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Résumé:	
  
 
Héritabilité et Evolution de la Reprogrammation Epigénétique des Cellules 

Germinales chez les Mammifères 
 
 Chez les mammifères, les cellules germinales sont induites à partir des 
tissus somatiques de l’embryon post-implantatoire. Les cellules germinales 
primordiales nouvellement induites voient l’ensemble de leurs marques de 
méthylation de l’ADN intégralement effacées puis rétablies de novo. Cette 
reprogrammation épigénétique rétablit leur pluripotence et leur permet d’acquérir 
les marques d’empreintes parentales. Chez les mâles, la méthylation de novo 
nécessite une voie d’ARN interférence impliquant les protéines PIWI et leurs 
petits ARNs associés (piRNAs). Les souris mutantes pour les protéines PIWIs 
sont stériles et présentent une méthylation incomplète des transposons.  
 Nous avons généré des souris transgéniques permettant d’étudier les 
signaux nécessaires à la production des piRNAs. Nous montrons que des loci 
reprogrammés sont capable de produire des piRNAs exogènes. Nous avons 
ensuite étudié l’impact de la perte des piRNAs sur les profils de méthylation des 
spermatocytes : alors que la majorité du génome reste correctement méthylé, 
seul un nombre réduit de transposons, transitoirement réactivés dans les cellules 
germinales primordiales, semble être affecté. Troisièmement, nous avons 
identifié chez l’Homme des différences structurelles entre les profils de 
méthylation de novo des cellules ES et du sperme. Enfin, la comparaison des 
profils de méthylation du sperme d’Homme et de Chimpanzé a révélé que le 
génome et l’épigénome évoluent de manière distincte ou concertée selon les 
régions. Dans leur ensemble, nos résultats illustrent l’étonnante plasticité des 
interactions existantes entre le génome et l’épigenome au cours du 
développement et de l’évolution. 
 
Mots-clefs : épigénétique – piRNA - cellule germinale - méthylation – transposon 
- évolution 
 
 
 
Summary: 
 

Inheritance and Evolution of Epigenetic Reprogramming in Mammalian 
Germ Cells 

 
 During mammalian post-implantation development, germ cells are induced 
from the somatic tissues of the embryo. Following their induction, primordial germ 
cells undergo a genome-wide erasure and de novo re-establishment of DNA 
methylation marks. This epigenetic reprogramming re-instates pluripotency and 
allows parental imprints to be deposited. In the male germ line, a unique RNAi 
pathway involving PIWI proteins and their associated small RNAs (piRNAs) is 
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necessary for proper de novo methylation. PIWI mutant mice are infertile and 
display methylation defects over transposon sequences. 
 Using a transgenic approach, we investigated the signals necessary for 
piRNA production. We show that artificial piRNAs can be produced from 
reprogrammed loci outside of their native context. We then studied the genome-
wide impact of piRNA loss on germ cell methylation. Whereas most of the 
genome is properly methylated, only a small group of transposons transiently 
reactivated in primordial germ cells is affected. Also we identified important 
structural differences in de novo methylation profiles between human sperm and 
ES cells. Finally, we compared sperm methylation profiles between human and 
chimpanzee and showed that the genome and the epigenome can evolve 
independently. Taken together, our results highlight the surprising plasticity of 
genome and epigenome interactions during development and evolution.  
 
Keywords: epigenetic – piRNA – germ cell – methylation – transposon – 
evolution  
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Chapter 1: Introduction 

 

 In sexually reproducing organisms, germ cells embody the concept of 

heredity. Upon fertilization, male and female germ cells (or gametes) have the 

ability to re-create a fully developed and fertile offspring. On the one hand, germ 

cells constitute the “continuous” link between generations, ensuring the 

transmission of all the traits accumulated over a species’ evolutionary history. On 

the other, they re-ignite embryogenesis at each life cycle, allowing the production 

of a unique individual, different from its parent but still somewhat similar. Germ 

cells are directed toward the “future”- similar to a new throw of dice in the never-

ending game of evolution - however, because they constitute one of the most 

potent state of a cell, they rewind development and differentiation. Consequently, 

studying the biology of germ cells implies taking a deep dive into the biology and 

regulation of genomes as well as into some of the most fundamental aspects of 

developmental biology.   

 In 1889, August Weismann was one of the first biologists to popularize the 

idea that the physical separation between the immortal “germen” (what we would 

now call germ cells) and the perishable “soma” (constituting the rest of the body) 

distinguished ontogeny from phylogeny. According to his germ plasm theory, the 

inheritance of new traits occured exclusively via alterations of the germen, 

excluding any somatic “soft inheritance”. In light of contemporary molecular, 

cellular and developmental biology, this vision has become substantially more 
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refined. Development and evolution cannot be considered as two independent 

phenomena and our current knowledge on the formation of germ cells points 

towards a more plastic concept of heredity. However, his initial observation 

retains something to reflect upon as a key question remains: what makes germ 

cells so different from somatic cells with their relationship to heredity?  

 In mammals germ cells undergo an atypical mode of development during 

which a pool of cells primed toward a somatic fate is induced to become germ 

cell precursors. These cells are somehow “de-differentiating” from their previous 

fate or, in other words, “re-acquiring” a totipotent state. This phenomenon of cell 

fate reprogramming is by essence an epigenetic process and requires the 

activation of characteristic pathways involving chromatin remodeling and RNA 

interference machineries. Embedded within this phenomenon lies the core of this 

Thesis work, where I studied the epigenetic pathways necessary for the 

formation of a viable male gamete and compared the outcome of these pathways 

with other cell types as well as between closely related organisms. In the 

following introductory points I will outline the specification and development of 

germ cells, followed by an overview the role of DNA methylation during this 

process, and finish by introducing a small RNA pathway linked with the 

establishment of methylation marks in male germ cells. 
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1.1: Induction and Development of Male Germ Cells in Mammals 

  

 1.1.1 Key Aspects of Early Embryonic Development 

 Mammalian embryonic development begins with the fertilization of a fully-

grown oocyte by a mature sperm cell. During this event, the transcriptionally 

silent male and female pronuclei fuse to form a diploid 1-cell zygote. In mouse, 

this zygote will remain transcriptionally silent for approximately 20 hours and rely 

on maternally deposited mRNAs for protein synthesis (Figure 1.1, Evsikov et al., 

2004; Wang et al., 2004). The maternal-zygotic transition occurs at the mid-2-cell 

stage. Maternal mRNAs are degraded and zygotic transcription begins (Flach et 

al., 1982; Latham et al., 1991; Bouniol et al., 1995). The zygote follows a series 

of rapid cell divisions most of which are asynchronous past the 8-cell stage. As 

cells divide, they become specified into 2 major lineages: the trophoblast, 

contributing to extra-embryonic tissues, and the inner cell mass (ICM), 

contributing to all 3 future embryonic germ layers (endoderm, ectoderm and 

mesoderm).  By the blastocyst stage (around 4.5 dpc in mouse and day 6-7 in 

human), the trophoblast lineage surrounds the ICM and its adjacent cavity – the 

blastocoel. By the time of implantation, the blastocyst is composed of 3 cell 

lineages: the trophectoderm, derived form the trophoblast, the epiblast and the 

primitive endoderm, derived from the ICM (Figure 1.2). 
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Figure 1.1: Mouse pre-implantation development 
This image depicts a cross section of the female adult gonads and uterine horn. It shows 
the migration and early steps of pre-implantation development of the mouse zygote. Post 
fertilization, the zygote undergoes cleavage and compaction at E3.0. Blastocyst 
specification occurs between E4.0 and E4.5; the ICM is shown in blue and the 
trophoblast in red. Implantation occurs past E4.5. Image credit: stemcells.nih.gov. 

  

 During these key steps of pre- and post-implantation development, 

signaling pathways and transcriptional programs act coordinately to maintain the 

developmental potency of the embryo, as exemplified by the well-characterized 

stem/pluripotent-cell transcriptional network involving Oct4, Nanog and Sox2 

(reviewed by Chambers and Smith, 2004; Surani et al., 2007; Silva and Smith, 

2008). This network, in addition to key epigenetic modifiers, such as the Ezh2 

complex (mammalian polycomb like complex), have been shown to be essential 

for proper ICM development in mouse embryos as well as for maintaining the 
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stemness of ICM derived embryonic stem cells (ESCs) ex-vivo (Chambers et al., 

2003 and 2007; Mitsui et al., 2003; Nichols et al., 1998; Masui et al., 2007). In the 

epiblast and in cultured ES cells, Oct4, Nanog and Sox2 dominate the 

transcriptional network, directing their target genes to continuously repress 

lineage specification and maintain self-renewal. From the zygote to the 

establishment of the epiblast, developmental potency decreases (from totipotent 

to pluripotent), as epiblast cells cannot give rise to trophoblastic tissues following 

implantation.  

  

 1.1.2 Induction of Primordial Germ Cells from Somatic Tissues at 

E6.5 

 The induction of primordial germ cells occurs soon after blastocyst 

implantation. PGCs arise from a competent region located at the junction of the 

extraembryonic ectoderm (ExE), visceral endoderm (VE) and the adjacent 

anterior-proximal epiblast (Figure 1.2, Ginsburg et al., 1990; Lawson and Hage, 

1994). At ~E6.0 the most proximal epiblast is still pluripotent but is being 

restricted towards a somatic fate (Saitou et al., 2002; Yabuta et al., 2006; 

Kurimoto et al., 2008). Indeed, single cell expression profiles revealed that this 

tissue expresses the key genes priming the development of the embryonic and 

extra-embryonic mesoderm (T-brachyury, Hoxa1, Hoxb1) and that early PGC 

precursors initially display these expression features. Interestingly, via 

heterotopic and orthotopic transplant experiments in mouse, it was shown that 

the proximal and distal regions of the epiblast maintain their fate in a non cell-
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autonomous fashion, and that PGCs can arise from distal epiblast cells 

transplanted in the proximal region. 

 

 

 

Figure 1.2: Primordial germ cell induction in the mouse embryo. 
At E4.5 the blastocyst is composed of three cell types, trophoectoderm (TE, purple), 
primitive endoderm (PE, yellow), and epiblast (Epi, blue). The TE cells in direct contact 
with the epiblast proliferate and from the extraembryonic ectoderm (ExE) at E5.5. The 
initial embryonic patterning including anterior–posterior polarity formation, gastrulation, 
and germ cell specification is mediated by signalings from the ExE- and PE-derived 
visceral endoderm (VE) that cover the epiblast. Primordial germ cell (PGCs, green) 
induction occurs between E6.75 and E7.5.  
DVE, distal visceral endoderm; AVE, anterior visceral endoderm; ExM, extraembryonic 
mesoderm; EM, embryonic mesoderm; DE, definitive endoderm. Image adapted form 
Mitinori Saitou and Masashi Yamaji, 2010. 

 
  

 It is believed that antagonistic signals originating from the proximal VE and 

BMP4/8 signaling from the ExE restrict a pool of ~40 cells to become PGCs 

(Lawson et al., 1999; Chang et al., 2001; Tremblay et al., 2001; Ohinata et al., 

2009). Between 6.5-7.5 dpc, these PGCs acquire a unique fate characterized by 

the sequential expression of Blimp1 (B-Lymphocyte induced maturation protein 
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1, also known as Prmd1), Prmd14 (PR domain containing transcription factor 14), 

and Stella/Dppa3 (Developmental pluripotency-associated gene 3) (Ohinata et 

al., 2005; Vincent et al., 2005; Yamaji et al., 2008; Payer et al., 2003). They also 

stain positively for alkaline phosphatase (Tam et al., 1996). Whereas Blimp1 has 

been shown to be associated with the suppression of the prior mesodermal-

somatic fate (for example down regulating Hoxa1-2-3 and Tbx6), Prmd14 is 

necessary for the re-acquisition of pluripotency, in particular via the up-regulation 

of Sox2 (Yamaji et al., 2008).  

 Following a brief period of proliferation and concomitant with gastrulation, 

newly induced PGCs migrate along the dorsal mesentrery and colonize the future 

gonads in the dorsal part of the emryo by ~E10-11.5. In the current model for 

PGC migration, homotypic cell adhesion and heterotypic repulsion serves to 

direct cellular migration and directionality (Tanaka et al., 2005). An interferon-

inducible transmembrane protein (Ifitm3, also known as Fragilis) is expressed 

after induction by BMP signaling during PGC specification (Saitou et al., 2002). A 

similar protein, Ifitm1/Fragilis2, is later expressed in the developing PGC and the 

nascent mesodermal cells (Tanaka et al. 2001; Lange et al. 2003). A subsequent 

down-regulation of Ifitm1, but the persistence of Ifitm3 on the cell surface, results 

in a heterotypic repulsion between the PGC and its surrounding mesoderm. This 

repulsion restricts the PGC to the endoderm, thus facilitating their passive 

migration along the hindgut as it elongates (Lawson and Hage, 1994). The 

subsequent exit of the PGC from the endoderm (towards the developing 

embryonic gonads) might also be mediated by the activation of Ifitm1 or 
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deactivation of Ifitm3, eliminating the heterotypic repulsion (Tanaka et al., 2005). 

However, the model remains disputed, as the knockout of Ifitm3 or the Ifitm 

cluster does not appear to affect PGC development (Lange et al., 2008).  

  

  1.1.3 Colonization of Embryonic Gonads by Mitotic and Post 

Mitotic PGCs between E11.5 and P2 

 Between 11.5 and 13.5dpc PGCs proliferate, undergo a first wave of 

major epigenetic changes (discussed in detail in section 1.2) and acquire their 

sex-specific fates. By 13.5dpc they are referred to as gonocytes and their total 

number doesn’t exceed ~10000 cells per embryo or ~5000 cells per gonads. 

Hereafter, PGCs undergo sex-specific developmental paths, which will lead to 

the formation of highly dimorphic post-meiotic male and female gametes later in 

the life of the animal (spermatozoa and oocytes respectively). Briefly, whereas 

male PGCs enter a long G1 phase at 13.5dpc from which they exit only after birth 

(~2dpp or P2), female PGCs begin meiosis during embryonic development and 

arrest at the end of prophase 1 until post-pubertal development.  

 As PGCs move from their site of induction to colonize the gonad gene 

expression is extremely dynamic. In addition to the genes essential for lineage 

restriction and fate specification, once in the gonads, PGC activate the 

expression of Gcna-1 (germ cell nuclear antigen 1, Enders et al., 1994) and the 

widely conserved RNA-helicase VASA (Mvh, Mouse vasa homolog, Toyooka et 

al., 2000) both of which are exclusively found in this lineage. Another important 

marker of post migratory male PGCs is the sustained expression of Oct4, which 
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in conjunction with Nanog, has been shown to be essential for PGC survival past 

11.5dpc (Chambers et al., 2007; Kehler et al., 2004). These genes and others 

constitute useful markers for cell staining and/or isolation of PGCs from dissected 

embryos. 

  

  1.1.4 From Spermatogonial Stem Cells to Mature Sperm 

 Male germ cell development is ultimately achieved soon after birth when 

PGCs occupy their final niche at the basement membrane of seminiferous 

tubules and become a dedicated stem-cell population termed spermatogonial 

stem cells (SSCs, Figure 1.3). SSCs isolated and cultured from mouse or human 

adult testes have been shown to differentiate into various cell types in-vitro and 

maintain their ability to form teratomas in immune-compromised mouse models 

even after multiple passages  (Seandel et al., 2007, Guan et al., 2006). More 

importantly, adult SSCs and their cultured derivative, known as multipotent adult 

stem cells (MASCs), display an ESC like potential as they can contribute to all 3 

germ-layers (endoderm, mesoderm and ectoderm) when injected into early 

blastocysts (Guan et al., 2006). 

 Mouse and human adult testis share a common structural organization. 

Seminiferous tubules are packaged into each gonad, and spermatogenesis 

occurs in a staged fashion from the basal side to the luminal side of each tubule. 

The SSCs and their daughters (type A and B spermatogonia) lie basally, they 

divide throughout the life of the individual. Moving towards the lumen, cells 

undergo meiosis and spermiogenesis, which include the final differentiation steps 
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of mature spermatozoa. Pre-puberty, the first wave of meiosis is believed to 

occur in a somewhat synchronous fashion (Bellve et al., 1977, see Evaluation of 

the Testis, Cache River Press 1990) albeit with some discrepancies between 

tubules. By taking advantage of this synchronized first wave of meiosis, staged 

isolation of meiotic cells can be achieved and their proprieties characterized. As 

SSCs divide, their daughters - type-A spermatogonia - move away from the basal 

membrane, enlarge in size and become type-B spermatogonia. Type-B 

spermatogonia maintain their mitotic potential and increase in number prior to 

their entry into meiosis as primary spermatocytes - characterized by fully 

replicated and condensed chromatin (with a chromosome count of 2n4C, Figure 

1.3). During the first meiotic division, homologous chromosomes pair, crossing-

overs occur and each homolog moves into distinct secondary spermatocytes 

(chromosome count of 1n2C). These cells enter the second division of meiosis, 

where sister chromatid segregate into distinct daughter cells to produce haploid 

spermatids (chromosome count of 1n1C). During meiosis, germ cell 

developmental potential decreases and Oct4 expression is progressively lost 

(Pesce 1998). In the most final stage of sperm differentiation (spermiogenesis), 

canonical nucleosomes are replaced by protamines, compacting the genome into 

a highly dense, transcriptionally inactive, structure (Coffigny et al. 1999; Cho et 

al. 2001). 
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Figure 1.3: Structure of the mouse seminiferous tubule and mouse meiosis 
Schematic representation of a seminiferous tubule cross-section. A schematic view of 
meiosis is shown on the right together with the corresponding DNA contents. Meiosis 
occurs in a polarized fashion from the basal membrane to the lumen of the tubule. 
Spermatogonial stem cell derived Type-A and -B spermatogonia are found at the most 
basal side of the tubule. Their DNA content is 2n2C - 2 copies of the genome, diploid, 
with a total of 2 chromatids, one per homolog. Fully replicated spermatogonia enter 
Meiosis I as primary spermatocytes and exit as secondary spermatocytes – DNA content 
going from 2n4C (replicated diploid genome) to 1n2C (replicated haploid genome). 
Secondary spermatocytes undergo meiosis II and exit as round spermatids with DNA 
content of 1n1C. Adapted form de Rooij, 2003. 
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1.2: DNA Methylation Dynamics During Mammalian Development 

 

 Organogenesis and cell-fate specification is a complex process whereby a 

pool of cells with equivalent potential progressively acquires a dedicated function 

in the organism – a process known as differentiation. At the molecular level, 

differentiation is characterized by cell-type specific transcript expression (of both 

coding and non-coding RNAs), reflecting the progressive restriction of the 

genome to a specific state. Chromatin based epigenetic regulation drives the 

establishment and maintenance of these states through mitosis and in some 

cases meiosis. Epigenetic modifications rely on direct chemical modification of 

the DNA molecule (e.g. DNA methylation) as well as post-translational 

modification of the N-terminal tail of histones, which compact the genome into the 

chromatin fiber. Histone modifications and DNA methylation unequally mark the 

genome in a time and context dependent fashion (e.g. at promoters, enhancer, 

repeats…) and contribute to the regulation of its transcriptional activity. 

 The previous section overviewed the key developmental steps leading to 

the formation of mature male germ cells. Prior to their induction, germ cells 

belong to a population of cells primed to differentiate into somatic tissues. The 

specification of the germ cell lineage is associated with the re-acquisition of 

pluripotency, a feature previously seen in the ICM of growing blastocysts. During 

these reprogramming events the epigenome is particularly dynamic, with 

genome-wide erasure and re-establishment of histone and DNA methylation 

marks. Focusing on DNA methylation, the following section will review the key 
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aspects of the deposition/removal of methylation marks and finish by a detailed 

description of DNA methylation re-programming in developing PGCs. 

  

  1.2.1 Key Aspects of DNA methylation 

 In mammals, DNA methylation is the deposition of a methyl (-CH3) group 

on the fifth carbon of cytosines. Methyl-Cs are extremely prevalent across the 

genome, with 60-70% of all cytosine being methylated in somatic tissues (Bird et 

al., 1985; Ehrlich et al., 1982). In most of the human and mouse cell types 

investigated thus far, DNA methylation is primarily detected in the context of a 

CpG di-nucleotide. In this context, methylation is predominantly found to be 

symmetrical on both strands, allowing the maintenance of methylation patterns 

during replication (Holliday et al., 1975; Riggs AD 1975; Wigler et al., 1981a/b). 

In 1975, Holliday and Pugh postulated that chemical modifications of the DNA 

molecule at/or around regulatory elements would accompany the modulation of 

gene transcription involved in controlling cell proliferation and differentiation 

during development. In addition, they proposed a model explaining how these 

marks would be deposited and maintained during cell division in a semi-

conservative fashion. Their predictions turned out to be valid, with the discovery 

of maintenance and de novo methyl-transferase enzymes that catalyse the active 

deposition of methyl marks throughout the genome. Four genes with putative 

DNA methyl-transferase activity can be found in most mammalian genomes 

(dnmt1, 2, 3a and 3b). Whereas DNMT1, 3a and 3b have been shown to be 

catalytically active in-vivo, the function of DNMT2 is still largely mysterious.  
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   1.2.1a Establishment of DNA methylation in Mammals 

 DNMT1 was the first isolated DNA methyl-transferase in mammals (Bestor 

et al., 1988). Several lines of evidence suggest that DNMT1 is preferentially 

involved in the maintenance of methylation marks. During S-phase, DNMT1 is 

targeted to sites of DNA replication via several N-terminal domains interacting 

with component of the replication fork such as PCNA and UHRF1 (Leonhardt et 

al., 1992; Liu et al., 1998; Sharif et al., 2007; Arita et al., 2008). In addition, 

inhibition of DNMT1, using chemical inhibitors or antisense blocking 

oligonucleotides, affects the formation of replication forks (Knox et al., 2000). 

Finally, in vitro experiments on purified DNMT1 have shown that DNMT1 

preferentially catalyzes the addition of a methyl group in the context of 

hemimethylated dsDNA (Zucker et al., 1985; Flynn et al., 1996; Pradhan et al., 

1999). Thus the recruitment of DNMT1 during DNA replication is likely 

responsible for the re-establishment of symmetrical methylation at 

hemimethylated sites generated upon daughter strand synthesis (Figure 1.4). 

The recent solving of the crystal structures of DNMT1:DNA complexes provided 

some evidence for DNMT1 strong preference for CpG sites and showed that, 

when not engaged in catalysis, DNMT1 folding inhibits its interaction with fully 

unmethylated sites  (Song et al., 2011). 
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Figure 1.4: 
Establishment of DNA 
methylation 
In the context of CpG 
dinucleotides, methyl-
groups (red) are 
symmetrically deposited 
on both strands of the 
DNA sequence by de 
novo methyl-transferases 
(top). Upon DNA 
replication, the newly 
synthesized strands are 
hypomethylated, creating 
asymmetric sites 
(middle). The recruitment 
of DNMT1 at replication 
forks re-establishes 
symmetrical methylation 
(bottom).  
 

 

 

 

  

 Because of the inherent dynamic nature of the genome during 

development and differentiation, methylation marks are often deposited de novo, 

outside of a maintenance context. Whereas DNMT1 has been shown to have de 

novo methyl-transferase activity, albeit at low frequency, DNMT3a and b 

enzymes primarily achieve this function. The de novo methyl-transferase activity 

of these two enzymes on unmethylated DNA has been shown both in-vivo and 

in-vitro (Okano et al., 1998 and 1999; Gowher et al., 2001; Hsieh CL, 1999). 

CpG CpG CpG CpG CpG CpG CpG
me me me me me me me

mememememe

CpG CpG CpG CpG CpG CpG CpG

CpGCpGCpGCpGCpGCpGCpG

DNMT3a/b/l

me me me me me

DNA replication

CpGCpGCpGCpGCpGCpGCpG
mememememememe

Symmetric DNA methylation

Asymmetric DNA methylation

DNMT1

CpG CpG CpG CpG CpG CpG CpG
me me me me me me me

CpGCpGCpGCpGCpGCpGCpG
mememememememe

Symmetric DNA methylation

De Novo methylation

Maintenance methylation



	
   24	
  

Despite their close sequence similarity, DNMT3a and b act on different genomic 

targets and catalyze DNA methylation in slightly different ways. DNMT3b has 

been shown to be essential for de novo methylation of peri-centromeric regions 

and act as a processive enzyme (Okano et al., 1999; Gowher et al., 2002). In 

contrast, DNMT3a was proposed to act preferentially on intergenic and genic 

single copy loci and requires de novo targeting following each methylation event 

(Lin et al., 2002; Hata et al., 2002).  

 Interestingly, de novo methyltransferases require the presence of a non-

catalytic co-factor named DNMT3L to be functional in-vivo. DNMT3L is strongly 

up-regulated in zygotes and developing gonads and its presence in DNMT3 

complexes enhances the catalytic activity of the enzymes (Hata et al., 2002; 

Chedin et al., 2002; Suetake et al., 2004). The structural analysis of 

DNMT3a:DNMT3L complexes revealed that through its C-terminal interaction 

with the catalytic site of DNMT3a, DNMT3L promotes the formation of a tetramer 

including 2 copies of the DNMT3a:3L complex and enhances targeting to the 

chromatin fiber (Jia et al., 2007; Jurkowska et al., 2008). 

 

   1.2.1b Erasure of DNA Methylation Marks: Current 

Models 

 DNA methylation is a reversible modification. Two modes of demethylation 

have been proposed in the literature: active and passive. Passive demethylation 

occurs when methyl marks are not re-established during cell division and get 

diluted out after several rounds of division. Recently, a flurry of studies suggested 
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that, similar to plants, hydroxylation of methyl-cytosines and base excision repair 

mechanisms could be involved in active DNA demethylation in mammals 

(reviewed by Bhutani et al., 2011). In this model, hydroxylation of 

methylcytosines by TET proteins (ten-eleven translocation) is followed by an 

AID/APOBEC mediated deamination into hydroxymethyluridine. This base is then 

recognized by the base pair excision pathway, which mediates its replacement 

with unmethylated cytosines. For example, these studies showed that knocking-

down TET or AID (Activation Induced Deaminase) proteins impaired ES cell 

differentiation and induced pluripotent stem cell reprogramming, demonstrating 

that removal of DNA methylation memory was an essential step in the transition 

between distinct cellular states (Ficz et al., 2011; Bhutani et al., 2010). Moreover, 

animal mutants for TDG (a glycosyase involved in the base excision repair 

pathway) display demethylation defects during early embryogenesis (Cortellino et 

al., 2011).  

 There is still much debate as to which mode of demethylation is more 

prevalent during development. Because of its unspecific nature, passive 

demethylation seems like an attractive model to explain a fast and global erasure 

of methylation profiles. Active demethylation, on the other hand, seems more 

adapted to target a small subset of regulatory regions that fluctuate in 

methylation state during stem cell maintenance and differentiation. The reality 

might be more complex as both processes could co-occur in the same cellular 

context (see for example Rougier et al., 1998; Mayer et al., 2000; Inoue et al., 

2011). 
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   1.2.1c Interaction between DNA Methylation and other 

Chromatin Modifications 

 DNA methylation is functionally linked to the modification of histone tails, 

which can be methylated, acetylated, ubiquitinated or phosphorylated (reviewed 

by Cedar and Bergman, 2009). Briefly, whereas di- and tri-methylation of histone 

H3 lysine 9 (H3K9me) is associated with constitutive heterochromatin and 

transcriptional silencing, H3K4 and/or H3K36 methylation and H3K9 acetlyation 

mark actively transcribed regions in euchromatic domains. Other marks, such as 

H3K27 methylation, are found across regions displaying a more plastic pattern of 

expression named “bivalent domains” – switching rapidly from permissive to 

repressive (Bernstein et al., 2006). DNMTs are found in complex with histone 

modifiers such as de-acetylases (HDACs, Fuks et al., 2001; Rountree et al., 

2000; Jones et al., 1998; Nan et al., 1998), methyltransferases (e.g. SUV39, 

G9a) and the heterochromatin-associated protein HP1 (Tachibana et al., 2002; 

Fuks et al., 2003; Esteve et al., 2006; Smallwood et al., 2007), showing how the 

interplay between higher order chromatin and DNA methylation dynamically 

structure the genome.  

 Several studies have now shown that un-methylated DNA is generally 

associated with H3K9acetylated/H3K4methylated enriched domains (see for 

example Edwards et al., 2010; Hashimoto et al., 2010). On the other hand, 

methylated regions are often found overlapping HP1, H3K9me2 and H3K9me3 

heterochromatin. It is still unclear which chromatin signal (DNA methylation or 
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histone modifications) triggers the establishment of the other. Both epigenetic 

signals could act in a self-enforcing loop as seen in plants and fungi (Tariq et al., 

2003; Tamaru et al., 2001; Jackson et al., 2002; Henckel et al., 2009). For 

example, inhibition of de novo methylation or the ectopic introduction of 

hypomethylated DNA reduces H3K9me deposition, enhances histone de-

acetylation and recruits H3K4 methyl-transferases (Hashimshony et al., 2003; 

Nguyen et al., 2002; Thomson et al., 2010). In turn H3K4 methylation inhibits 

DNMT3L recruitment at promoters and prevents de novo methylation (Ooi et al., 

2007).  

  



	
   28	
  

  1.2.2 DNA Methylation: Functional Relevance and Evolutionary 

Consequences  

   1.2.2a Function of DNA Methylation during Mammalian 

Development 

 For the past 30 years, DNA methylation has been studied in a wide variety 

of developmental contexts, including human and mouse differentiated cells, stem 

cells and whole tissues. These studies were focused on establishing the profiles, 

and studying the regulatory effects, of DNA methylation over a limited set of 

genomic loci or over ectopically introduced sequences – such as integrated 

viruses and transfected plasmids. These studies revealed that the maintenance 

of gene expression profiles during cell fate restriction and differentiation largely 

relies on methylation gain and losses at promoters or other regulatory elements 

(see Bird A, 2002; Goll and Bestor, 2005). In addition, mono-allelic and imprinted 

gene expression are mediated by the methylation of control regions on the 

silenced allele during embryonic and germ cell development (Li et al. 1993; 

reviewed in Surani MA, 1998); the most extreme example of this is X-

chromosome inactivation, where, in females, an entire chromosome is mono-

allelically expressed. The establishment and maintenance of X-chromosome 

inactivation depends on epigenetic modifications including a chromosome wide 

enrichment for methyl-Cs (for example see Kaslow et al., 1987; Csankovszki et 

al., 2001; Panning et al., 1996). Finally, and probably most importantly, the 

silencing of genomic repeats rely almost exclusively on DNA methylation. 

Preventing the establishment of DNA methylation over transposons leads to their 
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transcriptional up-regulation and induces genomic damage by non-homologous 

recombination (Okano et al., 1999; Walsh et al., 1998; Bourc’his and Bestor, 

2004; Yoder and Bestor, 1997).  

