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Once the machine thinking method has started, it would not take long to
outstrip our feeble powers. ... At some stage therefore we should have to expect
the machines to take control.

ArLaN TURING, 1951

The point about this approach is that it scales beautifully. Basically you just
need to keep making it bigger and faster, and it will get better. There’s no
looking back now.

GEOFFREY HINTON, 2012






ABSTRACT

Since 2006, deep learning algorithms which rely on deep architectures with sev-
eral layers of increasingly complex representations have been able to outperform
state-of-the-art methods in several settings. Deep architectures can be very ef-
ficient in terms of the number of parameters required to represent complex op-
erations which makes them very appealing to achieve good generalization with
small amounts of data. Although training deep architectures has traditionally
been considered a difficult problem, a successful approach has been to employ
an unsupervised layer-wise pre-training step to initialize deep supervised mod-
els. First, unsupervised learning has many benefits w.r.t. generalization because
it only relies on unlabeled data which is easily found. Second, the possibility
to learn representations layer by layer instead of all layers at once further im-
proves generalization and reduces computational time. However, deep learning is
a very recent approach and still poses a lot of theoretical and practical questions
concerning the consistency of layer-wise learning with many layers and difficul-
ties such as evaluating performance, performing model selection and optimizing
layers.

In this thesis we first discuss the limitations of the current variational justi-
fication for layer-wise learning which does not generalize well to many layers.
We ask if a layer-wise method can ever be truly consistent, i.e. capable of find-
ing an optimal deep model by training one layer at a time without knowledge
of the upper layers. We find that layer-wise learning can in fact be consistent
and can lead to optimal deep generative models. To that end, we introduce the
Best Latent Marginal (BLM) upper bound, a new criterion which represents the
maximum log-likelihood of a deep generative model where the upper layers are
unspecified. We prove that maximizing this criterion for each layer leads to an
optimal deep architecture, provided the rest of the training goes well. Although
this criterion cannot be computed exactly, we show that it can be maximized
effectively by auto-encoders when the encoder part of the model is allowed to
be as rich as possible. This gives a new justification for stacking models trained
to reproduce their input and yields better results than the state-of-the-art vari-
ational approach. Additionally, we give a tractable approximation of the BLM
upper-bound and show that it can accurately estimate the final log-likelihood
of models. Taking advantage of these theoretical advances, we propose a new
method for performing layer-wise model selection in deep architectures, and a
new criterion to assess whether adding more layers is justified. As for the difficulty
of training layers, we also study the impact of metrics and parametrization on
the commonly used gradient descent procedure for log-likelihood maximization.
We show that gradient descent is implicitly linked to the metric of the underlying
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space and that the Euclidean metric may often be an unsuitable choice as it in-
troduces a dependence on parametrization and can lead to a breach of symmetry.
To alleviate this issue, we study the benefits of the natural gradient and show
that it can restore symmetry, regrettably at a high computational cost. We thus
propose that a centered parametrization may alleviate the problem with almost

no computational overhead.
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RESUME

Depuis 2006, les algorithmes d’apprentissage profond qui s’appuient sur des mo-
deles comprenant plusieurs couches de représentations croissantes en complexité
ont pu surpasser 1’état de I’art dans plusieurs domaines. Les modeles profonds
peuvent étre tres efficaces en termes du nombre de parameétres nécessaires pour
représenter des opérations complexes, ce qui les rend tres intéressants pour ob-
tenir une bonne généralisation avec de faibles quantités de données. Bien que
I’entrainement des modeles profonds ait été traditionnellement considéré comme
un probleme difficile, une approche réussie a été d’utiliser une étape de pré-
entralnement couche par couche, non supervisée, pour initialiser des modeles
profonds supervisés. Tout d’abord, ’apprentissage non-supervisé présente de
nombreux avantages par rapport a la généralisation car il repose uniquement
sur des données non étiquetées qu’il est facile de trouver. Deuxiémement, la pos-
sibilité d’apprendre des représentations couche par couche, au lieu de toutes les
couches a la fois, améliore encore la généralisation et réduit les temps de cal-
cul. Cependant, 'apprentissage profond est une approche tres récente et pose
encore beaucoup de questions théoriques et pratiques relatives a la consistance
de ’apprentissage couche par couche, avec de nombreuses couches, et a la dif-
ficulté d’évaluer la performance, de sélectionner les modeles et d’optimiser la
performance des couches.

Dans cette thése, nous examinons d’abord les limites de la justification varia-
tionnelle actuelle pour ’apprentissage couche par couche qui ne se généralise pas
bien a de nombreuses couches et demandons si une méthode couche par couche
peut jamais étre vraiment consistante, c’est a dire capable de trouver un mo-
dele profond optimal en entrainant un modele de bas en haut, sans connaissance
des couches supérieures. Nous constatons que ’apprentissage couche par couche
peut en effet étre consistant et peut conduire a des modeles génératifs profonds
optimaux. Pour ce faire, nous introduisons la borne supérieure de la meilleure
probabilité marginale latente (BLM upper bound), un nouveau critére qui repré-
sente la log-vraisemblance maximale d’un modeéle génératif profond quand les
couches supérieures ne sont pas connues. Nous prouvons que la maximisation
de ce criteére pour chaque couche conduit & une architecture profonde optimale,
a condition que le reste de ’entrainement se passe bien. Bien que ce critere ne
puisse pas étre calculé de maniére exacte, nous montrons qu’il peut étre maximisé
efficacement par des auto-encodeurs quand ’encodeur du modele est autorisé a
étre aussi riche que possible. Cela donne une nouvelle justification pour empiler
les modeles entrainés pour reproduire leur entrée et donne de meilleurs résul-
tats que l’approche variationnelle, qui est la meilleure méthode actuellement
connue. En outre, nous donnons une approximation calculable de la BLM upper
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bound et montrons qu’elle peut étre utilisée pour estimer avec précision la log-
vraisemblance finale des modeles. Tirant parti de ces avancées théoriques, nous
proposons une nouvelle méthode pour la sélection de modeles couche par couche
pour les modeles profonds, et un nouveau critére pour déterminer si ’ajout de
couches est justifié. Quant & la difficulté d’entrainer chaque couche, nous étu-
dions aussi I'impact des métriques et de la paramétrisation sur la procédure de
descente de gradient couramment utilisée pour la maximisation de la vraisem-
blance. Nous montrons que la descente de gradient est implicitement liée a la
métrique de 'espace sous-jacent et que la métrique Euclidienne peut souvent
étre un choix inadapté car elle introduit une dépendance sur la paramétrisation
et peut entrainer une violation de la symétrie. Pour pallier ce probléme, nous
étudions les avantages du gradient naturel et montrons qu’il peut étre utilisé
pour restaurer la symétrie, mais avec un cotiit de calcul élevé. Nous proposons
donc qu’une paramétrisation centrée peut également rétablir la symétrie, mais
avec une tres faible surcharge computationnelle.
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a real vector.

it" component of the vector x.
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a matrix.

the transpose of A.

the entry of the matrix A at row ¢, column j.
27 norm [[x||, = (S |a:[) 7.
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OPTIMIZATION

arg Minedon ¢ f (%)

arg maxxedomf f(JT)

x* such that f(2*) = mingedom ¢ f(x).
z* such that f(z*) = maxzedom £ f(2).

DIFFERENTIATION
W partial derivative of f with respect to x.
%@?z) second derivative with respect to x and y.
Vfx) gradient of f at x (first derivative).
500 - (42,40, ).
V2f(x) Hessian of f at x (second derivative) given by the
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x~ P x is distributed according to the distribution P.
Equivalently: x is a sample from P.
U(s) uniform law over the set S.
B(p) Bernoulli probability of parameter p.
N(p, %) normal law of mean p and variance o?.
N(p,X) multidimensional normal law of mean g and

Beta(a,b)

covariance matrix X.

Beta distribution of parameters a, b.



LIST OF FIGURES

Figure 0.1
Figure 0.2
Figure 1.1
Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 2.1
Figure 2.2

Figure 2.3

Approaches to optimization (non-exhaustive). . . . . . .
Machine Learning tasks (non-exhaustive). . . . ... ..
Global and local optima of a function f. . .. .. .. ..
The graph of a convex function f. The values of f be-
tween two points a and b are always below the chord, i.e.
the line segment between (a, f(a)) and (b, f(b)). . . . .
Two possible gradient descent trajectories. In (a) the ob-
jective function is well behaved which allows the gradient
to move smoothly towards the optimum. In (b) the gra-
dient starts to oscillate as it falls into a narrow valley,
thus converging more slowly. . . . . . ... ... ... ..
Visualization of an evolutionary algorithm on a 2D toy
problem. The dotted lines represent level sets of the fit-
ness function. At generation n (a), the best individuals
according to the fitness function are selected (b). These
individuals are then the basis of a reproduction process
(c) leading to a new generation (d). The process can then
continue with step (b) for the new generation. Notice that
generation n + 1 has progressed towards better values of
the fitness function. . . . . . . .. ...
The steps of an EDA given a fitness function (a) and a
Gaussian proposal distribution at time ¢ (b). First, sam-
ples are drawn from the proposal distribution (¢). The
o best samples are then selected according to their f-
values (d). Finally, the likelihood of the selected samples
w.r.t. the parameters (e) can be increased with a step of
log-likelihood gradient ascent leading to a new proposal
distribution at time t +1 (f).. . . . . ... ... ... ..
Expected variation of the training and testing error with
increasing model complexity. . . . . . ... ...
A classification dataset with two classes. The graph shows
two possible separating hyperplanes. . . . ... ... ..
Three linearly non-separable classification datasets and a
possible separating surface. . . . . . . ... ..o L.

Xix



XX

List of Figures

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 3.1

Figure 3.2

Convergence of the K-means algorithm on a toy 2-dimensional

clustering dataset with K = 3. The dataset set is given
in (a). The centroids e,e and e and the points closest to
them (x,x and x) are represented with the same color
insteps1tod.. .. .. ... ..
Example of a regression dataset: a noisy version of the
function sin(z) + 2. . . ... ...
Best polynomial fits for several degrees on the example
regression dataset. (a) gives a case of under-fitting. (b)
and (c) are examples of what would be considered good
fits. In (d) we see an example of over-fitting. . . . . . . .
Illustration of the simplification power of a feature space.
Given the non linearly separable classification problem
(a), the projection ®(z,y) = (x,y, z) where z is a feature
such that z = exp [— (2% 4+ y?) /2] makes the problem lin-
early separablein (b).. . . . .. .. ..o o000
Mlustration of a two dimensional manifold immersed in 3D
space (a). The same two dimensional manifold immersed
in2D space (b). . . . ... oo oo
Example of the influence of unlabeled data in the semi-
supervised setting. The unlabeled samples are repre-
sented with o, and the labeled samples with e and e de-
pending on their class. The unlabeled data in (a) gives a
good picture of the data distribution and may allow more
complex models to be learned than in (b) where there are
too few samples to find a suitable separating surface.

Examples of sparse and distributed representations. A
sparse non-distributed representation can only have one
non-zero element for any input vector (left). A non-sparse
distributed representation uses all variables to represent
an input (center). A sparse distributed representation
can use several non zero elements but must have many
zeros (right). . . . . . .. o oo oo
In rejection sampling, taking a sample z from ¢ and a
sample u from U[0; Mq(x)], results in a uniform distribu-
tion of points (z,u) below the graph of M¢(z). Samples
from p can then be obtained by accepting only the sam-
ples such that w < p(x). . ... ... .. ... .. ....
Visualization of the Gibbs sampling algorithm for a joint
distribution p(z,y). The algorithm starts at a random
position (2, y(©) and then alternatively samples ac-
cording to p(y|z) and p(x|y). . . . .. .. ... ...

36



Figure 3.3

Figure 3.4

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7
Figure 4.8

Figure 4.9

List of Figures

Three possible choices of prior for a Bernoulli distribu-
tion. Beta(10,10) (left), Beta(2,2) (middle), Beta(1,1)
or equivalently uniform distribution (right). . . ... .. 50
The Gaussian distribution being unimodal, a single Gaus-
sian is unable to capture the structure of this dataset.
Using a mixture of Gaussians allows for a better fit. The
red lines give the points at 1 and 2 standard deviations
from the mean of each Gaussian. . . . .. .. .. .. .. 54
The structure of a biological neuron. Information comes
from input neurons in the form of action potentials. If
the neuron receives enough action potentials from its pre-
synaptic neurons, it fires a spike, sending an action po-
tential through its axon to the post-synaptic neurons. . . 64
Computational properties of an artificial neuron. The
activation of a neuron is computed as a weighted sum
of the activations of the input neurons, transformed by
an activation function ¢. The weights of the connections
determine how much influence an input neuron has on
the output neuron. . . . . ... ... ... L. 65
The result of filtering an input image with a weight vector.
The image (c) is the element-wise product of (a) and (b).
If the pixel intensities of (a) and (b) are elements of the
input vector x and the weight vector w respectively, then
the average intensity of (c) is the pre-activation w'x.
When a weight w; is near 0 as in the black region of (b),
the corresponding input x; is filtered out and does not
influence the final result. . . . . .. .. .. ... ... .. 65
Different topologies of neural networks: a recurrent neu-
ral network (a) and a feed-forward neural network (b). . 66
A multi-layer neural network. Activations can be propa-
gated layer by layer from the input layer x to the output

Three common activation functions: linear activation (a),
Heaviside step function (b), logistic function (c) and hy-

perbolic tangent (d). . . . ... ... ... ... ... 70
The structure of an auto-encoder. The target output y is
the input itself . . . .. ... .. ... ... 71

The Boltzmann machine architecture with visible units
(v), hidden units (h) and the joint configuration x = v,h. 72
The Restricted Boltzmann Machine (RBM) architecture
with the visible (v) and hidden (h) layers. . . . ... .. 73

xxi



xxii List of Figures

Figure 4.10 Relation between the modes of a Gaussian-Bernoulli RBM
with two visible units and two hidden units. The bias a
on the visible units gives the position of the mode for
which all hidden units are set to 0. Each row W; of the
weight matrix W can then contribute an additive term
to the mean of the Gaussian distribution if h; is set to 1.
The points x correspond to samples from each mode of

the distribution. . . . . .. ... oo 75
Figure 5.1 Convolutional and pooling layers of a convolutional net-

work. New layers can be added by considering each pool-

ing plane as the input of a new convolutional network. . 81
Figure 5.2 Illustration of the stacked RBMs training scheme. . . .. 83

Figure 5.3 Mlustration of the stacked auto-encoder training scheme. 85



INTRODUCTION






INTRODUCTION

The goal of Artificial Intelligence (AI) is to have a system perform a task that
requires intelligence.
Such tasks can be found in a variety of domains:

e Language: Translation, Summarizing, Topic extraction
o Vision: Classification, Segmentation, Image retrieval

e Games: Chess, Go, Strategy games

e ...and others: Regression, Decision, Risk analysis

For some tasks such as Chess, the performance of the computer now surpasses

that of the human being, while for other tasks, it has yet to even approach it.

