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Dr. Laurent Nivanen, Dr. Benôıt Minisini and Dr. Cyril Pujos. I would like to thank

Prof. François Tsobnang, Prof. Jean-Charles Craveur, Dr. Dominique Marceau, Dr.

Gilles Brement, Mr. Perry Ngabo, Mrs. Sylvie Bacle, Mrs. Sandra Dugué, Miss Zélia
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Abstract

Ranking procedures are widely used to describe the phenomena in many different

fields of social and natural sciences, e.g., sociology, economics, linguistics, demography,

physics, biology, etc. In this dissertation, we dedicated to study the ranking properties

and underlying dynamics embedded in complex systems. In particular, we focused on

the scores/prizes ranking in sports systems and the words/characters usage ranking in

human languages. The aim is to understand the mechanisms behind these issues by

using the methods of statistical physics, Bayesian statistics and agent-based modeling.

The concrete results concern the following aspects.

We took up an interesting topic on the scores/prizes ranking in sports systems, and

analyzed 40 data samples in 12 different sports fields. We found the striking similarities

in different sports, i.e., the distributions of scores/prizes follow the universal power

laws. We also showed that the data yielded the Pareto principle extensively observed

in many social systems: 20% of the players accumulate 80% of the scores and money.

For the tennis head-to-head data, we revealed that when two players compete, the

probability that the higher-ranked player will win is related to the rank difference of

the two opponents. In order to understand the origins of the universal scaling, we

proposed an agent-based model, which can simulate the competitions of players in

different matches, and results from our simulations are consistent with the empirical

findings. Extensive simulation studies indicate that the model is quite robust with

respect to the modifications of some parameters.

Zipf’s law is the major regularity of statistical linguistics that served as a prototype

for the rank-frequency relations and scaling laws in natural sciences. We investigated

several English texts, clarified the valid range of Zipf’s law, and found this valid range

increases upon mixing different texts. Based on the latent semantic analysis, we pro-

posed a probabilistic model, in which we assumed that the words are drawn into the

text with random probabilities, while their apriori density relates, via Bayesian statis-

tics, to the general features of mental lexicon of the author who produced the text. Our

model explained the Zipf’s law together with the limits of its validity, its generalization

to high and low frequencies and hapax legomena.

In another work, we specified the rank-frequency relations for Chinese characters.
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We chose to study the short texts first, since for the sake of the rank-frequency analysis,

long texts are just mixtures of shorter, thematically homogenous pieces. Our results

showed that the Zipf’s law for Chinese characters perfectly holds for sufficiently short

texts (few thousand different characters), and the scenario of its validity is similar to

that for short English texts. We argued long Chinese texts display a two-layer, hierar-

chic structure: power-law rank-frequency characters (first layer) and the exponential

ones (second layer). The previous results on the invalidity of the Zipf’s law for long

texts are accounted for by showing that in between of the Zipfian range and the re-

gion of very rare characters (hapax legomena) there emerges a range of ranks, where

the rank-frequency relation is approximately exponential. From comparative analysis

of rank-frequency relations for Chinese and English, we suggested the characters play

for Chinese writers the same role as the words for those writing within alphabetical

systems.

Keywords: Ranking systems, Power laws, Pareto principle, Zipf’s law

Sports ranking, Human languages, Prior probability
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Résumé

Des procédures de classement sont largement utilisées pour décrire les phénomènes

observés dans de nombreux domaines des sciences sociales et naturelles, par exemple

la sociologie, l’économie, la linguistique, la démographie, la physique, la biologie, etc.

Dans cette thèse, nous nous sommes attachés à l’étude des propriétés de classement

et des dynamiques sous-jacentes intégrées dans les systèmes complexes. En partic-

ulier, nous nous sommes concentrés sur les classements par score ou par prix dans les

systèmes sportifs et les classements d’utilisation des mots ou caractères dans les langues

humaines. Le but est de comprendre les mécanismes sous-jacents à ces questions en

utilisant les méthodes de la physique statistique, de la statistique bayésienne et de la

modélisation multi-agents. Les résultats concrets concernent les aspects suivants.

Nous avons tout d’abord traité une étude sur les classements par score/prix dans

les systèmes sportifs et analysé 40 échantillons de données dans 12 disciplines sportives

différentes. Nous avons trouvé des similitudes frappantes dans différents sports, à

savoir le fait que la répartition des résultats/prix suit les lois puissance universelles.

Nous avons également montré que le principe de Pareto est largement respecté dans

de nombreux systèmes sociaux: ainsi 20% des joueurs accumulent 80% des scores et de

l’argent. Les données concernant les matchs de tennis en individuels nous ont révélé

que lorsque deux joueurs s’affrontent, la probabilité que le joueur de rang supérieur

gagne est liée à la différence de rang des deux adversaires. Afin de comprendre les

origines de la mise à l’échelle universelle, nous avons proposé un modèle multi-agents,

qui peut simuler les matchs de joueurs à travers différentes compétitions. Les résultats

de nos simulations sont cohérents avec les résultats empiriques. L’extension du domaine

d’étude de la simulation indique que le modèle est assez robuste par rapport aux

modifications de certains paramètres.

La loi de Zipf est le comportement le plus régulièrement observé dans la linguistique

statistique. Elle a dès lors servi de prototype pour les relations entre rang d’apparitions

et fréquence d’apparitions (relations rang-fréquence dans la suite du texte) et les lois

d’échelle dans les sciences naturelles. Nous avons étudié plusieurs textes, précisé le

domaine de validité de la loi de Zipf, et trouvé que la plage de validité augmente lors

du mélange de différents textes. Basé sur l’analyse sémantique latente, nous avons
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proposé un modèle probabiliste, dans lequel nous avons supposé que les mots sont

ajoutés au texte avec des probabilités aléatoires, tandis que leur densité a priori est

liée, via la statistique bayésienne, aux caractéristiques générales du lexique mental de

l’auteur de ce même texte. Notre modèle explique la loi de Zipf ainsi que ses limites

de validité, et la généralise aux hautes et basses fréquences et au hapax legomena.

Dans une autre étude, nous avons précisé les relations rang-fréquence pour les car-

actères chinois. Nous avons choisi d’étudier des textes courts en premier, car pour le

bien de l’analyse rang fréquence, les longs textes ne sont que des mélanges de textes plus

courts, thématiquement homogènes. Nos résultats ont montré que la loi de Zipf ap-

pliqués aux caractères chinois tient parfaitement pour des textes assez courts (quelques

milliers de caractères différents). Le même domaine de validité est observé pour les

textes courts anglais. Nous avons soutenu que les longs textes chinois montrent une

structure hiérarchique à deux couches: des caractères dont la fréquence d’apparition

suit une loi puissance (première couche) et des caractères dont l’apparition suit une

loi exponentielle (deuxième couche). Les résultats antérieurs sur la nullité de la loi

de Zipf pour les textes longs sont comptabilisés en montrant qu’entre l’intervalle de

la gamme de Zipf et la région de caractères très rares (hapax legomena), il se dégage

une gamme de rangs, pour laquelle la relation rang-fréquence est approximativement

exponentielle. À partir de l’analyse comparative des relations rang-fréquence pour le

chinois et l’anglais, nous suggérons que les caractères jouent pour les écrivains chinois

le mêmer? Le que les mots pour ceux qui écrivent dans un système alphabétique.

Mots-clefs: Systèmes de classement, Lois puissance, Principe de Pareto,

Loi de Zipf, Classement sportif, Langues humaines, Probabilité a priori
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Chapter 1

Introduction

1.1 Social physics and stylized facts

We never stop the pace of uncovering the structures, dynamics, evolutions, and func-

tions of our human society [1–9]. Although the complexity of its nature, e.g., the

interactions are between sophisticated human beings with cognitive capabilities; each

individual interacts only with a limited number of peers, while this number is nor-

mally negligible compared to the total number of individuals in the system, etc, on

the macro-level, human societies are characterized by the amazing global regulari-

ties [10]. For instance, there are collective “emergent” behaviors [11–13], like food ri-

ots, revolutions, ethnic violence, urban health, panics, etc. There are self-organization

phenomena [14, 15], like critical mass, herd behavior, groupthink, etc. There are tran-

sitions from disorder to order [16], like the spontaneous formation of a common lan-

guage/culture or the emergence of consensus on a specific issue. There are examples of

scaling and universality [17, 18]. All these macroscopic phenomena spontaneously call

for a natural science approach to study the social behaviors [19].

The father of sociology, Auguste Comte1 put forward the idea of “social physics”

nearly 200 years ago, he hoped that the puzzles of social systems could be revealed

by the natural science (physics, mathematics, computer science, etc) approaches, that

is, to use the concepts, principles and methods of natural science to explore, simulate,

and understand the social behavior rules [10].

1Auguste Comte (1798 õ 1857), the French philosopher, he is traditionally considered as the

“father of sociology” – first used the term “sociology” in 1838 to refer to the scientific study of society.
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During the last century, great progress has been achieved in this field, there are

many stylized facts which have been found with a surprisingly large range of validity:

1. The Gravity Law [20–22], which is employed to describe the distribution of trade

flows and migration.

2. The Pareto Principle (80/20 rule) [23], according to which roughly 80% of an

effect comes from about 20% of the causes.

3. The Fisher Equation [24] for financial mathematics, which determines the rela-

tionship between nominal and real interest rates under inflation.

4. The Zipf’s Law [25], which has been widely found in the rank-frequency relations

for city population, human wealth, word usage, webpage visit, scientific citation, and

other physical phenomena [26–29].

5. The Fat-tailed Distributions [30–32], which exhibit extremely large skewness or

kurtosis, have been observed in economics, physics, earth science, etc.

6. The Matthew Effect [33], i.e., the rich-gets-richer effect [34], or the accumulation

of capital in economics [35], the preferential attachment in networks [36], etc.

7. The Goodhart’s Law [37, 38], according to which any observed statistical regu-

larity breaks down once pressure is placed upon it for control purposes.

8. The Dunbar’s Number [39], which is a suggested cognitive limit to the number

of people with whom one can maintain stable social relationships.

9. The Scaling Law or Power Laws [40,41], that is, when measuring the probability

of a particular value of some quantity, if it varies inversely as a power of that value,

then the quantity is said to follow a power law. It appears widely in physics, biology,

computer science, earth and planetary sciences, economics and finance, demography

and the social sciences, etc.

......

1.2 General framework of methods

Being a rather interdisciplinary field, there is a natural tendency to appreciate dif-

ferent perspectives and methods, to welcome innovations and new ideas. Here, some

commonly used methods are briefly reviewed as follows.

2



A. Statistical analysis and Data mining

Statistical analysis [42] concerns the study of collection, organization, analysis and

interpretation of the data. The descriptive quantities of the data include the mean,

standard deviation, skewness, kurtosis, etc. While the generally employed methods are

time series analysis [43], regression analysis [44], statistical hypothesis testing [45], etc.

Data mining is more related to the purpose of inference statistics [46], it is the

computational process of discovering patterns in large data sets, which involves differ-

ent methods from the artificial intelligence, machine learning, statistics, and database

systems. The overall goal is to extract information from a data set and transform it

into an understandable structure for further use.

B. Network perspective

A network is a representation of a set of nodes or vertices, where some nodes are

connected by links or edges. [47, 48]. An extensively wide range of systems in nature

and society take the form of networks, for examples, the cell could be considered as

a network of chemicals linked by chemical reactions, and the internet is a network of

routers and computers connected by physical links, etc.

The last decade has witnessed the tremendous progress in the research of net-

works [49–51], which was largely inspired by the empirical study of real-world networks,

e.g., the social, biological, and technological networks. Examples [2, 47, 48, 50–53] in-

clude the internet, the world wide web, social friendship networks, networks of busi-

ness relations between companies, movie actor collaboration network, neural networks,

metabolic networks, ecological networks, scientific citation networks, networks in lin-

guistics, telephone call network, transportation networks, and many others.

The subjects studied include topology, dynamics, formation and function of net-

works. For instance, the general structural properties [2, 47, 48, 54–56] considered are,

degree distributions, clustering, shortest path length, small-world effect, assortativity

or disassortativity among nodes, community structure, hierarchical structure, etc; the

dynamical processes taking place on networks [2, 47–51], such as information or epi-

demic spreading, emergence theory of evolving networks, network’s robustness against

failures and attacks, etc; the network models [40, 41, 47, 48, 51, 57, 58], for example,

random graph models, models of network growth and preferential attachment, con-

structions of small-world network, temporal networks, geographical networks, etc.

3



C. Probabilistic model

Probabilistic model [59, 60] is widely used in the uncertainty analysis of social sys-

tems. It works by showing that if one randomly chooses objects from a specified class,

the probability that the result belongs to the prescribed kind is more than zero. In

probabilistic approach, uncertainties are characterized by the probabilities associated

with events. While the probability of an event can be interpreted in terms of the fre-

quency of occurrence of that event, when a large number of samples or experiments

are considered, the probability of an event is defined as the ratio of the number of

times the event occurs to the total number of samples or experiments (the law of large

numbers).

In social systems, many problems are complicated that they cannot be solved ac-

curately by using the simple and deterministic rules. However, if we introduce the

stochastic mechanisms into the solution, it is possible to find the good approximate

answers to these problems [61,62]. Moreover, many natural and social phenomena are

characterized by a variety of randomness, and probabilistic model is of fundamental

importance to the show the randomness of the phenomena [63]. For instance, prob-

abilistic model for languages [64], probabilistic model for speech recognition [65], or

probabilistic model for machine perception [66], etc.

D. Agent-based model

Agent-based model (ABM) [67,68] is a powerful simulation modeling technique that

has seen a number of applications in life sciences, ecological sciences and social sciences

in the last few years [69]. It is a class of computational models for simulating the actions

and interactions of autonomous agents (both individual or collective entities such as

organizations or groups). Agents assess their situations and make decisions on the

basis of a set of rules independently, they may execute various behaviors appropriate

for the system they represent, such as producing, consuming, or selling. It combines

the elements of game theory, complex systems, emergence, computational sociology,

multi-agent systems, evolutionary programming and monte carlo methods [70].

ABM has many advantages over other modeling techniques [68], For instance, it

makes the model closer to reality, it provides a natural description and simulation of

the system composed of “behavioral” entities. It is suited not only to reflect interac-

tions between different individuals, it also allows one to determine the implications of
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different hypotheses [70].

Agent-based simulations acquire a very important role in the modeling of com-

plex systems, and are proving successful in a number of areas [71–73], ranging from

structure formation in biological systems, pedestrian traffic to the simulation of urban

aggregation, opinion formation processes, competition-driven systems, etc.

E. Dynamical systems approach

Physicists introduce the methods and tools from theory of dynamical systems [74],

non-linear dynamics [75], or chaos [76] to study the social systems, namely social dy-

namics, it refers to a systematic approach for mathematical modeling of social systems.

It studies not only the behavior of groups that results from individuals’ interactions,

but also the relationship between individual interactions and group level behaviors [77].

It concerns with changes over time and emphasizes the role of feedbacks [78].

Research in social dynamics typically takes a behavioral approach [79,80], assuming

that individuals are rational and act on local information. On the one hand, mathe-

matical and computational modeling are important tools, since it focuses on individual

level behavior, and recognizes the importance of heterogeneity across individuals [81].

On the other, the approximation techniques, such as mean field approximations from

statistical physics, or averaging methods from computer simulation, are often used to

understand the behaviors of the system that changes over time [82, 83].

F. Critical phenomena

Critical phenomena [10,84,85] is the collective name associated with the physics of

critical points, it includes scaling relations among different quantities, self-organized

criticality effects, universality, fractal behavior, finite size effects, etc. The compact

combination of social systems, with the feature of small diameters, and their complex

architectures result in a variety of critical effects [10].

One common theme is the understanding of transition from an initial disordered

state to an ordered one (emergence of consensus in opinion dynamics, collective patterns

of behavior in social systems, etc) [10, 86]. In order to explain the origins of these

phenomena, we shall employ the Ising model as a pedagogical example [87]. It is an

extremely simplified mathematical model for describing the spontaneous emergence

of order. Despite its simplicity, it is valuable for verification of general theories and
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assumptions [88]. Moreover, we should consider the finite size effects [10], the very

concept of order-disorder phase-transitions is rigorously defined only in the limit of a

system with an infinite number of particles (thermodynamic limit), because only in

that limit truly singular behavior can arise.

While critical phenomena in networks include a wide range of issues [10, 89–91]:

structural changes in networks, the emergence of critical scale-free network architec-

tures, various percolation phenomena, epidemic thresholds, phase transitions in coop-

erative models defined on networks, critical points of diverse optimization problems,

transitions between different regimes in processes taking place on networks, equilibrium

and growing networks including the birth of the giant connected component, critical

phenomena in spin models placed on networks, synchronization, and self-organized

criticality effects in interacting systems on networks, etc.

1.3 Research motivation and thesis overview

Ranking is an effective technique skill to structure our perceptions of the real-world.

It is a kind of evaluation and organization of information according to certain criteria,

which shows the relationship between a set of items such that, for any two items, one is

either ‘ranked higher than’, ‘ranked lower than’ or ‘ranked equal to’ the other. Ranking

procedures have been widely used in almost every corner of our society:

- Politics: Rankings of the governance performance, human power/influence, na-

tional comprehensive strength, democracy index, etc.

- Economics: Rankings of the world’s richest people, world’s largest corporations,

world’s most valuable brands, countries’s GDP or CPI, etc.

- Culture: Rankings of the oldest languages, world’s most cultured cities, words

usage in human language texts, etc.

- Science: Rankings of the countries’ academy, impact factors of scientific journals,

citations of scientific papers, etc.

- Technology: Rankings of the international patent filings, world’s most efficient

power plants, webpages’ visits, blogs’ click through rates, etc

- Education: Rankings of the world’s best universities, best business schools, best

high schools, etc.
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Fig. 1.1: (Color online) Schematic diagram of rankings. In different complex systems, either

social, economical, or technological systems, according to certain criteria, for examples, wealth,

power, population, etc, individuals or elements in the systems are ranked from 1 to N , N is the

system size.

- Sports: Rankings of the players’ or teams’ scores or prize money, countries’ medals

in Olympic games, field goal shooting records of NBA players, etc.

......

By studying all these ranking architectures, we shall be able to detect the empirical

features and uncover the underlying dynamics in real-world complex systems.

Ranking means competition, all the agents in the system compete with each other

and struggle to occupy the higher ranks. When some ones enter into higher ranks, then

the former ones will fall off to lower ranks, and this process repeats constantly during

the evolution of the system. Therefore, the ranking structure should be able to reflect

an efficient organization of the system.

In this thesis, I am motivated to study two specific kinds of rankings, namely,

the scores/prizes ranking in sports systems and the words/characters usage ranking in

human languages. I would like to explore:

In sports, whether the ranking architectures agree with those stylized facts found

in other social systems, such as the Pareto principle, the winner-take-all rule, the rich-

get-richer effect, the scaling and universality, etc. If it does, how shall we explain that

for sports systems?

