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Résumé

À l’heure actuelle, les stratégies de gestion de l’énergie pour les bâtiments sont

principalement basées sur une concaténation de règles logiques. Bien que cette approche

offre des avantages certains, particulièrement lors de sa mise en œuvre sur des au-

tomates programmables, elle peine à traiter la diversité de situations complexes qui

peuvent être rencontrées (prix de l’énergie variable, limitations de puissance, capac-

ité de stockage d’énergie, bâtiments de grandes dimension).

Cette thèse porte sur le développement et l’évaluation d’une commande prédictive

pour la gestion de l’énergie dans le bâtiment ainsi que l’étude de l’embarcabilité de

l’algorithme de contrôle sur une cible temps-réel (Roombox - Schneider-Electric).

La commande prédictive est basée sur l’utilisation d’un modèle du bâtiment ainsi

que des prévisions météorologiques et d’occupation afin de déterminer la séquence

de commande optimale à mettre en œuvre sur un horizon de prédiction glissant.

Seul le premier élément de cette séquence est en réalité appliqué au bâtiment. Cette

séquence de commande optimale est obtenue par la résolution en ligne d’un problème

d’optimisation. La capacité de la commande prédictive à gérer des systèmes mul-

tivariables contraints ainsi que des objectifs économiques, la rend particulièrement

adaptée à la problématique de la gestion de l’énergie dans le bâtiment.

Cette thèse propose l’élaboration d’un schéma de commande distribué pour con-

trôler les conditions climatiques dans chaque zone du bâtiment. L’objectif est de con-

trôler simultanément: la température intérieure, le taux de CO2 ainsi que le niveau

d’éclairement dans chaque zone en agissant sur les équipements présents (CVC, éclai-

rage, volets roulants). Par ailleurs, le cas des bâtiments multi-sources (par exemple:

réseau électrique + production locale solaire), dans lequel chaque source d’énergie est

caractérisée par son propre prix et une limitation de puissance, est pris en compte.

Dans ce contexte, les décisions relatives à chaque zone ne peuvent plus être effectuées

de façon indépendante. Pour résoudre ce problème, un mécanisme de coordination

basé sur une décomposition du problème d’optimisation centralisé est proposé. Cette

thèse CIFRE 1 a été préparée au sein du laboratoire Gipsa-lab en partenariat avec

Schneider-Electric dans le cadre du programme HOMES (www.homesprogramme.com).

1Convention Industrielle de Formation par la REcherche
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Abstract

Currently, energy management strategies for buildings are mostly based on a con-

catenation of logical rules. Despite the fact that such rule based strategy can be easily

implemented, it suffers from some limitations particularly when dealing with com-

plex situations. This thesis is concerned with the development and assessment of

Model Predictive Control (MPC) algorithms for energy management in buildings. In

this work, a study of implementability of the control algorithm on a real-time hard-

ware target is conducted beside yearly simulations showing a substantial energy sav-

ing potential. The thesis explores also the ability of MPC to deal with the diversity of

complex situations that could be encountered (varying energy price, power limitations,

local storage capability, large scale buildings).

MPC is based on the use of a model of the building as well as weather forecasts and

occupany predictions in order to find the optimal control sequence to be implemented

in the future. Only the first element of the sequence is actually applied to the building.

The best control sequence is found by solving, at each decision instant, an on line

optimization problem. MPC’s ability to handle constrained multivariable systems as

well as economic objectives makes this paradigm particularly well suited for the issue

of energy management in buildings.

This thesis proposes the design of a distributed predictive control scheme to con-

trol the indoor conditions in each zone of the building. The goal is to control the

following simultaneously in each zone of the building: indoor temperature, indoor

CO2 level and indoor illuminance by acting on all the actuators of the zone (HVAC,

lighting, shading). Moreover, the case of multi-source buildings is also explored, (e.g.

power from grid + local solar production), in which each power source is character-

ized by its own dynamic tariff and upper limit. In this context, zone decisions can no

longer be performed independently. To tackle this issue, a coordination mechanism

is proposed. A particular attention is paid to computational effectiveness of the pro-

posed algorithms. This CIFRE2 Ph.D. thesis was prepared within the Gipsa-lab lab-

oratory in partnership with Schneider-Electric in the scope of the HOMES program

(www.homesprogramme.com).

2Convention Industrielle de Formation par la REcherche
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Notations and acronyms

Notations

≤,≥,= element-wise operators

=: definition

〈·, ·〉 scalar product

card{E} cardinal (number of elements) of the set E

vT vector or matrix transpose

‖v‖ any norm of the vector v

‖v‖∞ `∞ norm of the vector v

‖v‖1 `1 norm of the vector v

‖v‖2 `2 norm of the vector v

|v| element-wise absolute value of v

Πj(v) selection operator

Π[j0:j1](v) selection operator

diag{M0, . . . ,Mj} diagonal (or block-diagonal) concatenation

M1 ⊗M2 Kronecker product (see below)

v1 � v2 Vectors element-wise product

I Identity matrix with appropriate dimension

In Identity matrix of dimension n

0 zeros matrix with appropriate dimension

0ni×nj
zero matrix of dimension ni × nj , 0ni×nj

∈ Rni×nj

0ni
zeros matrix of dimension ni, 0ni

∈ Rni

1ni
Ones matrix of dimension ni, 1ni

∈ Rni
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Notations and acronyms

∞ni
Infinity matrix of dimension ni,∞ni

∈ Rni

J̌ Convex approximation of the function J

Ĵ Concave approximation of the function J

g gradient or subgradient

∂J(x) Subdifferential of the function J at x (g(x) ∈ ∂J(x))

B bundle

Kronecker product

Let M1 ∈ Rnm×np and M2 ∈ Rnq×ns . The Kronecker product M1 ⊗M2 is defined by:

M1⊗M2 :=


M1(1, 1) ·M2 M1(1, 2) ·M2 . . . M1(1, np) ·M2

M1(2, 1) ·M2 M1(2, 2) ·M2 . . . M1(2, np) ·M2

...
...

...
...

M1(nm, 1) ·M2 M1(nm, 2) ·M2 . . . M1(nm, np) ·M2

 ∈ R(nm·nq)×(np·ns)

examples: In ⊗M = diag{M, . . . ,M︸ ︷︷ ︸
n times

}, 1n ⊗M =


M
...

M


n times

xii



Notations and acronyms

Acronyms

Building

BEMS Buildings Energy Management System

BMS Buildings Management System

D/R Demand Response

FCU Fan Coil Unit

HVAC Heat Cooling and Air Conditioning

IAQ Indoor Air Quality

OUE Other Usage of Electricity

R-B Rule-based control

Optimization

CPLEX Optimization software (Ilog CPLEX)

GLPK GNU linear mixed programming programming solver

LP Linear Programming (optimization problem)

MILP Mixed Integer Linear Programming (optimization problem)

NLP Nonlinear Programming (optimization problem)

PWA Piece Wise Affine (function)

QP Quadratic Programming (optimization problem)

SOCP Second Order Cone Programming (optimization problem)

SLP Sequential Linear Programming (optimization problem)

SQP Sequential Quadratic Programming (optimization problem)

Control theory

MIMO Multi Input Multi Output (system)

SISO Single Input Single Output (system)

LTI Linear Time Invariant (system)

LTV Linear Time Variant (system)

PID Proportional Integral Derivative (controller)

MPC Model Predictive Control
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Notations and acronyms

NMPC Nonlinear Model Predictive Control

DMPC Distributed Model Predictive Control

Other

CSTB Centre Scientifique et Technique du Bâtiment

IEA International Energy Agency

SIMBAD SIMulator of Building And Devices
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Chapter 1

General Introduction

" Other factors remaining constant, culture evolves as the
amount of energy harnessed per capita per year is increased,
or as the efficiency of the instrumental means of putting the en-
ergy to work is increased. ... We may now sketch the history of
cultural development from this standpoint ".

–Leslie White, "White’s Law", 1949.

1.1 The energetic context

Overview

Exploitation of fossil fuels has led to tremendous transformations in society. It is
probably responsible for more changes, from the end of the 19th century to the present
day, than throughout the rest of the history of humanity.

Energy is at the heart of our modern civilization. Transport, communication, in-
dustry, ... belong to the numerous examples that show our extreme dependence on
energy. Indeed, its availability largely determines the sustainability of human civi-
lization.

For decades, abundant and cheap energy resources have led to extraordinary ad-
vances and profound changes in our civilization. However, this era is now over.
Accessible fossil energy stocks are dramatically decreasing, creating more and more
geopolitical and economic tensions. Moreover, global warming is a major issue today,
which, in the last fifteen years, has aroused the attention and concern of the interna-
tional community and public opinion regarding energy stakes and greenhouse gas

1



Chapter 1. General Introduction

������������	�
�
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emission.

Reduction in energy consumption has now been proved to be vital as witnessed
by numerous scientific researches conducted in recent decades, attesting clearly the
direct impact of human activity on climate change. Indeed, current investigations are
highlighting the critical issues that shape the energetic challenge of the 21th century:

i. For environmental considerations, greenhouse gases emission needs to decrease,

ii. Current energy mix is largely dominated by fossil resources (80%) (figure 1.1)
which are responsible for 65% of greenhouse gases emissions. Moreover, current
projections of IEA [IEA 2011b] show that this dependency remains stable until
2035;

iii. Fast growth of new economies implies an increasing energy consumption in the
next decades (figure 1.2). Actually, according to IEA, energy consumption growth
from 2009 to 2035 is estimated to over 40% (figure 1.2). 90% of this increase is due
to non-OECD1 countries (23% to China alone) [IEA 2011b].

Beside these considerations, the supply of European energy is largely dependent
on importations. Currently, Europe produces less than half of its energy. Moreover,
European energetic dependency2 (EU-27) has constantly increased as reported by Eu-
roStat [EuroStat 2010] at a rate of 9% from 1998 to 2008 to reach 54.8% (table 1.1).

1OECD: Organization for Economic Co-operation and Development
2energetic dependency = energy importation

energy consumption [%]

2
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Figure 1.2 World energy consumption outlook [quadrillion btu]. (source

[IEA 2011b] )

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
E.D [%] 46.1 45.2 46.8 47.5 47.6 49.0 50.3 52.6 53.8 53.1 54.8
O.D [%] 77.0 73.0 75.8 77.5 76.0 78.5 79.9 82.4 83.7 82.5 84.3
G.D [%] 45.6 47.9 48.9 47.3 51.2 52.5 54.0 57.7 60.8 60.3 62.3

Table 1.1 Energy dependency - all products (EU-27) - E.D: total energy de-
pendency - O.D: oil dependency - G.D: gas dependency (source: Eurostat
online data code: nrg_100a [IEA 2011b])

All these arguments fully justify the EU’s 20-20-20 commitments (20% increase
in energy efficiency, 20% reduction of CO2 emissions, and 20% renewables by 2020
compared to 1990 levels).

To meet these goals, greener alternatives to fossil resources are gradually being
introduced. It is a fact that the EU-27 experienced a continual growth rate (6.4%) of
installed renewables between 1998 and 2008 (table 1.2).

Nevertheless, even if the total contribution of renewables to electricity in Europe
increased by 45% during this period, its impact on total consumption is fairly moder-
ate3. As a matter of fact, renewables alone are not sufficient to solve the energy issue
[European Commission 2003].

3a growth of only 3% (from 13.4% in 1998 to 16.7% in 2008).
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Year 1998 2000 2002 2004 2006 2008 change (98-08)
Total 150 161 177 191 216 245 +64%

Hydro 134 136 141 138 140 143 +6%
Wind 6 13 23 34 48 64 +935%
Wood 5 6 6 8 12 14 +168%
Other 4 6 7 10 16 24 +487%

Table 1.2 Installed capacity for electricity generation from renewables, EU-
27 (GW) (Source: Eurostat online data code: nrg_113a). Wind generation
capacity undergone the most growth (×10).

Building energy consumption issue

According to [IEA 2011b], buildings (combining households and tertiary) account for
40% of world-wide4 primary energy consumption5. Moreover, IEA forecasts that it
will experience a world-wide yearly growth of 1.1% in future decades [IEA 2011b].

The above accounts for the concern with building energy consumption and the
attention paid to its key role in the future. Policy makers are extremely aware of
the importance of this issue [European Commission 2010, U.S. Congress 1992]. In
fact, implementation of legislation specific to buildings has led to a renewed interest
in this issue by both the industrial and the academic communities. Consequently, the
large number of research projects concerning energy management of buildings driven
by continuous advances and deployment of energy-aware solutions make this issue a
particularly strategic and competitive sector for industrial firms.

Several approaches have been investigated to enhance energy performance of
buildings. In short, passive energy efficiency basically consists in acting on the intrinsic
characteristics of the building, both at the design stage and during the building life by
refurbishments. However building refurbishments are extremely costly. In active en-
ergy efficiency better control strategies are implemented to reduce utilization of energy
without decreasing comfort.

Although energy efficiency of buildings continues to be the first goal, buildings
represent inherently a huge energy stock from the grid perspective. Their ability to
store energy in a thermal form (passive storage) as well as in dedicated equipment
(active storage) makes them undeniably a crucial component of the so called smart
grids (discussed in chapter 7).

Hence, electricity grid managers can make use of this huge storage feature by send-

440% also in EU, [European Commission 2010].
5It increased by 39% between 1973 and 2003 in IEA countries [IEA 2011b].
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ing some Demand/Response (D/R) signals to adjust their consumption. Roughly
speaking, buildings provide a great opportunity of implementing smarter utilization
strategies of energy if they can be responsive6 to such D/R signals.

Therefore, the building energy issue is not only about saving energy by deploying
increasingly more energy efficiency solutions, but also by making them smart grid
aware.

1.2 Aims of the thesis

This work is concerned with the development and assessment of Model Predictive
Control algorithms (MPC) for energy management in buildings. Furthermore, a study
on implementability of the control algorithm on a real-time hardware target is con-
ducted. In light of the above discussion, the thesis explores the ability of MPC to deal
with the diversity of complex situations that could be encountered (varying energy
price, power limitations, local storage capability, large scale buildings).

Currently, energy management strategies for buildings are mostly based on a con-
catenation of logical rules. Despite the fact that such rule-based strategies can be easily
implemented, they suffer from some major drawbacks (a) each rule involves some
internal parameters that need to be adjusted (b) it becomes quickly complicated to
ensure the consistency of the control algorithm when it implements a large number
of such rules (c) this approach is not suited to deal explicitly with economic objec-
tives (d) buildings are becoming more complex, incorporating more equipment and
capabilities than before.

Despite the fact that many control strategies have been investigated, no real solu-
tion has yet been found for the problem of energy management in buildings. Never-
theless, Mode Predictive Control clearly emerges as a promising technology for build-
ing control.

MPC is based on use of a building model as well as on weather forecasts and occu-
pancy predictions in order to find the optimal control sequence to be implemented in
the future. Only the first element in the sequence is actually applied to the building.
At the next decision instant, a new optimal control sequence is computed, as so on.
The best control sequence is found by solving, at each moment in the decision pro-
cess, an on line optimization problem. MPC’s ability to handle constrained multivariable
systems as well as economic objectives makes this paradigm particularly well suited
for the issue of energy management in buildings.

Model predictive control for building energy management has been widely stud-
6in chapter 7, more detailed explanations are provided.
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ied. However, most studies:

• Focused generally on the thermal aspect;

• Do not consider equipment with nonlinear characteristics;

• Generally consider only one zone of a building and thus do not include in the
decision process the possible couplings that may occur;

• Generally propose a centralized control scheme, which is quite unrealistic and
unsafe when there is a large number of zones in the building.

To overcome the above-mentioned limitations, this thesis proposes the design of
a distributed predictive control scheme to control the indoor conditions in each zone
of the building while meeting global power limitations as well as managing storage
equipment and shared actuators among zones. The goal is to control the following
simultaneously in each zone of the building: indoor temperature, indoor CO2 level
and indoor illuminance by acting on all the actuators of the zone (HVAC, lighting,
shading).

Moreover, the case of multi-source buildings (e.g.: power from grid + local solar
production), in which each power source is characterized by its own dynamic tar-
iff and upper limit, is considered. In this context zone decisions can no longer be
performed independently. To tackle this issue a coordination mechanism based on a
primal decomposition of the centralized optimization problem is proposed. A par-
ticular attention is paid to computational effectiveness of the proposed algorithms.
Moreover, a new distributed-in-time optimization feature is proposed to limit the com-
munication rates and computational burden between the agents in the building and
therefore to propose a real-time implementable solution. To the best of our knowl-
edge, such a feature has not been proposed before. The originality of our contribution
lies in the simultaneous handling of these features.

www.homesprogramme.com

This Ph.D. thesis was prepared within the Gipsa-lab and Schneider-Electric in the
scope of the HOMES program (www.homesprogramme.com). Led by Schneider-
Electric, this collaborative industrial research program targets energy efficiency in
buildings.
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1.3 Outline of the thesis

The manuscript is organized as follows7:

Part I Background

This first part presents some basics of building modeling followed by an introduction
to energy management systems in buildings and model predictive control for build-
ing applications.

Chapter 2 Building Energy Management Systems

This chapter briefly sets out the main solutions related to predictive control for energy
management in buildings. Following a short presentation of the general principle of
predictive control with emphasis on its critical features, the main reasons for adopting
this paradigm in buildings are then described along with the major variants identi-
fied.

Chapter 3 Introduction to building modeling

The main aim of this chapter is to give a concise overview of building models and
the simulation environment SIMBAD used in this work. As the focus of this thesis is
the design of model-based controllers, emphasis is placed on structural features of the
models as they will be used later on in the second part to design predictive controllers.

Part II Zone Model Predictive Control

In this part, two control layers will be proposed to implement MPC in buildings. The
goal here is the design of the zone controllers (low layer) further integrated in part III
to the control structure as a whole.

7A french abstract of thesis is provided in appendix A.
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Chapter 4 Zone MPC - Design and Real-Time implementation

Focusing on one zone of the building, the goal is to ensure comfort of occupants
at minimum operational cost. Since the whole set of available actuators in a given
zone is controlled to ensure multi-variable comfort, this chapter shows that the MPC-
related optimization problem is a non-convex optimization problem that has to be
solved efficiently. Simulations on a 20-zone building show that energy savings
could achieve 16 % for perfectly known temperature forecast and 14 % when fore-
cast is uncertain. Real-time implementability of the proposed control algorithm is
also validated on a Schneider-Electric controller (Roombox).

Chapter 5 Zone Model Predictive Control - Fan Coil Unit manage-
ment

This chapter extends the previously designed zone model predictive controller to
manage fan coil units. As will be discussed, a fan coil unit exhibits a nonlinear heat
emission characteristic. It will be shown that this characteristic can be approximated
by a PWA function that can be easily handled through linear programming.

Part III Distributed Model Predictive Control

When dealing with medium/large scale buildings, designing a centralized solution is
impractical. In this part, a distributed model predictive control strategy is presented,
with in particular, the design of the higher control layer (coordinator).

Chapter 6 Distributed Model Predictive Control - Theoretical frame-
work

This chapter presents a hierarchical model predictive control framework for a net-
work of subsystems submitted to general resource sharing constraints. The method is
based on a primal decomposition of the centralized problem over several subsystems.
A coordination agent is responsible for adjusting the parameters of the problems that
are to be solved by each subsystem to ensure that some global resource constraint on
the whole system is respected. Our main contribution consists of the introduction of
a new distributed-in-time feature combined with a bundle algorithm. The aim here
is to ensure sufficient performance at a fairly cheap communication cost by reducing

8
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the number of exchanges in order to enable real-time implementation of the proposed
approach.

Chapter 7 Constrained DMPC for building energy management

The control scheme presented in chapter 6 is then applied in this chapter on an energy
coordination problem in a multi-zone building in which the zones have to share a
limited amount of power as well as centralized energy storage equipment (electric
battery) and shared actuators. Effectiveness of the scheme to deal with these issues is
illustrated.

General conclusion

The general conclusion gathers the most pertinent results and the main contribution
of the thesis. The main challenges facing implementation of Model Predictive Con-
trol in buildings are then presented with some related works regarding each of these
issues.
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Chapter 2

Building Energy Management Systems

Abstract
This chapter gives a concise state of the art of the main control solutions proposed for the
energy management in buildings. This overview starts with a succinct presentation of con-
ventional building control strategies. Then, the general principle of predictive control with
emphasis on its critical benefits for our application is given. The main benefits of implement-
ing this paradigm for Building Energy Management Systems (BEMS) are then exposed along
with the major variants identified in the most pertinent references dealing with this topic.

2.1 Introduction

The thermostat, that was invented at the very early XXth century to control coil boil-
ers, can be considered as the first automated thermal regulation system in buildings.
Indeed, its introduction and its widespread usage makes it probably one of the most
common control systems.

It can be disappointing to note that from that time and despite huge technological
evolutions of control systems as well as large penetration of automation in buildings,
thermal management systems have not seen spectacular evolutions from the purely
algorithmic aspect as it has been the case in other areas like automotive industry for
instance, in which the introduction of electronic drove much more algorithmic control
developments.

The reasons of that are certainly numerous, but one may say that this is mainly
due to the following facts:

a. Buildings thermal systems, from a purely control aspect, are not challenging.
Therefore simple controllers are sufficiently efficient when focusing exclusively on
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thermal regulation;

b. Energy management systems target energy reduction. Since for many decades en-
ergy costs were low, no real energetic policies have been carried-out, hence no real
interest of both industrials and academics regarding building’s energy consump-
tion has been noticed;

c. Unlike to production industry, each building is unique. This uniqueness makes the
design of control algorithms that are simultaneously efficient and largely deploy-
able extremely challenging.

Nevertheless, instead of thermal management, nowadays buildings include much
more equipment and capabilities as lifts, fire alarms and much more complex HVAC1

systems. This is basically the reason of the existence of Building Management Systems
(BMS).

In the context of the present work, only BEMSs are targeted. BEMSs, which are
are generally part of BMS, are control systems dedicated to energy management in
buildings.

BEMS refers both to the hard and the soft parts of the control system. It is mainly
found in large buildings and largely dedicated to HVAC control, hot/chilled water
production and storage management. More rarely, a BEMS can include lighting and
blinds control.

Due to the huge consumption of the building area, which represents no less that
40% of total primary energy consumed in the world, and the widely carried out CO2

emission reduction policy (see chapter 1), a great interest of the research community
-especially in the last decade- led to a better understanding of the issues related to
building energy management.

In spite of the fact that many control strategies have been investigated, the prob-
lem of energy management in buildings remains essentially open, as it is attested
by [Dounis & Caraiscos 2009] where a good overview of the main advanced control
techniques studied until now and a discussion on conventional control are presented.

It goes without saying that an exhaustive review of the existing control strategies
and the ones proposed in literature goes beyond the scope of this chapter. Neverthe-
less it is important to point-out the emergence of model predictive control as a partic-
ularly adapted approach for building energy management [Cooperman et al. 2010].
Some crucial benefits of this paradigm are presented in this chapter.

Before an introduction to model predictive control in buildings which is at the
heart of the present work in section 2.3, the section 2.2 first gives, for completeness of

1HVAC: Heating Ventilation and Air Conditioning.
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the presentation, an overview of the conventional control systems. In section 2.4, the
major benefits arising from the implementation of MPC in buildings are introduced
as well as the main identified variants of this technology in buildings. Section 2.5
concludes the chapter.

2.2 Conventional control

Conventional control methods are essentially based on a stack of control rules acting
in a more or less coordinated fashion.

This kind of control systems, generally referred as rule based control, consists of a
high logical control layer in which a set of rules of the type :

if < condition > then < action >

are implemented. These rules provide set points and/or control modes to low control
loops that ensure local references tracking. The local controllers consist generally in
PIDs or On/Off controllers.

As a major advantage of this approach, one may cite the "apparent" simplicity of
such paradigm. Indeed, this set of rules is generally implemented by an expert that
defines, based on a priori knowledge of the building, both the set of rules involved
in the decision systems and the tuning parameters and thresholds involved in each
rule (an example is given further in section 2.4.1). Furthermore, their implementation
on real targets is extremely easy and fully adapted to current commercialized con-
trollers. Beside these important advantages, many drawbacks of this approach can be
enumerated:

1. The concatenation of a large number of rules leads to a large decision tree, it
becomes therefore difficult to ensure the consistency of the proposed control
system;

2. The number of tuning parameters involved in such schemes is high, which has
the effect of complicating commissioning step,

3. The buildings are likely to become structurally more complex, incorporating
more and more systems: possibilities of production/storage/resale and in a
varying energy price context. For these complex situations a logical rule-based
system reaches its limits given the "quantitative" and "proactive" specificity of
the control decisions to be undertaken.
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To overcome these limitations, many authors advocate to address the issue from a
radically different perspective. The idea is not to find the best action (rule) to be un-
dertaken in a given situation, but to model the building while expressing an objective
(minimize energy and maximize comfort) as an optimization problem.

The resolution of the latter optimization problem leads to an optimal plan of action
which is regularly updated thanks to new measurements and predictions of the most
pertinent variables acting on the building.

It turns out that this paradigm called Model Predictive Control (MPC) is partic-
ularly suitable for our purpose, as evidenced in the multitude of works referenced
around this issue that will be exposed throughout the chapter. The following section
introduces Model Predictive Control.

2.3 Introduction to Nonlinear Model Predictive Control

This section is an introduction to model predictive control. It provides only the essen-
tial material required in the sequel.

Model Predictive Control (also referred to as Receding Horizon Control) is an ad-
vanced control methodology relying on the use of a internal model of the process.

This internal model (also called control model) synthesizes the dynamics of the
process to be controlled. In MPC, this representation is used to find the optimal con-
trol sequence to be applied to the model in order to minimize some objective function
beside respecting a set of operational constraints. The constraints may be related for
instance to limitations on the actuators and/or the states of systems.

Model Predictive Control has experienced in the past twenty years remarkable
progress [Mayne et al. 2000] both from theoretical aspects and regarding practical
issues giving rise to thousands of successful industrial applications (chemical pro-
cesses, food industry, automotive etc.). In [Qin & Badgwell 2003] an overview of the
main referenced applications of MPC is given.

Numerous variants of this technique have emerged in the recent decades: start-
ing from the classical MPC applied to linear systems with quadratic objective func-
tions to much more complex variants where the resulting optimization problem is no
longer complying with the convexity properties of the first case and for which more
advanced optimization methods must be implemented. The latter case results from
situations in which the model of the process in nonlinear, it is more commonly known
as Nonlinear Model Predictive Control (NMPC).
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2.3.1 General notations

Consider the following general nonlinear dynamical system, given in its discrete-time
form:

xk+1 = f(xk, uk, wk) (2.3.1a)

yk = h(xk, uk, wk) (2.3.1b)

where:

• (x, u, w, y) ∈ Rnx ×Rnu ×Rnw ×Rny are respectively the state, input, disturbance
and output vectors,

• xk ≡ x(k · τ), where τ is the sampling period and k is the time index,

• x+ ≡ xk+1 is the state vector at the next sampling time.

Let us introduce the following notation for any predicted profile of a vector v ∈ Rnv

over a prediction horizon of length N at instant k:

Notation 2.1. Predicted trajectory

vk := [vTk|k, v
T
k+1|k, . . . , v

T
k+N−1|k]

T ∈ RN ·nv (2.3.2)

where vk′|k is the prediction of vk′ at instant k. Furthermore, when no ambiguity results,
vk is simply noted v.

for instance : uk := [uTk|k, u
T
k+1|k, . . . , u

T
k|k+N−1]

T ∈ RN ·nu is the predicted input profile
over the prediction horizon [k, k +N − 1].

♦

Moreover, let us define the selection operator denoted Πj(·) of any predicted pro-
file vk as follows:

Notation 2.2. Selection operator

Πj(vk) := vk+j|k (2.3.3)

The operator Πj(·) simply selects the (j+1)th vector v in the sequence vk (e.g: Π0(vk) = vk|k).

In addition, let us consider the following notation:

Π[j0:j1](vk) := [vTk+j0|k, . . . , v
T
k+j1|k]

T , j1 > j0 (2.3.4)

♦
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2.3.2 Nonlinear Model Predictive Control

In model predictive control the representation of the system (2.3.1) as well as the pre-
dicted disturbance profile wk are used jointly to find at each decision instant k the best
open-loop control sequence noted u?k, minimizing some objective function J . Thus, at
each instant k, the following optimization problem has to be solved:

Optimization Problem 2.1. Generic NMPC-related optimization problem

u?k = Argmin
u

J(u,y) (2.3.5a)

Subject to: ∀ j = 0, . . . , N − 1

Πj+1(x) = f(Πj(x),Πj(u),Πj(w))

Πj(y) = h(Πj(x),Πj(u),Πj(w))

(2.3.5b)

Π0(x) = xk (2.3.5c)

Cst(y,w,u,x) ≤ 0 (2.3.5d)

In the optimization problem 2.1:

• The set of equality constraints (2.3.5b) are the consistency constraints,

• The constraint (2.3.5c) enforces the first component of the state trajectory to the
current measured (or observed) state vector (feedback),

• Cst represents a set of operational constraints that has to be satisfied.

Once the problem 2.1 has been solved, only the first component of the optimal
control sequence i.e: Π0(u

?
k) = u?k|k is applied during the time interval [k · τ, (k + 1) ·

τ ]. The whole procedure is repeated at the next sampling time k + 1, based on new
measurement or observation of the state xk+1 and new predictions of the disturbance
wk+1. This leads to the so called receding horizon principle illustrated on figure 2.1.

In fact, NMPC consists of an implicit feedback-feedforward scheme of the form
uk = K(xk,wk), where:

K(xk,wk) = Π0(u
?
k) (2.3.6)

In closed-loop, the system evolution is then given by:

xk+1 = f(xk,Π0(u
?
k), wk) (2.3.7a)

yk = h(xk,Π0(u
?
k), wk) (2.3.7b)
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k
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yk

uk
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Past output

Past input

Prediction horizon

Prediction horizon

Figure 2.1 Receding horizon principle: at each decision instant a new opti-
mal control trajectory uk is computed, only the first element of the sequence
(uk) is implemented, and so on.

The feedforward feature of the scheme results from the direct inclusion of the pre-
dicted disturbance profile wk into the process of decision making, i.e, the optimization
problem (2.1). This offers on one hand an anticipation capability to the controller and
on the other better disturbance rejection capabilities.

Thus, unpredicted and unmeasured disturbances are corrected thanks to the feed-
back but also anticipated thanks to feedforward. This gives to the controller both a reactive
and a proactive behavior -if future disturbances can be predicted-.

This latter feature is of great interest in the present work, since -as it will be shown
throughout the manuscript- the inclusion of an a priori knowledge of future distur-
bances considerably enhances the performance of the controller.

It goes without saying that the complexity of the optimization problem (2.3.5) is
one of the most important issues one faces in model predictive control, since this op-
timization procedure has to be carried-out on line at each decision instant. Therefore,
the implementation of MPC algorithms is essentially conditioned by the real-time fea-
sibility of the optimization problem (2.1). The reader may find more details on MPC
in [Mayne et al. 2000].
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2.3.3 Main features and benefits

It turns out that one of the major benefits associated to the use of the MPC lies in
its intuitiveness. Indeed, the control problem is somehow reduced to an optimization
problem, making this paradigm a powerful abstraction tool which allows treating
processes of very different natures. This is obviously conditioned by the existence of
adequate optimization tools allowing to solve efficiently the resulting optimization
problems.

Note that handling MIMO systems is another strong point arising from this
paradigm. Moreover, note that MPC enables to handle explicitly saturations on in-
puts and states of the system since they are directly included in the formulation of the
optimization problem. This is also true for economical objectives. However, in prac-
tice, several implementation difficulties are encountered which are mainly related to:
(a) the larger computational burden induced by such on-line optimization based con-
trol technique and (b) the availability of a sufficiently precise yet simple model the
process.

2.4 MPC in buildings

The main necessary ingredients for MPC implementation in buildings can be summa-
rized on figure 2.2. They gather:

a. the model of the building, which consists of a dynamical description of the part of
the building to be controlled,

b. the forecast on the most pertinent exogenous variables that impact the behavior of
the building (weather, energy rate, occupancy),

c. the objective function describing the criterion to be optimized (energy or invoice
minimization while meeting comfort requirements),

d. the mathematical solver enabling to solve the underlying optimization problems.

A variety of MPC and MPC-like solutions for energy related issues in buildings
have been proposed in the literature. Furthermore, the recent marketing of predictive
solutions for buildings demonstrates the feasibility and economic benefits of imple-
menting such techniques for buildings energy management2.

This section presents the main identified MPC variants for building application as
well as the crucial benefits of implementing such control strategy in buildings.

2see BuildingIQ website: http://www.buildingiq.com/.
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Model Predictions Objective Solver

Optimization Problem

*
Optimal 
solution

Figure 2.2 Model Predictive Control ingredients in buildings. In building,
MPC lies on using a model of the building as well as prediction on dis-
turbances to formulate and solve at each decision instant an optimization
problem to find the best sequence of actions which minimizes the cost func-
tion (energy, invoice, etc.) and ensure occupant comfort.

2.4.1 Main benefits

As mentioned in the introduction, MPC for building application attracted the interest
of many researchers and industrials. Here, the crucial motivations of using MPC in
buildings are presented.