In particular, many problems solved effortlessly by human beings in the fields

of vision and language turn out to be very difficult to solve using algorithms.

While the term AT defines the problem, it does not refer to any specific method
for solving it. A wide variety of approaches have emerged over the years, but
all have failed to create a general purpose AI: an Al with the same capacity for
reasoning as the human mind.

Consider now an Al system as described above. Such a system will have
to perform tasks, take decisions and make choices. All those actions add up to
constitute what we could call the behavior of the system. Machine Learning (ML)
is based on the important realization that intelligent behavior is too complex to

be simply “programmed”. Instead, the system will learn its behavior from data.

A system endowed with this capacity to learn some kind of intelligent behavior
is simply called a model, and the process by which we train a model given data
is called a machine learning algorithm.

In practice, a model is defined by some equation or algorithm which, before
learning, has a set of undetermined variables called parameters. During the
learning procedure, the data is used to choose values for the parameters which
will maximize the capacity of the model to perform the objective task. This
“capacity to perform” is measured by what is called a fitness function or objective
function. To do this, we turn to optimization which is a branch of mathematics
consisting in the study of how to choose parameters to maximize an objective
function. An ML problem can then be understood as an optimization one, where
the objective is to maximize some performance measure w.r.t a final task. Clearly,
optimization is useful to machine learning, but as we will see, learning can also be
useful to optimization. In essence, learning algorithms can be used to learn the

landscape of an objective function, facilitating the search for suitable parameters.

As for the data from which the system will learn, it should be informative of the
objective task. For example, in the field of supervised learning, the goal is to learn
a model given examples of what the model should do in several situations. The
data then consists in a set of examples (stimulus x — response y) which describe
how the system should ideally respond to several input stimuli. Supervised
learning has a large number of applications such as:

3
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e Prediction: given an observation x at time ¢, what is the probable obser-
vation y at time ¢ 4 1.

o Games: given the state of a game board x, what is the next best move y.
e Search engines: given a search query x, what is the most relevant result y.

o Pattern recognition: e.g. in the case of Handwritten characters, given the
pixels of a scanned zip-code x, what is the zip-code y.

A problem quickly arises when the link between x and y is not straightforward.
This leads practitioners to use a preprocessing step in which an expert has to
find a set of features f(x) such that learning the relation between f(x) and y
becomes simpler. However, hand-crafted features are costly because they require
expert knowledge, often acquired after years of experimentation.

In representation learning, a learning algorithm is used to find interesting
features from the data. Learning features, instead of using a preprocessing step
has many benefits as it makes the whole approach less dependent on human
input, and thus more general. Even if this can seem challenging, learning useful
representations can be accomplished in practice with unsupervised learning where
learning is done on a dataset of training examples x without the corresponding
answers y. Unsupervised learning includes tasks such as:

e clustering, where the objective is to group similar observations.

e compression or dimensionality reduction, where the objective is to learn a
representation smaller than the input.

e density estimation, where the objective is to find a probability distribution
which is likely to have generated the dataset.

One aspect of particular relevance to this thesis and to unsupervised learning is
the possibility to consider several layers of processing, i.e. a deep architecture.
Although learning deep architectures raises serious computational issues, the
principle has been applied successfully in recent years using a layer wise approach,
essentially trying to learn features one layer at a time instead of trying to learn
them all at once. The approach can be summarized as follows: first train a set
of features fi(x) to better represent the input x, then consider learning higher
level features fo(fi(x)) using fi(x) as a new representation of the dataset. In
this setting, the features f; are trained to explain the data x, and fj is trained
to explain the data as represented by the features fj.

With this in mind, LEARNING DEEP REPRESENTATIONS refers to the
problem of learning multiple layers of interesting features for a given dataset.

As we have already seen, optimization is a very important topic for Machine
Learning as it serves to choose parameter values which maximize an objective
function. Several approaches to optimization are given in Figure 0.1. As for
machine learning, the organization of several possible tasks is represented in
Figure 0.2.
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INTRODUCTION

This thesis is composed of three parts:

PART I: OPTIMIZATION AND MACHINE LEARNING starts with a definition
of what constitutes an optimization problem and describes several ap-
proaches to find a solution. It then describes how ML problems can be
posed as optimization problems. Finally, we introduce the probabilistic
perspective on ML which has gained a lot of attention in recent years.

PART I1I: DEEP LEARNING begins with a presentation of neural networks which
are the most successful approach to deep learning yet. It then describes
how neural networks can be used in the context of learning deep represen-
tations. Finally, the part ends with a review of recent advances in deep
learning, introducing the questions which motivate the author’s contribu-
tions

PART III: CONTRIBUTIONS contains the three main publications of the au-
thor, replaced in their context and commented to make clear their contri-
bution in the light of the questions which arose in Part II.

Finally, the thesis concludes with a summary of the author’s contributions, a
discussion of their impact on the current understanding of the deep learning
paradigm, and with new perspectives of research which arise from the accom-
plished work.
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OPTIMIZATION AND MACHINE LEARNING
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OPTIMIZATION

A solution to a learning problem is usually found by an optimization procedure,
i.e. maximizing some performance measure (e.g. classification accuracy) or
minimizing a loss function (e.g. minimize the number of misclassified examples)
over a dataset. However, optimization is a much larger problem, namely that
of finding the parameters of a function which maximize the associated value.
Optimization applies to a large variety of problems such as designing efficient
engines or minimizing costs, provided there exists a function which can measure
the fitness of candidate solutions.

In this chapter, we start by a definition of what constitutes an optimization
problem and discuss the important issue of local minima. We discuss the special
case of convex functions for which every local minimizer is a global one, and
that of continuously differentiable functions for which optimum values are among
those where the derivative of the objective function is zero. Then, we present
the gradient descent algorithm which is a widely used method in ML. Finally,
we introduce the black-box optimization setting where inner workings of the
objective function are assumed unknown and present Estimation of Distribution
Algorithms (EDAs) which are especially suited to this context.

1.1 PROBLEM STATEMENT

When faced with an optimization problem, the goal can be:

o to find optimal parameters x* for which f(x*) has the least possible value
—in which case we refer to it as a minimization problem—, or

o to find optimal parameters x* for which f(x*) has the greatest possible
value —in which case we refer to it as a maximization problem.

The space of values of x considered as possible solutions is called the domain of
f and is noted dom f. We now give a formal definition.
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Figure 1.1: Global and local optima of a function f.

Definition 1.1. (global optimization problem). Let us consider the prob-
lem of minimizing a function f over it’s domain dom f which we note

min f(x).

xedom f

Let x* be a solution to the above minimization problem which we note

x* = argmin f(x),
x€edom f

then x* is called a global minimum and satisfies
Vx € dom f, f(x*) < f(x).

A global maximization problem and a global maximum are defined anal-
ogously using the notations max and arg max. The terms optimum and
global optimum can be used indiscriminately to refer to maxima or min-
ima.

It is often very hard to find a global optimum because it is defined as being
better than all possible values of x in the available domain. Therefore it is
sometimes necessary to consider only the simpler problem of local optimization.



1.2 THE CURSE OF DIMENSIONALITY

Definition 1.2. (local optimum). x* is a local minimum of f iff
Je > 0,Vx e dom f, [|x —x*|| < e = f(x*) < f(x).

The definition of a local maximum is analogous with f(x*) > f(x).

In other words, x* is a local minimum if it is possible to find a small neighborhood
of x* such that x* is a global minimum of the restriction of f to this neighborhood.
See Figure 1.1 for a visual representation of global and local optima of a simple
function.

In particular, any global optimum is also a local optimum for which any choice
of neighborhood is acceptable.

1.2 THE CURSE OF DIMENSIONALITY

Optimization in spaces of high dimensionality can be somewhat counter intuitive.
Consider for instance the unit cube in dimension n. By comparison, the volume
of the cube of side 0.99 which contains 99% of the volume of the unit cube in
dimension 1 only contains about 36% of it in 100 dimensions and 4.3 x 107°% in
dimension 1000. Thus, almost all the volume of a 1000-dimensional hypercube is
concentrated in an infinitesimal region near its boundary with almost no volume
in the center.

This can be interpreted as a fundamental difference in the behavior of distances
in spaces of high dimensionality. The above example can be understood as
a manifestation of the fact that almost no points are close together in high
dimension because they have so many ways of being dissimilar.

In the context of optimization, the unusual behavior of high dimensional spaces
can become very problematic. For instance, it could seem reasonable to use a
grid search approach (see Algorithm 1.1, i.e. testing the fitness of 100 values of
x at intervals of length 0.01. However, in a 1000-dimension space, the number
of function evaluations needed to form such a grid would be 100!°%: intractable
even for trivial problems.

These issues are by no means insurmountable but can turn up in many situa-
tions. We will try to address them when they do.

1.3 CONVEX FUNCTIONS

The particular case of convex functions plays an important role w.r.t. to the
problem of local minima.

11
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Algorithm 1.1 The grid-search algorithm.

INPUT: f, a function with dom f = [0,1]".
d, distance between observations.
OUTPUT: X, approximation of a global minimum.
VARIABLES: X, candidate solution of the algorithm at time ¢.

BEGIN
% =(0,0,...,0)
for u; from 0 to 1 by step d:
for up from 0 to 1 by step d:

for up from 0 to 1 by step d:
x¢ = (u1,ug,...,up)
if f(x¢) < f(X) then %X :=x;
return X.
END

Definition 1.3. (convex function). Let f be a function defined over
some domain dom f. f is said to be convex, iff

Va,b € dom f,Vk € [0;1], f(ka + (1 — k)b) < kf(a) + (1 — k) f(b)

This means that any point between a and b has an image by f which is below
the line segment joining (a, f(a)) and (b, f(b)) as depicted in Figure 1.2.
Convex functions have the very interesting property that any local minimum is
in fact a global minimum, thus simplifying the problem for practitioners.

1.4 CONTINUOUS DIFFERENTIABLE FUNCTIONS

In the case of continuous differentiable functions, every local optimum satisfies
the so-called 1st order necessary condition, i.e. the gradient at that point has to
be 0. Note that not all points which satisfy this condition are local optima, as
in the function 23 at 0.

Definition 1.4. (1% order necessary optimality condition). Let x* be a
local optimum of f, then V f(x*) = 0.

This means that at every local optimum, the graph of f has a horizontal tangent®.
To get a visual intuition of this fact, the reader is again referred to Figure 1.1.

Additionally, if f is continuous and twice differentiable, the second order
derivative, i.e. the Hessian can be used to define both a necessary condition
and a sufficient condition for local optimality.

this horizontal tangent is in fact a horizontal tangent hyperplane if the dimension of dom f is
larger than 1.
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fx)

kf(a)+(1-k)f(b)

a  ka+(1-k)b b 4

Figure 1.2: The graph of a convex function f. The values of f between two points a and
b are always below the chord, i.e. the line segment between (a, f(a)) and (b, f(b)).

Definition 1.5. (2"? order necessary optimality condition). Let x* be a
local minimum of f, then Vf(x*) = 0 and V2 f(x*) is positive semidefi-
nite.

Definition 1.6. (2" order sufficient optimality condition). Suppose
that f is continuous and twice differentiable, and Vf(x*) = 0 and
V2f(x*) is positive definite. Then x* is a strict local minimum.

The above conditions could be used to prove for instance that a function f :
z — x?2+ 2 —1 has a global minimum at z* = 1. The principle can then
be generalized to arbitrarily complicated functions in high dimensional spaces,
provided the gradient and the Hessian can be found analytically.

1.5 GRADIENT DESCENT

A common local optimization method is the gradient descent algorithm. The
gradient V f(x) has the direction of greatest increase of the function f at x.
V(x)

——— - = lim argmax f(x + €z)

IV =0 4 <1

13
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Algorithm 1.2 The gradient descent algorithm.

INPUT: f, a function.

0t, the step size.

K, the number of steps.
OUTPUT: X, approximation of a global minimum.
VARIABLES: X;, candidate solution of the algorithm at time ¢.
BEGIN
repeat K times:

X1 = X¢ — OV f(x¢)

return last position X := Xymaz-
END

The gradient can be computed using the partial derivatives w.r.t. each compo-
nent of the input vector x:

_ (9f(x) 9f(x) af (x)
Vf(x)—( Ox1 = Oxy ' 81‘D>

In gradient descent? (see Algorithm 1.2), we start at some initial guess xq and
iteratively take small steps of size ¢ in the direction of —V f(xy). In practice it is
common to stop the algorithm after a predefined number of steps or when a the
objective function has not decreased for some time. In the limit of infinitesimal
step size, there is a guarantee that the algorithm decreases the value of f at
each step, and a guarantee that the algorithm converges to a local minimum if it
doesn’t encounter a saddle point at which V f(x;) = 0. However, a bigger step
size allows the algorithm to move faster in the domain of f, possibly leading to
faster convergence when it does not lead to oscillations. Figure 1.3 gives an
example of gradient descent trajectory towards a local minimum.

Gradient descent often behaves poorly when the objective function has nar-
row valleys which cause oscillations. When confronted with such functions, a

27d order information from the Hessian, e.g. us-

possible approach is to use
ing Newton’s method (Nocedal and Wright, 2006) or Hessian-Free optimization
(Martens, 2010; Martens and Sutskever, 2011; Sutskever et al., 2011).

Surprisingly, gradient descent does not suffer from the curse of dimensionality
and could in fact be considered to benefit from many dimensions. Common
issues with gradient descent have to do with the gradient getting stuck in local
minima and on plateaus where the derivative is zero. However, in spaces of high
dimension, these issues are much less common because every dimension increases
the possibility of finding a way out.

Nonetheless, the gradient descent algorithm depends on the possibility to com-
pute the partial derivatives at each step. This is only possible when an explicit
formula is available for the objective function, which is not always the case.

2 Gradient ascent is defined identically except for a change of sign in the update.
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level sets of f

e —3 gradient update

Figure 1.3: Two possible gradient descent trajectories. In (a) the objective function is
well behaved which allows the gradient to move smoothly towards the optimum. In
(b) the gradient starts to oscillate as it falls into a narrow valley, thus converging more
slowly.

1.6 BLACK-BOX OPTIMIZATION AND STOCHASTIC OPTIMIZA-
TION

In many cases, the objective function is not given by a specific formula but is only
given in the form of an evaluation process. For example, if the objective is to find
the best number of pistons k in an engine to maximize the mileage per gallon
f(k), f does not have an analytical formulation. In this example, the objective
function presents the additional difficulty of having a discrete domain, namely
the set of positive natural numbers £ € IN*. In discrete optimization, necessary
conditions, sufficient conditions and gradient based algorithms are inapplicable.