 The essential role of DNA methylation is further highlighted by the 

deleterious effect of dnmt knockouts. Targeted deletion of DNMT1, 3a and 3b all 

lead to embryonic lethality (Li et al., 1992; Okano et al., 1999), albeit with 

different phenotypes. Interestingly, while none of these enzymes have been 

shown to be required for the maintenance of ES cell self-renewal, but instead 

affect differentiation in culture. As expected, dnmt1 targeting leads to a 3-5 fold 

genome-wide reduction of cytosine methylation. More importantly, homozygous 

mouse embryos arrest their development between 9dpc and 11dpc and die in-

utero. Similarly, dnmt3a/b targeted deletions lead to severe embryonic 

phenotypes. Interestingly, whereas dnmt3b null embryos can’t survive past 

9.5dpc, dnmt3a nulls develop to term but die soon after birth at around day 4. 

This strongly supports the notion that these two enzymes have essential and 

non-redundant roles. A deeper look at methylation defects harbored in these 

mutants revealed that peri-centromeric and transposon methylation is more 

affected in dnmt3b and double nulls than in dnmt3a mutants alone. The 

methylation of imprinted loci in whole-embryos is not affected in these mutants; 

however, proper imprinting fails to be established during ES cell differentiation in 

culture.  

 Because of the early embryonic lethal phenotypes displayed by these 

mutants, it has been hard to study their direct effect on germ cell methylation, 
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which occurs past 13.5dpc in mouse. The answer came from the study of dnmt3l 

null animals and revealed that this cofactor was essential for male germ line 

development and for the establishment of maternal imprints in developing 

oocytes (Bourc’his et al., 2001 and 2004). Dnmt3l nulls fail to establish de novo 

methylation during PGC development and display a strong up-regulation of retro-

transposon transcripts. These germ cells enter meiosis but undergo apoptosis 

around the pachytene stage of meiosis 1. On the other hand, heterozygous 

embryos born from homozygous females die a mid-gestation due to biallelic 

expression of imprinted loci.  

    

   1.2.2b Evolutionary Impact of CpG Methylation 

 One interesting long-term effect of DNA methylation is its genome-wide 

impact on C to T transitions over evolutionary time scales (Duncan and Miller, 

1980; Bird, A 1980; Cooper et al., 1989; Ehrlich et al., 1990; Schorderet et al., 

1992). Methylated Cs can undergo spontaneous deamination into uracil and are 

subsequently replaced by thymines. Consequently, CpGs are strikingly under 

represented in mammalian genomes (Human and Mouse genome sequencing 

consortium). However, mammalian genomes retain areas of relatively high CpG 

density, called “CpG islands” (CGIs) (Gardiner-Garden and Frommer, 1987). 

These regions are conserved across vertebrate genomes and have somehow 

avoided CpG depletion over evolutionary time. In mouse and humans, CGIs 

typically overlap other important genomic elements such as transcriptional start 

sites (TSS) (Takai and Jones 2002, Gardiner-Garden and Frommer, 1987). 
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There is still much mystery as to what evolutionary force shapes CGIs over short 

and long evolutionary periods. One likely explanation is that hypomethylated 

regions display such enrichment over time because of lower rates of 

deamination, especially if hypomethylated in germ cells (Bird A, 1985). 

Alternatively, higher CpG densities could regulate transcription factor binding 

affinity or be retained due to selective pressure in the course of speciation, 

independently of methylation. Recently, Cohen, Kenigsberg and Tanay (Cohen et 

al., 2011) explored all possible scenarios, and suggested an interesting model in 

which the combination of CGI genomic context (promoters, intergenic…), 

methylation status (in germ cells or somatic tissues) and positive selection at 

individual CpG sites over regulatory or coding regions could explain the current 

CGI content of primate genomes. Of course only a detailed profiling of 

methylation across species and tissues would put these models to the test. 

 

 

 1.2.3 Germ Cells and ES Cells: Outcome of Epigenetic 

Reprogramming  

 As highlighted in section 1.1, early PGCs and the ICM of pre-implantation 

embryos share some interesting molecular and developmental features - the 

most striking of them being the shared expression of the stem-pluripotent 

transcriptional network mediated by Oct4, Nanog and Sox2. In addition to these 

overlapping transcriptional programs, both lineages undergo a wave of genome-

wide erasure and re-establishment of methylation marks prior to their 
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specification (Monk et al., 1987; reviewed by Reik et al., 2001; Surani et al., 

2007). The function of this epigenetic reprogramming still remains elusive, but it 

is associated with the establishment and maintenance of pluripotency and is 

needed for the acquisition of the unique chromatin signature of the ICM and the 

establishment sex specific epigenetic states in PGCs (Figure 1.5). 

 

Figure 1.5: Reprogramming 
during mammalian development.  
The figure depicts the main 
epigenetic changes occurring during 
critical stages of development. The 
totipotent zygote contains maternally 
inherited epigenetic modifiers and 
transcription factors, including Oct4, 
Sox2, and Nanog. These, together 
with the embryonic transcripts, 
regulate development to the 
blastocyst stage, where the 
pluripotent ICM is established. PGCs 
exhibit epigenetic and transcriptional 
states that are associated with 
pluripotency, and the ensuing 
epigenetic reprogramming re-
generates totipotency. Adapted from 
Surani 2007.  
 

  

   1.2.3a DNA Methylation Reprogramming in Pre-

implantation Embryos 

 In the mouse 1-cell zygote, several reports have shown that the paternal 

genome undergoes a rapid wave of DNA demethylation prior to the onset of the 

first cleavage (Mayer et al., 2000; Oswald et al., 2000; Santos et al., 2002; 

Wossidlo et al., 2010). Using 5mC antibodies as well as targeted bisulfite 

sequencing, these studies have shown that, as protamine-to-histone exchange 
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occurs in the paternal pronucleus, overall levels of DNA methylation decrease at 

most genic and intergenic sequences with the exception of imprinted loci. In 

contrast, the maternal genome gradually loses methylation as cleavage occurs in 

what looks like a replication dependent process (Howlett et al., 1991; Kafri et al., 

1992; Rougier et al., 1998; Inoue et al., 2011). By the 8-cell stage most zygotic 

methylation marks have been erased, and only imprinted methylation can be 

detected. 

 Re-acquisition of DNA methylation is observed in the developing ICM; 

however, the trophoblast lineage seems to be re-methylated to a lesser extent 

(Monk M, 1990; Santos et al., 2002). DNMT expression is very dynamic during 

pre and post-implantation development. DNMT3b is the first de novo methyl-

transferase to be expressed in the ICM between 4.5 and 7.5dpc (Watanabe et 

al., 2002; Hirasawa et al., 2008). Past 9.5dpc DNMT3b is replaced by DNMT3a, 

which is then detected throughout the embryo during the rest of development. 

There is still much to be learned about the precise methylation profiles the ICM 

harbors after de novo methylation. An attempt to answer this question come from 

the study of methylation patterns in cultured ES cells, which are derived from the 

ICM and are thought to preserve its developmental potency. ES cells express all 

3 DNMTs and display dynamic change in methylation, resembling those seen 

during organogenesis, upon in-vitro differentiation. The recent study of human H1 

and H9 ES cell methylomes revealed that ES cells have methylation levels 

approaching, but not reaching, those seen in somatic tissues, indicating a global 

de novo methylation (Lister et al., 2009, Laurent et al., 2010). They also 
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confirmed earlier observations suggesting that, in ES cells, promoters are 

generally hypomethylated at developmentally regulated genes (e.g. HOX 

clusters). By comparing ES cells to various differentiated tissues, these studies 

showed that reduced methylation at promoters and high methylation in gene 

bodies was observed at transcriptionally active genes. Interestingly, they also 

found regions displaying non-CpG methylation, a feature thought to be restricted 

to plant and fungi. Although still under investigation, this form of cytosine 

methylation could affect about 20% of cytosines found outside a CpG context in 

undifferentiated ES cells. 

 

   1.2.3b Reprogramming in Germ Cells 

 During PGC induction and development, an important remodeling of the 

chromatin fiber precedes the erasure of DNA methylation genome-wide, which is 

completed by 13.5dpc in mouse (Hajkova et al., 2008; Seki et al., 2005 and 

2007; Popp et al., 2010). Following their induction and during G2 arrest 

(between ~7.5 and ~9.5dpc), the nuclei of PGCs progressively enlarge and 

immunofluorescence stainings for H3K9me2/3, H3K9ac and H3K27me3, are 

greatly reduced. By 10.5dpc, PGC chromatin is believed to be extremely loose 

but pervasive transcription is maintained at a low level via RNA polymerase II 

Serine 5 and Serine 2 dephosphorylation (Seki et al., 2007). Histone variants are 

also transiently incorporated (e.g. H3.3 and H2A.Z), and the canonical histone 

linker H1 is lost, indicating that deeper changes in nuclear chromatin might also 

prevent aberrant gene expression (Hajkova et al., 2008 and 2010). Again using 
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immunofluorescence, it was shown that by 12.5dpc the genome wide distribution 

of repressive histone modifications (e.g. H3K27me3 and H3K9me2/3 but not 

H3K9ac), histone variants, linker H1 and active RNA polII, revert to the levels 

seen in surrounding somatic tissues. A detailed picture of the distribution of these 

chromatin changes is still lacking due to the low abundance of these cells and 

the lack of culture models recapitulating these events.  

 In 7.5dpc PGCs, focused studies revealed that imprinted loci, transposons 

and single copy genes still bear substantial methylation indicative of their somatic 

origin – one X chromosome is inactivated in females (Sugimoto et al., 2007; Tam 

et al., 1994) and at least some copies of LINE-1s and IAP retro-transposons 

retain over 70% of methylated Cs at their regulatory sequences (Hajkova et al., 

2002).  

 As PGCs enter G2 arrest, DNMT3a and b are transcriptionally down 

regulated. In contrast, Dnmt1 is still present albeit at low levels (Seki et al., 2005; 

Kurimoto et al., 2008). During this time frame, the global levels of 5mC staining 

begin to reduce (Seki et al., 2005) and reach their lowest when PGC resume 

proliferation past ~9.5dpc suggesting that a portion of the genome is loosing 

methylation. Detailed analysis of the methylation status of PGCs between 10.5 

and 13.5dpc using methylation sensitive restriction assays and focused bisulfite 

sequencing showed that the dynamics of DNA demethylation of imprinted loci, 

single copy genes and transposons is more heterogeneous than previously 

thought (Walsh et al., 1998; Lees-murdock et al., 2003; Lane et al., 2003; 

Hajkova et al., 2002; Lee et al., 2002). Some copies of LINE-1 and IAP 



	
   36	
  

retrotransposons retain substantial methylation until 11.5, and loose most of this 

signal between 12.5 and 13.5dpc. Notably, more copies of IAP seem to retain 

methylation even after 13.5dpc and demethylation is less prominent in female 

PGCs (Lees-murdock et al., 2003; Lane et al., 2003). In addition, whereas some 

single copy genes and imprinted loci (maternally imprinted Nnat, and paternally 

imprinted Peg3/5 and H19) show partial demethylation as early as 10.5dpc, most 

achieve full demethylation rapidly between 12.5 and 13.5dpc (Xist promoter, 

Peg10…, Lee et al., 2002; Hajkova et al., 2002). These data suggest that both 

passive and active demethylation could be involved in the drastic erasure of 

methylation reaching its lowest at 13.5dpc (Figure 1.6). To gain further insight 

into PGCs methylation reprogramming, Popp and colleagues recently reported a 

low coverage survey methylation of PGCs at E13.5 using bisulfite sequencing, 

and compared them to sperm and ES cells (Popp et al., 2010). Despite the low 

coverage of this study, they were able to show that by 13.5dpc overall 

methylation levels are below 10% in PGCs compared to over 70% in all other 

tissues analyzed. They also provide evidence for the involvement of AID in active 

demethylation of early PGCs as AID deficient mice show a small but significant 

increase in methylation at 13.5pdc compared to WT.  
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Figure 1.6: Timing of de novo methylation during male germ cell development. 
During PGC migration to the gonads, DNA methylation levels (red) are erased in both 
male and female PGCs (black box). During male gametogenesis, de novo methylation 
occurs between 13.5dpc and SSC establishment post-birth. Methylation levels remain 
high throughout meiosis. The relative timing of PIWI protein expression and piRNA 
abundance is also depicted (see section 1.3). 
	
  

 

  

 Male PGCs start de novo methylation soon after their entry into embryonic 

gonads. In contrast, the genome of female PGCs remains hypomethylated until 

arrested oocytes resume growth and meiosis after birth. In male PGCs, DNMT3L 

and DNMT3a start to accumulate at ~13.5, peak by ~15.5 and revert to their 

somatic level at ~18.5dpc for 3L and 6 days post birth for 3a. In contrast, 
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DNMT3B and DNMT1 are found at much lower levels throughout PGC 

development (La Salle et al., 2004). Consequently, transposon sequences and 

imprinted loci initiate a rapid wave of de novo methylation between 14.5 and 

18.5dpc. However, de novo methyl-marks are continually deposited until day 2 

post-birth when PGCs colonize their niche as SSCs (Walsh et al., 1998; Ueda et 

al., 2000; Kato et al., 2007; Lees-Murdock et al., 2003; Kuramochi-Miyagawa et 

al., 2008). Methylation profiles are believed to undergo little if any changes during 

male meiosis. DNMT3B and DNMT1 levels are elevated in SSCs and reduce 

both during meiosis and spermiogenesis as sperm nuclei become 

transcriptionally silent. Nucleosomes a exchanged for protamines late in 

spermiogenesis. Hammoud and colleagues recently showed in human sperm 

that about 4% of the genome in still packaged in nucleosome retaining domains 

(Hammoud et al., 2009). These nucleosomes consist of either canonical or 

histone variants, such as the testes-specific histone H2B (TH2B). Interestingly, 

regions protected from protamine-exchange were also shown to be under 

methylated, further connecting the methylation status of the genome to higher 

order chromatin structures.  
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1.3: Germ Cell Associated Small RNA Pathways 

  

 In addition to protein coding messenger RNAs, eukaryotic cells express a 

wide range of non-coding transcripts ranging from 19-30bp, for small regulatory 

RNAs, to several hundred base pairs (e.g. long intergenic non-coding RNAs, 

lincRNAs). They often engage in transcriptional and post-transcriptional gene 

regulation, relying on RNA:DNA or RNA:RNA interactions (reviewed by Mercer et 

al., 2010 and Ghildiyal et al., 2010). During metazoan development, germ cells 

are characterized by the expression of a distinct RNAi pathway involving PIWI 

proteins and their 24-30bp associated piRNAs (PIWI-interacting RNAs). Male 

mice deficient for piRNAs are infertile, as germ cells fail to undergo productive 

meiosis (Deng et al., 2002; Kuramochi-Miyagawa et al., 2001 and 2004; Carmel 

et al., 2007). It is believed that the interplay between piRNAs and de novo 

methylation drives the re-methylation of retro-transposons during PGC 

development (Aravin and Bourc’his 2008; Aravin and Hannon 2008). Considering 

the extreme sequence diversity of piRNAs, and the high abundance of retro-

elements in mammalian genomes, this model provides an interesting framework 

to study the connection between transposon dynamics and germ cell 

development.  

 The previous section highlighted the dynamic character of DNA 

methylation patterns during germ cell development at both single copy loci and 

repeated sequences. However, beyond 12.5dpc, PGCs are transcriptionally 

active, raising the question of what the transcriptional statuses of repeats, 
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piRNAs and other coding and non-coding transcripts are prior to de novo 

methylation. The following points cover the known biogenesis pathways leading 

to the production of small interfering RNAs in various cellular contexts, and focus 

on the newly characterized piRNA pathway in germ cells, mode of action of 

which still remains uncharacterized.   

 

  1.3.1 Overview of RNAi 

 From the characterization of silencing phenotypes induced by the 

introduction of multi-copy transgenes in plants, or the cloning of the first micro-

RNA (miRNA) in C.elegans (lin-4, Lee et al., 1993), RNA interference has been 

shown to be a highly conserved biological pathway used to dampen gene 

expression via the targeting of cellular mRNA and, sometimes, via transcriptional 

inhibition. At the core of this pathway lies the interaction between a small RNA 

and an Argonaute protein. Whereas small RNAs guide this RNA Induced 

Silencing Complex (RISC) to the cognate targets using base pairing, Argonaute 

proteins mediate silencing via mRNA cleavage, translational inhibition or 

chromatin remodeling (on the latter see Volpe and Martienssen 2011). Different 

classes of small RNA have now been characterized in unicellular and 

multicellular eukaryotes as well as in prokaryotes and archea (Hannon 2002; 

Marraffini and Sontheimer 2010). Over the past 20 years, small RNAs have been 

shown to regulate development, cell cycle, epigenetic inheritance and hundred 

small RNAs have been show to be mis-expressed in various diseases including 
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cancer and are currently being used for diagnosis and therapy (Silva et al., 

2004). 

 In metazoans, small interfering RNAs (siRNA) and miRNAs are typically 

19 to 23nt in size and constitute the most ubiquitously expressed classes of small 

RNAs. A third class, termed piRNAs (for PIWI interacting RNAs, also known as 

repeat-associated-small-interfering RNA, Aravin et al., 2003), is known to be 

exclusively expressed in germ cells and range form 24 to 31nt. miRNAs and 

siRNA share common steps in their biogenesis as both of them require the 

endonuclease III activity of Dicer to produce fully functional single stranded small 

RNAs from double stranded (ds) RNA structures (Bernstein et al., 2001; 

reviewed in Carmell and Hannon, 2004). They differ mostly in the nature of their 

precursors: siRNA are produced from long ds-RNA whereas miRNA are 

processed from a single stranded primary transcript that folds into a stem loop 

structure cleaved by the nuclear RNAse III enzyme Drosha (Lee et al., 2004). In 

contrast, piRNAs are thought to be initially processed from long primary single 

stranded transcripts by an unknown, Dicer independent, mechanism (Vagin et 

al., 2006; Houwing et al., 2007). 

 Following these processing steps, single stranded small RNAs are loaded 

into an Argonaute protein forming a functional RISC. Argonautes constitute a 

large conserved RNA binding protein family. They possess two related domains: 

the PAZ domain interacting with the 3' end of a small RNA and the PIWI domain, 

interacting with the 5'end, which forms the RNAseH catalytic domain (Song et al., 

2004, Liu et al., 2004). Based on sequence analysis, Argonaute proteins can be 
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separated into two closely related clades: the Ago and the Piwi subfamily 

(Carmell et al., 2002). Argonautes in the Ago clade are most similar to 

ARGONAUTE1 found in Arabidopsis thaliana, and primarily interact with miRNAs 

and siRNA. The Piwi clade however, shares most similarities with the drosophila 

PIWI protein.  

 In mammals, the association of Argonaute proteins with a small RNA is 

primarily occurring in the cytoplasm where targeting is also thought to happen. 

RISC can mediate target cleavage 10nt away from the 5' end of the small RNA 

when perfectly matched. However, in most cases, mismatched interactions leads 

to translational inhibition (Olsen and Ambros, 1999). When engaged in silencing, 

RISC is found in processing and stress bodies throughout the cytoplasm (Liu et 

al., 2005a/b, reviewed by Leung and Sharp 2006). These bodies contain 

numerous structural and catalytic proteins promoting the silencing function of 

RISCs associated with miRNAs, siRNAs and even piRNAs (on the latter see 

Siomi and Aravin 2011).  

 

   

  1.3.2 PIWI Proteins and Germ Cell Specific RNAi  

 In contrast to the ubiquitously expressed Agos, the Piwi clade is restricted 

to the germ line. Preliminary studies in drosophila revealed that the PIWI 

proteins, piwi and aubergine, are essential for gametogenesis and germline stem 

cell renewal (Cox et al., 1998 and 2000; Schmidt et al., 1999). Disruption of the 

piwi gene causes improper stem cell divisons in the male and female germline, 
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and disrupts gametogenesis progression preventing cyst formation and meiosis. 

The mouse and human genomes encode three conserved PIWI proteins: 

MIWI/HIWI (PIWIL1), MILI/HILI (PIWIL2) and MIWI2/HIWI2 (PIWIL4). During 

mouse gametogenesis PIWI proteins are detected in PGCs as early as 12.5-13.5 

dpc. In the male germ-line, MILI is expressed throughout spermatogenesis until 

the round spermatid stage following meiosis, first occurring around 20dpp (Figure 

1.6). Similarly, MILI is detected in the female germ-line soon after PGC migration 

and is continuously expressed in both arrested and growing oocytes (Aravin et 

al., 2008). MIWI2 expression starts at ~15.5dpc and stops prior to SSC 

establishment after birth. Finally, MIWI expression starts at the pachytene stage 

of meiosis, at around 14 dpp, and stops at the round spermatid stage. Cellular 

localization of these proteins addressed by immuno-fluorescence or using GFP-

fused transgenic animals showed that while MILI and MIWI are found exclusively 

in the cytoplasm, MIWI2 can shuttle to the nucleus when loaded with piRNAs 

(Aravin et al., 2008). 

 Disrupting either mili or miwi genes both causes male sterility. However,  

while mili-KO leads to in meiotic arrest at the pachytene stage, miwi-KO animals 

undergo meiosis properly, but germ cells fail to develop beyond the haploid 

round spermatid stage (Deng et al., 2002; Kuramochi-Miyagawa et al., 2001 and 

2004). These data suggest that MILI and MIWI have non-redundant functions in 

spermatogenesis. Recently, two miwi2 deficient mice were independently 

generated and revealing that MIWI2 is essential for SSC maintenance, with 

MIWI2 loss resulting in a progressive depletion of undifferentiated germ cells in 
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adult testes (Carmell et al., 2007, Kuramochi-Miyagawa et al., 2008). miwi2-KO 

animals also fail to undergo full meiosis and arrest cell division before the 

pachytene stage. Considering MIWI2 expression during embryogenesis, this 

effect is certainly due to defects occurring before meiosis.  

 In addition to germ line defects, it has been shown that Drosphila piwi and 

aub and mouse miwi2 and mili mutant animals derrepress transposons in the 

germ line (Sarot et al., 2004; Brennecke et al., 2007; Carmell et al., 2007; Aravin 

et al., 2007). It was therefore suggested that PIWI proteins might play a critical 

role in transposon silencing in the germ line, and that defects observed during 

gametogenesis are mainly caused by the reactivation of transposable elements. 

    

  1.3.3 PiRNA Biogenesis during Male Germ Cell Development 

 In mammals, two distinct waves of piRNA expression have been 

described so far (Girard et al., 2006; Aravin et al., 2007 and 2008). The first wave 

of piRNA expression peaks at around the time when MIWI2 and MILI are co-

expressed in PGCs (between 15.5dpc and birth) and those piRNAs are referred 

to as embryonic piRNAs. The second wave occurs during MIWI and MILI co-

expression when cells enter the first division of meiosis; those are referred to as 

meiotic piRNAs (Figure 1.6). The purification of PIWI protein complexes and 

subsequent cloning and sequencing of their associated piRNAs revealed that 

these two waves differ mostly in the type of transcripts they can target.  

 Embryonic piRNAs are strongly, but not exclusively, enriched for 

transposable elements sequences, including all three classes of retro-
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transposons (LINEs, SINEs and LTRs, Figure 1.7). Consequently, a large 

fraction of these piRNAs maps to multiple locations in the genome, offering the 

potential for robust and redundant silencing of transposons during epigenetic 

reprogramming of PGCs. Unlike the strong strand preference seen for the 

different PIWI complexes in drosophila (Brenecke et al., 2007), MILI and MIWI2 

only show a slight bias toward sense and anti-sense piRNAs respectively (Aravin 

et al., 2008). In addition, MILI and MIWI2 have distinct piRNA size preferences: 

26-27nt for MILI and 28-29nt for MIWI2. Interestingly, in a MILI mutant 

background MIWI2 fails to load piRNAs and to localize in the nucleus, suggesting 

that MILI functions upstream of MIWI2 (Aravin et al., 2008, Kuramochi-Miyagawa 

et al., 2008). Meiotic piRNAs are enriched for sequences mapping to large un-

annotated portions of the genome both in rat, mouse and human (Lau et al., 

2006, Girard et al., 2006, Aravin et al., 2006). MILI and MIWI bind virtually the 

same piRNA sequences though each complex is associated with its 

characteristic piRNA size - ~26nt for MILI and ~30nt for MIWI. The lack of 

information about the cellular function of the transcripts regulated by meiotic 

piRNAs makes it challenging to study their function, especially in an attempt to 

explain the MIWI sterility phenotype (Deng et al., 2002). Finally, between these 

two waves, MILI is continuously expressed in late PGCs, SSCs and pre-meiotic 

spermatogonia. Despite the absence of any partner, MILI is loaded with a 

“transition” population switching from transposons rich piRNAs to a much more 

gene enriched population in SSCs and ultimately meiotic piRNAs as cells enter 

differentiation (Aravin et al., 2007).  
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 There is still much mystery regarding how piRNAs are processed from 

primary transcripts. Key signatures of piRNA sequences include a 5’Uracil and a 

2’-O-methyl group at the 3’ end, both of which have been shown to be important 

for their functional association with PIWI proteins (Horwich et al., 2007; Saito et 

al., 2007; Kirino et al., 2007a/b). The analysis of piRNA sequences uniquely 

mapping to the genome revealed the existence of large piRNA loci, 10kb to a 

100kb in size, producing both sense and antisense reads (Brenecke et al., 2007; 

Girard et al., 2006; Aravin et al., 2006, 2007 and 2008). These large piRNA 

clusters produce about 10-20% of all embryonic piRNAs (the remaining piRNAs 

being produced from individual transposons or genes) and more than 90% of 

meiotic piRNAs (see Figure 1.7A). Whereas embryonic piRNA clusters can 

generate primary transcripts on both strands, meiotic piRNA clusters are 

transcribed from one strand but often show a typical bidirectional structure with a 

central promoter firing in opposite directions. Several lines of evidence from 

drosophila and mouse suggest that primary piRNA 5’end production requires the 

activity of a phospholipase D, MITOPLD in mouse and Zucchini in drosophila 

(Watanabe et al., 2011; Haase et al., 2010). Mutant animals for these proteins 

accumulate cluster transcripts and display sterility phenotypes. Recently, an in-

vitro study using insect cells lysates, provided evidence that 3’ ends of piRNAs 

are generated by the trimming of long transcript loaded into PIWIs by an 

unknown 3’ to 5’ exonucelase (Kawaoka et al., 2011). These observations 

provide an attractive model to explain the size and sequence preference of 

piRNAs bound to PIWI proteins. 
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 Interestingly, part of primary transcript cleavage is dependent on the slicer 

activity of PIWI proteins. This slicer-mediated cleavage is believed to participate 

in an amplification loop, named the ping-pong loop, whereby a primary piRNA 

directs the cleavage of a complementary transcript. The 5’end of the cleaved 

product constitutes the 5’end of a new piRNA (or secondary piRNA). Secondary 

piRNAs can, in turn, mediate the cleavage of a complementary transcript 

generating the 5’end of a new piRNA closing the loop on itself (Figure 1.7C) 

(Brenecke et al., 2007; Aravin et al., 2008). Recently, catalytically inactive 

mutants of all 3 PIWI proteins were generated in mouse (De Fazio et al., 2011; 

Reuter et al., 2011). These studies revealed that while MILI and MIWI catalytic 

activity is critical for piRNA amplification and male fertility (recapitulating null 

phenotypes), MIWI2 catalytic mutants are fertile and transposon silencing is 

established normally, decoupling its silencing function from slicer cleavage. 

However, the catalytic domain of MILI has been shown to be critical for MIWI2 

loading and silencing function, confirming previous observation made in null 

animals. Interestingly, MILI slicing activity is shown to be essential for LINE 

elements silencing, while exhibiting little effect on LTRs, suggesting that these 

two classes of retro-transposons engage in slightly different piRNA “pathways”.  
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Figure 1.7: Mouse piRNA biogenesis and silencing function.	
  
A) Two representative examples of an embryonic (on chr7, left panel) and a meiotic 
piRNA cluster (on chr17, right panel). Whereas embryonic piRNA clusters are enriched 
for transposon sequences, meiotic clusters are not associated with any annotation. The 
densities of piRNAs mapping across the clusters are shown both for PIWI proteins and 
total RNA cloned at these stages. B) Annotation of MIWI2 and MILI bound piRNAs in 
16.5dpc and 10dpp male gonads (displayed as percent of total read mapped). C) 
Proposed ping-pong model occurring during mouse PGC maturation. B) and C) are 
adapted from Aravin et al., 2008. 
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   1.3.4 Link between piRNAs and De Novo Methylation in 

Male PGCs 

 As mentioned above MILI and MIWI2 mutants display a strong reactivation 

of transposable elements, with LINE-1 and IAP transcripts accumulating to high 

levels in mutant meiotic germ cells (Carmel et al., 2007; Aravin et al., 2007). In 

addition, these mutants display a reduction in transposon de novo methylation in 

PGCs as early as 16.5dpc (Kuramochi-Miyagawa et al., 2008). They also 

phenocopy dnmt3L mutants (Bourc’his et al., 2001 and 2004) suggesting that the 

piRNA and the de novo methylation machinery might help each other in the 

establishment of transposon methylation during PGC maturation. More evidence 

for an existing epistatic relationship between de novo methylation and piRNAs 

came from the study of DNMT3l loss on piRNA biogenesis, where, in this 

context, transposon associated sense primary piRNA levels were dramatically 

increased (Aravin et al., 2008). A recent study also showed that piRNAs help to 

establish de novo methylation over the paternal allele of a known repeat 

associated differentially methylated region (DMR) controlling the imprinted 

expression of Rasgrf1 (Watanabe et al., 2011). Taken together, these data 

suggest an elegant model whereby MILI and MIWI2 complexes act upstream of 

DNMT3L, which itself acts upstream of DNMT3a to establish transposon de novo 

methylation in germ cells.	
  However, a detailed analysis of the true mechanistic 

connections between piRNAs and de novo methylation is still lacking. 
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1.4 Epigenetic Inheritance and Evolution some Open Questions. 

The study of epigenetic pathways has not only refined our theories on 

phenotypis determination and robustness, but it has also profoundly challenged 

our concept of development. Despite the last 20 years of astonishing molecular 

characterization of chromatin based epigenetic mechanisms, we are witnessing a 

small revolution in the field with the use of next-generation sequencing 

technologies. We can now ask questions to unprecedented scales and within 

unexplored portions of genomes. The thesis work presented here was largely 

aimed at using these next-generation sequencing tools to tackle relevant open 

questions in the field.  

 1) Looking at germ cell small RNAs and chromatin dynamics: which 

components are innate and which are adaptive relative to genomic sequence?  

 2) Comparing the epigenetic reprogramming of germ cell and ES cell: 

what can we learn about epigenetic inheritance and determination during 

development?  

 3) Comparing epigenetic states in closely related species: does the 

epigenome affect genome evolution and vice-versa? 
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Chapter 2: Results 

  

 2.1 Study of a Transgenic piRNA Cluster in Meiotic Mouse Germ 

Cells. 

