

Optimisation du procédé de fabrication des varistances à base d'oxyde de zinc. Étude du chamottage des oxydes

Christophe Perrot

► To cite this version:

Christophe Perrot. Optimisation du procédé de fabrication des varistances à base d'oxyde de zinc. Étude du chamottage des oxydes. Génie des procédés. Ecole Nationale Supérieure des Mines de Saint-Etienne, 1994. Français. NNT: 1994INPG4204. tel-00843611

HAL Id: tel-00843611 https://theses.hal.science/tel-00843611

Submitted on 11 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE

N° d'ordre 106 CD

THESE

Présentée par

Christophe PERROT

pour obtenir le grade de

DOCTEUR

DE L'INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE ET DE L'ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE

(Spécialité : GENIE DES PROCEDES)

OPTIMISATION DU PROCEDE DE FABRICATION DES VARISTANCES A BASE D'OXYDE DE ZINC. ETUDE DU CHAMOTTAGE DES OXYDES

Soutenue à Saint-Etienne le 15 avril 1994

COMPOSITION du JURY

Monsieur M SOUSTELLE Président Messieurs FANTOZZI G. **Rapporteurs** G. FANTO J.C. MUTIN Messieurs **Examinateurs** BENHASSAINE Α. **GUILHOT B**. Ρ. ORLANS

Thèse préparée au Centre "Sciences des Processus Industriels et Naturels"

ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE

N° d'ordre 106 CD

THESE

Présentée par

Christophe PERROT

pour obtenir le grade de

DOCTEUR

DE L'INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE ET DE L'ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE

(Spécialité : GENIE DES PROCEDES)

OPTIMISATION DU PROCEDE DE FABRICATION DES VARISTANCES A BASE D'OXYDE DE ZINC. ETUDE DU CHAMOTTAGE DES OXYDES

Soutenue à Saint-Etienne le 15 avril 1994

COMPOSITION du JURY

Monsieur Μ SOUSTELLE Président **Messieurs** G. FANTOZZI Rapporteurs J.C. MUTIN **Examinateurs** Messieurs BENHASSAINE Α. **B**. **GUILHOT** Ρ. **ORLANS**

Thèse préparée au Centre "Sciences des Processus Industriels et Naturels"

ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT ETIENNE

Directeur	:	M. Philippe	HIRTZMAN
Directeur de la recherche	:	M. Michel	SOUSTELLE
Directeur de l'enseignement et de la formation	:	M. Albert	MATHON
Secrétaire général	:	M. Jean.Claude	PIATEK

PROFESSEURS DE 1ère CATEGORIE

MM.	BISCONDI	Michel	Matériaux
	DAVOINE	Philippe	Hydrogéologie
	FORMERY	Philippe	Mathématiques Appliquées
	LALAUZE	René	Génie des procédés
	LECOZE	Jean .	Matériaux
	LOWYS	Jean-Pierre	Physique
	MAGNIN	Thierry	Matériaux
	MATHON	Albert	Gestion
	PEROCHE	Bernard	Informatique
	PLA	Jean-Marie	Mathématiques
	RIEU	Jean	Matériaux
	SOUSTELLE	Michel	Génie des procédes
	VAUTRIN	Alain	Mécanique et Matériaux

PROFESSEUR DE 2ème CATEGORIE

DI BENEDETTO	Dominique	Génie des procédés
PRADEL	Jean	Sciences humaines
TOUCHARD	Bernard	Physique Industrielle
	DI BENEDETTO PRADEL TOUCHARD	DI BENEDETTO Dominique PRADEL Jean TOUCHARD Bernard

DIRECTEURS DE RECHERCHE

MM.	DRIVER	Julian	Matériaux
	GUILHOT	Bernard	Génie des procédés
	THEVENOT	François	Génie des Matériaux

MAITRES DE RECHERCHE

MM.	COURNIL	Michel	Génie des procédés
	GIRARDOT	Jean-Jacques	Informatique
	GOEURIOT	Patrice	Matériaux
	GRAILLOT	Didier	Ingénieur RHEA
	GUY	Bernard	Géologie
	KOBYLANSKI	André	Matériaux
	LANCELOT	Francis	Génie Industriel
	MONTHEILLET	Frank	Matériaux
	PUOLAT	Christophe	Génie des procédés
	SURREL	Yves	Mécanique et Matériaux
	THOMAS	Gérard	Génie des procédés
	TRAN MINH	Cahn	Génie Bio-Procédés

PERSONNALITES HABILITEES OU DOCTEURS D'ETAT

MM.	AIVAZZADEH	Sahram	Mécanique et Matériaux
	BIGOT	Jean-Pierre	Génie Bio-Procédés
	BRODHAG	Christian	Matériaux
	DECHOMETS	Roland	Stratégie du Développement
Mme.	GOEURIOT	Dominique	Matériaux
М.	LONDICHE	Henry	Génie Industriel
Mme.	PUOLAT	Michèle	Génie des procédés

PERSONNALITES EXTERIEURES A L'ECOLE AUTORISEES A ENCADRER DES THESES

MM.	BENHASSAINE	Ali	Génie des procédés (Ecole des mines Ales))
	BOURGOIS	Jacques	Génie Industriel-Biotechnologie (Univ St Etienne)

PRESIDENT DE L'INSTITUT Monsieur Maurice RENAUD

> Michel Alain Alain Bernard Gérard

Jean-Pierre Philippe

Gérard Jean Yves

IN PC

ENSERG ENSIEG ENSHMG

ENSPG UFR PGP

ENSERG

ENSIEG/ILL ENSHMG

Année1993

PROFESSEURS DES UNIVERSITES

BARIBAUD
BARTHELEMY
BAUDIN
BOIS
BOUVIER BRINI
BRUNET CAVAIGNAC
CHARTIER
CHERUY
COGNET
COMMAULT
COULOMB
COUTRIS CROWLEY
DALARD DARVE
DELLA DORA DEPEY
DEPORTES
DESRE
DOLMAZON
DURAND
FAUTRELLE FOGGIA
FORAY FOULARD
GALERIE
GAUBERT
GENTIL
GUERIN GUYOT
IVANES JACQUET
JALLUT JANOT
AULENT
IAUSSAUD
OUBERT
KUENY
ACHENAL
LE NEST
LESIEUR LESPINARD
LIENARD LONGEQUEUE
LORET LOUCHET
LUCAZEAU
MASSE
MAZARE
MOHR
MORET
OBLED
OZIL PANANAKAKIS
PAULEAU PERRET
PERRIER PIAU
PIC PLATEAU
POUPOT
REINISCH
RIMET
ROGNON
ROSSIGNOL ROYE
SABONNADIERE SAGUET
SAUCIER SCHILENKER
SCHLENKER SILVY
SOHM
SOUQUET
TROMPETTE
VEILLON
VERJUS

Jean	ENSERG
Jean-François	ENSPG
Germain Pierre	ENSPG
Arlette	ENSIEG
Alain Gérard	ENSERG
Catherine	ENSEEG
Christian Bruno	ENSIEG
Jean-Louis	ENSIEG
Nicole	ENSPG
Francis	ENSEEG
Félix	ENSHMG
Maurice	ENSERG
Jacques	ENSPG
Pierre	ENSEEG
Jean-Paul	ENSEEG
Francis	ENSEEG
Jean-Louis Vues	ENSPG
Albert	ENSIEG
Pierre	ENSHMG
Alain	ENSEEG
Alessandro	UFR/PGP
Pierre	ENSERG
Sylviane	ENSIEG
Pierre	ENSERG
Marcel	ENSIEG
Christian	ENSEEG
Marie-Thérese	ENSERG
Patrick	ENSGI
Pierre Rémy	ENSIEG
Jean-Claude	ENSPG
Geneviéve Jean-Louis	ENSIEG
Dominique	UFR PGP
Jean-Louis Pierre	ENSIEG
Jean-François	UFR/PGP
Marcel Georges	ENSHMG ENSHMG
Joël	ENSIEG
Jean-Pierre Benjamin	ENSPG ENSHMG
François	ENSEEG
Augustin	ENSEEG
Philippe	ENSPG
Guy	ENSIEG
Gérard	ENSIMAG
René	ENSIMAG
Roger	ENSIEG
Charles	ENSIMAG
Patrick	ENSEEG
Yves	ENSERG
Robert	ENSIEG
Jean-Michel	ENSHMG
Etienne	ENSERG
Christian	ENSERG
Jean-Jacques Raymond	ENSEEG
Maurice	E IN SELS
Roger François	UFR/PGP
1 I ALCOIS	UFR/PGP ENSERG
Jean-Pierre	ENSPG UFR/PGP ENSERG ENSIMAG ENSIEG
Jean-Pierre Michel Daniel	UFR/PGP ENSERG ENSIMAG ENSIEG ENSIEG ENSIEG
Jean-Pierre Michel Daniel Jean-Claude	UFR/PGP ENSERG ENSIMAG ENSIEG ENSIEG ENSIEG
Jean-Pierre Michel Daniel Jean-Claude Pierre Gabriéle	ENSIG UFR/PGP ENSERG ENSIEG ENSIEG ENSIEG ENSIEG ENSIEG ENSIMAG
Jean-Pierre Michel Daniel Jean-Claude Pierre Gabriéle Claire	ENSEG UFR/PGP ENSERG ENSIEG ENSIEG ENSIEG ENSIEG ENSEG ENSEG ENSIEG ENSIEG
Jean-Pierre Michel Daniel Jean-Claude Pierre Gabriéle Claire Michel Jacques	UFR/PGP ENSERG ENSIMAG ENSIEG ENSIEG ENSIEG ENSIEG ENSERG ENSIMAG ENSPG UFR/PGP
Jean-Pierre Michel Daniel Jean-Claude Pierre Gabriële Claire Michel Jacques Jean-Claude	UFR/PGP ENSERG ENSIEG ENSIEG ENSIEG ENSIEG ENSIEG ENSIEG ENSIMAG ENSPG UFR/PGP ENSIEG
Jean-Pierre Michel Daniel Jean-Claude Pierre Gabriéle Claire Michel Jacques Jean-Claude Jean-Louis Jean-Louis	UFR/PGP ENSERG ENSIEG ENSIEG ENSIEG ENSIEG ENSIEG ENSIMAG ENSPG UFR/PGP ENSEEG ENSIMAG ENSIMAG
Jean-Pierre Michel Daniel Jean-Claude Pierre Gabriële Claire Michel Jacques Jean-Claude Jean-Louis Jean-Louis Serge	UFR/PGP UFR/PGP ENSERG ENSIEG ENSIEG ENSIEG ENSIEG ENSIEG ENSIPG ENSPG UFR/PGP ENSEEG ENSIMAG ENSIEG
Jean-Pierre Michel Daniel Jean-Claude Pierre Gabriële Claire Michel Jacques Jean-Claude Jean-Louis Jean-Louis Serge Philippe Denis	UFR/PGP UFR/PGP ENSERG ENSIEG ENSIEG ENSIEG ENSIEG ENSIEG ENSIG UFR/PGP ENSEG ENSIMAG ENSIEG ENSIMAG ENSIMAG ENSIMAG ENSIMAG ENSIMAG
Jean-Pierre Michel Daniel Jean-Claude Pierre Gabriële Claire Michel Jacques Jean-Claude Jean-Louis Jean-Louis Serge Philippe Denis Gérard	UFR/PGP UFR/PGP ENSERG ENSIEG ENSIEG ENSIEG ENSIEG ENSIEG ENSIPG ENSIPG ENSIMAG ENSIMAG ENSIEG ENSIMAG ENSIMAG ENSIMAG ENSIMAG

SITUATION PARTICULIERE

PROFESSEURS D'UNIVERSITE

DETACHEMENT

BLOCH Daniel	ENSPG
BONNET Guy	ENSPG
BRECHET Yves	ENSEEG
CAILLERIE Denis	ENSHMG
GREVEN Héléne	CUEFA
LATOMBE Jean-Claude	ENSIMAG
PIERRARD Jean-Marie	ENSHIMG

DIRECTEURS DE RECHERCHE CNRS

ABELLO Louis Pierre ALDEBERT ALEMANY. ALLIBERT ANSARA ARMAND AUDIER AUDIER AUGOYARD AVIGNON BERNARD BINDER BLAISING BONNET BOUCHERLE CAILLET CARRE CHASSERY CHATILLON CIBERT CLERMONT CRIQUI CRISTOLOVEANU DAVID DION DOUSSIERE DRIOLE DUCHET DUGARD DUCARD DURAND ESCUDIER EUSTATHOPOULOS FINON GARNIER GIROD GLANGEAUD GUELIN HOPFINGER JORRAND JOUD KAMARINOS KAMARINO KLEITZ KOFMAN LACROIX LANDAU LAULHERE LEGRAND LEJEUNE LEPROVOST MADAR MARTIN MERMET MEUNIER MICHEL NAYROLLES PASTUREL PEUZIN PHAM PIAU PIQUE POINSIGNON PREJEAN RENOUARD SENATEUR SIFAKIS SIMON SUERY TEODOSIU VACHAUD VAUCLIN WACK YAVARI YONNET

Antoine Colette Michel Ibrahim Michel Marc Jean-François Michel Claude Gilbert Jean-Jacques Jean-Jacque Koland Guy Jean-Xavier Marcel René Jean-Marc Christian Joël Jean-Robert Bernard Patrick Sorin René Jean-Michel Jacques Jean Pierre Luc Robert Pierre Nicolas Dominique Robert Marcel Jacques François Pierre Emil Philippe Jean-Charles Georges Michel Walter Claudine Ioan Jean-Pierre Michel Gérard Christian Roland Jean-Marie Jean Gérard Jean-Maric Bernard Alain Jean-Claude Antoine Monique Jean-Paul Christiane Jean-Jacques Dominique Jean-Pierre Joseph Jean-Paul Michel Christian Georges Michel Bernard Ali-Reza Jean-Paul

PERSONNES AYANT OBTENU LE DIPLOME

D'HABILITATION A DIRIGER DES RECHERCHES

BALESTRA	Francis
BALME	Louis
BECKER	Monique
BIGEON	Jean
BINDER	Zdeneck
BOE	Louis-Jean
BRECHET	Yves
CADOZ	Claude
CANUDAS DE WIT	Carlos
CHAMPENOIS	Gérard
CHOLLET	Jean-Pierre
COEY	Jean-Pierre
CORNUEJOLS	Gerard
COURNIL	Michel
CRASTES DE PAULET	Michel
DALLERY	Yves
DESCOTES-GENON	Bernard
DUGARD	Luc
DURAND	Madeleine
FERRIEUX	Jean-Paul
FEUILLET	René
FORAY	Pierre
FREIN	Yannick
GAUTHIER	Jean-Paul
GHIBAUDO	Gérard
GUILLEMOT	Nadine
GUYOT	Alain
HAMAR	Svlviane
HAMAR	Roger
HORAUD	Patrice
JACOUET	Paul
LATOMBE	Claudine
LE HUY	Hoang
LE GORREC	Bernard
LOZANO-LEAL	Rogelio
MACOVSCHI	Mihaïl
MAHEY	Philippe
METAIS	Olivier
MONMUSSON-PICO	Georgette
MORY	Mathieu
MULLER	Jean
MULLER	Jean-Michel
NGUYEN TRONG	Bernadette
NIEZ	Jean-Jacques
PERRIER	Pascal
PLA	Fernand
RECHENMANN	Francois
ROGNON	Jean-Pierre
ROUGER	Jean
ROUX	Jean-Claude
SKOTNICKI	Tomasz
TCHUENT	Maurice
THOMAS	Olivier
VAHLAS	Constantin

PERSONNES AYANT OBTENU LE DIPLOME

DE DOCTEUR D'ETAT INPG

Feri

ABDEL-RAZEK Adel AKSAS Haris ALLA AMER Hassane Ahmed Bernard Gilbert AMER ANCELLE ANGENIEUX ATMANI AYEDI A.BADR BACHIR BALAIN Hamid Hassine Osman Aziz BALANZAT BALTER BARDEL Emmanuel Roland Robert BARRAL Gérard Yves Patrick BAUSSAND BEAUX Jacques Jean Marie-Claire BEGUINOT BELLISSENT née FUNEZ BELLON Catherine BEN RAIS Abdejettah Gilles BERGER-SABBATEL BERNACHE-ASSOLANT BEROVAL Didier Abderrahmane BERTHOD Jacques Dominique BILLARD BILLARD BLANC épouse FOULETIER BOCHU BOKSENBAUM BOKSENBAUM BOLOPION Mircille Bernard Gilles Claude Alain Bernard BONNARD Dominique BOUCHACOURT Michel BOUCHACOUR BRION CAIRE CAMEL CAPERAN CAPLAIN CAPOLINO CASPI CHAN-TUNG CHASSANDE Bernard Jean-Pierre Denis Philippe Michel Gérard Paul Nam Jean-Pierre CHASSANDE CHATAIN CHEHIKIAN Dominique Alain Yves CHIRAMELLA Jean Jean-Claude CHUPIN COLONNA Jean-François Jacques Christian CORDET COUDURIER COUTAZ Lucien Jean-Louis

DAO DARONDEAU DAVID DE LA SEN DELACHAUME DENAT DESCHIZEAUX née CHERUY DIJON DOREMUS DUPEUX EL ADHAM EL OMAR EL OMAR EL-HENNAWY ETAY FABRE FAURE-BONTE FAURE-BOY FAVIER FAVIER FELIACHI FERYAL FLANDRIN FOREST FORESTIER FRANC GADELLE GARDAN GENIN GERVASON GILORMINI GINOUX GOUMIRI GROC GROSJEAN GUEDON GUERIN GUESSOUS GUIBOUD-RIBAUD HALBWACHS HAMMOURI HEDEIROS SILIVEIR HERAULT HONER HUECKEL HUECKEL IGNAT ILIADIS JANIN JERRAYA JUTTEN KAHII. KHUONGQUANG KILLIS KONE LABEAU LACAZE LACROIX LATHUILLERE LAUGIER LE CADRE LE GARDEVR LE THIESSE LEMAIGNAN LEMUET LEVEQUE LONDICHE L'HERITIER MAGNIN MAMWI MANTEL épouse SIEBERT MARCON MARTINEZ MARTIN-GARIN MASSE MAZER MERCKEL MEUNIER MILI MOALLA MODE MONILLOR MONTELLA MORET MRAYATI M'SAAD M'SIRDI NEPOMIASTCHY NGUYEN NGUYEN-XUAN-DANG ORANIER ORTEGA MARTINEZ PAIDASSI PASSERONE PEGON PIJOLAT POGGI POIGNET PONS POU RAFINEJAD RAGAIE RAHAL RAMA SEABRA SANTOS RAVAINE RAZBAN-HAGHIGHI RAZZOUK REGAZZONI RIQUET ROBACH ROBERT Jacques Jean Claude ROHMER ROUSSEL SAAD SAAD Abdallah Youcef Mohamed Nabi SABRY SALON Marie-Christine

CREUTIN

Jean-Dominique Trongtich Philippe Bertrand Manuel Jean-Claude André Marie-Noëlle Jean Pierre Michel Karim Fovaz Adel Jacqueline Suzanne Mireille Denis Jean-Jacques Movloud Haj Hassan Patrick Bernard Michel Panayolis Jean-Pierre Patrice Yvon Jacques Georges Pierre Jean-Louis Louis Bernard André Jean-Yves Jean-Claude Anas Serge Nicolas Hassan Hamilton Jeanny Claude Tomasz Michel Athananios Gérard Ahmed Amine Christian Hassan Dong Andreas Ali Michel Alain Jean-Claude Jean-Claude Chantal Pierre Christian Jean-Pierre René Jean-Claude Clement Daniel Jean-Luc Henry Philippe Thierry Francois Abdullah Elisabeth Guy Francis Lionel Dominique Emmanuel Gérard Jean Ali Mohamed Jean-Michel Christian Claude Frédéric Mohammed Mohammed Kouider Nace Pierre Trong Khoi Michel Bernard Roméo Serge Alberto Pierre Christophe Yves Jean-Claude Michel Tong Eck Paiviz Harie Fikri Salah Fernando Denis Tchanguiz Micham Gilles Jean-Pierre Chantal Yves

SAUBAT épouse MARCUS SCHMITT SCHOELLKOPF SCHOLL SCHOLL SCHWARTZ SEGUIN SIWY SKALLI SKALLI HOUSSEYNI SOUCHON SUETRY TEDJAR TEDJINI TEYSSANDIER THEVENODFOSSE TMAR TRIOLLIER TUFFELIT TZIRITAS VALLIN VELAZCO VERDITION VERMANDE VIKTOROVITCH VITRANT YAZAMI

Bernadette Jean-Hubert Jean-Pierre Michel Pierre-Claude Edmond Jean-Luc Jean Jacques Abdellatif Abdelali Alain Jean Nizar Farouk Smail Francis Pascale Mohamed Michel Denis Georges Didier Raoul André Alain Pierre Guy Francois Rachid

.

Cette thèse, réalisée au Centre de Sciences des Processus Industriels et Naturels, n'aurait probablement pas pu connaître un heureux dénouement sans les contributions de nombreuses personnes.

Que Monsieur B. Guilhot trouve ici le témoignage de ma profonde reconnaissance pour m'avoir toujours accordé sa confiance et prodigué ses conseils pendant ces quelques années.

Je remercie vivement Monsieur P. Orlans, responsable de production des varistances, pour m'avoir accueilli dans son unité, et pour avoir donné une dimension industrielle à ce travail. Je serais d'une ingratitude sans borne de ne pas y associer toute l'équipe de Marly.

Je suis très reconnaissant à Monsieur M. Soustelle, Directeur de la Recherche, pour m'avoir fait profiter de son expérience et de m'avoir fait l'honneur d'être président de ce jury.

Mes remerciements vont tout naturellement à Messieurs J.C. Mutin et G. Fantozzi pour avoir accepté d'être rapporteurs de cette thèse et membres du jury.

Je tiens à exprimer toute ma gratitude à Monsieur A. Benhassaine, témoin des premières heures de mon goût pour la recherche, pour avoir tout naturellement accepté de juger ce travail.

Je remercie tout particulièrement Mademoiselle N. Berne et Madame A.A. Fournier pour leur aide inestimable qui m'a permis d'achever rapidement ce mémoire.

Enfin, j'accorde une mention particulière à tous ceux, amis, copains ou camarades, qui, par leur bonne humeur pour les uns, leur aide pour les uns et les autres, ont contribué à rendre mon séjour fort agréable. Je ne les cite pas, ils se reconnaîtront d'eux-mêmes.