Nevertheless, f can still be evaluated for any candidate solution that might be
considered. In the previous example, f(k) can be evaluated by actually building
an engine with k pistons and measuring the mileage per gallon empirically, clearly
a costly process.

A problem such as the one we just described is known as a black-box optimiza-
tion problem.

Definition 1.7. (black-box optimization problem). Let us consider the
minimization problem

in f(x),

where the only available operation on f is evaluation, namely obtaining
f(x) from any given value x.
Then the above problem is referred to as a black-box optimization prob-

lem.

15
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Algorithm 1.3 The uniform random search algorithm.

INPUT: f, a function.
OUTPUT: X, approximation of a global minimum.
VARIABLES: X;, candidate solution of the algorithm at time ¢.
BEGIN
xo ~ U(dom f)
X = Xg
until satisfied:
Xi+1 ~ U(dom f)
if f(Xt+1) < f(f() then X = Xy41
return best guess so far X.
END

The efficiency of black box optimization strategies is usually measured in terms
of the number of evaluations to reach a target value or reciprocally in terms of
the target value attainable for a given number of evaluations.

In this context, stochastic optimization algorithms propose to iteratively try
new candidate solutions based on a probability distribution on the domain of f.
Consider for instance the example of uniform random search which consists in
repeatedly sampling candidate solutions in a uniform distribution over dom f,
ie. x; ~ U(dom f), and returning the best candidate found so far (see Algo-
rithm 1.3).

Although this algorithm does not seem very efficient?, it has a number of
interesting properties. First, it is a global optimization method and never gets
stuck into local minima; second, there is a guarantee that each step can only
improve performance. Finally, this algorithm is capable of ignoring dimensions
which are not relevant to the problem and can therefore be much more efficient
than a grid search approach (Bergstra and Bengio, 2012).

An interesting improvement of this method concerns the possibility of adapting
the probability distribution based on past observations. In essence, the goal is
then to learn from previous attempts, where better values might be located in
the search space.

1.7 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms propose to optimize an objective function by using an
artificial evolution process to select relevant parameters. In this setting, param-
eter values are seen as organisms evolving in an environment which only allows
survival and reproduction of the fittest —the fittest being the best parameter
values according to the objective function. The algorithm starts with a set of
proposal solutions which is seen as a population of individuals. Based on the eval-

Statements about the superiority of a particular optimization method should always be consid-
ered in the light of the no free lunch theorem (Wolpert and Macready, 1997), which states that
no optimization algorithm is strictly better than another on all problems.
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e,
DN -

(d) generation n + 1.

Figure 1.4: Visualization of an evolutionary algorithm on a 2D toy problem. The dotted
lines represent level sets of the fitness function. At generation n (a), the best individuals
according to the fitness function are selected (b). These individuals are then the basis of a
reproduction process (c) leading to a new generation (d). The process can then continue
with step (b) for the new generation. Notice that generation n + 1 has progressed
towards better values of the fitness function.
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uation of these individuals according to the function f, the best individuals are
then selected for reproduction. Reproduction serves to generate new individuals
using a mutation operator, and sometimes a cross-over operator. Finally, the
new individuals replace the previous population thus creating a new generation.
This process is summarized in Figure 1.4.

The mutation operator is meant to propose variations of current individuals to
allow exploration of the search space over time. However, the mutation operator
takes the best individuals of the previous population as input, thus it should
only propose small variations, exploiting the fact that previously selected points
have -relatively speaking— a higher fitness. Preferring larger variations (to move
faster in parameter space) or smaller variations (to better exploit the fitness of
the best current individuals) is a recurring problem commonly referred to as the
exploration—exploitation dilemma.

The mutation operator can be interpreted as defining a neighborhood on indi-
viduals, where the function f is assumed to have small variations. Possible mu-
tations then correspond to nearby individuals and are thus guaranteed to have
similar f-values (if the assumption holds). This assumption that the f-values
do not differ to much after mutation is what makes the so-called exploitation
possible.

However, w.r.t. the algorithm, the important notion of neighborhood is on
populations, not on individuals. If the reproduction step creates a few unfit indi-
viduals, they will not be selected for reproduction and therefore cannot impact
later generations. What matters is that the reproduction process generates a
population close to the previous one as a whole.

The mutation operator implicitly defines a neighborhood on populations by
allowing a small variation of each individual. However, there are some settings
where nearby populations can also be obtained by allowing the combination of
several individuals into a new one. when such an operator exists, it is called a
cross-over operator.

This implicit definition of neighborhood in parameter space makes evolution-
ary algorithms particularly efficient when the parameter space is discrete such as,
sequences, trees or graphs, where the usual notion of distance is rarely helpful.

However, despite their effectiveness, evolutionary algorithms have long been
criticized for their lack of theoretical justification. A point which is addressed in
the next section.

1.8 EDAs

Estimation of Distribution Algorithms (EDAs) are mathematically principled evo-
lutionary algorithm which do away with the biological analogy. As the name
suggests EDAs are based on an unsupervised learning topic: density estimation,
which will be reviewed thoroughly in chapter 3. EDAs achieve state of the art
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performance in the black-box optimization setting where the goal is to optimize
a function f without any knowledge of how f computes its values.

EDAs propose to represent individuals as samples from a probability distri-
bution: the so called proposal distribution. A population is then a set of inde-
pendent and identically distributed (iid) samples from this distribution. In the
preceding section, we saw that the mutation and cross-over operators served to
define small possible movements around a current population. The EDA approach
has the advantage of transforming the problem of moving towards better popu-
lations in the input space —which may not be well behaved— to a proxy problem
which is usually well behaved: moving towards better proposal distributions.

Formally the algorithm generates a new population by taking p samples from
a proposal distribution Py (x). These p individuals are then ranked according
to their f-values and the ¢ best individuals are used to update the proposal
distribution with a log-likelihood gradient ascent step, i.e.

Pyee1(x) = Pye(x) + 6tV log Pye (x)

where 0t is the step size of the gradient ascent update. The algorithm can then
run for a number of steps, until a satisfactory solution is found. Figure 1.5 gives
an example of EDA update for a Gaussian proposal distribution.

Although the purpose of the algorithm is to maximize E [f(x)], it consists in
the maximization of a surrogate objective: E [w(x)], where the weight function
w(x) is equal to 1 for the o best individuals, and 0 otherwise. This has the
advantage of making the approach invariant w.r.t. monotone transformations of
the objective function f.

The maximization of the surrogate objective E [w(x)] is done with gradient
ascent:

VE [w(x)] = V ; w(x) Pyt (x)
om f

= / w(x)V Pyt (x)
dom f

— / V log Pyt (x)w(x) Pyt (x)
dom f

where taking o samples from w(x)Py:(x) can be done by taking samples from
Pyt (x) and keeping only the o best according to f.

This general framework can be adapted to optimize functions in R? e.g. with
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2008), or
in discrete spaces such as {0, l}D with Population Based Incremental Learning
(PBIL) (Baluja, 1994). It has the advantage of allowing a move towards several
proposal solutions at once, contrary to methods such as hill climbing. The
Population Based Incremental Learning (PBIL) algorithm for optimization over
{0,1}? is given in Algorithm 1.4.
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Figure 1.5: The steps of an EDA given a fitness function (a) and a Gaussian proposal

distribution at time ¢ (b).

First, samples are drawn from the proposal distribution

(c). The o best samples are then selected according to their f-values (d). Finally, the
likelihood of the selected samples w.r.t. the parameters (e) can be increased with a step
of log-likelihood gradient ascent leading to a new proposal distribution at time t + 1 (f).
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Algorithm 1.4 The Population Based Incremental Learning (PBIL) algorithm.

INPUT:

OUTPUT:
VARIABLES:

f, a function with dom f = {0,1}7.

N, number of proposal samples.

Ng, number of samples to select at each step.
0t, the step-size.

m, the probability of a mutation.

«, the mutation shift.

X, approximation of a global minimum.

(pt,1,pt1,---,Pe.p), the parameters of an independent
Bernoulli proposal distribution at time ¢?:

Pet (X) —_= pfj-(l _pt’l)(lfﬁl) X oo X pf%(l _pt,D)(lixD)
for p;; the probability that z; =1 at time ¢.

x(l),...,x(N) the proposal samples at time ¢, not to be
confused with zj,...,rp the components of a vector x.
BEGIN
1 1
Pojs---5POD ‘= 55---575

until satisfied:
xM ~ Py (x),...,xN) ~ Py (x)
rank samples ensuring xM << x)
# update probability vector
for ¢ from 1 to Nj:

for j from 1 to D:

Dt+1,4 = DPt,i X (1 — (5t) + .’EEU X Ot

# mutate probability vector
for j from 1 to D:

if U([0;1]) < m:
then pip14:=pir1; X (1 —a) +U({0,1}) x «

return best solution X := X(l).

END
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SUMMARY

An optimization problem consists in finding parameters which minimize or
maximize an objective function.

In the general case, a function can have several local optima or plateaus.

High dimensional spaces behave in non intuitive ways which can dramati-
cally affect optimization performance.

Any local optimum of a convex function is in fact a global optimum.

Local optima can sometimes be found analytically using properties of the
gradient and the Hessian.

Gradient descent is an iterative optimization method which follows the
direction of steepest descent at each step and can benefit from high dimen-
sional spaces.

In black-box optimization the landscape of the objective function cannot
be studied analytically and can only be discovered through evaluation.

Evolutionary algorithms are optimization methods particularly adapted to
the black box scenario, which involve moving a population of candidate
solutions towards better fitness.

Evolutionary algorithms allow the practitioner to choose a useful implicit
metric with the mutation and cross-over operators.

EDAs are a mathematically principled form of evolutionary algorithm which
move towards better solutions in parameter space by updating a proposal
distribution.

We now turn to ML and show how learning problems can be formally defined
with the help optimization.
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FROM OPTIMIZATION TO MACHINE
LEARNING

Optimization methods give practical means to minimize or maximize objective
functions. An ML problem can then be posed from an optimization perspective
by choosing a suitable objective function. The optimization procedure is then
responsible for maximizing the fitness of a model for a specific task.

This approach is particularly suited to supervised learning problems where
the objective is to learn a function f* : x — y from a set of training examples
{(x1,¥1),--- (xn,yn~n)}. In this case, the objective function can simply be de-
fined as the average error of the model over this set of examples. An optimization
method can then be used to find the model which minimizes the error.

We now give a presentation of supervised and unsupervised learning problems
and discuss the question of generalization. Then, we study several examples: lin-
ear classification, the K-means algorithm and polynomial regression. This leads
us to pose the questions of hyper-parameter selection and of feature extraction.
Finally, we present the semi-supervised learning problem and show how it can
be used to achieve better performance in supervised settings with the help of
unsupervised data.

2.1 SUPERVISED AND UNSUPERVISED LEARNING

In supervised learning, the objective is to approximate an unknown function
f* from a number of observations (x,y) with the assumption that y = f*(x).
These observations are called learning examples and are usually compiled into a
set D ={(x1,y1),---(xn,yn)} called a dataset.
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Definition 2.1. (supervised learning problem) Consider a set D =
{(x1,¥y1),...(xn,¥yn)} and a class of functions . The problem of find-
ing a function f € H matching inputs x; to their expected output y; as
in
f (xi) =i

is called a supervised learning problem. The set D is referred to as the
training dataset or simply training set. The class of function H is called
the hypothesis space. The expected output y is often referred to as the
label or the target.

Supervised learning problems arise in many settings but can often be reduced
to either a classification problem when the label y is a natural number y € IN
or, a regression problem when y is a real number y € R”. We now define these
two problems formally as optimization problems.

Definition 2.2. (classification problem) Classification concerns the case
when the label y can be interpreted as a class variable and y € IN. The
loss to minimize is usually the misclassification rate, i.e. the 0-1 loss:

f=argmin Y Iy # f(x)}

JER  (xy)eD

where 1 is the indicator function equal to 1 when the argument evaluates
to true and 0 otherwise.

Definition 2.3. (regression problem) Regression concerns the case when
the target variable y is in R¥ and the loss to minimize is usually the
average distance between y and f(x), i.e. the Mean Square Error (MSE):

PN

f=argmin > [y- f(x)]?

JER (xy)eD

In unsupervised learning we consider a dataset D = {x1,x2,...,%xxy} where there
is no label. The goal can be to better understand the structure of the dataset
D or, to learn new representations and improve performance in a supervised
setting.

Clustering, dimensionality reduction, and density estimation are common un-
supervised learning problems and are described below. Note that we do not
give a complete and formal definition of these problems, but rather try to give
examples of the corresponding optimization problems.

CLUSTERING The objective of a clustering algorithm is to group similar ob-
servations into clusters, such that points inside a cluster are similar to each
other. Formally, a clustering algorithm returns a partition of observations into
disjoint sets Cy, . ..,Ck called clusters. The model is often given by a set of points
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{c1,c2,...,ck} called exzemplars or centroids such that each c; is representative
of the elements in the cluster C;. The objective is then e.g. to minimize the
average distance from points in a cluster to their representing centroid, i.e. :

K
{€1,¢2,...,&x} = argmin ZZHX—CZH

{er,e2,- ek}t =1 xeg;

DIMENSIONALITY REDUCTION  The purpose of dimensionality reduction is to
find a representation of lower dimensionality for the dataset D. This can be
done in several ways, for instance by assuming that the training samples are
all on a sub-manifold of the input space or by trying to find a variable y with
dimy < dim x such that x can be reconstructed from y, thus trying to solve the
following optimization problem:

N
{91.92,---. 98}, f = argmin = D |xi — f(yi)
{yiy2,yn}hfeEM ;=1

Note that the optimization problem is then on the function f and the values
Y1,¥2,...,yYN Which are not provided.

DENSITY ESTIMATION  Given the training dataset D = {x1,X2,...,Xxn}, the
goal of density estimation is to find a probability density which could have gen-
erated the dataset, often with the assumption that the training samples are iid.
This is usually done with the maximization of the log-likelihood of D under a
parametrized family of distributions pg(x) i.e. choosing ps(x) such that

0 = arg max Z log pp(x).
xeD

Density estimation will be reviewed in more detail in Chapter 3.

2.2 GENERALIZATION

In the above problems, the hypothesis space H plays an important role. Consider,
in a supervised setting, the function f such that f(x) =y for (x,y) € D and
g(x) = 0 otherwise. Clearly if f is in H, it is optimal for any classification or
regression problem according to Definitions 2.2 and 2.3. However, this function is
not a desirable solution. Indeed, if a model is trained using examples (x,y) € D,
the objective is not to have a model that performs well only on these given
examples. Instead, we want a model to gemneralize from the examples in the
dataset, and give accurate values y for unseen points x which were not used
during training.

