 0 then we dire
tly dedu
e that the Hessian matrix Hφτis stri
tly positive and thus the fun
tion φτ is stri
tly 
onvex. We have

g(∆j , λj) =

(

πjaj

6(1 + λj)2

)





πjaj

(

4σ2
wx,j

− 8λjσ
2
wx,j

+ 12σ2
z + ∆2

j
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2(1 + λj)4





−
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jπ
2
j ∆

2
j

9(1 + λj)6

=
1

3





π2
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2
j
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4σ2
wx,j

− 8λjσ
2
wx,j

+ 12σ2
z + ∆2

j

)

4(1 + λj)2
−

a2
jπ

2
j ∆

2
j

3(1 + λj)6





=
1

3


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3π2
j a

2
j
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4σ2
wx,j

− 8λjσ
2
wx,j

+ 12σ2
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j

)

− 4a2
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2
j ∆

2
j

12(1 + λj)6





=
1

3

(

12π2
j a

2
jσ

2
wx,j

− 24π2
j a

2
jλjσ

2
wx,j

+ 36π2
j a

2
jσ

2
z − a2

jπ
2
j ∆

2
j

12(1 + λj)6

)

. (A.27)From (A.27), we 
an 
on
lude that g(∆j , λj) > 0 if
12π2

j a
2
jσ

2
wx,j

− 24π2
j a

2
jλjσ

2
wx,j

+ 36π2
j a

2
jσ

2
z − a2

jπ
2
j ∆

2
j > 0, (A.28)that is, if

λj < λc
j , (A.29)where

λc
j =

1

2
+

3

2

σ2
z

σ2
wx,j

−
∆2

j

24σ2
wx,j

. (A.30)Sin
e λc
j < λh

j , we have from (A.22)
∂2φτ

∂λ2
j

(∆j, λj) > 0, ∀∆j and ∀λj < λc
j , (A.31)whi
h 
on�rms the positivity hypothesis used to get inequality (A.26). We de-du
e that det (Hφτ

(∆j , λj)) > 0, ∀(∆j, λj) ∈ R
∗
+×]0, λc

j [. (A.32)
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e and uniqueness of optimal parametersWe 
an thus 
on
lude that the fun
tion φτ is only 
onvex lo
ally on the 
onvexdomain R
∗
+×]0, λc

j [.From now, we set ∆j to be equal to the optimal value ∆∗
j . Let us imagine that

λ∗j > λc
j, then we get that

σ2
z

σ2
wx,j

+
∆∗

j
2

12σ2
wx,j

>
1

2
+

3

2

σ2
z

σ2
wx,j

−
∆∗

j
2

24σ2
wx,j

σ2
z
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∆∗

j
2

12σ2
wx,j
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1

2

(
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wx,j
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∆∗

j
2

24σ2
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3∆∗
j
2

12σ2
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>
1

2

(

σ2
z + σ2

wx,j

)

σ2
wx,j

∆∗
j
2 > 2

(

σ2
z + σ2

wx,j

)

, (A.33)whi
h is non-sense as it means that the optimal quantizing step would be greaterthan the standard deviation of the signal to quantize. In parti
ular, note that +∞also veri�es (A.33) although it 
ompletely 
an
els the signal. Condition (A.33) isalso 
ontradi
tory to the dithering hypothesis (4.12) that we made to develop ourmethod, whi
h 
omforts ourselves that this behavior never happens and that wealways have λ∗j < λc
j .This result suggests that the point (∆∗

j , λ
∗
j ) always lie in the stri
tly 
onvex partof the fun
tion φτ .By developing (A.23), we have

