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Chapitre 1

Introduction

Source-to-Source optimization is an efficient method to generate, from a basic
implementation, a high performance program for the two main challenges that are
irregular codes and heterogeneous implementation.

In the last decade, general purpose CPUs moved towards multi-core architec-
tures, and the end of the increase in processors frequency marked a turning point
obtaining the best performance of a single chip, achieved only when efficiently consi-
dering the parallelism inside the chip. The optimization process is now a paramount
key to have continuously increasing speed-up on newest architectures. Parallelization
on a single chip brings new problems to consider, with the integration of different
cache level on the chip, and having several threads running simultaneously and
accessing to shared resources. Such coexistence implies that the different levels of
parallelism (vector, Instruction Level Parallelism, threads, memory access) interacts
more than ever, and optimization for high performance should consider all levels. A
second paradigm shift occurs with the generalization of hardware accelerators and
heterogeneous machines, requiring expertise in all architectures composing the hete-
rogeneous system when generating an efficient code for the target. The complication
of hardware architectures provides many challenges in the HPC area, especially for
irregular codes, whether irregular in data access or in control flow, since generating
efficient version for such code on only one core remains difficult.

In this dissertation, we will provide methods to generate efficient codes from
an initial implementation of irregular programs and heterogeneous parallelizations.
The remaining of Chapter 1 presents the evolution of machine architecture from the
first scalar computer to nowadays multi-core and heterogeneous systems. Then, since
some code transformation is usually required to help the compiler to take advantage
of the complex features of nowadays processors, the most used source-to-source op-
timizations and loop transformations are described. Finally, as the vectorization is
one of the most difficult optimization to apply efficiently, we provide some insight
into the hardware support for vector codes, dictating their own restrictions. Chapter
2 describes our CPC framework, extracting codelets from an irregular codes, op-
timizing these codelets regardless the overall program, then predicting the overall
speed-up of the all system. We validate the framework on three real codes used in
physics, genomic and molecular chemistry. In Chapter 3, we develop methods, with
more or less complexity and memory impact, to address alignment issues, due to
vectorization or bank conflicts. We apply our methods on symptomatic stencil cases,
providing an algorithm to generate efficient codes for CPUs and GPUs. Paralleliza-
tion techniques are discussed in Chapter 4 with the presentation of two works, one
addressing the generation of parallelized codelets, the second scheduling sequential
tasks on an heterogeneous system. To conclude, Chapter 5 will remind the contri-
bution of the dissertation, and discuss the improvement and future development

1
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possible concerning the presented works.

1.1 Evolution of Processor Architectures

Evolutionary biologist Theodosius Dobzhansky defined adaptation as "the evo-
lutionary process whereby an organism becomes better able to live in its habitat or
habitats". The evolution of computer architectures follows the same pattern : trying
to be the fittest possible in the race to performance. Through history, computer
architectures evolved with computer engineers trying to bypass the main issues
encountered during this race. These main issues are qualified as "walls", and all
major innovations were done to circumvent those three walls : the instruction wall,
the memory wall and for the last decade, the thermal wall.

The instruction wall is the main focus of computer science since the first compu-
ter, and aims to execute a maximum of instructions in the minimum lapse of time
and, to a certain extent, to do several instructions at the same time. In Section 1.1.1,
evolution of the processing power is described to the first simple scalar processor to
our vector processors, via pipelined, superscalar and VLIW processors. Increasing
the processing power of processors, a gap widened between the speed of computa-
tions and memory transfers, hitting the second wall : the memory wall. Mechanisms
to bypass this wall are evoked in Section 1.1.2, with the two different local memories
that are the automatically managed caches and the manually managed scratchpad.
For the last decade, the performance race hit a new wall, the thermal wall. Until
then, processor performance followed the Moore’s law (Fig. 1.1) stating that the
number of transistors placed on an integrated circuit doubles every two years.

Figure 1.1 – Number of transistors on a single chip since 1971

However, this law did not foreseen that physical issue would be involved, and
that heat dissipation would be inexorable. The thermal wall caused drastic changes
in computer architectures. Coupled with the precedent encountered walls, para-
digm shifts towards multi-core processors and heterogeneous systems took place as
described in Section 1.1.3. Nowadays, several tradeoffs between these solutions are
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proposed in new computers, and one has to understand why and how they are set
up in order to exhibit the best possible performance, even when dealing only with
source-to-source transformations.

1.1.1 Instruction Wall

The instruction wall represents the very first wall that have been bypasses to
obtain better performance, i.e. the instruction sequential execution. At the very
beginning, the scalar computer executed only one instruction at a time, as shown in
Fig.1.2, and had to wait until the first instruction were completely done before star-
ting the second instruction. With this execution pattern, performance improvement
can only be achieved through a faster instruction execution.

Figure 1.2 – Instructions executions on an original scalar processor

When executing an operation, the scalar processor performs the following steps :
fetch the instruction from memory, decode the instruction to understand the ope-
ration having to take place, execute the operation then store the result of the ins-
truction. All instructions do not require all the same elements, as some instructions
will write the result in register or in memory, or on more advanced computers some
will require integer processing unit while other will need the floating-point proces-
sing unit. From these observations, different mechanisms were designed to improve
the instruction throughput. The execution divided in several stages inspired the
instruction pipeline, then the diversity of instructions combined with the instruc-
tion pipeline lead to superscalar processors, VLIW processors and finally vector
processors.

Instruction Pipeline

The idea of the instruction pipeline is analog to an assembly line. Since the
sequential steps are independent, why do not we do several product in parallel,
with each product in a different stage. An instruction execution being intrinsically
decomposed in several step, realizing an instruction pipeline consists in separating
the execution of each stage. Even if a simple version was used in 1939 for the Z1
computer and later in 1941 for the Z3, the IBM Stretch project in 1961 [39] and
the Illiac II project in 1962 [20] are considered to be the firsts pipelined processors.

Fig.1.3 displays the classic RISC (reduced instruction set computer) pipeline
divided in five stages :

1. IF : Instruction Fetch. This step gets the instruction from memory.

2. ID : Instruction Decode. This step decode the instruction to signal the requi-
red elements, and fetch the date in the correct registers.

3. EX : Execute. The operation is done during this step.

4. MEM : Memory access. The memory is accessed at the right address. If data
is supposed to be written in memory, it is done here. If a data is supposed to
be read from the memory, it is done in the next step.

5. WB : register Write Back. Result of operation or loaded data is written back
in register.

The ideal throughput of a pipelined processor is one instruction per slower stage
latency. However, an instruction pipeline is more complex. Some instructions do not
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Figure 1.3 – Instructions executions on a 5-stage pipelined scalar processor

use the WB stage, and bypasses are added to skip stages. Also, instructions may
depend on data produced by the precedent instruction, and stall mechanisms are
designed to wait for the correct data to be available. Moreover if the instruction
being executed is a branch, there is no way to know which should be the next
instruction to enter the pipeline. However, prediction mechanisms were designed to
reduce the overhead of such instructions, filling the pipeline with the most probable
choice, and deleting the pipeline content if wrong.

Having instructions stalling induces that several instructions may require the
same resource. An instruction must thus wait for the resource to be free. This
case inspired superscalar processors presented in the next paragraph, in which the
pipeline is widened to the most problematic stages (mainly execution and memory
stages) for more operations to take place during these stages.

Nowadays, instruction pipelines are wider than the small classic RISC five stages
pipeline. Considering only intel processors in the last decades, the Pentium 4 ar-
chitecture displayed a pipeline with twenty stages. Such processors are qualified as
"superpipelined", with thirty-one stages reached by Intel’s Prescott microarchitec-
ture.

Superscalar Processor

As said before, the idea of the superscalar processor is to have multiple instances
of the same resources available for instruction executions. If, due to stalls, multiple
instructions pass through the same stages simultaneously, all the instructions can
operate this stage without bothering another one.

Seymour Cray’s CDC 6600[96], build in 1964, is often mentioned as the first
superscalar design. With performance at 1 Mflops, three times better than the
previous top processor, it is considered to be the first successful supercomputer,
staying on top of the game for five years. It was dethroned by its own sucessor, the
CDC 7600 [123].

Fig.1.4 displayed an extreme form of superscalar processor, where all stages were
widened for two independent instructions to be done in parallel.

From this extreme example, one can extrapolate the principle of VLIW proces-
sors. Instead of having several pipeline in parallel executing separate instructions,
these instruction are packed in a very long instruction word. The long instruction
is fetched, all embedded instructions are decoded and can be executed in parallel.

Another derivation from this model leads to vector processors. Instead of having
multiple instructions operating simultaneously on multiple date (MIMD), one can
execute a single instruction, operating directly on multiple packed data (SIMD),
with enough arithmetic and memory resources not to stall.
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Figure 1.4 – Instructions executions on a superscalar processor

Very Long Instruction Word Processor (VLIW)

The first VLIW compiler was described in a Ph.D. thesis written by John Ellis
and supervised by Josh Fisher [44]. A very long instruction word is composed with
a certain number of short instructions, which are fetched simultaneously, and can
be executed in parallel, provided there is no dependency between two instructions
embedded in a long instruction. An example of VLIW processor packing four short
instructions is schematized in Fig.1.5.

Figure 1.5 – Instructions executions on a 4-instructions VLIW processor

The long instruction is built such as no resource conflict occurs between its own
short instructions. For example, the Intel’s Itanium 2 processor can execute three
instructions packed together in a bundle, which exhibits building constraints. One of
these constraints is the impossibility to have three memory instruction in the same
bundle. These constraints ensure that there will be no stall due to unavailability of
resources in the same long instruction. Vector processor will not have this problem,
since only one instruction is issued per clock tick.

Vector Processors

Vector processors are processors handling vector instructions, i.e. instructions
operating on packed data, comparable to arrays of values. The same operation is
applied on all values of the array(s), like for the vectorial add in Fig.1.6.

Specialized instructions are used when performing vector computation. Data
have to be loaded in vector registers, and the result is also stored in a vector register.

Vector processors first appeared in the 1970’s, the vector techniques being fully
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(a) Sequential Add (b) Vectorial Add with four elements

Figure 1.6 – Difference of execution between a sequential Add and a vectorial add
with vectors of 4 elements.

exploited first by the CRAY-1 computer [90] and the Control data STAR-100
computer [86]. Vector processors formed the basis of most supercomputers since
1980’s.

The hardware constraints and usage of vector computation on current architec-
tures will be discussed in Section 3.2.2.

To continue to break the instruction wall, other hardware features were designed,
such as hyperthreading running several instruction streams on the same core, or
out-of-order reorganizing on the fly incoming instructions. The formidable constant
growth in available performance has led to the memory wall. Performance of memory
accesses and data transfers did not increase as fast as computational capability.
Hence for most of real codes, the main issue shifted from doing more operations to
getting enough data to operate on.

1.1.2 Memory Wall

The "memory wall" is the result of the growing disparity of speed between
CPU and the memory outsize the CPU chip. With a constant focus on computing
efficiency, and a lower cost of components, CPU speed faster than the memory
speed. This issue began to show up in the late 80’s, early 90’s, as shown in Fig.1.7.

Figure 1.7 – Processor-memory performance gap through the last three decades

The "memory wall" was formally described, and named, in 1995 by Wulf and
McKee [118]. Memory hierarchy tried to hide this gap, multiplying memory layers of
small latency between the CPU and the global memory. The purpose was twofold :
limiting the access to the high latency memory by keeping in closer memory a
maximum of loaded data, and load data from global memory to the closer ones
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while the CPU works on data in the closer memories. The multiplication of cache
levels in modern CPU since the last two decades is an example of such designs.

Caches

Caches play the role of buffers between the processor and the memory (RAM).
When a data is loaded from memory to be used by the processing unit, the data is
copied in cache. Data in cache can be reused without accessing the global memory.
Cache memory, either external or integrated directly into the CPU die is faster
than the RAM memory. Due to the cost of such fast memory and the issue of heat
dissipation, caches are smaller than the global memory, and the closer to the cpu,
the faster and smaller it is. A sort must be done to select which data should stay in
cache and which one are no longer useful, and several strategies are implemented to
deal with cached data, such as the Round-Robin replacement for a cache store [55].

Using multiple memory levels closer to the processing unit is not new, and the
first documented use of a data cache is on the IBM System/360 Model 85 [28].
With the development of the technology, several distinct caches on the same level
were used, stocking either the data or the instructions, and a third translation
look-aside buffer (TLB) to speed-up the virtual-to-physical address mapping.

Figure 1.8 – Example of memory layout with caches on a multi-core chip

With the wide gap between computing performance and data transfers, it is
paramount to use efficiently these fast memory. Programmers have to think their
algorithms and implementations in consequence, maximizing the temporal locality
(applying several operations on the same data to keep it close) and spacial locality
(packing operations requiring the same data, as in an array swap). Also during
intensive computation, it is possible to bring data that will be used in cache, hiding
the memory latency with computation.

Prefetching

The memory prefetch consists in bringing a data from a high memory hierar-
chy to a closer hierarchy. This method is mainly used with non-blocking memory
access. A blocking memory access consists to wait until the memory instruction is
answered before continuing the program execution. For example, if a load is issued
and the data is in RAM, one has to wait until the data is loaded in register before
doing the next instruction, even if the loaded data will not be used immediately
in computation. To be able to hide some memory latency, non-blocking memory
access were designed. When using these instructions, the execution does not stall
when the data is sought, but it is actually required for a computation.

Thus, it is possible to prefetch data from RAM to a low level cache while doing
computations requiring other data. It can be very efficient in loop nests since it is
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possible to execute the current iteration while loading data for the next iteration.
However, prefetching data can occur several conflicts. First, on some architec-

ture like Intel Core 2 architecture, a hardware prefetcher is integrated, and already
try automatically to bring data closer to the CPU. A software prefetch done by
the programmer may interact badly with it, and bring only additional overhead
instead of reducing latencies. Furthermore, the cost of maintaining cache coherency
is increasing dramatically with the multiplication of same level caches required to
support larger multicore chips. One has to be sure where the prefetched data will
be required to not solicit more than necessary coherency protocol.

Cache Coherency issues

Due to the multiplication of caches on a single chip, cache coherency protocol be-
came heavier and more complex. Considering one of the chip represented in Fig.1.8,
one can find four L1 and L2 caches, private to the corresponding core, then a L3
caches shared between all the cores. Clearly, finding the valid required data is more
difficult than with previous processors. With a mono-core processors, if the data
were not in a memory level, then it was sufficient to ascend through all levels until
finding it. Now, with all these caches, the data required by a core can be found in
the corresponding L1 cache, but not be valid, the latest version being in another
core’s L1 cache. When modifying a variable, it may be necessary to broadcast the
information that the data are modified, and current copies in other separate caches
are not valid anymore.

The complex cache coherency can be maintained with several protocols, one of
them being the MESI protocol described next. The MESI protocol was developed at
the University of Illinois at Urbana-Champain (UIUC), and the name comes from
the first letter of each different states marking the cache lines :

– Modified : The cache line is present only in the current cache, and the data
is different from the original copy in main memory (the data has been locally
modified).

– Exclusive : The cache line is present only in the current cache line, and is a
copy of the value in main memory (either the data has not been modified, or
the new value has already been written in memory).

– Shared : The cache line is also present in other caches, and can be invalidate
at any time by the other caches. Data matches those in memory.

– Invalid : The cache line is invalid. It is not the latest version of the data, and
valid cache line must be reloaded from higher memory hierarchy.

Such protocols require more circuit, and generate message passing independent
from the running program, and invisible to the user. In symptomatic cases, the
additional messages can slowdown the overall execution, whereas the user wrote its
program to fit in lower caches to avoid the main memory latency.

The complexity of caches hierarchy induce more power consumption and heat
generation, which are the first causes of the third wall outlined in Section 1.1.3.

With the apparition of specialized hardware accelerators, caches management
was abandoned in favor of simpler memory model. Those "scratchpad" memories
are less automatically handled, and the user manages himself all the memory access,
being the sole accountant for the validity (or invalidity) of the data he uses.

Scratchpad

The scratchpad memory is a fast internal memory with no coherency protocol
integrated. It uses specific instructions to move data from and to the main memory,
implying that data in the scratchpad are not necessary also present in the main
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memory. If such memories were early considered as additional memory for tempo-
rary accesses [92] or a good alternative to cache designs in embedded systems [9],
scratchpad memory seems to be the solution for the memory energy consumption
on hardware accelerators. SPE’s local stores in the late CELL BE, and the local
memory in NVIDIA GPUs are example of the choice of scratchpad memory over
cache designs (even if the latest NVIDIA card integrate a L1 cache for its processing
units). Since efficiently programming accelerators already requires specific insight of
the architecture, especially transferring the data from the host to the device, or sim-
ply between two chips, completely managing memory transfers for these machines
does not induce a large learning overhead. To facilitate the usage of this simple
memory design, works have been done to manage automatically data movement at
compile time, instead of exhibiting all transfers [68].

Shifting the memory management from the hardware to the software reduces
the power consumption of the chip, inducing less heat generation, which is the key
to maintain the increase of performance despite the thermal wall.

1.1.3 Thermal Wall

The thermal wall hit in the early 21st century is simply due to a physical issue.
The heat generated by the circuit power consumption was to high, and increasing
the density of transistors on a chip could not offer anymore a heat dissipation
rate sufficient enough. This wall is said to have caused a paradigm shift in the
microprocessor industry. But from a certain point of view, it really caused two
paradigm shifts, happening nearly simultaneously. The first one is the change from
mono-core to multi-core chips, resulting in having to consider parallel programming
model instead of the historic sequential one. To deal with the heat density and
the power constraints, the industry went from complex and high clock rate single
core chips to designing chips with multiple simpler and lower frequency cores cores.
The second paradigm change is, coupling the thermal with the processing wall, the
appearance of simpler and specialized hardware accelerators, such as GPUs, or SPEs
in the late Cell BE. To do more computations in a smaller amount of time lead to
the creation of specialized devices being able to do some specific computations very
quickly. Most of the hardware features not related to these specific computations
are removed, ending up with a simpler and less consuming chip, but with most
of the remaining features less automatically handled. The user must have a better
insight of the hardware mechanisms to use it efficiently and to obtain the promised
speed-up.

Chip MultiProcessor

A multi-core processor is a single computing chip with two or more actual pro-
cessing elements. The concentration of transistors generating too much heat to
dissipate for the processor integrity, vendors started duplicating processors on the
same die. Having several distinct processor on the same chip allows to continue
increasing the overall peak performance of the chip bypassing the thermal problem.
In the last decade, each vendors designed their own multi-core chip. Let us men-
tion among others, IBM’s Power4 and successors, Intel’s Core duo and Core 2
duo, and Sun’s Niagara architectures. If the firsts designed were crude, with two
very distinct processors with all resources private, rapidly the subsequent chips
took advantage of the shared resources, with the multiplication of shared level of
caches for instance (see Fig.1.8). If such common resources may allow a better data
sharing, with faster transfer from one core to another, it may also introduce new
problems related to waste of shared resources, or contention when trying to access
these resources.
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To reach the peak performance of a chip is more complex with a mutli-core sys-
tem. With a mono-core processor, one had just to determine if the running program
was memory bound or compute bound. For example, if it was memory bound, the
performance would be limited by the memory bandwidth. Now, one has to consider
not only the limiting instructions on one core, but also resources interactions across
the multiple cores on the chip to achieve its peak performance. Using efficiently
the possibilities of a multi-core chip is not straightforward, having to care about
how the resources are shared, where the data are placed and will be needed, the
memory contention ; all these new constraints merging with the pre-existing onces,
such as alignment for vectorization, blocking for data reuse, or covering data latency
with computations. Programming for high performance computing becomes more
complex with multi-core chips adding new levels in the overall computational and
memory hierarchy of already complex distributed systems. And those constraints
consideration will increase furthermore with multi-core chips shifting to many-core
chips, having not only several processors, but tens to hundreds of processors on a
single die.

Hardware accelerators

Hardware accelerator is the use of specialized hardware to perform come ope-
rations faster (or cheaper) than it is possible when using a general-purpose CPU.
Inspired by the thermal wall, hardware accelerators are circuitry specialized for
specific computations. These accelerators are stripped from complex features, pre-
senting only those necessary for instruction executions, and control management.
Due to their simpler design, they consume less power than a CPU while perfor-
ming their specialized operations faster, or at least at the same rate, than the CPU.
However, the simplicity of the architecture is only matched by its complexity to
program. As management features are missing, the programmer has often to un-
derstand what is missing, and considering it directly in its program. The memory
is a good example of its behaviour ; memory management and cache coherency is
a huge power consumer, most hardware accelerators favored the use of scratchpad
memory, with which the user must explicit all memory transfer, and is the only
voucher for the validity of data being accessed in the shared memory.

Figure 1.9 – schematic representation of a Cell BE with its PPE and its eight SPEs

The hardware accelerators may be embedded on the chip, as the SPEs of a Cell
Broadband Engine achitecture (Cell BE, Fig. 1.9), or external hardware add-on like
General-Purpose Graphics Processing Unit (GPU,

Fig.1.10. For the Cell BE, each chip contains the main processor, named PPE
for Power Processing Element, and eight accelerators, named SPE for Synergistic
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Processing Elements. An Element Interconnect Bus connects all the on-chip ele-
ments (PPE, SPEs, the memory controller, two off-chip I/O interfaces). The PPE,
act as a controller for the eight SPEs, sending data and instructions to the specia-
lized processing unit. Several Cell BE chips can be linked together to form a larger
computing power, with SPEs talking only to their corresponding PPE, and only the
PPEs exchanging messages to transfer data among the different chip.

Figure 1.10 – schematic representation of a Fermi NVIDIA Card

For the GPU, the machine configuration is not fixed, as there can be one GPU for
one or several CPUs, or several GPUs for one CPU. If there are too many GPUs for
a CPU to handle, contention issue may occur when transferring data to the device,
to the point that time lost transferring data to the GPUs may not be gained using
the GPUs for computation ([109]). Considering a NVIDIA Fermi GPU card, it can
be composed of one or several Streaming Multiprocessor (SM), which is a module
with 32 parallel cores, a shared memory, a large register file, and some scheduler
and control units. The processors in different SMs of a chip can access a common
global memory, which have a very restrictive way to transfer data efficiently. To be
handy, data has first to be send from the CPU host to the global memory, then
coalesced data must be moved to the shared memory. A single SM manipulating
32 threads simultaneously, the program must sustain heavy parallelization for the
GPU to be efficient.

With hardware accelerators, one can delegate part of a computation to specia-
lized elements, but has to pay attention to all the specificities of used accelerators,
along with message passing between devices on the heterogeneous machine. Moreo-
ver, using the computational power of the CPU host may increase performance or
energy saving, and the programmer must then create two codes taking advantages
of each architectures features, and interacting the most efficiently possible. Gene-
rating efficient codes for heterogeneous machines in an automatic way is difficult,
and is a challenge of this post "thermal wall" age.

Due to the complexity of modern architectures, compilers are struggling to pro-
vide efficient codes from a basic implementation. Developers may have to transform
the initial code to help the compiler producing an executable taking advantage of
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the target features. Source-to-source transformations allowing such modifications
have been heavily discuss for numerous years. A subset of these transformations,
corresponding to the ones used in the main contributions of this dissertation, are
presented in the following section.

1.2 Source-to-Source Optimizations

Software optimization is the process of modifying a program to make it more ef-
ficient. The focus of this improvement can be time consumption, resource consump-
tion or energy consumption. The increasing complexity of hardware features in
modern processors makes the combined effects of a sequence of optimizations hard
to predict. Effects of one single optimization depend on both the application and the
target architecture. Static compilers resort to simplified performance models, lea-
ding most production compilers to trigger some optimizations only in very favorable
cases [53, 116, 80]. The works presented in this dissertation rely on source-to-source
optimizations to help the compilers find these favorable cases.

Source-to-source optimization allow the user to directly transform the original
code in a new version, more efficient or simply closer to the machine architecture.
Most of these modifications apply on a loop nest. The transformations used in this
dissertation are presented in this section. A more complete and detailed list of code
transformations can be found in Sylvain Girbal’s Ph.D. Thesis dissertation [50].

1.2.1 Code motion

Code motion moves an instruction block to another location, in the same level
of a loop nest. Being moved backward or forward, it can be considered that the
block is swapped with its predecessor or following block. To apply code motion,
there must be no dependences violation between the swapped blocks.

Code motion is a classical source-to-source transformation analog to a copy-
paste manipulation. It is mainly used to bring closer data producers and consumers,
improving the temporal locality of variables. In symptomatic cases, code motion can
remove the use of temporary variables or arrays.

Code motion can be applied only if no dependencies are violated when moving
the block of code.

Below is an example applying some code motion between the two blocks of code
(namely block_2 and block_3) on a pseudo-code representation :

block_1{

...

}

block_2{

...

}

block_3{

...

}

−→

block_1{

...

}

block_3{

...

}

block_2{

...

}

1.2.2 Extraction

Code extraction (and by extension, loop extraction) consists in taking an ins-
truction block (or a loop) out of a program to put it in a new function. Then this
new function is called from the original code to do its part.

Isolating a code portion from the overall program may relaxed constraints for the
optimization phase of the compiler [10]. When extracting inner loops of a loop nest,
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one automatically applies array contraction on the concerned arrays, simplifying
the computation representation.

Below is an example of loop extraction applied on the inner loops of a loop nest :

for (i=0; i<M; i++)

for (j=0; j<N; j++)

loop_body (i, j)
−→

for (i=0; i<M; i++)

function (i; data(i))

function (iterator i, input data_i))

for (j=0; j<N; j++)

loop_body_i (j)

1.2.3 Tiling

Loop tiling decomposes a linear swap of a loop in several smaller consecutive
linear swap. When dealing with a loop nest swapping a multi-dimensional array, it
decomposes the considered polyhedral in smaller ones, with constant form and size,
to swap.

Loop tiling in a multi-level loop nest is done to change the spacial and temporal
locality of data in the arrays, improving data reuse for some computation patterns.
To a lesser extent, loop tiling can also be used on a loop with unknown bounds to
fix statically the size of loop for the most part of the iterations [111]. Compilers
doing a better optimizing job when dealing with statically known loop bounds,
global performance will be increased for the tiled loop, with only the reminder loop
producing a poor quality code.

Below is an example applied on all loops of a loop nest :

for (i=0; i<M; i++)

loop_body_1 (i)

for (j=0; j<N; j++)

loop_body_2 (i, j)

for (l=0; l<L; l++)

loop_body_3 (i, j, l)

−→

for (i=0; i<M; i+=X)

for (ii=0; ii<X; ii++)

loop_body_1 (i+ii)

for (j=0; j<N; j+=Y)

for (jj=0; jj<Y; jj++)

loop_body_2 (i+ii, j+jj)

for (l=0; l<L; l+=Z)

for (ll=0; ll<Z; ll++)

loop_body_3 (i+ii, j+jj, l+ll)

1.2.4 Interchange

The Loop permutation transformation exchange the position of two consecutive
loop in the same level of a loop nest. Loop interchange is a code transformation
very used for code optimization. It can induce a change in the spacial and temporal
locality of memory elements in nested loops [4]. Loop interchange may also be used
to increase scalar promotion, in order to lighten the memory footprint.

It is possible to apply a permutation between two loops in the same level if there
is no dependance between data inside those two loops.

Below is an example of interchange applied in a loop nest.

for (i=0; i<M; i++)

for (j=0; j<N; j++)

loop_body_1 (i, j)

for (l=5; l<N; l++)

loop_body_2 (i, l)

−→

for (i=0; i<M; i++)

for (l=5; l<N; l++)

loop_body_2 (i, l)

for (j=0; j<N; j++)

loop_body_1 (i, j)
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1.2.5 Fission

Loop fission transformed a single loop in two distinct loops, with instructions in
the original loop body being divided between the two new entities. The new loop
has the same iteration domain than the original loop.

This transformation is used to separate large loop in several smaller ones. These
smaller loops can be better handled by compilers, or reorganized to exhibit better
data locality [72]. If the fission separates independent data streams, the only ove-
rhead of the fission will be the multiplication of branch instructions. However, is
the distributed instructions are part of the same stream, array privatization may
take place, adding a new dimension in considered arrays to carry data between the
loops. If the original computation is memory bound, it can be very harmful to the
overall performance.

Below is an example of loop fission applied on the middle loop of the represented
loop nest :

for (i=0; i<M; i++)

for (j=0; j<N; j++)

loop_body_part1 (i, j)

loop_body_part2 (i, j)

−→

for (i=0; i<M; i++)

for (j=0; j<N; j++)

loop_body_part1 (i, j)

for (j=0; j<N; j++)

loop_body_part2 (i, j)

1.2.6 Fusion

Loop fusion realizes the opposite transformation of Loop fission. It takes two
consecutive loops on the same level and with the same iteration domains, and com-
bine their bodies in one new loop, if there is no dependences violation.

Loop fusion allows a different spacial and temporal locality for data in the ori-
ginal distinct loops. In some cases, this new locality may create opportunities for
scalar promotion (since the producer and consumer are in the same loop, a simple
variable is enough to carry the data, when an array was needed with two loops) [?].
For multi-dimensional array scalar promotion is extremely rare, but array contrac-
tion can occur, removing in the arrays the dimension relative to the fused loop level.
Even if the created loop is larger, the use of simpler data structure will ease the
compilers work.

Below is an example of loop fusion applied on the middle loops of a loop nest :

for (i=0; i<M; i++)

for (j=0; j<N; j++)

loop_body_part1 (i, j)

for (j=0; j<N; j++)

loop_body_part2 (i, j)

−→

for (i=0; i<M; i++)

for (j=0; j<N; j++)

loop_body_part1 (i, j)

loop_body_part2 (i, j)

1.2.7 Unroll

A full loop unroll duplicates the loop body as many times as the number of
iterations, in order to completely remove the loop call. A partial unroll consists in
applying first a tiling on the loop, then fully unroll the inner tiling loop.