SOMMAIRE

INTRO	DUCTION	ſ			1
CHAPI	TRE I : P	RÉSENTA '	TION GÉN	ÉRALE DES VARISTANCES	
I.1.	Les varistances : caractéristique électrique, chimie, applications			3	
	<i>I.1.1</i> .	Caractéristique courant-tension		3	
	<i>I.1.2</i> .	Composi à base	ition et mic d'oxyde de	crostructure des varistances zinc	3
	<i>I.1.3</i> .	Les app	lications de	es varistances	5
		I.1.3.1. I.1.3.2.	<u>Du couran</u> La distribu	<u>t induit à la très haute tension</u> tion électrique	
			<i>I.1.3.2.1</i> .	Les principaux types de surtensions	
				*Les surtensions temporaires *Les surtensions de manoeuvres *Les surtensions de foudres	
			<i>I.1.3.2.2</i> .	Les moyens de protection contre les surtensions	
				*Les éclateurs *Les parafoudres au carbure de siliciu *Les parafoudres oxyde de zinc	m
I.2.	Les pro	cédés de fa	abrication d	le varistances	12
	<i>I.2.1</i> .	Historiq	ue des prod	cédés de fabrication	12
	<i>I.2.2</i> .	Quelques procédés originaux		17	
	<i>I.2.3</i> .	La fabrication des céramiques pour parafoudres. Le procédé ABB		céramiques pour parafoudres.	18
		I.2.3.1. I.2.3.2.	<u>Le procédé</u> Les tests él	é de fabrication ABB lectriques	
			I.2.3.2.1. I.2.3.2.2. I.2.3.2.3. I.2.3.2.4. I.2.3.2.5.	Mesure de la tension résiduelle Mesure de la tension de référence Tenue au vieillissement Application de forts courants Application de l'onde de durée 2 ms	
		I.2.3.3.	<u>Les problè</u>	<u>mes posés par le procédé</u>	
			I.2.3.3.1. I.2.3.3.2.	Le préfrittage Le chamottage	

I.3. Conclusion

28

CHAPITRE II : ETUDE DES COMPOSANTS DU MÉLANGE CHAMOTTÉ

II.1.	Les oxydes d'antimoine			29	
	<i>II.1.1</i> .	L'oxyde	d'antimoine	trivalent	29
		II.1.1.1. II.1.1.2.	<u>Structure crist</u> <u>Propriétés ph</u> t <u>rivalents</u>	allographique ysico-chimiques des oxydes	
			II.1.1.2.1. II.1.1.2.2.	Transition polymorphique, fusion Sublimation des oxydes trivalents	
		II.1.1.3.	<u>Oxydation de</u>	<u>l'oxyde trivalent cubique</u>	
	II.1.2.	L'oxyde	d'antimoine	Sb2O4	37
	II.1.3.	L'oxyde	d'antimoine	<i>Sb</i> ₆ <i>O</i> ₁₃	37
II.2.	Le carbo	onate de m	anganèse		38
	II.2.1. Structure cristalline des composés issus du carbonate		38		
	<i>II.2.2</i> .	Le systèr	me Mn-O-CO	<i>2-CO</i>	39
	II.2.3.	Décompo	osition en ab	sence d'oxygène	42
		II.2.3.1. II.2.3.2.	<u>Cinétique de</u> Suivi de la dé de températur	<u>décomposition sous azote pur</u> composition en programmation e	
	II.2.4.	Décompo	osition en pr	ésence d'oxygène	46
11.3.	Les oxydes de bismuth 4			48	
	II.3.1.	Variétés	polymorphiq	ues de Bi2O3	48
	II.3.2.	Générali	tés s <mark>ur le</mark> sys	stème Bi ₂ O ₃ -Sb ₂ O ₃	50
	II.3.3.	Bi ₂ O ₃ /S	b ₂ O ₃ , 40/60	% molaire	51
II.4.	Les oxyc	les de cob	alt, nickel et	chrome	58
II.5.	Conclus	ion			59

,

CHAPITRE III : ETUDE PHYSICO-CHIMIQUE DU MÉLANGE

III.1.	Introduc	tion	61
III.2.	Le mélar	nge calciné en absence d'oxygène	61
	<i>III.2.1</i> .	Identification des phases présentes	61
	<i>III.2.2</i> .	Analyse thermogravimétrique	69
	<i>III.2.3</i> .	Propriétés électriques des varistances issus d'un chamottage sous azote	70
		 III.2.3.1. <u>Propriétés électriques à partir des différentes</u> <u>couches obtenues en production</u> III.2.3.2. <u>Propriétés des varistances obtenues par</u> <u>chamottage sous azote</u> 	
III.3.	Action d	e l'oxygène sur une chamotte calcinée sous azote	71
III.4.	Le mélar	nge calciné en présence d'oxygène	81
	<i>III.4.1</i> .	Identification des phases présentes	81
	<i>III.4.2</i> .	Les propriétés électriques des varistances issues de chamottes préparées sous oxygène	87
	<i>III.4.3</i> .	Etude thermogravimétrique. Influence des conditions opératoires	88
		III.4.3.1. <u>A.T.G. du mélange</u> III.4.3.2. <u>Influence des conditions opératoires</u>	

CHAPITRE IV : LE CHAMOTTAGE EN PRODUCTION. MODÉLISATION ET PARAMÈTRES

IV.1.	Problèmes rencontrés en production lors du chamottage		93
	IV.1.1.	Disparité de la température dans le four	93
	IV.1.2.	Les prélèvements et leurs propriétés	94
		IV.1.2.1. <u>Caractérisation par diffraction de rayons X</u> IV.1.2.2. <u>Les propriétés électriques des prélèvements</u>	

IV.2.	La formation des couches		
	IV.2.1.	Les changements de phase du produit chamotté au cours du cycle	99
	IV.2.2	. Nature des couches en production	108
IV.3.	Diffusio de pouc	n-réaction de l'oxygène gazeux dans le lit lre	113
	IV.3.1	. Expression du coefficient de diffusion de l'oxygène dans l'azote	114
	IV.3.2.	Les lois d'avancement du front séparant les couches	115
	IV.3.3	. Application de ces lois à notre système	117
		IV.3.3.1. <u>En programmation de température</u> IV.3.3.2. <u>En palier de température</u>	
	IV.3.4	. Les paramètres régissant le système. Action pour l'amélioration des produits	120
	IV.3.5	. Contre-diffusion de l'oxyde d'antimoine gazeux	127
IV.4.	Conclu	ision	131
CONCL	USION (GENERALE	133
ANNEX	ES		
Annex	xe A :	Techniques expérimentales.	137
Annex	ce B :	Etude du transfert de matière en phase gazeuse, dans un lit de poudre, avec réaction chimique instantanée de consommation du gaz.	141
Annex	ke C :	Etude du transfert de matière en phase gazeuse, d'une espèce sublimée, dans un lit de poudre.	143

BIBLIOGRAPHIE

INTRODUCTION

.

Les domaines d'application de la physico-chimie du solide sont nombreux et variés ; le secteur de l'électrotechnique en est un. Les parafoudres utilisés en distribution électrique ne dérogent pas à la règle, puisqu'ils renferment des céramiques à base d'oxyde de zinc, possédant des propriétés électriques particulières.

Ces propriétés proviennent de phénomènes électriques aux interfaces des grains d'oxyde de zinc, judicieusement dopés par de multiples éléments chimiques. Cette particularité a été développée pour de multiples applications autour de la protection des surtensions, depuis le courant induit jusqu'à la foudre.

Malgré l'incertitude se rapportant aux mécanismes de conduction, chercheurs et ingénieurs ont mis au point de multiples techniques de fabrication de ce type de matériau, allant de l'élaboration de couches minces par pulvérisation cathodique par exemple, à la synthèse de céramiques de gros volume par coprécipitation.

De nouveaux modes de synthèse, très performants en laboratoire requièrent parfois une mise au point très longue ou de très gros investissements, dans l'optique d'une fabrication de grande série. C'est pour cette raison que les méthodes conventionnelles comme la synthèse à l'état solide, font l'objet de perfectionnements incessants.

Le procédé de fabrication actuellement utilisé par ABB Energie, pour l'élaboration des céramiques équipant les parafoudres 24 kV, consiste en la densification du mélange, calciné au préalable, des différents oxydes. Cette technologie ne produit pas 100 % de pièces obéissant au cahier des charges imposé par E.D.F. De ce fait, la société est dans l'obligation de mesurer, pour toutes les varistances produites, certaines propriétés électriques.

Le présent travail est un exemple d'action pour l'amélioration de ce procédé, et peut constituer le point de départ d'une campagne visant la maîtrise totale de la fabrication.

Dans le premier chapitre, après avoir abordé quelques définitions sur les varistances, nous nous intéresserons plus particulièrement à leur application dans la distribution électrique. Nous poursuivrons par l'examen de certaines étapes du procédé, et la mise en exergue des problèmes rencontrés lors du chamottage du mélange des oxydes additifs.

Au cours du second chapitre, en prévision de l'étude de ce mélange, nous nous proposons d'examiner les différents oxydes utilisés, à travers quelques unes de leurs propriétés. Ce travail permettra de dégager les phénomènes majeurs intervenant lors de l'opération.

Le troisième chapitre traitera de la cuisson du mélange, sous différentes atmosphères gazeuses. Nous identifierons certaines phases cristallines synthétisées de cette manière. Nous mettrons en évidence le rôle capital de l'oxygène gazeux sur les propriétés électriques des varistances.

Dans le quatrième et dernier chapitre, nous étudierons la manière dont le chamottage est effectué. Nous déterminerons les paramètres de l'opération. Leurs effets sur les propriétés seront discutés. Nous pourrons alors, pour terminer, dresser un inventaire des actions à mener, au niveau de l'opération de chamottage, pour améliorer la qualité des céramiques.

<u>CHAPITRE I</u>

Chapitre I :

Présentation générale des varistances

I.1. Les varistances : caractéristique électrique, constitution, applications

Une varistance est un composant passif servant dans l'électronique et l'électrotechnique. Ce composant présente une caractéristique courant-tension non-linéaire (figure I.1.), d'où son nom, dérivé de l'anglais "varistor", contraction de "variable resistor". Les varistances sont des matériaux polycristallins et possèdent une microstructure et une composition particulière.

I.1.1. Caractéristique courant-tension

La figure I.1. nous permet de distinguer trois domaines, caractéristiques de phénomènes de conduction différents :

- Le domaine de pré-avalanche (I), présente un caractère fortement résistif obéissant à la loi d'Ohm. Il s'étend jusqu'à la tension de seuil, V_s. Cette tension correspond à un courant de 1 mA. La résistance électrique est fonction de l'impédance des joints de grains [1]. Ceux-ci sont fortement isolants.
- Le domaine d'avalanche (II), correspond à l'effet varistance proprement dit. La résistance électrique chute de plusieurs ordres de grandeur. Le phénomène s'étend jusqu'à la tension résiduelle, correspondant au courant I_p appelé courant de décharge. Le coefficient de non-linéarité α est défini par :

$$\alpha = \frac{d \ln I}{d \ln V}$$

et caractérise l'efficacité de la varistance. Il doit être le plus élevé possible.

- Le domaine de saturation (III), est relatif aux courants d'intensité élevée, avec un régime ohmique, de résistance inférieure à celle du domaine I. Elle est fonction de l'impédance des grains d'oxyde de zinc.

I.1.2. Composition et microstructure des varistances à base d'oxyde de zinc

La découverte de l'effet varistance, en 1967 [2], a été accidentelle. Les auteurs avaient procédé au mélange de l'oxyde de zinc et d'une petite quantité d'oxyde de bismuth. Celui-ci est la clé de voûte de la non-linéarité, même si certains éléments, comme le praséodyme, le remplacent avantageusement [3].

Figure I.1. : caractéristique électrique d'une varistance.

Depuis cette découverte, la composition s'est précisée : Matsuoka et ses collaborateurs [4] ont mis en évidence la plupart des éléments présentant de l'intérêt pour la fabrication des varistances. Leur rôle est résumé dans le tableau I.1. Ils interviennent au niveau des caractéristiques électriques, mais également pour le développement de la microstructure.

Eléments	Propriétés
Ві	Barrière isolante aux joints de grains
Co, Mn > Sb	Augmentation de α . Formation de défauts aux joints
Sb, Ag, B > Ni, Cr	Amélioration de la stabilité électrique
Al, Ga > F, Cr	Augmentation de α . Formation de donneurs dans ZnO
Sb, Si	Inhibiteur de croissance cristalline
Be > Ti > Sn	Promoteur de croissance cristalline

Tableau I.1. : rôle des principaux éléments contenus dans lesvaristances [5].

Dans la quasi-totalité des cas, le bismuth et l'antimoine seront présents dans la composition. Pour nos céramiques, il faut ajouter du cobalt, du nickel, du manganèse et du chrome, ainsi que de l'argent, du bore et du silicium contenus dans un verre. Celui-ci garantit une bonne densification de la céramique.

La microstructure d'une varistance à base d'oxyde de zinc est schématisée sur la figure I.2. Nous observons les grains d'oxyde de zinc, liés entre eux par une phase intergranulaire isolante, riche en bismuth. Nous notons également la présence d'une phase, de structure spinelle, et de formule $Zn_7Sb_2O_{12}$. Cette phase possède un caractère isolant.

Figure I.2. : microstructure schématisée d'une varistance.

La phase intergranulaire riche en bismuth est caractérisée par une structure cristallographique complexe, avec toutes les variétés polymorphiques de l'oxyde de bismuth (α , β , γ , δ) ainsi que des oxydes mixtes, de bismuth et chrome, ou bismuth et silicium [1] par exemple.

L'influence de la microstructure sur les propriétés électriques est évidente. La tension de seuil V_s est définie de la façon suivante:

$V_s = V_{jg} \frac{L}{\phi}$	V _{jg} : tension de seuil du joint de gr	
	L: épaisseur du composant	
	ϕ : diamètre du cristallite ZnO	

Cette relation montre, en effet, que cette tension dépend notamment de la taille des grains. V_{jg} varie selon le type de matériau. Ces valeurs ne sont pas constantes (entre 2 et 4 V selon les auteurs [1]), mais assez proches les unes des autres. Elles sont peut-être indépendantes de la nature du matériau, céramique polycristalline, ou couche mince.

La tension de seuil est souvent calculée par millimètre d'épaisseur de céramique. Cette grandeur est appelée gradient de tension, noté V_0 et exprimée en Volts par millimètre.

I.1.3. Les applications des varistances

I.1.3.1. Du courant induit à la très haute tension

La particularité de la caractéristique courant-tension fait que les varistances sont principalement utilisées pour la suppression de surtensions [6]. Les plus anciens dispositifs de protection étaient les redresseurs au silicium, rencontrés par exemple dans les vieux appareils téléphoniques et pour la protection contre la foudre. Avec les progrès de la technologie, ils furent remplacés par des appareils à monocristaux de silicium pour toutes les applications basse tension. Pour les applications moyenne et haute tension, les parafoudres au carbure de silicium, puis à l'oxyde de zinc ont été développés.

La spectaculaire amélioration de la fabrication des varistances ZnO, au cours des vingt dernières années fait qu'elles sont désormais utilisées tant en très basse tension, qu'en très haute tension. Les figures I.3a., I.3b., I.3c. montrent l'évolution, pendant cette période, des propriétés importantes des varistances : la tension de seuil, le courant de décharge, et l'énergie électrique admissible. L'amélioration de ces performances a provoqué une optimisation de la taille des varistances pour chaque application.

Les applications sont très diversifiées :

- électronique de consommation : téléviseurs, fours micro-ondes, etc...
- protection industrielle : moteurs, relais, etc...
- communication : téléphones, etc...
- électronique militaire
- distribution électrique : détaillée dans un prochain paragraphe
- transports : industrie automobile, chemins de fer
- informatique.

Ce bref inventaire suffit à montrer l'application des varistances, à base d'oxyde de zinc, dans tous les domaines nécessitant une absorption de surtensions accidentelles ou anormales. La demande sur ces produits est énorme et justifie ainsi le volume important de publications et de brevets.

Figure I.3.b. : évolution du courant de décharge [10].

Figure I.3.c. : évolution de la tension de seuil [10].

I.1.3.2. La distribution électrique

Notre étude concerne les blocs céramiques d'oxyde de zinc constituant les parafoudres moyenne tension 24 kV (figure I.4.) installés sur tous les points sensibles du réseau tels que :

- postes de transformation moyenne tension basse tension
- interrupteur télécommandé détecteur de défauts du réseau
- transformation d'une ligne aérienne en ligne souterraine.

Ils tendent à remplacer de façon générale les éclateurs anti-oiseaux et les parafoudres au carbure de silicium.

Figure I.4. : vue en coupe du parafoudre XCL 24 S [7].

I.1.3.2.1. Les principaux types de surtensions [8]

Il existe trois types de surtensions. Elles diffèrent les unes des autres par leur origine, leur durée, leur fréquence et leur amplitude. D'une façon générale, l'amplitude d'une surtension varie selon l'inverse de sa durée.

* Les surtensions temporaires :

Ce sont des surtensions basse fréquence, du même ordre que la fréquence de service (50 Hz), et d'une durée plus élevée qu'une période de la fréquence de service. Elles sont causées par un changement de configuration du réseau (défaut entre phase et terre, par exemple).

* Les surtensions de manoeuvres :

Elles sont provoquées par des manoeuvres de disjoncteurs créant des régimes transitoires complexes accompagnés de surtensions plus ou moins élevées. Elles sont de courte durée, inférieure à une période de la fréquence de service, et possèdent une fréquence comprise entre 1 kHz et 100 kHz.

* Les surtensions de foudre :

Elles sont occasionnées par la foudre, sur un pylône, sur la ligne ou sur un transformateur. Elles peuvent atteindre plusieurs millions de volts. Dans le cas, beaucoup plus fréquent, où la foudre tombe sur le sol, à proximité de la ligne, des surtensions sont générées par induction électromagnétique. Ces coups induits peuvent atteindre plusieurs centaines de kilovolts sur quelques dizaines de micro-secondes.

Pour parer à ces types de surtensions, néfastes pour le matériel et la qualité du service. Des éclateurs ou des parafoudres sont placés en parallèle aux bornes du transformateur ou à l'extrémité des lignes. Une extrémité est liée à la ligne et l'autre à la terre. Nous allons maintenant décrire brièvement ces appareils.

I.1.3.2.2. Moyens de protection contre les surtensions

Chronologiquement, 3 types d'appareils de protection sont recensés : les éclateurs, les parafoudres au carbure de silicium et les parafoudres oxyde de zinc.

* Les éclateurs :

L'éclateur est constitué de 2 électrodes séparées par de l'air (figure I.5.). L'une est reliée à la terre et l'autre à la ligne. Ce système, bien que rudimentaire, est encore assez utilisé. La tendance est toutefois au remplacement général de ces appareils par les parafoudres. En cas de surtension, il se forme un arc électrique entre les deux électrodes, ce qui permet l'écoulement du courant à la terre. Toutefois, l'arc électrique, provoqué par la surtension, persiste après disparition de celle-ci. La tension normale du réseau est dérivée vers la terre : c'est le courant de suite. Il y a alors fonctionnement des disjoncteurs Shunt qui coupent les phases concernées, le temps d'interrompre l'arc. Ce sont des coupures brèves (une seconde) qui nuisent à la qualité du service.

Ils sont également très sensibles aux conditions atmosphériques. Des amorçages intempestifs peuvent être provoqués par la neige ou les oiseaux. Lors de cet amorçage, une onde de front raide se produit. Elle peut parfois endommager les bobinages alentours.

Figure I.5. : éclateur anti-oiseau M.T. [9].

* Les parafoudres au carbure de silicium SiC :

Les parafoudres SiC sont constitués de résistances non-linéaires en carbure de silicium disposées en série avec des éclateurs dans une enveloppe en porcelaine étanche remplie d'un gaz anhydre.

A l'apparition de la surtension, les éclateurs sont amorcés et provoquent l'écoulement du courant de décharge à travers les résistances. Si la surtension augmente, la valeur de la résistance des céramiques diminue et l'écoulement du courant est favorisé.

Les avantages de ce dispositif par rapport aux éclateurs, sont la disparition du front raide de par la présence des résistances, la limitation des surtensions de manoeuvre, la suppression des aléas dûs aux conditions atmosphériques et la diminution de la dispersion de la tension d'amorçage.

En revanche, les céramiques SiC supportent très mal un écoulement prolongé de courant. L'énergie à dissiper devient trop importante, ce qui provoque une élévation de température de la céramique, puis sa destruction. De plus, le parafoudre SiC est très encombrant et très lourd et donc peu maniable.

* Les parafoudres oxyde de zinc :

Ils sont constitués d'un empilement de varistances à base d'oxyde de zinc. Les éclateurs sont supprimés grâce à la très forte non-linéarité de ce type de varistance. A la tension de service, le parafoudre est parcouru par un très faible courant, inférieur à 1 mA, appelé courant de fuite. L'énergie électrique à dissiper est alors très faible, et ne met pas l'appareillage en danger. Les avantages des parafoudres à base d'oxyde de zinc sont nombreux :

- Pour un courant absorbé de même intensité, le parafoudre ZnO aura une tension à ses bornes plus faible que le parafoudre SiC.
- Pour fournir la même protection, les varistances ZnO sont moins volumineuses que les varistances SiC.
- Les varistances ZnO possèdent une meilleure stabilité de leurs caractéristiques électriques après absorption de chocs de très forte intensité.
- Les limitations introduites par les éclateurs (amorçages intempestifs, coupures brèves dues aux courants de suite) sont inexistantes avec le parafoudre ZnO.

Il faut noter toutefois quelques inconvénients :

- Les risques d'emballement thermique [8] peuvent intervenir lors d'une dégradation de la caractéristique électrique du fait de l'absorption de courants de très forte intensité.
- Le prix de revient est élevé par rapport aux éclateurs. Cependant, cet inconvénient est tout relatif, car la qualité sans cesse croissante des parafoudres a diminué de façon très sensible le nombre d'interventions et de dépannages sur les lignes.

Figure I.6. : installation de parafoudres sur pylônes.

En France, trois sociétés fabriquent et commercialisent les parafoudres ZnO. Deux, sont françaises, SOULE dans le Sud-Ouest et FERRAZ implanté dans le Lyonnais notamment. La troisième est ABB Energie, filiale du groupe suédois, et implantée en région parisienne.

Les parafoudres qui nous intéressent sont ceux qui équipent les lignes électriques moyenne tension de 12,7 kV par phase.

Ils sont constitués de 6 blocs varistances (figure I.4.) montés en série. Les caractéristiques électriques sont reportées dans le tableau I.2.

Caractéristique	Parafoudre	Varistance
Tension de référence	24	4
sous 1 mA (kV)		
Tension maximale de	12,7	2,1
service permanent (kV)		
Tension maximale sous le	75	12,5
courant de décharge 5 kA (kV)		

Tableau I.2. : caractéristiques électriques des varistances et desparafoudres [7].

I.2. Les procédés de fabrication de varistances

La technologie de fabrication d'une varistance est fonction de son application. Une varistance pour parafoudre sera préparée avec des technologies de pièces céramiques. Leur volume permet une absorption d'énergie importante. En revanche pour les applications très basse tension, les céramiques polycristallines montrent leurs limites et il faut recourir à la fabrication de couches minces donnant des résultats parfois remarquables.

Nous allons aborder un bref historique des différentes techniques employées depuis 25 ans pour améliorer la non-linéarité des varistances.

I.2.1. Historique des procédés de fabrication

K. Eda, dans sa revue [5], classifie les varistances en 3 groupes :

- les varistances surfaciques : l'effet varistance est réalisé sur une surface plane (les couches minces par exemple)
- les varistances volumiques : l'effet varistance est réalisé dans tout le volume d'une céramique par exemple
- les varistances dites "jonction" : l'effet varistance est mesuré de part et d'autre d'un point (mesures sur un joint de grain, par exemple).

Le tableau I.3. résume les principales innovations dans les procédés au fil des années, et les propriétés ainsi obtenues.

Année		Procédé utilisé	Caractéristiques
1968	-	Fritté de ZnO avec des électrodes d'argent	
	-	Mise en oeuvre de la céramique dopée avec Bi, Co, Mn, Sb	
1969-1975	-	Découverte des additifs Ba, Sr, U, Cr, Si, Sn, Ti, Be, Ni, B, F, Al, Ga, Ag, Fritté de verre	
1973	-	Utilisation de Pr à la place de Bi	
1976	-	Méthodes des grains germes (Seed grain method)	$V_0 = 8 \text{ V/mm}; \alpha > 30$
1977	-	Pressage isostatique à froid de grands disques (112 mm de \emptyset)	
1978	-	Varistance volumique sous forme de couche épaisse	
1979	-	Varistance réalisée par empilement de feuilles céramiques	· · · · · · · · · · · · · · · · · · ·
1980	1	Dépôt par pulvérisation cathodique d'oxydes métalliques dans un fritté de ZnO	$V_{s} = 20 V; \alpha = 15$
	-	Pressage à chaud (700-1000°C) - céramiques à grains fins	$V_0 = 600 \text{ V/mm}; \alpha > 20$
	-	Varistance jonction - sandwich d'une couche mince d'oxyde métallique entre 2 grains de ZnO	$V_s = 3,5 V; \alpha = 12$
1981	-	Frittage (700-800°C) sous micro-ondes (2,45 GHz)	
1982	-	Varistance en couche mince par pulvérisation cathodique	$V_0 = 10 \text{ V}/12 \ \mu\text{m}$; $\alpha = 15$
1984	-	Mélange par voie sol-gel avec frittage et traitement thermique	$V_0 = 500 \text{ V/mm}; \alpha = 30$
	-	Varistance jonction - sandwich d'une couche mince d'oxyde métallique entre 2 frittés de ZnO	$V_{s} = 4 V; \alpha = 16$
	-	Varistance volumique en film épais par pulvérisation plasma des matériaux sur un substrat, puis traitement thermique	$V_0 = 600 \text{ V/mm}; \alpha > 40$
	-	Traitement thermique sous air après pressage à chaud en inerte	
1985	-	Fabrication d'électrodes par laser	
	-	Varistance volumique en film épais avec verre (PbO-Bi ₂ O ₃ -SiO ₂)	α ≈ 16
1986	1	Implantation ionique de Bi, Sb, Cr, Co, Mn dans un monocristal de ZnO puis traitement thermique à 1000°C	$V_s = 2,3 V$ non-ohmique
	-	Procédé à l'urée : mélange de solutions métalliques dans l'acide nitrique	
1987	-	Atomisation (450-600°C) de solutions acétates métalliques pour l'obtention de poudres fines	
	-	Préparation de poudres de ZnO par oxydation en phase gazeuse de zinc métal	
	-	Varistance jonction par pulvérisation cathodique de film ZnO- Bi $_2O_3$	α > 50
1988	-	Méthode Host Guest (décrite sommairement dans un prochain paragraphe)	$\alpha = 52$ (valeur moyenne entre 1 mA et 100 A)

Tableau I.3. : procédés de fabrication de varistances [5].

Nous avons relevé quelques méthodes postérieures à 1988 qui se traduisent par des propriétés intéressantes :

* Milosevic et al. [11] compare deux méthodes de mélanges de solutions pour la fabrication des céramiques:

- Dans la première méthode, les solutions des dopants sont mélangées, puis l'oxyde de zinc pulvérulent est ajouté.
- La deuxième consiste à coprécipiter dans la soude, le mélange des solutions des dopants. Le gel est ensuite lavé, puis mélangé à l'oxyde de zinc pulvérulent.

La partie en aval de la préparation de cette suspension est identique pour les deux méthodes, et comprend les étapes de séchage, calcination de la poudre, broyage, compactage et frittage.

Les céramiques obtenues présentent des valeurs maximales de α de 42 pour la première méthode, et de 35 pour la deuxième. La tension de seuil du joint de grain élémentaire est comprise entre 5 et 6 V. Il a été mis en évidence que le temps de frittage exerce une grande influence sur la valeur de α .

Au-delà de 120 minutes de frittage, α chute de façon catastrophique et devient nul à partir de 180 minutes.

* Une autre méthode par voie sol-gel a été développée par Hishita et al. [12]. Le mélange des solutions de chlorures métalliques des dopants est coprécipité dans une solution de diéthylamine. Les valeurs du coefficient α varient avec la température de frittage, et passent par un maximum de 52 pour 1200°C (figure I.7.). En revanche, le gradient de tension V0 décroît avec la température de frittage. Là aussi, les valeurs de tension de seuil du joint de grain sont relativement élevées avec une moyenne de 5,2 V.