In human languages, Zipf’s law is the most remarkable regularity for the rank-
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frequency relations. Does it image the cognitive capabilities of human beings’ efficient

organizations of information? Is the Zipf’ law informative, or it is just reducible to any

trivial statistical rule.

Thesis overview:

Sports ranking and agent-based model

We found the striking similarities in different sports, i.e., the distributions of scores/

prizes follow the universal scaling law, and uncovered the data yielded the Pareto

principle which was extensively observed in many social systems. We also proposed an

agent-based model which can simulate the competition process in sports, and generally

produce the trend conveyed by empirical data.

Zipf’s Law and probabilistic model

We clarified the valid range of the Zipf’s law, and proposed a probabilistic model, in

which the words are drawn into the text with random probabilities, while their apriori

density relates to the stable and efficient organization of the author’s mental lexicon.

Chinese characters: Zipf’s Law and beyond

We specified the rank-frequency relations for Chinese characters. Our results showed

the Zipf’s law for Chinese characters perfectly holds for sufficiently short texts (few

thousand different characters). While long Chinese texts display a two-layer, hierarchic

structure: power-law rank-frequency characters (first layer) and the exponential ones

(second layer).
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Chapter 2

Universal Scaling in Sports Ranking

2.1 Research motivation in sports ranking

As is well known, ranking is a very ubiquitous phenomenon in social, economical, or

technological systems. Our motivation is whether there are some common patterns in

the vastly different ranking systems. Moreover, if yes, can we understand the formalism

of such patterns, and unravel some properties of such competition driven systems and

human dynamics [92–95]? In order to facilitate our study we choose a specific kind of

ranking system, sports ranking, in which data are easily accessible and more suitable

for quantitative analysis. Here players’ performances in different matches will be used

as the basis of their respective rankings, in terms of scores and/or prize money.

To understand how a certain sports ranking system works [96–98], let us take ten-

nis as an example. ATP (Association of Tennis Professionals) and WTA (Women’s

Tennis Association) are world’s most successful tennis associations for male and fe-

male professionals, respectively. To appear on the ranking systems of ATP or WTA,

the number of tournaments a player has to play each year should reach a minimum,

say 10. Tournaments have been divided into several categories, such as grand slams,

premier tournaments, international tournaments and year-ending tour championships,

mainly based on the scale of prize money. For the most important tournaments such

as grand slams, the main draw only consists of 128 players. The entry rule is that if

you are higher ranked, then you have more chances to be accepted. On the other hand,

players’ good performance will improve their rankings which will in turn entitle them

more chances to play tournaments. Since there are so many tournaments each year, for
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both ATP and WTA, the ranking list of scores and/or prize money may change very

frequently. Here we are not interested in which specific player is world No.1 in certain

sports, but instead the statistical distribution of performance, measured by scores and

prize money, of all the players. What is the form of such a distribution? Is it stable

over different time periods? Is it universal?

2.2 Empirical results of sports ranking

2.2.1 Database of sports systems

Our data sets cover 12 different sports fields, they are tennis, golf, table tennis, volley-

ball, football, snooker, badminton, basketball, baseball, hockey, handball and fencing,

in those sports fields competitions are pairwise (i.e., among two players or teams). We

collected the data of the scores or prize money of players or teams on the official web

pages of those sports, all the data are updated up to February 2011 [99].

2.2.2 Cumulative distributions of scores

A player’s score or prize money is a direct measure of his/her performance in different

matches. The higher the score, the better the performance. The statistical distribution

of scores or prize money reflects the profile of the performance of all the members

belonging to the same association. Every sports field has its own scoring system,

hence the orders of magnitude of scores are usually different. In order to make the

distributions of scores or prize money comparable for different sports fields, we rescale

the quantities of interest. That is,

RS = S/Smax, (2.1)

where S denotes the values of quantities considered, e.g., scores or prize money, and

Smax is the maximum value of S in the sample, which pertains to the No. 1 player in

the ranking list by using S. We adopt the cumulative distribution due to small system

sizes.
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Fig. 2.1: (Color online) Cumulative distributions of scores and/or prize money for 12 differ-

ent sports fields. (a) Tennis: Association of Tennis Professionals (ATP) and Women’s Tennis

Association (WTA). (b) Golf: Professional Golfers’ Association (PGA) and Ladies Professional

Golf Association (LPGA). (c) Table tennis: International Table Tennis Federation (ITTF). (d)

Volleyball: International Federation of Volleyball (FIVB). (e) Football: International Federation

of Football Association, commonly known as FIFA. (f) Snooker: World Professional Billiards

and Snooker Association (WPBSA). (g) Badminton: Badminton World Federation (BWF). (h)

Basketball: International Basketball Federation, more commonly known as FIBA. (i) Baseball: In-

ternational Baseball Federation (IBAF). (j) Hockey: International Field Hockey Federation (FIH).

(k) Handball: International Handball Federation (IHF). (l) Fencing: International Fencing Fed-

eration (FIE). All the black solid curves in the Figs are the power laws with exponential decay,

P>(S) ∝ S−τ exp(−S/Sc), where τ is the power law exponent and Sc corresponds to the char-

acteristic turning point of the exponential decay. The values of τ and Sc for different sports fields

are provided in Table 2.1.
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Table 2.1: System sizes of 40 samples in the 12 different sports ranking systems, p-values of

goodness-of-fit tests [41], with hypothesized distribution being the power law with exponential

decay distribution (p1), the exponential distribution (p2), the stretched exponential distribution

(p3), and the log-normal distribution (p4), values of the exponents τ and Sc in the power law

with exponential decay, and values of the ratio for the test of Pareto principle.

Sports ranking systems Sizes p1 p2 p3 p4 τ Sc ratio

ATP Single 1763 0.65 0.00 0.03 0.06 0.31 0.12 0.79

ATP Double 1516 0.52 0.01 0.02 0.03 0.32 0.18 0.78

ATP Prize Money 1636 0.56 0.02 0.05 0.03 0.33 0.13 0.79

WTA Single 1523 0.62 0.00 0.23 0.18 0.39 0.15 0.78

WTA Double 1028 0.75 0.00 0.18 0.20 0.38 0.19 0.80

WTA Prize Money 1388 0.81 0.00 0.21 0.16 0.39 0.12 0.81

PGA Score 1323 0.85 0.00 0.00 0.00 0.16 0.18 0.82

LPGA Score 734 0.82 0.00 0.00 0.00 0.18 0.19 0.78

PGA Average Score 1323 0.76 0.00 0.00 0.00 0.16 0.19 0.79

LPGA Average Score 734 0.82 0.00 0.00 0.00 0.17 0.20 0.82

ITTF Prize Money Men 1717 0.85 0.00 0.02 0.03 0.32 0.17 0.83

ITTF Prize Money Women 1288 0.73 0.00 0.01 0.02 0.32 0.18 0.82

FIVA Junior Men 105 0.86 0.00 0.00 0.00 0.16 0.21 0.76

FIVA Junior Women 95 0.68 0.00 0.00 0.00 0.14 0.20 0.79

FIVA Senior Men 138 0.69 0.01 0.00 0.00 0.13 0.16 0.78

FIVA Senior Women 127 0.92 0.00 0.00 0.00 0.11 0.18 0.82

FIFA Men 209 0.59 0.01 0.00 0.00 0.01 0.19 0.77

WPBSA Total Score 97 0.69 0.00 0.00 0.00 0.11 0.27 0.83

WPBSA Average Score 97 0.58 0.00 0.00 0.00 0.13 0.25 0.78

BWF Women Single 548 0.68 0.00 0.00 0.00 0.12 0.16 0.80

BWF Women Double 295 0.53 0.00 0.00 0.00 0.13 0.18 0.78

BWF Men Single 833 0.62 0.00 0.00 0.00 0.06 0.17 0.82

BWF Men Double 429 0.75 0.00 0.00 0.00 0.08 0.13 0.81

BWF Mixed Double 407 0.63 0.00 0.00 0.00 0.07 0.14 0.79

FIBA Men 79 0.86 0.00 0.00 0.00 0.19 0.20 0.81

FIBA Women 72 0.98 0.00 0.00 0.00 0.18 0.21 0.83

FIBA Boys 77 0.62 0.00 0.00 0.00 0.18 0.23 0.82

FIBA Girls 72 0.85 0.00 0.01 0.01 0.26 0.22 0.76

FIBA Combined 115 0.52 0.01 0.00 0.00 0.23 0.20 0.81

IBAF Men 78 0.96 0.00 0.00 0.00 0.20 0.28 0.79

FIH Men 73 0.86 0.00 0.00 0.00 0.23 0.26 0.78

FIH Women 68 0.83 0.00 0.00 0.00 0.21 0.27 0.81

IHF Men 52 0.68 0.00 0.00 0.00 0.16 0.25 0.79

IHF Women 46 0.69 0.00 0.00 0.00 0.15 0.27 0.76

FIE Sabre Senior Women 371 0.56 0.00 0.12 0.08 0.34 0.25 0.81

FIE Foil Senior Women 260 0.65 0.00 0.03 0.00 0.32 0.23 0.78

FIE Epee Senior Women 293 0.53 0.01 0.16 0.17 0.36 0.24 0.83

FIE Sabre Senior Men 319 0.67 0.00 0.00 0.02 0.32 0.23 0.78

FIE Foil Senior Men 337 0.56 0.00 0.00 0.00 0.30 0.21 0.82

FIE Epee Senior Men 442 0.72 0.00 0.01 0.00 0.28 0.25 0.81
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2.2.3 Methods of goodness-of-fit tests

Cumulative distributions of players’ scores or prize money have been shown in Fig.

2.1 for 40 data samples of 12 different sports ranking systems. Amazingly, all the

distributions share very similar trend, and it should also be noticed that for the same

field, all the curves nearly collapse with each other. Therefore now, the main task is

to determine which statistical distribution is favored over the others, or equivalently,

which statistical distribution is ruled out by the observed data, while the others are

not.

There are several common statistical distributions [41], such as the power law

with exponential decay distribution, p(x) ∼ x−αe−λx, the exponential distribution,

p(x) ∼ e−λx, the stretched exponential distribution, p(x) ∼ xβ−1e−λxβ

, and the log-

normal distribution, p(x) ∼ 1
x

exp[− (ln x−µ)2

2σ2 ], etc. Here, we employ the methods of

goodness-of-fit tests in Ref. [41] to quantify which hypothesis distribution is favored

over the others in fitting the data. To do this, we would first determine the least square

fitting to the data. Secondly, we calculate the corresponding Kolmogorov-Smirnov (KS)

statistics for the goodness-of-fit test of the best-fit hypothesis distribution, then repeat

the calculation of the KS statistics for a large number of synthetic data sets. Lastly,

we calculate the p-value as the fraction of the KS statistics for the synthetic data sets

whose value exceeds the KS statistic for the real data. If the p-value is sufficiently

small (say p < 0.1), then the hypothesis distribution can be ruled out.

The p-values of the goodness-of-fit tests for the above hypothesis distributions are

given in Tab. 2.1. As one could find, with hypothesis distribution being the power

law with exponential decay, the p-values are all much larger than 0.1. Whereas for

the exponential distribution, the p-values are all smaller than 0.1, so the exponential

distribution is ruled out. While for the stretched exponential distribution and the log-

normal distribution, the majority of p-values are smaller than 0.1, yet few of them are

a little bit larger than 0.1, which implies these two alternative distributions are just

good fits in the very rare cases. Therefore, we can conclude, the case of the power law

with exponential decay in its favor is strengthened. With the form

P>(S) ∝ S−τ exp(−S/Sc), (2.2)

where τ and Sc are exponents of the power law and the exponential decay, respectively,

values of them are shown in Table 2.1, with 0.01 ≤ τ ≤ 0.39 and 0.12 ≤ Sc ≤ 0.28.
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Therefore, by using the goodness-of-fit test and checking values of the fitting param-

eters, we could observe the shared feature in the sports systems. The evidence of the

power-laws in the sports ranking indicates that there is still significant probability to

have superman such as Roger Federer in tennis or Tiger Woods in golf. But the preva-

lent probability is still the players who do not play in the top form. Unlike the human

height system, it seems there is no typical player who plays with average level.

2.2.4 Comparisons with the Random Group Formation

Such kind of distributions have also been widely found in a number of different systems,

such as the distribution of richness, city-sizes, word-frequencies, family names, species,

and degrees of metabolic networks, etc. In Refs. [100–102], it is proposed that the

shared feature in these systems could be well characterized by the Random Group

Formation (RGF), from which a Bayesian estimate is obtained based on the minimal

information cost, given the sole a priori knowledge of the total number of elements,

groups and the number of elements in the largest group. This estimate predicts a

unique distribution of the system, with the form

P (k) = A
exp(−bk)

kγ
, (2.3)

where k denotes the elements of the system, and values of A, b and γ are obtained

directly from a set of self-consistent equations, while γ usually takes the values in the

range of 1 ≤ γ ≤ 2 [101]. According to the detailed explanations and calculation

processes in Ref. [101], we applied the RGF predictions to the sports systems, with a

priori knowledge being the total scores of the system M , the number of players N and

the highest scores in the system kmax. Tab. 2.2 gives the values of M , N and kmax of 19

sports systems described above, which are needed for uniquely determining the RGF

prediction for each case. By using the same calculation method in Ref. [101], we could

obtain the values of A, b and γ of the RGF predictions for each sports system (Tab.

2.2).

Now, we employ the Kolmogorov-Smirnov test [103] (KS test) to compare the RGF

predictions with the original probability distributions of scores in sports systems, in

order to quantify whether the RGF prediction could characterize the sports data. With

null hypothesis being the sports data follows the RGF prediction, we calculated the
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Table 2.2: Basic quantities in the Random Group Formation (RGF) predictions of the sports

systems. M : the total score of the system; N : the total number of players; kmax: the highest

score; k0: the lowest score. A, γ, b, and kc refer to four parameters in the procedure of the RGF

prediction [101]. D and p denote the maximum differences D and p-values in the KS tests, while

“BWF M” and “BWF W” mean “BWF Men” and “BWF Women”, respectively.

Sports M N kmax k0 A γ b kc D p

ATP 227193 1763 7965 6 1.044 1.44 3.91E-4 6138 0.5098 0.000

WTA 276279 1523 8835 10 1.261 1.42 3.68E-4 6864 0.6667 0.000

BWF M 4777609 548 81706 110 0.0018 0.363 7.72E-5 69345 0.9048 0.000

BWF W 5191108 833 89002 40 0.0169 0.661 6.37E-5 74812 0.7619 0.000

PGA 30690 1323 384 1 0.158 0.793 0.0149 325 0.6190 0.000

LPGA 22779 734 590 1 0.174 0.919 0.0079 483 0.7143 0.000

ITTF M 195176 1717 2706 20 3.045 1.501 0.0015 2193 0.8095 0.000

ITTF W 180106 1288 2728 23 1.9421 1.373 0.0015 2225 0.7097 0.000

FIVA M 2626 138 210 1 0.180 0.826 0.0176 163 0.5238 0.004

FIVA W 2411 127 200 1 0.174 0.803 0.0185 155 0.4516 0.002

FIBA M 6921 79 892 1 0.090 0.755 0.0037 665 0.4762 0.011

FIBA W 6976 72 940 1 0.082 0.733 0.0035 699 0.5161 0.000

FIH M 36964 73 2620 30 0.0030 0.058 0.0020 2122 0.6153 0.000

FIH W 36079 68 2700 35 0.0029 0.065 0.0019 2180 0.8571 0.000

IHF M 2600 52 286 1 0.0381 0.265 0.0152 224 0.7095 0.000

IHF W 2326 46 261 1 0.0283 0.141 0.0173 205 0.8182 0.000

FIE M 8593 319 290 1 0.1137 0.622 0.0174 239 0.5806 0.000

FIE W 9149 371 294 1 0.1336 0.696 0.0168 242 0.6364 0.012

IBAF M 7377 78 986 1 0.091 0.771 0.0033 731 0.7273 0.000

maximum differences D and p-values in the KS tests for the 19 sports systems. From

Tab. 2.2, one could find all the p-values are much smaller than 0.05, which suggests all

the KS tests reject the null hypothesis at the 5% significance level. Therefore, we can

draw the conclusion that the RGF predictions could not be used to characterize the

sports data.

The possible reason is that the data samples of the sports systems are quite small,

which might lead to large uncertainty. We also conjecture that the differences between

the two kinds of systems might be caused by different mechanisms of formation. For

sports systems, the competition is the main driven force. Whether a player’s rank will

be upped or lowered, depends not only on his own performance but also on other’s. In

sports there is not much “rich-gets-richer” mechanism, which is dominant in city sizes,

human wealth and etc, however.
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2.3 Pareto principle

The Pareto principle [104], also well known as the 80-20 rule, states that, for many

events, roughly 80% of the effects comes from 20% of the causes. Pareto noticed that,

80% of Italy’s land was owned by 20% of the population. He carried out such surveys

on a variety of other countries further, and to his surprise, the rule was also fulfilled.

The 80-20 rule has also been used to attribute the widening economic inequality,

which showed that, the distribution of global income to be very uneven, with the richest

20% of the world’s population controlling 82.7% of the world’s income. The 80-20 rule

could be applied to many systems, from the science of management to the physical

world. The 80-20 rule seems to be almost an universal truth and can be applied to

practically all aspects of management and even to our personal lives. When used

correctly, Pareto analysis is a powerful and an effective tool for making continuous

improvement and in problem solving. Continued application of this rule will greatly

improve productivity, quality and profitability.

We also check this rule in the sports ranking systems. It is interesting to find that,

20% players indeed possess approximately 80% scores or prize money of the whole

system. The ratios obtained from different sports ranking systems are shown in Tab.

2.1, values of the ratios being all very close to 0.8. This suggests the imbalance in the

sports systems, exactly how this rule emerges in sports with different rules, governing

bodies and tournament structures is something of a puzzle. However, it means there is

certain predictability in the outcome of events in which two players are pitted against

each other.

2.4 Dependence of win probability on ∆ rank

Here we employ the concept of “win probability” to describe the chances that a player

or a team will win when encountering an opponent. For instance, what is the odds

that a No.1 player will top a No.100 player? What is again her chance against No.2?

Theoretically, the chance is much higher in the former case than is in the latter one.

But the result of a competition is not unknown until it is over, which mainly depends

on how the player performs at that specific match. However, the win probability could

be solely based on the previous performance of a player against a certain opponent,
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which then can used to predict her future performance against the same opponent. This

might have some applications in betting the result of a match. To simplify the case

without loss of generality, we relate the win probability solely to the rank difference of

a pair of players. Suppose we now have two players A and B, with A having a higher

rank. We will then need to know how likely A can beat B when they meet. This

quantity is related to but different from the win percentage we usually refer to. The

win percentage depicts the percentage of win of a player over all previous encounters.

