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Résumé

La radio cognitive, premièrement envisagée par Mitola, est la technologie clé pour les futures

générations de systèmes sans fil qui répond à des défis critiques en matière d’efficacité spectrale,

la gestion des interférences, et de la coexistence de réseaux hétérogènes. Le concept de base

dans les réseaux radio cognitifs est centré sur l’accès au spectre opportuniste, dont l’objectif est

de résoudre le déséquilibre entre la rareté du spectre d’un côté, et la sous-utilisation du spectre

de l’autre côté.

Dans cette thèse, nous abordons le problème fondamental de l’accès au spectre opportuniste

dans un système de communication multi-canal. Plus précisément, nous considérons un système

de communication dans lequel un utilisateur a accès à de multiples canaux, tout en étant limité

à la détection et la transmission sur un sous-ensemble de canaux. Nous explorons comment

l’utilisateur intelligent exploite ses observations passées et les propriétés stochastiques de ces

canaux afin de maximiser son débit.

Formellement, nous fournissons une analyse générique sur le problème d’accès au spec-

tre opportuniste en nous basant sur le probème de restless multi-bandit (RMAB), l’une des

généralisations les plus connues du problème du probème classique de multi-armed bandit

(MAB), un problème fondamental dans la théorie de décision stochastique. Malgré les im-

portants efforts de la communauté de recherche dans ce domaine, le problème RMAB dans sa

forme générique reste encore ouvert. Jusqu’à aujourd’hui, très peu de résultats sont connus sur

la structure de la politique optimale. L’obtention de la politique optimale pour un problème

RMAB général est intraçable dû la complexité de calcul exponentiel. Par conséquent, une al-

ternative naturelle est de se focaliser sur la politique myopique qui maximise la récompense à

immédiate, tout en ignorant celles du futur.

Nous commençons par effectuer une analyse générique dans le chapitre 3 sur l’optimalité

de la politique de détection myopique, où l’utilisateur peut accéder plusieurs canaux chaque
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fois et obtient une unité de récompense si au moins l’un parmi eux est good. Grace à l’analyse

mathématique, nous montrons que la politique de détection myopique n’est optimale que pour

un petit sous-ensemble de cas où l’utilisateur est autorisé à détecter deux canaux chaque slot.

Dans le cas général, nous donnons des contre-exemples pour illustrer que la politique myopique

n’est pas optimale.

Motivés par l’analyse ci-dessus, nous étudions ensuite la question naturelle mais fonda-

mentalement dans le chapitre 4 (pour le système homogène constitué de canaux i.i.d.) et le

chapitre 5 (pour le système hétérogène, composée de canaux non i.i.d.): sous quelles conditions

la politique myopique est-elle optimale? Nous répondons à la question posée par une étude

axiomatique. Plus spécifiquement, nous développons trois axiomes caractérisant une famille de

fonctions que nous appelons fonctions régulières, qui sont génériques et pratiquement impor-

tantes. Nous établissons ensuite l’optimalité de la politique myopique lorsque la fonction de

récompense peut être exprimée comme une fonction régulière et le facteur de discount est borné

par un seuil déterminée par la fonction de récompense. Nous illustrons également l’application

des résultats pour analyser une classe de problèmes RMAB dans l’accès opportuniste.

Dans le chapitre 6, nous étudions un problème plus difficile, où l’utilisateur doit configurer le

nombre de canaux à accéder afin de maximiser son utilité (par exemple, le débit). Nous formu-

lons le problème d’optimisation correspondant qui repose sur le compromis entre l’exploitation

et l’exploration: la détection de plus de canaux peut aider à apprendre et à prédire l’état futur

du canal, augmentant ainsi la récompense à long terme, mais au prix de sacrifier la récompense

au slot actuel puisque la détection de plus de canaux réduit le temps de transmission de don-

nées, ce qui diminue le débit dans le slot courant. Par conséquent, trouver le nombre optimal