Les valeurs de V_0 sont, pour ces 2 études, très élevées. Les auteurs n'ont pas précisé, s'il s'agit de tensions efficaces ou maximales.

Figure I.7. : influence de la température de frittage sur les caractéristiques électriques (coefficient de non-linéarité et gradient de tension) [12].

* Haile [13] a mis en évidence l'importance de la préparation du granulé, indépendamment des autres étapes du procédé. Il a comparé deux produits synthétisés de 2 façons différentes.

- Dans la première méthode, la solution des différents chlorures métalliques est coprécipitée autour des grains d'oxyde de zinc, préparés au préalable par précipitation d'une solution saline de zinc. La taille des grains de ZnO est uniforme.
- Dans la seconde méthode, les oxydes métalliques sont mélangés par cobroyage.

Les valeurs de α sont respectivement de 44 et 15. Les valeurs du gradient de tension V₀ sont de 210 V/mm et 180 V/mm.

Les trois exemples précédents montrent que la voie sol-gel donne des valeurs de α bien supérieures à celles obtenues par la méthode conventionnelle. La coprécipitation garantit une bonne homogénéité chimique mais aussi une répartition uniforme de la taille des grains.
En ce qui concerne les méthodes conventionnelles comme le mélange de poudres, elles font l'objet de développements pour améliorer les caractéristiques électriques. Aussi, Lee [14] rapporte une méthode comprenant 2 traitements thermiques :

- Le premier sert à densifier l'oxyde de zinc avec tous les additifs excepté l'oxyde de bismuth. La température est comprise entre 1200 et 1450°C.
- Le second traitement intervient après avoir recouvert le fritté ainsi obtenu d'une pâte contenant de l'oxyde de bismuth, de l'oxyde de plomb, et de l'oxyde de bore. Le but de ce traitement est de favoriser la diffusion du bismuth dans les joints de grains afin de créer le caractère non-linéaire de la céramique. La température est comprise entre 600 et 850°C.

L'avantage de cette deuxième opération est de prévenir les problèmes engendrés par l'oxyde de bismuth lors du frittage :

- Croissance cristalline anormale de l'oxyde de zinc, l'oxyde de bismuth étant liquide à la température de frittage.
- La tension de vapeur de l'oxyde de bismuth est élevée à la température usuelle de frittage. Il y aura donc volatilisation pouvant entraîner une modification de la composition chimique et des propriétés électriques.
- L'oxyde de bismuth existe sous quatre variétés polymorphiques. En cas de transformation, lors du refroidissement par exemple, des contraintes mécaniques peuvent intervenir dans le joint de grain. Ces contraintes nuisent à la cohésion de la céramique.

La suppression de ces problèmes entraîne une augmentation du gradient de tension d'un facteur 4, pour une valeur de α de 44. C'est une valeur importante pour une méthode de mélange de poudres.

Toutefois, cette technique est applicable dans le cas de céramiques de faible épaisseur (environ 1mm). Elle est à proscrire pour la fabrication de pièces céramiques pour parafoudre (plusieurs centimètres d'épaisseur) pour des raisons évidentes de longueur de diffusion.

Nous pouvons résumer les améliorations apportées aux procédés de fabrication par le tableau I.4., qui prend en compte les effets obtenus sur la céramique. Le cas traité est celui des varistances volumiques.

Etape	Méthode	Effet
Matières premières	- petites particules (< 0,1 μm)	homogénéité
(taille de particule classique $\sim 1 \ \mu m$)	- grosses particules (> 50 μm)	provoquer la croissance cristal- line (basse tension)
Mélange	- voie sol-gel	homogénéité
(habituellement au mortier ou	- procédé à l'urée	homogénéité
broyeur à billes)	- évaporation-décomposition de solution	homogénéité
	- oxydation du zinc en phase vapeur	homogénéité
Pressage	- pressage isostatique à froid	homogénéité
(habituellement par moulage)	- feuillage	multicouches
Frittage	- traitement thermique supplémentaire	stabilité électrique
(habituellement sous air)	- pressage à chaud	homogénéité
	- micro-ondes	homogénéité
	- pressage isostatique à chaud	homogénéité

Tableau I.4. : amélioration du procédé pour fabrication de varistancesvolumiques [5].

I.2.2 Quelques procédés originaux

* Méthodes des grains germes (seed grain method)

Cette méthode, développée en 1976 par EDA, [15] est particulièrement adaptée à l'obtention de varistances très basses tensions. Son principe est de favoriser considérablement la croissance des grains d'oxyde de zinc. Pour ce faire, il suffit d'ajouter à la poudre originelle 10 % en poids de gros grains (de taille de l'ordre de 100 μ m). Ces grains, formant les germes, vont croître de façon anormale pour donner de très faibles valeurs de V₀ (8 V/mm) et de bonnes valeurs de α (supérieures à 30). Le taux de 10 % constitue un optimum du point de vue des caractéristiques électriques.

* <u>Méthode dite "host-guest" [5]</u>

L'oxyde de zinc, constituant principal (host), et le mélange correspondant à la composition souhaitée au joint de grain sont calcinés séparément. Le tout est ensuite mélangé pour être fritté à température peu élevée (950°C). Les propriétés respectives des constituants sont ainsi conservées. Les valeurs de α obtenues (moyenne entre 1 mA et 100 mA) sont de l'ordre de 30 pour des moyennes et hautes tensions. Cette méthode a permis d'accéder à une valeur de 52, ce qui constitue une des plus grandes valeurs moyennes jamais atteintes).

* <u>Réseaux artificiels [5]</u>

Des atomes étrangers sont introduits dans le réseau de l'oxyde de zinc par jet moléculaire. De telles structures ont été réalisées pour des semi-conducteurs III-V tels que GaAs-AlGaAs.

La méthode est désormais applicable à des oxydes métalliques. Ces structures idéales pourrait permettre une compréhension approfondie du phénomène électrique au joint de grain dans les varistances.

I.2.3. La fabrication de céramiques pour parafoudres. Le procédé mis en œuvre par ABB

L'adaptation des procédés de fabrication de céramiques pour l'électronique (petit volume), à l'élaboration de céramiques pour parafoudres (12 cm de diamètre pour un volume pouvant atteindre 150 cm³) a posé de gros problèmes.

Les premiers constructeurs de parafoudres ont été la General Electric Company aux U.S.A. et MEIDENSHA Corporation associée à MATSUSHITA Electric Industrial (MEI) au Japon. La commercialisation s'est opérée vers 1975. Pour cela, il a fallut résoudre de nombreux problèmes scientifiques et techniques [16-17] :

- La densification de grosses pièces céramiques provoquait l'apparition de fissures et cavités. La détermination des températures de réactions, ou des changements de phases, par des méthodes thermiques d'analyse a permis de s'en affranchir. Pour supprimer toute porosité, un cycle de préfrittage s'est avéré nécessaire. L'utilisation d'un atomiseur, pour préparer le granulé, s'est révélée indispensable pour assurer une bonne tenue au compactage ainsi qu'une bonne densification. De plus, la préparation de ces grosses pièces n'étant pas reproductible, le passage en production de grande série a requis des outils très performants.
- L'application de forts courants impose un diamètre de la céramique de plus en plus important ainsi qu'un revêtement adapté.
- Les chercheurs ont dû déployer beaucoup d'efforts pour maintenir une bonne caractéristique courant-tension sur des grandes plages de courants (5 mA 10 kA aux U.S.A.; 0,1 mA 100 kA au Japon). Ils ont montré qu'un faible ajout d'aluminium (10 ppm) augmentait de façon sensible le coefficient de non-linéarité α.
- Le plus grave problème a sans doute été l'instabilité électrique de la varistance. Jusqu'à ce jour, la céramique se détruisait par emballement thermique même pour de faibles tensions appliquées. Ce problème fut résolu par General Electric en la traitant thermiquement à 600°C après le frittage, libérant ainsi les contraintes internes engendrées par ce dernier. Ces contraintes sont responsables, selon les auteurs, de l'instabilité électrique.

Ce bref récapitulatif démontre que le passage de la varistance pour l'électronique (faible volume) à la céramique pour parafoudre (gros volume) n'a pas été aisé.

I.2.3.1. Le procédé de fabrication ABB (figure I.8.)

Figure I.8. : procédé d'obtention des varistances ZnO.

- L'étape appelée broyage 1 est plus exactement un mélange des additifs sans l'oxyde de zinc. L'opération s'effectue dans un broyeur, dont l'intérieur est recouvert de latex, contenant des billes de zircone et de l'eau. Le broyage dure 20 heures. Les additifs sont, par ordre d'importance molaire décroissante : l'oxyde d'antimoine Sb₂O₃, l'oxyde de nickel NiO, l'oxyde de bismuth Bi₂O₃, le carbonate de manganèse MnCO₃, l'oxyde de cobalt Co₃O₄, et l'oxyde de chrome Cr₂O₃. Il y a également une faible quantité de fritté de verre borosilicaté contenant du bismuth et de l'argent. Ce verre permet une meilleure densification.
- Le chamottage consiste en la calcination de ce mélange. L'opération a lieu dans un four à moufle sous air, suivant le cycle thermique représenté en figure I.9. La poudre est conditionnée dans des creusets en mullite, de dimensions utiles 16 x 22 x 7 cm. La masse totale est de 90 kg par cuisson.

Figure I.9. : cycle thermique du chamottage.

- La chamotte ainsi obtenue subit un broyage, à l'issue duquel la granulométrie (d₉₀) est de 6,5 μm.
- On procède ensuite au délitage de la chamotte puis à l'introduction de la quantité requise d'oxyde de zinc. On ajoute également un liant, un dispersant et un antimoussant. A l'issue de cette étape, un contrôle rigoureux de la viscosité et de la densité est effectué.
- La suspension ainsi obtenue est atomisée pour obtenir un granulé obéissant aux critères de taille par tamisage ; les particules fines sont récupérées pour un usage ultérieur.

- Le pressage uni-axial du granulé génère un comprimé de 42 mm de diamètre et 39 mm de hauteur avec une densité de 3,25.
- Le déliantage-préfrittage permet la combustion des liants organiques ayant favorisé la préparation du granulé et son pressage. Il se produit également une densification partielle. Cette opération est effectuée dans un four à moufle sous air suivant le cycle thermique représenté en figure I.10.

Figure I.10. : cycle thermique du déliantage-préfrittage.

- Sur la pièce préfrittée est appliqué un premier revêtement appelé couche haute résistivité (CHR). C'est une suspension d'une poudre ayant la même composition que le granulé mais de granulométrie plus fine. Ce revêtement permet de canaliser les lignes de courant suivant l'axe de la céramique.
- Le frittage s'opère dans un four tunnel à une température maximale de 1200°C; la pièce séjourne entre 20 et 24 heures dans le four. Les pièces densifiées ont une dimension de 35 mm de diamètre et 32 mm de hauteur. Ceci correspond à un retrait volumique de 43,5 % par rapport au cru issu du pressage.
- Un revêtement en verre est ensuite appliqué. Il permet de bloquer les échanges gazeux avec l'air. La tenue au vieillissement se trouve ainsi améliorée.
- La rectification assure un bon état de surface, ainsi que le parallélisme des deux faces du cylindre.
- La métallisation est l'étape de dépôt des électrodes. Elle se fait par projection d'aluminium en fusion (shoopage).

- La dernière étape, avant les tests électriques, est l'enrobage de la céramique d'un revêtement silicone. Son rôle est d'éviter le contournement de la varistance par un arc électrique en cas de choc de haute intensité.
- Les tests électriques sont consécutifs à cette dernière étape. Ils font l'objet du paragraphe suivant.

I.2.3.2. Les tests électriques

Nous distinguons 5 tests effectués sur les varistances :

* Les tests non destructifs (sur 100 % de la production) :

- mesure de la tension résiduelle par un courant de 5 kA
- mesure de la tension de référence pour un courant de 0,6 mA.

* Les tests destructifs (sur un échantillon) :

- tenue au vieillissement
- application de forts courants d'intensité 65 kA
- application d'une onde de courant de 150 A, d'une durée de 2 ms.

Une onde est définie de façon précise par 3 valeurs (figure I.11.).

- La valeur de son amplitude.
- Le temps τ_1 nécessaire pour passer de 10 % à 90 % de son amplitude sur le front.
- Le temps τ_2 nécessaire pour passer de 10 % à 50 % de son amplitude sur la queue.

Figure I.11. : définition d'une onde.

I.2.3.2.1. Mesure de la tension résiduelle

Ce test soumet la varistance à un choc électrique de 5 kA avec une onde de type $55/120 \ \mu$ s. La tension résiduelle mesurée aux bornes de la céramique ne doit pas excéder 12,5 kV. La densité d'énergie absorbée par la varistance est d'environ 290 J/cm³.

I.2.3.2.2. Mesure de la tension de référence

Il s'agit de la mesure de la différence de potentiel aux bornes de la varistance soumise à un courant d'intensité 0,6 mA. Cette tension doit être supérieure à 4 kV efficace. Cette mesure doit être effectuée à une température comprise entre 20 et 30°C, ceci pour éviter d'obtenir une mesure erronée, car la température exerce une grande influence sur la caractéristique couranttension dans la zone de pré-avalanche.

I.2.3.2.3. Tenue au vieillissement

Ce test destructif s'effectue sur un échantillon de 6 céramiques. Elles sont placées dans une étuve à $115^{\circ}C$ ($\pm 3^{\circ}C$) pendant 1000 heures, sous une tension de 3,5 kV. La puissance consommée est enregistrée en fonction du temps.

La puissance consommée après 1000 heures de test doit être inférieure ou égale à la valeur minimale sur toute la période d'essai multipliée par un facteur 1,1. Elle doit, en outre, être inférieure à la puissance relevée après 1 heure de mise sous tension (figure I.12.).

Figure I.12. : courbe de vieillissement accéléré.

I.2.3.2.4. Application de forts courants

Cet essai destructif s'effectue sur un échantillon de 8 céramiques. Il comporte l'application de 2 ondes de forme $4/10 \mu s$ dont l'amplitude est de 65 kA. L'intervalle de temps entre les 2 ondes est de 25 à 30 minutes. La tension et le courant sont enregistrés à chaque choc (figure I.13.). La valeur de la tension mesurée au second choc ne doit pas différer de plus de 10 % de celle mesurée au premier choc. Après application des deux ondes, l'examen visuel de la varistance ne doit montrer aucune anomalie. En outre, la mesure des tensions de référence et résiduelle, effectuée après le second choc, ne doit pas différer de plus de 10 % des valeurs nominales.

Cet essai requiert un appareillage spécial dont la description figure en Annexe A.

I.2.3.2.5. Application de l'onde de durée 2 ms

Pour cet essai, 5 décharges espacées de 50 à 60 secondes, sont appliquées. L'onde de courant appliquée est rectangulaire de durée de 2 ms et d'amplitude 150 A. Les valeurs de tension et d'intensité sont enregistrées. L'énergie absorbée pendant chaque choc doit être de 110 J/cm³, ce qui correspond à une tension d'environ 8,5 kV.

Après application des chocs, l'examen visuel ne doit montrer aucune anomalie. La tension de référence mesurée après l'essai ne doit pas différer de plus de 5 % de sa valeur nominale. Les céramiques ne doivent révéler aucune défaillance pendant l'application des chocs.

Figure I.13. : application de forts courants enregistrement des ondes de courant et tension.

I.2.3.3. Les problèmes posés par le procédé

Ce procédé n'aboutit jamais à 100 % de pièces obéissant au cahier des charges. Il existe, en moyenne sur une année, 5 % de pièces rejetées à l'issue des tests électriques. Dans un souci d'augmenter la qualité de la production, nous nous sommes prêtés à une analyse des étapes du procédé, au cours de laquelle nous avons remarqué une hétérogénéité des produits du chamottage et du préfrittage.

I.2.3.3.1. Le préfrittage

Le contrôle des températures en différents points du four laisse apparaître une variation du paramètre d'environ 50°C, pour des valeurs comprises entre 895 et 948°C (figure I.14.). Il en découle des variations importantes du retrait volumique des pièces, entre 29 et 37 % par rapport au cru de pressage (figure I.15.). Les caractéristiques électriques (tension de référence et coefficient de non-linéarité) ne subissent, toutefois, pas de variations sensibles, sinon une tendance à la diminution de la tension de référence avec l'augmentation de la température de préfrittage (figure I.16.).

Figure I.14. : relevé des températures dans le four de déliantagepréfrittage.

Figure I.15. : évolution du retrait volumique avec la température de préfrittage.

Figure I.16. : évolution de la tension de référence avec la température de préfrittage.

Figure I.17. : évolution du coefficient de non-linéarité avec la température de préfrittage.

I.2.3.3.2. Le chamottage

L'examen de la poudre après l'opération révèle une forte hétérogénéité des produits. Le lit de poudre, dans les creusets, est constitué de plusieurs couches de couleurs différentes. L'épaisseur des couches dépend de la position du creuset dans le four, et varie d'une cuisson à une autre. L'examen des propriétés électriques correspondantes à ces différents produits traduit de grandes variations d'une couche à l'autre, de part et d'autre des valeurs de production (figure I.18.). Cette grande disparité des propriétés a attiré notre attention. Nous y voyons le moyen d'augmenter la tension de référence en isolant le produit de surface.

Figure I.18. : l'hétérogénéité des produits du chamottage et leurs propriétés électriques.

I.3. Conclusion

Ce premier chapitre montre que l'oxyde de zinc dopé, grâce à ses propriétés électriques particulières, possède de nombreuses applications. Ces applications consistent en la protection de toute installation électrique contre les surtensions, depuis l'application de quelques volts jusqu'à plusieurs centaines de kilovolts.

En conséquence, la fabrication des varistances s'appuie sur de nombreux modes de synthèse allant de la mise en oeuvre de couches minces (basse tension), jusqu'au frittage de grosses céramiques (haute tension). Nous avons mis l'accent sur les progrès incessants des techniques d'élaboration, au cours des 25 dernières années.

Le procédé utilisé par ABB permet l'obtention de céramiques aux performances intéressantes. Toutefois, il se montre encore perfectible ; en effet, le chamottage, tel qu'il est effectué, engendre des produits hétérogènes, et les varistances préparées à partir de ces produits possèdent des propriétés électriques disparates.

C'est pour cette raison que nous allons chercher à optimiser le processus de chamottage, afin d'améliorer ces propriétés.

<u>CHAPITRE II</u>

Chapitre II :

Etude des composants du mélange chamotté

Les éléments contenus dans les varistances se présentent, dans le mélange initial, sous la forme de composés oxygénés. Bien qu'il s'agisse d'oxydes pour la plupart, nous utilisons également le carbonate de manganèse. Afin d'étudier les changements de phases, intervenant lors du chamottage du mélange, nous devons mener l'étude de la réactivité de ces différents composés.

II.1. Les oxydes d'antimoine

La structure électronique de l'antimoine est caractérisée par une cinquième couche possédant 5 électrons ($5s^2 5p^3$). Les valences habituelles de l'antimoine sont donc 3 et 5, et apparaissent dans tous ses oxydes : la valence 3 dans Sb₂O₃ et la valence 5 dans Sb₂O₅. Il existe également des oxydes mixtes des 2 cations. C'est le cas de Sb₂O₄ (ou Sb^{III}Sb^VO₄) et Sb₆O₁₃ (ou Sb^{III}₂Sb^V₄O₁₃).

II.1.1. L'oxyde d'antimoine trivalent

II.1.1.1. Structure cristallographique

L'oxyde d'antimoine trivalent est connu sous 2 formes cristallines qui sont la forme cubique (Senarmontite) et la forme orthorhombique (Valentinite).

* La forme cubique est constituée de groupements Sb4O₆ agencés selon une structure diamant [18] isomorphe à l'oxyde d'arsenic As4O₆ cubique. Le paramètre de maille vaut 1,11526 nm, le groupe spatial est Fd3m. Au sein de chaque groupement (figure II.1.), chaque atome d'antimoine (disques noirs) est lié à 3 atomes d'oxygène (disques grisés) et chaque atome d'oxygène à 2 atomes d'antimoine. Les atomes d'oxygène sont disposés aux sommets d'un octaèdre de 0,37 nm de côté. Les atomes d'antimoine sont disposés aux sommets d'un tétraèdre régulier de 0,37 nm de côté.

Les distances entre les atomes d'antimoine et d'oxygène liés sont de 0,227 nm. Cette valeur est comprise entre la somme des rayons covalents (0,213 nm) et la somme des rayons ioniques (0,230 nm). Mais il serait hâtif de conclure à un caractère partiellement covalent ; en effet, la symétrie tétraèdrique de cette structure cristalline allonge les molécules dans les quatre directions. Ce phénomène a été observé sur l'arsénolite As_4O_6 . Les distances As - O sont de 0,201 nm dans le cristal et 0,18 nm dans les molécules formant le gaz.

Les angles O - \widehat{Sb} - O et Sb - \widehat{O} - Sb sont sensiblement égaux à 109°.

Les molécules sont liées entre elles par des liaisons de Van der Waals entre antimoine et oxygène. Les distances de liaisons sont égales à 0,256 nm. Leur faible énergie explique la tension de vapeur importante de ce composé.

Figure II.1. : structure cristalline de Sb₂O₃ cubique [18].

Figure II.2. : structure cristalline de Sb₂O₃ orthorhombique [18].

* La forme orthorhombique est constituée de chaînes Sb₂O₃ infinies où chaque atome d'antimoine est lié à 3 atomes d'oxygène et chaque atome d'oxygène à 2 atomes d'antimoine [18] (figure II.2.). Les chaines sont orientées suivant l'axe c. Les paramètres de maille sont :

$$a = 0,4914 \text{ nm}$$

 $b = 1,2468 \text{ nm}$
 $c = 0,5421 \text{ nm}$

Le groupe d'espace est Pccn.

II.1.1.2. Propriétés physico-chimiques des oxydes trivalents

II.1.1.2.1. Transition polymorphique. fusion

Les deux variétés polymorphiques de l'oxyde d'antimoine trivalent sont rencontrées à l'état naturel. Il existe toutefois une température de transition entre la Senarmontite et la Valentinite. Cette transition s'opère à 606°C [19]. L'enthalpie de la transition vaut 4 kJ/mole.

La fusion du composé intervient à 656°C. L'enthalpie de fusion est de 55 kJ/mole.

II.1.1.2.2. Sublimation des oxydes trivalents

Les oxydes trivalents possèdent une tension de vapeur non négligeable. Le gaz formé est le dimère $(Sb_2O_3)_2$, plus communément appelé Sb_4O_6 , du fait de la forme de la molécule, identique aux groupements formant la Senarmontite. Les expressions de la pression (en Pa) calculées à partir des données thermodynamiques [19] sont les suivantes :

* T < 879 K (606°C) :

Ln P<sub>Sb₄O₆ = 36,23 -
$$\frac{25099}{T}$$
 - 7,1.10⁻³ T - $\frac{208865}{T^2}$ + 4,034 Ln $\frac{T}{298}$</sub>

* 879 < T <928 K (656°C) :

Ln P<sub>Sb₄O₆ = 31,41 -
$$\frac{22057}{T}$$
 - 5,9.10⁻⁴ T - $\frac{208865}{T^2}$ - 0,0619 Ln $\frac{T}{879}$</sub>

* A partir de 928 K (équilibre liquide gaz) :

Ln P<sub>Sb₄O₆ = 25,94 -
$$\frac{18259}{T}$$
 + 8,48.10⁻⁴ T - $\frac{208865}{T^2}$ - 11,57 Ln $\frac{T}{928}$</sub>

A titre d'exemple, la pression de Sb₄O₆ en équilibre avec le solide à 600°C est de 208 Pa.

Ces expressions nous permettent d'esquisser un diagramme $P_{Sb4O6} = f(T)$ de l'oxyde d'antimoine trivalent (figure II.3).

Figure II.3. : tension de vapeur de Sb₄O₆ en fonction de la température. Domaines d'existence des différentes phases.

Nous nous sommes aussi intéressés à l'aspect cinétique de la sublimation. En effet, dans notre étude sur le comportement du lit de poudre (chapitre IV), il nous faudra considérer la diffusion de Sb_4O_6 gazeux.

La sublimation de ce solide peut s'écrire en 2 étapes élémentaires :

1. Passage à l'état gazeux, d'un groupement Sb₄O₆ du réseau cristallin :

$$\langle Sb_4O_6 \rangle = [Sb_4O_6]_{x=0}$$
; $K_1 = P$

 Diffusion de la molécule gazeuse depuis x = 0, jusqu'à x = X, loin de la surface du solide. par ATG. Les courbes du degré d'avancement λ sont présentées pour différentes valeurs de la température en figure II.4. Le creuset utilisé est un cylindre de 3 mm de diamètre et 10 mm de hauteur. La diffusion est plane jusqu'au sortir de l'éprouvette (x = X), où la pression partielle est égale à P.

cas purs des 2 étapes nous donne les expression de la vitesse :

λ

Figure II.4. : isothermes de sublimation de Sb_4O_6 .

$$\frac{d\lambda}{dt} = k_1 S_{ext} \left(1 - \frac{P}{P^0} \right)$$

où k_1 désigne la vitesse de réaction exprimée par unité de surface et S_{ext} est la surface externe de la poudre.

2.

$$\frac{d\lambda}{dt} = \frac{\mathcal{M}_{sb_4 o_6} D S P^0}{M_{init} X RT} \left(1 - \frac{P}{P^0}\right)$$

S étant la surface perpendiculaire à l'axe x, P^0 la tension de vapeur de Sb₄O₆, $\mathcal{M}_{Sb_4O_6}$ sa masse molaire et M_{init} la masse de produit initiale dans l'ATG.