We assume that the win probability only depends on the rank difference between two

players. This means, the probability that No.1 beats No.100 is the same as the one

that No.100 beats No.200. Hence, we have the following definition,

Pwin(∆r) =
Nwin(∆r)

Ntotal(∆r)
, (2.4)

where ∆r denotes the rank difference (integer), Nwin(∆r) is the total number of win

for the higher-ranked players when the rank difference is ∆r, and Ntotal(∆r) is the

total number of matches in which the rank difference between the pair is ∆r. We here

emphasize again that the win probability is the probability that the higher-ranked

player will win when two players meet. When ∆r is small, say 1, it is difficult to judge

which player will win, and in this case Pwin might approximately equal 0.5. When

∆r is large, for instance 100, Pwin might approach 1, which means the higher-ranked

player is very likely to win.

By using the Head to Head records of ATP and WTA, we find that the dependence

of Pwin on ∆r can be well characterized by the Bradley-Terry model [105] for paired

comparisons as follows,

Pwin =
1

1 + exp (−a ∗ ∆r)
, (2.5)

where a is a parameter dependent on the specific systems. For ATP and WTA, a is

0.021 and 0.032, respectively (Fig. 2.2). The existence of fluctuations is quite natural

since even Roger Federer will not win all the matches. The value of a can still tell

us some information about how competitive that certain sports is. The smaller a is,

the more competitive the sports will be. Let us take WTA and ATP as two examples.

When ∆r is 30, the win probability for WTA is nearly 0.7, while the counterpart for

ATP is 0.65. This means the game is more unpredictable in ATP than in WTA, it is

not strange since men’s game is more competitive than women’s.

The competitiveness parameter a plays a key role in both empirical analysis of the
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Fig. 2.2: (Color online) Dependence of win probability on ∆r of the players for ATP and WTA,

which can be well fitted to the sigmoidal function Pwin = 1/(1 + exp (−a ∗ ∆r)), with a=0.021

and 0.032 for ATP and WTA, respectively.

win probability and the simulations of the toy model, so we explain the differences

between different systems in two respects.

For the empirical part, we really wish to test the empirical finding by checking

data from different sports fields, other than in the tennis field of ATP and WTA. The

problem is that the data source of the Head to Head records is very limited in other

sports fields, to our best knowledge. Alternatively we present here the trend of the

functional form of the win probability in Fig. 2.3, in which, a = 0.01, 0.015 and 0.03,

may correspond to three different sports systems. As one can see, for the same ∆rank,

the competitions become stronger when a gets smaller.
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Fig. 2.3: (Color online) Theoretical curves of the win probability formula, Pwin = 1/(1 +

exp (−a ∗ ∆r)), with a=0.01, 0.015 and 0.03 for three different sports systems, respectively.

2.5 An agent-based model for sports systems

What is the origin of the universal scaling in different sports systems? Of course, there

have been so many approaches which can explain the origin of power-laws. Some mech-

anisms or theories are elegant, e.g., random walks [40], and self-organized criticality

(SOC) [106,107], etc. It is, however, difficult to try to apply these frameworks to sports

ranking systems. We propose an agent-based model, inspired by tennis. Of course, the

model may not suit any sports field but does have some general implications. Most

importantly, our model can reproduce robust power-laws without having to introduce

additional parameters.

2.5.1 Mechanisms of the model

The rules of the model are defined in the following way (Fig. 2.4),

(1) 2N players are ranked from 1 to 2N , being assigned random scores drawn from

a Gaussian distribution.

(2) For each tournament, all the players have entry permission. Therefore the draw

will include 2N players and in total N rounds. At each round, half of the players will

be eliminated when they lose. The rest will enter the next round. The losers at round
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Fig. 2.4: (Color online) A cartoon of a draw sample. After each round, half players will be

eliminated, the numbers “12, 86 ...” denote the ranks of the players.

n will gain score 2(n−1). The final champion wins score 2N .

(3) The key mechanism is to decide which one will lose for a given pair of players.

Here our empirical finding will be employed. Namely, when two players meet, the

probability that the higher-ranked player will top the lower-ranked opponent is given

by 1/(1 + exp(−a ∗ ∆r)), where ∆r is their rank difference, as before.

(4) A new tournament opens up and a new draw is made.

In principle, there is only one parameter in our model, that is a. We can simply call

it competitiveness parameter. Of course, there are some shortcomings in the model.

First, in the actual tournaments not all the players will be accepted. In grand slams

there are only 128 players. Second, tournaments can be divided into many categories

and may consist of different players. Third, the scoring systems for different tourna-

ments are a little different. For grand slams the scores and prize money are much higher

than other tournaments, if the players are eliminated at the same round. We certainly

can add these issues into our model in order to test the resilience of the model. At

the moment we do not wish to complicate the model by introducing additional param-

eters. What we need here is a skeleton which may allow us to understand some key

features of the specific systems. Namely, if the power-laws with exponential decay can

be reproduced through our model, then it is a feasible model.
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Fig. 2.5: (Color online) Cumulative distribution of scores from the simulation. For these two

samples, number of players Np = 2048, and number of total tournaments Nt = 128, with

Pwin = 1/(1 + exp(−a ∗ ∆r)), a = 0.032 and 0.021, respectively.

2.5.2 Simulation results and discussions

The most important parameter in our model is a, the so-called competitiveness pa-

rameter. The number of players Np and the number of tournaments Nt only have

finite-size effects. It is natural to check the dependence of the simulation results on

these parameters, which can reflect the resilience of our model.

First of all, we need to test whether the model can reproduce the power-laws of the

cumulative distribution of scores. In Fig. 2.5, Np equals 2048, and Nt is 128, while win

probability, Pwin = 1/(1 + exp(−a ∗ ∆r)), with a = 0.021 and 0.032, as given by the

empirical data of ATP and WTA, respectively. Here, we also use the same goodness-
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of-fit test, and p-value equals 0.85 and 0.91 for the two distributions, respectively.

Therefore, the cumulative distributions of scores given by the simulations indeed follow

the power-law distributions with exponential decay, P (S) ∝ S−τ exp(−S/Sc), with

τ = 0.2, 0.22, Sc = 0.23, 0.19, respectively for these two samples. Here, we notice that

the values of the parameters are very close to what are obtained from the empirical

data.

Fig. 2.6: (Color online) Influence of the critical parameter a on the final cumulative scores

distributions, values of a ranging from 0.0001 to 2.0.

2.5.3 Robustness of the model

In the formula of win probability, smaller values of a correspond to more intensive

competition. For instance, when a = 0.0001, Pwin 6 0.525 for ∆r 6 1000, which

means the higher-ranked player only has slightly more chances than the lower-ranked

player to win the match between them. While larger values of a suggest that the higher

ranked players would win the match with a much larger probability. For example, when

a = 2.0, Pwin > 0.88 for ∆rank > 1.

Thus here, to analyze the influence of win probability, we simulated our models

with different values of a, 0.0001 6 a 6 2.0. From Fig. 2.6, we can find that, as a

gets smaller, the values of τ will become larger, while those of Sc will become smaller.

When a is very small, such as a = 0.0001, the cumulative scores distributions change
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from the power laws with exponential decay to exponential. Since in this case, all

players nearly win the match randomly, thus the cumulative probabilities of the scores

approximates 1, 1/2, (1/2)2, ..., which results in the exponential distribution.

Fig. 2.7: (Color online) Simulation result of the cumulative scores distributions for different

number of tournaments, with Nt=64, 128, and 256.

For different number of tournaments, Nt = 64, 128 and 256, the cumulative distri-

butions of scores are shown in Fig. 2.7. As seen, all the cumulative distributions of

scores are power-laws with exponential decay, values of the exponents τ and Sc being

also very close to those of the empirical results.

In statistical physics, in order to determine the validity of the statistical approach,

we often take the thermodynamic limit, in which the number of components N tends

to infinity [108]. However, in real-world networks, the number of vertices or agents can

never be that large and therefore we need to study the finite-size effect. For example,

even the largest artificial net, the World Wide Web, whose size will soon approach 1011,

also shows qualitatively strong finite-size effect [109].

Therefore, here, in order to test the influence of the finite-size effect on the final

cumulative distribution of scores, we consider the transformed score distribution P (S)∗
Sτ versus S/Sc, where Sc is the characteristic turning point of the exponential decay.

For four different system sizes, such relationships were shown in Fig. 2.8, which suggests

that, the tails of the four curves almost collapse with each other.
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Fig. 2.8: (Color online) Finite-size effects analysis of the simulation results, with Np=512, 1024,

2048 and 4096.

We also considered the influence of the players’ initial score distributions on the

final simulation results. For the same number of players, Np = 1024, the same number

of tournaments, Nt = 128, and the same win probability, Pwin = 1/(1 + exp(−a ∗
∆r)) with a = 0.015, we conducted the simulations on several different initial score

distributions, e.g., the uniform distributions, the Gaussian distributions with different

standard deviations (Mean value=50, Sigma=1, 3, 7, 11). The simulation results are

shown in Fig. 2.9, as one could observed, all the cumulative distributions of scores

from the simulations are almost identical, and they could be characterized by P (S) ∝
S−τ exp(−S/Sc), with τ = 0.23, Sc = 0.11. Therefore, the initial score distributions

have little influence on the final simulation results. The reasons behind should due to

that, the awards to the winners accumulate in each round of tournaments, and this

effect results that the final scores of players are much larger than their initial ones (

Mean value=50).

As the major goal of our model is that it could reproduce the trend of empirical

finding of cumulative score distributions. Therefore the predictive power of the model

is rather modest. We don’t think it could be a general framework for all kinds of

sports systems. However, we are plotting of enriching the model by considering more

ingredients so that the model could be more powerful. Of course in doing so we might

have to consider the cost of introducing additional parameters.
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Fig. 2.9: (Color online) Different initial score distributions, e.g., the uniform distributions, the

Gaussian distributions with different standard deviations, (Mean value=50, Sigma=1, 3, 7, 11),

and their influences on the final simulation results.

2.6 Conclusion

Ranking is a direct measure of the individuals’ performance in the whole system, in

order to characterize the intrinsic common features and underlying dynamics of ranking

systems, we chose to analyze the rankings in a specific kind of systems, i.e., sports

systems, in which players or teams are ranked by their scores or prizes. Our concrete

results concern: (i) Universal scaling is found in the distributions of scores and/or prize

money, with values of the power exponents being close to each other for 40 samples of

12 sports ranking systems. (ii) Players’ scores are found to obey the Pareto principle,

which means, approximately 20% of players possess 80% of total scores of the whole

system. (iii) Win probability is introduced to describe the chance that a higher-ranked

player or a team will win when meeting a lower-ranked opponent. We relate the win

probability solely to the rank difference ∆r, and for tennis the win probability has

been empirically verified to follow the sigmoid function, Pwin = 1/(1 + exp (−a ∗ ∆r)).

(iv) By employing the empirical features of win probability, we propose an agent-based

model to simulate the process of the sports systems, and the universal scaling could

be well reproduced by our model. And this result is quite robust when we change the

values of parameters in the model.
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Chapter 3

Explaining Zipf’s Law via Mental

Lexicon

3.1 Zipf’s law for natural and artificial languages

For a given text in natural or artificial languages, if we order and normalize the fre-

quency series of words in the text,

{fr}n
r=1 , f1 ≥ f2 ≥ ... ≥ fn ,

∑n

r=1
fr = 1 , (3.1)

fr is the normalized frequency of the word with rank r, n is the number of different

words, the Zipf’s law [110, 111] states that the normalized frequency fr is inversely

proportional to the rank r,

fr = cr−γ, γ ≈ 1.0, (3.2)

c is the prefactor, γ is the exponent, and normally γ ≈ 1.0. When the rank-frequency

relation is plotted in the double-log scale (Fig. 3.1), we can find the observed linear

relationship is strongest in the middle range, both very high and very low frequency

items deviate from the log-log regression line (they are below the Zipf curve).

The Zipf’s law is the major regularity of statistical linguistics, it applies to the texts

written in many natural and artificial languages. For instance, in human language

families, e.g., the Indo-European language family, such as English, French, German,

Spanish, Russian, Italian, etc; the Sino-Tibetan language family, such as Chinese, etc.

In artificial languages, e.g., the computer programming languages, such as the modern

Java, C++, C language, etc.
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Fig. 3.1: (Color online) Log-log plot of the frequency vs. rank for one sample text. The Zipf’s

law holds in the middle range, both the very high and very low frequencies deviate from the log-log

regression line (Zipf curve).

3.2 Origins of Zipf’s law

The almost universal validity of the Zipf’s law fascinated generations of scholars, how-

ever in spite of its venerable history (starting with Pareto 1897, Estoup 1916, Willis

1922, Yule, 1924) and considerable empirical support, Zipf’s law remains one of the

least understood phenomena in mathematical linguistics, i.e., its message is still not

well understood: is it just a consequence of simple statistical regularities [112,113], or

it reflects a deeper structure of the text [114]? Many approaches were proposed for

deriving the Zipf’s law suggesting that it can have different origins, they can be divided

into two groups.

3.2.1 Language as a media of communication

These theories deduce the Zipf’s law from certain general premises of the language:

(1) The Zipf’s idea that the language trades-off between maximizing the information

transfer and minimizing the speaking-hearing effort [110]. Since this idea accounts for

multi-functionality and short length of the most frequent words, it is so far still not

conclusive [115, 116].
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(2) The language employs words via the optimal setting of [algorithmic] information

theory [112,117,118].

(3) Due to the competition of meanings, the derivation of the law is based on the

idea that the words organize into hierarchical structure, where the most frequent words

are the ones with wider meanings [119].

The general problem of derivations from this group is that explaining the Zipf’s

law for the language (and verifying it for a frequency dictionary) does not yet mean to

explain the law for a concrete text, where the frequency of the same word varies widely

from one text to another and is far from its value in a frequency dictionary [121].

3.2.2 Probabilistic model

The law can be derived from certain probabilistic models [113, 120,122–125].

(1) Albeits some of these models assume relevance for realistic text-generating pro-

cesses [123, 124], their a priori assumed probability structure is intricate, hence the

question “why is there the Zipf’s law?” translates into “why is there a specific proba-

bilistic model?”

(2) There also belong derivations from various generalizations of the maximum

entropy method [120,121]. Here, however, the choice of the function to be maximized

(and of the relevant constraints) is not clear, in contrast to the original method.

(3) Yet by far most known probabilistic model is a random text, where words are

generated through random combinations of letters and the space symbol seemingly

reproducing the fr ∝ r−1 shape of the law [112, 113]. But the reproduction is elusive,

since the model leads to a huge redundancy—many words have the same frequency and

length—features absent in normal texts. A recent study outlines in detail the statistical

differences between random and usual texts and review the previous literatures [126].

3.3 Motivations and Methods

Our approach for deriving the Zipf’s law also uses a probability model, but it differs

from previous models in several respects. First, it explains the law for a single text

together with its limits of validity, i.e. together with the range of ranks where it holds.

It also explains the rank-frequency relation for very rare words (hapax legomena) and
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Table 3.1: Parameters of the texts: the total number of words N , the number of different words

n, the lower rmin and the upper rmax ranks of the Zipfian domain, the fitted values of c and γ,

and the difference d between the total frequency of the Zipfian domain got empirically and its

value according to the Zipf’s law: d =
∑rmax

k=rmin
(ck−γ − fk). TF & TM means joining the texts

TF and TM.

Texts N n rmin rmax c γ |d|
TF 26624 2067 36 371 0.168 1.032 0.00333

TM 31567 2612 42 332 0.166 1.041 0.01004

AR 22641 1706 32 339 0.178 1.038 0.00048

DL 24990 1748 34 230 0.192 1.039 0.02145

TF & TM 54191 3408 30 602 0.139 1.013 0.02091

TF & AR 45265 2656 33 628 0.138 0.998 0.00239

TF & DL 47614 2877 28 527 0.162 1.014 0.01490

TM & AR 54208 3184 43 592 0.157 1.021 0.00491

TM & DL 56557 3154 45 493 0.161 1.023 0.01211

AR & DL 47631 2550 38 496 0.165 1.012 0.00947

Four texts 101822 4047 39 927 0.158 1.015 0.00187

relates it to the Zipf’s law. Second, the a priori structure of our model get explained via

Bayesian statistics, a branch of probability theory that is involved with explaining and

interpreting the meaning of prior probability. For our situation, the a priori structure

of our model relates to the general features of mental lexicon [127] of the author who

produced the text. Third, the model is not ad hoc: though it is new in its entirety,

its elements were already used successfully for text modelling, i.e., it is based on the

latent semantic analysis.

3.4 Validity range of the Zipf’s law

. Before introducing the model, we need to clarify the applicability of the Zipf’s law.

As is well known, Zipf’s law applies mainly for the middle range of ranks, below we

present the empirical results that clarify the valid range of the Zipf’s law, confirm some

known results, but also make several new points that motivate the theoretical model

worked out in the sequel.
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3.4.1 Database of English texts

We studied, in particular, four English texts written in different genres and epochs

and having few thousands different words [see Tab 3.1]. This size is large enough to

make the frequencies of words stable, but it is short enough for the text to have a well-

defined meaning. Such texts enforce the understanding of the law, when we contrast

the separate texts to their mixtures.

-The Age of Reason (AR) by T. Paine, 1794 (the major source of British deism,

N = 22641 words).

-Thoughts on the Funding System and its Effects (TF) by P. Ravenstone, 1824

(economics, N = 26624 words).

-Time Machine (TM) by H. G. Wells, 1895 (a science fiction classics, N = 31567

words).

-Dream Lover (DL) by J. MacIntyre, 1987 (a romance novella, N = 24990 words).

3.4.2 Summary of empiric findings

We employ the linear fitting method to clarify the valid range of the Zipf’s law (r ∈
[rmin, rmax]), to get the values of rmin, rmax, and the corresponding values of c and γ.

For detail explanations, please refer to Appendix A. Followings are a list of the empiric

results after using the linear fitting method:

1. For each text there is a specific (Zipfian) range of ranks r ∈ [rmin, rmax], where

the Zipf’s law holds with γ ≈ 1 and c < 0.2 [110, 111]; see Tab 3.1. Both for r < rmin

and r > rmax the law is invalid, since the frequencies are below the Zipf curve (apart of

very small exclusions, see Fig. 3.2) [110, 111].

2. Even if the same word enters into different texts it typically has quite different

frequencies there [121], e.g. among 83 common words in the Zipfian ranges of AR and

DL, only 12 words have approximately equal ranks and frequencies (most of them are

function words).

3. The pre-Zipfian 1 ≤ r < rmin range contains mainly function words. They

serve for establishing grammatical constructions (e.g., the, a, such, this, that, where,

were). But the majority of words in the Zipfian range do have a narrow meaning

(content words). A subset of those content words has a meaning that is specific for the
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Fig. 3.2: (Color online) Frequency vs. rank for the texts Age of Reason (AR), Dream Lover

(DL). Arrows and red numbers indicate on the range, where the Zipf law holds. The red line is

the Zipf’s law curve obtained from the fittings, fr = 0.178r−1.038 and fr = 0.192r−1.039.

text and can serve as its keywords. This is known and is routinely used in document

processing [152]. (We will explain why the majority of key-words appear in the Zipfian

domain in the solutions of our model.)

Few keywords appear also in the pre-Zipfian range, e.g. love and miss for DL and

god and man for AR. Some keywords are also located in the post-Zipfian area, e.g. eloi

for TM, but the majority of them are in the Zipfian range.