λh
j =

1

2
+

12σ2
z + ∆2

j

8σ2
wx,j

=
1

2
+

3

2

σ2
z

σ2
wx,j

+
3

2

∆2
j

12σ2
wx,j

=
1

2
+

3

2
λ∗j , (A.34)If the evaluate ∂2φτ

∂λ2
j

at the point (∆∗
j , λ

∗
j ), we have from (A.22) and using thefa
t that λ∗j < λh

j

∂2φτ

∂λ2
j

(∆∗
j , λ

∗
j) > 0. (A.35)Using (A.21), (A.32), (A.35) and Theorem 4, we dedu
e that the solution

(∆∗
j , λ

∗
j) is a stri
t lo
al minimum of the fun
tion φτ . If we look further at (A.10),we have

∂φτ

∂λj
(∆∗

j , λj)















> 0, ifλj > λ∗j
= 0, ifλj = λ∗j
< 0, otherwise. (A.36)
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hain 163The derivative is stri
tly positive for any λj > λ∗j , we dedu
e that
φτ (∆∗

j , λj) > φτ (∆
∗
j , λ

∗
j ), ∀λj > λ∗j . (A.37)Sin
e φτ is stri
tly 
onvex on the domain R
∗
+×]0, λc

j [ whose stri
t lo
al minimumis λ∗j , we have by Corollary 1
φτ (∆j, λj) > φτ (∆

∗
j , λ

∗
j ), ∀∆j and ∀λj with 0 < λj < λc

j and λj 6= λ∗j . (A.38)Using (A.37) and (A.38), we have
φτ (∆j , λj) > φτ (∆∗

j , λ
∗
j ) ∀∆j and ∀λj > 0 with λj 6= λ∗j , (A.39)whi
h, by Corollary 2, 
on
ludes that the solution (∆∗

j , λ
∗
j ) is the unique globalminimum of the fun
tion φτ .We now have to deal with the numeri
al 
omputation of the optimal parame-ters. Sin
e the optimal regularizing parameter λ∗j is expressed in 
losed-form, its
omputation is straightforward. The 
omputation of the optimal quantizing step

∆∗
j is not dire
t as, for a given τ > 0, we need to �nd a root of

gτ (∆) =
πj∆j

6

(

1 +
σ2

wz,j

σ2
wx,j

+
∆j

2

12σ2
wx,j

)2 + τ
∂Rj

∂∆j
(∆j). (A.40)The monotony of the fun
tion gτ is not easy to study sin
e the term ∂Rj

∂∆j
is 
om-plex to evaluate. From our numeri
al experiments, we found out that the optimalquantizing step ∆∗

j always lies on a monotoni
ally in
reasing part of the fun
tion
gτ . From this observation, we propose to use a binary sear
h algorithm to 
omputethis parameter. From (A.40), we see that ∆∗

j is fun
tion of τ . It seems reasonableto think that the higher τ is, the higher ∆∗
j needs to be for the fun
tion (A.40) to
ross zero. This implies that the optimal quantizing step ∆∗

j 
an then be noted asa fun
tion of τ
∆∗

j = f(τ), (A.41)where f is an in
reasing fun
tion. Consequently, from [Shannon 1959℄, we dedu
ethat the 
oding rate Rj is a monotoni
ally de
reasing fun
tion with respe
t to τ .Using (4.38) and (A.41), we de�ne
h(τ) =

J−1
∑

j=0

ajRj(f(τ)) −Rc. (A.42)Then it seems 
lear that the fun
tion h is a monotoni
ally de
reasing fun
tionwith respe
t to τ whose limits are in�nity when τ vanishes to zero and −Rc when τtends to in�nity. Its root τ∗, whi
h veri�es h(τ∗) = 0, 
an then be 
omputed usingany root-�nding algorithm. In our simulations, a binary sear
h pro
edure will alsobe used.
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e and uniqueness of optimal parametersA.3 Optimal parameters of the on-board 
hainWe now fo
us on the on-board 
hain and we give a proof of existen
e and uniquenessof optimal parameters in that 
ase. The optimization problem still writes
inf

λj>0,∆j>0
φτ (∆j , λj), (A.43)where φτ is now given, after some simpli�
ations, by

