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Abstract

The subject of this work is image coding and restoration in the context of satellite
imaging. Regardless of recent developments in image restoration techniques and
embedded compression algorithms, the reconstructed image still suffers from coding
artifacts making its quality evaluation difficult. The objective of the thesis is to
improve the quality of the final image with the study of the optimal structure of
decoding and restoration regarding to the properties of the acquisition and com-
pression processes. More essentially, the aim of this work is to propose a reliable
technique to address the optimal decoding-deconvolution-denoising problem in the
objective of global optimization of the compression/restoration chain.

The thesis is organized in three parts. The first part is a general introduction
to the problematic addressed in this work. We then review a state-of-the-art of
restoration and compression techniques for satellite imaging and we describe the
current imaging chain used by the French Space Agency (CNES!) as this is the
focus of the thesis.

The second part is concerned with the global optimization of the satellite imaging
chain. We propose an approach to estimate the theoretical distortion of the complete
chain and we present, for three different configurations of coding/restoration, an
algorithm to perform its minimization. Our second contribution is also focused
on the study of the global chain but is more aimed to optimize the visual quality
of the final image. We present numerical methods to improve the quality of the
reconstructed image and we propose a novel imaging chain based on the image
quality assessment results of these techniques.

The last part of the thesis introduces a satellite imaging chain based on a new
sampling approach. This approach is interesting in the context of satellite imaging
as it allows to transfer all the difficulties to the on-ground decoder. We recall the
main theoretical results of this sampling technique and we present a satellite imaging
chain based on this framework. We propose an algorithm to solve the reconstruction
problem and we conclude by comparing the proposed chain to the one currently used
by the CNES.

!Centre National d’Etudes Spatiales






Résumé

Le sujet de cette thése concerne le codage et la restauration d’image dans le con-
texte de I'imagerie satellite. En dépit des récents développements en restauration
et compression embarquée d’images, de nombreux artéfacts apparaissent dans la
reconstruction de l'image. L’objectif de cette theése est d’améliorer la qualité de
I'image finale en étudiant la structure optimale de décodage et de restauration en
fonction des caractéristiques des processus d’acquisition et de compression. Plus
globalement, le but de cette thése est de proposer une méthode efficace permet-
tant de résoudre le probléme de décodage-déconvolution-débruitage optimal dans
un objectif d’optimisation globale de la chaine compression /restauration.

Le manuscrit est organisé en trois parties. La premiére partie est une introduc-
tion générale & la problématique traitée dans ce travail. Nous présentons un état
de l'art des techniques de restauration et de compression pour l'imagerie satellite et
nous décrivons la chaine de traitement actuellement utilisée par le Centre National
d’Etudes Spatiales (CNES) qui servira de référence tout au long de ce manuscrit.

La deuxiéme partie concerne l’optimisation globale de la chaine d’imagerie
satellite. Nous proposons une approche pour estimer la distorsion théorique
de la chaine compléte et développons, dans trois configurations différentes de
codage/restauration, un algorithme pour réaliser la minimisation. Notre deuxiéme
contribution met également ’accent sur I’étude la chaine globale mais est plus ciblée
sur l'optimisation de la qualité visuelle de I'image finale. Nous présentons des méth-
odes numériques permettant d’améliorer la qualité de 'image reconstruite et nous
proposons une nouvelle chaine image basée sur les résultats d’évaluation de qualité
de ces techniques.

La derniére partie de la thése introduit une chaine d’imagerie satellite basée
sur une nouvelle théorie de I’échantillonnage. Cette technique d’échantillonnage est
intéressante dans le domaine du satellitaire car elle permet de transférer toutes les
difficultés au décodeur qui se situe au sol. Nous rappelons les principaux résultats
théoriques de cette technique d’échantillonnage et nous présentons une chaine image
construite & partir de cette méthode. Nous proposons un algorithme permettant de
résoudre le probleme de reconstruction et nous concluons cette partie en comparant
les résultats obtenus avec cette chaine et celle utilisée actuellement par le CNES.
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Introduction






CHAPTER 1

Presentation of the thesis

1.1 Context and motivations

Satellite imaging has been the focus of intense works in the remote sensing com-
munity for the last years. The ability of satellite optical systems to produce high
resolution images has indeed been of a great interest in applications such as change
detection or image classification. It has however outcomed to be quite challeng-
ing for the design of satellite imaging chains. The dimension of images acquired
by high-resolution satellites keeps growing as the image resolution, i.e. the spatial
distance between two adjacent pixels, gets smaller while the swath maintains. For
example, one image of the PLEIADES-HR satellite covers an area of 20 km x 20
km with a resolution of 70 cm, giving an image size of almost 30000 x 30000 pixels.
These images are quantized on 12 bits, which represents 1.35 Gb of raw data per
image! In addition, a satellite is not able to continuously transmit the acquired
images as ground stations are not always accessible for a transmission. It has to
store the acquired images on the on-board mass storage to transmit them later. But
the on-board storage capacity of a satellite is highly limited (about 500 Gb for the
PLEIADES-HR satellite [Lier 2008]) such that the on-board memory needs to be
cleared frequently; the step of image coding is then important and stands as a major
element of the satellite imaging chain. The step of restoration is also very important.
Due to the constraint on the size of the optics, the acquired image is blurred and a
deconvolution/denoising process is always required to produce an image which can
be exploited.

Despite the recent advances in image coding, many artifacts appear on the recon-
structed image. These artifacts appear as specific patterns which clearly interfere
with the image quality assessment. In this sense, the objective of the thesis is to
improve the quality of the final image with the study of the optimal decoding struc-
ture regarding to the characteristics of the acquisition and compression chains. More
generally, the aim of this work is to bring a methodological contribution to the op-
timal decoding-deconvolution-denoising problem and consists in a characterization
and an optimization of the compression/restoration chain considering the instru-
mental characteristics. As part of the thesis, we do not constrain the complexity of
proposed on-board algorithms et we assume that future electronics architectures will
allow to embed these algorithms. Works on this subject are currently in progress at
the French Space Agency (CNES).

To formulate this specific global optimization problem, we consider the imaging
chain showed Fig. 1.1. We denote by x the analog scene. Depending on the context,
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x may also be referred in the thesis to the reference or target image which is the
closest discrete representation of the true analog scene that we can obtain (we will
detail this aspect in Chapter 3). The acquired image y is the image collected after
the sampling and the analog-to-digital conversion. This image is the direct ouput
of the optical instrument and therefore will be referred as the instrumental image.
This image is encoded on-board of the satellite to form a compressed bitstream
such that it can be efficiently stored then transmitted to the ground station. The
complexity of the coding scheme is strongly constrained by the resources available
on board which remain highly limited, such that the design of this step is usually a
difficult task. The evolution of electronics parts and on-board satellite architectures
may however allow more complex algorithms for future missions.

Once the encoded image has been transmitted to the ground station, it is decoded
and a restoration is applied to reduce the degradations due to the acquisition and
the coding processes. The restored image is the final image and is denoted . This
image is the image obtained after the coding/decoding C' and the restoration 7" and
should be the closest representation (following some distance that we will define) of
the reference image.

We denote by D(x,Z) some measure of the distance between the reference image
and the restored one. In the considered chain, the coded/decoded image is C(y)
(the decoding operator is included in C for more clarity in the notations) and we will
denote R(C(y)) some measure of the coding rate of the coded image. The restored
image is obtained by applying the restoration operator 7' on the coded/decoded
image C(y). It can then be expressed as a function of the coding and the restoration
by & = T(C(y)). The problem of global optimization consists in finding the optimal
C* and T* which minimize the distance D(x, ) under the constraint that the target
rate R, is not exceeded. This can be formulated as

C*,T*= argmin FE[D(z,T(C(y)))] , (1.1)
subject to C,T
R(C(y)) < Re

where F is the expected value with respect to the distribution law of z, meaning
that we want to minimize on average the distance D(x,z) for all images = which
follow a certain probability distribution.

Solving problem (1.1) is very difficult in many aspects. Firstly, problem (1.1)
searches for the optimal coder and restoration among all techniques, which is not
tractable. Second, even if the coding and restoration methods are given and perfectly
known, an analytic expression of the global distortion is usually not available as the
coder and the restoration are highly complex and can rarely be expressed in closed-
form. Moreover, the global distortion depends on the knowledge of the real unknown
image x (or its statistics) and on the distance measure D. Ideally, D should evaluate
the image quality with the same accuracy as image analysis experts. Designing such
criterion is however difficult and out of the topic of the thesis. In this work, we will
always take D to be equal to the mean square error since it is a tool that we can
easily manipulate. We are aware that the mean square error is not the best criterion
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that we can use, we will see however that its flexibility is very interesting to develop
global optimization techniques. But as we can see, the problem (1.1) is difficult to
solve in a general context.

The contribution of the thesis is then to bring some insights on the global op-
timization of the imaging chain. We will first focus on the theoretical optimization
of the global distortion in the case of a simple imaging chain. Even if the consid-
ered chain is overly simple, the proposed method appears to be original and tackles
a major difficulty in formulating a closed-form expression of the global distortion.
Because of the complexity of a true satellite imaging chain, we will then present
several experiments to optimize the quality of the final image. This numerical study
addresses common questions in the design of the imaging chain such as the position
of the restoration (i.e. on-board before coding or on-ground after decoding) and
how to process the coding artifacts which interfere with the interpretation of the
image. To conclude the thesis, we will study a new imaging chain based on recent
advances in the theory of sampling. This theory appears at first slightly opposing
the current imaging chain. But the benefit in term of embedded resources clearly
justify our interest to this method.

coding noise (b)

Measured scene
(discrete signal)

_> Acquisition _) Coding
X
y=(h*xz)a+n

S 011011101
I 001010011
rue scene | 010101001

(analog signal)

ing i 111010110
blur sampling instrumental
(hy (A) noise (n) Coded scene
(binary data)

Transmission

<__

Decoded scene
(discrete signal)

‘_ Restoration ‘_ Decoding
X

g=(h*xx)a+n+b

Restored scene
(discrete signal)

Figure 1.1: Current processing chain for satellite imaging.
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1.2 Organization of the thesis

This document is divided in three parts. Part [ is a general introduction to the thesis.
In this part, Chapter 1 describes the context and the organization of the manuscript.
The chapter 2 presents a state-of-the-art of restoration and compression techniques
for satellite images. Chapter 3 closes the part by the technical description of the
current imaging chain used by the CNES, which is the focus of the thesis.

Part II is the core of the thesis and is concerned with the global optimization of
the satellite imaging chain. This study is our main contribution and is divided in
two chapters. Chapter 4 is focussed on the theoretical optimization of the chain. In
this chapter, we consider a simple case of imaging chain and we propose a model to
estimate the global distortion. This estimation is then minimized with respect to
the parameters of the chain to get the minimum global distortion (and the optimal
parameters) given a target coding rate. The main result of this optimization is that
the quality of the final image can be highly improved if we address the problem of
the satellite imaging chain optimization in its globality. This chapter also addresses
theoretically the question of the position of the restoration in the imaging chain.

The other part of our work is described in Chapter 5 and is also focused on the
optimization of the chain but the true satellite imaging chain is now considered. Due
to the difficulty to extend the previous study to this chain, we present in Chapter 5 a
set of numerical experiments which improve the quality of the final image. Through
this experimental study, Chapter 5 addresses recurrent open questions such as the
position of the restoration in the chain and how to deal with the coding noise. From
the obtained results, we propose a new satellite imaging chain based on an on-
board restoration coupled with a subtractive dithering technique. Compared to the
current imaging chain, the proposed approach eliminates several current problems
in the observation of the final image such as structured coding artifacts.

Finally Part III introduces a satellite imaging chain based on the compressed
sensing approach. In Chapter 6, we recall the main results of the compressed sensing
theory and we present a satellite imaging chain based on this framework. We propose
an algorithm to solve the reconstruction problem and we conclude by comparing the
proposed chain to the current imaging chain.

1.3 Publications

Journal papers

e M. Carlavan, L. Blanc-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y.
Bobichon. Joint coding-denoising optimization of noisy images. Submitted to
IEEE Transactions on Image Processing.

e M. Carlavan, L. Blanc-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y.
Bobichon. On the optimization of the satellite imaging chain. Submitted to
IEEE Transactions on Geoscience and Remote Sensing.
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International conferences

e M. Carlavan, L. Blanc-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y.
Bobichon. Global rate-distortion optimization of satellite imaging chains. On-
Board Payload Data Compression Workshop (OPBDC), Oct. 2012.

e M. Carlavan, L. Blanc-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y. Bo-
bichon. A satellite imaging chain based on the Compressed Sensing technique.
On-Board Payload Data Compression Workshop (OPBDC), Oct. 2012.

National conferences

e M. Carlavan, L. Blanc-Féraud, M. Antonini, C. Thiebaut, C. Latry and Y.
Bobichon. Optimisation jointe de la chaine codage/débruitage pour les images
satellite. Submitted to GRETSI, 2013.






CHAPTER 2
State-of-the-art of optimization
techniques for satellite imaging

In this chapter, we make a brief review of optimization techniques applied to the
satellite imaging chain. We distinct here two types of optimization techniques:

e The techniques which optimize only one component of the chain regardless to
the other ones. This type of optimization is referred in this thesis as separate
or disjoint optimization.

e The techniques which optimize one component of the chain by taking into
account the characterics of the other ones. This type of optimization is referred
in this thesis as joint optimization.

We organized this chapter in two sections and we discuss each type of optimiza-
tion technique in each section. Section 2.1 starts this review by presenting advanced
coding and restoration techniques. Although the mentioned techniques have not
been specifically designed for satellite imaging, they are often used as basis in the
design of these parts. Section 2.2 is dedicated to coding and restoration techniques
designed to globally optimize the satellite imaging chain. In this part, we present
the methods proposed in [Parisot 2000a] and in [Tramini 1998] which are, to the
best of our knowledge, the two main existing contributions in this domain.

2.1 Disjoint optimization techniques

2.1.1 Advanced compression algorithms

The information inside an image (and more specifically in a high resolution one) is
strongly redundant (refer, for example, to the image of Cannes harbour Fig. 2.2). It
is then possible to compress a satellite image by reducing this redundancy without
losing important features. It is indeed unusual that the totality of an image brings
relevant information and one can reach significant compression rates if one accepts
to slightly deteriorate its quality. This is the process of lossy compression. Such a
compression technique is composed of several steps as shown on the Fig. 2.1.

The first step of a lossy compression scheme is to decorrelate the data. The idea
of the decorrelation step is to reduce the redundancy in an image by using a (most
of time linear) transform which gathers all its energy in a small number of non-null
coefficients, usually located in the low frequencies of the signal. These transforms
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(binary data)

Acquired scene
(discrete image)

Figure 2.1: Stages of lossy image coding.

are named sparse transforms and provided autocorrelation matrices which tend to
be diagonal. The optimal transform for the data decorrelation is the Karhunen-
Loéve transform! (KLT) as it provides a strict diagonal autocorrelation matrix.
Its implementation is however difficult as the signal dependency of this transform
makes it time-consuming to compute [Andrews 1971|. Until very recently, as on the
SPOT 5 satellite, the discrete cosine transform (DCT), which is a signal-independent
approximation of the KLT transform, was used [Wallace 1992].

Figure 2.2: Reference image, Cannes harbour (12 bits, 30 cm resolution, 1024 x 1024
pixels).

However, image quality evaluation of the DCT-based compression technique

!For signals which can be expressed as first-order Markov processes.
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showed an acceptable compression rate of approximately 3 : 1 on SPOT5 remote
sensing images (8 bits, 5 m resolution) [Thiebaut 2011], i.e. the compressed image is
3 times lighter than the original one. Higher compression rates wipe out the details
of the image and create blocking artifacts on uniform zones. Such phenomenon is
illustrated on Fig. 2.3 which shows the reference image (displayed Fig. 2.2) encoded
at a rate of 2.5 bits/pixel (compression rate of almost 5 : 1). These artifacts appear
because the DCT-based coding technique works on the image at a local level, i.e.
on small 8 X 8 blocks. In order to bypass this compression bound for new generation
high resolution satellites, like the PLEIADES-HR satellite, a new approach based
on global transforms, such as the wavelet transform, has been adopted.

(e) (f)

Figure 2.3: Visual comparison of the DCT-based compression technique. Displayed
images have a size of 200 x 200 pixels. The first line shows zooms of different zones
of the reference image. The second line represents the same zones but for the DCT-
based decoded version of the reference image (PSNR = 46.75 dB). The target rate
is 2.5 bits/pixel (the dynamic range of the reference image is encoded on 12 bits).
The image range has been extended to point out the image reconstruction artifacts.

Unlike the Fourier transform which is localized in frequency domain but not in
spatial domain and the usual representation which is localized in spatial domain but
not in frequency domain, the wavelet transform appears to be (more or less) localized
both in space and in frequency. The multiresolution analysis algorithm proposed in
[Mallat 1989] is recommended to process the wavelet transform of the image. This
scheme is illustrated Fig. 2.4 for a one dimensional signal. It decomposes the image
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in low and high frequencies by applying, in parallel, a low-pass filter A and a high-
pass filter g both followed by subsampling operators. Two sets of coefficients are then
obtained: The approximation coefficients which correspond to the low frequencies
of the signal and which can be interpreted as a zoomed out version of the original
signal and the details coefficients which correspond to the high frequencies of the
signal. This decomposition process is then iterated on the approximation coefficients
L times, L being referred as the number of levels decomposition.

Level 2
approximation

: coefficients
: Level 2

Y
>

Y
>

_>@_>

Y
Q

> g —F@—F detail
Leve] 1 coefficients
detail
coefficients

Figure 2.4: Filter banks for of a one level multiresolution analysis algorithm.

A wavelet transform can be extended to multidimensional signals using separable
Images can then be decomposed using the scheme described Fig. 2.4
iteratively on the rows and the columns of the image. The interested reader may
refer to [Mallat 2008] for more details.

Different families of wavelets can be used for the decomposition of the image.
The Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet is often used in the image
coding community as it owns interesting properties for image compression such

wavelets.

as symmetric filters and enough number of vanishing moments which create short
length filters while giving efficient sparse representations for most smooth images
[Cohen 1992]. The definition of the corresponding filters h and g is given in Table 2.1
for the analysis of the image. Note that the CDF 9/7 wavelet transform is actually
the wavelet transform recommended in the recent JPEG-2000 standard and is also
the transform used by the PLEAIDES-HR satellite for image coding [Lier 2008|.

k Low-pass filter hy, | High-pass filter g
0 0.852698679009 | —0.788485616406
+1 | 0.377402855613 0.418092273222
+2 | —0.110624404418 | 0.040689417609
+3 | —0.023849465020 | —0.064538882629
+4 | 0.037828455507

Table 2.1: Analysis filters for the 9/7 Cohen-Daubechies-Feauveau wavelet trans-

form.

A wavelet transform is very sparse [Antonini 1992, meaning that it repre-

sents the image with a few number of non-null coefficients.

is very attractive for the encoders that follow the transform as they take benefit

This representation



2.1. Disjoint optimization techniques 19

of its sparsity to only encode the coefficients which bring information to the im-
age and discard all the small wavelet coefficients. The statistical characteristics of a
wavelet transform can also be taken into account to increase the coding performance
[Shapiro 1993, Said 1996, Taubman 2000].

Once the image has been transformed, its coefficients need to be encoded to form
the output bitstream. This encoding is usually done in two steps. The first step is the
quantization of the coefficients which reduces the set of their values (usually reals)
to a smaller set (usually integers). It also introduces a small correlation between
the coefficients to improve the performances of the entropy coding that follows the
quantization. This entropy encoding is then the second step of this process and
converts the quantized coefficients into a binary stream. This conversion does not
introduce any degradation and consequently is rarely displayed on coding schemes.
The quantization is the part of the encoding process which introduces an irreversible
degradation of the coefficients. This quantization can be explicitly performed as in
the DCT-based compression system |[Wallace 1992] or implicity, as the consequence
of a bitstream truncature, for advanced encoders such as [Shapiro 1993, Said 1996,
Taubman 2000]. We describe these encoders in the next lines. The encoder used
on-board of current satellite imaging systems will be described in Chapter 3.

2.1.1.1 Embedded Zerotree Wavelet (EZW) encoder

The encoders proposed in [Shapiro 1993, Said 1996] are similar in the sense that they
are both based on the hierarchical representation of a wavelet transform and exploit
the self-similarity accross wavelet subbands (displayed Fig. 2.5). More precisely, the
EZW encoder proposed in [Shapiro 1993] relies on the hypothesis that if a wavelet
coefficient magnitude is below a given threshold 7' (it is said to be insignificant),
then all the coefficients of the same orientation in the same spatial location at finer
scales are likely to be insignificant too with respect to 7. The EZW encoder then
uses this hypothesis to create a significance map that only retain coefficients that
bring information to the image.

This hierarchical notion allows to link the coefficients that belong to the same
location and orientation together such that they can be represented by a zerotree
structure. The objective of this structure is to locate the coefficients in the finer
scales that are insignificant based on the magnitude of the coefficient currently
scanned. The encoder can then predict the absence of significant coefficients at
finer scales and stops the coding of the current tree. This technique is particularly
efficient to quickly encode a wavelet transform as it contains many coefficients close
to zero that do not bring much information to the image. This end-coding method is
very similar to the end-of-block symbol used by the DCT-based compression system
to stop the encoding of block when no more non-null coefficients are discovered.
However in the EZW case, the encoder works on the whole image instead of small
8 x 8 blocks and therefore many more coefficients can be predicted to be insignificant
using one symbol.

As mentioned earlier, the creation of the significance map depends on the value of
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Figure 2.5: Coefficients dependencies through subbands on a 3-levels decomposition.
The figure shows the same location at different scales.

the threshold T'. In order to encode both large and small coefficients, this threshold
needs to be decreased iteratively. This is the process of successive-approximation
quantization (SAQ) [Shapiro 1993]. The SAQ creates a sequence of thresholds 7}, i €
{0,1,..., M}, where M is the number of iterations (usually set to the number of
bits required to represent the maximum absolute value of the wavelet coefficients),
and produces significances maps for each threshold 7;. Usually, the threshold at
the iteration ¢ is defined as the half of the previous threshold to match the binary
representation of wavelet coefficients

(2.1)

with Tj is half of the first power of two greater than the maximum absolute value
of the wavelet coefficients to encode.

During this iterative encoding procedure, two separate lists of wavelet coefficients
are used to track the coefficients that have previously been marked as significant:
The dominant and the subordinate lists. The dominant list contains the coordinates
of the coefficients that have not been found to be significant yet while the surbor-
dinate list contains the magnitudes of the coefficients that have been found to be
significant.

The overall EZW algorithm is as follows. For each threshold, the dominant
list is scanned and the significance map is produced. This map is then zerotree
encoded using an algorithm described in [Shapiro 1993]. During this encoding, each
coefficient marked as significant is removed from the dominant list and its magnitude
is appended to the subordinate list. The coefficient is then set to zero in the data
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to not disturb the computation of zerotrees of future iterations. Once the dominant
list scan is completed, the magnitude of each coefficient of the subordinate list is
refined. More precisely, a symbol is outputted to indicate if the true value of the
encoded coefficient belongs to the upper or lower half of the current threshold. The
encoding stops when the target rate has been reached.

The very good results obtained with this coder can be explained by the efficiency
of the zerotree structure coupled with the SAQ technique, which in fact is almost
equivalent to order the wavelet coefficient and to transmit first the large ones. This
allows to decode the best possible image at any point in the binary stream: This is
the process of progressive transmission. The Set Partitioning In Hierarchical Trees
(SPIHT) encoder proposed in [Said 1996] is very similar to the EZW encoder as it
also owns this feature of progressive transmission. However, the technique used by
the SPIHT encoder to code the coefficients is radically different.

2.1.1.2 The Set Partitioning In Hierarchical Trees (SPIHT) encoder

The SPIHT algorithm also focusses on this aspect of progressive transmission but
explicitly orders the wavelet coefficients and encodes first the large ones such that
the mean square error (MSE) is minimized. Let y be the image to encode and ¢ the
decoded image, the MSE then writes

1
D=—|ly -9 2.2
Nlly ll% (2.2)

where N is the number of pixels. Using an orthonormal wavelet transform, the
definition of the MSE can be futher developped

1 N-1

1
— M2 = E S _an )2
D—NHU}—’U)H —N — (wl wz) , (23)

where w; are the wavelet coefficients to encode and w; the decoded coefficients.
As mentioned in [Said 1996], it is clear that if the exact value of a coefficient wj

is transmitted, i.e. w; = w;, then the MSE decreases by wW? The SPIHT encoder
is then based on the fact that the large wavelet coefficients need to be transmitted
first so an image with the best quality (in the MSE sense) can be reconstructed at
any time.

This encoder uses the binary representation of the coefficients and processes
the data iteratively bit plane by bit plane through two passes: The sorting pass
which orders the coefficients from the larger to the smaller and the refinement pass
which outputs the bit value of current bit plane for each significant coefficient. The
keypoint of this algorithm is that the coordinates of the sorted coefficients do not
need to be transmitted as both encoder and decoder share the same execution path.

In detail, the strength of the sorting pass of the SPIHT encoder lies in the fact
that it does not sort all coefficients but only selects the one that are significant with
respect to a threshold 7;, where n is the nth iteration (or sorting pass). To select
these significant coefficients, the sorting pass divides all the pixels into partitionning



Chapter 2. State-of-the-art of optimization techniques for satellite
22 imaging

subsets 7,,, and evaluates the significance of each subset. If none coefficient of the
subset 7, is significant, then the subset is considered as insignificant and is not pro-
cessed any further. Otherwise, if at least one coefficient of the subset is significant,
then the subset 7,, is considered as significant and a specific rule is applied to divide
the subset into new partition subsets 7, ; [Said 1996]. The significance test is then
performed on these new subsets 7., ; and so on. This process is achieved iteratively
until each subset is reduced to a single coefficient such that each coefficient has been
found significant or not.

This significance map is then stored in three lists: The [list of insignificant sets
(LIS), list of insignificant pizels (LIP) and list of significant pizels (LSP). The LIP
and LSP lists are used to respectively store the coordinates of insignificant and
significant pixels. The LIS list is used to specify the type of subset associated to the
coordinates of each coefficient.

The overall algorithm is as follows. It starts by initializing the number of it-
erations n to the number of bits required to represent the maximum value of the
coefficients. For each entry of the LIP (which stores the coordinates of pixels which
were evaluated as insignificant at the previous iteration), the significance is evalu-
ated. The significant coefficients are moved to the LSP and their sign is outputted.
The significance of the set of each entry of the LIS is then evaluated. If the set is
found to be insignificant, it is added back to the LIS for the next iteration. Other-
wise, it is further partionned. The resulting subsets are added back to the LIS and
the single coefficient subsets are added either to the LIP or LSP depending on their
significance. Each entry of the LSP is then processed by the refinement pass which
outputs the nth most significant bits of the absolute value of the coefficients (the
sign has already been outputted during the sorting pass). The value of n is then
decremented by 1 to process the next bit plane.

As for the EZW encoder, the SPTHT encoder stops the encoding procedure once
the bit budget has been exhausted. The quality can also be controlled by stopping
the encoding procedure once the evaluation of (2.3) reaches the desired target value.
Note that, contrary to the EZW algorithm, the SPTHT encoder directly produces
the bitstream without using an entropy coding. As mentioned by [Said 1996], using
an entropy coding does not bring much improvement and strongly increases the
coding time. In the next part, we describe another well-known coding algorithm
used in the JPEG-2000 standard.

2.1.1.3 Embedded Block Coding with Optimized Truncation (EBCOT)
encoder

The JPEG-2000 standard is a recent recommendation for imaging coding and is
also based on the wavelet transform described in Section 2.1.1. The JPEG-2000
entropy coder is based on the Embedded Block Coding with Optimized Trunca-
tion (EBCOT) contextual encoder proposed in [Taubman 2000]. This encoder is a
block-based encoder organized in two layers named Tiers. The Tier 1 divides each
wavelet subband in small blocks and encodes each block using a contextual encoder.
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The second layer, Tier 2, computes the optimal truncation points of the encoded
bitstreams such that the global rate-distortion is minimized.