de canaux à détecter consiste à trouver un équilibre entre l’exploitation et l’exploration. Après

avoir montré la complexité exponentielle du problème, nous développons une stratégie heuris-

tique ν-step look-ahead qui consiste à détecter des canaux d’une manière myopique et d’arrêter

la détection lorsque l’utilité agrégée attendue du slot courant t au slot t+ ν commence à dimin-

uer. Dans la stratégie développée, le paramètre ν permet de parvenir à un compromis souhaité

entre l’efficacité sociale et de la complexité de calcul. Nous démontrons les avantages de la

stratégie proposée via des simulations numériques sur plusieurs scénarios typiques.

Le chapitre 7 conclut la thèse et décrit plusieurs importants axes de recherche futurs dans

ce domaine. Notons que malgré l’objectif de cette thèse dans le domaine de la communication

opportuniste, la formulation du problème est applicable dans de nombreux autres domaines
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de l’ingénerie tels que le brouillage de communication, la planification et le poursuit d’objet.

Par conséquent, les résultats présentés dans cette thèse sont génériquement applicables dans un

large ensemble de domaines bien au-delà de l’accès au spectre opportuniste.

Mots-clés: Multi-canal d’accès opportuniste, Restless Multi-Armed Bandit, politique my-

ope, l’optimisation stochastique



Abstract

Cognitive radio, first envisioned by Mitola, is the key enabling technology for future genera-

tions of wireless systems that addresses critical challenges in spectrum efficiency, interference

management, and coexistence of heterogeneous networks. The core concept in cognitive radio

networks is opportunistic spectrum access, whose objective is to solve the imbalance between

spectrum scarcity and spectrum under-utilization.

In the thesis, we address the fundamental problem of opportunistic spectrum access in a

multi-channel communication system. Specifically, we consider a communication system in

which a user has access to multiple channels, but is limited to sensing and transmitting only on

part of them at a given time. We explore how the smart user should exploit past observations

and the knowledge of the stochastic properties of these channels to maximize its transmission

rate by switching channels opportunistically.

Formally, we provide a generic analysis on the opportunistic spectrum access problem by

casting the problem into the restless multi-armed bandit (RMAB) problem, one of the most

well-known generalizations of the classic multi-armed bandit (MAB) problem, which is of fun-

damental importance in stochastic decision theory. Despite the significant research efforts in the

field, the RMAB problem in its generic form still remains open. Until today, very little result

is reported on the structure of the optimal policy. Obtaining the optimal policy for a general

RMAB problem is often intractable due to the exponential computation complexity. Hence, a

natural alternative is to seek a simple myopic policy maximizing the short-term reward.

We start by conducting a generic analysis in Chapter 3 on the optimality of the myopic

sensing policy where the user senses more than one channel each time and gets one unit of reward

if at least one of the sensed channels is in the good state. Through mathematical analysis, we

show that the myopic sensing policy is optimal only for a small subset of cases where the user

is allowed to sense two channels each slot. In the general case, we give counterexamples to
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illustrate that the myopic sensing policy is not optimal.

Motivated by the above analysis, we then study the following natural while fundamentally

important question in Chapter 4 (for the homogeneous system consisting of i.i.d. channels)

and Chapter 5 (for the heterogeneous system consisting of non i.i.d. channels): under what

conditions is the myopic policy guaranteed to be optimal? We answer the above posed question

by performing an axiomatic study. More specifically, we develop three axioms characterizing

a family of functions which we refer to as regular functions, which are generic and practically

important. We then establish the optimality of the myopic policy when the reward function can

be expressed as a regular function and the discount factor is bounded by a closed-form threshold

determined by the reward function. We also illustrate how the derived results, generic in nature,

are applied to analyze a class of RMAB problems arising from multi-channel opportunistic

access.