To confirm that the words from the Zipfian range relate to the meaning of the text,

we excluded from our texts all the words from the third (post-Zipfian) range, and saw

that not only the rough meaning of the text stayed intact, but also its basic conceptions

and its deeper, intrinsic message (AR and TM do have such a message).
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Fig. 3.3: (Color online) Frequency vs. rank for the joint text Dream Lover & Age of Reason.

Red line: the Zipf curve fr = 0.165r−1.012. Arrows and red numbers indicate on the validity range

of the Zipf’s law. Blue line: the numerical solution of (3.11, 3.12) for c = 0.165. It coincides

with the generalized Zipf law (3.17) for r > rmin = 38. The step-wise behavior of fr for r > rmax

refers to hapax legomena.

4. The absolute majority of different words with ranks in [rmin, rmax] have different

frequencies. Only for r ≃ rmax the number of different words having the same frequency

is ≃ 10. For r > rmax we meet the hapax legomena effect: words occurring only few

times in the text (frN is a small integer), and many words having the same frequency

fr [111]. The effect is not described by a smooth rank-frequency relation, including the

Zipf’s law. Generalizations of the law that do account for hapax legomena are reviewed

in [111].

5. The minimal frequency of the Zipfian domain holds

frmax
> c/n. (3.3)

We checked that (3.3) is valid not only for separate texts but also for the frequency

dictionaries of English and Irish. For our texts a stronger relation holds frmax
& 1

n
.

6. When joining (mixing) two texts (A and B), the word frequencies get mixed:

fk(A&B) = NA

NA+NB
fk(A) + NB

NA+NB
fk(B), where NA and fk(A) are, respectively, the

total number of words and the frequency of word k in the text A.

After joining two texts the range of the Zipf’s law increases mainly via acquiring
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more higher rank words, i.e. rmin stays approximately fixed, while rmax increases; see

Tab 3.1. For instance, the Zipfian interval Z[DL] (Z[AR]) of DL (AR) contains 10

(30) words that do not enter to Z[DL+AR] (the Zipfian range of the joint text), but

instead Z[DL+AR] has 93 new words that appear neither in Z[DL] nor Z[AR]. Hence

the Zipfian range of the joint text increases.

The exponent γ gets closer to 1 and the prefactor c decreases. Also the overall

precision of the Zipf’s law increases; see Tab 3.1. The valid range of the law increases,

since the Zipfian domains of different texts contain mainly different words [see 2]. After

joining, these domains combine. In particular, the keywords stay in the Zipfian range,

e.g. after joining all four above texts, the keywords of each text are still in the Zipfian

range (which now contains almost 900 words).

This feature of the law is consistent with statistical modelling. For this conclusion

it is essential to account for its validity limits [rmin, rmax], otherwise one can get the

opposite (and incorrect) conclusion announced in [114].

3.5 Probabilistic Model

3.5.1 Three features of the model

According to the above empiric findings, a model for the Zipf’s law is supposed to

satisfy the following features:

(1) Apply to separate texts, i.e. explain how and why different texts can satisfy the

same form of the rank-frequency relation despite the fact that the same words do not

occur with same frequencies in the different texts.

(2) Derive the law in its totality, the prefactor c, the exponent γ, together with its

extensions for all frequencies, limits of validity and hapax legomena effect.

(3) Relate the law to formation of a text.

3.5.2 Descriptions of the model

Two sources of the model are the latent semantic analysis [131], and the idea of applying

ordered statistics for rank-frequency relations [117,133,134]. The descriptions (A−D)

of the model are as follows:
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A. The bag-of-words picture focusses on the frequency of the words that occur in a

text and neglects their mutual disposition (i.e. syntactic structure, grammar structure,

etc) [132]. Given n different words {wk}n
k=1, the joint probability for wk to occur νk ≥ 0

times in a text T is multinomial

π[ν|θ] =
N ! θν1

1 ...θνn
n

ν1!...νn!
, ν = {νk}n

k=1, θ = {θk}n
k=1, (3.4)

where N =
∑n

k=1 νk is the length of the text, νk is the number of occurrences of wk,

and θk is the probability of wk. The picture is well-known in computational linguistics

and produces reasonable results for document classification [132]. But for our purposes

this picture is incomplete, because it implies that each word has the same probability

for different texts.

B. To improve this point we make θ a random vector [132] with a text-dependent

density P (θ|T ). The simplest assumption is that (T, θ, ν) form a Markov chain: the

text T influences the observed ν only via θ. Then the probability p(ν|T ) of ν in a

given text T reads

p(ν|T ) =

∫

dθ π[ν|θ] P (θ|T ). (3.5)

This form of p(ν|T ) is basic for probabilistic latent semantic analysis [131], a successful

method of computational linguistics. There the density P (θ|T ) of latent variables θ is

determined from the data fitting. But we shall deduce P (θ|T ) theoretically.

C. P (θ|T ) is generated from a density P (θ) via conditioning on the ordering of

w = {wk}n
k=1 in T :

P (θ|T ) = P (θ) χT (θ,w)

/
∫

dθ
′ P (θ′) χT (θ′,w) . (3.6)

If different words of T are ordered as (w1, ..., wn) with respect to the decreasing fre-

quency of their occurrence in T (i.e. w1 is more frequent than w2), then χT (θ,w) = 1

if θ1 ≥ ... ≥ θn, and χT (θ,w) = 0 otherwise.

As substantiated below, P (θ) refers to the mental lexicon of the author prior to

generating a concrete text.
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D. For simplicity, we assume that the probabilities θk are distributed identically

and the dependence among them is due to
∑n

k=1 θk = 1 only:

P (θ) ∝ u(θ1) ... u(θn) δ(
∑n

k=1
θk − 1), (3.7)

where δ(x) is the delta function and the normalization ensuring
∫ ∞

0

∏n
k=1 dθk P (θ) = 1

is omitted.

3.5.3 Solutions and Discussions

. The conditional probability pr(ν|T ) for the r’th most frequent word wr to occur ν

times in the text T reads from (3.4, 3.5)

pr(ν|T ) =
N !

ν!(N − ν)!

∫ 1

0

dθ θν(1 − θ)N−νPr(θ|T ), (3.8)

Pr(t|T ) =

∫

dθ P (θ|T )δ(t− θr), (3.9)

where Pr(t|T ) is the marginal density for the probability t of wr. For n ≫ 1, we

deduce in Appendix B from (3.6, 3.7) that Pr(t|T ) follows the law of large numbers, it

is Gaussian,

Pr(t|T ) ∝ exp[− n3

2σ2
r

(t − φr)
2], (3.10)

where σr = (c + nφr)
√

nφr, and the mean φr is found from two equations for two

unknowns µ and φr:

r/n =

∫ ∞

φr

dθ u(θ) e−µθn

/
∫ ∞

0

dθ u(θ) e−µθn , (3.11)

∫ ∞

0

dθ θ u(θ) e−µθn =
1

n

∫ ∞

0

dθ u(θ) e−µθn. (3.12)

Eq. (3.10) holds for Pr(t|T ) whenever its standard deviation σrn
−3/2 is much smaller

than the mean φr; as checked below, this happens already for r > 10.

The meaning of (3.11, 3.12) is explained via the marginal density P (θ1, ..., θm) =
∫ ∞

0

∏n
k=m+1 dθk P (θ) found from (3.7). For n ≫ 1 and m ≪ n it factorizes (see details

in Appendix C):1

P (θ1, ..., θm) =
∏m

l=1
P (θl) ∝

∏m

l=1
u(θl)e

−µθln. (3.13)

1Eq. (3.13) can be established via the saddle point method in Appendix C, or heuristically via the

exact relation [
∑n

k=1
θk]2 = 1, where f means averaging over P (θ). This relation predicts, together

with θk = 1

n
, that θiθj − θi θj = O(n−3), hence approximate factorization.
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Eq. (3.12) ensures that
∫ ∞

0
dθ θ P (θ) = 1

n
. This relation follows from

∑n
k=1 θk = 1

and it determines µ, an analogue of the chemical potential in statistical physics. The

interpretation of (3.11) is that it equates the relative rank r/n to the (unconditional)

probability
∫ ∞

φr
dθ P (θ) of θ ≥ φr.

Let us study implications of (3.8–3.12) for the Zipf’s law.

In (3.8), Pr(θ|T ) is much more narrow peaked than θν(1−θ)N−ν , since n3 ≫ N ≫ 1

[see Tab 3.1]. Hence in this limit we approximate Pr(θ|T ) ≃ δ(θ − φr) [see (3.10)]:

pr(ν|T ) =
N !

ν!(N − ν)!
φν

r(1 − φr)
N−ν . (3.14)

Eq. (3.14) is the main outcome of the model; it shows that the conditional probability

pr(ν|T ) for the occurence number ν of the word wr has the same form (3.14) for different

text. In (3.14), φr is the [effective] probability of the word wr. If Nφr ≫ 1, pr(ν|T )

is peaked at ν = Nφr: the frequency of a word that appears many times equals its

probability. Each word of the Zipfian domain occurs at least ν ∼ N/n ≫ 1 times. For

such words we approximate fr ≡ ν/N ≃ φr.

Now we postulate in (3.7)

u(f) = (n−1c + f)−2, (3.15)

where c will be related below to the prefactor of the Zipf’s law. (We will explain the

meaning of Eq. (3.15) and relates it to the features of the author’s mental lexicon in

the following section.)

For c . 0.2, cµ determined from (3.12, 3.15) is small and is found from integration

by parts:

µ ≃ c−1 e−γE−
1+c

c , (3.16)

where γE = 0.55117 is the Euler’s constant. One solves (3.11) for cµ → 0: r/n =

ce−nφrµ/(c + nφr). For r > rmin, φrnµ = frnµ < 0.04 ≪ 1. We get

fr = c(r−1 − n−1). (3.17)

This is the Zipf’s law generalized by the factor n−1 at high ranks r. This cut-off factor

ensures faster [than r−1] decay of fr for large r. In literature a cut-off factor similar

to 1
n

is introduced due to additional mechanisms (hence new parameters) [123]. In our

situation the power-law and cut-off come from the same mechanism.
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Table 3.2: For the text TF, rk are the ranks, where the number of occurences changes from

k to k + 1; r̂k = ( k
cN + 1

n)−1 is the theoretical predictions of rk. The maximal relative error
r̂k−rk

rk
= 0.0357 is reached for k = 6.

r/k 1 2 3 4 5 6 7 8 9 10

rk 1446 1061 848 722 611 529 474 437 398 370

r̂k 1414 1074 866 726 624 547 488 440 400 368

Fig. 3.3 shows that (3.17) reproduces well the empirical behavior of fr for r > rmin.

Our derivation shows that c is the prefactor of the Zipf’s law, and that our assumption

on c < 0.2 above (3.16) agrees with observations (Tab. 3.1). For c ≫ 0.2, (3.11, 3.12)

do not predict the Zipf’s law (3.17).

For given prefactor c and the number of different words n, (3.11–3.15) predict the

Zipfian range [rmin, rmax] in agreement with empirical results (Fig. 3.3).

For r < rmin, it is not anymore true that frnµ ≪ 1. So the fuller expression (3.11)

is to be used. It reproduces qualitatively the empiric behavior of fr, see Fig. 3.3. We

do not expect any better agreement theory and observations for r < rmin: since the

behavior of frequencies of the words in this range is irregular.

According to (3.14), the probability φr is small for r ≫ rmax and hence the occur-

rence number ν ≡ frN of a words wr is a small integer (e.g. 1 or 2) that cannot be

approximated by a continuous function of r, see (3.15) and Fig. 3.3. To describe this

hapax legomena range, define rk as the rank, when ν ≡ frN jumps from integer k to

k+1. Since φr reproduces well the trend of fr even for r > rmax, rk can be theoretically

predicted from (3.17) by equating its left-hand-side to k/N :

r̂k = [
k

Nc
+

1

n
]−1, k = 0, 1, 2, ... (3.18)

Eq. (3.18) is exact for k = 0, and agrees with rk for k ≥ 1 (Tab 3.2). Hence it describes

the hapax legomena phenomenon (many words have the same small frequency). For

k ≫ Nc/n we deduce from (3.18) r̂k − r̂k+1 ∝ k−2 for the number of words having the

frequency k/N . This relation, which is a crude particular case of (3.18), is sometimes

called the second Zipf’s law [111].
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Preliminary summary:

Thus till this end, our model explained, though different texts can have different

frequencies for same words, the frequencies of words in a given text follow the Zipf’s

law. Without additional fitting parameters and new mechanisms we recovered the

generalized form of this law applicable for large and small frequencies. But why we

would select (3.15), if we would not know that it reproduces the Zipf’s law? We answer

this question in the following section.

3.6 Mental lexicon and the apriori density

. In this section, I explain why we employ the apriori probability density (3.15), and

how it relates to the stable and efficient organizations of the mental lexicon of the

author who produced the text. But before doing that, I would like to introduce some

preliminary knowledge about the mental lexicon.

3.6.1 Mental lexicon, theories and perspective

The mental lexicon [137,138] is a mental dictionary in our human brain which contains

the information regarding a word’s meaning, pronunciation, syntactic characteristics,

and so on. It differs from the general static book dictionary in that it is not just a

general collection of words, instead, it deals with how those words are stored, processed,

activated and retrieved. Therefore, normally, there are two basic questions related to

mental lexicon:

1. The organization of the mental lexicon, i.e., how words are stored in long-term

memory?

2. Lexical access, how words are retrieved from the mental lexicon?

Researches are conducted in various ways to identify the exact mode that words

are linked and accessed. A common method to analyze these connections is through

the lexical decision task, in which the participants are required to respond as quickly

and accurately as possible to a string of letters presented on a screen to decide if the

string is a non-word or a real word.

One important theory in the mental lexicon, namely the semantic network theory,

proposed the idea of spreading activation, i.e., the nodes in the semantic network are
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activated in three ways, priming effects, neighborhood effects, and frequency effects.

- Priming effects: it accounts for the decreased reaction times of related words in

a lexical decision task, for example, the word bread “primed” butter to be retrieved

quicker.

- Neighborhood effects: it refers to the activation of all similar “neighbors” of a

target word, while neighbors are defined as items that are highly confusable with the

target word due to overlapping features of other words. For examples, the word “game”

has the neighbors “came, dame, fame, lame, name, same, tame, gale, gape, gate, and

gave”. The neighborhood effect depicts that words with larger neighborhood sizes will

have quicker reaction times in a lexical decision task.

- Frequency effects: experiments found that high frequency words were responded

faster than the low frequency ones in a lexical decision task.

3.6.2 Characteristics of the apriori density

Now, I began to explain why we chose

P (θ) ∝ u(θ1) ... u(θn) δ(
∑n

k=1
θk − 1), (3.19)

u(θ) = (cn−1 + θ)−2, (3.20)

as the apriori probability density for the probabilities θ = (θ1, ..., θn) of different words

(w1, ..., wn). To avoid the awkward term “probability for probability” we shall call

P (θ) likelihood. We focus on the marginal likelihood [see (3.13)]:

P (θ) = (n−1c + θ)−2e−µnθ, (3.21)

since the marginal likelihood P (θ) determines the rank-frequency relation (3.11).

We assume that during the conceptual planning of the text, i.e. when deciding on

its topic, style and potential audience, the author already chooses (at least approxi-

mately) two structural parameters: the potential number n of different words to appear

there and the constant c. This is why the marginal likelihood (3.21) depends on the

parameters c and n. Moreover, c (along with n) is a structural parameter of the text,

since c/n separates the Zipfian (keywords dominated) range from the hapax legomena

range (rare words), see point 5 of the empiric results.

Note that different words have the same marginal likelihood (3.21), or that is to say,

the likelihood P (θ) is symmetric with respect to interchanging the words w1, ..., wn.
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This feature relates to an experimental fact that words are stored in the mental lexicon

in the same way [142]. The difference between them—e.g. whether the word is more

familiar to the author, and/or used by him more frequently—can be relevant during

the (later) phonologization stage of speech/text production [142]. Naturally, the above

symmetry holds only for the apriori likelihood. The posterior likelihood P (θ|T ), the

one that is conditioned over the written text, does not and should not have such a

symmetry.

The basic reason for the words to have random (not fixed) probabilities is that

the text-producing author should be able to compose different texts, where the same

word can have different frequencies. Hence the likelihood P (θ) of random probabilities

relates to the prior knowledge (or lexicon) of the text-generating author on the words.

This concept of mental lexicon—the store of words in the long-time memory so that the

words are employed on-line for expressing thoughts via phrases and sentences—is well-

established in psycholinguistics [137]. Though there is no a unique theory of mental

lexicon—there is only a diverse set of competing models [137]—some of its basic features

are well-established experimentally and are employed below for explaining the choice

(3.19, 3.20).

3.6.3 Relations of the apriori density and mental lexicon

Once each word wk has to have a variable (random) probability θk, there should be

a way for the author to change (increase or decrease) this probability, e.g. when the

author decides that the word wk is to become the keyword of the text. The ensuing

relation between the probability vectors θ
′ (new) and θ (old) should be a group, since

the author should be able to come back from θ
′ to θ, e.g. when revising the text.

Under certain conditions, the only group that (for n ≥ 3) is [139]:

θ′k =
τkθk

∑n
l=1 τlθl

, τk > 0, k = 1, ..., n, (3.22)

where τk are the group parameters. If the author wants to increase two times the

probability of the word w1, then τ1 = 2 and τk≥2 = 1.

In interpreting those changes, we adapt (3.22) to the probability increase of a single

word w1, whose probability the author decides to increase by τ1 > 1 times. Thus, (3.22)
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is applied for τ2 = ...τn = 1:

θ′1 =
τ1θ1

1 + (τ1 − 1)θ1
, θ′l =

θl

1 + (τ1 − 1)θ1
, for l ≥ 2. (3.23)

The inverse of transformation (3.23) reads

θ1 =
τ−1
1 θ′1

1 + (τ−1
1 − 1)θ′1

, θl =
θ′l

1 + (τ−1
1 − 1)θ′1

. (3.24)

In the frequency range we are interested in, (τ−1
1 − 1)θ′1 can be neglected, hence (3.24)

just reduces to the scaling transformation:

θ1 = τ−1
1 θ′1, θl = θ′l. (3.25)

The change of the marginal likelihood for θ1 is deduced from (3.21, 3.25):

P ′(θ′1) =
1

τ1
P (

θ′1
τ1

) =
1

τ1
(
c

n
+

θ′1
τ1

)−2. (3.26)

Thus, for the ratio of the new to the old likelihood of the probability θ′1 we get

P ′(θ′1)/P (θ′1) = τ1 > 1 for θ′1 ≫ cτ1/n, (3.27)

= τ−1
1 < 1 for θ′1 ≪ cτ1/n. (3.28)

The meaning of (3.27) is that once the author decides to increase the probability of

the word w1 by τ1 times, this word will be τ1 times more likely produced with the

higher probabilities, and τ1 times less likely with smaller probabilities; see (3.28). The

feature is unique to the form (3.21) of the marginal likelohood, which by itself is due

to the form (3.20) of u(θ). This is the mechanism that ensures the appearance of the

keywords in the Zipfian range.