The first purpose of unrolling is to remove branches instructions compared to
computation instructions, reducing the overhead brought by waiting for the branch
result. A less obvious optimization of a loop unroll is to enlarge the loop body. As
explained before, compilers better handle loops which are not to large. However, too
few instructions in a loop body is also a limiting factor for the optimizing routine of
compilers. By unrolling small loops, one gives the compiler more material to work
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on, and may produce a better code in the end. Moreover, unrolling allows to exhibit
or improve software pipelining [21, 22].

Below is an example of a partial unroll applied on the inner loop of this simple
loop nest :

for (i=0; i<M; i++)

for (j=0; j<N; j++)

loop_body_1 (i, j)
−→

for (i=0; i<M; i++)

for (j=0; j<N-1; j+=2)

loop_body_1 (i, j)

loop_body_1 (i, j+1)

1.2.8 Skewing

Loop skewing changes the iteration space, replacing loop bounds and iterators
with new ones, swapping the same elements in a different order, or even in the same
order.

Loop skewing is done mainly to change the reference frame, allowing inner loop
parallelization when dependences were not originally parallel to the axis. After the
skewing, the inner loop can be cut in several parallel stream without severing data
dependences [115]. To a lesser extent, loop skewing may also simplify array indexes
evaluations, which can be a real stall in the computation if too complex.

Below is an example of a skewing applied on the presented loop nest :

for (i=0; i<M; i++)

loop_body_1 (i)

for (j=0; j<N; j++)

loop_body_2 (i, i*N+j)

−→

for (k=0; k<M; k++)

loop_body_1 (k)

for (l=k*N; l<(k+1)*N; l++)

loop_body_2 (k, l)

1.2.9 Vectorization

Vectorization consists in hiding several similar computations on consecutive va-
lues behind only one call of the computation. The operation applies on vectors,
that are like small arrays of consecutive data. If it can be used to represent specific
data structures to work on, like for a pixel represented by an array of four int, its
effectiveness and the speed-up it can bring is mainly due the hardware circuitry
performing vectorial operations on nowadays architecture [79, 15]. When using the
vector circuitry, one can perform an operation on several data while the scalar unit
would have perform only one operation in the same time. The best performance
when using vectorization are achieved when filling the requirement issued by hard-
ware supports for vectorized computation. The hardware mechanisms for valid and
efficient vectorization are discussed in Section 3.2.2.

Below is an example of a vectorization, with vector composed of four elements,
applied on the inner loop of this simple loop nest :

for (i=0; i<M; i++)

S1 (i)

for (j=0; j<N; j++)

S2 (i, j)

S3 (i, j)

−→

for (i=0; i<M; i++)

S1 (i)

for (j=0; j<N-3; j+=4)

S2 (i, {j, j+1, j+2, j+3})

S3 (i, {j, j+1, j+2, j+3})

1.2.10 Composition of transformations

Code optimizations require most of the time to combine several transforma-
tions. Having a good knowledge about data structures, target architectures and
optimizations requirement for validity, one can choose, and apply, a specific set of
transformations he knows to be the best candidates to achieve high performance.
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However, for someone outside such knowledge, it is very hard find the best sequence
of optimizations. Moreover, given a set of optimizations, it is not possible to verify
the optimality of a sequence of transformations [98].

To apply successive optimizations on an original implementation, one can re-
sort on iterative compilation. It consists in applying first a modification on the
code, then to compile and test the modified solution. Then a second modification is
done, and so on. To avoid the combinatorial effects of trying all possible recompo-
sitions using the given subset of optimizations, several intermediate representations
through polyhedral models have been proposed [29, 27, 51, 13, 7, 88]. These models
allow to explore multiple optimization compositions, without having to produce the
new version at each step. From the representation, some resulting versions can be
discarded, whether presenting invalid or bad characteristics . Only the selected se-
quences of optimizations will be exported from the intermediate representation to
an actual implementation.

Even when using polyhedral model, the search for efficient transformation se-
quences must be guided, either by the user (the solution we choose in Chapter 2)
or with heuristics pruning the optimization space.

To complicate even more this search, the performance of some transformations
not only comes from the code characteristics, but also from the hardware circuitry
supporting their implementation. Vectorization is one of these, with specific registers
and computing units dedicated to its physical execution. This hardware support may
induce special requirements to exhibit the best performance. The specific case of
vectorization is detailed in the following section to introduce alignment conflicts
notions used in Chapter 3.

1.3 Hardware support for vector code

On a hardware level, vector registers have a fixed size, and contain as many values
as necessary to fill them. A computation on two vectors will apply the operation
on each atomic value at the same position in the vector. For example, an add

operation on two vectors V1={a1,b1,c1,d1} and V2={a2,b2,c2,d2} will perform
a3=a1+a2, b3=b1+b2, c3=c1+c2 and d3=d1+d2, and store the results in a new vector
V3={a3,b3,c3,d3}. Loading data into vector registers, enough consecutive data are
extracted from memory to fill one. The size of a vector register depends on the
implementation for the architecture : 128 bits for Intel’s and AMD’s SSE, expanded
to 256 bits for new AVX registers, 128 bits for IBM’s Altivec, 32 bits for NVIDIA
CUDA. Hardware mechanisms to fill the vector registers are discussed in Section
1.3.1 for CPUs and in Section 1.3.2 for GPUs.

1.3.1 On CPUs

Filling a register with data from memory may have different performance if the
first data to be loaded in the vector has an address being a multiply of the vector
size or not. If the address of the first accessed data is null modulo the vector size,
the data is said to be aligned, and an aligned load can be used. SSE aligned load
of simple precision values are represented in Fig. 1.11, and aligned load of double
precision values in Fig. 1.12.

While Altivec does not support unaligned access, SSE instructions exist to load
non-naturally aligned data directly into registers, as long as the alignment requi-
rement of its base type is fulfilled. An unaligned load to create a vector of four
simple precision floating point values can take place if the first data is aligned on
a 16 bits boundary, but not on a 8 bits or a 13 bits boundary for example. As
displayed in Fig. 1.13, the four consecutive data are directly put in the register like
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Figure 1.11 – Aligned load from memory to a vector register in simple precision
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Figure 1.12 – Aligned load from memory to a vector register in simple precision

an aligned load. However, more complex internal mechanisms are required to fetch
data from anywhere in memory, and an unaligned load has a higher latency than
the aligned one. Even if the gap of performance between the two are shrinking,
alignment conflicts remain a a key point to achive performance [52] .

A B C D E F G H I J K L M N O P

0x00 0x04 0x08 0x0C

F G H

128-bits

I

0x05

32-bits

0x10

Figure 1.13 – Unaligned load from memory to a vector register in simple precision

Another possibility to realize vectorization from unaligned data is to fill multiple
vectors with aligned loads, shuffling data inside the vectors then merging them to
build the vector actually required for the computation. The complete procedure is
detailed in Fig. 1.14, also with SSE instructions, all the step are not necessarily
separated, and only one instruction inserted after the two aligned loads may be
enough to build the wanted vector.

Vector computations are usually used on the inner loop of a loop nest. Vec-
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Figure 1.14 – Two aligned loads followed by a shuffle operation to build the required
vector

torizing consecutive unaligned data, only one aligned load might be necessary to
build the required vectors, reuse the already available ones. For IBM’s Altivec, the
shuffle methodology is the only way to work is unaligned. For SSE instructions, the
best choice between unaligned loads and shuffles depends on the program limita-
tions, with shuffling increasing the register pressure and the number of instructions
possibly being more time consuming than unaligned loads.

1.3.2 On GPUs

GPU cards from different vendors don’t have the same hardware representation
of vectors. On AMD cards, it is based on the same model as the SSE representation,
and the hardware can manipulate 128 bits vector registers as described for CPUs.
On the other hand, there is no specific vector register on NVIDIA card. Only 32
bits registers can be found, and data is stored in the number of registers necessary
to handle the value. For example, a simple precision floating point value will be
loaded in one register (see Fig. 1.15, while a double precision floating point value
will be loaded in two distinct registers coupled to handle the 64 bits value.

If the behaviour of registers seem to avoid alignment issues while loading values
into 32 bits registers, it is not the case when using built-in types of the CUDA
programming language. Built-in vector types were created to provide programmers
with an existing set of vectors, grouping of each types being included, up to 128
bits or a vector of four elements. Vectors of char, unsigned char, short, unsigned
short, int, unsigned int, long, unsigned long, long long, unsigned long long, float
and double are represented, composed with a maximum of four elements for smaller
data types (char1, char2, char3, char4), and a maximum of two elements for larger
data types (double1, double2).

These built-in types force specific alignment of data, sometimes with vector
requirements being different from its base type requirement. Among others, a char1
must be aligned on a 8 bits address, char2 on a 16 bits, char3 on a8 bits address, char
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Figure 1.15 – Load of a 32-bits data from memory to registers
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Figure 1.16 – Load of a 64-bits data from memory to registers

4 on a 32 bits address, int1 on a 32 bits address and double1 on a 64 bits address
(the table for alignment requirements can be found in the Cuda Programming Guide
[31]). Using these built-in types will cause the same alignment issues than for CPU.
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Chapitre 2

CPC : an autotuning

framework for irregular codes

In this chapter is presented a autotuning framework to optimize irregular codes.
This framework, called CPC framework for Constant Performance Codelet, aims to
optimize large programs focusing only on their hot-spot functions with nested loops.
To avoid the large amount of time spent in iterative compilation to optimize those
programs, the CPC framework extract the hot-spot function, slice the loop nest in
several part named codelets, and optimize only these small codelets. A performance
prediction model selects the codelets to recompose an optimized function. The fra-
mework described in this chapter have been presented in the SMART’09 workshop
[54].

2.1 Introduction

The increasing complexity of hardware features in modern processors makes
compilation for high performance very challenging. Effects of one single optimiza-
tion depend on both the application or the target architecture, and are hard to
predict. Static compilers resort to simplified performance models, focusing on one
metric (such as cache misses for instance) assessing the assumed effectiveness of the
optimization. The combined effects of a sequence of optimizations is therefore most
often unpredictable and prevents compilers from finding most effective optimization
sequences. Actually, the risk of using an approximate performance model is as much
to degrade performance as to miss optimization opportunities. This leads most pro-
duction compilers to trigger some optimizations only in very favorable cases (xlc
compiler and vectorization for BlueGene for instance [53]).

One approach to deal with the problem of simplistic performance model is to
rely on performance measures, making code execution part of the compilation time.
Adaptive compilation drives selection of optimization sequences by feed-back perfor-
mance evaluation [59]. To limit the search among possible optimization sequences,
several techniques have been proposed[62] : adaptive compilers resort to genetic
algorithms [30], machine learning algorithms [1] and some amount of enumeration.
Auto-tuning libraries also use adaptive compilation techniques (Spiral [87], FFTW
[47], ATLAS [114], Stapl [75] for instance) and have shown their effectiveness even
compared to hand-tuned codes. With the exception of BLAS library where it has
been shown that a pure performance model approach for ATLAS can be competitive
with the empirical search version [120], the main drawback of iterative compilation
is its large compilation time. As for each change of compiler flag, optimization pa-
rameter or sequence, the whole code is executed. Most of the research on iterative

21
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compilation has focused on limiting the search, and consecutively, the total execu-
tion time (see the work of Dunwell et al. [48] for instance, based on the different
phases of an execution). However, these approaches assume some properties on dy-
namic execution as : the input can be transcribed in a specific representation, the
run of the test is repeatable. Our method is based only on static decomposition of
the code based on control (and dataflow) properties.

We proposed a novel approach for adaptive compilation, combining empirical
search to a performance model. The main contribution is to describe a method that
searches for many code variants and predicts performance accurately while only
small code fragments are executed. The method is threefold : (i) source to source
transformation sequences are explored according to user-defined pragmas, genera-
ting as many code versions, (ii) for each version, some inner loops, named codelets,
are taken out of the application and executed, (iii) performance evaluation of each
code version is obtained by combining codelet timing measures and a simple perfor-
mance model. This approach is an extension of the method presented in Banakar
et al. [10] for library generation of linear algebra codes, and we generalize it so that
real applications can be targeted. Detailed use of this method, referenced later as
the CPC framework (Constant Performance Codelet) is described on three "real
life" applications : a molecular simulation (section 2.3), a Lattice QCD simulation
(section 2.5) and a genomic simulation (section2.4). Experimental results on an Ita-
nium 2 architecture show the performance model is accurate, and that substantial
speed-up can be reached benchmarking only parts of the hot-spot functions.

2.2 CPC framework

Simulation codes are generally programs running for a long time. When optimi-
zing such codes, one has to run each new versions to see if the applied transformation
is efficient or not. Testing only a few possibilities of optimization will already take
a great amount of time, the time lost being useless if none of these optimizations
improved the performance. The CPC framework aims to greatly reduce the time
consumed in testing the transformations, by selecting only specific parts of the code
to optimize. Profiling the original code, the more time consuming function is selec-
ted to search for codelets. A codelet must have specific characteristics recognizing it
as a Constant Performance Codelet (section 2.2.1). If no such codelet is found, we
realize some preliminary code transformation to end up with valid codelets to ex-
tract, as explained in section 2.2.3. The obtained codelets are then modified through
a wide range of optimizations in section 2.2.5. After evaluation (section 2.2.6), the
best codelets are used, being called by the hot-spot function in order to recompose
it (section 2.2.7) following the memory model described in section 2.2.2.

2.2.1 Constant Performance Codelet

The principle of the method is to explore many code optimizations on codelets,
and to predict the performance of a code version, evaluating the codelets composing
this version. The time to run a simulation program can be very long. Once the nested
loop fits the criteria of a Constant Performance Codelet, one can extract it from the
original code, in order to optimize it without executing the whole code. We describe
in this section the characteristics imposed on these codelets to base the method on
a simple performance model.

A general formulation of performance would depend on program inputs and on
initial machine state. However, we do not try to model code performance expressed
as a function of program inputs. It means in particular that we will not try to
predict performance by extrapolation. Performance of codelets are measured in
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some conditions that will be reproduced in the application so that the measure is
reliable. Note that we only focus on cycle counts.

In our performance model, we consider that some code features to be difficult to
predict. The Constant Performance Codelet will exhibit some characteristics, so the
effects of these code features can be either efficiently measured or neglected. These
characteristics are verified on assembly code (this may differ with source code) :

1. The codelet is a loop (at least one loop). For large enough loops, the codelet
execution takes enough cycles so that impact of the instructions before and
after the codelet (through out-of-order mechanism for instance) can be ne-
glected. The execution time of two consecutive codelets will be the same as
the sum of their respective stand-alone evaluation time. The “large enough”
criteria is architecture dependent. For loops with only a few iterations, our
performance prediction may be very different from the real evaluation.

2. Control flow does not depend on input data. It means constant loop bounds,
no while loops, and conditionals depending only on loop counters. It reduces
effects due to branch wrong prediction. Note that if..then..else constructs
in the source code may be translated into straight line block of code with condi-
tional instructions, for architectures having such predicated code (Itanium for
instance). In this case, as all instructions of both branches are executed, exe-
cution time does not depend on the value of the test (as the example of Gibbs
in the introduction).

3. Dataflow dependences in the codelet do not depend on inputs. If these de-
pendences depend on inputs, performance prediction will lose accuracy. Due
to hardware design, dependence testing (a read after a write for instance)
is achieved by comparing only a few bits of the addresses. This may cause
stalls, even if there is no real dependence. The number of stalls changes only
if relative position of starting addresses of arrays changes. We assume that all
arrays are aligned to the same boundaries.

4. Configuration of inputs in cache is known when the codelet starts. This condi-
tion, combined to the previous ones, ensures that the misses and hits of the
codelet will be exactly the same between two executions. However, this as-
sumption implies that for each different configuration of data in cache, a
different performance measure has to be made, thus limiting the number of
configuration. In our examples, we considered only the case when data was
fully contained in a cache level or not. This will induce inaccuracy in one of
our presented results.

5. No I/O or system calls. They can cause variation of performance hard to
predict.

These conditions define a constant performance codelet and the search aims to de-
compose the code into these codelets. As a consequence of their definition, these
codelets can be taken out of the application context and benchmarked in vitro to
evaluate their performance in different input configurations (cache hierarchy that
contains these inputs). Compared to traditional iterative compilation framework,
there is no need to execute the whole application.

Codelets preparation

If no Constant Performance Codelet is visible in the hot-spot function, small
preparation may be necessary to reveal them. Most of the time, classical loop trans-
formation can remove CPC requirement issues due to control flow. If the loops are
while loops, or for loops with no constant bounds, some tiling will add a new level
in the loop nest, with fixed bounds (the tile size). This new loop will be eligible
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to apply the framework. On the other hand, if..then..else constructs inside the
loop body will be dealt with by applying fissions, separating the conditional blocks
from the computational ones. The framework will then consider only loops with no
conditionals.

2.2.2 Memory model

We use a simple memory model based on cache capacity. We suppose that data
of a codelet completely fill a cache level, or only fit in memory.

When we recompose the function with the best codelets, we have to ensure that
the data are in the same memory configuration as the evaluated codelets. If not,
the execution time measured while evaluating the codelets will be different from
the execution of the codelets in the recomposed function, and the prediction will be
wrong.

As the model assume codelets data are in some cache, it requires some cache
model to know the data region to move. The objective is not to modify the codelets
by adding prefetch or copy instructions inside, as this would alter performance.
On the contrary, prefetches and copies will be added by blocks, in the recomposed
function, before the corresponding codelets. The prediction will be more accurate
with this method. Performance of these blocks are also be measured.

Blocks of copies are used to brought the required data in caches, while chan-
ging the disposition of the elements. Blocks of copies will be preferred to blocks
of prefetches if the integrity of the data structure of the codelets is altered. As an
example, consider a vectorization applied on a 2D array, allocated with only one
block of memory. Vectors are filled with contiguous data in memory. If the line size
of the logical 2D array is not a multiple of the vector size, data at the end of a line,
and at the beginning of the following line, will be aggregated in the same vector.
Computations using this vector may produce wrong results, as the vector is not a
correct vector, from the logical 2D array point of view. A copy is then necessary
to move the codelet data in a new structure where such incorrect behaviour will
not occur. The writing of the new structure will automatically put the data in the
closest cache level. Blocks of prefetches are used to load in advance the data used
by the codelet in the correct cache level, if the codelet was evaluated considering
that its data were not in memory.

We need to measure block of copies and of prefetches designed for particular
codelets. Let us whether they can be considered as constant performance codelets.
They have constant loop bounds, static control, and a loop. Moreover, dataflow de-
pendences inside the codelets do not depend on inputs. Different tests are needed,
according to the position of the data to copy/prefetch in the memory hierarchy.
However, performance still depends on spacial locality since two data in the same
cache line and accessed consecutively will be accessed faster than if they were map-
ped to two different cache lines. Variation between two executions with different
input data (not size) only happen for A[B[i]], due to this effect. When an indirec-
tion of the kind A[B[i]] occur in a copy, we choose the worst case execution and
initialize B such that it addresses different cache lines.

Evaluating block copy and block prefetch

We need to measure blocks of copies and blocks of prefetches designed for par-
ticular codelets. These codelets exhibit the conditions to be considered as constant
performance codelets. They have constant loop bounds, static control, and a loop,
dataflow dependences inside the codelets do not depend on inputs. Different tests
are needed, according to the position of the data to copy/prefetch in the memory
hierarchy.
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The prefetch instruction is not a blocking instruction, meaning that other ins-
tructions can be issued while the memory request is not answered. The first next
instruction requiring a data still being prefetched will stall the running code to wait
for the data. In good cases, the memory latency of prefetch instructions can be
completely hidden with computations. For blocks of prefetches, we design a codelet
that prefetches all data and add to it a small computation consuming this data as
fast as possible (with a reduction). When the data prefetched is not in cache, an
evaluation of this codelet measures the latency due to the miss, and the overhead
of the reduction itself. It is important to notice that such case can be considered
as a worst case, since data prefetched is accessed right after the prefetch, and the
computation can not be used to hide the memory access latency. In an applica-
tion a more favorable case may occur. Evaluation of a block prefetch will return a
maximum for its time consumption. Figure 2.2.b shows the performance of a code-
let of prefetch for 15.109 elements (spinors) required by a codelet from the HMC
application. The left bar measures only the overhead of the codelet, when data is
already in cache. The right bar shows the latency of the memory access, when data
in memory is prefetched and then used. This latency minus the overhead provides
the performance measure (worst case) for prefetches.

Blocks of copies are evaluated the same way, as even memory copy can be non
blocking instructions. Here again, their evaluation will return a maximum of time
consumption, and their running time in the recomposed function will be lower, or
the same time in the worst case.

2.2.3 Codelets extraction

Once the Constant Performance Codelets are identified, they are extracted in
stand-alone functions. Extracted codelets are considered without any knowledge of
the global program environment. Prior to this extraction, some transformations,
like fission or fusion, can be applied to increase the number of possible codelets to
study. For example, in a loop nest with at least two levels, the innermost loop can
be extracted unchanged, or after an interchange. Hence, there will be two possible
basic codelets for this loop nest, one based on the innermost loop, the other based
on the interchanged one. The larger the number of basic codelets for a loop, the
greater the chance to find an efficient optimization.

Scalar promotion and array flattening are transformations inherent to the ex-
traction. When a codelet is extracted, all variables known before the codelet are
considered as constant inside the codelet, like loop counters of including loops. An
array with two dimensions can have a dimension removed, if the swapping loop
is outside the codelet. Scalar promotion will reduce the number of memory ac-
cesses inside the codelet. Array flattening can simplify memory accesses, removing
indirections from the codelet body. These inherent transformations are already a
first optimization of the codelet, as compilers often work better with simpler array
structures, with simpler memory access patterns.

The identification and the extraction of the codelets are guided by the program-
mer. We focused our research on the loops which take the major amount of time in
our programs. To automate this part of the work, a simple code extractor should be
coupled with a profiler tool to extract only the more interesting loops to optimize,
or at least to give some hint to the programmer on which loops the search should be
apply. Existing code isolators [67] tend to collect a complete trace of the machine
state when executing the codelet in the whole program to offer the same runtime
environment for the isolated code. Our method allows the extracted codelet to be
independent from the program environment, and, at the end, it will be the program
to be adjusted according to the more efficient optimized codelet.
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2.2.4 Performance Model

The characteristics of the constant performance codelets, added to the memory
model we use, allow us to base our performance prediction on a simple additive
model.

Extracted codelets can be considered as new instructions, specific to the applica-
tion, in the recomposed function. There is no parallelism between these instructions.
Since the memory configuration if fixed through copy or prefetch blocks, no time
gain can be achieved with the improvement of data locality between successive
codelets.

The sequentiality of the codelets, and the impossibility to improve data reuse
between them, ensure that the total execution time of the combined codelets is the
sum of the evaluated times of the codelets. The only uncertainty comes from the
copies and prefetches blocks, which can be partly or totally covered by computing
codelets, reducing the impact of these memory codelets. The predicted execution
time of the combined codelets is an upper bound of the real performance of the new
function.

2.2.5 Optimization space with X-language

The goal of this step is to search among all code transformations those that
produce, from an original codelet, a high performance codelet. The optimization
space is user-defined. With the help of a specific language designed for this purpose,
the user insert in the original code pragmas describing all the optimization to try.

Defining search space with X-language

X-language relies on a C99 compiler tcc[85] that passes an AST to a Prolog pro-
gram that does the effective search, based on a set of rules. X-language is developped
at the university of Versailles, and has been used to generate many versions of codes
for linear algebra libraries[10]. Our test programs being more complex than basic
linear algebra subprograms (or BLAS), we added new transformations in the lan-
guage to produce efficient codelets for these programs. The transformations added
to X-language are :

– #pragma xlang transform unrolljam(loop−id, unroll−factor) : unroll and
jam is a simple extension based on existing transformations and dependence
analysis provided by previous pragmas. The jam performs fusion of all loop
surrounded by the unrolled loop.

– #pragma xlang transform vectorize(loop − id) : vectorization is pattern
based and applies only if all statements of a loop can be vectorized. Vecto-
rization is decomposed into as many pattern based rules as there are vector
instructions.

– #pragma xlang transform tryintrinsics(name) : it matches all function
names and replaces them with the equivalent intrinsics (if present in rules).
This directive will generate codes with and without the intrinsics substitution.

– #pragma xlang transform distribute(loop−id) : distributes statements in
different loops, preserving dependences given by the previous pragmas.

For all applications, two parameters are searched for : tile sizes (generating inner
loops with constant loop bounds) and unrolling factors. X-language does not have
by itself a dependence analysis. This removes a constraint due to overly conservative
dependence analysis, but may also generate incorrect code. For some transforma-
tions (such as slicing) it is necessary to indicate the group of statements that must
be kept in sequence. This is achieved by two pragmas :

– #pragma xlang section id where n is a unique number. This indicates the
beginning of sequential section of code.
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– #pragma xlang dependence(list − of − ids). This indicates that a chain of
dependence between sections of code.

Here is an example of the X-language program used to explore different versions
of a nested loop through fusion and fission.

#pragma xlang begin

for (i=0; i<N; i=i+1)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

z[i*N+j] += x[i*N+k]* y[k*N+j];

y[i*N] = 0;

for (k1=0;k1<N; k1++)

x[i*N+k1] +=z[i*N+k1]* y[k1*N+j];

y[i*N+k1] = 3;

#pragma xlang transform fusion(k,k1)

#pragma xlang transform fission(k)

�
�
�
���
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C
C
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Q
Q
Q
Q

Q
QQs

for(i=0;(i<N);i=(i+1))
for(j=0;(j<N);j++)

for(k=0;(k<N);k++)
z[((i*N)+j)]+=...

for(k=0;(k<N);k++)
y[(i*N)]=0;

x[((i*N)+k)]+=...

y[((i*N)+k)]=3;

for(i=0;(i<N);i=(i+1))
for(j=0;(j<N);j++)

for(k=0;(k<N);k++)
z[((i*N)+j)]+=...

y[(i*N)]=0;

for(k=0;(k<N);k++)
x[((i*N)+k)]+=...

y[((i*N)+k)]=3;

for(i=0;(i<N);i=(i+1))
for(j=0;(j<N);j++)

for(k=0;(k<N);k++)
z[((i*N)+j)]+=...

y[(i*N)]=0;

x[((i*N)+k)]+=...

for(k=0;(k<N);k++)
y[((i*N)+k)]=3;

Figure 2.1 – Application of X-language on a loop nest to generate several versions
resulting of fusion and fission transformations..

X-language allows to precisely define the scope of the transformation space,
while providing enough modularity to easily add new transformations when it is
required. Some phases of the search, notably the writing of initializing code for the
codelet, are still performed by hand.

2.2.6 Codelets evaluation

Before benchmarking the codelets, a first selection is performed through the
analysis of the assembly code generated from the codelets. We used a software tool,
MAQAO [36], developed at the university of Versailles. The MAQAO tool analyses
the assembly code, and gives hints about the quality of the generated code. With
these hints, we will decide if the optimized codelet should be discarded, or is a good
candidate to benchmark. For example, MAQAO will tell us if the assembly loop
body has one basic block or not. If the loop is composed with several basic block,
it generally means that conditionals in the original code have not been predicated,
or the original loop body of the codelet has been split in several smaller loops.
The presence of several blocks induces branch instructions inside the codelets, and
produces low performances. Such codelets are discarded before benchmarking. As
an other example, MAQAO will detect spill code due to high register pressure. Spill
code causes more memory transactions than expected, and usually decrease the
performance of a codelet. Codelets with spill code are also discarded.

After the quality check with MAQAO, the remaining codelets are benchmarked.
A program is generated, calling the codelets enough times to avoid timers problems
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[112]. The codelets is also called a few times before the measurement to put the
data in the correct memory configuration. Data structures are filled with random
values, the characteristics of the constant performance codelet ensuring that input
data have no impact on the codelet performance.

Along with the benchmarking of the codelets, the codelets for copying and/or
prefetching the data are generated, and also benchmarked. Once the codelets have
been tested, possibly in different input cache configuration, the original function
has to be rebuilt, ensuring that the codelets are executed in the same condition.

2.2.7 Codelets (re-)composition

With the codelets evaluated, along with the possible memory transactions re-
quired, the function is recomposed. The first attempt to recomposition consists in
combining the best optimized codelets for each original codelet extracted from the
function. However, this recomposition may not be the best one, and may even be
worse than the original function. Some overheads are hidden when evaluating the
codelets independently, and they can consume all the improvement brought by the
best codelets.

The first of these overheads is due to function calls. Extracted codelets have
to be called from the recomposed function, which did not contained function calls
originally. There is no way to evaluate the time spend in the functions calls before
the recomposition of the function, and in the worst case, the overhead induced by
these calls will be greater than the time gain brought by the codelet.

A second overhead is simply due to the addition of codelets for copy or prefetch.
The time spend in unnecessary data movement will also consume a part of the
overall speedup.

Another overhead can come from producing more possible codelets to optimize,
before the extraction. A fission in a loop nest to generate new codelets eligible for
the CPC framework can cause an array privatization. Data produced in the first
part of the loop are not directly available for the secont part of the loop, and new
data structures are created to send the data from one new codelet to the other. More
memory transactions than in the original function will be issued, causing another
reduction of the overall speedup.

This figure collects the speed-up obtained with different recomposition of co-
delets. From the second bar to the sixth bar, only one codelet is called from the
tiled function, either the best or the worst for the selected loop, to show the diffe-
rence existing between codelets from the same code. Bars labelled "All_worst" and
"All_best" are for recomposition using respectively the worst codelets and the best
ones, presented in previous bars. Using only the worst codelets brings a slowdown
of 17%, while the best ones brings a speed-up of 9%. However, we observe that the
"All_best" bar is not the best one. Despite its good stand-alone performance, the
best codelet for Loop 2 consume more time when in the recomposition. The skewing
applied on Loop 1 changes the data locality for Loop 2, causing the performance
loss. As a fallback solution, we propose, when such cases occur, to try multiple
recomposition, using the two or three best codelets (depending on the number co-
delet to keep the recomposition space small enough), and allowing also to leave the
original code of the loop part being considered. Trying others recomposition, we see
in Fig.2.2 that the function composed with the best codelets for the first and the
fourth loop, and leaving the second loop intact gives the best prediction of 11%.
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Figure 2.2 – Performance estimations for Gibbs depending on the combination of
codelets involved.