Consequently, the hypothesis space should not contain functions such as the
one presented above where the points in the dataset can be learned exactly at
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A — training error

---- testing error

Y

model complexity

Figure 2.1: Expected variation of the training and testing error with increasing model
complexity.

the expense of generalization, but should represent a hypothesis on the form of
possible solutions by containing only functions which have a credible behavior.
A common hypothesis for instance is that of smoothness, i.e. f is assumed to
have similar values for inputs which are close to each other.

When a model matches the training examples too closely at the expense of
generalization, it is said to be over-fitting. Over-fitting results from having a
hypothesis space too big for the dataset and containing spurious functions such
as the one given above. Conversely, when the hypothesis space is too small and
a model is unable to capture important variations of the dataset, we say that
the model is under-fitting.

It seems important to point out that learning without generalization is just a
method for storing information and therefore, is not learning at all: the purpose
of learning s generalization. Accordingly, we cannot assess performance from the
loss on the training dataset which can be arbitrarily low when the hypothesis
space is too big: we must use an other disjoint dataset. Thus, it is usual to
have two datasets: a training set on which to minimize the loss during training,
and a disjoint testing set to evaluate the final performance of a trained model.
Figure 2.1 gives an account of how training error and testing error are expected
to vary when model complexity increases.

2.3 SUPERVISED EXAMPLE: LINEAR CLASSIFICATION

Let us now consider a simple classification problem on the dataset in Figure 2.2.
The dataset has two classes and the input x is in two dimensions. We use X
to represent points belonging to the first class and o to represent points in the
second class.



Figure 2.2: A classification dataset with two classes.
separating hyperplanes.

The objective in a classification problem is to find a separating surface which
places points from one class on one side of this surface, and points from the
other class on the other side. Note that the dataset of Figure 2.2 is linearly
separable meaning that it is possible to find a hyperplane (in this case a line)
which separates the target classes. Not all datasets are linearly separable and

2.3 SUPERVISED EXAMPLE: LINEAR CLASSIFICATION

class 0

class 1

Ty =—x; +8

Ty =—10z; +45

Figure 2.3 gives examples of separating surfaces for such datasets.

Figure 2.3: Three linearly non-separable classification datasets and a possible separating

surface.

0.9 0.9 ‘ 0.9 ‘
(@]
0.8 . 408 i R 408
0.7} 107 0.7
X
0.6 0.6 x 10.6
0.5 0.5F X x 105
X
0.4 0.4 4 0.4
X
0.3 0.3 = 0.3
0.2 02 o 102
0.1 101} 101
@] o) (@]

O'%.O 0‘.2 O‘.4 0‘.6 0‘.8 1.00'%.0

. . . . 0. . . .
0.2 0.4 06 0.8 1.0 %.0 0.2 04 06 08 1.0

The graph shows two possible

27



28

FROM OPTIMIZATION TO MACHINE LEARNING

Because our dataset is linearly separable, we can then resort to a linear model
to perform classification!,e.g. :

f(x)=wlx+a

where the parameters of the model are a and w. Note that even though we are
in a binary classification problem, f(x) is in R and not in {0,1}. In practice,
the classification decision is made by using sign(f(x)) instead of f(x) itself.
The real value can then be seen as a measure of confidence in the result. With
the above model, it is common to optimize a proxy of the problem given in
Definition 2.2, i.e using the MSE which is continuously differentiable instead of
the misclassification rate:

The problem can then be solved with gradient descent (see Chapter 1).
Figure 2.2 gives linear separation surfaces which are examples of solutions to
the above optimization problem.

2.4 UNSUPERVISED EXAMPLE: CLUSTERING AND K-MEANS

The K-means algorithm is a clustering algorithm in which centroids c; are simply
the arithmetic mean of points in the cluster C;. Accordingly, the loss to minimize
is the average distance of a point x to the nearest centroid:

K
L) =) > lx—cil.
=1 x€eC;

The K-means algorithm only requires a number of clusters K and random
initial centroids as input. It then alternates between two steps:

1. Place in cluster C;, the points nearest to the centroid c;.
2. Set each centroid c¢; to the arithmetic mean of the points in cluster C;.

Algorithm 2.1 gives the complete algorithm and Figure 2.4 shows an example of
convergence on a toy dataset.

Although we show an example of convergence, the K-means algorithm does
not always converge to an appropriate solution as it can converge to a local
minimum.

When confronted with a new dataset, it is often a good idea to check linear separability with
a linear model before trying to use more complex models.
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Algorithm 2.1 The K-means clustering algorithm.

INPUT: K, the number of clusters.

{c1,co,...,cKx}, initial set of centroids at step O.
OUTPUT: {c1,¢c2,...,cx}, final set of centroids.
variAaBLEs: C ={(C;,Cy,...,Cx}, the set of sets C; containing the

points closest to c;.

BEGIN
until satisfied:
for 7 from 1 to K:
Ci:={x € D|c; is the centroid closest to x}
for 7 from 1 to K:

_ 1
Ci = Kj[ijeciX

return {cj,Co,...,Cx}.
END
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Figure 2.4: Convergence of the K-means algorithm on a toy 2-dimensional clustering
dataset with K = 3. The dataset set is given in (a). The centroids e,e and e and the
points closest to them (x,x and x) are represented with the same color in steps 1 to 3.
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Figure 2.5: Example of a regression dataset: a noisy version of the function sin(z) + %x

The K-means algorithm can be suited to extract features for classification,
however probabilistic models can be much more powerful to capture complex
structure in data.

2.5 SUPERVISED EXAMPLE: POLYNOMIAL REGRESSION

Let us now consider a simple regression problem on the dataset of Figure 2.5. The
problem consists in finding an approximation of the function f(z) = sin(z) +
given observations of f(z) perturbed by a small Gaussian random noise. Notice
that the observations are split in two datasets: the training set for learning
parameters, and the test set to evaluate the quality of the resulting model.

In order to solve this problem, we propose to use polynomial regression, that
is to try and fit a polynomial of fixed degree K to the training points. The model
can be defined by:

X K
flx) = Z apxk
k=0

where (ag, . ..,ax) are the parameters of the model.
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(c) polynomial fit of degree 5. (d) polynomial fit of degree 9.

Figure 2.6: Best polynomial fits for several degrees on the example regression dataset.

(a) gives a case of under-fitting. (b) and (c¢) are examples of what would be considered
good fits. In (d) we see an example of over-fitting.

Learning then consists in an optimization problem where the goal is to find
the parameters aj that minimize the MSE2, namely find f such that

2

K
f = arg min Z [y — Z akxkl
k=0

(a0,.ax) (z,y)eD

Depending on the degree we chose for the polynomial, Figure 2.6 shows that
the results can be very different. When the degree is too small, we can see an
example of under-fitting: the model is too simple to represent the target function
accurately. On the other hand, if the degree of the polynomial is too large, we
risk the problem of over-fitting: the model can fit the training points more closely
but points in the testing set are not well approximated anymore.

There are many readily available algorithms capable of solving this kind of problem. Here we
use the polyfit function of the numpy python package.
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Trying to choose the best degree K for the polynomial, consists in a secondary
optimization problem. In this setting, K is a special kind of parameter, i.e. a
hyper-parameter.

2.6 MODEL SELECTION

A learning algorithm consists in an optimization algorithm applied to the param-
eters of a model in order to minimize a specific loss. Nonetheless, it is often the
case that the learning algorithm itself depends on some parameters being set, as
e.g. the complexity of the model (the degree K in the previous example) or the
learning rate of a gradient descent procedure.

Such parameters which are outside of the main optimization procedure are
called hyper-parameters. Accordingly, the problem of choosing suitable values
for the hyper-parameters is called hyper-parameter selection or model selection
and consists in an optimization problem in which learning models is considered
as a sub-problem.

Although we need to optimize the hyper-parameters w.r.t the performance on
some dataset, we cannot choose model complexity according to the training set
because it would lead to poor generalization. In our example, choosing the best
degree K according to the training set would inevitably lead to choosing higher
degrees for the polynomial, even though they do not make for a better fit on the
testing set.

However, the testing set is meant to be used for evaluating the performance of
a model on unseen data and cannot therefore be used during hyper-parameter
selection. If it were, the optimization process would choose values particularly
suited to maximize performance on the test set and thus artificially increase the
test set performance.

To solve this problem, the solution usually retained is to use a third dataset
called a validation dataset to optimize the hyper-parameters. The testing error
can then be used safely to evaluate performance.

2.7 (CHANGING REPRESENTATIONS

In the preceding problems, we have seen how to learn a function f* : x — y
from examples. However, when the relation between the input x and the label
y is too complex to be captured by simple models, we are faced with both a
generalization problem and a computational problem. Generalization becomes
difficult because large models are more prone to over-fitting and optimization
becomes more expensive because it takes place in a high dimensional space.
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(a) A non linearly separable dataset. (b) Possible feature space representation.

Figure 2.7: Illustration of the simplification power of a feature space. Given the non
linearly separable classification problem (a), the projection ®(z,y) = (z,y,2) where 2
is a feature such that z = exp [—(x2 + y2) / 2] makes the problem linearly separable in

(b).

2.7.1 Preprocessing and feature space

A solution, instead of trying to increase model complexity, possibly at the ex-
pense of generalization and computational cost, is to create a vector of features
P(x) = (p1(x),...,0x(x)) as a pre-processing step, which are then meant to
be used as input of the learning procedure. The objective of the new supervised
learning problem is then to approximate the function f*: ®(x) — y. If the fea-
tures ¢;(x) extract relevant information from the raw data x, it can result in a
simplified problem which can hopefully be solved using a simple model. The fea-
ture extraction function ® can be seen as projecting data into a feature space, i.e.
representing data so as to make the euclidean distance between training exam-
ples dg(®(x), P(x’)) more meaningful than in the input space. Figure 2.7 shows
how such a projection can make a non linearly separable problem separable.

2.7.2 The kernel trick

In the illustration above, the projection ® is easily computable which allows us to
show the data in the feature space. However, most linear methods do not require
the exact coordinates ®(x) of points in the new feature space but only rely on
the inner products (w,x) between features w and input vectors x. Whereas the
usual inner product is taken in the input space where (w,x) = w’x, the so
called kernel trick proposes to directly define an inner product K (w,x) without
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z3

Figure 2.8: Tllustration of a two dimensional manifold immersed in 3D space (a). The
same two dimensional manifold immersed in 2D space (b).

explicitly formulating the feature space to which it corresponds. Common choices
of kernels include the polynomial kernel:

K(w,x) = (wix+c)? ford >0

and Radial Basis Function (RBF) kernels, such as the Gaussian kernel:

lw —x|*
K(w,x) = exp l—wl
Figure 2.7 can be interpreted as showing the value of the RBF kernel K(x,0)
corresponding to the projection of data points x on the zero vector in the RBF
feature space.

Note that the RBF kernel corresponds to a projection into a feature space of in-
finite dimension which may seem counter-productive. However, high dimensional
spaces make it much easier to find a linear separating surface which simplifies
the problem considerably.

2.7.3 The manifold perspective

Under the manifold hypothesis, the data is assumed to lie on a manifold (usually
low dimensional) immersed in the input space. Figure 2.8(a) gives a representa-
tion of a two dimensional manifold in 3D space. Instead of considering the coor-
dinates of points x in the original input space, an interesting approach is then to
try and find a feature space which recovers the structure of this manifold, i.e. to
find features ®(x) = (¢1(x),...,dx(x)) which correspond to the coordinates
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of x inside the manifold. This search for a good coordinate system is implicitly
linked to the notion of metric. Namely, if the features & represent the coordi-
nates of points inside the manifold, the Euclidean distance || ®(x;) — ®(x2)|| of
two points in this new coordinate system should be more informative than the
Euclidean distance ||x; — x2|| in the input space.

Although the manifold perspective usually considers low dimensional mani-
folds immersed in a high dimensional space, the idea can also be applied to
consider manifolds of same (or even greater®) dimension than the input. Fig-
ure 2.8(b) shows how the manifold perspective can be useful to understand the
impact of metrics in this setting: even though it shows a two dimensional man-
ifold in 2D space, the Euclidean metric in the input space does not reflect the
structure of the manifold, especially in the region where it folds. By using fea-
tures, it may be possible to recover a more suitable coordinate system, and thus
a better metric.

2.7.4 Unsupervised representation learning

Although the projection into a feature space can be a very powerful tool, inter-
esting features are often found with hard work, sometimes after years of research.
Nevertheless, it is sometimes possible to learn interesting features with an un-
supervised algorithm, i.e. with unsupervised representation learning, a central
point of this thesis. Assuming a suitable set of features can be learned, the final
supervised problem becomes simpler.

Putting aside the usually simple final problem, one could argue that learning
representations only transforms a supervised learning problem into an equally
difficult unsupervised learning problem. However, this transformation has sev-
eral benefits.

BETTER GENERALIZATION In any practical application, the input variable x
is expected to carry a lot of information about itself and only little information
about the target variable y. Accordingly, an unsupervised learning problem on
the variable x has access to a lot of information during learning and is thus
less prone to over-fitting than the supervised learning problem on x and y. Ad-
ditionally, once a representation has been obtained with unsupervised learning,
the final supervised learning problem can be solved with a small number of
parameters which means that over-fitting is, again, less likely.

ACCESS TO MORE DATA WITH SEMI-SUPERVISED LEARNING Learning repre-
sentations with an unsupervised learning algorithm has the advantage that it
only depends on unlabeled data which is easily available in most settings. Be-
cause more data is available, more complex models can be learned without an
adverse effect on generalization. In essence, the complete learning procedure

3 Unfortunately, the author was unable to make a nice figure illustrating this fact.
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(a) A semi-supervised dataset. (b) Corresponding supervised dataset.

Figure 2.9: Example of the influence of unlabeled data in the semi-supervised setting.
The unlabeled samples are represented with o, and the labeled samples with e and e
depending on their class. The unlabeled data in (a) gives a good picture of the data
distribution and may allow more complex models to be learned than in (b) where there
are too few samples to find a suitable separating surface.

can then leverage the information contained in an unlabeled dataset to perform
better on a supervised task. This approach is known as semi-supervised learning.
Formally, a semi-supervised learning problem given two datasets

D, = {(x1,y1),---(x0,yL)}
andDU = {XL+1,...,XN}

consists in finding a function f such that f(x;) ~ y; when a label is available.
Figure 2.9 gives an illustration of the usefulness of unlabeled data to solve a
supervised task.