During the Tier 1, the encoder divides each wavelet subband into small 32 x 32
blocks and processes each block bit plane by bit plane. During this bit plane en-
coding procedure, the encoder scans each coefficient and processes through three
different coding passes: The Significance Propagation pass, the Magnitude Refine-
ment pass and the Cleanup pass. During each of these passes, four primitives are
used: The Run-Length Coding (RLC) primitive, the Zero Coding (ZC) primitive,
the Magnitude Refinement (MR) primitive and the Sign Coding (SC) primitive.
These primitives are used to select the most appropriate context of the coefficient
scanned depending on its neighbors. In detail, for each scanned coefficient, the
eight adjacent neighbors are observed. Each neighboring configuration produces a
specific context which is converted by the selected primitive to a particular output
symbol. To limit the complexity of the coder, all the possible configurations have
been reduced to eighteen contexts for all the primitives, one for the RL primitive,
nine for the ZC primitive, five for the SC primitive and three for the MR primitive
[Taubman 2000].

The coding of a bit plane is as follows. The Significance Propagation pass is
used to locate the significant coefficients or the coefficients that have significant
neighbors. Once these coefficients have been located, the RL and ZC primitives are
invoked to identify the ones which become significant in the current bit plane. If so,
the SC primitive is applied to encode their sign. During the Magnitude Refinement
pass, the MR primitive is applied. This primitive is intended to refine the magnitude
of the coefficients identified as significant by the Significance Propagation pass, by
encoding the corresponding bits of the current bit plane. Finally, the Cleanup pass
is used to encode the coefficients that have not been considered during the previous
passes. The RL primitive is applied and the SC primitive is invoked if coefficients are
found to be significant. Each outputted symbol is then encoded using an arithmetic
coder.

Once each block has been encoded using the contextual encoder, the Tiers 2
computes the optimal truncation points of the encoded bitstream such that the
truncation points lie on the rate-distortion convex hull. Let D" be the coding
distortion of the block B; whose bitstream has been truncated to the point n; giving
the coding rate R". As each block is encoded independently, the overall coding
distortion D can be expressed as

-1
D =Y D, (2.4)
i=0
where [ is the number of blocks. Similarly, the overall coding rate R writes
-1
R=> R (2.5)
i=0

The rate-distortion problem consists here in finding the optimal truncation
points n which minimize the coding distortion D over the set A of all possible
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truncation points, under the constraint that the coding rate R does not exceed the
target rate R.. It can be formalized as follows

n;" =  argmin ZZI:_OI D" . (2.6)
subject to Zf;ol R < R.
n; € ./\/;

For some value of the Lagrange multiplier A [Everett 1963], the problem (2.6)
can be written in an unconstrained form [Taubman 2000]

A A
n) =  argmin ZZI:_OI (D?Z —I—)\R?i) . (2.7)
subject to  n} € NP
The rate-distortion optimization performed by the Tiers 2 consists thus in find-
ing the value of A such that the optimal truncation points nf‘* in (2.7) satisfy

)\*
Zf;ol R}* = R.. The optimization (2.7) can be performed numerically by find-
ing, for a given A, the minimal truncation point j € {1,2,3,...} which verifies for
each block B;

AD?
L ), (2.8)
AR
where
AD! = D!™' - D, (2.9)
AR} =R - Rl (2.10)

Until now, the EBCOT encoder described here allows to reach the state-of-the-
art image coding performances [Taubman 2000]. Its high computational cost make
it difficult to use it on-board of a satellite. The encoders presented in [Shapiro 1993,
Said 1996] are less expensive in term of computational resources and are frequently
used as the basis of satellite embedded image coder (see Section 3.2.2).

2.1.2 Restoration techniques

In this part, we describe the techniques used for the restoration of the decoded image.
Note that we only focus on the methods which decompose the restoration in a direct
deconvolution followed by a threshold operation of some sparse representation. We
do not include the methods based on a variational framework such as [Bect 2004]
as they are time consuming to compute.

2.1.2.1 Wavelet thresholding estimators

Most of restoration techniques used in satellite imaging are based on the technique
proposed in [Kalifa 2003b]. These methods consider that the observed image y is
the result of the real scene = blurred by the point spread function (PSF) h of the
optics and noised by an additive random noise n

y=hx*x+n, (2.11)
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where * denotes the convolution product. To simplify the notation, the sampling
operation does not appear in the model (2.11) and we assume that all the variables
are discrete.

The PSF h of the optics acts as a low-pass filter which attenuates the high
frequencies of the image (edges and sharp textures) making it blurry. Retrieving
the true image x from the observed one y is an ill-posed problem which requires
prior information on the image = and on the noise n [O’Sullivan 1986]. As mentioned
previously, one technique to address this problem is to formalize this estimation as a
minimization problem using a variational approach. In detail, a variational approach
consists in formulating the inverse problem as a minimization problem composed of
a data fidelity term built from the noise model and a regularizing function suited to
represent the image x [Chambolle 1997]. A general framework for the formulation
of inverse problems using variational approaches has been proposed in [Bect 2004].
The resulting algorithms appear however to be quite time consuming and are thus
inadapted to high resolution satellite imaging.

Here, we focus instead on methods similar to [Kalifa 2003b| which proposes to
invert the problem (2.11) in two steps. The first step consists in dividing, in the
Fourier domain, the observed image by the optical transfer function (OTF) to remove
the attenuation of the filter h. This direct inversion tends however to amplify the
noise, so the deconvolved image is usually decomposed in some sparse basis and its
coefficients are then thresholded to reduce the energy of the amplified noise. These
techniques belong to the class of thresholding estimators [Donoho 1994].

In the case of an image only degraded by an additive Gaussian noise,
[Donoho 1994] showed that the maximum risk of these thresholding estimators is
minimized if the vector basis of the decomposition concentrate the energy of the
image over few coefficients and if the noise coefficients are nearly independent. It
is well-known that wavelet basis own this property of sparsity as they are widely
used for image compression [Antonini 1992]. As these transforms are orthogonal (or
biorthogonal), the nearly independence between noise coefficients is achieved.

When the image is also degraded by blur, [Kalifa 2003b| showed that thesholding
estimators based on wavelet basis may not be efficient as the deconvolved noise is
colored. Let h™! be the pseudo-inverse filter whose Fourier transform F(h~1)(u) is
defined by

F(h™ ") (u) = {m’ if F(h)(w) #0

(2.12)
0, otherwise

The deconvolved image & is obtained by applying the pseudo-inverse filter A~
to the observed image y
F=htxy=wxz+z, (2.13)

where z is the deconvolved noise and w is some regularizing function which
cancels the frequency of the image where F(h) vanishes

1, it F(h)(u) #0

(2.14)
0, otherwise

F(w)(u) = {
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The power spectrum S, of the deconvolved noise z can be expressed as

Sn(u) .
Sz(u) _ FAOIIEE lff(h)(u) 7é 0 (2'15)
0, otherwise.

From (2.15), we see that the power of the noise will be higher in the high fre-
quencies where the magnitude of the Fourier transform of the filter h is low. A
thresholding of some sparse decomposition is then required to reduce the inten-
sity of the deconvolved noise. For deconvolution problems where the magnitude of
the Fourier transform of the filter h decreases slowly, [Donoho 1995b| showed that
wavelet basis still lead to efficient thresholding estimators for this class of deconvo-
lution problems.

If the magnitude of the Fourier transform of the filter i vanishes, then theshold-
ing in wavelet basis does not lead to satisfying results |Kalifa 2003b|. As the Fourier
transform of h vanishes, the pseudo-inverse filter h~! deals with important variations
in the high frequency domain where the magnitude of the OTF goes near zero. Un-
fortunately, the high frequency subbands of wavelet basis do not have a sufficiently
fine frequency resolution to concentrate the energy of the deconvolved noise in few
coefficients. A wavelet packet decomposition [Coifman 1992] needs to be used to
achieve an efficient estimation [Kalifa 2003b|. Hybrid Fourier-Wavelet approaches
[Neelamani 2004]| can also be used to deal with the frequencial representation of the
colored noise.

A wavelet packet decomposition extends the discrete wavelet transform by iterat-
ing the decomposition both on the low frequency and the high frequency subbands.
An exemple of such decomposition is illustrated Fig. 2.6 in comparison to a clas-
sical dyadic wavelet transform. We see that a wavelet packet transform leads to
a representation with a finer frequency resolution in the high frequency subbands.
For bounded variations signals, [Kalifa 2003a| showed that thresholding estimators
based on wavelet packet decompositions are nearly minimax optimal for this class
of deconvolution problems.

Thresholding estimators based on real wavelet packet transforms produce how-
ever artifacts on the reconstructed image. These artifacts come from the fact that
real wavelet packet transforms suffer from a lack of shift invariance and a poor di-
rectionality. The lack of shift invariance can be worked around by applying the
transform on shifted version of the deconvolved image. This however tends to sig-
nificantly slow down the algorithm. The poor directionality comes from the fact
that wavelet transforms are extended to the two-dimensional case using separable
wavelets. This allows efficient decomposition algorithms which apply the wavelet
transform independently on each dimension (rows and columns) of the image. Con-
sequently, a two-dimensional wavelet transform only selects horizontal and vertical
frequencies of the image but does not correctly represent the diagonal frequencies
(oriented objects). This lack of directional selectivity creates aliasing artifacts which
are particularly visible on the oriented objects (buildings, roads) of the reconstructed
image.
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Figure 2.6: On the left, absolute value of a 2-levels wavelet decomposition of the
reference image presented Fig. 2.2. On the right, absolute value of a 2-levels
wavelet packets decomposition of the same image. Both transforms use orthogo-
nal Daubechies DB6 filters set [Daubechies 1992].

Redundant wavelet transforms can be used to deal with the lack of shift in-
variance and the poor directionality, at the cost of more complex algorithms. An
extension of the real wavelet packet transform to the complex case has been pro-
posed in [Jalobeanu 2003]. This complex wavelet packet transform is based from the
complex wavelet framework proposed in [Kingsbury 1998] which offers nearly shift
invariance and a better directional selectivity with a limited redundancy. Advanced
redundant wavelet transforms such as [Labate 2005] and [Candeés 2005] can be used
to capture specific features of the image (curves, oriented objects). Finally, note
that all the referred methods can also take benefit of risk optimization techniques
to estimate the optimal threshold parameters which minimize the MSE without the
knowledge of the true image [Pesquet 2009], [Chesneau 2010|. A comparison of the
state-of-the-art sparse transforms for image restoration will be presented in part II.

2.2 Joint optimization techniques

In this part, we briefly describe the methods which optimize one part of the imaging
chain by taking into account the characteristics of the other components.

2.2.1 Optimal rate-allocation based models

To the best of our knowledge, the main contribution on joint optimization for im-
age coding is the technique proposed in [Parisot 2002]. In this work, the authors
proposed to compute a rate-allocation based on a wavelet subband model. The in-
teresting point in the proposed method is that the global distortion can be weighted
to take into account the post-processing steps. As explained in Section 2.1.2.1,
the restoration done on-ground first performs a deconvolution to enhance the high
frequencies of the image. It seems then interesting to weight the high frequency
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subbands during the rate-allocation such that they are preserved from the quan-
tizing [Parisot 2001]. More precisely, [Parisot 2002] proposed to write the coding
distortion D as

J—1
D=> Ajm;Dj, (2.16)
=0

where J is the number of wavelet subbands, D; is the coding distortion in the
subband j and m; are weighting coefficients which depend on the filters and the
decimation factors used in the wavelet transform [Usevitch 1996]. Note that these
weighting coefficients are only required if one considers biorthogonal wavelet trans-
forms such as the CDF 9/7 wavelet transform [Cohen 1992]. They are equal to 1
for an orthogonal wavelet transform. The weighting coefficients A; allow to favor
one subband (i.e. one range of frequencies) during the rate-allocation problem. A
low value of this weight will preserve the corresponding subband while a high value
will penalize it.

Similarly, the coding rate R can be expressed as a function of each subband rate
R;

J—1
R=)a;R;, (2.17)
=0
where N
R 2.18
a] N ’ ( )

is the weight of the subband j in the whole image, that is the ratio between the
size N; of the subband j and the size N of the image.

The authors of [Parisot 2002| further proposed to modelize each wavelet subband
using a centered generalized Gaussian distribution (GGD) law (the low frequency
subband matches this model if a differential coding is first applied). Each subband is
then parametrized by a standard deviation o; and a shape parameter «;. Although
several quantization models are considered in [Parisot 2002], each of them can be
defined by the quantized step ¢; and the size of a dead-zone z;. A dead-zone is the
quantizing interval which outputs a zero value. As shown in [Parisot 2002], using
a dead-zone larger than the quantizing step gives better compression performances.
The coding distortion D and the coding rate R can be expressed analytically as a
function of the GGD and the quantization parameters [Parisot 2002]

-1
D = AjﬂjO’?-Dj <Oéj, %, 3'_]> 5 (219)
=0 J =7

J

J-1
P
R= JZO a;R; <aj, U—’J G—J> : (220)

The rate-allocation problems consists here in finding the optimal quantizing

parameters (quantizing step ¢; and size of the deadzone 27) which minimize the
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coding distortion D under the constraint that the coding rate R does not exceed
the target rate R,

. J-1
qj,zj = argmin ) 7, Aj?TjO'JQ-D' (a], Czri, gi) . (2.21)
subject to Z‘j]:_& a;jR; (aj, ;J , g—;) < R,
qj, %5

We immediately see that if A; = 0 then the corresponding subband j will not
be included in the minimization of the distortion, leading to the minimal value
of quantizing step (¢; = 1). High frequency subbands may then be preserved from
excessive quantizing, which is preferable for the restoration that follows. The coding
technique proposed in [Parisot 2002] is jointly optimized in this sense.

One can show that for some value of the Lagrange multiplier A [Everett 1963],
the rate-allocation problem (2.21) can be written in an equivalent unconstrained

form
@,z = argmin Y 7_JA -wjo2D- (aj, %, Gj) . (2.22)
+A (Z] 0 @R (g, 25, G5) — RC>
subject to ¢, Z;
where Z; = =L and ¢; = 2. Except under high coding rate assumption, the prob-

lem (2.22) cannot be solved in Closed form. The algorithm proposed in [Parisot 2002]
to solve (2.22) is based on the resolution of the simultaneous equations obtained
from the Karush-Kuhn-Tucker (KKT) conditions [Kuhn 1951] of problem (2.22).
The KKT conditions are the necessary first order conditions for a solution of an op-
timization problem to be optimal. In clear, the KKT conditions state that the first
derivatives of the function to minimize, taken at an optimal point, have to cancel.
Note that these conditions are usually not sufficient and the analysis of the second
derivatives is sometimes required to determine if the extremum found is a maximum,
a minimum or a saddle point. Due to the complexity of problem (2.22), the authors
of [Parisot 2002] explicitly assume that a mimimum exists and is unique. Only one
point can then verify the KKT conditions of problem (2.22). These conditions write

20D; . . OR; L

Ao 9z, o5 (5, 25, 45) + A aja—;(ajvzjvqj) =0, (2.23)
8‘D ~k o~k * 8R ~k o~

Aj JT50. J a~, (aJ’ quj) +A Q=" a~ (aja ],qj) 0, (2.24)

Zay (aj,%5,4) — R. = 0. (2.25)

The solution Z7 can be expressed as a function of the quantizing step ¢; and the

shape parameter o, and therefore can be noted as [Parisot 2002]

# = o, (T)): (2.26)
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Problem (2.22) is then reduced to find A", ¢; which verify

hay (§) = =R, 2.27
;(d5) AﬂTjUJZ (2.27)
Zag (@, 90,(37),G5) = Re, (2.28)
where oD,
B G (a]7ga (Q) QJ)
ha, (@) = 57, d (2.29)

4, (o J’gaj( i) (jg)

The monotonicity of functions h,, and R; allows to solve numerically (2.27) and
(2.28) using root-finding algorithms such as binary search procedures. From (2.29),
we see that the function hg; only depends on the shape parameter «; and gj, the ratio
between the quantizing step ¢; and the standard deviation o; of the current subband.
Without knowing explicitly the values of ¢; and o, one can numerically compute
he, for a given a; and several values of ¢;. Eq. (2.27) can then be solved using the
generated lookup table (LUT) and a binary search procedure [Parisot 2002|. The
same technique is applied to (2.28) to find A*. Solutions ¢;,2; and then deduced
from ¢; and Z7 given 0.

In terms of coding performances, the technique proposed in [Parisot 2002| equals
(and sometimes outperforms) JPEG-2000, which is the state-of-the-art of coding
algorithm. The complexity of the algorithm [Parisot 2002| is however 5 times lower
that JPEG-2000. These features make the method proposed in [Parisot 2002| to be
very suitable for future high-resolution satellite compression scheme [Parisot 2000b].

2.2.2 Optimal joint decoding/deblurring

As mentioned in the Section 2.1.2.1, the restoration performed on-ground after de-
coding usually does not take into account the quantizing noise and considers the
image formation model (2.11). But the coding step cannot be neglected at low cod-
ing rates and introduces a quantizing error. The method presented in [Tramini 1999|
focusses on this aspect and proposes a restoration method which considers all the
degradation of the imaging chain.

Let W be the wavelet transform used in the coding step, () the quantizing
operator and S the set of coordinates of the N pixels of the image. The quantized
image w in the transformed domain writes

w=Q (W (Hzx+n)), (2.30)

where x is the real scene, H is the matrix notation of a filtering process h (which
stands as the PSF of the optics of the satellite) and n is the instrumental noise.
In [Tramini 1999], the noise n is assumed to be centered, bounded, non-stationary
and following a uniform distribution. But other considerations can be made to
adapt the method to the considered chain. The variance 03 at the pixel 7 of the
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instrumental noise relies on the value of the observed pixel (Hz); and can be written
as [Tramini 1999|
o} =a+ B(Hz); +y(Hzx)?, VieS (2.31)

where «, § and -y are three constants which depend on the acquisition parameters.
The noise n is assumed to be uniformly distributed; its probability density function
pn can be expressed as a function of the variance o

L if-0V3<n<oV3
pn(n) = {20\/_ 1 oV3<n<oV3 0.32)
0
Each pixel noise (n); is then bounded by
— O'Z'\/g < (n)l < O'i\/g, Vi € S. (233)

Let b be the quantizing noise in the transformed domain, (2.30) can be written

as
W =W (Hz +n)+b. (2.34)

Under the consideration that a subband uniform scalar quantizer is used, each
pixel of a quantizing noise subband b; is bounded by the quantized step g; applied
to the subband j

- %ﬂ < (bj)i < %ﬂ Vi e S;. (2.35)
where S; is the set of coordinates of the IN; coefficients of the subband j. Eq.
(2.34) can be further reduced to

w=WHzx + ¢, (2.36)

where ¢ = Wn + b. As mentioned in [Tramini 1999|, the difficulty here is to
bound the wavelet transform of a non-stationary noise. Under some stationary
approximation of the instrumental noise in the transformed domain, the authors
of [Tramini 1999] proposed to compute numerically the bound w; for each wavelet
subband j of the instrumental noise. Each pixel of a subband ¢; of the global error
e then verifies

_ (% + wj) < (Ej)i < (% + wj) , VieS;. (2.37)
From equation (2.37), one defines for each subband j the interval [Tramini 1998|
1= {serY, - (%ﬂ ) < (@) < (%ﬂ +wj) Vi€ 55 (2.38)

such that €; € I;. From (2.36), it is clear that
(& — WHz) €1, (2.39)

where
I:{xeRN,:cjte,Vje{0,1,...,J—1}}, (2.40)



Chapter 2. State-of-the-art of optimization techniques for satellite
32 imaging

where J is the number of wavelet subbands. The restoration method proposed
in [Tramini 1999] is based on a variational approach and consists in minimizing the
sum of two convex functions under the constraint that the global error belongs to
I. This writes

¥ = argmin fi(x)+ fo(z) : (2.41)
subject to  (w—WHz) eI,
r e RN

where f; is the data fidelity term and fo is the regularizing term. The data
fidelity term usually depends on the statistics of the noise. Here, the authors of
[Tramini 1999] proposed to write the data fidelity term as

J—1
fil) = 32 3 5w (WHz — )2, (2.42)

7=0 iESj J

where 0]2- is the variance of the instrumental noise, approximated as stationary, in
the subband j, and 7; are weightings coefficients required for biorthogonal wavelet
transforms [Usevitch 1996]. The purpose of the regularizing term fy is to avoid
the explosion of the noise during the deconvolution. It is built following some
assumptions on the image. Here, the image is supposed to be a piecewise smooth
function; the norm of its gradient is then assumed to be low [Rudin 1992]. The
regularizing term proposed in |Tramini 1999| writes

Fl@) = (GN:¥ (| (Va), ). (2.43)

€S

where ¥ is an edge-preserving regularization function [Charbonnier 1997] and
V is the gradient operator. The regularizing term in (2.43) is controlled by the
parameter \ which weights the regularization compared to the fidelity to the data.
Usually, this parameter is a scalar such that the regularization is the same all over
the image. The authors of [Tramini 1999 proposed to use a regularizing map (built
by classification) such that the sensitive zones are not too smoothed. As this reg-
ularizing map is not differentiable, it is then smoothed using a convolution with a
Gaussian kernel G. The minimization of the problem (2.41) is obtained from the nu-
merical resolution, using the search method proposed in [Tramini 1998]| and derived
from |Uzawa 1958|, of Euler-Lagrange equations associated to (2.41). As shown by
the results of the method [Tramini 1999|, taking into account the coding noise in
the restoration allows to slightly improve the quality of the reconstructed image.
The drawback of the method is that the prior used for the regularizing term tends
to create flat homogeneous regions which are not appreciated from image analysis
experts as they cannot be interpreted physically [Dherete 2003].



CHAPTER 3

Current CNES earth observing
imaging chain systems

In this part, we describe the composition of a satellite imaging chain. A simplified
representation of this chain is displayed figure 1.1. The role of each component
of the imaging chain has already been described in Chapter 1. We focus in this
chapter to the technical features of each of these components. The data presented
in the thesis are provided by the CNES and are simulations of the post-PLEIADES
new generation high-resolution satellites. We then focus only on the imaging chain
system used by the CNES but the methods we propose are more general and can
be easily extended to the characteristics of other chains.

3.1 Characteristics and instrument model

3.1.1 Transfert function of the optics

The optics of a satellite is built from a complex combination of mirors. The light
emitted from the scene is reflected by these successive mirors and is then focalized
on the detector. Several design of optics exist, such as the Korsch telescope wich is a
three mirors telescope. The characteristics of the telescope depends on specifications
such as the magnitude of the optical transfer function or the target sampling rate.
For example, the PLETADES-HR satellite uses a Korsch telescope [Lier 2008] with
a 65 cm pupil of 12.9 m focal length. It allows to capture panchromatic images with
a resolution of 70 cm and multispectral images with a resolution of 2.80 m. For the
post-PLETADES new generation satellites, a target resolution of 30 ¢cm is planned.

The acquired signal is processed as follows. It is first sampled and transmitted
to the eletronic parts to be shaped such that it is not too noisy. The signal is later
amplified to fit all the available range and to limit the effect of the quantization
during the analog-to-digital conversion. The analog-to-digital converter is the last
part of the acquisition process. It quantizes the amplified signal on 12 bits, giving
a digital image whose pixels vary from 0 to 4095.

This acquisition process affects the quality of the true image by adding blur and
instrumental noise. The blur is mainly caused by the natural environment and the
imperfection of the acquisition components. The atmosphere, the optics and the
sensor all own a transfer function which attenuate the high frequencies of the image
(edges, sharp textures) making it blurry. Let hq, h, and hg respectively be the
transfer functions of the atmosphere, the optics and the sensor. We assume that
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all these operators are linear and translation invariant. The global point spread
function A is then the convolution product of all the intermediate transfer functions

h = hy * hy x hy. (3.1)

Note that the Fourier transform of the global PSF, namely the optical transfer
function, does not cancel at the Nyquist frequency and thus adds aliasing on the
image. This aliasing phenomenon remains however limited as the magnitude of the
optical transfer function (the MTF) at the Nyquist frequency is usually low. For
example, the MTF is equal to 0.1 at the Nyquist frequency on the PLEIADES-HR
satellite. This characteristic is one of the major point of the specifications of satellite
optics.

3.1.2 Instrument noise model

The instrumental noise is also the composition of several noise sources such as a
photon noise, an electronic noise and a quantizing noise due to analog-to-digital
conversion. It is assumed to be centered and Gaussian with a variance af which
depends on the observed pixel. Let agi,agi,agi be respectively the variances of
the photon noise, the eletronic noise and the quantizing noise at the pixel . The
variance of the global noise 02-2 at this pixel is expressed as the sum of the variances
of the different noises

2

o = 01271_ + Ugi + Ugi. (3.2)

By taking into account the mathematical expression of each variance, one can
approximate the variance 02-2 of the global noise at the pixel i as a linear function of
the observed luminance h * x sampled at the same pixel i |Lier 2008|

o} = o® + B(h*x);, (33)

where « and (3 are two given constants (i.e. not pixel dependent). These two
constants rely on the target signal-to-noise ratio (SNR) (which is function of the
luminance) and directly derive from the parameters of the electronic chain such as
the amplification factor or the quantizing step of the analog-to-digital converter.
Two target luminances are usually used to compute the value of @ and 3: The

mean luminance of the image, namely L2, which is defined as 97 W.m2.sr~!.um ™!

and the luminance L1 defined as 14 W.m 2.sr—t.um~!.
be converted in pixel values by multiplying them by the ratio between the pixel
maximum value (4095) and the maximum luminance value (370 W.m~2.st~ . um™1).
In pixels values, these luminances are then defined as L1 = 154.94 and L2 = 1073.54.
Given the target signal-to-noise ratios associated to L1 and L2, one deduces the

standard deviation of the global noise at the two target luminances

o
~ SNR(L1)’
L2

- SNR(L2)

These luminances can

or1

0L2
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From equation (3.3), we also have

0?2, =a’+ pL1, (3.6)
0%, =a’+ pL2.
Using (3.4) and (3.6), one can compute the constants o and 3. Table 3.1 shows

the values of these constants for several operating points (OP) simulated by the
CNES on the reference image presented Fig. 3.1.

OTF | Resolution | Coding rate | SNR (L1-L2) ! 6]
OP 61 0.1 30 cm 4.0 bpp 30-100 | 3.2866 | 0.097780
OP 62 0.1 30 cm 2.5 bpp 30-100 | 3.2866 | 0.097780
OP 63 0.1 30 cm 4.0 bpp 30-150 | 4.6220 | 0.028128
OP 64 0.1 30 cm 2.5 bpp 30-150 | 4.6220 | 0.028128
OP 65 0.1 30 cm 4.0 bpp 50-150 | 1.5286 | 0.045790
OP 66 0.1 30 cm 2.5 bpp 50-150 | 1.5286 | 0.045790

Table 3.1: Parameters of the acquisition chain for several simulated operating points
(OP). The column OTF displays the value of the OTF at Nyquist frequency. The
column coding rate indicates the number of bits per pixel (bpp) achieved at the
output of the compression algorithm.

Finally, we can modelize the discrete acquired image y (considered as a vector
of length N, where N is the number of pixels) at the output of the acquisition chain
as the convolution product of the real analog image x and the global PSF h (3.1),
sampled on a grid A, and noised by the discrete instrumental noise n. This writes

y=(h*x)a +n. (3.8)

We assume the grid A to be the usual square sampling grid. The variable h now
refers to the discretization of the analog PSF on the grid A and z represents the
convolution of the analog image with a target PSF (see Section 3.3.2), sampled on
A. Note that this image x is the closest discrete approximation of the true analog
image that we can obtained. Model (3.8) rewrites

y=hxx+n. (3.9)

The instrumental noise n is assumed to follow a normal zero-mean distribution
whose variance o7 at the pixel i depends on the observed pixel and is given by the
model (3.3).