In Chapter 6, we further investigate the more challenging problem where the user has to

decide the number of channels to sense in each slot in order to maximize its utility (e.g.,

throughput). We formulate the corresponding optimization problem which hinges on the fol-

lowing tradeoff between exploitation and exploration: sensing more channels can help learn

and predict the future channel state, thus increasing the long-term reward, but at the price

of sacrificing the reward at current slot as sensing more channels reduces the time for data

transmission, thus decreasing the throughput in the current slot. Therefore, to find the optimal

number of channels to sense consists of striking a balance between the above exploitation and

exploration. After showing the exponential complexity of the problem, we develop a heuristic

ν-step look-ahead strategy which consists of sensing channels in a myopic way and stopping

sensing when the expected aggregated utility from the current slot t to slot t+ ν begins to de-

crease. In the developed strategy, the parameter ν allows to achieve a desired tradeoff between

social efficiency and computation complexity. We demonstrate the benefits of the proposed

strategy via numerical experiments on several typical settings.

Finally, Chapter 7 concludes the thesis and outlines several important future research di-

rections in this field. Note that despite the focus of this thesis in the domain of opportunistic

communication, the problem formulation is applicable in many other engineering fields such as

communication jamming, scheduling and object tracking. Hence the results presented in this

thesis are generically applicable in a large range of domains beyond the scope of opportunistic

spectrum access.
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Chapter 1

Introduction

1.1 General Context and Motivation

In the last decades, wireless network has enabled the deployment of a large set of advanced

communication systems, such as mobile communication, mobile Internet access, and wireless

sensor data harvesting. The density of wireless accessing devices and the demand for wireless

communications are witnessed to increase dramatically, which brings us into the ubiquitous

computing and communication environment, termed by EU as the Internet of Things [1].

Cognitive radio, first envisioned by Mitola [2] and then investigated by the DARPA XG

program [3], is the key enabling technology for future generations of wireless systems that ad-

dresses critical challenges in spectrum efficiency, interference management, and coexistence of

heterogeneous networks. The core concept in cognitive radio networks is opportunistic spec-

trum access (OSA), whose objective is to solve the imbalance between spectrum scarcity and

spectrum under-utilization. The basic idea of OSA is to allow secondary users to search for,

identify, and exploit instantaneous spectrum opportunities while limiting the interference per-

ceived by primary users (or licensees). Built upon a hierarchical access structure with primary

and secondary users, OSA resolves the inefficiency of the current command-and-control model

of spectrum regulation while maintains compatibility with legacy wireless systems.

While conceptually simple, OSA in cognitive radio networks presents novel challenges not

encountered in conventional networks, such as sensing over a wide frequency band, identifying

the presence of primary users, determining the nature of opportunities, and coordinating the

use of these opportunities with other nodes without interfering with the primary users.

In the thesis, we address the fundamental problem of opportunistic spectrum access in a

1



Chapter 1. Introduction 2

multi-channel communication system. Specifically, we consider a communication system in

which a user has access to multiple channels subject to fading and noisy circumstance, but is

limited to sensing and transmitting only on part of these channels at a given time. We explore

how the smart user should exploit past observations and the knowledge of the stochastic proper-

ties of these channels to maximize its transmission rate by switching channels opportunistically.

1.2 Thesis Contributions and Organization

In this thesis, we provide a generic analysis on the opportunistic spectrum access problem by

casting the problem into the restless multi-armed bandit (RMAB) problem [4], one of the most

well-known generalizations of the classic multi-armed bandit (MAB) problem [5], which is of

fundamental importance in stochastic decision theory.

1.2.1 Optimality of Myopic Channel Sensing Policy

Despite the vital research efforts in the field of RMAB, the RMAB problem in its generic form

still remains open and very few results are reported on the structure of the optimal policy.

Furthermore, obtaining the optimal policy for a general RMAB problem is often intractable

due to the exponential computation complexity [6]. Hence, a natural alternative is to seek a

simple myopic policy maximizing the short-term reward. Due to its simple and robust structure,

the myopic policy has attracted significant research attention, especially on its social optimality.