SPARSE AND DISTRIBUTED REPRESENTATIONS  Although it is hard to define
what constitutes a good representation in general, sparse and distributed repre-
sentations seem to have interesting properties and have been the subject of a lot
of attention in recent years. Formally, a sparse representation is such that the fea-
ture vector ®(x) contains many zeros. The sparsity is often measured with the
Ly norm which counts the number of non-zero elements. When trying to learn a
representation with an unsupervised learning algorithm, sparsity can be seen as
a way to impose a constraint on the hypothesis space H, reducing the size of the
search space and therefore improving generalization. Distributed representations
concern the case where each input is represented by several features. Although
this does not result in a reduced search space, the representation of input pat-
terns according to several distinct attributes allows for non-local generalization.
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Figure 2.10: Examples of sparse and distributed representations. A sparse non-

distributed representation can only have one non-zero element for any input vector
(left). A non-sparse distributed representation uses all variables to represent an input
(center). A sparse distributed representation can use several non zero elements but must
have many zeros (right).

Namely, let us consider that a set of features ®(x) = (¢1(x),...,0x(x)) has
been obtained with an unsupervised algorithm. Even if an input x is not close
to any training example, it may still be interpreted as an unseen combination
of existing features. An illustration of sparse and distributed representations is
given in Figure 2.10.

Interestingly, training sparse distributed representations on natural images®

seems to result in features which have some resemblance with the neuron re-
ceptive fields of a primate’s visual cortex (Olshausen and Field, 1996, 1997).

Therefore, sparse distributed representations may have (besides their theoretical

benefits) the advantage of representing information in a manner similar to ours.

4 The so-called natural image distribution usually corresponds to images found in the outside
world, i.e. images of trees, plains and lakes, but also animals, buildings, planes, boats etc.
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SUMMARY

ML problems can be posed as optimization problems where the objective
function represents an error or performance measure on a dataset of train-
ing examples.

The objective of classification is to minimize the misclassification rate. The
goal of regression is to minimize the MSE.

The fundamental problem of ML is generalization to unseen examples.

ML relies on models to represent assumptions about the regularities of a
dataset.

Generalization is achieved by controlling model complexity to avoid under-
fitting or over-fitting.

K-means is a clustering algorithm which alternates between an update of
clusters given centroids and an update of the centroids given clusters.

Model selection can be seen as a secondary learning problem where the ob-
jective is to find hyper-parameters which help maximizing generalization.

Supervised learning can benefit from a new representation which corre-
sponds to a mapping of the input to a new feature space.

A new feature space can be obtained without human intervention by learn-
ing representations with an unsupervised algorithm.

Learning representations with an unsupervised algorithm has several ben-
efits w.r.t. generalization.

Learning sparse representations may improve generalization if we can as-
sume that inputs can be represented by a limited number of features.

Learning distributed representations may allow for non-local generalization
if each example can be interpreted as combining several features.

Combining sparse and distributed representations leads to features which
are similar to those found in primate brains.

We now consider the probabilistic approach and show how it applies in the ML
setting.



LEARNING WITH PROBABILITIES

We have seen how a learning algorithm can be posed as an optimization one.
However, learning from data benefits greatly from a probabilistic perspective.
Namely, Bayesian probability theory gives a sound mathematical framework for
updating models based on data observations.

In this chapter, we start by giving a quick review of basic notions in prob-
ability theory and then present how to estimate distributions in the Bayesian
framework. This leads us to review the concepts of maximum likelihood and
maximum a posteriori. We give an example in the case of the Gaussian family
and give the example of polynomial regression a probabilistic perspective. This
theoretical framework then allows us to introduce the possibility of learning rep-
resentations with probabilistic models. We describe the Expectation Maximiza-
tion (EM) algorithm and how it can be applied to Gaussian mixtures. Finally,
we revisit optimization by considering the specific problem of maximizing the
likelihood of a probabilistic model and show how a suitable metric (the Fisher
metric) can lead to the natural gradient which improves the ordinary gradient
descent procedure by making it invariant w.r.t. parametrization.

3.1 NOTIONS IN PROBABILITY THEORY

A probability can be seen as a number between 0 and 1 indicating a degree of
belief. This is referred to as the Bayesian view, in contrast with the frequentist
view in which a probability represents the average number of times an event
occurs, in the limit of infinitely many experiments. In support of the Bayesian
view, Cox (1946) argues that any system of beliefs consistent with common sense
must satisfy the rules of probability which we state informally in table 3.1.

Note that the rules of frequentist and Bayesian probabilities are the same,
but the Bayesian interpretation has the advantage of being much more widely
applicable, and without the need for complicated arguments to justify why the
question concerns a repeatable experiment.

Consider for instance the event A=“The world will end in 2012”. It is quite
natural to consider the belief we have in the realization of this event as a prob-
ability. We can then reflect on P(A) using the rules of probability to connect
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BASIC NOTIONS

P(A[B)

AND NOW A

represents the belief that some event A
will happen.

represents the belief that A will not
happen.

represents impossibility of A.
represents certainty of A.

represents the belief that A and B will
both happen.

represents the belief that either A or B
will happen (possibly both).

represents the belief that A will happen
given that B has happened.

FEW RULES

P(A)=1-P(A)

P(ANB) = P(A)P(B) if and only if
A and B are independent .

P(AUB) = P(A)+ P(B)— P(ANB).
P(ANB) = P(A|B)P(B)

Complementary event.

Independent events

Union of events.

Conditional probability.

RANDOM VARIABLES

represents the probability that a
random variable X will take the value
x.

is a shorthand for P(X = x) when
there is no ambiguity on the random
variable.

is called the joint probability of X and
Y. It can be thought of as

P(X =zNnY =y).

is a shorthand for P(z = X,y =Y)
when there is no ambiguity on the
random variables.

RULES ON RANDOM VARIABLES

P(z,y) = P(x)P(y) if and only if X
and Y are independent.

P(z,y) = P(zly)P(y) = P(ylz)P(z)

Pla) =, P(z.1)
Ple) = TR

Independent random variables.

Product rule.

Sum rule.

Bayes’ rule.

Table 3.1: Basic notions and rules of probability theory.
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it to other events, maybe considering conditional probabilities such as P(A|B)
with “North Korea will test a nuclear delivery system in 201”. In the frequentist
interpretation, it is difficult to see A or B as repeatable events and therefore
to study them with a probabilistic perspective without an abstruse argument
considering Quantum theory and many universes.

Importantly, the world did not end in 2012 and when the frequentist can only
say that we observed one of two possible outcomes, the Bayesian can now assert
with confidence P(A) = 0. In the Bayesian framework, it is natural to update
our beliefs when confronted with experimental evidence, i.e. to learn from data.
We now present how to leverage this possibility in the context of ML.

3.1.1  Sampling from complex distributions

Learning with probabilities often involves complex distributions in high dimen-
sional spaces which makes them difficult to approach analytically. Nevertheless,
by taking samples, it becomes possible to estimate almost any quantity of in-
terest empirically (Robert and Casella, 2005; Neal, 1993). Most notably, these
quantities of interest are often expressed as expectations:

E,p) [P(2)] = /Xh(:c)p(a:)d:c

where € X, and = ~ p(x) represents the fact that z is a sample from the
distribution p. Using iid samples x1,x2,..., 2N, the above expectation can be
estimated with the average of h(x):

N

By I0(2)) = 5 3 ()

However, taking the required samples in the distribution p can be difficult. Even
when the density p(x) is tractable, there is often no easy way to take samples from
p'. Tt is then interesting to temporarily circumvent the problem. A first approach
is to take samples from a different distribution ¢ using a selection or weighting
scheme to ensure that the resulting samples are distributed according to the
target distribution p, the principle behind rejection sampling and importance
sampling. A second possibility is to use an Monte Carlo Markov Chain (MCMC)
method such as Metropolis-Hastings or Gibbs sampling which relies on a Markov
chain to produce samples.

Rejection sampling, importance sampling, the Metropolis-Hastings algorithm
and Gibbs sampling are presented below.

In many cases, the practitioner must deal with the additional difficulty of only knowing p(z)
up to a constant.
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p(x)_ ! ! !
7 =
accepted samples o . . LI ap ae
0.41-| rejected samples = B T B e m .

Figure 3.1: In rejection sampling, taking a sample z from ¢ and a sample u from
U[0; Mq(z)], results in a uniform distribution of points (z,u) below the graph of Mq(z).
Samples from p can then be obtained by accepting only the samples such that u < p(x).

REJECTION SAMPLING Let us suppose that the distribution p is bounded by
Mgq for M a constant and ¢ some distribution from which samples can be taken
easily. We can then generate samples (x,u) from the joint distribution U (X x
[0; Mg(x)]): taking a sample x from ¢, and then taking a sample u in [0; Mg(x)].

These samples correspond to uniformly distributed points below the graph of
Mq(z). The distribution p can then be recovered by accepting only samples such
that u < p(z). This process is explained in Figure 3.1 and given in Algorithm 3.1.

If the envelope Mq(z) is too far from p(x), a large number of samples from
q(x) will be needed before one is accepted. Thus the efficiency of rejection

Algorithm 3.1 The rejection sampling algorithm.

INPUT: p(z), the target distribution.
q(x), an instrumental distribution easy to sample from.
M, a constant such that Vz € X,p(z) < Mq(z)

OUTPUT: T, a sample from the distribution p.
VARIABLES: u, an auxiliary random variable.
BEGIN
until a sample is accepted:

x ~ q(z)

u~U[0; Mq(z)]

if u < p(x) accept the sample x

otherwise reject the sample
END
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number of accepted samples
total

sampling depends on whether the acceptance ratio
be kept sufficiently high.

Furthermore, rejection sampling does not behave well in high dimensional
spaces. Remember that in high dimension, a hypercube of side 0.99 only contains
a small fraction of the volume of a larger cube of side 1. Similarly, in high
dimensional spaces, the density p(z) tends to represent only a small fraction of

can

the envelope Mq(x) leading to very low acceptance rates.

IMPORTANCE SAMPLING [t is possible to sample from any distribution without
rejecting samples, using a sampling distribution ¢ and using the importance
sampling identity, i.e.

[ r@pr = [ a2 gy

X X q(z)

Accordingly, an estimate for the above expectation can be obtained by taking iid
samples x1,x2,...,xN from g and computing:

N

Zh(w)p(—w

i=1 g(z

~— | —

where % are the importance sampling weights.

Importance sampling has the advantage of not rejecting any sample, therefore
all samples are used as part of the estimation. However, if the sampling distri-
bution ¢ does not fit p closely enough, important regions of p can be completely
ignored and lead to an infinite variance of the estimator.

Although importance sampling can be very efficient, finding a suitable dis-
tribution ¢ which is both easy to sample from and close enough to the target
distribution f is sometimes impossible which is why more complex sampling
schemes are sometimes needed.

METROPOLIS-HASTINGS ALGORITHM  Let us consider Markov chains which
admit a unique stationary distribution 7. By designing a Markov chain such
that 7(z) = p(z), we can start at a random position x(*) and run the Markov
chain until it converges to its stationary distribution to produce a sample from
p(z). f

To ensure that w(z) = p(z), it is sufficient that the transition probabilities
T(x — 2’) from one state to the next satisfy the condition of detailed balance,
ie.:

Vo, Vo', p(2)T (z — 2') = p(2')T (2" — x)

where T'(x — 2') is the transition probability of the Markov chain from state
x to state /. A Markov chain which satisfies the above property and is er-
godic can be proved to converge to the distribution p(z) as time goes to infinity.
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Algorithm 3.2 The Metropolis-Hastings algorithm.

INPUT: p(x), the target distribution.
T(x — x'), the proposal probability of jumping from
state x to state x’.
X(U), the initial state of the Markov chain.
B, a burn-in period.
K, a number of iterations between collected samples.

OUTPUT: S =x1,X9,...,XN, a set of samples from the distribution

p.
VARIABLES: x(t), the state of the Markov chain at time ¢.
BEGIN
for t=0 to B+ Nx K —1:
while X' is not accepted:
x' ~ T(x) — x')
a~U0;1]
/ /
if a < p(X)T(x' — x) : accept x
p(x)T'(x — x’)
else: reject x'
x (1) . —
if t> B and ((t—B) mod K) =0: §:=SuU{xtV}
return S
END

The Metropolis-Hastings algorithm which is based on this principle is given in
Algorithm 3.2.

In practice, the convergence to p as time goes to infinity means that a
Markov chain must run for many iterations before a sample can reasonably be
assumed to be distributed according to the target distribution. Note that, even if
gD (t+2) 2 (tHN) are theoretically better samples in terms of convergence,
nearby samples are not independent. This means that it is necessary to wait a
number of steps between each sample to ensure that the Markov chain has enough
time to produce independent samples.

Despite the fact that only a fraction of the algorithm’s iterations actually result
in a valid sample, the somewhat high computational cost is counterbalanced by
the fact that the Metropolis-Hastings algorithm does not suffer from the curse of
dimensionality. This makes the Metropolis-Hastings algorithm and its variants
especially useful when confronted with complex distributions in high dimension.

GIBBS SAMPLING When trying to sample from a joint distribution p(x) =
p(z1,22,...,xp) it is sometimes easy to sample from the conditional distribu-
tions p(x;|z1,x2,...Ti—1,Ti+1,...,2p). The Gibbs sampling algorithm is a vari-
ant of the Metropolis-Hastings algorithm which proposes to repeatedly sample
each variable given the others. This results in a Markov chain which converges
to the joint distribution p(z1,x9,...,2p).
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Algorithm 3.3 The Gibbs sampling algorithm.

INPUT: p(wi\ml,xg,.. C i1y Tig 1y - ,a:D), the conditional
probabilities of the target distribution p(x).
x(0) = xgo),xéo),...,x([?), the initial state of the Markov
chain.
K, a number of iterations before taking a sample.
OUTPUT: X, a sample from the distribution p.
VARIABLES: x() ::ngt),xg),...,:cg), the state of the Markov chain at
time ¢.

BEGIN
for t=1 to K:
for 1=1 to D:

o = padal’ ol el )
e g ) (K
=T T, Ty T,...,Tp
return x
END

A visualization of the Gibbs sampling algorithm is shown in Figure 3.2, the
full algorithm is given in Algorithm 3.3.

Gibbs sampling is often a very efficient sampling algorithm when the condi-
tional distributions are available.

3.2 DENSITY ESTIMATION

Learning with a probabilistic approach often reduces to the problem of density
estimation: trying to find a probability distribution p(x) which is likely to have
generated the dataset D.

The search for a suitable p(x) is usually limited to a specific family of proba-
bility distributions such as the Gaussian family N (p, 02) of mean p and variance
o2, In practice, the parameters can be regrouped in a set of parameters ; for
the Gaussian distribution, we have for instance # = {u,0?}. The problem is
then to find the likely parameters 6 given that pg(x) should have generated the
dataset D.

One can easily understand that not all parameter values are equally likely. For
instance, if the dataset consists of points  between 100 and 101, the standard
normal distribution A/(0,1) centered on 0 is a very unlikely candidate.

Although the above notations may seem to be specific to unsupervised learning,
density estimation also applies to supervised learning. The goal for a dataset
D = {(x1,y1),.-.,(Xn,yN)} is then to find a conditional distribution p(y|x)
which is likely to have generated each y; given x;.