3.2 On-board processing: Image coding

Once the image has been acquired, it needs to be compressed for an efficient storage
and transmission. The compression system embbeded on-board of PLEIADES-HR
satellite processes the image in three steps, similarly to the coding scheme depicted
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AT

099, gidaasas
89538

Figure 3.1: Reference image, Cannes harbour (12 bits panchromatic image, 30 cm
resolution, 1024 x 1024 pixels).
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Fig. 2.1. A wavelet transform is first applied to the image to reduce its correlation.
A bit plane encoder is then used to encode the transformed data. The encoded
coefficients are then converted by an entropic encoder to form the binary stream.
We detail each step in the following.

3.2.1 Wavelet transform

Section 2.1.1 showed that the state-of-the-art image coding algorithms use wavelet
transforms to decorrelate the data. Based on this observation, the Consultative
Committee for Space Data Systems (CCSDS), which produces system standards
for spaceflight, proposed a new image coding recommandation based on a wavelet
transform [CCSDS 2005]|. For example, the coding scheme of the PLEIADES-HR
satellite highly relies on the latter. For implementation issues, the wavelet trans-
form is however performed “on the fly” [Parisot 2000b| on-board of this satellite.
The recommandation [CCSDS 2005] is very close to the SPIHT encoder and uses a
three levels Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet transform [Cohen 1992]
followed by a bit plane encoder (BPE).

The purpose of the bit plane encoder proposed by the CCSDS consists in encod-
ing the binary representation of the wavelet coefficients through a successive process
of the bit planes. This encoder is described in the next part.

3.2.2 CCSDS Bit plane encoder (BPE)

The encoder proposed by the CCSDS is similar to the encoders EZW and SPIHT.
It exploits the hierarchical representation of the wavelet transform to proceed first
with the coefficients that bring information to the image. It is however a simplified
version of these encoders to match the limited computing resources available on-
board.

3.2.2.1 Structure of the BPE

Once the wavelet transform is completed, the coefficients are first rounded to the
nearest integers and are then divided in blocks of 64 coefficients each (the compo-
sition of a block is detailed in Section 3.2.2.3). Fig. 3.5 displays this notion of
block arrangement. We see that, in order to form a block, the encoder selects the
same geographical zone for each frequency bands of each decomposition level. The
purpose of this block arrangement is then to represent the same spatial zone for
different frequency bands. This allows to control the encoding of a zone depending
on its frequency content. A homogeneous zone may require less high frequencies
than the zone covering the edges of a building, for example. A block arrangement
is then efficient in this sense.

A block is composed of a single low frequency coefficient and 63 high frequency
coefficients taken accross the high frequency subbands. To increase the coding per-
formances of the encoder, S blocks are gathered into a segment. The image is then
processed segment by segment. Usually the number of blocks S is chosen such that
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a segment represents a thin horizontal strip of the image. In that case, a strip com-
pression is performed [Yeh 2005|. This type of compression is efficient for memory
limited implementations.

The overall procedure of a segment encoding is given in Table 3.2. For each
segment, the encoder starts by producing a segment header. This header includes
important information on the coding parameters and is therefore required for the
decoding. This step is not detailed here but can be found in [Yeh 2005]. The second
step of the procedure consists in encoding the low frequency coefficients. Due to
the major role that play these coefficients in the wavelet recomposition algorithm,
they should remain the most unchanged as possible. A specific encoding rule is
consequently applied on these coefficients. Section 3.2.2.2 is dedicated to this aspect.

The last step of the segment coding procedure consists in encoding the bit planes
of the high frequency coefficients from the most significant bit plane (MSB) to the
least significant bit plane (LSB). A bit plane b is a binary image created from the b*®
bit of the two’s-complement binary representation of each low frequency coefficient
and the b'™ bit of the binary representation of each high frequency coefficient. To
illustrate this notion of bit plane, let us consider the block displayed Fig. 3.2.

3449 10| 7 13 12 7

Figure 3.2: Illustration of a block.

The coefficient in grey is the low frequency coefficient and will be ignored
for this example. We see that the highest coefficient among the high frequency
coefficients is equal to 49. There are then 6 bit planes to encode as the highest
coefficient is greater than 2° = 32 but lower than 26 = 64 (for that follows, the
least significant bit will be referred to the zeroth bit). The first bit plane is b =5
(the MSB). This bit plane is formed by the value of the fifth bit of each coefficient.
On this example, only three coefficients have a fifth bit: —34, 49 and 37. The fifth
bit plane is then the binary image composed of the value of the fifth bit of these
coefficients (respectively —1, +1 and +1, the sign is also taken into acount). This
give the binary image displayed Fig. 3.3.

Bit plane encoders are particularly efficient to encode signals when resources are
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Figure 3.3: Ilustration of the fifth bit plane of the block presented Fig. 3.2.

limited [CCSDS 2005]. Section 3.2.2.3 described the technique used to achieve this
bit plane encoding.

Produce segment header

Encode low frequency coefficients
Encode bit plane b = by, — 1 (MSB)
Encode bit plane b = b,,q — 2

Encode bit plane b = 0 (LSB)

Table 3.2: Segment encoding procedure, by, is the number of bit planes required
to encode the magnitude of high frequency coefficients.

3.2.2.2 Coding of the low frequency coefficients

Preserving the low frequency coefficients from excessive quantizing is vital to re-
construct an image with a satisfying visual quality. As they initialize the wavelet
recomposition algorithm, an error on the low frequency coefficients has an impor-
tant impact on the fidelity of the decoded image. But their magnitude is very high
(higher than the magnitude of the high frequency ones). A lossless encoding of these
coefficients may then consume a lot of the bit budget, especially when the target rate
is low. To allow this case, the encoder considers that the least significant bit planes
of the low frequency coefficients can be slightly deteriorated without impacting the
quality of the decoded image.

The encoder then processes the low frequency coefficients through a lossless
encoding of their most significant bit planes using an explicit quantization followed
by a differential coding scheme [CCSDS 2005]. The quantization step is chosen as a
power of two such that the quantization of the coefficients is equivalent in shifting
their bit planes. The remaining bits are then represented on b4, bit planes and
are included in the bit plane encoding procedure described in Section 3.2.2.3.
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3.2.2.3 Bit planes encoding

The bit planes encoding is the last step of the segment coding procedure. It processes
the coefficients bit plane by bit plane following the five stages procedure depicted on
Fig. 3.4. Each bit plane is processed separately. The blocks inside a bit plane are
also treated independently one by one. This segment coding procedure is displayed
Fig. 3.4.

Block O Block 1 Block S-1
Stage 0 Stage 0 —» ------ Stage 0
Stage 1 Stagel —» ------ Stage 1
Stage 2 Stage2 —p ------ Stage 2

P Stage 3 Stage3 —» ------ Stage 3
P Stage 4 Stage4d —» ------ Stage 4

Figure 3.4: Encoding procedure of a bit plane.
The stage 0 simply consists in appending the b
low frequency coefficients to the output bitstream. The stages 1 to 4 are dedicated
to the encoding of the high frequency coefficients.

bit of the remaining bits of the

The technique used to encode these coefficients is very similar to the technique
proposed in [Shapiro 1993] which is based on the hierarchical representation of the
wavelet transform to encode trees of non significant coefficients with respect to a
threshold T'. Here the encoder relies on the binary representation of the coefficients,
processed bit plane by bit plane. We directly deduce that the threshold 7" is implicity
the decimal value associated to the current bit plane b and is equal to 2°. To evaluate
if the coefficients are significant, the BPE simply tests their magnitude. It produces a
codeword t,(w;) named type which indicates if the scanned coefficient w; has already
been found significant in the previous bit plane (type 2), becomes significant in the
current bit plane (type 1) or is not significant (type 0). The rule is as follows

0 if|w;| < 2°
tp(wi)) =<1 if2° < Jwy| < 20+1 . (3.10)
2 if 20t < |wy

At the bit plane b, only the coefficients which become significant (type 1) are
encoded in stage 1-3. The coefficients whose type is 0 are not significant yet and are
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passed over. The coefficients evaluated as type 2 have already been found significant
in the previous bit planes and have therefore been already encoded in stages 1-3.
The encoder just needs to refine their magnitude by appending their b*" bit to the
output bitstream. This is the stage 4 of the process. To reach high compression
rates, the BPE uses the same technique as [Shapiro 1993] and sets up a tree structure
to efficiently encode trees of non significant wavelet coefficients. This tree is built
using the block arrangement displayed Fig. 3.5.

parent py
DC componedt [ {1+ children Cq _
Ly [HE ) E _______________ grﬁrjdchwldren Gy
k] o T 9= = s
S of o
[H Py H'ngz HL, - e (el
Eﬂ E NN SN family £,
bR MGl
LHZ'- S HH2 ““‘ ‘~.“~. HL.l
Pi Gy
T —  family £,
L 24 <
erel I'=amily Fy
LH HH,

Figure 3.5: Wavelet block arrangement. This illustration is the property of the
CCSDS.

A block is composed of one low frequency coefficient and 63 high frequency co-
efficients. To ensure some frequency selection, these 63 coefficients are partioned
into three families Fy, F1 and F5. A family represents the same spatial informa-
tion through the three (as the wavelet transform is performed on three levels of
decomposition) different scales. Each family Fj is then made of

e One parent coefficient p;.
e A group of four children coefficients Cj.

e A group of sixteen grandchildren coefficients G; partitioned into four groups
H;j,7€{0,1,2,3}.

This family hierarchy is similar to the zerotree structure of the EZW encoder
[Shapiro 1993] and is used to efficiently detect trees of non significant coefficients.
These non significant trees can then be encoded using few bits, allowing to reach
high compression rates. To encode these families, several lists are defined

e The list of parents P = {po,p1,p2}. For example, the list of parents corre-
sponding to the block presented Fig. 3.2 is P = {—34, —31,23}.
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e The list of descendants D; in a family ¢ which includes the children and the
grandchildren coefficients, D; = {C;, G;}.

e The list of descendants B of a block which includes the descendants lists of
all families, B = {Dg, D1, D2 }.

For each bit plane b, the BPE encodes the coefficients which become significant
(type 1) of the three families using a three stages procedure. Stage 1 scans the par-
ents list P and evaluates the significance of each parent using the function (3.10). It
then produces two codewords typesy[P] and signsp[P]. Let L be a list of coefficients

e typesy[L] is the binary codeword consisting of the bt

coefficient w; of L such that ¢,(w;) € {0,1}.

magnitude bit of each

e signsy[L] is the binary codeword consisting of the sign bit of each coefficient
w; of L such that ¢,(w;) = 1. The sign of a coefficient is only coded once at the
bit plane it becomes significant. The sign of a negative coefficient is represent
by a 1 and the sign of a positive coefficient is represent by a 0.

e Given a list of types values T" = {t¢,t1,...,%;}, tword[T] is the binary code-
word consisting of the sequence of type values t; that verify ¢; € {0,1}.

On the parents list of the example block displayed Fig. 3.2, we have t5(—34) = 1
(since 34 verifies 32 < 34 < 64), t5(—31) = 0 and ¢5(23) = 0. Therefore only the
coefficient equal to —34 is significant for the bit plane b = 5, so the BPE produces
typesy| P = {1,0,0} and signsy[P] = 1 (—34 is negative).

Once the BPE has scanned the parents list, it seeks some significant descendants.
This is the stage 2. It first looks if there is any significant coefficient among the
children and the grandchildren. It produces the tranp codeword

1% iftranpg = 1 at any previous bit planeb
trang =< 1 if Jw; € B, tp(w;) =1

0 otherwise

This transition codeword may be difficult to grasp and needs further explana-
tions. The idea of the codeword trang is to indicate if there exists at least one
significant descendant. To do so, the BPE tests the significance of each coefficient
that belongs to the descendants list B. If a coefficient w; is found significant, the
test function ¢,(w;) will be equal to 1, 0 otherwise. The BPE takes then the maxi-
mum value over all significance tests to generate tranp. If at least one descendant
is significant, the BPE will then produces tranp = 1. Note that this codeword is
not generated if it has been previously produced equal to 1. It is indeed useless to
generate this codeword for each bit plane if the BPE has already mentioned that
significant descendants exist.

On the example illustrated Fig. 3.2, two descendants are significant for the bit
plane b =5 (49 and 47). The BPE produces then trang = 1.
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Once at least one descendant has been found significant, one needs to locate in
which family this descendant is. The BPE produces the codeword tranp to achieve
this goal

tranp = tword [{max(tb(Di))},W € {0, 1,2} such that max(t,(D;)) # 1
in previous bit planes].

The behavior of this codeword is similar to tranpg: It indicates in which family
i the descendants have been found. This codeword is not produced if trang = 0,
meaning that there does not exist any significant descendants. The last step of the
stage 2 is to produce the magnitude types,[C;] and the sign signs,[C;] codewords of
the significant children. Note that the BPE only encodes the children of the families
that have been marked as significant by the tranp codeword.

On the example Fig. 3.2, two descendants are significiant for the bit plane
b = 5. These coefficients belongs to the descendant lists Dy (for the coefficient 49)
and D; (for the coefficient 47). We then have tranp = {1,1,0}. As tranp has
been generated, the BPE looks for some descendants in the corresponding children
groups Cp and C;. The coefficient 49 is the zeroth bit of the children group Cj
while the coefficient 47 does not belong to the children group C; (but it belongs
to one of the grandchildren groups which are processed in stage 3). Therefore the
BPE produces types,[Co] = {1,0,0,0}, typesy[C1] = {0,0,0,0} and signsy[Co] = 0
(49 is postive). Codeword signs,[Ci] is empty because no coefficients have been
found significant in the children group C.

The stage 3 is dedicated to the encoding of the grandchildren. Of course, this
stage is omitted if the BPE produced tranp = 0 at stage 2 implying that it is not
necessary to look for significant grandchildren. Similarly to stage 2, stage 3 produces
the codeword trang to indicate in which family one may find significant coefficients

trang = tword|{max(t,(G;))},Vi € {0, 1,2} such that max(t,(D;)) > 0
in current or previous bit planes].

As the grandchildren G; of each family are further partitioned into four groups
H;j,j € {0,1,2,3}, the BPE needs to produce one more transition codeword to
locate the significant coefficients

trany = tword |[{max(t,(H;;))},Vj € {0, 1, 2,3}] Vi € {0,1,2}.

The last step of the stage 3 is to produce the magnitude types,[H;;] and the sign
signsp[H;j;) codewords of the significant grandchildren. Again, note that the BPE
only encodes the grandchildren of the families that have been marked as significant
by the trang and tranyg codewords.

On the example Fig. 3.2, the BPE has already produced, during stage 2, tranp =
{1,1,0} meaning that significant coefficients exist in families 0 and 1. the BPE
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now looks if these significant coefficients belong the grandchildren groups of these
families. At the bit plane b = 5, the coefficient 47 belongs to a granchildren group of
the family 1. No coefficient are significant in the granchildren groups of the family
0. Therefore, the BPE produces trang = {0,1} and trang, = {0,1,0,0} since the
coefficient 47 is the bit 1 of the Hj; group. We also have types,[H11] = {0,1,0,0}
and signsy[Hq1] = 0 (47 is positive).

Table 3.3 summarizes the generated codewords. To form the final output bit-
stream, these codewords are encoded by a variable length entropy coder. As men-
tioned previously, the last stage (stage 4) of the coding procedure consists in includ-
ing the b*" magnitude bit of each type 2 high frequency coefficient. If the target
compression rate does not allow a lossless coding of the wavelet coefficients, the en-
coder truncates the output bitstream of each segment to reach the target rate. The
coder also provides a quality control which consists of setting a maximum number of
bit planes to encode. This option does not allow however to control the compression

rate.
Stage 1 (parents) typesy|P), signsy|P]
Stage 2 (children) tranpg
tranp

typesp|Cy], signsy[C;]
Stage 3 (grandchildren) | trang

trang,
typesy[Hijl, signsy[H;j]

Table 3.3: Generated codewords for each coding stage.

3.3 On-ground processing: Image decoding and restora-
tion

3.3.1 Image decoding and reconstruction

Once the bitstream has been transmitted, the decoder needs to reconstruct the im-
age. The bitstream may have been truncated due to some coding rate constraint.
To reconstruct the image, the decoder first completes the bitstream by adding ze-
ros bits and then applies the inverse of the coding procedure described in Section
3.2.2.3. An inverse wavelet transform is then applied on the decoded coefficients to
reconstruct the image.

The inverse transform scheme used to reconstruct the image is also based on
the multiresolution analysis proposed in [Mallat 1989]. The obtained algorithm is
illustrated on Fig. 3.6. This scheme is initialized with the low frequency coefficients
of the decoded signal. These coefficients are upsampled and filtered by the low-
pass filter h. The same process is applied to the details coefficient of the last
decomposition level with the high-pass filter g. These filters are given in Table 3.4.
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Figure 3.6: Filter banks for of an one level multiresolution synthesis algorithm.

The obtained two sets of coefficients are later added to reconstruct the signal.
This reconstructed signal is then used as the intialization of the next level recom-
position and so on. This process is iterated L times (L is the number of levels
decomposition fixed to 3 in the case of the CCSDS recommandation) until all levels
have been reconstructed.

k Low-pass filter hy | High-pass filter g
0 0.788485616406 —0.852698679009
+1 | 0.418092273222 0.377402855613
+2 | —0.040689417609 0.110624404418
+£3 | —0.064538882629 | —0.023849465020
+4 —0.037828455507

Table 3.4: Synthesis filters for the 9/7 Cohen-Daubechies-Feauveau wavelet trans-
form.

Similarly to the decomposition scheme, the recomposition algorithm can be ex-
tended to two dimensional signals using the scheme described Fig. 3.6 iteratively
on the rows and the columns of the image.

Once the image has been decoded and reconstructed, it needs to be restored.
Indeed, at this point, the reconstructed image contains all the accumulated degra-
dations of the imaging chain such as blur, instrumental and quantizing noise; the
step of restoration is then crucial to produce an image which can be exploited.

3.3.2 Deconvolution and denoising

The restoration technique used by the CNES to improve the quality of the decoded
image is based on the method proposed in [Kalifa 2003b] and described in Section
2.1.2.1. The restoration is then performed in two steps: The decoded image is first
deconvolved to reduce the blur of the optics and is then denoised to limit the growth
of the instrumental noise power due to the deconvolution. The acquisition model
considered by the restoration method of the CNES is the same than the one used
in [Kalifa 2003b| and writes

J=hx*x+n, (3.11)



46  Chapter 3. Current CNES earth observing imaging chain systems

where ¢ is the decoded image, x is the real scene, h is the PSF of the optics
described in Section 3.1.1, and n is the instrumental noise whose model is given
in 3.1.2. Note that the coding noise is not considered in this model. The decon-
volution technique used by the CNES is slightly different from the one proposed
in [Kalifa 2003b]. Rather than using the pseudo-inverse filter h=! of h, a specific
deconvolution function A is applied on the reconstructed image to reduce the blur of
the optics. To avoid strong aliasing artifacts, this deconvolution function is not the
direct inverse of the PSE h but a function such that the deconvolved image would
be similar to the ouput of an ideal instrument with the target PSF h; |Lier 2008|

hosh=hy. (3.12)

The idea of using a target PSE h; is to enforce some specifications on the final
image such as the sampling grid and the value of the MTF at the Nyquist frequency.
The deconvolution function h is then fully characterized by the target PSF h; which
is mainly obtained from image analysis of empirical results |Lier 2008|. This decon-
volution function reduces the blur of the image and enhances the high frequencies of
both the image and the noise. The deconvolved image appears thus to be sharp but
noisy. The second step of the restoration consists then in a denoising technique on
the deconvolved image to reduce the amplified noise. Due to the specific frequential
aspect of the deconvolution function h;, the deconvolved noise is colored, meaning
that it occupies a certain band of high frequencies.

State-of-the-art denoising techniques are usually based on the classical wavelet
transform which does not have a spectral representation fine enough to capture these
bands of high frequencies. For this reason, the denoising technique used by the
CNES is based on the method proposed in [Kalifa 2003b] and uses a wavelet packet
transform coupled with a (soft-)thresholding of the wavelet coefficients [Lier 2008].

The wavelet packet transform is an extension of the classical wavelet transform
and performs iteratively the decomposition on both the low and the high frequencies
of the image, contrary to the classical wavelet transform which iterates the decompo-
sition only on the low frequency. As mentioned in Section 2.1.2.1, a wavelet packet
transform allows to obtain a finer frequential resolution of the image and to capture
specific bands of frequencies. The frequencies bands that are assumed to be noised
are then thresholded to reduce the noise power.

To compute the threshold parameters, an image of noise is generated and decon-
volved using the deconvolution function h. The variance of the deconvolved noise is
computed in each subband and compared to the variance of the deconvolved image
in the same subband. If these variance are almost the same, then it is assumed that
the corresponding subband only contains noise and can be thresholded. The thresh-
old parameter is then computed such that a fixed signal-to-noise ratio is obtained
at the output of the restoration. Some reconstruction results of the complete image
chain are displayed on Fig. 3.7.
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[~ 13

Figure 3.7: Visual result of the imaging chain used by the CNES. Displayed images
have a size of 200 x 200 pixels. For each ligne, the image on the left is a zoom of the
clean reference image, the image in the middle is a zoom of the instrumental image,
and the image on the right is a zoom of the final image provided by the CNES. The
target rate is 2.5 bits/pixel and the simulated SNR is 30-100. The image range has
been extended to point up the image reconstruction artifacts.
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CHAPTER 4

Optimization of the chain: A
theoretical study

In this chapter, we study the theoritical optimization of the global imaging chain.
As mentioned in Section 1.1, solving theoritically the global optimization problem
(1.1) is a difficult task. Thus, we first reduce the study to the case the image is
only degraded by noise and we focus on the optimization of the imaging chain, for
three different configurations of coding and restoration, where the global distortion is
measured by the mean square error (MSE). We present in Section 4.1 our hypotheses
and notations. Section 4.2 is dedicated to the analysis and the optimization of the
global distortion for different configurations of the imaging chain. We conclude in
Section 4.5 and present perspectives of the study.

4.1 Notations and hypotheses

4.1.1 Notations

For the study, we denote the operators (coding and restoration) applied to the image
with a bold uppercase letter. The non-bold uppercase letters represent random
variables whose realizations are denoted by a lowercase letter. With this notation,
x is a realization of the random variable X. (X), denotes the ith element of the
random variable X. These variables are multidimensional € RY where N is the
number of pixels. W, is a random variable associated to the wavelet transform of
x and we denote W, ;, j € {0,...,J — 1} (J being the number of subbands) the
jth subband of the random variable W,. A wavelet subband of = is then noted
Wy j € RNi where Nj is the size of the subband. Finally, we suppose that a wavelet
subband w, ; follows a generalized centered Gaussian distribution law of parameter
Qup, ; > 0 and variance 02 > 0 [Antonini 1992]. The probability density function
P, ; associated to the wavelet subband w, ; can then be modeled as

A @ z,j 7‘B(awm ')dwz,j awz!j
Pu, (s 5) = Alowy), el (4.1)

Owg,;
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with
_ awm,jB (awm,j)
Ao, ;) = o (Lo, ) (4.2)
T (3/aw,,)
B (awz,j) - F (1/awz’j) 9 (43)

2
we,; and o, ; of the

distribution law will be estimated using the kurtosis-based technique proposed in
|[Kasner 1999]. Note that the same assumption will be applied to all wavelet trans-
forms in the chain with, of course, different distribution parameters.

and I' is the usual Gamma function. The parameters o

4.1.2 Coding and denoising operators

As mentioned previously, we study the case the image is only degraded by an in-
strumental noise z that we assume to be independent, identically distributed and
to follow a centered normal distribution with variance o2. We consider the special
case of coding techniques based on wavelet transforms [Shapiro 1993, Said 1996]
and [Taubman 2000]. The coding step is then approximately decomposed in a non-
redundant wavelet transform followed by a scalar subband quantizer. Note that this
approximation is actually close to the coding schemes presented in the cited works.

The wavelet transform is then denoted W and W for the inverse transform.
Each wavelet subband of the image to encode will be quantized using an infinite
mid-tread scalar subband quantizer Q of step A; > 0 defined as

Q) =4 |32+, (14)

where | | is the floor function which returns the greatest integer less than or
equal to its argument. Each quantized subband will then be coded using an en-
tropy encoder. Note that the entropy encoding operation does not introduce any
degradation in the chain.

For the first part of the study, we also consider that the denoising step is per-
formed in the same wavelet basis than the coding. This choice may however need
further explanations. Usually, an efficient wavelet transform for image denoising
strongly differs from a wavelet transform suited for image coding. Image denoising
techniques actually require redundant wavelet transforms to represent the character-
istics of an image such as contours and oriented details while increasing the number
of coefficients in image compression may be problematic [Chappelier 2006]. Hence,
a non-redundant wavelet transform leads most of the time to poor denoising results.
We are however very confident that using the same basis for both coding and de-
noising may provide a decoding-denoising structure gathered in a single fast and
low resources algorithm. Extending the current work to complex denoising schemes
such as [Donoho 1995a] is a difficult task that still need to be addressed.

The denoising algorithm R that we propose to use is then a Tikhonov regularized
algorithm which operates independently on the wavelet coefficients of each subband
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j of the image. Let w; be some noisy wavelet subband (of size Nj), its denoised
version w; writes

~

wy = argmin [lw — @[3+ Ajllwl3 (4.5)
subject to  w € RNs

where A\; > 0 is a regularizing parameter. The restoration algorithm (4.5) has a
closed-form solution which writes
w
1+ )\j '

w = (4.6)
We are aware of the simplicity of the considered algorithm, it appears however
that the linearity of the restoration algorithm R is required if one wants to write
the global distortion in closed-form. As mentioned previously, much work need to
be addressed to consider state-of-the-art denoising algorithms. We now detail the
proposed method to perform a global optimization of the global distortion.

4.2 Global optimization of the imaging chain

This section is dedicated to the analysis and the optimization of the global distor-
tion. From Section 3.3.2, we mentioned that, in a general context, the restoration
method used by the CNES only deals with the blur and the additive Gaussian noise
of the instrument. It actually does not take into account the fact that the trans-
mitted image is also deteriorated with coding noise. The restoration technique used
on-ground (i.e. after coding) is therefore also suitable to be used on-board just
before coding on the intrumental image, as this image perfectly matches the image
formation model considered by the restoration.

From this remark, we decline in this section the theoritical study of the global
optimization to the case the restoration is performed before coding or splitted in
two parts (one part before coding to reduce the instrumental noise and the other
part after coding to process the coding noise).

4.2.1 Optimization of the on-ground chain
4.2.1.1 Presentation of the imaging chain

We first study the on-ground chain where the denoising is performed after cod-
ing/decoding, i.e. “on ground”. This chain is represented in detail Fig. 4.1. We
recall that x is the original image, & is the restored one. The instrumental image
y is a deteriorated version of the original image x where an additive instrumental
noise z has been added. The wavelet subbands of the instrumental image are de-
noted wy j, j € {0,...,J—1}. The quantized and restored version of these subbands
are respectively denoted wy ; and w; ;.

We further introduce several notations. Let wj,; be the coding error of the
subband j

wp,; = Q(wy,j) — wy,j. (4.7)
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Figure 4.1: Considered on-ground imaging chain

We have

= Wy, j + We j, (4.8)

where w. ; = w,; + wy; is referred hereafter to the global error. The main
hypothesis of the proposed method is to consider the first-order moments of the
term w, ; to be independent to the ones of w; ;, that is

E[WIwe,] =B [WS] E W] (4.9)

for any integer m > 0, n > 0 and where W, ; and W, ; are the random vari-
ables associated to w, ;j and w, ;. This hypothesis is mainly based on the fact
that the quantizing part of the scheme Fig. 4.1 can be seen as a non-substractive
dithering system where the Gaussian instrumental noise z acts as a dithering noise
[Wannamaker 2000].