 

  2.1.1 Résumé en Français. 

 Chez les métazoaires, une classe de petits ARNs associée aux protéines 

de la famille PIWI est spécifiquement exprimée au cours du développement de la 

lignée germinale. Ces petit ARNs ou PIWI associated RNAs (piRNAs), répriment 

leurs cibles au niveau transcriptionnel et post-transcriptionnel par interférence 

ARN. Les animaux mutants pour les protéines PIWI sont stériles et présentent 

notamment une perte progressive des cellules souches nécessaires au maintient 

des tissus reproductifs. Au cours de la gamétogénèse embryonnaire et post-

embryonnaire, ces petits ARNs participent à la répression de retro-transposons, 

de gènes codants et non-codants, ainsi que de vastes régions non-annotées du 

génome. De nombreuses questions subsistent quand aux mécanismes 

permettant la biogénèse des piRNAs. Les piRNAs semblent être produits à partir 

de transcrits primaires simple brin, sens ou antisens à leurs cibles. Ces transcrits 

peuvent être codés par des régions pouvant atteindre plus de 100Kb 

appelées « piRNA clusters ». Cependant, les signaux distinguant les transcrits 

entrant dans la voie des piRNAs d’autres transcrits cellulaires restent inconnus. 



	
   52	
  

Dans l’étude qui suit, nous avons analysé chez la souris et la drosophile le 

comportement de différents piRNA clusters hors de leurs contextes naturels. La 

génération de piRNAs à partir de ces clusters transgéniques se produit de 

manière similaire aux régions endogènes, indiquant que la localisation 

génomique et le nombre de piRNA clusters par génome n’ont qu’un effet réduit 

sur leur production primaire. De plus, nous démontrons que l’introduction de 

séquences exogènes au sein de ces clusters transgéniques n’interrompt pas la 

production de piRNAs en amont ou en aval et que ces séquences sont elles 

même clivées en piRNAs présentant les caractéristiques typiques des piRNAs 

endogènes. Toutefois, la position ainsi que le type de cluster modifié influencent 

localement l’abondance et la distribution de ces piRNAs. 

 

  2.1.2 Specific contribution to the publication 

 This manuscript combines the analysis of 3 drosophila and 2 mouse 

constructs. I produced and analyzed the mouse part of this study. My specific 

contributions were: generation of BAC constructs GFP-NEO tagged, BAC 

preparation, establishment and maintenance of transgenic lines, small RNA 

cloning on both total and immuno-precipitated RNAs, sequencing annotation and 

analysis of the small RNA libraries presented here. I also contributed to the 

writing of the manuscript. 

Dr. Sang Young Kim, from the Cold Spring Harbor Laboratory mouse facility, was 

in charge of BAC DNA injections into mouse zygotes.  
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Felix Muerdter, Ivan Olovnikov and Nikolay V. Rozhkov carried out the  

drosophila section of the manuscript. 

 

  2.1.3 Publication reference 

Felix Muerdter*, Ivan Olovnikov*, Antoine Molaro*, Nikolay V. Rozhkov*, 

Benjamin Czech, Assaf Gordon, Gregory J. Hannon, and Alexei A. Aravin. 

Production of artificial piRNAs in flies and mice. RNA January 2012 18: 42-52; 

Published in Advance November 17, 2011, doi:10.1261/rna.029769.111  

* Equal contribution 
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ABSTRACT

In animals a discrete class of small RNAs, the piwi-interacting RNAs (piRNAs), guard germ cell genomes against the activity of
mobile genetic elements. piRNAs are generated, via an unknown mechanism, from apparently single-stranded precursors that
arise from discrete genomic loci, termed piRNA clusters. Presently, little is known about the signals that distinguish a locus as
a source of piRNAs. It is also unknown how individual piRNAs are selected from long precursor transcripts. To address these
questions, we inserted new artificial sequence information into piRNA clusters and introduced these marked clusters as
transgenes into heterologous genomic positions in mice and flies. Profiling of piRNA from transgenic animals demonstrated that
artificial sequences were incorporated into the piRNA repertoire. Transgenic piRNA clusters are functional in non-native
genomic contexts in both mice and flies, indicating that the signals that define piRNA generative loci must lie within the clusters
themselves rather than being implicit in their genomic position. Comparison of transgenic animals that carry insertions of the
same artificial sequence into different ectopic piRNA-generating loci showed that both local and long-range sequence
environments inform the generation of individual piRNAs from precursor transcripts.

Keywords: piwi; noncoding RNA; piRNA

INTRODUCTION

In several animals, including Drosophila and mammals,
piRNAs have been shown to form the core of a small RNA-
based innate immune system that recognizes and represses
mobile elements (Saito et al. 2006; Vagin et al. 2006; Aravin
et al. 2007a; Brennecke et al. 2007; Gunawardane et al.
2007; Malone and Hannon 2009; Siomi et al. 2011). This
function is essential for proper germ-line development, and
mutations in the piRNA pathway lead to male and/or female
sterility (Cox et al. 2000; Harris and Macdonald 2001; Li
et al. 2009; Malone and Hannon 2009). In essence, piRNAs
play a major role in defining genomic content as being
transposon related; piRNAs comprise a catalog of trans-
poson sequences that an organism has defined as targets for
repression (Brennecke et al. 2007). Omission from that
catalog can mean that an element escapes repression. In

the case of flies, the lack of an effective piRNA-based def-
inition for the I- or P-element in some strains means that
introduction of even this single transposon can lead to
highly penetrant sterility (Pelisson 1981; Rubin et al. 1982;
Brennecke et al. 2008).

Sequencing of piRNA populations has revealed their
extreme diversity; literally, millions of distinct piRNA se-
quences can be identified in a single individual (Aravin
et al. 2006, 2007b; Girard et al. 2006; Brennecke et al. 2007;
Houwing et al. 2007; Lau et al. 2009). Genomic mapping
indicates that piRNAs arise from three different types of
loci. First, the dominant source of piRNAs can be found
in so-called piRNA clusters (Aravin et al. 2006, 2007b;
Brennecke et al. 2007). These loci range from a few
kilobases to >200 kb in size. They are often strongly en-
riched in transposon sequences, in accord with a function
of the piRNA pathway in transposon control (Vagin et al.
2006; Brennecke et al. 2007; Gunawardane et al. 2007). In
the majority of cases, clusters generate a mixture of small
RNAs, with some sense and some antisense to each targeted
transposon. Second, piRNAs can be derived from protein-
coding genes, with these almost invariably being sense
species from 39 UTRs (Aravin et al. 2008; Robine et al.
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2009; Saito et al. 2009). It is as yet unclear whether a single
transcript isoform can be either translated into protein or
processed into small RNAs or whether a specific transcript
variant serves as a piRNA precursor. Only a few genes give
rise to piRNAs, and these do not show uniformly high
expression, suggesting that some specific determinant or
motif, rather than a high-transcript abundance marks spe-
cific genes for processing. Third, piRNAs can arise from dis-
persed, euchromatic transposon copies (Brennecke et al.
2007, 2008; Aravin et al. 2008). These are often full length
and close to consensus, representing the potentially active
representatives of each transposon family.

The three types of piRNA generative loci produce small
RNAs through two different mechanisms. piRNA clusters
and genic loci generate ‘‘primary’’ piRNAs, which appear to
be sampled from long, single-stranded transcripts through
the action of an unknown nucleolytic machinery (Aravin
et al. 2006, 2007b; Brennecke et al. 2007; Malone et al.
2009). Abundant primary piRNAs share no apparent
sequence or structural motifs except for the presence of
a 59 terminal U residue (1U), which may reflect a binding
preference of some Piwi family proteins. Secondary piRNAs
are produced through a slicer-dependent mechanism,
termed the ping-pong cycle and have a characteristic bias
for an A at position 10 (paired with the 1U in the primary
piRNA) (Brennecke et al. 2007; Gunawardane et al. 2007).

Combined analysis of piRNA sequences and animals
bearing mutations in piRNA pathway components has led
to a model for the role of these small RNAs (Malone and
Hannon 2009; Saito and Siomi 2010; Senti and Brennecke
2010; Siomi et al. 2011). piRNA clusters produce a multi-
tude of individual piRNAs, and the sequence content of
piRNA cluster defines sequences of mature piRNAs gener-
ated from it. With the notable exception of pachytene
piRNAs that are expressed during male meiosis in mouse,
piRNA clusters in both flies and mice are highly enriched in
transposable element sequences. The sequence content of
the piRNA clusters determines the capacity of the system to
respond to a given element, in essence comprising an
organisms’ evolving molecular definition of transposons.
Inherent in this scenario is the ability of the system to adapt
to colonization by new elements by incorporating their se-
quence into a piRNA cluster. A clear example can be found
in the P-element, which swept through global Drosophila
melanogaster populations after the sequestration of com-
mon laboratory strains (Rubin et al. 1982). Laboratory
strains have no ability to repress the P-element. In retro-
spect, studies of strains with natural or acquired P-element
resistance suggested that integration of the element into
a piRNA cluster was key to its control (Ronsseray et al. 1991,
1996, 2003).

Here, we sought to test whether the ability to translate
new genomic content into small RNAs was a general
characteristic of piRNA loci in flies and mice. We find that
clusters can be programmed to produce artificial piRNAs

(apiRNAs). Furthermore, we were able to separate func-
tional piRNA clusters from their native genomic locations,
indicating that the clusters themselves contain sufficient
information to funnel their RNA products into the piRNA
biogenesis pathway. We made use of marked transgenic
clusters that carry insertions of the same sequence into
different contexts to evaluate the features that lead to the
production of individual piRNA species. We find that critical
determinants lie both in the local and long-range sequence
environments of the piRNA cluster.

RESULTS AND DISCUSSION

The current model for acquiring piRNA-dependent resis-
tance against new transposon invasion implies that insertion
of active transposons into an existing piRNA cluster leads to
the generation of new piRNA species and enables element
repression. This model suggests that any sequence, if inserted
into a piRNA cluster, will lead to the generation of new
piRNAs. Though attractive, this model has not been rigor-
ously tested. Acquisition of natural resistance against trans-
posable elements by transposition into piRNA clusters is
difficult to study in an experimental setting. However, this
scenario can be modeled using transgenes carrying new
sequence information within a piRNA-generating locus.

Over the years, large collections of Drosophila stocks have
been produced that carry transgenes integrated randomly
throughout the genome. We took advantage of these tools
by searching for integration events in native piRNA clus-
ters. The line P{lArB}A171.1F1 (also known as P-1152) has
a 18.3-kb construct P{lArB} integrated into a telomeric
piRNA cluster on the X-chromosome (chromosomal loca-
tion 1A) (Wilson et al. 1989; Roche and Rio 1998). The
P{lArB} transgene contains sequences derived from the
hsp70, Adh, and rosy genes of D. melanogaster and a bacte-
rial lacZ gene. Unlike P{lArB} insertions in other genomic
sites, P-1152 has unusual properties. It is able to suppress
the expression of other lacZ transgenes in germ cells,
a phenomenon termed trans-silencing (Fig. 1A; Sup-
plemental Fig. S1; Ronsseray et al. 1991). The P{lArB}
insertion in P-1152 is mapped to the Telomere Associated
Sequence (TAS) repeats that produce abundant piRNAs
from both genomic strands. These piRNAs are loaded into
Piwi, Aub, and Ago3 in the germ cells of D. melanogaster
ovaries (Brennecke et al. 2007). Aub and Ago3-loaded
piRNAs derived from TAS repeats display the characteristic
features of the ping-pong amplification cycle, including
a prevalent 10-nt 59 overlap of sense and antisense species
and an enrichment for an A at position 10 of secondary
piRNAs. The trans-silencing properties of P-1152 transgene
and the association of these properties with its localization
in the piRNA cluster suggested that insertion of lacZ
into an existing piRNA cluster led to the generation of
new anti-lacZ piRNAs that are able to suppress cognate
transcripts in germ cells. Indeed, the presence of small
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RNAs complementary to lacZ was recently demonstrated
using RNAse-protection assay in ovaries of the P-1152 line
(Todeschini et al. 2010).

To analyze more deeply any artificial piRNAs derived
from the P{lArB} transgene, we sequenced small RNAs
from ovaries of the P-1152 line, examining a size range
from 18 to 29 nt. This includes piRNAs, siRNAs, and
miRNAs. P{lArB} generated abundant small RNA species
that mapped to both genomic strands (Fig. 1B). Their size
profile indicated that the majority were likely piRNAs,
ranging from 23 to 27 nt, while a minor fraction corre-
sponded to 21-nt endo-siRNAs that are also a product of
bidirectionally transcribed piRNA loci (Fig. 1C; Czech et al.
2008; Lau et al. 2009). Further analysis confirmed that the
23- to 27-nt RNAs were genuine piRNAs that could be
separated into primary (1U-biased) and secondary (10A-
biased) populations (Fig. 1D; data not shown). Transgene
piRNAs mapping to opposite genomic strands tended
to have a 10-nt overlap between their 59 ends that is a
characteristic feature of the ping-pong cycle (Fig. 1E).
Notably, P{lArB} contains the only lacZ sequence informa-
tion in the P-1152 strain. Since signatures of the ping-pong

cycle were evident for lacZ-derived piRNAs, this demon-
strates unequivocally that cluster transcripts derived from
the plus and minus genomic strands can participate in the
piRNA amplification loop. Native Adh and rosy transcripts
are not processed into piRNAs in wild-type flies (data not
shown). Therefore, it is unlikely that any specific signals
that trigger piRNA processing might be present in these
genes. Moreover, bacterial sequences are unlikely to have
evolved as a trigger for piRNA production. Thus, our re-
sults indicate that, when present in the context of a piRNA
cluster, virtually any sequence can serve as a substrate for
piRNA biogenesis. We confirmed previous observations
that the P{lArB} transgene inserted in TAS is able to silence
lacZ expression from separate, euchromatic locations (Sup-
plemental Fig. S1), demonstrating that artificial anti-lacZ
piRNAs are functional and able to silence transcripts that
share sequence content in trans.

piRNAs are processed from the entire P{lArB} transgene
independently of the origin of the inserted fragments; both
D. melanogaster and bacterial sequences generate piRNAs
with similar efficiency (Fig. 1B). Throughout the construct
there are approximately twofold more piRNAs derived from

the plus than from the minus genomic
strand independently of the orientation
of the genes within the construct, just as
is observed for native components of the
cluster. For example, Adh and rosy have
different orientations, but for both frag-
ments the majority of piRNAs are map-
ped to the plus genomic strand. RT–PCR
shows that rosy transcripts are present in
ovaries of P-1152 females, but absent in
wild-type flies or flies that have a P{lArB}
insertion outside of the piRNA cluster
(Supplemental Fig. S2), indicating that
rosy expression is dependent on insertion
of P{lArB} into TAS. Overall, both the
distribution of piRNAs along P{lArB}
transgene and RT–PCR results suggest
that transcript of both plus- and minus-
strand RNAs, which are processed to
piRNAs, initiates outside of the trans-
genic construct, likely within adjacent
TAS sequences.

Mapping of piRNAs to P{lArB} re-
vealed that intronic sequences present
within Adh and rosy gave rise to piRNA
from both genomic strands. Even when
present in the sense orientation, where
the intron could have been removed
by the splicing apparatus, piRNA lev-
els remained comparable in adjacent
intronic and exonic regions. The gener-
ation of piRNA from intronic sequence
is unexpected, as primary piRNA bio-

FIGURE 1. Production of artificial piRNAs (apiRNAs) from the Drosophila X-TAS cluster.
(A) The P{lArB} insertion into the X-TAS cluster is shown schematically along with an
illustration of trans-silencing. (B) Below is a schematic of the P{lArB} insert with the inferred
structures of the transcripts it can produce (see text). N is an area where the sequence is
unknown. Above is a plot of piRNA read frequencies along the plus and minus strands
(indicated) of the element. (C) Small RNA lengths are plotted as a fraction of reads for TAS
and for the inserted element. (D) Fractions of reads beginning with a 59 U are plotted for the
P{lArB} and TAS plus and minus strands. (E) The degree of 59 overlap for piRNAs from the
plus and minus strands for P{lArB} and TAS were quantified and plotted as relative frequencies
(Z-scores). The spike at position 9 is a signature of the ping-pong amplification cycle.
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genesis is thought to occur in the cytoplasm and has been
linked to specific cytoplasmic bodies, e.g., nuage and Yb
bodies, which concentrate components such as zucchini
and armitage, which are implicated in piRNA processing
(Tomari et al. 2004; Lim and Kai 2007; Pane et al. 2007;
Malone et al. 2009; Haase et al. 2010; Olivieri et al. 2010;
Saito et al. 2010; Qi et al. 2011). Furthermore, genic
piRNAs that are processed from mRNA of protein-coding
genes in Drosophila and mice are mapped almost exclu-
sively to exonic sequences (Aravin et al. 2008; Robine et al.
2009; Gan et al. 2011). To reconcile these disparities, we
searched explicitly for piRNAs that crossed predicted exon–
exon junctions, since these must arise from spliced mRNAs.
We did detect a few such small RNAs for rosy and Adh,
coming only from the genomic strand with the intron in
the appropriate orientation for splicing to occur. Consid-
ered together, these data suggest a model in which piRNA
biogenesis normally occurs following intron removal, but
that recognition of some RNA processing signals might be
suppressed when they are present within a piRNA cluster.
In this regard, strand-specific RT–PCR indicated that more
than half of sense-oriented rosy transcripts are not spliced
in P-1152 ovaries (Supplemental Fig. S2). Suppression of
conventional RNA processing signals within piRNA clus-
ters would make sense in many ways, since the insertion of
a new element would often bring at least a polyadenylation
signal, which under normal circumstances could negate the
production of piRNAs downstream from that site by
terminating transcription or preventing the export of
piRNA precursors.

Generation of artificial piRNAs by insertion of a new
sequence into a piRNA cluster provides a molecular tag
that allows the monitoring of cluster function even if the
native, nontagged cluster is present in the same genome.
We exploited this fact to test whether the presence of
piRNA clusters at precise genomic positions was important
to their function.

In flies, piRNA clusters occur mainly at the boundaries
between heterochromatin and euchromatin, particularly
in pericentromeric regions (Brennecke et al. 2007). In
mammals, piRNA clusters that are expressed in meiotic
cells occur in strictly syntenic positions, even though the
sequence content of these loci is not conserved (Aravin
et al. 2006; Girard et al. 2006; Lau et al. 2006). These
observations have strongly suggested that the genomic
context of piRNA clusters might be key to their function.
Precedent can be drawn from plants and fission yeast,
where small RNAs are generated from loci whose function
relies upon the presence of normally repressive chromatin
marks (Huisinga and Elgin 2009; Lahmy et al. 2010). In
turn, the repressive chromatin marks themselves are main-
tained by small RNA-directed complexes, closing the cycle.
To determine whether specific chromatin environments,
which are a property of the genomic context of piRNA
clusters, are essential for piRNA production, we created

ectopic insertions of tagged piRNA clusters in non-native
sites.

As one test of the aforementioned hypothesis, we
examined the position dependence of the flamenco cluster
in Drosophila (Fig. 2A). Flamenco is present at the bound-
ary between euchromatin and pericentromeric heterochro-
matin on the Drosophila X chromosome, and its position
proximal to the DIP1 gene is conserved through at least
12 M years of Drosophila evolution (Sarot et al. 2004;
Brennecke et al. 2007; Malone et al. 2009). It produces
piRNAs from only one genomic strand and is exclusively
expressed in the somatic follicle cells of the ovary. We
selected a P[acman] BAC clone that extended from a
position z30 kb upstream of the first annotated piRNA
z86 kb toward the X chromosome centromere (Venken
et al. 2009). This encompassed z30% of the flamenco
cluster. To distinguish any ectopic copies of flamenco from
the native locus, we marked the BAC by recombineering,
inserting a cassette comprising a nonfunctional GFP se-
quence and a bacterial neomycin resistance gene (Copeland
et al. 2001; Venken et al. 2006; Sharan et al. 2009). Marker
sequences were inserted z4 kb downstream from the first
annotated piRNA in a site, which we had previously shown
to produce abundant small RNAs.

For mice, we chose to modify a piRNA cluster on mouse
chromosome 17 that is a major contributor to piRNA
populations in developing male germ cells from the
pachytene stage through the end of meiosis (Fig. 2B; Aravin
et al. 2006; Girard et al. 2006). This cluster occurs in syntenic
locations in rat and in human, indicating conservation
through at least 80 M years of evolution. Like flamenco,
each region of the ch17 cluster produces piRNAs from only
one genomic strand. A mouse BAC clone comprising z187
kb of chromosome 17 carried the complete ch17 cluster and
extended 60 kb upstream of and 30 kb downstream from the
locus. It was similarly marked by recombineering to insert
a modified GFP/neo cassette.

In flies, we took advantage of a phiC-31 attachment site
in the P[acman]-BAC to insert the modified flamenco
cluster into a known genomic locus (Venken et al. 2006,
2009). Given that flamenco is normally present in a location
annotated as heterochromatic (X chromosome, band 20A),
we chose a gene-rich, euchromatic site to insert the trans-
gene. Specifically, we created lines with one additional copy
of flamenco on chromosome 3L at band 62E1 (landing pad
31) (Venken et al. 2006). For mice, we used standard pro-
nuclear injection to create two independent founder lines
(R13 and R37) with ch17 transgene insertions in presum-
ably distinct random locations.

Small RNA cloning and Illumina sequencing revealed
that abundant piRNAs derived from GFP were produced
from ectopic clusters in both flies and mice (Fig. 2C,D).
Like the native loci, these produced small RNAs from only
one genomic strand. Unlike X-TAS, neither flamenco nor
the ch17 cluster normally participate in the ping-pong
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amplification loop, and the ectopic insertions also lacked
signatures of the cycle, namely, small RNAs with a 10A bias
and sense/antisense pairs that overlap by 10 nt. Small RNAs
from the ectopic clusters did show the strong 1U bias that is
a signature of primary piRNA populations (Fig. 2E,F;
Supplemental Fig. S3A).

It seemed likely that the transgenic clusters would
generate piRNAs both from the inserted marker gene and
from sequences that represent their native content; how-
ever, it is impossible to distinguish the latter from piRNAs
derived from endogenous loci. The ectopic cluster is pre-
sent as a single copy in the genome, as compared with two
endogenous copies. We might therefore expect piRNA levels
coming from shared regions to increase by 1.5-fold if all

copies were equally active. Indeed, we
noted a 1.3-fold increase in piRNAs,
which are derived from the portion of
the flamenco cluster present in transgene.
Similarly, the levels of MILI and MIWI
piRNAs derived from the chr17 cluster
in mouse increased by between 1.2- and
1.5-fold relative to a nonmodified cluster
on ch9 in two independent transgenic
lines. The profiles of piRNA mapped to
the flamenco and ch17 clusters are very
similar in wild-type and transgenic flies
and mice (Supplemental Fig. S4). There-
fore, the heterologous insertion of a
marker gene does not appear to exert
a strong influence on the processing of
piRNAs from transgenic loci. Overall,
our data indicate that transgenic piRNA
clusters have similar activity to their
endogenous counterparts, despite being
present at non-native genomic positions.

Flamenco-derived piRNAs associate
exclusively with Piwi, the only family
member that is expressed in follicle
cells (Sarot et al. 2004; Brennecke et al.
2007). Thus, they have a characteristic
size profile, peaking at around 25 nt.
piRNAs from the ectopic flamenco in-
sertion shared this size distribution (Fig.
2E). piRNAs from the ch17 cluster (and
other murine clusters expressed during
meiosis) normally associate with both
MILI and MIWI (Supplemental Fig.
S3B). These complexes have distinct
small RNA size profiles, with MILI to
associate with a z26-nt and MIWI
harboring a z30-nt species (Fig. 2F;
Aravin et al. 2006; Girard et al. 2006).
Overall, MIWI-bound species are sub-
stantially more abundant than MILI
bound species (Aravin et al. 2006; Girard

et al. 2006). While the ectopic ch17 cluster produced small
RNAs with sizes characteristic of MILI and MIWI com-
plexes, their ratio was very different than expected based
upon the behavior of the native cluster (Fig. 2F; Supple-
mental Fig. S3B). RNAs with the size of MILI partners
greatly outnumbered those with the size of MIWI-bound
species. Thus, the ectopic cluster appeared to have a strong
preference for one of its two potential Piwi-family partners
(Fig. 2F; Supplemental Fig. S5).

Overall, our data indicate that piRNA clusters can
function even when divorced from their normal genomic
locale. With flamenco, the ectopic insertion behaved in-
distinguishably from the native locus, even though it had
been substantially truncated on the centromere-proximal

FIGURE 2. Generation of apiRNAs from ectopic clusters in flies and mice. (A) A schematic
representation of the GFP/Neo cassette is shown along a diagram of the flamenco locus (in
yellow, piRNA densities in blue) in the BAC used for transgenesis. Below is a schematic
indicating that the transgene is inserted into chromosome 3L. (B) The GFP/neo insertion into
the mouse chromosome 17 cluster is diagrammed as in A. (C) The structure of the flamenco
GFP/Neo insertion is diagrammed below a plot of piRNA frequencies along the insert on the
plus and minus strands (indicated). For reference, piRNAs are also mapped to flanking
regions, though these represent a mixture of RNAs derived from the two native and one
ectopic flamenco clusters. (D) A scheme of the GFP/Neo insert into the mouse chromosome 17
cluster is shown below piRNAs mapping to the insert and its context as in C. Again, piRNAs
that flank the insert can be derived from the two native or inserted ectopic loci. (E) The 1U
bias (left) and size distributions (right) of apiRNAs from the ectopic flamenco cluster are
compared with another piRNA cluster (X-upstream) that also produces piRNAs from one
genomic strand in follicle cells. (F) As in E, apiRNAs from the ectopic ch17 cluster in mice are
compared with a similarly structured cluster on chromosome 9.
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side. For the ch17 cluster, piRNAs were still produced in
abundance from the ectopic insertions, but the behavior of
the small RNAs shifted toward preferential MILI associa-
tion. This could indicate that some element of chromo-
somal context was important for signaling an ultimate
association with MIWI or perhaps that critical signals that
mark the cluster as a source of MIWI piRNAs were missing
from our BAC clone, despite its extending well beyond the
two ends of the cluster. Our results by no means rule out
chromatin structure as a contributory element in defining
piRNA clusters. However, if specific chromatin structures
are important, the signals for their formation must be
tightly linked to the piRNA loci themselves.

The inclusion of the same artificial sequence in piRNA
clusters in multiple locations and in distinct organisms
afforded the opportunity to probe the determinants of
piRNA selection. In contrast to miRNAs and siRNAs,
whose processing from longer precursors is informed by
their specific secondary structure and is well understood,
no rules that explain the selection of individual piRNAs
have been defined. The only bioinformatic study that
addressed this question came to the conclusion that the
processing of individual piRNA from precursors is quasi-
random, with only weak influences of local sequence
(positions �1 to +4 relative to the 59 end of the piRNA)
(Betel et al. 2007). However, sequencing efforts from our
and other groups showed that individual piRNAs are not
produced uniformly along clusters. Instead, certain small
RNAs appear substantially more abundant (Aravin et al.
2006, 2008; Girard et al. 2006; Brennecke et al. 2007).
Characteristics underlying these inequalities could be in-
trinsic to the local sequence environment of each individual
piRNA or could be conferred by long-distance interactions
and formation of secondary structures within the precursor
molecule. Alternatively, patterns could be essentially ran-
dom, with the abundance of each species being determined
stochastically.

As with native piRNAs, read distributions along the
marker cassettes in the ectopic clusters were very uneven
(Fig. 3A; Supplemental Fig. S5). Focusing on the GFP
coding sequence, 1% of nucleotide residues contribute 19%
of all 59 ends of GFP-mapping piRNA reads in flies, while
10% of positions account for 70% of reads (Fig. 3B). In
mouse, the distribution was even more skewed with 1% of
GFP residues contributing 42% of piRNA reads (Fig. 3B).
To probe the causes leading to these skewed distributions,
we compared GFP-derived piRNAs in the two independent
mouse transgenic lines. The correlation in the abundance of
individual small RNAs was remarkable (R2 = 0.99) (Fig.
3C), ruling out the notion that the patterns that we observe
are random within each sample. Procedures for preparing
small RNA libraries include steps with well-established
sequence-based biases, namely, RNA adapter ligations and
PCRs (Linsen et al. 2009). We therefore considered the
possibility that those biases dominated apparent sequence

preferences in apiRNA generation. However, very little
correlation was seen between GFP piRNAs in flies and
mice (R2 = 0.01) (Fig. 3D), contrary to what one would
expect if the patterns that we observed were strongly
influenced by the biases of library preparation methods.

Considered as a whole, our data strongly support the
existence of signals that determine the efficiency of pro-
duction of individual piRNAs and raise several possibilities
as to the nature of those signals. First, the biased distribu-
tion of piRNAs could be an exclusive consequence of their
context within the cluster. This would imply that large-
scale features, such as the structure of the transcript or
preferential entry sites for the primary processing machin-
ery determine differential piRNA production, akin to the
generation of phased siRNAs from long dsRNAs in plants
and animals (Zamore et al. 2000; Howell et al. 2007).
Alternatively, determinants of efficient piRNA biogenesis
could still be defined by the local sequence environment of
each individual piRNA, with sequence determinants being
interpreted differently in our two experimental models. To
begin to discriminate between these possibilities, it was
necessary to insert the same sequence (GFP) into different
piRNA precursors that are expressed and processed in the
same cell type.

The traffic jam (tj) gene encodes a basic leucine zipper
transcription factor and is expressed in the follicle cells of
the Drosophila ovary, just as is flamenco (Li et al. 2003; Saito
et al. 2009). Importantly, tj generates piRNAs from a dis-
crete segment of its 39-UTR region (Saito et al. 2009). We
created a marked, ectopic copy of tj by inserting a GFP
coding sequence in the antisense orientation into its piRNA-
producing domain and integrated this into a euchromatic
site on chromosome 3L (Fig. 4A).

Sequencing of small RNAs (Fig. 4B) yielded abundant
piRNAs from the inserted GFP sequence. These had the same
characteristics as native tj-derived piRNAs, including being
produced from the sense strand of the locus, having a size
distribution characteristic of Piwi-associated species, and a
strong bias for a 59 terminal U residue (Fig. 4C,D). Position-
dependent differences in piRNA abundance were also appar-
ent, with the most abundant 10% of possible GFP piRNAs
contributing 81% of all GFP-mapping reads (Fig. 3B).

To discriminate local- from long-distance sequence
effects, we compared the abundance of individual piRNAs
from the tj and flamenco transgenes. As compared with the
patterns derived from independent insertions of the same
transgenes in mice (R2 = 0.99) (Fig. 3C), patterns of GFP
piRNAs from tj and flamenco appeared quite different (R2

= 0.24) (Fig. 4D). However, they were much more similar
than patterns produced in mouse versus fly (R2 = 0.01)
(Fig. 3D). At the extremes, uridine positions in GFP that
generate abundant piRNAs from the flamenco transgene
tended also to generate abundant piRNAs from tj (Fig. 4E).
Conversely, those that did not generate piRNAs from
flamenco did not generate piRNAs from tj.