Il ressort de l'examen des courbes cinétiques, que la vitesse est constante tout au long du processus. Or, S_{ext} diminue lorsque λ augmente. L'étape limitante est donc la diffusion en phase gazeuse. L'énergie d'activation apparente du phénomène vaut 188 kJ/mole (figure II.5.).

Figure II.5. : la constante de vitesse en coordonnées d'Arrhenius.

II.1.1.3. Oxydation de l'oxyde trivalent cubique

Les oxydes d'antimoine Sb₂O₃, pour des températures de l'ordre de 500°C, s'oxydent au contact de l'oxygène de l'air pour donner l'oxyde Sb₂O₄ (ou Sb^{III}Sb^VO₄). L'oxydation est un phénomène spontané, et ce dès la température ambiante. En effet, les variations d'enthalpies libres standards de ces réactions à partir de l'oxyde d'antimoine trivalent sont très nettement négatives (figure II.6.). Notons que la réaction à partir du gaz est la plus favorable.

Figure II.7. : thermogravimétrie de Sb₂O₃. Influence de P_{O2} sur l'oxydation (v = $1^{\circ}C/mn$; m = 10 mg).

Dès lors, nous pouvons dire que Sb_2O_3 est un composé métastable à la température ambiante.

Nous avons déjà signalé que l'oxydation se produit pour des températures de l'ordre de 400 à 500°C. Elle est fonction de la pression partielle d'oxygène, comme en témoignent les essais de la figure II.7. Le mécanisme de cette oxydation dépend de la sublimation de Sb₂O₃. P.W. Centers [20] écrit que, l'oxydation est contrôlée cinétiquement par la sublimation. Nous pouvons regretter l'impossibilité de travailler à pression partielle d'oxyde d'antimoine variable.

Le suivi de la cinétique d'oxydation en fonction de la température (figure II.8.) traduit ce phénomène de façon qualitative. Nous pouvons imaginer que la perte de masse initiale contribue à l'élévation de la pression partielle d'oxyde d'antimoine aux interfaces, jusqu'à une certaine valeur pour laquelle l'oxydation du solide se produit.

Figure II.8. : cinétiques d'oxydation de Sb₂O₃. Influence de la température pour $P_{O_2} = 2.10^4$ Pa.

II.1.2. L'oxyde d'antimoine Sb₂O₄

Cet oxyde d'antimoine se trouve sous plusieurs variétés polymorphiques : la plus connue est la Cervantite qui cristallise dans le système orthorhombique. Elle constitue le produit de l'oxydation de Sb₂O₃ par l'oxygène. C'est la forme stable à la température ambiante. Elle se décompose à des températures supérieures à 1000°C.

Il faut noter également l'existence d'une forme β qui cristallise dans le système monoclinique, forme haute température.

Cet oxyde est considéré comme un oxyde mixte des deux cations Sb^{3+} et Sb^{5+} , la valence 4 n'existant pas pour l'antimoine.

II.1.3. L'oxyde d'antimoine Sb₆O₁₃

Cet oxyde est habituellement présenté comme un intermédiaire dans la décomposition de Sb₂O₅ [21] ; son existence fut longtemps contestée [22]. Il est en fait considéré comme un corps hydraté de formule réelle Sb^{III}Sb₂^VO₆(OH) [23], mais simplement écrit Sb₆O₁₃.

Il cristallise dans le système cubique à faces centrées et est isomorphe aux atopites de formule (Ca, Mn, Na)₂Sb₂(O, OH, F)₇.

Variété	n° JCPDS	a (nm)	b (nm)	c (nm)	β	Groupe d'espace
Sb ₂ O ₃ Senarmontite	42-1466	1,1152				Fd3m
Sb ₂ O ₃ Valentinite	11-689	0,4914	1,2468	0,5421		Pccn
Sb ₂ O ₄ - α Cervantite	11-694	0,5436	0,4810	1,176		Pna21
Sb_2O_4 - β	17-620	1,1903	0,4834	0,5383	101,35	I2/a
Sb ₆ O ₁₃	33-111	1,03060				Fd3m

Le tableau II.1. récapitule les différents oxydes que nous rencontrerons :

Tableau II.1. : structure cristalline de certains oxydes d'antimoine

II.2. Le carbonate de manganèse

Le carbonate de manganèse est également employé pour la fabrication de varistances. Ce composé cristallise dans le système rhomboédrique. Il est isomorphe à de nombreux carbonates tels que la calcite CaCO₃. Le carbonate de manganèse a fait l'objet de nombreuses études [24-28], et notamment sur sa décomposition. Ainsi, on peut préparer tous les oxydes de MnO à MnO₂ en contrôlant la composition de l'atmosphère gazeuse. Il faut noter également la part importante d'études mentionnant la production de monoxyde de carbone lors de la décomposition [29-32].

Après un bref inventaire des phases cristallines issues du carbonate, nous nous proposons de faire une étude thermodynamique du système Mn-O-CO₂-CO; nous aborderons pour finir, quelques aspects de la décomposition sous différentes atmosphères.

II.2.1. Structure cristalline des composés issus du carbonate

Dresser un inventaire exhaustif des composés oxygénés du manganèse est complexe. L'élément possède de nombreux états d'oxydation de +2 à +7 avec notamment, les manganites (composés à base de Mn^{4+}), manganates (Mn^{6+}), permanganates (Mn^{7+}).

De plus, les oxydes de manganèse présentent pour la plupart, des écarts à la stoechiométrie qui peuvent être importants.

Dans ce qui suit, nous nous limiterons à quelques composés, de MnO à MnO₂. Ces structures sont résumées dans le tableau II.2..

Composés	n° JCPDS	a (nm)	b (nm)	c (nm)	G. spatial	Réseau de Bravais	Remarque
MnCO ₃	7-268	0,4777		1,567	R-3c	Rhomboédrique	
MnO	7-230	0,4445			Fm3m	C.f.C.	
ε-MnO ₂	30-820	0,280		0,445	P63/mmc	Hexagonal	
Mn ₂ O ₃	41-1442	0,94091			Ia3	C.f.C.	
γ-Mn ₂ O ₃	6-540	0,81		0,94		Quadratique	
Mn ₃ O ₄	24-734	0.57621		0.94696		Quadratique	Forme basse T
Mn ₃ O ₄	4-732	0,87			Fd3m	C.f.C.	Forme haute T
	Tableau I	I.2. : str	ucture	cristal	line de	quelques co	mposés du

manganèse

II.2.2. Le système Mn-O-CO₂-CO

L'objet du présent paragraphe est l'étude des réactions chimiques intervenant lors de la décomposition du carbonate de manganèse sous différentes atmosphères gazeuses.

Les variations d'enthalpies libres standards, des réactions de production des différents oxydes sont calculées [33] et tracées en figure II.9. Ces quatre réactions sont :

- 1. $MnCO_3 = MnO + CO_2$
- 2. $MnCO_3 + \frac{1}{3}O_2 = MnO_2 + CO_2$
- 3. $MnCO_3 + \frac{1}{4}O_2 = \frac{1}{2}Mn_2O_3 + CO_2$
- 4. $\operatorname{MnCO}_3 + \frac{1}{6}\operatorname{O}_2 = \frac{1}{3}\operatorname{Mn}_3\operatorname{O}_4 + \operatorname{CO}_2$

Figure II.9. : variations d'enthalpies libres standards pour certaines réactions impliquant le carbonate de manganèse.

Comme l'indique la figure précédente, dans les conditions standards, l'oxyde formé jusqu'à 802 K est MnO₂, puis à partir de cette température, nous obtenons Mn₂O₃. L'évolution de cette température avec la pression partielle d'oxygène est reportée en figure II.10.

Figure II.10. : existence de MnO_2 et Mn_2O_3 en fonction de P_{O_2} et T.

La réaction 1. est la moins rapide. La limite des domaines de stabilité de $MnCO_3$ et MnO, en fonction de la température et de la pression partielle de dioxyde de carbone, est tracée sur la figure II.11.

D'autres équilibres interviennent avec production de monoxyde de carbone :

$$MnCO_{3} = \frac{1}{3}Mn_{3}O_{4} + \frac{2}{3}CO_{2} + \frac{1}{3}CO$$
$$MnCO_{3} = \frac{1}{2}Mn_{2}O_{3} + \frac{1}{2}CO_{2} + \frac{1}{2}CO$$

La formation de CO est spontanée pour des températures de l'ordre de 800 à 1000 K dans les conditions standards. Elle l'est à température bien inférieure pour les faibles pressions partielles de CO₂ et CO. Ainsi, pour $P_{CO_2} = P_{CO} = 0,1$ Pa, les températures de réactions sont respectivement 455 K et 565 K (182 et 292°C) (figure II.12.).

L'ensemble de la décomposition s'effectue en une étape, à une température qui évolue a pression de dioxyde de carbone. La perte de masse théorique est de 38,3 % pour la on de formation de MnO. Les résultats obtenus sont un peu supérieurs du fait de la ce d'eau dans le carbonate.

Le couplage TG-DSC - IRTF. nous permet d'analyser les gaz dégagés lors de la position.

ivre la

guons

e d'un

sse en valeur

ntient,

ons de

e

e

ficulté

me de erface

e

Ces essais sont réalisés sous différentes conditions (figure II.16.) :

- 1. sous $P_{CO_2} = 10^5$ Pa, forte épaisseur de produit dans le creuset
- 2. sous $P_{CO_2} = 10^5$ Pa, faible épaisseur
- 3. sous $P_{N_2} = 10^5$ Pa, forte épaisseur
- 4. sous $P_{N_2} = 10^5$ Pa, faible épaisseur.

Dans les 3 premiers cas, un dégagement de monoxyde de carbone est mis en évidence on très nette : les bandes d'absorption sont très intenses (figure II.15.). Le dernier cas ne pas de dégagement de CO mesurable. Les dégagements de monoxyde de carbone dent avec les dégagements de dioxyde de carbone. Dans les cas 1 et 2, nous n'observons CO après la décomposition. C'est donc un phénomène s'opérant en phase adsorbée, le est équivalent aux cas 1 et 2 dans la mesure où une forte épaisseur de produit induit un e diffusion important du CO₂ dégagé, dans la poudre. La valeur de la pression partielle est pien différente de la valeur initiale (inférieure à 0,1 Pa).

décomposition sous CO₂ pur.

lors de la décomposition sous différentes conditions $(v = 20^{\circ}C/mn)$.

II.2.4. Décomposition en présence d'oxygène

La décomposition suivie en T.G. en programmation de température s'effectue en plusieurs étapes, jusqu'à 800°C :

1. Formation de MnO_2 :

$$MnCO_3 + \frac{1}{2}O_2 = MnO_2 + CO_2$$

réaction globale qui peut s'écrire :

$$MnCO_3 = MnO + CO_2$$
$$MnO + \frac{1}{2}O_2 = MnO_2$$

2. Décomposition de MnO₂ en Mn₂O₃ ; cette réaction s'écrit :

$$MnO_2 = \frac{1}{2}Mn_2O_3 + \frac{1}{4}O_2$$

La température de cette réaction dépend de la pression d'oxygène, comme l'indique la figure II.10.

La décomposition du carbonate est suivie pour plusieurs pressions partielles d'oxygène (figure II.17.).

Sur toutes les courbes, nous retrouvons les 2 étapes citées précédemment. La première réaction s'accompagne d'une perte de masse continue sur un grand domaine de température. Certains auteurs l'attribuent à l'équilibre de MnO_2 avec l'oxygène du fait de sa non-stoechiométrie.

La deuxième étape, induit une perte de masse. Elle est parfois suivie d'une légère reprise de masse. Celle-ci est caractérisée par un pic exothermique sur la courbe du flux de chaleur, dont l'intensité varie à l'inverse de la pression partielle d'oxygène (figure II.18.).

Figure II.17. : influence de P_{O_2} sur la décomposition de MnCO₃.

Figure II.18. : influence de P_{O 2} sur le flux de chaleur de décomposition de MnCO₃.

II.3. Les oxydes de bismuth

Le bismuth possède les valences 3 et 5. La valence 3 occupe une place prépondérante. L'oxyde correspondant, Bi₂O₃, cristallise sous de nombreuses variétés polymorphiques. Dans ce qui suit, nous allons nous attarder sur ces variétés qui sont isomorphes avec de nombreux oxydes mixtes de bismuth et chrome, manganèse, nickel, etc... Nous aborderons certains aspects du système Bi₂O₃/Sb₂O₃, et plus particulièrement, son comportement lors d'une calcination en atmosphère inerte.

II.3.1. Variétés polymorphiques de Bi₂O₃ [34]

La variété "naturelle" de l'oxyde de bismuth pur est la bismite, ou α -Bi₂O₃ monoclinique. Cette phase subit une transformation allotropique à 730°C pour donner la phase δ cubique, dont la fusion intervient à 825°C. Le refroidissement d'oxyde de bismuth liquide mène à la variété β quadratique. Elle se forme également lors du refroidissement de la phase δ . La phase γ , cubique centrée, est produite par refroidissement de la phase δ , sous oxygène. Elle a pour caractéristique la présence d'ions Bi⁵⁺ dans son réseau. L'existence de la phase γ -Bi₂O₃ pure est toutefois contestée.

Ces quatre variétés sont présentes dans les varistances à base d'oxyde de zinc [35]. Les paramètres du procédé (temps de refroidissement après frittage...) influent sur leur proportion dans la phase intergranulaire formant les barrières de potentiels entre grains d'oxyde de zinc.

Variété	n° JCPDS	a (nm)	b (nm)	c (nm)	β	Groupe d'espace
α-Bi ₂ O ₃	41-1449	0,58499	0,81698	0,75123	112,988	P21/c (14)
β -Bi ₂ O ₃	27-50	0,7742		0,5631		P-421c (114)
γ-Bi ₂ O3		1,025				C centré
δ-Bi ₂ O ₃	27-52	0,5525				Cubique

Le tableau II.3. résume les paramètres de ces quatre variétés.

Tableau II.3. : structure cristalline des oxydes de bismuth

Les 3 variétés haute température peuvent être stabilisées à la température ambiante. Un grand nombre de composés, oxydes mixtes de bismuth (élément majoritaire) et d'autres cations, cristallisant dans l'une de ces trois structures avec des paramètres de maille du même ordre de grandeur, sont répertoriés. Le tableau II.4. mentionne quelques exemples, avec les éléments cobalt, manganèse, nickel et chrome.

n° JCPDS	Formule	Système	Paramètres de maille (nm)	
24-303	CrBi ₁₈ O ₃₀	Quadratique	a = 0,7748 ; c = 0,5728	
42-527	Bi7CrO _{12,5}	C.f.C.	a = 0,558	
34-1303	Bi ₂₄ CoO ₃₇	Cubique	a = 1,0184	
36-915	Bi ₁₈ Ni ₈ O ₃₆	C. centré	a = 1,025	
36-1238	Bi38CrO60	C.C.	a = 1,0163	
37-871	Bi ₂₅ CoO ₄₀	C.C.	a = 1,0118	
39-1105	Bi ₁₂ MnO ₂₀	C.C.	a = 1,02133	
40-1044	Bi ₁₂ Mn _{0,5} Co _{0,5} O ₂₀	C.C.	a = 1,01858	
37-485	Bi ₁₂ SiO ₂₀ (sillenite)	C.C.	a = 1,01067	

Tableau II.4. : structure cristalline de quelques oxydes mixtes de
bismuth

Nous remarquons la fréquence significative de composés de type sillenite ($Bi_{12}SiO_{20}$), cubique centré. Tous ces composés sont isotypiques de γ -Bi₂O₃.

Cette structure est composée de groupements Bi_2O_8 (2 polyèdres attenants ayant une arête commune). Chacun de ces groupements est relié à deux tétraèdres SiO_4 . Les composés de type sillenite ne diffèrent que par la nature du cation situé au centre des tétraèdres.

Devalette [36] a montré la possibilité de substitutions couplées des cations tétravalents (Si^{4+}, Ge^{4+}) par des cations de valences différentes. Ainsi, les substitutions suivantes sont envisageables :

$$2 M^{4+} = A^{3+} + B^{5+}$$

$$3 M^{4+} = Zn^{2+} + 2 B^{5+}$$

$$4 M^{4+} = A^{+} + 3 B^{5+}$$
; $A = Li, Na; B = P, As, Bi$

De nombreux auteurs ont affirmé l'existence d'un oxyde de bismuth pur de structure sillenite, et appelé γ . Il semble que ceci soit dorénavant démenti ; en revanche, un très faible dopage avec des ions alcalins suffit à précipiter cette structure, dont le paramètre de maille est très voisin de celui décrit par Medernach et ses collaborateurs [34].

II.3.2. Généralités sur le système Bi₂O₃-Sb₂O₃

L'antimoine et le bismuth sont, avec le nickel, les éléments les plus abondants dans notre mélange. Nous verrons dans un prochain chapitre, que les phases qui apparaissent sont toutes des solutions solides des autres éléments dans des structures contenant de l'antimoine et du bismuth.

L'antimoine trivalent ou pentavalent stabilise lui aussi les formes haute température de l'oxyde de bismuth [37-38]. La solubilité des ions antimoine dans l'oxyde de bismuth quadratique atteint les 10 % molaire. Au-delà de cette valeur, la phase δ précipite. L'antimoine présent dans la phase β est pentavalent. La forme γ peut être aussi stabilisée par l'antimoine jusqu'à 3 % molaire. L'antimoine est à 80 % pentavalent dans cette structure.

Pour des concentrations en antimoine supérieures, d'autres composés, oxydes mixtes précipitent. Le diagramme de phases Bi_2O_3/Sb_2O_4 (figure II.19.) révèle l'existence de 3 composés définis Bi_3SbO_7 , $Bi_5Sb_2O_{12,5}$, $BiSbO_4$ contenant de l'antimoine pentavalent. Les paramètres cristallins de certains de ces composés sont repris dans le tableau II.5.

) b (nm)	c (nm)	α	β	γ	n° JCPDS
8 1,3205	0,7602	90,65	90,67	104,21	
1,5495	0,7645				37-953
3 0,4834	0,5383		101,35		17-620
0,489	0,547		101		7-191
1 - 1 5): 1	1) b (nm) 18 1,3205 5 1,5495 03 0,4834 1 0,489	b (nm) c (nm) 1,3205 0,7602 5 1,5495 0,7645 03 0,4834 0,5383 1 0,489 0,547	1) b (nm) c (nm) α 18 1,3205 0,7602 90,65 5 1,5495 0,7645 03 0,4834 0,5383 1 0,489 0,547	1)b (nm)c (nm)αβ181,32050,760290,6590,6751,54950,764590,6590,67030,48340,5383101,3510,4890,547101	1)b (nm)c (nm)αβγ181,32050,760290,6590,67104,2151,54950,7645030,48340,5383101,35-10,4890,547101-

Tableau II.5. : structure cristalline de quelques oxydes d'antimoine et
de bismuth

Le composé BiSbO₄ revêt pour nous une grande importance dans la mesure où nous allons le rencontrer souvent. Tairi [39] mentionne l'existence d'une solution solide continue de formule $(Bi_{1-x}Sb_x)^{III}Sb^VO_4$, entre BiSbO₄ et β -Sb₂O₄ (0 < x < 1). Ceci est contradictoire avec le diagramme de phase (figure II.19) qui montre une non miscibilité avec deux composés définis dans le domaine 50 -100 % d'antimoine.

Figure II.19. : le système Bi_2O_3/Sb_2O_4 [40].

Nous pourrions, grâce à l'obtention d'un composé BiSbO₄ de paramètres cristallins variables, confirmer l'existence d'une solution solide. De plus, nous n'avons jamais observé $Sb_2O_4-\beta$.

Tous les résultats précédents sont relatifs à la présence d'antimoine pentavalent, pour un produit initial tel que Sb₂O₄ ou Sb₂O₅. C'est également le cas lorsque nous avons Sb₂O₃ et que le mélange est étudié en présence d'oxygène.

II.3.3. Bi₂O₃/Sb₂O₃, 40 - 60 % molaire

Le mélange des additifs pour la fabrication de varistances contient des proportions relatives respectives Sb₂O₃/Bi₂O₃ de 6 moles pour 4.

L'évolution en thermogravimétrie, figure II.20., révèle une forte perte de masse à partir de 550°C. Cette perte est provoquée par la sublimation d'une partie de Sb₂O₃ (environ 17 % en masse). Il reste alors dans le mélange, 12 % en masse de Sb₂O₃.

Figure II.20. : thermogravimétrie du binaire sous N_2 (v = 100°C/h).

L'analyse des phases cristallines met en évidence une évolution intéressante, figure II.21., avec l'apparition de bismuth métallique (JCPDS n° 5-519), qui subsiste jusqu'à 800° C.

A 550°C, coexistent 5 composés : l'oxyde de bismuth α , l'oxyde d'antimoine cfc, le bismuth, BiSbO4, et un composé jusqu'à lors inconnu. L'indexation des raies de diffraction de ce composé (tableau II.6.) souligne la difficulté de lui attribuer un réseau cristallin, en raison du grand nombre de raies des autres composés. On serions tentés toutefois de reconnaître certaines des raies du système cubique à faces centrées dont les indices de Miller figurent à côté des d_{hkl}. La présence d'une raie à d = 0,9435 nm, impose un paramètre de maille important (a = 1,6342 nm dans notre hypothèse), donc un grand nombre d'ions dans la maille élémentaire. Ceci rend encore plus difficile l'identification de ce composé (désigné C₁). D'autres systèmes peuvent correspondre à ce composé (orthorhombique, quadratique, cubique simple).Une identification précise s'avère délicate.

A partir de 600°C, le bismuth coexiste avec BiSbO₄, qui possède des distorsions dans son réseau cristallin (tableau II.7.). La photo II.1. nous montre le binaire calciné à 700°C sous azote : le bismuth apparaît sous forme de grains sphériques de diamètre 10-20 μ m à l'éclat métallique. Les autres grains de couleur grise et d'un éclat terne forment la phase oxyde mixte BiSbO₄.

a = 1,6342 nm <u>hkl</u>	d _{hkl} (nm)	I %
111	0,9435	5
333	0,3144	100
600	0,2723	33
660	0,1925	26
933	0,1645	20
666	0,15730	5
12 6 0	0,12181	3
12 6 6	0,11119	2

Tableau II.6. : raies de diffraction de rayons X de C_1 (hypothèse C.f.C)

	a (nm)	b (nm)	c (nm)	β
BiSbO4 réf.	0,5464	0,4887	1,181	101,0
BiSbO4 (600°C)	0,5452	0,4878	1,1839	101,20
BiSbO4 (700°C)	0,5461	0,4881	1,1821	101,1
BiSbO ₄ (800°C)	0,5464	0,4885	1,1824	101,06

Tableau II.7. : évolution des paramètres cristallins de BiSbO4 avec la
température de calcination du mélange

L'existence du bismuth, est provoquée par la réduction de Bi^{III} en Bi⁽⁰⁾, par Sb^{III} qui se transforme en Sb^V.

Photo II.1. : mélange Sb₂O₃/Bi₂O₃, 60/40 % molaire calciné sous azote à 700°C.

Ce type de réaction a été signalé par Jingkui [40] sous la forme :

$$5 \operatorname{Bi}_{2}^{\operatorname{III}}\operatorname{O}_{3} + 3 \operatorname{Sb}_{2}^{\operatorname{III}}\operatorname{O}_{3} = 4 \operatorname{Bi}^{(0)} + 6 \operatorname{Bi}^{\operatorname{III}}\operatorname{Sb}^{V}\operatorname{O}_{4}$$

Le bismuth y apparaît à partir de 500°C. De plus, la variation d'enthalpie libre standard des réactions (figure II.22.) (calculée à partir des données thermodynamiques) :

$$\langle \text{Bi}_2\text{O}_3 \rangle + 3 \langle \text{Sb}_2\text{O}_3 \rangle = 2 \text{ (Bi)} + 3 \langle \text{Sb}_2\text{O}_4 \rangle$$
 (1)

$$\langle \text{Bi}_2\text{O}_3 \rangle + \frac{3}{2} [\text{Sb}_4\text{O}_6] = 2 \text{ (Bi)} + 3 \langle \text{Sb}_2\text{O}_4 \rangle$$
 (2)

prouve que cette réaction peut s'effectuer à partir de $[Sb_4O_6]$. Dans ce cas, la réduction est contrôlée par la sublimation de l'oxyde d'antimoine. Ajoutons que le bismuth formé est liquide (point de fusion à 270°C).

Le diagramme donnant la tension de vapeur du bismuth solide et liquide est obtenu à partir des données thermodynamiques de Kubaschewski [33] (figure II.23). Cette valeur est relativement faible, sur tout le domaine de température étudié, comparée à la tension de vapeur d'oxyde d'antimoine (à 700°C : $P_{Bi_2} = 1,3$ Pa ; $P_{Sb_4O_6} = 1381$ Pa). Ceci nous amènera, dans tout ce qui suit, à négliger le bismuth gazeux.

Figure II.23. : tension de vapeur du bismuth.