We detail in the next part this hypothesis of decorrelation.

4.2.1.2 Decorrelation hypothesis

A dithering system consists in inserting a noise with a certain probability
density function prior to quantizing, to improve the decorrelation property
[Vanderkooy 1987|. As mentioned in [Wannamaker 2000]|, a non-substractive dither-
ing system (named non-substractive as the dithering noise is not substracted after
quantizing) allows the moments of the global error (that is the sum of the coding
error and dithering noise) to be fully decorrelated to the moments of the coding
source.

It happens that a Gaussian distribution, if its standard deviation is large enough
[Vanderkooy 1987|, stands among the probability density functions which allow a
noise to be considered as a dithering noise. The idea here is then to take benefit of
the presence of the instrumental noise by considering it as a dithering noise. With
such consideration, we know that the m first-order moments of the global error are
decorrelated to the n first-order moments of the quantizing source, giving property
(4.9).

Moreover, if the instrumental noise z meets the dithering noise requirements, we
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also have [Wannamaker 2000]

E[W,;] =0, (4.10)
A2
EIWe|°] = Njow,, + Ny 75 (4.11)

where o, ; is the standard deviation of the distribution law of the wavelet
transform w, ;. A more developed presentation of dithering techniques is included
in Appendix B. The standard deviation required by a Gaussian noise to effectively
acts as a dithering noise has been studied in [Vanderkooy 1987]. In the present case,
the condition (4.9) will be verified if the following statement is true
Aj

O'wz,]. > 7 (412)

As the standard deviation of instrumental noise is usually low in imaging sys-
tems, the condition (4.12) assumes that the proposed approach will be valid only
for high coding rates. We will however develop our method to consider all coding
rates.

4.2.1.3 Analysis of the global distortion

As mentioned in the Section 4.1, the studied imaging chain depends on two sets of
parameters: The denoising parameters A; in (4.6) and the quantizing steps A; in
(4.4), for each j € {0,...,J —1}. The global coding/denoising joint optimization
problem consists in finding the sets {\}} and {A}} of optimal parameters which
minimize, on average, the global distortion D under the constraint that the coding
rate R does not exceed the target rate R.. This global rate-distortion-denoising
joint optimization problem can be formalized as the following

{AhAAT = argmin D ({A;}.{A;}) : (4.13)
subject to R ({\;},{A;}) <R,
Aj>0,Vje{0,...,J -1}
A;>0,Yj€{0,...,J—1}
Under this form, the optimization problem (4.13) is difficult to solve so that

it is usually written under an unconstrained form |[Everett 1963]. Let 7 > 0 be a
Lagrange multiplier. The Lagrange dual function L writes

L(r) = inf DN} {A;}) +7 (RN L {A}) — Re) (4.14)
Aj>0,5€{0,...,J -1}
A;>0,j€{0,...,J -1}

Problem (4.13) can then be written [Boyd 2004]
(A5 (A7) = max L(r). (4.15)

To solve the global distortion joint optimization problem (4.15), we need to
express the mean global distortion D and the global coding rate R as a function of
the sets of regularizing parameters {\;} and quantizing steps {A;}.
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Proposition 1. If oy, verifies hypothesis (4.12) for each j € {0,...,J — 1}, then
the mean global distortion D of the imaging chain displayed Fig. 4.1 writes

DU (A} = S 9N T ma A g
({ J}¢{ } ];0 1+/\ 2 wm]—i_(l—i_Aj)Zo-wz’j—i—(1+)\j)ZE’ ( )
where N
a; = FJ (4.17)
1s the weight of the subband j in the whole image.
Proof. We start from the fact that the mean global distortion writes
1 .
DN} AAD = B (IX - XI?), (4.18)

where X is the random variable associated to the output final image #. Thanks
to the orthogonality of the wavelet subbands, the global distortion can also be
formulated as

DA} A{A}) = Zﬂg (IWay = Wail?) (4.19)

where 7; are weighting coefficients which depend on the filters and the decima-
tion factors used in the wavelet transform [Usevitch 1996]. Note that these weight-
ing coefficients are only required if one considers biorthogonal wavelet transforms
such as the CDF 9/7 wavelet transform [Cohen 1992]. They are equal to 1 for an
orthogonal wavelet transform.

In the case of the studied imaging chain displayed Fig. 4.1, the final image is
the output of the restoration and writes

Wz 5 = ng,j. (4.20)

Using (4.6) and (4.8), the final image can be expressed as a function of the source

and the global error

T+ 1+

(4.21)

Wi,j =

From (4.19), (4.21) and using the moments decorrelation hypothesis (4.9), we
deduce the global distortion

DA A4 = B (1% - XI7?)

J—1

1 T2 ) . 2
=N 2Tl UWe; —L B (|W.;I7). (4.22
PNy B (1WeolF) + e (IWl?) . 2

Finally, the global distortion (4.22) can be further developed using the results
(4.11) to obtain the expression (4.16). O
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Note that the global distortion (4.16) requires the knowledge of the variance of
each subband of the original image 012%,],. This variance is generally unknown but can
be roughly deduced from the observed image. For an orthogonal or a biorthogonal
wavelet transform, the variance of the noise in each wavelet subband j is equal (or

almost equal in the case of a biorthogonal wavelet transform) to the variance of
2 _ 2
Wz,j 0z
Then, 012% ; can be approximately computed during the rate-allocation of the coder

the noise in the image domain, i.e. o where o, is supposed to be known.

from the observed subband variance 012% ; by

Ufuz’j = Ufuw, — o2 (4.23)

The second part of the problem (4.15) requires the expression of the global coding
rate R. This rate can be expressed as the weighted sum of the rate in each subband
R

J-1
RUNEAAD) =) a;Ri(4)), (4.24)
j=0
where a; is given in (4.17). As mentioned in Section 4.1.2, we assume that each

quantized subband is encoded using an entropy encoder. The coding rate R; of a
subband j can then be estimated by its entropy [Shannon 1948|

+o0o
Rj(Aj) = Z Pwy,j (m’ AJ) log, (Pw'y,]' (m’ AJ)) ) (425)

where P, .(m,A;) is the probability to get the symbol m which depends on the

density probability function py, ; of the subband w, ; and on the quantizing step
Aj
mA;+ 5L
Py, ;(m,Aj) = / A Du,,(wyj)dw, ;. (4.26)
mA ;=

From Section 4.1.1, we assume that each wavelet subband follows the generalized
centered Gaussian distribution law defined in (4.1). The density probability function
Pw, ; 18 then given by

A w. - _|B - Uwy’j awyvj
Y,
with
_ awy,jB (awy,j)
A(aw, ;) = 2T (1o, ) (4.28)
' (3/aw,
B (0w, ) = L (3/0w,;) (4.29)

r (1/awy,j) ’
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2

and where o, Wy.i and ay, ; are the parameters of the distribution law, estimated

using the kurtosis-based techmque proposed in [Kasner 1999]

Ufuw, = E[w%j], (4.30)
1.447

Qwy,; = Elw :
[wy, ;]

Proposition 2. The global rate-distortion optimization problem (4.13) can be solved

(4.31)

by mazimizing
L(r) = inf &-({A;},{\}) , (4.32)
Aj>0,5€{0,...,J -1}
A;j>0,5€{0,...,J -1}

with respect to T > 0 and where
- \2 A2
7rjaj)\j 9 Ta; 9 WJGJA]-

or({A1 N} = Z [ A R (e WAL T e W

+ 7 ajRj(Aj) — Rc . (4.33)

Proof. This demonstration is straightforward. From (4.15), we define

¢r({Aj1: AN 1) = DHA; AN + 7 (REA A )) = Re) s (4.34)

and we substitute D and R with their respective expressions (4.16) and (4.24).
We further simplify (4.16) using the approximation 02, = = o2. The reformulation
of problem (4.13) is then obtained using (4.14) and (4. 15) O

We detail in the next part how to solve problem (4.13).

4.2.1.4 Global rate-distortion-denoising optimization

Using proposition 2, the optimization problem (4.13) becomes

{A51 ) = max | inf o ({A5} {\}) : (4.35)
A >0,Vj€{0,...,J—1}
A;j>0,Yj€{0,...,J —1}

The existence and uniqueness of solutions of problem (4.35) is not straightfor-
ward but we can show that a solution of problem (4.35) exists and is unique (see
Appendix A.2). We propose a numerical algorithm to find this solution. This al-
gorithm is based on the resolution of the simultaneous equations obtained from the
KKT conditions [Kuhn 1951] of problem (4.35).
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Proposition 3. The KKT conditions of problem (4.35) admits only one solution
(AT} {ATY ) which verifies

Mo % a7 Vie{o,....J—1 4.36

j_o_?u +120_12U .7 je{ PIEIRIEIE ) - } ( )
z,] z,]

TrjA; *aR]

(1+)\-)2 T oA,

Z a;jR = (4.38)

Proof. From the KKT conditions of problem (4.35), we get (see Appendix A.2)

(AH) =0, Vje{o,....,J—1} (4.37)

(A%, /\*, )
a 2T Z a;R —0 (4.40)
£ ONK pE *2
OB(AZ, N, ") _ 12aj7r])\ o2 oy 12a;mj07 — ajm;A; . (4.41)
O\ 6(1 4 A3)°
(4.42)
with
OR; R
@(A])  log(2) mZ_oo [1 +log (P, , (m, A;))] x

(52 (208) e (o2 3) (o) e

The expression (4.36) and conditions (4.37) and (4.38) on the optimal parameters
directly follow from the optimality conditions (4.39). The existence and uniqueness
of these parameters is much longer and is addressed in Appendix A.2. O

As we can see from (4.36), (4.37) and (4.38), the parameters {A7} and 7" can
not be computed analytically. But as mentioned in Appendix A.2, any root-finding
algorithms can be used to achieve this goal. For our simulations, binary search
algorithms will be used for the computation of both {A7}, 7* and for the sake of
simplicity, each binary search algorithm will be parametrized to the same given
precision p = 0.1.

The case of the low frequency subband (j = J — 1) will be processed differently
as we do not want to degrade these coefficients. We will only use quantizing to
round these coefficients to their nearest integers. Consequently, we will set

A% =1, (4.44)

o? 1

Ny = =+ . (4.45)

Wg, J—1 Wg J—1
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Finally, the overall joint optimization procedure for solving problem (4.13) is
given in the Algorithm 1. Note that the binary search sub-procedures are not
detailled in this process. The Algorithm 1 intends to be quite general and we let
the choice of the root-finding algorithms to the user.

Algorithm 1 Global rate-distortion-denoising joint optimization algorithm for the
on-ground imaging chain
Set 7 =1.
Set p =0.1.
while (zj;g a;Rj — RC( > p do
for j from 0 to J — 2 do
Set Aj =1.
Compute the value of the regularizing parameter A; from (4.36).
while ‘ﬁ + T%(Aj)( > pdo
Increase the value of A;.
Compute the value of the regularizing parameter \; from (4.36).

end while
end for
Set Ayj_1 =1.

Compute the regularizing paramater Aj_; from (4.45).
if |37 ajR; — Rc‘ > p then
Increase the value of 7.
end if
end while
Output the optimal regularizing parameters {A}}.
Output the optimal quantizing steps {A;‘}

4.2.1.5 Results

We simulate the joint optimization Algorithm 1 on the high-dynamic range remote
sensing image displayed Fig. 4.2. For this simulation, we set the wavelet transform
W to be a three levels CDF 9/7 wavelet transform [Cohen 1992] and the restoration
R is given by (4.6). The image has been noised with an additive white Gaussian
noise with different standard deviations o,, as the efficiency of the proposed es-
timation depends on o, see Eq. (4.12). The following cases have been tested
o, € {25,50,75,100}.

For each target rate, we simulate the imaging chain given Fig. 4.1 with the usual
disjoint optimization technique, which consists in selecting the quantizing steps and
the regularizing parameters such that the coding and the restoration errors are
independently minimized. The coding error minimization has been achieved using
the rate-distortion allocation based model proposed in [Parisot 2001]. As for the
restoration error, it has been minimized using an exhaustive search of the optimal
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Figure 4.2: Reference image, Cannes harbour (12 bits panchromatic image, 30 cm
resolution, 1024 x 1024 pixels).
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regularizing parameters. Once the final image has been reconstructed using these
parameters, we numerically compute the global distortion

1
D = ~lle 3, (4.46)

where z is the clean (i.e. noiseless) test image, assumed to be known in our
numerical experiments, and Z is the final image. The distortion (4.46) is the true
distortion and will be referred as the ground truth in our simulations. The estimation
model (4.16) of the global distortion that we proposed has then been computed with
the values of parameters obtained for the ground truth. This allows to verify that
the estimation (4.16) of the global distortion is close to the ground truth (4.46),
implying the validity of the proposed method. And finally, we use the proposed joint
optimization Algorithm 1 to compute the optimal parameters, that we inserted into
the estimation model (4.16) to estimate the minimal distortion.
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Figure 4.3: Comparison of the disjoint optimized distortion (ground truth and
model-based estimation) to the joint optimized distortion (model-based estimation),
o, = 25.

Results are given Fig. 4.3 to 4.6. We immediately see that the validity of the
proposed estimation, as expected by the hypothesis (4.12), is not always verified
and depends on the target coding rate, for a given o,. As expected, the proposed
estimation approximates well the true distortion, on the simulated cases, for medium
to high coding rates but does not give satisfying results for low coding rates. This
can be explained by the fact that low target coding rates increase the subbands
quantizing steps. Consequently, the condition (4.12) is not respected anymore and
the moments of the global error cannot be considered decorrelated to the moments
of the source.
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Figure 4.4: Comparison of the disjoint optimized distortion (ground truth and
model-based estimation) to the joint optimized distortion (model-based estimation),
o, = 50.
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Figure 4.5: Comparison of the disjoint optimized distortion (ground truth and
model-based estimation) to the joint optimized distortion (model-based estimation),
o, = T5.
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Figure 4.6: Comparison of the disjoint optimized distortion (ground truth and
model-based estimation) to the joint optimized distortion (model-based estimation),
o, = 100.

To analyse more precisely the range of validity of the proposed estimation, we
compute the error (in absolute value) between the ground truth distortion and its
model-based estimation (4.16) for the simulated values of standard deviation o,. The
resulting curve is displayed Fig. 4.7. When the standard deviation is low (o, = 25),
we see that the proposed estimation is performant if the coding rate is around 3.5
bits/pixel and more. However for this high coding rate, the coding step is almost
lossless such that the global optimization problem is reduced to the optimization of
the restoration only. Therefore, the joint and the disjoint optimization techniques
become the same and give then similar results.

But the range of validity of the proposed estimation increases as the standard
deviation increases. For a high standard deviation (o, = 100), we can verify that the
proposed estimation is valid for lower coding rates (around 2.2 bits/pixel and more).
In that case, the joint optimization displays significant improvement in comparison
to the disjoint optimization. It allows for example to reach the same global error than
the disjoint optimized technique but for a lower coding rate. For o, = 100 (Fig. 4.6),
the joint optimization technique reaches at 1.73 bits/pixel the same distortion than
the one obtained at 2.04 bits/pixels for the disjoint optimization technique, saving
therefore 15% of the bit budget. The benefit in term of compression performances of
the joint optimization technique appears then to be very significant. This simulated
case is however slightly excessive in the case of satellite imaging as the standard
deviation of the instrumental noise in a satellite chain is low and rarely exceeds ten
on average.
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Figure 4.7: Difference (in absolute value) between the ground truth and model-based
estimation distortion for the simulated standard deviations of the instrumental noise.

To fit the characterics of a true imaging chain, we simulate the case o, = 10
which is much more representative of the SNR obtained in satellite imaging (see
Table 3.1, Page 35). We do not display the rate-distortion curve of this simulation
as, similarly to the case o, = 25 displayed Fig. 4.3, the joint and the disjoint
optimization techniques are equal in term of distortion. Visual results however differ
as shown by Fig. 4.8 to 4.11. We do not focus on the quality of the reconstructed
images regarding to the reference one as the considered chain is excessively simple.
Clearly, the presence of artifacts on the reconstructed image is due to the simple
hypothesis that we made on the restoration algorithm, see Eq. (4.5). On the
contrary, we are more concerned on the improvement of the image quality of the
joint optimized chain with respect to the disjoint optimized one. We can see that
the global joint optimization of the chain always leads to a reconstructed image
which contains less blurry edges or ringing artifacts. This is particularly visible
on the edges of the buildings Fig. 4.8 and 4.10. It is important to note that the
presented visual results have been simulated at a coding rate of 2.5 bits/pixel. And
we know that the estimation of the global distortion is not valid at this rate, leading
to suboptimal computed parameters. A finer estimation of the global distortion will
therefore give better results that the ones displayed here.

Finally, we see that the obtained results clearly point that optimizing coding and
denoising separately is suboptimal. One needs instead to address the problem of
imaging chain design in its globality; the proposed method and the obtained results
are encouraging in this sense. Extending the proposed method to lower coding rates
and to more complex denoising schemes appears however to be difficult to address.
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——— - ﬂ -

Figure 4.8: Visual comparison of reconstruction results. Displayed images have
a size of 200 x 200 pixels. (a) is the reference image, (b) is the noisy observed
image, (c) is the image reconstructed with the parameters obtained by the disjoint
minimization of the ground truth distortion and (d) is the image reconstructed with
the parameters obtained by the joint optimization, performed using Algorithm 1, of
the model-based estimated distortion. The coding rate is 2.5 bits/pixel. The image
range has been extended to point up the image reconstruction artifacts.
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Figure 4.9: Visual comparison of reconstruction results. Displayed images have
a size of 200 x 200 pixels. (a) is the reference image, (b) is the noisy observed
image, (c) is the image reconstructed with the parameters obtained by the disjoint
minimization of the ground truth distortion and (d) is the image reconstructed with
the parameters obtained by the joint optimization, performed using Algorithm 1, of
the model-based estimated distortion. The coding rate is 2.5 bits/pixel. The image
range has been extended to point up the image reconstruction artifacts.
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Figure 4.10: Visual comparison of reconstruction results. Displayed images have
a size of 200 x 200 pixels. (a) is the reference image, (b) is the noisy observed
image, (c) is the image reconstructed with the parameters obtained by the disjoint
minimization of the ground truth distortion and (d) is the image reconstructed with
the parameters obtained by the joint optimization, performed using Algorithm 1, of
the model-based estimated distortion. The coding rate is 2.5 bits/pixel. The image
range has been extended to point up the image reconstruction artifacts.
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Figure 4.11: Visual comparison of reconstruction results. Displayed images have
a size of 200 x 200 pixels. (a) is the reference image, (b) is the noisy observed
image, (c) is the image reconstructed with the parameters obtained by the disjoint
minimization of the ground truth distortion and (d) is the image reconstructed with
the parameters obtained by the joint optimization, performed using Algorithm 1, of
the model-based estimated distortion. The coding rate is 2.5 bits/pixel. The image
range has been extended to point up the image reconstruction artifacts.
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For this reason, we will propose in Chapter 5 an alternative technique to perform
the global optimization.

4.2.2 Optimization of the on-board chain
4.2.2.1 Presentation of the imaging chain

As mentioned in the beginning of Section 4.2, we also studied the imaging chain in
the case the denoising is performed before coding, as illustrated on Fig. 4.12. For
this imaging chain, the transmitted image is the denoised one and the final image
is the one obtained after decoding (we will discuss in Section 4.2.3 the necessity of
using a second denoising step after decoding).

z—'ﬁf—? W 5> R QW 5

z

Figure 4.12: Considered on-board imaging chain

Similarly to the chain presented in Section 4.2.1, the instrumental image y is a
deteriorated version of the original image x where an additive instrumental noise z
has been added. The wavelet subbands of the instrumental image are again denoted
wyj, 7 €1{0,...,J —1}. The restored and quantized version of these subbands are
respectively denoted wz ; and w; ;.

Let wy, ; be the coding error of the subband j

wp,j = Q(wg,j) — wz,;- (4.47)
We have

ws; = Qwz,j) = wz,; + W
_ Wy, ,
1 + )\j + Wy
1+ A 1+ A
Wy 7
= — i 4.48

+ wa

where w; ; = % + wy ; is the global error. We detail in the next part how to
formulate an expression of the global distortion.

4.2.2.2 Decorrelation hypothesis

The decorrelation hypothesis (4.9) will also be used to compute the global distortion
of the imaging chain presented Fig. 4.12. The main difference is that the quantized
image is now the restored one. As a consequence of this restoration, the standard
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deviation of the instrumental noise is divided by a factor 1+ A;, see Eq. (4.48). We

have
o Owsy

= Twag 4.49
Uwz,j 1 + )\]7 ( )

where O':UZJ is the standard deviation of the residual instrumental noise. We

know from (4.12) that the decorrelation hypothesis (4.9) is valid only if the standard

deviation of the noise presented at the input of the quantizer is greater than half of
the quantizing step, i.e.

/ Aj

Oy . > 7

Wz, j

(4.50)

From (4.49) and (4.50), the condition (4.9) will now be verified if the following
statement is true

A
Ow, , > 73(1 + Aj). (4.51)

In comparison to the on-ground imaging chain studied in Section 4.2.1, we see
that a factor (1 + A;) has been introduced in the condition (4.51). As X\; > 0,Vj €
{0,...,J—1}, the decorrelation hypothesis (4.9) may then be more difficult to verify
in the case of the on-board imaging chain. If the instrumental noise z meets the
dithering noise requirements, we also have [Wannamaker 2000]

E[W.;] =0, (4.52)
2 A2

(o}
E[[IWe;0%] = ﬁ + N (4.53)

4.2.2.3 Analysis of the global distortion

Similarly to the analysis of the global distortion performed in Section 4.2.1.3, the
global rate-allocation problem consists in finding the sets {\}} and {A}} of optimal
parameters which solve

LA = agmin DA} {A5)) S @5y
subject to R ({\;j}, {A;}) < R,
A >0Yje{0,...,J—1}
A;>0Yj€{0,...,J—1}

Again, we need to express the mean global distortion D and the global coding
rate R as a function of the sets of regularizing parameters {);} and quantizing steps
{A;} for the on-board imaging chain presented Fig. 4.12.

Proposition 4. If oy, verifies hypothesis (4.51) for each j € {0,...,J — 1}, then
the mean global distortion D of the imaging chain displayed Fig. 4.12 writes

— (IJAZ T:Q AQ
D({/\J}7{A } Z 1 + )\ 2 wzj + ﬁaiz] +7TJaJ 19 (455)

where



72 Chapter 4. Optimization of the chain: A theoretical study

aj; = —— (456)
1s the weight of the subband j in the whole image.

Proof. As shown previously, the global distortion can be written as

D({N}{Aj}) = Zﬂa (IWe s = Wall?) (4.57)

where 7; are weighting coefficients which depend on the filters and the deci-
mation factors used in the wavelet transform [Usevitch 1996]. In the case of the
studied imaging chain displayed Fig. 4.12, the final image is the output of the
coding/decoding and, from (4.48), writes

Wiy = :)\ + we ;. (4.58)
From (4.57), (4.58) and using the moments decorrelation hypothesis (4.9), we
deduce the global distortion

J—1 2
1 A 2 2
DN} AAD = jZO WE (HWx,jH ) + ik (HWEJH ) : (4.59)
Finally, the global distortion (4.59) can be further developed using the results
(4.53) to obtain the expression (4.55). O

The second part of the global rate-allocation problem (4.54) requires the expres-
sion of the global coding rate R. This rate can be expressed as the weighted sum of
the rate in each subband Rj;, estimated by its entropy [Shannon 1948|

J-1
RUNAAD) =D aiRi(A)), (4.60)
j=0
where a; is given in (4.56) and
+oo
S" Pas,(m, Ag)l0gy (Pas, (m, A)) (4.61)

where Py, (m, Aj) is the probability to get the symbol m which depends on the

density probability function py,, ; of the subband w;z ; and on the quantizing step
Aj

T)’LA]“‘F%

Py, (m,A;) = /m oy P (s (4.62)

From Section 4.1.1, we assume that each wavelet subband follows the generalized

centered Gaussian distribution law defined in (4.1), where the parameters 02 ~and

Qy;

proposed in [Kasner 1999].

of the distribution law will be estimated using the kurtosis-based techmque
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Proposition 5. The global rate-distortion optimization problem (4.54) can be solved
by mazimizing
L(r) = inf é:({As},{\}) , (4.63)
Aj>0,Vjed{0,...,J -1}
A;>0,Vje{0,...,J -1}

with respect to T > 0 and where

J—1 2 2
RSN o N LT 0o B
¢T({AJ}7{AJ}) - ]ZO (1 + )\])2 W, (1 FipY )20'z + mja; 12

J—1
+7 (Z a;R;(A;) — R | . (4.64)

Proof. This proof is similar to the one given in proposition 2 where the global
distortion D is now given by (4.55). O

We detail in the next part how to solve problem (4.54) for the on-board imaging
chain.

4.2.2.4 Global rate-distortion-denoising optimization

Using proposition 5, the optimization problem (4.54) becomes

(AL G =max | inf 6, ({As} D)) . (4.65)
A >0,V €{0,...,J—1}
A;j>0,Yj€{0,...,J —1}

where ¢, is given in (4.64). We can show that a solution of problem (4.65) exists
and is unique (see Appendix A.3). To find this solution, we propose to use the tech-
nique presented in Section 4.2.2.4 and based on the resolution of the simultaneous
equations obtained from the KKT conditions [Kuhn 1951] of problem (4.65).

Proposition 6. The KKT conditions of problem (4.65) admits only one solution
(A} {A%Y, 7°) which verifies

* Jz .
)‘3'_02 , Vje{o,...,J—1} (4.66)
Wy, j
mA; OR; )
* 2T (AF) = =1 4.
ST A =0 e, -1 (4.67)

J—1
> ajRi(A}) = R.. (4.68)
j=0
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Proof. From the KKT conditions of problem (4.65), we get (see Appendix A.3)

dp(A’, A;, ) aymA OR;
= *a A* = 4.

o A*,)\*, *
M - Z a;R —0 (4.70)

OB(AT, A7, T7) 12a]71']/\ o2 oy 12a;mj0? B

N - 6(1+ A3

(4.71)

(4.72)
with

OR, S
37]%;( j):_logl@) > [T log (Puy;(m. )]

m=—0oQ

o (2,52 (2+2) s (- 2) o))

The expression (4.66) and conditions (4.67) and (4.68) on the optimal parameters
directly follow from the optimality conditions (4.69). The existence and uniqueness
of these parameters is detailled in Appendix A.3. O

As we can see from (4.67) and (4.68), the parameters {A7} and 7" still can not
be computed in closed-form and will be estimated numerically using binary search
algorithms of precision p = 0.1. The case of the low frequency subband (j = J — 1)
will be also processed differently to prevent excessive quantizing on these coefficients.
We set

=1, (4.74)

2
" o
J1= (4.75)

Wy, J—1

Finally, the joint optimization procedure for solving problem (4.54) is given in
the Algorithm 2. We do not include here the results of this algorithm as we have
already shown in Section 4.2.1.5 that the proposed method was efficient to formulate
an estimation of the global distortion for the on-ground imaging chain. Using an
on-board restoration does not however affect the reliability of the proposed method,
as shown in Section 4.2.2.3. Instead, we will show some results of this algorithm
in the section dedicated to the comparison of the performances of the three chains
(on-ground, on-board and hybrid that we present in the next part).