Artificial piRNAs in flies and mice

www.rnajournal.org 47

 Cold Spring Harbor Laboratory Press on February 20, 2012 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


Considered together, these results indicate effects of both
local and long-range sequence environment on piRNA
biogenesis. Small RNAs generated from GFP embedded in
different piRNA precursor transcripts in the same species
were more similar than expected by chance. Influences of
sequence, however, seem species or cell-type specific, since
these same biases did not extend from fly to mouse. Strong
effects also appear to be exerted by the context within the
cluster, given the near identity in GFP piRNA populations
in independent mouse lines and their dissimilarity in
comparisons of marked flamenco and tj transcripts. The

precise nature of such context-depen-
dent effects is unclear, but could depend
upon the overall secondary or tertiary
structures of piRNA precursors.

Our data are consistent with the
model in which new insertions of trans-
posable elements become incorporated
into the piRNA repertoire as a mech-
anism of acquiring resistance. Indeed,
our data indicate that any sequence will
probably produce piRNAs immediately
upon its incorporation into a functional
piRNA cluster. Furthermore, our data
demonstrate that the position of the
cluster in the genome is not important,
and, therefore, transgenic piRNA clusters
can be created in heterologous genomic
locations.

Previous bioinformatic analyses de-
scribed the generation of individual
piRNAs from long precursor molecules
as a pseudo-random process with a weak
influence of the local sequence environ-
ment of individual piRNA species (Betel
et al. 2007). However, the distribution
of individual piRNAs within the pre-
cursor is far from being random; differ-
ent Us have drastically different pro-
pensities to generate piRNAs, and some
non-U positions produce substantially
more piRNAs than nonprocessed U
positions. Here, we showed that pat-
terns of individual piRNAs within the
precursors are highly reproducible if the
sequence is present within the same
context. Patterns become less reproduc-
ible if the local sequence is embedded in
a different context, indicating that both
local and long-range sequence environ-
ments impact processing efficiency. This
result explains a failure in the identifica-
tion of simple rules that would explain
the production of abundant piRNAs
from a given precursor molecule.

The general approach we describe here, using marked
ectopic piRNA clusters to produce apiRNA species, pro-
vides a path toward further dissection of elements that
discriminate piRNA clusters and marks corresponding
transcripts for piRNA processing. The ability to program
the piRNA pathway to produce artificial piRNAs has im-
plications for harnessing this system for controlling gene
expression. In particular, in mammals this approach may
present advantages over harnessing the miRNA pathway,
since piRNAs can induce epigenetic silencing of loci
through the recruitment, directly or indirectly, of the de

FIGURE 3. apiRNA production is not uniform along inserted sequences. (A) A heatmap of
piRNA abundance is displayed for all positions in the GFP insert carried in ectopic piRNA
clusters as indicated. Sequence measurements were from total RNAs except in mouse, where
MIWI and MILI immunoprecipitates (indicated) were also analyzed. The first column simply
indicates U positions relative to the heatmaps. (B) All possible positions for piRNA production
from GFP sequences inserted into ectopic clusters (all sites or only U positions, indicated) were
ranked by their contribution to actual piRNA populations. The fraction of piRNAs contributed
by the top 1%, the next 9%, or the remaining 90% were measured and indicated. Native
clusters (indicated) were similarly analyzed for reference. (C) MILI-bound piRNAs were
quantified by sequencing from two independent lines carrying the ectopic ch17 cluster.
Correlations between read counts for GFP-derived piRNAs are shown. Libraries were
normalized as described in the Materials and Methods. (D) A similar analysis was performed
for GFP-derived piRNAs in total reads, comparing the R13 mouse line carrying the ectopic
ch17 cluster and the fly strain carrying the ectopic flamenco cluster.
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novo DNA methylation machinery (Carmell et al. 2007;
Aravin et al. 2008; Kuramochi-Miyagawa et al. 2008; Siomi
et al. 2011).

MATERIALS AND METHODS

D. melanogaster strains and crosses

The line, P-1152, which carries an insertion of the P{lArB} con-
struct in telomeric sequences of X chromosome (site 1A) is de-
scribed in Roche and Rio (1998). To test trans-silencing with
P-1152, females of this line were crossed with males that have lacZ
expressed from a euchromatic location on chromosome 2L (line
BC69, site 35B10–35C1) (Lemaitre et al. 1993).

Cloning and recombineering—D. melanogaster

The flamenco transgene was created using P[acman] clone CH321-
35A24, which contains an interval from chromosome X that
includes z20 kb of upstream sequence and the 59 portion of the

flamenco piRNA cluster (Venken et al. 2009). An antisense EGFP
sequence was introduced into the BAC by recombineering as
described in Sharan et al. (2009). The GFP-Neo insertion cassette
was built by overlapping PCR based on a FRT-PGK-gb2-neo-FRT
cassette (Gene Bridges). The position of the insertion within the
flamenco cluster was selected based on uniqueness and high
frequency of piRNA production from the surrounding region.
The cassette was introduced into the the BAC using a pSim6
plasmid described in Datta et al. (2006). To promote recombi-
nation, Escherichia coli containing pSim6 were transferred to a 2-mL
Eppendorf tube and induced at 42°C in an Eppendorf tabletop
shaker. The linear DNA substrate was introduced by electroporation
using the Gene Pulser XCell. Using exponential decay as a pulse-
type, the cells were electroporated at 3000 V, 25 mF, and 200 V for
5 msec. After outgrowth and selection of cells, recombinant clones
were screened for by PCR, sequencing and restriction digestion,
followed by pulse-field gel electrophoresis.

The D. melanogaster traffic jam gene with 2 kb upstream and
0.5 kb downstream genomic regions was amplified from the
CH322-145O22 P[acman] clone and inserted between the BspHI

FIGURE 4. apiRNA production from the 39 UTR of traffic jam. (A) A schematic of the GFP insertion into the 39 UTR of the traffic jam gene indicates
the transcriptional start site (arrow), the coding sequence (black box), and the 39 UTR (yellow box). Below, a diagram indicates site-specific insertion into
3L. (B) piRNA read counts are plotted along the inserted GFP sequence (green inset) and the surrounding areas of the tj 39 UTR. Note that sequences
mapping outside of GFP could be produced from the ectopic insert or the two endogenous copies of tj. (C) The 1U bias (left) and the size distribution of
piRNAs mapping to the GFP insert are shown with reference to piRNAs from the flamenco cluster. (D) Normalized piRNA read counts (see Materials and
Methods) were compared for the GFP insertions into the ectopic flamenco or tj piRNA clusters. (E) Read counts are calculated for all possible piRNAs
that start with uridine derived from the GFP insertion into flamenco. These were divided into the top 10%, the next 90%, and the subset that contributed
no reads. For each subset, the number that were present in the top 10%, the next 90%, or the noncontributors for the GFP insertion into tj were plotted.
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and ClaI sites of the pIZ-V5-His vector (Invitrogen). A sequence
ATTATTCTGATTGCGACAATAAATTCCGAT in the TJ 39 UTR
was substituted with the sequence CTTAAGCTGATTGCGACAA
TAAATACCGGT by overlap PCR to introduce unique AflII and
AgeI sites, which were used to insert the inverted EGFP sequence.
The modified traffic-jam sequence was transferred into the
pCasper5-attB vector (a modified P-element pCaSpeR5 vector
[Le et al. 2007] with a phiC31 attB site to allow site-specific
integration).

Cloning and recombineering—mouse

The transgene containing the modified chr17 piRNA cluster
(Chr17: 27427600–27488899) was created using BAC clone
RP23-131B16, which contains z180 kb of genomic sequence that
includes the whole chr17 piRNA cluster. We used the FRT-PGK-
gb2-neo-FRT cassette (Gene Bridges) and a purified vector con-
taining the EGFP sequence, to construct the GFP-Neo insert for
recombineering. After three steps of overlapping PCR (KOD hot
start DNA polymerase, Novagen), the recombineering inserts were
cloned in a 2.1-TOPO vector (Invitrogen, Version U) according to
the manufacturer’s protocol. Homology arms for recombineering
were added by PCR of purified plasmid.

Recombineering was carried using the Red/ET plasmid-
expressing recombination proteins under an arabinose-inducible
promoter (Counter-Selection BAC Modification Kit, Gene Bridges,
2007). We followed the manufacturer’s protocol, except that re-
combined clones were selected on Kanamycin and the counter-
selection step was skipped. The integrity of modified BAC DNAs
were verified by restriction digests and sequencing.

Transgenic animal production—D. melanogaster

Tagged BAC DNA was purified with a Plasmid Maxi Kit
(QIAGEN). The DNA was used for PhiC31 integrase-mediated
transgenesis, which was carried out by BestGene (http://www.
thebestgene.com/). Flamenco and tj transgenes were integrated
into attP docking sites on chromosome 3 (VK00031—site 62E1,
and VK00033—site 65B2, respectively).

Transgenic animal production—mouse

BAC DNAs were prepared from overnight E. coli cultures using
Nucleobond BAC 100 columns (Clontech). DNA was eluted in
Injection Buffer (10 mM TRIS, 0.1 mM EDTA, 100 mM NaCl, 1X
polyamines) and linearized with PI-SceI enzyme for 4 h. Following
linearization, BAC DNA was dialyzed overnight on a 25-mm,
0.025-mm filter (Millipore) by floating on Injection Buffer.
Transgenic animals were obtained by pro-nuclear injection into
B6xSJL F1 hybrids oocytes. Founder animals were crossed to
C57BL/6J mice. R37 and R13 transgenic lines were initiated from
two independent founder mice.

Immunoprecipitation of PIWI proteins

Immunoprecipitations from D. melanogaster ovaries were carried
out according to previously described procedures (Brennecke
et al. 2007). For mice, MILI and MIWI were immunoprecipitated
from adult testis using antibodies and procedures previously
described (Aravin et al. 2007b; Vagin et al. 2009). Briefly, testis
were dounced in lysis buffer (10 mM Hepes at pH 7.0, 100 mM

KCl, 5 mM MgCl2, 0.5% NP-40, 1% triton X-100, 10% Glycerol, 1
mM DTT, proteinase and RNAase inhibitors). Antibodies (MILI-
N2 and MIWI-N2) were then added to the cleared lysates and
binding reactions were allowed to proceed overnight at 4°C.
Protein A beads are then added to the solution and incubated 3–4
h at 4°C with rotation. After three to four washes in NT-2 buffer
(5 mM Tris at pH 7.4, 150 mM NaCl2, 1 mM MgCL2, 0.05% NP-
40, RNAase inhibitors, 1 mM DTT), antibody complexes were
proteinase K treated and RNAs ethanol precipitated following
phenol/chlorophorm extraction. A fraction of the precipitated
RNAs was radiolabeled and size profiles verified on 15% urea
polyacrylamide gels.

Small RNA cloning

Small RNAs from IPs and total RNA extracts were cloned as
previously described in Brennecke et al. (2007) and Aravin et al.
(2008). Briefly, small RNAs within a 19–33-nt window for mouse
samples or a 19–28-nt window for D. melanogaster were isolated
from 12% polyacrylamide gels. 39 and 59 linkers were ligated, and
products were reverse transcribed using Superscript III (Invitrogen).
Following PCR amplification, libraries were submitted for sequenc-
ing using the Illumina GA2x platform.

Detection of b-galactosidase activity in D.
melanogaster ovaries

Dissected ovaries from 3–5-d-old flies were fixed in freshly pre-
pared 2% glutaraldehyde in PBS for 20 min, washed twice in PBS,
and stained for several hours at 37°C in Fe/NaP buffer (3.1 mM
K3Fe(CN)6; 3.1 mM K4Fe(CN)6; 10 mM NaH2PO4xH2O; 0.15 M
NaCl; 1 mM MgCl2) with 0.25% X-Gal. Stained ovaries were
mounted in 70% glycerol/PBS.

Bioinformatic analysis of small RNA libraries

After FASTQ to FASTA conversion, the Illumina dapter
(CTGTAGGCACCATCAATTC) was clipped from the 39 end of
the read and sequences shorter than 16 nt were discarded from
further analysis. The remaining sequences were collapsed into
a nonredundant list and mapped to the D. melanogaster genome
(D. melanogaster Apr. 2006 [BDGP R5/dm3]) or the mouse ge-
nome (mm9) using the short read aligner bowtie (Langmead et al.
2009). Up to two mismatches were allowed. Sequences that failed
to map to the genome were mapped against the artificially in-
troduced sequences. The multiplicity count of mapped sequences
was normalized to the total number of reads that mapped to the
genome. All further bioinformatic analysis on mapping sequences
was done using Unix-based text utilities. Details of those scripts
can be obtained upon request. Small RNA sequencing data are
deposited at GEO, accession number GSE32435.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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inherited regulation of P elements in Drosophila melanogaster can
be elicited by two P copies at cytological site 1A on the X
chromosome. Genetics 129: 501–512.

Ronsseray S, Lehmann M, Nouaud D, Anxolabéhère D. 1996. The
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Supplementary Figure Legends 
 

Figure S1. Trans-silencing of lacZ by P{lArB} derived apiRNAs.  (A) Ovaries 

of strain P1152, which carries the P{lArB} insertion in TAS. (B) Ovaries of strain 

BC69 show lacZ expression from a euchromatic transgene. (C) Trans-silencing 

of lacZ expression in F1 ovaries of a cross between P1152 females and BC69 

males. Note the slightly different levels of repression within different cells of the 

same ovary. 

 

Figure S2. RT-PCR analysis of rosy transcripts.  Reverse transcription with 

primer specific to sense strand of rosy transcripts was performed on total RNA 

from ovaries of strain P-1152 (TAS-inserted transgene), BC69 (same transgene 

inserted into euchromatin) or Oregon-R (wild type). (A) Position of PCR primers 

flanking 3rd and 2nd introns of rosy transcript. (B) Presence of longer PCR 

product indicates accumulation of non-spliced rosy transcripts in ovaries of P-

1152, but not BC69 and Oregon flies. 

 

Figure S3. Features of apiRNAs in mouse. (A) The 1U bias of apiRNAs 

mapping to the insertion cassette (cass) is compared to native piRNAs from 

another cluster on chr9. Sequences are derived from total RNA, MILI and MIWI 

immunoprecipitations (indicated). (B) Size distributions of native piRNAs mapping 

to a cluster on chr9 (upper panel) compared to apiRNAs mapping to the insertion 

cassette (lower panel). Sequences are derived from total RNA, MILI and MIWI 

immunoprecipitations (indicated). 

 

Figure S4. piRNA profiles over wild-type and transgenic piRNA clusters in 
flies and mice (A) Read densities of piRNAs bound to MIWI are plotted along 

the cluster on chr 17 on the plus and minus strand (indicated). The site of the 

GFP cassette insertion is indicated with an asterix. (B) Read densities of piRNAs 

bound to MILI are plotted along the cluster on chr 17 on the plus and minus 

strand (indicated). (C) Read densities of piRNAs from total RNA are plotted along 



flamenco on the plus strand. The portion of the cluster contained in the BAC is 

indicated as ‘transgenic’. 

 
Figure S5. apiRNAs in mouse are preferentially bound by MILI. (A) Read 

counts of apiRNAs bound to MILI are plotted along the inserted GFP sequence 

on the plus and minus strand (indicated). (B) Read counts of apiRNAs bound to 

MIWI are plotted along the inserted GFP sequence on the plus and minus strand 

(indicated). (C) Read counts of apiRNAs from total RNA are plotted along the 

inserted GFP sequence on the plus and minus strand (indicated). 
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 2.2 Establishment of De novo Methylation Profiles in Mouse 

PGCs: interplay between transcription, small RNAs and De novo 

Methylation.  

 

	
   	
   2.2.1 Résumé en Français. 

 Au cours de l’induction des cellules germinale primordiales (PGCs), les 

marques de methylation de l’ADN sont intégralement effacées et rétablies de 

novo.  Chez les mâles, il a été proposé qu’une classe de petits ARNs associés 

aux protéines de la famille PIWI (piRNAs) cible la machinerie de methylation de 

novo au niveau des éléments répétés du génome. Trois éléments étayent cette 

hypothèse : i) les souris mutantes pour la voie des piRNA sont stériles ; ii) elles 

présentent une altération des profils de methylation des transposons ; iii) les 

protéines PIWI, MILI (ou PIWIL2) et MIWI2 (ou PIWIL4), exprimées durant la 

maturation des PGCs sont associées à des piRNAs pouvant potentiellement 

cibler l’ensemble des transposons du génome. Cependant l’impact réel des 

piRNAs sur les profils de methylation des transposons n’a jamais été étudié à 

l’échelle génomique. Dans cette étude, nous présentons les profils de 

méthylation de spermatocytes sauvages ou mutants pour les piRNAs, ainsi que 

les profils de transcriptions des PGCs au cours de leur maturation. Nous 

montrons que, suite à la de-méthylation massive de leur génome, les PGCs 

réactivent transitoirement la transcription des retro-transposons. Par opposition, 

les copies de transposons résistantes à la dé-méthylation ne sont jamais 

induites. Les profils de méthylation des spermatocytes déficients pour la voie des 
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piRNAs se sont révélés étonnamment proches de ceux d’animaux sauvages, 

suggérant que, suite à une première vague de methylation de novo par défaut, 

les piRNAs s’engagent dans une seconde vague ciblant un nombre réduit 

d’éléments. Ces éléments diffèrent d’autres copies de la même famille par leur 

séquence et, nous établissons que leur methylation de novo dépend d’une 

population de piRNAs amplifiée par ping-pong et préférentiellement associée à 

MIWI2. 

	
   	
   2.2.2 Specific contribution to the work 

 The following results constitute an unpublished work in the process of 

being submitted. I was involved in the production and analysis of all data 

reported here.  Current author list:  

Antoine Molaro, Emily Hodges, Ilaria Falciatori, Krista Marran, Tyler Garvin, 

Shahin Raffi, W. Richard McCombie, Alexei A. Aravin, Andrew D. Smith & 

Gregory J. Hannon 

   

	
   	
   2.2.3 Manuscript and figures 

Summary 

 During mammalian embryonic germ cell development, DNA methylation is 

thought to be entirely erased and de novo re-established genome-wide (Monk M, 

1987; Reik et al., 2001; Surani et al., 2007). In male germ cells, the prevailing 

model suggests that repeat de novo methylation rely on targeting by PIWI 

interacting RNAs, or piRNAs (Aravin and Bourc’his, 2008). piRNA mutant mice 

are infertile and display methylation defects over, at least, some transposon loci 
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(Deng et al., 2002; Kuramochi-Miyagawa et al., 2001, 2004 and 2008; Carmell et 

al., 2007; Aravin et al., 2007). Mouse PIWI proteins expressed during primordial 

germ cell (PGCs) development, MILI (or PIWIL2) and MIWI2 (PIWIL4), associate 

with piRNAs spanning the full spectrum of transposons (Aravin et al., 2008, 

Kuramochi-Miyagawa et al., 2008). However, we previously uncovered 

thousands of naturally hypomethylated transposons in primate sperm 

methylomes, suggesting that some copies evade piRNA driven de novo 

methylation (Molaro et al., 2011). Thus, the rules leading to proper epigenetic 

reprogramming of transposons still remain to be studied. Here, we present the 

reference methylomes of WT and MILI mutant mouse spermatocytes as well as 

the small- and long-RNA profiles across PGC development. We show that de-

methylated 13.5dpc PGCs transiently re-activate retro-transposon transcription, a 

feature never seen in somatic tissues. By contrast, elements resisting 

demethylation at E13.5 are never induced. Surprisingly, mutants and WT 

spermatocytes have very similar transposon methylomes, indicating that a 

widespread primary wave of de novo methylation is initiated by default and that 

piRNAs engage in a secondary wave, targeting only a small subset of repeats. 

These repeats display divergent regulatory sequences when compared to other 

copies of the same sub-family and depend on a transient ping-pong amplifying 

population of piRNAs enriched in MIWI2 complexes for de novo methylation. 

 

Results 

Reference methylomes 
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 To gain global understanding of de novo DNA methylation occurring 

during mammalian germ cell epigenetic reprogramming, we generated single 

CpG resolution genome-wide methylation maps of purified ~13.5dpc PGCs, WT 

and mili-/- spermatocytes (see experimental procedures). Both Males and female 

13.5dpc PGCs were sequenced to an average coverage of ~1.6-2X 

encompassing, respectively, 76% and 65% of all CpG sites in the mouse 

genome. Spermatocyte libraries were sequenced to an average coverage of ~8X 

and more than 90% of all sites were covered at least once in both WT and 

mutant methylomes (SupFig2.1). We also produced a lower coverage methylome 

of age-matched mili+/- animals, however, the following sections are restricted to 

a comparison of wild-type to mutant mice.  

 Consistent with previous reports, PGCs and spermatocytes represent the 

two extremes of the methylation spectrum (Popp et al., 2010). PGCs had virtually 

no methylated CpG sites (average methylation of 4%, SupFig2.1), strongly 

contrasting with the highly methylated spermatocyte genome (78%). This nearly 

complete erasure of CpG methylation at 13.5dpc was found across all genomic 

annotations, including all classes of retro-transposons (data not shown and 

Fig2.1a). However, both male and females PGCs displayed a substantial fraction 

of elements retaining methylation, preferentially within the LTR class, a feature 

already observed by other approaches (Popp et al., 2010, Lees-Murdock et al., 

2003, Lane et al., 2003). Despite the low resolution of these methylomes, 

correlating the methylation status across neighboring CpGs allowed us to 
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confidently call about 8000 hypermethylated domains in male PGCs and 9000 in 

female PGCs. Enrichments for LTR subfamilies overlapping these domains were 

very similar in both sexes and strongly enriched for musculus specific IAPs 

(SupFig2.1).

 

 

Figure 2.1: Retro-transposon reactivation upon epigenetic reprogramming. 
a Average CpG methylation across all three retro-transposon classes in male and 
female 13.5dpc PGCs and in WT and mili-/- (Mutant) spermatocytes. b Relative 
abundance of annotated reads in 13.5dpc, 16.5dpc and meiotic (2ndary Spermatocytes) 
germ cell transcriptome. Transcript annotations of somatic tissues collected at 13.5dpc 
are also shown (inset). c Heat map of normalized transcript levels for key subfamilies of 
LTR and LINE retro-transposons. Subfamily enrichment (low in white, high in black) in 
13.5dpc PGC hyper methylated domains in male and female is also show (left blocks). 
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Epigenetic reprogramming is associated with a transient re-activation of retro-

transposon  

 Cytosine methylation is one of the major means by which retro-transposon 

transcription is repressed in mammalian genomes (Walsh et al., 1998). The vast 

erasure of methyl-marks measured across these repeats raised the question of 

whether their transcriptional status is affected. Therefore, we profiled  

transcription before, during and after de novo methylation (Fig2.1b). When we 

measured the relative abundance of transcripts mapping to genes, repeats or 

other locations, 13.5dpc PGCs showed the highest fraction of retro-transposon 

reads compared to somatic cells co-sorted from E13.5 gonads or to any later 

time point in germ cell maturation (Fig2.1b). Interestingly, the relative abundance 

of retro-transposons drastically decreases as PGCs undergo de novo 

methylation, dropping from 21% of all mapped reads in 13.5dpc PGCs to 2% at 

16.5dpc (Fig1b).  

  Surprisingly, young and active sub-families of LINE-1 elements (L1s) 

ranked among the top most expressed elements (Fig2.1c). In fact, L1Md_T/A/F 

contributed about 4% of all annotated reads in 13.5dpc PGC transcriptomes 

(SupFig2.1). These musculus specific elements are strongly up-regulated in 

piRNA deficient animals, consistent with the idea that piRNAs contribute to the 

silencing of potentially threatening transposons (Fig2.1c and SupFig2.1). By 

contrast, LTR sub-families displayed a more complex expression pattern. First, 

the top sub-families enriched in hypermethylated domains at 13.5dpc only 
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displayed a weak induction suggesting that transposon transcription is a direct 

consequence of their hypomethylated state in post migratory PGCs. Second, 

LTR transcript levels in WT versus mutant spermatocytes show little change by 

comparison to that seen for L1s, and instead they are maintained at relatively 

constant levels during development. It is important to note that due to the 

potential equivocal read alignment to copies of the same sub-family, we cannot 

rule out that distinct copies contribute to this signal at different stages of 

development. 

 

Retro-transposon de novo methylation: Default vs. piRNA-dependent  

 Next we assessed the contribution of the piRNA pathway to the genome-

wide methylation profiles of meiotic germ cells. Comparing WT and mili-/- 

spermatocyte methylomes revealed very similar overall methylation levels (78% 

and 70% respectively). Unexpectedly, this was also true when focusing solely on 

retro-transposon sequences (Fig2.1a), suggesting that most of the repeat de 

novo methylation is piRNA independent. Identifying contiguous domains of low 

methylation, termed hypomethylated regions or HMRs (Molaro et al., 2011), also 

confirmed high overlap between these two samples with most variation seen 

across repeat associated HMRs (SupFig2.1). Next, we identified differentially 

methylated regions (DMRs) and isolated a total of ~6000 DMRs as being 

exclusively hypomethylated in mili-/- spermatocytes. As expected, these DMRs 

primarily overlap intergenic repeats (~69%, Fig2.2a). Of the fraction overlapping 

genic space (defined as +/- 10kb, ~27%), most DMRs are associated with 
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repeats located either in introns or surrounding regions (Fig2.2a and data not 

shown). The annotation of repeat copies associated with these DMRs identified 

~17000 elements (Fig2.2b), which we refer to as DMR transposons or piRNA-

targeted transposons. 

 We previously reported thousands of transposon copies naturally evading 

de novo methylation in chimp and human sperm methylomes (Molaro et al., 

2011). Similarly, we report here ~94000 repeat copies evading methylation in 

both WT and mutant spermatocytes and refer to these as constitutively 

hypomethylated (Fig2.2b). When compared to the hypermethylated fraction of 

repeats (4.8Milion copies), DMR and constitutively hypomethylated repeats 

display a similar overall enrichment for known active mouse transposons families 

(Fig2.2b). Similar to what is observed for constitutively hypomethylated copies, 

DMR L1 retro-transposons were hypomethylated toward their 5’end, indicating 

that piRNAs responsible for their methylation in a WT context specifically target 

regulatory sequences involved in transcriptional regulation (Fig2.2c). 

 Comparison of repeat copies within identical sub-families that either evade 

de novo methylation or are targeted by piRNAs revealed signs of sequence 

divergence, both with respect to the consensus sequence or in terms of 

conservation, when mapped back to the closely related rat genome (SupFig2.2). 

In each case, piRNA targeted retro-transposons scored as being more recent 

insertions. This suggests that the piRNA pathway can discriminate between 

closely related repeat copies to specifically target the most recently integrated, 

and potentially threatening, ones. Looking for sequence motifs that could explain 
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this specificity, we aligned all known L1Md elements and looked for motifs 

enriched in differentially methylated copies between WT and mili-/-. As expected, 

most differences were found in their 5‘ regulatory region and strikingly, we 

detected four motifs found almost exclusively in DMR copies and never found in 

constitutively hypomethylated ones (Fig2.2d). This finding suggests that these 

motifs may drive differential transcription factor binding and transcriptional 

activation assisting the piRNA pathway during target recognition.  
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Figure 2.2: piRNA-mediated de novo methylation is restricted to distinct 
transposon copies. 

a Genomic annotation of differentially methylated regions (DMRs) between WT and mili-
/- spermatocytes. The inset depicts the UCSC browser view of an intronic repeat-
associated DMR in first intron of Ugt1a. Read coverage (Reads), single CpG methylation 
levels (Meth) and hypomethyalted regions (solid bar) are shown for both WT and mutant. 
b Absolute counts of repeat copies (grouped by families) classified as overlapping 
DMRs, constitutively hypomethylated or hypermethylated in spermatocytes. c Metagene 
analysis of hypomethylated regions (HMRs) distribution over the copies, of four L1Md 
sub-families, differentially methylated in mili -/- . d Distribution of four motifs specifically 
enriched in differentially methylated L1Md_T. 
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An adaptive piRNA population mediates a second wave of repeat de novo 

methylation in PGCs.  

 Finally, we investigated how piRNAs could mediate the specific targeting 

of the aforementioned DMR retro-transposons,one hypothesis being that these 

copies would be strongly up-regulated at 13.5dpc and become preferentially 

integrated into PIWI proteins as a consequence of their abundance. A second 

option was that piRNA mapping to the differentially methylated domains of these 

copies would display discriminative signatures not shared by piRNAs that never 

engage in de novo methylation. To discriminate between these alternatives, 

which are not mutually exclusive, we cloned and sequenced 24 to 33nt small 

RNAs from male genital ridges at 13.5dpc and compared these to libraries 

generated from total, MILI and MIWI2 immuno-precipitated RNA from 16.5dpc 

genital ridges (Aravin et al., 2008). 13.5 genital ridges displayed an abundant 

fraction of reads resembling piRNAs, consistent with the activation of MILI 

expression early in PGCs development (Aravin et al., 2008). These piRNAs 

displayed a strong 5’U bias (80% of all reads), and a size range typical of this 

small RNA class (SupFig2.3). These piRNAs are likely to represent the most 

primary population produced by PGCs.  

 Whereas 16.5dpc piRNAs are strongly enriched for transposon reads 

(~50%), 13.5dpc piRNAs displayed an equal abundance of reads mapping to 

repeats, genes or other annotations (~30% each, Fig2.3a). This suggests that the 

relative abundance of each annotation class follows the underlying transcript 

abundance reported at 13.5dpc (Fig2.1b). However, this finding indicates that 
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transposon piRNAs undergo a strong secondary enrichment at 16.5dpc, as 

transposon transcript levels were found to occupy less that 10% of all mapped 

transcripts at the same stage. This is consistent with a secondary ping-pong 

amplification and stabilization of piRNAs in the presence of both MILI and MIWI2, 

after 15.5pdc (Aravin et al., 2008, Kuramochi-Miyagawa et al., 2008). 

Interestingly, support for the ping-pong model was also observed by the relative 

abundance of piRNAs and transcripts of various transposon subclasses at these 

stages, including LINEs and SINEs (SupFig2.3 and data not shown), suggesting 

that abundantly transcribed sub-families of L1s contribute the most to piRNA 

production (SupFig2.3). By contrast, LTR sub-families displayed a rather uniform 

abundance of piRNA reads, with the exception of the internal sequence and 

terminal repeats known to be associated with active IAP elements (SupFig2.3). 

This suggests that different piRNA based mechanisms lead to L1 and IAP 

silencing during PGC development. Their differential abundance in DMRs 

between WT and mili-/- reported here, together with a recent report showing that 

the catalytic domain of MILI is essential for L1 silencing (De Fazio et al., 2011), 

both support this idea. 