If P (θ) is assumed to reflect the organization of the mental lexicon, then accord-

ing to (3.27, 3.28) this organization is efficient, because the decision on increasing the

probability of w1 translates to increasing the likelihood of larger values of the probabil-

ity. The organization is also stable, because the likelihood at large probabilities does

increase right at that amount the author planned (not more).

The message of (3.27, 3.28) closely relates (but is not completely identical) to the

word-frequency effect well-known for the mental lexicon: more frequently used words

are produced (recalled) more easily [137, 142, 143]. In the context of (3.27, 3.28) this

implies that the words that are decided to appear with more probability (e.g. the

keywords) will be more likely produced with higher probabilities.
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3.7 Concluding remarks

The Zipf’s law—together with the limits of its validity, its generalization to high and

low frequencies and hapax legomena—relates to the stable and efficient organization of

the mental lexicon of the text-producing author. Practically, we expect these schemes

to be more efficient for real texts, if the prior structure of the model conforms the Zipf’s

law. Our derivation of the Zipf’s law will motivate the usage of priors (3.13, 3.15) in

the schemes of latent semantic analysis, to improve the performance of probabilistic

latent semantic analysis algorithms making them more consistent with the Zipf’s law.

Also, the proposed methods can find applications for studying rank-frequency relations

and power laws in other fields.
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Chapter 4

Rank-frequency Relation for

Chinese Characters

4.1 Research motivation and outline

One widely known aspect of the rank-frequency relation that holds for texts written in

many alphabetical languages is the Zipf’s law [110,144,145]. This regularity was first

discovered by Estoup [146]:

fr ∝ r−γ with γ ≈ 1. (4.1)

The message of a power-law rank-frequency relation is that there is no a single group

of dominating words in a text, they rather hold some type of hierarchic, scale-invariant

organization.

However, the Zipf’s law was so far found to be absent for the rank-frequency relation

of Chinese characters [154–158,161], which play—sociologically, psychologically and (to

some extent) linguistically—the same role for Chinese readers and writers as the words

do in Indo-European languages [163–165].

Rank-frequency relations for Chinese characters were first studied by Zipf and coau-

thors who did not find the Zipf’s law [153]. They claimed to find another power law

with exponent γ = 2 [153], but this result was later on shown to be incorrect [155],

since it was not based on any goodness of fit measure. It was also proposed that the

data obtained by Zipf are reasonably fit with a logarithmic function fr = a+ b ln(c+r)

with constant a, b and c [155]. The result on the absence of the Zipf’s law was then
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confirmed by other studies [156–158, 161]. All these authors agree that the Zipf’s

law is absent (more generally a power law is absent), but have different opinions on

the (non-power-law) form of the rank-frequency relation for Chinese characters: log-

arithmic [155], exponential fr ∝ e−dr (where d > 0 is a constant) [156, 157, 161] or a

power-law with exponential cutoff [154,158].

The Zipf’s law is regarded as a universal feature of human languages on the level

of words [162] 1. Hence the invalidity of the Zipf’s law for Chinese characters has

contributed to the ongoing debate on controversies (coming from linguistics and ex-

perimental psychology) on whether and to which extent the Chinese writing system is

similar to phonological writing systems [167–169]; in particular, to which extent it is

based on characters in contrast to words 2.

In this chapter, the rank-frequency relations for short, long, and mixtures of English

and Chinese texts have been analyzed, the research outline amounts to the following

items:

– The Zipf’s law holds for sufficiently short (few thousand different characters)

Chinese texts written in Classic or Modern Chinese 3. Short texts are important,

because they are building blocks for understanding of long texts. For the sake of rank-

frequency relations, but also more generally, one can argue that long texts are just

mixtures (joining) of smaller, thematically homogeneous pieces. This premise of our

approach is fully confirmed by our results.

– The validity scenario of the Zipf’s law for short Chinese texts is basically the same

as for short English texts 4: the rank-frequency relation separates into three ranges.

1Applications of the Zipf’s law to automatic keyword recognition are based on this fact [152],

because keywords are located mostly in the validity range of the Zipf’s law. A related set of applications

of this law refers to distinguishing between artificial and natural texts, fraud detection [159] etc;

see [160] for a survey of applications in natural language processing.
2We stress already here that the Zipf’s law holds for Chinese words [158]. This is expected and

intuitively follows from the possibility of literal translation from Chinese to English, where (almost)

each Chinese word is mapped to an English one (see our glossary at Appendix E for definition of

various special terms). In this sense, the validity of the Zipf’s law for Chinese words is consistent with

the validity of this law for English texts.
3Reforms started in the mainland China since late 1940’s simplified about 2235 characters. Tradi-

tional characters are still used officially in Hong-Kong and Taiwan.
4Here and below we refer to a typical Indo-European alphabetical based language as English,

meaning that for the sake of the present discussion differences between various Indo-European and/or

Uralic languages are not essential. Likewise, we expect that the basic features of the rank-frequency
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(1) The range of small ranks (more frequent characters) that contains mostly function

characters; we call it the pre-Zipfian range. (2) The (Zipfian) range of middle ranks

(more probable words) that contains mostly content characters. (3) The range of rare

characters, where many characters have the same small frequency (hapax legomena).

– The essential difference between Chinese characters and English words comes in

for long texts, or upon mixing (joining) different short texts. When mixing different

English texts, the range of ranks where the Zipf’s law is valid quickly increases, roughly

combining the validity ranges of separate texts. Hence for a long text the major part of

the overall frequency is carried out by the Zipfian range. When mixing different Chinese

texts, the validity range of the Zipf’s law increases very slowly. Instead there emerges

another, exponential regime in the rank-frequency relation that involves a much larger

range of ranks. However, the Zipfian range of ranks is still (more) important, since it

carries out some 40% of the overall frequency. This overall frequency of the Zipfian

range is approximately constant for all (numerous and very different) Chinese texts we

studied.

– The reason of why different authors get different results for the rank-frequency

relation of Chinese characters in big mixtures has to do with the fact that this relation

is necessarily not universal: it emerges out of mixing of shorter texts that hold the

Zipf’s law, but the result of mixing crucially depends on what is mixed and in which

proportion this is done. The resulting rank-frequency relation thus looses universality

for those ranks, where the Zipf’s law does not hold.

4.2 Zipf’s law for short texts

We studied several English and Chinese texts of different lengths and genres written

in different epochs; see Tabs. 4.1, 4.2 and 4.3. Some Chinese texts were written using

modern characters, others employ traditional Chinese characters. Chinese and English

texts are described in Appendix H. The texts can be classified as short (total number

of characters or words is N = 1 − 3 × 104) and long (N > 105). They generally have

different rank-frequency characteristics, so we discuss them separately.

analysis of Chinese characters will apply for those languages (e.g. Japanese), where the Chinese

characters are used.
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Fig. 4.1: (Color online) Frequency versus rank for the short modern Chinese text KLS; see

Appendix H for its description. Red line: the Zipf curve fr = 0.169r−0.97 (Tab. 4.1). Arrows and

red numbers indicate on the validity range of the Zipf’s law. Blue line: the numerical solution of

(4.3, 4.4) for c = 0.169. It coincides with the generalized Zipf law (4.7) for r > rmin = 62. The

step-wise behavior of fr for r > rmax refers to hapax legomena.

Fig. 4.2: (Color online) Frequency versus rank for the short classic Chinese text SBZ; see Appendix

H for its description. Other notations have the same meaning as in Fig. 4.1.
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Table 4.1: Parameters of the modern Chinese texts (see Appendix H for further details). N is

the total number of characters in the text. The number of different characters is n. The Zipf’s

law fr = cr−γ holds for the ranks rmin ≤ r ≤ rmax. Here
∑

k<rmin
fk and

∑rmax

k=rmin
fk are the

total frequencies carried out by the pre-Zipfian and Zipfian domain, respectively.

d is the difference between the total frequency of the Zipfian domain got empirically and its value

according to the Zipf’s law: d =
∑rmax

k=rmin
(ck−γ − fk). Its absolute value d characterizes the

global precision of the Zipf’s law.

AQZ & KLS means joining the texts AQZ and KLS.

rb is the conventional borderline rank between the exponential regime and the hapax legomena.

Whenever we put “-” instead of it, we mean that either the exponential regime is absent or it is

not distinguishable from the hapax legomena.

Texts N n rmin rmax c γ
∑

k<rmin
fk

∑rmax

k=rmin
fk |d| rb

AQZ 18153 1553 56 395 0.2239 1.03 0.42926 0.38424 0.00624 -

KLS 20226 2047 62 411 0.169 0.97 0.39971 0.379728 0.005728 -

AQZ & KLS 38379 2408 66 439 0.195 1.0 0.41684 0.369 0.0022 -

PFSJ 705130 3820 67 583 0.234 1.03 0.39544 0.425379 0.00842 1437

SHZ 704936 4376 78 590 0.225 1.02 0.39905 0.42 0.009561 1618

4.2.1 Empiric features of Zipf’s law for short texts

We employ the linear fitting method to clarify the valid range of the Zipf’s law, detailed

explanations are presented in Appendix A. The followings are the results produced via

the linear fitting method.

1. For each Chinese text there is a specific (Zipfian) range of ranks r ∈ [rmin, rmax],

where the Zipf’s law fr = cr−γ holds with γ ≈ 1 and c . 0.25 [110, 111], (Tab. 4.1,

Figs. 4.1 and 4.2). Both for r < rmin and r > rmax the frequencies are below the Zipf

curve (Figs. 4.1 and 4.2).

Note that though the validity range |rmax−rmin| is few times smaller than the max-

imal rank n, it is relevant, since it contains a sizable amount of the overall frequency:

for Chinese texts (short or long) the Zipfian range carries 40 % of the overall frequency,

i.e.
∑rmax

k=rmin
fk ≃ 0.4.

2. In the pre-Zipfian range 1 ≤ r < rmin the overall number of function and

empty characters is more than the number of content characters. Function and empty

characters serve for establishing grammatical constructions (e.g. “�” (de), “´” (sh̀ı),
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Table 4.2: Parameters of classic Chinese texts (see Appendix H for further details). Notations

have the same meaning as in Tab. 4.1. Here 4 texts means joining of the texts CQF, SBZ, WJZ,

and HLJ. Also, 7 (10,14) texts mean joining of the 4 with other 3 (6,11) classic texts, which we

do not mention separately, because they give no new information.

Texts N n rmin rmax c γ
∑

k<rmin
fk

∑rmax

k=rmin
fk |d| rb

CQF 30017 1661 47 365 0.1778 0.985 0.43906 0.38997 0.00441 -

SBZ 24634 1959 52 357 0.1819 0.972 0.42828 0.408787 0.004353 -

WJZ 26330 1708 46 360 0.208 0.999 0.40434 0.418733 0.006923 -

HLJ 26559 1837 56 372 0.209 1.01 0.43674 0.379454 0.000832 -

CQF & SBZ 54651 2528 68 483 0.19498 0.989 0.42031 0.401661 0.00483 -

CQF & WJZ 56347 2302 66 439 0.20654 1.002 0.42815 0.383514 0.00564 -

CQF & HLJ 56576 2458 65 416 0.19498 0.998 0.43138 0.38654 0.00913 -

SBZ & WJZ 50964 2505 68 465 0.20512 0.992 0.40116 0.409017 0.00382 -

SBZ & HLJ 51193 2608 72 423 0.20893 1.000 0.41157 0.369598 0.00798 -

WJZ & HLJ 52889 2303 66 432 0.23988 1.035 0.43044 0.380801 0.002321 -

4 texts 107540 3186 75 528 0.22387 1.021 0.42526 0.391818 0.0007 681

7 texts 190803 4069 57 513 0.158 0.97 0.39381 0.4102 0.00331 789

10 texts 278557 4727 67 552 0.168 0.978 0.38058 0.4015 0.00217 1015

14 texts 348793 5018 78 625 0.176 0.98 0.39116 0.418983 0.00954 1223

SJ 572864 4932 76 535 0.236 1.025 0.40153 0.41253 0.007564 1336

“
” (le), “Ø” (bù), “3” (zài)). (We shall list them separately, though for our purposes

they can be joined together; the main difference between them is that the empty

characters are not used alone.)

But the majority of characters in the Zipfian range do have a specific meaning

(content characters). A subset of those content characters has a meaning that is specific

for the text and can serve as its key-characters.

Let us take for an example the modern Chinese text KLS (this text concerns military

activities). The pre-Zipfian range of this text contains 61 characters. Among them

there are, 24 function characters, 9 empty characters 5, 25 content characters, and

finally there are 3 key-characters 6: horn “Ò” (hào), army “�” (jūn) and soldier “W”

(b̄ın).

5We list empty characters separately, though for our purposes they can be joined with function

characters.
6We present that meaning of the character which is most relevant in the context of the text.
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Table 4.3: Parameters of four English texts and their mixtures: The Age of Reason (AR) by T.

Paine, 1794 (the major source of British deism). Time Machine (TM) by H. G. Wells, 1895 (a

science fiction classics). Thoughts on the Funding System and its Effects (TF) by P. Ravenstone,

1824 (economics). Dream Lover (DL) by J. MacIntyre, 1987 (a romance novella). TF & TM

means joining the texts TF and TM.

The total number of words N , the number of different words n, the lower rmin and the upper

rmax ranks of the Zipfian domain, the fitted values of c and γ, the overall frequencies of the

pre-Zipfian and Zipfian range, and the difference d between the total frequency of the Zipfian

domain got empirically and its value according to the Zipf’s law: d =
∑rmax

k=rmin
(ck−γ − fk).

Texts N n rmin rmax c γ
∑

k<rmin
fk

∑rmax

k=rmin
fk |d|

TF 26624 2067 36 371 0.168 1.032 0.44439 0.35158 0.00333

TM 31567 2612 42 332 0.166 1.041 0.45311 0.33876 0.01004

AR 22641 1706 32 339 0.178 1.038 0.47254 0.33947 0.00048

DL 24990 1748 34 230 0.192 1.039 0.47955 0.33251 0.02145

TF & TM 54191 3408 30 602 0.139 1.013 0.43508 0.40876 0.02091

TF & AR 45265 2656 33 628 0.138 0.998 0.45468 0.41045 0.00239

TF & DL 47614 2877 28 527 0.162 1.014 0.42599 0.42261 0.01490

TM & AR 54208 3184 43 592 0.157 1.021 0.47582 0.39687 0.00491

TM & DL 56557 3154 45 493 0.161 1.023 0.46726 0.38456 0.01211

AR & DL 47631 2550 38 496 0.165 1.012 0.45375 0.39236 0.00947

Four texts 101822 4047 39 927 0.158 1.015 0.44245 0.44158 0.00187

The Zipfian range of the KLS contains 350 characters. Among them, 91 are func-

tion, 10 are empty, 230 are content and 19 are key-characters (Tab. 4.4).

3. The absolute majority of different characters with ranks in [rmin, rmax] have

different frequencies. Only for r ≃ rmax the number of different characters having the

same frequency is ≃ 10. For r > rmax we meet the hapax legomena effect: characters

occurring only few times in the text (i.e. frN = 1, 2, 3... is a small integer), and

many characters having the same frequency fr [111]. The effect is not described by

a smooth rank-frequency relation, including the Zipf’s law. The theory review below

allows to explain the hapax legomena range together with the Zipf’s law. Note that the

very existence of hapax legomena is a non-trivial effect, since one can easily imagine

(artificial) texts, where (say) no character appear only once.

4. All the above results hold for relatively short English texts [149] (Tab. 4.3

and Fig. 4.4). In particular, the Zipfian range of English texts also contains mainly
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Fig. 4.3: (Color online) Frequency versus rank for the mixture of four short classic Chinese texts:

CQF, SBZ, WJZ, HLJ (see also Appendix H). Other notations have the same meaning as in Fig.

4.1.

Fig. 4.4: (Color online) Frequency vs. rank for the English text AR (Tab. 4.3). Red line: the

Zipf curve fr = 0.178r−1.038.
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Table 4.4: List of the Key-Characters in the Pre-Zipfian and Zipfian range of the modern Chinese

text, &ÕÓ, Kūn Lún Shāng (KLS) written by Shu-Ming BI in 1987. The text is about the

arduous military training in the troops of Kun Lun mountain.

No. Rank Character Pinyin English Frequency

1 14 Ò hào horn 157

2 32 � jūn army 86

3 44 W b̄ın soldier 67

4 113 è dùı troop 38

5 118 - l̀ıng command 37

6 123 Ü bù troop 36

7 152 Ô zhàn fight/war 28

8 156 · mı̀ng command 28

9 180 � fáng protect 24

10 213 É xuè blood 20

11 216 á l̀ı stand straight 20

12 224 õ gōng honor 19

13 225 l qiāng gun 19

14 252 ( guān officer 16

15 295 G guō pan 14

16 299 � bǎo protect 14

17 300 ¥ wèi protect 13

18 352 E ýıng camp 11

19 355 * móu strategy 11

20 360 � shāo burn 11

21 394 � liè martyr 10

22 407 ì tuán regiment 10

content words including the keywords. This is known and is routinely used in document

processing [152].

We thus conclude that as far as short texts are concerned, the Zipf’s law holds for

Chinese characters in the same way as it does for English words.

5. To check our results on fitting the empiric data for word frequencies to the Zipf’s

law we carried out three alternative tests.

5.1 First we applied the Kolmogorov-Smirnov (KS) test to decide on the fitting

quality of the data with the Zipf’s law (in the range [rmin, rmax]). The test was carried

out both with and without transforming to the logarithmic coordinates, it fully con-

firmed our result; see Table 4.5. For a detailed presentation of the KS test results see
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Table 4.5: Comparison between different methods of estimating the exponent γ of the Zipf’s law:

LLS (linear least-square), NLS (nonlinear least-square), MLE (maximum likelihood estimation).

We also present the p-value of the KS test when comparing the empiric word frequencies in the

range [rmin, rmax] with the Zipf’s-law within the linear lest-square method (LLS); for a more

detailed presentation of the KS results see Appendix G. Recall that the p-values have to be

sufficiently larger than 0.1 for fitting to be reliable from the viewpoint of KS test. This holds for

the presented data; see Appendix G for details.

Texts γ, LLS γ, NLS γ, MLE p-value

TF 1.032 1.033 1.035 0.865

TM 1.041 1.036 1.039 0.682

AR 1.038 1.042 1.044 0.624

DL 1.039 1.034 1.035 0.812

AQZ 1.03 1.028 1.027 0.587

KLS 0.97 0.975 0.973 0.578

CQF 0.985 0.983 0.981 0.962

SBZ 0.972 0.967 0.973 0.796

WJZ 0.999 0.993 0.995 0.852

HLJ 1.01 1.015 1.011 0.923

Appendix G.

5.2 It was recently shown that even when the applicability range [rmin, rmax] of a

power law is known, the linear least-square method (that we employed above) may not

give accurate estimations for the exponent γ of the power law. It was then argued that

the method of Maximum Likelihood Estimation (MLE) is more reliable in this context.