2.3 Application to molecular simulation

Molecular simulation is an emerging technique which simulates a detailed system
composed with several hundreds of molecules. With appropriate statistical formulae,
one can, based on the simulation results, establish balance and transport properties,
for comparison with experimental results. Molecular simulation can work on form
of molecules, considering also several energy forms as repulsive-attractive energy
(Lennard-Jones potential), electrostatic energy, polarization and torsion energy.

2.3.1 Presentation

GIBBS is a molecular simulation code developed by University of Orsay (Paris
XI) and the French Oil Institute (IFP). GIBBS whole simulation aims to com-
pute phase equilibria properties using a Monte-Carlo method on three-dimensional
spaces (cube or parallelepiped). The simulation is driven by configuration files, and
the results are written in output files. GIBBS offers the possibility to do multiple
simulations in parallel for the same system, with variation of temperature, pressure
and chemical potential. These simulations can exchange configurations following
the parallel tempering method. However, only the sequential version was used to
apply the Constant Performance Codelet framework. With the GIBBS code were
provided 18 validation tests, representing several fluids with different pressure and
temperature. The first test file was chosen to be our main benchmark.

The computation time for GIBBS is dominated by two codelet routines : energy_tot_lj
and energy_mol_lj . These routines contribute respectively for 60% and 20% to the
total execution time. A deeper analysis shows that these two functions call a third
function, energy_lj, which is inlined at compilation time. With the inlined func-
tion, energy_tot_lj presents a four-dimensional loop nest, whereas energy_mol_lj
presents only a three-dimensional nested loop. Since more possibilities are offered
for optimizations, like loop interchange, with the four nested loops, we focused our
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work on the energy_tot_lj function. The original nest loop is displayed in Fig.2.3.

for (i=start; i<end; i++)

for (k=Start[i]; k<End[i]; k++)

Tk = LJ[k]

for (j=i+1; j<=end; j++)

for (l=Start[j]; l<End[j]; l++)

x = X[k] - X[l];

y = Y[k] - Y[l];

z = Z[k] - Z[l];

x1 = x - b1 * round(x / b1);

y1 = y - b2 * round(y / b2);

z1 = z - b3 * round(z / b3);

r2 = x1 * x1 + y1 * y1 + z1 * z1;

if (r2 < mindist)

energy = 2 * infinity;

else
energy=0;

if (r2 < cutoff2)

epsilon = Eps[Size * LJ[j] + tk];

sigma = Sig2[Size * LJ[j] + tk];

r2 = sigma / r2;

r6 = r2 * r2 * r2;

energy = epsilon * (rij6 - rij6 * rij6);

Energy[j]= Energy[j] + energy;

Energy[i]= Energy[i] + energy;

sumEnergy = sumEnergy + energy;

Figure 2.3 – Initial Gibbs hot-spot nested loop.

2.3.2 Guided transformations for CPC framework

As we work on real life irregular codes, these codes do not originally fit the
requirements describe in Section 2.2.1. Some initial transformations are required for
the code to be a valid candidate to apply the CPC framework. These transformations
are presented in the remainder of this section.

Tiling / Specialization

One of the main problem of the original code is loop bounds. For three of the
four loops, bounds are not statically known, as also the size of the iteration space.
Furthermore, two of the loops have bounds coming from array values, making the
compiler unable to apply some optimizations, like vectorization on the innermost
loop.

Tiling bypasses this kind of problems The iteration domain of a loop is par-
titioned in blocks with constant sizes. If the original domain is not a multiple of
the chosen block size, a reminder loop is added after the tiled loop to look over the
iterations not being swapped by it. With this transformation, the greater part of ite-
rations execute code in statically bounded loops, allowing easy application of some
optimizations, and the majority of branch instructions will be easier to predict.

However in this case, only the third loop (for j) will be tiled. Some profiling
and dynamic analysis of the bound values revealed that the starting and the ending
values of second and fourth loop were the same. Hence, these loops are executing
only one iteration. In order to simplify the code, these two loops can be removed,
and replaced by a statement fixing the value of iterators k and l to their beginning
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value, Start[i] and Start [j]. The third loop (for j) is the only remaining loop with
its bound not statically known, and will be the only tiled loop.

Code fission (with array privatization)

The second problem preventing the application of the CPC framework is the
presence of conditionals depending on input data in the body of the inner loop.
Since the evaluation of constant performance codelets requires that conditionals
depend only on loop counters, it is necessary to transform such code in straight line
code removing conditionals, or to isolate the part of the code with the problematic
feature.

In the general case, isolation is a good option. The isolation of a portion of code
in a loop may induce some array privatization. Where a simple data produced in
the loop was directly used in the isolated part, now the same data has to be stored
in a conservative structure (like an array) until the first loop is finished and the
loop containing the isolated part reaches the consumption of the data. The same
behaviour will also happen for data produced in the isolated code and used in the
remaining code after it.

Fig.2.4 presents the code of the loop nest after applying the preparation trans-
formations. In this case, the fission was not necessary. Our test machine featuring
an Itanium 2 processor, the instruction set of this architecture allow the transfor-
mation of if...then...else... constructs into a straight line block of code with
conditional instructions. Both branches are executed, and predicate registers specify
at runtime if the corresponding instruction should be executed, or replaced by a nop
(no operation). The execution no longer depends on the value of the test, and the
input data does not interfere anymore.

2.3.3 Codelet optimization

Now that the nested loop fits the criteria of a Constant Performance Codelet,
they are extracted from the original code, in order to apply and evaluate the op-
timizations only on this small part. The optimization space can be very wide, and
only transformations leading to some performance improvement will be presented
and described in the following subsections. A large specter of generated codelets are
displayed in Figures 2.6, 2.7, 2.8 and 2.9. Unrolled versions of these codelets have
also been generated.

Fission and array privatization

Compilers apply optimizations considering only a restricted window of instruc-
tions. If the basic block the compiler tries to optimize is to large, it may drop useful
transformations. With the MAQAO [36] tool, the quality of the assembly code has
been observed. It appeared that the compiler failed to reorganize efficiently the code
of the whole loop body, and the overall quality of the generated code was very poor.

In order to simplify the work of the compiler, fission transformations cut the
loop body into several part, as shown in Fig.2.5.

In the large optimization space considered, different strategies are used concer-
ning the loop fission. In the presented example, the loop is cut so that similar
computations are gathered in the same codelet. Another fission version gathered
instructions belonging to the same data dependence chain, but the obtained deri-
ved codelets are not as efficient as the presented version.
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for (i=start; i<end; i+=STEPi)

k = Start[i];

Tk = LJ[k];

for (j=i+1; j<=end; j+=STEP)

for (jj=0; jj<STEP <= end; jj++)

l = Start[j+jj];

x = X[k] - X[l];

y = Y[k] - Y[l];

z = Z[k] - Z[l];

x1 = x - b1 * round(x / b1);

y1 = y - b2 * round(y / b2);

z1 = z - b3 * round(z / b3);

r2[jj] = x1 * x1 + y1 * y1 + z1 * z1;

for (jj=0; jj<STEP && jj+j <= end; jj++)

if (r2[jj] < mindist)

energy = 2 * infinity;

else
energy=0;

if (r2[jj] < cutoff2)

epsilon = Eps[Size * LJ[j+jj] + tk];

sigma = Sig2[Size * LJ[j+jj] + tk];

r2 = sigma / r2[jj];

r6 = r2 * r2 * r2;

energy[jj] = epsilon * (rij6 - rij6 * rij6);

for (jj=0; jj<STEP && jj+j <= end; jj++)

Energy[j+jj]= Energy[j+jj] + energy[jj];

Energy[i]= Energy[i] + energy[jj];

sumEnergy = sumEnergy + energy[jj];

Figure 2.4 – Gibbs hot-spot function after preparation for CPC framework.

Skewing

An indirection in a computation can greatly degrade codelet performance. It pre-
vents the compiler from applying aggressive optimizations, and the all the memory
accesses also consume a lot of time.

Independent tests were performed on artificially made codes with some indirec-
tions. The purpose was to establish if eliminating the indirection from the body of
the loop, and to move it in the call of the codelet, will allow the compiler to gene-
rate a better code, and to obtain better performance. Different type of distribution
were used to fill the indirection array. Benchmarks were made with constant values
(Ind[i] = cst), identical values (Ind[i] = i), strided values (Ind[i] = k ∗ i with k
constant, typically 2 and 4) and random values (Ind[i] = random(seed)). For the
tests with strided and random values, passing the indirection as an argument to the
call of the codelet, and having it replaced with a scalar parameter in the codelet
body, brought better performances. For the remaining cases, the performance was
the same. Hence, trying to remove the indirection from the body of the first loop
(extracted in Fig.2.6(a)) seemed the best way of improving the loop performance.

However, due to fission and multiple tiling, extracting the codelet in its current
form, or after performing some loop interchange, is not sufficient to remove the
indirection. Several loop counters are used in the index of the indirection array.
In order to get rid of the indirection through extraction of the loop, skewing is
necessary. Skewing consists in twisting the iteration space of nested loops, to swap
the same amount of data in a different order. When skewing, new loops are created,
replacing the previous ones, with new bounds defining the same iteration domain.
In order to still be able to perform the extraction after applying the skewing, and
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for (i=start; i<end; i+=STEPi)

for (ii=0; ii < STEPi; ii++)

k = Start[i+ii];

Tk = LJ[k];

xtemp[ii] = X[k];

ytemp[ii] = Y[k];

ztemp[ii] = Z[k];

for (j=i+1; j<=end; j+=STEP)

for (ii=0; ii < STEPi; ii++)

for (jj=0; jj<STEP && jj+j+ii <= end; jj++)

x[ii][jj] = xtemp[ii] - X[Start[j+ii+jj]];

y[ii][jj] = ytemp[ii] - Y[Start[j+ii+jj]];

z[ii][jj] = ztemp[ii] - Z[Start[j+ii+jj]];

for (ii=0; ii < STEPi; ii++)

for (jj=0; jj<STEP && jj+j+ii <= end; jj++)

x1 = x[ii][jj] - b1 * round(x / b1);

y1 = y[ii][jj] - b2 * round(y / b2);

z1 = z[ii][jj] - b3 * round(z / b3);

r2[ii][jj] = x1 * x1 + y1 * y1 + z1 * z1;

for (ii=0; ii < STEPi; ii++)

for (jj=0; jj<STEP && jj+j+ii <= end; jj++)

if (r2[ii][jj] < mindist)

energy = 2 * infinity;

else
energy=0;

if (r2[ii][jj] < cutoff2)

epsilon = Eps[Size * LJ[j] + tk];

sigma = Sig2[Size * LJ[j] + tk];

r2 = sigma / r2[ii][jj];

r6 = r2 * r2 * r2;

energy[ii][jj] = epsilon * (rij6 - rij6 * rij6);

for (ii=0; ii < STEPi; ii++)

for (jj=0; jj<STEP && jj+j+ii <= end; jj++)

Energy[j+jj+ii]= Energy[j+jj+ii] + energy[ii][jj];

Energy[i+ii]= Energy[i+ii] + energy[ii][jj];

sumEnergy = sumEnergy + energy[ii][jj];

Figure 2.5 – Gibbs hot-spot function after some optimizations (fission and inter-
change).

not have the indirection in the loop body, two nested loops are be produced. The
outermost loop swaps the indirection elements, without involvement of the second
loop counter. When the innermost loop is extracted, the indirection becomes an
argument in the codelet call, disappearing from the codelet body. The resulting
skewed loop and codelet are displayed in Fig.2.6(d).

Intrinsics specialization

The last optimization applied specifically to the GIBBS code is an unusual trans-
formation. Source-to-source transformations, especially for nested loops, usually
change the loop structure, the swapping order of elements, or simplify the code
for the compiler with scalar promotion or array flattening. Here, no such thing is
done. The main performance issue in the second loop comes from a call to a library
function (namely function round()), as shown in the stand alone loop in Fig.2.7(a).
The function call is somehow unavoidable, and the compiler does not handle very
well function calls, especially in the middle of a computation. The tricky part is
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for (ii=0; ii<STEP; ii++)

for (jj=0; jj<STEP; jj++)

A1[ii][jj] = B1[ii]+ C1[Ind[j+ii+jj]];

A2[ii][jj] = B2[ii]+ C2[Ind[j+ii+jj]];

A3[ii][jj] = B3[ii]+ C3[Ind[j+ii+jj]];

(a) Loop 1

for (jj=0; jj<STEP; jj++)

A1ii[jj] = B1ii+ C1[Indii[jj]];

A2ii[jj] = B2ii+ C2[Indii[jj]];

A3ii[jj] = B3ii+ C3[Indii[jj]];

(b) Codelet 1 for Loop 1

for (ii=0; ii<STEP; ii++)

A1jj[ii] = B1[ii]+ C1[Indjj[ii]];

A2jj[ii] = B2[ii]+ C2[Indjj[ii]];

A3jj[ii] = B3[ii]+ C3[Indjj[ii]];

(c) Codelet 2 for Loop 1

MAIN:

for(jjj=0; jjj<((STEP*2)+1) ; jjj++)

start=jjj-STEP+1;

end=jjj;

if(start<0) start=0;

codelet_3(A1, A2, A3, B1, B2, B3, Ind[jjj]);

KERNEL_3:

for (iii=start; iii<end; iii++)

A1jjj[iii] = B1[iii]+ C1[Indjjj];

A2jjj[iii] = B2[iii]+ C2[Indjjj];

A3jjj[iii] = B3[iii]+ C3[Indjjj];

(d) Codelet 3 for Loop 1

for (jj=0; jj<STEP; jj++)

Aii[jj] = Bii+ C[Indii[jj]];

(e) Codelet 4 for Loop 1

for (ii=0; ii<STEP; ii++)

Ajj[ii] = B[ii]+ C[Indjj[ii]];

(f) Codelet 5 for Loop 1
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Figure 2.6 – (a) Loop 1 out of context. (b), (c), (d), (e), (f) : computation codelets
related to loop 1. (b) is obtained when the original innermost loop is extracted,(c) is
obtained when the innermost loop is extracted after an interchange, (d) is obtained
when a skewing is applied on the loops to remove the indirection from the codelet, (e)
is obtained after a loop splitting separating each similar computation in independent
codelets, (f) is obtained after an interchange and a loop splitting.

to know which function across all library or system calls available is the best to
perform the task required.

An intrinsics function is a function available for a given language with an im-
plementation handled specially by the compiler. It often directly refers to special
assembly instructions for the target architecture. Therefore, a compiler dealing with
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for (ii=0; ii<STEP; ii++)

for (jj=0; jj<STEP; jj++)

x1 = A1[ii][jj]+ b1 * round(A1[ii][jj]/b1);

y1 = A2[ii][jj]+ b2 * round(A1[ii][jj]/b2);

z1 = A3[ii][jj]+ b3 * round(A1[ii][jj]/b3);

D[ii][jj] = x1*x1 + y1*y1 + z1*z1;

(a) Loop 2

for (jj=0; jj<STEP; jj++)

x1 = A1ii[jj]+ b1 * round(A1ii[jj]/b1);

y1 = A2ii[jj]+ b2 * round(A1ii[jj]/b2);

z1 = A3ii[jj]+ b3 * round(A1ii[jj]/b3);

Dii[jj] = x1*x1 + y1*y1 + z1*z1;

(b) Codelet 1 for Loop 2

for (ii=0; ii<STEP; ii++)

x1 = A1jj[ii]+ b1 * round(A1jj[ii]/b1);

y1 = A2jj[ii]+ b2 * round(A1jj[ii]/b2);

z1 = A3jj[ii]+ b3 * round(A1jj[ii]/b3);

Djj[ii] = x1*x1 + y1*y1 + z1*z1;

(c) Codelet 2 for Loop 2

for (jj=0; jj<STEP; jj++)

x1 = A1ii[jj]+ b1 * __round_double_to_int64(A1ii[jj]/b1);

y1 = A2ii[jj]+ b2 * __round_double_to_int64(A1ii[jj]/b2);

z1 = A3ii[jj]+ b3 * __round_double_to_int64(A1ii[jj]/b3);

Dii[jj] = x1*x1 + y1*y1 + z1*z1;

(d) Codelet 3 for Loop 2

for (ii=0; ii<STEP; ii++)

x1 = A1jj[ii]+ b1 * __round_double_to_int64(A1jj[ii]/b1);

y1 = A2jj[ii]+ b2 * __round_double_to_int64(A1jj[ii]/b2);

z1 = A3jj[ii]+ b3 * __round_double_to_int64(A1jj[ii]/b3);

Dii[jj] = x1*x1 + y1*y1 + z1*z1;

(e) Codelet 4 for Loop 2
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Figure 2.7 – (a) Loop 2 out of context. (b), (c), (d), (e) : computation codelets
related to loop 2. (b) is obtained when considering only the internal loop, (c) is
obtained when an interchange is applied, (d) is obtained when replacement with
intrinsics is applied on the original innermost loop, (e) is obtained when replacement
with intrinsics is applied on the interchanged innermost loop.

an intrinsic function will most likely generates a much better executable code than
when dealing with a library call sort of "unknown" to it.

An intrinsic function matches the round() function used in the second loop.
Then, among the usual codelet optimizations, like interchange, versions with the
intrinsic function __round_double_to_int64() were also tried. They returned the
best improvement of performance for this loop. As explained before, this kind of
transformation can be easily added to the spectrum of X-language to try it auto-
matically.

This optimization was performed manually, as I knew the existence of the intrin-
sic function corresponding. However, one can easily imagine how to do it automa-
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for (ii=0; ii<STEP; ii++)

for (jj=0; jj<STEP; jj++)

x1[jj] = A1[ii][jj]+ b1 * round(A1[ii][jj]/b1);

for (jj=0; jj<STEP; jj++)

y1[jj] = A2[ii][jj]+ b2 * round(A1[ii][jj]/b2);

for (jj=0; jj<STEP; jj++)

z1[jj] = A3[ii][jj]+ b3 * round(A1[ii][jj]/b3);

for (jj=0; jj<STEP; jj++)

D[ii][jj] = x1[jj]*x1[jj] + y1[jj]*y1[jj] + z1[jj]*z1[jj];

(a) Loop 2 with multiple fission

for (jj=0; jj<STEP; jj++)

x[jj] = Aii[jj]+ b * round(Aii[jj]/b);

(b) Codelet 5 for Loop 2

for (ii=0; ii<STEP; ii++)

x1 = A1jj[ii]+ b1 * round(A1jj[ii]/b1);

(c) Codelet 6 for Loop 2

for (jj=0; jj<STEP; jj++)

x[jj] = Aii[jj]+ b * __round_intrinsics(Aii[jj]/b);

(d) Codelet 7 for Loop 2

for (ii=0; ii<STEP; ii++)

x1 = A1jj[ii]+ b1 * __round_intrinsics(A1jj[ii]/b1);

(e) Codelet 8 for Loop 2

for (jj=0; jj<STEP; jj++)

Dii[jj] = x1[jj]*x1[jj] + y1[jj]*y1[jj] + z1[jj]*z1[jj];

(f) Codelet 9 for Loop 2

�

�

�

�

�

Figure 2.8 – (a) Loop 2 out of context after fissions. (b), (c), (d), (e), (f) : com-
putation codelets related to loop 2. (b) is obtained when considering only the first
loop resulting of the fission, (c) is obtained when an interchange is applied on the
first loop resulting of the fission, (d) is obtained when replacement with intrinsics
is applied on the first loop, (e) is obtained when replacement with intrinsics is ap-
plied on the interchanged first loop, (f) is obtained when considering the last loop
resulting of the fission.

tically. With a list of possibly used library functions matching their corresponding
intrinsic functions available, a simple search when a function occurs inside a codelet
will allow to replace it with a more efficient intrinsic function.

2.3.4 Performance evaluation

Once all the codelets are generated, they are evaluated with the method des-
cribed in section 2.2.6. The best codelets for the GIBBS hot-spot nested loops are
Codelet 3 for Loop 1 (presented in Fig.2.6(d)), Codelet 2 for Loop 2 (in Fig.2.7(d)),
and Codelet 1 for loop 4 (in Fig.2.9(b)). They should be chosen to recompose the
loop nest of function energy_tot_lj. However, as explained in section 2.2.7, the ske-
wing done on the first best codelet does not interact well with the codelet for the
second loop. As suggested, we tried several others recomposition, using the two best
codelets for each loop, and allowing also to leave the original code for the loops.
The best recomposition is predicted to be the one using the best codelets for Loop
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for (ii=0; ii<STEP; ii++)

for (jj=0; jj<STEP; jj++)

E[j+jj+ii] = E[j+jj+ii] + F[ii][jj];

E[i+ii] = E[i+ii] + F[ii][jj];

sum = sum + F[ii][jj];

(a) Loop 4

for (jj=0; jj<STEP; jj++)

E1ii[jj] = E1ii[jj] + Fii[jj];

E2ii = E2ii + Fii[jj];

sum = sum + Fii[jj];

(b) Codelet 1 for Loop 4

for (ii=0; ii<STEP; ii++)

E1jj[ii] = E1jj[ii] + Fjj[ii];

E2jj[ii] = E2jj[ii] + Fjj[ii];

sum = sum + Fjj[ii];

(c) Codelet 2 for Loop 4

for (jj=0; jj<STEP; jj++)

E1ii[jj] = E1ii[jj] + Fii[jj];

(d) Codelet 3 for Loop 4

for (ii=0; ii<STEP; ii++)

E1jj[ii] = E1jj[ii] + Fjj[ii];

(e) Codelet 4 for Loop 4

for (jj=0; jj<STEP; jj++)

E2ii = E2ii + Fii[jj];

(f) Codelet 5 for Loop 4

for (ii=0; ii<STEP; ii++)

E2jj[ii] = E2jj[ii] + Fjj[ii];

(g) Codelet 6 for Loop 4

for (jj=0; jj<STEP; jj++)

sum = sum + Fii[jj];

(h) Codelet 7 for Loop 4

for (ii=0; ii<STEP; ii++)

sum = sum + Fjj[ii];

(i) Codelet 8 for Loop 4
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Figure 2.9 – (a) Loop 4 out of context. (b), (c), (d), (e), (f), (g), (h), (i) : compu-
tation codelets related to loop 4. (b) is obtained when the original innermost loop is
extracted,(c) is obtained when the innermost loop is extracted after an interchange,
(d), (f), (h) are obtained when considering each inner loops resulting of a fission,
(e), (g), (i) are obtained after an interchange is applied on each of these loops.

1 and Loop 4, with the original code for Loop 2.

The performance of this recomposition is displayed in the first cluster of bars in
Fig.2.24. One can recognize in the first two bars the same speed-up already presen-
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ted in Fig.2.2, the first one being the original code, and the second the predicted
11% speed-up with the best recomposition. A recomposition being done, the new
function is executed to measure the actual performance. A 9% speed-up is obtai-
ned, represented with the last grey bar. To be thorough, we executed several others
recomposition among the best ones to ensure that the one presented in Fig.2.24 is
indeed the best possible recomposed function.

For this first test, 78 different optimized codelet versions have been genera-
ted. Among all these codelets, 30 were discarded during the selection phase with
MAQAO, remaining 48 codelets to evaluate. Tens of thousands of recomposition
are possible with the remaining codelets, but only a handful of these codelets are
considered for recomposition, exhibiting good enough performance. At last, only 7
different compositions have been tried to find the best version of the function (which
is the third composition we tested).

On the GIBBS simulation, we managed to find the best speed-up possible exe-
cuting the whole code only two times, and benchmarking only small part of the
hot-spot function, with very different optimization tried. The actual measured per-
formance is similar to the predicted one, ensuring that these small benchmarks are
sufficient to predict the behaviour of the complete code, if selected in the hot-spot
of the program.

2.4 Application to genomic code

The BLAST family (for Basic Local Alignment Search Tool [6]) is a collection of
programs widely used for searching protein and DNA databases to find similarities
between two sequences. The most known use of BLAST programs is to compare
newly sequenced genomes with protein data banks in order to discover where genes
are located. The family is composed of several variations : programs performing pro-
tein/protein comparison, nucleotide/nucleotide comparison, protein/translated nu-
cleotide, and so on... The variety TBLASTN specifically search a translated nucleotide
database, using a protein query.

2.4.1 Presentation

The index-TBLASTN algorithm [74] is a first attempt to parallelize BLAST-like
programs on parallel platforms. Contrary to TBLASTN, this version does not aim to
search large database. Instead, it focuses on comparing consequent amount of data,
that is a complete genome and a protein bank. The main difference is that instead of
indexing the query (sequences from the protein bank), index-TBLASTN indexes the
complete genome following the 6 reading frame and performs a dynamic indexing
of the protein bank. Each element in the index is enhanced with neighborhood
information to avoid costly random memory access.

Profiling the code, it appears that the most time consuming procedure is the
ComputeDistance function with the hot-spot loop nest displayed in Fig.2.10.

This function takes as input two index structures : one from the genome (Qry)
and the other from the protein bank (FULL_INDEX ). Both indexes are related
to the same seed. If N is the number of elements in the genome index, and M
the number of elements in the protein bank index, then the procedures computes
NxM scores based on an amino acid substitution matrix. The score computation
is highlighted with red color in Fig.2.10.
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for (j=0; j<rq->Qry->nb; j++)

for (i=rq->offset; i<rq->offset+rq->nbelt; i++)

score = 0;

maxi = 0;

for (k=0; k<SIZE_BLOCK; k++)

score = score + MATRIX[A[rq->Qry->seq[j][k]]] [A[INDEX[i].seq[k]]];

if (score<0) score = 0;

else if (maxi<score) maxi = score;

if (maxi > X1)

rq->Res[r].idx_nt = FULL_INDEX[i].idx;

rq->Res[r].idx_prot = rq->Qry->idx[j];

rq->Res[r].num_seq_prot = rq->Qry->num_seq[j];

r++;

Figure 2.10 – Original hot-spot in BLAST function.

2.4.2 Transformations for CPC framework

As with GIBBS implementation, the loop nest is not yet suited to apply the
CPC framework. The bounds of two loops are dependent of input data. The itera-
tion space is not known at compile time, which can prevent the compiler, and the
programmer, to apply some loop transformations. In addition to the loop bounds,
most instructions in the loop body are under the influence of conditionals, depending
again on the input data.

Tiling and fission

We encountered the same limitations with the GIBBS program, and they will
be dismissed with the same transformations than the ones used in Section 2.3.2.

– A tiling is used to separate the iteration space in blocks with constant sizes.
Again, a reminder loop is added to swap iterations not fitting in these blocks.

– Then, fission is applied to isolate conditional blocks from the elaborate me-
mory access using several indirections. Our Itanium 2 machine is not the only
target for this code, and it will also run on processors without the possibi-
lity to transform if...then...else... blocks into predicated straight lines
of code. The fission is necessary for the CPC framework to directly use the
transformed function on those machines.

Now, the computation loop presents all required characteristics to be a constant
performance codelet. The framework can be used to optimize this loop nest.

2.4.3 Codelet optimization

The computation presents features which can greatly degrade the performance.
The access to the matrix is done with no less than four indirections. A first step
should be to compute as soon as possible parts of the indirection, to have data,
or at least addresses, available when they are needed. To realize all the memory
accesses when the data is needed will cause time loss due to the memory latency.
The program will stall the computation, waiting for the required data to be loaded.
However, extracting the codelet already perfom all scalar promotions and array flat-
tening possible. To actually compute the indirections in advance inside the codelet
will be redundant with the simplification embedded in the codelet extraction. This
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for (J=0; J<rq->Qry->nb; J+=SIZEJ)

for (I=rq->offset; I<rq->offset+rq->nbelt; I+=SIZEI)

n=0;

for (j=J; j<J+SIZEJ ; j++)

for (i=I; i<I+SIZEI ; i++)

for (k=0; k<SIZE_BLOCK; k++)

t[n][k]=(char)MATRIX[A[rq->Qry->seq[j][k]]] [A[INDEX[i].seq[k]]];

indexi[n]=i;indexj[n]=j;

n++;

N=n;

for (n=0; n<N; n++)

score = 0;

maxi = 0;

for (k=0; k<SIZE_BLOCK; k++)

score = score + t[n][k];

if (score<0) score = 0;

else if (maxi<score) maxi = score;

if (maxi > X1)

rq->Res[r].idx_nt = FULL_INDEX[indexi[n]].idx;

rq->Res[r].idx_prot = rq->Qry->idx[indexj[n]];

rq->Res[r].num_seq_prot = rq->Qry->num_seq[indexj[n]];

r++;

Figure 2.11 – Distributed version of hot-spot loop nest in BLAST.

redundancy of computations and memory accesses may induce worse performance
instead of a speed-up.

Code motion and array privatization

In this code, the memory access of computed data causes two issues. The first
one, described before, is the number of indirections for one data access. The other
one is the proximity between the memory request and the computation using this
data, the computation being issued right after the memory request. Until the data
is fetched, the program will stall, and a stall will occur for each computation.

A code motion, with a fission, is applied to separate the heavy memory access
from the computation requiring the data. Since they end up in different codelet,
and array is created to pass data from a codelet to another. This succession of
transformations realized a memory copy from a data structure with an intricate
acces pattern, to a data structure with a classical pattern access. The computation
remains close to a memory access, but the simplicity of this access decrease the
impact of stalls due to memory latency. The resulting code is displayed in Fig.2.11.