 We then attempted to characterize the differences between piRNAs 

underlying differentially methylated regions from other piRNAs (e.g. exclusively 

involved in post-transcriptional silencing). When the genomic sequence of a 

differentially methylated L1Md_T was extracted and used to focally re-map 

transcript and piRNAs, obvious differences were visible between the differentially 

methylated portion (5’ repeats) and the rest of the element (Fig2.3b). piRNAs 
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mapping to the 5’ repeats strongly amplified at 16.5dpc when compared to reads 

overlapping the open reading frame (ORF). In addition, a clear bias towards 

sense reads was found for 5’repeat-associated piRNAs in 13.5 and 16.5dpc total 

RNA libraries (Fig2.3b and SupFig2.3). In contrast, MIWI2-bound piRNAs were 

enriched in both sense and anti-sense reads throughout the element. 5’ repeat 

and ORF associated reads also displayed different enrichments for ping pong 

pairs (SupFig2.3). These initial observations prompted us to interrogate all L1 

and ERVK DMR-associated piRNAs in an unbiased fashion. Reads were aligned 

to the differentially methylated portion of these elements and compared to 

unaligned reads. L1 DMR-associated piRNAs displayed a bias towards sense 

reads in addition to a strong enrichment for perfect ping-pong pairs (Fig2.3c and 

d). Surprisingly, ERVKs derived piRNAs didn’t show as strong enrichment, 

suggesting that LTR and LINE engage differently in the piRNA pathway. 

However, for both classes of elements, DMR-associated reads were found to be 

the most abundant population bound to MIWI2 (Fig2.3e). 
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Figure2.3: Features and biogenesis of piRNAs mediating transposon de novo 
methylation  

a Genomic annotation as indicated for 13.5dpc cloned piRNAs compared to 16.5dpc 
form Aravin et al., 2008. b Mapping of 13.5dpc transcripts, 13.5, 16.5 and MIWI2-bound 
piRNAs to a representative L1Md_T (pos. chr7:62853712-62859551) differentially 
methylated in mili-/-. c Ratio of sense to antisense reads for piRNA sequences aligned 
(green) or not aligned (grey) to all L1 or ERVK-associated DMRs. 13.5, 16.5, MILI-IP 
and MIWI2-IP libraries are shown. d Fraction of total mapped reads with perfect ping-
pong pairs for sequences as described in c. Fraction of total MIWI2-bound piRNAs 
aligned (green) or not aligned (grey) to DMRs for L1s and ERVKs. 
 

 

 

Concluding remarks  

 Taken together the data presented here suggests that upon PGC 

reprogramming, hypomethylated repeats are transcriptionally up-regulated and 

converted into a primary pool of piRNAs. As a consequence of an initial genome-

wide wave of default de novo methylation in PGCs after 13.5dpc (Walsh et al., 
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1998; Ueda et al., 2000; Kato et al., 2007; Lees-Murdock et al., 2003; 

Kuramochi-Miyagawa et al., 2008), we suggest that retro-transposons become 

silent again. However, a small fraction of retro-transposon copies fail to be 

subjected to this default re-methylation, remain transcriptionally active, and 

engage in a ping-pong dependent secondary piRNA production. We also show 

that the group of transposon copies evading de novo methylation, despite a 

functional piRNA pathway, distinguishes divergent copies from threatening ones 

and might indicate their recent functionalization by the genome. Reminiscent of 

what has been observed in plant (Slotkin et al., 2009), the interplay described 

here between transcription, piRNA production and default de novo DNA 

methylation, provide a elegant model explaining how, at each generation, a 

unique and adaptive chromatin signature is established in germ cells.   
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Supplementary figures 
 
 

 

 
 
SupFig2.1:  
a Mapping statistics of the methylomes analyzed in this study. b Bubble plot  of LTR 
sub-families fold enrichement in hypermethylated domains at 13.5dpc in both males (red 
bubbles) and females (blue bubbles). Bubble size reflects the total number of elements 
called as hypermethylated in each subfamily. c Fraction of overlapping HMRs between 
WT and mili-/- spermatocytes as shown for the whole genome, promoters and repeats. 
Fraction as of number of HMRs from the row sample overlapping the column sample. d 
Relative expression of all L1 subfamilies as the fraction of total mapped reads in each of 
the shown transcriptome libraries. e Bubble plot showing the fold up-regulation 
measured for L1 subfamilies between WT and mili-/- spermatocytes. The size of the 
bubble reflects the sum of normalized transcript abundance in WT and mutant libraries. 
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SupFig2.2:  
a Genomic annotation of differentially methylated regions identified between mili-/- and 
WT spermatocyte where WT is hypomethylated. b Average SW scores measured for 
constitutively hypomethyalted repeat copies (dark grey) and differentially methylated 
copies in mili-/- (light grey). c Fraction of repeat elements with and 95% homology in the 
rat genome as indicated for each group of repeats. d Enrichment score in all L1 for all or 
individual motifs characterized in differentially methylated L1s. Score shown between 
DMR and hypermethylated copies. 
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SupFig2.3:	
  	
  
a Size distribution of 13.5dpc piRNAs (red) compared to 16.5 piRNAs from Aravin et al., 
2008. b Heat map of normalized transcript (left map) and piRNA (right map) levels for 
key subfamilies of LTR and LINE retro-transposons. Heat maps were built separately for 
LTR and LINE. Enrichment for DMR in shown on the far right (low in white, high in dark 
blue). Enrichment in hypermethylated domains shown as in Figure2.1c. c Ratio of sense 
to antisense reads (top plot) and perfect ping-pong pairs (bottom plot) found in 
sequences mapping over a representative L1Md_T element (pos. chr7:62853712-
62859551). Reads aligned to the 5’repeats (green) or the ORFs (grey) are shown for 
each analyzed libraries. 
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Experimental procedures: 
 
Mouse strains: All strains used in this work were maintained on a C56Bl/6 background. 
For wild type secondary spermatocyte methylomes, mice were purchased form Charles 
River Laboratories. The mili knockout strain was obtained from Haifan Lin (Yale 
University) and is described in Kuramochi-Miyagawa et al., 2004. For PGC isolation, 
Oct4-EGFP mice, described in Lengner et al., 2007, were purchased form the Jackson 
Laboratory (Bar Harbor, Maine).  
 
Cell sorting: Secondary and primary spermatocytes were FACS sorted (Aria II, BD 
Bioscience) form WT and mili mutant animals based on DNA content using Hoechst 
staining, as described in Bastos et al., 2005. Because mili mutant animals only produce 
a small 1n2C population (secondary spermatocytes), testis cells were also stained with 
Ep-Cam antibody (CD326, clone G8.8 from Biolegend),  conjugated with Alexa 647, to 
enrich the 2n4C population for germ cells. PGCs at 13.5 and 16.5dpc were sorted using 
EGFP. GFP negative cells were also collected and referred to as “somatic” cells. 
 
Shotgun bisulfite libraries preparation, sequencing and mapping: Shotgun bisulfite 
sequencing was performed as described in (Molaro et al., 2011). Briefly, purified 
genomic DNA was sonicated to an average size of 200-300bp, end-repaired and A-tailed 
using T4PNK (NEB), T4Polymerase (NEB) and Taq polymerase (Roche). Illumina 
paired-end adaptors were ligated at 25°C for 30mins using the Rapid DNA Ligase form 
Roche. The ligated products were bisulfite converted (EZ-methylation Gold Kit, 
Zymosearch) and amplified using the Illumina paired-end primers (Illumina) and the 
Expand High Fidelity plus PCR system (Roche). Amplicons were quantified by qPCR, 
and paired-end sequenced on the Illumina GAII platform (76PE and 100PE).  
Sequenced Reads were mapped using RMAPs (Smith et al., 2009). HMR and DMRs 
calling was performed as described in Molaro et al., 2011 and Hodges et al., 2011. 
Retro-transposon sub-faimily enrichment in hypermethylated domains at 13.5dpc was 
calculated as the ratio of Observed/Expected number of copies overlapping the 
domains. 
 
Small RNA cloning: Small RNA cloning form total RNA was performed as described in 
Aravin et al., 2008. 
Briefly, total RNAs form 13.5dpc whole gonads were extracted using Trizol (Invitrogen). 
Small RNAs within a 24 to 33-nt window were isolated from 12% polyacrylamide gels. 3’ 
and 5’ linkers were ligated, and products were reverse transcribed using Superscript III 
(Invitrogen). Following PCR amplification, libraries were submitted for sequencing using 
the Illumina GAII platform.  
 
RNA-seq: RNA form sorted PGCs and adult spermatocytes were extracted using Trizol 
(Invotrogen). Following DNAse treatment, each sample was subjected to reverse 
transcription and linear amplification using the Ovation RNA-seq system according to 
manufacturer’s protocol (Nugen). Both oligo-dT and random priming are used during this 
procedure. Finally, double stranded cDNAs were subjected to a standard Illumina 
paired-end genomic library preparation (Illumina), and sequenced to an average size of 
76bp on the Illumina GAII platform.  
 

Read Mapping of small and long RNA: After FASTQ to FASTA conversion, the 
Illumina adapter –CTGTAGGCACCATCAATTC for small RNA and 
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GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG for long RNAs - was clipped from 
the 3’ end of the read and sequences shorter than 16 nt were discarded from further 
analysis. The remaining sequences were collapsed into a non-redundant list and 
mapped the mouse genome (mm9) using the short read aligner bowtie (Langmead et al., 
2009). All further bioinformatic analysis on mapped sequences was done using Unix-
based utilities (Galaxy, Goecks et al., 2010).  
Transcript normalization was calculated for each transposon sub-families as the fraction 
of total mapped reads annotated as a given sub-family. The heat maps were colored 
independently for each repeat class. 
To extract piRNAs mapping to DMRs, sequences in each small-RNA libraries were 
aligned to all L1 and ERVK associated DMR using the short read aligner bowtie.  
Perfect ping-pong pairs were quantified within by counting the number of reads 
displaying a perfect 10nt offset with at least one other read. 
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   2.3 DNA Methylation Profiles of Chimp and Human Sperm: A 

Look into Epigenetic Evolution  

 

   2.3.1 Résumé en Français 

 Chez les mammifères, l’embryon préimplantatoire ainsi que les cellules 

précurseurs de la lignée germinale voient l’ensemble de leurs marques de 

methylation intégralement effacées puis ré-établies de novo. Bien que les 

acteurs moléculaires impliqués dans ce processus aient déjà été caractérisés, 

l’influence de la séquence sous-jacente sur l’établissement des profils de 

methylation de novo n’a jamais été étudiée comparativement entre ces deux 

stades de développement ou dans uns contexte évolutif. La présente étude se 

propose de référencer et d’étudier, dans le sperme d’Homme et de Chimpanzé, 

les niveaux de methylation de l’ensemble des CpG du génome et de les 

comparer à ceux des cellules ES humaines. Dans un premiers temps, nous 

montrons  que l’ensemble des régions hypométhylées s’étend bien au-delà des 

îlots CpGs et inversement, que la présence d’un îlot CpG n’est pas synonyme 

d’hypoméhtylation dans les cellules germinales. De plus, bien que la vaste 

majorité des promoteurs soit constitutivement hypométhylés aussi bien dans le 

sperme que dans les cellules ES, la structure des domaines hypomethylés 

diffère significativement entre ces deux types cellulaires. Notre étude révèle 

aussi la présence de milliers de copies d’éléments répétés résistants à la 

methylation de novo dans ces deux type cellulaires; certaines familles étant 

préférentiellement hypomethylées dans la lignée germinale. Enfin, la 
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comparaison des profils de methylation entre le Chimpanzé et l’Homme nous a 

permis de quantifier l’interdépendance existante entre l’évolution du methylome 

et du génome. Nous avons trouvé que des états de methylation divergents se 

produisent aussi bien dans des régions hautement orthologues qu’au niveau de 

régions polymorphiques. Dans leur ensemble, nos résultats suggèrent que des 

variations du génome et de l’épigénome pourraient indépendamment influencer 

le processus de spéciation.	
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SUMMARY

During germ cell and preimplantation development,
mammalian cells undergo nearly complete reprog-
ramming of DNA methylation patterns. We profiled
the methylomes of human and chimp sperm as
a basis for comparison to methylation patterns of
ESCs. Although the majority of promoters escape
methylation in both ESCs and sperm, the corre-
sponding hypomethylated regions show substantial
structural differences. Repeat elements are heavily
methylated in both germ and somatic cells; however,
retrotransposons from several subfamilies evade
methylation more effectively during male germ cell
development, whereas other subfamilies show the
opposite trend. Comparing methylomes of human
and chimp sperm revealed a subset of differentially
methylated promoters and strikingly divergent meth-
ylation in retrotransposon subfamilies, with an evolu-
tionary impact that is apparent in the underlying
genomic sequence. Thus, the features that deter-
mine DNA methylation patterns differ between male
germ cells and somatic cells, and elements of these
features have diverged between humans and chim-
panzees.

INTRODUCTION

In mammals, proper DNAmethylation is essential for both fertility
and viability of offspring (Bestor, 1998; Bourc’his and Bestor,
2004; Li et al., 1992; Okano et al., 1999; Walsh et al., 1998).
DNA methylation in germ cells is required for successful meiosis
(Bourc’his and Bestor, 2004), and blastocysts derived from
embryonic stem cells (ESCs) lacking DNA methyltransferases
(DNMTs) cannot survive past approximately 10 days of develop-
ment (Li et al., 1992).
Mammalian germ cells are derived from somatic cells, rather

than being set-aside during the first zygotic cleavages. During

germ cell development, the genome undergoes a wave of nearly
complete demethylation and remethylation (Popp et al., 2010;
Walsh et al., 1998). This reprogramming event correlates with
re-establishment of totipotency and with the creation of sex-
specific methylation patterns at imprinted loci (reviewed by
Sasaki and Matsui, 2008). Germ cell methylation patterns are
erased and reset during a secondwave of epigenetic reprogram-
ming that occurs during preimplantation development. Post-
fertilization, DNA methylation levels reach a nadir around the
eight-cell stage, after which methylation is rewritten, attaining
its somatic level by the blastocyst stage (Mayer et al., 2000).
Because this is completed prior to the establishment of the inner
cell mass from which cultured ESCs are derived, one can view
ESCs and mature germ cells as the terminal products of the
two landmark epigenetic reprogramming events in mammals.
Mobile genetic elements constitute roughly half of most mam-

malian genomes (Lander et al., 2001). Repression of transposons
relies critically on DNA methylation and is essential for the
maintenance of genomic stability in the long term and of germ
cell function in the near term (Bestor, 1998; Bourc’his andBestor,
2004; Okano et al., 1999; Walsh et al., 1998). At least in part,
silencing of repeated DNA depends upon an abundant class of
PIWI-associated small RNAs, called piRNAs (reviewed in Aravin
and Hannon, 2008). In the absence of this pathway, methylation
is lost on at least some element copies, transposons are dere-
pressed, and germ cell development is arrested in meiosis.
CpG dinucleotides are underrepresented in mammalian

genomes, most likely because a higher rate of spontaneous
deamination of methylated cytosines exerts evolutionary pres-
sure for CpG depletion by frequent CpG-to-TpG transitions
(Duncan and Miller, 1980; Ehrlich et al., 1990). Mammalian
genomes contain areas of relatively high CpG density, called
‘‘CpG islands’’ (CGIs) (Gardiner-Garden and Frommer, 1987),
which have avoided CpG depletion over evolutionary time.
CGIs are frequently observed at promoters and in some cases
have been shown to exert regulatory effects. Thus, selection
against CpG depletion may reflect the importance of specific
CpG dinucleotides as sequence-based binding sites or simply
the requirement for a certain regional density of CpGs. As an
alternative, the existence of CGIs may simply be an artifact of
longstanding hypomethylation of these regions, and consequent
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relief from CpG erosion, in mammalian germ cells. Under this
hypo-deamination model, selective pressure is independent of
CpG density, per se, and CGIs may instead be a secondary
consequence of protection from methylation at specific sites
combined with prevalent methylation elsewhere in the genome
(Cooper and Krawczak, 1989; Duncan and Miller, 1980; Ehrlich
et al., 1990).

Studies encompassing evolutionarily distant species have
shown that broad features of the epigenome, such as the high
methylation levels of gene bodies and repeats, are deeply
conserved (Zemach et al., 2010). In closely related species,
however, fine-scale analysis of DNA methylation state reveals
variation. The chimpanzee and human genomes share more
than 95% sequence homology but display regions of differential
methylation (Enard et al., 2004). Through focused studies, we
have gained glimpses into the characteristics of the methylome
and the evolutionary pressures that shape it. We wished to
enable genome-wide comparisons of DNA methylation states
in closely related species and to examine possible differences
between the two major waves of epigenetic remodeling that
occur during the mammalian life cycle. We therefore produced
full-genome, single-CpG resolution DNA methylation profiles in
human and chimp sperm and compared these with methylation
maps from human ESCs (Laurent et al., 2010).

RESULTS

Methylomes of Mature Male Germ Cells in Human
and Chimp
We conducted genome-wide shotgun bisulfite sequencing of
spermDNA samples isolated from two human and chimp donors
(see Extended Experimental Procedures for details). Basic data
analysis was conducted using a custom pipeline. We were
able to determine methylation status for 96% of genomic
CpGs in the human and chimp samples from a total of 28 million
and 27 million CpGs, respectively (Table 1). Read coverage for
CpGs on autosomes averaged 163 in human with an overall
methylation level of !70% for all CpG sites. For chimp we
sequenced to an average coverage of nearly 143 and observed
an average methylation level of !67%. We did not observe
significant methylation at non-CpG sites in either dataset. For

comparison, we applied our analysis pipeline to awhole-genome
bisulfite dataset from human ESCs (Laurent et al., 2010). This
dataset was comparable to our own, with 93% of CpG
dinucleotides covered and an average depth of 143 on CpGs
genome-wide.
We identified contiguous domains of low methylation, termed

hypomethylated regions or HMRs, in a manner independent of
genomic annotations such as CGIs and promoters. Because
methylation levels in spermwere generally high, HMRs appeared
obvious on browser plots as valleys in which methylation drop-
ped to very low levels. To call HMRs in a statistically principled
manner, we designed a novel computational approach, based
on a two-state hidden Markov model with Beta-Binomial emis-
sion distributions (see Extended Experimental Procedures).
This algorithm identified !79k HMRs in human sperm and
!70k HMRs in chimp sperm. Only !44.5k HMRs were identified
using the human ESC dataset, despite similar sequence
coverage and overall methylation level (Laurent et al., 2010;
see Table 1 and Table S1A available online). The sizes of
HMRs also differed between germ and ESCs. In both chimp
and human sperm, the mean size of HMRs was !1.8 kb, and
the median was !1.3 kb. In ESCs, HMRs showed a mean size
of!1.2 kbwith amedian of 833 bp. HMRs overlapped all classes
of genomic annotation (see Table S1B).

Global Comparisons among Primate SpermMethylomes
and with Human ESCs
Average methylation levels differed by a small amount among
the human donors (donor 1: 72%; donor 2: 67%) but were
more similar among chimp donors (donors 1 and 2: 67%). The
methylation status of individual CpGs of HMRs correlated very
highly between individuals, with divergence being higher in
repeats as compared to promoters (Figures 1A and 1B). High
interindividual correlations at the CpG and the HMR levels imply
that our datasets permit accurate calling of CpG methylation
genome-wide.
We also compared methylation between species at an indi-

vidual nucleotide level (see Extended Experimental Procedures
for details). As expected, the correlations between human and
chimp sperm methylation are high, but the correlation remains
generally highest within species.

Table 1. Shotgun Bisulfite Sequencing of Human and Chimp Sperm Methylomes

Species Sample Mapped Distinct Mismatches BS Conversion Methylation CpG Coverage CpGs Covered

Human sperm (1) 609,127,589 388,835,058 1.58 0.992 0.724 8.8 0.96

sperm (2) 588,920,777 316,860,245 1.84 0.983 0.674 7.3 0.94

sperm (both) 1,198,048,366 705,695,303 1.70 0.988 0.701 16.1 0.96

ESCs 940,731,922 366,844,212 0.64 0.988 0.663 14.1 0.93

Chimp sperm (1) 459,258,834 255,193,493 1.87 0.985 0.665 6.2 0.95

sperm (2) 520,905,232 327,796,614 1.70 0.984 0.672 7.4 0.94

sperm (both) 980,164,066 582,990,107 1.78 0.985 0.669 13.6 0.96

Mapped: reads mapping optimally to a single location in the reference genome. Distinct: number of genomic locations to which a read maps; when

multiple reads map to the same position, one with the best mapping score was selected at random, and all others discarded. Mismatches: average
number of mismatches for the reads indicated in the distinct fragments column. Bisulfite (BS) conversion rate was calculated at non-CpG cytosines.

Methylation: proportion of Cs in reads mapping over CpG dinucleotides.
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We also directly compared the methylomes from each of the
human and chimp donors with the human ESC methylome.
The nucleotide-level correlations between sperm methylation
of each of the four primate individuals were higher than their
correlationswith ESCmethylation patterns (Figure 1A). However,
the human ESC methylome did show substantially higher corre-
lation with the human germ cell methylomes than with those of
chimp donors. Considered together these results indicate that,
although waves of reprogramming in developing germ cells
and embryos culminate in high genome-wide methylation, these
two methylomes bear substantial differences overall.

Comparison of Hypomethylated Promoters between
Sperm and ESC Methylomes
The majority of promoters are associated with HMRs in both
sperm and ESCs, indicating widespread bookmarking of
promoters during both waves of epigenetic reprogramming. A
number of promoters did show differential methylation, with
1336 showing sperm-specific HMRs but only 201 showing
ESC-specific HMRs (Figure 2A). Promoters hypomethylated in
germ cells were strongly enriched for putative binding sites of
transcription factors known to function in testis, including
NRF1, NF-Y, YY1, and CREB (see Figure S1). A similar analysis
of ESC-specific HMRs failed to yield significant results.
Only the genes with sperm-specific promoter hypomethyla-

tion revealed a strong enrichment for functional Gene Ontology
(GO) categories. These were associated with germ cell functions
(Figure 2B; Table S2) at distinct stages of gametogenesis (e.g.,
embryonic germ cell development and spermiogenesis). Thus,
genes acting at developmental stages, potentially separated
by decades, appear to maintain a permissive epigenetic state.
Of the eight genes analyzed from the piRNA metabolic process
category, seven showed promoter hypomethylation in sperm
but not in ESCs, and one was hypomethylated in both
(Figure 2B).
Retention of histones in human sperm was reported to be

extensive (Hammoud et al., 2009). Our analysis of this data re-
vealed a strong correlation between retained histones marked
by H3K4me3 and HMRs at promoters. Among the 25.8k
promoters marked by H3K4me3 in sperm, 91% overlapped an
identified HMR. In general, these results support prior observa-
tions that the presence of H3K4me3 at promoters is often

accompanied by hypomethylation (Hammoud et al., 2009; Ooi
et al., 2007).
It was previously posited that genes involved in early embry-

onic development had a distinct chromatin status in sperm,
being hypomethylated, histone-retained, enriched in H3K4me3
marks, and thus poised for expression (Hammoud et al., 2009).
At least with respect to DNA methylation, we do not detect a
preferential link between HMRs in sperm and developmental
regulators but instead widespread HMRs. One potential expla-
nation for this perceived discrepancy is that our comparisons
involve sperm and ESCs, whereas prior studies used a differenti-
ated cell type to contrast with sperm.
The genes with promoters that lack HMRs in both sperm and

ESCs (n = 5,380; Figure 2A) show strong enrichment for G
protein-coupled receptors and genes involved in neurological
functions (Tables S2C and S2D). The reason why many of these
genes, associated with highly specialized cell types, seem to
lack promoter HMRs in sperm and ESCs remains obscure.

Shared HMRs Show Distinct Characteristics in Sperm
and ESCs
Differences in average size and CpG densities suggest that
the HMRs emerging after germ cell reprogramming differ qualita-
tively from those emerging after zygotic reprogramming (Fig-
ure 3A; Table S1A). The majority of HMRs have CpG density
between 1% and 10%, and promoter HMRs fall almost exclu-
sively in this range for the sperm methylomes. Those HMRs
falling below 1% CpG density lie almost exclusively in repeats.
These are overrepresented in human sperm relative to chimp
sperm and human ESCs. Promoter-associated HMRs have sizes
concentrated between 1 kb and 10 kb in human and chimp
sperm, with an overall trend to be broader than promoter-asso-
ciated HMRs in ESCs (Figure 3A). A notable increase in CpG
density accompanies narrowing of HMRs and results in a signif-
icant portion of ESC HMRs with a CpG density above 10%.
To probe structural differences among HMRs in ESCs and

sperm, we plotted the average methylation around HMR-associ-
ated transcriptional start sites (TSSs), genome-wide (Figure 3B,
upper). This revealed a general principle, that a core HMR in
ESCs, referred to as a nested HMR (Figure 3B, lower), often
lies within an extendedHMR in sperm. Themedian size of nested
ESC HMRs is 1,498, less than half the median size of 3,109 for
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Figure 1. A Global View of Sperm and ESC
Methylomes
(A) Correlations between methylomes with methylation

levels measured at individual CpG sites. Correlations are

displayed for CpGs genome-wide, within promoters, and

within repeats, and correlation coefficients are colored

blue to red to indicate low to high, respectively.

(B) Overlap between sets of HMRs from human sperm,

chimp sperm, and ESCmethylomes, along with annotated

CGIs. Each cell gives the fraction of HMRs corresponding

to the row that overlaps HMRs corresponding to the

column. Colors are overlaid as in (A).

See also Table S1.
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the sperm HMRs in which they reside. This phenomenon was
also observed independently in a comparison of somatic and
sperm HMRs, where variations in boundaries were additionally
correlated with tissue-specific expression (Hodges et al.,
2011). Extended HMRs are reminiscent of the concept of CpG
shores (Doi et al., 2009), though in comparisons of sperm and
ESCs, we made no attempt to correlate gene expression with
the widespread phenomenon of nesting that we report herein.

The observation of nested HMRs could arise either from a true
expansion of the hypomethylated domain in sperm or as an
artifact of sperm having less precise HMR boundaries than
ESCs. Examining degrees of change in methylation states
across boundary CpGs in both cell types supports the former
conclusion (Figure 3C). Thus, nesting appears to represent a
general phenomenon and likely reflects differences in the under-
lying mechanisms by which the boundaries of hypomethylated
regions are determined during the waves of de novo methylation
that lead to sperm and ESCs.

As a step toward addressing such mechanisms, we asked
whether any features are associated with HMR boundaries in
either cell type. Two interesting characteristics emerged. Ap-
proaching the boundaries of either the extended sperm HMRs
or the nested ESC HMRs, CpG densities dropped just prior to
the start of the HMR and rose dramatically again thereafter,
though overall densities were higher in the nested portions
(Figure 3D). This reflects an increase in the average inter-CpG
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See also Figure S1 and Table S2.

distance at the boundaries of HMRs (Figure 3E).
Because our method of identifying HMRs is
agnostic to inter-CpG distance, this is not
simply an artifact of our approach. One could
imagine increases in inter-CpG distance inter-
rupting a processive activity, preventing the
spread of de novo methylation either directly
or indirectly.
Though we had no a priori expectation that

sequence features would reside at sperm or
ESC HMR boundaries, we searched for motifs
that might occur at or near boundary CpGs,
independent of CpG density. We noted a trend
toward enrichment for an ACGT motif at ESC
boundary CpGs with a corresponding depletion
immediately outside ESC HMRs (Figure S2).

This pattern was not significantly enriched at the boundaries of
extended sperm HMRs. Building upon this observation, we
also searched for larger motifs, focusing on those containing a
central CpG core. Patterns with strong differences across
HMR boundaries tended to have the ACGT core (Table S3).
The most enriched pattern for sperm was AACGTT. For ESCs,
we saw a well-known E box pattern, CACGTG. Plotting
observed-to-expected (o/e) frequencies centered on CpGs
around boundaries of extended and nested HMRs (Figure 3F),
there was a clear depletion just outside each boundary followed
by a sharp enrichment at the boundary CpG for each pattern in
the appropriate cell type (Figure S2B). These results raise the
possibility that one or more DNA-binding proteins might localize
to HMR boundaries during waves of de novo methylation and
help to define transitions in methylation states.

Differential Repeat Methylation in Sperm and ESCs
Consistent with prior observations and with the known role of
DNA methylation in transposon silencing, most repeat elements
were highly methylated in both sperm and ESCs. However,
a substantial fraction of HMRs overlapped transposons in chimp
and human sperm, with all repeat classes represented (Fig-
ure 4A; Table S1B). Fewer repeat-associated HMRs appeared
in ESCs. In sperm, HMRs collectively contained 4%–5% of all
bases assigned to repeats, compared to 1.3% in ESCs (see
Table S1B). Overall, this suggests that different mechanisms,

1032 Cell 146, 1029–1041, September 16, 2011 ª2011 Elsevier Inc.



1k 100k100 10k1k 100k100 10k10 1k 100k100 10k

1k

100

10

OtherPromoter Repeat (non-promoter)

HMR size (bp)

C
pG

 c
ou

nt

Human sperm Chimp sperm Human ESCA

10% CpG 1% CpG

F

Nested HMR
Extended HMRs

M
et

hy
la

tio
n

B

0.8

0.6

0.4

0.2

0.0

-4k -3k -1k 0 1k 2k 3k 4k-2k

ESC meth.Sperm meth.

Schematic

0.0

0.2

0.4

0.6

0.8

+5+4+3+2+1-1-2-3-4-5

0.0

0.2

0.4

0.6

0.8

+5+4+3+2+1-1-2-3-4-5

M
et

hy
la

tio
n

M
et

hy
la

tio
n

Sperm

ESC

CpG position relative to HMR boundary

C

D

C
pG

 O
/E

0-500 5000-500 500

0.8

0.6

0.4

0.2

Position w.r.t. boundaryPosition w.r.t. boundary

Methylated
in both

Nested HMR
(ESC+sperm)

Extended HMR (sperm only)

Sperm

ESC

-5 -4 -3 -2 -1 +1 +2 +3 +4 +5

60

120

180

240

0

60

120

180

In
te

r-
C

pG
 d

is
ta

nc
e

CpG position relative
to HMR boundary

E

0.0

0.5

1.0

1.5

+5+4+3+2+1-1-2-3-4-5
0.0

0.5

1.0

1.5

+5+4+3+2+1-1-2-3-4-5

E
-B

ox
 O

/E

Extended HMRMethylated Nested HMR

CpG position relative to boundaries
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(B) Average methylation around all TSS overlapping HMRs in both sperm (orange) and ESCs (blue); solid lines represent data smoothed using a 20 base sliding

window. A schematic depicts the concepts of extended and nested HMRs at promoters.
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See also Figure S2 and Table S3.