Hence to show that our results are robust, we calculated γ using the MLE method.

We got that the difference with the linear least square method is quite small (changes

come only at the third decimal place); see Table 4.5.

5.3 We also checked whether our results on the power law exponent γ are stable with

respect to non-linear fitting schemes. Again, we find that non-linear fitting schemes

(that we carried out via routines of Mathematica 7) produce very similar results for γ;

see Table 4.5.

One reason for such a good coincidence between our linear fitting results and al-

ternative tests is that we use a rather strict criteria (SS∗
err < 0.05 and R2 > 0.995) for

determining first the Zipfian range [rmin, rmax] and then the parameters of the Zipf’s

law. Another reason is that in the vicinity of rmax, the number of different words having
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the same frequency is not large (it is smaller than 10). Hence there are no problems

with lack of data points or systematic biases that can plague the applicability of the

least square method for determination of the exponent γ.

4.2.2 Theoretical description of Zipf’s law

A theoretical description of the Zipf’s law that is specifically applicable to short English

texts was recently proposed in [149]. We shall briefly remind it to demonstrate that also

describes the rank-frequency relation for short Chinese texts. The theory is based on

the ideas of latent semantic analysis and the concept of mental lexicon [149]. Its final

outcome is the (binomial) probability pr(ν|T ) of the character (or word) with the rank

r to appear ν times in a text T (with N total characters and n different characters):

pr(ν|T ) =
N !

ν!(N − ν)!
φν

r(1 − φr)
N−ν , (4.2)

where the effective probability φr of the character is found from two equations for two

unknowns µ and φr:

r/n =

∫ ∞

φr

dθ
e−µθ

(c + θ)2

/
∫ ∞

0

dθ
e−µθ

(c + θ)2
, (4.3)

∫ ∞

0

dθ
θ e−µθ

(c + θ)2
=

∫ ∞

0

dθ
e−µθ

(c + θ)2
, (4.4)

where c is a constant that will later on shown to coincide with the prefactor of the

Zipf’s law.

For c . 0.25, cµ determined from (4.4) is small and is found from integration by

parts:

µ ≃ c−1 e−γE−
1+c

c , (4.5)

where γE = 0.55117 is the Euler’s constant. One solves (4.3) for cµ → 0:

r

n
= ce−nφrµ/(c + nφr). (4.6)

Recall that according to (4.2), φr is the probability for the character (or the word

in the English situation) with rank r. If φr is sufficiently large, φrN ≫ 1, the character

with rank r appears in the text many times and its frequency ν ≡ frN is close to

its maximally probable value φrN ; see (4.2). Hence the frequency fr can be obtained
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via the probability φr. This is the case in the Zipfian domain, since according to our

empirical results (both for Chinese and English) 1
n

. fr for r ≤ rmax, and—upon

identifying φr = fr—the above condition φrN ≫ 1 is ensured by N/n ≫ 1.

Let us return to (4.6). For r > rmin, φrnµ = frnµ < 0.04 ≪ 1; see (4.5), Figs. 4.1,

4.2 and 4.4. We get from (4.6):

fr = c(r−1 − n−1). (4.7)

This is the Zipf’s law generalized by the factor n−1 at high ranks r. This cut-off factor

ensures faster [than r−1] decay of fr for large r.

Figs. 4.1, 4.2 and 4.4 show that (4.7) reproduces well the empirical behavior of fr

for r > rmin. Our derivation shows that c is the prefactor of the Zipf’s law, and that

our assumption on c . 0.25 above (4.5) agrees with observations (Tabs. 4.1, 4.2 and

4.3).

For given prefactor c and the number of different characters n, (4.3) predict the

Zipfian range [rmin, rmax] in agreement with empirical results (Figs. 4.1, 4.2 and 4.4).

For r < rmin, it is not anymore true that frnµ ≪ 1 (though it is still true that

frN = φrN ≫ 1). So the fuller expression (4.3) is to be used instead of (4.6). It

reproduces qualitatively the empiric behavior of fr also for r < rmin (Figs. 4.1, 4.2 and

4.4). We do not expect any better agreement theory and observations for r < rmin,

since the behavior of frequencies in this range is irregular and changes sizably from one

text to another.

4.2.3 Hapax legomena

According to (4.2), the probability φr is small for r ≫ rmax and hence the occurrence

number ν ≡ frN of the character with the rank r is a small integer (e.g. 1 or 2) that

cannot be approximated by a continuous function of r (Figs. 4.1, 4.2 and 4.4). In

particular, the reasoning after (4.6) on the equality between frequency and probability

does not apply, although we see in Figs. 4.1, 4.2 and 4.4 that (4.7) roughly reproduces

the trend of fr even for r > rmax.

To describe this hapax legomena range, define rk as the rank, when ν ≡ frN jumps

from integer k to k + 1. Since φr reproduces well the trend of fr even for r > rmax, rk
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Table 4.6: Frequency of Chinese characters in the hapax legomena domain; r̂k is calculated from

(4.8), while rk is found from empirical data.

Texts k 1 2 3 4 5 6 7 8 9 10

AQZ

rk 1097 857 702 595 522 461 414 370 339 311

r̂k 1116 869 711 601 520 458 409 369 336 308
|r̂k−rk|

rk

0.017 0.014 0.013 0.010 0.0038 0.0065 0.012 0.0027 0.0088 0.0096

KLS

rk 1405 1060 885 767 662 582 520 455 408 377

r̂k 1428 1093 884 750 656 575 515 445 404 369
|r̂k−rk|

rk

0.016 0.031 0.0011 0.022 0.0091 0.012 0.0096 0.022 0.0098 0.021

SBZ

rk 1460 1141 959 850 735 676 618 563 517 481

r̂k 1481 1168 980 848 740 656 599 553 497 488
|r̂k−rk|

rk

0.014 0.024 0.022 0.0024 0.0068 0.029 0.031 0.018 0.039 0.015

HLJ

rk 1302 1045 872 756 669 604 551 501 467 430

r̂k 1327 1080 900 783 684 607 545 494 462 420
|r̂k−rk|

rk

0.019 0.033 0.032 0.035 0.022 0.0049 0.011 0.014 0.011 0.023

can be theoretically predicted from (4.7) by equating its left-hand-side to k/N :

r̂k = [
k

Nc
+

1

n
]−1, k = 0, 1, 2, ... (4.8)

Eq. (4.8) is exact for k = 0, and agrees with rk for k ≥ 1, see Tab. 4.6. Hence

it describes the hapax legomena phenomenon, where many characters have the same

small frequency.

We thus saw that a single formalism adequately describes both the Zipf’s law for

short texts and the hapax legomena range.

4.2.4 Summary

It is to be concluded from this section that—as far as the applicability of the Zipf’s law

to short texts is concerned—the Chinese characters behave similarly to English words.

In particular, both situations can be adequately described by the same theory.

We should like to stress again why the consideration of short texts is important.

One can argue that—at least for the sake of rank-frequency relations—long texts are

just mixtures (joinings) of shorter, thematically homogeneous pieces (this premise is

fully confirmed below). Hence the task of studying rank-frequency relations separates

into two parts: first understanding short texts, and then long ones.
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4.3 Rank-frequency relation for long texts and mix-

tures of short texts

4.3.1 Mixing English texts

When mixing (joining)7 different English texts the valid range of the Zipf’s law increases

due to acquiring more higher rank words, i.e. rmin stays approximately fixed, while rmax

increases (Tab. 4.3). The overall precision of the Zipf’s law also increases upon mixing,

as Tab. 4.3 shows.

Fig. 4.5: (Color online) Schematic representation of various ranges under mixing (joining) two

English (upper figure) and two Chinese (lower figure) texts. Pk, Zk and Hk mean, respectively,

the pre-Zipfian, Zipfian and hapax legomena ranges of the text k (k = 1, 2). P, Z and H

mean the corresponding ranges for the mixture of texts 1 and 2. E means the exponential

range that emerges upon mixing of two Chinese texts. For each range of the mixture we show

schematically contributions from various ranges of the separate texts. The relative importance of

each contribution is conventionally represented by different magnitudes of the circles.

The rough picture of the evolution of the rank-frequency relation under mixing two

texts is summarized as follows, see Tab. 4.3 and Fig. 4.5 for a schematic illustration.

The majority of the words in the Zipfian range of the mixture (e.g. AR & TM) come

7Upon joining two texts (A and B), the word frequencies get mixed: fk(A&B) = NA

NA+NB
fk(A) +

NB

NA+NB
fk(B), where NA and fk(A) are, respectively, the total number of words and the frequency of

word k in the text A.
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from the Zipfian ranges of the separate texts. In particular, all the words that appear

in the Zipfian ranges of the separate words do appear as well in the Zipfian range of

the mixture (e.g. the Zipfian ranges of AR and TM have 130 common words). There

are also relatively smaller contributions to the Zipfian range of the mixture from the

pre-Zipfian and hapax legomena range of separate texts: note from Tab. 4.3 that the

Zipfian range of the mixture AR & TM is 82 words larger than the sum of two separate

Zipfian ranges, which is (307 + 290) minus 130 common words.

Some of the words that appear only in the Zipfian range of one of separate texts

will appear in the hapax legomena range of the mixture; other words move from the

pre-Zipfian range of separate texts to the Zipfian range of the mixture. But these are

relatively minor effects: the rough effect of mixing is visualized by saying that the

Zipfian ranges of both texts combine to become a larger Zipfian range of the mixture

and acquire additional words from other ranges of the separate texts (Fig. 4.5). Note

that the keywords of separate words stay in the Zipfian range of the mixture, e.g. after

joining all four above texts, the keywords of each text are still in the Zipfian range,

which now contains almost 900 words (Tab. 4.3).

The results on the behavior of the Zipf’s law under mixing are new, but their overall

message—the validity of the Zipf’s law improves upon mixing) is expected—since it is

known that the Zipf’s law holds not only for short but also for long English texts and

for frequency dictionaries (huge mixtures of various texts) [110].

4.3.2 Mixing Chinese texts

4.3.2.1 Stability of the Zipfian range

The situation for Chinese texts is different. Upon mixing two Chinese texts the validity

range of the Zipf’s law increases, but much slower as compared to English texts, see

Tabs. 4.1 and 4.2. The valid ranges of the separate texts do not combine (in the above

sense of English texts). Though the common words in the Zipfian ranges of separate

texts do appear in the Zipfian range of the mixture, a sizable amount of those words

that appeared in the Zipfian range of only one text do not show up in the Zipfian range

of the mixture 8.

8As an example, let us consider in detail the mixing of two Chinese texts SBZ and CQF, see Tab.

4.2. The Zipfian ranges of CQF and SBZ contain, respectively, 306 and 319 characters. Among them
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Importantly, the overall frequency of the Zipfian domain for very different Chinese

texts (mixtures, long texts) is approximately the same and amounts to ≃ 0.4 (Tabs. 4.1

and 4.2). In contrast, for English texts this overall frequency grows with the number

of different words in the text (Tab. 4.3). This is certainly consistent with the fact that

for English texts the Zipfian range increases upon mixing.

Fig. 4.6: (Color online) Rank frequency distribution for the mixture of CQF and SBZ. (Tab.

4.2) The scale of the frequency is chosen such that the exponential regime of the rank-frequency

relation for r > 500 is made visible. For comparison, the dashed blue line shows a curve fr =

0.0022e−0.0022r . For the present example, the exponential regime is essentially mixed with hapax

legomena, since for frequencies fr with r > rmax the number of different words having this

frequency is larger than 10. Recall that the Zipf’s law holds for r ∈ [rmin, rmax].

4.3.2.2 Emergence of the exponential regime

The majority of characters that appear in the Zipfian range of separate texts, but do

not appear in the Zipfian range of the mixture, moves to the hapax legomena range of

the mixture. Then, for larger mixtures and longer texts, a new, exponential regime of

the rank-frequency relation emerges from within the hapax legomena range.

133 characters are common. The balance of the characters upon mixing is calculated as follows: 306

(from the Zipfian range of CQF) + 319 (from the Zipfian range of SBZ) - 133 (common characters) -

50 (characters from the Zipfian range of CQF that do not appear in the Zipfian range of CQF & SBZ)

- 54 (characters from the Zipfian range of SBZ that do not appear in the Zipfian range of CQF+SBZ)

+27 (characters that enter to the Zipfian range CQF & SBZ from the pre-Zipfian ranges of CQF or

SBZ)= 415 (characters in the Zipfian range of CQF & SBZ).
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To illustrate the emergence of the exponential regime, let us start with Fig. 4.6,

here there are only two short texts mixed and hence the exponential regime cannot

be reliably distinguished from the hapax legomena regime 9: for all frequencies with

the ranks r > rmax (i.e. for all frequencies beyond the Zipfian regime), the number of

different characters having exactly the same frequency is larger than 10. (We conven-

tionally take this number as a borderline of the hapax legomena.) However, the trace

of the exponential regime is seen even within the hapax legomena, see Fig. 4.6.

Fig. 4.7: (Color online) Rank frequency distribution of the long modern Chinese text PFSJ. The

exponential behavior fr ∝ e−0.00165r of frequency fr is visible for r > 500. For comparison, the

dashed blue line shows a curve fr = 0.00165e−0.00165r . The boundary between the exponential

regime and hapax legomena can be defined as the rank rb, where the number of words having

the same frequency frb
is equal to 10. For the present example rb = 1437.

For bigger mixtures or longer texts, the exponential regime clearly differentiates

from the hapax legomena. In this context, we define rb as the borderline rank of the

hapax legomena: for r > rb, the number of characters having the frequency frb
is larger

than 10. Then the exponential regime

fr = ae−br with a < b, (4.9)

exists for the ranks rmax < r . rb (provided that rmax is sufficiently larger than rb).

Put differently, the exponential regime exists from ranks sufficiently larger than the

9Recall in this context that in the hapax legomena range many characters have the same frequency,

hence no smooth rank-frequency relation is reliable.
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Table 4.7: Parameters of the exponential range (lower and upper ranks and the overall frequency)

for few long Chinese texts (Tabs. 4.1 and 4.2). Here n is the number of different characters.

Recall that the lowest rank of the exponential range is rmax + 1, where rmax is the upper rank of

the Zipfian range. The highest rank of the exponential range was denoted as rb. (Tabs. 4.1 and

4.2)

Texts n Rank range Overall frequency

PFSJ 3820 584–1437 0.12816

SHZ 4376 591–1618 0.14317

SJ 4932 536–1336 0.12887

14 texts 5018 626–1223 0.12291

upper rank rmax of the Zipfian range till the ranks, where the hapax legomenon starts.

Tabs. 4.1, 4.2 and Fig. 4.7 show that the exponential regime is not only sizable by

itself, but (for sufficiently long texts or sufficiently big mixtures) it is also bigger than

the Zipfian range. This, of course, does not mean that the Zipfian range becomes less

important, since, as we saw above, it carries out nearly 40 % of the overall frequency

(Tabs. 4.1 and 4.2). The exponential range also carries out non-negligible frequency,

though it is few times smaller than that of the Zipfian and pre-Zipfian ranges (Tabs.

4.1, 4.2 and 4.7).

Finally, we would like to stress that we considered various Chinese texts written

with simplified or traditional characters, with Modern Chinese or different versions

of Classic Chinese (Tabs. 4.1, 4.2 and Appendix H). As far as the rank-frequency

relations are concerned, all these texts demonstrate the same features showing that

the peculiarities of these relations are based on certain very basic features of Chinese

characters. They do not depend (or depend much less) on specific details of texts.

4.4 Conclusions and discussions

4.4.1 Summary of results

1. As implied by the rank-frequency relation for characters, short Chinese texts demon-

strate the same Zipf’s law—together with its generalization to high and low frequencies

(hapax legomena)—as short English texts. Assuming that authors write mainly rel-

atively short texts (longer texts are obtained by mixing shorter ones), this similarity
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implies that Chinese characters play the same role as English words.

2. As compared to English, there are two novelties of the rank-frequency relation

of Chinese characters in long texts.

2.1 The overall frequency of the Zipfian range (the range of middle ranks, where

the Zipf’s law holds) stabilizes at ≃ 0.4. This holds for all texts we studied (written

in different epochs, genres with different types of characters, see Tabs. 4.1, 4.2 and

Appendix H). This effect of stabilization holds as well for the overall frequency of the

pre-Zipfian range for both English and Chinese texts (Tabs. 4.1, 4.2 and 4.3).

2.2 There is a range with an exponential rank-frequency relation. It emerges for

relatively longer texts from within the hapax legomena range. The range of ranks,

where the exponential regime holds, is larger than that of the Zipf’s law. But its

overall frequency is few times smaller (Tabs. 4.1, 4.2 and 4.7).

Both these results are absent for English texts; there the overall frequency of the

Zipfian range grows with the length of the text, while there is no exponential regime:

the Zipfian range end with the hapax legomena (Tab. 4.3).

The results 2.1 and 2.2 imply that long Chinese texts do have a hierarchic structure:

there is a group of characters that hold the Zipf’s law with nearly universal overall

frequency equal to ≃ 0.4, and yet another group of relatively less frequent characters

that display the exponential range of the rank-frequency relation.

4.4.2 Interpretations and discussions

Chinese characters differ from English words, since only long Chinese texts have the

above hierarchic structure. The underlying reason of the hierarchic structure is to be

sought via the linguistic differences between Chinese characters and English words, as

we outlined in Appendix D. In particular, the features 4, 6, 7 discussed in Appendix

D can mean that certain homographic content characters play multiple role in different

parts of a long Chinese text. They are hence distinguished and appear in the Zipfian

range of the long text with (approximately) stable overall frequency ≃ 0.4. Since

this frequency is sizable, and since the range of ranks carried out by the Zipf’s law is

relatively small, there is a relatively large range of ranks that has to have a relatively

small overall frequency (Tabs. 4.1, 4.2 and 4.7). It is then natural that in this range

there emerges an exponential regime that is related with a faster (compared to a power
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law) decay of frequency versus rank.

Recall that the stabilization holds as well for the overall frequency of the pre-Zipfian

domain both for English and Chinese texts. The explanation of this effect is similar to

that given above (but to some extent is also more transparent): the pre-Zipfian range

contains mostly function characters, which are not specific and used in different texts.

Hence upon mixing the pre-Zipfian range has a stable overall frequency.

The above explanation for the coexistence of the Zipfian and exponential range

suggests that there is a relation between the characters that appear in the Zipfian

range of long texts and homography. As a preliminary support for this hypothesis,

we considered the following construction. Assuming that a mixture is formed from

separate texts T1, ..., Tk, we looked at characters that appear in the Zipfian ranges

of all the separate texts T1, ..., Tk. This guarantees that these characters appear in

the Zipfian range of the mixture. Then we estimated (via an explanatory dictionary

of Chinese characters) the average number of different meanings for these characters.

This average number appeared to be around 8, which is larger than the average number

of meanings for an arbitrary Chinese character (i.e. when the averaging is taken over

all characters in the dictionary) that is known to be not larger than 2 [175].