φτ (∆j , λj) =
πjajλ

2
j

(1 + λj)2
σ2

wx,j
+

πjaj

(1 + λj)2
σ2

z +
πjaj∆

2
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+ τajRj(∆j). (A.44)Proposition 10. Problem (A.43) admits an unique solution (∆∗

j , λ
∗
j ) whi
h veri�es
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wx,j

(A.45)
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∗
j

6
+ τ∗

∂Rj

∂∆j
(∆∗

j) = 0 (A.46)Proof. To prove the existen
e and uniqueness of this solution, we also propose tostudy the 
onvexity of the fun
tion (A.44). We have
∂φτ
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1

6
(πjaj∆j) + τaj
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(∆j), (A.47)and
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(∆j). (A.48)We also have
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(A.49)and
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hain 165Finally, we have
∂2φτ

∂λj∂∆j
(∆j , λj) = 0. (A.51)In that 
ase, the Hessian matrix is diagonal and therefore the 
onvexity of thefun
tion φτ only depends on the sign of ∂2φτ

∂λ2
j

. From (A.50), simply remark that
∂2φτ

∂λ2
j

(∆j , λj)















> 0, if 0 < λj < λc
j

= 0, ifλj = λc
j

< 0, otherwise, (A.52)with
λc

j =
1

2
+ 3

σ2
z

σ2
wx,j

. (A.53)Sin
e λ∗j < λc
j , we 
an dire
tly 
on
lude that the point (∆∗

j , λ
∗
j ) always lie in thestri
tly 
onvex part of the fun
tion φτ . From (A.52), we dedu
e that

∂2φτ

∂λ2
j

(∆∗
j , λ

∗
j) > 0. (A.54)Using (A.48), (A.54) and Theorem 4, we dedu
e that the solution (∆∗

j , λ
∗
j ) is astri
t lo
al minimum of the fun
tion φτ . If we look further at (A.47), we have

∂φτ

∂λj
(∆∗

j , λj)















> 0, ifλj > λ∗j
= 0, ifλj = λ∗j
< 0, otherwise. (A.55)The derivative is stri
tly positive for any λj > λ∗j , we dedu
e that

φτ (∆∗
j , λj) > φτ (∆

∗
j , λ

∗
j) ∀λj > λ∗j . (A.56)Sin
e φτ is stri
tly 
onvex on the domain R
∗
+×]0, λc

j [ whose stri
t lo
al minimumis λ∗j , we have by Corollary 1
φτ (∆j, λj) > φτ (∆

∗
j , λ

∗
j) ∀∆j and ∀λj with 0 < λj < λc

j andλj 6= λ∗j . (A.57)Using (A.56) and (A.57), we have
φτ (∆j , λj) > φτ (∆∗

j , λ
∗
j ) ∀∆j and ∀λj > 0 with λj 6= λ∗j , (A.58)whi
h, by Corollary 2, 
on
ludes that the solution (∆∗

j , λ
∗
j ) is the unique globalminimum of the fun
tion φτ .In that 
ase, the optimal parameters 
an be 
omputed using the same numeri
alte
hniques than the ones we proposed for the on-ground 
hain.
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e and uniqueness of optimal parametersA.4 Optimal parameters of the hybrid 
hainWe now fo
us on the hybrid 
hain. The optimization problem now writes
inf

λj>0, µj , ∆j>0
φτ (∆j, µj , λj), (A.59)where φτ is now given, after some simpli�
ations, by

φτ (∆j , λj , µj) =
πjaj (λj + µj + λjµj)

2

(1 + λj)2(1 + µj)2
σ2

wx,j
+

πjaj

(1 + λj)2(1 + µj)2
σ2

wz,j

+ πjaj

∆2
j

12(1 + µj)2
+ τajRj(∆j). (A.60)Proposition 11. Problem (A.59) does not admit any solution.Proof. This result is slightly suprising but if we look at the �rst-order optimal 
on-ditions, we 
an remark than we are not able to �nd any a

eptable solution. Wehave

∂φτ

∂λj
(∆j, λj , µj) =

2πjajσ
2
wx,j

(1 + µj)2
(λjµj + λj + µj)