Cell 146, 1029–1041, September 16, 2011 ª2011 Elsevier Inc. 1033



with different stringencies, direct repeat methylation during
germ cell and preimplantation development.

Sperm-Specific Satellite Hypomethylation
Is Concentrated at Centromeres
We noted a strong decrease in methylation of sperm DNA within
pericentromeric regions, extending several megabases outward
from the unassembled core centromeres (Figure 4B). This was
not seen in ESCs or in terminally differentiated cells (Hodges
et al., 2011). This striking pattern was attributable to sperm-
specific hypomethylation of !75%–80% of the satellite repeats
concentrated in pericentromeric regions (Figure 4A). In ESCs,
only 16% of pericentromeric satellites were hypomethylated,
a figure in accord with the overall hypomethylation rates of
nonpericentromeric satellites in ESCs and sperm (Table S4A).
Prior studies of mouse germ cells using methylation-sensitive
restriction enzymes had noted selectively low methylation at

pericentromeric satellites, suggesting that this is a conserved
property (Yamagata et al., 2007).

Retroelement Methylation Patterns Are Determined
at the Subfamily Level
Proper methylation of retrotransposons is required for transcrip-
tional silencing of full-length and potentially active copies
(Bourc’his and Bestor, 2004; Goodier and Kazazian, 2008;Walsh
et al., 1998). However, specific retroelements can be active
or unmethylated in male germ cells (e.g., AluY and AluYa5)
(Schmid, 1991). Given our read lengths, we were able to address
the methylation state of virtually all repeat families and most
individual copies (see Table S4B).
Overall, retrotransposon copies that were full length or close

to consensus showed a slight bias toward hypomethylation
(Figures S3A and S3B). However, neither of these attributes
could explain the variation observed in retrotransposon
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See also Figure S3 and Table S4.
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methylation. Hypomethylated repeat copies did tend to have
greater CpG density, especially within the LTR and SVA (SINE-
R, VNTR, and Alu) classes (Figure 4C). For long interspersed
nuclear elements (LINEs), LTR elements, and terminal repeats,
HMRs concentrated within regulatory regions, which often
show higher CpG density than their coding regions (Figures
4D; Figures S3C and S3D; Tables S4D and S4G). Short inter-
spersed nuclear elements (SINEs) displayed a more uniform
hypomethylation (Figure S4E). Thus, similar mechanisms appear
to define HMRs in both repeat and nonrepeat portions of the
genome, as for most repeats, there is a strong association of
sperm HMRs with regulatory regions.
Among the LINEs, subfamilies of L1 were often hypomethy-

lated in both sperm and ESCs, and these trended strongly
toward the active groups (Tables S4E and S4H). L1PA subfam-
ilies are considered the most active in the human genome
(Khan et al., 2006), and the youngest of these (L1HS and
L1PA2) were among the very few subfamilies enriched for hypo-
methylation in ESCs relative to sperm. Specifically in sperm, we
noted hypomethylation of several other L1 families (e.g., L1PA4-
16 and L1M3).
Among LTR subfamilies, sperm HMRs were enriched for ERV

elements (Table S4C). Hypomethylated copies exist either as
part of full-length provirus-like elements or as solo LTRs, with
the greatest enrichment for LTRs belonging to ‘‘class I’’ elements
(e.g., LTR12; see Tables S4D and S4G). The few LTR subfamilies
with more hypomethylated copies in ESCs than sperm are all

recently derived, human-specific ERVs (e.g., LTR5 and 13 and
HERVH LTR7).
Sperm hypomethylation has been previously reported for

primate Alu elements (Kochanek et al., 1993; Liu et al., 1994),
and our data revealed several Alu subfamilies with differential
methylation in sperm and ESCs, e,g., the AluY subfamily (Tables
S4F and S4I). The more precisely defined AluYa5 (human) and
AluYd4 (chimp) showed extreme enrichment for hypomethyla-
tion in sperm.

Species-Specific Methylation of the SVA Element
SVA elements showed strong, species-specific differences in
methylation in human and chimp sperm (Figure 4A). SVAs are
composite elements consisting of hexameric repeats, an Alu-
like region, a VNTR (variable number of tandem repeats) region,
and a SINE-R (Shen et al., 1994). SVA elements were active in the
most recent common ancestor of chimp and human (Mills et al.,
2006), and multiple examples of neoinsertions suggest that
they still cause genomic rearrangements and disease in human
(Ostertag et al., 2003).
Among the SVAs, the youngest subfamilies, D–F (Wang et al.,

2005), showed the greatest frequency of hypomethylation in
human sperm (Figure 5A). Notably, these have a higher CpG
density than do older subfamilies. Three hundred and fifty-eight
SVA insertions can be assigned as high-confidence orthologs
between human and chimp, which remain highly similar in
sequence (see Extended Experimental Procedures). Methylation

TLR1

ESC

Chimp (2)

Chimp (1)

Human (2)

Human (1)

SVA

1

0

1

0

1

0

1

0

1

0

HMR

C
pG

 M
et

hy
la

tio
n

C

nu
m

be
r o

f c
op

ie
s

methylation level

36% below 0.5

4% below 0.5

358 human/chimp
orthologous SVAs

0.0 0.2 0.4 0.6 0.8 1.0

Chimp:

Human:

B

0

5

10

15

20

0

10

20

30

40

A

0%
10%
20%
30%
40%
50%
60%
70%
80%

Human sperm

Chimp sperm

Human ESC

FEDCBA
SVA Family

H
yp

om
et

hy
la

te
d 

co
pi

es Human
specific

Figure 5. Divergent Methylation of SVA Elements between Human and Chimp
(A) Proportion of hypomethylated SVA copies hypomethylated according to subfamily (A to F) for human sperm (red), chimp sperm (orange), and ESCs (blue).

(B) The distribution of average methylation levels is shown for 358 human (lower) and chimp (upper) SVAs forming high-confidence orthologous pairs.

(C) An SVA insertion shared by human and chimp but with differential methylation between species.

Cell 146, 1029–1041, September 16, 2011 ª2011 Elsevier Inc. 1035



through these element copies was distributed through the full
range from very low to very high average methylation, with two
modes near 20% and 80% methylation (Figure 5B). In human
sperm, 35% of orthologous SVAs had a methylation level below
50%. In sharp contrast, only 6% of copies fell below 50%meth-
ylation in chimp. We also annotated 921 SVA elements that
appear to represent new insertions occurring after the human-
chimp divergence (Mills et al., 2006). 852 (93%) of these were
hypomethylated in sperm compared with only 62 (7%) in ESCs
(Figure 5A). Considered together, our data indicate that SVA
elements have come under different degrees of epigenetic
control in the human and chimp lineages.

Many SVA insertions occur at or around promoters (Lander
et al., 2001; Chimpanzee Sequencing and Analysis Consortium,
2005), and these elements often have a CpG content high
enough to fit the traditional definition of a CpG island. Given their
properties, SVA elements have the potential to introduce differ-
ential species- and cell type-specific methylation near genes
that may be relevant for their regulation. Figure 5C exemplifies
such a situation where, in the case of TLR1, no HMR exists
near the promoter in chimp sperm or human ESCs, but one is
contributed in human sperm by a nearby SVA element. Although
sperm are largely transcriptionally silent, similar HMRs are
expected to exist in transcriptionally active developing germ
cells (data not shown).

Signatures of Selection Accompany Differential
Methylation between Primates
CGIs are the most well known evolutionary signature of verte-
brate DNA methylation. Their original definition required a CpG
o/e ratio of at least 0.6. Although the full set of HMRs in human
sperm and ESCs did not reach this empirical cut off, they did
pass the 0.4 benchmark used by Weber and colleagues (Fig-
ure 6A) (Weber et al., 2007). In general, promoter-associated
HMRs did surpass the 0.6 o/e cut off in both sperm and ESCs.

The differences in CpG density in nested and extended HMRs
(Figure 3B) imply distinct CpG depletion pressure in these
regions. Average CpG composition genome-wide is !0.2 o/e
but reaches !0.35 in extended HMRs and 0.68 in nested
HMRs. We analyzed sperm-specific and ESC-specific HMRs in
an attempt to decompose the CpG depletion pressure exerted
by the two methylomes. The ESC-specific HMRs reached only
0.35 o/e CpG composition, whereas the sperm-specific HMRs
reached a CpG composition of 0.5.

The life cycle of a germ cell can be separated into two com-
ponents. The first is the time from fertilization to the time that
somatically derived primordial germ cells (PGCs) reach the
genital ridge. Second is the time during which the PGC develops
into a mature germ cell, which contributes to the zygote. The
latter period generally spans from birth to the end of the repro-
ductive life of the animal. Our data suggest a model in which
methylation patterns present during both of these intervals shape
genomic CpG distributions but indicate a greater influence of
methylation profiles during germ cell maturation (Figure 6A).

We sought to measure the degree to which differential methyl-
ation could lead to CpG decay over the!6 million years of diver-
gent evolution separating human and chimp. We focused on
regions that qualified as HMRs in either chimp or human, as

these regions could have either lost methylation along one
lineage or gained methylation along the other. For a given
regional methylation level, we measured CpG decay as the
proportion of regions having lost more than 5% of inferred
ancestral CpGs (using gorilla as outgroup) and plotted the rela-
tionship between average methylation and decay rate (Fig-
ure 6B). The correlation between regional methylation level and
CpG decay was extremely strong for both human and chimp.
These results indicate that CpG decay is appreciable as a func-
tion ofmethylation even over relatively brief evolutionary periods.
This observation predicted that we might see signatures of

selective pressure preventing erosion of some CpGs that are
maintained despite germline methylation. To address this ques-
tion, we analyzed segregating sites at CpG dinucleotides using
data from the HapMap 3 project (CEU population; Altshuler
et al., 2010). CpGs were treated symmetrically, so each derived
allele at these sites can be classified as A, G, or T. As expected,
segregating sites with T as the derived allele represent the vast
majority.
We generated frequency spectra for each derived allele nucle-

otide with sites classified according to their methylation level in
sperm (Figure S4). Asmethylation levels increased, derived allele
frequencies shifted toward the low ends of the spectra (Figure 6C
and Figure S4). This shift was observed not only for derived TpG
alleles, which could be explained by an extreme bias in mutation
rate, but also for ApG and GpG derived alleles. One interpreta-
tion of these findings is that selection is on average weaker at
individual CpG sites with lower sperm methylation. Such an
interpretation is consistent with recent findings of Cohen et al.
(2011), who used sophisticated evolutionary models to posit
that selection for high CpG content is not a significant factor
contributing to maintenance of CGIs in the genome.
The strong connection between HMRs and gene promoters

suggests that the evolutionary gain or loss of HMRsmaybe asso-
ciatedwith changes in selective pressure on functional regulatory
regions. To investigate this possibility, we analyzed sequence
divergence in HMRs, focusing on those that are human or
chimp specific. Because these differentially methylated regions
will have different rates of C-to-T transitions, we counted
changes from the inferred ancestor only at non-CpG sites.
Genomic intervals differing by more than 1% relative to the
inferred ancestor were counted as having divergent sequences.
Only 10% of HMRs shared between human and chimp

showed divergence from the ancestral sequence at non-CpG
sites (Figure 6D). At chimp-specific HMRs, 15% of human
sequences and 19% of chimp sequences diverged from the
inferred ancestor. At human-specific HMRs, 22% of human
sequences diverged and 18% of chimp sequences diverged.
These results indicated that changes in methylation state
between human and chimp are associated with accelerated
non-CpG sequence divergence. Interestingly, in both cases the
species with the lower methylation state had a greater rate of
divergence, which is consistent with adaptation at novel regula-
tory regions as a driver for these changes.
We only identified 104 promoters that are hypomethylated in

human but not in chimp sperm and only 52 genes with differential
promoter methylation in the opposite orientation. Neither set
showed significant enrichment for any ontology category.
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However, analysis of genes with promoters within 10 kb of
an identified human-specific sperm HMR revealed a strong
enrichment for neuronal functions (see Table S5). The HTR3E

gene, a serotonin receptor subunit, is an example of such
a gene, whose promoter is selectively hypomethylated in human
sperm (Figure 6E).
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See also Figure S4 and Table S5.
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DISCUSSION

Sperm Methylation Patterns Are Conserved
Overall, sperm methylation patterns were highly similar in all our
samples. However, there were differences, even among individ-
uals. There has been much discussion regarding the role of
germline transmission of epigenetic marks in interindividual vari-
ation (Curley et al., 2011). Changes in epigenetic state could
allow flexibility in phenotype that could be reverted over short
time spans if a trait became disadvantageous. Erosion of CpG
content provides a mechanism to allow fixation of a positive trait
in the long run. Thus, changes in DNA methylation patterns
preceding changes in DNA sequence presents an attractive
model for at least one mode of adaptation. Although evaluating
such hypotheses will require many more datasets, the work pre-
sented here builds a firm foundation for such studies.

Most Promoters Have HMRs in Sperm
Global resetting of DNA methylation patterns happens twice
duringmammalian development: once during germ cell develop-
ment and once early in embryogenesis. Our data permit a
genome-scale analysis of these two events. Although high
genome-wide levels of methylation are re-established during
both waves of epigenetic remodeling, some regions are pro-
tected and establish HMR boundaries that appear relevant
even in fully differentiated somatic cells (Hodges et al., 2011).
A few promoters showed selective hypomethylation in sperm,
and these are strongly enriched for annotations related to germ
cell processes. Far fewer were selectively hypomethylated in
ESCs, and these were not enriched in any particular annotation
category. Promoters of genes retaining nucleosomes have
recently been shown to be hypomethylated in human sperm
(Hammoud et al., 2009), and both of these features have
been proposed to aid rapid activation during development. We
find that gene-associated hypomethylation in sperm can be
extended to more than 70% of all annotated genes in both
human and chimp. Among these we failed to find any enrichment
for regulators of early development. Instead, it seems that
promoter regions are generally identified and bookmarked in
sperm (see Zaidi et al., 2010).

Distinct Processes of HMR Formation Shape Germ Cell
and ESC Methylomes
Genome-wide, CpG sites seem to adopt a methylated state by
default (Edwards et al., 2010). This raises the problem of
precisely how regions that become HMRs are identified as
such. Regions of hypomethylation at promoters have been
correlated with regulatory DNA in various developmental
contexts (Illingworth et al., 2008; Laurent et al., 2010; Rollins
et al., 2006; Straussman et al., 2009). Based upon analysis of
histone marks and on the proposed binding properties of
DNMT3s (Dhayalan et al., 2010; Zhang et al., 2010), active tran-
scription and accompanying methylation of K4 on histone H3 are
thought to locally inhibit the methylation machinery. This could
enable large-scale recognition of promoter regions if widespread
transcription occurs during fetal germ cell development as
genomic methylation patters are erased and reset. It is also plau-
sible that specific protein/DNA complexes act locally even in the

absence of active transcription, to prevent access by de novo
methyltransferases. Proteins observed to function as boundary
elements, such as CTCF and Sp1 (reviewed in Gaszner and Fel-
senfeld, 2006), provide candidates for such functions.
Despite overall similarity in the sets of promoters they mark,

the HMRs observed at promoters in mature male germ cells
usually extend beyond the boundaries of HMRs in ESCs when
the two overlap. These wider HMRs do not seem to reflect less
precision in HMR boundaries, as methylation differences across
HMR boundaries are similar between sperm and ESCs. Because
this ‘‘nested’’ HMR phenomenon is observed at so many
promoters, it does not seem to be associated with the regulation
of any specific genes during germ cell development. We have
observed a clear increase in CpG content through the extended
portion of these HMRs relative to the genome-wide average,
suggesting that they have to some degree avoided pressure to
decay and hence are more than a transient state. The phenom-
enon that we observe is similar to the concept of CpG shores
(Doi et al., 2009). Perhaps the extended HMRs in germ cells
presage the extent of ‘‘shores’’ that correlate with changes in
gene expression.
Our data suggest that HMRs emerge from de novo methyla-

tion in male germ cells with sizes that differ from those that
emerge from somatic reprogramming. Thus, despite involve-
ment of similar methyltransferases and targeting of similar sets
of sequences, the determinants of HMR sizes likely differ
between the two reprogramming events. We have begun to
see hints to the mechanisms determining such differences by
comparing boundary-associated motifs in sperm and ESCs.

Transposon Hypomethylation in Sperm
It is thought that germ cell genomes must be closely guarded
from the activity of mobile genetic elements. Although repeats
were generally heavily methylated, we did find HMRs that over-
lapped repeats, and these were substantially more prevalent in
sperm. We and others have characterized a conserved, small
RNA-based silencing pathway, termed the piRNA pathway,
that is important for recognizing and silencing mobile elements
in germ cells (Aravin and Hannon, 2008). Our data indicate that
both individual element copies and broader element subfamilies
can evade piRNA-based silencing. Yet, both these element
copies and element families are often efficiently silenced during
preimplantation development. This suggests fundamental differ-
ences in the mechanisms that recognize repeats and mark them
for repression during the two major waves of epigenetic reprog-
ramming in mammals.
Examining patterns of repeat-associated HMRs is potentially

enlightening. HMRs are more prevalent in younger transposon
subfamilies, and the hypomethylated regions themselves tend
to overlap with promoters or regulatory regions, just as they do
in genes. Thus, it may be that active elements evade default
methylation by being initially recognized as gene-like as a conse-
quence of their binding transcription factors and possibly even
being transcribed. In these cases, we imagine that silencing of
most elements would be enforced by the piRNA pathway but
that some sites, such as those we observe herein, might still
escape. A number of examples can be cited in support of this
hypothesis. The 50 untranslated regions (UTRs) of the L1PA

1038 Cell 146, 1029–1041, September 16, 2011 ª2011 Elsevier Inc.



subfamilies are known to carry conserved YY1-binding sites,
whereas other recent subfamilies acquired RUNX3- and SRY-
binding motifs, all of which could promote transcription in devel-
oping germ cells (Khan et al., 2006; Lee et al., 2010). Similarly,
the sperm-enriched hypomethylated EVR9 LTR12 elements
have been shown to bind NF-Y, MZF1, and GATA-2 in erythroid
K562 cells (Yu et al., 2005). In each of these cases, HMRs within
these elements tend to encompass such potential transcription
factor-binding sites.
Similarly, Alu RNAs have been detected in human sperm (Ko-

chanek et al., 1993). This suggests a potential link between Alu
HMRs and the transcriptional activity of individual repeats,
though previous studies also reported that the binding of
SABP across Alu elements in sperm prevents their methylation
(Chesnokov and Schmid, 1995). Interestingly, Alu hypomethyla-
tion is not seen in female germ cells (Liu et al., 1994) and has
been proposed as one mediator of sex-specific imprints.

Centromeric Satellite Methylation
Satellites resist methylation in sperm when localized in clusters
at centromeres but are generally methylated when located
elsewhere even if they are clustered. This is consistent with
previous observations made in mouse through the use of meth-
ylation-sensitive enzymes (Yamagata et al., 2007). Recent
reports have shown that the transient transcriptional activation
of paternal pericentromeric satellites was essential for centro-
meric heterochromatin formation in two-cell zygotes (Probst
et al., 2010). This could indicate that hypomethylation of satellite
repeats in male germ cell marks paternal centromeres, in a
manner similar to imprinting, allowing their rapid transcriptional
activation upon fertilization.
In addition to a characteristic location within chromocenters

in sperm, centromeres display a distinct chromatin structure
differentiating them regionally during meiosis from other chro-
mosomal regions (reviewed by Dalal, 2009). This has prompted
suggestions that centromeric chromatin states might be critical
for proper meiosis, a hypothesis strongly supported by our
observation of selective hypomethylation of megabase domains
of centromeric satellite clusters. Prior studies have demon-
strated that derepression of satellite repeats in mitotic cells
creates segregation defects due to the formation of anaphase
bridges (Frescas et al., 2008). Low methylation levels have also
been correlated with the ability to bind cohesin complexes
(Parelho et al., 2008). Considered as a whole, these observations
suggest a model in which selective hypomethylation of centro-
meric satellites might be critical for accurate chromosome
segregation during meiosis.

Differential Repeat Methylation between Species
The most striking example of species-specific methylation to
emerge from our analysis involved the SVA elements. These
primate-specific composite elements contain a high density of
CpGs, remain active in human and chimp, and include many
copies that are clear orthologs between human and chimp (Ban-
tysh and Buzdin, 2009; Mills et al., 2006). Transduction of SVAs
has been implicated in human diseases and gene formation
(Damert et al., 2009; Ostertag et al., 2003). Our results indicate
that for a subset of SVA elements, the ability to methylate these

elements has either been acquired along the chimp lineage or
lost in the human lineage during the past 6 million years, despite
very little sequence change in these elements.

Mutual Canalization of the Genome and the Epigenome
It has been thought that CGIs arose as the result of protection
frommethylation-associated deamination over long evolutionary
periods. This is consistent with the observed correlation
between the location of CGIs and regions that lack methylation
in both germline and somatic cells. However, recent results
have pointed to functions for CGIs that may be associated with
their high CpG density (Thomson et al., 2010), with the plausible
interpretation that selection may be acting to preserve CpG
density in CGIs. We find that although most CGIs fall within
HMRs of sperm, most HMRs extend well beyond the annotated
CGIs, even using weaker CGI definitions. Thus, hypomethylated
regions in male germ cells do not appear to require a critical CpG
density to avoid methylation. Instead, our results are consistent
with CGIs arising as a consequence of different mutational pres-
sures rather than selection for CpG density.
In our datasets, signatures of deamination-induced CpG

depletion are clear. Yet we also observe CpG depletion from
many sperm and ESC HMRs. Several scenarios could resolve
this conundrum. For example, such regions may have been
methylated for substantial periods prior to assuming their unme-
thylated status. Thus, theymay have decayed at some time in the
past but are now stabilized by their hypomethylated status. Such
sites could also actually be methylated during a period of germ
cell development to which our current datasets are blind (e.g.,
in fetal gonocytes or female germ cells). In accord with this
explanation, we have observed distinct CpG densities associ-
ated with sperm-specific and ESC-specific HMRs. Moreover,
at HMRs where the only central, nested portion is hypomethy-
lated in ESCs, we observe greater CpG retention through regions
hypomethylated in both ESCs and sperm. Overall, we cannot
exclude a model in which selection acts to preserve critical
functions requiring specific local CpG densities. However, our
results lend additional support to recent conclusions of Cohen
et al. (2011), whose sophisticated evolutionary modeling showed
that CGIs can be explained without invoking selection on CpG
sites. Our results suggest a refinement of the hypo-deamination
model in which CpG retention is a function of the time spent
hypomethylated during each generation in germ cells and their
somatic precursors.
The detailed comparative analysis performed here has re-

vealed that, over the !6 million years since the divergence of
human and chimp, most patterns of DNA methylation remain
conserved in male germ cells. We have directly related evolu-
tionary changes in CpG methylation with loss of CpG dinucleo-
tides and have shown that even small differences in methylation
can lead to substantial loss of CpGs over relatively short evolu-
tionary periods. At the same time, there are many genomic
regions that are highly conserved in sequence yet show quite
different patterns of methylation. This could indicate an ability
of the genome and the epigenome to evolve independently.
However, we do find that the most drastic changes in methyla-
tion between human and chimp, where an HMR in one species
shows high levels of methylation in the other, are accompanied
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by an increased sequence divergence even at non-CpG dinucle-
otides. One interpretation is that most species-specific HMRs
have arisen newly along one lineage with these novel functional
elements showing signs of recent adaptation. On the other hand,
if this accelerated sequence change were more a reflection of
relaxed selective pressure, we would expect species-specific
HMRs to more frequently result from loss of functional elements
along the opposite lineage. Resolution of these questions can
only come from a broadening to many more species of the
studies reported herein.

EXPERIMENTAL PROCEDURES

Detailed methods can be found in the Extended Experimental Procedures.

Sperm Collection
Two anonymous human donors were used and data pooled after sequencing.

Two chimp donors were used. Semen was collected at the New Iberia

Research Center (New Liberia, LA) or the Southwest National Primate

Research Center (San Antonio, TX, USA). Coagulated semen was separated

from the liquid phase manually. Both human and chimp samples were diluted

(1:1) in HBS buffer (0.01M HEPES, ph 7.4; 150 mM NaCl) and passed though

a silica-based gradient, SpermFilter (Cryobiosystems), by centrifugation

(according to manufacturer’s instructions).

Library Preparation
DNA from!100 million cells was extracted and sheared to a size of!150–200

nt by sonication. Double-stranded DNA fragments were end repaired, A-tailed,

and ligated to methylated Illumina adaptors. Ligated fragments were bisulfite

converted using the EZ-DNA Methylation-Gold Kit (Zymo research). Following

PCR enrichment, fragments of 340 to 360 bp were size selected and

sequenced.

Computational Methods
Reads were mapped with RMAPBS (Smith et al., 2009). The accuracy of our

mapping method is discussed in the Extended Experimental Procedures.

Mapped reads were used to infer the methylation frequency at each CpG

dinucleotide. These frequencies, along with the number of reads contributing

to each frequency estimate, were supplied to a segmentation algorithm used

to identify HMRs. Orthologmapping between human and chimpwas donewith

the liftOver tool available through the UCSC Genome Browser. Sequence

conservation between human, chimp, and was measured based on MULTIZ

44-way vertebrate alignments, also available through the UCSC Genome

Browser. Complete details of all computational methods are provided in the

Extended Experimental Procedures.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Mapping Reads
Readsweremapped using the RMAPBSprogram.Our pipeline first removed adaptor sequence fromany reads, discarding any reads
with fewer than 40 high-quality bases after the adaptor was removed (reads were required to have at least 10 bases of overlap with
the adaptor for any part to be trimmed). Ends of paired-end reads were mapped separately, and because adaptors were ligated to
fragments prior to bisulfite treatment, the first end of each paired-end read wasmapped using T/Cwild-cards, and the second end
of each read was mapped allowing A/G wild-cards (for details, see Smith et al., 2009). We allowed up to 10 mismatches when
mapping reads, though the average was substantially lower, and low-quality positions in reads were never counted as a mismatch
(recall that at least 40 high-quality positions were required). For each read, the mapping location was determined to be the location
with the fewestmismatches. Reads for which two locations had theminimumnumber ofmismatcheswere considered tomap ambig-
uously and discarded.
In sequencing from the same library preparation, when multiple reads mapped to the exact same location, which we refer to as

duplicate reads, we assumed these represent the same original molecule (e.g., PCR products of the same fragment). We discarded
all but one read in the case of duplicates and retained the one with the fewest mismatches. This step of removing duplicates was only
done prior to combining data from different library preparations. For paired-end reads, after mapping ends separately, any pairs
found to overlap (indicating the original fragment had length less than 202 bases) were collapsed to prevent counting the same infor-
mation twice in later analysis.
The reference genomes used were the hg18 (human) and panTro2 (chimp) genomes downloaded from the UCSC Genome

Browser, and we excluded alternate haplotype sequences and ‘‘random’’ sequences for human. For chimp we excluded ‘‘random’’
sequences and the ‘‘unassembled’’ chromosome.

Accuracy of the Mapping Method
We conducted a simulation experiment to determine the portion of reads expected to be mapped to incorrect locations using the
mapping method described above. The simulation used parameters for the following values:

d Number of reads. We set this value to 1 M.
d Read length. We used a read length of 101 nt (corresponding to the majority of our sequencing runs).
d Methylation level. Each CpG in sampled reads was considered methylated with probability 0.7. Although this does not simulate

a specific methylation level for any given genomic CpG, the effect on mapping accuracy is the same.
d Bisulfite conversion. We set the simulation bisulfite conversion rate to 0.98, meaning that 98% of Cs that were not simulated as

methylated were converted to Ts.
d Sequencing errors. We set the maximum number of sequencing errors per reads to 10. Each simulated read had 10 positions

for errors sampled at random (though not uniformly; see below) with replacement. Errors were introduced after simulated bisul-
fite conversion.

d Error distribution. We used the error probabilities produced by the sequencing instrument in a 101 nt sequencing run to cali-
brate the probabilities for simulated errors occurring at any given position in the read. This results in a greater proportion of
errors at the 30 ends of simulated reads.

The simulation was done with human genome assembly hg18 (fromUCSCGenome Browser) excluding unassembled centromeric
regions. Simulated reads were mapped back to the genome using the procedure described above. Of the 1 million reads, 939,605
mapped back uniquely (94%). The portion mapping back to their location of origin was 935582 (99.6%). Because of sampling error
positions with replacement, alongwith the nonuniform distribution for error locations, the average number ofmismatches was 4.6 per
mapped read, substantially greater than the average number of mismatches in our data. From this we conclude that any error intro-
duced into downstream analysis by reads mapped to incorrect locations is sufficiently small to be negligible.

Association between Sets of Genomic Regions and Annotations
We stratified measures about CpG content and methylation in genomic regions according to their association with certain genomic
annotations as follows. First we defined these associations so that they partition the set of regions in question. In other words, our
definitions ensured that no HMRwould be associated with both a promoter and a repeat element, even though a repeat could clearly
exist inside the promoter of a gene. Our definitions were as follows:

d Promoter: Any region that overlaps the interval within 1 Kb of the transcription start site (TSS).
d Gene-proximal: Any nonpromoter region that overlaps the interval starting 10 Kb upstream of a TSS or 10 Kb downstream of

a transcription termination site.
d Intergenic repeat: Any nonpromoter, non-gene-proximal region that overlaps a repeat.
d Intergenic nonrepeat: Any nonpromoter, non-gene-proximal region that does not overlap a repeat.
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Repeat Definitions
We analyzed the following classes of repeats: LINE, SINE, LTR, Satellite, DNA, RNA, SVA, tRNA, low-complexity, and simple repeats.
This list includes most of the repeats annotated in the RepeatMasker track from the UCSC Genome Browser.

SVA Elements with Identifiable Orthologs
We used SVA annotations from UCSC Genome Browser, which are based on RepBase. These annotations are constructed by
matching repeat consensus sequences to the reference genome (hg18 and panTro2). SVA elements were retained in human if:

(1) The interval covered by the human copy lifts over to chimp
(2) The lift over target (in chimp) lifts back to human
(3) The target when lifting back from chimp to human is the same as the original interval

The same criteria were applied to chimp. This set of SVA elements was used in Figure 4A. This highly conservative criteria allowed
us to comparemethylation levels through copies of SVAs that existed in both species. The total number of these SVA copies included
358 pairs of high-confidence orthologs. The trends observed for this small, high-confidence set of elements is also reflected in the full
sets of elements for human and chimp.