Building’s inertia

Thermal inertia is one of the main features of buildings. Indeed, for such inertial
systems the need to anticipate some actions is desirable for several reasons. For the
sake of illustration, let us give two examples:

Optimal start

The optimal time to begin heating (or optimal start time) is the instant at which the
heating must be switched on to reheat the building (or the zone) after a vacancy pe-
riod in order to meet the comfort temperature at occupants arrival. Actually, start-
ing heating too late prevents achieving the desired temperature at the right moment
resulting in discomfort, while starting in advance results in an unnecessary energy
consumption given that the temperature reaches its set point too quickly, requiring
more energy to maintain it or reheat the building again. This is illustrated on figure
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2.3.

The optimal start time (generally in early morning) depends not only on the dy-
namic characteristics of the building but also on weather conditions, and of course of
the predicted occupants arrival time. Therefore, an inclusion of these considerations
is crucial. Moreover, the set-back temperature (see figure 2.3) needs to be also deter-
mined according to the same considerations (a too low set-back temperature causes
discomfort since the heating system, if the optimal start time is not carefully adjusted,
may not be able to rise the temperature to the comfort set-point).

In conventional energy management systems, a basic rule is given by algorithm
2.1. In practice, one can notice a certain conservativeness in choosing timeopt and T sb

(high set-back temperature and early heating). Obviously, this is clearly to privilege
comfort.

Algorithm 2.1 Optimal start - rule based control

1: if time ≤ timeopt then
2: regulate temperature at T sb

3: else
4: if T ≤ T c then
5: heating ON
6: else
7: regulate temperature at T c

8: end if
9: end if

Variable price of energy

Now, assume that energy tariff is time varying. In such context, it is clear that shifting
some consumption to cheaper energy periods would be far beneficial. This can be
performed by using some energy buffer (overheating the building, storing energy in
electrical batteries if available or hot water tanks) (see figure 2.4, page 24). Neverthe-
less, the optimal amount of energy to be stored depends on the storage efficiency which
is in this case linked to characteristics of the building and the available other storage
capabilities. Moreover, the shape of the price signal may be quite complex and the
optimal decision is this case is not trivial.

Nevertheless, the inertial character of buildings is not the only feature to consider
as explained hereafter.
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Energy waste Discomfort
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Optimal start time

Heating
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Figure 2.3 Optimal start time illustration. Starting heating too late produces
occupant discomfort while starting too early generates energy losses.

Physical couplings

Explicit handling of couplings between certain phenomena can result in important
energy savings. As previously, let us give a brief example: blinds position impacts
both temperature and indoor illuminance. In summer, the blinds positions have a
prominent impact on the heat introduced in the building and therefore on the energy
consumption of the building since cooling system should compensate this heat intro-
duction. In this situation, is it more interesting to close the blinds (introduce less heat)
and turn on the light if necessary or not ? remembering that artificial lighting system
produces also heat. It goes without saying that a universal rule for this situation is also
difficult to find.

It turns out that taking into account coupling between these phenomena leads
to consider MIMO systems, which are most often of high dimension particularly in
large-scale buildings. The multiplicity of outputs is explained by the fact that temper-
ature must be controlled in each zone, but also air quality and indoor illuminance.
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Figure 2.4 Illustration of the usage of MPC with variable price energy. Note
that during the first day the building is overheated during the off-peak pe-
riod (before 6 a.m.), the second day the energy price is constant and there-
fore no overheating is performed (an optimal start is implemented).

Demand Response capability

Demand/Response is an important concept in smart grids. Basically, it means that the
building is able to adapt its consumption to some energy market conditions (varying
energy rate, dynamical power limitations,...). The market conditions are adjusted by
grid managers -possible in advance- in order to reflect the current energy mix and grid
status and encourage some power consumption shifting. Due to their huge consump-
tion, buildings are likely to play a crucial role in that sense. This feature is discussed
more deeply in section 7.1.

2.4.2 MPC in buildings- main variants

This section introduces the main identified variants of MPC in buildings.

Zone predictive control

Figure 2.5 illustrates the integrated zone controller (also called: IRA3 in [Gyalistras &
Gwerder 2010]). The problem here, consists of addressing the issue related to only

3IRA: Integrated Room Automation
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one zone of building in which a set of actuators has to be controlled in order to en-
sure comfort of occupants. The comfort refers to thermal and/or air quality and/or
indoor illuminance and/or humidity. This comfort has to be obviously ensured at the
minimal energetic cost.

Heating

Ventilation
Lighting

Shutter

Occupation + 
internal gains

Meteo. Perturbations

Figure 2.5 Typical zone representation. A zone is defined as contiguous part
of the building, it includes several actuators (HVAC, lighting, shutters)

The main advantages of integrated zone control lie in managing the couplings
between physical phenomena beside exploiting the thermal inertia of zone. These
couplings, as discussed previously may have an important impact on energy con-
sumption.

The works related to the study of zone controllers are also intended to simplify
the problem arising in the whole building by restricting the study to a single part
of it4. One of the difficulties lies in the bilinear model (discussed later in chapter 3,
see equation (3.3.1)). This induces a nonlinear optimization problem which will be
further discussed in chapters 4 and 5.

The reader may refer to [Oldewurtel et al. 2010, Gwerder & Tödtli 2007, Gwerder
& Tödtli 2009, Freire et al. 2008, Freire et al. 2005] or [Candanedo & Athienitis 2009,
Chen 2001, Chen 2002] for more literature on the topic.

4This last approach has been adopted for instance in [Parisio 2009].
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Model predictive control for global energy flows managements

Some authors focus on the only part of the building related to production/storage
energy. The goal here is to manage the purchased/sold/stored power given some
prediction on building consumption. The perimeter includes all or part of the systems
shown in figure 2.6.

Grid

Local energy
production

HVAC systemElec. system
Heat StoragePumpBoilerBattery

Inverter

Figure 2.6 Illustration of the main equipment controlled at the energy layer.

For instance, control of thermal energy storage in building cooling systems has
been proposed in [Borrelli et al. 2009] while [Collazos et al. 2009] proposed a manage-
ment of polygeneration systems with predictive technique.

This approach was also studied by [Negenborn et al. 2009, Houwing et al. 2007]
that, additionally to the equipment shown in figure 2.6, treated the co-generation
equipment electrical/thermal (figure 2.7). Generally, the models used, in this case,
are restricted to an overall description of power flows. However, some studies include
also simple models of the building’s envelope ([Awad et al. 2009, Borrelli et al. 2009]),
obviously inducing more complex problems. An interesting application of energy
flows management in buildings with thermal storage capacity (active and/or passive)
is presented by [Henze & Krarti 2005]. Other examples can be found in [Le 2008, Maor
& Reddy 2008].

Remark 2.1.
Note that the distinction above (zone MPC/ Global energy flows management) is only intended
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Figure 2.7 Management of polygeneration system with MPC [Houwing
et al. 2007]

Figure 2.8 MAHAS system: the system has 3 layers, the highest layers cor-
respond to slower dynamics [Ha et al. 2008]

27



Chapter 2. Building Energy Management Systems

to structure the presentation. Indeed, some studies lie beyond this categorization. Actually,
this distinction expresses the fact that the study under consideration focuses on one of the two
perimeters, simplifying (sometimes excessively) the other. For instance, in [Siroky et al. 2010],
the description of a representative zone is used to manage the heating system of the entire
building5. Some authors do not attach to specify an application scope and combine predictive
control to other approaches. For instance, [Abras 2009, Abras et al. 2007, Ha et al. 2008]
propose a service-oriented model of the building. Each service (heating, cooking, etc.) requires
the availability of some resource to become active. Therefore a resource allocation plan on long
time horizons (predictive control) needs to be introduced (figure 2.8). ♦

Stochastic predictive control

This trend clearly reflects the fact that meteorological forecast data are uncertain.
Therefore, meteorological uncertainty should be explicitly handled in the process of
decision making.

The first recorded work in this area has been proposed in [Nygård-Ferguson 1990]
to deal with overheating issue in winter season with a zone equipped with a heat-
ing floor (a large inertia). Such overheating occurs particularly during sunny days
and not only generates discomfort but also significant energy losses. [Nygård-
Ferguson 1990] showed that a predictive stochastic controller was particularly ap-
propriate in this case and could generate, on some days, substantial energy savings
while improving occupant comfort.

Within the OptiControl project [Gyalistras & Team 2010], this approach has been
widely investigated. Instead of using strict bounds on comfort variables, [Gyalistras
& Team 2010, Parisio 2009] propose to characterize occupant comfort by a proba-
bility of violation of constraints on these parameters. Even if this study provides
an evident pertinence of this approach when compared to certainty equivalent for-
mulation (no inclusion of the uncertainty), these considerations lead to much more
computationally demanding optimization algorithms as explained in more detail in
[Oldewurtel et al. 2008], in which some techniques of reducing such an important
computational burden are presented. For more literature on the topic, the reader is
referred to [Zavala et al. 2009].

Distributed Model Predictive Control

Most of the works cited before implement a centralized MPC, i.e: where the deci-
sion process is centralized in a unique entity. It goes without saying that in large

5In this experiment an energy saving estimation of 17-24% is announced.

28



2.5. Conclusion

scale buildings, such an approach could fail because of the high dimensionality of
the underlying optimization problems. Moreover, it leads to non modular architec-
tures which are unsuitable for extensibility and maintainability concerns. Distributed
Model Predictive Control (DMPC) has been studied in [Moroşan et al. 2011, Ma
et al. 2011] where a distributed predictive control strategy is applied to the thermal
regulation of buildings. Deeper discussion on Distributed MPC is provided in part III
of the manuscript since this part is exclusively dedicated to this issue.

2.5 Conclusion

Although the problem of building energy consumption is still very largely open, re-
search works conducted in recent years showed that it is difficult to achieve the ex-
pected energy performances in building using conventional control approaches. It
is now clear that the renewed interest in advanced control methods for energy man-
agement in buildings highlighted MPC as a particularly adapted approach, since it
enables to:

• Take explicitly into account dynamical characteristics as well as weather fore-
cast, price variations, constraints on resource limitation, multi-sources systems,
etc. to optimally schedule actuators operations in building.

• Handle multi-inputs multi-outputs systems, which is the case in buildings.

• Give coherence in the process of decision making. Indeed, conventional rule-
based approach leads generally to a complex logical tree structure, which be-
comes intractable when the number of rules and tuning parameters becomes
large.

• Handle explicitly economic objectives (variable energy price for example),
which can be very difficult and impractical using a rule-based approach.

In the next chapter, some elements on building modeling are provided, after which
parts II and III are dedicated to the design of model predictive controllers for build-
ings.
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Chapter 3

Introduction to building modeling

Abstract
The main aim of this chapter is to give a concise overview of building models and the SIMBAD
simulation environment used in this work. As the focus of this work is the design of a model-
based controller, emphasis is placed on its structural features. Moreover, since SIMBAD has
been provided as a black box Simulink model, an off-line identification procedure has been
designed to identify the zone models used later to design the zones local controllers.

3.1 Introduction

Building simulation is a crucial component during the development of control strate-
gies as it provides valuable information regarding building behavior, when submitted
to different internal or external conditions. Moreover, it enables assessment (to a cer-
tain extent) and the successive enhancements of different energy management strate-
gies, which would be rather unrealistic to implement on real buildings for obvious
economic and time consumption reasons.

A large range of simulation software are dedicated to building modeling and sim-
ulation. To cite only a few: TRNSYS1, ENERGY+2, IDA-ICE3. Although they imple-
ment relatively precise models, they are mainly dedicated to global energy estimation
and sensitivity analysis regarding construction materials and HVAC dimensioning
etc. Therefore, they include only a few basic controllers such as PIDs or ON/OFF
controllers. In most cases, existing interfaces with other software are quite unreliable
and do not enable extensive control development.

1http://www.trnsys.com last access 09/15/2012.
2http://apps1.eere.energy.gov/buildings/energyplus/ last access 09/15/2012.
3http://www.equa.se/eng.ice.html last access 09/15/2012.
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Chapter 3. Introduction to building modeling

This is particularly unsuited when designing advanced control algorithms, which
may be quite hard (or even impossible in some cases) to implement on such simula-
tion tools.

These considerations led the HOMES program to adopt SIMBAD (SIMulator of
Building And Devices) as a simulation tool for the assessment of control strategies.
SIMBAD is a Matlab/Simulink toolbox developed by CSTB4 and dedicated to build-
ing simulation. It enables simulation of the main physical phenomena coexisting in
a building (thermal, IAQ5, lighting), and is used to evaluate the potential of control
algorithms that have been developed within this collaborative program. One of the
main motivations is its implementation in Matlab/Simulink and its quite large HVAC
library.

Buildings are generally split into two layers: energy and zone layers. The energy
layer gathers energy supply, storage and transformation, while the zone layer gathers
several zones. Each zone is a contiguous part of the building in which occupant com-
fort must be guaranteed by managing several available actuators (heating, shading,
ventilation, etc.).

This chapter focuses on the zone layer by providing the main features of the zone
models, since the design of the control algorithm presented further on in chapter 4, is
precisely based on these models.

This chapter is organized as follows: in section 3.2 a brief presentation of SIMBAD
is provided. Section 3.3 provides the main features of the zone models. In section
3.4, the zone models are identified. Some elements on occupancy modeling and the
other usage of electricity (OUE) are provided in section 3.5. Section 3.6 concludes the
chapter.

3.2 A brief description of SIMBAD simulation tool

This section provides a brief description of the simulation tool. Read-
ers can find more information in [Riederer 2001, Riederer et al. 2000] or
(http://kheops.champs.cstb.fr/Simbadhvac/index.html).

Remark 3.1.
The version of SIMBAD used during the HOMES program was specifically developed by
the CSTB in the scope of the HOMES program. Indeed, the major difference in this version
compared to the commercialized one, is the fact that involves a C-coded (compiled) Simulink

4Centre Scientifique et Technique du Bâtiment, France.
5Indoor Air Quality
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Zone layer
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Figure 3.1 Building decomposition

model. Moreover, the whole parameters of the building are grouped in an XML file (see figure
3.3). ♦

In SIMBAD, each building is described by an XML file (figure 3.3) containing all
the information related to:

• the architecture of the building in terms of physical characteristics of the en-
velope, physical interconnections between zones (common walls), facade and
window orientations of each building zone;

• the systems involved in the building, including HVAC systems and lighting as
well as all auxiliary systems (pumps, valves, etc.) and their respective dimen-
sioning;

• the occupation described by brief information related to the utilization of the
zone (for instance: "office");

• the location which is mainly used to determine the related weather station, it is
also used for calculation of the solar position.

This knowledge related to building architecture is essential to determine:
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∞ ∈

∋ △

Figure 3.2 Zones in a building. The zones vary in their structure, orienta-
tions and usage (occupancy schedules).

• all temperatures impacting the zone concerned (determination of the physically
linked zones),

• number and nature of each actuator in each zone as well as the corresponding
power consumptions of each equipment item,

• disturbances impacting each zone (orientation of each facade, number and ori-
entations of windows).

This information enables to build the structure of the model of each zone in terms
of inputs/outputs. Table 3.1 shows a typical zone inputs/outputs description.

In the following, an identification procedure is used to derive the dynamical model
of each zone on a building described in SIMBAD. These models will be used in the
sequel to design the corresponding predictive controllers of each zone.

3.3 Zone modeling

In the present work, a building zone refers to a contiguous part of the building in
which at least one actuator and one sensor are available. A building zone may re-
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Figure 3.3 Building XML tree. Each building in SIMBAD is defined by an

XML file containing information related to physical characteristics of the
building as well as zones interconnections.

Variables Description Unit

In
pu

ts

uh Heating ctrl [−]

uv Ventilation control [−]

ul Lighting control [−]

{uib}i=1,...,Nf
Blind ctrl facade i [−]

D
is

tu
rb

an
ce

s Tex Outdoor temperature [oC]

{T iadj}i∈Nadj
Adjacent zone temp. [oC]

{φig}i=1,...,Nf
Global irr. flux facade i [W/m2]

Occ Number of occupants [−]

Cex Outdoor CO2 level [ppm]

O
ut

pu
ts T Indoor air temperature [oC]

C Indoor CO2 level [ppm]

L Indoor illuminance [Lux]

Table 3.1 Description of Inputs/Outputs and exogenous variables related to
one zone of the building.
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fer to a "real" zone of the building (e.g. an office) but can also group several zones
aggregated from a control point of view (e.g. several adjacent offices).

In this section, only the key structural features of the dynamic model of a building
zone are presented since they are needed to understand the algorithm used further on
to derive the solution of the MPC-related optimization problem. The entire building
thermal model (multi-zone building) is obtained by interconnecting individual zones
models. All details concerning physical modeling of the zone are omitted. However,
the reader can refer to [Riederer et al. 2001, Virk & J.Y.M.Cheung 1995, Kolokotsa
et al. 2009, Jaluria 2007] and the references therein for more information regarding
building modeling.

3.3.1 Zone model identification

SIMBAD is delivered as a black-box simulink library. Therefore, the building mathe-
matical model is not explicitly accessible and has to be deduced from this simulation
tool in order to be integrated in the Model Predictive Controllers.

However, the embedded model has only to represent input/output transfers and
therefore any dynamical representation capturing the behavior of the building can be
used. It is thus unnecessary to derive a physical model from SIMBAD, thereby greatly
simplifying the task since physical models are generally more difficult to identify than
non physical ones even in simple cases.

A key point in system identification is the choice of an appropriate mathematical
structure. This choice is generally linked to the form of the first principle equations
used to describe the system.

Once this structure has been defined, an identification procedure can be carried
out to find the set of parameters involved in the parametrization of the model struc-
ture.

According to the modeling hypotheses considered in SIMBAD that result from
classical arguments [Riederer et al. 2000, Mustafaraja et al. 2010, Kolokotsa et al. 2009,
Freire et al. 2005, Romanos 2007], it comes out that the dynamical model of each zone
can be expressed by the following bilinear state-space representation:

M(θ) :

{
x+ = Aθx+ [Bθ(y, w)]u+Gθw

y = Cθx+ [Dθ(w)]u+ Fθw
(3.3.1)

where:
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3.3. Zone modeling

• Aθ, Bθ, Cθ, Dθ, Gθ, Fθ are matrices of appropriate sizes parameterized by a set
of parameters θ;

• x is the state vector of the identified model and has a priori no physical mean-
ing (during simulation, it is recovered using a Kalman observer);

• y := (T,C, L)T ∈ R3 is the output vector (see table 3.1);

• u := (uh, uv, ul, u
1
b , . . . , u

Nb
b )T regroups all the controlled inputs (see table 3.1);

•w := (T ex, {T iadj}i∈Nadj
, {φj}j∈Nf

, Occ, Cex)T is the vector of exogenous variables
(see table 3.1);

Remark 3.2.

a. The term [Bθ(y, w)]u is a bilinear term (Bθ(y, w) is affine in y and w) and is explained
by the fact that the temperature and CO2 level depend not only on the actuator position
u but also on the difference between indoor and outdoor quantities (T − T ex) (convective
heat introduced by mechanical ventilation) and (C − Cex). Moreover, the blinds positions
impact zone temperature via the terms (T ex− T )u1b , . . . , (T

ex− T )uNb
b , φ1u1b , . . . , φ

NbuNb
b .

b. In SIMBAD, radiative exchanges are linearized. This accounts for the fact that the terms
on the form T 4 are non-existent in (3.3.1).

c. The global fluxes on each facade of the zone φig, i = 1, . . . , Nf are obtained by summing
the diffuse and the projected direct parts of the solar flux. This implements classical solar
projection formulas that can be found in existing references (e.g. [Jung 2009]).

♦

For the given model structure M(θ), the identification problem consists in finding
the best set of parameters denoted θ? so that the error between the output of the iden-
tified model M(θ) noted yθId and the output of the simulator ysim for the same inputs
is minimized. This is expressed by the following optimization problem:

θ? = Argmin
θ

k=ksim∑
k=0

‖(ysim)k − (yθId)k‖2 (3.3.2)

where ksim · τ is the simulation duration and τ is the sampling period.

M(θ) is a Multi-Input/Multi-Output dynamic system with coupled dynamics. In
order to simplify the identification task, this system is (virtually) split into three Multi-
Input/Single-Output systems, where each one corresponds to an output (tempera-
ture, CO2 rate, indoor illuminance).
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3.3.2 Thermal model

Thermal-electrical analogy is the most common way to represent thermal phenomena
in buildings. Building thermal models can be seen as RC networks (see figure 3.4)
in which the values of resistors and capacitances depend on construction materials.
Their number is closely linked to the accuracy of the thermal model (number of ther-
mal nodes considered) [Deng et al. 2010, Riederer et al. 2002, Bacher & Madsen 2011].
In Simbad:

• Each external wall is represented by 3 resistors and two capacitances,

• Internal walls are represented by two resistors and one capacitance,

• Air volume is represented by one capacitance.

Temperature behavior can be described using the following Multi-Input/Single-
Output Nonlinear Auto Regressive model (which is strictly equivalent to the dynam-
ical relation linking T and u,w expressed by M(θ)):

T =
nv∑
i

BTh
i

1 + ATh
· vTh

i (3.3.3a)

with:

vTh := [uh, (T
ex − T )uv, ul, φ

1u1b , . . . , φ
nfu

nf

b ,

(T ex − T )u1b , . . . , (T
ex − T )u

nf

b , T
ex, φ1, . . . , φnf

, Occ] (3.3.3b)

where:

• vTh
i is the ith component of the vector vTh;

•ATh(q−1) := aTh
1 q−1 + · · ·+ aTh

na
q−na is a polynomial of order na;

• BTh
i (q−1) := bTh

i,1 q
−1 + · · · + bTh

i,ni
b
q−n

i
b is the input polynomial related to the ith

component of vector vTh and is of order nib;

• q−1 is the delay operator defined for any time dependent xk by: q−nxk := xk−n.

Notice that the vector vTh gathers all affine contributions on temperature (i.e. such
that the transfer between each input vTh

i and the output T is linear).

3.3.3 CO2 model

The CO2 level model is a first order accumulation model, in which the CO2 produced
by occupants is exhausted naturally (infiltration) or mechanically (mechanical venti-
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Internal wall
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window

Air duct
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T
Nadj
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Figure 3.4 Thermal-electrical analogy - simplified circuit. The bilinearity of
the model is due the varying resistors involved in the model (ventilation uv
and blind position ub) as well as the products involved in the window heat
transfer model (ub · φg).
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Figure 3.5 Simplified CO2 model - electrical analogy. The model is bilinear

due to the existence of input-output product uv · (C − Cex).

lation), see figure 3.5.

Using the same notations for indoor CO2 level, it comes that:

C =
nv∑
i

BC
i

1 + AC
· vC

i (3.3.4)

where vC := [(C − Cex)uv, Occ]
T

3.3.4 Lighting model

Indoor illuminance is impacted both by artificial lighting and blind positions: the
model is static. The following static model is assumed (see figure 3.6):

L = aLul +

j=Nb∑
j=1

bjLφju
j
b +

j=Nf∑
j=1

b̄jLφj(1− u
j
b) (3.3.5)

3.4 Model identification

In this section an identification procedure is used to identify the zone models.
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Figure 3.6 Simplified indoor illuminance model - electrical analogy

3.4.1 Identification approach

With the mathematical model structure now, one can identify the polynomials ATh,
BTh
i , AC, BC

i and constants aL, bjL, b̄jL in order to fully describe the model. Noting the
set of the unknown coefficients cited above θ, it is easy to recover the model M(θ).

In fact, this problem can be solved using a dedicated identification tool (we used
Matlab’s identification toolbox). Actually three transfer functions are identified and
then grouped to form the whole model of the zone.

Even if this identification problem seems to be quite simple given that no noise
affects the measurements and no unmeasured disturbance is present. The following
precautions must be taken in order to ensure a successful identification:

1− Appropriately chosen excitation signals have to be injected in the simulator.
This in order to ensure that inputs are not correlated. Moreover each excitation signal
has to be sufficiently rich in frequencies to excite all the modes of the simulation model
[Landau & Zito 2006];

2− The meteorological data file has been replaced by a virtual one including
fully controlled excitation signals.

3− The solar direct flux has been set to zero. The identified model has then
been extended by adding the direct flux to the diffuse solar flux (with appropriate
projections on each facade) to reduce the number of considered inputs during the
identification.

4− The initial state of the process (SIMBAD) is forced to zero (equilibrium). This
also simplifies the task as the initial state does not need to be determined;
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5− Finally, concerning thermal aspect, note that adjacent zones air temperatures
are considered as disturbances from the point of view of the zone concerned, therefore
local zone controllers must be inserted in each adjacent zone in order to control each
adjacent zone temperature.

3.4.2 Identification results

The identification procedure described above was applied on a 20-zone building that
will be used as a throughout this thesis. This virtual building represents a typical
French tertiary building equipped with electrical heaters6. This building represents a
typical small office building which corresponds to nowadays construction standards
(2006) consisting of 20 zones. Its area is approximatively 540 m2. The external walls
are composed of a layer of thermal insulation and a layer of concrete, see figure 3.7.

Figure 3.7 Test building representation. This building represents a typical
small office building. It consists of 20 zones, its area is approximately 540
m2.

It has been noted that the simulation model (SIMBAD) can be identified with a
good fit (≈ 98 %) for sufficiently high model orders (typical values na = nb = 6

concerning temperature and a first order for CO2 level, see relations (3.3.3a) and (3.5)).
6The version of SIMBAD used during the HOMES program experienced constant enhancements.

These results have been obtained on SIMBAD release of 6 June 2011. Next releases introduced some
corrections and modifications regarding thermal and lighting aspects. In this light, the models iden-
tified in this chapter should be seen as rather good approximations but not exact models of SIMBAD
since the yearly simulations launched later have been performed on latest version of SIMBAD.
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3.4. Model identification

Figure 3.8 Step response of the 20-zone building. Note that temperature re-
sponses exhibit two phases: a fast increase due to air dynamic (clearer on
figure 3.9) and a very slow dynamic due to walls dynamic. This generally
leads to very ill conditioned problems during identification (see [Malisani
et al. 2010]).

Figure 3.10 shows the temperature response. Figure 3.8 shows the temperature
step responses of the 20 zones of the building. Note that:

• Even for the same building, zone dynamics are rather different. Note also that
the static gain of (Tex → T ) determines the insulation of the zone (the lower it is
the better the insulation is).

• Note that the step response (figure 3.8) has roughly two dynamics: a rather fast
one due to air dynamic and a very slow one resulting from walls dynamics.
(figure 3.9). Therefore, a good characterization of the system should take into
account the fast dynamics (note: a step on the heater induces an increase of
(4-6 [oC]) depending on the zones after one hour). Remark also the time delay
introduced by the electrical heaters (≈ 2 [min]), figure 3.9.
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Figure 3.9 Step responses (Uh → T ) during the first hour (figure 3.8). Note
that electrical heaters may generate a temperature increase comprised be-
tween 4 and 6 [oC] after one hour.

3.5 Occupancy and Other Usage of Electricity (OUE)

3.5.1 Occupancy modeling

Each zone has its own occupancy schedule. Figure 3.11 shows the weekly occupancy
profiles of three zones. Each schedule is a fifteen-minutes based schedule. The two
first zones are offices, the last zone is a meeting room.

3.5.2 Other Usage of Electricity (OUE)

Other Usage of Electricity (OUE) refers to non-controllable equipment mostly des-
ignating white appliances, brown appliances, computer, etc. Their integration in
the simulation tool is of particular importance, since their heat production is non-
negligible. Figure 3.12 shows the non-controllable electricity consumption in three
different zones of the building.
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Figure 3.10 Simulated and identified outputs (blue: SIMBAD, green: Identi-
fied model, red: error): note that the models are quasi-similar.

3.6 Conclusion

In this chapter, a presentation of the simulation environment and the main features
of the models used in this work has been provided. Moreover, an off-line identifica-
tion procedure has been implemented to deduce the control models used in the next
chapters to derive the predictive controllers. Therefore, assumption is made in the
sequel that the zones models are available in the building. Even if this assumption
can be rather strong in real life, it is considered in the framework of the present work
that some identification techniques can be implemented to recover them using real
data measurements. The interested reader may refer to [Balan et al. 2011, Malisani
et al. 2010] for information on building model identification techniques.
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Figure 3.11 The occupancies tend to differ from one zone to the other. First
two zones are offices while the third zone is a meeting room.

Figure 3.12 Other Usage of Electricity (OUE) profiles. OUE consist of non-
controllable electric consumption in the zone, their integration in the simu-
lation tool is of particular importance for their heat production.
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Zone Model Predictive Control

47





Chapter 4

Zone MPC - Design and Real-Time
implementation

Abstract
A hierarchical control structure is generally used in building control. It can be split into two
decision layers: energy and zone layers. Energy layer is concerned with high level decisions.
Zone layer is concerned with regulation of environmental conditions in one zone of the build-
ing. In this chapter a MIMO1 zone controller is designed to control comfort

4.1 Introduction - zone control

In this chapter, the problem of minimizing energy consumption of a building zone
under pre-assigned multi-variable comfort conditions and varying energy tariffs is
addressed.

Roughly speaking, the aim at the zone layer is to provide comfort to occupants at
the lower energetic cost. The energetic cost has to be interpreted depending on the
context, to be the total amount of energy consumed in the case of the constant price
tarification or to be the energetic invoice in the case of variable energy tarification.
In this chapter, a model predictive controller intended to control zone environmental
conditions is designed, namely: indoor temperature, CO2 level and indoor illumi-
nance are controlled.

Although the idea of using MPC to address this problem is not new (for instance,
[Nygård-Ferguson 1990] proposed a predictive controller for high inertia buildings
where a stochastic approach has been used that led to remarkable results), the recent
strategic emergence of this topic renewed the interest in this solution, [Oldewurtel

1MIMO: Multi-input/Multi-output.
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et al. 2010]. This is witnessed by the many recent works adopting such predictive
solutions that have been discussed in chapter 2.

The controller, contrarily to the conventional decoupled controllers currently im-
plemented for zone control, takes into account all the interactions between physical
phenomena in the zone, as well as predicted disturbances in order to ensure occupant
comfort during occupied hours.

This is possible, thanks to the direct inclusion of the zone model as well as pre-
dicted disturbances and predicted occupancy of the zone into the process of decision.
Moreover, a careful attention is paid to the computational burden of the nonlinear
programming problem resulting from such considerations since the algorithm is in-
tended to be integrated in a real hardware, namely the Roombox.

The chapter is organized as follows: in section 4.2, brief recalls on comfort concept
are provided. In section 4.3, the control problem is derived, then solved in section
4.4. The design of the state observer is performed in section 4.5. Convergence of the
fixed-point algorithm is analysed in section 4.6. Parametrization techniques are used
in section 4.7 to reduce the computational burden of the optimization problem. In sec-
tion 4.8, a computational study of the proposed algorithm is proposed. Simulations
performed on SIMBAD are gathered in sections 4.9 and 4.10. Real hardware imple-
mentation on the Roombox controller is described in section 4.11. Finally, section 4.12
summarizes the main results.

4.2 About occupants comfort

Before designing the controller, let us first give some elements on comfort measure-
ment.

Roughly speaking, comfort conditions mean that satisfactory indoor environmen-
tal conditions are ensured during occupied periods. In the present framework, the
parameters defining comfort are the indoor temperature (T ), indoor CO2 level (C)
and indoor illuminance (L). Concerning indoor illuminance and CO2 levels, comfort
related to these indicators is ensured when the indoor illuminance is larger than a
lower bound (generally 500 [lux] in offices) and when the CO2 level is lower than a
prescribed value (generally 1000 [ppm]2). Since it appeared during simulations that
comfort related to these aspects is always provided, no indicator is considered.

Concerning thermal aspect, the comfort estimation is more complex. Indeed, for
the thermal comfort, the so called Predicted Mean Vote/Predicted Percentage Dissat-

2ppm: parts per million.
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Heating

Ventilation
Lighting

Shutter

Occupation + 
internal gains

Meteo. Perturbations

Figure 4.1 Typical zone representation. A zone is defined as contiguous part
of the building, it includes several actuators(HVAC, lighting, shutters).

isfied (PMV/PPD) 3 is the most common way to describe thermal comfort. Never-
theless, it turns out in practice that the required parameters to estimate this comfort
index are too complex to obtain. The set of the involved parameters gather, among
others, air flow speed, radiant temperature, indoor humidity, clothing, human activ-
ity, etc. Therefore, the most common description of thermal comfort is, in practice,
reduced to a prescribed range of temperatures [T , T ] to which the temperature has to
belong (see standards [ASHRAE55 2004], [EN15251 2005] and [ISO7730 2006]). This
is precisely the comfort criterion used by the designed controller seen later.

Nevertheless, for assessment purpose, the PMV index is used for the yearly simu-
lations presented later as a global thermal indicator.

Therefore, two kinds of comfort criteria are used is the sequel to evaluate the
closed performances of the deigned controllers. The first one should be seen as a
quality of control criterion. Basically, the integral of constraints violation on tempera-

3see [ASHRAE55 2004] for a precise definition and [Jung 2009] for some discussions on the usage of
this thermal comfort indicator for regulation purposes.
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ture is computed over the whole simulation time. Namely, one defines the Thermal
Constraint Violation (TCV) [oC· h] by:

TCV :=
1

60

(∑
k

max(Tk − T k, 0)−
∑
k

min(Tk − T k, 0)

)
(4.2.1)

where T , T are respectively upper and lower bounds on indoor temperature.