Unroll

If the compiler applies optimization considering only a restrictive frame of ins-
tructions, it also needs to have a certain amount of instructions to play with. If a
loop body is too simple, the compiler can apply only a limited set of optimizations.
The compiler will not be able, for example, to interleave efficiently memory accesses
and computations. In our code example, the computation loop contains only one
line code. The complexity of the memory access will produce several instructions,
heavily connected. The compiler may not be able to produce an efficient executable,



2.4. Application to genomic code 41

since it is not possible to reorganise these instructions. To provide more possibility
of optimizations, several unroll factor were tried on the copy codelets. The best
result is obtained with the code in Fig.2.12, with an unroll factor of 4 on the outer
loop (for j), and on the middle loop (for i).

for (j=J; j<J+SIZEJ ; j+=4)

for (i=I; i<I+SIZEI ; i+=4)

for (k=0; k<SIZE_BLOCK; k++)

ACOPY_4x4(i,j,n);

n+=16;

for (; i<I+SIZEI && i<rq->offset+rq->nbelt; i++)

for (k=0; k<SIZE_BLOCK; k++)

ACOPY_1x4(i,j,n);

n+=4;

...

for (n=0; n<N; n++)

score = 0;

maxi = 0;

for (k=0; k<SIZE_BLOCK; k++)

score = score + t[n][k];

...

Figure 2.12 – Unrolled version of hot-spot loop nest in BLAST.

To lighten the presentation of the transformed codes in this dissertation, subrou-
tine calls are used. It will ease the reading of presented codelets, since a computation
codelet having sustained a factor 4 unroll on loops (for i) and (for j) will take only
one line through the subroutine code, instead of sixteen computation lines being
really implemented. Some used subroutines are detailed to clarify the actual code
hidden behind their calls. Subroutine copy calls are described in Fig.2.13. Subrou-
tine copy calls for the vectorized version are described in Fig. 2.15, and computation
calls for the same vectorized version are described in Fig.2.16.

Since the unroll factor may not be a natural divider of the tile size, a reminder
is added after the unrolled loop to compute sequentially the solitary elements.

Vectorization

On most architecture, vectorization is a key transformation to obtain good per-
formance. However, indirections prevent useful vectorization : since the considered
data are not contiguous, when doing a vectorized computation, one has no way to
know which elements are computed along with the current one. space.

Even considering that elements form a compact block in memory, they are not
swapped sequentially. The computed elements along with the current one in the
vector cannot be known. All elements need to be done in the query order, to be
sure that no elements were missed. Doing so, the same computation will occur
several times : when the considered element is the current one, and each time the
element is part of another element vector.

To apply safely and efficiently the vectorization, vectors are build with consecu-
tive elements on the computation, and not consecutive elements in memory. This
way, the vectorized computation will really consider several consecutive iterations
of the original computation.
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ACOPY(I,J,N)

t[(N)][k]=(char)MATRIX[A[rq->Qry->seq[(J)][k]]] [A[INDEX[(I)].seq[k]]];

ACOPY_4x1(I,J,N)

ACOPY(I,J,N);

ACOPY(I+1,J,N+1);

ACOPY(I+2,J,N+2);

ACOPY(I+3,J,N+3);

ACOPY_4x4(I,J,N)

ACOPY_4x1(I,J,N);

ACOPY_4x1(I,J+1,N+4);

ACOPY_4x1(I,J+2,N+8);

ACOPY_4x1(I,J+3,N+12);

Figure 2.13 – Subroutine calls used to represent copy instructions in a codelet.
In this example, loops (for j) and (for i) in the codelet have been unrolled with a
factor of 4. Hence, ACOPY_4x4 subroutine represent sixteen copy statement in
the actual implementation.

...

for (n=0; n<NV-7; n+=8)

for (k=0; k<SIZE_BLOCK; k++)

VCOMPUTE_8(vt,k);

for (; n<NV; n++)

for (k=0; k<SIZE_BLOCK; k++)

VCOMPUTE(vt,0,k);

for (n=0; n<N-7; n+=8)

for (k=0; k<SIZE_BLOCK; k++)

COMPUTE_8(k);

for (; n<N; n++)

for (k=0; k<SIZE_BLOCK; k++)

COMPUTE(0,k);

...

Figure 2.14 – Vectorized version of hot-spot loop nest in BLAST.

Once the vectors are ready, the score is computed. In this case, the compute
code is rewritten with intrinsics functions, which, among others, allow to find the
maximum value for each element between two vectors. Hence, the conditional test
if(score<0) score = 0; (resp. elseif(maxi<score) maxi = score;) is replaced
with vector intrinsic _mm_max_pu8(vscore N, zero); (resp. _mm_max_pu8(vscore
N, vmaxi;), as shown in Fig.2.16 first subroutine representation.

Along with the vectorization, a new unroll is applied. Vector registers using 8
elements, an unroll factor of 8 on the elements now consume as many registers as
the original sequential computation. Plenty of vector registers remain to unroll the
outer loop. Different unroll factor is tried, and all versions of codelets (unrolled and
vectorized, vectorized, unrolled, and initial) are evaluated to find the best value.
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VCOPY(I,J,N)

c_N=MATRIX[A[rq->Qry->seq[(J)][k]]] [A[INDEX[(I)].seq[k]]];

VCOPY_1x8(I,J,N) COPY(I,J,0);

COPY(I,J+1,1);

COPY(I,J+2,2);

COPY(I,J+3,3);

COPY(I,J+4,4);

COPY(I,J+5,5);

COPY(I,J+6,6);

COPY(I,J+7,7);

vt[(N)][k] = _mm_set_pi8((char)c7,(char)c6,(char)c5,(char)c4,(char)c3,(char)c2,(char)c1,(char)c0);

Figure 2.15 – Subroutine calls used to represent copy instructions in a codelet. In
this example, loops (for j) in the codelet has been unrolled with a factor of 8. The
new data structures is filled to prepare the vectorization applied on computation
codelets.

VCOMPUTE(V,N,K)

vscore_N= _mm_add_pi8(vscore_N,(V)[n+(N)][(K)]);

vscore_N= _mm_max_pu8(vscore_N, zero);

vmaxi_N= _mm_max_pu8(vscore_N, vmaxi_N);

VCOMPUTE_4(V,K)

VCOMPUTE(V,0,K)

VCOMPUTE(V,1,K)

VCOMPUTE(V,2,K)

VCOMPUTE(V,3,K)

COMPUTE(N,K)

score_N = score_N + t[n+(N)][K];

if (score_N<0) score_N= 0;

else if (maxi_N < score_N) maxi_N= score_N;

COMPUTE_4(K)

COMPUTE(0,K)

COMPUTE(1,K)

COMPUTE(2,K)

COMPUTE(3,K)

...

Figure 2.16 – Subroutine calls used to represent computations in a codelet.
VCOMPUTE stands for codelets having vectorized computation, while COM-
PUTE stands for original sequantial computations. Loop (for n) has been unrolled
four times in each codelet.

An unroll factor of 8 on the outer loop of the vectorized version brings the greater
speed-up.
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2.4.4 Performance evaluation

For this program, 28 different optimized codelet versions have been generated.
None of these codelets were discarded due to the quality of their code. With these
codelets, only forty different recombinations are possible. At last, only 16 different
compositions have been tried to find the best version of the function. The code
using the new recomposed function is executed with two input files : TestProt1 and
TestProt2. The two files test two different proteins, with the second one being larger
than the first one. A prediction is established beforehand for each input files. The
predictions are forecasting a speed-up of a factor x1.96 for the second test and up
to a factor x2.32 for the first input. Performance figures are presented in the two
last cluster of bars in Fig.2.24. We can see that if the actual measured speed-up
is within a 10% error margin of the prediction for TestProt1, achieving a factor of
x2.23, the performance for the second test is less impressive than the prediction.
Still achieving a speed-up of 66%, there is a gap between predicted performance
and measured one.

This difference is due to the size of TestProt2 tests. When the codelets are
benchmarked, data is assumed to be in cache. But for this test, all data does not
fit in cache, and useful data is flushed between iteration of the outer loop. These
data must be fetched from memory, taking more time than expected. Our memory
model being very simple, and the data of TestProt2 benchmark just a little larger
than the cache size, we have two possible ways to evaluate the codelet : with data
in memory or with data in the last cache level. If we assume that the data is in
memory, the prediction is greatly underestimated. Most of the data stay in cache in
the computation, and the gain from cached memory accesses will not be evaluated.
Assuming that data is in the last cache level, we obtain a closer, but overestimated,
prediction. Some data are fetched from memory in the recomposed function, and
the latency decreases the predicted speedup.

However, once again, we see that if the data are in the assumed memory confi-
guration, as for TestProt1 input file, we can determine the overall performance of
an optimized code by evaluating only codelets from the hot-spot function of the
program.

2.5 Application to quantum chromodynamics simu-

lation

Quantum chromodynamic (QCD) is the theory of strong interaction in the do-
main of subnuclear physics. Lattice QCD (LQCD) is a numerical method based on
QCD’s first principles, the only one able to compute reliably many quantities of high
scientific relevance. It is based on a discretisation of space time and a Monte-Carlo
method. The system being an extremely complex one and the number of degrees of
freedom being of the order of a billion today, a number promised to increase in the
future, LQCD needs heavy, efficient and cheap enough computing tools (hardware
and software).

QCD is a hot subject, which produces two consecutive ANR projects, PARA and
PetaQCD, involving the University of Versailles. Focus on software and hardware
parts produces a great number of deliverables during these projects.

The goal of the calculation is to produce, according to a given probability law
given by the theory, a wide statistical sample of “gauge configurations,” each of
which being a large file of complex numbers. The generally used algorithm is called
“hybrid Monte-carlo” and it combines two steps. The first one is the calculation of
a “trajectory,” according to a Hamiltonian in a complex dynamical space, which
leads from one gauge configuration to the next one of the sample, in such a way
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that the probability is approximately conserved. The second step performs a Monte-
Carlo test to enforce the wanted probability law. The time consuming part is the
computation of the trajectory. It is mainly linear algebra. It manipulates repeatedly
a very large sparse matrix named “Dirac operator.”

Assessing the performance and efficiency on new architectures and based on
different algorithmic representation of this problem is important to approach the
computational power needed for this problem. This computation tends to have
low utilization and efficiency on most general-purpose computing facility leading
to inefficient power consumption and unrealistic demands on the number of needed
computational nodes. Building special machine for simulating the Lattice QCD pro-
blem has been a widely used practice [17, 18, 14]. The motive for building specialized
computing facilities with all the associated overheads is the enormous computatio-
nal power needed in addition to the special characteristics of the computation of
the Lattice QCD.

For large lattices the space of gauge configurations is a variety with dimensio-
nality of the order of tenths of billions. Only a Monte-Carlo method allows such a
huge calculation. To estimate the average values of the physical quantities we need
representative samples of gauge configurations (say about 5000) for every set of pa-
rameters, generated according to the above-mentioned probability law. The Hybrid
Mont Carlo (HMC) algorithm [38]is used to generate these samples. In the follo-
wing discussion, we will consider an HMC implementation achieved by the ETMC
collaboration [102, 101].

2.5.1 Presentation

The computation time for Lattice QCD is dominated by few kernel routines.
The main kernel routine, called Hopping Matrix, is contributing about 90% of the
total execution time [107]. This routine is the major one for computing the actions
of Wilson-Dirac operator. As outlined in Equation 2.1 below, the actions of Dirac
operator involve a sum over quark “spinors”(ψ(i)) multiplied by a gluon gauge link
(Uµ(i)) through the spin projector.

χ(i) =
∑

µ=x,y,z,t

κµ
{

Uµ(i) (I − γµ)ψ(i+ µ̂) + U†
µ(i− µ̂) (I + γµ)ψ(i− µ̂)

}

(2.1)

In Hopping_Matrix, the four-dimensional space-time continuum is simulated by
a four-dimensional lattice, with quark quantum fields, represented by spinors, on
each lattice site and gluon quantum fields, represented by SU(3) matrices, on each
link between these sites. The calculation aims at computing the average values of
physical quantities, which are functions of these fields, according to a probability
distribution also depending on the fields, and derived by a discretisation procedure
from the basic QCD Lagrangian. The gauge field, defined on links, are SU(3) ma-
trices going from a site into the four positive directions of the space-time. SU(3)
refers to matrices with three colors of quarks that are unitary and of unit determi-
nant. The spinors are represented by four SU(3) vectors, each composed of three
complex variables.

As a result, the heart of the simulation code is a loop (or a loop nest) swapping
a four-dimensional lattice to update each site like a 4D Jacobi stencil (see Fig.2.17),
requiring the contribution of direct neighbors in each dimension. Each of the eights
needed sites being a spinor, and each coefficient being a SU(3) matrices, the com-
plexity of the overall lattice update explains that it is the most consuming function
in the program.

When implemented, the four-dimensional space has been flattened to erase the
cost a four nested loops, and only one loop is used to swap the whole volume. As
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HH-1 H+1

Figure 2.17 – Jacobi stencil pattern displayed on three consecutive hyperplanes of
a 4D space. The update of the central node in hyperplane H requires contributions
from its direct neighbours in each dimension.

a first step towards a better reuse of data between site updates, the computation
over the volume is split in two distinct parts : a first loop for computing only even
sites of the lattice, a second loop for the odd sites. A data dependence analysis of
the loops shows that each direction if each loop is composed with two independent
data stream. The loop structure is displayed in Fig. 2.18, with the contributions of
each direct neighbors.

for(i=0; i<(VOLUME)/2; i++)

computations_Even_Direction+0();

computations_Even_Direction-0();

computations_Even_Direction+1();

computations_Even_Direction-1();

computations_Even_Direction+2();

computations_Even_Direction-2();

computations_Even_Direction+3();

computations_Even_Direction-3();

for(i=0; i<VOLUME/2; i++)

computations_Odd_Direction+0();

computations_Odd_Direction-0();

computations_Odd_Direction+1();

computations_Odd_Direction-1();

computations_Odd_Direction+2();

computations_Odd_Direction-2();

computations_Odd_Direction+3();

computations_Odd_Direction-3();

Figure 2.18 – Original code structure of function Hopping_Matrix. Computation
on even and odd points of the lattice are split in two separate loops. Computation
of the neighbour contributions in each direction is composed of two data stream,
independent from one another.

On the difficulty of applying complex optimization

The code we were presented was composed of several identical functions. An ori-
ginal general purpose function written in C language, and other functions specialized
for x86 and bluegene architectures (using intrinsics functions). All these functions
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were duplicated to have a sequential and a parallel version of each. Our role was to
study the behaviour of the general purpose code on an Itanium 2 powered machine,
and to optimize it for this architecture.

_vector_add(r,s1,s2) \
(r).c0.re=(s1).c0.re+(s2).c0.re; \
(r).c0.im=(s1).c0.im+(s2).c0.im; \
(r).c1.re=(s1).c1.re+(s2).c1.re; \
(r).c1.im=(s1).c1.im+(s2).c1.im; \
(r).c2.re=(s1).c2.re+(s2).c2.re; \
(r).c2.im=(s1).c2.im+(s2).c2.im;

Figure 2.19 – Actual code inlined when calling "_vector_add" subroutine.

The considered function is written in C language, but real line codes are not
visible. With the computation applying on complex numbers, included in specific
structures (like SU(3) matrices or vectors), each simple operation between these
structures requires several code lines. To relax the work of the original programmer,
each complex operations is an inlined subroutine. Only subroutine calls are visible
in the loop body, as shown in Fig2.20.

for(i = 0; i < (VOLUME)/2; i++)

_vector_add(psi, rs.s0, rs.s2);

_su3_multiply(chi,(*iU),psi);

_complex_times_vector((*phi[ix]).s0, ka0, chi);

_vector_add(psi, rs.s1, rs.s3);

_su3_multiply(chi,(*iU),psi);

_complex_times_vector((*phi[ix]).s1, ka0, chi);

Figure 2.20 – Macro calls for direction +0 in function Hopping_Matrix.

If the underlying computation, i.e. the succession of operations, is clearly visible,
the code structure prevented the possibility to gather part of different operations, in
order to benefit from memory locality or register usage. Since the loop body is very
large (each loop contains over 30 macros, composed with at least 6 computational
code lines, like the one in Fig. 2.19), the code was not rewritten and the work was
done on this version of the function.

2.5.2 Codelet Optimization

The loop is a good candidate for the CPC framework. The conditions described
in section 2.2.1 are fulfilled. The loop bounds are statically known at compile time ;
control flow and data flow are independent of the input files.

Loop Fission

As explained before in Section 2.3.3, if the code in the loop is too large, the
compiler will not be able to apply as many and aggressive optimizations as it could.
In this function, 1204 floating-point operations are nearly equally divided between
the two loops (the second one being a little larger than the first on). Considering
also the memory transactions required to load data for these 1204 operations, a
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loop body is too large to be efficiently handle by the compiler. In order to reduce
the code size, one will want to apply first some fission on the loop. Here, applying
fission to isolate each computation on a direction is natural. Data produced by these
computations are already stored in an array, thus avoiding the cost of an allocation
of a new data structure to store the temporary results. Isolating each directions
will not cause to increase the memory usage. The structure of the resulting code is
presented in Fig. 2.21.

for(i=0; i<(VOLUME)/2; i++)

computations_Even_Direction+0();

for(i=0; i<(VOLUME)/2; i++)

computations_Even_Direction-0();

for(i=0; i<(VOLUME)/2; i++)

computations_Even_Direction+1();

for(i=0; i<(VOLUME)/2; i++)

computations_Even_Direction-1();

...

Figure 2.21 – Tiled code structure of function Hopping_Matrix.

With all directions isolated, we end up with several smaller codelets to consider.

Tiling

To increase data reuse, or retrieve the one lost with the fission, a tiling is applied
on each loop. Then the outer loop on (VOLUME) is fused, in order to produce the
code structure displayed in Fig. 2.22.

for(i=0; i<(VOLUME)/2; i+=TILE)

for(j=0; j<TILE; j++)

computations_Even_Direction+0();

for(j=0; j<TILE; j++)

computations_Even_Direction-0();

for(j=0; j<TILE; j++)

computations_Even_Direction+1();

for(j=0; j<TILE; j++)

computations_Even_Direction-1();

...

Figure 2.22 – Tiled and fissioned code structure of function Hopping_Matrix.

With a tiling value of 128 iterations, we manage to keep all possible data reuse
in the closest cache memory available (L2 for floating-point data on Itanium 2).
If computations in different directions use the same structures, a small enough
tiling will allow the data to remain in memory between these computation. With
an indirection giving the next element to compute, data reuse between consecutive
iterations of a loop is highly improbable. However, it is possible that iterations
using consecutive data are not very far one from another. Then, a greater tile
value than the distance of these two iterations may allow the common elements to
remain in close memory. With the right value, data reuse between loop iterations
and computations in different direction is maximized.
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Code motion and Fission

After the first fission to separate each direction computation in a different code-
let, too many operations remain in each codelets, with an average of 75 floating-point
operations per codelets. Additional fissions will be applied to diminish the number
of computations per codelets. As shown in Fig.2.18, operations composing the com-
putation of each direction are divided among two independent data flows. For each
codelet containing a direction computation, a code motion will be applied to gather
all operations belonging to the same data flow. Then a fission will cut the loop,
separating the two independent data flows in new codelets.

A data dependence analysis of the code show that each codelet (i.e. each direc-
tion) is composed with two independent data flows. Hence, with some code motion,
it is possible to isolate the streams. A new fission then can split the codelet in two
new ones, with only half the computation in it. The resulting code structure for the
loop is displayed in Fig. 2.23.

for(i=0; i<(VOLUME)/2; i+=TILE)

for(j=0; j<TILE; j++)

computations_Even_Direction+0_ids1();

for(j=0; j<TILE; j++)

computations_Even_Direction+0_ids2();

for(j=0; j<TILE; j++)

computations_Even_Direction-0_ids1();

for(j=0; j<TILE; j++)

computations_Even_Direction-0_ids2();

...

Figure 2.23 – Reorganized code structure of function Hopping_Matrix.

Some other fissions will be applied on these new codelets to separate the su-
broutines of each computation, creating codelets with a more manageable set of
operations. However, these computations are part of the same data stream. Where
a temporary value was enough to pass the result of an operation to the next com-
putation, now an array is required to pass all the results of the same operation to
the next codelet, realizing the next computation. The array privatization produces
more memory transactions, and the generated codelets were not as efficient as the
ones containing the computation of a whole data flow.

2.5.3 Performance evaluation

For this first test, 78 different optimized codelet versions have been genera-
ted. Among all these codelets, 30 were discarded during the selection phase with
MAQAO, remaining 48 codelets to evaluate. Tens of thousands of recomposition
are possible with the remaining codelets, but only a handful of these codelets are
considered for recomposition, exhibiting good enough performance. At last, only 7
different compositions have been tried to find the best version of the function (which
is the third composition we tested).

For the Hopping_Matrix loops, over four hundred codelets have been generated.
A hundred of codelets have been discarded, leaving more than three hundred for
evaluation. Most of these codelets exhibit very poor performance, and only forty-
eight codelets are considered for recomposition. These codelets are those containing
a direction computation, or one data flow of a direction computation. These codelets
offer two possibilities for each direction computation, and with eight directions on
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each loop, 216 combinations are possible. The best version for this function is the
combination of all best stand-alone codelets, being the codelets with only one data
flow of a direction computation. A dozen of combinations have been tried to verify
that the recomposition of all the best stand-alone codelet is the best possibility.

After a peformance prediction far from encouraging, the code is executed with
the new function. Surprisingly, the measured performance is better, with a 13%
speed-up, as shown by the cluster of bars labelled "LQCD" in Fig.2.24. After further
study, it appears that the optimization applied on the loop improving the data
locality allows other function in the simulation to access more freely some of the data
produced by the optimized function. Facilitating data reuse between the different
functions of the iterative simulation brings more speed-up than the optimized hot-
spot function itself. This behaviour cannot be predicted with the CPC method, since
it focuses only on the hot-spot function (or loop). Interactions between functions
are not considered, and the modification of their relations due to the optimization
of the hot-spot function is unknown.

2.6 Conclusion

The approach presented in this chapter proposes to address long execution times
of adaptive compilation. The goal of the CPC framework is to decompose the code
into high performance codelets tested without considering the application context,
and to recompose an optimized version of the code, according to a performance
prediction model. We have shown on three real applications, cumulating four bench-
marks, the validity of the approach. From the performance evaluation of these ex-
tracted and transformed codelets, a simple performance model is able to predict
with accuracy (within a 10% range) the performance of the optimized code, if the
data are in the correct memory hierarchy. A summary of the obtained predictions
and measured speedups is displayed in Fig.2.24. The main advantage of the CPC
framework is to allow the optimization of simulation programs without having to
run them to test every performed transformations. However, the optimization space
can be huge, and we resort on the use of pragmas to drive more easily the transfor-
mations application.

The hot-spot selection for applying optimizations is automatically done with
code profiling programs. The extraction and the transformations are performed with
X-language, requiring for the user to define the search space with directives inserted
in the code. The selection of the codelets to evaluate, and the selection of efficient
codelets to recompose the optimized function, are automatically done, the first on by
analyzing the code with the MAQAO tool, the second through performance analysis.
The actual recomposition is performed by the user, the prediction performance being
computed automatically once the user specifies which recomposition is tested.

While many codelets are executed for the evaluation process, there is no need
for multiple long execution of the whole application. With this method, the whole
program is run only three times : two times before applying the framework to
profile and benchmark the program (probes implanted in the code may interfere
with the measure of the other study if done simultaneously), and only once with
the new optimized function. The remaining evaluations are done only on extracted
parts of the program, whether it is on the hot-spot function or directly on codelets.
Executing all the required codelets still takes a negligible amount of time compared
to applying a straightforward adaptive compilation.

Some gaps between predicted and measured performance can be seen in 2.24. The
first gap, occurring for the LQCD benchmark, is due to unexpected inter-procedural
optimizations. As the codelets are extracted and evaluated with no knowledge of the
original program context, the transformations applied on the hot-spot function may
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Figure 2.24 – Obtained speed-up on all presented benchmarks.

interfere with other parts of the code consuming data produced by the function. For
this function, a tiling is applied, modifying the data locality of the produced results.
The consumer of these results directly follows the optimized function, and benefits
from the new data locality. The speedup due to this behaviour can not be evaluated
in the framework, since all in the original program but the hot-spot function is
ignored. The second gap visible on the "TestProt2" benchmark, is the result of our
simple memory model. The data are assumed to be in a memory hierarchy, hence
having enough element in the memory hierarchy to exhibit its peak performance,
without exceeding it. With this benchmark, the amount of data is just slightly
greater than the last level of cache. There is still a good data reuse, even if some
data are in memory. With our simple model, we can consider only the two following
cases : either all the data are in memory, or all the data fit in the last level of cache.
If we consider that all data are in memory, the speedup due to cache reuse will not
be measured, and the performance prediction will be greatly underestimated. On
the other hand, considering that all data fit in the cache level, the latency of the
data requests in memory is ignored, and the prediction is overestimated. Since the
overestimated prediction is closer to the reality of data placement, the last solution
was chosen, inducing the gap between the overestimated prediction and the actual
performance measure.

These gaps offer opportunities for improvement on the prediction model. The
results on the LQCD benchmark suggest to extract not only the hot-spot function,
but also the following function in the running program. This "support" function will
not be optimized, but will be benchmarked as a meta-codelet, also multiple data
placement in the memory hierarchy. With this evaluation, the interference of the
transformations with the whole program can be measured, and the prediction will be
better. The second gap calls for a more precise memory model. Either several other
memory placements are tested (for example, data filling a quarter, a half or three
quarter of a cache level), or a codelet could be evaluated with a memory locality
consistent to the one it will encounter in the whole program. Then a memory trace
should be performed, which is time and memory consuming.
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Another improvement opportunity lies with the optimization search. Still guided
by the user, it could be fully automated with the integration of a search model base
of the characteristics of the codelets. For example, while the optimization space is
swapped, MAQAO can check the quality of codelets in a regular basis. If the quality
of the produced code is too low, then the optimization space is pruned of further
investigation in this direction. The absence of this automatic behaviour is the main
interference toward its inclusion into an optimizing compiler. On the other end, the
optimization space can be guided by the middle end of a compiler. This "codeleting"
could be the reverse of the inline optimization.



Chapitre 3

Auto-tuning on stencil

computation codes

In this chapter is presented a new approach to generate automaticaly an efficient
data layout for multithreaded stencil codes on CPUs and GPUs. The concept of
usual padding is extended to allow a better flexibility to address stream alignment
conflicts. Alignment issues for efficient vectorization and concurrent simultaneous
memory accesses are discussed. The work presented in this chapter is currently
submitted for publication in the ICS 2012 conference.

3.1 Introduction

Stencil based computations represent a large class of applications, ranging from
image processing, computational electromagnetics, hydrodynamics, lattice QCD or
other physics simulations requiring the resolution of PDEs using finite difference or
volume discretization. However, the variety of stencil kernels used in practice make
this computation pattern difficult to assemble into a high performance computing
library. Besides, the low flop/byte ratio that most common stencil exhibit requires
to precisely tune the data layout and optimize memory accesses according to the
architecture features.

The petaflop era has given rise to architectures of increasing complexity. Modern
architectures combine many different levels of parallelism and a large memory hie-
rarchies. SIMD instructions, such as those proposed in Intel SSE and AVX ISA for
instance, and multi-thread programming offer opportunities to use this parallelism
to reach high level performance. This comes however at the cost of a careful data
layout organization in order to match memory alignment constraints. Combining
vectorization and memory bank conflicts limitation with a proper data layout is a
key to performance in current multicores and GPUs.

Automatic transformations for every stencil pattern is important, as the variety
of stencil kernels is very large. Generating efficient code for CPUs and GPUs, taking
into account alignment requirements, is paramount. Stream alignment conflicts are
a fundamental algorithmic issues, as shown by Henretty et al. [52].

In this chapter, we develop a novel strategy to automatically generate stencil
code for CPUs and GPUs, searching for the best data layout to answer alignment
issues. We introduce a new data layout transformation, called multi-padding, ex-
tending the usual padding so as to maximize the number of aligned loads for vec-
torization. We present several methods to find the best paddings, with different
levels of complexity. We show on stencil codes, in particular Jacobi and Laplacian
computations, that generated codes compare well with hand-tuned codes, and that

53
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multi-padding can bring significant performance gains compared to the usual pad-
ding.

This chapter is organized as follows. The problematic of alignment conflicts is
explained in section 3.2. In section 3.3, the vectorization on stencil codes is presen-
ted on a Jacobi 2D stencil, first with an example with a perfect behaviour, then
with misalignment occurring. A method to find the best padding is shown, with
the idea of having multiple padding values. This method is expanded in section
3.4 on a Jacobi stencil with more than two dimensions, introducing the concept of
Multi-dimensional padding. Then, based on this case study, a formulation to align
efficiently any stencil pattern (called Multi-dimensional Multi-padding, or MDMP)
is developed in section 3.5. Using this formulation, a common strategy to automa-
tically generate stencil code (with any patterns) for CPUs and GPUs, searching for
the best padding possible to answer alignment problems, and taking into account
the memory hierarchy of the target architecture is shown in section 3.6. The no-
velty of the approach is discussed in section 3.7, before presenting the performance
mesures in section 3.8.

3.1.1 Stencil computation

A computation is called a "stencil computation" if it involves the update of
elements in an array, with the update requiring several elements in the same array.
Stencil computations are mainly used to simulate a propagation in a discretized
finite space. As an example, consider a stencil computation using two n-dimensional
arrays (A[V1, . . . , Vn], B[V1, . . . , Vn] with the form :

. . . = f(A[i1 + d11, . . . , in + d1n], . . . , A[i1 + dm1, . . . , in + dmn], . . .

. . . , B[i1 + δ11, . . . , in + δ1n], . . . , B[i1 + δp1, . . . , in + δpn], . . .)

To update an element, this computation uses m elements in the matrix A, and p
elements in the matrix B. All elements of A (resp. B) belongs to an access pattern,
defined by (i1, . . . , in) and the matrix (dhk)hk (resp. (δhk)hk).

As another example, Fig.3.1 presents a stencil pattern in a 3D space, used in
earth sciences for seismic wave propagation.