We should like to stress however that the above connection between the uncovered

hierarchic structure and the number of meanings is preliminary, since we currently lack

a reliable scheme of relating the rank-frequency relation of a given text to its semantic

features.

The above discussion makes clear that a theory for studying the rank-frequency

relation of a long text, as it emerges from mixing of different short texts, is currently

lacking. Such a theory was not urgently needed for English texts, because there the

(generalized) Zipf’s law (4.7) describes well both long and short texts. But the example

of Chinese characters clearly shows that the changes of the rank-frequency relation

under mixing are essential. Hence the theory of the effect is needed.

Finally, one of main open questions is whether the uncovered hierarchical structure

is really specific for Chinese characters, or it will show up as well for English texts, but

on the level of the rank-frequency relation for morphemes and not the words. Factor-

izing English words into proper morphemes is not straightforward, but still possible.
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Chapter 5

Conclusions and outlook

5.1 Conclusions

In this research, I am inspired by its interdisciplinary range of applications and its

relevance to the fundamental issues, such as the human dynamics in sports systems,

the schemes of human languages and scripts. Specifically, the main results and potential

contributions are concluded as follows.

We found the distributions of scores/prize money for 40 data samples in 12 different

sports fields, are governed by the same universal powers laws, which are also similar to

the distributions of city size or human wealth. Moreover, the 40 data samples from all

12 sports fields seem to follow the Pareto principle, that is, 20% of the players or teams

accumulate 80% of the scores/prize money. We also proposed an agent-based model

which could simulate the competitions of players, when two players compete, we apply

the empiric findings of win probability in tennis that, the probability the higher-ranked

player will win is related to their rank difference. We expect these findings are relevant

to reflect the features of human dynamics in competition-driven systems.

For the Zipf’s law in human language texts, we showed that the Zipf’s law could be

analytically derived by the assumption that words are drawn into the text with random

probabilities, while their apriori probability density relates to the stable and efficient

organization of the mental lexicon of the text-producing author. Our approach could

be applied to clarify the limits of its validity, and also its generalization to high and

low frequencies including hapax legomena. We expect that our results will improve

the performance of Probabilistic Latent Semantic Analysis (PLSA) algorithms making
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them consistent with the Zipf’s law. Also, the proposed methods can find applications

for studying rank-frequency relations and power laws in other fields.

Concerning the rank-frequency relation for Chinese characters, we found that, for

short Modern or Classic Chinese texts, they demonstrate the same Zipf’s law–together

with its generalization to high and low frequencies (hapax legomena)–as short English

texts. While for long Modern or Classic Chinese texts, they appear a hierarchic struc-

ture: there is a group of characters that hold the Zipf’s law with nearly universal overall

frequency equal to ≃ 0.4, and another group of relatively less frequent characters that

display the exponential range of the rank-frequency relation. We hope this research will

contribute to document classification algorithms for Chinese characters, and may also

provide a general method for distinguishing between logographic and phonetic scripts.

5.2 Future research plan

Following the above research works in Sports Systems and Human Languages, several

aspects deserve the further investigations, so as to gain a deeper insight into the nature

of these two fundamental issues.

Theoretical Explanation of the Universal Power Laws in Sports

Statistical analysis of score and/or prize money distributions of players, across 40

data samples in 12 sports fields: tennis, golf, table tennis, volleyball, football, snooker,

badminton, basketball, baseball, hockey, handball and fencing, share similar universal

power laws. The reasons why the sports systems have such common distributions

are unknown, and they are the latest examples of the phenomena that abide by the

mysterious power laws.

In the current work, we just proposed a sample toy model to simulate the real com-

petition process of sports, simulations could yield results consistent with the empirical

findings. However, it lacks the theoretical background, thus whether we can apply the

theories in statistical physics, e.g. Markov models, or Self-organized Criticality, etc to

study the common features in sports systems, this deserves the further investigation.

Structure of Tournaments and Rating Systems for Sports

Ranking is a direct measure of a player or a team’s performance and come in
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different forms. Some sports are ranked by using a points system, while others use

the earnings. In practice, there can be a lot of factors which influence the rankings of

players or teams, such as the structure of specific tournaments, the rating strategies

of the tournaments, etc. Therefore, we shall try to provide some theoretical basis, so

as to optimize the structure of the tournaments and make the rating strategies more

efficient and fair.

Theoretical framework for Rank-Frequency Relations of Chinese Characters

The Zipf’s law for short Chinese texts behaves much similar to those for short

English texts, but for long texts, the rank-frequency relations of Chinese characters

are quite different from those of the English words, e.g., for Chinese characters, there

emerges a wide range of ranks where the rank-frequency relations is approximately

exponential. So what does this imply, and what are the reasons behind these differ-

ences? Are they due to the different features of mental lexicons of Chinese and English

writers, or the different mechanisms during the production of long texts out of smaller,

thematically homogeneous pieces?

Rank-Frequency Relations for Phonetics of Human Languages

Phonetics is a branch of linguistics that comprises the study of the sounds of human

speech, or in the case of the sign languages. The speech behavior and the voice of

human beings could reflect the regional, social and personal identity. We shall aim to

study the rank-frequency relations for the phonetics of human languages, to uncover

some basic properties of the sounds of human speech, and provide some hints for the

explanations.
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Appendix A - Linear fitting method

This is the detailed explanations of the linear fitting method to clarify the valid

range of the Zipf’s law:

For each text we extract the ordered and normalized frequencies of different words

[the number of different words is n; the overall number of words in a text is N ]:

{fr}n
r=1, f1 ≥ ... ≥ fn,

∑n

r=1
fr = 1. (A.1)

We should now see whether the data {fr}n
r=1 fits to a power law: f̂r = cr−γ. We

represent the data as

{yr(xr)}n
r=1, yr = ln fr, xr = ln r, (A.2)

and fit it to the linear form {ŷr = ln c−γxr}n
r=1. Two unknowns ln c and γ are obtained

from minimizing the sum of squared errors:

SSerr =
∑n

r=1
(yr − ŷr)

2. (A.3)

It is known since Gauss that this minimization produces

−γ∗ =

∑n
k=1(xk − x)(yk − y)
∑n

k=1(xk − x)2
, ln c∗ = y + γ∗x, (A.4)

where we defined

y ≡ 1

n

∑n

k=1
yk, x ≡ 1

n

∑n

k=1
xk. (A.5)

As a measure of fitting quality one can take:

minc,γ[SSerr(c, γ)] = SSerr(c
∗, γ∗) ≡ SS∗

err. (A.6)

This is however not the only relevant quality measure. Another (more global) aspect

of this quality is the coefficient of correlation between {yr}n
r=1 and {ŷr}n

r=1 [136]:

R2 =

[
∑n

k=1(yk − ȳ)(ŷ∗
k − ŷ∗)

]2

∑n
k=1(yk − ȳ)2

∑n
k=1(ŷ

∗
k − ŷ∗)2

, (A.7)

where

ŷ∗ = {ŷ∗
r = ln c∗ − γ∗xr}n

r=1, ŷ∗ ≡ 1

n

∑n

k=1
ŷ∗

k. (A.8)
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For the linear fitting (A.4), the squared correlation coefficient is equal to the coefficient

of determination,

R2 =
∑n

k=1
(ŷ∗

k − y)2
/

∑n

k=1
(yk − y)2, (A.9)

the amount of variation in the data explained by the fitting [136]. Hence SS∗
err → 0

and R2 → 1 mean good fitting. We minimize SSerr over c and γ for rmin ≤ r ≤ rmax

and find the maximal value of rmax − rmin for which SS∗
err and 1−R2 are smaller than,

respectively, 0.05 and 0.005. This value of rmax − rmin also determines the final fitted

values c∗ and γ∗ of c and γ, respectively. Thus c∗ and γ∗ are found simultaneously with

the validity range [rmax, rmax] of the law. Whenever there is no risk of confusion, we

for simplicity refer to c∗ and γ∗ as c and γ, respectively.
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Appendix B - Derivation of Eqs. (3.10-3.12)

We defined Pr(t|T ) as the marginal density for the probability t of the word wr,

Pr(t|T ) ∝
∫ ∞

0

dθ1

∫ θ1

0

dθ2

∫ θ2

0

dθ3...

∫ θn−1

0

dθn × P (θ1, ..., θn) δ(t − θr), (A.10)

where

P (θ1, ..., θn) ∝ u(θ1) ... u(θn) δ(
∑n

k=1
θk − 1). (A.11)

In (A.11) we employ the Fourier representation of the delta-function,

δ(
∑n

k=1
θk − 1) =

∫ i∞

−i∞

dz

2πi
ez−z

 n
k=1θk , (A.12)

put (A.11) into (A.10) and then apply integration by parts. The result reads

Pr(t|T ) ∝ u(t)

∫ i∞

−i∞

dz ez

2πi
χn−r

0 (t, z)χr−1
1 (t, z) e−tz, (A.13)

where

χ0(t, z) ≡
∫ t

0

dye−zyu(y), χ1(t, z) ≡
∫ ∞

t

dye−zyu(y).

The integral in (A.13) will be worked out via the saddle point method. But before that

we need to fix the scales of the involved quantities. To this end, make the following

changes of variables

z̃ = z/n, t̃ = tn, ỹ = yn, r̃ = r/n. (A.14)

Then Pr(t|T ) reads from (A.13)

Pr(t|T ) ∝ u(t)

∫ i∞

−i∞

dz̃

2πi
enϕ(t̃,z̃)−t̃z̃, (A.15)

ϕ(t̃, z̃) = z̃ + (1 − r̃) ln

∫ t̃

0

dy e−z̃y

(c + y)2

+ (r̃ − 1

n
) ln

∫ ∞

t̃

dy e−z̃y

(c + y)2
, (A.16)

where in (A.16) we already used u(t) = (n−1c + t)−2.

If n ≫ 1 and 0 < r̃ < 1 is a finite number (neither close to one, nor to zero), the

behavior of ρr(t) in various averages, e.g.
∫

dt t ρr(t), is determined by the values of

z̃ = z̃s and t̃ = t̃s that maximize φ(t̃, z̃). They are found from saddle-point equations

∂t̃φ(t̃s, z̃s) = ∂z̃φ(t̃s, z̃s) = 0. (A.17)
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After reworking the two equations (A.17) we get Eqs. (3.11, 3.12) of the Chapter 3.

Due to (A.14), z̃s (that is real and positive) and t̃s stay finite for n ≫ 1. Hence

the integration line over z̃ in (A.15) is shifted to pass through z̃s (the saddle-point

method). Now φ(t̃, z̃) is expanded around z̃ = z̃s and t̃ = t̃s [first-order terms nullify

due to (A.17)]:

φ(t̃, z̃) = φ(t̃s, z̃s) +
1

2
∂t̃t̃φ(t̃s, z̃s)(t̃ − t̃s)

2 (A.18)

+
1

2
∂z̃z̃φ(t̃s, z̃s)(z̃ − z̃s)

2 (A.19)

+∂t̃z̃φ(t̃s, z̃s)(t̃ − t̃s)(z̃ − z̃s) + .... (A.20)

Now only these terms can be retained in the integral over z̃. Since this integral goes

over the imaginary axis, while z̃s is real, the integration contour is to be shifted to

pass through z̃s. For the convergence of the resulting Gaussian integral we need
1
2
∂z̃z̃φ(t̃s, z̃s) > 0. Taking this Gaussian integral leads us to [up to factors that ei-

ther constant or irrelevant for n ≫ 1]

Pr(t|T ) ∝ e−
n

2σ2 (t̃−t̃s)2 = e−
n3

2σ2 (t− t̃s
n

)2 , (A.21)

1

σ2
=

[ ∂t̃z̃φ(t̃s, z̃s) ]2

∂z̃z̃φ(t̃s, z̃s)
− ∂t̃t̃φ(t̃s, z̃s). (A.22)

Hence Pr(t|T ) is approximately Gaussian, with the standard deviation O(n−3/2) much

smaller than the average for t̃s = O(1).

In working out (A.22), we shall employ the fact that in (A.16) z̃s = µ is a small

parameter. This produces [up to smaller corrections]

σ = (c + t̃s)
√

t̃s. (A.23)

Eq. (A.21) derives Eq. (3.10) of the Chapter 3, while (A.23) accounts for the estimate

of σ that was presented after Eq. (3.10) of the Chapter 3.
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Appendix C - Derivation of Eq. (3.21)

The marginal probability P (t) is defined from (A.11) as

P (t) =

∫

dθP (θ) δ(t − θr). (A.24)

using (A.11, A.12) we obtain from (A.24)

P (t) ∝ u(t)

∫ i∞

−i∞

dz̃

2πi
enφ(t,z̃)−t̃z̃, (A.25)

φ(t, z̃) = (1 − t)z̃ + ln

∫ ∞

0

dy e−z̃y (c + y)−2. (A.26)

We use the saddle-point method for (A.25), this produces the same saddle-point equa-

tion (A.17) for z̃s,

1 =

∫ ∞

0
dy e−z̃sy (c + y)−2

∫ ∞

0
dy y e−z̃sy (c + y)−2

, (A.27)

provided that we note the dominant range t ∝ 1/n ≪ 1 of t. Thus

P (θ) ∝ u(θ)e−nθz̃s. (A.28)

This validates Eq. (3.21) of the Chapter 3.

Likewise, one can show that the marginal density P (θ1, ..., θm) factorizes provided

that m ≪ n:

P (θ1, ..., θm) ∝ u(θ1)e
−µθ1n ... u(θm)e−µθmn. (A.29)

Eq. (A.29) can be established more heuristically via the exact relation [
∑n

k=1 θk]2 = 1,

where f means averaging over P (θ1, ..., θn). This relation predicts, together with

θk = 1
n
, that θiθj − θi θj = O(n−3), hence approximate factorization.

Using (A.28) with u(θ) = ( c
n
+θ)−2 we note that the standard deviation 〈(θ−〈θ〉)2〉 =

1
n

√

c
z̃s
− 1 ≃ 1

n

√

c
z̃s

is larger than the average 〈θ〉 =
∫

dθθP (θ) = 1
n
, since c/z̃s ≫ 1.
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Appendix D - Short introduction to Chinese charac-

ters

Here we shortly remind the Chinese writing systems, the main differences and simi-

larities between Chinese characters and English words. This subject generated several

controversies (myths as it was put in [168]), even among expert sinologists [164–169].

This appendix is necessary for a deeper understanding of our results and motivations.

The main qualitative conclusion of this appendix is that in contrast to English

words, generally Chinese characters have more different meanings, they are more flexi-

ble, they could combine with other characters to convey different specific meanings. So

there are characters, which appear many times in the text, but their concrete meanings

are different in different places of the text.

I. Two features of Chinese writing systems

1. The basic unit of Chinese writing system is the character: a spatially marked

pattern of strokes phonologically realized as a single syllable (please consult Appendix

E for a glossary of various linguistic terms used in the paper). Generally, each character

denotes a morpheme or several different morphemes.

2. The Chinese writing system evolved by emphasizing the concept of the character-

morpheme, to some extent blurring the concept of the multi-syllable word. In partic-

ular, spaces in the Chinese writing system are put in between of characters and not

in between of words 1. Thus a given sentence can have different meanings when being

separated into different sequences of words [166], and parsing a string of Chinese char-

acters into words became a non-trivial computational problem; see [170] for a recent

review.

1An immediate question is whether Chinese readers will benefit from reading a character-written

text, where the words boundaries are indicated explicitly. For normal sentences the readers will not

benefit, i.e. it does not matter whether the word boundaries are indicated explicitly or not [171]. But

for difficult sentences the benefit is there [172].
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II. Comparisons of Chinese characters and English words

We list the main differences and similarities between Chinese characters and English

words as follows:

1. Psycholinguistic research shows that the characters are important cognitive and

perceptual units for Chinese writers and readers [163–165]. We cite here one example.

Chinese characters are more directly related to their meanings than English words to

their meanings [165] 2; see Appendix F for additional details. The explanation of this

effect would be that characters (compared to English words) are perceived holistically

as a meaning-carrying objects, while English words are yet to be reconstructed from a

sequence of their constituents (letters) 3.

The word inferiority effect (see its description in Appendix F II) demonstrates that

the perception of Chinese characters is not similar to that of English letters [164], and

the perception of Chinese words is not similar to the perception of English words [164].

2. One-character words dominate in the following specific sense. Some 54% of

modern Chinese word tokens are single-character, two-character word tokens amount

to 42%; the remaining words have three or more characters [174]. For modern Chinese

word types the situation is different: single character words amount to some 10%

against 66% of two-character words [174]. Classic Chinese texts have more single-

character words (tokens), the percentage varies between some 60% and 80% for texts

written in different periods.

3. A minor part of multi-character words are multi-character morphemes, i.e. their

separate characters do not normally appear alone (they are fully bound). Examples of

this are the two-character Chinese words for grape “Ä:” (pú táo), dragonfly “|n”

(q̄ıng t́ıng), olive “¾�” (gǎn lǎn). Estimates show that some 10% of all characters

are fully bound [168].

A related set of examples is provided by two-character words, where the separate

2To get a fuller picture of this effect let us denote τf (E) and τf (C) for English and Chinese phonol-

ogy activation times, respectively, while τm(E) and τm(C) stand for respective meaning activation

times. The phonology activation time is the time passed between seeing a word in English (or char-

acter in Chinese) and pronouncing it; likewise, for the meaning activation time. Now these quantities

hold [165]: τf (E) < τm(E) > τm(C) ≃ τf (C) > τf (E).
3A simpler explanation would be that the characters are perceived as pictures (pictograms) di-

rectly pointing to their meaning. In its literal form this explanation is not correct, since characters-

pictograms are not frequent in Chinese.
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characters do have an independent meaning, but this meaning is not directly related

to the meaning of the word, e.g. “ÀÜ” (dōng x̄ı) means thing, but literally it amounts

to east-west, or “Ãv” (shǒu zú) means close partnership, but literally hand-foot.)

4. The majority of the multi-character words are semantic compounds: their sep-

arate characters can stand alone and are related to the overall meaning of the word.

Importantly, in most cases, the separate meanings of the component characters are

wider than the (relatively unique) meaning of the compound two-character word. An

example of this situation is the two-character Chinese word for train “»�” (huǒ chē):

its first character “»” (huǒ) has the meaning of fire, heat, popular, anger, etc, while

the second character “�” (chē) has the meaning of vehicle, machine, wheeled, lathe,

castle, etc.

Note that in Chinese there is a certain freedom in grouping morpheme into different

combinations. Hence it is not easy to distinguish the semantic compounds from lexical

phrases.

5. At this point we shall argue that in general Chinese characters have a larger

number of different meanings than English words. This statement will certainly appear

controversial, if it is taken without proper caution, and is explained without proper

usage of linguistic terms (see our glossary at Appendix E).