As discussed before, this criterion does not actually provide a real estimation of
thermal comfort. Therefore, for yearly simulations, a global thermal comfort (GTC
[%]), which is the most critical indicator4, is defined based on PMV/PPD measures.
Even if such measure is in real-life quite complex to perform, assumption is made
on the availability of the whole parameters involved in. This provides a comparison
base-line during the assessment of the several control strategies (and their variants)
designed in the scope of the HOMES program. Basically GTC [%] represents the frac-
tion of time spent in comfort conditions during the whole year and is defined by:

GTC [%] :=
card{k|PPDk ≤ PPD ∧Occk 6= 0}

card{k|Occk 6= 0}
:=

comfort time
occupation time

(4.2.2)

where PPDk is the PPD computed as instant k and the threshold on the PPD value
(here PPD = 15%) is considered to reflect a reasonable comfort degradation.

4.3 The Control Problem

In this section, the control problem is formulated. As discussed in chapter 3, the
identification of a structured model involving the key zone quantities leads to the
following bilinear state space representation : x+ = A · x+

[
B(y, w)

]
· u+ F · w

y = C · x+D(w) · u
(4.3.1)

Let us also introduce the simulator form of (4.3.1) denoted Z and defined by:

yk := Z(uk,wk, xk) (4.3.2)

which simply means that the output trajectory yk is obtained when the zone starts
from initial state xk and submitted to the input and disturbance trajectories uk and
wk.

4when compared to indoor air quality and indoor illuminance in usual conditions
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Assumption 4.1. The following quantities are available:

• The current state xk of the system model (obtained via dynamic observer, this is detailed
further in section 4.5),

• The predicted utility cost Γ corresponding to each power source,

• The prediction of the exogenous inputs profile wk (outdoor temperature, solar irradia-
tion, occupancy, etc. ),

• The comfort related bounds profiles y
k

and yk which are implicitly given by the predic-
tion on occupancy Occk.

♦

Moreover, assume that power consumption of electrical equipment is linear in u

and define the total instantaneous power consumption of the zone pk by:

pk = E · uk ∈ R (4.3.3)

where the matrix E ∈ R1×nu gathers the maximal power consumption of all equip-
ment:

E :=
[
αh αv αl 0 . . . 0

]
(4.3.4)

where αh, αv and αl stand respectively for maximal power associated to electrical
heating and ventilation system and lighting.

Hence, the power profile consumption over the prediction horizon of length N

(resulting from all the actuators) is given by:

pk = E · uk, pk ∈ RN (4.3.5)

with:
E := IN ⊗ E (4.3.6)

Adding saturations on inputs ( uk ∈ [0, 1]nu), the NMPC-related optimization prob-
lem at instant k becomes:

Optimization Problem 4.1. Zone optimization problem

u?k = Argmin
0≤u≤1

JE(Γk,pk) + JC(yk) + JD(uk) + JF (Π(N−1)(yk)) (4.3.7)

Subject to:

pk = E · uk (4.3.8)

yk = Z(uk,wk, xk) (4.3.9)
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where:

• JE corresponds to the integral energy criterion over the horizon and is defined
as follows :

JE(Γk,pk) = (ΓT
k · E)T · uk (4.3.10)

It depends on the consumed power profile p and the utility cost Γ. Note that JE

is affine in uk,

• JC(yk) is the discomfort criterion and depends only the outputs yk. As it has
been discussed in section 4.2, the discomfort function enforces the output to be-
long to the comfort region. Obviously, comfort is only required when occupants
are present (figure 4.2). The function JC is parametrized via the two positive
scalars ρ0, ρ1 and δy ∈ Rny ·N (see figure 4.3) to introduce some smoothness if a
constraint violation cannot be avoided.

• JD(uk) represents the cost on rate variations of actuators:

JD(uk) = 〈∆, |Π0(uk)− uk−1|〉+

j=N∑
j=1

〈
∆,
∣∣Πj(uk)− Π(j−1)(uk)

∣∣〉 (4.3.11)

Recall that Πj(uk) selects the jth component in the predicted profile uk. | · | is the
element-wise absolute value.

Note, that it is mandatory to keep a memory, from one sampling time to the next
one, of the last applied control uk−1. The parameter ∆ ∈ Rnu (∆ ≥ 0) is a design
parameter. Indeed, the objective of introducing JD is twofold:

(a) Ensuring the uniqueness of the solution of the optimization problem (4.1),

(b) Avoiding excessive variations of the control inputs u, as it is the case with
LP formulation (compared to QP formulations).

• JF (Π(N−1)(yk)) is the final cost. It indicates here the fact that at the end of the
prediction horizon the comfort of the zone should be provided (the zone is as-
sumed always occupied at the end of the horizon).

Remark 4.1.
In practice, ∆ is chosen so that JD remains relatively small compared to JE , for the well
known reasons presented in [Rao & Rawlings 2000]. Actually, if ‖∆‖ is too large an idle
control may results (the control input remains constant). If ‖∆‖ → 0 a dead-beat control may
appear. ♦
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Remark 4.2.

a. The variables ρ0 and ρ1 (figure 4.3) can be used as tuning parameters to trade-off energy
(JE) and comfort (JC) (see [Moroşan et al. 2010a]). In this work, they are chosen large
enough to focus on comfort. Therefore, the introduction of the discomfort function should
be seen a "soft-constrained" formulation of the problem in which comfort violation is never
permitted (ρ0 = ρ1 = ∞). In this last situation, the optimization problem (4.1) may be
infeasible.

b. Note that the comfort related bounds are not necessarily infinite during vacancy hours.
This is related to the fact that, upper and lower bounds on temperature have to be respected
during vacancy hours, this to meet standard requirements [EN15251 2005] (see figure 4.2).

c. Anti glare and noise reduction are also integrated for comfort requirements. They are in-
tegrated as hard constraints on inputs during occupancy periods. Nevertheless, they are
intentionally omitted in formulations for the sake of simplicity.

Anti-glare:

(φig > φ ∧ occ 6= 0)⇒ uib = 0

φig is the global solar irradiance of the facade i. Which simply means that the blind on facade
i is fully closed if the global irradiance on the corresponding facade is larger then a predifine
threshold φ.

Noise reduction:

occ 6= 0⇒ uv ≤ 0.5

meaning that ventilation is reduced during occupancy period to reduce the noise resulting
from air circulation in ducts.

♦
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Figure 4.2 Comfort-related bounds on comfort parameters with respect to
predicted occupancy profile.

ρ1

y

ρ0

y

δy δy

ρ0 < ρ1

JC(y)

Comfort region

y

Figure 4.3 Discomfort function used in the optimization problem 4.1: The
discomfort function is parametrized by ρ0, ρ1 and δy which represents a
reasonable bound violation.

One can see that the zone optimization problem 4.1 can be expressed on the fol-
lowing form:
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Optimization Problem 4.2. Nonlinear optimization problem

NLPk: Minimize
uk,δ0,δ1,δd,yk

J(uk,yk,Γk) (4.3.12a)

Subject To :

[Φ(yk,wk)]uk + δ−0 + δ−1 ≥ y
k
−Ψxk − Ξwk (4.3.12b)

[Φ(yk,wk)]uk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (4.3.12c)

D · uk − δ+d + δ−d = a (4.3.12d)

0 ≤ uk ≤ 1 (4.3.12e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(4.3.12f)

yk = Z(uk,wk, xk) (4.3.12g)

where:

• δ0 :=

[
δ+0

δ−0

]
∈ R2·N ·ny , δ1 :=

[
δ+1

δ−1

]
∈ R2·N ·ny are slack variables introduced in

order to describe the function JC(y) (figure 4.3);

• δd :=

[
δ+d

δ−d

]
∈ R2·N ·nu are slack variables introduced to describe the function

JD(y);

• The notations 1 and 0 indicate vectors (or matrices) of ones and zeros respec-
tively with appropriate sizes if not indicated,

• Φ(yk,wk) ,Ψ and Ξ are the prediction matrices, they are defined as follows:

Ψ :=



C

CA

CA2

·
CAN−1


, Φ(yk,wk) :=



Dk 0 · 0

CBk Dk+1 · ·
CABk CBk+1 · ·
· · · 0

CAN−2Bk CAN−3Bk+1 · Dk+N−1


(4.3.13)

where Bk := B(yk, wk) and Dk := D(wk).

• The matrices D and a are defined as follows:
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D :=



Inu 0 0 . . . . . . 0

Inu −Inu 0 . . . . . . 0

0 Inu −Inu . . . . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 0 Inu −Inu


, a :=



uk−1

0

0

. . .

0


, (4.3.14)

Defining the decision variables z so that it gathers all the decision variables in-
volved in the optimization problem, namely :

z :=
[
uTk δT0 δT1 δTd

]T
(4.3.15)

one can see that the optimization problem 4.2 is a nonlinear optimization problem
of the form :

Optimization Problem 4.3.
Minimize
z≤z≤z,yk

L · z (4.3.16)

Subject To:

A(yk) · z ≤ b (4.3.17)

yk = Z(uk,wk, xk) (4.3.18)

The matrices L,A(y),b, z, z are defined in appendix B.

The presence of product terms between the variables y and z prevents the op-
timization problem (4.2) from being an LP. Actually, this problem is a non-convex
optimization problem that could be difficult to solve. In the next section a sequential
optimization procedure is presented in order to deal with this issue.

Remark 4.3.
In the optimization problem 4.3, the matrix A is assumed to depend only on the output trajec-
tory yk given that at a decision instant k, the disturbance trajectory wk is given. ♦

4.4 Solving the optimization problem

In this section, the algorithm used to solve the optimization problem 4.3 is presented.
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4.4. Solving the optimization problem

4.4.1 Fixed-point algorithm

As discussed before, the major difficulty in solving the optimization problem 4.2 lies
in the presence of product terms of the form u · y in the inequalities (4.3.12b) and
(4.3.12c). To tackle this issue, an iterative procedure is proposed hereafter.

Assume that, at any iteration s, of the procedure an output trajectory y
(s)
k is given

a priori. Therefore, one can form the following fictitious Linear Time Varying system:

LTV(s) :

 x+ = A · x+
[
B(y(s), w)

]
· u+ F · w

y = C · x+D(w) · u
(4.4.1)

and subsequently the following linear programming problem LP(s)
k , in which the

output trajectory y is no longer a decision variable, can be defined:

Optimization Problem 4.4. Linear programming

Minimize
z≤z≤z

L · z s.t : A(y
(s)
k ) · z ≤ b (4.4.2)

The solution of the optimization problem 4.4 gives the optimal control sequence
u
(s)
k :

u
(s)
k ← LP(s)

k (4.4.3)

u
(s)
k is the optimal control sequence related to the LTV system (4.4.1) but not to the

original system (4.3.1). Nevertheless, assume now that the control sequence u
(s)
k is

injected in the nonlinear system, namely:

y
(s+1)
k = Z(u

(s)
k ,wk, xk) (4.4.4)

where Z is the simulator form of the zone (see eq. (4.3.2)). Therefore the output
trajectory y

(s+1)
k can be used to form the fictitious system LTV(s+1) and so on.

The fixed point algorithm consists of successively repeating these two steps until
a convergence of the solution is achieved. This leads to algorithm 4.1.
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Algorithm 4.1 Fixed-point algorithm
1: s← 1

2: u
(0)
k ← [Π1(u

?
k−1)

T , . . . ,Π(N−1)(u
?
k−1)

T ,Π(N−1)(u
?
k−1)

T ]T . Warm start
3: y

(1)
k ← Z(u

(0)
k ,wk, xk)

4: e(0) ←∞
5: while e(s−1) ≥ η and s ≤ smax do
6: u

(s)
k ← LP(s)

k

7: y
(s+1)
k = Z(u

(s)
k ,wk, xk)

8: e(s) ←Max(‖y(s+1)
k − y

(s)
k ‖∞, ‖u

(s+1)
k − u

(s)
k ‖∞)

9: s← s+ 1

10: end while
11: u?k ← u

(s−1)
k

where: η > 0 is a small threshold and smax is the maximal number of iterations
allowed. The step (2:) of the algorithm is the warm-start strategy, it consists of initial-
izing the optimal control profile with the one found at last iteration with the conve-
nient shifting. A convergence analysis as well as a computational study are provided
in section 4.6.

Remark 4.4.
The fixed point algorithm can be seen as a form of Sequential Linear Programming (SLP) (a
well known optimization technique proposed in the early sixties [Griffith & Stewart 1961]).
In fact, the algorithm 4.1 consists of successively approximating the nonlinear optimization
problem 4.3 by the linear one 4.4 which is the basic idea in SLP. The main difference between
a standard SLP procedure and the algorithm 4.1 lies in the fact that the output trajectory y

is not part of the set of decision variables of the LP 4.4. Instead, the simulation step (7:) is
used to update it from one iteration to next one. In standard SLP procedures, this step is
non-existent as it is compensated by the fact that the output trajectory y is included in the set
of decision variables. The constraints of the optimization problem 4.2 are linearized at each
step around a trajectory (u

(s)
k ,y

(s)
k ). This has the effect however of enlarging the number of

decision variables, which is not the case in algorithm 4.1. ♦

4.5 State and disturbance estimation

In order to deal with unpredicted disturbances as well as model mismatch, it is essen-
tial to design some state observer able on one hand to estimate the state x ∈ Rnx of
the system as well as some modeling errors here aggregated and modeled as fluxes,
as explained in the present section.
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4.5. State and disturbance estimation

4.5.1 Model extension

Let us consider the following state space representation, where the disturbance vec-
tor d ∈ Rnd has been introduced in order to model any error on the system. The
disturbance vector d gathers, heat flux, CO2 flux and light flux:

d =


dTh

dC

dL

 ∈ R3 (4.5.1)

{
x+ = A · x+ [B(y, w)] · u+ F · w + Fd · d
y = C · x+D(w) · u+Dd · d

(4.5.2)

The components of the disturbance vector d ∈ R3 are respectively analogous to:

] dTh [W] is analogous to a heat flux,

] dC [-] is analogous to a CO2 production of one occupant with no heat emission,

] dL [lux] is analogous to a lighting system with no heat emission.

They are intended to model the errors resulting from:

• Unmeasured disturbances: measurements are assumed available only for local
comfort parameters (temperature, CO2, illuminance) and weather conditions.
Thus, the exact number of occupants as well as internal heat gains (resulting for
instance from appliances) are unknown.

• Heat exchange between zones: which is both due to heat conduction (walls)
and air exchange between zones. Notice that, from the zone perspective, the
adjacent zone temperatures are unknown. Moreover, air exchanges between
zones are unknown.

• Model mismatch resulting from identification errors and the non modeled phe-
nomena cited above.

• Measurement errors : essentially corrupting the measurements on outdoor con-
ditions since the outdoor conditions (outdoor temperature and external irradi-
ance) are generally provided by the nearest weather station and therefore do not
reflect exactly the weather conditions on site.
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Starting from the assumption that the disturbance d has a slow dynamic. One can
consider the simplistic disturbance model (constant dynamic) which is intended to
describe the disturbance dynamics:

d+ = d (4.5.3)

one can easily deduce, according to (4.5.3) and (4.5.2), the extended system
by forming the matrices Aobs ∈ R(nx+nd)×(nx+nd), Bobs(y, w) ∈ R(nx+nd)×nu , F obs ∈
R(nx+nd)×nw , Cobs ∈ Rny×(nx+nd) and Dobs(w) ∈ Rny×nu . This leads to the following
state space representation :



(
x

d

)+

=

[
A Fd

0 I

]
︸ ︷︷ ︸

Aobs

·

(
x

d

)
+

[
B(y, w)

0

]
︸ ︷︷ ︸
Bobs(y,w)

·u+

[
F

0

]
︸︷︷︸
F obs

·w

y =
[
C Dd

]
︸ ︷︷ ︸

Cobs

·

(
x

d

)
+
[
D(w)

]
︸ ︷︷ ︸
Dobs(w)

·u

(4.5.4)

In fact, it can be checked that the pair (Aobs, Cobs) is observable. Therefore, one
can easily design a state observer which is capable of estimating on-line the state
and the disturbance acting on the system. Hence, a classical Kalman observer has
been designed to this end. The estimation of state vector x and the disturbance d are
abusively denoted x, d in the sequel (no distinction is made between estimated and
real values).

4.5.2 Disturbance prediction

In the previous section, the extended model (4.5.4) has been used in order to design
a state observer to recover the state variables x as well as the disturbance vector d.
Here, the use of these disturbance by the control algorithm is described. Basically, a
prediction mechanism of these disturbance is presented.

The most common way to treat this issue consists of extrapolating the current
observed value of d over the whole prediction horizon. This is mainly performed
to ensure an off-set free control. Namely, given an estimation d̂ of the disturbance
acting on the zone, one would simply use as prediction model for the disturbance the
model (4.5.3) in order to build d :

Πj(dk) = dk,∀j = 0, . . . , N − 1 (4.5.5)
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Figure 4.4 Estimated disturbances on two weeks. Note the periodicity of the
disturbances. The flat parts (dTh and dC) correspond to week-ends. The
other parts correspond to occupied periods. The daily shape of estimated
heat flux is due to occupants and equipment heat production, as well as
heat exchanges between zones.

However, an inspection of simulation results5 (see figure 4.4) reveals a certain pe-
riodicity of the estimated disturbances d (particularly dTh and dC), which represent
respectively the unmodeled heat and CO2 fluxes observed in the zone.

This result is quite simple to interpret given the investigated kind of buildings.
Indeed, in tertiary buildings, occupancy as well as activity are somehow repetitive.
Moreover, as the zones follow approximately the same temperatures -for the same
reasons-, it is quite evident that the resulting estimated fluxes exhibit the periodicity
shown on figure 4.4.

As a result, one can propose the following prediction model of the disturbance
over the whole prediction horizon:

∀j = 0, . . . , N − 1

Πj(dk) = dk ·G(j) + Πmod(k+j,Nd)(d̃
(t)) · (1−G(j)) (4.5.6a)

where the function G is a Gaussian function:

5In this simulations the designed MPC algorithm has been used. Nevertheless, for the sake of
explanations the estimated disturbances are presented first in this section.
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G(j) = e−αp·j2 (4.5.7)

with:
d̃(t+1) = αd · d̃(t) + (1− αd) · d̃(t−1) (4.5.8)

where:

• Nd corresponds to 24 hours (Nd = 24 · 60), it designates the period over which
the disturbance has been recorded,

• t is the current day,

• 0 < αp is a tuning parameter enabling to consider that the observed disturbance
will remain constant over a more or less long period of time, which is necessary
to ensure a good disturbance rejection, ((αp = 0)⇒ (Πj(dk) = dk, j = 1, . . . , N))
and then starts behaving like the averaged disturbance observed during the last
days d̃(t).

• The parameter αd here designates the update coefficient of d̃(t) from the day t to
the day t+ 1.

Figure 4.5 illustrates the prediction principle.

Figure 4.5 Disturbance prediction principle. The predicted disturbance is
based on the current estimation of the disturbance provided by the state
observer (d) (see the extended system (4.5.4)) as well as past observed dis-
turbances during previous days d̃(1).
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Figure 4.6 presents a yearly comparison between the mean prediction errors ob-
tained by using the prediction mechanism (red curve) presented here and a simple
extrapolation of the current value (blue curve) (see (4.5.5)) for dTh (predictions errors
on dC and dL exhibit quite similar behaviors as it can be seen in appendix C). Here, the
prediction error designates the mean error between the prediction and the real distur-
bance over the whole prediction horizon. Figure 4.6 presents the results obtained for
αp = 10−4 and αd = 0.8 for a prediction horizon of 24 hours.

Figure 4.6 Prediction errors comparison between the proposed prediction
mechanism (red). In blue: employing the current observed value over the
whole prediction horizon(d+ = d). One can note that prediction is im-
proved.

The estimated disturbances over a year are presented in appendix D.

4.6 Convergence analysis

Even if no formal proof of convergence of the algorithm 4.1 is provided, a set of simu-
lations is performed in this part. Figure 4.7 shows the evolution of the error e(s) start-
ing from 100 random initial guesses on input trajectory profiles (u(0)

k ). One clearly sees
that e(s) := Max(‖y(s+1)

k − y
(s)
k ‖∞, ‖u

(s+1)
k − u

(s)
k ‖∞) decreases very quickly, even when

starting from very unrealistic initial guesses. It is important to recall that a warm start
(starting from last solution with convenient shifting) is crucial: using a reasonable
tolerance η, convergence is achieved generally in one or two iterations.
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Figure 4.7 Fixed-point algorithm convergence. Evolution of the error e(s)
for 100 randomly generated initial guesses u

(0)
k . The threshold parameter

η = 10−4. One can see that even when starting from quite unrealistic pro-
files, the algorithm always converges. Moreover, the error decreases mono-
tonically.
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4.7 Input Parametrization and Output checking

N
par
u

k

N
par
y

yk

uk+Nsuk

Ns

yk+Ns

N

N

k+Ns

Figure 4.8 Piece-wise constant parametrization of the predicted control pro-
file and undersampling of the optimal predicted output.

It is well known that the computational burden due to the resolution of LP(s)
k (yk)

(opt. problem 4.4) is tightly linked to the number of constraints and decision variables
involved in.

Since the problem (5.4.11) is high dimensional (a sampling period τ = 1min and a
prediction horizon length N corresponding to many hours), it is crucial to reduce its
size.

In order to reduce the number of decision variables on inputs, a common strategy
consists of parametrizing the optimal control sequence uk. Basically, instead of look-
ing for arbitrary optimal input profiles uk, one restricts the set of admissible optimal
solutions to those remaining constant per period of Npar

u (see figure 4.8). Namely, the

new decision variables ϑk ∈ R
N

N
par
u
·nu is introduced such that:

uk = PNpar
u
· ϑk (4.7.1)

where the input parametrization matrix PNpar
u
∈ R

N ·nu× N

N
par
u
·nu is defined as follows:
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PNpar
u

:= I N

N
par
u

⊗ [1Npar
u ×1 ⊗ Inu ] (4.7.2)

Moreover, the predicted output profile is under-sampled. This means that the pre-
dicted output profile yk is checked each Npar

y samples, see figure 4.8. The parameter
Ns is the refreshing period, it means that the control is updated each Ns time steps.
Notice that Ns is in general smaller than Npar

u , therefore let us highlight that a Npar
u

piece-wise constant profile does not mean that the closed-loop control profile is con-
stant per period of Npar

u . Actually the input profile is constant per period of Ns, see
figure 4.8.

More formally, instead of solving the optimization problem 4.4, the following re-
duced optimization problem is considered:

Optimization Problem 4.5.
LPred: Minimize

ϑk,δ0,δ1,δd
J(PNpar

u
· ϑk,yk,Γk) (4.7.3a)

Subject To :

CNpar
y
· [Φ(y

(s)
k ,wk)] · PNpar

u
· ϑk + δ−0 + δ−1 ≥ y

k
−Ψxk − Ξwk (4.7.3b)

CNpar
y
· [Φ(y

(s)
k ,wk)] · PNpar

u
· ϑk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (4.7.3c)

D · PNpar
u
· ϑk − δ+d + δ−d = a′ (4.7.3d)

0 ≤ ϑk ≤ 1 (4.7.3e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(4.7.3f)

where a′ and CNpar
y

are given by:

a′ := [uTk−1,01×N−1

N
par
u
·nu

]T (4.7.4)

The output selection matrix CNpar
y

is given by:

CNpar
y

:=


[
0ny×Ns·ny Iny 0ny×(N−Ns−1)·ny

][
I N

N
par
y

⊗
[
0ny×(Npar

y −1)·ny
Iny

]]
 ∈ R

ny ·( N

N
par
y

+1)×N ·ny

(4.7.5)

Notice that CNpar
y

selects in the output trajectory yk the outputs which correspond
to instants k+N

par
y −1, . . . , k+ 2 ·Npar

y −1, . . . , k+N −1, but also the output at instant
k + Ns. This is to enforce the output of the system to belong to the desired domain
at the next decision instant (yk+Ns ∈ [y

k+Ns
, yk+Ns

]). Otherwise, the output of system
could never reach the desired domain.
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Remark 4.5.
Notice that the matrices PNpar

u
, CNpar

y
and [Φ(y

(s)
k ,wk)] are actually never computed on this

form. Instead, to render the code efficient, one should note that the parametrization matrix
PNpar

u
simply sums successive blocks of columns (of width nu) of the matrix [Φ(y

(s)
k ,wk)].

Then the matrix CNpar
y

selects the outputs corresponding to instants k + N
par
y − 1, . . . , k + 2 ·

N
par
y −1, . . . , k+N −1. Furthermore, only those rows of the matrix at which some constraint

prevails are computed. Hence, the problem 4.5 is actually size-varying over time. This, to
render the code more efficient (faster) and to avoid excessive memory usage due to the full
computation of the matrix [Φ(y

(s)
k ,wk)]. ♦

4.8 Computational study

In this section, a computational study of the predictive control algorithm 4.1 is pro-
vided.

Impact of parametrization on computational burden and performances

Here, the objective is to study the computational impact of the parameters Npar
u and

N
par
y involved in the parametrization scheme presented in section 4.7. It goes without

saying that the more Npar
u and N

par
y are large (here taken equal for simplicity), the

lower the computational burden is. This is clear on figure 4.9. Actually, one may note
that for large prediction horizons, the computational time may become prohibitive if
no parametrization is implemented (10 [s]).

Nevertheless, one should also note that larger Npar
u and N

par
y induce also a de-

crease of performance (see table 4.1) for obvious reasons (here the simulations have
been performed on the first zone of the building). In this monthly simulation, a pa-
rameter Npar

u = 20 provides nearly the same results as Npar
u = 5, while increasing this

parameter to Npar
u = 60 gives 10% of additional energy consumption and an increase

of 102% of TCV (Thermal Constraint Violation).

Actually, this is to illustrate the trade-off between better performance and larger
computational burden. Furthermore, for the real-time implementation, the hardware
characteristics provide an upper bound on the computational burden which enables
to choose adequately the parameters Npar

u and N
par
y

6.

Here, a good compromise was to use a prediction horizon of 12[h] (N = 720) with
a parametrization N

par
u = N

par
y = 20[min]. Since, as it can be seen on table 4.1-(a),

6Indeed, the computational time obtained on the desktop computer used for these simulations is
≈1000× lower than the one obtained on a Roombox (discussed in section 4.11)
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Figure 4.9 Computational time vs. N
par
u for increasing horizon lengths

(Npar
u = N

par
y ). Note that the computational burden obviously decreases

with increasingNpar
u . However this leads to a loss in performance (see table

4.1, page 71), illustrating the trade-off between performance and computa-
tional burden.

it actually provides the same results as those for Npar
u = N

par
y = 5 with a reasonable

computational time.

Evolution of the computational-time in closed-loop

The computation time observed during two weeks is provided. This computational
time is extremely low (an average of 14 [ms]) compared to the system dynamics (re-
call that the parametrization used here is Npar

u = N
par
y = 20 for N = 720). One can also

mention that most of the time is spent in problem preparation (i.e: computation of Φ,
see eq. (4.3.13)), the figure 4.10 shows the evolution of computation time. The period-
icity of the computational time is due to the fact that the more important is the number
of constraints on outputs (which are linked to predicted occupancy of the zone), the
more computational effort is needed to build-up the matrix Φ(·) and to solve the prob-
lem 4.5. Moreover, the only rows of Φ(·) which are computed are those corresponding
to outputs where a constraint prevail and the zone is occupied (see remark 4.5). This
explains the periodicity of the computation time (the flat parts correspond to decision
instants in which the major prediction horizon includes week-ends and therefore no
output constraint is introduced on CO2 and indoor illuminance). Note also that the
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N
par
u Invoice(e) Invoice increase [%] TCV? [oC·h] TCV increase [%]

5 36.55 + 1.90 % 0.177 0 %
10 35.87 + 0 % 0.183 + 3.39%
20 36.96 + 3.04 % 0.190 + 7.34%
30 37.82 + 5.44 % 0.188 + 6.21%
60 39.61 + 10.43 % 0.359 + 102.82 %
120 42.72 + 19.10 % 0.377 + 112.99 %

(a): N=720 (12H)

N
par
u Invoice(e) Invoice increase [%] TCV? [oC·h] TCV increase [%]

5 35.13 +1.20 0.169 +2.83 %
10 34.71 +0 % 0.165 + 0 %
20 35.32 +1.76 % 0.172 + 4.44 %
30 36.30 +4.59 % 0.175 + 6.36 %
60 37.70 +8.60 % 0.306 + 85.67 %
120 38.92 +12.11 % 0.400 + 142.28 %

(b): N=1440 (24H)

Table 4.1 Impact of parametrization on closed-loop performances (N=720)
and (N=1440). Note that the minimal energy cost is achieved for Npar

u =

10 and the best comfort is achieved for Npar
u = 5, even if the differences

are quite insignificant. Similar remarks can be made when N=1440. (here
N

par
y = N

par
u . ?TCV: Thermal comfort violation)

allowed number of iterations is set to only one in this case. The same kind of results
has been observed on the 20 zones composing the building (see appendix E).
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Figure 4.10 Computational time evolution (N = 720, Npar
u = 20, Npar

y = 20).
Note the clear periodicity of the computational time. Indeed, the high com-
putational times (19 [ms]) correspond to decision instants at which occu-
pancy takes a large part of the prediction horizon leading to more con-
straints in the optimization problem (see remark 4.5). Results obtained on
an Intelr Xeonr @ 2.67 GHz, 3.48 Go RAM. ILOG CPLEX 12.1 is used to
solve the linear programming problems.

4.9 Simulations - some investigations

In this section, some simulation results regarding only one zone of the building are
provided to illustrate the main features of the proposed controller. Then, a yearly sim-
ulation is performed on a complete building in the next section to assess the proposed
controller. The investigations that have been conducted are the following ones:

• Zone MPC validation, in subsection 4.9.1,

• Dealing with variable energy prices, in subsection 4.9.2,

• Impact of prediction horizon length, in subsection 4.9.3,

• Introducing uncertainty, in subsection 4.9.4,
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4.9.1 Zone MPC validation

This first simulation aims to illustrate the behavior of the proposed controller, and
concerns a unique zone of the building (here zone # 1 simulated on 48[h], figure 4.11).
The objective here is to minimize energy consumption. Notice that the controller en-
ables to ensure comfort by respecting the prescribed bounds. Here, an optimal start
is implemented each day. Notice also, that lighting is used as a heat complement
during the optimal-start period. Remark also that blinds are closed during night
(UbW1 = UbN1 = 0) to ensure less heat losses and opened during day to introduce
heat as well as natural light(solar). Remark also, that the management of the west
blind is different from the one on the north façade. This is due to the fact that no solar
irradiance exists on the west façade during morning. Therefore, the blind remains
closed to ensure less heat losses.

Figure 4.11 Zone model predictive controller validation - illustrative behav-
ior in an office. Note that temperature bounds, CO2 and lighting bounds
are respected.
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4.9.2 Dealing with variable energy prices

As mentioned before, dealing with variable energy prices is one of the most inter-
esting features when using MPC. Here, a study is performed on two different zones
provided as illustrations. The objective is to study the benefit of taking into account
price signals. Namely, one considers the price signal depicted on figure 4.12, where βp
designates a multiplicative coefficient between off-peak period electricity price (γoff)
and on-peak period electricity price (γon = βp · γoff). For βp fixed, MPC is used to min-
imize the energy invoice. The invoice is then compared to invoice if one minimizes
energy instead.

Figure 4.12 On-peak/ Off-peak electricity price. parametrized by βp > 1.

Results of two zones are provided on figure 4.13. The first sub-plot corresponds
to the invoice when minimizing energy (blue) when applying the price signal (figure
4.12) and when minimizing electricity cost (green), the second sub-plot corresponds
to the relative differences and third one to the corresponding optimal temperature
trajectories for each value of βp. (when βp = 1⇒ energy minimization).

It can be noticed that the more βp is large, the more important becomes the inclu-
sion of the price signal during the heating scheduling, which is quite evident. No-
tice however, that the corresponding temperature profiles between the two zones are
rather different.
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(a) zone # 1 (b) zone # 2

Figure 4.13 Invoice minimization for different values of βp. The first sub-
plot corresponds to the invoices obtained for different values of βp (opti-
mal) and the corresponding invoice if minimizing energy. The last sub-plot
corresponds to the optimal temperature trajectories.

Note that, for the first zone (zone # 1) when βp = 2, minimizing energy instead
of minimizing invoice results in an increase of ≈ 5% in the total invoice while in the
zone # 2 this results in an increase of ≈ 25%. The zones are submitted exactly to
the same outdoor conditions. Furthermore, notice that the temperature trajectories
followed by the zones are different in the two cases and moreover, note that it could
be difficult, even in this simple situation to design some rule able to deal with this
case. Furthermore, notice on figure 4.14, the same simulation is performed, but with a
different heating system (heaters are half dimensioned), the results are also different.
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Figure 4.14 Invoice minimization for different values of βp with the same
zones but with a different heater dimensioning (heaters powers is reduced
by 50 %). The first sub-plot corresponds to the invoices obtained for dif-
ferent values of βp (optimal) and the corresponding invoice if minimizing
energy. The last sub-plot corresponds to the optimal temperature trajecto-
ries.

4.9.3 Impact of prediction horizon length

Taking two zones of the building, let us now study the impact of the prediction hori-
zon on the performances of the scheme (figure 4.15). Here a weekly simulation on
two zones has been performed. In this case, notice that the prediction horizon length
has a significant impact on the performance of scheme.

Indeed, for the first zone, small horizon lengths leads to impossibility to provide
comfort. Furthermore, an increase of the horizon length produces a significant de-
crease in the invoice (≈13%). For the second zone, the invoice decreases also signifi-
cantly (≈21%) but comfort is always provided.