Figure 3.1 – An example of stencil pattern used in earth sciences

3.1.2 Compact Stencil

The strict definition of a compact stencil is a type of stencil using all nodes
being direct neighbors, i.e. inside the convex envelop surrounding the updated cell
in a distance of one element (9-point stencil in 2D, 27-point stencil in 3D). Usually,
stencil pattern using only some nodes in this convex envelop are also called compact
stencil (as the Jacobi 2D stencil pattern used in our case study).
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3.1.3 Selfish Stencil ( No weight on central node)

Usually, to update a cell in a stencil, one requires the values of the neighbour-
cells, with the value of the current cell being updated.

B[i][j] = c.B[i][j] + c−i.B[i− 1][j] + c+i.B[i+1][j] + c−j .B[i][j− 1]+ c+j .B[i][j+1]

Figure 3.2 – pseudo-code of a 2D Laplacian five-point stencil

In Fig.3.2 is an example of a classic 2D five-point stencil. We define a "Selfish
Stencil" to be a stencil which, for each cells being updated in the computation, only
requires the values of the neighbour-cells, and not its own value.

at[i][j] = c−i.at−1[i− 1][j] + c+i.at−1[i+1][j] + c−j .at−1[i][j− 1]+ c−j .at−1[i][j+1]

Figure 3.3 – pseudo-code of a 2D Jacobi four-point stencil

Therefore, the "selfish" version of the 2D five-point stencil, presented in Fig.3.2,
will be 2D four-point stencil. This four-point stencil will be the same as the five-
point without the first member of the computation, as shown in Fig.3.3. It is the
representation of Jacobi iteration method

3.1.4 Hollow shell

In order to avoid special code for cells on the boundaries of the stencil, thus
creating conditions and non uniform control flow, we resort to the use of a "hollow
shell", wrapping the computed stencil in a one-cell wide shell of null cells. Hence,
we can apply the exact same computation for the cells on the borders of the stencil
than for those inside the stencil. If a cell which does not exist on the original
stencil is accessed, its null value will prevent it from impacting the result of the
computation, producing the same result as if we had made a special case to only
access the originally existing values. If the stencil code is vectorized, the hollow shell
is extended to a vector wide shell of null cells.

3.2 Efficient Data Layout

In the last decade we observed a paradigm change in High Performance Com-
puting, as higher computing capabilities moved away from exponential scaling of
clock frequency toward chip multiprocessors. This change caused the need for more
memory management, with the apparition of shared caches between multiple pro-
cessors, and the possibility for several threads to read and write the same memory
data at the same time. Moreover, multicore systems are not limited to multicore
CPUs, but also include a collection of hardware accelerators, some of which are
widely used, like GPUs. Bank conflicts are an issue in all multicore systems, as they
decrease the amount of parallelism for memory accesses and add latency to me-
mory transactions. For multicore architectures supporting hardware vectorization,
one has to deal with a set of entangled hardware constraints, both coming from
vector memory accesses and from multi-threaded memory accesses.

3.2.1 Set of simultaneous threads

In modern CPUs and GPUs architectures, a set of threads can run simulta-
neously on the same chip. To simplify, we will use the term warp to refer to such
set of simultaneous threads. A warp is a basic notion in GPU programming. We
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extend it to multicore CPUs, considering a warp as the collection of threads run-
ning on a single chip, with a maximum of one thread per core (no hyperthreading
is considered). On GPU, due to the SIMD nature of the architecture, threads of a
same warp are synchronous. On CPU, there is no such garantee.

Vertical parallelization consists in slicing an iteration space in several parts,
which will be swapped by a thread, and is used very often to parallelize linear
algebra or stencil codes. It implies that simultaneous threads perform the same
instruction at nearly same time, issuing multiple memory requests simultaneously.
Whenever these requests may target the same memory bank, this is called a bank
conflict. Memory accesses to the same bank are then serialized instead of being
executed in parallel (for different banks). Requests on a busy memory bank will be
delayed, and memory accesses, which are often already the limiting factor in stencil
codes, will take even more time than usual to fetch the required data.

To avoid this problem, the data accessed by threads must have a different me-
mory alignment modulo the number of memory banks. However, warp size can be
greater than the number of memory banks. In this case, it is better to divide memory
requests equally between all memory banks, than to aggregate numerous requests
on the same bank, thus greatly increasing the memory latency. Since each threads
will follow the same pattern of memory access, once the firsts simultaneous requests
are equally spread across all available banks, all simultaneous data transactions will
be issued on separate memory banks.

3.2.2 SIMD Memory Accesses

In order to obtain high performance and tip the balance between memory ac-
cesses and computation, array accesses have to be vectorized. Vectorization is de-
tailed in the introduction, with algorithmic vectorization being described in section
, and details on architectural vectorizarion being displayed in section . So far, many
architectures (including Intel AVX) exhibit different performance depending on whe-
ther the accesses are align or unaligned on a x byte boundary, with x the size of
the vector. A vector is composed of several elements, depending on the element size
and most vector operations are element-wise (this changes in recent vector ISA).
For a stencil computation, all accesses to the cells of the stencil pattern must be
vectorized. And for the update to be correct, each neighbour must be at the same
index in their respective vector (i.e aligned).

Vectorizing any computation consists in loading the elements required for the
computation at the same index in their respective vector registers. Two different
cases can occur : the element is said to be naturally aligned to its index, or misali-
gned. If it is misaligned, then the mechanism used to load the value in the register
will be more time consuming than if it is naturally aligned. The main methods to
align misaligned elements are :

– Misaligned Load : Load data from an unnatural alignment in a vector re-
gister. On many architectures, this comes at the expense of a performance
penalty.

– Memory Duplication : Duplicate as many times as there are different ali-
gnment between required neighbours the elements array. Each of these arrays
will be naturally aligned on one of the different alignment. Not to be used on
memory bound computations

– Shuffle : Create with two naturally aligned vectors a third vector with the
required elements. This mechanism add instructions and increase the register
pressure. Shuffling is necessary for all elements of the pattern with row in
Equation 3.16 that are not 0. With enough registers available, good register
reuse, and a memory latency hiding the time of shuffles, shuffle can have no
overhead at all.
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– Padding : increases the size of the strides so as to align in memory elements
of the pattern.

While the three first are time consuming or consume significantly more memory,
padding has the advantage of only requiring a minor change in the data layout.
No additional instructions are inserted in the code and, although there is an extra
memory consumption, it is negligible compared to the Memory Duplication method.
We explore in the following such technique for N -dimensional data layout. If the
padding values are not enough to align all required data, then shuffles or unaligned
loads are used, depending on the cost model of the target machine.

Vectorizing on GPUs

At first sight, GPUs do not seem to have this problem, since an element is
composed with multiple registers, whereas on CPUs, a vector register is composed
with several elements, causing alignment issue. On GPUs, a vector register always
includes only one element. In CUDA, built-in vector types are proposed, providing
programmers with a set of vectors of different sizes, up to 128 bits or a vector of
four elements. In the CUDA Programming Guide [31], these built-in types are said
to enforce specific alignment of data, sometimes with vector requirements being
different from its base type requirement. Among others, a char1 must be aligned on
a 8 bits address, char2 on a 16 bits, char3 on a8 bits address, char 4 on a 32 bits
address. Using these built-in types will cause the same alignment issues than for
CPU.

Compulsory alignment conflicts

Padding transformation sets a dimension in an array to a new size. It adds a
specific number of cells at the end of a line, to change in memory the beginning
address of the next row. As it can only modified alignments between to lines, ali-
gnment conflicts occurring in the same line will not be affected. These conflicts
are called compulsory alignment conflicts. On the example of the Jacobi 2D stencil
with a vector of size 4, displayed in Fig.3.5, E and G cannot be aligned on the same
value. A compulsory alignment conflicts exists between the two elements.

3.3 Jacobi 2D case study

In this section, a Jacobi 2D stencil is considered. The form of this four-point 2D
stencil is :

A[i][j] = c−i.B[i− 1][j] + c+i.B[i+ 1][j] + c−j .B[i][j − 1] + c−j .B[i][j + 1]

Fig.3.4(a) represents the pattern of this stencil, with the grey cells being those
required for the update of the central cell. Here, cells B,E,G and J are necessary
to update cell F .

In order to vectorize efficiently this stencil computation, padding cells will be
used to align the maximum of required elements to the same alignment. A first
example, with vector composed of two elements, has a perfect behaviour. A simple
adding is enough to align all required cells, as detailed in section 3.3.1. For the
second example, in section 3.3.3, Multi-padding is introduced, which consists in
having the possibility of have multiple padding values, circling in a periodic way.
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3.3.1 Detection of necessary padding, with vector of two ele-
ments

(a)
(b)

(c)

(d)

Figure 3.4 – Modification of element alignment in memory with a simple padding
on a 2D Jacobi stencil computation with a vector size of two elements.(a) Vectorized
Jacobi 2D with no padding. (b) Vectorized Jacobi 2D with no padding, memory
view. (c) Vectorized Jacobi 2D with simple padding = 1.(d) Vectorized Jacobi 2D
with simple padding = 1, memory view.

In our 4-point 2D-Stencil case, we need for all four elements B[i−1][j], B[i+1][j],
B[i][j +1] and B[i][j − 1] (elements B,E,G and J in Fig.3.4(a). to be on the same
alignment in order to vectorize efficiently. Having the four elements on the same
alignment will allow to directly consider vectors, as long as the data are contiguous,
whereas different alignments will force to use different mechanisms in order to build
the vectors for the computation. These mechanisms will have an impact either on
the memory print (additional arrays being created for the previously misaligned
data to be correctly aligned), or on the instruction print ( insertion of shuffle ins-
tructions to build the needed vector from previously worthless vectors). Therefore,
these mechanisms will reduce the overall performance and should be avoided if
possible.

In the double precision case, this condition will be rather easy to satisfy.
First, we can easily establish that in this particular stencil case, the two cells

needed in each direction to compute one point of the Stencil have the same align-
ment. Assuming that the size of the outer dimension of our 2D array A is Sj , and
that the address of A[i, j] is defined by A[i, j] = iSj + j, then the two elements
needed in the same row have the same alignment if :

∀i, ∀j, iSj + j − 1 ≡2 iSj + j + 1

Since the distance between the two cells is two elements, they will always have the
same congruence modulo 2. For the two elements needed in a column, they have
the same alignment if :

∀i, ∀j, (i− 1)Sj + j ≡2 (i+ 1)Sj + j + 1

Here again, the distance between the two cells is 2Sj , hence a multiple of 2. The
two elements will always have the same alignment.

According to this result, if one manages to have one cell in each direction with
the same alignment, the whole array will be well aligned. The vectorization of the
computation will then be a rather simple transformation to apply, No other code
transformations will have to be used to ensure the correctness of the produced
vectors, and of the new code.
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To search for a possible common alignment, elements a[i + 1][j] and a[i][j + 1]
were selected. Their respective addresses compose the system of equations :

∀i, ∀j,
i ∗ Sj + (j + 1) ≡2 c

(i+ 1) ∗ Sj + j ≡2 c

}

(3.1)

The resolution of equation 3.1 shows that the Sj must be odd for the vectoriza-
tion to be applied efficiently.

Furthermore, it implied that a padding must be done if the line size is even.
When the number of columns of our 2D-Stencil is originally even, the equation 3.1
forces a padding by an odd number of element for the whole array to be well aligned.

Considering the example in Fig.3.4, the original size of a line was even (4 elements
in Fig.3.4(a)), and the four required elements for the update of F were not on the
same alignment (Fig.3.4(b)). Then a padding of one cell has been applied, going
from a size of 4 elements to a line size of five elements (Fig.3.4(c)). With this new
line size, all required data are aligned on the same value (as shown in Fig.3.4(d)).

Unfortunately, when applying some transformations on a code, problems can
appear when using the transformed elements. Vectorization can have the same limi-
tation. To ensure that we can consider the transformed array as a whole, one have to
check if all elements will behave correctly during the computation. If some elements
are not, we can separate them from the suitable ones, and isolate them so that they
will not interfere. We will then consider on one hand good vectorized elements, and
then deal with the others (applying the original sequential computation on them,
or deleting values written in the hollow shell).

3.3.2 Vectorization boundaries, using vector of two elements

If the line size is not a multiple of the vector size, or when applying some
padding, a line boundaries may not correspond to vectors boundaries. It means that
a vector being updated can be composed with elements of the hollow shell. These
null elements will be written with some values, useless for the stencil computation,
compromising the integrity of the hollow shell. There are two possible ways for these
elements to remain with a null value at the end of the update. On one hand, the
elements are not computed in a vectorized way, and the original sequential code
is used for the update on these elements. On the other hand, the update of the
elements is vectorized, then a procedure will delete the wrong values. One has to
know which elements are not naturally eligible for vectorization, either to update
these elements sequentially, or to delete the values written in the hollow shell. In
this section, we describe how to find elements to compute sequentially. Note that it
is easy to establish, if the other solution is considered, which cells have to be cleared,
since the elements to delete are the complementary elements of the ones computed
sequentially in a vector. For instance, with vector composed of 8 elements, if 5 cells
should be updated sequentially, then 3 cells (8-5) must be cleared if the update is
performed in a vectorized way.

In the previous section, we have ensured that all elements were correctly aligned
in the 2D-array. Since a vector is composed of two values, here two cells of the array,
all even (or odd) elements of the array have the same alignment. To simplify, we will
consider that the first element of the computed stencil is the first part of the first
vector. Hence, every even element of the stencil will be the first part of a vector,
and every odd element the second part of a vector. Knowing this, we can identify
which cells in the array are not eligible for vectorized computation.

A vector is supposed to be composed with two contiguous double values. Howe-
ver, it can happen that the two values, contiguous in memory, are not contiguous
in the array. As an example, the last element of a row and the first element of
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the next row in an array are not strictly contiguous. However, it is possible that
these elements independent in the array are contiguous in memory. If one want to
vectorize this array, it may be possible that the last element of a row and the first
element of the next row will compose a unique vector. This vector is not a correct
vector, and to use it in some computation will lead to mistakes in results.

As to rid the vectorized space of these cases, one as to determine if a first cell
of a row is not the first part of a vector, and also if a last cell of a row is not the
last part of a vector. Even if this kind of behaviour disappear with the application
of a hollow shell wrapping the array (as described in section 3.1.4), the problem
it raised remains : we have to check if there is first element of rows which are not
"even" cells, and lasts elements of rows which are not "odd" cells.

The modifications brought in the previous section to align all required data
ensure that these special cases happen. Dark grey cells and dotted lines in Fig.3.4(c)
show these cases.

Let us consider that Sj is the original line size, and Sp is the new padded line
size (Sp is an odd value).

The equation verifying that the first computed element in a row is at the second
place in a vector is :

∀i, i ∗ Sp + 0 ≡2 1

Since the new line size Sp is odd, this equation demonstrates that for any original
sizes of rows, the first cell of even rows in the original stencil will never be eligible
to form a usable vector.

However, the original size of rows has an impact on the location of the non-
vectorizable last cell on the stencil rows. The equation verifying that the last com-
puted element in a row is at the first position in a vector is :

i ∗ Sp + Sj ≡2 0

According to its resolution, if the original row size is odd, last cell of each odd
rows in the stencil will be the special ones, whereas if the original row size is even,
the last cell of even rows will be the ones to take care of. The example in Fig.3.4(c)
illustrates the last case. The original line size is even (four elements), and the cells
not eligible for vectorized computation are at the end of lines 0 and 2 (even rows),
and at the beginning of lines 1 and 3 (odd rows).

3.3.3 Detection of necessary padding, with vector of any size

Now, we will apply the same analysis as the two last sections on the same stencil
pattern, but this time vectors are composed with more elements than two.

(a)
(b)

Figure 3.5 – Representation of a Jacobi 2D pattern, using vector of four elements
(simple data in SSE). (a) Logical view, update of F requires elements B,E,G, J .
(b) Memory view, the four elements are not in the same place in vectors. E is in
the first position, B and J are both in the second position, and G is in the third.
Choosing alignment of B and J as the valid one, two shuffles or unaligned loads are
required.

Fig.3.5(a) presents the same pattern of access as Fig.3.4(a). The stencil uses
the elements B,E,G, J , but with a larger vector size (4 in this example). Fig. 3.5(b)
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shows the offsets of these elements in the vectors of 4 elements (A,B,C,D), (E,F,G,H)
and (I, J,K,L). Here again, the elements are not in the same positions in the vec-
tors. One of the main changes between having vector of any size, compare to vector
composed of two element, is that in our 2D Jacobi based case study, the two ele-
ments needed for the computation on the same line will not be well aligned at the
same time. Considering that Sj is still the line size, and v the vector size, the system
of equations 3.2, composed with the addresses of the two elements in the same line,
is unsolvable.

∀i, ∀j,
i ∗ Sj + j + 1 ≡v c

i ∗ Sj + j − 1 ≡v c

}

(3.2)

The first part of the system will quickly return i ∗ Sj + j ≡v v − 1, whereas the
second part will give i ∗ Sj + j ≡v 1, the two solutions being incompatible if v 6= 2.
It is an example of compulsory conflict described in section 3.2.2.

As a result, all the elements can not be well aligned for the vectorization. Ho-
wever, we will try to align a maximum of elements to improve the efficiency of
vectorization the best we can. We then have to choose which one of the two needed
elements in a row we will try to align to the elements needed in a column.

Until further notice, we choose to align the first needed element of a line to
the other elements needed in the computation. When trying to align the required
element on top of the updated cell (a[i− 1][j]), with the required element on its left
(a[i][j + 1]), we end up with the system :

∀i, ∀j,
(i− 1) ∗ Sj + j ≡v c

i ∗ Sj + (j − 1) ≡v c

}

(3.3)

The resolution of this equation returns that Sj ≡v 1.
Now, let us suppose that this system is not the one considered. We build instead

the system for the required elements on its left (a[i][j − 1]), and the one under the
updated cell (a[i+ 1][j]) :

∀i, ∀j,
i ∗ Sj + (j − 1) ≡v c

(i+ 1) ∗ Sj + j ≡v c

}

(3.4)

The resolution of this equation returns that Sj ≡v v − 1.
Unfortunately, the resolution of these two systems returns two different values.

(a)
(b)

Figure 3.6 – Simple padding applied on the Jacobi 2D pattern with vector of
four elements. (a) Logical view, alignment of elements have changed. Dotted lines
represent unfinished vectors on a line, being completed with elements of the next
line.(b) Memory view, two distinct alignments. Do not improve compared to no
padding, since here again two shuffles or unaligned loads are required.

We ended up with different values for the same line size, proving that a simple
padding cannot resolve the alignment problem with any vector size, unlike the
simpler case studied in section 3.3.1. Since we ended up with two different values,
we suggest to consider the same systems, but with two distinct line sizes, one for
the even rows (Se), and one for the odd rows (So) in the stencil array. System 3.4
is modified in system 3.5, while system 3.3 becomes system 3.6.
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∀i, ∀j,
2i ∗ (Se + So) + (j + 1) ≡v c

(2i+ 1) ∗ Se + 2i ∗ So + j ≡v c

}

(3.5)

∀i, ∀j,
(2i) ∗ Se + (2i− 1) ∗ So + j ≡v c

(2i) ∗ (Se + So) + (j + 1) ≡v c

}

(3.6)

The new systems of equations have one common solution. Each line size gets only
one possibility. Hence, in our 2D Jacobi stencil with a vector size of v elements, for
a maximum of elements required in an update, the even rows should be padded for
their size to be congruent to 1 modulo v, and the odd rows should be padded for
their size to be congruent to v− 1 modulo v. This observation leads to the concept
of Multi-padding, which is originally the possibility to have a different padding value
for each row of the computed array.

(a)
(b)

Figure 3.7 – Multipadding 1-3 applied on the Jacobi 2D pattern with vector of
four elements. (a) Logical view, alignment of elements have changed. (b) Memory
view, still two distinct alignment.B, E and J are in the same position in vectors.
Now only one shuffle or unaligned load required.

In this kind of modular arithmetic, numerous values could verify these condi-
tions. However, since padding values are cells added in the array, one will try for the
sum of added cells to be as small as possible, limiting the impact on the memory
consumption. Padding values must remain positive, otherwise the padding will be
deleting useful cell from the computed array. With these new constraints, the values
for So and Se are easily found :

Se = 1 and So = v − 1. Figures 3.7(a) and 3.7(b) are a perfect example. The
vector size of four elements leads to a padding value for even rows of 1, and a
padding value for odd rows of 3. With these sizes, a maximum of three required
elements(B, E and J) are on the same alignment for the update of J . Only G is
not correctly aligned, and will never be, due to equation 3.2.

Offset Value

To relax index computations, we wish for sizes for odd and even rows to be the
same. Unfortunately, the conditions for So and Se sizes do not allow them to have
the same value if the vector is larger than two elements.

Since elements are contiguous in memory, it is possible to add an offset in the
computation to pretend to move the border between two lines. This offset value has
no impact on memory. It is a software trick for the programmer to simulate the use
of only on line size, instead of the two distinct sizes found previously.

To check the impact of the simulation, a previous equation verifying the sizes
for a common alignment was considered. The system 3.6 is modified to take into
account the moving of cells from even rows to odd rows, by adding the value offset
in the right spot. Equation 3.7 (resp. 3.8) is the modification of the first (resp. last)
equation in system 3.6

∀i, ∀j, (2i) ∗ (Se + offset) + (2i− 1) ∗ (So − offset)− offset+ j ≡v c (3.7)
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∀i, ∀j, (2i) ∗ (Se + offset+ So − offset) + (j + 1) ≡v c (3.8)

In equation 3.8, the offset terms appear naturally, and cancel each other quickly.
Since the border is supposed to change between a couple composed with an even
line and an odd line, and that the array is considered to begin with an even line, the
moving cells are considered to be remove from the beginning of odd lines to be added
at the end of their corresponding even ones. Then, in equation 3.7, the offset value
must be subtracted from j, since it is on an odd row and offset cells have been
removed at its beginning. Again, all offset values in the equation cancelled each
other, retrieving the exact same equations as in the system 3.6. Equations 3.7 and
3.8 prove that removing cells of the end of even rows to put them at the beginning
of the following odd rows does not change the alignment of the useful cells, since
adding offset in the original equation has no impact. However, an implicit constraint
appears. Since we are "taking" cells from the beginning of odd lines to put them at
the end of even lines, we implicitly suppose that there is an even number of lines
(as many odd lines than even lines).

To find the offset value, the equation Fig.3.9 is considered.

Se + offset = So − offset (3.9)

The solution of this equation is offset = v−2
2 , here again with an implicit additional

constraint. If the vector is composed of an odd number of elements, then we are
supposed to have a simulated line size with half of a cell. Since it is very difficult to
consider, vectors are supposed to be composed of an even number of elements.

To correctly use an offset value, to simulate only one line size, the 2D array must
have an even number of lines, and the vectorization must take place with vectors
composed of an even number of element.

3.3.4 Vectorization boundaries using vector of any size

As seen in Section 3.3.2, some cells in the stencil may not be eligible for vectorized
computation. The larger size of vector widened the possibility of errors. In Section
3.3.2, vectors were build with two elements, hence having one possibility over two
for the element to be misplaced in the vector, and the same probability to have a
good placement in the vector). With a larger vector size, it is the same probability
for a good placement (one over the size of the vector), leading to a larger probability
of having a misplaced element.

∀i, 2i ∗ (Se + So) ≡v 0 (3.10)

To find and isolate non-vectorizable cells, one has to search for first element of
lines which are not the beginning of a vector, or the last cell of lines which are
not the last element of a vector. Equations 3.10 and 3.11 evaluates which are the
vectorizable elements in lines beginning, deducing the not vectorizable ones, for even
and odd lines. With Se = 1 and So = v− 1, equation 3.10 will always be true. First
cells of even rows will always be considered as vectors during the computation.

∀i, (2i+ 1) ∗ Se + 2i ∗ So ≡v 0 (3.11)

However, trying to solve equation 3.11 ends with 1 ≡v 0, which is not possible.
First cell element of odd lines will be always misaligned for a valid vectorized com-
putation. Worse, due to its position (second element in the vector), the v − 1 firsts
elements of every odd lines will not be eligible for vectorization.

∀i, 2i ∗ (Se + So) + Sj − 1 ≡v v − 1 (3.12)
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∀i, (2i+ 1) ∗ Se + 2i ∗ So + Sj − 1 ≡v v − 1 (3.13)

Equation 3.12 is true only if Sj ≡v 0, and equation 3.13 if Sj ≡v v − 1. So, if
the original line size Sj is congruent to 0 modulo the vector size, sequential cells
will only be at the end of even rows. If the size is congruent to v− 1, these cells will
only be at the end of odd rows. For all other sizes, each row will found problematic
vector at their end.

The position of the sequential elements depends on the cells considered when
aligning data. When a compulsory conflict occurs, it means that there is at least two
possible alignments for the elements on the line. One of these alignments is chosen,
leading to a specific repartition of non-vectorizable cells. If another alignment is
selected, the disposition of sequential computations is different.

3.3.5 Choosing between to equivalent alignment

In Section 3.3.3, a specific alignment was fixed for the stencil pattern : the first
needed element of a row was chosen to be aligned to the other needed elements.
This lead to have, in the beginning of each odd lines, seven cells requiring special
treatment (see equation 3.11).

Between the two possibilities, maybe picking the first required element of the
row was not the better choice.

In this section, the second needed element in a line will be aligned to the other
needed elements (Fig.3.8).

Figure 3.8 – Aligning the second needed element of a row

Doing the same kind of computation as in equations 3.4 and 3.3 but with the
second needed element in a row, the new two following sizes were obtained for even
and odd rows : Se ≡v v − 1 and So ≡v 1. This interchange between the two values
of Se and So will not impact the value of offset, computed in equation 3.9, nor the
absence of problematic cells at the beginning of even lines, since, with these new
values, Se+So ≡v 0 as before in equation 3.10. Furthermore, the interchanged value
will have only one impact on the conditions found with equation 3.12 and 3.13 :
they also will be interchanged.

However, the new value of Se will have a more important impact on the result of
equation 3.11. To be a valid vector for the computation, the first element must be
congruent to 0 modulo the size of the vector, and also to be in the original stencil.
Hence, due to the choice of the cell in a row to be align, we ended up with v − 1
sequential computations at the beginning of each odd rows (see equation 3.11).
However, the alignment change, and therefore the interchange of Se and So, will
brought a better number of sequential cells.

With the new sizes, equation 3.11 will return a size of v − 1 for Sj . The first
element of odd rows are still not well aligned. However, its new alignment still have
a great impact. Since it is misaligned, the first vector eligible for computation is
the one beginning with the following cell having a good alignment. Unlike with the
previous alignment, the next valid cell for being the first element of a vector is not
v−1 cells further, but only one. Therefore, the second cell of an odd row will always
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be eligible for vectorized computation, and only one sequential computation at the
beginning of an odd line will take place, instead of v − 1 with our previous choice
of aligned cells.

The choice of which cell of the line will be aligned depends on how the special
cases will be treated. If one wants to do the whole computation with vectors, then
delete data written in the hollow shell, the first alignment must be chosen, since it
is the one with the less written cells in the hollow shell. Less time will be lost while
erasing wrong values. On the other hand, if the other solution is selected, which is
computing problematic cells sequentially, the new alignment tested in this section
is the best. There will be less sequential computation, and the overall performance
of the stencil computation will be improved.

3.4 Jacobi N-D case study

In this section, we expand the work done in section 3.3 on a Jacobi stencil
for any number of dimensions. Considering that n is the number of dimension,the
formulation of the stencil is :

A[i0, . . . , in−1] =

n
∑

k=0

(c−ik .B[i0, . . . , ik−1, . . . , in−1]+c+ik .B[i0, . . . , ik+1, . . . , in−1])

Fig.3.9 offers a visual example of the Jacobi stencil pattern in 3D. The update
of cell F requires elements F ′, B,E,G, J and F”.

This section introduces two important notions : Multi-dimensional padding with
the first example, where, with vector composed of two elements, a padding can be
needed in each dimension to align all required elements. Then, Multi-dimensional
Multi-padding (or MDMP), allowing multiple padding values on each dimension,
is quickly presented.

(a) Representation of Jacobi 3D pattern, logical view on three successive planes.

(b) Representation of Jacobi 3D pattern, logical view.

Figure 3.9 – Representation of a Jacobi 3D pattern, using vector of two elements
(double data in SSE). (a) Logical view, update of F requires elements B,E,G, J, F ′

and F”. (b) Memory view, the three lines are contiguous in memory (P ′ in the first
and second lines are the same one). The six elements are spread through the two
possible alignment. Choosing alignment of B, J , F ′ and F” as the valid one, two
shuffles or unaligned loads are required.
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3.4.1 Detection of necessary padding, with vector of two ele-
ments

Based on the study for the Jacobi 2D in section 3.3.1, the possibility of a common
alignment with all necessary elements for an update in a n-dimensional Jacobi
stencil will be proved by induction.

First, let us show that the two needed elements in one direction will always have
the same alignment, when the vector is composed with two elements. Considering
that Sb is the size of the bth dimension, and ib the position of the element in the
bth dimension, equation 3.14 represents our hypothesis that ik+1 + 1 and ik+1 − 1,
the two elements required in the (k + 1)th dimension, have the same alignment,
∀i0, . . . , in−1.
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(3.14)

Solving equation 3.14 ends up with an always true statement. It means that
whatever the sizes of the dimensions are, the two elements required in a specific di-
mension to update a cell of a Jacobi stencil with n dimensions have always the same
alignment. Fig.3.9(b) confirms that the couple of elements (E,G) in the inner-most
dimension have the same alignment, as the couple (B, J) in the middle dimension,
and the couple (F ′, F”) in the outer-most dimension.

(a) Jacobi 3D pattern with simple padding = 1, logical view on three successive
planes.

(b) Jacobi 3D pattern with simple padding = 1, memory view.

Figure 3.10 – Simple padding applied on the Jacobi 3D pattern with vector of
two elements. (a) Logical view, alignment of elements have changed. Dotted lines
represent unfinished vectors on a line, being completed with elements of the next
line.(b) Memory view, two distinct alignments. Do not improve compared to no
padding. There is again four elements on one alignment (second position), and two
elements on the other possible alignment. Again, two shuffles or unaligned loads are
required.