First of all note the difference between polysemes and homographs: polysemes are

two related meanings of the same character (word), homographs are two characters

(words) that are written in the same way, but their meanings are far from each other
4. Now many characters are simultaneously homographs and polysemes, e.g. character

“²” (mı́ng) means brilliant, light, clear, next, etc. Here the first three meanings are

related and can be viewed as polysemes. The fourth meaning next is clearly different

from the previous three. Hence this is a homograph. Another example is the character

“u” (fā or fà) that can mean hair, send out, fermentation, etc. All these three mean-

ings are clearly different; hence we have homographs. Note the following peculiarity of

the above two examples: the first example is a non-heteronym (homophonic) character,

i.e. it is read in the same way irrespectively whether it means light or next. The second

example is a heteronym character: it written in the same way, but is read differently

4Note that polysemes are defined to be related meanings of the same word, while homographs are

defined to be different words. This is natural, but also to some extent conventional, e.g. one can still

define homographs as far away meanings of the same word.
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depending on its meaning.

In most cases, heteronym characters—those which are written in the same way,

but have different pronunciations—have at least two sufficiently different meanings.

The disambiguation of their meaning is to be provided by the context of the sentence

and/or the shared experience of the writer and reader 5.

Surely, also English words can be ambiguous in meaning (e.g. get means obtain,

but also understand = have knowledge), but there is an essential difference. The major

contribution of the meaning ambiguity in English is the polysemy: one word has some-

what different, but also closely related meanings. In contrast, many Chinese characters

have widely different meanings, i.e. they are homographs rather than polysemes.

However, we are not aware of any quantitative comparison between homography

of Chinese versus English. This may be related to the fact that it is sometimes not

easy to distinguish between polysemy and homophony (see the glossary in Appendix

E). Still the above statement on Chinese characters having a larger number of different

meanings can be quantitatively illustrated via the relative prevalence of heteronyms in

Chinese. The amount of heteronyms in English is negligible, e.g. in rather complete

list of heteronyms presented in [176], we noted only 74 heteronyms 6, and only three of

them had more than 2 meanings. This is a tiny amount of the overall number of English

words (> 5 × 105). To compare this with the Chinese situation, we note that at least

some 14% of modern Chinese and 25% of traditional characters are heteronyms, which

normally have at least two widely different meanings. Within the most frequent 5700

modern characters the number of heteronyms is even larger and amounts to almost

22% [174] 7.

5Note that homophony in Chinese is much larger than homography: in average a syllable has

around 12–13 meanings [163]. Hence, in a sense, characters help to resolve the homophony of Chinese

speech. This argument is frequently presented as an advantage of the character-based writing system,

though it is not clear whether this system is here not solving the problem that was invited by its

usage [173].
6Not counting those heteronyms that arise because an English word happens to coincide with a

foreign special name, e.g. Nancy [English name] and Nancy city in France.
7One should not conclude that in average the Chinese character has more meanings than the English

word, because there is a large number of characters—between 10 % and 14 % depending on the type

of the dictionary employed [175]—that do not have lexical meaning, i.e. they are either function words

(grammatical meaning mainly) or characters that cannot appear alone (bound characters). If now

the number of meanings for each character is estimated via the number of entries in the explanatory

dictionary—which is more or less traditional way of searching for the number of meanings, though
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6. Chinese nouns are generally less abstract: whenever English creates a new word

via conceptualizing the existing one, Chinese tends to explain the meaning via using

certain basic characters (morphemes). Several basic examples of this scenario include:

length=long+short “�á” (cháng duǎn), landscape=mountains+water “ìY” (shān

shǔı), adult=big+person “�<” (dà rén), population=person+ mouth “<�” (rén

kǒu), astronomy=heaven+script “U©” (tiān wén), universe=great+emptiness “�

�” (tài kōng). English tools for making abstract words include prefixes, poly-, super-,

pro-, etc and suffixes, -tion, -ment. These tools either do not have Chinese analogs, or

their usage can generally be suppressed.

English words have inflections to indicate the tense of verbs, the number for nouns

or the degree for adjectives. Chinese characters generally do not have such linguistic

attributes 8, their role is carried out by the context of the sentence(s) 9.

The differences between Chinese and English writing systems can be viewed in

the context of the two features: emphasizing the role of base (root) morphemes and

delegating the meaning to the context of the sentence whenever this is possible [163].

The quantitative conclusion to be drawn from the above discussion is that Chinese

characters have more different meanings, they are flexible, they could combine with

other characters to convey different specific meanings. Anticipating our results in the

sequel, we expect to see a group of characters, which appear many times in the text,

but their concrete meanings are different in different places of the text.

it mixes up homography and polysemy—the average number of meanings per a Chinese character

appears to be around 1.8–2 [175]. This is smaller than the average number of (necessarily polysemic)

meanings for an English word that amounts to 2.3.
8Chinese expresses temporal ordering via context, e.g. adding words tomorrow or yesterday, or by

aspects. The difference between tense and aspect is that the former implicitly assumes an external

observer, whose reference time is compared with the time of the event described by the sentence.

Aspects order events according to whether they are completed, or to which extent they are habit-

ual. Indo-European languages tie up tense and aspect. The tie is weaker for Slavic Indo-European

languages. Chinese has several tenses including perfective, imperfective and neutral.
9Chinese has certain affixes, but they can be and are suppressed whenever the issue is clear from

the context.
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Appendix E - Glossary

• Classic Chinese (wén yán) written language employed in China till the early XX

(20th) century, and usually it is recognized that Classic Chinese evolved to Modern

Chinese since the May Fourth Movement in 1919. Still the Modern Chinese keeps many

elements of Classic Chinese. As compared to the Modern Chinese, the Classic Chinese

has the following peculiarities (1) It is more lapidary: texts contain almost two times

smaller amount of characters, since the Classic Chinese is dominated by one-character

words. (2) It lacks punctuation signs and affixes. (3) It relies more on the context. (4)

It frequently omits grammatical subjects.

• Content word (character): A word that has an independent meaning can be given

by reference to a word outside any sentence in which the word may occur. Content

words are said to have a lexical meaning, rather than indicating a syntactic (grammat-

ical) function, as a function word does.

• Empty Chinese characters—e.g. “A” (ǰı) or “®” (y̌ı) —serve for establishing

numerals for nouns, aspects for verbs etc. In contrast, to function characters, they

cannot be used alone, i.e. they are fully bound.

• Frequency dictionary collects words used in some activity (e.g. in exact science,

or daily newspapers etc) and orders those words according to the frequency of usage.

Frequency dictionaries can be viewed as big mixtures of different texts.

• Function word (character): is a word that has little lexical meaning or have

ambiguous meaning, but instead serves to express grammatical relationships with other

words within a sentence, or specify the attitude or mood of the speaker. Such words

are said to have a grammatical meaning mainly.

• Hapax legomena: Set of words (characters) that appeared only once in a text. In

a more general sense, set of words (characters) that appear in a text only few times.

An important feature of a text written by a human subject is that the text contains

a sizable amount of words (characters) that appear only one time; it is not difficult to

imagine an artificial text (or purposefully modified natural text) that will not contain

at all words that appear only once.

• Homophones: two different words that are pronounced in the same way, but may

be written differently, e.g. rain and reign.

• Homographs: two different words (or characters) that are written in the same
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way, but may be pronounced differently, e.g. shower [precipitation] and shower [the one

who shows]. This example is a proper homograph, since the pronunciation is different.

Another example (of both homography and homonymy) is present [gift] and present

[the current moment of time]. Note that the distinction between homographs and

polysemes is not sharp and sometimes difficult to make. There are various boundary

situations, e.g. the verb read [present] and read [past] may qualify as homograph, but

the meanings expressed are close to each other.

• Homonymes: two words (or characters) that are simultaneously homographs and

homophones, e.g. left [past of leave] and left [opposite of right]. Some homonymes

started out as polysemes, but then developed a substantial difference in meaning, e.g.

close [near] and close [to shut (lips)].

• Heteronyms: two homographs that are not homophones, i.e. they are written in

the same way, but are pronounced differently. Normally, heteronyms have at least two

sufficiently different meanings, indicated by different pronunciations.

• Key-word (key-character): A content word (character) that characterizes a given

text with its specific subject. The operational definition of a key-word (key-character)

is that in a given text its frequency is much larger than in a frequency dictionary, which

was obtained by mixing together a big mixture of different texts.

• Language family A set of related languages that are believed (or proved) to orig-

inate from a common ancestor language.

• Latent semantic analysis The analysis of word frequencies and word-word corre-

lations (hence semantic relations) in a text that is based on the idea of hidden (latent)

variables that control the usage of words; see [178] for reviews.

• Logographic writing system is based on the direct coding of morphemes.

• Mental lexicon: the store of words in the long-time memory. The words from the

mental lexicon are employed on-line for expressing thoughts via phrases and sentences;

see [127, 150] for detailed theories of the mental lexicon. Ref. [150] argues that in

addition to mental lexicon humans contain a mental syllabary that is activated during

the phonologization of a word that was already extracted from the mental lexicon.

• Morpheme: the “atom” of meaning: the smallest part of the speech or writing

that has a separate (not necessarily unique) meaning, e.g. cats has two morphemes: cat

and -s. The first morpheme can stand alone. The second one expresses the grammatical
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meaning of plurality, but it is a bound morpheme, since it can appear only together

with other morphemes.

• Polysemes are related meanings of the same word, e.g. the English word get

means obtain/have, but also understand (= have knowledge). Another example is that

many English nouns are simultaneously verbs (e.g. advocate [person] and advocate [to

defend]).

• Syllable is the minimal phonetic unit characterized by acoustic integrity of its

components (sounds), e.g. the word body is composed of two syllables: bo- and -dy,

while consider consists of three syllables: con- -si- -der. In phonetic languages such as

Russian the factorization of the word into syllables (syllabification) is straightforward,

since the number of syllables directly relates to the number of vowels. In non-phonetic

languages such as English, the correct syllabification can be complicated and not readily

available to non-experts. Indo-European languages typically have many syllables, e.g.

the total number of English syllables is more 10 000. However, 80 % of speech employs

only 500-600 frequent syllables [150]. It was argued, based on psycholinguistic studies,

that the frequent syllables are also stored in the long-term memory analogously to

mental lexicon [150]. The total number of Chinese syllables is much less, around 500

(about 1200 together with tones) [150, 175]. Syllabification in Chinese is generally

straightforward too, also because each character corresponds to a syllable.

• Writing system: the process or result of recording spoken language using a system

of visual marks on a surface. There are two major types of writing systems: logographic

(Sumerian cuneiforms, Egyptian hieroglyphs, Chinese characters) and phonographic.

The latter includes syllabic writing (Japanese hiragana) and alphabetic writing (En-

glish, Russian, German).
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Appendix F - Interference experiments distinguish-

ing between the Chinese characters and the English

words

The general scheme of interference experiments in psychology is described as follows

[165, 166]. There are two tasks, the main one and the auxiliary one. Each task is

defined via specific instructions. The subjects are asked to carry out the main task

simultaneously trying to ignore the auxiliary task. The performance times for carrying

out the main task in the presence of the auxiliary one are then compared with the

performance times of the main task when the auxiliary task is absent, or at least it

does not interfere with the main task.

I. The Stroop effect.

The main task is to call the color of words. The auxiliary task is not to pay attention

at the meaning of those words. The experiment is designed such that there is an

incongruency between the semantic meaning of the word and its color, e.g. the word

red is written in black. As compared to the situation when the incongruency is absent,

i.e. the word red is written in red, the reaction time of performing the main task is

sizably larger. This is the essence of the Stroop effect: the semantic meaning interferes

with the color perception.

It appears that the Stroop effect is larger for Chinese characters than for English

words; see [165] for a review. This is one of the arguments that the getting to the

meaning of a Chinese character is faster than to the meaning of an English word.

II. The word inferiority/superiority effect

If English-speaking subjects are asked to trace out (and count) a specific letter in a

text, they make less errors, when the text is meaningless, i.e. it consists of meaningless

strings of letters [164]. This is related to the fact that English words are recognized and

stored as a whole. Hence the recognition of words interferes with the task of identifying

the letter, and the English-speaking subjects make more errors when tracing out a

letter in a meaningful text. In contrast to this, Chinese-speaking adults display the
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word priority effect: they do less errors in tracing out a given character in a string of

meaningful characters, as compared to tracing it out in a list of meaningless pseudo-

characters [164]. The effect is reversed, if the Chinese subjects are asked to trace out

a specific stroke within a character: in analogy to the English situation it is easier for

Chinese speakers to trace out the stroke in a meaningless pseudo-character than in a

meaningful character [164].

These results imply that the recognition of Chinese characters is more similar to

the recognition of English words, while the recognition of Chinese words is less similar

to the recognition of English words.
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Appendix G: Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS test) is used to determine if a data sample agrees

with a reference probability distribution. The basic idea of the KS test is as follows.

We need to determine whether a given set X1, X2, ... , Xn is generated by i.i.d

sampling a random variable with cumulative probability distribution F (x) (null hy-

pothesis). To this end we calculate the the empiric cumulative distribution function

(CDF) Fn(x) for X1, X2, ... , Xn:

Fn(x) =
1

n

n
∑

i=1

IXi≤x, (A.30)

where IXi≤x equals to 1 if Xi ≤ x and 0 otherwise. Next we define:

Dn = sup
x

|Fn(x) − F (x)|. (A.31)

The advantage of using Dn (against other measures of distance between Fn(x) and

F (x)) is that if the null hypothesis is true, the probability distribution of Dn does not

depend on F (x). In that case it was shown that for n → ∞, the cumulative probability

distribution of
√

nDn is:

P (
√

nDn ≤ x) ≡ f(x) = 1 − 2

∞
∑

k=1

(−1)k−1e−2k2x2

. (A.32)

For not rejecting the null hypothesis we need that the observed value of
√

nD∗
n is

sufficiently small. To quantify that smallness we take a parameter (significance level)

α (0 < α < 1) and define κα as the unique solution of

f(κα) = 1 − α. (A.33)

Now the null hypothesis is not rejected provided that

√
nD∗

n < κα, (A.34)

where
√

nD∗
n is the observed (calculated) value of Dn. Condition (A.34) ensures that

if the null hypothesis is true, the probability to reject it is bounded from below by α.

Hence in practice one takes, e.g. α = 0.05 or α = 0.01.

Note however that condition (A.34) will always hold provided that α is taken suf-

ficiently small. Hence to quantify the goodness of the null hypothesis one should
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Table 1: Kolmogorov-Smirnov test (KS test) for the fitting quality of our results. In the KS test,

D and p denote the maximum difference (test statistics) and p-value respectively. D1 and p1 are

calculated from the KS test between empiric data and numerical fitting, D2 and p2 are between

empiric data and theoretical result, D3 and p3 are between numerical fitting and theoretical

result. Note that for making the testing even more vigorous, the presented results for the KS

characteristics are obtained in the original coordinates; similar results are obtained in logarithmical

coordinates that are employed for the linear fitting.

Texts D1 p1 D2 p2 D3 p3

TF 0.0418 0.865 0.0365 0.939 0.0381 0.912

TM 0.0529 0.682 0.0562 0.593 0.0581 0.568

AR 0.0564 0.624 0.0469 0.783 0.0443 0.825

DL 0.0451 0.812 0.0421 0.865 0.0472 0.761

AQZ 0.0586 0.587 0.0565 0.623 0.0601 0.564

KLS 0.0592 0.578 0.0641 0.496 0.0626 0.521

CQF 0.0341 0.962 0.0415 0.863 0.0421 0.857

SBZ 0.0461 0.796 0.0558 0.635 0.0616 0.538

WJZ 0.0427 0.852 0.0475 0.753 0.0524 0.691

HLJ 0.0375 0.923 0.0412 0.875 0.0425 0.862

calculate the p-value p : the maximal value of α, where (A.34) still holds. For the

hypothesis to be reliable one needs that p is not very small. As an empiric creterion of

reliability people frequently take p > 0.1.

We applied the KS test to our data on the character (word) frequencies. The empiric

results on word frequencies fr in the Zipfian range [rmin, rmax] are fit to the power law,

and then also to the theoretical prediction. With null hypothesis that empiric data

follows the numerical fittings and/or theoretical results, we calculated the maximum

differences (test statistics) D and the corresponding p-values in the KS tests. From

the above table one could observe that all the test statistics D are quite small, while

the p-values are much larger than 0.1. We conclude that from the viewpoint of the

KS test the numerical fittings and theoretical results can be used to characterize the

empiric data in the Zipfian range reasonably well.

85



Appendix H - A list of the studied texts

1) Two short modern Chinese texts:

- &ÕÓ, Kūn Lún Shāng (KLS) by Shu Ming Bi, 1987, (the total number of

characters N = 20226, the number of different characters n = 2047). The text is about

the arduous military training in the troops of Kun Lun mountain.

- C Q �D, Ah Q Zhèng Zhuàn (AQZ) by Xun Lu, 1922, (N = 18153, n = 1553).

The story traces the “adventures” of a hypocrit and conformist called Ah Q, who is

famous for what he presents as “spiritual victories”.

2) Two long modern Chinese texts:

- ²��., Ṕıng Fán de Sh̀ı Jiè (PFSJ) by Yao Lu, 1986, (N = 705130, n =

3820). The novel depicts many ordinary people’s stories which include labor and love,

setbacks and pursue, pain and joy, daily life and huge social conflict.

- YéD, Shǔı Hǔ Zhuàn (SHZ) by Nai An Shi, 14th century, (N = 704936,

n = 4376). The story tells how a group of 108 outlaws gathered at Mount Liang

formed a sizable army before they were eventually granted amnesty by the government

and sent on campaigns to resist foreign invaders and suppress rebel forces.

3) Four short classic Chinese texts:

- S¢�³, Chūn Qiū Fán Lù (CQF), by Zhong Shu Dong, 179-104 BC, (Vol.1-

Vol.8, N = 30017, n = 1661). A commentary on the Confucian thought and teachings.

- Ý�D, Sēng Bǎo Zhuàn (SBZ), by Hong Hui, 1124, (Vol.1-Vol.7, N = 24634,

n = 1959). A commentary on the Taoist thought and teachings. Biographies of great

Taoist masters.

- É²o�, Wǔ J̄ıng Zǒng Yào (WJZ), by Gong Liang Zeng and Du Ding, 1040-

1044, (Vol.1-Vol.4, N = 26330, n = 1708). A Chinese military compendium. The text

covers a wide range of subjects, from naval warships to different types of catapults.

- m ², Hǔ Ĺıng J̄ıng (HLJ), by Dong Xu, 1004, (Vol.1-Vol.7, N = 26559,

n = 1837). Reviews various military strategies and relates them to factors of geography

and climate.

4) A long classic Chinese text:

- ¤P, Sȟı J̀ı (SJ), by Qian Sima, 109 to 91 BC, (N = 572864, n = 4932). Re-

views imperial biographies, tables, treatises, biographies of feudal houses and eminent
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persons.

5) Four short English texts:

-The Age of Reason (AR) by T. Paine, 1794 (the major source of British deism,

N = 22641, n = 1706).

-Thoughts on the Funding System and its Effects (TF) by P. Ravenstone, 1824

(economics, N = 26624, n = 2067).

-Time Machine (TM) by H. G. Wells, 1895 (a science fiction classics, N = 31567,

n = 2612).

-Dream Lover (DL) by J. MacIntyre, 1987 (a romance novella, N = 24990, n =

1748).
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