4.2.3 Optimization of the hybrid chain
4.2.3.1 Presentation of the imaging chain

As mentioned in the beginning of Section 4.2.2.1, it may be interesting to extend
the on-board imaging chain by adding a supplementary denoising step, after coding,



4.2. Global optimization of the imaging chain 75

Algorithm 2 Global rate-distortion-denoising joint optimization algorithm for the
on-board imaging chain
Set 7 = 1.
Set p =0.1.
while ‘Z}];()l a;R; — RC‘ > p do
for j from 0 to J — 2 do
Set Aj =1.
Compute the value of the regularizing parameter \; from (4.66).
ﬂjﬁAj +7’§TR§_(A]-)‘ > p do
Increase the value of A;.

while

Compute the value of the regularizing parameter \; from (4.66).

end while
end for
Set AJ_l = 1.

Compute the regularizing paramater Aj_; from (4.75).
if |70 a;R; — Re| > p then
Increase the value of 7.
end if
end while
Output the optimal regularizing parameters {A}}.
Output the optimal quantizing steps {A;‘}
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to reduce the quantizing noise. This “hybrid” chain is depicted Fig. 4.13. The
instrumental image y is still a deteriorated version of the original image = where an
additive instrumental noise z has been added.

;ﬁﬁ—*ﬁw-—*R\ [Q |8 oW

z

— >
x

Figure 4.13: Considered hybrid imaging chain

The wavelet subbands of the instrumental image are again denoted w, ;, j €
{0,...,J — 1} and their denoised version wz ;. The quantized version of these
denoised subbands are denoted w; j. An additional denoising algorithm S has been
added at the end of the chain to reduce the coding noise. This Algorithm is similar
to the one used for the operator R and writes

_ Way
Waj = 7 i

(4.76)

where w; ; is the final denoised subband and p; > 0 is a regularizing parameter.
Let wy, j be the coding error of the subband j

wp,j = Q(wg,j) — wz,;- (4.77)

We have

wij = Qwz ;) = w:%,j + wp,;

=Ty T
_ wﬁ,] wz7j .
ST T,
and, from (4.76)
N5
/wa:,] 1 _’_M]u
QT+A)A+py)  A+A)L+py)  T+py
Lo + .. (4.78)

T 1A )

h - Wz
where we ; = g

£ +“]) + 1 i %1 is the global error. We detail in the next part

how to formulate an expression of the global distortion.

4.2.3.2 Decorrelation hypothesis

The decorrelation hypothesis (4.9) will also be used to compute the global distortion
of the imaging chain presented Fig. 4.13. It is important to note that the hybrid
chain is an extension of the on-board chain and only adds a post processing after
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coding; all the on-board process remain therefore the same. From this remark,
it seems clear that the condition for the validity of the decorrelation hypothesis
remains identical and writes
A
Ow, , > 7”(1 + ). (4.79)

If the instrumental noise z meets the dithering noise requirements, we have
[Wannamaker 2000|

BW., =0, (4.30)
o2 A2
W5 J

+ N; .
NP TR )

E[|We;1%] = (4.81)

4.2.3.3 Analysis of the global distortion

The global rate-allocation problem consists now in finding the sets {A7}, {1} and
{A;‘} of optimal parameters which solve

L AGh A = agmin D (V) ) (A, )) o s
subject to R ({\j},{A;}) < R,
N> 0,5 €40,...,J—1}
A;>0Y5€{0,...,J—1}
pi>0,%j €40,....J—1}

In comparison to the analysis performed in Section 4.2.2.3, the expression of the
global distortion D changes and is now function of two sets of regularizing param-
eters {A;}, {1;} and, of course, is also function of the quantizing steps {A;}. The
expression of the global coding rate R remains however unchanged as the denoising
step that we introduced acts after the coding step.

Proposition 7. If 0., ; verifies hypothesis (4.79) for each j € {0,...,J — 1}, then
the mean global distortion D of the imaging chain displayed Fig. 4.13 writes

J-1
™ (Aj ‘Hﬁy"‘)‘y/‘y) 2 % o2
D ({); Aj
({)\]}?{/’L] { } ];0 1+)\ 1+M) me,g+(1+)\)(1+u)2 Wy, 5
A2
g (4.83)

a —_—
T )

where

aj = —— (4.84)

1s the weight of the subband j in the whole image.
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Proof. Using the orthogonality of wavelet subbands, the global distortion can be
formulated as

J—1
D () ) A85) = 5 S (IWary = W) (4.85)

J=0

where 7; are weighting coefficients which depend on the filters and the deci-

mation factors used in the wavelet transform [Usevitch 1996]. In the case of the

studied imaging chain displayed Fig. 4.13, the final image is the output of the

second denoising step which, from (4.78), writes
wx?]

Jpp— + .
YR T A Uy

(4.86)

From (4.85), (4.86) and using the moments decorrelation hypothesis (4.9), we
deduce the global distortion

<

—1
i (N + g+ Ajpyg)
1+ A)% (1 + p5)?

D (N} () {A)) = % ‘ E (IIWx,jIIQ) +mE (IIWs,jIIQ) :

<
I
o

(4.87)

Finally, the global distortion (4.87) can be further developed using the results
(4.81) to obtain the expression (4.83). O

The second part of the global rate-allocation problem (4.54) requires the expres-
sion of the global coding rate R. As the on-board processes of the hybrid imaging
chain remain the same, the coding rate R is given by (4.60) and (4.61).

Proposition 8. The global rate-distortion optimization problem (4.82) can be solved
by mazimizing
L(r) = inf &-({A;} {u;}, {N}) ) (4.88)
Aj>0,V5€{0,...,J -1}
A;>0,Vj€{0,...,J -1}
i >0,v5€{0,...,J -1}

with respect to ™ > 0 and where

J—1 2
miaj (Aj + pj + Njpg)” o T;a; 9

(bf({Aj}’{/J’j}v{)‘j}) = ]ZO (1 + /\3)2(1 +Nj)2 Ow, + (1 + /\3)2(1 +Hj)20-wz’j
A2 J—1
+ Wjajm +7 Z ajRj(Aj) - RC . (489)

Proof. This proof is similar to the one given in proposition 2 where the global
distortion D is given by (4.83) and R is given by (4.60) and (4.61). O

We detail in the next part how to solve problem (4.82) for the hybrid imaging
chain.
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4.2.3.4 Global rate-distortion-denoising optimization

Using proposition 8, the optimization problem (4.82) becomes

{87 kg AN} = max | inf - - ({A;} {5} {A}) : (4.90)

A >0,Y5€{0,...,J—1}
A;>0,Vjef{0,...,J—1}
;> 0,55 €{0,...,J —1}

where ¢, is given in (4.89). The situtation here is slightly different than the
on-ground or on-board chains since problem (4.82) does not have any solution (see
Appendix A.4). This means that we are not able to optimize in the same time the
parameters of the two restorations (on-board and on-ground) used by this chain.
We chosed therefore to enforce the value of A} as the same than for the on-board

chain and we deduce the conditions of the three other parameters (see Appendix
A4)

2
* Jz -
A==, Vjie{0,...,J —1} (4.91)
wgw-
*2 o2
e p— 1 z j =1 4.92
H] 1203}2 ( +0—12Uz]->7 VJE{O, 7J } ( 9)
WjA; 8Rj .
LAY = =1 4.
T A () =0 Vie{o. I 1) (4.93)
J—1
> ajRj(A}) = R.. (4.94)
j=0

As we can see from (4.93) and (4.94), the parameters {A7} and 7" still can not
be computed in closed-form and will be estimated numerically using binary search
algorithms of precision p = 0.1. The case of the low frequency subband (j = J — 1)
will be also processed differently to prevent excessive quantizing on these coefficients.
We set

2
= i, (4.96)
We, J—1
1 o?
* z
Wy = —— |1+ . (4.97)
7 120-121)1,J—1 < J%E,J—l)

Since the on-board denoising parameter has been fixed, the optimization algo-
rithm can be deduced from the one presented for the on-ground chain. We therefore
get the suboptimal algorithm presented in Algorithm 3. The results of this algo-
rithm are given in Section 4.3 which is dedicated to the comparison of the three
imaging chains described in Section 4.2.1, 4.2.2 and 4.2.3.
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Algorithm 3 Rate-distortion-denoising optimization algorithm for the hybrid imag-

ing chain
Set 7 = 1.
Set p =0.1.

while (zj;g a;Rj — RC( > p do
for j from 0 to J — 2 do
Set Aj =1.
Compute the value of the regularizing parameters \; from (4.91) and p; from
(4.92).

. A
while |Zi22

: +T%(Aj)( > p do
Increase the value of A;.
Compute the value of the regularizing parameters \; from (4.91) and p;
from (4.92).
end while
end for
Compute the quantizing step Aj_q from (4.95).

Compute the regularizing paramaters Ay_; from (4.96) and py_; from (4.97).
if |77 ajR; — Re| > p then
Increase the value of .
end if
end while
Output the regularizing parameters {A7} and {u]}.
Output the quantizing steps {AT}.
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4.3 Comparison of the three imaging chains

This part is dedicated to the comparison of the three chain (on-ground, on-board
and hyrid) visually and in a rate-distortion sense. For this comparison, the reference
image (displayed Fig. 3.1) has been noised with an additive white Gaussian noise
whose standard deviation is equal to 10. The other parameters are the same than
the ones described in Section 4.2.1.5. For each target rate, we simulate each imaging
chain with the usual disjoint optimization technique in comparison to the proposed
joint optimization algorithm.

3500 T T T T

+ = On-board disjoint optimized distortion (ground truth)
3000 \‘ ='='On-board joint optimized distortion (model-based estimation) i
v = On-ground disjoint optimized distortion (ground truth)
“‘ ='='On-ground joint optimized distortion (model-based estimation)
2500k /‘.‘ ~—Hybrid disjoint optimized distortion (ground truth) i
\ LY ='='Hybrid joint optimized distortion (model-based estimation)

20001% \

Distortion

-
o
o
o

1000

500

1.5 2 2.5 3 35 4
Coding rate (bits/pixel)

Figure 4.14: Comparison of the disjoint optimized distortion (ground truth) to joint
optimized distortion (model-based estimation) for the three imaging chains, o, = 10.

The obtained rate-distortion curve is given Fig. 4.14. Since we simulate the
case o, = 10, it is not suprising to observe that the joint optimization is slightly
better than the disjoint optimization technique, in terms of global distortion, only
for very high coding rates. This behavior is quite expected for the simulated level
of instrumental noise since, as mentioned previously, the validity of the proposed
method depends on the power of the instrumental noise. For o, = 10, we clearly
know that the proposed approach will be valid only for high coding rates. However,
for these rates, the coding step is almost transparent and therefore disjoint and joint
optimized techniques are almost the same. At low coding rates, the decorrelation
hypothesis does not hold anymore and the proposed method does not give a good
estimation of the global distortion.

We also see on Fig. 4.14 that the on-board and on-ground chains give similar
results, the on-ground chain being slightly better in term of global distortion. This
is actually not suprising if we look at the estimation of the global distortion (4.16)
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and (4.55), we see that one term is not attenuated by the regularizing term for
the on-board chain. This remark actually leaded us to propose the hybrid chain.
But we see on Fig. 4.14 that the joint optimization of this chain does not give
satisfying results which is not suprising since the global optimization of this chain
is not achievable (see Section 4.2.3.4).

The reconstructed images are given Fig. 4.15 to 4.18. The value of the peak
signal-to-noise ration (PSNR) is given for indication. It is defines, for 12 bits dy-
namic images, by

PSNR(z,#) = 20log, (14&) , (4.98)
wllz =22
where N is the number of pixels, x is the reference image and 7 is the reconstructed
final image.

The visual results are also similar, although we can observe on Fig. 4.16 a
significant difference on the reconstructed images. On this zone, we observe that
the on-board chain gives an image with less blur and artifacts than the ones obtained
with the other chains. This result may however differ for other restoration algorithms
since we used a Wiener like technique which is well adapted to process Gaussian
noise but not coding noise.

We finally see that, visually, the reconstructed image with the joint optimization
is better, for each chain, than the one reconstructed with the disjoint optimization
technique. This result is actually quite surprising since the simulated coding rate
is 2.5 bpp for which the dithering hypothesis does not hold anymore. This result is
interesting and suggests that, even for medium coding rates, the correlation between
the global error and the source may be negliged, such that our estimation of the
global distortion also holds for this range of coding rates.

To conclude, we see that the obtained results point out once again that optimiz-
ing coding and denoising separately is suboptimal and that the problem of imaging
chain design need to be treated in its globality. The proposed approach is inter-
esting in this sense and allows to perform the optimization of the global chain, i.e.
from the true scene to the final reconstructed image. Some works need however to
be done to improve the proposed method and we address in the next section the

question of extending the proposed approach to the current imaging chain used by
the CNES.

4.4 Extension of the proposed method to the CNES
imaging chain

The current imaging chain used by the CNES differs from the one we used in this
chapter mainly on three points:

e the presence of the PSF which requires a deconvolution,

e the presence of the dead-zone on the quantizer,
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Figure 4.15: Visual comparison of reconstruction results. Displayed images have a
size of 200 x 200 pixels. (a) is the reference image, (b) is the noisy observed image
(PSNR =52.25dB). (c) and (d) are the images reconstructed with the parameters
obtained respectively by the disjoint minimization of the ground truth distortion
(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion
(PSNR = 45.81 dB) for the on-board chain. (e) and (f) are the images recon-
structed with the parameters obtained respectively by the disjoint minimization of
the ground truth distortion (PSNR = 46.99 dB) and by the joint optimization of
the estimated distortion (PSNR = 44.47 dB) for the hybrid chain. (g) and (h) are
the images reconstructed with the parameters obtained respectively by the disjoint
minimization of the ground truth distortion (PSNR = 47.01 dB) and by the joint
optimization of the estimated distortion (PSNR = 45.76 dB) for the on-ground
chain. The coding rate is 2.5 bits/pixel. The image range has been extended to
point up the image reconstruction artifacts.
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Figure 4.16: Visual comparison of reconstruction results. Displayed images have a
size of 200 x 200 pixels. (a) is the reference image, (b) is the noisy observed image
(PSNR =52.25dB). (c) and (d) are the images reconstructed with the parameters
obtained respectively by the disjoint minimization of the ground truth distortion
(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion
(PSNR = 45.81 dB) for the on-board chain. (e) and (f) are the images recon-
structed with the parameters obtained respectively by the disjoint minimization of
the ground truth distortion (PSNR = 46.99 dB) and by the joint optimization of
the estimated distortion (PSNR = 44.47 dB) for the hybrid chain. (g) and (h) are
the images reconstructed with the parameters obtained respectively by the disjoint
minimization of the ground truth distortion (PSNR = 47.01 dB) and by the joint
optimization of the estimated distortion (PSNR = 45.76 dB) for the on-ground
chain. The coding rate is 2.5 bits/pixel. The image range has been extended to
point up the image reconstruction artifacts.
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Figure 4.17: Visual comparison of reconstruction results. Displayed images have a
size of 200 x 200 pixels. (a) is the reference image, (b) is the noisy observed image
(PSNR =52.25dB). (c) and (d) are the images reconstructed with the parameters
obtained respectively by the disjoint minimization of the ground truth distortion
(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion
(PSNR = 45.81 dB) for the on-board chain. (e) and (f) are the images recon-
structed with the parameters obtained respectively by the disjoint minimization of
the ground truth distortion (PSNR = 46.99 dB) and by the joint optimization of
the estimated distortion (PSNR = 44.47 dB) for the hybrid chain. (g) and (h) are
the images reconstructed with the parameters obtained respectively by the disjoint
minimization of the ground truth distortion (PSNR = 47.01 dB) and by the joint
optimization of the estimated distortion (PSNR = 45.76 dB) for the on-ground
chain. The coding rate is 2.5 bits/pixel. The image range has been extended to
point up the image reconstruction artifacts.
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Figure 4.18: Visual comparison of reconstruction results. Displayed images have a
size of 200 x 200 pixels. (a) is the reference image, (b) is the noisy observed image
(PSNR =52.25dB). (c) and (d) are the images reconstructed with the parameters
obtained respectively by the disjoint minimization of the ground truth distortion
(PSNR = 46.95 dB) and by the joint optimization of the estimated distortion
(PSNR = 45.81 dB) for the on-board chain. (e) and (f) are the images recon-
structed with the parameters obtained respectively by the disjoint minimization of
the ground truth distortion (PSNR = 46.99 dB) and by the joint optimization of
the estimated distortion (PSNR = 44.47 dB) for the hybrid chain. (g) and (h) are
the images reconstructed with the parameters obtained respectively by the disjoint
minimization of the ground truth distortion (PSNR = 47.01 dB) and by the joint
optimization of the estimated distortion (PSNR = 45.76 dB) for the on-ground
chain. The coding rate is 2.5 bits/pixel. The image range has been extended to
point up the image reconstruction artifacts.
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e and the denoising which is usually performed using shrinkage estimators in-
stead of Wiener like techniques.

Introducing a deconvolution in the restoration algorithm that we used may be
the easiest point to achieve. A deconvolution is usually performed in the Fourier
domain and we expressed our global distortion in the wavelet domain. Moving from
one domain to the other one may be difficult so one way to include this deconvolution
is to use a wavelet packet denoising such that the variation of frequency inside a
packet is low enough to be approximated by a constant. The deconvolution could
then be approximated, for each packet, as a division by this constant.

The presence of a dead-zone in the quantizer is also a point that may be ad-
dressed. Theoretically, the dead-zone of the quantizer prevents the moments of the
global error to be decorrelated to the moments of the source, as the dithering hy-
pothesis requires an equally spaced quantizer. We are however confident that the
correlation introduced by this dead-zone may be negliged such that the proposed
approach can still be applied.

The main difficulty for extending this work to the imaging chain used by the
CNES comes from the use of shinkage estimators. The non-linearity of these esti-
mators makes our approach very difficult to extend to this case. Moreover, the lack
of statistics on the reconstructed image of these estimators complexify the problem
of global distortion estimation.

For these reasons, we propose in the next chapter a different approach to perform
the global optimization of the chain.

4.5 Conclusions and perspectives

We studied in this chapter the global optimization of the chain from a theoretical
point of view. We considered a simple case of imaging chain and we proposed a
technique to estimate the global distortion. We also presented an algorithm to get
the optimal coding and denoising parameters by minimizing the estimated global
distortion with respect to the parameters of the chain, given a target coding rate.

We simulated this joint optimization technique on a satellite image and we
showed this approach allows a significant improvement on the quality of the fi-
nal image. In detail, our joint coding/denoising optimization approach can either
allows to reach the same quality at lower rates or to improve the quality of the
reconstructed final image for the same rates, in comparison to the image obtained
using the classical disjoint optimization technique. The main conclusion obtained
in this chapter is that the quality of the final image can be highly improved if we
address the problem of the satellite imaging chain optimization in its globality and
the proposed method is interesting in this sense.

We also developed our study to three configurations of the imaging chain where
the restoration is either performed after coding, before coding or splitted in two
parts: One part before coding and one part after coding. The comparison of these
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three imaging chains showed that it is more interesting, in term of image quality, to
place the restoration before coding, i.e. on-board of the satellite.

The imaging chain that we considered remains however simple and is far from
the true satellite imaging chain which is much more complex. We discussed in
Chapter 4.4 the main differences between the considered imaging chain and the
system currently used by the CNES. The main difficulty to extend our method to
that chain comes from the shrinkage-based restoration algorithm used by the CNES.
Due to the lack of statistics on this type of algorithm, it seems highly difficult to
formulate an expression of the final image. This however may be achieved if one
allows to introduce more prior information that we used in this chapter.



CHAPTER 5
Numerical optimization of the
chain

In the previous chapter we presented a method to perform, under simplifying hy-
potheses, a global joint optimization of the imaging chain which showed significant
improvements on the visual quality of the final image. This method is however dif-
ficult to extend to the true imaging chain of a satellite, due to the non-stationarity
of the instrumental noise, the non-linearity of the restoration technique and the
presence of a dead-zone on the quantizer.

Although we are not able to express the global distortion as a function of the
parameters of the chain, we will show in Section 5.1 that a global optimization can
be approximately performed by simply shifting the position of the restoration in the
chain. Tuning the parameters of the restoration is however theoretically difficult so
we propose in this part to address this question numerically. This chapter focusses
then on the global study of the satellite imaging chain, but mainly from a numerical
point of view. We will first present in Section 5.1 numerical experiments to improve
the quality of the final image by changing the position and the technique used for
the restoration step. For visual considerations, we will show then in Section 5.2 how
to deal with the structured artifacts of the coding noise. We conclude in Section 5.4
and give perspectives of the study.

5.1 Global optimization using on-board restoration

As mentioned in the introduction of the thesis (see Section 1.1), the initial global op-
timization problem consists in finding the optimal coding/decoding C* and restora-
tion 7™ which minimizes on average some measure D of the distance between the
true scene = and the restored final image & = T'(C(y)), under the constraint that
the coding rate R(C(y)) does not exceed the target coding rate

C*,T*= argmin F[D(z,T(C(y)))] . (5.1)
subject to C,T
R(C(y)) < Re

Problem (5.1) is highly complex to solve as it looks for the optimal coding C* and
restoration T without any knowledge on the true image = and for any distance D.
Clearly, solving (5.1) is very difficult to achieve in a general context. The authors
of [Wolf 1970] have however shown that some simplifications can be made if the



90 Chapter 5. Numerical optimization of the chain

distance D is the mean square error (MSE). The main result of [Wolf 1970] states
that, in the case of the MSE, the global distortion can be separated in two terms as
follows

D =E|llz = T(CW)I3] = E Iz = Elalyll3] + E [IBlly] - TCO)IB] . (5:2)

where F[z|y] is the conditional expectation of the original image = knowing the
noisy one y. The image E[x|y] is the best (in the MSE sense) estimator of the original
image = from y. As this image does not depend on the on-ground restoration or the
compression technique used, the minimal distortion D* then writes |[Wolf 1970]

D' =E[le-Bapll3] +  min E[|BEl) -TCWE] . 63)
subject to  C,T

We see that the global distortion can be expressed and optimized with respect to
the image F[z|y| instead of the original image x. Note that the problem (5.3) is not
simpler to solve as the computation of the image E[z|y] is usually not accessible.

As mentioned previously, the image E[x|y] represents the restoration of the true
image x from the instrumental one y. It is then very tempting to think that this ideal
image is actually the result of the restoration 7', moved on-board of the satellite,
i.e. before coding (see Fig. 5.1). From this remark, we then propose to consider the
MSE as the distance D and to use the results of [Wolf 1970] on the problem (5.1).
We further replace E[x|y| by T'(y) such that the global optimization problem (5.1)
can be approximatively written as

C*T* = agmin B [|T(y) - C(TW)I3] - (5.4)
subject to C,T
R(C(T())) < R

It is certain that the problem (5.4) is not strictly equal to the initial optimization
problem (5.1). Problem (5.4) seems however easier to treat as each variable can
almost be optimized separately. If T'is fixed, problem (5.4) looks then for the optimal
coder C* which minimizes the coding error under the constraint that the coding rate
does not exceed the target coding rate. This problem is well-known and referred as
the coding rate-allocation problem [Shannon 1948| which has been addressed a lot in
the coding community [Antonini 1992], [Ortega 1998|, |[Berger 1971| and references
therein.

To be clear, the global joint optimization problem (5.1) is very difficult to ad-
dress. But, in our opinion, we believe that moving the restoration on-board allows to
optimize the global imaging chain by optimizing separately each process (restoration
and coding) '. Moreover, the fact that each process needs to be optimized separately
actually fits how these parts have been originally designed. This strengthens our

'Tf we go back to the theoretical study of the chain, in Section 4.2.2.4, we observe that the
optimal parameters of the on-board chain are independent of each others, which is not the case of
the on-ground chain
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Figure 5.1: On-board restoration based satellite imaging chain.

idea that moving the restoration on-board is actually a reliable method to perform
the global optimization. So one way (but again this is not the only one) to address
the problem of global joint optimization (5.1) is to use an on-board restoration such
that the global optimization problem can be approximatively splitted in two inde-
pendent ones. The first problem is to optimize the on-board restoration such that it
is close to E[z|y]. The second problem is to design a coder C' which minimizes the
coding error. As mentioned previously, the latter has been the focus of intense work
in the imaging community. So the difficulty here is to evaluate how close to E[x|y]
is T'(y). As the ideal image F[z|y] depends on the original image x and is therefore
not accessible, we will simulate several state-of-the-art restoration algorithms and
observe their impact on the global distortion and on the quality of the reconstructed
image. This is the focus of the next part.

5.1.1 Comparison of on-board and on-ground chains

We are considering the on-board chain displayed Fig. 5.1 in comparison to the
classical on-ground one illustrated Fig. 5.2 for several restoration algorithms.

For the simulation, the coding step is fixed and is performed using the method
proposed in [CCSDS 2005] which is the basis of satellite embedded coding algo-
rithms. For example, the technique implemented on-board of the recent PLETADES-
HR satellite is an extension of the method proposed in [CCSDS 2005]. To be con-
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Figure 5.2: On-ground restoration based satellite imaging chain.
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sistent with the technique used by the CNES, we only focus here on restoration
techniques which process the image in two steps (we do not include the methods
based on a variational framework such as [Bect 2004]) as follows. First, a direct
deconvolution is performed using the target point spread function (PSF) provided
by the CNES. This deconvolution tends to increase the power of the instrumental
noise such that a post-processing denoising is always required as the second step. A
wavelet packet decomposition [Kalifa 2003b] is usually used for this denoising as it
fits the frequential characteristics of the deconvolved noise |Lier 2008|. However, an-
other important point to take into account for an efficient denoising is the decrease
rate of reconstruction error from the M largest wavelet coefficients [Patel 2009]. The
faster the reconstruction error decreases, the better the denoising is. And on this
point, a wavelet packet transform may not be optimal [Mallat 2008].

We propose here to perform the denoising using a variant of the wavelet trans-
form named the Shearlet transform [Labate 2005]. A wavelet transform can be
represented using a matrix with dyadic shifts and dilations as coefficients. As men-
tioned in Section 3.2.1, it is classically extented to the two dimensional case using
separable wavelets which process each dimension of the image independently. The
matrix representation of a two dimensional wavelet transform is therefore diago-
nal. The Shearlet transform presented in [Labate 2005] proposes instead to use a
non-diagonal matrix and more specifically considers a “shear” matrix. A shear ma-
trix is a matrix that combines operations along its rows and columns. This implies
that a Shearlet transform uses combinations of shifts and dilations of each dimen-
sion of the image. This offers the ability to capture oriented details and is, among
the contourlets [Do 2005] and the curvelets [Candés 2006a], an optimal transform
(in term of reconstruction error decreasing rate with respect to the number of re-
tained coefficients) for the representation of images |Patel 2009]. A deconvolution
method based on the Shearlet transform has been proposed in [Patel 2009]. We will
therefore compare the method [Patel 2009] to the current state-of-the-art restora-
tion methods such as the ForWarRD method [Neelamani 2004|, which performs a
deconvolution followed by a regularization in both the Fourier and wavelet domains,
or the method based on a Stein block thresholding [Chesneau 2010] which performs
the regularization in the Vaguelet-Wavelet domain followed by an adaptive block
thresholding.

We simulate both on-board and on-ground chains on the image presented Fig.
5.3 using the mentioned restoration algorithms. The reconstructed images will be
compared to the ones provided by the CNES which, as mentioned in Section 3.3.2,
uses an on-ground restoration based on a direct deconvolution followed by a wavelet
packet thresholding. For the numerical experiments, the threshold parameters have
been chosen such that the MSE is minimized. An exhaustive search of these pa-
rameters has been used to achieve this goal. In this simulation, the original image
x is known and the MSE can thus be computed. Note that in a real environment,
unbiased estimators of the MSE exist and do not require the knowledge of the true
image |[Ramani 2008|. Other estimators such as generalized cross validation (GCV)
techniques [Golub 1979| may also be used.
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Figure 5.3: Reference image, Cannes harbour (12 bits, 30 cm resolution, 1024 x 1024
pixels).
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The quality of the reconstruction results will be estimated both visually and
numerically using the PSNR criterion defined in (4.98). To evaluate visually the
performances of these algorithms, we will only display the reconstructed images for
the acquisition parameters described by the operating point 62 (whose SNR is 30-
100 and target coding rate is 2.5 bpp) in Table 3.1, page 35. This operating point
is very interesting to visually test the efficiency of the restoration algorithms since
it gives the worst-case simulation parameters: An instrumental noise with a high
standard deviation (low SNR 30 —100) and a low coding rate (2.5 bits/pixel).