(1 + λj)3
− 2πjajσ

2
z

(1 + µj)2(1 + λj)3
, (A.61)and

∂φτ

∂µj
(∆j, λj , µj) =

12λjπjajσ
2
wx,j

(λjµj + λj + µj) − 12πjajσ
2
z − πjaj∆

2
j(1 + λj)

2

6(1 + µj)3(1 + λj)2
.(A.62)We dedu
e that

λ∗j =
1

1 + µ∗j

(

σ2
z

σ2
wx,j

− µ∗j

)

, (A.63)and
µ∗j =

1

1 + λ∗j

(

σ2
z

σ2
wx,j

+
∆2

j

12σ2
wx,j

(

1 + λ∗j
)2 − λ∗j

)

. (A.64)From Eq. (A.63), we have
1 + λ∗j =

σ2
z

σ2
wx,j

(1 + µ∗j)
+ 1 −

µ∗j
1 + µ∗j

,

=

(

σ2
z

σ2
wx,j

+ 1

)

1

1 + µ∗j
, (A.65)If we use Eq. (A.65) in (A.64), we obtain
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µ∗j

1 + µ∗j

(

σ2
z

σ2
wx,j

+ 1

)

=
σ2

z

σ2
wx,j

− 1

1 + µ∗j

(

σ2
z

σ2
wx,j

− µ∗j

)

+
∆2

j

12σ2
wx,j

(

σ2
z

σ2
wx,j

+ 1

)2
1

(1 + µ∗j)
2
. (A.66)After some simpli�
ations, we get that

∆2
j

12σ2
wx,j

(

σ2
z

σ2
wx,j

+ 1

)2
1

(1 + µ∗j)
2

= 0, (A.67)whi
h does not lead to a valid solution. Therefore, we 
annot satisfy simultaneously
∂φτ

∂µj
(∆j , λj , µj) = 0, (A.68)and

∂φτ

∂λj
(∆j , λj , µj) = 0. (A.69)We propose then to enfor
e the value of λ∗j and we dedu
e the value of the otherparameters by extension of Se
tion A.2. Note that this 
hoi
e is however suboptimal.





Appendix BReview of non-subtra
tive andsubtra
tive dithering te
hniques
B.1 Undithered systemWe start this review by the presentation of an undithered system. This system ispresented Fig. B.1. Figure B.1: Undithered system.The signal to quantize is noted x, y is the output of the system

y = Q(x), (B.1)where Q is an in�nite mid-tread quantizer of step ∆. The transfer 
hara
teristi
sof this quantizer 
an be modeled as
Q(x) = ∆

⌊

x

∆
+

1

2

⌋

, (B.2)where ⌊ ⌋ is the �oor fun
tion whi
h returns the greatest integer less than orequal to its argument. Let ε be the global error (i.e. output minus input) of thesystem
ε = y − x = Q(x) − x = q(x), (B.3)where q is the quantization error fun
tion

q(x) = Q(x) − x. (B.4)If −∆
2 ≤ x < ∆

2 , then y = 0 and from (B.3) ε = −x. Similarly, if ∆
2 ≤ x < 3∆

2 ,then y = ∆ and ε = ∆ − x. By extension, the 
onditional probability pε|x 
an beexpressed as [Widrow 1961℄
pε|x(ε, x) = δ(ε − q(x))

= δ

(

ε+ x− ∆

⌊

x

∆
+

1

2

⌋)

= Π∆(ε)W∆(ε+ x), (B.5)
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tive and subtra
tive ditheringte
hniqueswhere Π∆ is the re
tangular window fun
tion
Π∆(ε) =