Calculation of Basic Statistics
Discarding Low-Quality Reads
Reads were first checked for the presence of adaptor sequence, indicating that the sequenced fragment was too short and
sequencing proceeded into the adaptor at the other end of the fragment. We required at least a 10 base match starting from the
beginning of the adaptor, excluding Ns in reads and allowing up to 2 mismatches. When such an adaptor sequence was found in
a read, the read was trimmed after the beginning position of the match by replacing all subsequent bases (in the 30 direction) with
an N, which would not induce a mismatch during alignment. Any reads for which the final non-N base was at position 40 or less
was discarded. Finally, any read with fewer than 28 non-N bases through its entire length of the read was discarded.
Estimating CpG Methylation Levels
For CpG i, define mi as the number of reads showing methylation over position i, counting both strands. Define ui as the number of
reads showing lack of methylation over CpG i. Themethylation level is estimated asmi/(mi + ui), which is an estimate of the probability
that CpG i is methylated in a molecule sampled randomly from the cell population. Because CpGmethylation is symmetric,mi and ui
include observations associated with the cytosines on both strands for the i-th CpG.
Depth of Coverage and Bisulfite Conversion
All our measures of coverage are in terms of CpGs. Depth of coverage (fold coverage) is also measured only at CpGs and counts only
T or C nucleotides (A or G for the second end of each read). Both these numbers are reflective of numbers calculated using all assem-
bled bases. Bisulfite conversion ismeasured as the sumof the number of non-CpG cytosines that are converted to Ts (as indicated by
Ts in reads mapping over non-CpG cytosines in the genome), divided by the total number of non-CpG cytosines in uniquely mapped
reads.

Identifying Hypomethylated Regions
We identified hypomethylated regions (HMRs) using a stochastic segmentation to partition the methylome into alternating regions of
hypermethylation and hypomethylation, the latter appearing as valleys in visual depictions of methylation profiles. More specifically,
our method is based on a Hidden Markov Model (HMM; Durbin et al., 1999).

Our HMMconsists of two states (for high and lowmethylation). Tomodel the observationsmade at each individual CpGwe use the
following distributions. For a sequence of n CpGs in a contiguous chromosomal region, let pi denote the true probability that CpG i is
methylated in a molecule chosen at random from the sequenced sample. We assume that pi ! Beta(a, b). The BS-seq data provides
the numbers mi and ui of methylated and unmethylated reads, respectively, from which we estimate bpi = mi/(mi + ui). In calculating
likelihoods of observations from a particular state (i.e., the emission distribution), we use a Beta-Binomial distribution. That is, we
assume mi ! BetaBinom(a, b, mi + ui), and

Prðmija; b; mi + uiÞ=
!
mi + ui

mi

"
Bðmi +a; ui + bÞ=Bða; bÞ;

where B denotes the beta function. Critically, using this distribution allows us to model methylation probabilities accounting for the
amount of data at each CpG while keeping the variance independent of the mean.

To fit distribution parameters for numerical convenience we work directly with the estimates bpi. This is because of the time
required for maximum-likelihood computations directly with the Beta-Binomial. Instead, we estimate the maximum-likelihood
parameters as though they were for a Beta distribution, and therefore satisfy
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To compute ba and bb, we use an iterative procedure. The initial parameter values are calculated as
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This initialization corresponds roughly to the assumption of a + b = 1, as j(1) = 0. At each iteration, these estimates are updated
using the formulas
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The inverse of the digamma (j) function can be calculated very easily by noting that j$1(x) = ex + e, for 0 % e% 1 for any relevant
values of x. We use a bisection search around ex to evaluate j$1 and apply the iterative procedure until convergence criteria are
satisfied.
After training the HMM parameters, HMRs were identified by posterior decoding, and then each was scored according to the sum

of all ð1$ bpiÞ for eachCpG i in the HMR. Because a single CpGwith an very high number of reads and a very lowmethylation level can
theoretically be identified as a single-CpGHMRunder ourmodel, we included a procedure to identify only significant HMRs based on
their score. The CpGswere randomly permuted, and then the randompermutation was decoded to obtain an empirical distribution of
random HMR scores. We obtained p values from this random distribution, and then applied the method of Benjamini and Hochberg
(1995) to identify a cutoff for a false discovery rate (FDR) of 0.05. Finally, we retained as HMRs only those regions having a score more
extreme than the identified 0.05 FDR cutoff.

Measuring Sequence Divergence and CpG Decay
Wemeasured nucleotide-level conservation between human (hg18), chimp (panTro2), and gorilla (gorGor1) by using the MULTIZ 44-
way alignment available through the UCSCGenome Browser (Blanchette et al., 2004). This alignment is referenced on human. Align-
ments for genomic intervals were extracted by identifying the blocks containing the start and end points of the region in human. If one
of the two end-points was not found in the alignment, the region was determined not to be alignable. Positions in the alignments that
correspond to gaps were not counted. A sequence was called ‘‘under decay’’ if it lost more than 5% of its CpGs; we required the
inferred ancestral sequence to have at least 20 CpGs in order to make this determination.

Analysis of Nucleosome Retention Data
Nucleosome retention data was taken from Hammoud et al. (2009). Data from different donors for histone ChIP-seq experiments
were pooled and mapped to the hg18 assembly using RMAP. Domains of retained nucleosomes and the H3K4me3 and
H3K27me3 modifications were inferred using the RSEG algorithm (Song and Smith, 2011). This method identified 118318,
105150, and 193158 enriched domains for H3K4me3, H3K27me3, and retained histones, respectively.

Gene Ontology Analysis
To measure Gene Ontology category enrichment we used the web interface to the DAVID tool (Huang et al., 2008). For sperm and
ESC-specific hypomethylated promoters we required that the promoter ($1 kb to +1 kb) overlap an HMR in one cell type, have
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a methylation level at least 0.5 in the other cell type, and have a difference of at least 2-fold between the lower and higher. We used
RefSeq promoters downloaded from the UCSC Table Browser. To eliminate redundancy in the sets of Gene Ontology categories
identified as enriched we used the REVIGO software through the web interface (Ŝkunca et al., 2009).

Motif Enrichment Analysis
We used programs for the CREAD package to analyze the HMR sequences for identifying enriched TFBS motifs. We used both
libraries of known motifs from both TRANSFAC (Matys et al., 2006) and JASPAR (Sandelin et al., 2004). We measured enrichment
relative to a randomly selected set of 5000 promoters from among those that had low methylation levels in both sperm and ESCs.
To eliminate bias due to different CpG content, CpG dinucleotides were inserted (or deleted) randomly in the background sequence
set to bring the level of CpG up to that in the foreground. When randomly removing CpGs, they were mutated to TpG or CpA. The
enrichment was measured using the Binomial p value option in the motifclass program of CREAD.

Enrichment of Sequence Patterns at HMR Boundaries
Tomeasure enrichment of sequence patterns at boundaries of nested and extendedHMRs,we used only thoseHMRswhere a sperm
HMR fully contained exactly one ESCHMR.We only considered hexameric patterns that had aCpG dinucleotide at the center and no
other CpG dinucleotides in order to avoid bias introduced by the fact that CpG content will differ on either side of an HMR boundary
(which we already know). We determined the expected number of occurrences of a sequence pattern by counting the number of
genomic CpGs centered on that pattern, and dividing by the number of genomic CpGs.

Use of Individual Variation Data from HapMap
Individual variation data fromHapMap 3 (including phases II and III) were downloaded from http://hapmap.ncbi.nlm.nih.gov.We used
the CEU population, as this most closely matched the sperm donors, and the amount of data was almost as high as any of the other
10 populations. In identifying sites to use, we took only sites where the HapMap annotated ancestral allele was at the C of a CpG site
(on either strand), and we also required that at least 5 reads mapped over that CpG in our bisulfite sequencing data. We used Chi-
squared goodness-of-fit tests to determine that the frequency spectra differed between low and highmethylation levels for each type
of derived nucleotide (A, G, or T).
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Figure S1. Related to Figure 2
Transcription factor-binding site motif enrichment associated HMRs overlapping promoters in human sperm but not in ESCs. p values of enriched motifs were

calculated using a random subset of HMRs overlapping promoters in both cell types as a background.
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Figure S2. Related to Figure 3
(A) The AcgT index measured at CpG sites surrounding HMR boundaries in sperm (gray bars) and ESCs (black bars). Each data point corresponds to a CpG at

positions $5 to +5 relative to HMRs boundaries.

(B) Observed-to-expected ratio for occurrences of the AACGTT pattern at each of the CpG positions from$5 to +5 relative to the boundaries of nested ESC and

extended sperm HMRs.
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Figure S3. Related to Figure 4
(A) Size distribution of retrotransposons that are hypomethylated (black) andmethylated (white) in human sperm. For each bin, the frequency of element copies is

plotted.

(B) Histograms of Smith-Waterman scores of retro elements relative to their consensus sequences for hypomethylated and methylated copies. Separate

histograms are given for LINE, SINE, LTR, and SVA elements, and for methylation status in human sperm, chimp sperm, and human ESCs.

(C) Browser tracks showingmethylation (orange), read coverage (blue), and HMRs (blue bars) over a full-length LINE-1 element (L1PA7) hypomethylated in human

sperm (upper tracks) but not in ESCs (bottom tracks).

(D) Browser track (as displayed in A) showing sperm-specific hypomethylation of the ERV HERVS71 in human sperm.

(E) Average methylation levels across all AluY SINE elements in human sperm (red) and ESCs (blue). CpG density is also shown in green. Methylation levels and

CpG densities are also shown across flanking regions.
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Figure S4. Related to Figure 6
Allele frequency spectra for each possible derived allele nucleotide at CpG sites treated symmetrically with cytosine as derived allele. For each derived allele,

segregating sites were partitioned according to methylation levels in the intervals {[0.0, 0.2), [0.2, 0.4), . [0.8,1.0]}.
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Chapter 3: Discussion and Perspectives. 

 Understanding the link existing between small RNAs and chromatin 

remodeling during mammalian germ cell development is not an easy task as it 

involves both innate and adaptive components. The piRNA pathway integrates 

such adaptive signals, such as those from previously unseen transposon 

insertions, and innate information using sequences stored within piRNA clusters. 

Similar to antigen presentation and selection which discriminates self from non-

self during immune system development, epigenetic reprogramming transiently 

exposes the content of the genome to maturing PGCs allowing piRNAs and de 

novo methylation to bookmark each genome uniquely without the need for a 

priori information. This parallel with the immune system is far from being a new 

idea but, interestingly, it was proposed at different times in both fields 

independently (for example, on methylation see Yoder and Bestor 1997; about 

piRNAs see Aravin, Hannon and Brenecke 2007). The work presented here 

attempts to highlight how these pathways converge to establish a unique 

chromatin signature in germ cells at each generation.  

 Germ line inheritance of epigenetic states remains a central question. 

During male germ cell de novo methylation, regulatory elements with no apparent 

function in the germ line are isolated and transmitted in a hypomethylated state 

to the next generation. In some cases, these regulatory regions will only be used 

much later during post-fertilization development. One might view the 

transmission of these hypomethylated regions as a way the epigenome is set to 



	
   116	
  

stabilize the future interactions between regulatory factors and their target 

genomic sequence. This germ cell pre-patterning offers the possibility for 

phenotypic variation to be inherited over short timescales. In terms of 

evolutionary time scales, this work highlights: 1) the potential for independent 

genome and epigenome evolution, providing evidence for the positive selection 

of epigenetic variants during speciation, 2) DNA sequence changes that 

sometimes accompany changes in methylation provide an insight into how 

multiple layers of selection converge to fix an (epi)allele within a lineage. These 

genome/epigenome interactions can be paralleled with the concepts of both 

canalization and genetic assimilation (Conrad H. Waddington, 1959). In the 

former, the effects of genetic variation are dampened by the epigenetic 

landscape. In the latter, changes in the epigenetic landscape become 

permanently fixed in the genome. 

 The following sections will extend the discussion presented in the 

preceding manuscripts and also address points that could not be mentioned in 

the result section. In addition, several “follow up” experiments are discussed in 

the context of the most recent literature. 

	
   3.1 Towards an understanding of piRNA cluster biology  

 Using various tagged piRNA clusters as transgenes in both mouse and 

drosophila genomes, we were able to show that piRNA clusters can be 

programmed to produce new piRNAs upon ectopic sequence insertion, outside of 

their native genomic context. These results suggest that the cues tagging a 

transcript for piRNA processing lay within cluster sequences themselves. 
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Surprisingly, meiotic piRNA clusters in mouse, rat and human are positioned 

within syntenic portions of their genomes despite cluster sequences being 

extremely divergent (Aravin et al., 2006; Girard et al., 2006). This indicates that 

different selective pressures drive the evolution of piRNA cluster position and 

cluster sequences. It has been suggested that piRNA clusters targeting 

transposons act as graveyards keeping a trace of previous waves of transposon 

activity and trapping new ones throughout the animal’s lifespan. Our data, 

together with recent work by Kawaoka et al., (2011), strongly support this model.  

 The ability to ectopically program piRNA clusters could be of great use to 

control, for instance, gene expression during meiosis or to direct site specific 

chromatin changes if a cluster expressed during embryogenesis is targeted. In 

addition, our transgenic lines offer the opportunity to study the yet unknown, 

silencing capability of meiotic piRNAs. Some of these experiments are currently 

under investigation and are discussed in the following points. To address the 

silencing function of meiotic piRNAs, both GFP-tagged-cluster transgenic lines 

were crossed to a reporter mouse expressing a GFP tagged protein with 

appropriate patterns of expression (in this case a MILI-GFP tagged transgenic 

line was used from Aravin et al., 2008). Preliminary results from both GFP 

immuno-staining in testis cross-sections and sequencing of potential cleavage 

products by 5’RACE, revealed no significant differences between mice carrying 

the tagged cluster and the reporter, and mice bearing one or the other construct 

alone. These data could indicate that the co-expression of a meiotic piRNA and 

its cognate target sequence is not sufficient to trigger silencing or that meiotic 
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piRNAs don’t act on cellular mRNAs. Maybe the reduction in MIWI loading seen 

for GFP piRNAs, compared to endogenous piRNAs, cause these small RNAs to 

never fully engage in silencing. To address this question one could perform 

MIIWI-IPs in animals expressing the target GFP-reporter and investigate if the 

presence of a target changes MIWI loading rate with GFP piRNAs. Finally, one 

could rule out the implication of local chromatin environment in both silencing 

potential and MIWI loading by generating a knock-in tagged piRNA clusters in 

mouse ES cells.  

 Finally, tagging a transposon rich embryonic piRNA cluster was obviously 

one of our original goals and constructs were generated in parallel. 

Unfortunately, stable maintenance of transgenic animals revealed itself to be 

difficult past F1. Due to the nature of these regions (transposon enriched, large 

size, etc.), it is possible that genetic background and lineage history impact the 

stability and heritability of this transgene. One could re-inject these BACs and try 

to cross F1 males and females to different background (e.g. mixed 129/BL6). 

 

	
   3.2 Transposon de novo methylation in the male germ line: 

insight into the ecology of our genomes 

 Through the detailed analysis of both meiotic and mature germ cell 

methylomes, it became clear that systematic methylation of repeated sequences 

was far from being the rule. In fact, centromeric repeats, DNA transposons and 

retro-transposons can be transmitted in a hypomethylated state with some of 

these elements even found hypomethylated later in development (e.g. in ES 
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cells). However, studying transposon methylation status in piRNA deficient 

animals showed that, at each generation, recent transposition events can be 

specifically recognized and transcriptionally silenced in an adaptive fashion. This 

highlights the non-deleterious status of constitutively hypomethylated copies and 

suggests that those might have been functionalized by the genome in recent 

evolutionary history. Using the dynamic nature of transposons to rapidly evolve 

new adaptive function lay at the core of their original discovery in maize by 

Barbara McClintock in the 40’s and 50’s. Since then, the impact of transposons 

on gene regulation has been studied in various contexts, including embryonic 

development and imprinting (e.g. see Peaston et al., 2004; Chow et al., 2010; 

also reviewed by Goodier and Kazazian, 2008; Levin and Moran, 2011). 

Understanding the regulatory function of these hypomethylated transposons 

during development could uncover some of the fundamental mechanism by 

which the genome and the epigenome interact and evolve.  

 The means by which transposons naturally escape methylation still 

remains a topic of investigation and cannot be decoupled from understanding 

how any other hypomethylated domain is established and maintained during de 

novo methylation (discussed in section 3.3).  However, our study of piRNA-

targeted transposons in PGCs suggests a model where a first wave of de novo 

methylation is established by default. To further test this model, we are currently 

investigating the methylation status of PGCs during de novo methylation at 

~16.5dpc in a WT and MILI mutant context. This should help map the time 

course of methylation marks deposition as well as the genomic origins of this 
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default methylation. Profiling the transcriptome of MILI mutant PGCs at these 

stages could test whether piRNA-targeted transposons are indeed still 

transcriptionally active when MIWI2 localizes to the nucleus. In addition, 

performing strand specific transcriptome analysis on developing PGCs might 

uncover abundant antisense transcripts originating from these elements, 

explaining their preferential entry in the ping-pong amplification loop.  

 Finally, we proposed that the transient up-regulation of retro-transposon 

transcription, occurring in 13.5dpc PGCs, is necessary for adaptive piRNA 

targeting and proper epigenetic reprogramming. One could test this hypothesis, 

by introducing as a transgene a composite element containing the regulatory 

portion of a piRNA-targeted transposon fused to a reporter sequence. In this 

scenario, one could follow the kinetics of reporter transcriptional activation and 

silencing. Taking advantage of this unique genomic structure, one could also 

study the dynamics of polymerase recruitment and other chromatin marks 

preceeding and following piRNA targeting. A long-term project could also involve 

transiently culturing PGCs ex-vivo and trying to recapitulate de novo methylation 

in this context. For example, treating these cells with transcriptional inhibitors, 

such as Actinomycin D, should impact transposon silencing. However, previous 

attempts in deriving long-lived PGCs in culture have been challenging and we 

are still far from being able to recapitulate epigenetic reprogramming in-vitro. 
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   3.3 HMR establishment and evolution 

 Mature sperm and to some extent ES cells represent the outcome of the 

extensive wave of de novo methylation occurring during germ cell and pre-

implantation development, respectively.  In light of many recent high profiling 

studies of DNA methylation, it is now becoming obvious that the default state of a 

cytosine is to be methylated. Hypomethylated regions (HMRs) seem to result 

from local protection from de novo methyl-transferases rather than a differential 

targeting signal. This is cocordant with HMRs occurring at both distal and 

proximal regulatory elements in sperm and ES cells. The involvement of DNA 

occupancy by DNA binding factors in preventing DNA methylation has been 

implicated in the establishment of parental imprints (involving CTCF, Pant et al., 

2003; Schoenherr et al., 2003) and hypomethylation of a subset of CGIs (via SP1 

binding, Brandeis et al., 1994; Macleod et al., 1994; or VEZF1 binding, Dickson 

et al., 2010). More recently, Lienert and colleagues showed that, when inserted 

elsewhere in the genome, HMRs were still protected from de novo methylation 

and that this protection was dependent on transcription factor, or insulator, 

binding (Lienert et al., 2011). Consequently, both common and cell-type specific 

transcription factor networks could account for the differences seen in HMR 

distribution and structure between ES cells and germ cells. Finally, this mode of 

HMR establishment offers an attractive model to try to characterize what factors 

are driving the evolution of HMRs between chimp and human, and allows this 

hypothesis to be tested both in-vivo and in-silco.  
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  Decoupling the pleiotropic effects that the ablation of a given transcription 

factor could have on HMR protection and cell survival, or embryogenesis, is likely 

to prevent such model to be tested directly using mouse knock-outs (not to 

mention the redundant binding of other transcription factors). However, looking at 

transcription factor expression during de novo methylation in PGCs should help 

predict the HMR landscape. In addition, expanding the studies mentioned above, 

one could monitor the appearance of new germ cell HMRs forcing the ectopic 

expression of a transcription factor in PGCs (using a tissue specific or a species 

specific transcription factor). These ideas are currently being tested, for example, 

by sorting and sequencing germ cells from a previously published mouse model 

carrying a substantial portion of a human chromosome (e.g. TC1 mouse model 

for Down Syndrome, carrying an autonomously segregating fraction of human 

chromosome 21, O’Doherty et al., 2005). It is therefore expected to express 

human transcription factors as well as respond to endogenous mouse specific 

factors.  

 Interestingly, many HMRs that are established in sperm correspond to 

regulatory regions (including many promoters) with no obvious function during 

germ cell development. These have been interpreted, by us and others 

(Hammoud et al., 2009), as a form of pre-pattering necessary for early zygote 

development. The scenario mentioned above would have to account for the 

binding of these factors during PGC de novo methylation without them exerting 

their full effect on genome organization or transcription. These observations are 

calling for a deeper investigation of higher order chromatin structures that could 
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function to prevent these binding events from being deleterious to germ cells 

(histone modifications being one of them).  

 The comparative analysis performed on human and chimp sperm 

methylomes revealed that DNA sequence alone (including CpG density) was not 

sufficient to explain HMR evolution. However, it also showed that DNA sequence 

and methylation couldn’t be fully separated; as signatures of DNA sequence 

divergence accompany HMR gain and losses. One can speculate about the 

relative selective pressure that the gain or loss of a binding site or a chromatin 

interacting factor might have on the HMR landscape of a lineage. But a question 

would remain: are DNA sequences changes helping to stabilize a new 

methylation state (e.g. becoming better binding sites) or are they a pre-requisite 

for de novo acquisition of an HMR within a lineage? The answer is probably the 

combination of both, with the genome and the epigenome “canalizing” each other 

towards the most stable state. Only the study of an out-group would deconvolute 

the relative contribution of both processes. Towards this goal, we are currently 

sequencing Gorilla and Bonobo sperm methylomes. The comparison between 

Bonobo and Chimpanzee will position the Human lineage as an out-group, 

whereas Gorilla would the out-group of all three species. In this context, we will 

characterize lineage specific DMRs and quantify the genomic changes preceding 

or following both ancestral and derived HMRs.   
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SUMMARY

DNA methylation has been implicated as an epige-
netic component of mechanisms that stabilize cell-
fate decisions. Here, we have characterized the
methylomes of human female hematopoietic stem/
progenitor cells (HSPCs) and mature cells from the
myeloid and lymphoid lineages. Hypomethylated
regions (HMRs) associated with lineage-specific
genes were often methylated in the opposing
lineage. In HSPCs, these sites tended to show inter-
mediate, complex patterns that resolve to uniformity
upon differentiation, by increased or decreased
methylation. Promoter HMRs shared across diverse
cell types typically display a constitutive core that
expands and contracts in a lineage-specific manner
to fine-tune the expression of associated genes.
Many newly identified intergenic HMRs, both consti-
tutive and lineage specific, were enriched for factor
binding sites with an implied role in genome organi-
zation and regulation of gene expression, respec-
tively. Overall, our studies represent an important
reference data set and provide insights into direc-
tional changes in DNA methylation as cells adopt
terminal fates.

INTRODUCTION

Development and tissue homeostasis rely on the balance

between faithful stem-cell self-renewal and the ordered, sequen-

tial execution of programs essential for lineage commitment.

Under normal circumstances, commitment is thought to be

unidirectional with repressive epigenetic marks stabilizing loss

of plasticity (De Carvalho et al., 2010). However, certain differen-

tiatedmammalian cells can be reverted to an induced pluripotent

state (iPSCs) through exogenous transduction of specific tran-

scription factors (Takahashi and Yamanaka, 2006). Yet, even

these reprogrammed cells retain a residual ‘‘memory’’ of their
former fate, displaying DNA methylation signatures specific to

their tissue of origin (Kim et al., 2010).

DNA methylation is critical for the self-renewal and normal

differentiation of somatic stem cells. For example, within the

hematopoietic compartment, impaired DNA methyltransferase

function disrupts stem cell maintenance (Maunakea et al., 2010;

Trowbridge and Orkin, 2010), and loss of DNMT1 leads to defec-

tive differentiation and unbalanced commitment to the myeloid

and lymphoid lineages (Bröske et al., 2009; Trowbridge et al.,

2009). These studies highlight thewell-characterized hematopoi-

etic compartment as a context in which to study the link between

DNA methylation patterns and cell-fate specification.

Toward this end, DNA methylation profiles of murine hemato-

poietic progenitors through early stages of lineage commitment

were recently compared with CHARM (Irizarry et al., 2008; Ji

et al., 2010), which profiles a predefined set of CpG-dense inter-

vals. Overall, CHARM revealed that early lymphopoeisis involves

more global acquisition of DNA methylation than myelopoiesis

and that DNMT1 inhibition skews progenitors toward the

myeloid state. These data support earlier reports that DNMT1

hypomorphic hematopoietic stem and progenitor cells (HSPCs)

show reduced lymphoid differentiation potential (Bröske et al.,

2009). Importantly, regions identified to have differential methyl-

ation through sequential stages of differentiation most often did

not correspond to CpG islands (CGIs) but instead lay adjacent in

areas referred to as ‘‘shores.’’

Higher-resolution maps of DNA methylation with shotgun

bisulfite sequencing have mainly been produced from cultured

cells (Laurent et al., 2010; Lister et al., 2009) or mixed cell types

(Li et al., 2010). Several unexpected findings emerged from these

early studies including significant frequencies of cytosinesmeth-

ylated in a non-CpG context in human embryonic stem cells

(ESCs), a characteristic previously thought to be restricted to

plants. Other genome-wide studies have implicated DNA meth-

ylation in the regulation of alternative promoters and even RNA

splicing patterns (Maunakea et al., 2010). These observations

emphasize the need for complete, unbiased, and quantitative

assessment of cytosine methylation and the establishment of

referencemethylomes from purified populations of primary cells.

Here, we performed whole-genome shotgun bisulfite se-

quencing on female human HSPCs, B cells, and neutrophils to
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Figure 1. Features of Methylomes in Hematopoietic Cells

(A and B) Genome browser tracks depict methylation profiles across a lymphoid (A) and myeloid (B) specific locus in blood cells, ESCs, and sperm. Methylation

frequencies, ranging between 0 and 1, of unique reads covering individual CpG sites are shown in gray with identified hypomethylated regions (HMRs) indicated

Molecular Cell

Human Hematopoietic Methylomes

18 Molecular Cell 44, 17–28, October 7, 2011 ª2011 Elsevier Inc.



Molecular Cell

Human Hematopoietic Methylomes
examine the relationships between themethylation states ofmul-

tipotent blood-forming stem cells and two divergent derived line-

ages. This enabled us to probe directional changes in DNAmeth-

ylation associated with cell-fate specification. Comparison of the

three referencemethylomes revealed anumber of important prin-

ciples of epigenetic regulation, in addition to providing insights

into the dynamics of epigenetic changes during development.

RESULTS AND DISCUSSION

Lineage-Specific Hypomethylated Regions Extend
beyond Annotated CGIs
We sought to generate reference, single nucleotide-resolution

methylation profiles for several nodes within the human hemato-

poietic lineage using whole-genome bisulfite sequencing (see

the Experimental Procedures). Therefore, we examined CD34+

CD38–Lin– HSPCs, CD19+ B cells, and granulocytic neutrophils

fromperipheral blood of pooled human female donors. These cell

types represent one of the earliest self-renewing, multipotent

populations, and two derived, mature cell types from the

lymphoid and myeloid lineages, respectively. For comparison,

we generated methylomes from HSPCs from male umbilical

cord blood (CD133+CD34+CD38–Lin–) and compared to data

sets created fromprimate sperm (Molaro et al., 2011) and embry-

onic stem cells (Laurent et al., 2010). In all cases, we achieved

a median of 103 independent sequence coverage, sufficient to

interrogate 96% of genomic CpG sites (Figure S1A and Table

S1A available online). While this level of coverage is still subject

to sampling error at individual sites (see discussion in Hodges

et al., 2009), features such as transitions from high to low levels

of methylation can still be identified with a resolution of the

boundaries to within a few CpG sites.

In the genome as a whole, CpG dinucleotides have a strong

tendency to bemethylated (70%–80%) (Lister et al., 2009). Coin-

cidently, CpGs are also underrepresented, perhaps because

of their vulnerability to methylation-induced deamination and

consequent loss over evolutionary time (Cooper and Krawczak,

1989; Gardiner-Garden and Frommer, 1987). Areas of increased

CpG density, called CpG islands (CGIs) have a lower probability

of being methylated and these or their adjacent regions (CGI

shores) have been implicated as potential regulatory domains

(Gardiner-Garden and Frommer, 1987; Irizarry et al., 2009a;

Wu et al., 2010). Though CGIs have been defined computation-

ally (Irizarry et al., 2009b), we developed an algorithm to identify

hypomethylated regions (HMRs) empirically in bisulfite

sequencing data sets, based on their methylation state alone

(see Figures 1A and 1B).

Between 50,000 and 60,000 HMRs were identified from each

hematopoietic profile (Table S1B), with neutrophils displaying
by orange bars. UCSC predicted/annotated CpG islands (green bars) and HMM-b

(top) indicate base position along the chromosome.

(C) Venn diagrams depict the intersection between HMRs identified in blood as w

The size of the circles and the proportion of circle overlap reflect the relative numb

HMRs.

(D) Dendrogram clusters cell-types according to their pearson correlations of in

lapping, across all tissues examined.

See also Figures S1 and S2 and Table S1.
the greatest number (�60,000), followed by HSPCs (�55,000)
and B lymphocytes (�53,000) (Figure 1C). Interestingly, this

was lower than the number in male germ cells (�80,000),
perhaps because of the extensive repeat hypomethylation

observed in sperm as compared to somatic cells.

Certainly, many annotated CGIs were contained within our set

of functionally defined HMRs; however, CGIs appeared to fall

short as a benchmark by which to define all HMRs with probable

regulatory significance. Annotated CGIs accounted for fewer

than half of the HMRs identified in any cell type (Figure 1C and

Figure S1B). Moreover, many HMRs whose biological relevance

is supported by lineage-specific methylation failed to meet the

conservative CGI criteria.

Sequence tracks showing methylation levels for a lymphoid-

(Figure 1A) or myeloid- (Figure 1B) specific gene illustrate several

characteristics of HMRs. The locus for the B cell marker CD19

displays a broad, cell type-specific HMR at its transcriptional start

site (TSS), which does not overlap a predicted CGI. In contrast,

‘‘tidal’’ methylation at CGI shores characterizes several HMRs

surrounding the myeloid transcription factor, CEBPA. The cores

of these HMRs are shared among blood forming cells, but their

widths differ, with neutrophils demonstrating the most expansive

hypomethylation. In fact, sharedHMRsoftenshowvariablewidths,

suggesting that the boundaries of HMRs fluctuate in a cell type-

dependent manner. Due to the dynamic behavior of the HMRs,

we were motivated to seek further validation of these characteris-

tics as biological phenomena, rather than as technical artifacts of

themethodology. Therefore, we focused on an independent data-

set derived from chimpanzee. We reasoned that genic relation-

ships to methylation dynamics should be preserved in closely

related species. Indeed, HMRs show significant overlap between

human and chimp, with chimp HMRs following very similar

patterns of boundary fluctuations (Table S1C and Figure S2).

While a high proportion of identified HMRs (R70%) inter-

sected all blood cell types studied, �10-fold more HMRs were

shared only between HSPCs and neutrophils than exclusively

between HSPCs and B cells (Figure 1C). In contrast, �45%–

50% of HMRs identified in blood cells overlap sperm HMRs.