Nevertheless, one clearly sees that the larger the horizon is, the better the perfor-
mances are until a 24 [h] prediction horizon length over which no improvement is
possible.
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(a) Zone # 1 (b) Zone # 10

Figure 4.15 Impact of horizon length on performances for two zones in a
building. Notice that sensitivity of the zones regarding horizon length is
sensibly different. For the first zone small horizon lengths lead to discom-
fort while for the second, this only reduces energy usage.

4.9.4 Introducing uncertainty

It is worth underlining that within the MPC framework, it is crucial to take into ac-
count uncertainties on predictions during the assessment of this control strategy, since
predictions are directly integrated in the process of decision making. This is the reason
why we propose to study the effect of uncertainties related to weather and occupancy.

It is difficult to model exactly the errors introduced by meteorological forecast
services. Therefore, let us assume that a meteorological forecast service (with in situ
correction feature7) can be modeled by:

wk = α ·wP
k + (1− α) ·wF

k (4.9.1)

where:

• wP
k is the perfect prediction profile, wF

k is the prediction given by the nd-bin
predictor defined hereafter by (4.9.2),

• α ∈ [0, 1] defines the quality of weather forecast. Indeed, it is used to weight the
perfect prediction and the false one. This way, we can easily control the error on
forecast (if α = 1 the weather is perfectly known).

• The nd-bin predictor that we use is a slightly modified version of the one given
by [Henze et al. 2004], namely:

7The current weather forecast is corrected based on in situ measurements
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Figure 4.16 Mean error distribution on outdoor temperature forecast service
for different values of α for a prediction horizon of 12[h].

Πj(w
F
k ) :=

1

nd

d=nd∑
d=1

w(k+j−24·60·nd) +

(
wk −

1

nd

d=nd∑
d=1

w(k−24·60·d)

)
(4.9.2)

This simply means that the predicted temperature for the next 24hours is
the mean temperature profiles observed on the nd previous days and ad-
justed to fit the current measured temperature (this explains the term wk −
1
nd

∑d=nd

d=1 w(k−24·60·d)). Remark that the first temperature is always perfectly
known.

This procedure is used for the prediction of outdoor temperature. Figure 4.16
shows the mean error distribution with a 20-bin predictor (prediction horizon of
12[h]) for Trappes (near Paris) weather station for one year. It is interesting to notice
that the proposed simple model (4.9.1) gives unbiased predictions with Gaussian-like
error distribution.

We propose in this section some simulations performed on a simple case study.
The zone in consideration is a 20 m2 office and has two facades (west and south),
each of them has a window equipped with blinds. The controlled actuators consist
of a heater (uh), a mechanical ventilation (uv), a lighting system (ul) and two blinds
ub1, ub2. Their respective power consumptions are (1.5, .15, .5, 0, 0) [kW ].

The nominal number of occupants isNocc = 3. MPC prediction horizon is 24 hours
and a new optimal solution is computed each five minutes. The energy rate is two
times higher between 6a.m and 10p.m (Fig. 4.17).
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α 0 .5 1
Invoice (e) 10.17 9.88 9.78

% 104% 101% 100 %

Table 4.2 Energy invoice for different values of α. Note in this case that the
most uncertain weather predictions induce an increase of 4 % compared to
the ideal case (no error on forecast).

Figure 4.17 Simulation results for α = {0, 0.5, 1} with perfectly known oc-
cupation profile. Remark that uncertainties on predictions mainly induce a
bad estimation of the heating optimal start time (top-left). Comfort bounds
are always respected.

Perfectly known occupation

In this first simulation, only uncertainties on weather conditions are introduced. This
leads to the results depicted on fig. 4.17. Simulations for 3 values of α has been con-
ducted (0, 0.5 ,1). Unsurprisingly, degradation of weather forecast quality generates
an increase of the invoice (table 4.2). In this case study, a maximum of 4% of increase
(corresponding to α = 0) has been noted. Let us notice that, independently of the
energy invoice, comfort is maintained since temperature, CO2 level and indoor illu-
minance are kept within their respective prescribed bounds (red and cyan).
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Figure 4.18 Presence probability (blue) and corresponding generated
stochastic occupancy profile (green).

Occupancy Modeling

It is well known that occupancy presence has a great impact on energy consumption
[Mahdavi & Pröglhöf 2009]. Therefore, it is necessary to inject more realistic occupa-
tion profiles that may reveal unobserved behaviors with classical occupation sched-
ules. In order to enrich the occupancy profiles, the following Markov chain based
model is used to describe the presence of each occupant in a given zone. This model
has been proposed in [Page 2007] and is defined by its transition matrix T (k):

T (k) =

[
T00(k) T01(k)

T10(k) T11(k)

]
(4.9.3)

where {Tij(k)}(i,j)∈{0,1}2 are time dependent transition probabilities of the
Markov chain describing the presence/absence of the occupant in the zone (0:ab-
sent,1:present), and are given by:

T01(k) =
µ− 1

µ+ 1
· P (k) + P (k + 1) (4.9.4a)

T11(k) =
P (k)− 1

P (k)
· [µ− 1

µ+ 1
· P (k) + P (k + 1)] +

P (k + 1)

P (k)
(4.9.4b)

T00(k) = 1− T01(k) (4.9.4c)

T10(k) = 1− T11(k) (4.9.4d)

where µ is the parameter of mobility and is used to adjust the moving frequency of
the occupant. P (k) is the presence probability of the occupant in the zone. Given
a nominal number of occupants in each zone Nocc, one can define for each occupant
a presence/absence model. Fig. 4.18 depicts a typical result given by 4.9.3. The
presence probability profile (blue curve) is defined in accordance with the occupation
schedule of the zone. One can refer to [Page 2007, Mahdavi & Pröglhöf 2009] to find
some elements regarding appropriate choices of µ and P (k).
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T00(k)

T10(k)

T11(k)

T01(k)

presentabsent…

Occupant Nocc

T00(k)

T10(k)

T11(k)

T01(k)

presentabsent

Occupant 1

…

Figure 4.19 Markov chain of occupancy in a zone. The transition probabili-
ties are time varying. Each occupant is characterized using its own Markov
chain.

α 0 .5 1 ?

Invoice (e) 9.57 8.98 8.92 8.13
% 118 % 110 109 % 100 %

?: weather and occupancy perfectly known.

Table 4.3 Invoices with the introduction of errors on occupation and weather
forecast

Uncertainty on both weather and occupation

Let us now introduce in addition uncertainties on the number of occupants in the
zone. In this case, the predicted number of occupants (used by the MPC) corresponds
to occupancy schedule used in the previous simulation, however the real number of
occupants in the zone (injected in SIMBAD) is generated using the stochastic proce-
dure cited above. Notice in this case that the invoice is enlarged comparing to the
"perfectly known forecast" case by 18% (table 4.3). This enables us to give a quite real-
istic potential gain given a known quality of weather forecast for a realistic occupancy
profile. Let us finally mention that comfort requirement is always ensured (Fig. 4.20)
attesting the robustness of the control strategy in providing comfort for occupants.
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Figure 4.20 Simulation results with uncertainties on weather (α = {0, 0.5, 1})
and occupation profile. Notice that comfort bounds on the three controlled
variables are always respected.

4.10 Yearly simulation

In this section a yearly simulation is performed. Let us first describe the case study
and give some technical details regarding the interface between the controller and the
simulator before discussing the simulation results.

4.10.1 Case study

The NMPC strategy has been assessed on a multizone building. The chosen build-
ing is a typical small office building which corresponds to nowadays construction
standards (2006). Its area is approximatively 540 m2 and is divided in 20 zones. It is
located at Trappes (near Paris). The external walls are composed of a layer of thermal
insulation and a layer of concrete. Each zone of the building is controlled by a zone
NMPC controller. Let us emphasis that the zones are both structuraly and dynami-
cally different (see chapter 3). The prediction horizon is 12[h] and the update period
Ns = 5[min]. Concerning comfort requirements, they are summarized in table 4.4.
Here, the MPC has only access to occupancy schedules. Concerning weather forecast
an uncertainty is introduced using the procedure described above. We consider here
the two extreme cases. No error on forecast (α = 1) and the maximal error on forecast
(α = 0). See figure 4.16.
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T [O]C C [ppm] L [lux]

min max min max min max

Occupied 21 24 − 1000 500 −
Vacant 5 35 − − − −

Table 4.4 Nominal comfort region

4.10.2 Zone controllers integration in SIMBAD

Even if SIMBAD is a Simulink based toolbox. Integration of zone MPC controllers
appeared to be challenging. This results essentially from:

a. A large computational burden induced by such optimization-based control strat-
egy. For the targeted building consisting of 20 zones, an update period of 5 [min]
results for a yearly simulation in≈ 2.100.000 optimization problems, which is quite
large. Actually, each simulation takes at least 18 hours for quite moderate predic-
tion horizons (12 hours). These simulation times were obtained after optimizing
the controllers code and employing when appropriate C-code. This was for in-
stance the case for the zones models as they are used on-line by the controller (see
algo. 4.1, page 60). Indeed, before code optimization the interface with SIMBAD
was far unrealistic as the MPC code was approximately ten times slower.

b. The whole building number of inputs is 89 and controlled outputs 60. Moreover,
each zone has its own structure depending on its own configuration (heaters, ven-
tilation, number and orientation of blinds, adjacent zones, etc.).

To tackle these issues, Object-Oriented Programming (OOP) has been used to manage
zone controllers. Furthermore, a C-code model file describing both the structure and
the dynamic model of each zone has been generated (based on the zone models iden-
tified on chapter 3). This offered to the whole code a coherent structure that could
be easily adapted to the structure of the building and represents a first attempt for an
MPC toolbox dedicated to building management systems. The interface between the
Simulink model and the Matlab-based controller has been performed by a Simulink
S-function. These steps are summarized on figure 4.21.
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Simbad
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Figure 4.21 MPC integration in SIMBAD - workflow. The off-line identifica-
tion procedure is described in chapter 3. Coordinator and energy layer will
be discussed in chapter 7.

4.10.3 Simulation results

Table 4.5 summarizes the yearly consumptions obtained by the designed rule based
controller and the proposed NMPC controller. Figure 4.22 provides the monthly con-
sumptions resulting when implementing a rule-based strategy (left) and the predic-
tive strategy (right). It has to be noticed that the designed controller corresponds to
most advanced rule-based controller designed during the HOMES program. Indeed,
it does not correspond to nowadays practice as it integrates much more capabilities
(as adaptive optimal strategy for instance, more advanced blind management, etc.).
The results show that the global comfort is nearly the same in the two situations.
The total amount of constraints violation (sum over all the zones) is however lower
with a model predictive control (295 [kOC·h]) compared to a rule based controller (322
[kOC·h]). In this study, one should note that MPC enabled ≈ 16% of energy savings.
Energy savings are essentially due to a better overall management of interactions be-
tween actuators as well as some anticipation concerning optimal start. Let us take
two situations (office and meeting room) to illustrate the main differences.
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Energy cons. [kWh/m2] GTC [%] TCV [k·OC·h]
Rule based 142 91.6 322
MPC (α = 1) 119 (−16%) 91.8 295
MPC (α = 0) 122 (−14%) 88.1 310

Table 4.5 Energy consumption / Comfort - Rule-based vs. MPC

Figure 4.22 MPC vs. RB monthly energy consumptions. Note that introduc-
ing uncertainty in forecast induces more energy consumption but still less
than with rule-based control.

In a typical office for instance (figure 4.23), one clearly sees that MPC enables a
much better optimal start determination compared to rule based strategy (see the
two rectangles on figure 4.23 which correspond to an occupancy after a long vacancy
period). Remark also (figure 4.23) that for rule based strategy a set-back temperature
is implemented at 16 [oC] (first rectangle). Moreover, remark that optimal start is in
this case quite inefficient during all working days as temperature fails to achieve the
minimal temperature at occupants arrival.

Figure 4.24 shows the temperature profiles obtained by the two strategies in a
meeting room. Notice that in the case of the rule-based control temperature is quasi-
systematically under the reference.

Nevertheless, it is important to highlight that due to some modeling errors (on so-
lar flux projections) the average temperature in whole building (figure 4.25) can vio-
late the upper constraint during summer. Notice also that a rule-based strategy could
lead (particularly during middle-season) to an inappropriate behavior (days 130-150).
Indeed, the temperature is in this case largely over the upper constraint as the cooling
season does not start yet, then it is decreased (day 150) when the cooling season starts
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Figure 4.23 MPC vs. Rule-based control - temperature profiles in an office
during the two first weeks. The two rectangles correspond to optimal starts
after a long vacancy period.

Figure 4.24 MPC vs. Rule-based control - temperature profile in a meeting
room during the two first weeks. Observe that control performances with
MPC are much better.

86



4.10. Yearly simulation

and leads to a cold discomfort during the beginning of May. This illustrates the diffi-
culty of managing temperature using some schedule-based heating/cooling seasons.
The same behavior can be observed at the end of cooling season.

Figure 4.25 MPC vs. RB- yearly building average temperature. The figure
only illustrates the global thermal behavior of the building during the year.

Figure 4.26 shows the simulation results obtained over the year for all the zones
of the building (only the zones in which temperature is regulated). Note that in some
zones, applying the MPC strategy leads to less energy but also less comfort. This
discomfort is almost occurring during summer season.
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Figure 4.26 MPC vs. Rule-based control. Notice that bad weather forecast
(α = 0) mainly induces less comfort in the zones and generally more energy
consumption.

4.11 Roombox implementation

Figure 4.27 The office Roombox (Schneider-Electric) controls several actua-
tors, ensures power measurement and protection.

The aim here is to study the implementability of the proposed algorithm on the office
Roombox. The office Roombox (see figure 4.27) is a Multi-applicative8 controller de-

8Dedicated to HVAC, lighting and Indoor Air Quality equipment control.
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signed for office environmental control. It enables to control several actuators (heat-
ing, lighting, shutters and blinds) and equipped with several sensors (temperature,
CO2 level, lighting, etc.). Moreover, in addition to physical quantities, power meter-
ing is also available.

Thanks to a sufficiently powerful hardware (bi-CORE ARM9 @ 133 Mhz with 128
Mo RAM) and its embedded Linux operating system, it is an adequate target for in-
vestigations and integration of advanced control features. In the scope of the HOMES
program, the predictive control algorithm described above has been developed in
Matlab language. Therefore, a translation from Matlab to C++ language was required
in order to obtain an embeddable code on the real target.

Our choice was to translate this code in C++ instead of an automatic code gen-
eration directly from Matlab. This choice is motivated by evident reasons of main-
tainability and efficiency of the code. The translation operation has been performed
thanks to the usage of a matrix library which enables to conduct the matrix operations
required by the MPC algorithm in a Matlab-like syntax9. This clearly simplified the
code translation (see the example in appendix F).

The C++ code has been validated and compiled in eclipse environment in order
to be embedded in the Roombox (see figure 4.27). It has to be noticed that some
technical issues related to the choice of the mathematical solver and parameterization
of the MPC algorithm in terms of number of decision variables have been resolved
in order to make the algorithm sufficiently efficient. The chosen solver was GLPK10,
which is a GNU MILP solver. It has the advantage of being free, maintained and quite
efficient for small/medium size11 LPs.

The operations described above (figure 4.29) have been conducted with success
and the integration of the control algorithm in the hardware showed that the memory
occupation and the computation time were much lower than what has been expected.
More precisely, the memory occupation (only the MPC algorithm) was approximately
10Mo and the mean CPU load was about 25% (integrating all the other tasks). Indeed,
this enables several MPC algorithms to run in parallel on the same Roombox and
controlling several zones.

This clearly shows the compatibility of the computational burden with the tar-
geted kind of hardware while exhibiting in our case a mean computational time of 10
[s] which is much less than the required control refreshing period (from one to several
minutes). Indeed, for one iteration of algorithm with N = 720 and N

par
u = N

par
y = 20,

the mean computational time is approximately 6 [s].

9The matrix library is developed and maintained by P. Bellemain (Gipsa-lab). It is coded in C++

and used in internal developments within the Gipsa-lab.
10www.gnu.org/software/glpk/
11few hundred of decision variables and few hundred constraints
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Figure 4.28 Roombox - memory and CPU usage. Note that the
MPC algorithm accounts for 8.2 % of the memory usage (see
Programme_roombox_fpi). Note also that only 33 % of the memory is
used in fact, which enables to implement several MPC algorithms running
in parallel on the same hardware. Concerning CPU, note that only one of
the two cores is turned-on, in this case it is still sufficient. One iteration of
the algorithm takes approximately 6 [s].

The code has been validated thanks to fictitious signals sent via the Ethernet port
of the Roombox (see figure 4.28). Further step consists of operational validation of
the proposed MPC algorithm. This step, requiring a model calibration of the zone,
has not been conducted in this work, since the main objective of this study was to
validate the real-time feasibility of the control algorithm and not the effectiveness of
the control algorithm in real-life situations.
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Figure 4.29 RoomBox implementation steps. The code developed on Matlab
has been translated to C++, then compiled in Eclipse environment.

4.12 Conclusion and further investigations

In this chapter, a MIMO nonlinear model predictive controller has been presented.
The algorithm is able to manage several actuators in the zone in order to ensure oc-
cupants comfort. Beside handling actuators effects on the temperature, CO2 level and
indoor illuminance, the algorithm is able to take into account varying energy tariff.
The simulation results shows its computational efficiency. This enabled us to con-
duct investigations regarding its implementation on real time target. This experiment
showed the compatibility of this algorithm with respect of our target.

Moreover, the integration of the controller in SIMBAD has been conducted. On
the investigated building, this showed a an energy potential saving of 16% with quite
similar comfort level compared to a well-tuned rule-based control strategy. Uncer-
tainty on forecast reduces the energy saving to 14% but induces also a decrease of
comfort (from 91,6 % to 88.1 %), which is quite reasonable. Nevertheless, these simu-
lations are only illustrative and conclusions cannot be generalized. Actually, further
development steps should focus on a large scale simulation in several case studies.
Indeed, it is important to highlight that other related studies [Oldewurtel 2011] show
a clear dependency of performances of MPC on weather forecast quality. Further-
more, including those uncertainties in the process of decision making leading to the
so called stochastic MPC can improve the performances of the controller.
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Moreover, experimentations of the algorithm should be conducted in real-life sit-
uations to practical issues related to model identification for instance.

In the next chapter, an extension of the algorithm to handle fan coil units is pro-
vided. In the next part of the manuscript, a distributed approach is proposed to tackle
the high computational burden induced in the case of multi-zone buildings submitted
to power limitations in which several sources of different natures are available.

92



Chapter 5

Zone Model Predictive Control - Fan
Coil Unit management

Abstract
In this chapter, an extension of the previously designed zone model predictive controller is
presented. The aim of this chapter is to include the management of fan coils units. It is shown
that fan coil units exhibit nonlinear heat emission characteristics, that can be approximated by
a Piece Wise Affine (PWA) function and therefore directly included in the LP formulation.

5.1 Context and motivation

Fan coil units are widespread heat/cold emission equipment, particularly in tertiary
buildings. This is due to their relative robustness and simplicity of operation. More-
over, they have lower installation cost when compared to air duct systems.

Fan coil units are used to modulate the heat/cold quantity injected in the zone
thanks to the existence of two coils (figure 5.2, page 95):

• A heat exchanger in which a fluid (generally water) circulates: the heat quantity
extracted from water and injected into the zone depends on the water flowrate
(controlled locally by the position of a valve) and the speed of the fan that will
affect the air velocity and thus modifies the heat exchange coefficient;

• An electrical coil that behaves like a classical electrical heater.

This chapter proposes an extension of the previously designed controller in order
to handle fan coil unit systems. In this case, the main problem lies in the nonlinear
emission characteristic of the fan coil unit.

93



Chapter 5. Zone Model Predictive Control - Fan Coil Unit management

To the best of our knowledge, this problem has not been studied before. This
chapter is organized as follows: firstly, the fan coil unit model is provided in section
5.2. In section 5.3, the control problem is derived, then it is solved in section 5.4 which
is the main contribution of this chapter. Finally, the controller is simulated in section
5.5. The section 5.6 concludes the chapter.

5.2 Fan Coil Unit (FCU) modeling

This section presents the FCU model. Let us first introduce some assumptions regard-
ing the thermal power distribution network:

Gas

Zone 2 Zone nz

Circulation 

pump

Zone 1

Boiler

Production Consumption

Figure 5.1 Zone fan coil units. The FCUs are parallel-connected.

Assumption 5.1. Hot water distribution network topology
The fan coil units are assumed to be parallel-connected (figure 5.1). Moreover, heat losses and
head losses1 in the network are not taken into account. ♦

Assumption 5.2. Circulation pump
The circulation pump ensures a constant pressure drop between the water inlet and the water
outlet of the fan coil units. Moreover, its electrical consumption is linear with respect to the
waterflow passing through it. ♦

Assumptions 5.1 and 5.2 enable to consider that the fan coil units are mutually
independent as the valve position of any fan coil unit has no impact on the water
network pressure drops and therefore no influence on the other fan coil units (figure
5.1). It is thus possible to focus only on one zone part.

1Reduction in the total head of the liquid as it moves through the water pipes.
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5.2.1 A general description

Figure 5.2 is a schematic of a fan coil unit. The system is made up of two heating coils:
an electrical heating coil and a heat exchanger which enables heat transfer between
the hot water and zone air.

Heating coil

(Valve)

(Zone air temp.)

Return water

Tw
T

uw

uf

uh

φth(Tw, T, uf , uv) + ηhuh

(Electrical heating coil )

(Fan)

(Hot water supply)

Figure 5.2 Fan Coil Unit representation. There are two heating coils: an elec-
trical heating coil and a heat exchanger. The fan speed and the valve open-
ing define the heat exchange coeffient φN (see eq. (5.2.1)).

The amount of heat exchanged between the coil and the zone is given by the fol-
lowing relation:

φth(Tw, T, uf , uw) = (Tw − T ) · φN(uw, uf ) (5.2.1)

where:

• (uw, uf ) ∈ [0, 1]2 are the valve opening and the fan speed,

• φN(uw, uf ) is the normalized heat emission characteristic, depending on valve
opening and fan speed.

In other words, the heat extracted from hot water and injected in the zone φth(·)
is indirectly controlled by the position of actuators uw and uf via the normalized heat
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transfer function φN(uw, uf ) and the difference between the hot water temperature
(Tw) and the zone temperature (T ). An example of this characteristic function is de-
picted in figure (5.3).

Figure 5.3 Heat emission characteristic function φN of an FCU (see eq.
(5.2.1)).

The characteristic function φN(uw, uf ) has been obtained2 from the building simu-
lation tool SIMBAD. The set of physical characteristics of the FCU determining such
an emission characteristic is listed in table 5.1.

It is worth noting that the fan coil unit model is a static model. This modeling
assumption results from the fact that the dynamic of the fan coil unit is very fast
compared to the zone dynamics. Moreover, note that the heat emission characteristic
is valid for a given pressure drop between water inlet/outlet (assumption 5.2).

2To be able to derive the heat emission characteristic of the fan coil unit, an off-line identification
has been performed on SIMBAD.
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Parameter unit e.g
Tube outside diameter [m] 0.009
Number of tube rows - 2
Number of tubes per row - 10
Number of parallel water circuits - 1
Tube thickness [m] 0.0005
Tube material - copper
Fin spacing [m] 0.002
Fin thickness [m] 0.0002
Fin material - aluminium
Fan coil mass flow [kg/s] 0.02804

Table 5.1 Fan coil unit parameters. These parameters determine the FCU
heat emission characteristic (see figure 5.3).

5.2.2 Zone modeling

Given the heat emission characteristic of the fan coil unit, the zone model can be built.
For the sake of clarity, we shall first recall the list of I/Os related to one zone. Table
5.2 lists the inputs, outputs and exogenous variables related to a zone equipped with
a fan coil unit. Note that, from a zone perspective, the water temperature (Tw) is
considered as an exogenous variable as it is adjusted by an upper control layer.

Consider first that one is interested only in the transfer from the heat extracted
from hot water (injected in the zone) φth to the zone temperature. This transfer can be
modeled by a SISO linear state space representation of the form:{

x+th = Ath · xth +Bth · φth

T = Cth · xth
(5.2.2)

Based on (5.2.1), the system (5.2.2) can be written as follows:{
x+th = Ath · xth +Bth(Tw − T ) · φN(uw, uf )

T = Cth · xth
(5.2.3)

Introducing now the new control vector v ∈ Rnu+1:

v = [φN(uw, uf ), uw, uf , uh, uv, ul, u
1
b , . . . , u

Nf

b ]T (5.2.4)

one can easily see that the zone model (introducing the other control variables)
can be modeled by :
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Variables Description Unit

In
pu

ts

uw FCU valve opening [−]

uf FCU fan speed [−]

uh Heating ctrl [−]

uv Ventilation control [−]

ul Lighting control [−]

{uib}i=1,...,Nf
Blind ctrl facade i [−]

D
is

tu
rb

an
ce

s Tw Inlet FCU water temp. [oC]

Tex Outdoor temperature [oC]

{T iadj}i∈Nadj
Adjacent zones temp. [oC]

{φig}i=1,...,Nf
Global irr. flux facade i [W/m2]

Occ Number of occupants [−]

Cex Outdoor CO2 level [ppm]

O
ut

pu
ts T Indoor air temperature [oC]

C Indoor CO2 level [ppm]

L Indoor illuminance [Lux]

Table 5.2 Description of Input/Output and exogenous variables of a zone
with a fan coil unit

x+ = A · x+
[
B(y, w)

]
· v + F · w (5.2.5a)

y = C · x+D(w) · v (5.2.5b)

v ∈ V (5.2.5c)

where:

V := {q = [q(1), . . . , q(nv)]
T ∈ Rnv | . . .

q(1) = φN(q(2), q(3)) ∧ q(j) ∈ [0, 1], j = 2, . . . , nv} (5.2.6)

The relation (5.2.6) simply indicates that the constrained control v must verify the
consistency constraint on emitted power flux, see figure 5.3.

In the sequel, the notation v ∈ V is used to indicate the fulfilment of (5.2.5c) over
the entire prediction horizon, namely:

v ∈ V↔ Πj(v) ∈ V, ∀j = 0, . . . , N − 1 (5.2.7)

Moreover, let us note the simulator form of (5.2.5) by:

yk := Z(vk,wk, xk) (5.2.8)

Note that:
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5.3. The control problem

• The system described by (5.2.5) is a nonlinear system,

• As was the case in chapter 4, the matricesB(y, w) andD(w) are affine in their ar-
guments. Moreover the respective columns of B(y, w) and D(w) corresponding
to uw and uf are equal to zero;

• The system described by (5.2.5) is a constrained system.

5.3 The control problem

In this section, only the main features of the optimization problem related to the zone
are given as they have been extensively explained in the section 4.3 for the case of a
zone without a fan coil unit.

There are two differences between the model (5.2.5) representing a zone with a fan
coil unit and the model of a zone without this device (presented in chapter 4):

1. The control variables v (see (5.2.4) ) are mutually dependent (φN ,uw, uf ),

2. The power consumption of the zone is also linked to the output y (more precisely
to the temperature of the zone).

These are the only reasons that prevent using the algorithm proposed in the pre-
vious chapter to solve the resulting optimization problem recalled below:

Optimization Problem 5.1. Zone with FCU optimization problem

v?k = Argmin
vk∈V

JE(Γk,pk) + JC(yk) + JD(vk) + JF (Π(N−1)(yk)) (5.3.1)

Subject to:

pk = E(yk,wk) · vk (5.3.2)

yk = Z(vk,wk, xk) (5.3.3)

Note that pk ∈ R2, which is the instantaneous power consumption of the zone
grouping in this case both electrical and thermal powers. Moreover, as the thermal
power consumption of the zone is linked to the zone temperature and water temper-
ature (φth = (Tw − T ) · φN(uw, uf )), then pk ∈ R2 is given by:

pk = E(yk, wk) · vk ∈ R2 (5.3.4)
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where the matrix E(yk, wk) ∈ R2×nu gathers the marginal power consumption of
all equipment:

E(y, w) :=

[
0 αw αf αh αv αl 0 . . . 0

αth · (T − Tw) 0 0 . . . . . . . . . . . . . . . 0

]
(5.3.5)

where αw is the maximum electricity consumption resulting from circulation pump
consumption due to valve opening. αf , αh and αv are, respectively, the maximum
power consumption resulting from the fan, electrical heating and ventilation system
(indirectly controlled at zone level via dumper position). αth is related to thermal
power consumption of the FCU.

Consequently, the profile of instantaneous power consumption of the zone (result-
ing from all the actuators) is given by:

pk = E(yk,wk) · vk (5.3.6)

where:

E(yk,wk) := diag{α(yk, wk), . . . , α(yk+N−1, wk+N−1} ∈ R2·N×N ·nv (5.3.7)

5.4 Solving the optimization problem

This section presents the optimization algorithm used to solve the optimization prob-
lem 5.1. In order to be able to solve efficiently the problem 5.1, two main steps are
needed:

1. Piece-wise linear approximation of the nonlinear relation, φN(·). This step is
performed off-line,

2. Resolution of the resulting optimization problem using a sequence of linear pro-
gramming problems.

5.4.1 Piece-wise affine approximation

The key idea is to approximate the nonlinear function φN(·) by a piece-wise affine
approximation noted φ̂N(·). The advantage of this kind of approximation will appear
in the next section.

To describe approximately φN(·), na regions Di, i = 1, . . . , na, in which the function
φN(·) can be approximated by a linear function, are introduced. Namely:
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5.4. Solving the optimization problem

φ̂N(uw, uf ) =


a1uw + b1uf + c1 if (uf , uw) ∈ D1

...

anauw + bnauf + cna if (uf , uw) ∈ Dna

(5.4.1)

The approximation φ̂N(·) as well as the regions Di, i = 1, . . . , na are depicted on
figure 5.4. Moreover, let us note analogously to (5.2.7) the fulfilment of (5.4.1) over the
entire prediction horizon by:

v ∈ V̂ (5.4.2)

Figure 5.4 Piece-wise affine approximation of φN with na = 5 regions. Notice
that the approximation is strictly concave.

Note that this kind of approximation can be introduced in the LP problem for-
mulation using some integer variables. However, this generally induces a very large
computational burden, as the resulting optimization problem may include a large
number of integer variables. As it will be shown below, a MILP formulation can be
avoided in this case.
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At this step, notice that the heat emission characteristic φN(uw, uf ) is approxi-
mately concave and that its approximation φ̂N is (by construction) strictly concave.
This fact will greatly simplify the optimization task as shown is the next section.

5.4.2 Fixed-point algorithm

Let us recall the basic idea of the proposed fixed-point algorithm proposed in chap-
ter 4. Its principle is to successively approximate the nonlinear inequalities (5.4.3b)-
(5.4.3c) and the cost (5.4.3a) given a candidate output trajectory y

(s)
k , where s =

0, . . . , smax is the iteration counter. This output trajectory is updated by simulating
the nonlinear system describing the zone, leading to a new optimization problem,
and so on.

Hence, at iteration s, the following Mixed Integer Linear Programming (MILP)
problem3 must be solved:

Optimization Problem 5.2. Mixed Integer Linear Programming

MILP(s)
k Minimize

vk,δ0,δ1,δd
J(vk,y

(s)
k ,Γk,wk) (5.4.3a)

Subject To :

[Φ(y
(s)
k ,wk)]vk + δ−0 + δ−1 ≥ y

k
−Ψxk − Ξwk (5.4.3b)

[Φ(y
(s)
k ,wk)]vk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (5.4.3c)

D · vk − δ+d + δ−d = a (5.4.3d)

vk ∈ V̂ (5.4.3e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(5.4.3f)

Remark 5.1.
Actually, the optimization problem 5.2 is a MILP because of the existence of the relation
(5.4.3e) which implies a set of relations of type (φ̂N(uw, uf ) = aiuw + biuf + ci if (uf , uw) ∈
Di, i = 1, . . . , na), see eq. (5.4.1). The interested reader can refer to [Bemporad &
Morari 1999] for more explanations. ♦

The optimal input profile v
(s)
k obtained from the resolution of the problem 5.2 is

then injected in the nonlinear system to update the current candidate output profile
y
(s+1)
k , namely:

y
(s+1)
k = Z(v

(s)
k ,wk, xk) (5.4.4)

3The MILP can be derived using the big-M technique presented in [Bemporad & Morari 1999].
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5.4. Solving the optimization problem

These two steps are repeated until convergence is achieved. Note that the main is-
sue in this framework relates to the prohibitive computational burden resulting from
the resolution of the MILP 5.2. To overcome this issue, note that:

1− The approximation φ̂N(·) is strictly concave. Therefore:

φ̂N(uw, uf ) = Inf
i=1,...,na

[ai · uw + bi · uf + ci] (5.4.5)

Moreover, the subgraph of φ̂N(·), which is the region under the surface defined by
(5.4.5) (figure 5.5), is given by the following set of linear inequalities:


1 −a1 −b1
1 −a2 −b2
...

...
...

1 −ana −bna

 ·

φ̂N

uw

uf

 ≤

c1

c2
...

cna

 (5.4.6)

In addition, S ∈ Rna×nv and h ∈ Rna×1 can be defined such that:

S · v ≤ h (5.4.7)

where:

S :=


1 −a1 −b1 0 . . . 0
...