{

1
∆ if − ∆

2 < ε ≤ ∆
2 ,

0 otherwise (B.6)and W∆ is the sampling fun
tion
W∆(ε) =

+∞
∑

k=−∞
δ(ε − k∆). (B.7)The probability density fun
tion pε of ε is then given by

pε(ε) =

∫ +∞

−∞
pε|x(ε, x)px(x)dx

= ∆Π∆(ε) [W∆ ∗ px] (−ε), (B.8)where px is probability density fun
tion of x. From (B.8) it is 
lear thatthe re
tangular fun
tion Π∆ is wide enough su
h that at least one delta of the
W∆ fun
tion will 
ontribute to the sum, and the position of this delta dependson px. Consequently, the global error of an undithered system 
annot be madeindependent of the system input [Widrow 1961℄.The 
hara
teristi
 fun
tion (de�ned as the Fourier transform of the probabilitydensity fun
tion) of ε writes

Pε(u) = sinc(u) ∗ [W 1
∆

(−u)Px(−u)]

=

+∞
∑

k=−∞
sinc

(

u− k

∆

)

Px

(

− k

∆

)

= sinc(u) +

+∞
∑

k=−∞,k 6=0

sinc

(

u− k

∆

)

Px

(

− k

∆

) (B.9)where Px is the 
hara
teristi
 fun
tion of x and
sinc(u) =

{

sin(π∆u)
π∆u

, ifu 6= 0

1, otherwise . (B.10)From equation (B.9), we see that the global error ε 
an be made uniformly dis-tributed if the 
hara
teristi
 fun
tion Pε is redu
ed to sinc(u). This gives rise toTheorem 7 [Lipshitz 1992℄.Theorem 7. The global error of an undithered system is not independent of thesystem input but 
an be made uniformly distributed if the 
hara
teristi
 fun
tion Pxof the system input veri�es [Sripad 1977℄
Px

(

k

∆

)

= 0, ∀k ∈ Z
∗. (B.11)



B.2. Non-subtra
tive dithering system (NSD) 171A dire
t 
onsequen
e of Theorem 7 is that the global error of an unditheredsystem is uniformly distributed if the probability density fun
tion of the systeminput 
an be expressed as the 
onvolution produ
t of uniform distributions. Notethat the normal distribution also veri�es this property if its standard deviation σ islarge enough in front of the quantizing step [Vanderkooy 1987℄
σ >

∆

2
. (B.12)To extend Theorem 7 to arbitrary probability density fun
tions, a noise with aspe
i�
 distribution 
an be inserted prior to quantizing. This noise 
an be eithersubtra
ted or not subtra
ted after the quantizing, giving two dithering systems: Thenon-subtra
tive and the subtra
tive dithering systems. Both systems are des
ribedin the next parts.B.2 Non-subtra
tive dithering system (NSD)We present here the extension of the undithered system to the 
ase the system inputis noised prior to quantizing [Wannamaker 2000℄. This system is depi
ted Fig. B.2.

Figure B.2: Non-subtra
tive dithering system.We keep the same notations than previously. The added noise, supposed to beindependent of the sour
e x, is noted v. The noisy signal w is now the input of thequantizer and we have
y = Q(w) = Q(x+ v), (B.13)su
h that

ε = y − x = Q(x+ v) − x = q(x+ v) + v. (B.14)To study the statisti
al properties of the global error ε, the same te
hnique thanthe one presented in Se
tion B.1 
an be used, ex
ept that the input of the quantizeris now w. Therefore, if −∆
2 ≤ w < ∆

2 , then y = 0 and ε = −x. Similarly, if
∆
2 ≤ w < 3∆

2 , then y = ∆ and ε = ∆− x. By extension, the 
onditional probability
pε|x 
an be expressed as [Wannamaker 2000℄

pε|x(ε, x) =

+∞
∑

k=−∞
δ(ε + x− k∆)