Interestingly, the diversity of differentially expressed genes

within the hematopoietic lineage has been reported to be similar

to the complexity observed across human tissues (Novershtern

et al., 2011). However, at the epigenetic level, HMR profiles

easily distinguished closely related cell types (blood forming)

from distantly related ones (Figure 1D), indicating that patterns

of DNA methylation are strongly correlated within a lineage.

HMR Expansion Correlates with Differential Expression
Differentially methylated regions (DMRs) at promoters have been

ascribed regulatory roles, with differential methylation being
asedCpG islands (blue bars) (Irizarry et al., 2009b) are also displayed. Numbers

ell as the overlap between blood-derived cells, sperm, and UCSC CpG islands.

er of HMRs identified as well as the degree of intersection between each set of

dividual CpG methylation levels within HMRs, both overlapping and nonover-
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Figure 2. Promoter Differential Methylation and Gene Expression

(A) Average methylation levels across promoters of genes having a DMR within 4 kb of the TSS are shown. Two separate graphs display neutrophil hypo-

methylated promoter DMRs relative to B cells (N < B, top) and B cell hypomethylated promoter DMRs relative to neutrophils (B < N, bottom). The number of DMRs

covering nonoverlapping 50 bp windows across the promoter is also shown.

(B) Correlations between differential methylation and differential expression between neutrophils and B cells as a function of position relative to the TSS are

shown. The correlations were obtained by comparing log odds of differential methylation and log of RPKM. The probability for differential methylation at a given

CpG is described in the Supplemental Experimental Procedures. The gray area displays the smoothed 95% confidence interval. The closed circles indicate

correlation coefficients that are significantly different from 0.
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linked to tissue-specific expression. Yet, HSPCs, B cells, and

neutrophils mainly share promoter-associated HMRs at differen-

tially expressed genes. Prior studies have associated changes in

gene expression with changes in methylation states adjacent to

constitutively hypomethylated CGIs, in so-called ‘‘CGI shores’’

(Irizarry et al., 2009a). Therefore, we examined correlations

between the geography of promoter HMRs and changes in

lineage-specific expression, focusing on a comparison of B cells

and neutrophils.

Differential methylation often manifested as a broadening of

TSS-associated HMRs in a specific lineage (Table S2A). The

changes were asymmetric, with the greatest loss of methylation

on the gene-ward side (Wilcoxon ranks sum: p < 5e-60, both

DMR sets). Globally, these HMRs were broadest in sperm and

constricted in ESCs (Figure 2A) (see also Molaro et al., 2011),

widening again in a tissue-specific fashion. Thus, our analyses

provide global support for ‘‘tidal’’ methylation changes at CGI

shores.

For deeper analysis of these tidal patterns, we measured

differential methylation in 50 base windows surrounding TSSs

(Figure 2A). Moving 30 toward B cell hypomethylated promoters

(B < N), coverage by DMRs peaked between 1.5 Kbp and 2 Kbp

downstreamof the TSS. A slightly different pattern was observed

for neutrophil hypomethylated promoters (N < B), with DMRs

rising to a peak directly at the TSS. In both data sets, the greatest

concentration of differential methylation occurred �1–2 Kb

downstream of the TSS, consistent with overall methylation

being selectively reduced in the transcribed regions of genes

with tissue-specific DMRs.

We next askedwhether any element of DMR geography corre-

lated with tissue-specific gene expression. We carried out

RNA-seq and computed RPKM values for each cell type (Table

S2B). We then computed the correlation between differential

expression and differential methylation in 100 base windows

surrounding the TSS (see the Experimental Procedures). This

correlation was strongly asymmetric, peaking �1,000 bases

downstream of the TSS. Notably, this corresponded with the

expansion of HMRs that contributes to tissue-specific promoter

hypomethylation (Figure 2B).

CD22 provides a specific example of the general phenomena

that we observed (Figure 2C). CD22 is expressed in B cells, but

not neutrophils. In each cell type its TSS is covered by an HMR,

which in HSPCs and neutrophils extends �500 bp and centered

on the TSS. In B cells, the HMR begins at the same position

upstream of the CD22 TSS, but extends more than 4,300 bp

into the transcribed region.

The properties noted for differentially expressed genes were

extensible to the entire set of REFSEQ genes. Though hypome-

thylation was largely symmetric around REFSEQ TSSs, a strong

correlation could be seen between RPKM and lower methylation

levels peaking �1.0 Kb downstream of the TSS (Figure 2D). This
(C) The browser image shows gene expression for CD22 in the form of mapped

Figure 1A) along with HMRs.

(D) Correlations betweenmethylation levels and expression levels represented by

coefficients were averaged in 100 bp bins across regions between 4 kb upstream

See also Figure S3 and Table S2.
was true of all cell types examined, though the magnitude of the

effect was lowest in HSPCs.

Our results are in accord with a recent study that revealed

a unique chromatin signature surrounding the TSS of tissue-

specific loci. Spreading of H3K4me2 into the 50 untranslated

region (UTR) was observed at tissue-specific genes, whereas it

remained as a discrete peak at the TSS of ubiquitously ex-

pressed genes (Pekowska et al., 2010). To look for similar rela-

tionships between histone profiles and expanding promoter

HMRs, we analyzed chromatin immunoprecipitation sequencing

(ChIP-seq) data for H3K4me3, H3K4me1, and H3K27ac enrich-

ment across eight different ENCODE cell lines (Bernstein et al.,

2005; Birney et al., 2007). The ENCODE cell lines are derived

from a variety of tissues and include GM12878, which is a lym-

phoblastoid cell line. First, we observe a strong enrichment for

these histone marks at B cell promoters containing expanded

HMRs. In addition, the greatest difference between the lymphoid

cell line and the other cell lines appears upstream and down-

stream of the TSS compared to all promoters. Interestingly, the

H3K4me3 differential enrichment is biased on the 30 side of the

TSS (Figure 3).

It has also been noted that for a subset of CGI-associated

promoters, high CpG density extends downstream of the TSS

and hypomethylation of the extended region is required for

RNA polymerase II binding (Appanah et al., 2007). In fact, anal-

ysis of existing lymphoid ChIP-seq data of RNA polymerase II

revealed a 33 enrichment in B cell expanded HMR regions

compared to neutrophil-expanded regions (Table S2C) (Barski

et al., 2010). This suggests that while core CGI promoters remain

hypomethylated by default, expansion downstream of the TSS

may be important for productive transcription.

Features of Shared and Lineage-Specific
Intergenic HMRs
While REFSEQ gene promoters were often associated with an

HMR, the majority of HMRs were not found at promoters (Fig-

ure S3). Nearly half of all identified HMRs were located in gene

bodies. An additional quarter lay >10 Kb from the nearest anno-

tated genes, and we defined this class as ‘‘intergenic HMRs.’’

Like promoter-associated HMRs, intergenic HMRs showed

sequence conservation, suggesting that these are functional

elements (Figure 4A). In fact, genome-wide comparisons of

methylation states of orthologous sites in the corresponding

cell types of chimpanzee supported concomitant conservation

of constitutive and cell type-specific patterns of intergenic meth-

ylation (data not shown). Intergenic HMRs tended to be narrower

than those found at promoters and were less likely to be shared

among cell types. When they were shared, they displayed

patterns of expansion and contraction very similar to what was

observed for promoter-associated regions (Figure 4A), with their

overall extent being widest in sperm.
read profiles from RNA-seq data. Methylation profiles are also shown (as in

RPKMvalues are shown as a function of position relative to the TSS. Correlation

and downstream of the TSS. Y axis labels were reversed.
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Figure 3. Histone Enrichment across Expanded HMRs

Read count enrichment ratios per 25 bp bins located 10 kb upstream and 10 kb

downstream of the TSS were calculated for promoters overlapping HMRs

included in Figure 2A for B cell HMRs (red lines) or neutrophil HMRs (blue lines)

for H3K4me3 (A), H3K4me1 (B), and H3K27ac (C) by comparison of read

counts across all REFSEQ annotated promoters. Data were obtained from

ENCODE and include histone profiles for eight different cell lines. The lym-

phoblastoid cell line GM12878 is highlighted in darker shaded colors.
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An early, pervasive view of DNA methylation proposed that

germ cell profiles should represent a default state of hypomethy-

lation in all potential regulatory regions (Gardiner-Garden and

Frommer, 1987). This was based on the idea that hypomethyla-

tion in germ cells would prevent CpG erosion over evolutionary

time spans. The high number of nonoverlapping HMRs in the

adult somatic cell strongly argues against both of these notions

(Figure 1C). However, the width of both genic and intergenic

HMRs in sperm compared to somatic cells suggests that germ

cells can define the ultimate boundaries of somatic HMRs.

Guided by the strong general enrichment for potential tran-

scription factor binding sites in all HMRs (see Table 1), we

searched for motifs in intergenic DMRs specific to neutrophils

or B cells (Figure 4B). The strongest scoring motifs in the neutro-

phil-specific intergenic DMRs included those associated with
22 Molecular Cell 44, 17–28, October 7, 2011 ª2011 Elsevier Inc.
C/EBP and ETS families, along with HLF and STAT motifs. This

striking enrichment for C/EBP and ETS family binding sites is

consistent with the functions of ETS factor PU.1 and several

C/EBP factors as multipotent progenitors commit to become

myeloblasts, which ultimately give rise to neutrophils (Nerlov

andGraf, 1998). Because the ETS family contains a large number

of transcription factors, we sought experimental support for their

binding at HMRs. Therefore we probed existing ChIP-seq data of

PU.1 from human HSPCs (Novershtern et al., 2011). We find

numerous examples PU.1 enrichment in HMRs, several of which

are provided in Figure S4. In contrast, the strongest scoring

motifs in B cell-specific intergenic DMRs included the EBFmotif,

POU family motifs, E-boxes, a PAX motif, and those associated

with NFkB and IRF. The simultaneous enrichment of EBF, E-box,

and PAX motifs is consistent with the interacting roles of EBF,

E2A (which binds E-boxes) and PAX5 as common lymphoid

progenitors progress along the B cell lineage (Lin et al., 2010;

Medina et al., 2004; Sigvardsson et al., 2002). The enrichment

of NFkB and IRF motifs is consistent with the known roles for

these factors in both activation and differentiation of lympho-

cytes (Hayden et al., 2006). Considered together, these analyses

strongly suggest that at least a subset of intergenic DMRs can

be engaged by tissue-specific transcription factors, leading to

changes in chromatin organization that might have long-

distance impacts on annotated genes or more local impacts on

as yet unidentified ncRNAs. In fact, we do find evidence of tran-

scriptional activity surrounding intergenic DMRs in our RNA-seq

data sets, but we have not yet pursued this observation further

(data not shown). Irrespective of the model, our results strongly

support the biological relevance of tissue-specific intergenic

HMRs.

We also probed the possible functions of shared intergenic

HMRs. Prior studies had experimentally identified binding sites

for the insulator protein, CTCF, by chromatin immunoprecipita-

tion (Kim et al., 2007). These sites are strongly enriched (155-

fold) in nonrepeat intergenic HMRs that are common to all cell

types examined. In fact, �90% (>500) of the nonrepeat, shared

intergenic HMRs contain a CTCF site. This correlates with the

known propensity of CTCF to bind unmethylated regions and

suggests that many of the shared intergenic HMRs that we

detect may function in the structural organization of chromo-

somes and nuclear domains.

Myeloid-Biased, Poised Methylation States
Characterize HSPC Methylomes
For loci whose differential expression characterizes the lym-

phoid and myeloid lineages, we set out with a simple general

expectation. Low methylation levels in stem and progenitor cells

would be permissive for expression in either lineage, and an

accumulation of methylation during differentiation would corre-

late with silencing of loci in the lineage in which they are not

expressed.

To test this hypothesis, we selected lineage-specific HMRs

arising from a comparison of neutrophils and B cells and exam-

ined their status in HSPCs. Both at the level of individual CpGs

(Figure 5A) and at the level of overall methylation (Figure 5B),

HSPCs showed intermediate methylation states at sites where

B cells and neutrophils show opposing methylation patterns.



Figure 4. Features of Intergenic HMRs and DMRs

(A) Composite methylation profiles are plotted for individual CpG sites within HMRs. The x axes of the plots indicate genomic position centered on themidpoint of

HMRs in the reference cell type labeled for each plot. Methylation profiles are given for the reference cell and sperm, separately for regions where the reference
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This suggests that differentiation involves both gains and losses

of DNA methylation at lineage-specific HMRs, an observation

consistent with recent studies using other methodologies (At-

tema et al., 2007; Claus et al., 2005; Ji et al., 2010).

At the level of individual CpGs, HSPC patterns correlated

better with those seen in neutrophils at myeloid HMRs than

they did with B cell methylation patterns at nonoverlapping

lymphoid HMRs (Figure 5A). Moreover, the median methylation

level for B cells at B cell DMRs was more than twice as high as

the median level at neutrophil specific DMRs (Figure 5B). This

finding, along with the fact that B cells exhibited fewer total

HMRs than either HSPCs or neutrophils, supported an earlier

observation that lymphoid commitment in mice involves globally

increased DNA methylation (Ji et al., 2010). As a whole, our

results indicate that the HSPC methylome has more myeloid

than lymphoid character. Many fewer DMRs were identified in

comparisons of HSPC and neutrophil methylation profiles than

of HSPCs and B cells (Figure S3). Such a myeloid bias is also

consistent with prior studies, which point to the myeloid lineage

as a default differentiation path for HSPCs (Månsson et al.,

2007).

Regions that exhibit intermediate methylation occurred in two

forms. The well-documented mode is allelic methylation that is

characteristic of dosage compensated and imprinted genes.

We detected such loci abundantly in our data sets, and these

encompassed both known monoallelic genes and new candi-

dates for monoallelic expression (data not shown). More

prevalent were regions of intermediate methylation wherein

each chromosome displayed different patterns of CpGmodifica-

tion with little correlation between the states of adjacent CpGs.

Partially methylated regions were previously noted in ESCs

(Lister et al., 2009), though they did not investigate whether these

presented allelic versus stochastic and complex patterns.

To discriminate between allelic and complex patterns, we per-

formed targeted conventional bisulfite PCR sequencing of indi-

vidual clones from HSPCs across a selected set of myeloid loci

and a known locus with allele-specific methylation (Figure 5C,

Figure S5, and Table S3). This allowed detailed analysis of adja-

cent CpG methylation on individual molecules. As expected, for

the allelic XIST locus on chromosome X, we observed uniform

methylation profiles of adjacent CpG sites within individual

clones representing two states that contributed nearly equally

to the partial methylation observed. In contrast, the myeloid

AZU1 locus exemplified a stochastic pattern of methylation in

HSPC. We cannot determine whether the complex states that

we observed were in dynamic equilibrium or whether they were

fixed in each chromosome that contributed to our analysis.

While the mechanisms underlying complex, partial methyla-

tion patterns in HSPCs are unclear, they are reminiscent of biva-

lent promoters that contain both repressive and active histone

marks (Bernstein et al., 2006). Both during embryonic develop-
cell HMR spans a TSS and intergenic region (>10 Kbp from any RefSeq transcrip

PhyloP probabilities derived from 44-way multiple alignments are plotted separa

(B) Transcription factor binding site motifs enriched in DMRs between neutrophils

for N < B and B < N DMRs, based on the motifclass tool in the CREAD packag

calculations.

See also Figures S3 and S4.
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ment and during stem cell differentiation, such poised promoters

are converted to a determinate chromatin state by shifting the

balance of histone marks. This has already been noted for

lineage-specific genes in HSPCs (Attema et al., 2007), and our

data indicate that this well-established property of chromatin

may also extend to DNA methylation patterns.

Alternative explanations for our results must also be consid-

ered. Since we have used pooled individuals, each of the

observed patterns could be specific to one donor, giving rise

to a complex pool of clones; however, this seems unlikely as

we also detect lower correlations between neighboring CpGs

within single clones. Alternatively, complex states could repre-

sent heterogeneity within the isolated HSPC population (see Fig-

ure S6), with our data coming from a mixture of self-renewing

and more committed cell types. To investigate this possibility,

we searched within our RNA-seq data for expression patterns

characteristic of each purified cell population. Transcriptional

profiles revealed the top differentially expressed genes within

the HSPC compartment to be highly enriched for signature

gene markers associated with self-renewing hematopoietic

stem cells (Figure 5D) and depleted for genes associated with

committed progenitors. Collectively, these data suggest that

the observedmethylation patterns are likely derived froma highly

enriched stem cell population, and indicate that those popula-

tions may naturally adopt complex, potentially dynamic, methyl-

ation patterns at lineage-specific HMRs.

Both the general trends ofmethylation loss along a lineage and

the possibility of dynamic poised methylation states imply that

demethylation, either passive or active, is a common event. In

mammals, factors capable of promoting active demethylation

have remained somewhat elusive (Ooi and Bestor, 2008).

In vitro studies have demonstrated that MBD2, a methyl-CpG

binding protein, can specifically demethylate cytosines, and

components of the elongator complex and the cytidine deami-

nase, AID, have been implicated in demethylation during early

development (Bhattacharya et al., 1999; Okada et al., 2010;

Popp et al., 2010). Furthermore, in zebrafish, the coordinated

activities of glycosylases, deaminases, and DNA repair proteins

have been reported to cause differentiation defects when disrup-

ted, and this has been posited as an effect of improper DNA

methylation (Rai et al., 2010). Alternatively, demethylation could

potentially be achieved through the action of hydroxymethylases

(e.g., TET1-3), which have been proposed to execute an interme-

diate step towardmethylation loss (Ito et al., 2010; Tahiliani et al.,

2009; Zhang et al., 2010). Additional information will be neces-

sary to resolve the relevance of any of these pathways to the

transition in methylation states between HSPCs and mature

neutrophils and B cells.

As a whole, our data not only provide insights into the global

behavior of DNA methylation, both in individual cell types and

along a well-characterized lineage, but also provide a critical
t; not overlapping a repeat). Average cross-species conservation scores from

tely for promoter and intergenic HMRs.

and B cells are shown. The top 20 most enriched motifs are shown separately

e. See the Supplemental Experimental Procedures for details of enrichment



Table 1. TFBS Enrichment in HMRs across Intergenic and

Promoter Regions

Cell Region CGI? HMRa TFBS Expected

Enrich-

ment

N/A promoter 34,257 244,998 91,570.8 2.7

promoter cgi 24,601 191,452 65,760.9 2.9

promoter nocgi 9,656 53,852 25,810 2.1

intergenic cgi 10,630 13,608 4,603.76 3.0

B Cell all 53,834 339,943 76,196.1 4.5

intergenic 5,849 16,150 3,779 4.3

intergenic cgi 1,670 4,802 1,194.97 4.0

intergenic nocgi 4,179 11,348 2,584.01 4.4

promoter 13,650 212,644 36,548.3 5.8

promoter cgi 12,828 206,556 35,080 5.9

promoter nocgi 822 6,088 1,468.27 4.1

CD133 all 49,593 339,191 67,778.2 5.0

intergenic 6,494 17,708 3,816.73 4.6

intergenic cgi 1,630 4,817 1,207.45 4.0

intergenic nocgi 4,864 12,891 2,609.26 4.9

promoter 13,745 224,955 37,395.1 6.0

promoter cgi 12,965 219,407 36,309.9 6.0

promoter nocgi 780 5,548 1,085.18 5.1

ESC all 40,476 318,377 65,062.3 4.9

intergenic 3,768 11,220 2,404.28 4.7

intergenic cgi 1,151 3,295 882.802 3.7

intergenic nocgi 2,617 7,925 1,521.45 5.2

promoter 13,098 222,654 36,332.4 6.1

promoter cgi 12,661 218,765 35,769.4 6.1

promoter nocgi 437 3,889 562.951 6.9

HSPC all 55,984 352,574 77,671.2 4.5

intergenic 6,154 17,619 3,972.1 4.4

intergenic cgi 1,663 4,775 1,222.27 3.9

intergenic nocgi 4,491 12,844 2,749.81 4.7

promoter 13,820 222,635 37,830.8 5.9

promoter cgi 12,948 216,433 36,461.3 5.9

promoter nocgi 872 6,202 1,369.4 4.5

Neut. all 60,594 362,074 82,427.7 4.4

intergenic 6,422 18,515 4,212.75 4.4

intergenic cgi 1,626 4,760 1,243.88 3.8

intergenic nocgi 4,796 13,755 2,968.85 4.6

promoter 13,862 224,621 38,503.6 5.8

promoter cgi 12,950 218,281 37,060.6 5.9

promoter nocgi 912 6,340 1,442.93 4.4

Sperm all 81,446 440,856 201,006 2.2

intergenic 2,616 14,903 3,158.15 4.7

intergenic cgi 865 6,181 1,307.11 4.7

intergenic nocgi 1,751 8,722 1,851.02 4.7

promoter 14,051 270,798 63,641.3 4.3

promoter cgi 13,588 266,658 62,357.8 4.3

promoter nocgi 463 4,140 1,283.49 3.2

Enrichment of predicted transcription factor binding sites (TFBSs) in in-

tergenic HMRs and HMRs that overlap promoters. For each set of
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reference data set to enable detailed future studies of both the

mechanisms that set somatic DNA methylation patterns and

the consequences of those patterns for gene expression and

genome organization.

EXPERIMENTAL PROCEDURES

Flow Cytometry and DNA Extraction

Peripheral bloodwas collected from six healthy female donors ages 25–35 and

pooled. After isolation by Ficoll gradient, mononuclear cells were fixed in 1%

paraformaldehyde (PFA) and stained with antibodies against the following

human cell surface markers (eBiosciences): anti-CD34 (mucosialin) conju-

gated to PE-Cy7, anti-CD38 conjugated to APC, anti-CD45 conjugated to

PE, anti-CD19 conjugated to PE, and anti-CD235a (Glycophorin) conjugated

to PE. For lineage depletion, either a combination of PE-conjugated antibodies

against CD45, CD19, and CD235a or a commercially available human hema-

topoietic lineage cocktail was used. CD34+CD38–Lin– hematopoietic stem

cells and CD19+ B cells were purified with the FACSAriaII (Becton Dickinson).

Neutrophils were purified according to their forward and side-scatter profile.

FACS profiles are provided in Figure S6. Umbilical cord blood was collected

from a single donor, and CD133+ cells were selected via magnetic separation

on CD133+ microbeads (Milteny Biotec) according to instructions supplied by

the manufacturer. Two column separations were performed for additional

purity. All cells were collected in cell lysis buffer (50 mM Tris, 10 mM EDTA

and 1% SDS), and PFA induced crosslinks were reversed with RNase A and

a 65�C incubation overnight, after which residual proteins were digested

with Proteinase K for 3 hr at 42�C. DNA was extracted with an equal volume

of phenol:chloroform, followed by a single extraction with chloroform and

ethanol precipitation. Human sperm was purified and sequenced according

to methods described in Molaro et al. (2011).

Illumina Library Preparation for Bisulfite Sequencing

Bisulfite sequencing libraries were generated by previously described

methods (Hodges et al., 2009) and on themanufacturer’s instructions (Illumina)

but with several additional modifications. In brief, after each enzymatic

step, genomic DNA was recovered by phenol:chloroform extraction and

ethanol precipitation. Adenylated fragments were ligated to Illumina-compat-

ible paired-end adaptors synthesized with 50-methyl-cytosine, and, when

necessary, adaptors were diluted 1003–10003 to compensate for low-input

libraries and maintain an approximate 10-fold excess of adaptor oligonucleo-

tides. After ligation, DNA fragments were purified and concentrated on

MinElute columns (QIAGEN). The standard gel purification step for size selec-

tion was excluded from the protocol. Fragments were denatured and treated

with sodium bisulfite with the EZ DNA Methylation Gold kit according to the

manufacturer’s instructions (Zymo). Lastly, the sample was desulfonated

and the converted, adaptor-ligated fragments were PCR enriched with

paired-end adaptor-compatible primers 1.0 and 2.0 (Illumina) and the Expand

High Fidelity Plus PCR system (Roche). Paired-end Illumina sequencing was

performed on bisulfite converted libraries for 76–100 cycles each end.

RNA-Seq

For isolation of RNA from target cell populations, unfixed (live) cells were

sorted as described above into Trizol-LS (Invitrogen), and RNA was purified
HMRs, corresponding to a cell type, the TFBS enrichment (observed/

expected site counts) is given for all HMRs, those overlapping promoters,

those that are intergenic, separately according to whether the HMRs

overlap CGIs. Data are presented for each of the following cell types: B

cells, CD133 cord blood, HSPCs, ESCs, neutrophils, and sperm. For

comparison, the TFBS enrichment in the full set of promoters (including

those overlapping CGIs) is given, along with enrichment in the full set of

intergenic CGIs.
a For the ‘‘N/A’’ group, the HMRs are simply the number of promoters

or CGIs.
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Figure 5. Methylation Dynamics during Lineage Selection

(A) Smoothed scatter plot heat maps showing the correlation between individual CpG methylation levels in HSPCs versus B cells (left) and HSPCs

versus neutrophils (right) within B cell- and neutrophil-specific HMRs, respectively. Darker shading (red) indicates greater density of data points, while

lighter (yellow) shading reflects lower density. Positive correlations between HSPCs and both B cells and neutrophils indicate an intermediate state for

HSPCs.
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according to themanufacturer’s recommendations. Double-stranded comple-

mentary DNA (cDNA) libraries were generated with the Ovation RNA-seq

system (Nugen). After reverse transcription and cDNA amplification, double-

stranded cDNA fragments were phosphorylated, adenylated, and ligated to

Illumina paired-end adaptors followed by 15 cycles of PCR amplification

with Phusion HF PCR master mix (Finnzymes) according to the standard

Illumina protocol for genomic libraries. Single-end sequencing was performed

for 36 cycles.

Conventional Bisulfite Cloning and Sanger Sequencing

Genomic DNA isolated from pooled human HSPCs was bisulfite converted

with the EZ DNA Methylation Gold kit (Zymo). For selection of specific regions

for amplification, forward and reverse primers were designed with Methprimer

(Li and Dahiya, 2002). Primer sequences are provided in the Table S3. The

following PCR reaction components were combined in a total volume of

25 ml: 5 ml 53 Expand High Fidelity Plus buffer without MgCl2, 1 ml 10 mM

dNTPs, 1 ml 10 mM each forward and reverse primers, 2.5 ml 25 mM MgCl2,

2 ml DNA template, and 11.5 ml nuclease-free water. Thermal cycling was per-

formed as follows: 35 cycles each of denaturation at 94�C for 2 min, annealing

at 60�C or 53�C for 1 min, and extension at 72�C for 30 s followed by 7 min at

72�C. The PCR products were purified on columns with a PCR purification kit

(QIAGEN). PCR products were adenylated with Klenow exo– and purified.

Purified amplicons were cloned and sequenced according to previously

described methods (Hodges et al., 2009).

Computational Methods Summary

The Supplemental Experimental Procedures contain a detailed description of

computational methods. Mapping bisulfite treated reads was done with

methods described by Smith et al. (2009) with tools from the RMAP package

(Smith et al., 2009). Hypomethylated regions (HMRs) were identified with

a hidden Markov model as described in Molaro et al. (2011). DMRs were iden-

tified by (1) computation of probabilities of differential methylation at individual

CpGs based on number of reads and frequencies of methylation, and (2) iden-

tification of peaks in these profiles after kernel smoothing. Cross-species

conservation information was taken from UCSC MULTIZ 44-way vertebrate

alignments and PhyloP profiles from these alignments.
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Figure S1. CpG Mapping Coverage and HMR Characteristics, Related to Figure 1 
(A) Distribution of read coverage for all CpG sites in the genome. Data is shown for human 
sperm, ESCs, CD133+ cord blood (stem cells), HSCs from peripheral blood, B cells and 
neutrophils. (B) G/C content and observed/expected CpG content for HMRs for each of the 6 
cell types studied. Each HMR is a point, and colors indicate whether the HMR satisfies one or 
both of the sequence-based criteria described by Gardiner-Garden and Frommer and 
employed by UCSC to annotate CGIs genome-wide. 
 



     

Figure S2. HMR Profiles Are Conserved between Chimp and Human, Related to Figure 1 
Genome browser tracks depict methylation profiles across a lymphoid (A) and myeloid (B) 
specific locus in chimp and human blood cells. Methylation frequencies, ranging between 0 
and 1, of unique reads covering individual CpG sites are shown in gray with identified 
hypomethylated regions (HMRs) indicated by orange bars. UCSC predicted/annotated CpG 
islands (green bars) as well as HMM-based CpG islands (blue bars) are also displayed. 
Numbers (top) indicate base position along the chromosome. 



 
Figure S3. Distribution of HMRs and DMRs According to Genomic Annotations, Related 
to Figures 2, 4, and 5 
The categories “promoter,” “genic,” “repeat” and “other” are exclusive, so first an HMR (A) or 
DMR (B) is checked for overlap with a promoter, the remainder are checked for overlap with a 
genic region, then the remainder are checked for overlap with annotated repeats (any class), 
and the “other” category is all those that remain. 



 
 
 



Figure S4. PU.1 and RNA Polymerase II Enrichment in Intergenic HMRs, Related to 
Figure 4 
Sequencing tracks of two loci (A, B) with ChIP-seq peaks derived from HSPCs enriched for 
PU.1 transcription factor (Novershtern et al., Cell. 2011 Jan 21;144(2):296-309) or RNA pol II 
overlapping intergenic HMRs. Peaks are displayed as read counts per million. 



 
 
Figure S5. Bisulfite Sequencing of Clones Using Sanger Sequencing, Related to Figure 
5 
Lollipop diagrams show individual clones derived from HSCs across three myeloid specific 
genes and an allelicly methylated gene (see also Fig. 5).  



 
 
Figure S6.  FACS profiles of purified blood cells, related to Figure 5. Peripheral blood 
mononuclear cells were purified according to the cell surface markers conjugated to the 
specified fluorophores. Displayed here are Neutrophils before (A) and after (B) sorting, B cells 
before (C) and (D) after sorting. Lineage depleted HSPCs (E) underwent two rounds of post-
sorting to improve purity levels (F, G). 

  



 

 

 

 

 

 

 

 

 

 

 

Table S3. Primers Uses for Bisulfite PCR Cloning, Related to Figure 5   

Chr19_CEBP Alpha    

            Forward – GGA AAG GGA GTT TTA GAT TTT TTT T  

            Reverse – CTA ACC TCT ATA CCC CAA CAA TAC CT  

ChrX_XIST2     

            Forward – AAA AAG TGT AGA TAT TTT AGA GAG TGT AAT 

            Reverse – ACT TTA ATT TTT ATT TTT CTA ACC CAT C 

Chr19_AZUI     

            Forward – GGG TTT GTG ATT TTT TAT GGA GTT  

            Reverse – CTT TAT TAC AAC CAA AAC CCC TCT A  

 Chr11_FUT4     

           Forward – GTG GTA TGG GTG GTG AGT TAT T  

           Reverse – CCA CTA TAT ACA AAA ACC CAA TTT C  
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