...
... 0 . . . 0

1 −ana −bna 0 . . . 0

 , h :=


c1
...

cna

 (5.4.8)

2− The function φ̂N(·) depends exclusively on uf and uw and the objective J(·)
is positive definite with respect to these two variables.

Given that the two conditions (1-2) hold, it can be easily shown that the problem
5.2 is equivalent to the following linear programming problem, in which (5.4.3e) has
been replaced by the set of linear inequalities (5.4.9e) (subgraph of φ̂N ):
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Optimization Problem 5.3. Linear programming

LP(s)
k Minimize

vk,δ0,δ1,δd
J(vk,y

(s)
k ,Γk,wk) (5.4.9a)

Subject To :

[Φ(y
(s)
k ,wk)]vk + δ−0 + δ−1 ≥ y

k
−Ψxk − Ξwk (5.4.9b)

[Φ(y
(s)
k ,wk)]vk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (5.4.9c)

D · vk − δ+d + δ−d = a (5.4.9d)

S · vk ≤ h (5.4.9e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(5.4.9f)

where:

S := IN ⊗ S and h := 1N ⊗ h (5.4.10)

The LP problem 5.3 can be written in the following compact form:

LP(s)
k : Minimize

z≤z≤z
L

(s)
k · zk s.t. : A

(s)
k · zk ≤ bk (5.4.11)

Where the involved matrices: L
(s)
k ,A

(s)
k ,bk, z, z can be defined based on the rela-

tions (5.4.9b)-(5.4.9f).

5.5 Validation

This section proposes simulations of the designed controller. Two case studies are
considered:

• Heat is produced by a boiler: in this case the heat energy price is linked only to
the price of gas and boiler efficiency. The marginal cost of heat is 5ce/kW.

• The heat production is ensured by a heat pump: in this case the marginal cost
of heat is linked to electricity price and the COP (COefficient of Performance) of
the heat pump. We consider that the COP of the heat pump is either 2 or 3.5. The
heat pump coefficient of performance (dimensionless) defines the ratio between
the consumed electrical power and the produced heat power.

However, in both cases the electricity price is considered to have an off-peak period
from 10 p.m to 6 a.m., this is summarized on figure 5.6.
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φ̂N (uw, uf )

Sub(φ̂N )

0 1

uw, uf

Figure 5.5 Subgraph of φ̂(uw, uf ). The subgraph of the function φ̂(uw, uf ) is
the blue area.

Figure 5.6 Energy price profiles used in simulations. Simulation results are
available on figures 5.7 to 5.12.
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Discussion

Figures 5.7, 5.8 and 5.9 clearly show that occupant comfort is respected regarding
thermal, air quality and light aspects. However note that the anticipative effect of
the controller ensures that the zone is preheated before occupants arrival at 8 a.m.
However, it should be noted that the behavior differs considerably in the two case
studies described (boiler/heat pump). In the first case (boiler), the optimal behavior
is to start heating at approximately 1h30 (first and second day), the elecrical heating
system is used, before 6 a.m (off peak period) in order to preheat the zone and during
the day to compensate heat losses when necessary.

In the second case (heat pump) the behavior is totally different since heating is
turned on at 10 p.m. the day before (this matches the shift to off-peak period) and
temperature is maintained at nearly 18oC. The electrical heating is turned on much
less than it was in the first situation since it is exclusively used to compensate heat
losses. However, note that in both cases the electrical heating system is used exclu-
sively when the thermal source is saturated, simply because it is always cheaper to
use the heat source (see figure 5.6).

Note also that ventilation is used at the minimum necessary level to ensure a good
air quality level to introduce as less as possible of fresh air and minimize energy con-
sumption. These results have to compared with the one obtained on the second zone
(see figures 5.10, 5.11 and 5.12) in which the optimal behavior is different (different
optimal trajectories and usage of electrical heaters).

5.6 Conclusion

This chapter provides an extension of the zone predictive controller for handling fan
coil unit (FCU) systems. The main advantage of the proposed controller is its ability
to handle the emission characteristic of the fan coil unit. Indeed, the concavity of
the PWA approximation enables an LP formulation of the open loop optimization
problem. This drastically simplifies the complexity of the proposed controller.
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5.6. Conclusion

Figure 5.7 Zone ]18 - Boiler.

Figure 5.8 Zone ]18 - Heat Pump (COP=2).

Figure 5.9 Zone ]18 - Heat Pump (COP=3.5).
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Figure 5.10 Zone ]1 - Boiler.

Figure 5.11 Zone ]1 - Heat Pump (COP=2).

Figure 5.12 Zone ]1 - Heat Pump (COP=3.5).
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Distributed Model Predictive Control
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Chapter 6

Distributed Model Predictive Control -
Theoretical framework

" Il faut oublier, tout peut s’oublier, qui s’enfuit déjà ... ".

–Jacques Brel, "Ne me quitte pas", 1959.

" We must forget, all can be forgotten. It is already fleeing... ".

–Jacques Brel, "Don’t leave me", 1959.

Abstract
In this chapter a hierarchical model predictive control framework is presented for a network of
subsystems that are submitted to general resource sharing constraints. The method is based
on a primal decomposition of the centralized open-loop optimization problem over several
subsystems. A coordination agent is responsible for adjusting the parameters of the prob-
lems that are to be solved by each subsystem. A distributed-in-time feature is combined with
a bundle method at the coordination layer enhancing performance and the real-time imple-
mentability of the proposed approach. Scheme performance is assessed in the next chapter
on an energy coordination problem in a building involving several zones that have to share
actuators and a limited amount of total power.

6.1 Introduction

The principle of Distributed Model Predictive Control (DMPC) [Camponogara et al.
2002, Negenborn et al. 2004, Rawlings & Stewart 2008] is to design local predictive
controllers (also called local agents) responsible for the management of local variables.
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Depending on the kind of issues encountered, the agents can share a common goal
and/or resources and/or be dynamically coupled. Therefore, it is required to ensure
a certain level of coordination between their respective actions in order to achieve a
good system-wide performance, which is precisely the aim of DMPC.

Almost all distributed model predictive control strategies are based on successive
information exchange [Scheu et al. 2009, Scheu & Marquardt 2009, Scheu et al. 2010].
In such iterative schemes, these local controllers have to come up with an agree-
ment throughout "negotiation" iterations in order to introduce some kind of coor-
dination between their respective actions or, more precisely, to recover the solution
(or to achieve a relevant suboptimal solution) of the original centralized problem.

DMPC appears to be a suitable approach for large scale systems. Indeed, for such
systems the centralized optimization problem is generally very hard (or even impos-
sible) to solve given restrictions on computational and communication resources.

Moreover, the non scalability of the centralized solution is not the only reason of
making the distributed approach interesting, indeed centralizing the decision process
on one physical controller is generally unsafe because any failure affects the whole
system.

Furthermore, contrary to centralized approaches, DMPC leads to modular
schemes which are suitable for many large scale applications.

Several DMPC approaches have been proposed in recent literature. They are gen-
erally based either on a primal or a dual decomposition of the centralized optimiza-
tion problem [Scheu et al. 2009]. They generally proceed by splitting the centralized
optimization problem into several subproblems and then, using some structural fea-
tures of the problem, to design distributed optimization algorithms able to deal with
such problems.

Nevertheless, as pointed out in [Diehl 2009], convergence of the distributed solu-
tion towards the solution of the centralized problem generally requires a large num-
ber of iterations even for simple case studies. This may be prohibitive for real-time
implementability issues and for network communication concern. Consequently, de-
spite the apparent similarity of the many distributed MPC-based solutions, a relevant
comparison should focus, among other indicators, on the specific issue of communi-
cation and computation time.

To deal with this issue, a general framework based on the combination of an
efficient distributed optimization technique (disaggregated bundle method) and an
original distributed-in-time computation feature is presented. The technique is based
on a primal decomposition of the centralized optimization problem and leads to a
hierarchical structure.
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6.2. Problem statement

The original works leading to the scheme proposed here are intended to ad-
dress the issue of energy management in buildings with a large number of zones
and limited communication rate. As far as the building case is concerned, the results
will be reported in the next chapter. In the present chapter, a general setting of the
underlying framework is proposed and some properties of the resulting algorithms
are analyzed in greater details.

The chapter is organized as follows: section 6.2 presents succinctly the kind of
problems are dealt with the presented approach. Section 6.3 provides a step by step
description of the approach. In sections 6.4 and 6.5, the resolution of the master
problem is presented. Section 6.6 presents the main available theoretical results.
Section 6.7 concludes the chapter and describes future research directions. Notice,
that numerical studies are presented further on in chapter 7.

6.2 Problem statement

In this section a general description of the class of problems targeted by the pro-
posed scheme is given. Roughly speaking, a network of subsystems sharing limited
resources is considered. This is detailed in the present section.

6.2.1 The subsystems

Consider a set of Ns dynamically uncoupled subsystems 1. Each subsystem ` ∈ S :=

{1, . . . , Ns} is governed by the following general nonlinear dynamic:

x`,k+1 = f(x`,k, u`,k) (6.2.1)

where:

• x`,k ∈ Rnx
` is the state vector of the subsystem ` at instant k,

• u`,k ∈ Rnu
` is the input vector of the subsystem ` at instant k,

In the sequel, the following notation is extensively used:

1Potential coupling can be handled via dedicated observers as is shown for instance in chapter 4
regarding the building energy management context
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Notation 6.1. profile notation
Given a vector quantity v` ∈ Rnv related to the subsystem `, the boldfaced vector v`,k repre-
sents the future profile of v` over the prediction horizon of length N , namely:

v`,k := [vT`,k, . . . , v
T
`,k+N−1]

T (6.2.2)

when no ambiguity results, the time index k is dropped and the predicted profile v`,k is simply
denoted by v`.

Moreover, all the quantities indexed ·`,k refer to quantities related to subsystem ` at instant
k. ♦

Let us now define for each subsystem ` ∈ S the resource vector r`,k ∈ Rns
` and its

future profile r`,k. The resource limitation for subsystems ` ∈ S over the prediction
horizon is expressed via the following local inequality constraint :

∀k, ∀` ∈ S, h`(x`,k,u`,k, r`,k) ≤ 0 (6.2.3)

It is assumed that each subsystem ` ∈ S is locally controlled by a model predic-
tive controller referred to hereafter by MPC`(r`,k), where r`,k is the available resource
profile allocated to subsystem ` over the prediction horizon.

Therefore, at each sampling time k and given a prescribed available resource pro-
file r`,k over the prediction horizon, the system ` has to solve the following optimiza-
tion problem:

Optimization Problem 6.1. Local optimization problem

MPC`(r`,k) : Minimize
x`,k∈X`,k,u`,k∈U`,k

L`(x`,k,u`,k) (6.2.4a)

Subject to: h`(x`,k,u`,k, r`,k) ≤ 0 (6.2.4b)

where L`(x`,k,u`,k) ≥ 0 is the cost function related to the subsystem `, and the
domains X`,k and U`,k denote respectively state and input constraints and are possibly
time-varying.

Once the problem 6.1 is solved at time k, the optimal predicted input and state
trajectories u?`,k and x?`,k are obtained. The first component u?`,k of u?`,k is applied to the
subsystem during the time interval [k, k + 1]. This operation is repeated at the next
instant k + 1 based on new measurement or estimation of the state x`,k+1 and so on.
The next section describes how the profile r`,k is managed by a coordination level.
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6.3. Description of the approach

6.2.2 Resource sharing

Consider now a global constraint on the available resource for the whole network of
subsystems. Assume that it is expressed via the following inequality:

H(r1,k, . . . , rNs,k) ≤ 0 (6.2.5)

The centralized formulation of the optimization problem becomes:

Optimization Problem 6.2. Centralized optimization problem

Minimize
{x`,k∈X`,k,u`,k∈U`,k}`∈S

∑
`∈S

L`(x`,k,u`,k) (6.2.6a)

Subject to:

H(r1,k, . . . , rNs,k) ≤ 0 (6.2.6b)

h`(x`,k,u`,k, r`,k) ≤ 0, ∀` ∈ S (6.2.6c)

When there is a large number of subsystemsNs, the centralized optimization prob-
lem 6.2 becomes a large scale optimization problem which may become intractable.
A coordination layer is thus introduced to keep the global constraint (6.2.5) satisfied
(figure 6.1) despite the fact that each subsystem still solves its own optimization prob-
lem.

The coordinator is responsible for adjusting the available resources {r`,k}`∈S of
each agent ` ∈ S . Communication is assumed to be possible between each agent
and the coordinator agent but is not available between the local agents. The kind of
information exchanged between these entities as well as the algorithmic description
of the optimization procedure taking place at the coordination layer are presented in
the next section.

Remark 6.1.
Note that, although the derivation of control scheme has been largely inspired from the issue
of energy management in buildings, the optimization problem 6.2 may refer to a large broad of
optimization problems (e.g. distributed production/consumption systems). ♦

6.3 Description of the approach

To coordinate the local agents, an efficient iterative procedure is designed in this sec-
tion2. Throughout the negotiation iterations between the coordinator and local agents,

2For a global overview of decomposition techniques and distributed optimization algorithms, the
reader may refer to [Doan et al. 2009, Grothey 2001].
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Coordinator

Subsystem Ns

uNs

rℓr1

MPC1 MPCℓ MPCNs

rNs

Subsystem ℓSubsystem 1

uℓu1 x1 xℓ xNs

r1 rℓ rNs

Figure 6.1 Hierarchical Distributed Model Predictive Control: the coordina-
tor manages the subsystems allowable resource profiles{r`,k}`∈S to ensure
that the global constraint (6.2.5) is always verified.

the coordinator recomputes the optimal resource allocation in order to achieve a suit-
able repartition of resources between agents that meets the global constraint (6.2.5).

However, we emphasize that the number of iterations required by the coordinator
should be limited and that the procedure, if necessary, must provide a whole system
feasible resource repartition. To meet these requirements let us first decompose the
centralized problem 6.2 and introduce some notations and assumptions.

6.3.1 Problem Decomposition

Let J`,k(r`,k) denotes the achieved optimal value achieved by subsystem ` for a given
resource allocation r`,k:

J`,k(r`,k) := L`(x
?
`,k,u

?
`,k) (6.3.1)

Moreover, consider that the (sub)gradient g`,k(r`,k) of the J`,k is available, namely:

g`,k(r`,k) ∈ ∂J`,k(r`,k) (6.3.2)

where ∂J`,k(r`,k) is the subdifferential set of the function J`,k at r`,k.

Furthermore, assume that:

Assumption 6.1. For all ` and all k, the function J`,k(r`,k) is convex, and its subgradient
g`,k(r`,k) ∈ ∂J`,k(r`,k) is available. ♦

Assumption 6.2. The local subproblems 6.1 are feasible ∀r`,k ∈ F`,k. Moreover, the domains
F`,k,∀` ∈ S are known by the coordinator. ♦
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Remark 6.2.
Note that the local problems 6.1 are not always feasible if the condition r`,k ∈ F`,k is not
verified. Indeed, even if availability of the sets F`,k for all the subsystems ` ∈ S appears to be a
quite strong assumption (assumption 6.2) in the general case, this assumption is realistic for
the BEMS problem as will be shown in the next chapter. ♦

Based on the previous definitions and assumptions, the optimization problem (6.2)
can be rewritten as follows:

Minimize
{r`,k∈F`,k}`∈S

J(r·,k) :=
∑
`∈S

J`,k(r`,k) (6.3.3a)

Subject to H(r·,k) ≤ 0 (6.3.3b)

where:
r·,k := [rT1,k, . . . , r

T
Ns,k]

T (6.3.4)

or more briefly:

Optimization Problem 6.3. Master problem

Minimize
r·,k∈D

J(r·,k) (6.3.5)

The notation r·,k ∈ D means the fulfilment of both the feasibility conditions
{r`,k ∈ F`,k}`∈S and the global resources constraints (6.3.3b).

The optimization problem 6.3 is referred to as the master problem, and its solu-
tion is performed at the coordinator layer as explained in the following section.

6.4 Solving the master problem

In this section, the algorithm used to solve the master problem (6.3.3) is presented.

6.4.1 Disaggregated bundle method

To solve the master problem, the coordinator needs, at each decision instant, to ap-
proximate the function J =

∑
`∈S J`,k as a function of the allowable resource profiles

r`,k. It is worth reminding that the coordinator possesses no knowledge regarding the
dynamics of the subsystems and their respective current states.
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Nevertheless, the coordinator agent is able to affect any resource r`,k to the subsys-
tems ` ∈ S and to requests the values of the objective function of each subsystem ` as
well as their corresponding subgradients (assumption 6.1).

For this kind of problems, bundle method [Frangioni 2002] appears to be an inter-
esting choice as it will be argued in the sequel. Bundle method relies on iteratively
approximating the function to be minimized (here J =

∑
`∈S J`,k) by a so called cutting

plane model. Since the objective function J is separable, a disaggregated approximation
is built up, i.e., an individual cutting plane model J̌` of each function J`,k is constructed.

This section provides a presentation of the bundle method is given. However,
readers with particular interests may refer to [Frangioni 2002] for more details
regarding this optimization technique.

To be concise, the time index k is dropped in the notations (e.g. r` ≡ r`,k) since
the procedure described here takes place at a given instant k.

The bundles

In disaggregated bundle method individual cutting plane approximations of the func-
tions {J`}`∈S are built-up thanks to a memory B

(s)
` dedicated to each subfuntion `,

updated at each iteration s and defined as follows:

B
(s)
` := {s(i)` , ε

(i)
` }i=1,...,nB

(6.4.1)

The (sub)gradients s
(i)
` and their corresponding linearization errors ε(i)` (see (6.4.2b)),

are computed thanks to the values of the function J`(r
(s)
` ) and (sub)gradients g

(s)
` re-

turned by each agent ` when the coordinator requests an evaluation at the current
iterate r

(s)
` . Namely, the first element of the bundle (corresponding to the current iter-

ation s) {s(1)` , ε
(1)
` } is defined as follows:

s
(1)
` := g

(s)
` (6.4.2a)

ε
(1)
` := J`(r

(s)
` )− 〈g(s)

` , r
(s)
` 〉 (6.4.2b)

Indeed, each bundle B
(s)
` retains only the nB last elements and behaves like a FIFO

register in which the first element (i = 1) of the bundle is updated at the current iterate
s after the whole bundle has been shifted and its last element dropped, namely:

B
(s)
` = Update(B

(s−1)
` , J`(r

(s)
` ),g

(s)
` , r

(s)
` ) (6.4.3)
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where the function Update is defined by the algorithm (6.1).

Algorithm 6.1 Bundle update

1: for i← nB − 1, . . . , 1 do . Shift the bundle memory
2: s

(i+1)
` , ε

(i+1)
` ← s

(i)
` , ε

(i)
`

3: end for
4: s

(1)
` ← g

(s)
`

5: ε
(1)
` ← J`(r

(s)
` )− 〈g(s)

` , r
(s)
` 〉

The bundles B
(s)
` enable the so called cutting plane approximation J̌

(s)
` (·) to be de-

fined according to:

J̌
(s)
` (r`) := Max

i=1,...,nB

〈s(i)` , r`〉+ ε
(i)
` (6.4.4)

where each linear piece Cut(i) defines a half space as depicted on figure 6.2.

Cut(i) : 〈s(i)` , r`〉+ ε
(i)
` , i = 1, . . . , nB (6.4.5)

rℓ

Jℓ

J̌ℓ

Jℓ, J̌ℓ

r
(1)
ℓ

r
(2)
ℓ

r
(3)
ℓ
r
(0)
ℓ

epi(Jℓ)

Figure 6.2 Representation of J` and its piece-wise linear approximation J̌ (3)
`

at the third iteration. The approximate function is a global under-estimator
of J`.

Indeed, each cutting plane Cut(i) is a supporting hyperplane of the epigraph3

epi(J`) of the function J` and constitutes, since J` is assumed to be convex, a global
under-estimator of J`.

3region over the function J`
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The stabilized approximated master problem

Given the approximations J̌ (s)
` , ` ∈ S , an approximation J̌ (s) of the centralized cost

function can be obtained according to:

J̌ (s)(r·) :=
∑
`∈S

J̌
(s)
` (r`) (6.4.6)

One would simply use its minimizer as a next optimal resource candidate, namely:

Optimization Problem 6.4. Master problem -Cutting plane algorithm

r(s+1)
· := Argmin

r·∈D
[J̌ (s)(r·)] (6.4.7)

however, this may result in some instability [Bacaud et al. 2001] particularly at the
first iterations since only few cuts are available leading to poor performances. This is
actually the Kelley cutting plane algorithm [Kelley 1960]4.

In bundle methods [Lemaréchal 1974], instead of minimizing J̌ (s)(·) (optimization
problem 6.4), the following stabilized optimization problem, denoted Master(s), is con-
sidered:

Optimization Problem 6.5. Stabilized master problem

Master(s) : r(s+1)
· := Argmin

r·∈D
[J̌ (s)(r·) +Dγ(s)(r· − r·

(s))] (6.4.8)

where the stabilization term Dγ(s)(r· − r·
(s)) is introduced to prevent any drastic

movement from the current best candidate point r
(s)
· , which is called the stability cen-

ter (or central point).

Quite weak assumptions on the properties of Dγ(s)(·) are necessary to ensure the
convergence of the algorithm [Frangioni 2002]. However the most common choice is
a the euclidean measure:

Dγ(s)(r· − r·
(s)) :=

1

2 · γ(s)
‖r· − r·

(s)‖2 (6.4.9)

Figure 6.3 depicts some of the most commonly used stabilization terms [Frangioni
2002].

4See also Bender’s method [Dantzig & Thapa 1997b] for the linear programming case.
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Remark 6.3.
More explicitly, the problem 6.5 is formulated as follows:

Optimization Problem 6.6. Master problem- explcit form

Master(s) : r(s+1)
· := Argmin

r·∈D,{µ`}`∈S

[∑
`∈S

µ` +Dγ(s)(r· − r·
(s))

]
(6.4.10a)

Subject to:

S
(s)
` · r` − 1nB×1 · µ` ≤ E

(s)
` , ` ∈ S (6.4.10b)

where S
(s)
` and E (s)` are defined as follows:

S
(s)
` :=

[
s
(1)
` , . . . , s

(nB)
`

]T
(6.4.11a)

E (s)` :=
[
ε
(1)
` , . . . , ε

(nB)
`

]T
(6.4.11b)

Actually, note that each inequality S
(s)
` ·r`−1nB×1 ·µ` ≤ E

(s)
` in the optimization problem

6.6 is related to a subfunction ` ∈ S. It reflects the fact that the variable µ` has to be larger than
all the linear pieces constituting the current polyhedral approximation J̌

(s)
` (r`) (see (6.4.4)).

This explains the inequalities (6.4.10b). ♦

Remark 6.4.
Note that if D was a polyhedron, then the optimization problem 6.6 is either a Quadratic
Programming problem (in the case of quadratic stabilization term) or a Linear Programming
problem if a stabilized trust region or a trust region stabilization function is used (see stabi-
lization terms in figure 6.3). ♦

The parameter γ(s) > 0 is the proximity parameter and is updated at each iteration
s. The stability center r·

(s) plays a crucial role in the bundle method since, contrary

1

2·γ
‖∆r‖2

Dγ(∆r)

∆r

Dγ(∆r)

∆r

γ/2 γ/2

ǫǫ

∆r

Dγ(∆r)

γ/2 γ/2

(a) (b) (c)

Figure 6.3 Stabilization terms. (a): quadratic stabilization term. (b): trust
region. (c): stabilized trust region.

121



Chapter 6. Distributed Model Predictive Control - Theoretical framework

to pure cutting planes techniques [Briant et al. 2008], it keeps track of the best known
solution until iteration s while avoiding oscillations resulting from a potentially poor
approximation of J`.

Updating the parameter γ and the stability center r·
(s)

To derive updating rules for the stability center r·
(s) and the parameter γ(s), let us

define on the one hand the predicted decrease at iteration s:

d̂(s) := J(r·
(s))− J̌ (s)(r(s+1)

· ) ≥ 0 (6.4.12)

on the other the real decrease d(s):

d(s) := J(r·
(s))− J(r(s+1)

· ) (6.4.13)

If the real decrease is greater than a certain fraction f ∈ [0, 1] of the predicted decrease
then the current iterate s is called a Serious Step. In this case the coordinator enhanced
the current solution: the central point r(s) is updated, and the trust region parameter
γ is increased.

Otherwise, one has an insufficient decrease, namely d(s) ≤ f · d̂(s) and step s is
called a Null Step: the central point in kept unchanged and the trust region parameter
γ(s) is decreased. Note however, that in both situations the accuracy of the approxi-
mation J̌ (s) is enhanced each time a new element is incorporated in the bundle (6.4.3).

The algorithm achieves the optimal solution with an accuracy εJ when the pre-
dicted decrease d̂(s) is lower than a predefined accuracy on the objective function
d̂(s) ≤ εJ . Since the number of iterations allowed in our framework is very limited, the
condition d̂(s) ≤ εJ is rarely achieved. Therefore, the algorithm is generally stopped if
the iteration counter s reaches the maximum number of iterations allowed smax.

Let us finally emphasize that all iterates are feasible in that they respect all global
and also local constraints. This feature is very interesting since the algorithm can be
stopped, if necessary, at any iteration. To find a feasible starting point, a projection of
the best known solution at instant k, denoted r]· on the domain D is performed at the
initialization phase. The initialization function is noted Init, namely:

r·
(0) = Init(r]· ) := Argmin

r·∈D
‖r· − r]·‖ (6.4.14)

Some other technical details regarding bundle compression techniques, updating
strategies of parameter γ(s) have been omitted but are available in [Frangioni 2002].
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Aggregated model Disaggregated model
Stabilized Bundle-Agg Bundle-Dis
Non stabilized CP-Agg CP-Dis

Table 6.1 Summary of optimization variants based on aggregation or not of
the bundles and stabilization or not of the master problem.

Remark 6.5.
In this section a fully disaggregated variant of the bundle algorithm has been presented. It is
worth underlining that a fully aggregated variant is also possible, i.e. where a unique (and
subsequently less precise) approximation of the function J is constructed. This is achieved by
forming a unique bundle for the function J , namely:

B(s) :=


s

(i)
1
...

s
(i)
Ns

 ,∑
`∈S

ε
(i)
`


i=1,...,nB

(6.4.15)

Therefore, one should distinguish four cases based on the stabilization or not of the master
problem and aggregation or not of the bundles (table 6.1). These four variants will be assessed
further in chapter 7, section 7.6.

♦

Remark 6.6.
In this work, an implicit assumption on synchronous communication is made. This essential
assumption in the framework can be however avoided using some incremental-like bundle
methods [Emiel & Sagastizábal 2008]. This has not been studied in the context of the present
work. ♦

6.5 Distributing optimization over time

Ideally, all the iterations described in the previous section should take place during
the sampling period [k · τ, (k + 1) · τ ]. Moreover, many of these iterations have to be
performed in order to achieve a sufficiently good approximation of cost functions J`,k
(and therefore, a sufficiently good optimal solution). This may be incompatible with
the sampling period or the communication capabilities.

The idea is then to still use a modified version of the past information contained
in the previous bundles {B`,k−1}`∈S . This operation relies on the assumption that
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the functions J`,k(·) do not change drastically and therefore the approximations of these
functions, stored in the bundles:

{B`,k−1 = {s(i)` , ε
(i)
` }i=1,...,nB

}`∈S (6.5.1)

can be used as an initialization at instant k of the bundle but "corrected" in the
following way :

B
(0)
`,k = {m`,k · ←−s (i)

` ,m`,k · ε(i)` }i=1,...,nB
(6.5.2)

where:

• the approximated (sub)gradient ←−s (i)
` is obtained by conveniently shifting and

completing the (sub)gradient vectors obtained over the last instants. The opera-
tor shift←−v of any predicted profile of the vector v ∈ Rnv is defined by:

←−v := [Π1(v)T , . . . ,ΠN−1(v)T ,ΠN−1(v)T ]T (6.5.3)

• The positive parameter m`,k ∈ [0 , 1 − ε] (0 < ε � 1) is the memory factor. It
plays a central role in the scheme enabling a certain part of the information to
be "forgotten".

The memory parameter expresses a trade-off between the quantity of information
that one wants to keep and the fact the cuts used as initialization for the bundle at in-
stant k should be under-estimators of the function J`,k in order to prevent the optimal
solution from being excluded from the current search domain.

Remark that when m`,k = 0, no information related the past is kept at the current
instant, and the whole bundle information is equivalent to J`,k > 0 (meaning that the
whole information gathered during previous decision instants has been forgotten).

For these reasons, the memory factors m`,k are adjusted in accordance with the
quality of the initial approximation J̌ init`,k computed at the initial point r

(0)
`,k and gener-

alized to the whole bundle (figure 6.4).

m`,k := 1− Sat[0 ,1−ε]

(
[J̌ init
`,k (r

(0)
`,k)− J`,k(r(0)`,k)]2

[J`,k(r
(0)
`,k)]2

)
(6.5.4)

where the initial approximation J̌ init`,k results from the bundle B
(0)
`,k |m`,k = 1 (with

no forgetting factor). The function Sat[a b](·) is the saturation function.
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J̌
(0)
ℓ,k ·mℓ,k|mℓ,k = 1

Decreasing 

memory factor

rℓ,k

Jℓ,k

J̌
(0)
ℓ,k ·mℓ,k|mℓ,k = 0

r
(0)
ℓ,k

Figure 6.4 Effect of the memory factor on the first approximation of the func-
tion. For decreasing memory factors the initial approximation J

(0)
`,k keeps

less information but on the other hand prevents the optimal solution from
being excluded from the search domain.

6.5.1 The correction mechanism

It is essential to understand that memory capability is based on the assumption that
the functions J`,k from one decision instant to the next one are assumed to change
slowly.

In such conditions, the initial approximation (6.5.2) is supposed to give a rough
yet valuable starting approximation at instant k. However, it should be pointed out
that this assumption is, in practice, very hard to check. Moreover, note that:

• The gradient approximation ←−s ` introduced previously introduces an intrinsic
error,

• No knowledge about the subsystems respective states and/or disturbances is
neither available nor taken into account by the coordination layer.

This is why a correction mechanism must be introduced to ensure a priori that the
linear piece i = 1, . . . , nB remains an under-estimator of the functions ` ∈ S. This is
crucial in order to prevent the optimal point to be excluded from the current search
domain.
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More precisely, each time a new evaluation of the function J`,k(r
(s)
`,k) is performed,

it is easy to check that each linear piece composing the current approximation of the
function J̌ (s)

` still under estimates the function at the given evaluation point. Basically
if no error corrupted the approximation, the condition:

J̌`,k(r
(s)
`,k) ≤ J`,k(r

(s)
`,k) (6.5.5)

is always satisfied (see figure 6.2). Therefore, the differences β(i) can simply be
computed:

β(i) = J`,k(r
(s)
`,k)− (〈s(i)` , r

(s)
`,k〉+ ε

(i)
` ) i = 1, . . . , nB (6.5.6)

Each β(i) represents the difference between the certain value of the function at the
current iterate s (returned by agents) and the value of the linear piece i evaluated at
the same point.

If β(i) ≥ 0, then the linear piece i is a priori a valid under-estimator of the function
and remains unchanged in the bundle, since no reason indicated that it is corrupted.
Otherwise (β(i) < 0) the linear piece i in the bundle has to be vertically translated in
order to correct its position and then to fulfil the condition (6.5.5), namely:

if β(i) < 0 then ε(i) = ε(i) + 1.1 · β(i) (6.5.7)

Remark 6.7.
The correction mechanism enables on one hand to correct the information gathered in the
bundle as explained before and on other to introduce a certain immunity against uncertainty
on (sub)gradient information itself, since local solvers may return (sub)gradient values cor-
rupted with some errors due the quality of their local solvers. Moreover, analogous techniques
for non-convex function optimization are employed in bundle techniques [Grothey 2001]. ♦

For clarity’s sake, the correction mechanism is defined as a function:

Correct(B(s)
`,k, J`,k(r

(s)
`,k), r

(s)
`,k) (6.5.8)

where the function Correct(·) given by the algorithm 6.2.

Memory mechanism principle is illustrated on figure 6.6 (see page 129).

Finally, to present the technique as clearly as possible, the complete framework
is presented on figure 6.5, in which the elements {BM`}`∈S are the Bundle Manager
units, performing the operations related to bundle storage, correction and memory
described previously. The algorithm 6.3 (page 128) provides a full summary of the
proposed framework 5.

5In the algorithm 6.3 (page 128), contraction and dilatation parameters of γ(s), here 1.1 and 0.8 are
provided as indications.
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Algorithm 6.2 Bundle correction mechanism

1: for i← 1, . . . , nB do
2: β(i) = J`,k(r

(s)
`,k)− (〈s(i)` , r

(s)
`,k〉+ ε

(i)
` )

3: if β(i) < 0 then
4: ε(i) = ε(i) + 1.1 · β(i)

5: end if
6: B

(s)
`,k = {s(i)` , ε

(i)
` }i=1,...,nB

. Bundle update
7: end for

rℓ J̌ℓ(·)

J̌ℓ(rℓ)

Jℓ(rℓ) gℓ(rℓ)

r1 J̌1(·)

J̌1(r1)

g1(r1)J1(r1)

Coordinator

Subsystem Ns

uNs

rℓr1

J̌Ns
(rNs

)

J̌Ns
(·)

rNs

rNs

JNs
(rNs

) gNs
(rNs

)

Subsystem ℓSubsystem 1

uℓu1

BMNs
BMℓBM1

x1 xℓ xNs

r1 rℓ rNs

Master problem

MPC1 MPCℓ MPCNs

Figure 6.5 Hierarchical Distributed Model Predictive Control scheme.