II.4. Les oxydes de cobalt, nickel et chrome

- L'oxyde de cobalt Co₃O₄ cristallise dans le système cubique à faces centrées, et il est isomorphe au spinelle MgAl₂O₄. C'est un oxyde mixte du cobalt divalent et du cobalt trivalent (Co^{II}Co^{III}₂O₄, JCPDS n° 43-1003).
- L'oxyde de nickel NiO cristallise dans le système cubique à faces centrées (JCPDS n° 4-835) et il est isomorphe au chlorure de sodium. Il présente fréquemment une sous stoechiométrie en nickel ; son équilibre avec l'oxygène gazeux induit la présence d'ions nickel 3⁺, en plus des lacunes de nickel :

$$2\left(Ni_{Ni^{2+}}^{2+}\right)^{x} + \frac{1}{2}\left[O_{2}\right] = \left(O_{O^{2-}}^{2-}\right)^{x} + \left(V_{Ni^{2+}}\right) + 2\left(Ni_{Ni^{2+}}^{3+}\right)^{2}$$

L'utilisation, en production, de l'oxyde stoechiométrique aboutit à des varistances possédant des caractéristiques électriques insuffisantes.

 L'oxyde de chrome Cr₂O₃ cristallise dans le système rhomboédrique, et est isomorphe à l'alumine α (JCPDS n° 38-1479).

II.5. Conclusion

Le tableau II.8., apporte une synthèse sur ces composés, du point de vue chimique, avec les cations rencontrés, les gaz dégagés ou captés, ainsi que les phases cristallines rencontrées, dont certaines (BiSb₂O₇, (Co,Mn,Ni)Sb₂O₄, (Co,Mn,Ni)Sb₂O₆) seront décrites dans le chapitre suivant.

Composés initiaux	Atomes Cations	Gaz générés ou captés	Espèces cristallines rencontrées
Sb ₂ O ₃	Sb ³⁺ , Sb ⁵⁺	O ₂ , Sb ₄ O ₆	Sb ₂ O ₃ cubique Sb ₂ O ₃ orthorhombique Sb ₂ O ₄ α et β
MnCO ₃	Mn ²⁺ , Mn ³⁺ , Mn ⁴⁺	CO ₂ , CO, O ₂	(Co,Ni,Mn)Sb ₂ O ₄ (Co,Mn,Ni)Sb ₂ O ₆
Bi ₂ O ₃	Bi ³⁺ , Bi ⁵⁺ , Bi	Bi, (Bi) ₂ , O ₂ , Sb ₄ O ₆	$\begin{array}{c} \operatorname{Bi}_2\operatorname{O}_3\left(\alpha,\beta,\gamma,\delta\right)\\ \operatorname{Bi}_2\operatorname{D}_7\\ \operatorname{Bi}_2\operatorname{D}_7\\ \operatorname{Bi}_2\operatorname{D}_4\\ \operatorname{Bi}\end{array}$
NiO	Ni ²⁺ , Ni ³⁺	O ₂	(Co,Ni,Mn)Sb ₂ O ₄ (Co,Mn,Ni)Sb ₂ O ₆ NiO
Co ₃ O ₄	Co ²⁺ , Co ³⁺	O ₂	(Co,Ni,Mn)Sb ₂ O ₄ (Co,Mn,Ni)Sb ₂ O ₆ Co ₃ O ₄
Cr ₂ O ₃	Cr ³⁺		
6	13	6	15

Tableau II.8. : synthèse des composés formant notre système

Ce tableau met en évidence la complexité de notre système. Nous essayerons de dégager des hypothèses simplificatrices par la suite, afin d'appréhender au mieux le comportement du lit de poudre.

,

,

CHAPITRE III

·

Chapitre III :

Etude physico-chimique du mélange

III.1. Introduction

En production, le chamottage s'effectue sous air. Nous avons souligné dans le chapitre précédent l'importance de l'oxygène gazeux sur le comportement des constituants du mélange. Nous allons désormais étendre cette étude au mélange lui-même, afin de mettre en évidence les phases cristallines générées lors du chamottage en présence ou non d'oxygène gazeux.

Le mélange utilisé pour le chamottage renferme les composés suivants, pour lesquels nous donnons la fraction molaire approximative :

Sb ₂ O ₃	1/3
NiO	1/5
Bi ₂ O ₃	1/5
MnCO ₃	1/8
Co ₃ O ₄	1/12
Cr ₂ O ₃	1/50
Agent fondant	très peu.

L'agent fondant est un verre boro-silicaté contenant du bismuth et de l'argent. Il favorise la densification de la céramique, lors du frittage.

Nous allons plus particulièrement nous attacher à reconnaître les phases cristallines apparaissant ou disparaissant au cours du traitement thermique de ce mélange. Dans la mesure du possible, nous essayerons d'identifier les réactions chimiques intervenant entre ces différents composés.

III.2. Le mélange calciné en l'absence d'oxygène

III.2.1. Identification des phases présentes

Nous allons étudier en détail par diffraction des rayons X les constituants de notre mélange calciné à différentes températures sous azote. Les produits subissent un cycle

thermique comprenant une montée en température de 100°C/h, un palier de 2 heures, et une descente en température de 100°C/h. Nous ne ferons varier que la température du palier. Les échantillons ne sont pas trempés à cette température afin de garder l'atmosphère inerte jusqu'au retour à la température ambiante.

Un certain nombre de composés apparaissent ou disparaissent lors de la montée en température (figure III.1.).

- * A partir de 475°C, apparaissent le bismuth et C₁, composés déjà rencontrés dans l'étude du binaire Bi₂O₃/Sb₂O₃ (chapitre II).
- * A 500°C, C1 et Bi sont toujours présents en grande quantité, et nous détectons, de plus à cette température, BiSbO4, de la même façon que pour le binaire Bi₂O₃/Sb₂O₃, ainsi qu'un nouveau composé, de structure cubique faces centrées, isomorphe à de nombreuses structures pyrochlores. Ces structures ont un paramètre de maille a = 1,03 nm environ. Leur formule générale s'écrit M₂Sb₂O₇. L'antimoine se trouve au degré V, et les cations M sont divalents. On trouve dans ce

groupe également Sb₆O₁₃ (ou 2(Sb^{III}Sb₂^VO₆OH)) qui met en jeu cette fois un cation trivalent. Il existe un composé isomorphe, BiSb₂O₇ stabilisé par des traces de fer. Son paramètre est voisin de celui mesuré ($a_{mesuré} = 1,0437$ nm à 700°C). Si nous ne pouvons pas affirmer l'existence de BiSb₂O₇ dans notre mélange, nous l'admettrons vu la grande similitude cristallographique.

hkl	d (nm)	I (%)
111	0,6025	2
222	0,30128	100
400	0,2609	31
331	0,2394	3
440	0,1845	27
622	0,1573	18
444	0,1507	5
800	0,13045	2

Tableau	III.1.	:	raies	de	diffraction	de	BiSb ₂ O ₇	à	700°C.
---------	--------	---	-------	----	-------------	----	----------------------------------	---	--------

Ce type de structure va être rencontrée tout au long de notre étude, avec de légères variations du paramètre de maille.

* A 525°C il reste de l'oxyde d'antimoine cfc, mais nous ne décelons pas d' α -Bi₂O₃.

* A partir de 600°C, le diffractogramme révèle un dernier composé, qui subsiste jusqu'à 700°C. Après indexation (figure III.2.), il s'avère qu'il est isomorphe à une famille d'antimonites de formule générale M^{II}Sb₂^{III}O₄; les principaux antimonites connus sont résumés dans le tableau III.2.

	a (nm)	c (nm)
MgSb ₂ O ₄	0,8445	0,5907
MnSb ₂ O ₄	0,8685	0,598
NiSb ₂ O ₄	0,835	0,591
FeSb ₂ O ₄	0,8592	0,5905
CoSb ₂ O ₄	0,849	0,591
ZnSb ₂ O ₄	0,8517	0,5933

Tableau III.2. : les principaux antimonites divalents.

Ce sont tous des composés de structure quadratique. Celui étudié a pour paramètres cristallins : a = 0,8489 nm et c = 0,5938 nm. Nous le noterons (Co,Mn,Ni)Sb₂O₄, le cobalt, le nickel et le manganèse étant les seuls éléments de notre mélange susceptibles d'exister au degré d'oxydation II. Nous avons reporté dans le tableau III.3., les raies de diffraction de ce composé. Les raies où figure une astérisque sont incertaines, en raison de leurs faibles intensités.

hkl	d (nm)	hkl	d (nm)
200	0,4242	411*	0,1955
211	0,3198	331*	0,1896
2 2 0*	0,3000	213	0,1754
002	0,2969	402	0,1728
310	0,2683	332	0,1660
112	0,2661	521*	0,1523
202	0,2432	4 4 0*	0,1502
4 0 0*	0,2121	4 1 3*	0,1427
3 3 0*	0,2003	6 0 0 ou 5 3 1*	0,1417

Tableau III.3. : raies de diffraction de (Co,Mn,Ni)Sb₂O₄ à 650°C.

Figure III.2. : indexation de BiSb₂O₇ et (Co,Mn,Ni)Sb₂O₄ en présence de bismuth à 700°C.

Tout ceci peut être résumé sur un diagramme présentant l'évolution qualitative des phases avec la température de palier (figure III.3.). Nous avons mesuré l'intensité relative (surface du pic) du pic principal de chacun des composés ; les pics considérés sont les suivants :

$d_{120} = 0,325 \text{ nm}$
d ₂₂₂ = 0,322 nm
$d_{012} = 0,328 \text{ nm}$
$d_{112} = 0,326 \text{ nm}$
$d_{222} = 0,301 \text{ nm}$
$d_{211} = 0,320 \text{ nm}$

A 700°C (figure III.2.), le mélange est constitué d'au moins 3 phases : le bismuth, (Co,Mn,Ni)Sb₂O₄ et BiSb₂O₇. Dans ce mélange, le bismuth apparaît aux degrés d'oxydation 0 et III, l'antimoine aux degrés III et V. Nous verrons dans un prochain paragraphe, l'action de l'oxygène gazeux sur l'évolution de ces trois composés.

Figure III.3. : évolution des phases avec la température : mesure de l'intensité relative du pic 100 % d'intensité pour chaque phase.

III.2.2. Analyse thermogravimétrique

En analyse thermogravimétrique, le mélange est caractérisé par plusieurs phénomènes (figure III.4.) :

- 2 pertes de masse à 449 et 480°C relatives à la décomposition du carbonate de manganèse.
- Une perte de masse importante (jusqu'à -9 %) relative à la sublimation de Sb₂O₃, et dont le maximum du signal dérivé (D.T.G.) se situe à 585°C.
- Une perte de masse de 3 % environ (maximum de la D.T.G. à 650°C).

Figure III.4. : thermogravimétrie du mélange sous azote ($P_{O_2} < 1 P_a$; $v = 100^{\circ}C/h$).

Au-delà de la recherche des phénomènes, à l'origine de ces pertes de masse, nous montrons grâce à cette technique, que nous pouvons obtenir involontairement des écarts importants de composition chimique du mélange. Nous avons environ 13 % de perte de masse totale, dont la majeure partie provoquée par la sublimation de Sb₂O₃.

Par conséquent, nous pouvons nous attendre à des variations notables des propriétés électriques.

Figure III.5. : thermogravimétrie sous $P_{O_2} = 2.10^4$ Pa (v = 100°C/h) du mélange initialement calciné sous azote à 700°C ($P_{O_2} < 1$ Pa ; v = 100°C/h).

* Une première étape, entre 250 et 320°C (maximum de la D.T.G. à 286°C) se caractérise par la disparition du bismuth :

Cette réaction présente une variation d'enthalpie libre qui, pour ces conditions (T ≈ 540 K, P_{O2} = 2.10⁴ Pa) a une valeur environ égale à -200 kJ/mole. La réaction est spontanée, et intervient au moment de la fusion du bismuth (T = 544 K).

L'oxyde de bismuth obtenu est un mélange des deux phases α monoclinique et β quadratique (figure III.6b.).

Le taux initial en oxyde de bismuth dans le mélange est 5533 moles par m^3 de poudre.

Nous supposerons que la réaction de formation du bismuth est la suivante :

$$5Bi_2O_3 + 3Sb_2O_3 = 4Bi + 6BiSbO_4$$
⁽²⁾

Si tout l'oxyde de bismuth initial est transformé selon cette réaction, nous aurons un gain de masse théorique par la réaction (1) de 1,57 % de la masse initiale. La mesure du gain de masse sur la courbe de thermogravimétrie nous donne 1,31 % de la masse initiale, soit un écart d'environ 0,25 %.

Ceci nous permet d'écrire que 16 % de l'oxyde de bismuth initial n'a pas réagi, et compose probablement le composé pyrochlore BiSb₂O₇.

* La seconde étape est plus progressive. Elle débute vers 500°C, et se prolonge jusqu'à 700°C. Elle correspond à la disparition de l'antimonite (Co,Mn,Ni)Sb₂O₄ par la réaction :

$$(Co, Mn, Ni)Sb_2O_4 + O_2 = (Co, Mn, Ni)Sb_2O_6$$
 (3)

L'antimoine passe du degré d'oxydation III au degré V, par la formation de l'antimoniate (figure III.6c.). L'absence de données thermodynamiques sur ce type de composé nous empêche de prévoir la température de début de réaction. La notation utilisée est générale, car le cobalt, le manganèse et le nickel sont les seuls éléments de notre système susceptibles d'apparaître au degré d'oxydation II. Les antimoniates de nickel et de cobalt cristallisent dans le système quadratique. L'antimoniate de manganèse est hexagonal, du fait de son rayon ionique supérieur.

Composé	a (nm)	c (nm)	Rayon du cation divalent (nm)
NiSb ₂ O ₆	0,46415	0,9223	0,083
CoSb ₂ O ₆	0,46539	0,9283	0,0885
MnSb ₂ O ₆	0,8805	0,4723	0,097
(Co, Ni, Mn)Sb ₂ O ₆	0,4651	0,9276	

Tableau III.6. : structure des antimoniates divalents.

Notre composé contient probablement très peu de manganèse. Il semble très proche de l'antimoniate de cobalt.

La réaction (3) s'accompagne d'un gain de masse voisin de 2 % de la masse initiale.

Entre 300 et 700°C, les oxydes de bismuth se sont transformés en un oxyde mixte de type γ -Bi₂O₃, de structure cubique centrée avec a = 1,0218 nm. Cela restera une hypothèse dans la mesure où l'intensité des raies observées ne permet pas une indexation précise. Les résultats avec ce composé sont cependant satisfaisants (figure III.6c.).

Pour résumer l'effet de l'oxygène sur une chamotte obtenue sous azote, nous avons deux réactions qui, semble-t-il, sont distinctes. La première concerne la transformation du bismuth du degré 0 au degré III. La seconde transforme l'antimoine du degré III au degré V. Cette dernière réaction provoque également une modification du paramètre cristallin de la phase pyrochlore.

Température de recuit	a (nm)
/	1,0437
300°C	1,0430
700°C	1,0393

Tableau III.7. : évolution du paramètre de maille du pyrochlore.

L'évolution du produit peut être suivie par microscopie optique. Cette technique, à l'inverse de la microscopie électronique, nous permet de constater la structure complexe de cette poudre constituée de grains de couleurs très diversifiées. La taille des grains est, dans tous les échantillons, inférieure à 30 μ m. La mesure de la granulométrie par diffraction laser et diffusion lumineuse le confirme (figure III.7.) ; les trois échantillons (non recuit, recuit à 300°C, recuit à 700°C) présentent une répartition granulométrique bimodale à 0,4 μ m et 11 μ m. L'échantillon recuit à 700°C, renferme des agglomérats d'une taille moyenne de 80 μ m. L'échantillon non recuit et celui recuit à 300°C, se caractérisent par une classe située à 5 μ m (traduite par un épaulement). Celle-ci a disparu lors du recuit à 700°C.

L'échantillon non recuit (photo III.1.) est constitué de grains sphériques brillants, de diamètre sensiblement égal à 20 μ m. Il s'agit du bismuth. Sa transformation en oxyde de bismuth, lors du recuit à 300°C, se traduit par une augmentation en volume de la classe 0,4 μ m et d'une diminution de la classe 11 μ m.

L'échantillon non recuit et celui recuit à 300°C, contiennent des grains verts de taille moyenne 10 μ m (photos III.1., III.2.). Leur disparition lors du recuit à 700°C (photo III.3.), nous laisse supposer que ces grains forment la phase antimonite divalent. Lors de ce même recuit, nous assistons à un grossissement global de leur taille.

Photo. III.1. : mélange calciné à 700°C sous azote

Photo.III.2. : mélange calciné à 700°C sous azote-recuit sous air 300°C

Photo.III.3. : mélange calciné à 700°C sous azote-recuit sous air 700°C

III.4. Le mélange calciné en présence d'oxygène

III.4.1. Identification des phases présentes

Nous allons maintenant identifier les phases cristallines créées lors d'un chamottage en présence d'oxygène. La pression partielle choisie est 2.10⁴ Pa. Nous étudierons l'influence de la température, suivant la procédure utilisée précédemment. De nombreux composés sont rencontrés à mesure que la température de palier augmente (figure III.8.).

- * La première transformation est l'oxydation de Sb₂O₃, pour donner Sb₂O₄, et ce, entre 400 et 450°C, température à laquelle la réaction est complète. Nous pouvons caractériser l'oxyde de bismuth α, et Sb₂O₄. Les autres composés ne sont pas détectables, ce qui rend l'identification d'autant plus délicate.
- * A partir de 550°C, apparaît un composé semblable à C₁, cubique à faces centrées, qui se distingue de C₁ par l'absence de la raie d = 0,9435 nm, les autres raies demeurent inchangées. La maille peut donc être réduite à une valeur d'environ 0,5447 nm. L'absence de la raie 110 située à 0,385 nm (figure III.9.) interdit l' isotypie avec δ -Bi₂O₃, cubique simple. Nous appelerons ce composé C₂. Sur cette même figure, nous constatons la présence de Co₃O₄ (d₃₁₁ = 0,2438) et de NiO (d₂₀₀ = 0,2088) du fait de la disparition de α -Bi₂O₃ dont les raies masquaient les précédentes.
- * A 600°C, nous détectons 6 composés dans le mélange : Sb₂O₄, C₂, NiO, Co₃O₄, le pyrochlore, et un dernier composé, déterminé grâce à une raie intense aux alentours de 0,323 nm.

Le ternaire Bi₂O₃/Sb₂O₃/Cr₂O₃ calciné à 700°C confirme l'existence de ce produit. Toutefois, il n'est pas détecté lors de la calcination du ternaire Bi₂O₃/Sb₂O₃/MnCO₃ à la même température. De plus, la présence de deux raies (d=0,774 nm et d=0,3789 nm) interdit toute structure cubique type δ -Bi₂O₃ ou γ -Bi₂O₃. Il s'agit en fait d'un composé de structure quadratique, Bi₁₆CrO₂₇, de paramètres cristallins a = 0,8677 nm et c = 1,721 nm. Par ailleurs, une étude sommaire du binaire Bi₂O₃/Cr₂O₃ a montré que les températures d'apparition sont compatibles.

Le composé de structure pyrochlore est isotypique de celui préparé sous azote, BiSb₂O₇. Nous retrouvons la raie caractéristique des pyrochlores ($d_{111} = 0,599$ nm) (figure III.10.), ainsi qu'une raie de faible intensité ($d_{311} = 0,3135$ nm) non détectée sous azote.

 * A partir de 750°C, apparaît l'antimoniate, correspondant à la disparition de Co₃O₄, L'oxyde de nickel est toujours présent (d₂₀₀ = 0,2088 nm). Les paramètres de maille ont pour valeur a = 0,4643 nm et c = 0,9272 nm, soit des valeurs très proches de celle de CoSb₂O₆ (a = 0,46539 et c = 0,9283). Nous maintiendrons toutefois la formulation (Co,Mn,Ni)Sb₂O₆.

De la même façon que lors de l'étude sous azote, nous pouvons reporter sur un diagramme les aires relatives des raies principales des différentes phases rencontrées à l'exception des mesures pour l'oxyde de cobalt et l'oxyde de nickel. En effet, les intensités sont très faibles et difficilement mesurables (figure III.11.).

hkl	d _{hkl} (nm)	I (%)
111	0,3152	100
200	0,2735	40
220	0,1934	15
311	0,1650	15
222	0,1580	8

Tableau III.8. : raies de diffraction de C_2 à 600°C.

hkl	d _{hkl} (nm)	I (%)	
111	0,5995	2	
311	0,3139	1	
222	0,3001	100	
400	0,2599	31	
331	0,2387	3	
440	0,1839	30	
622	0,1566	15	
444	0,1502	5	
800	0,1300	3	
662	0,1193	4	
840	0,1163	4	

Tableau III.9. : raies de diffraction de BiSb₂O₇ sous air à 900°C.

Figure III.11. : évolution des phases avec la température : mesure de l'intensité relative du pic 100 % d'intensité pour chaque phase.

85

La présence d'oxygène dans l'atmosphère gazeuse au cours de la calcination, évite la formation d'une phase liquide (bismuth, voire oxyde d'antimoine) qui peut provoquer des hétérogénéités de concentration en bismuth en profondeur dans la poudre.

L'oxydation de Sb₂O₃ empêche toute sublimation importante. En effet, nous avons constaté que Sb₂O₄ apparaît à 450°C. A cette température, la tension de vapeur de Sb₂O₃ est faible (inférieure à 1 Pa).

III.4.2. Les propriétés électriques des varistances issues de chamottes préparées en présence d'oxygène

Nous avons mesuré des propriétés électriques (gradient de tension V₀, coefficient α) de varistances préparées à partir de chamottes élaborées sous 2.10⁴ Pa d'oxygène pour différentes températures. Là encore, nous nous sommes affranchis de l'effet de la taille des grains constituant la chamotte, en adaptant le temps de broyage. La granulométrie est d'environ 6,5 µm. Les résultats sont transcrits dans le tableau III.10. :

Température de chamottage	Durée de broyage (h)	Granulométrie (d ₉₀) (µm)	V ₀ (V/mm)	α _{moy}
650	23 h 20	6,56	147,5	15,3
700	21 h 30	6,84	151,1	15,0
750	19 h 20	6,68	138,0	15,2
800	20	7,33	/	/

Tableau III.10. : caractéristiques électriques de chamottes préparéessous air.

Il est intéressant de constater que la durée de broyage, nécessaire à l'obtention de la granulométrie choisie, est minimale à 750°C, pour augmenter à température supérieure. De même, les mesures des caractéristiques, présentent des extremums pour 700°C : le gradient de tension est maximal, tandis que le coefficient de non linéarité est minimal.

L'interprétation de l'effet de la température est probablement très complexe. L'aptitude au broyage augmente avec la température jusqu'à 700°C, ce qui est inattendu. Aussi, nous nous contenterons de comparer l'effet de l'atmosphère gazeuse sur les propriétés à 700°C, température de chamottage en production, et en gardant en mémoire les propriétés des différents prélèvements.
	Produits	Durée de broyage (h)	Gradient de tension (V/mm)	Coefficient α
(1)	Chamotte de production	18 h	175,9	16,5
(2)	Surface	15 h 15	185,5	16,7
(3)	Volume	16 h	160,0	15,8
(4)	Fond	24 h	166,7	16,1
(5)	700°C air	21 h 30	151,1	15,0
(6)	700°C N ₂	22 h	120,9	15,2

Tableau III.11. : synthèse des propriétés des chamottes étudiées

Il y a une grande différence entre les propriétés des prélèvements sur le site de production et celles des chamottes préparées dans des fours de laboratoire. Ceux-ci ont un volume très réduit, alors que la quantité de produit à préparer est importante.

Il semble que le chamottage en présence d'oxygène génère de meilleures propriétés électriques notamment du gradient de tension. Ceci confirme les excellentes propriétés de la couche de surface (2), cette couche est en contact permanent avec l'oxygène de l'air, lors du traitement thermique, ce qui n'est probablement pas le cas des couches sous-jacentes (3) et (4). Les propriétés obtenues en production (1) sont une moyenne des propriétés des trois produits pré-cités.

III.4.3. Etude thermogravimétrique. Influence des conditions opératoires

Nous allons nous intéresser à quelques aspects de l'analyse thermogravimétrique de notre mélange en présence d'oxygène. Nous verrons plus particulièrement l'influence des conditions opératoires (pression partielle d'oxygène, masse de l'échantillon, vitesse de montée en température) sur son comportement.

III.4.3.1. A.T.G. du mélange

L'analyse thermogravimétrique du mélange dans des conditions "idéales" (2.10⁴ Pa d'oxygène en balayage ; faible masse de produit, vitesse de montée en température faible) présente trois étapes (figure III.12.) :

- un gain de masse rapide, dont le maximum de la dérivée se situe à 480°C. Le maximum de gain est de 1,58 % de la masse initiale.

- une perte de masse consécutive, dont le maximum de la dérivée se situe à 580°C. Le gain final de masse est 1,1 % à 700°C.
- un effet ne s'accompagnant pas d'une variation de masse, mais d'un pic exothermique sur la courbe du flux de chaleur, dont le maximum se trouve à 628°C.

La variation de masse totale peut s'expliquer par la combinaison de plusieurs phénomènes.

- oxydation de l'oxyde d'antimoine :

$$Sb_2O_3 + \frac{1}{2}O_2 = Sb_2O_4$$

gain de masse 5,49 % (2,08 % dans le mélange).

- décomposition du carbonate de manganèse :

$$MnCO_3 + \frac{1}{4}O_2 = \frac{1}{2}Mn_2O_3 + CO_2$$

perte de masse 31,32 % (1,70 % dans le mélange).

Figure III.12. : analyse thermogravimétrique du mélange (v=100°C/h; $P_{O_2}=2.10^4$ Pa; m=30 mg).