—————

e e

PSNR (dB)

—ForWaRD on-board chain
='"='ForWaRD on-ground chain
= Block-thresholding on-board chain

40
='='Block-thresholding on-ground chain

= Shearlets based deconvolution on-board chain
='='Shearlets based deconvolution on-ground chain
— CNES reference

38

I I I I |
1 1.5 2 2.5 3 3.5 4

Coding rate (bits/pixel)

Figure 5.4: Rate-distortion comparison of on-board and on-ground chains in ref-
erence to the method currently used by the CNES. The simulated SNR is 30-100.

The comparison of the on-board and on-ground chains in a rate-distortion sense
is given Fig. 5.4 to 5.6 for the different restoration algorithms and for different
simulated signal-to-noise ratios. We can see that for the simulated restoration tech-
niques, an on-board chain always performs better than its on-ground variants. At
low coding rate, the difference between the two chains reaches almost 1 dB. We can
also observe that each restoration technique outperforms the restoration technique
used by the CNES in terms of PSNR. For a coding rate of 2.5 bpp, the improvement,
in terms of PSNR, of these methods over the method of the CNES varies between 1
and 1.5 dB. Note that the PSNR of the method used by the CNES is almost con-
stant after the coding rate of 2.5 bits/pixel as this technique leaves some residual
noise to give the image a physical sense. This residual noise simulates the instru-
mental noise that one obtains at the output of a sensor. This phenomenon only
appears from 2.5 bits/pixel, as at this rate the encoder starts to efficiently encode
the instrumental noise instead of removing it. Also note that this image character-
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Figure 5.5: Rate-distortion comparison of on-board and on-ground chains in ref-
erence to the method currently used by the CNES. The simulated SNR is 30-150.
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Figure 5.6: Rate-distortion comparison of on-board and on-ground chains in ref-
erence to the method currently used by the CNES. The simulated SNR is 50-150.
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istic is highly appreciated by image analysis experts. This feature will be the basis
of the method proposed in Section 5.3 to remove the coding artifacts inherent in
wavelet-based compression systems.

Among the simulated techniques, the ForWarRD restoration algorithm
[Neelamani 2004| gives the best PSNR for all coding rates. The difference with
other methods is however very small such that it is difficult to conclude only from
the rate-distorsion curves. To better evaluate the differences between these algo-
rithms, we show visual results on the Fig. 5.7 to 5.10.

We can check on Fig. 5.7 for example that the on-board chain gives edges which
are slightly more blurred than the on-ground chain (particularly visible around the
edges of buildings). This is due to the fact that the edges of the image have been
enhanced by the deconvolution. The high frequency subbands require then more
bits to be properly encoded.

It is actually difficult to conclude on the difference between the two chains as
they both give similar results, although the on-ground one seems to perform better
on low intensity areas. For example, on Fig. 5.9, we see that the on-board chain
reconstructs an image which is more blurred (see the small square element at the
bottom of the figure) than the one we would have obtained with an on-ground chain
(see also figure 5.7). The on-board chain presents however the advantage to separate
the process of coding noise removal and we will exploit this ability later in Section
5.3.

Visually, the Stein block thresholding restoration technique [Chesneau 2010]
does not give satisfying results and tends to oversmooth the image. If we observe the
reconstructed images (Fig. 5.7 and 5.9 for example), we can verify that all the small
details are lost. The ForWaRD method |Neelamani 2004| seems also to suffer from
the same behavior and provides slightly smooth reconstructed images. The method
based on the Shearlets [Patel 2009] seems to be slightly superior in term of image
quality. This method give satisfying results and recover the small details of the
image without giving too many artifacts. A deeper evaluation of the reconstructed
images, by image analysis experts, may be however required to confirm this result.

Finally, we see that many coding artifacts still appear in the reconstructed im-
ages. This phenomenon is particularly visible on the reconstruction results of the
on-board chain as the coding noise is not treated at all by this chain. The on-board
chain may be therefore penalized by the presence of these artifacts, so we present in
the next part some of the state-of-the-art processing methods to reduce these coding
artifacts.

5.2 Coding noise removal

As mentioned in Section 5.1.1, the coding step of the imaging chain degrades the
quality of the transmitted image by introducing structured artifacts. These arti-
facts are due to the quantizing process of the coder which sets to zero the wavelet
coefficients of low magnitude. This action of quantizing to zero can be interpretated
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Figure 5.7: Visual comparison of on-board and on-ground chains. Displayed images
have a size of 200 x 200 pixels. (a) is the reference image, (b) is the instrumental
image (output of the acquisition, PSN R = 32.69 dB), (c) is the reconstructed image
provided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reconstructed
images respectively from the Shearlets based on-board (PSNR = 46.80 dB) and
on-ground (PSNR = 46.69 dB) chains, (f) and (g) are the reconstructed images
respectively from the block thresholding based on-board (PSNR = 46.46 dB) and
on-ground (PSNR = 46.24 dB) chains, (h) and (i) are the reconstructed images
respectively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-
ground (PSNR = 47.05 dB) chains. The target rate is 2.5 bits/pixel and the
simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.8: Visual comparison of on-board and on-ground chains. Displayed images
have a size of 200 x 200 pixels. (a) is the reference image, (b) is the instrumental
image (output of the acquisition, PSN R = 32.69 dB), (c) is the reconstructed image
provided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reconstructed
images respectively from the Shearlets based on-board (PSNR = 46.80 dB) and
on-ground (PSNR = 46.69 dB) chains, (f) and (g) are the reconstructed images
respectively from the block thresholding based on-board (PSNR = 46.46 dB) and
on-ground (PSNR = 46.24 dB) chains, (h) and (i) are the reconstructed images
respectively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-
ground (PSNR = 47.05 dB) chains. The target rate is 2.5 bits/pixel and the
simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.9: Visual comparison of on-board and on-ground chains. Displayed images
have a size of 200 x 200 pixels. (a) is the reference image, (b) is the instrumental
image (output of the acquisition, PSN R = 32.69 dB), (c) is the reconstructed image
provided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reconstructed
images respectively from the Shearlets based on-board (PSNR = 46.80 dB) and
on-ground (PSNR = 46.69 dB) chains, (f) and (g) are the reconstructed images
respectively from the block thresholding based on-board (PSNR = 46.46 dB) and
on-ground (PSNR = 46.24 dB) chains, (h) and (i) are the reconstructed images
respectively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-
ground (PSNR = 47.05 dB) chains. The target rate is 2.5 bits/pixel and the
simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.10: Visual comparison of on-board and on-ground chains. Displayed images
have a size of 200 x 200 pixels. (a) is the reference image, (b) is the instrumental
image (output of the acquisition, PSN R = 32.69 dB), (c) is the reconstructed image
provided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reconstructed
images respectively from the Shearlets based on-board (PSNR = 46.80 dB) and
on-ground (PSNR = 46.69 dB) chains, (f) and (g) are the reconstructed images
respectively from the block thresholding based on-board (PSNR = 46.46 dB) and
on-ground (PSNR = 46.24 dB) chains, (h) and (i) are the reconstructed images
respectively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-
ground (PSNR = 47.05 dB) chains. The target rate is 2.5 bits/pixel and the
simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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as taking the original wavelet coefficients summed with negative impulses (where
the magnitude of the impulses is equal to the value of the coefficients prior to quan-
tizing). The inverse transform, performed after the transmission, displays then the
wavelet responses.

These artifacts visually look like checkerboard (see Fig. 5.11) and are thus some-
times referred that way in the literature [Selesnick 2003|. Clearly, these structures
are not appreciated in the final image as they can not be related to some natural
image features. The denoising of such coding noise is then important for the quality
of the final image and is the focus of this part.

Figure 5.11: Wavelet responses for the first level of a 3-levels CDF 9/7 decomposi-
tion. The first two wavelets are oriented in the vertical and horizontal directions.
The third wavelet is a mix of two diagonal orientations and gives the “checkerboard”
artifact.

We start by giving in this section a brief review of the state-of-the-art of quan-
tization noise removal methods. We will then discuss in Section 5.3 the integration
of these techniques in the satellite imaging chain.

5.2.1 Variational methods for denoising quantization noise

Several methods have been recently proposed in [Durand 2003, Weiss 2008,
Tramini 1998] to tackle the problem of quantization noise removal for wavelet-based
coder. They proposed to solve the problem of retrieving an image x¢ from its coded
version Z. The observed coded image = can be modeled as

T=W(Q W), (5.5)

where W stands for a wavelet transform (its inverse is denoted W) and Q is a
quantizing process. Techniques [Weiss 2008] and |[Tramini 1998] are actually very
similar and, consequently, we only present the methods proposed in [Durand 2003]
and [Weiss 2008]. These methods are both based on a variational framework and
both rely on the minimization of the total variation (TV) prior [Rudin 1992].

The TV prior assumes that an image can be modeled as a smooth function
with discontinuities across curves. The oscillations created by the coding artifacts
cannot therefore be considered to be natural and do not belong to an image. The
particularity of these artifacts is that they exhibit important variations of intensity
which tend to increase the magnitude of the gradient of the image, assumed to be
low by the smoothness hypothesis. Minimizing the I'-norm of the gradient of the
image, namely the TV, will then replace these oscillations by smooth homogeneous
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regions. Both methods [Durand 2003] and [Weiss 2008| could globally be formalized
as the following minimization problem

= argmin |Vz|i (5.6)
subject to € K

where 2 is the denoised image and K is a set that constrains the recon-
structed image. Two different approaches have been proposed in [Durand 2003]
and [Weiss 2008] to formulate this set. The authors of [Weiss 2008] proposed to
define the set K such that it constrains the error between the observed and the
reconstructed wavelet coefficients. In detail, let O be the set of all possible output
quantized values Q = {qi; k € Z,qo = 0} and by, bi11 (br+1 > b) be the boundaries
of each quantization interval such that

(W‘%)z =qp, ifby < (on)z < bk+1, Vi € {0, ...,N — 1}. (57)
From equation (5.7), we have
b — qr < (on)z — (I/Vj)Z < bk+1 —qp, Vi€ {O, ., N — 1}. (58)

For each pixel 7, we set the bounds «o; = by — q; and B; = b1 — qr, where
k verifies (5.8) given i. Note that the bounds «; and ; can be estimated from
the wavelet coefficients of the decoded image and the knowledge of the quantizing
model. The authors of [Weiss 2008] proposed to define K as the following hypercube

K={zeR" a; < (Wz), - (W2), < B, Vi€ {0,...,N-1}}, (5.9

such that problem (5.6) consists in minimizing the TV of the image under the
constraint that the error between the wavelet coefficients of the reconstructed image
and the wavelet coefficients of the decoded image belongs to the invervals defined
by the boundaries (5.8).

The method proposed in [Durand 2003] is slightly different and constrains the
wavelet coefficients without any reference to the original image xg. They define the
set K as

K={zeRN, (Wz), = (Wz),,Vie M}, (5.10)

where M is the set of coefficients coordinates that have not been set to zero by
the quantizing
M:{ie{o,...,N—l},|(W5:)i|>0}. (5.11)

The idea of the method proposed in [Durand 2003] is to reconstruct the small
coefficients that have been set to zero by the quantizing. The method relies on the
fact that the minimization of the TV creates flat regions which are represented by
small wavelet coefficients. The presence of the constraint (5.10) is to ensure that
only these small coefficients are updated and that the large quantized coefficients,
which are likely to be close to the original ones, remain unchanged.
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A comparison of the two presented methods is given at the end of this part.
We will see however that the flat homogeneous regions created by the minimization
of the TV are not natural in the sense that they cannot be interpreted as some
physical features of an image. The problem of quantization noise removal is actually
very difficult to address. The main difficulty lies in the fact that the quantization
noise is highly correlated to the signal source and cannot be modeled using classical
probability distributions (except under high coding rate assumption). We present
in the next part methods to improve the statistical properties of the quantization
noise.

5.2.2 Dithering methods for removing quantization artifacts

We present in this part dithering techniques to reduce the quantization artifacts.
These techniques have been originally introduced in the speech [Jayant 1972] and
video [Roberts 1962] processing communities to reduce the perceptual distortion
due to compression. The particularity of these techniques is that they consist in
inserting a noise prior to quantizing to improve the statistics of the quantization
error. A review of the theory of dithering techniques is given in Appendix B.

For the application of quantization artifacts, we will focuss here on the sub-
tractive dithering system proposed in [Schuchman 1964] whose particularity is to
subtract the added noise after quantizing. From Appendix B, we see that the non-
subtractive dithering technique only allows the moments of the global error € to be
decorrelated to the source w. An independence of the moments is however rarely
exploited by restoration algorithms, which require the true signal independence,
only provided by the subtractive variant. Let w be an original (i.e. prior to quan-
tizing) wavelet subband and @ be the output corresponding subband which, for a
subtractive dithering system, writes

W= Q(w+v)—wv, (5.12)

where @) is the quantizing operator and v is the dithering noise. The global error
¢ of this sytem is defined as
£=0— w. (5.13)

As mentioned by |Lipshitz 1992], a subtractive dithering system produces an
independent and uniformly distributed global error if the dithering noise v can be
expressed as the summation of rectangular probability density functions. This is
an encouraging result as it implies that an on-board restoration coupled with a
subtractive dithering scheme will result in a restored image with a residual noise
which is independent of the original image. Since this residual noise is not structured,
it can be interpreted physically (as the intrumental noise of the sensor for example)
better than the residual noise obtained with the current imaging chain system. This
aspect of residual noise is very important as it is one of the features seeked by the
CNES for the design of restoration methods [Dherete 2003]. We will discuss this
aspect later as this is the basis of the proposed imaging chain described in Section
5.3.
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We would like also to mention the dithering technique proposed in [Stamm 2011].
This method is slightly different from the dithering techniques presented in Ap-
pendix B as it is more focused on the reconstruction of the original wavelet sub-
bands rather than improving the statistics of the quantization noise. More precisely,
the main result of [Stamm 2011| states that the probability density function of a
wavelet subband can be recovered exactly (assuming we know the parameters of its
model) from its quantized version by adding a dithering noise v to the quantized
coefficients.

We assume that the quantizing model is the same than the one presented in
Section 5.2.1. The authors of [Stamm 2011] proposed to model a wavelet subband
w (each subband can be treated separately) by a Laplace distribution [Li 1998]

A
puw(w) = Ze N, (5.14)

where X is the scale parameter that can be estimated using classical estima-
tion techniques such as least-squares minimization methods or maximume-likelihood
estimations. Similarly to (5.7), the quantized wavelet subband @ writes

W = q, ifo, <w < bk+1. (5.15)

Using the wavelet subband model (5.14), we can express the probability density
function pg of a quantized wavelet subband

% (efAbk _ efAkarl) , ifk>1
pa( =qr) =1 —3 (e Mo —e M) ifk =0 (5.16)
5 (eMrrr — M) | ifk < —1.

As said previously, the method proposed in [Stamm 2011] consists in adding a
dithering noise after quantizing. The final wavelet subband z is then given by

z=1+0, (5.17)

where w0 is the quantized wavelet subband and v the dithering noise. The wavelet
subband probability density function p, can be expressed using the law of total
probability [Stamm 2011]

+oo
p=(2) = Y paja(zld = ar)pa(@ = q), (5.18)

k=—o00

where

Dol (2|0 = qr) = pyja(v = 2 — qr|® = q1), (5.19)
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is the probability density function of the dither noise v knowing the quantized
values w. The authors of [Stamm 2011| showed that the choices

L o—sign(qr) v if (b — << (bpoq—
Do (0] = e, b £ 0) = § B ma) So<ra w55
0, otherwise
Le=Avlifby >0 > b
pupa(vfd =0) = {20 0 BT (5.21)
0, otherwise

with ap being some normalization constants and A an estimated value of the
scale parameter A, lead to the original wavelet subband probability density function
Pw, under the condition that the scale parameter has been estimated exactly, i.e.
A =\ [Stamm 2011]

+oo
p=(2) = Y Pealzl® = ar)py (@ = )

k=—00

—1

1 5 1/ 5 5

_ Z = eAea) - (e)\karl — e)\bk) 1(br < 2 < qrs1)
ag 2

1 1/ A
+ _ef)\\z\ <1 . (e)\bo _ 6)\171)) ]l(bo <z < bl)
(7)) 2

+oo
1 75\(zqu)1 ( — b 75\bk+1>
+E — - - 1(br < 2 < qry
— ke B (& (& (k_Z qk 1)

- %e—ﬂlzl = pu(2), (5.22)

where

1, ifa<z<b
la<z<b)= h=Es0 (5.23)
0, otherwise

Even if the reconstructed and original subbands will numerically differ, this
technique will remove the undesirable observed artifacts, due to the quantization,
by filling in the blanks. The fact that we also add dither noise on the null coefficients
may also provide the residual noise appreciated by image analysis experts.

5.2.3 Comparison of removal methods for quantization artifacts

We simulate the behavior of the presented quantization removal methods directly
on a coded version of the reference (i.e. without any blur or instrumental noise)
satellite image shown Fig. 5.3. The simulation of the complete imaging chain
including these techniques is done in the next part. To perform a fair comparison,
the image will be coded using the biorthogonal 9/7 wavelet transform [Cohen 1992]
followed by the quantizer described in [Lipshitz 1992]. As a consequence, the method
[Stamm 2011] has been adapted to this choice. For the subtractive dithering method
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[Lipshitz 1992|, we simulated a uniform dithering noise to limit the power of the
residual noise. This dithering noise will be applied to the wavelet subbands of the
image prior to quantizing. Therefore, after the inverse transform the residual noise
(i.e. the error between the reference image and the output of the dithering system)
is not uniformly distributed anymore but we found out experimentaly that this noise
appears, suprisingly, to be still independent and identically distributed following a
centered Gaussian law.

We only provide visual results as common criteria such as PSNR do not take
into account the appreciated physical perception of residual noise.

The results are given Fig. 5.12 to 5.15. Visually, we immediately see that the
techniques based on the minimization of the TV create large smooth homogenous
regions and remove the small details of the image. This effect is known as the cartoon
effect. These flat regions are not considered to be natural for a satellite image and are
really not appreciated by image analysis experts who clearly prefer a deterioration
that can be interpreted physically. As explained previously, this is for example
the case of an unstructured residual noise. The subtractive dithering technique
and the method proposed in [Stamm 2011] give good visual results in this sense.
Both images are well reconstructed and do not present common artifacts such as
ringing or blurry edges. The quality of the image reconstructed with the subtractive
dithering technique actually seems slightly better, particularly on the small details
of the image (cars and zebras). As expected, these methods leave a residual noise
on the reconstructed image which can be interpretated as the instrumental noise of
the sensor.

5.3 Proposed imaging chain

In the previous section, we showed that the dithering techniques may be very in-
teresting to remove the structured artifacts of the coding step. As we have also
mentioned in Section 5.2.3, these techniques leave a uniform residual noise which is
highly appreciated from the image analysis experts as it can be interpretated physi-
cally. More precisely, an ideal restored image (as defined by image analysis experts)
should owns a residual blur characterized by a target PSF |[Lambert-Nebout 2000]
along with a uniform residual noise with a fixed standard deviation [Dherete 2003|.

We also presented in Section 5.1.1 an on-board restoration technique which gives
an image with a residual noise (whose power is very small in comparison to the power
of the residual noise obtained from the dithering techniques) and a residual blur fully
characterized by the target PSF. If we combine these two techniques, i.e. if we use
an on-board restoration coupled with a subtractive dithering technique, the image
obtained at the output of the chain will then present an unstructured residual noise
(coming from the dithering technique) with the blur of the target PSF (coming from
the on-board restoration). And as mentioned previously, a final image with such
characteristics is the objective of image analysis experts as it can be interpreted as
the direct output of an ideal instrument.
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Figure 5.12: Visual comparison of quantizing removal techniques. Displayed images
have a size of 200 x 200 pixels. (a) is the reference image, (b) is the decompressed
image, (c) is the image obtained using the post-processing technique proposed in
[Durand 2003], and (d) is the image obtained using the post-processing technique
proposed in [Weiss 2008], (e) is the image reconstructed using the post-processing
dithering technique proposed in [Stamm 2011], (f) is the image reconstructed using
the subtractive dithering technique [Lipshitz 1992] with an uniform dithering noise.
The target rate is 2.5 bits/pixel. The image range has been extended to point up
the image reconstruction artifacts.
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Figure 5.13: Visual comparison of quantizing removal techniques. Displayed images
have a size of 200 x 200 pixels. (a) is the reference image, (b) is the decompressed
image, (c) is the image obtained using the post-processing technique proposed in
[Durand 2003], and (d) is the image obtained using the post-processing technique
proposed in [Weiss 2008], (e) is the image reconstructed using the post-processing
dithering technique proposed in [Stamm 2011], (f) is the image reconstructed using
the subtractive dithering technique [Lipshitz 1992] with an uniform dithering noise.
The target rate is 2.5 bits/pixel. The image range has been extended to point up
the image reconstruction artifacts.
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Figure 5.14: Visual comparison of quantizing removal techniques. Displayed images
have a size of 200 x 200 pixels. (a) is the reference image, (b) is the decompressed
image, (c) is the image obtained using the post-processing technique proposed in
[Durand 2003], and (d) is the image obtained using the post-processing technique
proposed in [Weiss 2008], (e) is the image reconstructed using the post-processing
dithering technique proposed in [Stamm 2011], (f) is the image reconstructed using
the subtractive dithering technique [Lipshitz 1992] with an uniform dithering noise.
The target rate is 2.5 bits/pixel. The image range has been extended to point up
the image reconstruction artifacts.
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Figure 5.15: Visual comparison of quantizing removal techniques. Displayed images
have a size of 200 x 200 pixels. (a) is the reference image, (b) is the decompressed
image, (c) is the image obtained using the post-processing technique proposed in
[Durand 2003], and (d) is the image obtained using the post-processing technique
proposed in [Weiss 2008], (e) is the image reconstructed using the post-processing
dithering technique proposed in [Stamm 2011], (f) is the image reconstructed using
the subtractive dithering technique [Lipshitz 1992] with an uniform dithering noise.
The target rate is 2.5 bits/pixel. The image range has been extended to point up
the image reconstruction artifacts.
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From this remark, we propose the imaging chain shown Fig. 5.16.
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Figure 5.16: Proposed satellite imaging chain

This chain includes the on-board restoration based on the Shearlets transform
[Patel 2009] and the subtractive dithering technique |Lipshitz 1992] to decorrelate
the quantizing noise. Note that, in this chain, the quantizer follows the model
described in [Lipshitz 1992| to respect the subtractive dithering scheme hypothesis.
The coding step is then decomposed in a 3-levels CDF 9 /7 wavelet transform followed
by an explicit quantization of the wavelet coefficients and an entropy encoding of
the quantized coefficients. The results of the proposed imaging chain are given Fig.
5.17 to 5.20.

We immediately see that the reconstructed images with the proposed chain do
not present any common wavelet compression artifacts (see figures 5.17 and 5.18),
that we observed on the reconstructed image provided by the CNES. They exhibit
instead an unstructured residual noise which is visually similar to the noise obtained
on the instrumental image at the ouput of the acquisition chain. This is particularly
visible on the dark zones of the reconstructed image, see figures 5.18 and 5.19.

It is clear that the proprosed chain tends to replace one type of residual noise
(wavelet compression artifacts) by another one. The obtained residual noise is how-
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Figure 5.17: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 2.5 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.18: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 2.5 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.



5.3. Proposed imaging chain 115

Figure 5.19: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 2.5 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.20: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 2.5 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.21: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 3.0 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.22: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 3.0 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.23: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 3.5 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.24: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 3.5 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.25: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 4.0 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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Figure 5.26: Visual comparison of the proposed and the current imaging chains.
Displayed images have a size of 200 x 200 pixels. (a) is the reference image, (b)
is the instrumental image, (c) is the decompressed and restored image provided by
the CNES, (d) is the reconstructed image from the Shearlets based on-board chain
followed by a subtractive dithering scheme. The target rate is 4.0 bits/pixel and
the simulated SNR is 30-100. The image range has been extended to point up the
image reconstruction artifacts.
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ever better appreciated by image analysis experts as it can be interpreted physically.
More precisely, the proprosed imaging chain produces a reconstructed image which
owns the two characteristics of an ideal image: Blur with the target PSF (obtained
by the on-board restoration) and a residual unstructured noise [Dherete 2003|. The
drawback of the proposed method is that the standard deviation of the residual
noise is function of the quantizing step (see Theorem 11) while it should be con-
stant for all coding rates. Consequently, for a low coding rate, the proposed chain
gives an image which is more noisy than the instrumental one. It gives however very
interesting results for high coding rates as shown by Fig. 5.21 to 5.26. Futher works
need thus to be done on this aspect.

5.4 Conclusions and perspectives

In this chapter, we presented a numerical study on the satellite imaging chain op-
timization problem. We presented several results which showed that the quality of
the reconstructed image can be improved if one concedes several changes on the
usual design of imaging chains.

The first one would be to move the restoration step on-board of satellite, prior to
coding. The results we obtained here showed that an on-board restoration allows to
reconstruct an image with less reconstruction artifacts, specially on shadows zones.
On a more theoretical point of view, moving the restoration on-board seems to be a
reliable method to approximately optimize the global imaging chain since it does not
require to express the global distortion as a function of the parameters of the chain
which, as discussed in Chapter 4.4, is difficult for true satellite imaging systems.

The second point discussed in this chapter deals with the problem of coding
noise removal. From the results we presented, we concluded that the current state-
of-the-art coding noise denoising algorithms do not give competitve results and that
the best option may be to used dithering techniques to transform the stuctured
coding noise in an unstructured residual noise. This property of residual noise
is highly appreciated from photo interpreters since it simulates the noise obtained
directly at the output of the instrument. From these conclusions, we proposed a new
imaging chain based on an on-board restoration coupled with a subtractive dithering
technique. We showed results on a real satellite data and we compared the results of
the proposed chain with the ones obtained with the current satellite imaging chain
used by the CNES. We showed that the proposed chain gives interesting results and
may be particularly efficient at medium and high coding rates (around 3.0 bits/pixel
and more). The particularity of the proposed imaging chain is that the final image
is fully characterized by the target blur (specified by the CNES) and a residual
unstructured noise. Such feature is interesting for images analysis experts since
classical defects of the compression and restoration steps do not appear in the final
image, such that these two steps appear then almost transparent in the chain.

A drawback of the proposed method is that the power of this residual noise
depends on the target coding rate. At low coding rate (like 2.5 bits/pixel), the
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final image appears to be more noisy than the instrumental image and is therefore
difficult to exploit. It would be thus interesting to investigate how to limit the
intensity of this residual noise such that competitive results can also be obtained at
low coding rates.
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A compressed sensing based
satellite imaging chain






CHAPTER 6
Compressed Sensing for satellite
imaging

The last part of the thesis is dedicated to the study of Compressed Sensing (CS) for
satellite imaging. This study on the Compressed Sensing slightly differs from the
global optimization techniques that we presented in part IT and the purpose of this
study is mainly to evaluate the capability of CS applied to high resolution satellite
imaging. The CS technique is interesting for satellite imaging as it simplifies the
resources required for the acquisition of the image, which are, in our case performed
on-board of the satellite. All the processings on the image are then performed on-
ground by a specific decoder and the quality of the final image entirely depends on
the reliability of this decoder. Due to the limited capacity of embedded resources,
this technique clearly appears to be adapted to our context.