6.6 Theoretical results availability

Convergence results for the classical bundle method (for an optimization problem
defined once and for all) can be found in [Frangioni 2002] when the cost function is
convex. The difficulties (in carrying the convergence analysis) associated with the
dynamic character of the problem (that changes because of the state variation during
a sampling period) can be overcame following the same guidelines recently used in
[Alamir 2011]. Roughly speaking, it can be shown that the decrease in the cost func-
tion guaranteed in the ideal static case are disturbed by a term which is O(τ 2) where
τ is the control updating period. As the latter is precisely decreased by the distributed-
in-time scheme (requiring fewer iterations at each updating period), a sort of virtuous
circle in favor of stability assessment takes place.
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Algorithm 6.3 Bundle method based DMPC with memory

1: for each decision instant k do
2: s← 0 . Initialize iteration counter
3: r

(0)
·,k ← Init(

←−−−
r?·,k−1) . Send feasible candidate profiles to subsystems

4: for `← 1, . . . , Ns do . Parallel operation performed by the subsystems
5: J`,k(r

(0)
`,k),g

(0)
`,k ←MPC`(r

(0)
`,k) . Subsystems solve local problems

6: u]`,k ← (u?`,k)
(0) . Subsystems store their current optimal solution

7: m`,k := 1− Sat[0 ,1−ε]
(

[J̌ init
` (r

(0)
`,k)− J`,k(r(0)`,k)]2/[J`,k(r

(0)
`,k)]2

)
8: B

(0)
`,k = {m`,k · ←−s (i)

` ,m`,k · ε(i)` }i=1,...,nB
. Forgetting operation

9: B
(0)
`,k ← Update(B

(0)
`,k , J`,k(r

(0)
`,k),g

(0)
`,k , r

(0)
`,k) . Update bundles

10: B
(0)
`,k ← Correct(B(0)

`,k , J`,k(r
(0)
`,k), r

(0)
`,k) . Correct bundles

11: end for
12: r

(0)
· ← r

(0)
· , d̂(0) ←∞ . Initialize stability center

13: while s ≤ smax and d̂(s) ≥ ηJ do
14: r

(s+1)
·,k ←Master(s) . Coordinator solves master problem

15: d̂(s) = J(r
(s)
·,k )− J̌ (s)(r

(s+1)
·,k )

16: for `← 1, . . . , Ns do
17: J`,k(r

(s+1)
`,k ),g

(s+1)
`,k ←MPC`(r

(s+1)
`,k ) . Subsystems solve local opt. probs.

18: d(s) = J(r
(s)
·,k )− J̌ (s)(r

(s+1)
·,k ) . Compute real decrease

19: if d̂(s) > f · d(s) then . Serious step
20: γ(s+1) ← 1.1 · γ(s) , r

(s+1)
·,k ← r

(s+1)
·,k . Increase γ, update stab. center

21: u]`,k ← (u?`,k)
(s+1) . Subsystems update optimal solutions

22: else . Null step
23: γ(s+1) ← 0.8 · γ(s), r

(s+1)
·,k ← r

(s)
·,k . Decrease γ, stab. cent. unchanged

24: end if
25: B

(s+1)
`,k ← Update(B

(s)
`,k, J`,k(r

(s+1)
`,k ),g

(s+1)
`,k , r

(s+1)
`,k ) . Update bundles

26: B
(s+1)
`,k ← Correct(B(s+1)

`,k , J`,k(r
(s+1)
`,k ), r

(s+1)
`,k ) . Correct bundles

27: end for
28: s← s+ 1 . Increment iteration counter
29: end while
30: r?·,k ← r

(s+1)
·,k

31: for `← 1, . . . , Ns do . Parallel operations performed by subsystems
32: Subsystem ` Applies u]`,k
33: end for
34: end for
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Figure 6.6 Illustration of the DMPC algorithm with memory-based mecha-
nism.
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6.7 Conclusion

In this chapter, a new distributed-in-time algorithm for distributed model predictive
control has been presented. Its main advantage lies in decreasing the number ne-
gotiation iterations required in order to achieve a relevant solution at each decision
instant. The scheme is particularly adapted to situations in which the computation
units at the subsystem layer are much more ineffective compared to the one at coor-
dination layer.

In future, the investigation of the effects of adjustment of the bundle size as well
as the number of iterations will be carried out. This with a deeper theoretical study
regarding convergence as well as theoretical performances.

In the next chapter the scheme presented in this chapter is tailored to the BEMS
case. Indeed, a coordinator is introduced to manage the zone controllers designed
in part II to handle global power consumption limitations in a multi-source context.
This issue is deeply explained in chapter 7.
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Chapter 7

Constrained DMPC for building
energy management

Abstract
In this chapter, a DMPC approach for handling power limitations, shared inputs and a shared
storage device in a multi-zone building is presented. The scheme, based on the distributed
approach presented previously in chapter 6, is tailored to this issue.

7.1 Context and motivations

Model Predictive Control (MPC) is becoming a crucial paradigm for energy manage-
ment in buildings. This fact results from its ability to manage constrained MIMO sys-
tems while taking into account weather forecast, energy tariffs, occupancy schedule
etc.

As it has been pointed out in section 2.4.1, instead of managing buildings internal
parameters, a crucial benefit of the usage of predictive strategies in buildings lies also
in their ability to take into account some market conditions imposed by the utility.

In that sense, the objective of the chapter is to design a coordination mechanism
able to manage the zone controllers in order to:

1. Make the building smart grid ready (this will be explained hereafter),

2. Handle power resources constraints, shared inputs as well as energy storage
capability.
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Electrical 

GridNuclear plants

Thermal plants

Wind farms

Solar plants

Power
D/R signals

Figure 7.1 Illustration of the current electricity grid.

Smart grid ready buildings - demand responsive buildings

One of the major issues facing electricity providers lies in reducing supply-
consumption imbalances in the electricity grid. This task is, on one hand, particularly
critical since it ensures the consistency of the electrical grid and therefore sustainabil-
ity of energy provisioning and, on the other hand, becoming extremely challenging
with the increased penetration of renewable energy and the future massive introduc-
tion of electrical vehicles.

In this context, the conventional grid initially optimized to deliver energy from
controlled centralized generation stations to end-users, in a one-way transmission
line, is no longer adapted. In fact, the context calls for smarter grids able to man-
age heterogeneous distributed generation/consumption systems, which are more-
over partially controllable (see [Chen et al. 2012, Saad et al. 2012, Koutsopoulosa &
Tassiulas 2010] and the references therein for deeper explanations).

Demand/Response (D/R) is an approach in which the market conditions are ad-
justed according to the status of the grid. Basically, end electricity users are requested
to adjust their consumptions to help the electrical grid. Electricity grid managers
achieve this objective by sending D/R signals (see figure 7.1) that may take several
forms:

a. Time varying electricity rating
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7.1. Context and motivations

b. Maximal power consumption adjustment

c. Power dependant energy rating (see figure 7.2)

It goes without saying that electricity end-users should be responsive and therefore
able to adapt their consumptions according to the market conditions. In fact, D/R
strategies are nowadays in almost situations manual, this means that an operator in the
building is responsible for adjusting the building consumption, by acting on building
set-points or directly by switching-off some equipment when required. It is then quite
obvious that:

1. the decisions to be undertaken by an operator become particularly difficult
when rating conditions are complex and/or local production and/or storage
capability (that may take several forms) are available,

2. large scale deployment and effectiveness of D/R strategies in such conditions is
unreliable.

These only reasons fully justify the introduction of automated D/R capabilities for
buildings. Indeed, automated D/R is a core component of the so called smart grid,
since it enables electricity grid managers to make use of a huge energetic buffer (build-
ings) in order to:

• Maintain production-consumption equilibrium,

• Shift energy consumption to more appropriate periods during which energy is
less carbonated for instance,

• Reduce peak power consumption and therefore avoid heavy investments in ad-
ditional power plants [Chen et al. 2012]1.

Constrained DMPC for buildings

Although a lot of effort has been deployed in designing MPC strategies for Building
Energy Management Systems (BEMS), limitations have been pointed out in some pre-
vious studies (e.g. [Moroşan et al. 2010a, Ma et al. 2011]) when the dimension of the
building increases.

In the case of large buildings, a centralized approach is too expensive (or even
impossible) from a computational point of view. In addition to non scalability, non

1Depending on estimations 100 hours during the whole year (≈ 1% of the time) are responsible for
10-20 % of the whole US investment in electric sector, see [Chen et al. 2012] and the references therein.
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Energy rate

Power cons.

Figure 7.2 Power dependant energy rating: this means that energy rate de-
pends on power consumption - the convex shape of the electricity rate is
introduced to reduce excessive peak consumption.

modular schemes are generally inappropriate both for maintainability and safety rea-
sons but also for extensibility concerns.

As discussed earlier (chapter 6), the principle of Distributed Model Predictive
Control (DMPC) is to design local predictive controllers responsible of local decision
making that have to come up with an agreement on the best system-wide strategy to
implement.

For building application, this approach has been studied before2. In [Moroşan
et al. 2011, Moroşan et al. 2010b], DMPC strategies have been designed to handle a
global power limitation or a centralized heating system using either a dual decom-
position (Dantzig-Wolfe) or a primal decomposition (Bender) technique (see [Dantzig
& Thapa 1997b]) to tackle the encountered issues. Nevertheless, the schemes han-
dle either shared variables between zones or power limits but not these two features
simultaneously.

In [Ma et al. 2011, Ma et al. 2012] the management of the thermal regulation of a
multi-zone building is performed in a distributed fashion. A modified SQP method
is combined to a dual decomposition of the centralized problem. The master problem
is then solved thanks to a fast gradient technique. In this case, the authors report
an important number of iterations to achieve a relevant sub-optimal solution (few
hundreds), such a communication rate represents a serious drawback.

Furthermore, these works focus exclusively on the thermal aspect. Even if, from a
purely conceptual point of view, the management of the other zone-relevant quanti-
ties (CO2 and indoor illuminance) has no impact on the proposed schemes, complex-
ity of the local sub-problems is increased and may affect their performances.

2see also [Dounis & Caraiscos 2009, Abras 2009] for other non-predictive multi-agent control sys-
tems in buildings
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In chapters 4 and 5, a nonlinear MPC strategy has been proposed to manage zone
relevant quantities to ensure occupants comfort at a minimal operational cost. In
this chapter, these local controllers are used in a global DMPC framework to handle
simultaneously:

• Limitations on power sources,

• Shared inputs between zones,

• Shared energy storage equipment (local battery).

This is the main originality of the work reported in the present chapter.

Furthermore, let us highlight the fact that a great attention is given to the com-
munication rate. Indeed, the proposed mechanism exhibits good performances even
when the number of allowed iterations is extremely low.

This chapter is organized as follows: in section 7.2 a schematic description of the
problem is given. After a brief recall of zone model predictive control in section 7.3,
the global multi-zone problem is formulated in section 7.4. The DMPC framework is
derived and assessed on a 20 zones building in section 7.5. In section 7.6, assessment
of the bundle method is provided. Section 7.7 present the simulation results. Finally,
section 7.8 concludes the chapter and gives directions for further investigations.

7.2 Problem description

In this chapter, a multi-zone building is considered. The building is able to store
electrical energy in batteries in order to redistribute it to zones. This storage capability
offers the benefit of:

i. shifting energy consumption of the building to periods in which electricity is
cheaper,

ii. storing energy to redistribute it to the zones in order to prevent any power con-
straint violation since the power provided by the grid to the building is limited.

Thus, the building should take into account this power limitation in advance to
store energy in an electrical form or a thermal form in the zones in order to maintain
occupants comfort within the prescribed level. Moreover, the amount of thermal en-
ergy stored in each zone should be adapted regarding the thermal storage efficiency of
each zone.
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Chapter 7. Constrained DMPC for building energy management

The aim of the this study is to design a coordination mechanism able to address
this issue (figure 7.3). In the next section, a brief recall on zone model predictive
control which has been designed in chapters 4 and 5 is given since these zone MPC
controller are then integrated in the DMPC architecture.

It is important to highlight that physical couplings between zones are not explic-
itly taken into account in the control procedure. Indeed, as it has been discussed in
chapter 4, dedicated observers have been designed to recover them. They are, there-
fore seen as disturbances and no cooperation mechanism addressing the physical cou-
plings between zones is implemented 3.

Before going further, let us first introduce some necessary complements to the
zones controllers, by making each zone able to manage some local constraints. This is
precisely the aim of the next section.

∞ ∈

∋ △

Grid

Coordinator

Communication

Local MPC

control

Power

limitations

Energy

prices
Electrical storage

Figure 7.3 Constrained distributed Model Predictive in a multi-zone build-
ing. The coordinator gathers global information and ensures coordination
of local controllers beside battery management.

3interested reader may refer to [Moroşan et al. 2010a] for some DMPC strategies enbling to take into
account heat exchanges between zones explicitly.
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7.3. Zone controllers

7.3 Zone controllers

In this section, a brief recall on the previously designed zone model predictive con-
trollers4 is given. As it will be discussed, slight modifications will be introduced in
the zone-related optimization problems to handle local power limitations and shared
inputs.

7.3.1 Zone models

Consider a building with nz zones, where ` ∈ Z = {1, . . . , nz} is the zone index and let
the following nonlinear state space representations describe the dynamical behavior
of each zone ` ∈ Z:

{
x+` = A` · x` + [B`(y`, w`)] · u` +G` · w`
y` = C` · x` + [D`(w`)] · u` + F` · w`

(7.3.1)

where: x` ∈ Rnx
` , u` ∈ Rnu

` ,w` ∈ Rnw
` , y` ∈ Rny

` are respectively the state, input,
disturbance and output vectors related to the zone `.

Further discussion regarding this model can be found in chapter 3. Nevertheless,
let us recall some necessary elements to understand the sequel:

• The model (7.3.1) is a nonlinear model;

• Depending on the configuration of each zone `, the vector u` gathers control
of local equipment (HVAC5, lighting, shading) that may differ between zones.
Normalized inputs are considered, i.e u` ∈ [0, 1]n

u
` .

• The output vector y` = [T`, C`, L`]
T includes indoor air temperature, CO2 level

and illuminance in the zone `.

• w` = [φ1
` , . . . , φ

nf
`
` , Tex,Occ`, Cex]T is the disturbance vector. More precisely:

φ1
` , . . . , φ

nf
`
` are the global irradiance fluxes on each of the nf` facades of the zone

`, Tex is the outdoor temperature, Occ` is the number of occupants and Cex is the
outdoor CO2 level.

4see chapters 4 and 5
5 HVAC: Heating, Ventilation and Air Conditioning
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7.3.2 Zone Model Predictive Control

The objective of each zone model predictive controller is to keep the outputs of the
system y` ∈ R3 in their respective comfort range (chapter 4) at a minimum energetic
cost, which may refer to a pure energetic criterion or a an invoice criterion in the case
of varying energy tariff.

The comfort bounds related to outputs are obviously linked to the occupancy of
the zone. The model (7.3.1) of each zone as well as prediction on disturbances, power
costs and occupancy are jointly used in order to formulate the following optimization
problem which has to be solved at each decision instant:

Minimize
u`∈U`

JE(p`) + JC(y`) + JF (y`) + JD(y`) (7.3.2)

where:

• JE , JC , JF , JD stand respectively for energy cost, discomfort cost, final cost and
actuators variations cost (see chapter 4),

• Recall that the boldfaced vector indicate predicted profiles (e.g. u` is the pre-
dicted profile of the input vector u` over the prediction horizon).

• p` ∈ Rne·N stands for predicted power consumption profile, where ne is the total
number of power sources.

One is interested in the case where the zone has access to several power sources,
that may be moreover of the same type (several electrical sources for example),
each power source being characterized by its related cost (and upper limit as it
will explained after). More precisely, one considers that each of the ne power
sources belongs to one of the ns types consumed by the zone.

Let b` denotes the correspondence between sources and types. More precisely,
each element b`(i, j) of the matrix b` ∈ Rns×ne takes the value 1 iff the power
source j = 1, . . . , ne is of type i = 1, . . . , ns.

example:
Assume a zone equipped with a fan coil unit (chapter 5). The zone consumes electrical
and thermal energy (there exists two power types ns = 2). Moreover, the zone has access
to three different electrical sources and one thermal source (ne = 3 + 1). In this case:

b` :=

[
1 1 1 0

0 0 0 1

]
∈ R2×4 (7.3.3)

♦
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According to the previous discussion, the power profile p` is linked to the con-
trol variables by the following relation:

B` · p` = E` · u` (7.3.4)

The matrix E` ∈ Rns·N×n`
u·N is suitably constructed to gather the power con-

sumptions related to each actuator with respect to each power source (see
(5.3.5)). The matrix B` is given by:

B` := IN ⊗ b` (7.3.5)

• JE corresponds to the integral energy criterion over the horizon. It depends on
the predicted consumed power profile p and the power costs Γ. Therefore:

JE := ΓT · p (7.3.6)

The components of the vector Γ ∈ Rne correspond to the cost of the available
power sources of zone `.

• JC(y) is the discomfort criterion. It expresses the discomfort related to ther-
mal, air quality and lighting aspects in a building and can be defined in terms
of lower and upper bounds y`, y

`
. These bounds are linked to the predicted

occupancy of each zone, (section 4.3).

7.3.3 Introducing local constraints

Let us assume that each zone ` ∈ Z is submitted to two types of resource constraints:

i. Upper limit resources constraints r
up
` , that refer to upper constraints on local

power consumption, namely:
p` ≤ r

up
` (7.3.7)

ii. Shared inputs req
` ∈ Rn`

sh which are the inputs shared by the zone ` with other
zones or some subset of zones (an example is given further). Namely, the follow-
ing local constraint holds:

Λ` · u` = r
eq
` (7.3.8)

where each element Λ`(i, j) of the matrix Λ` ∈ Rn`
sh×n

`
u designates the shared input

j = 1, . . . , nsh corresponding to the input i = 1, . . . , n`u of the zone `, namely:

Λ`(i, j) = 1, if the shared input j corresponds to input i of zone ` (7.3.9)

Λ`(i, j) = 0, otherwise (7.3.10)
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Furthermore, let us introduce the matrix Λ`:

Λ` := IN ⊗ Λ` (7.3.11)

Hence, the optimization problem 4.2 related to each zone ` ∈ Z becomes:

Optimization Problem 7.1.
NLP`: Minimize

u`,p`,y`,δ1,δ2,δd
J(u`,p`,y`,Γk) (7.3.12a)

Subject To :

[Φ`(y`,w`)] · u` + δ−0 + δ−1 ≥ y
`
−Ψ` · x` − Ξ` ·w` (7.3.12b)

[Φ`(y`,w`)] · u` − δ+0 − δ+1 ≤ y` −Ψ` · x` − Ξ` ·w` (7.3.12c)

D · u` − δ+d + δ−d = a (7.3.12d)

0 ≤ u` ≤ 1 (7.3.12e)

B` · p` = E` · u` (7.3.12f)

δ1 ≥ 0 , δd ≥ 0 , 0 ≤ δ2 ≤
[
δy
δy

]
(7.3.12g)

Λ` · u` = r
eq
` (7.3.12h)

p` ≤ r
up
` (7.3.12i)

Note that, in the case of multi-source buildings, with several power sources of the
same nature (previous example), the variables p` need to be added to the set of deci-
sion variables z` related to the zone ` (gathering all the decision variables involved in
the optimization problem):

z` :=
[
uT` pT` δT0 δT1 δTd

]T
(7.3.13)

Following the guidelines presented in chapter 4, it can be shown that the MPC
related optimization problem is a nonlinear optimization problem that can be solved
thanks to the resolution of a sequence of LPs. Defining the local resource vector re-
lated to each zone r` by:

r` :=

[
r

up
`

r
eq
`

]
(7.3.14)

At each iteration i of the fixed-point algorithm, the following LP has to be solved:

140



7.4. DMPC - the control problem

Optimization Problem 7.2. Zone related optimization problem (nonlinear)

J`(r`) := Minimize
z`≤z`≤z`

L
(i)
` · z` (7.3.15)

Subject To :

A
(i)
` · z` ≤ b` (7.3.16)

e`(r`) ≤ A′` · z` ≤ e`(r`) (7.3.17)

e`(r`) and e`(r`) are affine in their arguments. They are introduced only to render
the optimization problem writing compact.

In order to keep the formulation simple. It is assumed in the remainder that the
MPC-related optimization problem takes the form of a linear programming problem
at each decision instant. Actually, this is achieved by limiting the number of iterations
to only one iteration.

Thus, assuming r` given, the following LP has to be solved by each zone ` at each
decision instant:

Optimization Problem 7.3. Zone optimization problem- MPC`(r`)

J`(r`) := Minimize
z`≤z`≤z`

L` · z` (7.3.18)

Subject To :

A` · z` ≤ b` (7.3.19)

e`(r`) ≤ A′` · z` ≤ e`(r`) (7.3.20)

In the optimization problem 7.3, the optimal value of the objective function for
some resource allocation r` is abusively denoted J`(r`).

Note that since the optimization problem 7.3 is an LP problem, a subgradient
g`(r`) ∈ ∂J`(r`) is given by dual variables corresponding to the constraints (7.3.20)
[Dantzig & Thapa 1997a, Dantzig & Thapa 1997b]. This enables the methodology de-
veloped in chapter 6 to be used as shown in the following section.

7.4 DMPC - the control problem

In order to clarify the presentation, this section treats increasingly complex situations.
Firstly, considering that a global power limitation pg on the total power consump-
tion of the building holds, then that an electrical battery is available. Finally that, in
addition, some inputs are shared between zones.
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As it will be shown, in these three cases, the final forms of the master problems
(solved by the coordinator) are similar. With this respect, only the formulation are
proposed in this section, the adaptation of the bundle algorithm seen in chapter 6 are
proposed in the next section.

7.4.1 Global power limitation

Consider that a global power limitation holds on the total consumed power of the
building, denoted hereafter by pg (see figure 7.4), namely:

pg ≤ pg (7.4.1)

where pg is the maximum power consumption of the whole building. In this case, the
global constraint 7.4.1 is equivalent to:∑

`=∈Z

p` ≤ pg (7.4.2)

Hence, the centralized open-loop optimization problem is given by:

Optimization Problem 7.4.
Minimize

z1,...,znz ,r1,...,rnz

∑
`∈Z

L` · z` (7.4.3a)

Subject To :∑
`∈Z

r` ≤ pg (7.4.3b)

A` · z` ≤ b`, ` ∈ Z (7.4.3c)

e`(r`) ≤ A′` · z` ≤ e`(r`), ` ∈ Z (7.4.3d)

z` ≤ z` ≤ z`, ` ∈ Z (7.4.3e)

which induces the following master problem:

Optimization Problem 7.5. Master problem - global power limitation

Minimize
r1,...,rnz

∑
`∈Z

J`(r`) (7.4.4a)

Subject To :∑
`∈Z

r` ≤ pg (7.4.4b)
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Note concerning the constraint (7.4.4b), that an inequality is used instead of an
equality to prevent infeasibility in the case where no power limitation holds (pg =

∞).

Remark 7.1.
Note that the optimization problem 7.4 can be put in another form. Basically, one can consider
that local equality constraints hold on power consumptions by imposing equality constraints
instead of power limitation consumption:

p` = r` (7.4.5)

However, since the optimization problem 7.4 is intended to be solved in a distributed fashion,
the formulation 7.4 is better. This results from the fact that the local problems 7.3 are less
constrained leading to simpler approximations J̌`. ♦

7.4.2 Global power limitation and shared energy storage

Consider now that, in addition, an electrical storage capability is available. In order
to formulate the centralized optimization problem, let us first introduce the battery
model.

Electrical battery model

The simplified electrical battery model is given by the following switched system:

b+ = b+ τ · η(pb) · pb (7.4.6a)

with:

η(pb) =

{
η+ if pb ≥ 0

1/η− if pb < 0
(7.4.6b)

where:

• pb is the battery power (pb > 0: charge) (pb < 0: discharge), it is limited in charge
and discharge, hence |pb| ≤ pb,

• τ is the sampling period,

• (η+, η−) ∈ ]0, 1[2 represent respectively the charge and discharge efficiency of the
battery,

• b represents the battery state of charge in [kWh] and is also limited: b ≤ b ≤ b.
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Figure 7.4 Zone layer and Energy layer. Each zone ` has access virtually to
two power sources p←g` and p←b` .

To derive the control problem, it is necessary to define an equivalent model of the
model (7.4.6) by introducing p+b and p−b standing respectively for charge and discharge
battery powers:

pb = p+b − p
−
b , p+b , p

−
b ≥ 0 (7.4.7)

Thus, it is possible to state that the battery model defined by (7.4.6) is equivalent
to: {

b+ = b+ (τ · η+) · p+b − (τ/η−) · p−b
p+b · p

−
b = 0, p+b , p

−
b ≥ 0

(7.4.8)

The constraint p+b · p
−
b = 0 means that the battery is either charged or discharged.

Centralized optimization problem

Consider now that one is able to virtually split the power consumption of each zone p`
distinguishing p←g` which is the amount of power consumed by the zone ` from grid
and p←b` which is the amount of power consumed from the battery. One can easily see
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that fulfilment of the set of the following linear constraints ensures the respect of the
global power constraint (7.4.1) on the building (see figure 7.4).

`=nz∑
`=1

p←g` + p+b ≤ pg (7.4.9a)

`=nz∑
`=1

p←b` = p−b (7.4.9b)

Note at this step that the energy layer (see figure 7.4) is, from a zone perspective,
a resource provider which provides two types of electrical powers:

• Grid power: its predicted tariff profile is given by Γg,

• Battery power: it is provided by the energy layer and its tariff profile is given by
Γb = 0.

Defining now zone resources related to each zone ` by:

r` =

[
r←g`

r←b`

]
(7.4.10)

the centralized optimization problem can be formulated on the following form:

Optimization Problem 7.6. Centralized optimization problem

Minimize
pb

+,pb
−,z1,...,znz ,r1,...,rnz

Γg · pb
+ +

∑
`∈Z

L` · z` (7.4.11a)

Subject To :

b− b0 ≤ τ · η+ · Φe · p+
b +

τ

η−
· Φe · p−b ≤ b− b0 (7.4.11b)

0 ≤ pb
+,pb

− ≤ pb (7.4.11c)

pb
+ � pb

− = 0 (7.4.11d)∑
`∈Z

r←g` + p+
b ≤ pg (7.4.11e)∑

`∈Z

r←b` = p−b (7.4.11f)

A` · z` ≤ b`, ` ∈ Z (7.4.11g)

z` ≤ z` ≤ z`, ` ∈ Z (7.4.11h)

e`(r`) ≤ A′` · z` ≤ e`(r`), ` ∈ Z (7.4.11i)
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where:

• b0 is initial state of charge of the battery at the current decision instant,

• � is the element-wise product,

• Φe ∈ RN×N is a triangular matrix given by:

Φe :=


1 0 0 . . . 0

1 1 0 . . . 0
... . . . . . . . . . . . .

1 1 1 . . . 1

 (7.4.12)

• Note that the equality (7.4.11f) implies that the whole discharged power will
be used by the zones. Namely imposing the inequality (7.4.11f) is sufficient to
impose the relation:

∑
`∈Z

r←b` = pb
− ⇒

∑
`∈Z

p←b` = pb
− (7.4.13)

which basically means that there is no reason to discharge the battery if the
discharged power is not consumed.

Notice that the optimization problem 7.6 is not an LP due the presence of the prod-
uct terms (7.4.11d), meaning that the battery can not be charged and discharged si-
multaneously.

Actually, even if not imposed, the constraint (7.4.11d) is always fulfilled provided
that charging and discharging the battery simultaneously is never interesting when
minimizing an economical objective is involved (one can refer to [Mattingley et al.
2010] for a simple example). This last property is of great importance since it enables
to consider the system (7.4.6) as a simple linear system with two inputs p+b , p−b in
which it is not mandatory to consider explicitly the switched property of the system.

Hence, the master problem in this case is the following LP where the constraint
(7.4.11d) does not appear in the optimization problem 7.7 as it has been explained
before:
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Optimization Problem 7.7. Master problem - pow. limit and battery management

Minimize
pb

+,pb
−,r1,...,rnz

Γg · pb
+ +

∑
`∈Z

J`(r`) (7.4.14a)

Subject To :

b− b0 ≤ τ · η+ · Φe · p+
b −

τ

η−
· Φe · p−b ≤ b− b0 (7.4.14b)

0 ≤ pb
+,pb

− ≤ pb (7.4.14c)∑
`∈Z

r←g` + p+
b ≤ pg (7.4.14d)∑

`∈Z

r←b` = p−b (7.4.14e)

7.4.3 Global power limitation, shared energy storage and shared in-
puts

Suppose that some shared inputs between zones exist. Namely, some centralized
actuator(s) has an impact on some subset(s) of zones. Each element of req ∈ Rnsh

represents a shared actuator. Let us note the power consumption of the total shared
actuators by pe:

pe := Ee · req (7.4.15)

where Ee groups the maximal power consumption of the shared actuators (simi-
larly to E` in the zone). In this case:

pe = p←be + p←ge (7.4.16)

where p←ge and p←be are respectively the parts of power consumed from grid and
from battery by the shared actuators.

Recalling the explanations concerning local constraints (see subsection 7.3.3) and
that:

r` =


r←g`

r←b`

r
eq
`

 (7.4.17)

deduction of the master problem is straightforward by considering that these ac-
tuators are managed by the coordinator.
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Optimization Problem 7.8.
Minimize

pb
+,pb

−,r1,...,rnz

Γg · pb
+ +

∑
`∈Z

J`(r`) (7.4.18a)

Subject To :

b− b0 ≤ τ · η+ · Φe · p+
b −

τ

η−
· Φe · p−b ≤ b− b0 (7.4.18b)

p←ge + p←be = E · pe (7.4.18c)

0 ≤ pb
+,pb

− ≤ pb (7.4.18d)∑
`∈Z

r←g` + p+
b + p←ge ≤ pg (7.4.18e)∑

`∈Z

r←b` + p←be ≤ p−b (7.4.18f)

Note that the shared actuators do not appear explicitly in the minimization argu-
ments of the problem 7.8 since they are included in local resources r

eq
` related to each

zone (see relation (7.4.17)).

Remark 7.2.
Following the same guidelines presented in the section. It can be also shown that the scheme
can be extended to handle local energy production. ♦

7.5 Distributed Model Predictive Control

In this section, the coordination mechanism presented in chapter 6 is tailored to the
present application. As discussed in section 7.4, the centralized optimization problem
reduces to:

Optimization Problem 7.9. Master problem

Minimize
ze,r

Le · ze +
∑
`∈Z

J`(r`) (7.5.1a)

Subject To :

Ae · ze +
∑
`∈Z

D` · r` ≤ be (7.5.1b)

0 ≤ r
up
` ≤ p`, ` ∈ Z (7.5.1c)

0 ≤ req ≤ 1 (7.5.1d)

where:

• The vector of variables ze gathers all the variables related to the energy layer,
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• The matrices Ae, be, {D`}`∈Z can be easily defined (see optimization problem
7.8).

To sum-up, in the optimization problem 7.9:

• The first constraint (7.5.1b) is the power coupling constraint,

• The constraints (7.5.1c) and (7.5.1d) are introduced in order to:

a. Ensure the feasibility of the local subproblems 7.3 by explicitly imposing
positiveness of maximal limitations on zones powers (which is actually the
assumption on availability of feasibility sets F`,k (assumption 6.2);

b. Reduce the search domain by imposing explicitly that resource cannot ex-
ceed the amount of power that the zone can consume.

In the sequel, the master problem 7.9 is shortly denoted as follows:

Optimization Problem 7.10. Master problem

Minimize
(ze,r)∈D

J :=

[
JE(ze) +

∑
`∈Z

J`(r`)

]
(7.5.2)

The expression (ze, r) ∈ D indicates the fulfilment of the constraints (7.5.1b)-
(7.5.1d).

7.5.1 Solving the master problem

As discussed in chapter 6, in bundle method the function to be minimized is approx-
imated by a cutting plane model, here the objective function J is separable since:

J = JE +
∑
`∈Z

J` (7.5.3)

It is important to highlight that only the unknown functions {J̌`}` Z need to be ap-
proximated given that the function JE is perfectly known at the master level.

Thus, at each iteration s of the bundle algorithm (chapter 6) the approximation J̌ (s)

can be obtained by summing all contributions:

J̌ (s)(ze, r) := JE(ze) +
∑
`∈Z

J̌
(s)
` (r`) (7.5.4)

resulting in the following stabilized optimization problem:
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Optimization Problem 7.11. Stabilized master problem

Minimize
(ze,r1,...,rnz )∈D

[J̌ (s)(ze, r) +Dγ(s)(r− r(s))] (7.5.5)

The stabilization function Dγ(s) is defined hereafter.

7.5.2 The stabilization term

Dℓ

∆rℓ

ǫǫ

γ · pℓγ · pℓ

Figure 7.5 Stabilization term (∆r` = r` − r
(s)
` ).