We now look into several approaches which can be used to estimate distribu-
tions.
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p(ﬂj, y) -
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(¢) Sample z() from p(x|y(M)).

(b) Sample y!) from p(y|z(®).

(d) Sample 3 from p(y|zM).

Figure 3.2: Visualization of the Gibbs sampling algorithm for a joint distribution p(z,y).
The algorithm starts at a random position (a:(o),y(o)) and then alternatively samples

according to p(y|z) and p(z|y).
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3.2.1  KL-diwergence and likelihood

In the previous chapter, we considered several loss functions, each adapted to
a particular problem. In the context of density estimation, we can use the
Kullblack-Leibler (KL)-divergence, which is given by:

dkr(p.q) = — > _log <283> p(x)

where the sum runs over all possible values of x.

The KL-divergence can be used as a measure of difference between distributions
but it is not symmetric (i.e. in the general case dki,(p,q) # dkr(q,p)) and does
not respect the triangular inequality, therefore it is not a distance.

If we consider the empirical data distribution pp defined by the training dataset
D = {x1,X2,...,XN}, where each sample has a probability pp(x;) = %, we
can then try to fit a model py to this data distribution by minimizing the KI.-
divergence, i.e. solving

0* = arg Hmin dxL(pp, po)

Note that the KL-divergence can be rewritten as

dx1(pp,pe) = Y logpp(x)pp(x) — Y log pp(x)pp(x)

log-likelihood

where the first term does not depend on 6 and the second term is referred to as
the log-likelihood, a concept which will be reviewed thoroughly in the following
sections. From the above equation, it follows that minimizing the KL-divergence
is equivalent to maximizing the log-likelihood, i.e. :

0* = arg max Z log pg (x)pp (%)
0 x
or equivalently, using the definition of pp:

0" = arg max Z log pp(x)
x€D
The problem of density estimation can therefore be solved by minimization of
the KL-divergence of equivalently, with the maximization of the log-likelihood.

3.2.2 Bayes’ rule

In the previous section, we tried to find the best parameter # to minimize the
KL-divergence. The parametrization of the distribution by € is noted py(x) in
the optimization perspective, however with a Bayesian perspective, 6 is seen as
a random variable and the model then corresponds to the probability of x given
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0, i.e. p(x|#). Bayes’ rule can then be used to find the probability of parameter
values 0 given a dataset D:

likelihood prlor

_p(DIo) p(0) (
p p
p(fl?) Z (DI0)p(6)

evidence

LiKELIHOOD  p(D]f) is the likelihood of the dataset D under the model. Tt
consists in the probability of the dataset D under a specific model parametrized
by 6, i.e. the belief that the model parametrized by 6 could have generated D.
If we assume that points in the dataset are iid, p(D|6) is equal to the product
of the point-wise probabilities, i.e. p(D|0) = [Ixep p(x|0). With the notation
of # as a random variable, the likelihood of a single sample p(x|0) is in fact the
model’s probability distribution pg(x), e.g. for a D-dimensional Gaussian family,
we would have

1
(2m) P2z 2

1 .
p(xl0) = N (4, ) = exp {5 (x = )T )
where p is the means parameter, and X is the D x D covariance matrix, and |Z|
is the determinant of X.

POSTERIOR  p(0|D) corresponds to the belief that 6 is a likely parameter value
of the distribution p(z), given the dataset D. When we are only interested in
the best possible parameter value, maximizing the posterior leads to the most
probable value of the parameter 6 given the dataset D. However, the posterior is
a probability distribution and therefore gives a probability to all possible values
of 8. This is especially useful to assess the variance of an estimation.

EVIDENCE >, p(D|0)p(0) is of little practical importance and can simply be
seen as a normalization constant to ensure that the probabilities sum up to 1.

PRIOR  p(6) corresponds to the a-priori probability of 0, that is, the belief we
have that 6 is a reasonable parameter, before having seen the dataset. This can
seem a bit paradoxical which is why we will return to this question shortly.
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3.3 MAXIMUM A-POSTERIORI AND MAXIMUM LIKELIHOOD

When trying to learn a distribution, the goal is often to find the best possible
parameter value. The problem is then to maximize the posterior distribution
with respect to the parameter 0, i.e. , we are looking for 8* such that

0* = argmax p(0|D).
0

0* is then called the mazimum a-posteriori estimate because it maximizes the
posterior distribution.

Note that the evidence Y p(D|0)p(f) can in fact be written p(D) (marginal-
ization rule) and does not depend on the parameter §. Applying Bayes’ rule, the
maximization problem is therefore equivalent to

6* = argmax p(D|6)p(0)
0

where we take the likelihood and the prior into account as expected.

In cases where there is no useful prior, the prior can be chosen to be uniform
and therefore does not depend on 6, i.e. p(f) = cst. We can

further simplify the optimization problem into:

0* = argmax p(D|0).
0

0* is then called the maximum likelihood estimate and is the value of 6 which
maximizes the likelihood of the data under the model.

In practice it is often useful to consider maximizing the log-likelihood log p(D|6)
instead of the the likelihood itself?. The two optimization problems are equiva-
lent because the logarithm is a monotonously increasing function®. Additionally,
when the dataset D is composed of iid samples, the likelihood decomposes as a
product of point-wise probabilities, as in p(D|0) = [Ixep p(x|60). The logarithm
then serves to obtain a sum over the dataset, i.e the log-likelihood of the dataset is
equal to the average log-likelihood on the dataset: logp(D|6) = >, cp log p(x|6).

3.4 (CHOOSING A PRIOR

In the limit of infinitely many observations and for a prior which is non-zero
everywhere, the posterior distribution tends to the likelihood itself. Conversely,
when the dataset is empty, the posterior distribution is equal to the prior. In
other words, maximum a-posteriori depends strongly on the prior when there
are few observations and is close to maximum likelihood if there are many.

Maximizing the log-likelihood was already proposed in the previous section as a way to minimize
the Ki-divergence with the empirical data distribution pp.
This equivalence relies on the assumption that samples from the dataset are iid.
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Figure 3.3: Three possible choices of prior for a Bernoulli distribution. Beta(10,10)
(left), Beta(2,2) (middle), Beta(1,1) or equivalently uniform distribution (right).

Let us consider the problem of estimating the probability of a coin toss re-
sulting in “heads”. The problem can be seen as a problem of estimating the
parameter 6 of a Bernoulli distribution:

Px=1) = 0
Px=0) = 1-0,

where x is a random Bernoulli variable such that 1 correspond to heads and 0 to
tails. In this example, a reasonable prior could be a distribution peaked around
f = 0.5 decreasing towards 1 and towards 0, making explicit our belief that most
coins have almost equal probability of coming heads or tails, and that it would
probably be very difficult to find a coin which always falls on the same side?.
Figure 3.3 gives three examples of priors which may be suited to this problem.

The Beta distribution in Figure 3.3 has a special relation to the Bernoulli
distribution, namely it is a conjugate prior of the Bernoulli distribution. Con-
jugate priors have the interesting property of ensuring that the posterior is in
the same family of distributions as the prior. If the prior is given by a Beta
distribution and the likelihood is a Bernoulli distribution (as in our example)
then the posterior is also a Beta distribution.

It is important to realize that the choice of a prior is a subjective one by
definition. If the practitioner does not want to make this choice, or if all values
of 8 are in-differentiable, it is common practice to choose the uniform distribution
which does not depend on the parameter # and assigns equal probability to all
possible values.

However, the uniform distribution is not a non-informative prior because it
carries information about the structure of the parameter space. Namely, if we
have # € R, a uniform prior represents the belief that there is as much probability
density in the interval ]0, 1] than in any other interval |z, z + 1[, when any interval
contains in fact as many real numbers as R itself.

We assume of course that the coin in question does not have a face on both sides, as is often
the case when the problem occurs in practice.



3.5 EXAMPLE: MAXIMUM LIKELIHOOD FOR THE GAUSSIAN

3.5 EXAMPLE: MAXIMUM LIKELIHOOD FOR THE GAUS-
SIAN

Let us now, as an example, derive the maximum likelihood estimates for a D-
dimensional Gaussian probability distribution. The goal is then to maximize the
log-likelihood, i.e. to find

p* = argmax log p(D|p, T)
o

and replacing the model by its definition:

1
2m)P/2 £

exp {5 (x = ) 27 )

u= arg max log H
xGD

The problem simplifies into

p* =argmin Y (x — p)?
# zeD

As seen in chapter 1, if the problem has a solution, it must satisfy the first order
necessary condition, i.e. the first derivative of 3" cp(x — p)? with respect to p
must be 0 at the optimum po*:

dlogp(D|p, X) Yz
8” xeD

and therefore

Y E M (x—p)=0

xeD
which is equivalent to
> x
|D| xeD

Therefore the maximum likelihood estimate for the mean parameter of a D-
dimensional Gaussian is the arithmetic mean of the training samples.
A similar computation yields the maximum likelihood estimate for the covari-

\D\ZX_ (x—p')

ance matrix:

3.6 EXAMPLE: PROBABILISTIC POLYNOMIAL REGRESSION

In the case of polynomial regression, an interesting possibility is to consider
y = f(z) as a conditional probability p(y|z). This density is then given by
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the polynomial Zf:o a;xz' to which we add a normally distributed error term

N(0,0?):

k
p(ylz) = Zaixi—i-N(O,aQ)

i=0
k .
= N _aia',0?).
i=0

The model can be seen as the probability of measuring some value y given x.
For each x, the measurement y is distributed according to a normal law of mean
Sk @iz’ and of variance o2.

In this example, the quantity to maximize can be computed analytically by

replacing p(y|z) by the definition of a normal law.

N
logp(D) = Y logp(yilz:)
=1

= i\f: log ! exp(— (v = Yo aixi)z)
= oV 2T 202

N ; — ]?_ aixi 2
) _ Z (yz Zz—O ) )

= NI
0g< 202

oV 2w =

Adding and multiplying by the appropriate constant terms (here we consider
o2 to be a constant, the problem being on p) which do not change the maxi-
mization problem, and taking into account the minus sign which transforms the
maximization problem into a minimization problem, the quantity to minimize is

N k 1?2 N
> [yi - Zaz‘l‘l] => [yz - f(%)} 2
i=1 i=0 i=1

which is exactly the MSE seen in Chapter 2. Therefore, minimizing the mean

squared error when fitting polynomials consists in learning the above probabilis-
tic model.

3.7 LATENT VARIABLES AND EXPECTATION MAXIMIZATION

The probabilistic models seen so far can give an interesting interpretation of a
dataset, but we have not yet discussed how to leverage these algorithms to find
new representations. This can be done in the context of estimating distribu-
tions with the help of latent variables (Ghahramani, 2004). Latent variables are
sometimes called hidden variables or unobserved variables by opposition to the
observed variables x = z1,...,zp.
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A simple way to introduce latent variables in a probability distribution is to
use a joint distribution over both observed and hidden variables which can then
be marginalized over the hidden variables, as in

p(x) = _p(x,h),
h

where the sum over h is to be understood as a sum over all possible values of h.
As expected, the resulting distribution is on the observed variable x alone.

When the model is trained, the latent variables can be seen as representing
explanatory variables which best help to model the distribution on the observed
variables.

A problem arises when trying to learn the joint distribution p(x,h) because
by definition, the dataset D only contains samples from the observed variable x,
and not samples x,h as would be required to learn a joint distribution p(x|h).
As a result, it is often impossible to find a closed-form solution to the maximum
likelihood of models with latent variables.

Nonetheless, latent variable models can usually be trained with a variant of
the Expectation Maximization (EM) algorithm (Dempster et al., 1977; Borman,
2004) which alternates between two steps®:

o (expectation) Compute the inference distribution p(h|x); construct samples
x,h with h the most probable value of h according to p(h|x).

o (mazimization) maximize the likelihood of p(x,h) given the samples x, h
obtained previously.

Although it is not easy to derive this algorithm, it can be shown to converge to
a local minimum (Dempster et al., 1977; Wu, 1983).

Note than EM is not the only way to train models with latent variables and it
is sometimes preferable to use an other optimization algorithm such as gradient
descent.

3.8 EXAMPLE: (GAUSSIAN MIXTURES AND EM

Sometimes the Gaussian distribution is not complex enough to accurately repre-
sent the input distribution. Figure 3.4(a) gives an example where the maximum
likelihood estimate for a single Gaussian in 2 dimensions does not accurately
capture the structure of the dataset.

However, if we combine K Gaussians such that each point from the dataset
is sampled from one such Gaussian, the model becomes much more expressive
as in Figure 3.4(b). In fact, given enough Gaussians, it becomes possible to
approximate any distribution with arbitrary accuracy. This can be done with

In fact, we present here a point-estimate variant of EM called classification EM. See (Gupta
and Chen, 2011) for a complete description of EM.
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(a) Best fit with a bivariate Gaussian. (b) Best fit with a Gaussian mixture.

Figure 3.4: The Gaussian distribution being unimodal, a single Gaussian is unable to
capture the structure of this dataset. Using a mixture of Gaussians allows for a better
fit. The red lines give the points at 1 and 2 standard deviations from the mean of each
Gaussian.

the introduction of a hidden variable h to represent the choice of a Gaussian.
The model is then a latent variable model, i.e.

p(x|6) =Y p(x|h,0)p(h|f)

where h is the random variable associated with the random choice of a Gaussian
among the K possible choices. In this example, we choose the one-hot represen-
tation for the variable h, i.e. all possible values of the vector h are such that
exactly one component is 1 and all the others are 0. We note h; the value of h
corresponding to the choice of the i** Gaussian. For instance, for K = 3, the
possible values are h; = [1,0,0], hy = [0,1,0], hs = [0,0,1].

The probability of choosing the i'" Gaussian is given by p(h = h;|0) = 7,
where the vector 7 is called the mizing parameter. The parameters m; are such
that their sum is 1 to ensure that the probability distribution stays normalized.

Once the Gaussian ¢ is chosen, the probability of sampling a vector x is simply
given by

p(X‘h = h;, 0) = N(/"’hz‘i)

where p;, I; are the mean and covariance matrix of the i** Gaussian distribution.
Recomposing the full probability distribution, we have

K

p(xl0) = > N (p; Li)m;

=1

where the sum over the index ¢ covers all possible Gaussian affectations. The
latent variable h is no longer visible in the above equation but is implicitly
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marginalized over with the index 7. The parameter 8 regroups all the parameters
of the model, i.e. 0 ={py,..., by, Z1,. ., LK, M1y, TK}

In the case of Gaussian mixtures, we cannot find a closed-form solution to the
maximum likelihood problem. However, we can use the EM algorithm introduced
above to find a local maximum of the likelihood. For the first step of EM, we
must find p(h|x) to infer the hidden variables from a data instance x. This
conditional probability is given by Bayes’ rule, namely

p(x/h = h;,0)p(h = hy|6)
p(x0)
N(I‘l‘zvz‘l>ﬂl
N (g, Ej)mj

p(h = h;|x,6) =

This implies a sum over all Gaussians in the denominator and as such can be
costly when a large number of Gaussians are involved. Although the EM algo-
rithm can be run with arbitrary mixing parameters m; and covariance matrices
Y;, the case where all m; are equal and where the covariance matrices are a
multiple of the identity matrix, i.e. are of the form X; = ol with ¢ a constant
common to all Gaussians, has an interesting interpretation. In this case, the
most probable value of h for an observation x is h; if p, is the mean closest to
X.