We first present in Section 6.1 a brief introduction of the CS framework. We
then detail, in Section 6.2, how to apply this technique to satellite imging. We
present reconstruction results of the proposed method in comparison to the results
obtained with the current imaging chain and we conclude this part.

6.1 A short introduction to Compressed Sensing

6.1.1 Motivations

In a classical imaging system, the acquired image is sampled at the Nyquist fre-
quency to give N pixels. Any digital camera produces nowadays an image with
dozen millions of pixels. By assuming that each pixel is represented on 24 bits (8
bits per color channel), each image requires then almost 100 Mb of storage capacity.
Some compression algorithms, like the JPEG [Wallace 1992 and JPEG2000 stan-
dards, are then required to allow the user to take an important number of pictures,
stored into a simple memory card. In brief, the purpose of the coding step is to
reduce the redundancy in the image and to remove insignificant content to match
the capacity of the storage device. Compression algorithms require however the
whole image for, finally, discarding an important part of (irrelevant) information.
This may appear to be wasteful for applications whose sampling scheme is expensive
to perform. Many computing resources could then be saved up if the compressed
coefficients were directly acquired out of the sensor.

Recently, a new theory of sampling has been emerged in the signal processing
community. This theory, introduced as the Compressive Sampling or Compressed
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Sensing [Candés 2006b, Donoho 2006], suggests that one can reconstruct perfectly a
signal, supposed to be sparse in some basis, from a limited (i.e. fewer than Nyquist)
number of incoherent measurements. The motivation behind the CS technique is
to perform in the same time the acquisition and the compression of the signal. We
give a quick overview of this technique in this section but more information can be
found in the referred works.

6.1.2 Main results

Let 29 € RY be a Nyquist sampled version of the analog measured scene. The main
result of the CS theory states that xg can be recovered exactly from a small number
of measurements |Candés 2006a| directly outcomed from the sensor. The key of the
CS theory relies on the supposed sparsity of the original signal zg, meaning that
it can be perfectly represented in some basis ¥ : RY — R with only S non-null
coefficients. This property of sparsity is actually well-known for natural images and
widely used by coding algorithms to represent the content of images on compact
bitstreams [Wallace 1992].

Based on this property of sparsity, the authors of [Candés 2006a] showed that
only M (with M << N) measurements are required to perfectly reconstruct the
original signal zy with a high probability. These M observations are obtained by
the projection of the image zo € R on a measurement matrix ® : RV — RM

y = Pxo. (6.1)

Matrix ® being not of full rank, it seems difficult to recover zg exactly. However,
it appears that if one considers the image x( to be sparse in some basis ¥, then all
the information and the structure of xg is conserved in y with a high probability
[Candés 2006a]. More precisely, let ag € RY be a S sparse vector, that is a vector
having S non-null coefficients, and let y € R be the measurement vector obtained
by

y = Pay. (6.2)

If we assume that we know the location of the S sparse coefficients, only S
linearly independent equations are then required to recover g from y. In oth-
erwords, one can recover aq exactly from g if the sub-matrix ®x of size M x S
is full rank. The restricted isometry property (RIP) has been introduced in
[Candes 2006d, Candés 2006a| to generalize this notion of quasi-orthonormality. Let
6 € RN be a S sparse vector, then the measurement matrix ® owns the RIP of order
S if for any sub-matrix ®,, of size M x p with p € [1,...,5], one has

(1= 8x)N015 < 12,0113 < (1 + 3x)16]]3, (6.3)

where 0f is the smallest constant (known as the restricted isometry constant)
which verifies (6.3) for any p. The design of such measurements matrices is how-
ever a NP-complete task. Fortunately, it appears that most of random matrices,
such as Gaussian random matrices or matrices outcomed from Bernouilli processes
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[Candes 2006a], satisfy the RIP of order 2K (required to preserve the distance be-
tween any two sparse signals) with a high probability [Baraniuk 2008].

When no prior information on the location of the non-null sparse coefficients is
available, recovering ag from y is more difficult. The authors of [Donoho 2006] ad-
dressed this problem and showed that, if the RIP condition is satisfied, the image xq
can be recovered with a high probability by minimizing the [’-norm of its coefficients
in ¥, under the constraint that its projection on ® is equal to the observed vector
y. This however leads to a NP-complete algorithm [Donoho 2006|. A strong result,
due to [Candés 2006b], states that the [°-norm can be equivalently replaced by the
I'-norm. The reconstruction problem is then formulated as follows [Candés 2006b]

Find €  argmin |Vz|; . (6.4)
subject to x € RV
y = Px

The optimization problem (6.4) is a particular instance of the Basis Pursuit
problem [Chen 1998| which can be efficiently solved using classical algorithms from
the linear programming literature. Problem (6.4) can be interpreted as follows.
The randomness of the measurement matrix ¢ spreads the content of the image
in the measurement vector y. If ® satisfies the RIP, then the inverse solution ®ty
contains all the information of the image xg but in disorder. Also remind that the
representation of zg in the basis ¥ is sparse or, in other words, strongly compact.
Minimizing the I'-norm of its coefficients will then put the non-null coefficients back
at the correct position, recovering therefore the original image.

It is shown in [Candes 2007] that solving problem (6.4) leads to an exact solu-
tion if xg is sparse enough in W. Therefore, the more sparse is xg the easier it will
be for the algorithm (6.4) to recover the original signal. Recovering the image xg
highly depends on the link between the compactness of the decomposition basis W
and the diffusion of the measurement matrix ®. More generally, the algorithm (6.4)
efficiently recovers the original image only if matrices ® and W are completely un-
correlated. A mutual coherence p has been introduced in [Candés 2007] to measure

this correlation and more precisely, to measure the correlation between each vector
basis ¢; and v¢; of ® and V. It is defined as

(@, W) = VN max (g, 15)]. (6.5)

This coherence measure belongs to [1,+/N] [Candes 2008]; a small value of u
meaning that the matrices ¥ and ¢ are completely uncorrelated. For example,
if ® is the Fourier basis, then the minimal coherence is obtained with ¥ = I (the
sampling operator) and is equal to 1. Such scenario actually corresponds to magnetic
resonance imaging for example, where the data is directly acquired in the Fourier
domain [Lustig 2007]. More generally, solving (6.4) recovers x exactly if

M > Cp*(®,¥)Slog(N), C <1is a constant. (6.6)
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In classical imaging systems, acquired images are usually degraded by both blur
and instrumental noise. As shown in [Jianwei 2009], the CS technique is robust to
this scheme. In the case of blurred and noisy measurements, the acquisition model
(6.1) becomes |Jianwei 2009]

y=PHuzg + z, (6.7)

where H : RN — R¥ is the blur matrix and n € RM is an additive noise. In the
classical case of an additive white Gaussian noise of variance o2, the reconstruction
algorithm may write |Jianwei 2009]

Find €  argmin |Yz|; . (6.8)
subject to x € RY
ly — @Hz||3 < Mo?

Similarly to (6.4), the optimization problem (6.8) is a particular instance of Basis
Pursuit Denoising which can also be solved using linear programming techniques
[Chen 1998]. Of course, exact reconstruction cannot be achieved anymore due to
the error on the measurements introduced by the noise. The reconstruction error
can however be accurately estimated (at least in the case of measurements only
degraded by noise) as a function of the restricted isometry constant [Candés 2006¢].

Although the design of a sensor able to produce these random measurements is
difficult and beyond the scope of the thesis, the CS technique clearly appears to be
adapted to the satellite imaging chain. It could indeed drastically simplify the pro-
cess of image acquisition by providing a reduced number of measurements, directly
outcomed from the sensor, therefore saving an important quantity of resources. It is
also valuable to point out that the CS framework provides an acquisition technique
whose performances depend mainly on the reconstruction algorithm done on-ground.
In comparison, the current acquisition imaging chain is bounded by the efficiency of
the compression scheme embedded on-board. In that case, if one wants to increase
the quality of the final image, one has to design a new image coder. This “universal”
coding feature [Candés 2006d] of the CS is thus very attractive. In the next part, we
propose therefore a satellite imaging chain based on this technique. We formulate
the acquisition model and we present an algorithm to reconstruct the image from
the measurements vector.

6.2 Compressed Sensing based satellite imaging chain

6.2.1 Acquistion model of the satellite imaging chain

As said previously, we assume that we have at our disposal a sensor able to pro-
duce incoherent measurements, in the sense of the CS framework. We are inter-
ested in evaluating the quality of the reconstructed image in comparison to the
image obtained using the current acquisition chain based on wavelet compression
[Antonini 1992].

Though it is not a general result (see |Goyal 2008| for example), previous works
[Schulz 2009] have shown that the CS technique may be competitive regarding to
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a wavelet-based compression scheme on smoothed classical test images. But to the
best of our knowledge, no works have been dedicated to this comparison for high-
resolution satellite imaging, taking into account the degradations of the satellite
imaging acquisition chain (blur, instrumental and quantizing noises).

coding noise (b)

Measured scene
(discrete signal)

—> Acquisition _) Coding
: X
i3 y={(h*z)A+n
e i | o12011101
True scene 001010011
; I 010101001
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I Coded scene
(binary data)
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Decoded scene
(discrete signal)

‘_ Restoration ‘_ Decoding
x

g=(h*z)a+n+b
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Figure 6.1: Current satellite imaging chain.

The current satellite imaging chain used by the CNES is recalled Fig. 6.1. In
the case of a CS based acquisition technique, the instrumental image at the output
of the acquisition can be written as the projection of the blurred image on the
measurement matrix ¢, noised by an instrumental noise n

y=®Hz +n, (6.9)

where H is the matrix notation for the PSF, n is the instrumental noise supposed
to be a zero-mean Gaussian distribution with a known variance o2. We assume that
the variance of this noise is pixel dependent and we use the model (3.3) to express
this dependence.

In addition to blur and instrumental noise, the M measurements are also de-
graded by quantizing noise. In a classical satellite imaging chain, a wavelet transform
is usually applied prior quantizing to decorrelate the data. Since, the acquired data
is random, in the CS technique, and does not present any favored structure, we pro-
pose here to directly quantize the coefficients y. We modelize this quantization @) as
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a scalar uniform quantization which quantizing step A; depends on the coefficient
yi,i € {1,..., M} regarded

Q)= |2+ 3. (6.10)

A 2
where |.] is the floor function which returns the greatest integer less than or equal
to its argument. The quantizing step A; can be transmitted with the image as in
the JPEG standard [Wallace 1992| or can be deduced during the decoding algorithm
for more recent methods [Taubman 2000, Said 1996]. Therefore, we assume in the
following that the quantizing steps A; are known. Let b = Q(y)—y be the quantizing
error. From (6.10), we have for each coordinate b; of b

A; A .
Shshi<Shovie{l.. M) (6.11)

or equivalently

be B, withB:{beRM,— We{l,...,M}}. (6.12)

Using the previous definition of b, we propose to modelize the observed measure-
ments as
J=Q(PHx +n)=PHx +n+b, (6.13)

where ¢ is the measurements vector.

6.2.2 Proposed reconstruction algorithm

The extension of the reconstruction algorithm (6.8) to the acquistion model (6.13)
is simple. First, simply remark that the problem (6.8) can also be written

Find 2 €  argmin [Pz, . (6.14)
subject to € RNV neRM
|Lnll3 < M
y=®Hz +n

In our case, the variable b needs to be added to the problem (6.14) to take into
account the presence of the coding noise. Using (6.12) and (6.13), the reconstruction
problem for acquisition model (6.13) writes

Find 2 €  argmin |Vz|; . (6.15)
subject to € RN, ne RM peRM
ISnl3 < M,
be B,

y=®Hzx+n-+b

where > = diag (0%) is used to take into account the pixel dependence of the

variance of the noise n. The problem (6.15) can be further simplified by noting that
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the variable b can be replaced by § — (PHx + n). We finally propose to formulate
the reconstruction problem as

Find 7 € argmin || Wzl . (6.16)
subject to x € RNV, n e RM
[2n[l3 < M,

j— (PHz +n) € B

The optimization problem (6.16) is a convex problem constrained on convex
sets and thus admits a unique (convex) set of solutions [Boyd 2004]. However, the
presence of the linear operators ¥, ® and H make it difficult to solve.

We propose here to use the alternating direction method of multipliers proposed
in [Afonso 2011]. The advantage of this algorithm is that it is very general and it
gives satisfying computing time. It solves

Find (@,0) €  argmin fi(u) + fa(v) , (6.17)
subject to Cu+ Dv=a
u € RP, v eR?

where

o f1:RP — RU{+o0} and fp : R? — RU{+00} are two closed convex functions.
e C € R¥P and D € R are two linear operators.

e a € R!is a given vector.

The alternating direction algorithm relies on the augmented Lagrangian method.
Let A € R! be a Lagrange multiplier attached to the linear constraint (6.17), the
augmented Lagrangian writes

L(u,v,\) = f1(u) + fo(v) + (\,Cu+ Dv —a) + gHC’u + Dv — a3, (6.18)

where [ is a parameter which controls the linear constraint [Glowinski 1984].
This parameter has to belong to the interval |0, \/‘?’;1 [ to ensure that {(u¥,v*)}
converge to the set of minimizers |Glowinski 1984].

This algorithm consists in finding a saddle point of the augmented Lagrangian,
thereby solving (6.17), by minimizing it in an alternating way, subject to u, v, then
to A. The algorithm is given in algorithm 4.

We now detail how to apply algorithm 4 to problem (6.16). To match the class
of problem (6.17), we define

Uy
u= | ug ERNXRMXRM,v:<U1>:<$>ERMXRM,
u3 V2 n

0
a=| 0] eRY xRM x RM, (6.19)
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Algorithm 4 Alternating direction method of multipliers to solve (6.17)

Set the number of iterations K.

Set an initial point u® € RP.

Set an initial point v° € RY.

Set an initial point A € R,

Set v >0 and g > 0.

for k from 0 to K — 1 do

k1= argmin  L(u,v®, \F) .

subject to u € RP
argmin  L(uFt1 v, AF) |

subject to v € RY

Set AL = Ak 4 By(Curt! + Dokt — q).

Compute u

Compute vF*! =

end for
and
C=1, (6.20)
v 0
D = 0 1, (6.21)
—®H -1
where I is the identity matrix. Using these definitions, problem (6.16) can be
reformulated
Find (u,0) €  argmin ||ui|; . (6.22)
subject to  u € RV x RM x RM | y ¢ RM x RM
[Euz3 < M,
usz € B,
—u+Dv=a

We further define

f2(v) =0, (6.23)
fi(w) = |l + xe(u2) + xB(us), (6.24)

where ¢ is the indicator function on a weighted [? ball

0, if || Sug |2 < M
xa(ug) = { >l : (6.25)

0, otherwise

and xp is the indicator function on the hypercube B

0, ifus € B
Y5(us) = { 3 (6.26)

0, otherwise
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Using these notations, it is straightforward to see that problem (6.16) fits the
formulation (6.17) and becomes

Find (a,0) €  argmin fi(u) . (6.27)
subject to  u € RV x RM x RM | y ¢ RM x RM
—u+Dv=a

The first step of the algorithm consists in computing
u*H = argmin L(u, vk, AF) , (6.28)
subject to  u € RV x RM x RM

where L is the augmented Lagragian which, for problem (6.27), writes
L(u,v,\) = fi(u) + (\,Dv —u —a) + gHDv —u— a3 (6.29)
We have
M = argmin  fy(u) + (N, DvF —u —a) + gHka —u—al)?
subject to  u € RV x RM x RM
. k
=  argmin %fl(u)—l—%Hka—a—l—%—uH%
subject to  u € RY x RM x RM

k
= proxi ( Dv* —a+ % ), (6.30)

where prox is the proximal operator presented in |[Combettes 2005]. For any
function f : RY — R U {400}, the proximal operator prox; is defined by

. 1
prox; ( zo ) = argmin f(x) + §Hx — x13- (6.31)
z€RN
We recall two results of [Combettes 2005] that we will use. Let X C RY be a
0 ifreX

closed convex set and f(z) = { .. Then
+00 otherwise

proxy = llx, (6.32)

where IIx is the euclidian projector on the set X. It is straightforward to see
that the proximal operator generalizes the notion of projection. If f(z) = 7lz|1,
then prox; is the soft-thresholding operator and we have

ProX,|.||, (2o ) = shrink; (zo) = sign(zo) max(|zo| — 7,0). (6.33)
Using results (6.32) and (6.33), we have

shrink 1 (D’Uk —a+ )‘Fk)
5

W= g (Dof —a+ A , (6.34)

HB ka—a—l—%
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where IIg is the orthogonal projection on a weighted [? ball and IIg is the
orthogonal projection on the hypercube B. The projection Il is simple to compute
and writes

(Up(z0)); = § =5 if(wo)i < —5* : (6.35)

The projection Il is more difficult to address and can be solved efficiently using
an iterative scheme. This projection is detailled in [Weiss 2009] and we refer the
interested reader to this paper for the computation of this projection.

The second step of the algorithm requires to compute v*T1. We have

oF = argmin (A¥, Dv —u* —a) + 2| Dv — a — u"|3 (6.36)
subject to v € RM x RM

= argmin gHDv—l—%ﬁ—a—ukH% .
subject to v € RM x RM

v**1 is then the solution of the positive-semidefinite linear system

k
D*Duv = D* <a +uk — %) . (6.37)

Equation (6.37) needs then to invert D*D. Most of the time, the operator D*D
owns a particular structure which can be numerically exploited to solve (6.37). This
remark has been used in [Ng 2010]| for example to obtain fast algorithms. System
(6.37) can also be solved using standard techniques such as conjugate gradient. In
our experiments we observe that 10 iterations of a conjugate gradient method are
sufficient to solve (6.37). Note that sub-problems (6.28) and (6.36) can be solved
approximately while preserving the convergence of the algorithm [He 2002].

The resulting algorithm is given in the algorithm 5.

Algorithm 5 Alternating direction method of multipliers to solve (6.16)

Set the number of iterations K.

Set an initial point u® € RP.

Set an initial point v° € RY.

Set an initial point \° € R!.

Set v >0 and g > 0.

for k from 0 to K — 1 do
Compute u*+! from (6.34).
Compute v**! by solving (6.37).
Set AL = Ak 4 By(DoF+t 4 b+l — q).

end for

Output T = v1.
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6.2.3 Numerical results

We evaluate the performances of the CS technique for satellite imaging in comparison
to the chain used by the CNES and based on a wavelet compression scheme. For
the numerical experiments, we choose the measurement matrix ® to be the noiselet
transform [Coifman 2001] and set ¥ to be the gradient operator such that ||Wz|||;
is the TV [Rudin 1992]. We made the choice of the TV as it is almost equivalent
to a Haar basis which, as required by the CS framework, shares a small mutual
coherence with the noiselet transform |[Candes 2008|.

As mentioned previously, we compare the CS acquisition technique to the clas-
sical acquisition chain which consists in sampling the real image at the Nyquist
frequency followed by a compression scheme. The considered compression algo-
rithm uses the biorthogonal CDF 9/7 wavelet transform described in [Cohen 1992]
followed by the same quantization process as the one defined in (6.10). In that case,
the aquisition model writes

7=Q(W(Hzx+mn)), (6.38)

where W is the CDF 9/7 wavelet transform. As in the CS technique, we can
design an algorithm to reconstruct the image from the noisy observed wavelet coef-
ficients g
Find €  argmin |Vz|; , (6.39)
subject to € RN, n e RN
g—W (Hx+n)€eB
IZnlj < N

where U is the gradient operator. Note that the formulation (6.39) is not ex-
pressed using any matrix ® as, in this case, the measurement matrix is the sampling
operator (& = I). We will compare the results of techniques (6.16) and (6.39) visu-
ally but also in a rate-distortion sense. As both techniques offer different ways to
control the target coding rate, we now detail the choice of the coding parameters in
each case.

For the CS technique, we take benefit from the fact that the image can ideally be
reconstructed from less measurements than Nyquist. More precisely, for a low target
rate, we will restrict the number of measurements M to be small and when the target
rate is high, we will increase this number, the maximum number of measurements
being equal to the number of pixels N. This particular choice comes from the fact
that the distribution of the CS coefficients is quite large and that a high quantization
has to be applied on these coefficients to reach low target rates |[Fletcher 2007]. It
seems then more appropriate to tune the number of measurements M instead of
tuning the quantizing steps, for a given coding rate. Consequently, we will always
take A; = 1,Vi € {1,..., M} for all coding rates. Note that these measurements
will be taken randomly and that the position of the retained coefficients can be
known at each side of the chain by transmitting the seed of the random generator.

The imaging chain based on a wavelet scheme does not however offer such feature.
More precisely, all the coefficients have to be retained to be able to reconstruct the
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image. Consequently, for this technique, we will keep all the coefficients and we will
tune the quantizing steps to reach the target coding rate. For more simplicity, we
will take the same quantizing step for all coefficients A; = A, Vi€ {1,... , N}.

As mentioned previously, we will evaluate the results in a rate-distortion sense.
The distortion will be evaluated using the PSNR defined in (4.98). For the evaluation
of the coding rate, we assume that the quantized coefficients will be encoded using
an entropy encoder. The coding rate R can then be measured using the entropy
(expressed in bits/symbol) of the coefficients ¢ [Shannon 1948]

oo

R(@) =— Y py(m)logy(py(m)), (6.40)

m=—0oQ

where pg(m) is the probability for a quantized coefficient to get the symbol m. Note
that for the imaging chain based on the CS technique, we only retain M coefficients.
Since the sampling of these M is done randomly, one can transmit the seed of the
random generator to reproduce the same sampling scheme. The position of the M
coefficients can thus be assumed to be known by the decoder, without the need to
transmit more information than a seed (which holds on a few bytes), and does not
have to be taken into account in the computation of the entropy. The entropy of
the quantized coefficients will be thus multiplied by the ratio between the number
of measurements and the number of pixels for that case.

We simulate the two imaging chains on the reference image depicted Fig. 6.2.
The blur H used in this simulation is the PSF provided by the CNES and the
instrumental noise n is a zero-mean Gaussian noise with variance given by (3.3).

Results are shown on Fig. 6.3 and 6.4. From the rate-distortion function dis-
played on Fig. 6.3, we see that the CS technique does not give competitive recon-
struction results in comparison to the wavelet-based technique, and stands 5—6 dB
below this technique, for all compression rates. Visually, the reconstructed images
are not very good as well. We can see on Fig. 6.4 that the CS reconstruction al-
gorithm overregularizes the solution and creates large patterns, therefore losing the
details of the image. Although it seems clear that the CS is a good acquisition tech-
nique as it better spreads the information than a wavelet transform, it also appears
that high-resolution satellite images are not sparse enough, in usual basis, such that
this technique is difficult to apply.

Moreover, as said previously the CS coefficients have a large distribution (larger
than wavelet coefficients) making their coding difficult to perform, even when one
only retains a limited number of these coefficients. We have however strong thoughts
that the CS could be an efficient acquisition strategy for satellite images as it has al-
ready shown interesting results in application where the image is naturally strongly
sparse, such as in MRI application |Lustig 2007]. Following this idea, an imaging
chain based on the CS technique may be interesting for galaxy observation mis-
sions which naturally give sparse images, as in astronomy where the CS exhibits
great performances [Bobin 2008]. Due to time constraint, this aspect has not been
addressed in the thesis.
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Figure 6.2: Reference image, Cannes harbour (12 bits panchromatic image, 30 cm
resolution, 1024 x 1024 pixels).
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However, in the case of earth observation missions, the approximative sparsity of
satellite images does not seem to be sufficient to make the CS technique competitive
regarding to the classical wavelet approach.
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Figure 6.3: Rate-distortion function for the two acquisition techniques. The dashed
curve is the PSNR w.r.t. the compression rate for the CS acquisition technique
while the solid curve is the PSNR w.r.t. the compression rate for the wavelet-based
method.

6.3 Conclusion and perspectives

In this part, we have experimentaly studied the performances of the CS acquisition
technique in application to satellite imaging. We showed that this technique is
interesting for satellite imaging chain since it proposes a low-resources acquisition
technique which matches the reduced embedded computational capacity of satellites.

We proposed a novel imaging chain based on this framework and we formulated
a decoding algorithm which takes into account the main degradations of the satellite
imaging chain (blur, instrumental and quantizing noise). We showed reconstruction
results, visually and in a rate-distortion sense, on a real satellite data and we per-
formed a comparison of this method to the classical acquisition method based on a
wavelet transform.

The obtained results showed that the CS acquisition technique does not give
competitive results for earth observation imaging since satellite images of such ap-
plication can not be represented in a compact form using classical transform, i.e. the
information of the image can not be contained on a reduced number of coefficients.
The CS acquisition method could be however interesting for galaxy observation
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Figure 6.4: Reconstruction results for the two acquisition techniques at a com-
pression rate of 2.5 bits/pixel. (a)-(d) are zooms of the original image, (b)-(e)
are zooms of the reconstructed image using the CS technique (PSNR = 33.8 dB)
and (c)-(f) are zooms of the reconstructed image using the wavelet-based technique
(PSNR = 40 dB).

missions which give images which are naturally compact. There is also room for
improvements by considering more properly the distribution of satellite images to
enhance usual priors, used by the decoder, and quantizing strategies which need to
better fit the characteristics of the CS coefficients distribution.
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CHAPTER 7

Conclusion of the thesis

This chapter is the conclusion of the thesis. It summarizes the contributions of the
thesis and discusses some perspectives of this work.

7.1 Conclusion and summary of the contributions

In this thesis we addressed the problem of imaging chain optimization in the context
of satellite imaging and we proposed several methods which focus on the problem
of global optimization of the compression /restoration chain.

Formulating an expression of the global distortion is a difficult task since many
intermediate variables are correlated. In this thesis, we presented a method to solve
this problem and we achieved to theoretically estimate the global distortion of a
simple case of imaging chain. We then proposed an algorithm to minimize the
estimated distortion with respect to the parameters of the chain. We also developed
the proposed method for three different configuration of the imaging chain to address
the question of the optimal position of the restoration in the imaging chain.

We also presented, in the thesis, an alternative method to optimize of the quality
of the final image. Though this study is mainly experimental, we succeeded to
address recurrent open questions such as the position of the restoration in the chain
and how to deal with the coding noise. From the obtained results, we proposed a new
satellite imaging chain which eliminates several current problems in the observation
of the final image.

Finally, we presented in the last part of the thesis a novel satellite imaging
chain based on a recent theory of sampling. We showed that low-resources sampling
technique is interesting for satellite imaging and we proposed an algorithm to solve
the reconstruction problem.

7.2 Perspectives

Several future investigations may be opened to improve the results obtained in this
thesis.

The extension of the imaging chain that we considered in Chapter 4 to the true
satellite seems difficult to achieve. An alternative technique to express the global
distortion as a function of the chain parameters may then consists in using the
unbiased estimators presented in [Ramani 2008]. In that case, the difficulty is to
extend these estimators to the acquisition model of the satellite imaging chain which
is complex.
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Regarding to the imaging chain that we proposed in Chapter 5, it would be very
interesting to study how to limit the power of the residual noise on the final image.
Since this residual noise depends on the target coding rate, it may be interesting to
focus on advances coding techniques with the challenge to conserve the decorrelation
property of dithering techniques. Conversely, it would be worth extending the actual
subtractive dithering techniques, used by the proposed imaging chain, to match more
complex quantizing schemes, similarly to [Stamm 2011].

Finally, an interesting investigation for the CS acquisition technique would be to
evaluate its performances on naturally sparse satellite images like the ones obtained
from galaxy observation missions.
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APPENDIX A
Existence and uniqueness of
optimal parameters

We detail here the existence and uniqueness of optimal parameters of the imaging
chains addressed in Chapter 4.

A.1 Notions in optimization

We start by giving here some notions in optimization. The proofs of the following
theorems can be found in [Rockafellar 1997].

Let f : RY — R be a twice continously differentiable function and let z =
(x1,22,...,25)T be a vector.