La prise en compte des teneurs des différents composés dans le mélange nous donne un gain de masse global de 0,38 %, ce qui est insuffisant, mais logique. En effet, nous avons vu que Sb₂O₄ et BiSb₂O₇ coexistent dans le mélange, ce qui veut dire que le rapport Sb⁵⁺/Sb_{tot} est supérieur à 0,5 (valeur obtenue pour Sb₂O₄ pur). Il y a donc d'autres réactions impliquant Sb₂O₃, et ayant pour produit un oxyde d'antimoine au degré V. Nous pouvons imaginer par exemple la réaction globale suivante :

$$\frac{1}{2}\operatorname{Bi}_{2}O_{3} + \operatorname{Sb}_{2}O_{3} + \frac{5}{4}O_{2} = \operatorname{Bi}\operatorname{Sb}_{2}O_{7}$$

Le gain de masse provoqué par cette réaction est trop important (5,23 % en supposant la consommation de tout l'oxyde d'antimoine). Aussi, le gain de masse total sera issu de la compétition entre ces différentes réactions chimiques.

III.4.3.2. Influence des conditions opératoires

Nous avons constaté au chapitre précédent que la pression partielle d'oxygène exerce une nette influence sur l'oxydation de l'oxyde d'antimoine lors de la montée en température (figure II.7.).

Figure III.13. : influence de la pression partielle d'oxygène sur le comportement en A.T.G. du mélange (v = $5^{\circ}C/mn$; m = 105 mg).

Le phénomène a lieu également dans le mélange (figure III.13.). La diminution de la pression partielle d'oxygène retarde beaucoup l'oxydation. En effet, pour un gain de masse de 0,3 % par exemple, les températures correspondantes seront respectivement de 497, 605 et 791°C pour les 3 pressions partielles d'oxygène utilisées. Ce retard dévoile d'autres effets traduits par des pertes de masse, à 503 et 600°C, associées à des dégagements de dioxyde de carbone (identifié par couplage T.G.-I.R.T.F.). Si la première température est compatible avec les résultats concernant le carbonate de manganèse, la seconde, en référence à cette même étude, est trop importante, et demeure inexpliquée.

La masse de produit utilisé est représentative, à volume de poudre constant, de la porosité intergranulaire du lit de poudre. Cette grandeur est représentative du degré de tassement (compacité) de la poudre dans le contenant. Celui-ci est un cylindre de 4 mm de diamètre et 9 mm de hauteur. L'augmentation de la masse, correspondant à une diminution de la porosité, provoque également un retard de l'oxydation (figure III.14.) et révèle, là encore, 2 pertes de masse à 510 et 605°C, températures similaires à l'étude précédente.

Figure III.14. : influence de la masse de produit sur le comportement en T.G. du mélange (v = 10° C/mn ; P_{O2} = 2.10^{4} Pa).

La vitesse de montée en température est un paramètre important du procédé. Sa variation provoque également une grande différence de comportement du mélange en thermogravimétrie (figure III.15.). Nous notons peu de différence entre 100°C/h (ou 1,67°C/mn, figure III.12.) et 5°C/mn. Pour des valeurs supérieures à cette vitesse, l'oxydation est retardée.

Figure III.15. : influence de la vitesse de montée en température sur le comportement en T.G. du mélange (m = 105 mg ; $P_{O_2} = 2.10^4$ Pa).

Dès lors, nous mettons en évidence, là encore, des effets accompagnés de pertes de masse aux mêmes températures que précédemment (environ 510 et 600°C).

La diminution de la pression partielle, la diminution de la porosité et l'augmentation de la vitesse de montée en température provoquent une oxydation plus lente du produit. Nous avons montré précédemment que le chamottage sous air donnait de meilleures propriétés électriques. Ces paramètres influeront donc indubitablement sur la qualité des varistances. Mais il y a aussi d'autres paramètres. C'est l'objet du dernier chapitre d'en faire l'inventaire, à travers une modélisation des phénomènes régissant le chamottage.

III.5. Conclusion

Nous venons de montrer, à travers cette étude, que l'atmosphère gazeuse exerce une grande influence sur la nature des composés préparés lors du chamottage. Nous avons également mis en évidence qu'une atmosphère gazeuse dépourvue d'oxygène pouvait engendrer des variations de composition chimique, avec des retombées néfastes sur les propriétés électriques des varistances. Ces observations vont nous permettre, dans le dernier chapitre, d'examiner les mécanismes de formation des différentes couches formées dans le creuset, au cours de l'opération.

CHAPITRE IV

.

Chapitre IV :

Le chamottage en production. Modélisation et paramètres

L'objet de ce chapitre est d'établir le cahier des charges de l'opération de chamottage. Dans un premier paragraphe, nous allons mettre en exergue les points sensibles du processus ; nous étudierons ensuite les mécanismes de formation des différentes couches, à travers un modèle de diffusion-réaction de l'oxygène gazeux. Nous dégagerons ensuite les paramètres influant sur l'épaisseur des couches formées.

IV.1. Problèmes rencontrés en production lors du chamottage

IV.1.1. Disparité de la température dans le four

Une étude précise du chamottage ne peut être envisagée sans connaître les écarts éventuels de température dans le four. Ce four a un volume d'environ 1 m³. Nous avons relevé les températures au cours de la montée en température et du palier, en plusieurs points : la sole, les parois latérales et le centre de la paroi arrière. Pour être plus complet, nous avons relevé les températures dans 4 creusets, repérés A2X, A4Z, B5T, B3Y (figure IV.1.).

Figure IV.1. : disposition des creusets dans le four de chamottage.

Les résultats témoignent d'une grande disparité des températures relevées. En effet, pour une consigne de 700°C, la température des creusets varie entre 632 et 660°C (figure IV.2.).

Figure IV.2a. : température dans les creusets de calcination.

Figure IV.2b. : température des éléments du four.

Nous avons mis en évidence dans le chapitre précédent que les propriétés électriques sont maximales, sous air à 700°C. Une optimisation des paramètres de régulation s'impose afin de travailler à 700°C dans les creusets.

IV.1.2. Le prélèvement et leurs propriétés

Afin de caractériser les produits issus du chamottage en production, nous avons effectué une série de prélèvements en creusets, en différents points du four. Rappelons que la poudre est conditionnée habituellement en une cinquantaine de creusets empilés les uns sur les autres et disposés en 2 rangées (figure IV.1.). Nous distinguons 4 couches de produit dans le creuset (figure IV.3.). Les 2 premières couches, pour la caractérisation électrique, forme la couche dite "de surface" : en raison de la faible épaisseur de la première et de la difficulté de les séparer sans les mélanger, nous avons décidé de les regrouper. Les épaisseurs données sont approximatives ; elles varient avec la position dans le four, ainsi que d'un chamottage à l'autre. L'épaisseur de la couche de surface peut varier entre 1 et 15 mm.

Figure IV.3. : constitution en couche de la chamotte.

IV.1.2.1. Caractérisation par diffraction de rayons X

L'analyse porte sur des prélèvements dans quatre creusets situés en A2X, A4Z, B5T et B3Y, pour lesquels les températures relevées sont respectivement 633, 660, 645 et 632°C. Les diffractogrammes de poudres attestent que les couches sont composées de phases différentes. Nous reconnaissons ces phases pour les avoir étudiées dans le chapitre précédent. Pour la couche 2, par exemple pour A2X (figure IV.4.), nous identifions le pyrochlore avec les raies 222 (d = 0,300 nm) et 400 (d = 0,260 nm). Nous reconnaissons aussi l'oxyde BiSbO4. Plus en profondeur, nous retrouvons l'antimoniate divalent (Co,Ni,Mn)Sb₂O₆.

La couche 1 est, pour tous les creusets, significative d'une calcination sous air. Nous retrouvons toutes les phases précitées (pyrochlore, C₂, Bi₁₆CrO₂₇, Sb₂O₄) et les températures maximales des creusets sont compatibles avec l'étude précédente, qui spécifiait que ces quatre composés coexistent à 650°C (figure V.5.). Seule la présence de BiSbO₄, va à l'encontre de cette même étude. Peut être est-ce dû au mélange des couches 1 et 2 (séparation délicate). Nous étudierons l'origine de ce phénomène dans un prochain paragraphe.

Figure IV.5. : diagramme de diffraction des rayons X de la couche de surface pour 4 creusets.

IV.1.2.2. Les propriétés électriques des prélèvements

Comme la finalité de l'étude est l'optimisation des propriétés électriques des varistances (maximisation du gradient de tension), nous nous sommes intéressés aux propriétés des différents prélèvements. Nous avons utilisé deux protocoles différents pour la fabrication des varistances, qui tiennent compte de la granulométrie de la chamotte broyée :

* Le temps de broyage est modulé afin de maintenir la granulométrie de la chamotte constante. Le tableau IV.1. rassemble les résultats décrits au chapitre précédent.

Prélèvement	Durée de broyage (h)	Gradient de tension (V/mm)	Granulométrie (d90) (µm)
Surface (1 + 2)	15 h 15	185,5	6,61
Volume	16 h	160,0	6,85
Fond	24 h	166,6	6,28
Production	18 h	175,9	6,89

Tableau IV.1. : propriétés électriques obtenues à partir desprélèvements en creusets à granulométrie constante.

A granulométrie constante, les propriétés électriques mesurées en production forment une moyenne des propriétés électriques des différents prélèvements.

* La durée de broyage est maintenue à 24 h, excepté pour la couche de fond. En effet, sa granulométrie à 24 h de broyage est trop importante et ne peut garantir un bon compactage du granulé. Pour les autres produits, la granulométrie sera différente et fonction de leur broyabilité. Les propriétés électriques ainsi que les granulométries sont exprimées dans le tableau IV.2. :

Prélèvement	Gradient de tension (V/mm)	Granulométrie (d90) (µm)	Durée de broyage (h)
Surface	265,5	4,59	24 h
Volume	245,5 (-7,5 %)	5,17	24 h
Fond	249 (-6,2 %)	6,05	32 h
Production	230,3 (-13,3 %)	6,33	24 h

Tableau IV.2. : propriétés électriques obtenues à partir des
prélèvements à durée de broyage constante (excepté la
couche de fond)

Les écarts entre ces deux séries de résultats sont importants. Pour la deuxième série, nous avons appliqué le procédé industriel après prélèvement. Le but initial de la première série était de comparer les résultats obtenus avec ceux des chamottes préparées en laboratoire. Les quantités de chamotte sont alors trop faibles pour préparer les varistances à partir du procédé industriel. Les céramiques finales ont une épaisseur réduite. Nous avons dû modifier certains paramètres au niveau de la préparation, à savoir :

- Dépôt d'argenture pour les électrodes au lieu du shoopage
- Dépôt de tous les revêtements (CHR, verre, enrobage) de façon manuelle.

D'où les variations conséquentes des propriétés électriques.

De plus, nous avons éprouvé de grandes difficultés à fabriquer un bon comprimé, avec les répercussions que cela peut induire sur la densification.

- * A durée de broyage (pratiquement) constante, les propriétés mesurées en production sont les plus mauvaises.
- * Nous avons confirmation que le produit de surface possède les meilleures propriétés électriques et la meilleure broyabilité. Le produit de fond a des propriétés intéressantes mais demande une durée de broyage trop importante pour sa mise en oeuvre. Le produit de volume possède une bonne broyabilité, mais ses propriétés électriques sont médiocres, alors qu'il constitue incontestablement le produit le plus abondant.

A la vue de tous ces résultats, plusieurs développements sont envisageables pour améliorer la qualité des varistances :

- Compte tenu des propriétés électriques dues à la couche de surface (V₀ = 265 V/mm \Rightarrow V_{réf} = 5620 V efficace), pour la durée de broyage habituelle de 24 h, nous pouvons envisager une réduction de cette durée (opération coûteuse), et nous rapprocher d'une tension de référence voisine de celle imposée par le cahier des charges (V_{réf} mini : 4000 V efficace). C'est la recherche de la satisfaction minimale, avec abaissement du prix de revient. Il faudrait pour cela, compléter l'étude par l'influence de la durée de broyage (ou de la granulométrie) sur les propriétés électriques des varistances.
- La deuxième approche consisterait à maximiser le gradient de tension, par l'augmentation de la durée de broyage par exemple ; ceci nous permettrait d'envisager de nouvelles solutions telles que :
 - * La diminution de l'épaisseur de la varistance afin d'atteindre une tension de référence plus proche de 4 kV ; ceci permettrait une économie substantielle de matière, sous réserve que le nouveau volume puisse permettre l'absorption de forts courants. L'économie pourrait également se répercuter par la diminution de l'encombrement du parafoudre, aspect appréciable pour l'utilisateur.

* Un gradient de tension maximum peut également permettre le développement de varistances avec une tension de seuil supérieure, conformément aux normes en vigueur dans d'autres pays, sans avoir recours à une augmentation importante de la taille des varistances.

Dans tous les cas, il convient de faire une étude quantitative de l'influence de la durée de broyage (ou de la granulométrie) sur le gradient de tension, et de déterminer jusqu'à quelle granulométrie nous pouvons broyer sans modifier la qualité du comprimé.

Toutes ces considérations n'ont, bien entendu, de valeur que s'il nous est possible de favoriser la formation de la couche de surface.

IV.2. La formation des couches

Nous allons nous attacher désormais à l'étude de mécanismes qui régissent la formation des couches de produit dans les creusets. Pour cela, nous allons reproduire le chamottage, en laboratoire ; puis, par l'établissement d'un modèle de diffusion-réaction, couplé avec nos résultats du chapitre III, nous établirons la liste des paramètres influençant les épaisseurs des couches. Notre but étant de favoriser la formation du produit de surface, nous verrons qu'un tel objectif peut être atteint par des changements simples dans le procédé.

IV.2.1. Les changements de phase du produit chamotté au cours du cycle

Nous allons ici suivre l'évolution du mélange au cours du cycle thermique. Pour cela, nous allons utiliser des creusets cylindriques, en silice transparente, de dimensions utiles 50 mm de hauteur sur 8 mm de diamètre. Nous travaillerons à porosité constante de 0,615. Ceci représente une poudre non tassée mécaniquement. Les creusets sont prélevés à différentes températures du cycle. Ils sont représentés en figure IV.6. Nous mettons bien en évidence de cette façon, l'évolution de l'épaisseur des couches. Les couleurs présentées sont très proches des couleurs réelles.

L'analyse par diffraction des rayons X des différentes strates est menée en faisant un spectre par mm d'épaisseur dans les éprouvettes. Un exemple est présenté, pour l'éprouvette trempée à 700°C, sur une plage d'angle réduite (figure IV.7.). Nous observons une très nette évolution de la structure cristalline de la poudre, en fonction de la profondeur.

profondeur de prélèvement (éprouvette trempée à 700°C, t = 3600 s).

Adoptons une représentation en plan de la structure des couches, en reportant sur un diagramme, la surface relative du pic 100 % d'intensité diffractée, en fonction de la profondeur, pour chacune des phases. Cette surface est, dans certains cas, difficile à mesurer (superposition de raies, très faible intensité diffractée, etc...) ce qui induit parfois des profils "chaotiques". Ils sont présentés à la figure IV.8. Quelques précisions s'imposent :

- * Nous avons regroupé sous la formule BiSb₂O₇, les trois types de pyrochlores. Il n'est pas possible de faire la différence entre chacun d'eux, sur ce type de mesure.
- * Cette méthode permet une approche macroscopique du comportement. On ne peut pas prétendre analyser toutes les phases présentes avec une technique telle que la diffraction de rayons X. Il faut remarquer cependant qu'il s'agit de la technique qui a permis le plus de développements sur ce problème. Toutes les autres ont prouvé rapidement leur limite. A titre d'illustration, les photos IV.1. et IV.2. montrent la poudre prélevée en surface et à 17 mm de profondeur, pour l'éprouvette trempée à 700°C à la fin du palier (t=7200s). Nos poudres sont formées de grains de taille inférieure à 20 µm, mais de couleurs diverses et nombreuses. Ceci exclut les techniques de microscopie électronique ou de microsonde, pour la caractérisation chimique des phases. La microscopie optique révèle beaucoup plus de phases que celles détectées en diffraction de rayons X.

Figure IV.6. : évolution de la poudre au cours du cycle thermique.

Figure IV.8d. : éprouvette trempée à 600°C.

103

,

Figure IV.8e. : éprouvette trempée à 650°C.

Figure IV.8f. : éprouvette trempée à 700° C, t = 0.

Figure IV.8h. : éprouvette trempée à 700°C, t=7200 s.

. . A la surface des éprouvettes, les phases présentes, correspondent à celles décrites lors de l'étude du mélange calciné sous air avec les apparitions successives de Sb_2O_4 , C_2 à partir de 550°C, BiSb₂O₇ et Bi₁₆CrO₂₇ à partir de 650°C. L'oxyde de bismuth est consommé entièrement à 650°C, au profit des 2 dernières phases citées.

Au fond des éprouvettes, la présence de bismuth dès 525° C montre que la calcination s'effectue en abscence d'oxygène. L'oxyde d'antimoine Sb₂O₃ est présent jusqu'à 575° C. Nous remarquons les apparitions de BiSbO₄ dès 525° C (il est consommé à 700°C, t = 0), C₁ à 525° C (consommé à 575° C), BiSb₂O₇ à 550° C et qui formera le composé principal, l'antimonite (Co,Mn,Ni)Sb₂O₄ à 575° C.

Il est manifeste que nous avons, au sein du même milieu granulaire, un comportement différent en surface et au fond de l'éprouvette, fonction de la pression partielle d'oxygène, égale à la pression extérieure en surface, et nulle au fond. Nous assistons à l'instauration d'un gradient de concentration en oxygène gazeux, ce qui va provoquer sa diffusion dans la poudre. C'est l'origine de la formation de ces différentes couches.

Nous appelerons couche de type 1, celle caractérisée par la présence de l'oxyde d'antimoine Sb_2O_4 . La couche de type 2 est celle caractérisée par la présence de bismuth. Dans cette dernière, nous avons également l'oxyde mixte BiSbO₄.

Sa formation consomme l'oxyde d'antimoine Sb_2O_3 , dont la concentration dans le milieu va diminuer. L'oxygène gazeux oxyde le bismuth ainsi que l'oxyde d'antimoine Sb_2O_3 en excès. Pour ces raisons, nous pouvons écrire, à 5 mm de profondeur par exemple :

$$* T < 500^{\circ}C$$
:

$$5Bi_2O_3 + 3Sb_2O_3 = 4Bi + 6BiSbO_4$$
 (1)

$$Bi + \frac{3}{4}O_2 = \frac{1}{2}Bi_2O_3$$
 (2)

$$Sb_2O_3 + \frac{1}{2}O_2 = Sb_2O_4$$
 (3)

et expliquer la présence simultanée de Sb_2O_4 et BiSbO₄ dans la couche de type 1. Cette couche peut se développer tant qu'il reste du Sb₂O₃ dans le milieu.

A partir de 550°C, apparaît $BiSb_2O_7$ pour une profondeur supérieure à 14 mm, au détriment, semble-t-il de Sb_2O_3 , avec une augmentation de la teneur en bismuth. Comme BiSbO₄ n'est pas consommé, nous assistons à une réaction du type oxydo-réduction que nous pouvons écrire :

$$4\text{Bi}_{2}\text{O}_{3} + 3\text{Sb}_{2}\text{O}_{3} = 5\text{Bi} + 3\text{Bi}\text{Sb}_{2}\text{O}_{7}$$
(4)
Celle-ci nécessite plus d'oxyde d'antimoine que la réaction (1).

A partir de 575°C, l'apparition de l'antimonite (Co,Mn,Ni)Sb₂O₄ apporte une troisième source de consommation de Sb₂O₃. Celui-ci est consommé intégralement à 600°C, et la croissance de la couche 1 se trouve dès lors stoppée. Son épaisseur est d'environ 16 mm.

L'apparition de BiSb₂O₇ a provoqué la croissance d'une couche intermédiaire entre les couches de type 1 et 2. Sa couleur va évoluer du blanc au jaune. Elle contient tous les composés précités, en particulier BiSbO₄ bien cristallisé. A partir de 700°C, elle se transforme en une couche ocre, avec un liseret jaune à sa limite inférieure. C'est ce qui nous permet de la différencier. Elle est composée alors de BiSb₂O₇ et BiSbO₄, qui lui, a disparu dans la couche de type 2. Nous l'appelerons, couche de type 4.

La couche de type 3 va se développer à partir de 700°C, t = 0, au détriment de la couche de type 2, par la réaction entre l'oxygène gazeux qui continue de diffuser dans le milieu, et ses constituants :

$$Bi + \frac{3}{4}O_2 = \frac{1}{2}Bi_2O_3$$
 (2)

$$(Co, Mn, Ni)Sb_2O_4 + O_2 = (Co, Mn, Ni)Sb_2O_6$$
 (5)

Ce phénomène est décrit dans le chapitre précédent. La transformation s'effectue en deux étapes parfaitement distinctes. Cependant, l'oxyde de bismuth est difficilement détecté.

L'observation d'une poudre de type 2 (700°C, t = 2 h, profondeur 38 mm, photo IV.4.) et d'une poudre de type 3 (700°C, t = 2 h, profondeur 27 mm, photo IV.3.) en microscopie optique confirme bien la consommation du bismuth (grains d'éclat métallique, photo IV.3.). Là encore, nous avons un grand nombre de composés, à grains relativement fins (inférieurs à 10 μ m).

IV.2.2. Nature des couches en production

Des analyses sont effectuées sur un grand nombre de prélèvements des différentes couches en production. Les diffractogrammes du mélange de tous les prélèvements sont présentés sur la figure IV.9.

La couche de surface présente toutes les caractéristiques du produit de type 1, depuis sa couleur, jusqu'à ces constituants. Nous y retrouvons en effet, BiSb₂O₇, Sb₂O₄ et BiSbO₄.

La couche de volume est un mélange des produits de types 3 et 4, puisque nous décelons la présence, outre de BiSb₂O₇, de BiSbO₄ (type 4) et de (Co, Mn, Ni)Sb₂O₆ (type 3). Les couleurs sont également similaires.

Photo IV.1. : prélèvement en surface de l'éprouvette trempée à 700°C, t = 2 h.

Photo IV.2. : prélèvement en profondeur (17 mm) de l'éprouvette trempée à 700°C, t = 2 h.

Photo IV.3. : prélèvement en profondeur (27 mm) de l'éprouvette trempée à 700°C, t = 2 h.

Photo IV.4. : prélèvement en profondeur (38 mm) de l'éprouvette trempée à 700°C, t = 2 h.

.

Figure IV.9. : constitution des prélèvements en creusets.

Seule, la couche de fond s'avère différente. Par ses constituants, elle serait de type 3. Cependant, sa couleur jaunâtre en production n'a pas d'équivalent dans notre étude. Sa très faible épaisseur se retrouve dans tous les creusets (environ 2mm) et se reproduit d'un chamottage à l'autre. Pour ces raisons, nous pensons qu'elle est provoquée par une attaque du creuset par les constituants du mélange, en particulier les composés à base de bismuth.

IV.3. Diffusion-réaction de l'oxygène gazeux dans le lit de poudre

L'objet de ce paragraphe est l'étude de la diffusion de l'oxygène gazeux dans le lit de poudre, avec consommation à l'interface mobile, limite des couches. Nos manipulations ont montré en effet que la consommation de l'oxygène par les différentes réactions d'oxydation est très rapide, comparée à sa diffusion dans le milieu.

Dans cette étude, nous ferons l'hypothèse que le coefficient de diffusion de l'oxygène gazeux dans l'azote ne dépend que de la température, et est indépendant de la pression d'oxygène. La pression partielle d'oxygène extérieure étant de 2.10⁴ Pa, la pression partielle d'oxygène à l'intérieur du lit sera toujours inférieure à cette valeur, le gaz est donc bien dilué.

Nous négligerons aussi les effets thermiques des réactions chimiques, bien que, nous l'avons montré au chapitre II, l'oxydation de Sb_2O_3 soit fortement exothermique. Toutefois, la température mesurée au sein de la poudre, pendant le chamottage, est sensiblement constante.

IV.3.1. Expression du coefficient de diffusion de l'oxygène dans l'azote

Comme nous ne travaillons pas en isotherme, nous recherchons une expression du coefficient, facilement utilisable dans les calculs. Pour ce coefficient, nous employons l'expression de D issue de la théorie cinétique de Chapman Enskog [41] :

$$\boldsymbol{\mathfrak{D}}_{O_2/N_2} = 1,8583.10^{-3} \frac{\sqrt{T^3 \left(\frac{1}{M_{O_2}} + \frac{1}{M_{N_2}}\right)}}{P \cdot \sigma_{O_2N_2}^2 \Omega_{\mathfrak{D}_{O_2N_2}}} \quad (cm^2/s)$$

0

$$\hat{\mathbf{u}}: \mathbf{P} \qquad \text{pression en atmosphère} \\ \mathbf{T}: \qquad \text{température en K} \\ \mathbf{M}: \qquad \text{masses molaires en g/mole} \\ \mathbf{\sigma}_{O_2N_2}: \qquad \text{paramètre de Lehnard-Jones en Å}; \qquad \mathbf{\sigma}_{O_2N_2} = \frac{1}{2} \left(\mathbf{\sigma}_{O_2} + \mathbf{\sigma}_{N_2} \right) \\ \mathbf{\Omega}_{DO_2N_2}: \qquad \text{fonction adimensionnée de } (\epsilon/k)_{O_2N_2} \\ \text{avec } (\epsilon/k)_{O_2N_2}: \text{ paramètre de Lehnard-Jones en Kelvin; } \left(\epsilon/k \right)_{O_2N_2} = \sqrt{\frac{\epsilon_{O_2}}{k} \frac{\epsilon_1}{N}}$$

12

Les paramètres de Lehnard Jones ainsi que la fonction Ω sont tabulés [42], ce qui nous permet de tracer le coefficient en fonction de la température. La courbe obtenue peut s'interpoler entre 300 et 1000 K par une parabole. L'accord est très satisfaisant (figure IV.10.).