∫ ∆
2

+k∆

−∆
2

+k∆
pw|x(w, x)dw. (B.15)Using the fa
t that

pw|x(w, x) = pv(w − x), (B.16)



172 Appendix B. Review of non-subtra
tive and subtra
tive ditheringte
hniqueswhere pv is probability density fun
tion of the noise v, the 
onditional probability
pε|x rewrites

pε|x(ε, x) =

+∞
∑

k=−∞
δ(ε+ x− k∆)

∫ ∆

2
+k∆

−∆

2
+k∆

pv(w − x)dw

=
+∞
∑

k=−∞
δ(ε+ x− k∆)

∫ ∆
2

−∆
2

pv(w + k∆ − x)dw

=

+∞
∑

k=−∞
δ(ε+ x− k∆)

∫ ∞

−∞
∆Π∆(w)pv(ε+ w)dw

= W∆(ε+ x)[∆Π∆ ∗ pv](ε). (B.17)We dedu
e the probability density fun
tion of the global error ε
pε(ε) =

∫ +∞

−∞
pε|x(ε, x)px(x)dx

= [∆Π∆ ∗ pv](ε) [W∆ ∗ px] (−ε). (B.18)From (B.18), we see that for any 
hoi
e of pv (whi
h is non-negative), the
onvolution produ
t Π∆ ∗ pv will give a fun
tion as wide as the re
tangular windowfun
tion. Similarly to the undither system, we dedu
e from this remark that theglobal error of a non-subtra
tive dithering system 
annot be made independent ofthe system input [Wannamaker 2000℄.The 
hara
teristi
 fun
tion of ε writes
Pε(u) = [sinc(u)Pv(u)] ∗ [W 1

∆

(−u)Px(−u)]

=

+∞
∑

k=−∞
sinc

(

u− k

∆

)

Pv

(

u− k

∆

)

Px

(

− k

∆

)

. (B.19)To be uniformly distributed, the 
hara
teristi
 fun
tion of ε must be redu
ed to
sinc(u). If we admit that this is possible, we have for any l ∈ Z

∗

Pε

(

l

∆

)

= sinc

(

l

∆

)

= 0, (B.20)and from equation (B.19)
Pε

(

l

∆

)

=

+∞
∑

k=−∞
sinc

(

l

∆
− k

∆

)

Pv

(

l

∆
− k

∆

)

Px

(

− k

∆

)

= Px

(

− l

∆

)

. (B.21)
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tive dithering system (NSD) 173By 
ombining (B.20) and (B.21), we get that the global error of a non-subtra
tivedithering system 
an be made uniformly distributed if
Px

(

l

∆

)

= 0, ∀l ∈ Z
∗ (B.22)whi
h is not veri�ed for arbitrary density probability fun
tions. This gives The-orem 8 [Wannamaker 2000℄Theorem 8. The global error of a non-subtra
tive dithering system is not inde-pendent of the system input and 
annot be made uniformly distributed for arbitrarydensity probability fun
tions px.From Theorem 8, we see that the independen
e of the global error 
annotbe obtained with this system. The moments of the global error 
an, however,be made independent of the system input for a 
ertain 
lass of dithering noise v[Wannamaker 2000℄. The m-moment of the global error is given by

E[εm] =

∫ +∞

−∞
εmpε(ε)dε, (B.23)and 
an also be expressed using its 
hara
teristi
 fun
tion Pε [Kawata 1972℄

E[εm] =

(

j

2π

)

P (m)
ε (0), (B.24)where j is the imaginary number and P (m)

ε is the m derivative of the 
hara
ter-isti
 fun
tion Pε. Let Gv(u) be de�ned as
Gv(u) = sinc(u)Pv(u), (B.25)su
h that, from (B.19), we have

E[εm] =

(

j

2π

) +∞
∑

k=−∞
G(m)

v

(

u− k

∆

)

Px

(

− k

∆

)