Now, like in the 2D case, if one manages to align one cell of each dimension, the
complete n-dimensional array will be correctly align for a vectorized computation.
A proof by induction will show that if the elements of the first k dimensions can
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have the same alignment, then the elements of the (k + i)th dimension is also on
this alignment. Equation 3.15 represents this hypothesis, ∀i0, . . . , in−1.
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(3.15)

The resolution of the system 3.15 shows that if the k + 1th dimension has an
odd parity, the needed elements will have the same alignment.

With an odd size on the k + 1th dimension, the elements of this dimension
will be aligned as the ones of the previous dimension. Using the work in section
3.3.1 as the first step of our recurrence, it is induced that for all required elements
for the computation of a cell in our stencil to be on the same alignment, for any
number of dimensions, the sizes of all the dimensions (except for the outer-most
dimension) must be odd. It introduces the concept of Multi-dimensional padding,
as each dimension may have to be padded.

(a) Jacobi 3D pattern with multi-dimensional padding, logical view on three
successive planes

(b) Jacobi 3D pattern with multi-dimensional padding, memory view

Figure 3.11 – Multi-dimensional padding applied on the Jacobi 3D pattern with
vector of two elements. (a) Logical view, alignment of elements have changed. In ad-
dition to the simple padding, an extra element is added at the end of each planes.(b)
Memory view, all six required elements have the same alignment (first position in
vectors). Only aligned loads will be performed, no additional shuffles or unaligned
loads are required.

Like in the example in fig.3.9(a), if some dimensions have even sizes, then they
must be padded to change their parity. In fig.3.9(b), with an even size of 4 for
all dimensions, the elements required for the update of F are not all aligned on
the same value. A simple padding applied in fig.3.10does not solve the problem.
Only the padding of each dimension to an odd size in fig.3.11allows all six elements
F ′, B,E,G, J and F” to be at the same position in vector (here, the first place in
their respective vector).
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3.4.2 Vectorization boundaries with vector of two elements

This step happens to be the exact same procedure as in section 3.3.2. Due to the
construction method of vectors, only the inner dimension (the rows of the stencil)
has to be considered. Hence the constraints to find cells not naturally eligible for
vectorized computation are exactly the same as in section 3.3.2.

3.4.3 Detection of necessary padding, with vector of any size

Coupling the results of section 3.3.3 with the results of section 3.4.1, we de-
termine that, for a N -D Jacobi stencil using vector composed of more than two
elements, a Multi-dimensional Multi-padding is necessary. Each dimension requires
to have two different padding values, 1 and v − 1, v being the size of a vector. The
heavy equations demonstrating this result are displayed in Annex A.

This MDMP method will be formally described in section 3.5.

3.5 General Case of stencil computation

After focusing on the two studied cases, Multi-dimensional padding and MDMP

methodologies are formally described in this section, for any stencil pattern. A new
formulation using matrix representation is used to lightened equations. Compared
to the section 3.4, the methodologies sustain a slight modification : rather than
expand the dimension sizes with the required number of hyperplane, only several
cells will be added at the end of a dimension. The first reason for this change is due
to the me memory consumption. When an outer dimension is increased, it causes
new hyperplanes to be stored in memory, taking a lot of place. Adding only few
cells will have the same consequences on alignments, without greatly stressing the
memory. Furthermore, since any stencil is considered, one must try to align all
required elements, and not only a special selection, as it was done in sections 3.3
and 3.4 due to the regular nature of the pattern. It results in a complex system
of equations, processed by a linear solver. If, instead of only adding a few cells at
the end of a dimension, increasing the dimension sizes was kept, then the system
to solve would not have been a linear one but a quadratic one, which is far more
complex.

3.5.1 Formulation of alignment constraints

We study in the following sections a stencil computation on a n-dimensional
array A[V1, . . . , Vn] of the form :

. . . = f(A[i1 + d11, . . . , in + d1n], . . . , A[i1 + dm1, . . . , in + dmn])

This computation reads all elements of A belonging to an access pattern, defined
by (i1, . . . , in) and the matrix of integers (dhk)hk. We assume in the rest of the
paper that all elements of A are mapped contiguously in memory, and to simplify
notations, we assume elements of A are 1 byte long.

Vectorizing such expression requires to load into SIMD registers, at the same
position in the vectors, all the elements of the access pattern. Optimization of this
code for GPU is discussed in Section 3.6.

We first discuss alignment issues for an SIMD implementation, illustrated on a
Jacobi stencil, then introduce the multi-dimensional padding. Finally we extend it
further into multi-dimensional, multi-padding.

In Section 3.3.3, Fig.3.5(a) presenting the original pattern access of a Jacobi 2D
stencil computation show that B,E,G, J , the required elements for the update of
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F are not naturally aligned. Shuffles or unaligned loads are needed to do a correct
vector computations.

More generally, we propose to describe the conditions when the elements of a
stencil pattern are all aligned : For SIMD vectors of size l, this implies that the
addresses of these elements are the same modulo l. The memory address of an
element A[i1, . . . , in] is defined by :

&A[i1, . . . , in] = A+

N
∑

k=1

ikSk

where Sk define the strides separating consecutive elements of A in the kth dimen-
sion. Thus, given a vector (i1, . . . , in), the elements of A required for the stencil
computation have the same alignment if and only if :

∃c, ∀h,A+

n
∑

k=1

(ik + dhk)Sk ≡l c

where ≡l is the identity modulo l and c is a constant.
Thus, all elements are aligned if and only if the vector of strides (Sk) check the

following constraint :

∃c,







d11 . . . d1n
...

. . .
dm1 dmn













S1

...
Sn






≡l







c
...
c






(3.16)

When Equation (3.16) is not checked, some elements are misaligned in me-
mory. Misaligned elements in memory would have to be aligned in registers for the
computation to be correct. For instance, in the Jacobi 3D presented in Fig.3.9(a)
(showing three planes of the volume) and (b) (linearized memory), the elements
required by the computation (F ′, B,E,G, J, F ′′) have not the same alignment (resp.
(2, 2, 1, 1, 2, 2)). E and G are unaligned compared to the other elements.

3.5.2 Formulation of Multi-dimensional Padding

Let us assume, with no loss of generality, that the array is row-major (as in C).
We describe in this section a simple padding for a 2D array, and then generalize
this to a padding for a multi-dimensional array.

A simple padding for a 2D array consists in adding elements at the end of each
row, in order to align elements needed in a stencil pattern. The number of elements
is the same for each row. For instance, Fig.3.6describe the access pattern of a Jacobi
2D when row are padded with one element. The elements B,E,G, J needed by the
computation have two different alignments. While better than the first vectorization
(with no padding, figure (b)), there are still 2 elements unaligned (compulsory
conflicts). Likewise in 3D, Fig.3.10show that padding a single dimension is not
sufficient to improve the alignment.

A multi-dimensional padding consists in adding elements at the end of each
dimension. The number of elements added is constant per dimension, but may
vary from one dimension to another. This flexibility allows more elements in a
stencil pattern to be aligned. To define the number of elements pk to add in each
dimension k, we describe the relation between the value of the padding and the
stride separating two consecutive elements of the array. For any dimension k, the
stride Sk separating two consecutive elements in the kth dimension has to take into
account the size taken by all elements in dimensions h, h < k, and any padding on
these dimensions. This provides a recurrent definition of the stride for dimension
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k : it is equal to the stride of the k−1th dimension times the number of elements in
this dimension, plus the padded elements for dimension k − 1. Formally, the stride
is defined by :

Sk = Sk−1Vk−1 + pk−1.

In a matrix form, this defines a relation between paddings and strides :







p1
...

pn−1






≡l











−V1 1
−V2 1

. . .
. . .
−Vn−1 1

















S1

...
Sn






, (3.17)

where only non-null elements are represented in the matrix. As expected, the value
of each padding is bounded by the length of the SIMD vector (due to the relation
≡l). Besides, as soon as strides of two successive dimensions are multiple of the
vector length (maybe thanks to padding of these dimensions), Equation 3.17 shows
that there is no need for padding in outer dimensions.

3.5.3 Finding a Multi-dimensional padding

Equations (3.16) and (3.17) provide the constraints on the padding so as to
obtain potentially an alignment for all elements of a stencil pattern. Since padding
consists in adding extra, useless elements, the total count of such elements should
be minimized in order to reduce the impact of this method.

Besides, for some stencil patterns, even a multi-dimensional padding cannot
ensure that all elements are aligned. For each unaligned element, either a shuffle or
a misaligned load will be generated. To count these necessary shuffles, according to
the padding chosen, we reformulate Equation (3.16) so that a solution can always
be found, using slack variables wk :







d11 . . . d1n
...

. . .
dm1 dmn






.







S1

...
Sn






≡l







c
...
c






+







w1

...
wm






(3.18)

Here, wh stands for an additional shift on the element h of the stencil pattern,
corresponding to an alignment change. As for any shift, 0 ≥ wh < l. In order
to count and minimize the number of elements for which an alignment change is
necessary, we add the constraint for any element :

0 ≤ wh < (1− uh)M (3.19)

with M a big constant. uh is a 0 − 1 variable equal to 1 whenever a shuffle or an
unaligned load is needed.

An objective function to minimize for the multi-padding problem, combining the
minimization of the number of unaligned loads/shuffles and the memory consump-
tion due to padding can be defined as :

min(

m
∑

h=1

uh +

n
∑

k=1

pk) (3.20)

A different objective function may be formulated, depending on the architecture
and on the cost associated to memory consumption and shuffles. The complexity
and the number of equations to consider force the use of a linear solver.

For the example in Fig.3.11, the multidimensional padding (1 in each dimension)
enable to align all elements of the stencil pattern. There is no need for unaligned
access or shuffle.
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3.5.4 Formulation of Multi-dimensional Multi-Padding (MDMP)

In order to further reduce the number of shuffles or unaligned accesses to load
a stencil pattern, we describe now an extension of the multi-dimensional padding.
The principle can be easily explained for a 2D array.

For a 2D array, each row can be padded by a number of elements. Instead of
padding each row with the same number of elements, each row is now padded with
a number of elements that can differ from row to row. In order to keep the code
generation with this padding manageable, the padding is cyclic : every T rows, the
sequence of padding values starts over again. This technique can be generalized
to any number of dimensions. The Jacobi 2D in Fig.3.7 shows that by padding
even rows with one element, and odd rows with 3 elements, all elements of the
stencil pattern can be aligned but one. Note that the remaining unaligned access is
a compulsory alignment conflict, since the two elements E and G are in the same
row. The padding proposed minimized the number of unaligned accesses.

We consider here some periodic functions Sk(j), defining the strides separating
consecutive elements of A in the dimension k. The address of an element of the
array A is defined by :

&A[i1, . . . , in] = A+

N
∑

k=1

ik
∑

j=0

Sk(j) (3.21)

If T is the period of the functions Sk, then Sk is characterized entirely by the set
of values {Sk(0), . . . , Sk(T −1)}. This enable the following simplification of formula
(3.21) :

&A[i1, . . . , in] = A+
N
∑

k=1

T
∑

j=0

⌊
ik − j

T
⌋Sk(j).

Considering the elements of the stencil for the computation in (i1, . . . , in), they
are all aligned if and only if :

∃c, ∀h,

n
∑

k=1

T
∑

j=0

⌊
ik − j + dhk

T
⌋Sk(j) ≡l c

for some constant c. Let us denote sjkh(i) = ⌊
i−j+dhk

T
⌋ − ⌊ i

T
⌋. The value of sjhk(i)

can only take two values at most when i changes, and sjhk(i) is a periodic function
of period (at most) T . The condition for alignment then becomes :

∃c, ∀h,

n
∑

k=1

T
∑

j=0

(⌊
ik
T
⌋+ sjkh(ik))Sk(j) ≡l c

Writing this constraint in matrix form :

∃c,







s111(i1) . . . s1nT (in)
...

. . .
sm11(i1) smnT (in)






.

















S1(0)
...

S1(T − 1)
...

Sn(T − 1)

















≡l







c
...
c






(3.22)

This constraint of alignment is similar to Equation (3.16). The periodicity of the
strides lead to consider a larger stencil pattern (matrix has size m× nT ). Similarly
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to Equation (3.17), strides between elements and padding are connected through
the equation :

∀k > 1, ∀h, Sk(h) =

T
∑

j=0

⌊
Vk−1 − j

T
⌋Sk−1(j) + pk−1(h). (3.23)

Padding for Bank Conflicts

For multithreaded stencil codes, we assume that the parallelization is such that
one or several of the dimension of the stencil correspond to parallel loops. This
means for instance that some indices ik can be written as ik = b.t+ iik where t is a
thread number, iik an index enumerating the block in this dimension allocated to a
given thread. Other partitioning of an array dimension can be considered, as long as
the partitioning correspond to an affine transformation. However, the parallelization
is an input for the padding and the exact distribution of iterations among threads
has to be known before padding.

To minimize bank conflicts, each elements accessed simultaneously by each
thread must hit a different memory bank. Hence, for each couple of threads, the
address of their first element must not be on the same alignment. For a given ad-
dress m, the number b of the memory bank corresponding to it corresponds to some
contiguous bits of m : b = m/B mod NB where B and NB depend on the ar-
chitecture. Thus, following the representation of the addresses in previous section,
we can express that each thread accesses different memory banks : if b(t1, ii) is the
memory bank accessed by thread 1 through a memory access, and b(t2, ii) is the
memory bank corresponding to the same access in the block for thread 2, then the
following equation corresponds to the constraint :

b(t1, ii)− b(t2, ii) ≡NB db,

with NB the number of banks and db ≥ 1.
As for the padding for vectors, slack variables following the same constraint as in

equation 3.19 can be added in order to ensure the existence of a solution. Hence, we
will end up with the same objective function as in Eq.3.20, trying to minimize first
the number of slack variables representing shuffles, and then the padding values.
Having the same objective function, we can easily merge all the constraints (for
vector alignment and bank conflicts) to answer all the requirements in the same
linear system.

Resolution and code generation with MDMP

Equations (3.22) and (3.23) define the constraints on the periodic constraint.
Provided the period T is given and constant, equations are similar to those conside-
red in 3.5.3. The number of equations has increased due to the periodic values and
due to the fact that the coefficients of the matrix in formula 3.22 are also periodic
(in (i1, . . . , in)).

The formulation of the function to minimize, depending on the number of
shuffles, is similar to the one presented in section 3.5.3.

For code generation, partial loop unrolling by a factor T enables an easier address
computation, taking into account the periodic padding.

3.6 Code generation

Code generation for stencils on CPUs or GPUs consists in two phases :
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1. Memory allocation and data transfer : The resolution of the system of
constraints relative to multi-padding provides the necessary amount of me-
mory to allocate (or re-allocate) for effectively pad the different dimensions
of the data structures. Since the data layout transformation consists in trans-
lating data in memory, any required copy (for instance for GPU) is easily
generated.

2. Instruction generation : Once the data layout is computed and memory
is allocated, the stencil code is generated. Memory instructions are generated
taking into account the new data layout. Aligned and unaligned instructions
can be necessary, and the two different ways to generate these instructions are
presented in Section 3.6.2.

3.6.1 Efficient data layout

Algorithm 2 describes the different steps to remove a maximum number of inef-
ficient memory accesses (bank conflicts or unaligned aligned data accesses).

Algorithm 1 Efficient Multi-Padding and Memory Management

1: Find Multidimensional Multi-padding to remove bank conflicts while aligning
data for vectorization.

2: Memory Allocation
3: Data transfer, and Copy from High Latency Memory (HLM) to Low Latency

Memory (LLM)

Padding for Vectors

Padding for vector is used to align a maximum of required elements in the com-
putation pattern. Aligned elements will be accessed through more efficient memory
transactions. The complete procedure is describe in Section 3.5.1. The constraints
are the same for CPUs and GPUs when using built-in vector types in CUDA.

However, on GPUs, hardware computations use only on element at a time. If one
uses its own vector structure instead of CUDA built-in types, no specific alignment
is required, and this step may be skipped, remaining only to avoid bank conflicts
between the threads.

Thread parallelism

As explained in Section 3.2.1, simultaneous memory accesses from concurrent
threads should target different memory banks. Aligning the first data accessed by
each thread on a different value is sufficient to ensure such repartition, minimizing
bank conflicts. We consider that each thread will run the same computation.

CPU threads : On a multicore CPU, we consider that the original iteration
domain is sliced for each thread to access an independent block of the array. A
block limits are only on a dimension boundaries, and a block can not begin or end
in the middle of a line.

Avoiding banks conflicts consists in finding an additional multipadding to ensure
that the first memory access performed by each thread will not collide on the same
bank. The additional cells required are added at the end of array blocks, which is
possible since a block boundary matches an hyperplane boundary.
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GPU thread warps : GPU threads can be considered as CPU threads, and the
GPU code can be designed for each thread to access an independent block of data.
However, warps often access contiguous data in the shared memory, since there is
no time consuming memory manager to trigger. To generate such a GPU code, one
has to know if the whole warp will access contiguous data (in that case there is
nothing to do), or if slices of warp will be spread across several lines/blocks. For
example, a warp being a set of 32 threads, the code can be designed for the warp
to access 32 contiguous data, or for four quarter of warps to access 8 contiguous
data on different lines. These slices will then be considered as meta-vectors (4 in our
example), which should not have any memory banks in common . The multipadding
method will be applied with these meta-vectors, using their specific constraints.

Memory Allocation

Once all the necessary paddings found, one must combine them to know the
total amount of memory to allocate.

On GPU, memory will be allocated to the shared memory of a chip, according to
the padding found in the first step of the algorithm. Then, in a next step, necessary
data will be transfer from global memory to the shared memory, closer and easier
to access efficiently.

On CPU, a global memory allocation will be made. This global allocation will
include the padding for vectorization, and the padding for threads at end of logical
thread block.

From HLM to LLM

Data transfer consists in putting all needed data for computation on the correct
device memory. It will be a copy to the global memory if GPU is considered.

In order to reduce the cost of memory transactions, or to simplify memory
accesses pattern, a first copy from the High Latency Memory, in which the data are
originally stored, to a Low Latency Memory can be useful.

On GPU, data will be transfered from the global memory to the shared memory.
Global memory has a very restrictive access, since all threads of a warp should access
contiguous data with a specific alignment to perform efficient memory movement
(coalesced loads). On the other hand, threads can load data from shared memory
very easily, and the concurrent memory transactions can be spread across the entire
array without penalties (if bank conflicts are avoided).

CPU memory hierarchy is simpler since the wherever the data are, they are
fetched to the nearest memory to the computing unit each time they are read. The
only needed data transfer is from the original array to the new allocated region,
modifying the data layout.

3.6.2 SIMD code generation

For CPU code generation, we rely on state-of-the art compiler vectorization
techniques to generate SIMD code. Two approaches are taken :

– Vector extensions proposed by compilers (icc and gcc, with attribute direc-
tives)

– Intrinsic functions
We favor in the code generation the first approach, whenever aligned elements

are accessed. The advantage of this method is that instruction selection is actually
performed by the compiler, depending on the target architecture and target vector
ISA. However, this method is limited to basic algebra operators and all memory
accesses to a vector have to be all aligned to be efficient. These limitations narrow
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the number of stencil patterns that can be handled, and only a Jacobi pattern in
double precision can be efficiently produce. For other cases, we favor accesses to
unaligned vector elements, aligned accesses and shuffles are used. Besides, SSE2
intrinsic functions are then used.

3.7 Related Works

For generalist multicore processors, there has been considerable interest on vec-
torization issues. Most papers focus on loop transformations to improve the vectori-
zation quality, playing with data locality to decrease the amount of unaligned loads,
or shuffles ([76, 100, 78, 46, 77, 79, 110, 24, 42]). Papers on stencil computations fol-
low the same trend, with most papers focusing on improving data locality through
blocking ([57, 76, 34, 106, 99, 73, 40, 41]), tiling ([89, 60, 69]) or skewing ([117]) to
improve single and multi-core performance. Unfortunately, all these works do not
directly consider alignment issues, focusing only on data locality and register reuse.

For GPUs, generating efficient code able to close the gap with the peak per-
formance, is quite challenging [66]. Several auto-tuning models applying regardless
on CPUs and GPUs have been offered to ease programming on multiple target
architectures ([12, 73, 106]), without considering the common alignment issues.

Some recent works focus on data layout transformations ([70]) to improve ali-
gned vectorization for stencil codes. The work of Henretty et al. [52] focuses on a
data layout transformation for stencil vectorization. Data reorganization, through
dimension lift en transpose, remove all non-aligned loads. Contrary to multipadding,
they do not consider multithreaded execution. Originally compact data are spread
across the whole array, and the memory sharing between threads will probably
induce performance slowdown.

The Pochoir project [122, 95] provides a compiler and a runtime system for
implementing stencil computations on multicore processors, with the user speci-
fying its computing kernel with specific language embedded in C++. Using the
Pochoir compiler, the describe stencil computation is optimized, only considering
cache issues. Two papers [35, 56] offer an auto-tuning framework to optimize sten-
cil computations on multicore architectures including GPU. These works focus on
blocking for the different memory levels, and no alignment issue is addressed. Per-
formance figures bring some comparison basis that will be used in section 3.8. Since
no data blocking is realized in our method, the two approaches can be combined to
obtain better performance.

3.8 Benchmark results

To evaluate our method, we run several tests of stencil computations (Jacobi
and Laplacian), on several intel architectures along with a GPU environment, and
all tests have been done with icc 12.1.0 and gcc 4.6.1 compilers.

The multipadding method was also applied on a 9-points 2D stencil, and a 27-
points 3D stencil using Moore’s neighbourhood, and on a diamond-shape pattern
in 2D using a Von Neumann neigbhourhood of range 2. Performance results are not
presented since the best possible padding for the 9-points and 27-points stencil is
no padding at all. For the diamond-shape pattern, the best possible padding is a
simple padding, and no other results on such pattern are available for comparison.

Performance results in section 3.8.2 are for computations in simple precision, as it
is more difficult to align data when vectorizing such codes (four possible positions in
vectors). Tested codes have been generated with intrinsics performing aligned loads
on correctly aligned data, and unaligned loads otherwise. Graphs bars labelled "No



76 Chapitre 3. Auto-tuning on stencil computation codes

pad", used as basis for comparison, are for already vectorized versions of the stencil
computations on which no layout modification has been applied.

Performance results in section 3.8.3 are for computations in double precision,
since the results we use for comparison have been presented only in double precision.
Tested codes have been generated with vector extension, and loads are automatically
managed by the compiler. Note that for all experiments, no blocking is realized to
increase data locality and reuse.

3.8.1 Target Architectures

We evaluated our generating approach minimizing alignment conflicts on several
architectures described below. We used three Intel CPUs, with one Xeon architec-
ture, one Nehalem, and a more recent Nehalem with the Westmere Gulftown pro-
cessor. In addition to the CPUs, tests have been run on a GPU NVIDIA Quadro
card, plugged to the Nehalem machine.

Intel Xeon Clovertown E5345

The Clovertown architecture is Intel’s first quad-core processor, consisting in
two dual-core Woodcrest paired onto a multi-chip module. Each core runs at 2.33
GHz. Supporting SSE3 SIMD instructions, each core can fetch and decode four
instructions per cycle, for a peak performance of 9.32 GFlop/s per core in double
precision. Each core includes a 32KB L1 cache, and each dual-core chip has a shared
4MB L2 cache. Our machine presents two sockets, for a total of 8 available cores.
Each socket has access to a 333MHz quad-pumped front side bus (FSB) delivering
a raw bandwidth of 10.66 GB/s.

Intel Nehalem Gainestown X5550 and NVIDIA CUDA Quadro 5800 FX

The Gainestown architecture is a quad-core processor with each core running at
2.66 GHz. Supporting SSE4 SIMD instructions, each core can fetch and decode four
instructions per cycle, for a peak performance of 10.64 GFlop/s per core in double
precision. Each core includes a 32KB L1 Data cache and a 32KB L1 instruction
cache, and a 256 KB L2 cache/core. Each cores can access a 8MB L3 shared cache.
Our machine presents two sockets, for a total of 8 available cores. Each socket has
access to a FSB delivering a raw bandwidth of 12.8 GB/s.

Our Gainestown machine is equipped with a NVIDIA Quadro 5800 FX card,
running at 1.30 GHz and with 4GB of memory. This card was used to perform
GPU tests in section 3.8.

Intel Westmere Gulftown X5650

The Westmere architecture is the evolution of the Nehalem architecture. The
processor used for the benchmarks is a six-core based processor. It runs at the
same speed, for the same peak performance of 10.64 GFlop/s. The L3 cache shared
between all six cores has a size of 12MB. Our machine contains four sockets, for a
total of 24 available cores.

3.8.2 Overall improvement

In order to validate our approach, the first part of our experimentation testbed
consists in trying several padding values, for simple padding and multipadding, to
see if the best padding(s) return by the methods discussed in section 3.5.1 were
indeed the best one(s).
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Figure 3.12 – Shapes of the studied stencil. (a) Shape of a 3D jacobi stencil. (b)
Shape of the convex envelope of a 3D Von-Neumann neighbourhood of range 2.

In Fig. 3.13 are shown results for a 4-point 2D jacobi stencil computation, run-
ning on only one thread. The multipadding vesion is compared with versions with
no padding, and the usual simple padding. Fig. 3.13(a) presents results when using
the gcc compiler, on different square sizes (from L1 to memory). Except for data in
L1, the multipadding outperforms the other versions of the Jacobi 2D stencil, with
a performance improvement up to 52% for a size of 512x512, and a gain of 28%
compared to the simple padded version on the same size. The same experiment as
in Fig.3.13(a) is displayed in Fig. 3.13(b), only this time with the use of icc com-
piler. As the compiler use more aggressive and guided optimization, the produced
code without padding already performs well. The multipadding method still gives
better performance when in upper hierarchy memory (L3 begins at size 256), up
to a x1.24 speedup for a 1600x1600 array against the original version, and a x1.11
speedup compared to the padded version for the same size.
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(a) Results of Jacobi 2D with gcc
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Figure 3.13 – Performance of 2D Jacobi stencil on Westmere for different square
sizes.

In Fig. 3.14 are shown results for a 6-point 3D jacobi stencil computation
(Fig.3.12), running on only one thread. The multipadding vesion is once again com-
praed with versions with no padding, and the usual simple padding. Fig. 3.13(a)
presents results when using the gcc compiler, on different square sizes (from L1 to
memory). Except for the smallest tested size, the multipadding outperforms the
other versions of the Jacobi 2D stencil, with a performance improvement up to
61% for a size of 6003, and a gain of 22% compared to the simple padded version
on the same size. The same experiment as in Fig. 3.13(b) displays the results for
the same experiments using the icc compiler. As for 2D Jacobi benchmarks, the
produced code without padding already performs well. The multipadding method
still performs better than the other versions when accessing memory, but with less
significant improvement (around 5% speed-up).

In Fig.3.15 are presented results for a stencil covering the convex envelope of a
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Figure 3.14 – Performance of 2D Jacobi stencil on Westmere for different square
sizes.

3D Von-Neumann neighbourhood of range 2 . The shape of this stencil pattern is
displayed in Fig.3.12(b). As before, the multipadding version is compared with ver-
sion with no padding, and the usual simple padding. Here, only a multidimensional
padding is sufficient, i.e. each dimension has been modified with only one padding
value. This multipadding allows to align 10 elements in the stencil, instead of only
6 elements for the version with no padding and with the simple padding. Figures
3.15(a) and 3.15(b) presents results when using respectively gcc and icc compilers.
For each set of benchmarks, the multipadding version always outperforms the other
version, up to a performance improvement of 52% compared to the original version
for a size of 2563 with gcc, and 72% for a size of 3003 with icc.
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(a) Results of Von-Neumann 3D with gcc
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Figure 3.15 – Performance of stencil based on 3D Von-Neumann neighbourhood
of range 2 on Intel’s Sandy Bridge for different square sizes.

Some multi-threaded performances are displayed in Fig.3.16 for a 6-point 3D
Jacobi compiled with icc, with simple precision data. Each thread is pinned to a
different core, and no hyperthreading is considered. The results are presented in
Fig.3.16(a) for several sizes. On each cluster of eight bars, the two first ones stand
for only 1 thread, the two following bars show results for 2 threads, and so on up
to 8 threads. The white bars always represent the original vectorized code, and the
black bars our multipadded code version. As we observe the same behaviour with
1 and 2 threads as in Fig.3.14(d), significant performance gains are achieved when
hitting the RAM, up to 70% with 4 threads, and 85% with 8 threads, compared to
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the original vectorized version with the same amount of threads.
A close up for results on a 2563 matrix is presented in Fig.3.16(b), since data are

in memory, and this size is the one presented in most of stencil related papers. The
multi-dimensional multipadding version is compared to the original version with no
padding. The MDMP version outperforms the original version each time, with a
45% improvement for one thread, and up to a 69% improvement for eight threads.
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Figure 3.16 – Performance of multithreaded Jacobi 3D stencil on Westmere archi-
tecture, using one thread per core.

3.8.3 Comparing with related works

In this section, results are in double precision and compared with results presen-
ted in related works, on a 7-point 3D Laplacian stencil computation. In Fig.3.17(a)
we reported results shown in Kamil et al. [56], and presented our own performance
figures obtained by applying a multipadding method (here, thread alignment and
a multi-dimensional padding) for the 7-point 2563 sized Laplacian stencil. Bench-
marks for the Nehalem architecture (Fig.3.17(a)) have been realized on the same
Gainestown architecture.

On the Clovertown, the poor scalability to more than 2 cores kills the perfor-
mance gain our method showed for 1 and 2 cores (up to 40% of improvement). On
the Nehalem, our method confirm its great results when in memory and for multiple
cores. MDMP performances are more than 4x better with 2 and 4 cores than Kamil
et al.