Figure IV.10. : variation du coefficient de diffusion de l'oxygène avec la température.

IV.3.2. Les lois d'avancement du front séparant les couches.

L'étude porte sur la diffusion de l'oxygène dans la poudre avec consommation à l'interface mobile. Nous considérons la diffusion unidirectionnelle selon l'axe vertical. La consommation en x = L se fait par p réactions écrites $A_k + n_k O_2 \rightarrow B_k$. Le coefficient stoechiométrique des A_k est égal à 1. Les réactions sont supposées très rapides, et la température uniforme.

L'objectif est la détermination d'une expression donnant la position du front en fonction du temps L(t). La première étape sera la détermination du profil de pression dans la couche (1).

* Dans le cas général, et en isotherme, ce profil sera obtenu par la résolution de :

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}$$
 avec pour conditions aux limites

a: La pression extérieure est fixée quel que soit le temps : $P(0, t) = P_0$.

b: A l'instant initial, tout l'oxygène gazeux est consommé, soit P (x, 0) = 0.

c : La consommation d'oxygène à l'interface (1)/(2) est instantanée, soit P (L, t) = 0. Le coefficient D s'écrit :

$$D = \mathbf{D}_{O_2 N_2} \frac{\varepsilon}{\tau}$$

où τ désigne la tortuosité du milieu et ε la porosité. La résolution de l'équation en isotherme nous donne (Annexe B) :

$$P(x, t) = P_0 \sum_{j=0}^{\infty} \left(\operatorname{erf} \frac{2(j+1)L - x}{2\sqrt{Dt}} - \operatorname{erf} \frac{2jL + x}{2\sqrt{Dt}} \right)$$
(1)

L'avancement du front s'obtient à partir d'un bilan local en x = L:

$$\binom{\text{nombre de mole arrivant}}{\text{en L pendant dt}} = \binom{\text{transformation d'un volume}}{\text{d'épaisseur dL de la couche (2)}}$$

soit :

$$-\frac{D}{RT}\frac{\partial P}{\partial x} \cdot S \cdot dt = (1 - \varepsilon) \cdot S \cdot dL \sum_{k=1}^{P} n_k C_{A_k}$$

finalement :

$$\frac{dL}{dt} = \frac{2P_0 \sqrt{D}}{RT(1-\varepsilon)\sqrt{\pi t} \sum_{k=1}^{P} n_k C_{A_k}} \sum_{j=0}^{\infty} \exp\left(-\frac{(2j+1)^2 L^2}{4Dt}\right)$$
(2)

Des mesures de L sont effectuées pour une chamotte préparée sous azote à 700°C, puis recuite sous air à 700°C. Les résultats sont présentés figure IV.11. Nous comparons les points expérimentaux, à la courbe intégrale de l'expression (2) obtenue par la méthode de Runge Kutta. Cette courbe est linéaire en fonction de la racine carrée du temps. L'égalité des pentes, nous montre que les valeurs numériques employées sont cohérentes.

* Hypothèse d'un régime de diffusion quasi-stationnaire :

Dans ces conditions, P (x) = P₀ (1 - (x/L)) dans la couche (1) et le bilan nous donne la loi :

$$L(t) = \sqrt{\frac{2P_0 Dt}{RT(1-\epsilon)\sum_{k=1}^{p} n_k C_{A_k}} + L_0^2} \quad (avec L(t=0) = L_0) \quad (3)$$

En programmation de température, et en conservant l'hypothèse de la stationnarité, nous obtenons :

$$\frac{dL}{dT} = \frac{\left(aT^2 + bT + c\right)P_0 \varepsilon}{L RT h\left(1 - \varepsilon\right)\tau^2 \sum_{k=1}^{P} n_k C_{A_k}}$$
(4)

où h désigne la vitesse de montée en température.

L'intégration n'est pas possible directement. Pour une seule réaction avec $L(T_0) = 0$:

$$L(T) = \sqrt{\frac{2P_0 \varepsilon}{R \cdot h \cdot \tau^2 (1 - \varepsilon) n C_A}} \left(\frac{a}{2} \left(T^2 - T_0^2\right) + b \left(T - T_0\right) + c Ln \frac{T}{T_0}\right)$$
(5)

IV.3.3. Application de ces lois à notre système

IV.3.3.1. En programmation de température

La progression du front réactionnel lors de la montée en température est liée à l'oxydation de Sb_2O_3 . La mesure des valeurs de L pour chaque température est reportée figure IV.12. L'application de la relation (5) à la réaction d'oxydation :

$$Sb_2O_3 + \frac{1}{2}O_2 = Sb_2O_4$$

s'opère aisément.

$\varepsilon = 0,615$	$a = 1,093.10^{-10} \text{ m}^2.\text{K}^{-2}.\text{s}^{-1}$
$P_0 = 2.10^4 Pa$	$b = 5,94.10^{-8} \text{ m}^2.\text{K}^{-1}.\text{s}^{-1}$
$R = 8,314 \text{ J.mole}^{-1}.\text{K}^{-1}$	$c = -6.81.10^{-6} \text{ m}^2.\text{s}^{-1}$
$h = 0.0278 \text{ K.s}^{-1}$	$C_{Sb_2O_3} = 2C_{Sb_4O_6} = 8844 \text{ mole/m}^3$
$\tau = \pi/2$	n = 0,5

Avec $T_0 = 766$ K, la courbe obtenue s'accorde bien avec les points expérimentaux (figure IV.12.), jusqu'à 575°C (848 K), pour s'en écarter à température supérieure. Cette valeur de T_0 est en accord avec la littérature et avec notre étude du chapitre II (figure II.7.).

IV.3.3.2. En palier de température

La progression du front réactionnel lors du palier correspond à la consommation d'un produit de type 2 selon 2 réactions chimiques :

$$Bi + \frac{3}{4}O_2 = \frac{1}{2}Bi_2O_3$$

$$(Co, Mn, Ni)Sb_2O_4 + O_2 = (Co, Mn, Ni)Sb_2O_6$$

L'analyse thermogravimétrique sous 2.10⁴ Pa d'oxygène effectuée sur un produit de type 2 est à comparer directement à celle d'une chamotte cuite sous azote (figure IV.13.), qui fait l'objet d'une étude au chapitre III. Nous notons toutefois une légère différence de gain de masse consécutif à la première réaction, mais c'est le même type de produit.

Nous ne connaissons pas le taux des réactants dans la chamotte, même si nous pouvons estimer celle du bismuth à partir du premier gain de masse. Si nous désignons par g le gain de masse total, soit :

$$g = \frac{\text{masse finale - masse initiale}}{\text{masse initiale}}$$

Nous pouvons écrire à nouveau le bilan local en x = L, en terme de variation de masse :

. masse initiale de l'élément de volume :

$$(1 - \varepsilon) \rho \cdot S \cdot dL$$

. masse de l'élément après transformation :

$$(1 + g) (1 - \varepsilon)\rho . S . dL$$

La variation de masse est provoquée par $\frac{DP_0}{LRT}$ dt nombre de mole d'oxygène, soit :

$$\frac{dL}{dt} = \frac{P_0 D M_{O_2}}{L RT (1 - \varepsilon)g\rho}$$
(6)

où M_{O_2} est la masse molaire de l'oxygène gazeux, ρ la masse volumique de la poudre.

Finalement, nous obtenons l'expression de L :

$$L(t) = \sqrt{\frac{2P_0 D M_{O_2} t}{RT (1 - \varepsilon)g\rho} + L_0^2}$$
(7)

L'analogie formelle entre les relations (7) et (3) nous donne :

$$\frac{3}{4} C_{Bi} + C_{(Co, Mn, Ni)Sb_2O_4} = \frac{g\rho}{M_{O_2}}$$

La courbe passant par les points mesurés (figure IV.12.) détermine la valeur de la grandeur précédente :

$$\frac{g\rho}{M_{O_2}} = 6767 \text{ mole/m}^3$$

En faisant l'hypothèse que la masse volumique n'a pas évolué (réaction à l'état solide, porosité inchangée), la valeur de g obtenue est 0,032, ce qui est en accord avec les courbes de thermogravimétrie.

Entre 575°C et 700°C, les points mesurés se sont écartés de la courbe tracée pour l'oxydation de Sb₂O₃. Nous avions constaté au préalable l'apparition dès 575°C de BiSb₂O₇, qui consommait tout l'oxyde d'antimoine, avec probablement production de bismuth. Cette partie demeure inexpliquée. Toutefois, une remarque importante pour la suite s'impose : la formation de la couche de surface est favorisée jusqu'à l'apparition de BiSb₂O₇. A partir de cet instant, la réaction est bloquée rapidement.

IV.3.4. Les paramètres régissant le système. Action pour l'amélioration des produits

Les lois d'avancement de front réactionnel que nous avons établies prennent en compte un certain nombre d'hypothèses :

- diffusion unidirectionnelle de l'oxygène,
- réactions de consommation très rapides,
- température uniforme,
- coefficient de diffusion indépendant de la pression partielle d'oxygène,

- quasi-stationnarité de la diffusion (les lois générales sont complexes mais toutefois applicables numériquement),
- porosité intragranulaire négligeable,
- particules sphériques (ce qui est vérifié par l'observation en microscopie optique).

Les 2 lois obtenues, en isotherme et en programmation de température mettent en exergue tous les paramètres importants du processus de chamottage.

- en isotherme :

$$L(t) = \sqrt{\frac{2P_0 Dt}{RT(1-\varepsilon)\sum_{k=1}^{P} n_k C_{A_k}} + L_0^2} \quad (avec D = \mathcal{D}_{O_2/N_2} \frac{\varepsilon}{\tau})$$
(3)

- en programmation de température avec pour seule réaction, l'oxydation de Sb₂O₃ :

$$L(T) = \sqrt{\frac{2P_0 \varepsilon}{R \cdot h \cdot \tau^2 (1 - \varepsilon) C_{Sb_4 O_6}}} \left(\frac{a}{2} \left(T^2 - T_0^2\right) + b \left(T - T_0\right) + c \ln \frac{T}{T_0}\right)$$
(8)

Les paramètres sont classés en deux catégories suivant que l'on peut, ou non, les modifier :

- a. <u>Les paramètres fixes</u>, le taux des réactants dans la chamotte, la température de début d'oxydation, le coefficient de diffusion de l'oxygène dans l'azote.
- b. <u>Les paramètres évolutifs</u>, la pression extérieure, la porosité du lit de poudre, la tortuosité, la vitesse h de montée en température.

Améliorer la qualité des produits revient à favoriser la formation de la couche de surface. Nous nous intéressons désormais aux actions à mener dans ce sens par l'action des différents paramètres sur l'épaisseur de cette couche.

Les paramètres fixes:

Aucune action n'est envisageable. Le taux en oxyde d'antimoine est fixée pour atteindre de bonnes propriétés électriques. La température influe sur le coefficient de diffusion. Sa variation est complexe à étudier. Toutefois, une variation importante de la température du
palier n'apporte pas de différence d'épaisseur de la couche de surface. Nous avons traité une éprouvette à 640°C de température de palier ; l'épaisseur de la couche reste de 17 mm.

La température de début de réaction (relation (8)) évolue avec la pression partielle d'oxygène (figure II.7.). Nous en discuterons lors de l'étude de ce dernier paramètre.

Les paramètres évolutifs :

* La pression partielle extérieure peut être modifiée. Nous pouvons envisager de chamotter dans un four sous oxygène. Les investissements seraient alors importants, pour un paramètre dont l'influence n'est pas très forte en première analyse (en racine carrée). Toutefois, une augmentation de la pression extérieure, diminuerait les différentes températures T_0 de début d'oxydation. Ainsi, sous oxygène, la réaction est initiée à 730 K environ (figure II.7.). Nous étudions entre 500 et 575°C, les 2 options :

1) $P_0 = 2.10^4 Pa$; $T_0 = 766 K$

2) $P_0 = 10^5 Pa$; $T_0 = 730 K$.

Progression de l'interface (mm) :

	Option 1)	Option 2)
500°C (773 K)	4,9	26,7
525°C (798 K)	10,5	33,8
550°C (823 K)	14,05	39,8
575°C (848 K)	16,9	45,1

Tableau IV.3. : comparaison des épaisseurs sous air et sous oxygène.

Nous augmentons ainsi, de près d'un facteur 3, l'épaisseur de la couche de surface. Nous confirmons la tendance observée en thermogravimétrie (figure III.12.) sur l'influence de la pression.

* La porosité est représentative du tassement de la poudre. Une diminution par tassement d'un facteur 2 par exemple diminuerait l'épaisseur obtenue d'un facteur 2 environ. Une augmentation peut paraître intéressante, bien que difficilement réalisable avec le procédé actuel, mais diminue d'autant le nombre des points de contacts entre grains indispensables aux réactions solide-solide. * La tortuosité est déjà optimale. Les grains de la poudre sont sphériques, la tortuosité vaux $\pi/2$. Travailler avec des plaquettes, par exemple, se révèlerait une solution catastrophique.

* La vitesse de montée en température est un paramètre indépendant du conditionnement de la poudre. Il est très facile de modifier un cycle thermique. Qualitativement, si la vitesse de montée en température est plus lente, l'épaisseur de la couche augmente. Dans le même but, nous pouvons imaginer l'effet d'un palier de température, à une température où seule l'oxydation de Sb₂O₃ se produit.

Nous avons donc ajouté un palier supplémentaire à 485°C au cycle. Le résultat est reporté sur la figure IV.14. Une couche de "surface" de 30 mm environ d'épaisseur a été créée. Les phases rencontrées sont les mêmes que lors de l'étude initiale.

Bien entendu, ce résultat ne se révèle intéressant que si les propriétés électriques des varistances préparées à partir de ce produit sont satisfaisantes.

L'application de la relation (3) à l'oxydation de Sb_2O_3 en palier de température à 485°C, implique une épaisseur de la couche en fin de palier égale à 44 mm.

L'intégration de la relation (4) avec L ($T_0 = 758$) = $L_0 = 0.044$ m, mène à L (T = 848 K) = 0.048 m, valeur supérieure au résultat expérimental (0.03 m). Nous retenons pour l'interprétation du phénomène 2 hypothèses :

- La décomposition du carbonate de manganèse intervient dans ce domaine de température. Le dégagement de dioxyde de carbone qui en résulte diminue le flux de diffusion d'oxygène dans la couche de surface et ralentit ainsi la progression du front réactionnel. Toutefois, il est surprenant que ce phénomène n'ait pas d'effet dans le cas du cycle thermique industriel.
- La sublimation de l'oxyde d'antimoine est suffisamment importante, pour que s'instaure un flux de diffusion dans la couche de produit de type 2, provoqué par une réaction en phase gazeuse en x = L ; cette réaction se superpose à l'oxydation du solide présent.

.

,

Figure IV.14. : effet d'une modification du cycle thermique du chamottage

IV.3.5. Contre-diffusion de l'oxyde d'antimoine gazeux

La configuration du système est la suivante : progression de l'interface mobile entre les 2 produits. L'origine de l'axe est prise au fond du creuset. Nous considérerons le système isotherme (tension de vapeur, constante de vitesse de sublimation, coefficients de diffusion constants), et la diffusion de Sb₄O₆ et de l'oxygène quasi-stationnaire dans leur zone respective. Le gaz est entièrement consommé à l'interface mobile, soit P_S (L) = 0.

Expression du flux d'oxyde d'antimoine en x = L :

Pour x compris entre 0 et L, l'oxyde d'antimoine est sublimé, selon les lois cinétiques établies au chapitre II. Nous faisons l'hypothèse que l'étape de désorption est limitante. Dans ce cas, la constante de vitesse est fonction uniquement de la température. De plus, la constante de vitesse, dans le cas de la

réaction d'interface interne, varie à l'inverse de la pression partielle d'oxyde d'antimoine ; notre hypothèse est donc la plus défavorable du point de vue de l'augmentation de la couche de surface.

En tout point, nous pouvons écrire :

$$\frac{\partial P_s}{\partial t} = D_s \frac{\varepsilon}{\tau^2} \frac{\partial^2 P_s}{\partial x^2} + Production$$
(9)

Le terme de production est issu de l'étude du chapitre II. Si nous désignons par C le taux en Sb₄O₆ solide dans la chamotte :

Production = k C
$$(1 - \varepsilon)$$
 RT $\left(1 - \frac{P_s}{P_s^0}\right)$

où P_s^0 désigne la tension de vapeur du solide à l'équilibre exprimée en Pa :

$$P_{S}^{0}(T) = \exp\left(36,23 - \frac{25099}{T} - 7,1.10^{-3} T - \frac{208865}{T^{2}} + 4,034 Ln \frac{T}{298}\right)$$

k désigne la constante de vitesse de sublimation en terme de degré d'avancement :

$$k = \exp\left(17,643 - \frac{22718}{T}\right)$$

 D_S , le coefficient de diffusion de Sb₄O₆ ne peut pas s'exprimer à partir de la théorie cinétique de Chapmann Enskog, en effet, nous n'avons pas accès aux paramètres de Lenhard-Jones de cette molécule. Nous utiliserons donc l'expression suivante [43] :

$$D_{S} = 1,3778.10^{-23} \frac{T^{3/2}}{P_{tot} \left(V_{S}^{1/3} + V_{N_{2}}^{1/3}\right)^{2}} \left(\frac{1}{M_{S}} + \frac{1}{M_{N_{2}}}\right)^{1/2}$$

où : Ptot : pression totale en Pa

- V: volume moléculaire des gaz en m³
- M: masse molaire en kg
- T: température en K.

La molécule Sb₄O₆ est assimilée à une sphère, V_S et V_{N2} valent respectivement 1,412.10⁻²⁸ et 3,12.10⁻²⁹ m³.

$$D_S (T) = 1,192.10^{-9} T^{3/2}$$
 (en m²/s)

La résolution de l'équation (9) est effectuée en annexe C. La solution étant très complexe, nous ferons l'hypothèse de la quasi-stationnarité de la diffusion, soit :

$$D_{S} \frac{\varepsilon}{\tau^{2}} \frac{d^{2} P_{S}}{dx^{2}} + k C \left(1 - \varepsilon\right) RT \left(1 - \frac{P_{S}}{P_{S}^{0}}\right) = 0$$

avec $P_S(L) = 0$.

La résolution est immédiate :

$$x < L: P_{S}(x) = P_{S}^{0} \left(1 - \frac{ch \alpha x}{ch \alpha L} \right)$$

$$avec \alpha = \sqrt{\frac{k RTC (1 - \varepsilon) \tau^{2}}{P_{S}^{0} D_{S} \varepsilon}}$$
(10)

Le flux de [Sb₄O₆] en tout point se traduit par :

$$J_{s}(x) = -\frac{D_{s}\varepsilon}{\tau^{2}_{RT}}\frac{dP_{s}}{dx}$$

soit :

$$J_{S}(x) = -\frac{\alpha P_{S}^{0} D_{S} \varepsilon}{\tau^{2} RT} \frac{sh \alpha x}{ch \alpha L}$$
(11)

Le flux d'oxygène gazeux est constant dans la couche de produit de type 1 et égal à :

x > L:
$$J_{O_2} = -\frac{D_{O_2N_2} \epsilon P_0}{\tau RT (H - L)}$$
 (12)

Le bilan matière dans la tranche d'épaisseur dL s'écrit :

$$\begin{pmatrix} \text{Nombre de moles d'oxygène} \\ \text{entrant en } x = L \end{pmatrix} - \begin{pmatrix} \text{Nombre de moles d'oxygène} \\ \text{réagissant avec} \begin{bmatrix} \text{Sb}_4 \text{O}_6 \end{bmatrix} \\ \text{entrant en } x = L \end{pmatrix} = \begin{pmatrix} \text{Transformation d'un} \\ \text{volume SdL par oxydation} \\ \text{de} \langle \text{Sb}_2 \text{O}_3 \rangle \text{ présent} \\ \text{dans ce volume} \end{pmatrix}$$
$$- J_{\text{O}_2} \cdot \text{S} \cdot \text{dt} - J_{\text{S}} (L) \cdot \text{S} \cdot \text{dt} = -\text{C} (1 - \varepsilon) \cdot \text{S} \cdot \text{dL}$$

soit :

$$\frac{dL}{dt} = \sqrt{\frac{k P_{S}^{0} D_{S} \varepsilon}{RT \tau^{2} (1 - \varepsilon) C}} \text{ th } \alpha L - \frac{D_{O_{2}/N_{2}} \varepsilon P_{0}}{RT (1 - \varepsilon) \tau^{2} C} \frac{1}{H - L}$$
(13)

Les valeurs numériques génèrent des valeurs de α très grandes, telles que th α L = 1. Cette simplification nous permet de résoudre sans difficultés l'équation :

$$t = \frac{L - L_0}{B} - \frac{A}{B^2} Ln \left(\frac{B (L - H) + A}{B (L_0 - H) + A} \right)$$
(14)

avec : $L(t = 0) = L_0$

$$A = \frac{D_{O_2/N_2} \epsilon P_0}{RT (1 - \epsilon) \tau^2 C}$$
$$B = \sqrt{\frac{k P_s^0 D_s \epsilon}{RT \tau^2 (1 - \epsilon) C}}$$

Nous pouvons exprimer le temps en fonction de l'épaisseur de la couche l = H - L:

$$t = \frac{l_0 - l}{B} - \frac{A}{B^2} Ln \left(\frac{A - Bl}{A - Bl_0} \right)$$
(15)

Les valeurs numériques sont connues en fonction de la température :

$$D_{O_2/N_2} = a T^2 + bT + C \quad ; \quad a = 1,093.10^{-10} \quad ; \quad b = 5,94.10^{-8} \quad ; \quad c = -6,81.10^{-6}$$

$$k = \exp\left(17,643 - \frac{22718}{T}\right)$$

$$P_S^0 = \exp\left(36,23 - \frac{25099}{T} - 7,1.10^{-3} T - \frac{208865}{T^2} + 4,034 \ln \frac{T}{298}\right)$$

$$D_S = 1,192.10^{-9} T^{3/2}$$

$$\varepsilon = 0,385 \qquad P_0 = 2.10^4$$

$$\tau = \pi/2 \qquad C = 4422$$

Elles sont exprimées en unité du système international (MKS). La comparaison des résultats respectivement obtenus avec les relations (15) et (3) à 758 K (485°C) indiquent très peu d'écart à la fin du palier de température. La sublimation ne peut expliquer l'écart important que nous avons constaté. Cet écart évalué par le calcul serait au maximum de 1 mm à 575°C à la fin d'un palier de température long de 6 heures.

Le phénomène qui génère cet écart intervient sur des durées de calcination très longues. Nous avons vu que la relation (5) s'applique parfaitement dans le cas d'une élévation linéaire de température de 100°C/h (soit 54 mn en 485°C et 575°C). Ce n'est plus du tout le cas si nous effectuons un palier de température de 6 h supplémentaires (soit 6 h et 54 mn entre 485 et 575°C).

La principale hypothèse posée au début de cette étude est que la réaction d'oxydation est instantanée. Ce n'est pas tout à fait le cas à 485°C. Mais là encore, nous avons constaté le même écart (0,033 m expérimental contre 0,048 m par le calcul) dans le cas d'un palier de 6 h à 530°C.

Cette étude nous a permis de mettre en évidence un paramètre supplémentaire : la tension de vapeur de Sb₂O₃. Ce solide cristallise sous deux variétés polymorphiques distinctes, la forme cubique, et la forme orthorhombique. La tension de vapeur de cette dernière est bien supérieure à celle de la variété cubique (figure IV.15.). Ce phénomène provoque une cinétique d'oxydation plus rapide et doit avoir des conséquences favorables sur l'épaisseur de la couche de surface. Une perspective intéressante, à développer dans un futur travail, serait d'utiliser l'oxyde d'antimoine orthorhombique.

Figure IV.15. : tension de vapeur des deux variétés polymorphiques de Sb_2O_3 .

IV.4. Conclusion

Cette étude, par l'intermédiaire du modèle de diffusion, nous a permis de dégager les principaux paramètres du processus. Ceux-ci ont une influence qui peut être favorable ou non. Mais dans tous les cas, ils doivent être contrôlés pour ne pas altérer involontairement les propriétés électriques finales. Le tableau IV.4. résume l'effet des paramètres et le moyen le plus simple de contrôler, en production, les paramètres du procédé.