We start by performing a generic analysis on the optimality of the myopic sensing policy1

where a user can sense more than one channel each time and gets one unit of reward if at least

one of the sensed channels is in the good state. Through mathematic analysis, we show that

the myopic sensing policy is optimal only for a small subset of cases where the user is allowed

to sense two channels each slot. For the general case, we present counterexamples to illustrate

that the myopic sensing policy is not optimal.

Motivated by the above analysis, we then study the following natural while fundamentally

important question: under what conditions is the myopic policy guaranteed to be optimal? In

the following chapters, we will answer the posed question by performing an axiomatic study.

More specifically, we develop three axioms characterizing a family of generic and important

functions, referred to as regular function, and then establish the optimality of the myopic policy

1To make the presentation concise, in the thesis by sensing we mean the operation of sensing one or multiple
channels and the subsequent operation of choosing one or multiple available channels to access.
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when the reward function can be expressed as a regular function and the discount factor is

bounded by a closed-form threshold determined by the reward function. Meanwhile, the derived

optimal conditions, generic in nature, are applied to analyze a class of RMAB problems arising

in multi-channel opportunistic access.

Compared with the existing literature addressing the optimality of the myopic policy of

the RMAB problem (cf. Section 2.3.1), our contributions in the first half of the thesis are

summarized as follows:

• Generic analysis: In contrast to the research line showing the optimality/non-optimality

of the myopic policy in some given application scenarios, we make more generic efforts on

the sufficient conditions ensuring the optimality of the myopic policy.

• Homogeneous and heterogeneous channels: We analyze both homogeneous and heteroge-

neous scenarios where the channels are characterized by homogeneous and heterogeneous

Markov chains, respectively.

• Sensing error: The vast majority of studies in OSA assume perfect detection of channel

state. However, sensing errors are inevitable in practical scenario (e.g., due to noise and

system limitations), especially in wireless communication systems. Our work captures the

sensing error and studies the optimality of the myopic policy under imperfect sensing.

From the methodological perspective, we adopt an axiomatic approach to streamline the

analysis. On one hand, such axiomatic approach provides a hierarchical view of the addressed

problem and leads to clearer and more synthetic analysis. On the other hand, the axiomat-

ic approach also reduces the complexity of solving the RMAB problem and illustrates some

important engineering implications behind the myopic policy.

1.2.2 Beyond Myopic Sensing: a Heuristic ν-step Lookahead Policy

In the first part of the thesis, we study the optimality of the myopic sensing policy in the

case where the user is allowed to sense k out of N channels. In the second part, we further

investigate the more challenging problem where the user has to decide the number of channels

to sense in each slot in order to maximize its utility. This optimization problem hinges on the

following tradeoff between exploitation and exploration: sensing more channels can help learn

and predict the future channel state, thus increasing the long-term reward, but at the price
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of sacrificing the reward at current slot as sensing more channels reduces the time for data

transmission, thus decreasing the throughput in the current slot. Therefore, to find the optimal

number of channels to sense consists of striking a balance between the above exploitation and

exploration. After showing the exponential complexity of the problem, we develop a heuristic

ν-step lookahead policy which consists of sensing channels in a myopic way and stopping sensing

when the expected aggregated utility from the current slot t to slot t + ν begins to decrease.

In the developed policy, the parameter ν allows to achieve a desired tradeoff between social

efficiency and computation complexity. We demonstrate the benefits of the proposed strategy

via numerical experiments on several typical settings.

The intrinsic design tradeoff hinging behind the proposed heuristic sensing policy is that

between gaining immediate access and gaining information for future use. Due to hardware

limitations and the energy cost of spectrum monitoring, a user may not be able to sense all

the channels in the spectrum simultaneously. A sensing strategy is thus needed for intelligent

channel selection to track the rapidly varying spectrum opportunities. The purpose of a sensing

strategy is twofold: to find good channels for immediate access and to gain statistical information

on the spectrum occupancy for better opportunity tracking in the future. The optimal sensing

strategy should thus strike a balance between these two often conflicting objectives.