Recall that the stabilization term Dγ(s)(r − r(s)) is introduced in order to prevent
drastic variation from the current stability center r(s) which is the best known solution
at iteration s. The stabilization term Dγ(s)(r − r(s)) used in the sequel is chosen of the
following form:

Dγ(s)(r− r(s)) :=
∑
`∈Z

Dγ
` (r` − r

(s)
` ) (7.5.6)

where each profile r
(s)
` designates the part of the stability center corresponding to

the zone ` ∈ Z. Namely:

r(s) =


r
(s)
1

...

r
(s)
Ns

 (7.5.7)
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Here, a stabilized trust region is used (see figure 7.5). The benefit of such distance
measure lies in the fact that the stabilized master problem 7.11 remains a linear pro-
gramming problem which is not the case for general proximal bundle methods based
on quadratic stabilization term leading to QPs which are more computationally de-
manding especially if the size of the problem is quite large.

The parameter ε > 0 (see figure 7.5) is fixed a priori but needs to be chosen small
enough to ensure good performance of the scheme (see [Frangioni 2002]).

The trust region parameter γ(s) ∈ [γ, γ] is updated at each iteration s. Notice that
the two thresholds γ and γ designate respectively minimum and maximum move-
ment from the current stability center relatively to the maximum value that r` can
take.

Remark 7.3.
Stabilization terms related to req are similar to those presented here except that their maximum
values is always 1 (normalized control inputs on actuators). ♦

Finally, the coordination mechanism is summarized on figure 7.6 (page 152).
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Figure 7.6 Illustration of the coordination mechanism in the building. Each
MPC`∈Z aims to minimize its local objective given some restrictions r` on
power consumption. The coordinator gathers sub-gradients g`∈Z and func-
tions values J`∈Z to solve the master problem by forming J̌(·) and resend
new resources restriction r`∈Z, and so on until convergence.
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Remark 7.4.
Note that, since a trust region is employed, the master problem 7.11 may become infeasible if
starting from a non feasible initial solution. Moreover, starting from a feasible initial solution
ensures the successive feasibility of the problems 7.11 which is crucial. Note also that this fact
is not linked to the feasibility of the centralized problem, which is always feasible. ♦

7.6 Assessment of the bundle method

In this section, a numerical study of the bundle algorithm is proposed. Here, one is
only interested in solving one given optimization problem at a fixed decision instant.
In order to assess the proposed solution, the four algorithms (or variants) discussed
previously in chapter 6 (see remark 6.5) are compared:

1. Disaggregated bundle method,

2. Aggregated bundle method,

3. Cutting plane algorithm with (disaggregated model),

4. Cutting plane algorithm with (aggregated model),

Assessment approach

In the following case study, a 20-zone building is submitted to a power limitation pg
and equipped with an electrical battery. The electricity rate is time varying. Let us
introduce the sub-optimality (S-O) measure:

S-O[%] := 100 · J − J
?

J?
, where: J? is the optimal function value (7.6.1)

which simply indicates the gap between the current best function value obtained by
the algorithm at the current iterate and the real optimal value (J?), computed by solv-
ing the centralized optimization problem.

In this case study, the prediction horizon is 24 hours. As a parametrization of the
inputs trajectory is implemented with Nu

par = 20, r ∈ R2880, r` ∈ R144 (see section 4.7
in chapter 4 for explanations on the parametrization used in this work). In this case
the centralized optimization problem is an LP with ≈22000 decision variables and
≈16000 constraints.

The algorithms are assessed on increasingly difficult problems. This is achieved
by decreasing the power limitation pg. In this case study, pg ∈ {40, 35, 25, 20}[kW ].
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Note that, the more pg is reduced, the more difficult is the problem. The results are
reported on figure 7.7.

Discussion

(a) pg = 40: note in this case that the four methods present quite similar results even
if the pure cutting plane algorithm with aggregated model is slower and does not
converge to optimal solution (S-O ≈ 0.5 %),

(b) pg = 35: in this case the bundle algorithm (the two variants) outperform the
pure cutting plane techniques. Moreover, the disaggregated version of the cutting
plane algorithm is much more effective. However, aggregation in the case of the
bundle method does not improve performance.

(c) pg = 25: the pure cutting plane algorithm fails to achieve the optimal solution
(S-O ≈ 20% after 150 iterations). Note that the bundle algorithm achieves the
optimal solution after 20 iterations for disaggregated version and 35 iterations in
the aggregated one.

(d) pg = 20: cutting plane methods are totaly ineffective when the problem becomes
much more constrained. With disaggregated bundle method, the optimal solution
is achieved after approximatively 50 iterations.

The results show clearly that the bundle algorithm outperforms classical cutting
plane techniques. It is has to be noticed that disaggregation enhances considerably
the performance of schemes. In the following section, closed-loop simulation are per-
formed.

7.7 Simulations

In this section some simulations are performed to illustrate the proposed DMPC strat-
egy.

7.7.1 Battery management and global power limitation

In this section, a 48 hours simulation is performed on a 20-zone building. The zones
are equipped with electrical heaters. The capacity of the battery is 10 [kWh] ( 0 ≤ b ≤
10), its efficiency η+ = η− = 0.9, its maximal charge and discharge power pb ≤ 5[kW].
The maximal total power allowed to the building is p̄g =25 [kW]. Moreover, electricity
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(a) pg = 40

(b) pg = 35

(c) pg = 25

(d) pg = 20

Figure 7.7 Illustration of the bundle algorithm effectiveness for increasingly
constrained optimization problems.
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tariff is time varying, during on-peak hours (6 a.m → 10 p.m) its cost is 11.54 ce,
during off-peak hours its cost is 6.66 ce. The prediction horizon is 12 hours and the
control refreshing period is 5 minutes. Moreover, all the zone occupancy profiles are
perfectly known and identical.

First, let us investigate the effect of introducing the distributed-in-time feature
memory feature (section 6.5). Recall that this basically consists of keeping a certain
amount of the past information from one decision instant to the other. The results
are shown on figure 7.8. Notice, that the introduction of memory clearly enables a
faster decrease of the cost function. For instance, 5 iterations with memory enables
nearly the same performances as with 15 iterations without memory in terms of cost
function decrease. Nevertheless, in this case even if the decrease is faster, the closed
performances are quasi similar for all these configurations concerning invoice as well
as well as comfort requirements.

Figure 7.8 Comparison of performance of the DMPC algorithm with and
without distributed-in-time feature during the first 12 [h]: in the presented
case study, this enables to reduce the computational time by more than 60
% for quite similar performances in terms of cost function decrease. The
mean computational time of the centralized solution is in this case 1.23[s].

Figure 7.9 (page 158) shows the simulation results obtained for this scenario when
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the number of allowed iterations is 3 (smax = 3). Notice that:

• The first sub-plot shows the global consumption of the building which never ex-
ceeds the maximum allowed level (25 [kWh]). This limit is obviously respected
since it is explicitly imposed.

• On the second sub-plot, it can be noticed that the battery is used as an ener-
getic buffer, storing energy during off-peak periods (red surface) in order to
give it back to the zones during on-peak periods (blue surface). It can also be
noticed that the battery charging is always performed before zones consump-
tion is started (sub-plot 3) -this is clearer on the second day-, this is because an
energy storage is also performed in the zones. Nevertheless, given heat losses
in the zones, it is more beneficial to start storing heat in the zone after storing it
in the battery (optimal start like behavior).

• Note that some zones are much more preheated than others (see the grey and
dark blue temperature curves). This behavior results from the optimal power
dispatch performed by the coordinator. Indeed, much more heat is stored in the
zones dissipating less energy (see temperatures decreases during the night).

• The fourth sub-plot shows temperatures of the zones in the buildings 6, note that
the upper and lower limits (20 [oC]/24 [oC]) during the occupied period are re-
spected. Note however that the anticipative effect of MPC is clear since the zone
are preheated before occupied hours in order to reach the desired temperature.

Figure 7.10 (page 159) shows the simulation results obtained when applying a
centralized control (optimal solution). Notice that the behavior is basically similar
(one can note for instance that the preheated zones are the same ones in the two cases).

6CO2 level and indoor lighting have been omitted since the main interest here is related to temper-
ature, nevertheless CO2 and lighting constraints are also respected.
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Figure 7.9 DMPC ( smax = 3 iterations with memory) with battery manage-
ment and power limitation for a 20 zones building. Note that the closed-
loop profiles are slightly different from those obtained with a centralized
control (figure 7.10). However, invoice and comfort are quasi-similar.
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Figure 7.10 Centralized control with battery management and power limita-
tion on a 20-zone building. These results have to be compared with those
obtained using the DMPC algorithm (figure 7.9)159
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7.7.2 Computational time

Figure 7.11 shows the computational time required by the coordinator and the zones
for 3 iterations and nB = 30 (number of elements stored in each bundle). Notice that
the average time spent by the coordinator (for all iterations) TCc is 100 [ms]. Moreover,
it appears that most of the time is spent solving the master problem (coordinator).
The total computation time is equal to TCc + max(TZc ) (since the zones compute their
respective optimal solutions in parallel) is in average equal to 149 [ms]. Note that the
computational time is negligible compared to the refreshing period (5 min.) enabling
real-time implementability even for a far higher number of zones in the building.

Remark 7.5.
Solving the centralized problem, in this case (20 zones), takes in average 1.23 [s] using CPLEX
and 4.5[s] using GLPK. The linear programming Matlab solver (simplex) failed in all cases
after few tens of seconds and is inefficient for this kind of problems. Moreover, as it has been
noted in [Moroşan et al. 2011], the solver performance largely determines the computational
load and reliability of the centralized solution. Increasing the number of zones to 40, the
computational time of CPLEX is in average equal to 20[s] and GLPK fails to achieve the
optimal solution after more than 2 minutes. When increasing, the number of zones to 100, it
becomes difficult even for CPLEX to find a solution. This takes approximately one minute and
crashes after few time steps due to memory problems (that may be related also to the interface
between CPLEX and Matlab). ♦

7.7.3 Handling shared variables

In this case, one considers that there exists a shared actuator in the building. Here,
a single actuator in the whole building is assumed available for ventilation. Namely,
one considers that zones dumpers responsible for adjusting the airflow injected in
each zone are not available and that only a global airflow supply in the whole building
exists. This is illustrated on figure 7.12.

Moreover, the price signal is time varying (see the first subplot, figure 7.13), it
is assumed known in advance. Moreover a power limitation on the whole building
exists. The results are presented on figure 7.13), note that in this case (as it was the case
previously) the closed-loop performances are quasi-similar when using a centralized
control or a distributed approach (similarly to the first case study).

Notice that the most pertinent behavior that has to be underlined is that the ven-
tilation is adjusted to meet CO2 requirements on all the zones of the building (see
subplot 6 figure 7.13).
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Figure 7.11 Computation time. Results obtained on an Intelr Core(TM) i7

CPU X920 @ 2.00 GHz, 3.23 Go RAM. ILOG CPLEX 12.1 solver was used.

7.7.4 Introducing uncertainty

In this last simulation, a weekly simulation is performed in a quite more realistic case,
it is assumed that:

• Zone occupancy profiles are different from one zone to the other and moreover
only occupancy schedules are available (the number of occupants is unknown).

• Energy tariff is time-varying (off-peak, on-peak periods).

• Weather is uncertain. Uncertainty is introduced using the mechanism described
in section 4.9.4.

• Power limitation is set to 20 [kW] (5 [kW] less than the first case study).

One is interested in comparing the performances of DMPC scheme with and
without introducing the memory mechanism (see section 6.5 for a description of
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Electricity

Grid

Electrical storage

pg

p+b

Zone layerEnergy layer

p
←g
1

…
…

p−b

p←g
nz

p
←g
ℓ

p←b
1

p←b
nz

p←b
ℓ

Ventilation system
uv

Air duct

Tex

Figure 7.12 Handling shared actuators between zones with DMPC. The ven-
tilation system impacts all the zones simultaneously, therefore its manage-
ment should take into account all the zones needs in terms of fresh air. The
simulation results are reported in figure 7.13

the distributed-in-time optimization) for different maximum number of iterations
smax ∈ {1, 3, 5, 10, 20}. The maximum number of elements of the bundle is constant in
all cases nB = 30.

The closed-loop performances are presented on figure 7.14. Namely, the invoice
(figure 7.14.(a)), the thermal constraint violation (TCV [oC·h]) on figure 7.14.(b) (which
is the integral over time over all zones of thermal constraint violation) as well as the
illuminace constraint violation (LCV [Lux·h]) on figure 7.14.(c). Concerning the CO2

level constraint violation, it is not presented as the results were quite similar in all
cases (the constraint is very rarely violated in all the cases). The red curves represents
the results obtained with a centralized control (optimal) which is the baseline.

Note first that introducing memory clearly enhances the performance of the
scheme. Actually, in all the cases, except for smax = 1, the invoice is lower and the
constraints especially on lighting are much less violated. Concerning the thermal
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Figure 7.13 DMPC with a shared input actuator. Notice that the CO2 level is
decreased in some zones to meet the requirements on other zones (since a
unique actuator affects the whole zones). Notice also that the battery is ba-
sically used to store energy during low price periods in order to redistribute
it to the zones when energy price is higher.
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constraint violation (figure 7.14.(b)), note that it is less violated than the case in which
a centralized solution is applied. Actually, this is explained by the fact that thermal
violations are very small in all cases (TCV=1 [oC·h] implies that a mean temperature
constraint violation of 0.01 [oC] is observed in the each zone), which simply means
that in all cases the temperature is rarely violated in average.

Hence, increasing the number of iterations may lead, if no memory mechanism
is implemented, to worst results from the energetic point of view. This is to reduce
in this case the constraint violation on indoor illuminance. Note that rather similar
performances are achieved with 20 iterations. Nevertheless, introducing a memory
mechanism enables in this case better performances as for the same number of al-
lowed iterations, the scheme performance is better. This illustrates the fact that limit-
ing the number of iterations would lead to undesirable behavior and that introducing
memory prevents, in this case, this behavior. Note finally that, even for very low
allowed number of iterations, the scheme still exhibits fairly good performance.

7.8 Conclusion

In this chapter, a distributed model predictive control framework has been proposed
in order to tackle the complexity issue in a multi-zone building submitted to power
limitation and equipped with an electrical battery and facing varying energy tariff.
The proposed DMPC exhibits good performance beside a low computational burden
enabling real-time implementation for a realistic number of zones.

Note that introducing the memory mechanism enabled to enhance the perfor-
mance of the scheme as it enables better performances for the same number of it-
erations. The natural extension of the current work is a real-time implementation in a
demonstrator building.
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(a) Invoice

(b) Thermal Constraint violation

(c) Lighting constraint violation

Figure 7.14 Performance comparison between DMPC with and without
memory for different values of maximum number of iterations.
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General conclusion

This work was fully dedicated to the design of Model Predictive Control (MPC) algo-
rithms for energy management in buildings.

In part I, brief recalls on building simulation and control techniques used in energy
management systems have been provided as well as an introduction to MPC.

In part II, a zone predictive controller has been developed to control the occupant
comfort parameters (temperature, CO2 level as well as indoor illuminance) in each
zone of the building beside minimizing energy consumption (or invoice in the case of
varying energy rate). As it has been shown, the underlying optimization problem is,
in this case, a nonlinear optimization problem that has been solved efficiently thanks
to a fixed-point algorithm. It has been shown that the controller can be extended to
handle fan coil unit and include readily in the LP formulation a PWA approxima-
tion of their heat emission characteristic. Moreover, an implementation of the algo-
rithm has been conducted on a Schneider-Electric controller (Roombox), showing
the compatibility of the control algorithm with the currently commercialized con-
trollers. Furthermore, on the proposed building, simulations showed that an energy
saving of 14 % can be achieved compared to a well tuned rule-based control strat-
egy on the investigated case study.

In part III, the zone controllers have been used in a distributed framework to han-
dle power limitations, multi-source buildings as well as power storage and shared
actuators. This has been performed by introducing a coordinator able to manage the
shared resources between the zones. As discussed, the distributed solution offers the
benefit of breaking the complexity of the underlying centralized optimization prob-
lem as well as preserving the modularity of the scheme. Moreover, to limit commu-
nication rate and computational load on the local controllers, a distributed-in-time
optimization technique has been introduced.

The whole work presented in this thesis as well as the large number of identified
works using predictive strategies, showed the diversity of features that can be han-
dled transparently in buildings thanks to the use of predictive strategies: coupled
dynamics in a zone, power limitations, local storage, variable energy prices, multi-
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sources.

This thesis focused on the development of predictive control strategies as well
as implementation and efficiency of the optimization algorithms used to solve the
underlying optimization problems by employing several techniques to reduce their
complexity (parametrization of optimal solution, distribution of the optimization task
among agents, distribution of the optimization over time), while providing illustra-
tive examples in each case. Nevertheless, large scale simulations should be conducted
to assess the proposed predictive controller in the diversity of scenarios that can be
encountered (buildings, climates, occupancies, HVAC systems, etc. ). Moreover, as-
sessment of the control strategy in real-life situations must be also be conducted in
future studies.

The challenges

Many challenges condition the implementation of MPC-based solutions in buildings,
they represent the main issues that have to be treated in future works. The following
summarizes these issues and proposes some references for interested readers:

1. The need for a model: availability of a model of the building is a crucial require-
ment and represents the main drawback of the technique. However, assuming
this model available, much more capabilities and much more flexibility regard-
ing the situations that may occur (varying energy prices, power limitations, etc.)
are possible. This critical issue could be basically treated in two ways:

1.a Starting from a physical description of the building: for instance, [Coffey
et al. 2010] proposes using a TRNSYS model of the building as a black box
model. An optimization algorithm is then designed to find the optimal control
sequence based on this model (Clean Urban Energy 7 includes this approach in
its commercial solution). Another example of using first principle models can
be found in [Romanos 2007]. The main disadvantage of this approach lies in the
important number of physical parameters related to the building on one hand
and the fact that it is very difficult to calibrate a building modeled on some sim-
ulation software given experimental data on the other.

1.b Model identification (self-adaptive models): in this case, there is no description
of physical phenomena except for the establishment of the general structure of
the model. The model is derived from data set in-situ and can be adapted over
time. Furthermore, one can use some grey-box approach as proposed in [Bacher

7www.cleanurbanenergy.com
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& Madsen 2011] (basically, finding the values of the resistors and capacitances
composing the RC network) or a black-box approach as presented in [Malisani
et al. 2010].

2. In this work, assumption is made on availability of inputs (heating, ventilation,
blinds, etc.). Even if this assumption appears to be quite realistic when using
some RoomBox-like controller, it is not in most cases. Actually, buildings in-
puts are not available. Basically, one has only access to set-points (temperature
references for example) since equipment are generally provided with their own
control-loops. It is therefore necessary to characterize the building model in
closed-loop (building + controller). The controllers may be complex to describe
since internal regulators are generally not described by manufacturers and may
include their own functioning logic. This problem is described and partially
treated in [Baltensperger & Ullmann 2009].

3. The need for reliable weather forecast: this point is addressed by [Henze
et al. 2004] for instance. It is attempted to find the best predictor of local
weather. Other approaches, like those presented in [Stauch et al. 2010], lie on
local weather correction by a Kalman filter.

4. Computation resources: solving the underlying optimization problems result-
ing from the implementation of predictive controllers may become problematic
in some situations. This can be performed locally or using some could computa-
tion service.

4.a Local calculation: either centrally on one physical machine or in a distributed
manner on multiple controllers, as it has been proposed in this work.

4.b Delocalized calculation: the resolution of the optimization problems is not per-
formed within the building, the problem is formulated locally and then trans-
mitted via Internet to a computation server for resolution.

5. Evaluating the energy impact: even if many studies provide energy saving esti-
mations (among which this one), providing an energy potential saving is gener-
ally complex in practice. This is basically due to the fact that the initial reference
may vary according to the situation. In this work the initial reference was a well
tuned rule-based strategy. In other works, or in real life a clear definition of the
initial strategy and baseline may be problematic.
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Appendix A

Résumé en français

Résumé
Cette partie est un résumé en français du manuscrit de thèse. Le résumé ne prétendant pas être
exhaustif, le lecteur est prié de se reporter à la version anglaise pour plus de détails techniques.

A.1 Introduction

L’intérêt grandissant pour l’efficacité énergétique des bâtiments s’est traduit par la
recherche de méthodes de contrôle de plus en plus performantes (et le plus souvent
de plus en plus sophistiquées) pour l’amélioration de la gestion de l’énergie dans le
bâtiment. [Dounis & Caraiscos 2009] argumente ce constat et présente les principales
techniques de commande avancées élaborées pour les BEMS1.

À l’heure actuelle, les stratégies de gestion de l’énergie pour les bâtiments sont
principalement basées sur une concaténation de règles logiques. Bien que cette approche
offre des avantages certains, particulièrement lors de sa mise en œuvre sur des au-
tomates programmables, elle peine à traiter la diversité de situations complexes ren-
contrées (prix variables de l’énergie, limitations de puissance, capacité de stockage
d’énergie, bâtiments de grandes dimension). En outre, les principaux inconvénients
de cette approche peuvent être résumés dans ce qui suit:

• La concaténation d’un nombre élevé de règles conduit à un arbre de décision de
taille importante, il devient dès-lors difficile d’assurer la cohérence du système
expert proposé.

• Le nombre de paramètres de réglage est très élevé, ce qui a pour effet de com-

1BEMS: Building Energy Management System
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pliquer l’étape de commissioning pendant d’installation.

• Les bâtiments sont amenés à se complexifier, en intégrant de plus en plus des
systèmes/possibilités de production/stockage/revente, et ce dans un contexte
probable de haute volatilité du prix de l’énergie. Pour ces situations de plus
en plus complexes, une logique basée sur des règles expertes atteint ses limites
étant donné le caractère à la fois "quantitatif" et "anticipatif " des décisions.

Pour palier à ces limitations, nombre d’auteurs préconisent d’aborder la problé-
matique sous un angle radicalement différent. Le principe consiste non plus à imag-
iner la meilleure action (règle) à entreprendre dans un cas de figure déterminé, mais
à modéliser le "système bâtiment" tout en exprimant un objectif (minimiser l’énergie,
minimiser le coût, ... ) ainsi que l’ensemble des contraintes opérationnelles sous forme
d’un problème d’optimisation qu’il reste à résoudre.

La résolution de ce dernier problème conduit à un plan optimal d’actions, ce plan
est régulièrement remis en question, conférant au système bouclé un caractère à la
fois anticipatif et réactif.
Il s’avère que ce paradigme dit MPC2 (commande prédictive) est particulièrement
adapté à notre problématique, tel qu’attesté par la multitude de travaux entrepris
autour de ce sujet.

A.2 Commande prédictive non linéaire - rappels3

Cette section propose une brève introduction à la commande prédictive non linéaire,
le lecteur intéressé peut se reporter à [Mayne et al. 2000] pour plus d’informations.

A.2.1 Notations

Soit le système dynamique non linéaire donné sous sa forme discrète:

xk+1 = f(xk, uk, wk) (A.1a)

yk = h(xk, uk, wk) (A.1b)

Avec:

2MPC: Model Predictive Control
3 Résumé de la partie I du manuscrit.
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• (x, u, w, y) ∈ Rnx × Rnu × Rnw × Rny sont respectivement les vecteurs d’état,
entrée, perturbation et sortie du système (A.1),

• xk ≡ x(k · τ), où τ est la période d’échantillonnage et k le temps,

• x+ ≡ xk+1 est le vecteur d’état à l’instant suivant.

Notons la trajectoire prédite du vecteur v ∈ Rnv à l’instant k sur l’horizon de pré-
diction de longueur N par:

Notation A.1. Trajectoire prédite

vk := [vTk|k, v
T
k+1|k, . . . , v

T
k+N−1|k]

T ∈ RN ·nv (A.2)

exemple: uk = [uTk|k, u
T
k+1|k, . . . , u

T
k|k+N−1]

T ∈ RN ·nu est la trajectoire d’entrée prédite à
l’instant k sur l’horizon de prédiction [k, k +N − 1].

Si aucune ambiguïté ne résulte, vk est notée v. ♦

Définissons de plus l’opérateur sélection Πj(vk) comme suit:

Notation A.2. Opérateur sélection

Πj(vk) := vk+j|k (A.3)

L’opérateur Πj(·) sélectionne le (j + 1)eme vecteur v dans la séquence vk (ex.: Π0(vk) = vk|k).

De plus, notons:

Π[j0:j1](vk) := [vTk+j0|k, . . . , v
T
k+j1|k]

T , j1 > j0 (A.4)

♦

A.2.2 Commande prédictive non linéaire

En commande prédictive non linéaire, le modèle (A.1) ainsi que le vecteur de per-
turbation prédit wk sont utilisés à l’instant de décision k afin de trouver la séquence
d’entrée optimale notée u?k, minimisant le critère J . Ainsi à chaque instant k, le prob-
lème d’optimisation suivant doit être résolu:
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Problème d’optimisation A.1. Problème d’optimisation générique

u?k = Argmin
u

J(u,y) (A.5a)

avec: ∀ j = 0, . . . , N − 1

Πj+1(x) = f(Πj(x),Πj(u),Πj(w))

Πj(y) = h(Πj(x),Πj(u),Πj(w))

(A.5b)

Π0(x) = xk (A.5c)

Cst(y,w,u,x) ≤ 0 (A.5d)

Une fois le problème (A.1) résolu, seul le premier élément de la séquence Π0(u
?
k) =

u?k|k est appliqué au système durant l’intervalle de temps [k · τ, (k + 1) · τ ]. Toute la
procédure est ainsi répétée à chaque instant de décision, en se basant sur une nou-
velle mesure ou estimation de l’état courant du système x ainsi que sur de nouvelles
prédictions de perturbation w. Ceci aboutit à une commande dite en horizon glissant
(figure A.1).

k

Passé Future

yk

uk

uk+1

yk+1

yk

uk

Temps

Sortie

entrée

Horizon de prédiction

Horizon de prédiction

Figure A.1 Commande à horizon glissant: à chaque instant de décision une
nouvelle séquence de commande uk est calculée, seul le premier élément
de la séquence (uk) est mis en œuvre.

Il s’avère que l’un des principaux avantages découlant de l’utilisation de la com-
mande prédictive réside dans son caractère intuitif. En effet, le problème de con-
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trôle est réduit à un problème d’optimisation, faisant de ce paradigme un outil
d’abstraction puissant qui permet de traiter des process de natures très différentes
sous réserve bien sur de disposer des outils d’optimisation adéquats pour résoudre
les problèmes d’optimisation résultants, et les résoudre dans les délais impartis.

D’autre part, notons que le traitement des systèmes multi-entrés/multi-sorties est
l’autre point fort découlant de ce paradigme. Rappelons néanmoins que le prix de la
performance est intimement liée à l’exactitude du modèle de commande, en effet sa
concordance avec la réalité détermine en grande partie les caractéristiques du système
bouclé. Nous pouvons résumer les principaux avantages de cette technique par:

1- Manipulation de système multi-entrées/multi-sorties de manière transparente.

2- Traitement explicite des saturations sur les entrées et/ou les états du système.

3- Traitement explicite des coûts économiques.

Dans la pratique, certaines difficultés de mise en oeuvre liées essentiellement aux :

1- Temps de calcul d’une solution optimale (qui découle de la complexité du prob-
lème à résoudre);

2- Nécessite de disposer d’un modèle de commande.

nécessitent certaines simplifications et adaptations au problème réel, ces simplifi-
cations s’opèrent essentiellement à plusieurs niveaux:

1- Sur le modèle de commande à intégrer: ce dernier doit distiller l’essentiel
du comportement dynamique du système sans pour autant en négliger les
phénomènes les plus prépondérant.

2- Sur le problème à résoudre: en tentant de trouver la formulation la plus simple
qui exprime toute-fois le vrai problème que l’on a à résoudre.

3- Sur la solution du problème d’optimisation: il n’est parfois pas possible de trou-
ver la solution optimale du problème à résoudre dans les délais impartis, dans
ce cas on se contente d’une solution sous-optimale en prenant certaines précau-
tions.

A.2.3 La commande prédictive dans le bâtiment

Nombre d’applications de la commande prédictive ont été investiguées dans la
littérature. Chaque auteur a, par une application judicieuse de la commande prédic-
tive, apporté une réponse à une partie de la problématique qui nous concerne en se
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Stockage 

thermique

PompeChaudière 
Stockage électrique

∞ ∈

∋ △

Réseau
Approvisionnement

Stockage et 

transformation

Gaz

Prod. locale

Niveau zone

Niveau énergie

Consommation 

énergétique

Figure A.2 Décomposition du bâtiment- niveau énergie et niveau zone

focalisant généralement sur l’un des deux périmètres suivants (voir figure A.2):

1- Contrôleur de Zone: nous entendons par zone une partie contigu d’un bâti-
ment disposant de ses propres actionneurs et au sein de laquelle doivent être
maintenues des conditions environnementales satisfaisantes.

2- Gestion de flux énergétiques globaux: il est question ici de s’intéresser au
problème d’approvisionnement d’énergie et de balance entre différentes sources
d’énergie dans le bâtiment sans agir sur la consommation mais en la considérant
comme donnée.

Notons toutefois que la distinction ci-dessus a uniquement pour but de structurer
la présentation, certaines études échappant à cette catégorisation. En fait, cette dis-
tinction exprime le fait que l’étude en question se focalise sur l’un des deux périmètres
en simplifiant (parfois excessivement) l’autre. Par exemple: [Siroky et al. 2010] utilise
la description d’une seule zone qu’il prend en tant que zone référence pour la com-
mande des systèmes de chauffage de tout le bâtiment, certains auteurs ne s’attachent
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Modèle Prédictions Objectif Solveur

Problème d’optimisation

*
Solution 
optimale

Figure A.3 Commande prédictive dans le bâtiment - principaux ingrédients

pas à spécifier un périmètre d’application et/ou allient la commande prédictive à
d’autres approches [Abras 2009].

Il est de plus à noter que certains auteurs incluent explicitement les incerti-
tudes sur les prévisions météorologiques dans le problème d’optimisation à résoudre
[Oldewurtel et al. 2010].

La figure A.3 illustre les principaux ingrédients nécessaires à la mise en œuvre de
de la commande prédictive pour la gestion de l’énergie dans le bâtiment.

A.3 Commande prédictive de zone4

Le tableau A.1 reprend l’ensemble des entrées/sorties et perturbations liées à une
zone du bâtiment.

Dans cette partie, le problème d’optimisation lié à une zone du bâtiment est for-
mulé. Rappelons tout d’abord la structure du modèle d’une zone du bâtiment donnée
sous sa forme de représentation d’état (bilinéaire): x+ = A · x+

[
B(y, w)

]
· u+ F · w

y = C · x+D(w) · u
(A.1)

La forme simulateur équivalente au système (A.1) notée Z est définie par:

yk := Z(uk,wk, xk) (A.2)

qui signifie simplement que le profile yk est obtenu lorque le système part de l’état xk
et lorque les profiles d’entrée uk et perturbation wk lui sont appliqués.

4Résumé de la partie II du manuscrit.
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∞

Ventilo-convecteur

Ventilation

Eclairage

Volets roulants

Occupation + 
gains internes

Conditions extérieurs

Figure A.4 Représentation d’une zone du bâtiment: une zone est espace con-
tigu du bâtiment disposant d’un certain nombre d’actionneurs (chauffage,
ventilation, volets roulants, éclairage artificiel, ...) ainsi que de capteurs
d’ambiance.

Dans la suite, les quantités suivantes sont supposées connues:

Hypothèse A.3.1.

• L’état courant xk (obtenu par observation),

• Les prédictions tarifaires sur le prix de l’énergie Γ,

• Les prédictions sur le vecteur de perturbation wk,

• Les bornes de confort haute (y
k
) et basse (yk) implicitement liées à l’occupation prédite

de la zone Occk.

Supposons de plus que la consommation des équipements éléctriques est linéaire5

5Le lecteur peut se reporter au chapitre 5 pour la prise en compte d’actionneurs disposant de carac-
téristiques non linéaires. Il y est question de la gestion des ventilo-convecteurs. Ceci n’est pas détaillé
dans le cadre de ce résumé.
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Variables Description Unit

C
om

m
an

de
s uh commande de chauffage électrique [−]

uv position du registre [−]

ul commande d’éclairage [−]

{uib}i=1,...,Nf
commande de volet roulant (façade i) [−]

Pe
rt

ur
ba

ti
on

s Tex Température externe [oC]

{T iadj}i∈Nadj
Température des zones adjacentes [oC]

{φig}i=1,...,Nf
Flux solaire global sur la façade i [W/m2]

Occ Nombre d’occupants [−]

Cex Taux de CO2 externe [ppm]

So
rt

ie
s T Température [oC]

C Taux de CO2 [ppm]

L Eclairement [Lux]

Table A.1 Entrées/Sorties et perturbations liées à une zone du bâtiment.

par rapport à la commande u. En notant pk ∈ R la consommation éléctrique totale de
la zone à l’instant k, il résulte que:

pk = E · uk ∈ R (A.3)

où la matrice E ∈ R1×nu regroupe les consommations éléctriques maximales de
tous les équipements (correspondants à u):

E :=
[
αh αv αl 0 . . . 0

]
(A.4)

les scalaires αh, αv and αl correspondent respectivement aux consommations in-
duites par le chauffage éléctrique, le système de ventilation et l’éclairage artificiel.