Paramètre	Influence	Action possible
Température T	Exerce une influence sur D_{O_2/N_2} , k, P_s^0	 Améliorer la régulation du four Utiliser un four tunnel
Taux de l'oxyde d'antimoine C _{Sb4O6}	Fixée par la composition requise	Pas d'action possible
Température de dé- but d'oxydation T ₀	Minimisation bénéfique Influencée par P ₀ et la variété polymorphique de Sb ₂ O ₃	Contrôle entrée des matières premières.
Coefficient de diffu- sion de l'oxygène dans l'azote D _{O2} /N ₂	Influencé par T	Pas d'action possible
P ⁰ _s , tension de va- peur	Influencée par T et la variété polymorphique	Contrôle entrée M.P.
P ₀ , pression exté- rieure	Maximisation bénéfique	creusets ouverts, brassage dans le four, utilisation d'un four tunnel
Porosité e	Maximisation bénéfique, tout en gardant un nombre suffisant de points de contact entre grains (fluidisation exclue)	Contrôler le nombre de creusets et la masse par creuset. Poste de conditionnement jouxtant le four
Tortuosité τ	Minimisation bénéfique Utiliser des poudres à grains sphériques	Contrôle entrée M.P.
Vitesse de montée en température h	Minimisation bénéfique ⇒ palier supplémentaire	Très facile à modifier car indépendant du conditionnement de la poudre

Tableau IV.4. : les paramètres du processus de chamottage.

CONCLUSION

<u>GENERALE</u>

.

.

L'objet de cette étude était l'amélioration d'un procédé de fabrication de varistances équipant les parafoudres utilisés dans le réseau de distribution E.D.F. Le besoin d'une telle recherche provenait de l'existence d'une dispersion des propriétés des varistances produites, allant jusqu'au déclassement d'une partie de la production (environ 5 %). Par ailleurs, du fait de ce constat, toutes les varistances fabriquées sont contrôlées. Ceci constitue une indiscutable contrainte pour la société.

Le procédé de fabrication comprend l'élaboration d'une chamotte (cobroyage des constituants, calcination puis broyage du mélange), laquelle est ajoutée à l'oxyde de zinc, composé principal. Le granulé ainsi préparé est ensuite compacté, préfritté puis fritté.

L'examen de ce procédé nous a montré que les étapes de calcination (principalement le chamottage et le préfrittage) aboutissent à une dispersion qui peut être importante, des propriétés électriques des varistances :

- * La température dans le four de préfrittage n'est pas uniforme. Elle varie entre 895 et 950°C lorsque la consigne de régulation est de 900°C. La tension de référence qui en résulte décroît d'environ 3,5 % entre ces 2 valeurs. La régulation du four doit ainsi être optimale ; l'utilisation d'un four tunnel au lieu d'un four à moufle pourrait s'avérer satisfaisante pour limiter les variations de température.
- * L'examen de la poudre dans les creusets après chamottage montre plusieurs strates selon la profondeur. La préparation de varistances, à partir de ces différents produits, a montré que les propriétés électriques des céramiques ainsi obtenues sont très variables. Ainsi, la couche de surface présente un grand intérêt dans la mesure où le gradient de tension est supérieur (environ 15 %) aux valeurs obtenues en production. A l'inverse, la couche dite "de volume", le composé majoritaire dans la chamotte, génère des gradients de tension inférieurs. L'existence de ces variations importantes a motivé notre choix de l'étude du chamottage des oxydes additifs.

Le mélange chamotté est complexe. Il renferme les oxydes d'antimoine, bismuth, nickel, cobalt et chrome ainsi que du carbonate de manganèse. Les principaux résultats de l'étude physico-chimique de ces différents composés sont les suivants :

- L'oxyde d'antimoine Sb₂O₃ présente une tension de vapeur importante aux températures usuelles de chamottage. Cette sublimation est responsable de l'oxydation du produit, qui se passe en phase gazeuse. La cinétique d'oxydation dépend fortement de la pression partielle en oxygène. Nous n'avons toutefois pas pu conclure sur l'influence de la pression partielle en oxyde d'antimoine gazeux, cette étude demanderait un dispositif expérimental particulier.

- L'oxyde de bismuth calciné en présence d'oxyde d'antimoine est réduit par ce dernier, jusqu'au degré 0. Cette réaction s'effectue simultanément avec la sublimation de Sb₂O₃. Les produits sont le bismuth liquide et un oxyde mixte de formule BiSbO₄.
- La décomposition thermique du carbonate de manganèse est également complexe, dans la mesure où les oxydes formés sont multiples (MnO, Mn₃O₄, Mn₂O₃, MnO₂). Nous avons montré que la décomposition produit du monoxyde de carbone, et tout particulièrement aux pressions partielles importantes de dioxyde de carbone.

Ces résultats laissent entrevoir la grande complexité de notre mélange calciné. En effet, nous sommes en présence d'une atmosphère gazeuse polyconstituée. Nous avons une phase liquide et de nombreuses phases solides.

L'examen du comportement de la chamotte sous différentes atmosphères gazeuses a montré la grande diversité des phases préparées :

- En présence d'oxygène, nous obtenons, autour d'un composé majoritaire BiSb₂O₇ de structure pyrochlore, Sb₂O₄ (produit de l'oxydation de Sb₂O₃), Bi₁₆CrO₂₇ et deux nouveaux composés dont l'un (noté C₂) de structure C.f.C. reste de composition chimique inconnue ; l'autre est un antimoniate divalent noté (Co,Mn,Ni)Sb₂O₆.
- Sous azote pur, nous élaborons le même composé principal, le bismuth, BiSbO4, ainsi que deux nouveaux composés : l'un (noté C1) également C.f.C., dont nous ne connaissons pas la composition chimique, l'autre est un antimonite divalent noté (Co,Mn,Ni)Sb₂O₄.

Le recuit sous oxygène de ce dernier mélange provoque l'oxydation du bismuth pour donner Bi₂O₃, et de l'antimonite qui donne l'antimoniate précédemment évoqué.

Nous avons étudié le chamottage dans les conditions industrielles. Nous avons montré, tout d'abord que la diminution de la granulométrie, des différentes couches formant la chamotte, exerce une influence bénéfique sur les propriétés électriques. L'épaisseur du lit de poudre est de plusieurs centimètres. L'analyse des strates au cours du cycle thermique, appuyée par les précédents résultats, a montré que la formation de la couche de surface est tributaire de l'oxydation de Sb₂O₃. La croissance de cette couche est en effet régie par un mécanisme de diffusion de l'oxygène gazeux, avec réaction d'oxydation à l'interface séparant les 2 couches. L'épaisseur de la couche de surface augmente tant qu'il reste Sb₂O₃, consommé par ailleurs pour former le bismuth, dans le mélange.

La modélisation de la diffusion-réaction de l'oxygène nous a permis de dégager les paramètres les plus importants influant sur cette opération. Ils sont classés en 2 catégories :

- les paramètres fixes : coefficient de diffusion, composition du mélange, température des réactions d'oxydation,
- les paramètres évolutifs : pression partielle d'oxygène dans le four, porosité intergranulaire et tortuosité du lit de poudre, vitesse de montée en température.

Nous avons montré qu'il est possible d'améliorer la qualité des produits (augmenter l'épaisseur de la couche de surface) par des actions au niveau de la deuxième catégorie de paramètres, notamment en ajoutant un palier à une température d'environ 500°C au cycle thermique existant. Ceci nous permet d'oxyder Sb₂O₃ dans toute l'épaisseur du lit. Il reste désormais à appliquer ces résultats à la production en grande série.

Cette recherche a permis de mettre en évidence beaucoup de points qu'il serait intéressant de développer :

- * Au niveau de l'étude des composés purs, les mécanismes régissant l'oxydation en phase gazeuse de Sb₂O₃ restent inconnus, de même que ceux de la réaction de réduction de l'oxyde de bismuth en bismuth liquide.
- * Afin d'améliorer le procédé, il conviendrait d'étudier avec précision l'influence de la granulométrie de la chamotte calcinée et broyée, sur les propriétés électriques. Ceci, à court terme, devrait aboutir soit à une diminution du temps de broyage, soit à son maintien, voire son augmentation, pour donner des valeurs de gradients de tension, susceptibles de développer des produits plus performants que ceux qui sont élaborés actuellement.

Annexe A :

Techniques expérimentales

Identification des phases par diffraction des rayons X

Nous avons utilisé un diffractomètre Siemens D 5000, avec anti-cathode de cuivre $(\lambda_{K\alpha_1} = 0.15406 \text{ nm})$ et compteur à scintillations. L'appareil est piloté par un ordinateur PC 486-33.

Le choix d'une faible vitesse de balayage $(0,005^{\circ} 2\theta/s)$ permet l'obtention de diffractogrammes de grande précision.

Mesure des variations de masse et effets thermiques par analyse thermogravimétrique et calorimétrie différentielle à balayage

Cet appareil constitué d'une microbalance et d'un calorimètre différentiel est le T.G.-D.S.C.111 de Setaram. Il comporte une unité de conditionnement de l'atmosphère gazeuse, qui permet de travailler sous balayage, sous vide, ou en atmosphère statique.

Caractérisation des gaz par spectroscopie infra-rouge

Le spectromètre Digilab FTS 40 est équipé d'une cellule d'analyse de gaz. Celle-ci peut être couplée au T.G.-D.S.C., pour analyser les produits d'une décomposition. La ligne de transfert est chauffée à 140°C.

Observation par microscopie optique

Nos poudres ont été observées grâce à un microscope optique Zeiss. Les grossissements disponibles sont 50, 100, 200 et 500.

Suivi de la taille des grains par granulométrie laser

Le granulomètre laser utilisé est le Coulter LS 130. Il permet la mesure de la taille des particules comprises entre 0,1 et 900 μ m, par la diffraction d'un faisceau laser (750 nm) pour les particules de taille supérieure à 2 μ m, et par la diffusion d'une lumière blanche polarisée pour les plus fines.

Mesure de courants de haute intensité

Les propriétés électriques des varistances, dans la partie haute tension de la caractéristique électrique, ont été mesurées à partir d'un générateur de choc 100 kV, 62,5 kJ, de marque Haefely. La production de courant de haute intensité s'effectue par accumulation de charges électriques dans une batterie de condensateurs C1 (figure A.1.) sous une tension de charge maximale de 100 kV. L'onde de choc résultante est de courte durée. Des résistances R32 sont placées en série avec ces condensateurs afin de créer l'amortissement nécessaire à la production d'une telle onde.

Figure A.1. : dispositif utilisé pour générer des courants de 65 kA, onde 4/10 μs.

L'intensité et la durée du choc sont fixées par le nombre de condensateurs utilisés, et la valeur des résistances R32.

Ainsi, pour le choc de simulation de la foudre, qui nécessite une onde de type 4/10 μ s, pour une intensité de 65 kA, 5 condensateurs de 2,5 μ F sont mis en service. Les résistances d'amortissement valent 0,255 Ω (figure A.1.).

Nous avons utilisé ce dispositif pour mesurer le courant de décharge et la tension résiduelle de nos varistances. Ces valeurs nous permettent de calculer le coefficient de non linéarité α . Dans ce cas, un seul condensateur est utilisé ; la résistance d'amortissement vaut 1,25 Ω . L'onde résultante est de type 8/20 μ s (figure A.2.). Les valeurs de courant et d'intensité sont respectivement 5 kA et 11 kV environ.

Figure A.2. : dispositif utilisé pour générer des courants de 5 kA, onde 8/20 μ s.

Annexe B

Etude du transfert de matière en phase gazeuse, dans un lit de poudre, avec réaction chimique instantanée de consommation du gaz

Nous nous proposons de résoudre l'équation aux dérivées partielles :

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}$$
(1)

La configuration du système est présentée au chapitre IV, paragraphe 3.2. Les conditions aux limites sont les suivantes :

$$P(x,0) = 0$$

 $P(0,t) = P_0$
 $P(L,t) = 0$

Cette résolution est effectuée par la méthode de la transformation de Laplace qui associe à la fonction P(x,t) sa transformée :

$$\overline{P}(x,s) = \int_0^\infty e^{-st} P(x,t) dt$$

L'application de la transformation aux 2 membres de l'équation (1) nous donne :

$$s \overline{P} = D \frac{d^2 \overline{P}}{dx^2}$$

La résolution est immédiate :

$$\overline{P}(x,s) = \frac{P_0}{s\left(1 - e^{2L}\sqrt{\frac{s}{D}}\right)} \left(e^{x}\sqrt{\frac{s}{D}} - e^{(2L-x)}\sqrt{\frac{s}{D}}\right)$$

Nous pouvons l'écrire également :

$$\overline{P}(x,s) = \frac{P_0}{s} \sum_{j=0}^{\infty} \left(e^{-(2jL+x)} \sqrt{\frac{s}{D}} - e^{-(2jL+2L-x)} \sqrt{\frac{s}{D}} \right)$$

L'utilisation des tables de transformées nous permet d'obtenir immédiatement P(x,t) :

$$P(x,t) = P_0 \sum_{j=0}^{\infty} \left(erf\left(\frac{2jL + 2L - x}{2\sqrt{Dt}}\right) - erf\left(\frac{2jL + x}{2\sqrt{Dt}}\right) \right)$$

Pour les besoins de l'expression de la croissance de la couche au cours du temps, il nous faut calculer l'expression du flux gazeux en x = L:

$$J(L,t) = -\frac{D}{RT}\frac{\partial P}{\partial x}(L,t) = -2\frac{P_0}{RT}\sqrt{\frac{D}{\pi t}}\sum_{j=0}^{\infty} e^{-\frac{(2j+1)^2}{4Dt}L^2}$$

Annexe C

Etude du transfert de matière en phase gazeuse d'une espèce sublimée dans un lit de poudre

Nous nous proposons de résoudre l'équation aux dérivées partielles :

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2} + K \left(1 - \frac{P}{P_0} \right)$$
(1)

La configuration est présentée dans le chapitre IV, paragraphe 3.5. avec l'origine de l'axe des x au fond du creuset. Les conditions aux limites sont les suivantes :

$$P(L,t) = 0$$

$$\frac{\partial P}{\partial x}(0,t) = 0$$

$$P(x,0) = P^{0}$$

Pour cela, nous aurons recours à la transformation de Laplace. L'équation (1) transformée s'écrit :

$$\frac{\mathrm{d}^2 \overline{\mathrm{P}}}{\mathrm{dx}^2} - \frac{\mathrm{s}\mathrm{P}^0 + \mathrm{K}}{\mathrm{D}\mathrm{P}^0} \,\overline{\mathrm{P}} + \frac{\mathrm{s}\mathrm{P}^0 + \mathrm{K}}{\mathrm{s}\mathrm{D}} = 0$$

Finalement :

$$\overline{P}(x,s) = \frac{P^{0}}{s} \left(1 - \frac{ch x \sqrt{\frac{sP^{0} + K}{DP^{0}}}}{ch L \sqrt{\frac{sP^{0} + K}{DP^{0}}}} \right)$$

Ou encore :

$$\overline{P}(x,s) = \frac{P^0}{s} \left(1 - \sum_{j=0}^{\infty} \left(-1 \right)^j \left(e^{-\frac{2jL+L-x}{\sqrt{D}}} \sqrt{\frac{s+\frac{K}{P^0}}{p^0}} + e^{-\frac{2jL+L+x}{\sqrt{D}}} \sqrt{\frac{s+\frac{K}{P^0}}{p^0}} \right) \right)$$

Pour l'inversion de cette expression nous utilisons les propriétés suivantes :

Inversion de :

$$\frac{1}{s} f(s) \rightarrow \int_0^t F(t) dt$$
$$f(s-a) \rightarrow e^{at^2} F(t)$$
$$e^{-k\sqrt{s}} \rightarrow \frac{k}{2\sqrt{\pi t^3}} e^{-\frac{k^2}{4t}}$$

Finalement :

$$P(x,t) = P^{0} \left(1 - \sum_{j=0}^{\infty} (-1)^{j} \left(e^{\left(2jL + L - x\right)}\sqrt{\frac{K}{Dp^{0}}} \operatorname{erf}\left(\frac{2jL + L - x}{2\sqrt{Dt}} + \sqrt{\frac{Kt}{p^{0}}}\right) + e^{\left(2jL + L - x\right)}\sqrt{\frac{K}{Dp^{0}}} \operatorname{erf}\left(\frac{2jL + L - x}{2\sqrt{Dt}} - \sqrt{\frac{Kt}{p^{0}}}\right) + e^{\left(2jL + L + x\right)}\sqrt{\frac{K}{Dp^{0}}} \operatorname{erf}\left(\frac{2jL + L + x}{2\sqrt{Dt}} + \sqrt{\frac{Kt}{p^{0}}}\right) + e^{\left(2jL + L + x\right)}\sqrt{\frac{K}{Dp^{0}}} \operatorname{erf}\left(\frac{2jL + L + x}{2\sqrt{Dt}} - \sqrt{\frac{Kt}{p^{0}}}\right) + e^{\left(2jL + L + x\right)}\sqrt{\frac{K}{Dp^{0}}} \operatorname{erf}\left(\frac{2jL + L + x}{2\sqrt{Dt}} - \sqrt{\frac{Kt}{p^{0}}}\right) \right)$$

L'expression du flux d'espèce sublimée en x = L s'écrit :

$$J(L,t) = \frac{D}{RT} \frac{\partial P}{\partial x}(L) = \frac{1}{RT} \sqrt{\frac{KD}{P^0}} \sum_{j=1}^{\infty} (-1)^{j} \begin{pmatrix} e^{2jL} \sqrt{\frac{K}{DP^0}} \operatorname{erf}\left(\frac{jL}{\sqrt{Dt}} + \sqrt{\frac{Kt}{P^0}}\right) \\ - e^{-2jL} \sqrt{\frac{K}{DP^0}} \operatorname{erf}\left(\frac{jL}{\sqrt{Dt}} - \sqrt{\frac{Kt}{P^0}}\right) \end{pmatrix}$$
$$+ \frac{1}{RT} \sqrt{\frac{D}{\pi t}} \sum_{j=0}^{\infty} (-1)^{j} \begin{pmatrix} e^{2jL} \sqrt{\frac{K}{DP^0}} e^{-\left(\frac{jL}{\sqrt{Dt}} + \sqrt{\frac{Kt}{P^0}}\right)^2} \\ + e^{-2jL} \sqrt{\frac{K}{DP^0}} e^{-\left(\frac{jL}{\sqrt{Dt}} - \sqrt{\frac{Kt}{P^0}}\right)^2} \end{pmatrix}$$

BIBLIOGRAPHIE

- T.K. Gupta
 J. Am. Ceram. Soc., <u>73</u> (7), 1817-1840, (1990)
- [2] M. Matsuoka Ceram. Trans., <u>3</u> (Advances in varistor technology), 3-9, (1990)
- [3] I. Nigasawa, K. MukaeJpn. Patent n° 912996 (paru en 1978)
- [4] M. Tatsuoka, K. Hamamoto, T. Masuyama et V. Iida Jpn. Patent n° 768494 (paru en 1975)
- [5] K. Eda Ceram. Trans., <u>3</u> (Advances in varistor technology), 10-21, (1990)
- [6] D.K. Kharat, S.R. Sainkar, S.K. DateJ. Sc. Ind. Res., <u>50</u>, 596-605, (1991)
- [7] Documentation ABB : Parafoudre, Oxyde de Zinc, XCL 24S
- [8] M. Serrano Servin
 Thèse de Docteur Ecole Centrale de Lyon, n° ordre ECL 88-22 (1988)
- [9] G. Solignac
 "Guide de l'Ingénierie Electrique des Réseaux Internes d'Usines", Technique et Documentation, Lavoisier, (1985)
- [10] M. Sumiyoshi Ceram. Trans., <u>3</u> (Advances in varistor technology), 22-30, (1990)
- [11] O. Milosevic, D. Vasovic, D. Poleti, Lj. Karanovic, V. Petrovic, D. Uskokovic Sci. Sintering (Proc. round table conf. sintering) 7th 1989, 117-26, édité par Plenum New-York
- [12] S. Hishita, Y. Yao, S. Shirasaki
 J. Am. Ceram. Soc., <u>72</u> (2), 338-40, (1989)
- [13] S.M. Haile, D.W. Johnson, G.H. Wiseman, H.K. Bowen
 J. Am. Ceram. Soc., <u>72</u> (10), 2004-2008, (1989)
- [14] N.Y. Lee, M.S. Kim, I.J. Chung, M.H. Oh J. Mater. Sci., <u>26</u>, 1126-1130, (1991)

- [15] K. Eda, M. Inada, M. Matsuoka
 J. Appl. Phys., <u>54</u>, 1095-1099, (1983)
- [16] J.S. Kresse, E.C. Sakshaug, H. Fishman, H.F. Ellis Ceram. Trans., <u>3</u> (Advances in varistor technology), 207-8, (1990)
- [17] M. Kobayashi, M. Mizuno Ceram. Trans., <u>3</u> (Advances in varistor technology), 219-227, (1990)
- [18] R.W.G. Wyckoff"Crystal Structures", <u>2</u>, Ed. J. Wiley, 2e édition, (1967)
- [19] I. Barin "Thermochemical Data of Pure Substances", Part II, (1989)
- [20] P.W. CentersJ. Solid State Chem., <u>72</u>, 303-308, (1988)
- [21] C.A. Cody, L. Dicarlo, R.K. Darlington Inorg. Chem., <u>18</u>, 1572, (1979)
- [22] S.E. Golunski, T.G. Nevell, M.I. Pope Thermochim. Acta, <u>51</u>, 153-168, (1981)
- [23] P. Pascal
 "Nouveau Traité de Chimie Minérale", XI, 591, Masson & Cie, Paris, (1957)
- [24] R.D. Mac DonaldJ. Can. Ceram. Soc., <u>35</u>, 35-9, (1966)
- [25] J.M. Criado Therm. Anal. Proc. Int. Conf. 7th, <u>1</u>, 99-105, (1982)
- [26] J.M. Criado, F. Gonzalez, M. Gonzalez J. Therm. Anal., <u>24</u>, p. 59-65, (1982)
- [27] G.A. El-Shobaky, K.A. El-Barawy Thermochim. Acta, <u>89</u>, 53-61, (1985)
- [28] M.G. Bodas, D.D. Akerkar, V.A. Alkertar Trans. Indian Inst. Met., <u>32</u>(5), 415-7, (1979)
- [29] Z. Kubas, J. Orewczyk
 Therm. Anal. Proc. Int. Conf. 4th, <u>1</u>, 517-22, (1975)

- [30] R.P. Westerdahl, P.J. LeaderInorg. Nucl. Chem. Letters, <u>5</u>, 199-201, (1969)
- [31] T. Suguira, S. Yoshioka, J. Suzuki Aichi Kyoiku Daigaku Kenkyu Hokoku, Shizen, Kagaku, <u>28</u>, 51-60, (1979)
- [32] Z.L. Szabo, E. Bertalan, E. Tatar Acta Chim. Hung., <u>127</u>(3), 333-44, (1990)
- [33] O. Knacke, O. Kubaschewski, K. Hesselmann
 "Thermochemical Properties of Inorganic Substances", Springer Verlag Berlin, 2e édition, (1991)
- [34] J.W. Medernach, R.L. Snyder
 J. Am. Ceram. Soc., <u>61</u>(11-12), 494-7, (1978)
- [35] H. Cerva, W. Russwurm
 J. Am. Ceram. Soc., <u>71</u>(7), 522-30, (1988)
- [36] M. Devalette, C. Mazeau, G. Meunier, P. Hagenmuller C.R. Acad. Sc., <u>292</u>, C, 1375-8, (1981)
- [37] M. Miyayama, H. Terada, H. Yanagida Comm. Am. Ceram. Soc., <u>64</u>, C 19, (1981)
- [38] M. Miyayama, H. YanagidaJ. Mater. Sc., <u>21</u>, 1233-36, (1986)
- [39] R. Tairi, J.C. Champarnaud-Mesjard, D. Mercurio, B. Frit Rev. Chim. Miner., <u>22</u>, 699-710, (1985)
- [40] L. Jingkui, Z. Yuling, F. Xing Ch. J. Low Temp. Phys., <u>14</u>, 161-6, (1992).
- [41] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird"Molecular Theory of Gases and Liquids", Ed. John Wiley, (1954)
- [42] R.B. Bird, W.E. Stuart, E.N. Lightfoot"Transport Phenomena", Ed. John Wiley, New-York, (1960)
- [43] T.K. Sherwood, R.L. Pigford"Absorption and extraction", Ed. Mc Graw-Hill Book Company, (1952).

ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE

N° d'ordre : 106 CD Année : 1994

Nom : Christophe PERROT

Titre: OPTIMISATION DU PROCEDE DE FABRICATION DES VARISTANCES A BASE D'OXYDE DE ZINC. ETUDE DU CHAMOTTAGE DES OXYDES.

Spécialité : Génie des Procédés

Mots clés : Oxydation Sublimation Diffusion Réaction solide-solide Oxydes d'antimoine Mélange d'oxydes Calcination Propriétés électriques

Résumé :

Le procédé de fabrication de varistances pour parafoudres élaborés par ABB engendre pour 5% des pièces, des mauvaises propriétés électriques. Après observation du procédé, il s'est avéré que le chamottage, opération de calcination du mélange des additifs de l'oxyde de zinc, en était responsable. En effet les produits de cette calcination étaient fortement hétérogènes, puisque formés de plusieurs couches, lesquelles engendraient des propriétés électriques très différentes. L'objectif de ce travail est d'homogénéiser la chamotte et ce, par rapport au produit donnant les meilleures propriétés. Pour cela, nous avons tout d'abord mis en évidence les principales propriétés des composants du mélange, sublimation et oxydation de l'oxyde d'antimoine. Puis l'observation de tous les changements de phases intervenant lors de la calcination de ce mélange a été effectuée. La stratification de la chamotte étant engendrée par la diffusion -réaction de l'oxygène dans le milieu granulaire, la modélisation de ce phénomène a permis de dégager tous les paramètres de l'opération ainsi que leur influence sur la qualité des produits. Un nouveau protocole opératoire pour oeuvrer en ce sens est désormais envisageable, et passe par exemple par un changement de cycle thermique.