For the second step of EM, i.e. the maximization of the likelihood of p(x,h =
h;) w.r.t. the mean parameters p;, it simply consists in maximizing the likeli-
hood of x under the i*" Gaussian. The maximum likelihood for the Gaussian is
derived in Section 3.5 above and is given by

W= Y x
B o B
In the special case of equal mixing parameters and with isotropic Gaussians, the
two steps above correspond exactly to the K-means algorithm where a centroid
c; corresponds to the mean of the i*" Gaussian p;. The K-means algorithm has
therefore a probabilistic interpretation as the application of the EM algorithm to
a mixture of equiprobable Gaussians of equal isotropic variance.
Although EM can recover the K-means algorithm under specific conditions,
EM is much more general and can be used with arbitrary mixing parameters and
covariance matrices.

3.9 OPTIMIZATION REVISITED IN THE CONTEXT OF MAXI-
MUM LIKELIHOOD

We have now reviewed how a learning problem results from solving an optimiza-
tion one, sometimes with a probabilistic interpretation. We now come back to
optimization with a special focus on the importance of choosing a metric.
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An efficient optimization method must concentrate the search in regions of
the search space which have a higher chance of containing an optimum. This is
often done with an iterative approach in which the goal is to make at each step
a small movement from the current position toward better values.

This kind of method depends on a metric to define neighborhoods in the
search space in which the objective function assumed to have small variations.
Unfortunately, practitioners often choose the canonical metric i.e. the Euclidean
distance in R? or the Hamming distance in {0, 1}¢ regardless of its suitability to
the problem under consideration.

We start by presenting how the use of a canonical metric in the context of
log-likelihood maximization with gradient descent leads to an undesirable de-
pendence on parametrization and then, we present the natural gradient which
is simply the ordinary gradient in the Fisher metric and is specially adapted for
moving in the space of probability distributions.

3.9.1 Gradient dependence on metrics and parametrization

In the previous chapters, we have often proposed the gradient descent algorithm
to maximize the log-likelihood w.r.t the parameters of a model. However, gradi-
ent descent can yield different trajectories depending on the parametrization of
a model. More precisely, the gradient descent procedure is often considered in
parameter space, usually with the Euclidean metric.

Consider the Gaussian family in one dimension with the usual parametrization,

_ 1 (z — p)?
Puo(2) = gme"p{‘zaz}

where the parameters are the mean p and the variance o2. The matter is espe-

ie.

cially confusing with the Gaussian family because the variance is noted as the
standard deviation squared. Should we therefore take the derivative w.r.t. o2 or
w.r.t. o, and more importantly are the two alternatives equivalent ? They are

not:
dlogpuo(x)  p?—2px—o?+a?
d(0?) N 204
dlogpyo(x) W —2ux — o? + 22
o N o3

with the partial derivative w.r.t. the parameter p remaining unchanged.

This can be attributed to the Euclidean metric which is implicitly used in
these computations. The gradient gives the direction of greatest increase for
an infinitesimal movement d6 in parameter space such that ||06|] < e. When

we consider the parameters i, o2, the distance [|00| = \/(6u)2 + (§02)2, is dif-
ferent than the one obtained by considering the parameters p,o, ie. [|d0] =
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(6u)2 + (00)2. Consequently, the two gradients give the direction of great-
est increase in log-likelihood but allow for movements of different amplitude in
parameter space.

Although this problem of choosing a parametrization is especially clear with

the choice of o or o2

as variance parameter, it is important to realize that the
Fuclidean metric introduces a spurious connection between the amplitude of gra-
dient steps along different parameters. When we generalize to multi-dimensional
Gaussians, these spurious connections typically favor Gaussians which are close
to isotropic because the Fuclidean metric gives an equal importance to every
parameter of the covariance matrix.

In fact, every metric defined by a constant matrix in parameter space will

favor one kind of Gaussian over another.

3.9.2  The natural gradient

A consequence of the previous section is that there are infinitely many possible
gradients of the log-likelihood, each one corresponding to a different choice of
metric. The natural gradient (Amari, 1998; Amari et al., 2000) is defined as
the gradient in the Fisher information metric which is an approximation of the
KL-divergence. As it relies on the KI-divergence, which is a common measure of
difference between distributions, the natural gradient can be seen as moving on
a manifold of probability distributions which is independent of any parametriza-
tion. Although the KL-divergence is not a metric, for infinitesimal movements
d6 around 0, the Ki-divergence dxr,(Py, Ppts9) can be approximated by its Hes-
sian: the Fisher information metric. Because §60 = 0 corresponds to the global
minimum of the KL-divergence, the Hessian corresponds to a second order ap-
proximation. The Fisher metric is defined by the so-called Fisher matrix:

Olog py(x) Dlogpo(x)

Fj = E
g 00; 00,

Formally, the expression of a gradient V 4 in some arbitrary metric A, for A a
symmetric positive definite matrix, is given by
Va=A"'V
The natural gradient V is then simply the gradient in the Fisher metric F), i.e.:
Vlog pg(x) = F~'Vlog pg(x)

From this definition, the natural gradient corresponds to an infinitesimal move-
ment in the space of distributions as opposed to a movement in parameter space.
This makes the natural gradient invariant to parametrization because the met-
ric measures a distance between the distributions themselves, independently of
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parameters. As a side effect, the invariance to parametrization often results
in further invariances, depending on the probability distribution family, such
as invariances w.r.t. rescaling, translation and rotation of x in the case of the
multi-dimensional Gaussian.

Interestingly, the step size or learning rate of a natural gradient update is a
quantity in bits or nats and therefore measures a quantity of information. The
learning rate can then be seen as measuring how much information each step
should provide.

Although the natural gradient has many theoretical advantages, it has a com-
putational disadvantage, at least with a naive implementation, because it re-
quires computing and inverting a matrix of size (dim 6)? at each step.

The natural gradient gives a good example of the influence of choosing a
suitable metric in the context of maximizing the likelihood of a model. It is
also a reminder of the intricate link between learning and optimization, here in
the case of an optimization procedure which is specially designed for learning
distributions.
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SUMMARY

e From a Bayesian probabilistic perspective, it is natural to update our be-
liefs with data.

e It is sometimes necessary to use methods such as rejection sampling, im-
portance sampling, the Metropolis-Hastings algorithm or Gibbs sampling
to sample from complex distributions.

e Probabilistic models can be trained by minimizing the KL-divergence be-
tween the empirical data distribution and the model distribution.

e Equivalently, a probabilistic model can be trained by maximizing the log-
likelihood of a dataset under the model.

o Bayes’ formula gives a method for choosing the best parameters given data:
maximum-a-posteriori.

e The prior distribution gives probabilities to model parameters before hav-
ing seen a dataset.

e When the prior is considered uniform, maximum-a-posteriori is equivalent
to maximum-likelihood.

¢ Probabilistic models can have latent variables which can be understood as
unobserved explanatory factors.

e Models with latent variables can be trained with the EM algorithm which
alternates between computing the expected latent variables given the cur-
rent maximum likelihood estimate, and maximizing the log-likelihood given
affectations of the latent variables.

e Training Gaussian mixtures with EM can be seen as a probabilistic gener-
alization of the K-means clustering algorithm.

e The log-likelihood gradient in the Euclidean metric is affected by parametriza-
tion

o The natural gradient based on the Fisher metric is invariant by re-parametrization
and can introduce further invariances during optimization.

This chapter concludes our presentation of ML. We now turn to deep learning,
the main topic of this thesis.
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ARTIFICIAL NEURAL NETWORKS

Although deep learning could in theory apply to any kind of model, almost all
approaches to deep learning so far are based on artificial neural networks.

Artificial neural networks (Bishop, 1995) regroup a large variety of models
which use neurons as their elementary computation unit. Although this class
of models was historically inspired from biological processes, it is now a inte-
gral part of the mathematical ML framework. Neural networks can be used in
supervised settings for classification of regression, in unsupervised settings for
dimensionality reduction and learning representations, and can be interpreted in
a probabilistic perspective.

We start by presenting the artificial neuron which is the basis of all artificial
neural architectures. From there, we discuss how neurons can be structured in
networks to perform complex computations especially in the contexts of classifi-
cation, regression and dimensionality reduction. Finally, we present probabilistic
interpretations of neural networks and describe how they can be used to estimate
distributions.

4.1 THE ARTIFICIAL NEURON

4.1.1 Biological inspiration

Biological systems are capable of performing very complex computations to sur-
vive in their environment, find food or escape predators. These complex behav-
iors are controlled by a nervous system composed of nerve cells or neurons. One
of the most remarkable properties of such systems is their scalability from just
a few hundred neurons (302 neurons for the roundworm Caenorhabditis elegans)
to billions of neurons (around 85 billion in the human brain). To be more pre-
cise, it seems that neurons can be combined so that an increase in the number
of neurons leads to an increase in cognitive abilities (Herculano-Houzel, 2009).

Although the ways in which complex behavior can emerge from large numbers
of neurons is still poorly understood, the equations governing the excitability of a
single neuron are very well understood, as for instance with the Hodgkin-Huxley
model (Hodgkin and Huxley, 1952).
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Figure 4.1: The structure of a biological neuron. Information comes from input neurons
in the form of action potentials. If the neuron receives enough action potentials from
its pre-synaptic neurons, it fires a spike, sending an action potential through its axon
to the post-synaptic neurons.

Figure 4.1 describes the general architecture of a biological neuron. A neuron
reacts to inputs as follows: when the dendrites of a neuron receive some excita-
tory (resp. inhibitory) input, the membrane potential of the neuron increases
(resp. decreases) gradually. If the membrane voltage reaches a specific threshold,
an action potential is initiated and propagated along its axon to post-synaptic
neurons. In the rest of this paper, we will forget this biological inspiration and
the term neuron will be used to refer to artificial neurons which we describe now.

4.1.2  The artificial neuron model

In order to transmit information, artificial neurons have an activation value'.

For the purpose of computation, an artificial neuron (see Figure 4.2) has
weighted connections to a set of input neurons. The input neurons can be seen
as a vector X = x1,x2,...,xp, where x is a vector of dimension D, and x; cor-
responds to the activation of the i*" input neuron. The activation value y of
a neuron can be computed given the input activations x; and the connection
weights w; according to

y=o(b+ Z w;T;)

where ¢ is called the activation function and b is called the bias of the neuron y.
The term b+ ), w;z; taken as input of ¢ is called the pre-activation. The bias can
be considered as a regular weight wy connected to an input neuron xg such that
xo = 1. Consequently, a neuron performs a scalar product between the extended

This activation value can be seen as playing a role similar to the firing frequency of a biological
neuron.
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y=o(b+ 317 wiz;)

VAR
T T2 I3 Ty

Figure 4.2: Computational properties of an artificial neuron. The activation of a neuron
is computed as a weighted sum of the activations of the input neurons, transformed by
an activation function ¢. The weights of the connections determine how much influence
an input neuron has on the output neuron.

Figure 4.3: The result of filtering an input image with a weight vector. The image (c)
is the element-wise product of (a) and (b). If the pixel intensities of (a) and (b) are
elements of the input vector x and the weight vector w respectively, then the average
intensity of (c) is the pre-activation w!x. When a weight w; is near 0 as in the black
region of (b), the corresponding input w; is filtered out and does not influence the final
result.

input vector x containing zg = 1 and the weight vector w = wq, w1, wa, ..., wp,
and transforms the result according to the activation function ¢, i.e.

y=¢(w'x)
4.1.3 A wvisual representation for images
The scalar product of the weights and the input can be interpreted as a projection

of the input vector on the weight vector. In particular, if x represents the pixels of
an image, it is common to represent the weight vector as a visual filter. Figure 4.3

gives an example of filtering operation which can be realized by a single neuron.
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(a) (b)

Figure 4.4: Different topologies of neural networks: a recurrent neural network (a) and
a feed-forward neural network (b).

4.2 FEED-FORWARD NEURAL NETWORKS

Artificial neurons can only make a simple computation by themselves. How-
ever, they can be arranged in neural networks to perform more complex oper-
ations. These networks can then be used to compute the activations of a set
of output neurons y = (y1,¥2,...,yp’) given the activations of input neurons
x = (x1,22,...,2p). The computation usually involves a set of hidden neurons
h which perform intermediary computations.

Although neurons can in theory be arranged quite arbitrarily, in practice they
are often arranged in an acyclic graph which means that the input of a neuron
does not depend on its output, even indirectly. Neural networks organized with
such a topology are referred to as feed-forward neural metworks because the
activations can be propagated forward in the network. By contrast, recurrent
neural networks can contain cyclic connections. Recurrent neural networks are
potentially better at modeling dynamical systems, but the presence of cycles
makes training much more difficult. Figure 4.4 gives examples for a general
recurrent neural network and a feed-forward network.

Let us now consider feed-forward networks where the neurons are organized in
layers. In this terminology, the input vector x is the input layer £o. Subsequent
layers £ then regroup neurons which only receive input from neurons in the
previous layer f;_1. This makes possible the computation of neural activations
in a feed-forward, layer-wise manner. The weights used to compute the activation
of a layer £}, from the activations of a layer £;_; then form a matrix W where w;;
gives the connection weight from the i*® neuron of layer £,_; to the j*' neuron
of layer /. For two subsequent layers x and y the computation rule becomes

Vi,y; = o(bj + Z Wi Ti),

or using matrix notation
y = ¢(Wx+b)
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Figure 4.5: A multi-layer neural network. Activations can be propagated layer by layer
from the input layer x to the output layer y.

where the function ¢ is simply the element wise application of the activation
function.

When a neural network involves more layers than the input and output layers,
the network is called a multi-layer neural network. The hidden neurons are then
arranged in several hidden layers as shown in Figure 4.5.

The usual notations employed for neural networks can sometimes be confusing.

For instance, the activations of the output neurons are usually noted y, whereas
in the context of supervised learning these activations would be noted f(x),
y referring to the label. For instance a neural network with two layers would
compute y = f(x) = ¢(Wap(Wix+by) + bg). Additionally, the pre-activation
of neurons is usually denoted by a variable a, and is not to be confused with
the activation itself ¢(a). Finally, the activation functions are usually given as
functions of a variable x which is not to be understood as the input but as a
general variable in R.
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4.3 ACTIVATION FUNCTIONS

Until now we have considered an undefined activation ¢. However, there are
several common choices of activation function ¢, each suited to different appli-
cations.