Le profil prédit de consommation de puissance est ainsi donné par:

pk = E · uk, pk ∈ RN (A.5)

avec:
E := IN ⊗ E (A.6)

En considérant que les commandes des actionneurs sont normées ( uk ∈ [0, 1]nu),
le problème d’optimisation résultant est donné par:

183



Appendix A. Résumé en français

Problème d’optimisation A.2. Problème d’optimisation - niveau zone

u?k = Argmin
0≤u≤1

JE(Γk,pk) + JC(yk) + JD(uk) + JF (Π(N−1)(yk)) (A.7)

avec:

pk = E · uk (A.8)

yk = Z(uk,wk, xk) (A.9)

où:

• JE est le critère énérgétique:

JE(Γk,pk) = (ΓT
k · E)T · uk (A.10)

• JC(yk) est le critère d’inconfort yk. La fonction d’inconfort force la sortie du
système à appartenir à la région de confort lorsque une occupation est détectée.
La fonction est paramétrisée par les scalaires positifs ρ0, ρ1 and le vecteur δy ∈
Rny ·N (voir figures A.6 et A.5).

• JD(uk) pondère les vitesses de variation des commandes:

JD(uk) = 〈∆, |Π0(uk)− uk−1|〉+

j=N∑
j=1

〈
∆,
∣∣Πj(uk)− Π(j−1)(uk)

∣∣〉 (A.11)

Rappelons que Πj(uk) sélectionne le jeme composant du profile prédit uk. | · | est
la valeur absolue par élément.

• JF (Π(N−1)(yk)) est un coût final, indiquant ici que la zone doit être à même de
retrouver un niveau de confort à la fin de l’horizon de prédiction.
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y

y

y

Occ

Time

Time

Figure A.5 Bornes de confort. Les bones de confort sont liées à l’occupation
de la zone.

ρ1

y

ρ0

y

δy δy

ρ0 < ρ1

JC(y)

Comfort region

y

Figure A.6 Fonction d’inconfort. La fonction d’inconfort pénalise toute vio-
lations inférieure ou supérieure sur les limites de confort.

Le problème d’optimisation A.2 peut être exprimé sous la forme suivante:
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Problème d’optimisation A.3.
NLPk: Minimize

uk,δ0,δ1,δd,yk

J(uk,yk,Γk) (A.12a)

avec :

[Φ(yk,wk)]uk + δ−0 + δ−1 ≥ y
k
−Ψxk − Ξwk (A.12b)

[Φ(yk,wk)]uk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (A.12c)

D · uk − δ+d + δ−d = a (A.12d)

0 ≤ uk ≤ 1 (A.12e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(A.12f)

yk = Z(uk,wk, xk) (A.12g)

Avec:

• δ0 :=

[
δ+0

δ−0

]
∈ R2·N ·ny , δ1 :=

[
δ+1

δ−1

]
∈ R2·N ·ny sont des variables complémentaires

introduites pour décrire la fonction JC(y) (figure A.6);

• δd :=

[
δ+d

δ−d

]
∈ R2·N ·nu sont des variables complémentaires introduites pour

décrire la fonction JD(y);

• Les notations 1 et 0 indiquent des vecteurs (ou matrices) de 1 et de 0 de tailles
appropriées,

• Φ(yk,wk) ,Ψ and Ξ sont les matrices de prédiction définies comme suit:

Ψ :=



C

CA

CA2

·
CAN−1


, Φ(yk,wk) :=



Dk 0 · 0

CBk Dk+1 · ·
CABk CBk+1 · ·
· · · 0

CAN−2Bk CAN−3Bk+1 · Dk+N−1


(A.13)

où: Bk := B(yk, wk) and Dk := D(wk).

• Les matrices D et a sont définies comme suit:
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D :=



Inu 0 0 . . . . . . 0

Inu −Inu 0 . . . . . . 0

0 Inu −Inu . . . . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 0 Inu −Inu


, a :=



uk−1

0

0

. . .

0


, (A.14)

En définissant la variable de décision z qui regroupe toues les variables de décision
liées à la zone par:

z :=
[
uTk δT0 δT1 δTd

]T
(A.15)

le problème d’optimisation A.3 peut être mis sous la forme:

Problème d’optimisation A.4.
Minimize
z≤z≤z,yk

L · z (A.16)

avec:

A(yk) · z ≤ b (A.17)

yk = Z(uk,wk, xk) (A.18)

Les matrices L,A(y),b, z, z sont données par B.

Le problème d’optimisation A.3 est un problème d’optimisation non linéaire (non
convexe). Ceci résulte de la présence de produits entre les variables y and z. Afin de
le résoudre, il est proposé d’utiliser un algorithme de point fixe, présenté dans ce qui
suit.

A.3.1 Résolution du problème d’optimisation

Une procédure itérative est mise en œuvre afin de résoudre le problème
d’optimisation A.4. A l’itération s de l’algorithme du point fixe, une trajectoire y

(s)
k

est donnée à priori. Ainsi, on peut former le système linéaire temps variant fictif suiv-
ant:

LTV(s) :

 x+ = A · x+
[
B(y(s), w)

]
· u+ F · w

y = C · x+D(w) · u
(A.19)

Il en découle le problème de programmation linéaire suivant, dans lequel la tra-
jectoire y n’est pas une variable de décision puisque donnée à priori:
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Problème d’optimisation A.5. Programmation linéaire

Minimize
z≤z≤z

L · z s.t : A(y
(s)
k ) · z ≤ b (A.20)

La solution du problème A.5 donne la trajectoire optimale u
(s)
k correspondant au

système (A.19):

u
(s)
k ← LP(s)

k (A.21)

celle-ci est réinjectée dans le système non linéaire, résultant en une nouvelle tra-
jectoire y

(s+1)
k à l’itération s+ 1:

y
(s+1)
k = Z(u

(s)
k ,wk, xk) (A.22)

où Z est la forme simulateur de la zone (voir eq. (A.2)). Ces deux étapes
((A.21) et (A.22)) sont répétées jusqu’à ce que la différence entre deux itérés successifs
e(s) := Max(‖y(s+1)

k − y
(s)
k ‖∞, ‖u

(s+1)
k − u

(s)
k ‖∞) soit inférieure à une certaine précision

e(s) ≤ η ou que le nombre d’itération maximale smax soit atteint. Ceci est résumé par
l’algorithme A.1.

Algorithm A.1 Algorithme du point-fixe
1: s← 1

2: u
(0)
k ← [Π1(u

?
k−1)

T , . . . ,Π(N−1)(u
?
k−1)

T ,Π(N−1)(u
?
k−1)

T ]T . Initialisation
3: y

(1)
k ← Z(u

(0)
k ,wk, xk)

4: e(0) ←∞
5: Tant que e(s−1) ≥ η et s ≤ smax faire
6: u

(s)
k ← LP(s)

k

7: y
(s+1)
k = Z(u

(s)
k ,wk, xk)

8: e(s) ←Max(‖y(s+1)
k − y

(s)
k ‖∞, ‖u

(s+1)
k − u

(s)
k ‖∞)

9: s← s+ 1

10: Fin tant que
11: u?k ← u

(s−1)
k

A.3.2 Simulations

La figure A.7 présente une simulation sur une zone sur une durée de 48 [h]. Nous
pouvons constater que la bornes de confort sont toujours respectées pendant les ho-
raires d’occupation des locaux. De plus notons concernant la commande de chauffage
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uh le démarrage optimal, celui-ci permet d’enclencher le chauffage le plus tard possi-
ble afin d’économiser l’énergie tout en démarrant suffisamment tôt pour permettre à
la température d’atteindre la zone de confort à l’arrivée des occupants.

Figure A.7 Validation du contrôleur prédictif de zone

Lorsque nous mettons en place ce procédé sur un bâtiment disposant de plusieurs
zones (20 zones dans ce cas de figure), les gains d’énergie s’élèvent à approximative-
ment 15 % comparé à une commande classique (règles expertes) bien réglée (dévelop-
pée dans le cadre du programme HOMES). Les résultats de simulation annuelle re-
portés sur le tableau A.2 comparent les résultats obtenus par une commande prédic-
tive lorsque les prévisions métrologiques sont parfaites (α = 0) et lorsqu’elles sont
entachées d’erreurs. CTG [%] est une mesure en pourcentage du temps passé en
condition de confort thermique et VCT [k·OC·h] est l’intégral des violations sur les
contraintes de température.

Cons. énergétique [kWh/m2] CTG [%] VCT [k·OC·h]
Rule based 142 91.6 322
MPC (α = 1) 119 (−16%) 91.8 295
MPC (α = 0) 122 (−14%) 88.1 310

Table A.2 Consommation énergétique/ Confort - Règles expertes vs. MPC
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A.3.3 Implémentation sur contrôleurs temps-réel

L’algorithme de commande prédictive de zone ayant été développé en Matalb a été
mis en œuvre sur un contrôleur temps réel commercialisé par Schendier-Electric: la
RoomBox (voir figure A.8). Afin de l’implanter sur cette cible, l’algorithme a été
traduit manuellement en C/C++ à l’aide d’une libraire de calcul matriciel dévelop-
pée au sein du Gipsa-lab. Il a été constaté lors des tests que le temps de cal-
cul moyen était de l’ordre de 10[s] et qu’il était largement en dessous de la péri-
ode d’échantillonnage (une à plusieurs minutes). La même constatation peut être
faite concernant l’occupation mémoire, l’algorithme utilise 10[Mo] sur les 128[Mo]
disponible dans une RoomBox. Ceci démontre la compatibilité de l’algorithme de
commande prédictive avec le type de cible.

Figure A.8 Le contrôleur de zone office Roombox (Schneider-Electric)

A.4 Commande prédictive distribuée 6

Tel qu’indiqué dans l’introduction, l’un des principaux avantages de la commande
prédictive dans le bâtiment réside dans sa capacité à prendre en compte des condi-
tions de marché de l’énergie imposées par le fournisseur d’énergie. Celles-ci, en plus
de prendre la forme de signaux tarifaires, peuvent aussi être traduites en termes de
limitations de puissance. Plus explicitement, le fournisseur d’énergie impose une lim-
ite supérieure de puissance consommée.

Il est question dans cette partie du travail d’étendre le schéma de contrôle mis en
œuvre pour une zone du bâtiment à un bâtiment dans son intégralité pour prendre
en charge d’une part des limitations de puissance globales mais aussi une resource

6Résumé de la partie III du manuscrit.
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de stockage partagée entre les zones du bâtiment (ici une batterie éléctrique) 7. Il est
proposé d’adopter une approche dite "distribuée", dans laquelle chaque zone garde
un degrès d’autonomie en actionnant elle-même ses propores actionneurs locaux mais
soumise à un ensemble de contraintes ajustées par un étage de commande supérieur
(coordinateur).

L’approche distribuée offre des avantages quant à la mise à l’echelle de la solution8

ainsi que pour des raisons de maintenabilité et d’extensibilité de la solution.

A.4.1 Mise en œuvre de la commande prédictive distribuée

Considérons un bâtiment de nz zones, où ` ∈ Z = {1, . . . , nz} désigne l’indice de
chaque zone représentée par le système non linéaire suivant:{

x+` = A` · x` + [B`(y`, w`)] · u` +G` · w`
y` = C` · x` + [D`(w`)] · u` + F` · w`

(A.1)

où x` ∈ Rnx
` , u` ∈ Rnu

` ,w` ∈ Rnw
` , y` ∈ Rny

` désignent respectivement l’état, l’entrée,
la sortie et la perturbation liés à la zone `.

L’objectif de chaque contrôleur de zone est de maintenir les sorties y` ∈ R3 dans
les bornes de confort au moindre coût énergétique. Ceci est réalisé par la résolution
du problème d’optimisation suivant (à chaque instant de décision):

Minimize
u`∈U`

JE(p`) + JC(y`) + JF (y`) + JD(y`) (A.2)

Dans le problème d’optimisation (A.2) JE , JC , JF et JD représentent respective-
ment les coûts liés à l’énergie, l’incofort, le coût final et le coût sur le mouvement des
actionneurs.

Le bâtiment est de plus équipé d’une batterie électrique dont le modèle est donné
par:

b+ = b+ τ · η(pb) · pb (A.3a)

avec:

η(pb) =

{
η+ if pb ≥ 0

1/η− if pb < 0
(A.3b)

7La démarche présentée ici permet de plus de prendre en charge des actionneurs communs entre
les zones. Cette fonctionnalitée n’est pas présentée dans ce résumé. Le lecteur est prié de se reporter
au chapitre 7 pour plus d’explications.

8la taille des problèmes d’optimisation dans une approche centralisée peut être prohibitive à sa mise
en œuvre sur des bâtiments de grande taille.
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Où:

• pb est la puissance de charge/décharge de la batterie électrique (pb > 0: charge)
(pb < 0: décharge), |pb| ≤ pb,

• τ est la période d’échantillonage,

• (η+, η−) ∈]0, 1[2 représentent repectivement l’efficacité de charge et de décharge,

• b est l’état de charge de la batterie exprimé en [kWh], b ≤ b ≤ b.

Ainsi, l’introduction d’une contrainte de puissance globale (sur tout le bâtiment)
pg se traduit par les contraintes suivantes:

∑
`∈Z

p←g` + p+b ≤ pg (A.4a)∑
`∈Z

p←b` = p−b (A.4b)

p←g` et p←b` représentent les puissances reçues par la zone ` à partir du réseau
électrique et de la batterie (voir figure A.9). De ce fait, le niveau énergie est perçu
par les zones comme un fournisseur d’énergie mettant à disposition deux types de
ressources: l’une émanant du réseau éléctrique et l’autre de la batterie, les deux car-
actérisées par leur propre prix et limites.
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Electricity
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nz
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ℓ

Figure A.9 Commande prédictive distribuée - Mise en œuvre sur un bâti-
ment multizone équipé d’un système de stockage électrique et soumis à
une contrainte de puissance consommée.

A.4.2 Introduction de contraintes de ressources locales

Introduisons les variables "ressources" r := {r`}`∈Z, où chaque r` représente une limite
supérieure de ressources. Ainsi, chaque problème d’optimisation (résolu par chaque
zone) est modifié comme suit:

Problème d’optimisation A.6. Problème d’optimisation local (zone)

MPC`(r`) : Minimize
z`≤z`≤z`

L
(i)
` · z` (A.5)

Subject To :

A` · z` ≤ b` (A.6)

A′` · z` ≤ r` (A.7)

z` inclut toutes les variables de décision internes impliquées dans le problème
d’optimisation locale lié à la zone ` (voir le problème d’optimisation A.3).
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z` :=
[
uT` pT` δT0 δT1 δTd

]T
(A.8)

Il est important de noter que pour une affectation de ressource donnée r`, la résolu-
tion du problème d’optimisation A.6 fournit une information par rapport à la valeur
de la fonction objectif J`(r`) ainsi qu’une information de sensibilité (sous-gradient)
notée g`(r`).

(J`(r`),g`(r`))←MPC`(r`) (A.9)

A.4.3 Introduction du mécanisme de coordination

Au niveau du bâtiment, le problème d’optimisation prend la forme suivante:

Problème d’optimisation A.7. Problème maitre

Minimize
pb

+,pb
−,r1,...,rnz

J := Γg · pb
+ +

∑
`∈Z

J`(r`) (A.10a)

Subject To :

b− b0 ≤ τ · η+ · Φe · p+
b −

τ

η−
· Φe · p−b ≤ b− b0 (A.10b)

p←ge + p←be = E · pe (A.10c)

0 ≤ pb
+,pb

− ≤ pb (A.10d)∑
`∈Z

r←g` + p+
b + p←ge ≤ pg (A.10e)∑

`∈Z

r←b` + p←be ≤ p−b (A.10f)

que l’on peut mettre sous le forme suivante:

Problème d’optimisation A.8. Problème maitre -forme générale

Minimize
(ze,r)∈D

J :=

[
JE(ze) +

∑
`∈Z

J`(r`)

]
(A.11)

où ze inclut toutes les variables de décision liées au niveau énergie. Φe est une
matrice adéquatement construite (dynamique de la batterie, voir équation (7.4.12)).
L’expression (ze, r) ∈ D équivaut à la validité de l’ensemble des contraintes (A.10b)-
(A.10f).

Le problème A.8 met en jeu les variables ressources r` relatives à chaque zone
ainsi que les variables ze relatives au niveau énergie. Ce problème est résolu par le
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coordinateur qui, rappelons-le, ne dispose que d’informations par rapport à la valeur
de la fonction J` ainsi que de son gradient g` pour affectation de ressource r` donnée
(voir (A.9)). Ainsi, le coordinateur ne dispose d’aucune mesure d’état local x` ou
emprise sur les actionneurs des zones u`.

Afin de résoudre ce problème d’optimisation, il est nécessaire de mettre au point
un mécanisme permettant d’approximer les fonctions locales J`. Ceci est expliqué
dans ce qui suit.

A.4.4 Algorithme des plans coupants stabilisé9

Afin de résoudre le problème d’optimisation A.8, il est proposé d’employer un al-
gorithme de plans coupants stabilisé. La méthode se base sur des approximations
successives des fonctions J` (inconnues par le coordinateur). Ces approximations J̌`
sont illustrées sur la figure A.10.

Il est possible de construire ces approximations car pour une affectation de
ressource donnée r` le coordinateur dispose d’informations relatives à la valeur de
la fonction ainsi qu’à son sous-gradient.

Dans notre cas, la fonction J est séparable. Il est donc possible de construire une
approximation pour chaque sous-fonction J` puis de les sommer:

J = JE +
∑
`∈Z

J` (A.12)

Ainsi, à chaque itération s de l’algorithme, une nouvelle approximation J̌ (s) est
générée:

J̌ (s)(ze, r) := JE(ze) +
∑
`∈Z

J̌
(s)
` (r`) (A.13)

Au lieu de minimiser J̌ (s), ce qui risquerait d’induire une certaine instabilité
[Briant et al. 2008], une forme stabilisée de la fonction (A.13) est minimisée autours
de la meilleure solution connue à l’itération s:

9Une explication générale de la méthode est proposée dans cette sous-section. Néanmoins, des
détails importants sont omis, le lecteur est donc prié de se reporter au chapitre 6, section 6.4 pour plus
d’explications.
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J̌ℓ

Jℓ, J̌ℓ
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(1)
ℓ
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ℓ
r
(0)
ℓ

epi(Jℓ)

Figure A.10 Approximation par plans coupants de la fonction J`

Problème d’optimisation A.9. Problème maitre stabilisé

r(s+1) ← Argmin
(ze,r1,...,rnz )∈D

[J̌ (s)(ze, r) +Dγ(s)(r− r(s))] (A.14)

Où:

• r(s) est le centre de stabilité qui n’est autre que la meilleure solution obtenue à
l’itération s,

• Dγ(s) est une fonction distance paramétrisée par le scalaire γ(s). Plus précisément
γ(s) défini une région de confiance autours à laquelle le prochain itéré r(s+1) doit
appartenir (voir figure A.11). Cette région de confiance est augmentée si une
amélioration est constatée et diminué dans le cas contraire.

Dans notre cas, Dγ(s) est de la forme suivante:

Dγ(s)(r− r(s)) :=
∑
`∈Z

Dγ
` (r` − r

(s)
` ) (A.15)

où chaque profile r
(s)
` désigne la partie du centre de stabilité liée à la zone ` ∈ Z.
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Dℓ

∆rℓ

ǫǫ

γ · pℓγ · pℓ

Figure A.11 Stabilization term (∆r` = r` − r
(s)
` ).

Plus précisément:

r(s) =


r
(s)
1

...

r
(s)
Ns

 (A.16)

Le paramètre ε > 0 (voir figure A.11) est fixé à priori. Néanmoins, il doit être choisi
suffisamment petit pour assurer la convergence de l’algorithme [Frangioni 2002]. p`
est la valeur maximale que peut atteindre la puissance consommée par la zone `.

En conclusion, le schéma fonctionnel de commande distribué est illustré figure
A.12.
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Figure A.12 Commande prédictive distribuée - schéma fonctionnel

A.4.5 Résultats de simulations

La figure A.13 illustre un résultat de simulation sur un bâtiment de 20 zones soumis à
une limitation de puissance de 25 [kW] et disposant d’une batterie électrique pouvant
stocker 10 [kWh] d’énergie électrique. De plus, il est à noter que le prix de l’énergie est
variable, ainsi l’énergie fournie par le réseau est approximativement deux fois moins
chère pendant les périodes creuses (22[h]→ 6[h] (le lendemain) ).

Notons, que le comportement optimal dans ce cas de figure consiste à stocker de
l’énergie sous forme électrique pendant les heures creuses afin de le restituer au bâ-
timent ainsi que de stocker de l’énergie sous forme thermique pendant les périodes
(surchauffer le bâtiment) pendant les heures creuses. Constatons tout de plus que
ce stockage thermique n’est pas effectué de manière uniforme sur tout le bâtiment,
seules les zones disposant d’une meilleure isolation sont surchauffées illustrant ainsi
la répartition optimale de ressources mise en œuvre par le coordinateur.
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Figure A.13 Simulation de la commande distribuée sur un bâtiment de 20
zones disposant d’une batterie électrique sur 48 [h]. Le nombre d’itérations
à chaque instant de décision est de 3.

A.5 Conclusion générale

Cette thèse a été dédiée au développement et l’évaluation d’une commande pré-
dictive distribuée pour la gestion de l’énergie dans le bâtiment ainsi que l’étude
de l’embarcabilité de l’algorithme de contrôle sur une cible temps-réel (Roombox -
Schneider-Electric).

Il a été proposé l’élaboration d’un schéma de commande distribué pour contrôler
les conditions climatiques dans chaque zone du bâtiment. L’objectif étant de con-
trôler simultanément: la température intérieure, le taux de CO2 ainsi que le niveau
d’éclairement dans chaque zone en agissant sur les équipements présents (CVC,
éclairage, volets roulants). Il a été constaté en simulation que celle-ci pouvait générer
sur notre cas d’étude approximativement 15 % d’économie d’énergie pour un niveau
de confort analogue.

Par ailleurs, le cas des bâtiments multi-sources (par exemple: réseau électrique +
production locale solaire), dans lequel chaque source d’énergie est caractérisée par
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son propre prix et une limitation de puissance, est pris en compte. Dans ce con-
texte, les décisions relatives à chaque zone ne peuvent plus être effectuées de façon
indépendante. Pour résoudre ce problème, un mécanisme de coordination basé sur
une décomposition du problème d’optimisation centralisé a été mis en œuvre. Ce
mécanisme permet en un nombre restreint d’itérations d’aboutir à des performances
comparables à celle d’une approche centralisée tout en préservant une structure mod-
ulaire.
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Linear programming problem matrices

L = [(ΓT
k · A)T , ρ0 · 12N ·ny×1, ρ1 · 12N ·ny×1, ρD · 12N ·nu×1]

T (B.1)

A =


Φ(yk,wk) −I 0 −I 0 0 0

−Φ(yk,wk) 0 I 0 I 0 0

D 0 0 0 0 I −I

−D 0 0 0 0 −I I

 (B.2)

b =


yk −Ψxk − Ξwk

y
k
−Ψxk − Ξwk

a

−a

 (B.3)

z =



1N ·nu×1

∞N ·nu×1

∞N ·ny×1

δy

∞N ·ny×1

δy

∞N ·nu×1


(B.4)

z =
[
0
]

(B.5)
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Appendix C

Prediction errors on dC and dL

Figure C.1 Prediction errors comparison on dC between the proposed pre-
diction mechanism (red) and employing the current observed value over
the whole prediction horizon(d+ = d) in blue.
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Figure C.2 Prediction errors comparison on dL between the proposed pre-
diction mechanism (red) and employing the current observed value over
the whole prediction horizon(d+ = d) in blue.
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Appendix D

Yearly estimated disturbances

On figure D.1, the estimated disturbances obtained for a yearly simulation are pre-
sented. Recall that these estimated disturbances represent the errors between the real
building (Simbad) and the control model embedded in the zone controllers.
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Figure D.1 Estimated disturbances during one year (blue: estimated, red:
filtered). Note that the estimated heat flux dTh increases during summer
due to the fact that adjacent zones temperatures are larger (which results in
receiving more heat).

206



Appendix E

Computational time for the 20 zones of
the building

See figure E.1 (page 208).
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Figure E.1 Computational burden - 20 zones
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C code and equivalent M code

Matlab code
14 %% Input vector length + 1
15 Nu=size(S.SysB,2);

16 %% Output vector length
17 Ny=length(Z.Outputs);

18 %% State vector length
19 Nx=length(S.InitialState);

20 %% Compute Phi
21 A= S.A;

22 C= S.C;

23 if length(Z.OPToptions.T_Par)==1,

24 Z.OPToptions.T_Par=Z.OPToptions.T_Par:Z.OPToptions.T_Par:Z.OPToptions.H;

25 end

26 if length(Z.OPToptions.T_Con)==1,

27 Z.OPToptions.T_Con=Z.OPToptions.T_Con:Z.OPToptions.T_Con:Z.OPToptions.H;

28 end

29 Phi_yC=zeros(Ny*Z.OPToptions.H,Nx);

30 Phi_yC(1:Ny,1:Nx)=C;

31 for k=2:Z.OPToptions.H,

32 Phi_yC((k-1)*Ny+1:k*Ny,1:Nx)=Phi_yC((k-2)*Ny+1:(k-1)*Ny,1:Nx)*A;

33 end

34 Z.Phi_y=Phi_yC;
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C++ code
18 // Input vector length + 1
19 int Nu = size(S.SysB, 2);

20 // Output vector length
21 int Ny = length(*Z.Satisfaction(1)) / 2;

22 // state vector length
23 int Nx = length(S.InitialState);

24 // Compute Phi
25 Matrix A = S.A;

26 Matrix C = S.C;

27 if (length(Z.OPToptions.T_Par) == 1)

28 Z.OPToptions.T_Par = IntMatrix(Z.OPToptions.T_Par(1),

29 Z.OPToptions.T_Par(1), Z.OPToptions.H);

30 if (length(Z.OPToptions.T_Con) == 1)

31 Z.OPToptions.T_Con = IntMatrix(Z.OPToptions.T_Con(1),

32 Z.OPToptions.T_Con(1), Z.OPToptions.H);

33 Matrix Phi_yC = zeros(Ny * Z.OPToptions.H, Nx);

34 Phi_yC.Set(1, 1, C);

35 for (int k = 2; k <= Z.OPToptions.H; k++) {

36 Matrix m = Phi_yC.GetRows((k - 2) * Ny + 1, 1, (k-1) * Ny) * A;

37 Phi_yC.Set((k - 1) * Ny + 1, 1, m); }

38 Z.Phi_y = Phi_yC;
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Moroşan, P.-D., Bourdais, R., Dumur, D. & Buisson, J. [2010b], Distributed model pre-
dictive control based on Benders’ decomposition, in ‘49th IEEE Conference on
Decision and Control, Atlanta, USA’.

Mustafaraja, G., Chena, J. & Lowry, G. [2010], ‘Development of room temperature and
relative humidity linear parametric models for an open office using BMS data’,
Energy & Buildings 42, 348–356.

Negenborn, R., Houwing, M., De Schutter, B. & Hellendoorn, J. [2009], Model pre-
dictive control for residential energy resources using a mixed-logical dynamic
model, in ‘IEEE International Conference on Networking, Sensing and Control,
Okayama, Japan’.

Negenborn, R., Schutter, B. D. & Hellendoorn, J. [2004], Multi-agent model predic-
tive control: A survey, in ‘Technical report 04-010 -Delft Center for Systems and
Control -Delft University of Technology’.

Nygård-Ferguson, A.-M. [1990], Predictive Thermal Control Of Building Systems,
PhD thesis, Ecole Polytechnique Federale de Lausanne.

Oldewurtel, F. [2011], Stochastic Model Predictive Control for Energy Efficient Build-
ing Climate Control, PhD thesis, ETH Zurich.

Oldewurtel, F., Gyalistras, D., Gwerder, M., Jones, C. N., Parisio, A., Stauch, V.,
Lehmann, B. & Morari, M. [2010], Increasing energy efficiency in building cli-
mate control using weather forecasts and model predictive control, in ‘10th RE-
HVA World Congress Clima’, Antalya, Turkey.

Oldewurtel, F., Jones, C. N. & Morari, M. [2008], A tractable approximation of chance
constrained stochastic MPC based on affine disturbance feedback, in ‘47th IEEE
Conference on Decision and Control’, Cancun, Mexico.

Page, J. [2007], Simulating occupant presence and behaviour in buildings, PhD thesis,
Ecole Polytechnique Fédérale de Lausanne.

Parisio, A. [2009], Handling Uncertainty with Application to Indoor Climate Control
and Resource Allocation Planning, PhD thesis, University of Sannio.

216



Bibliography

Qin, S. J. & Badgwell, T. A. [2003], ‘A survey of industrial model predictive control
technology’, Control Engineering Practice 11, 733–764.

Rao, C. & Rawlings, J. [2000], ‘Linear programming and model predictive control’,
Journal of Process Control 10, 283–289.

Rawlings, J. B. & Stewart, B. T. [2008], ‘Coordinating multiple optimization-based
controllers: New opportunites and challenges’, 8th International IFAC Symposium
on Dynamics and Control of Process Systems. Cancun, Mexico. 18, 839–845.

Riederer, P. [2001], Thermal Room Modeling Adapted To The Test Of HVAC Control
Systems, PhD thesis, Ecole des Mines de Paris.

Riederer, P., Marchio, D., Visier, J. C., Husaunndee, A. & Lahrech, R. [2001], Influence
of sensor position in building thermal control: development and validation of an
adapted zone model, in ‘Seventh International IBPSA Conference, Rio de Janeiro,
Brazil.’.

Riederer, P., Marchio, D., Visier, J., Husaunndee, A. & Lahrech, R. [2002], ‘Room ther-
mal modelling adapted to the test of hvac control systems’, Building & Environ-
ment 37, 777–790.

Riederer, P., Marchio, Visier, P. G. J., Lahrech, R. & Husaunndee, A. [2000], Build-
ing zone modeling adapted to the study of temperature control systems, in
‘ASHRAE/CIBSE conference, Dublin, Ireland.’.

Romanos, P. [2007], Thermal Model Predictive Control for Demand Side Management
for Cooling Strategies, PhD thesis, University of Kassel.

Saad, W., Han, Z., Poor, V. & T., B. [2012], ‘Game-theoritic methods for the smart grid’,
IEEE Signal Processing Magazine 68, 86–104.

Scheu, H., Calderon, J. C., Doan, D., Garcia, J. F., Negenborn, R., Tarau, A., Arroyave,
F. V., Schutter, B. D., Espinosa, J. J. & Marquardt, W. [2009], Report on assessment
of existing coordination mechanisms for simple case studies, and on possible op-
tions for improving and extending these coordination mechanisms, Hierarchical
and Distributed Model Predictive Control of Large-Scale Systems-Deliverable
Number: 3.3.1/ Seventh Framework programme theme -ICT.

Scheu, H. & Marquardt, W. [2009], Report on literature survey on hierarchical and
distributed nonlinear MPC, including analysis and comparison, and description
of the resulting methodological framework, Hierarchical and Distributed Model
Predictive Control of Large-Scale Systems-Deliverable Number: 3.1.1/ Seventh
Framework programme theme -ICT.

217



Bibliography

Scheu, H., Marquardt, W., Doan, M., Keviczky, T., Schutter, B. D., Moroşan, P.-D.,
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"Distributed Model Predictive Control for energy management in buildings"
Ph.D. thesis - Grenoble University
Mohamed Yacine LAMOUDI

Buildings represent more than 40 % of world-wide energy consumption. Even if
several control strategies have been proposed to enhance energy management sys-
tems in buildings, this issue remains essentially open.

This thesis is concerned with the development and assessment of Model Predic-
tive Control (MPC) algorithms for energy management in buildings. In this work,
a study of implementability of the control algorithm on a real-time hardware target
is conducted beside yearly simulations showing a substantial energy saving poten-
tial. The thesis explores also the ability of MPC to deal with the diversity of complex
situations that could be encountered (varying energy price, power limitations, local
storage capability, large scale buildings).

This thesis proposes the design of a distributed predictive control scheme to con-
trol the indoor conditions in each zone of the building and manage resource con-
straints in the context of multi-source buildings. This CIFRE Ph.D. thesis was pre-
pared within the Gipsa-lab laboratory in partnership with Schneider-Electric in the
scope of the HOMES program (www.homesprogramme.com).

"Commande prédictive distribuée pour la gestion de l’énergie dans les bâtiments"
Thèse de Doctorat - Université de Grenoble
Mohamed Yacine LAMOUDI

Les bâtiments consomment plus de 40 % de l’énergie mondiale. Bien que nombre
de propositions pour améliorer la gestion de l’énergie dans les bâtiments aient été
avancées, cette problématique demeure essentiellement ouverte.

Cette thèse porte sur le développement et l’évaluation d’une commande prédic-
tive pour la gestion de l’énergie dans le bâtiment ainsi que l’étude de l’embarcabilité
de l’algorithme de contrôle sur une cible temps-réel (Roombox - Schneider-Electric).
En plus des divers simulations montrant l’intêret d’une telle approche, ce travail ex-
plore aussi la capacité de la commande prédictive à s’adapter à des scénarii complexes
(prix variable de l’énergie, bâtiments multi-sources, contraintes de ressources, stock-
age d’énergie, ...).

Ce travail propose l’élaboration d’une architecture de commande distribuée pour
contrôler les paramètres de confort dans chaque zone du bâtiment sous respect de
contraintes de ressources globales. Cette thèse CIFRE a été préparée au sein du labo-
ratoire Gipsa-lab en partenariat avec Schneider-Electric dans le cadre du programme
HOMES (www.homesprogramme.com).
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