For GPU figure (Fig.3.17(b)), we were able to run the code from Datta et al. [35]
on our machine, allowing to compare directly the results on the same basis. As our
code generator does not produce CUDA code directly, only the code for the threads
have been produced by the generator. All data transfers, and memory and thread
allocations, are performed by hand. The white bars (labelled "Multipadding") give
results when the code is generated taking into account CUDA programming guide’s
[31] recommendation : one stencil update per thread. However, in Datta et al., it
is stated to compute 4 stencil updates per thread. A code modification have been
made subsequently, and performance results are displayed in grey bars (labelled
"Multipadding aware"). As our first version can not withstand the comparison, the
"aware" version of the CUDA code successfully sustains around the same perfor-
mance as Datta et al., until beginning to take off for a great number of CUDA
threads blocks (>128).
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Figure 3.17 – Performance of a 2563 Laplacian stencil for multipadding method
(a) Kamil et al. [56] on Gainestown, and (b) for Datta et al. [35] on GPU. Multi-
padding results are obtained with one computation/thread (CUDA programming
guide recommendation). Multipadding aware results are obtained with 4 computa-
tions/thread (Datta et al. recommendation).

3.9 Conclusion

Stencil computations correspond to codes at the heart of a large class of appli-
cations. Due to the nature of stencils, alignment, memory management and vec-
torization are the key to performance, for GPU and CPU architectures alike. The
contributions of this chapter are :

– A data-layout transformation so as to handle CPU and GPU alignment issues.
This transformation called multi-dimensional multipadding introduces new
elements in multi-dimensional structures and generalizes the usual padding
transformation.

– A compact code generation for stencils. The data-layout transformation only
requires to unroll partially loops and translate some indices of data structures.

The model based on integer linear programming is broad enough to handle the
multicore CPU and GPU cases. Other alignment conflicts problems can be easily
added, providing the correct objective function. Experimental results on multiple
targets demonstrate the validity of the approach on several stencil kernels with x1.52
speed-up on one core, and up to x1.69 speed-up on multicore. Performance obtained
compared well with previous work on stencils, outperforming previous performance
obtained on multicores and reaching similar level of performance on GPU.

Future works

Since our experiments were realized without any blocking for cache locality, a
first step would be to measure performance on codes with cache blocking and/or
register blocking. All experiments display speedups for data in L3 cache. Blocking
for this cache level should produces better results than the presented ones. Whereas
for L2 cache, only some of our experiments display a speedup, and it would be
interesting to observe how blocking and multipadding interact on lower cache level.

Also, one of our future endeavour is to produce results for a wider range of stencil
pattern. Using Von Neumann’s neighbourhood, and some derivatives, of several
orders, we can consider multiple stencil patterns used in practice, and interesting
for our multipadding method. Patterns other than those using Moore’s and Von
Neumann’s neighbourhoods of the first order are not well represented in papers.
Besides observing the general speedup that multipadding can bring on these stencils,
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it can be useful for us to provide a large set of experimental results, offering the
community other comparison points.

When we produced the code for the 3D Jacobi stencil, it appeared that the data
layout obtained when solving the linear system was not the best one achievable on
this pattern. The constraints we use to generate the system do not allow to find
this best data layout. However, some light modifications on those constraints will
achieve the best layout. Instead of having the same inner multipadding for each
hyperplane in a dimension, we can allow for several hyperplanes to have a different
inner multipadding, with the layout of these hyperplanes repeating regularly. Pro-
posing other models, more or less complex, is a continuation of the multipadding
method.

Finally, more generally on stencil computation, I am curious about trying some
optimizations which were not yet studied a lot in papers. For example, time unrol-
ling, hence doing several update steps at the same time, can shift the bottleneck of
the code from memory to computation. On the other hand, applying a loop reversal
between two update loops will allow to reuse the data in L1 and L2 caches, even if
the whole stencil is blocked for L3 cache, or runs in memory. For this last point, the
speedup may not be that important, but even a few percents gain can represent a
good and concrete time, energy, and/or money saving on large simulation programs
using stencil codes.
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Chapitre 4

Towards more automatic

parallelization

In this chapter are discussed the two ways of introducing parallelism in a task
graph : either each task is sequential and multiple tasks can run concurrently, or each
task has parallel sections and only one task can run simultaneously. Two distinct
works realized with different partners explore each possibility

This chapter is complementary with the main focus of this thesis described in
the previous chapters :

– The CPC framework : since no parallelization was considered in Chapter 2, the
methods described in this chapter can be used to insert parallelization in the
framework. The CPC framework handling a task graph composed with several
codelets, the user has the choice between scheduling the tasks in parallel,
or introducing the parallelization as a possible transformation to try when
optimizing each codelet.

– Multi-Padding : as the different paddings are chosen to avoid bank conflicts
between simultaneous threads, some schedule between the different parallel
task is supposed to be known when applying the method. This schedule co-
ming from any sources, we can easily consider to couple one of the method
presented in this section, scheduling a task graph, with the Multi-Padding
method, finding the best data layout corresponding to the returned schedule.

The first part of this chapter describes how to use C++ Expression Templates
to directly generate tasks realizing parallel vector operations. Expression Templates
allow to consider any set of operations as an expression being carried across function
calls, until its complete evaluation is actually needed. Generally, evaluation is done
through usual C++ implementation of operators. However, it is possible to consider
the set of operations in straight C code in a first step, then evaluate through our
CPC framework described in Chapter 2 the best implementation to consider when
evaluating such expressions.

The second work reported in this section concerns parallel tasks scheduling in
an heterogeneous environment. This work interacts greatly with the main focus of
this thesis. When the CPC framework is applied on the hot-spot of a program,
we end up with a bunch of constant performance codelets, either independent or
relative to each other. Adding a dependence graphs between the codelets, one can
consider them as tasks which can be scheduled with MSFT scheduling approach
described further. Furthermore, with the work on the stencil codes in Chapter 3
(more specifically in section 3.6), we developed a method to generate stencil codes
efficiently for CPU and GPU. On an heterogeneous machine composed with multiple
cores of each type, one will be able to decompose a large stencil is several part

83
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running efficiently on each core with this method, then schedule each part with
MSFT scheduling algorithm.

These works are presented respectively in the POOSC’09 workshop [84] and
in another paper currently revised following the result of a TPDS-2011 conference
submission.

4.1 Sequential execution of tasks with embedded

parallelism

This section proposes a simplified C++ implementation of a linear algebra vector
class that allows composing compact and abstract vector expressions such as :

X = a ∗ Y+ b ∗ (Z+ W); (4.1)

This implementation is based on the Expression Template mechanism (ET) in-
troduced by Veldhuizen [104] and Vandevoorde [103]. ET allows avoiding temporary
vectors and the performances of abstract expressions like (4.1) compete with the
ones of the corresponding low-level (loop-based) basic implementations such as :

for (i = 0; i < N; i++) X[i] = a ∗ Y[i] + b ∗ (Z[i] + W[i]); (4.2)

In a previous work [82], L. Plagne and F. Hülsemann illustrated the gain to be
obtained from mixing the ET based vector class with the ATLAS [113] implementa-
tion of the procedural BLAS library. The high performance ATLAS implementation
of the vector copy operation, which relies partly on low level assembly language, is
used as a kernel for the vector ET evaluation.

In this following work, we present two multi-threaded implementations of our ET
based vector class based on Intel’s Threading Building Blocks and on OpenMP res-
pectively, thus generating directly tasks with parallelism. The ubiquitous presence
of multicore architectures has rekindled the interest in shared memory parallel pro-
gramming models. While the computational power of a chip scales up almost ideally
with the number of cores, this is not the case for the memory access bandwidth.
Hence the fraction of the so-called memory bound applications, which feature per-
formances that are limited by the memory access bandwidth of target architecture,
increases with the mean number of cores included in micro-processors.

This section is organized as follows : Subsection 4.1.2 presents the considered vec-
tor operations and the large vector operations as typical memory bound problems.
Subsection 4.1.3 gives a short description of our C++ vector class implementation
based on ET. Performance measurements show that this implementation avoids
abstraction penalties. Subsection 4.1.4 presents our enhanced ET vector class re-
lying on the ATLAS dcopy kernel. Performance measurements are carried out on
three different architectures. Subsection 4.1.5 presents two parallel implementations
of our ET vector class and the corresponding results.

In Section 4.2, the second work focusing on a new approach for parallel tasks
scheduling on heterogeneous platform will be described. Section 4.2.5 provides an
overall conclusion regarding contributions of each works and their interactions with
the previous chapters.

4.1.1 Target Architectures Description

The benchmarks have been carried out on different x86_64 target architectures.
Table 4.1 provides a short description of the main features of theses machines. In
the following, the performance curves will be named after these three architectures.
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Table 4.1 – Description of the three target architectures for performance measu-
rements

Processor # frequency RAM Compiler

cores

Intel Xeon 2× 4 2.9 GHz 18 GB g++ 4.3.3

E5570 Nehalem

Intel Xeon 4× 4 1.6 GHz 48 GB g++ 4.3.3

X7310 Tigerton

Intel Xeon 2× 4 2.3 GHz 8 GB g++ 4.3.3

E5410 Harperton

AMD Opteron 2× 4 1.9 Ghz 4 GB g++ 4.3.0

Most of the time, the different targets exhibit the same kind of performance be-
havior. In this case, we will report only the Xeon E5410 curves. The performance
measurements are carried out with the tools developed by the BTL++ project [83].

4.1.2 Vector Operations

Vector expressions like (4.1) exhibit a small arithmetic intensity and are strongly
memory bound. Hence it might be surprising that multi-threaded implementation
accelerates these tasks significantly on shared memory multi-core machines. Ne-
vertheless, we have observed a ×2.5 acceleration factor on dual socket quadricore
processors compared to our previous implementation. The resulting vector class
allows composing abstract vector expressions like (4.1) that achieve a better perfor-
mance than both loop-based implementations such as (4.2) and off-the-shelf vector
libraries such as Blitz++ [105], uBLAS [108] or std : :valarray. This performance
reaches a factor of ×2.7 for large vectors.

Considered Vectors

Let us first define the scope of this work and what we refer to as vector operations.
From the linear algebra point of view, vectors can be defined as indexed collections
of numerical elements of the same type. Indexed means that the value of every vector
elements can be accessed from a given integer index to be chosen in a given range.
While a wide variety of linear algebra vector types (sparse, multidimensional,...) can
be considered, we will focus on simple vector types where real type elements (single
or double precision) are stored in basic containers that can be defined and exchanged
through the following common programming language : F77, C and C++. Within
these languages, the location of a contiguous memory region containing a given
number of floating point elements, can be manipulated either as a pointer type (C
and C++) or as an array type (F77). These arrays are the main Input/Output
types for the Basic Linear Algebra Subroutines (BLAS) API [16].

Performance of Large Vector Operations

Now, let us define we mean by large vectors. Fig. 4.1 shows the performance of
the vector operation Y ← αX + Y (axpy) on a Pentium Xeon E5410 using respec-
tively single and double precision floating point elements. Performance is maximal
for vector in the range of [102, 103] elements. From sizes around 104, performance
decreases and reaches its lowest level when vector sizes exceed 105 elements. The
reason for this behavior, which is common to all vector operations, is that the per-
formance is mainly driven by the memory access bandwidth. This is true for all
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Figure 4.1 – Performance results of axpy operations on the Xeon E5410 (gcc 4.3.3).

computations involving a ratio r defined by :

r =
number of memory accesses (read+write)

number of floating point operations
,

that is not small compared to 1. In this case, (r = 3/2 for the axpy operation),
performance depends on memory access bandwidth. Most modern architectures
exhibit a memory cache hierarchy with high bandwidth for data access inside the
cache (data size ≤ a few MBytes) and a much lower bandwidth for data access
in the main memory (a few MBytes ≤ data size ≤ a few GBytes). This explains
the low level of performance observed for large vectors that do not fit in the cache
hierarchy :

Large vectors : vector sizes ∈ [105, 108].

Since the double precision axpy operation requires twice as much memory band-
width as the single precision one, it runs naturally 2 times slower for large vectors
(0.33 Gflops vs 0.66 Gflops).

4.1.3 Minimal C++ Vector Class

This subsection presents a minimal vector C++ class based on Expression Tem-
plate mechanism.

Expression Template

ET have been introduced by T. Veldhuizen [104] and D. Vandevoorde [103].
Applied to a vector class, ET allows writing arbitrarily complex vector expressions
such as :

R=2.0*X+2.0*(Y-Z*2.0);

that do not imply temporary vector construction and do not incur any perfor-
mance penalties compared to the corresponding loop-based implementation :

for (int i=0 ; i < N ; i++)

R[i]=2.0*X[i]+2.0*(Y[i]-Z[i]*2.0);

The Curiously Recurring Template Pattern (CRTP)

The proposed ET implementation uses the C++ Curiously Recurring Template
Pattern [11, 103] (CRTP) that allows grouping a set of classes in a template-based
hierarchy. This hierarchy reflects a common behavior for the class set elements and
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VectorScalarExpression<>Vector<>

BaseVector<>

VectorExpression<>

Figure 4.2 – BaseVec class hierarchy.

does not involve any virtual functions. As Vandevoorde and Josuttis write, this
pattern “consists of passing a derived class as a template argument to one of its
own base classes” [103] :

class Derived : public Base<Derived>{}

This pattern is used to gather a set of classes {Derived1, Derived2,. . . } as an
ensemble of Base<> classes. In our vector case, let us first define the template base
class BaseVec<> :

template <class DERIVED>

class BaseVec{

public:

typedef const DERIVED & CDR;

inline CDR getCDR( void ) const {

return static_cast<CDR>(*this);

}

};

The static cast method getCDR() allows extracting the embedded DERIVED ob-
ject from its BaseVec<> capsule. The DERIVED template class parameter is one of
the three following classes : Vec<>, VecExpr<> and VecScalExpr<>.

Fig. 4.2 presents this template inheritance relationship.
VecExpr<> and VecScalExpr<> instances are constructed by arithmetic opera-

tors applied to BaseVec<> objects. These two classes store references to the ope-
rands. In addition, the VecExpr<> class statically defines the type of operation (+
or -) as a template parameter :

Operators +/- :

BaseVec<L>+BaseVec<R> → VecExpr<L,Add,R>

BaseVec<L>-BaseVec<R> → VecExpr<L,Minus,R>

Operator * :

scalar*BaseVec<V> → VecScalExpr<V>

BaseVec<V>*scalar → VecScalExpr<V>

Operator =

V<T>=BaseVec<T> → BaseVec<T>[i] evaluation

Both expression classes define an operator [] that performs the actual evalua-
tion of the expression. Note that this evaluation is not performed at the expression
classes construction stage. This is a lazy evaluation process that allows avoiding
temporary vectors involved in standard implementations of operators. A more de-
tailed presentation of these classes is given in [82].
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Figure 4.3 – Performance results of binary (left) and ternary (right) combinations
using the (non-blocked) ET Vec class and loop-based implementations (double
precision vectors ; Xeon 5410 with gcc 4.3.3).

The class Vec<T>

The class Vec<T> is the main vector class. Its implementation is classical except
for the assign operator = specialized for BaseVec<DERIVED> right hand side :

The template parameter ELEMENT_TYPE is either float or double and the vector
elements are stored in a C array of this type (data_). The operator = evaluates the
right operand value that can be the result of an arbitrarily complex expression.

Expression Template Performance

A large variety of vector expressions is handled by this ET vector class imple-
mentation. In the following subsections are presented performance measurements
carried out for a limited set of vector expressions. This subset should give a fair pic-
ture of the general performance level to be expected from the Vec implementation.

Considered Set of Vector Operations :

The studied vector operations are linear combinations of vectors :

T =

Nc
∑

i=0

aiSi,

where T is a given target vector, {Si} is a set of source vectors of the same size and
{ai} the corresponding set of scalar factors. These combinations can be characterized
by the number Nc of involved source vectors :

– NC = 1 : unary combinations (part of L1 BLAS API).
– NC = 2 : binary combinations.
– NC = 3 : ternary combinations.
– . . .

Fig. 4.3 shows the performance results of binary and ternary linear combinations
implemented via our ET Vec class and via direct loop-based C implementations.
One can see that the abstract expression of the combinations does not lead to any
performance penalties.
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4.1.4 Expression Template and ATLAS Based Blocked Eva-
luation

We combine the previous Expression Template mechanism with a blocked copy
technique. The principle is to take advantage of the high performance copy operation
provided by the ATLAS library.

The only change in the Vec class is a new definition of the operator =, where
the BlockAssign template class implementation is specialized for double elements,
using the ATLAS copy. Detailed implementation of those modifications are trans-
cribed in our paper [84].

Fig. 4.4 shows the performance improvement enabled by this blocked ET imple-
mentation for both binary (+25%) and ternary (+16%) vector combinations.
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Figure 4.4 – Performance results of binary (left) and ternary (right) combinations
using the Blocked ET Vec class and loop-based implementations (double precision
vectors ; Xeon 5410 with gcc 4.3.3).

4.1.5 Parallel Expression Template based on Based Blocked
Evaluation

In this subsection, we present a parallel implementation of the previous Blocked
Expression Template mechanism. The possibility of such an approach is mentioned
in the reference [32].

The only change in the Vec class is a replacement of the BlockAssign template
class by the OpenMPBlockAssign template class, introducing parallelism inside the
copy task. We compared this implementation to another parallel implementation of
the BlockAssign based on the Intel Threading Building Blocks.

Fig. 4.5 shows the performance improvement that this parallel blocked ET im-
plementation entails for both binary (×2.7) and ternary (×2.6) vector combinations.
We have carried out performance comparisons with other available expression tem-
plate libraries :

– Blitz++ [105],
– uBlas [108],
– std : :valarray.
All these three libraries compared closely to our non-blocked ET implementation

for large vectors. Hence the parallel blocking mechanism provides a performance
improvement for out of cache linear combinations compared to all vector libraries
that we know.

When vector sizes exceed the total size of the cache hierarchy, the performance
improvement remains small compared to the number of cores involved in the com-
putation. The main reason is that performance is then driven by the memory band-
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Figure 4.5 – Performance results of binary (left) and ternary (right) combinations
using the Parallel Blocked ET Vec class and loop-based implementations (double
precision vectors gcc 4.3.3). Top : 8 threads Xeon 5410, Middle : 4 threads Quad9300,
Bottom : 8 threads Xeon 5570.

width and other hardware mechanisms such as the size of the in-flight cache requests
for each cache.

Fig. 4.6 shows different important results :
– Memory bandwidth usage increases as the number of threads increases. The

increase is not linear (between 2 and 4 threads for the Xeon machine for
instance), performance only slightly increases. This is due to the fact that
cores do not have a uniform memory access. On each chip, four cores compete
for the access to memory through the same Front Side Bus. Further more, two
cores share the same L2 cache, that can sustain a limited number of in-flight
memory requests (cache misses). This could explain for the performance stall
in the Xeon machine between 2 and 4 threads.

– Performance of expression template code is comparable to C code. There
is no loss of performance, while there is a gain in the expressivity of the
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Figure 4.6 – Sustained memory bandwidth for out-of-cache vector expressions
using the OpenMP C code (Stream), Parallel Blocked ET Vec class using OpenMP
and TBB, depending on the number of threads used. Top results correspond to copy
operation (one read), bottom to a binary vector expression (two reads). Results on
the left are for a 16 core Xeon architecture, on the right for a 8 core Opteron
architecture.

formulation and the parallelism, since it is no more explicitly described but
directly embedded in the expression template tasks.

The apparent memory bandwidth obtained does not correspond to the peak me-
mory bandwidth of the machine, and changing for instance the compiler (considering
icc instead of gcc on the Intel machine) would lead to some further performance
improvement. Depending on how the assembly instructions are scheduled, cycles
taken in the decoding phase of the program execution and usage of the functional
units will differ (removing possible stalls for instance). Moreover, usage of non-
temporal moves will affect also the number of accesses to caches and can improve
performance.

4.1.6 Short recall

This section proposed a short and simple way of improving performance for
vector operations, using a high level description. Obtained out-of-cache performance
are similar or better than OpenMP C code, and outperforms most C++ libraries
when out of cache. This method allows to introduce parallelism inside an initially
sequential task graph, embedding the parallelism inside each task (more or less)
independently.

The next section will present the other way to parallelize a sequential task graph.
According to the dependence between these tasks, they will be spread and schedule
across a parallel machine, with the computation embedded in each task remaining
sequential.
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4.2 Parallel scheduling of sequential tasks

The second part of this chapter proposes a new approach for parallel tasks
scheduling on heterogeneous platform.

Modern high performance computing systems contain multiple processing ele-
ments. These processing elements may be of similar nature or may have diversity in
their processing capabilities (e.g. multicores and accelerators, cores with different
frequencies, ...). The inherent parallelism of an application may be exploited by
making an effective use of these architectures. The parallel execution of several
tasks/modules of an application results in improved performance. In this regard, an
effective scheduling of the tasks on the existing processing elements may significantly
impact the performance.

Finding optimal scheduling of tasks executing on parallel systems is NP-complete.
In general, the scheduling problem is concerned with finding the allocation of tasks
to the processing elements and the sequence in which these tasks should be execu-
ted. The heterogeneity further adds to the complexity as the processing elements
possess diverse processing power. For scheduling, an application is divided into se-
veral tasks represented by nodes in a Directed Acyclic Graph (DAG). The edges
in the DAG represent dependencies between tasks. The edges are labelled with the
communication overhead incurring between tasks of the application. An edge is also
a manifestation of the precedence constraint so that a task can not execute before
completion of its predecessors. The scheduling then assigns tasks to the processors
and also orders the execution of the tasks so that the overall execution time of the
tasks is minimum.

Our new scheduling approach, called Minimum Strided Finish Time (MSFT),
is presented in this section, organized as follows : Subsection 4.2.1 presents the
existing scheduling heuristics, and outline the difference between them and MSFT.
Subsection 4.2.2 describes the main context within which the entire approach works.
The MSFT approach is formally described and elaborated in Subsection 4.2.3. The
experimental results are presented in Subsection 4.2.4. As said before, Subsection
4.2.5 provides an overall conclusion regarding contributions of each works and their
interactions with the previous chapters.

4.2.1 Existing scheduling heuristics

The scheduling of modules of an application is a key factor in achieving better
performance. In the past, various algorithms and heuristics have been proposed
which may be used to facilitate both, the static and the dynamic scheduling. The
static scheduling approach generates schedule that is known at compile time. In
contrast, dynamic scheduling produces schedules during execution of the application
by adapting the schedule with respect to the runtime behavior of the application.

The static scheduling approaches may be further categorized into list/priority-
based, cluster based, random-search based and task duplication based heuristics.

List-Based Scheduling Heuristics

The list-based heuristics [97, 91, 61, 71, 121, 43, 3, 64, 94, 65] generate schedule
by first assigning priorities to the tasks, and then selecting the best processor that
optimally fits the criteria defined by the strategy.

The Heterogeneous Earliest Finish Time (HEFT) Algorithm

The HEFT algorithm [97] works in two phases, with the first phase assigning
ranks to tasks and and the secod phase assigning processors to tasks based on
Eearliest Finish Time.
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The ranks are recursively computed for all the nodes of the graph. The rank is
dependent on the average of execution costs of the node, together with the commu-
nication costs and rank of its successors. The tasks are sorted with respect to the
ranks and scheduled subsequently.

The Eearliest Start Time represents the time at which the execution of a node on
a specific processor may start. It takes into account the processor availability time
and the finish time of the predecessors of the node being considered. The Earliest
Finish Time represents the sum of execution costs of a node on the processor and
the Earliest Start Time. The HEFT algorithm schedules the node with the processor
that produces the minimum Earliest Finish Time value.

For |V | tasks, |E| edges and n processors, the complexity of the HEFT algorithm
is O(|E| ∗ n) or O(|V |2 ∗ n).

The Modified Critical Path (MCP) and Mobility Directed (MD) Sche-
duling Heuristics

The MCP and MD heuristics [121] make use of as-soon-as-possible ASAP) and
as-late-as-possible (ALAP) attributes of the input graph to schedule tasks for a
bounded number of processors. The ALAP values are calculated for each node and
all the descendants of each node. For each node, a list of ALAP values is created,
and subsequently sorted. The nodes are then arranged in order with respect to the
values in the lists. This is followed by scheduling of sorted nodes, which assigns a
processor to a node that results in earliest execution. The algorithm works with the
complexity of O(|V |2log|V |).

The MD heuristic minimizes the number of processors required for scheduling.
It makes use of relative mobilities calculated as the ratio of the difference of ALAP
and ASAP values to the execution time of the node. Once the relative mobilities are
computed for each node of the graph, the group of nodes are found and arranged
with respect to relative mobility. For each node of the selected group, the scheduling
then proceeds by checking for each processor against the pre-defined constraints.
The relative mobilities are updated, and the corresponding node is removed from
the group. This process iterates for all the groups until there are no more nodes to
be scheduled. The MD algorithm has the complexity of O(|V |3).

After scheduling, the virtual processor set is mapped to physical processor set
while minimizing the total communication cost.

Clustering Algorithms

The clustering heuristics [119, 58, 25, 26, 49] map the collection of tasks to
processors. A cluster is formed by taking into account the edge weights and linearity
of tasks. These clusters are then refined by merging the clusters in multiple steps.
Clustering algorithms although make use of a broader view of the graph, but these
algorithms target homogeneous architectures and are considered to be more costly
than the list scheduling algorithms.

The Dominant Sequence Clustering (DSC) Algorithm

The DSC algorithm [119] incorporates computation of tlevel and blevel values
for each node. For a node v, the tlevel is the length of the longest path from entry
node to the node v. Similarly, the blevel is the length of the longest path from the
node v to the exit node.

All nodes are considered to be the part of an un-examined group that is updated
whenever a node becomes part of some cluster. Initially, every node belongs to a
unit cluster. The un-examined nodes are processed in order of the priorities assigned
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to them. A node may then be merged with the cluster of any of its predecessors so
that the tlevel value of that node decreases optimally. If there is an increase in the
tlevel value, the node remains to be the part of the unit cluster. Subsequently, the
priorities are updated and the node is removed from the un-examined group.

The complexity of the DSC algorithm is O((|V |+ |E|)log|V |), where |V | is the
number of tasks and |E| is the number of edges in the graph.

Triplet Algorithm

The Triplet algorithm [26] is also a clustering algorithm that facilitates assign-
ment of clusters of tasks to clusters of workstations. It uses the concept of triplets,
where a triplet represents three tasks. These triplets are sorted with respect to
the degree and the communication cost. Subsequently, the clusters are merged and
mapped to the clusters of workstations.

For each cluster of tasks, the tasks are arranged in order with respect to the code
size and the communication cost. The workstations having very close communica-
tion bandwidth and processing power are placed in a single cluster of workstations.
For each cluster of workstations, the clusters are arranged with respect to the com-
munication bandwidth and the processing power. While mapping, a workstation
from another cluster of workstations may only be assigned when the number of
operations assigned to the current cluster of workstations exceeds the load calcu-
lated statically. The workstation that results in the best completion time is then
assigned to the cluster being considered.

The algorithm has the complexity of O(|V | ∗ D ∗ log(D) + n ∗ |V |), where |V |
is the number of tasks, n is the number of processors and D is the product of the
maximum in-degree and out-degree of the graph.

Task Duplication Algorithms

The task duplication heuristics [33, 37, 2, 81, 19, 63, 23] are based on the in-
tuition that effective schedules may be produced by reducing the inter-processor
communication and utilizing idle times of the schedules, which can be achieved
through duplication of the appropriate nodes on other processors. Similarly to clus-
tering algorithms, the task duplication algorithms have higher complexity with no
guarantee of producing optimal schedule.

Levelized Duplication Based Scheduling (LDBS)

The LDBS algorithm [37] schedules tasks by duplicating them at various levels
of the graph. The levels of a graph are generated by level sorting. LDBS algorithm
calculates rank of a node based on the length of critical path that represents the
path with largest sum of execution and communication costs.

The LDBS algorithm has two varaints : LDBS1 and LDBS2. In first variant
LDBS1, the Earliest Start Time and Earliest Finish Time are computed. For each
processor, the start time of a task node is minimized by duplicating its immediate
predecessor tasks. After duplication, the task is assinged to the processor that results
in minimum start time of execution of the task being considered. Using this variant,
all the nodes at a level have the same likelihood of being processed for scheduling
regardless of their existence/non-existence on the critical path. The second variant
LDBS2, in contrast, first arranges tasks with respect to the ranks. Each task is then
considered for scheduling with respect to the rank assinged to it. Consequently, the
tasks on the critical paths are scheduled before other tasks.

The LDBS1 variant of the algorithm has the complexity of O(|V |3 ∗ |E| ∗ n3),
whereas the LDBS2 version has the complexity of O(|V |3 ∗ |E| ∗ n2), for |V | tasks
with e edges in the DAG, and n processors.
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4.2.2 Context of the MSFT Scheduling Approach

The scheduling approach developped in the following subsections, called Mi-
nimum Strided Finish Time (MSFT), falls in the category of list scheduling al-
gorithms. However, it takes into account a broader view of the task graph while
working with low complexity. Its cost function is based on considering the children
of the nodes lying within a fixed stride. The decision of this augmented cost func-
tion makes it possible to produce reduced schedule length as compared to other list
scheduling strategies.

Multiple processing elements may be fully exploited if the parallel tasks of an
application are scheduled in an effective way. The input to a scheduling algorithm
is a Directed Acyclic Graph (DAG) G = (V, E), where V is the set of nodes repre-
senting tasks, and E is the set of edges representing dependencies among the tasks.
These edges are labelled with the communication cost occuring among the tasks.

For scheduling tasks in the graph, we add two nodes into the graph : Start
and Exit nodes. The Start node has no predecessors, and the Exit node has no
successors.

For the scheduling algorithm suggested in this article, we make the following
assumptions :

1. There are no communication costs between two tasks executing on the same
processor.

2. The Start node and the Exit node have no communication and execution costs
associated with them.

3. There is a fixed number of heterogeneous processors which are connected
in such a way that communication may take place through communication
channels among any of the processors, i.e., they are connected through mesh
topology.