Theorem 1. A point z* € RN is a local minimum of f if there is an € > 0 such
that f(x) > f(z*) for all z € RN with ||z — 2*|| < e.

Corollary 1. If f(z) > f(z*) for all x # x* with ||x — x*|| < &, then x* is a strict
local minimum of f.

Theorem 2. A point 2* € RY is a global minimum of f if f(x) > f(z*) for all
r RN,

Corollary 2. If f(z) > f(z*) for all x # z*, then x* is a strict global minimum of
I

Definition 1. The gradient of f is the vector

af of af
== — ey . Al
Vi) = (52w gL @ @) (A1)
Definition 2. The Hessian H of f is a N x N matrix defined as
0% f 9%f o2 f 1
a_ﬁ(x) Ox10x2 (x) T BzdrN (x)
Tm@) Sk (@
02f 02f . 02f
L Oz nOx1 (x) 0x20T N (x) e 0x%, (x) |

Theorem 3. If x* is a local minimum, then the following conditions hold

1. Vf(z*) =0,
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2. d'Hy(x*)d > 0 for all d € RV,

The Hessian matrix Hy(z*) is symmetric postive semi-definite, that is
aTHp(z*)z > 0 for any z € RY [Rockafellar 1997]. It is positive definite if we
have a strict inequality: 7 Hp(z*)x > 0 for any x € RN,

Theorem 4. For any z* € RN, if Vf(2*) = 0 and Hy(x*) is positive definite, then

x* 1s a strict local minimum.

We now introduce some results of convex optimization, which is a wide field of
optimization.

Definition 3. A set Q C RY is said to be convez if, for all x and y in Q and all
t € [0,1], the following is verified

tz+ (1 -ty € Q. (A.3)

Definition 4. A function f: Q — R defined on a convez set ) is said to be conver
if for every x and y in Q and all t € [0, 1], we have

fle+ 1 —t)y) <tf(z)+ (1 -1)f(y) (A.4)

Theorem 5. Let f be twice continously differentiable, then f is conver over a convex
set ) containing an interior point if and only if the Hessian matriz Hy is positive
semi-definite in ).

Theorem 6. Let f be a convex function defined on a convex set 2. Then, the set
X* where f achieves its minimum is conver. Furthermore, any local minimum is a
global minimum.

A.2 Optimal parameters of the on-ground chain

We now give a proof of existence and uniqueness of optimal parameters of the
following problem

inf AVIDY A5
>\j>O,A]'>O¢T( 7 ])7 ( )
where
J—1 )2 A2
7rjaj)\j 5 Tja; 5 WJGJA]-

o-({45},{A}) = Z [ A R (e WAL T e W

J—1
+ 7 ( ajRj(Aj) — Rc . (AG)

To simplify the notations, we get rid of the constant R. and the sum over j (as
each subband is independent) in ¢, which now rewrites

2 2
Wjaj/\j 2 ﬂjaj 2 WjajAj + TajRj(Aj). (A?)

(A N) = L g2
(8 M) = T Y a2 T 2 Ay
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Proposition 9. Problem (A.5) admits an unique solution (A%, X¥) which verifies

7777
o2 A%
P\ p— J A8
7ol T 1202 (A4.8)
T A7 LOR;

+7
6(1+X;)2 0A;

Proof. To prove the existence and uniqueness of this solution, we propose to study
the convexity of the function (A.7). We have

(A%) =0 (A.9)

foler mia;A; OR;
—T (AN J ) A Al
8A]( ] ]) (1_1_)\) +Ta’]aA( ) ( 0)
and o2 52
¢r mja; R
— (A, \;) = ; As). A1l
We also have
by ) (2)\j(1 + )\j)Q — 2(1 + )\j))\?) ) 9
(Aﬁ)‘ ) TjAj0y, 4 — A0 Ty 3
OA; ’ (T+2X) (1+2X)
2
—mia A=
7T]a] 7 12(1 + )\])3
(1+/\-)3 (1+)\-)3 12(1—1—)\]-)3
12)\ TG — 12m;a; 2 — a4, A2
jaj0 jajo Jaj=; (A.12)
6(1 + /\j)
and
0% (A A 127Tjaj‘712um]- 12)\jmja 02— 12mja02 ﬂ'jajA?
OXE T 614 )3 (1 + )%
47rjajaf%_’j(1 + )\j) — 12)\j7rjajafum?j + 127rjaja§ + ﬂjajA?
B 2(1 + Aj)*
47r'a-02 —8\jmjajo 2 +127ra0 + mia; A2
_ 2% a0 ] Jaj2y (A.13)
2(1 + A])
Finally, we have
62¢7— 82¢7— —QajoAj . —ajoAj

(A.14)

)L — As ) = — .
8>\j8Aj( 7 J) 6Aj8)\j( j’)\j) 6(1+)\j)3 3(1+)\j)3

Using (A.10) and (A.12), we deduce the expressions (A.8) and (A.9) of the
solution (A%, \*) which satisfy the first-order conditions

7777
8 T * *
az (A3, X)) = (A.15)
8 T * *
¢ (A5 N = (A.16)

O\j
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To ensure that this solution exists and is unique, we study the convexity of ¢,
through its Hessian matrix Hg_, which writes

0°¢r 024~
8A¢§(A )‘) BA%)\ (AJ,/\)

Hy (8, 5) = (A.17)
" 6)\8A (Aj,2)) %A@T(A Aj)
Since Hy_ is a 2 x 2 matrix, we can conclude that the function ¢, is strictly
convex if

P,

8A2 (Ah)‘ ) O (A'18)
o,

6)\2 (A, N) > (A.19)

and if the determinant of Hy_ is strictly positive

0%¢;
o\

_ 9%,

2
s B2 G (0 - (ﬂmp&-)) - 0.

BINGY

The coding rate R; is a monotonically decreasing positive function with respect
to Aj [Shannon 1959], A; being positive. Its limits are zero when A; tends to infinity
and infinity when A; vanishes to zero [Gish 1968]. Its derivative gTR; is negative
and monotonically increasing, whose limits are minus infinity when A; vanishes to
zero and zero when A; tends to infinity [Shannon 1959|. Still from [Shannon 1959],

we have that AR; is positive and monotonically decreasing. Since 7 is positive, we
deduce from (A.ll) that

P r
8A2 (Ajv/\ ) 0, V(Ajv/\j) (AZ]—)
926,

From equation (A.13), it is clear that %53
i

is not always positive and we have

>0, if0<)\j<)\§Z

0. . \
3)\2 (Aj,A) € =0, if\ = A (A.22)
< 0, otherwise,
with 2, A2
1 1202 + Az
e T —
Aj 5 + 8‘712%]- . (A.23)

We need now to compute the determinant of the Hessian matrix Hgy . Let us

assume that 68;{ (Aj, A;) is strictly positive and let us define

Taj & ¢- (A, \) — G?WJQ'A?
6(1+X))? 8/\? I 9(1+ ;)8

9(Aj, Aj) = (A.24)
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Using equations (A.20) and (A.24), we have

O°R; . 9%,
det (Hy, (A, 45)) = 9(8j, Aj) + Ta5575 (B5) 515 (B, Ag) (A.25)
J J

Since Taj%(Aj) is always strictly positive, we get the following inequality
J
det (Hd)T(Aj’)\j)) > Q(Aj,)\j), (A'26)

such that if g(Aj, A;) > 0 then we directly deduce that the Hessian matrix Hy,
is strictly positive and thus the function ¢ is strictly convex. We have

(A \ ) B Tja; ;0 (4012111,3‘ — 8)\j012111,j + 1202 + AJQ)
N2 =G+ )2

2(1+ X;)4
2.2 A2
__4mA;
9(1 + ;)0
1 77]2-@? (4030”_ - 8/\j012017j + 1202 + A?) a?ﬂ?Ag
3 4(1 4 )j)? 3(1+ ;)8
1 37rj2-a? (402}24_ — 8o ;T 1202 + A?) - 4a?7rj2»A?
"3 12(1 + A;)8
2.2 2 2.2y 2 2.2 2 2 2A2
1 12m5aj0y,, - — 24m5a5Ajoy,  + 306mjajo; — ajmi AT (a2))
3 12(1 1 A;)6
From (A.27), we can conclude that g(Aj;, A;) > 0 if
127T32-a?03}x_j - 2477]2-(1?)\]-03)2& + 3671']2-0,?0'2 - Q?W?A? > 0, (A.28)
that is, if
Aj <A, (A.29)
where , A2
1 30 -
N=—t-E2 -, (A.30)
o202 Ug)m?j 2402
Since A < /\;-L, we have from (A.22)
> ¢r c
W(A]’, /\J) > 0, VA] andV)\j < )\j, (A31)
J

which confirms the positivity hypothesis used to get inequality (A.26). We de-
duce that

det (H¢r (Aj7 )‘])) >0, V(Aﬁ )‘]) € R*—I—X]O7 )‘5[ (A32)
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We can thus conclude that the function ¢, is only convex locally on the convex
domain R x]0, A%[.

From now, we set A; to be equal to the optimal value A%. Let us imagine that
A7 > Aj, then we get that

*2 2
AP 1302 A

Uguz’j 12030”_ 2 2 U%Um, 24012%,],

o A7 5 72 41 <U§ +an”) A7
0n,, 1204 0 oh 2 og 2403,
3A;2 § 1 (0’3 —|-0120M>

1203, =~ 2 o,
A;Q > 92 <a§ + U?Um,) , (A.33)

which is non-sense as it means that the optimal quantizing step would be greater
than the standard deviation of the signal to quantize. In particular, note that +oo
also verifies (A.33) although it completely cancels the signal. Condition (A.33) is
also contradictory to the dithering hypothesis (4.12) that we made to develop our
method, which comforts ourselves that this behavior never happens and that we
always have A% < A7

This result suggests that the point (A7, A7) always lie in the strictly convex part
of the function ¢..

By developing (A.23), we have
1202 + A?

2
8‘7wz,j
2
af 3 Aj
+5 2
2
Oioes 2120%,;‘

>

<%
+

+

[ N W

+

oy (A.34)

N~ N~ N | —

020,

If the evaluate e

fact that )\;f < )\?

at the point (A%, A7), we have from (A.22) and using the

82¢T * *
o (A5.47) > 0. (A.35)
J

Using (A.21), (A.32), (A.35) and Theorem 4, we deduce that the solution
(A}, A7) is a strict local minimum of the function ¢,. If we look further at (A.10),
we have

>0, ifA;>A;
%(A*» A =0, ifA =\ (A.36)
oN; ) T I '

< 0, otherwise.
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The derivative is strictly positive for any A; > A%, we deduce that

Gr (A5, 0) > ¢ (A5 N5, WAy > AL (A.37)

77777

Since ¢, is strictly convex on the domain R x]0, A{[ whose strict local minimum
is A7, we have by Corollary 1

¢7—(Aj,)\j) > ¢7—(A;,)\;), VAj andV)\j with 0 < )\j < )\5 and )\j 75 )\; (A.38)

Using (A.37) and (A.38), we have

ng(Aj, )\j) > ¢7—(A;, )\;) VA]' andVA; >0 with A; =+ )\;, (A.39)
which, by Corollary 2, concludes that the solution (A;‘f, )\;‘) is the unique global
minimum of the function ¢,. O

We now have to deal with the numerical computation of the optimal parame-
ters. Since the optimal regularizing parameter A} is expressed in closed-form, its
computation is straightforward. The computation of the optimal quantizing step
A7 is not direct as, for a given 7 > 0, we need to find a root of

WjAj aR]

A;).
. aa N2 Taa, )
6( 1+ =L 4+ ot —

2
o2 )
z,j Wz, j

gT(A) =

(A.40)

w

The monotony of the function g, is not easy to study since the term gTR; is com-
plex to evaluate. From our numerical experiments, we found out that the optimal
quantizing step A}‘ always lies on a monotonically increasing part of the function
g-. From this observation, we propose to use a binary search algorithm to compute
this parameter. From (A.40), we see that A7 is function of 7. It seems reasonable
to think that the higher 7 is, the higher A} needs to be for the function (A.40) to
cross zero. This implies that the optimal quantizing step A}‘ can then be noted as
a function of 7

A% = f(r), (AAL)

where f is an increasing function. Consequently, from [Shannon 1959], we deduce
that the coding rate R; is a monotonically decreasing function with respect to 7.
Using (4.38) and (A.41), we define

h(r) =) a;R;(f()) - Re. (A.42)

J=0

Then it seems clear that the function A is a monotonically decreasing function
with respect to 7 whose limits are infinity when 7 vanishes to zero and — R, when 7
tends to infinity. Its root 7, which verifies A(7*) = 0, can then be computed using
any root-finding algorithm. In our simulations, a binary search procedure will also
be used.
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A.3 Optimal parameters of the on-board chain

We now focus on the on-board chain and we give a proof of existence and uniqueness
of optimal parameters in that case. The optimization problem still writes

inf (A5, A, A 43
Aj>(l)f1Aj>0¢ ( J )‘J) ( )

where ¢, is now given, after some simplifications, by

i, )\2 i TiQ; A2

A Y o2 Aj).  (Add
PrlfsAy) = (1+A)20wm’j+(1+/\j)2% 12 "+ TaRi(A)) (A.44)
Proposition 10. Problem (A.43) admits an unique solution (A%, A7) which verifies

2

o
A= 2 A.45
T (A.45)

WjA; 8R]

LAY = A.46
ST R =0 (A.46)

Proof. To prove the existence and uniqueness of this solution, we also propose to
study the convexity of the function (A.44). We have

0 1 OR;
6A (AJ, i ) 6 (WjajAj) + TajaTAz(Aj), (A47)
and 82¢> 2R
- 1
8A2 (Aj,A5) = 6 (mjaj) +T0j—— 8A2 (A ). (A.48)
We also have
96 (2051 + A% = 2(1 + X)22) .
—— (A, X)) = mjaor, I — 00T
OA; ’ (1+X) (1+X)
B 2)\j7rjajoizyj B 27Tjajaz
(1+X)3 (1+X)3
2m;a; ()\jafum - 03)
= 2 (A.49)
(1 +/\j)3
and
52 O, (LHX)? =31+ \)? (A U?UM—UE)
—o (A4, 0)) = 2mja; | —
0X2 (1+A;)°

2 2 2
Oy — 2AjOy, ; + 602
= 27Tjaj ( . (1 T )\J)i (A50)
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Finally, we have

> pr
oX, 00,

(A, )) = 0. (A.51)

In that case, the Hessian matrix is diagonal and therefore the convexity of the

function ¢, only depends on the sign of %2)‘\@*. From (A.50), simply remark that
i

56, >0, i0<A; <A

! < 0, otherwise,
with )
1 o
2= 2 z_. A.
=gt (A.53)
x,]
Since A} < A, we can directly conclude that the point (A7, A7) always lie in the
strictly convex part of the function ¢,. From (A.52), we deduce that
a2¢7' * *
W(Aj’)\j) > 0. (A.54)
J

Using (A.48), (A.54) and Theorem 4, we deduce that the solution (A}, \}) is a

strict local minimum of the function ¢,. If we look further at (A.47), we have
>0, ifA; >\
aqu k !
(A5 A) =0, ifA =\ (A.55)

O\j
< 0, otherwise.

The derivative is strictly positive for any A; > A%, we deduce that

G (A5, 0) > ¢ (A5, N5) VA; > AL (A.56)

77777

Since ¢, is strictly convex on the domain R% x]0, A{[ whose strict local minimum
is A7, we have by Corollary 1

O (A, Aj) > G (A5 N VA jandVA; with0 < Aj < XS and)j # A%, (A57)

37770

Using (A.56) and (A.57), we have

¢T(Aj, /\J) > (bf(A;, /\;k) VA] andV)\j >0 with /\j #* /\;k, (A58)
which, by Corollary 2, concludes that the solution (A%, A7) is the unique global
minimum of the function ¢. U

In that case, the optimal parameters can be computed using the same numerical
techniques than the ones we proposed for the on-ground chain.
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A.4 Optimal parameters of the hybrid chain
We now focus on the hybrid chain. The optimization problem now writes

inf NIV A.
)\j>0,1;2,Aj>O¢T( INTIPVIR (A.59)

where ¢, is now given, after some simplifications, by

mja; (N + 5+ Xjpg)” ;0 2
Or(Ajy Ajs pg) = S Ow,; T Ow, ;
(B diotti) = S P 7o T TR 20+ 2
A2
Tt + Ta; R (A)). (A.60)

@
21+ 1)
Proposition 11. Problem (A.59) does not admit any solution.

Proof. This result is slightly suprising but if we look at the first-order optimal con-
ditions, we can remark than we are not able to find any acceptable solution. We

have
9¢ 2mja;0,, (g 4 A+ ) 2mja;02
LA N, ) = z,j \NJH J i) JY95% 7 A6l
Y (RS A (RS Y N (TR (v A
and
0 (A N ) = 12X;mjai00,  (Njpg + Aj + ) — 12mja502 — mja;A7(1+ Aj)?
g7’ 3 Fi 6(1 + 115)3(1 + \j)? :
(A.62)

We deduce that

1 o?
N = — — A.
S Th (03, ' uj>, (A.63)
z,j
and
1 o? A? 2
i = L+X)" =X ). A.64
g 1_|_)\;5 <012UM+12012UM( + ]) J (A.64)

From Eq. (A.63), we have

2 *
o My
I+ N =——2—— +1 - —1 |
Toog, (L) 1+ 405
2
1
— 2= 41 _ (A.65)
O-’LUI_’]' 1+/.Lj

If we use Eq. (A.65) in (A.64), we obtain
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2 o L) = ol 1 ol _ u
L+ pj \ o, Oty L] \ O, ’
2
A? o? 1
+ J 241 —. A .66
1202, (aQW_ ) A+ )2 (A.66)

After some simplifications, we get that

Wy, j

A2 o? ’ 1
J z
+1] —— =0, A.67
1203, <02 , ) (L4 p3)? ( )

which does not lead to a valid solution. Therefore, we cannot satisfy simultaneously

-
(A Ni, i) =0, A.68
a,uj( 3 Ajs 1) ( )
and
-
8—)\j(Aj> Ajibg) = 0. (A.69)

O

We propose then to enforce the value of A} and we deduce the value of the other
parameters by extension of Section A.2. Note that this choice is however suboptimal.






APPENDIX B
Review of non-subtractive and
subtractive dithering techniques

B.1 Undithered system

We start this review by the presentation of an undithered system. This system is
presented Fig. B.1.

:B—h-Q—h-y

Figure B.1: Undithered system.

The signal to quantize is noted x, y is the output of the system

where () is an infinite mid-tread quantizer of step A. The transfer characteristics
of this quantizer can be modeled as

Qz) = A F + lJ : (B.2)

where | | is the floor function which returns the greatest integer less than or
equal to its argument. Let € be the global error (i.e. output minus input) of the
system

e=y—z=Q(x)—z=qx), (B.3)
where ¢ is the quantization error function
q(z) = Q(z) — = (B.4)

If —% <z< %, then y = 0 and from (B.3) ¢ = —z. Similarly, if % <z < %,
then y = A and ¢ = A — x. By extension, the conditional probability p., can be
expressed as |Widrow 1961|

p5|x(€7x) = 5(5 - Q(aj))

“i(eemaf5))

=IIa(e)Wal(e + ), (B.5)
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where IIA is the rectangular window function

1. A A
~ f—2<e<
a(e) =< 2 2 -2 B.6

(€) {0 otherwise (B6)

and W is the sampling function

io 8(c — kA). (B.7)

k=—o00

The probability density function p. of € is then given by

+oo
pe(e) = / Peta (& 2)pa(z)da

—00

— ATIA(e) [Wa *pa] (<), (B3)

where p, is probability density function of z. From (B.8) it is clear that
the rectangular function Il is wide enough such that at least one delta of the
Wa function will contribute to the sum, and the position of this delta depends
on p,. Consequently, the global error of an undithered system cannot be made
independent of the system input [Widrow 1961].

The characteristic function (defined as the Fourier transform of the probability
density function) of & writes

P.(u) = smc( K

= sinc(u) + Z sinc <u - %) P, (—%) (B.9)

k=—00,k#0
where P, is the characteristic function of  and

sin(mAu) .
sinc(u) = { #du o w70 (B.10)
1, otherwise

From equation (B.9), we see that the global error £ can be made uniformly dis-
tributed if the characteristic function P. is reduced to sinc(u). This gives rise to
Theorem 7 [Lipshitz 1992].

Theorem 7. The global error of an undithered system is not independent of the
system input but can be made uniformly distributed if the characteristic function P,
of the system input verifies [Sripad 1977]

k .
P, (Z) =0, VkeZ". (B.11)
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A direct consequence of Theorem 7 is that the global error of an undithered
system is uniformly distributed if the probability density function of the system
input can be expressed as the convolution product of uniform distributions. Note
that the normal distribution also verifies this property if its standard deviation o is
large enough in front of the quantizing step [Vanderkooy 1987]

o> é (B.12)
2
To extend Theorem 7 to arbitrary probability density functions, a noise with a
specific distribution can be inserted prior to quantizing. This noise can be either
subtracted or not subtracted after the quantizing, giving two dithering systems: The
non-subtractive and the subtractive dithering systems. Both systems are described
in the next parts.

B.2 Non-subtractive dithering system (NSD)

We present here the extension of the undithered system to the case the system input
is noised prior to quantizing [Wannamaker 2000]. This system is depicted Fig. B.2.

T T w ¥
v

Figure B.2: Non-subtractive dithering system.

We keep the same notations than previously. The added noise, supposed to be
independent of the source x, is noted v. The noisy signal w is now the input of the
quantizer and we have

y=Qw) =Qx+v), (B.13)

such that
e=y—z=Q(x+v)—z=q(r+v)+w. (B.14)

To study the statistical properties of the global error €, the same technique than
the one presented in Section B.1 can be used, except that the input of the quantizer
A < A
7 = w < DR
% <w< %, then y = A and ¢ = A — 2. By extension, the conditional probability
Pe|z can be expressed as [Wannamaker 2000]

is now w. Therefore, if — then y = 0 and ¢ = —xz. Similarly, if

Foo S +kA
Deja(E, ) = Z d(e+x—EkA) / R Pu)e(w, z)dw. (B.15)
k=—00 —3tkA

Using the fact that

pw|$(w> ZC) = pv(w - l‘), (B'IG)
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where p, is probability density function of the noise v, the conditional probability
Pe|o TEWIItES

iy S+kA
Pejz\E,T) = 55+$_kA/ P w — x)dw
)= 3 o [t

400 %

= Z 5(E+a:—kA)/ApU(w+kA—:1:)dw
k=—o00 2
400 0o

= Z 5(E+:1:—k:A)/ AlIA (w)py (e + w)dw
k=—00 %

= Wal(e + z)[AIla * py)(g). (B.17)

We deduce the probability density function of the global error €

+oo
pe(€) =/ Pejo(€; ¥)pa(z)dz

—0o0

= [AllA * py](e) [Wa * pa] (—e). (B.18)

From (B.18), we see that for any choice of p, (which is non-negative), the
convolution product ITa * p, will give a function as wide as the rectangular window
function. Similarly to the undither system, we deduce from this remark that the
global error of a non-subtractive dithering system cannot be made independent of
the system input [Wannamaker 2000].

The characteristic function of € writes

Pe(u) = [sinc(u) Py (w)] * [Wi (—u) Py (—u)]
S (R n (- B)n() e

To be uniformly distributed, the characteristic function of € must be reduced to
sinc(u). If we admit that this is possible, we have for any [ € Z*

(L) <o (L) =0 0

and from equation (B.19)

(8)- (58 ()

k=—o00

=P, (—%) . (B.21)
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By combining (B.20) and (B.21), we get that the global error of a non-subtractive
dithering system can be made uniformly distributed if

! *
P, (K) =0, VieZ (B.22)

which is not verified for arbitrary density probability functions. This gives The-
orem 8 [Wannamaker 2000|

Theorem 8. The global error of a non-subtractive dithering system is not inde-
pendent of the system input and cannot be made uniformly distributed for arbitrary
density probability functions p,.

From Theorem 8, we see that the independence of the global error cannot
be obtained with this system. The moments of the global error can, however,
be made independent of the system input for a certain class of dithering noise v
[Wannamaker 2000]. The m-moment of the global error is given by

+oo
E[e™] = / " pe(e)de, (B.23)

—00

and can also be expressed using its characteristic function P [Kawata 1972]
E[e™] = ) pom) (0) (B.24)
2 ) " ¢ ’

where j is the imaginary number and Pe(m) is the m derivative of the character-
istic function P.. Let G (u) be defined as
Gy (u) = sinc(u) P, (u), (B.25)

such that, from (B.19), we have

i\ = k k

B (m) [, - -

Ele™] = <2W) k_z Gim <u A) P, < A) : (B.26)
From equation (B.26), we deduce the following theorem [Wannamaker 2000]

Theorem 9. The m-moment of the global error of a non-subtractive dithering sys-
tem is independent of the system input if

k
G(m <Z) =0, VkeZ* (B.27)
If Theorem 9 is verified, the m-moment of the global error is given by
m — () gm)
Bl = (£ ) 60 (5.25)
27

which, by definition (B.25), is the same than the moment of the random variable
composed by the sum of the dithering noise v plus a uniform random variable whose
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probability density function is the rectangular window function (B.6). We, among
others, then have [Wannamaker 2000]

Ele] = E[v] (B.29)
(B.30)

where g, is the standard deviation of the dithering noise v. Theorem 9 can be
further developed

Theorem 10. The m-moment of the global error of a non-subtractive dithering
system is independent of the system input if

k
PO <Z> =0, VkeZ andVle{0,1,2,...,m—1}. (B.31)

The proof of this theorem is adressed in [Wannamaker 2000]. If Theorem 10
is satisfied, an interesting corollary states that for a given m and for any n, the
m-moment of the global error ¢ is independent from the n-moment of the system
input z

E[e™z"] = E[g™|E[z"]. (B.32)

A second interesting corollary is that Theorem 10 will be satisfied for any
dithering noise v which is the sum of m uniformly distributed random variables
[Wannamaker 2000]. In the thesis, we focus on dithering noise generated by a nor-
mal distribution. This type of dithering noise verifies Theorem 10 if its standard
deviation o, is large enough in front of the quantizing step [Vanderkooy 1987]

oy > é (B.33)
2

Although the moments independence may be sufficient for some applications, it
is rarely exploited by image restoration algorithms which usually require stronger
statistical properties such as signal independence. The latter can however be ob-
tained using the subtractive dithering system described in the next part.

B.3 Subtractive dithering system (SD)

The subtractive dithering system is an extension of the non-subtractive scheme
where the dithering noise v is substracted after quantizing. This system is depicted

Fig. B.3.
9;—?—;, —?—'y

i

Figure B.3: Subtractive dithering system.
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Using the same notations, we have

y=Qw)—v=Q(x+v)—ov, (B.34)
such that
e=y—z=Q(x+v)— (z+v)=q(x+0). (B.35)

By analogy with equation (B.3), we see that the results of the subtractive dither-
ing theory can be directly obtained from the undithered system theory by replacing
x in part B.1 by x +v. We directly deduce [Lipshitz 1992]

pe(e) = Alla(e) [Wa * py * po] (=€), (B.36)
and
P.(u) = sinc(u) + kgﬁosmc <u —~ %) P, (—%) P, (—%) . (B.37)

In that case, the signal independence can be obtained if the following theorem
is verified [Schuchman 1964|

Theorem 11. The global error of a subtractive dithering system is independent
from the system input and uniformly distributed between [—%, %] if the characteristic

function P, of the dithering noise satisfies

k
P, <Z> =0, VkeZ* (B.38)

which is true for any dithering noise generated by the sum of uniformly dis-
tributed random variables. Here again, the normal distribution verifies Theorem

11 if its standard deviation o, is large enough in front of the quantizing step

[Vanderkooy 1987]
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