. (B.26)From equation (B.26), we dedu
e the following theorem [Wannamaker 2000℄Theorem 9. The m-moment of the global error of a non-subtra
tive dithering sys-tem is independent of the system input if
G(m)

v

(

k

∆

)

= 0, ∀k ∈ Z
∗. (B.27)If Theorem 9 is veri�ed, the m-moment of the global error is given by

E[εm] =

(

j

2π

)

G(m)
v (0), (B.28)whi
h, by de�nition (B.25), is the same than the moment of the random variable
omposed by the sum of the dithering noise v plus a uniform random variable whose
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tive and subtra
tive ditheringte
hniquesprobability density fun
tion is the re
tangular window fun
tion (B.6). We, amongothers, then have [Wannamaker 2000℄
E[ε] = E[v] (B.29)

E
[

ε2
]

= σ2
v +

∆2

12
, (B.30)where σv is the standard deviation of the dithering noise v. Theorem 9 
an befurther developedTheorem 10. The m-moment of the global error of a non-subtra
tive ditheringsystem is independent of the system input if

P (l)
v

(

k

∆

)

= 0, ∀k ∈ Z
∗ and ∀l ∈ {0, 1, 2, . . . ,m− 1}. (B.31)The proof of this theorem is adressed in [Wannamaker 2000℄. If Theorem 10is satis�ed, an interesting 
orollary states that for a given m and for any n, the

m-moment of the global error ε is independent from the n-moment of the systeminput x
E[εmxn] = E[εm]E[xn]. (B.32)A se
ond interesting 
orollary is that Theorem 10 will be satis�ed for anydithering noise v whi
h is the sum of m uniformly distributed random variables[Wannamaker 2000℄. In the thesis, we fo
us on dithering noise generated by a nor-mal distribution. This type of dithering noise veri�es Theorem 10 if its standarddeviation σv is large enough in front of the quantizing step [Vanderkooy 1987℄

σv >
∆

2
. (B.33)Although the moments independen
e may be su�
ient for some appli
ations, itis rarely exploited by image restoration algorithms whi
h usually require strongerstatisti
al properties su
h as signal independen
e. The latter 
an however be ob-tained using the subtra
tive dithering system des
ribed in the next part.B.3 Subtra
tive dithering system (SD)The subtra
tive dithering system is an extension of the non-subtra
tive s
hemewhere the dithering noise v is substra
ted after quantizing. This system is depi
tedFig. B.3.

Figure B.3: Subtra
tive dithering system.



B.3. Subtra
tive dithering system (SD) 175Using the same notations, we have
y = Q(w) − v = Q(x+ v) − v, (B.34)su
h that

ε = y − x = Q(x+ v) − (x+ v) = q(x+ v). (B.35)By analogy with equation (B.3), we see that the results of the subtra
tive dither-ing theory 
an be dire
tly obtained from the undithered system theory by repla
ing
x in part B.1 by x+ v. We dire
tly dedu
e [Lipshitz 1992℄

pε(ε) = ∆Π∆(ε) [W∆ ∗ px ∗ pv] (−ε), (B.36)and
Pε(u) = sinc(u) +

+∞
∑

k=−∞,k 6=0

sinc

(

u− k

∆

)

Px

(

− k

∆

)

Pv

(

− k

∆

)

. (B.37)In that 
ase, the signal independen
e 
an be obtained if the following theoremis veri�ed [S
hu
hman 1964℄Theorem 11. The global error of a subtra
tive dithering system is independentfrom the system input and uniformly distributed between [−∆
2 ,

∆
2 ] if the 
hara
teristi
fun
tion Pv of the dithering noise satis�es

Pv

(

k

∆

)

= 0, ∀k ∈ Z
∗. (B.38)whi
h is true for any dithering noise generated by the sum of uniformly dis-tributed random variables. Here again, the normal distribution veri�es Theorem11 if its standard deviation σv is large enough in front of the quantizing step[Vanderkooy 1987℄

σv >
∆

2
. (B.39)