LINEAR ACTIVATION A first possibility is to use the identity function ¢(z) =
as activation function. A layer then performs a linear operation Wx + b on the
input vector x. When several such layers are combined, the combination of linear
operations being linear, the model still reduces to a single linear operation. In
the case of two layers with parameters Wi, b; and Ws, bo, the output of the
networks can be computed as

y=Wsy( Wix+b; )+b
—_——

15tlayer output

which is equivalent to a single layer of parameters W, b,.:

y = WoW;x+ Wsb; + by
——— —_————
W, b,

Adding layers then has the disadvantage of adding parameters, thus making
optimization more difficult, while not increasing the expressivity of the model.
However, a linear activation function can be useful for the last layer of a multi-
layer neural network when the output is a real variable, as e.g. in regression
problems. To ensure that the multi-layer network does not reduce to a single
layer, a non-linear activation function (a.k.a. a non-linearity) is then used in the
other layers of the network.

HEAVISIDE STEP FUNCTION  The Heaviside step function is defined as follows

0 ifz<O
h(x): 1I x

1 ifz>0

In a neural network, the result is then 1 or 0 depending on the sign of the
pre-activation Wx + b. This corresponds to a partition of the input space R”
according to a separating hyperplane: a neuron y has value 0 if x is on one side of
the hyperplane, 1 if it is on the other side. This makes the step function adapted
to linearly separable classification problems (Minsky and Papert, 1969). However
it is now rarely used because it is not differentiable which makes optimization
difficult. A differentiable sigmoid function is often preferred to circumvent this
issue.
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S1GMOID ACTIVATION  The class of sigmoid functions is the most common

T3S}
S

-shaped func-
1
T+exp(—z)’
Logistic functions can be seen as continuously differentiable approximations of

the Heaviside step function. As such they also create a linear separation surface

choice of activation function. Formally a sigmoid function is an
tion, such as the hyperbolic tangent or the logistic function? sigm(z) =

in the input space. The expressivity of the model increases when several layers
are considered because sigmoid functions are non-linear. Neural networks with
only one sigmoidal hidden layer are in fact universal approximators (Cybenko,
1989; Hornik et al., 1989), i.e. they can represent any function given a sufficient
number of neurons. The logistic function takes values in the interval [0, 1] and
is therefore often interpreted as the activation probability of a binary neuron.
Formally the model for a single layer is then given by

P(ylx) = HP(yj|X) = Hsigm(bj + Zwija:i)

SOFTMAX ACTIVATION In the context of classification, the softmax activation
function is often preferred to sigmoid functions for the output layer. It can
be interpreted as a smooth maximum of several activations. Contrary to the
other activation functions presented above, the softmax activation function is
not applied to each neuron of a layer individually, but rather is applied to the
whole layer at once:

softmax(x) = ( ;Xp(xl) b ;Xp(:ED) )
Zi:zl exp(l‘i) Zz:zl exp(l‘i)

The softmax function can also be interpreted as giving the probabilities of
activation of each neuron according to a categorical distribution, i.e. P(y|x) =
softmax(Wx + b). Each component then gives the probability of a class being
selected. The denominator of the above equation then ensures that the proba-
bilities sum up to 1.

The step function, hyperbolic tangent and logistic functions are represented
in Figure 4.6.

4.4 TRAINING WITH BACK-PROPAGATION

In a supervised setting, the training of feed-forward neural networks is usually
done with a form of gradient descent. This requires the computation of partial
derivatives of the error function w.r.t. the weights. In a feed-forward network,
these partial derivatives can be computed with the so-called back-propagation
algorithm (Rumelhart et al., 1986; LeCun et al., 1998b). In this section, we

A common abuse of language consists in referring to the logistic function as “the sigmoid
function”. This explains the mathematical notation sigm(z) commonly used for the logistic
function.
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Figure 4.6: Three common activation functions: linear activation (a), Heaviside step
function (b), logistic function (c¢) and hyperbolic tangent (d).

consider a dataset D = {(x1,t1),..., (xn,tn)} so that outputs of the neural
network y are not confused with the target variable.

Back-propagation can be applied when both the error functions and the acti-
vation functions are differentiable. It is then possible to use the chain rule to

obtain:
0E(x) 0E(x) Oaj

8’[1)2'3' - 80,]' 8wij

where a; = b; + >, w;j2; is the pre-activation of an output neuron as a function
of activations z; of neurons in the previous layer. The error function F is a
per-sample error which takes the model into account. For instance if we use the
MSE, E(x) = (t —y)? with t the target and y = f(x) is the output of the neural
network.

It is common to note §; = ( ) . Additionally, 5 T = z; and therefore
JE(x)
o
8wij jz

Thus the derivative w.r.t. wj; is the product of the activation of the neuron z;
with d;. For the output layer the terms 5;-)utput can be computed by another
application of the chain rule, i.e.

5qutput 8E( )ay] _ aE(X)
J O0y; Oa; 0y,

¢'(a;)

In the case of the MSE, we have ag;j) = y; —t; and thus 5OUtpm (yj —tj)¢'(aj).
For the hidden layers, the errors ¢; can be propagated backwards recursively

through the network, i.e. for two layers £, and £,,+1:

5;1_ ﬁaj Z 8ak

x) day
aaj

where we sum over all units k£ which have unit j as input. This leads to the
back-propagation rule

O = ¢/ (aj) > wiioprt!
k
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Figure 4.7: The structure of an auto-encoder. The target output y is the input itself

This rule can then be applied iteratively to lower hidden layers. The resulting
partial derivatives can then be used as part of a gradient procedure to minimize
the error over a dataset.

The back-propagation algorithm has a complexity in O(dimé) where 6 re-
groups all parameters in the model and is therefore very efficient.

4.5 AUTO-ENCODERS

The neural networks seen so far apply mostly to supervised learning. However,
if we are to study deep learning, we need a way to learn representations in an
unsupervised way. A particularly interesting application of neural networks for
the unsupervised setting is the possibility to perform dimensionality reduction,
compression or learn new representations with an auto-encoder (Bourlard and
Kamp, 1988; Hinton, 1989).

Formally, an auto-encoder is simply a feed-forward neural network trained
to reproduce its input with back-propagation. The unsupervised dataset D =
{X1,...xn} is then seen as a supervised dataset D = {(x1,X1),... (XN, Xn)}
where the target is the input itself. The structure of an auto-encoder is repre-
sented in Figure 4.7.

Although training a feed-forward network to reproduce its input may seem
pointless, the hidden layer h can be seen as a new representation of the data.
The first layer of the auto-encoder then consists in an encoder which transforms
x in the corresponding representation h, and the second layer is effectively a
decoder which is trained to recover an approximation of the original value x
from the hidden representation h.

In the general case, if the hidden layer is at least as large as the input and
if there is no additional restriction, an auto-encoder will tend to learn the iden-
tity for both layers which does not lead to an interesting hidden representation.
However, if the hidden layer is smaller than the input, an auto-encoder will try
to learn a compressed representation in the hidden layer h. The first layer is
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configuration X
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Figure 4.8: The Boltzmann machine architecture with visible units (v), hidden units (h)
and the joint configuration x = v, h.

then responsible for compression of the data, and the second layer is respon-
sible for reconstructing the input given the compressed data. To make sure
that the auto-encoder does not learn the identity, it is also possible to constrain
the hidden representation to be sparse (Ng, 2011), to use a denoising criterion
(Vincent et al., 2008) or to use a contractive criterion (Rifai et al., 2011). Train-
ing auto-encoders with these restrictions been shown to be very effective as a
preprocessing step to learn features in the context of representation learning.

4.6 BOLTZMANN MACHINES

Another way to learn representations with neural networks is to use probabilistic
neural networks such as Boltzmann machines (Ackley et al., 1985). Boltzmann
machines are undirected neural networks where each neuron is referred to as a
unit x; which can be active, i.e. equal to 1 or inactive, i.e. equal to 0. Note that
the network is not feed-forward but is completely connected in the general case
as in Figure 4.8.

The Boltzmann machine defines a probability density over all configurations
X =21,...,Tp as:

e_EG (x)

Py(x) = 5

2x%e{0,1}P e ol

where the function Ey(x) is known as the energy function, given by

D D D
E@ (X) = — Z A;T; — Z Z wija;i:cj
i=1

i=1j=1
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Figure 4.9: The RBM architecture with the visible (v) and hidden (h) layers.

and the parameter § = {a, W} corresponds to the biases a; of each unit z;
and the symmetric weights w;; connecting units z; and x;. The normalizing
constant of the distribution > 4 e Fo(X) is known as the partition function and
is intractable in general as it requires to sum an exponential number of terms.

Boltzmann machines can be used as latent variable models in which case the
global configuration x is divided into a set of latent variables h, which are known
as hidden units and a set of observed variables v, which are known as visible units
(see Figure 4.8). Accordingly, the probability over the visible units v is obtained
by marginalization:

Py(v) = ZP@(V,B)
h

Z e_EG (Vvﬁ)

ﬁ 2‘775 e_EQ(‘?vh)

where the energy function is the same as above with x = v, h. Training Boltz-
mann machines with gradient descent is intractable in general as it requires
taking samples from the distribution FPy. The original paper introducting Boltz-

mann machines relies on simulated annealing (Kirkpatrick et al., 1983; Ackley
et al., 1985).

4.7 RESTRICTED BOLTZMANN MACHINES

RBMs (Smolensky, 1986) are Boltzmann machines where visible units (resp. hid-
den units) have no connections between themselves. The structure of an RBM
forms an undirected bipartite graph and is given in Figure 4.9. The probability
distribution associated with an RBM is:

eiEO (V,fl)

Py(v)=>" SRS

where the energy function Ey(v,h) is given by:
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E@(V, h) = — Z a;V; — Z bjhj — Z wijvihj,
% J 1,J

The parameter § = {a,b, W} regroups the biases a; on visible units v;, the
biases on hidden units h; and the connection weights w;; between units v; and
hj. Although RBMs seem less general than Boltzmann machines, they are in fact
universal approximators (Le Roux and Bengio, 2008), i.e. they can approximate
any distribution to arbitrary accuracy, provided there are enough hidden units.

The bipartite structure of the RBM has the advantage of making the conditional
probabilities P(h|v) and P(v|h) tractable. The computation is done using a
probabilistic variant of the usual neural network propagation rule:

P(V|h) = HP(UAh) and P(’Ul = Hh) = sigm (a]’ + Zh]ww) y

J

P(hlv) = HP(hj\v) and P(h; = 1|v) = sigm <bj + Z%‘Wj) ,
j i

where sigm(x) = 1/(1 4 exp(—z)) is the logistic activation function.

The above energy function leads to a distribution over binary units and there-
fore is not suitable for continuous valued inputs. Nevertheless, the energy func-
tion can be changed by including a quadratic term on the visible units to define
the Gaussian-Bernoulli RBM (Krizhevsky and Hinton, 2009):

2
E(v,h) =3~ (vz%gl) =2 _bih; = sz‘j%hw
i i J iJ v
where o; represents the variance of the input variable v;. Using this energy
function, the conditional probability P(h|v) is mostly unchanged, but P(v|h) is
given by a multivariate Gaussian of mean a; + 0; ), wijh; and diagonal covari-
ance matrix:

(Z — Q; — 0; Zj wijhj>2

1 - 2
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K3

P(hj = l‘V) =0 (bj +ijij> .

By construction, RBMs learn distributed representation and although sparsity
is not explicitly enforced, in practice, RBMs also tend to learn sparse represen-
tation (Krizhevsky and Hinton, 2009). To better understand the nature of the
distributed representation, Figure 4.10 shows the relations between the modes
of a Gaussian Bernoulli RBM in the case where there are only two input dimen-
sions.
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Figure 4.10: Relation between the modes of a Gaussian-Bernoulli RBM with two visible
units and two hidden units. The bias a on the visible units gives the position of the
mode for which all hidden units are set to 0. Each row W, of the weight matrix W can
then contribute an additive term to the mean of the Gaussian distribution if h; is set
to 1. The points x correspond to samples from each mode of the distribution.

4.8 TRAINING RBMSs wiTH CONTRASTIVE DIVERGENCE

In the spirit of gradient descent, let us derive the partial derivatives of the log-
likelihood for a general RBMs:

dlog P(v) JE(v,h) OE(v,h)
6w1‘7 - ]EhNPQ(h‘V) aww - IE:V,l'lf\/Pg(V,h) awzj
OE(v,h) JE(v,h)
- E SR g,y
Pdata l 8“}1] ] model l awz]
The first term corresponds to the expectation of % when the visible units

are set to the input vector v and the hidden variables are sampled according

to the conditional distribution Py(h|v). The second term is the expectation of
OE(v,h)

” when v and h are sampled according to the joint distribution of the RBM
Py(v,h) and is intractable in general.

It can however be approximated with Gibbs sampling: starting from any con-
figuration (v(®), h(©), sample h(+1) according to pg(h|v(?) and v(i+1) according
to pp(v/h(+1). In the limit of infinitely many iterations, the sample (v(™), h("))
is guaranteed to converge to the target distribution Py(v,h). In practice, it is pos-

(0]
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sible to run Gibbs sampling for only one step by starting the Markov chain with a
sample from the training dataset and assuming that the model is not too far from
the target distribution. This is the idea behind the Contrastive-Divergence (CD)
learning algorithm (Hinton, 2002; Carreira-Perpinan and Hinton, 2005; Hinton,
2010). Although CD does not maximize the exact log-likelihood, experimental
results show that gradient updates almost always improve the likelihood of the
model (Hinton, 2002). Moreover, the improvements to the likelihood tend to
zero as the length of the chain increases (Bengio and Delalleau, 2009), an argu-
ment which supports running the chain for a few steps only3. Note that training
RBMs with CD is close to the training of auto-encoders in the sense that training
auto-encoders with back-propagation corresponds to RBM training where only
the biggest term of an expansion of the likelihood is kept (Bengio and Delalleau,
2009).

3 CD-k refers to the algorithm where k steps of Gibbs sampling are used instead of one. As k

gets bigger, the CD-k algorithm gets closer to the true maximum likelihood.
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SUMMARY

e An artificial neuron computes a dot product of the input with a weight
vector which it maps through an activation function.

e Feed forward neural networks are neural networks which do not have cycles
in their connections.

e Multi-layer neural networks are organized in layers of neurons and cor-
respond to a matrix-vector multiplication mapped through an activation
function.

e The back-propagation algorithm is an efficient way to implement gradient
descent when training feed-forward neural networks.

e Auto-encoders are multi-la