Despite the focus of this thesis in the domain of opportunistic communication, the problem

formulation is applicable in many other engineering fields such as communication jamming,

scheduling and object tracking. Hence the results presented in this thesis are generically appli-

cable in a large range of domains beyond the scope of opportunistic spectrum access.

1.2.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we review the state-of-the-art on

the RMAB problem with a particular focus on its application in wireless networks. Chapter 3

provides a motivating analysis on the optimality of the myopic policy when the user can access

multiple channels at one time. In Chapter 4, we provide an axiomatic analysis on the optimality

of the myopic policy with imperfect sensing in the case of homogeneous channels. In Chapter 5,

we further extend our analysis on the optimality of myopic policy in the case of heterogenous

channels. In Chapter 6, we investigate the more challenging problem where the user has to

decide the number of channels to sense in order to maximize its utility and develop a heuristic

ν-step lookahead policy. Finally, Chapter 7 concludes the thesis and discusses some future
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research directions.

Part of our research work presented in this thesis is published or under submission in various

venues. Specifically, our work of Chapter 3 on the optimality of the myopic policy is accepted by

IEEE Wireless Communications Letters [7]. Our work of Chapter 4 on the axiomatic analysis

on the optimality of the myopic policy in the case of homogeneous channel model is under

submission to IEEE Transaction on Communications [8] and part of the content for the case of

perfect sensing is accepted in IET Signal Processing [9]. Our work of Chapter 5 on the case of

heterogeneous channel model with perfect sensing is published in IEEE Transaction on Signal

Processing [10] and part of the content for the case of imperfect sensing is under review in IEEE

Transaction on on Signal Processing [11].



Chapter 2

RMAB and its Application in

Communication Networks:

State-of-the-art Analysis

As introduced in the previous chapter, the focus of this thesis is to study the fundamental

problem of opportunistic spectrum access in a multi-channel communication system. Mathe-

matically, this problem can be cast into a Restless Multi-armed Bandit problem. The RMAB

problem is one of the most well-known generalizations of the classic multi-armed bandit problem,

a classical problem in stochastic optimization with a wide range of engineering applications.

In this chapter, we start by providing a literature review on the main theory developed for

the classic MAB problem and its extension to the RMAB problem. We then focus on the recent

works on the application of the RMAB problem in the field of communication networks.

2.1 MAB and Gittins Index

Multi-armed bandit, first posed in 1933, has become a classical problem in stochastic optimiza-

tion with a wide range of engineering applications, including but not limited to, multi-agent

systems, web search and Internet advertising, social networks, and queueing systems. Recently,

it has found new applications in communication networks and dynamic systems.

6
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2.1.1 Formulation of the MAB Problem

Consider a dynamic system consisting of a player and N independent arms. In each time

slot t (t = 1, 2, · · · ), the state of arm k is denoted by sk(t) and completely observable to the

player. At slot t, the player selects one arm, i.e., arm k, to activate based on the system state

S(t) = [s1(t), s2(t), · · · , sN (t)] and accrues reward R(sk(t)) determined by the state sk(t) of

arm k. Meanwhile, the state of arm k will transmit to another state in the next slot according

to certain transition probabilities, i.e., pki,j = P (sk(t + 1) = j|sk(t) = i), i, j ∈ Ωk, where Ωk

denotes the state space of arm k. The states of other arms which are not activated will remain

frozen, i.e., sn(t+ 1) = sn(t) ∀n 6= k.

The player’s selection policy π = {π(1), π(2), · · · } is a serials of mapping from the system

state S(t) to the action a(t) indicating which arm is activated, i.e., π(t) : S(t) → a(t). The

objective is to obtain the optimal policy π∗ to maximize the expected total discounted reward

in an infinite horizon:

π∗ = arg max
π

E
[

lim
T→∞

T∑
t=1

βt−1R(sa(t)(t))
]
,

where the discount factor 0 ≤ β < 1.