4. A task may only start execution when all its predecessor tasks have completed
their execution.

5. A processor may execute the task and communicate with other processors at
the same time.

6. A task is executed only once, by one processor (no task duplication).

The MSFT algorithm works for m number of tasks, and n number of processors.
Let ET (Ti, Pj) represent the execution time or latency of a task Ti on processor
Pj . Similarly, let CC(Tk, Ti, Px, Pj) represent the communication cost incurring due
to data transfer from a task Tk that has been assigned a processor Px to another
task Ti, if the latter task is executed on processor Pj . If Px and Pj are the same
processors, the communication cost is assumed to be zero.

Let ImPred(Ti) represent the immediate predecessors and ImSucc(Ti) represent
the immediate successors of a node Ti. Similarly, the notation RSucc(Ti) is used to
represent the lists of successors of a node existing within a stride (or distance) R
from the current node. While scheduling, the possible available time of a processor
Pj is represented by Avail(Pj). It is updated after each assignment of a task to the
processor. The algorithm proceeds in two phases : in the first phase, the prioritiza-
tion of tasks taskes place, and the second phase assigns processors to the tasks as
elaborated in this subsection.

Prioritization of Tasks

The MSFT algorithm first assigns priorities to the tasks. Consequently, the tasks
are arranged in order so that the task with the highest priority is processed first for
assignment. The priority of the tasks is computed recursively, and is based on the
Earliest Execution (EE) times as given below.
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Computation of the Earliest Execution (EE) Times

The Earliest Execution (EE) time corresponds to the earliest time when a task
can be scheduled, taking into account its dependencies (the tasks it depends on)
and considering the best mapping to processors. Tasks are ordered according to
their EE values in topological order.

Computation of Priorities

The computation of the Earliest Execution times is followed by assignment of
priorities to the tasks. For each task, the priority is based on the minimum values of
the Earliest Execution time for the processors as calculated in the previous step. The
tasks will be processed with respect to the priorities assigned to them. According to
the definition of priorities, it is straightforward to show that the resulting schedule
is valid w.r.t. dependencies.

Processor Assignment

The processor assignment makes use of the Strided Finish Time (SFT) and the
Actual Finish Time (AFT) as described here.

Computation of the Strided Finish Time

While scheduling the tasks, the Strided Finish Time (SFT) is calculated, which
represents the finish time of a task taking into account the execution cost of its
successors. Depending upon the processor availability, a task may start execution
after completion of its predecessor tasks and the transfer of data. Let ST (Ti, Tk, Pj)
represent the start time of a task Ti with respect to the predecessor Tk on processor
Pj . Subsequently, the Earliest Start Time EST (Ti, Pj) of the task Ti on processor
Pj is computed followed by computation of the Strided Finish Time SFT (Ti, Pj)
of the task Ti on processor Pj .

Intuitively, if a task is assigned to a processor, say Pj , the SFT value with stride
equal to one would represent the finish time of this task and its immediate successor,
using the same processor Pj . With multiple immediate successors, the largest values
are selected corresponding to each processor. The processor producing the minimum
SFT value is then assigned to the task. The stride may be increased if we need to
consider successors up to a specific level.

Actual Finish Time

The SFT value for a task need not be the same as the Actual Finish Time
(AFT), which is the finish time of the task after the processor assignment for the
task has taken place.

AFT is calculated for each task being scheduled with initial value of entry node
being zero. It is computed by taking into account the dependence constraints and
architecture constraints. The total schedule length is the largest value of AFT for
any node in the task graph.

4.2.3 Minimum Strided Finish Time (MSFT) Algorithm

The first phase of the MSFT scheduling strategy assigns priorities to the tasks by
taking into account the immediate predecessors of the tasks as given in Algorithm 2.
The nodes of the graph are processed in topological order. The Earliest Execution
(EE) time is iteratively computed. Step 4 computes the EE for a task Ti on a
processor Pj as the maximum value among the minimum sum values obtained by
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Algorithm 2 MSFT algorithm phase 1 : prioritization of tasks

1: //Let m be number of nodes/tasks and n be the number of processors
2: Initialize EE ← 0.
3: for i = 1 to m in topological order do
4: Compute the earliest execution (EE) time of a task Ti according to the

earliest execution times of its predecessors and depending on the processor
executing Ti :

EE(Ti, Pj) = max
Tk∈pred(Ti)

min
v=1..n

(

EE(Tk, Pv) + CC(Tk, Ti, Pv, Pj)

)

+ET (Ti, Pj). (4.3)

5: Compute task priorities by using the EE values found in previous step.

Priority(Ti) =
1

minv=1..nEE(Ti, Pv)
. (4.4)

6: In case of equal priority, the topological ordering of the input nodes is used.
7: end for

adding the EE of immediate predecessors of Ti, the execution latency of the task and
the communication time involved. The EE resulting from this computation provides
a schedule time for each task compatible with dependence constraints. The task
priority is computed by finding the minimum EE value for the task corresponding
to any of the processors, as described at step 5 of the algorithm.

To take into account the fact that one processor cannot execute more than
one task at a time, the tasks are ordered w.r.t. the priorities assigned to them. It
also ensures that a task with a higher priority is processed earlier for processor
assignment as described below.

Algorithm 3 describes the processor assignment phase of the MSFT scheduling
approach with stride equal to 1. The steps 1-3 initialize the actual finish time
(AFT ), describing the completion time of a task, the Avail array, describing for
each processor the time where it is available using insertion based strategy, and the
mapping function M , mapping tasks to processors. The start time for a node w.r.t.
its predecessors is computed at steps 7-9. The Strided Finish Time is then computed
at step 11 which takes into account the Earliest Start Time (EST), execution time
(ET) of the current node and the execution time of the immediate successor nodes.
The processor producing the minimum Strided Finish Time (SFT) is assigned to
the task at step 12. In case, two or more processors return the same SFT value,
the assignment would be made to the fastest processor (having smallest execution
latency for the task). The actual finish time and the Avail array are subsequently
updated.

The criteria of selecting the successor nodes at stride one may be extended
to larger strides by replacing Equation 4.7 (computing the SFT value) with the
following equations.

SFT0(Ti, Pj) = max
Tl1...R∈RSucc(Ti)

(

ET (Tl1, Pj) +

ET (Tl2, Pj) + . . .+ ET (TlR, Pj)

)

, (4.9)

SFT (Ti, Pj) = EST (Ti, Pj)

+ET (Ti, Pj) + SFT0 (Ti, Pj) . (4.10)
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Algorithm 3 MSFT algorithm phase 2 : processor assignment with stride 1

1: Initialize Avail(Pj) ← 0, for each processor.
2: Initialize AFT (Tk) ← 0, for each task,
3: Initialize M(Tk) ← 0, for each task,
4: // Let m be the number of nodes
5: for i = 1 to m do
6: Ti ← highest priority task in the list.
7: for each task Tk ∈ ImPred(Ti) do
8:

ST (Ti, Tk, Pj) = max

(

Avail(Pj), AFT (Tk)

+CC(Tk, Ti,M(Tk), Pj)

)

. (4.5)

9: end for
10: Compute the Strided Finish Time (SFT) for each processor Pj .
11:

EST (Ti, Pj) = max
Tk∈ImPred(Ti)

ST (Ti, Tk, Pj) (4.6)

SFT (Ti, Pj) = max
Tk∈ImSucc(Ti)

(

EST (Ti, Pj)

+ET (Ti, Pj) + ET (Tk, Pj)

)

(4.7)

12: Map Ti to the processor producing the smallest value of SFT :

M(Ti)← argminPj
SFT (Ti, Pj)

13: Update the Actual Finish Time(AFT ) for task Ti when executed on processor
M(Ti).

AFT (Ti) = ST (Ti,M(Ti)) + ET (Ti,M(Ti)), (4.8)

14: Update the availability time Avail(M(Ti)) of processor M(Ti).
15: Remove the task Ti from the list.
16: end for

Using equations 4.9 and 4.10, the execution times Tl1, Tl2, . . . , TlR of the critical
successors of the node Ti (existing at each level) up to level R are taken into account
for computing SFT.

Complexity of the MSFT algorithm

The complexity of the MSFT algorithm is calculated for both the phases using
the task graph containing |V | nodes, |E| edges and having n number of processors.

For the first phase, the Earliest Execution time is computed in O(|V |∗degreein∗
n2). The priority computation has a complexity O(n ∗ |V |) respectively. So, the
prioritization phase has the overall complexity of O(|V | ∗ degreein ∗ n

2), or O(2 ∗
|E| ∗ n2). The second phase with stride one has the complexity of O(|V | ∗ n ∗
(degreein + degreeout)), or O(|E| ∗ n).

For stride equal toR, the complexity becomesO
(

|V | ∗ n ∗
(

degreein +
∑R

i=1 Cdegreeout
(i)

))

,

where Cdegreeout
(i) represents the out-degree of the most critical node existing at
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Figure 4.7 – Fork-join graph (degree=2, width=2 and depth=1)

stride i.

4.2.4 Experimental Results

Different graph topologies including fork-join, random, gaussian-elimination,
out-tree and in-tree graphs have been used for experimentation. Only fork-join and
random graphs are displayed in this chapter. We use the parameters depth and width
to refer respectively to the number of subgraphs of a particular type vertically and
horizontally. The degree parameter represents the degree of the subgraphs used in
the task graph. Figure 4.2.4 shows the fork-join graph with degree=2, width=2 and
depth=1.

The experimentation has been performed with a large number of parameters.
The execution latencies of the tasks have been assigned random values for all the
processors. The communication costs are computed by using a set of CCR (com-
munication to computation cost ratio) values. Two common parameters, CCR and
the number of processors, are used for all topologies of the graphs as given below,
whereas other parameters for each graph are given in their respective subsections.

CCR={0.5,1,2,3,4,5,6,7,8,9,10}
Number of processors = {2,3,4,5,6,7,8,9,10,12,14,16}

A metric SLR (Schedule Length Ratio) is used to measure the effectiveness of the
schedule. It represents the ratio of the schedule length to the length of the critical
path found with the minimum execution costs, i.e.,

SLR = Schedule Length
Length of Critical Path with minimum execution latencies

.

The length of the critical path is the lower bound on the schedule length of
a task graph. Since there are a large number of graphs for each topology used for
experimentation, the average SLR values are computed and presented in the results.

Fork-Join Graphs

The fork-join graph generator takes the depth, degree and width parameters
to generate nodes of the graph. For a given depth m, degree n and width w, the
number of nodes produced by the graph generator is equal to (m∗(n+1)+1)∗w+2.
The configuration parameters for the fork-join graphs are given below.
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Figure 4.8 – Results of the Fork-Join graphs for the given CCR values

Figure 4.9 – Results of the Fork-Join graphs for the given depth values

Depth={1,2,3,4,5,6,7,8,9,10}
Width={2,3}
Degree={2,3,4}

The scheduling results of fork-join graphs are shown in Figures 4.8, 4.9 and 4.10
for various values of CCR, depth and the number of processors respectively. The
MSFT scheduling strategy performs better than the HEFT scheduling strategy for
all the cases with an overall improvement of 12.29%.

For some cases of small CCR values, the HEFT performance is very close to
MSFT, however the MSFT schedule improves gradually with an increase in the
CCR value, as shown in Figure 4.8.

With the growing number of nodes, the MSFT strategy tends to produce better
schedule than HEFT as shown in Figure 4.9. This behavior is similar for various
number of processors. As shown in Figure 4.10, the SLR value although increases
with an increase in the number of processors, the MSFT schedule is always better
than the schedule produced by HEFT.

Random Graphs

The random graphs are generated using the approach given in [5]. An edge bet-
ween two nodes exists based on the probability in such a way so that the precedence
constraints are not violated. Therefore, the edge from a node i to node j exists if
i < j. Given the probability p, there is a unique edge from a node i to the node
⌈(i+ 1/p) mod m⌉, where m is the number of nodes.

The random graph generator takes the number of nodes and the probability as
additional parameters. The data set used for experimentation is as follows.
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Figure 4.10 – Results of the Fork-Join graphs for the given number of processors

Figure 4.11 – Results of the Random graphs for the given CCR values

Number of nodes={10,20,30,40,50,60,70,80,90,100}
Probability={0.2,0.4,0.5,0.6,0.8,1.0}

The impact of CCR values on the average SLR varies as shown in Figure 4.11. For
very small and large values of CCR, the SLR values are close for both the scheduling
strategies. However, for medium size values of CCR, the MSFT scheduling strategy
performs better than the HEFT scheduling strategy.

With the increasing number of nodes, the MSFT scheduling performs better
than HEFT as shown in Figure 4.12. Similarly, for a large number of processors,
MSFT generates schedules with improved SLR compared to those generated by
HEFT as shown in Figure 4.13.

For the random graphs, the MSFT strategy produces an average improvement

Figure 4.12 – Results of the Random graphs for the given number of nodes
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Figure 4.13 – Results of the Random graphs for the given number of processors

of 9.78% over the HEFT strategy.

4.2.5 General Conclusion

This chapter presented two works for automatic vertical and horizontal paralle-
lization, widening the contribution range of the methods developped in Chapters 2
and 3.

In the first part of this chapter, C++ Expression Templates mechanism is used
to implement a parallel version of vector operations, using Intel TBB and OpenMP.
This vertical parallelization through expression templates provides a short and
simple way of improving performance for vector operations in the C++ language,
outperforming most C++ librairies when out of cache. Moreover, the study on Ex-
pression Templates can be coupled with the CPC framework, the original vector
operation serving as a base for it, and the result of the framework providing better
basic blocks when implemnting the expression templates.

The second presented work proposes a novel approach of task-graph schedu-
ling called Minimum Strided Finish Time (MSFT), which generates schedules for
heterogeneous systems. The MSFT algorithm takes into account the current node
being scheduled together with the nodes existing within a specific distance in the
graph (the stride), first prioritizing the nodes by computing their earliest execution
time, then scheduling each tasks according to its priority. A large number of expe-
riments have been performed for various graphs including the fork-join, gaussian-
elimination, in-tree, out-tree and random graphs. The complete work is currently
revised for a future re-submission, with results showing a significant reduction in
the schedule length compared to the well-known HEFT scheduling algorithm. In-
creasing the stride used by our method is an efficient way to improve the schedule,
at the expense of an increased complexity. The impact is however limited in practice
because MSFT with small stride value already produces near-optimal results on all
graphs tested.

Furthermore, combining this scheduling method with the CPC framework, and
adding some way to describe the dependence graph between codelets, one will be
able to find the hot-spot loop in a program, decompose it in several codelets, op-
timizing them, then schedule the codelets on a multicore machine to obtain the
best performance. More specifically when dealing with stencil codes, using the code
generation model describe in Chapter 3, one can get efficient code for part of the
stencil for each node in an heterogeneous machine using CPU and GPU, then find
the best schedule using MSFT algorithm.



Chapitre 5

Conclusion

With the permanent development of processor architectures, the methods pre-
sented in this dissertation will evolve to take into consideration the emerging and
future concerns of the HPC community. In this last part, we will recall the contri-
butions of this dissertation, before discussing their possible changes to answer the
modern issues in computer science, as the power consumption or manycore proces-
sors.

5.1 Contributions

This dissertation presents some solutions to answer the challenges of generating
efficient irregular codes and efficient parallel codes, including parallel codes for he-
terogeneous systems. The two main contributions are source-to-source transforma-
tions, allowing to take any source code produced by a programmer with potentially
no knowledge of the target architecture, and to generate a new code exhibiting good
performances :

– The CPC framework allows to optimize a first implementation of large pro-
grams (like simulation codes) by applying transformations only on a subset of
the program.

– Multi-Padding modifies the data layout of stencil codes to decrease the number
of alignment conflicts in those codes.

The CPC framework proposes to extract codelets from nested loops of hot-
spot region in a real-life program, in order to optimize independently each codelets
without having to run the all program for each optimization attempt. Loop transfor-
mations modify the codelets, and each version is evaluated. The description of the
optimization space is realized through user defined pragmas. The hot-spot function
is then recomposed with the best codelets, and the overall speed-up is predicted
from the codelets performance. The codelets are evaluated in a fixed memory confi-
guration, and prefetching or cache cleaning blocks are added to ensure that data
in the overall computation are in the same memory configuration than during the
tests. The methods have been applied successfully on three real programs used in
theoretical physics, chemistry and bioinformatics.

The second main contribution proposes several methods based on padding to
address alignment issues on linear algebra codes using arrays, and more specifically
stencil codes, which are symptomatic of alignment issues. From the original access
pattern in an array, the several methods generate a linear system to resolve in
order to align a maximum of data. Each method correspond to a different trade-off
level between the complexity of the linear system to resolve and the number of
data naturally aligned when generating the new code. The simpler the method, the
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fewer the number of padding values, and the lesser the number of data well aligned.
The simplest method with only one padding value correspond to the usual padding
methodology, while the most complex system is formed when having a different
padding value for each line of the studied array. We show that alignment issue,
whether for efficient vectorization or limiting bank conflicts, on CPUs and GPUs
can be addressed the same way, and an algorithm is provided to generate efficient
stencil codes for CPUs and GPUs using our alignment methods.

The last chapter proposes two distinct methods to address the two paralleli-
zation techniques : vertical and horizontal parallelization. Vertical parallelization
consists in separating an iteration domain in several independent slices, which will
be executed simultaneously in parallel on several cores. We use C++ expression
templates to represent vector and array computation, delaying their evaluation to
where they are actually need. The actual implementation of said computations is
directly parallelized to run on the several cores available. We end up with a sequen-
tial dependence graph of parallelized tasks. Horizontal parallelization decomposes
a program on several tasks linked through a dependence graph, each tasks in the
same level of the graph may run in parallel. The described method compute the
earliest finish time of a task, choosing on which available unit it must run, on an
homogeneous or heterogeneous system. To take its decision, the algorithm takes into
account the following tasks in a fixed number of graph levels, pre-evaluating each
choice. This stride allow a better evaluation of the overall earliest finish time, but the
number of evaluations increases exponentially for each level added in the prevision,
and once again, the overall speed-up will depend of the computation time/power
allocated to the optimization process.

5.2 Future works

Most of the contributions propose methods to automatically generate efficient
codes from an initial implementation, but very few steps are nowadays realized in
an automatic way.

In the CPC framework, only the generation of multiple codelets version from
an original extracted codelets is perform automatically, and even in this step the
user intervenes to define the transformation space. Numerous tools already exist to
perform all parts of the framework : profiling tools to find the hot-spot function
of a program, code parser and code extractor to find the problematic loop nest
and extract several codelets from this loop nest, loop transformations performed
with X-language. To fully automatize the optimization process, we can couple the
X-language framework with some tree-pruning algorithm, beginning with a large
number of possible value for each transformation, and cutting the intervals when
more speed-up is possible. A code generator can be easily added to generate an
evaluation routine calling all the transformed codelets to evaluate. Writing all the
results in an output file, it is simple for a sorting routine to find in it the best version
for each codelets. A last pass from the code generator will produce the new function
calling the best kernels.

A first stencil code generator was realized, producing first only stencil code for
double precision Jacobi. Since, the generator was modified to generate codes for
any stencil pattern, for any types of data. The padding values found by solving
the linear system are specified by the user. With the existing solver library, like
CPLEX or lpsolve, it is possible to create the three modules in the same language
to realize all steps in a same program. A library could gather all the proposed
methods implementation. The first module will identify the stencil pattern, either
reading explicitly the pattern in an input, or from a pattern recognition of an initial
implementation, then select which method to apply on the pattern to produce the
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linear system. The second module will simply resolve the system, and send all
padding and shuffle values to the third module which will generate the new better
aligned stencil code.

Some combinations between works presented independently in this dissertation
seem to be promising. When evaluating an expression template, an actual imple-
mentation is called to perform the computation. Instead of dealing with a basic
implementation of the vector or array operation, one may take the time to apply
first the CPC framework in the basic implementation to generate a better version,
replacing the basic implementation when evaluated. Also, when applying the CPC
framework on some code, on can consider extracted codelets as independent tasks,
which can be executed in parallel, and on different architectures. The MSFT algo-
rithm can then be applied on the codelets, with the only additional cost of depen-
dence generator when extracting the codelets, and having to evaluate all codelets
not only on the original CPU but on all available devices.

Future horizons

Apart from future works directly related to automatize or implement part of
the methods presented in this dissertation, current issues in the high performance
computing arena offers new horizons for optimizations. Until the last decade, and
except for embedded systems, optimization in HPC was synonym of speed-up, re-
ducing the time spent to run a program. Nowadays with the power consumption
being a real issue, scientists are willing to take more time to execute a code, if it
enables energy savings [93, 8]. This consideration will again increase the complexity
of producing an efficient program, creating yet another paradigm shift, in program-
ming models this time. We shift from one goal, only time speed-up to consider, to
several issues to address in the same implementation, reducing the time and the
power consumption.

With the constant increasing complexity of computer architectures, it will be
more and more difficult to create software and methods efficient for all codes, for
all targets. Before multi-core chips, compilers were already overtaken, like for SIMD
instructions which could be addressed only through very explicit directives. Nowa-
days, to obtain performance on a machine, in term of time or energy, the program-
mer will have to know and understand more and more mechanisms. Some scientists
prefer to write directly in assembly code or with intrinsics functions whether than
understand all the options to trigger for the compiler to generate an efficient code.
Optimization softwares to help generate efficient codes will be more and more re-
quired, whether they are highly specialized on a machine, or addressing the same
detail on all architectures.

The Microkernel-Description-Language based Performance Evaluation Frame-
work (MDL-PEF [45]) aims the latest consideration. It extracts the data flow
structure of an assembly code, and translate it in its own representation. A predic-
tor uses pattern matching to compare the intermediate representation to a MDL-
Microkernel database for predicting performance. Each codelet is linked to a ca-
nonical representation, and a database is available for each targeted architecture.
Hence, from the assembly code for a specific architecture, one will be able to find
microkernels doing the same computations on other targets. MDL-PEF provides a
tool to initialize a pattern matching database for the target architecture.

The coming of manycore architectures accentuates existing issues, like concur-
rent accesses to the main memory, contention on the controller bus, tuning and
spread of the computation on multiple cores and architectures. With chips embed-
ding more than forty cores, and each cores (or couple of cores) accessing its own
private memory, data distribution and message passing will become even more im-
portant. These manycores chips, like Intel Single Cloud Computing processor or
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IBM’s Cyclops 64, can be seen as hardware accelerators. The numerous embedded
cores have simplified architecture designs, they are controlled by a front-end ma-
chine and they have each their own private local storage. Processors becoming some
sort of hardware accelerators, connected themselves to other hardware accelerators
(like GPUs), the need for models and tools to efficiently program such machines in
an automatic and heterogeneous way is more and more paramount.



Annexe A

N -D Jacobi Stencil using

vector larger than two elements

In this annex are presented the equations for aligning the required elements
in a cell update with a N -D Jacobi stencil pattern. Heavy detailed equations are
presented in this section, to better understand the principles of MDMP on a
specific example. These equations are easy to simplify. The elements highlighted in
red in the following systems of equations are the common part between the two
equations, cancelling themselves out.

A.1 Detection of necessary padding, with vector of

any size

Let us consider that in this section, for all dimensions, there is an even number of
hyperplanes. Expanded the work done in section 3.3.3 for any number of dimension,
the following suppositions are made for the proofs by induction :

– For the k firsts dimensions, the even hyperplanes composing it have a size
Se
k−1 ≡v 1, v being the vector size.

– For the k firsts dimensions, the odd hyperplanes composing it have a size
So
k−1 ≡v v − 1.

– For each dimension k, a value offsetk exists such as Se
k + offsetk = So

k −
offsetk. The resulting average dimension size is named Sk.

To simplify already complex systems of equation, a new functionDimk is defined
to return a dimension size, regarding the sizes if its odd and even hyperplanes, and
considering if there is an odd or even number of hyperplanes in the dimension.
Fig.A.1 presents the function definition.
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Figure A.1 – Function returning the average size of a dimension, depending on the
sizes of its odd and even hyperplanes

Since the average dimension size Sk will be used in the following complex system
of equations, the proof that the offset value is still transparent will be shown first.
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In equations A.1 and A.2, offset is included in the affected parts of an indexed cell,
respectively for a even hyperplane and an odd hyperplane.

1 + (ik+1 + 1) ∗ (Se
k+offsetk + So

k−offsetk) (A.1)

The added offset values, highlighted in blue, cancel each other very quickly.

(ik+1 + 1) ∗ (Se
k+offsetk) + ik+1 ∗ (S

o
k−offsetk)−offsetk (A.2)

Considering the suppositions made at the beginning of this section, equation
A.3 is the system to solve to compute the value Se

k for elements (1, . . . , k, . . . , n)
and (0, . . . , k + 1, . . . , n) to have the same alignment.
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(A.3)
Solving the system A.3, the first part of the proof appears, as Se

k ≡v 1 like in
our hypothesis (see fig.A.2).
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Figure A.2 – Size of any even hyperplane for common alignment

To get the second part of the proof, equation A.4 is solved, this time considering
elements (1, . . . , k, . . . , n) and (0, . . . , k − 1, . . . , n) for a common alignment (see
fig.A.3).
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As expected, So
k ≡v v − 1, and the second part of the suppositions is verified.

The last part is straightforward, since it was already demonstrated with equations
A.1 and A.2. Now that the kth dimension considered have two distinct sizes for its
even and odd hyperplanes, these equations apply to it.
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Figure A.3 – Size of any odd hyperplane for common alignment

Our three assumptions have been verified. We proved that if all (k − 1) firsts
dimensions have two hyperplane sizes congruent to 1 and v − 1 respectively for
even and odd ones, and if an offset value can be found for each of its dimension to
determine an average hyperplane size, then the kth dimension also have two distinct
hyperplane sizes for even and odd ones (Se

k ≡v 1 and So
k ≡v v − 1, and an offset

value can be found too.
To find the value of offsetk is also straightforward. The same computation as in

section 3.3.3 returns ∀k, offsetk= v−2
2 .

Additional proof for alignment correctness of needed elements in the
same dimension Even if the evaluation of the new sizes values Se

k and So
k ensures

that the two required elements in a dimension are aligned the same way, except for
the inner dimension, equation A.5 verifies this correctness. Equation A.5 computes
the alignment of elements (1, . . . , k+1, . . . , n) and (0, . . . , k−1, . . . , n) with the two
new sizes for hyperplanes of the kth dimension.
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Solving equation A.5 results in having So

k + Se
k ≡v 0. Or, since Se

k ≡v 1 and
So
k ≡v v − 1, it is always true, hence confirming the correctness of the alignment of

the required cells for an update in this Jacobi stencil example with any number of
dimensions.
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Annexe B

Execution of the MSFT

algorithm

Consider the task graph given in Figure B.1. The seven tasks A, B, C, D, E,
F & G are depicted as nodes in the DAG (Figure B.1(a)) together with the edges
labelled with communication costs. The execution latencies of the tasks on three
processors, P1, P2 & P3 are given in Figure B.1(b).

The execution trace of the first phase of MSFT is shown in Figure B.2. The
Earliest Execution (EE) time values computed for each node corresponding to the
processors P1, P2 & P3 are given as bottom labels of the nodes. Since the node
A has no predecessor, it is assigned the EE values of 7, 9 & 5 for processors P1,
P2 & P3 respectively. For the node B, the EE for the processor P1 is computed
as min(7 + 0 + 6, 9 + 6 + 6, 5 + 6 + 6) = 13. Similarly, for P2 and P3, EE for the
node B becomes min(7 + 6 + 8, 9 + 0 + 8, 5 + 6 + 8) = 17 and min(7 + 6 + 10, 9 +
6+ 10, 5+ 0+ 10) = 15 respectively. For a node having more than one predecessor,
the maximum value corresponding to its predecessors is used for computation of
EE values as given in Equation 4.3. For example, for the node E, the EE value for
processor P1 is 21, produced as the maximum of min(13+0+7, 17+8+7, 15+8+7)
and min(14 + 0+ 7, 18 + 9+ 7, 13 + 9+ 7). All the subsequent nodes are processed
similarly, and the EE values are computed. The priority is then assigned using the
smallest EE value 1 produced by any of the processors.

Using the priority criteria, the nodes are processed in the order A, D , B, C, F ,
E & G. Figures B.3(a), B.3(b), B.4(a) & B.4(b) depict the processor assignments
(as node labels) and the SFT values with stride equal to 1 corresponding to each
processor (as node bottom labels) for nodes A, D, B & C respectively.

The SFT values for the node A using processors P1, P2 & P3 are max(0 +
7 + 6, 0 + 7 + 7, 0 + 7 + 5) = 14, max(0 + 9 + 8, 0 + 9 + 9, 0 + 9 + 6) = 18 &
max(0 + 5+ 10, 0 + 5+ 8, 0 + 5+ 7) = 15 respectively. The processor P1 producing
the smallest SFT value is therefore assigned to the node A as shown in Figure
B.3(a). For the node D, the SFT values for the processors P1, P2 & P3 are 18, 28
& 28 respectively. This results in the processor P1 being assigned to the task D as
shown in Figure B.3(b). For the node B, the SFT values are 25, 32 & 29 which result
in processor P1 being assigned to the task as shown in Figure B.4(a). Similarly, for
the node C, the processor P3 is assigned to the task since its assignment produces
the minimum SFT value equal to 28 as shown in Figure B.4(b).

The subsequent execution of the algorithm results in the processor P3 being
assigned to the nodes F & G. The final assignments of processors to the tasks are

1. The smallest EE value is used for priority computation, as with heterogeneous systems, the
processor with the smallest EE value is more probable to be assigned.
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Task P1 P2 P3
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B 6 8 10
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D 5 6 7
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(b) Task execution costs on

processors P1, P2 & P3

Figure B.1 – Task graph with communication and execution costs.
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Figure B.2 – Computation of the Earliest Execution (EE) times

shown in Figure B.5.
The nodes A, D , B, C, F , E & G have AFT values of 7, 12, 18, 20, 27, 35

& 41 respectively. Consequently, the the MSFT scheduling algorithm produces an
optimal schedule of length 41. In contrast, the HEFT algorithm produces a schedule
of length 45.
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Figure B.3 – Processor assignment for the nodes A and D
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