Since the size of the system states grows exponentially with the number of arms, the above

problem, called the classic MAB problem, has an exponential complexity for its general numer-

ical solutions.

2.1.2 Gittins index

This sequential decision problem was firstly proposed by Thompson in 1933 [5], but the theoret-

ical structure of the optimal solution for the classic MAB has not been obtained until Gittins’s

seminal work [12] in 1974. Gittins showed that an index policy is optimal, called Gittins in-

dex later, and thus reduces the complexity of the problem from exponential to linear with the

number N of arms.

Theorem 2.1 (Gittins, 1974). The optimal policy has an index form. Specially, for all 1 ≤ k ≤

N , there exists an index function Gk(·) that maps the state i ∈ Ωk of arm k to a real number.

At each time, the optimal action is to activate the arm with the largest index.

Gittins also gave a specific form of the index function Gk(·), referred as Gittins index, as

given in the following definition.
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Definition 2.1 (Gittins Index). For any state i ∈ Ωk of arm k,

Gk(i) = lim sup
σ≥1

E
[∑σ

t=1 β
t−1R(sk(t))|sk(1) = i

]
E
[∑σ

t=1 β
t−1|sk(1) = i

] ,

where σ is a stopping time for activating the arm k.

Basically, Gittins index measures the maximum reward rate that can be achieved by focusing

on activating one arm starting from its current state. Therefore, by Gittins index, the player

can accrue reward as quickly as possible and thus maximize the total discounted reward.

2.2 RMAB and Whittle Index

Whittle [4] extended the MAB to a more general model where a set of K (K > 1) arms, denoted

as K(t), can be activated simultaneously and change their states in each slot and meanwhile the

passive arms are also allowed to offer reward and change state, which makes it different from

the classic MAB. If arm k is activated, then its state transits according to a transmitting rule

Pk1 and yields the immediate reward gk1(sk(t)) while it transits by another rule Pk2 and yields

the immediate reward gk2(sk(t)) when arm k isn’t activated. A policy π = {π(t)}∞t=1 is a serials

of mappings where π(t) maps the system state S(t) to the set of K arms K(t) to be activated

in slot t.

In [4], Whittle considered the above problem to maximize the average reward over an infinite

horizon1, which can be formulated as follows:

π∗ = argmax
π

E
{

lim
T→∞

1

T

T∑
t=1

[ ∑
i∈K(t)

gi1(si(t)) +

N∑
j=1,j /∈K(t)

gj2(sj(t))︸ ︷︷ ︸
R(t)

]}
.

We introduce some notations. Let γk denote the maximum expected average reward obtained

by playing arm k without constraint:

γk = max
π

E
[

lim
T→∞

1

T

T∑
t=1

gkak(t)(sk(t))
]
, where ak(t) ∈ {1 (active)), 2 (passive)}.

Let fk(sk(1)) denote the differential reward caused by the transient effect of starting from

1The discounted reward can be similarly discussed.
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state sk(1) rather than from an equilibrium situation:

fk(sk(1)) = lim
T→∞

Eπ∗
[ 1

T

T∑
t=1

gkak(t)(sk(t))− γk
]
.

We have the following optimal equation for the maximum expected average reward γk:

γk + fk(sk(t)) = max
a={1,2}

[
gka(sk(t)) + E[fk(sk(t+ 1))|sk(t)]

]
.

We can rewrite the above formulation more compactly as

γk + fk(sk(t)) = max
[
Lk1fk, Lk2fk

]
.

We consider the following relaxed condition: K out of N arms are activated on average

rather than exactly in all time slots, i.e.,

E[|K(t)|] = K instead of |K(t)| = K,∀t.

Then the objective under the relaxed condition is the following:

maxE
[ N∑
n=1

rn

]
, s.t. E

[ N∑
n=1

In

]
= N −M,

where rn is the average reward obtained from arm n under the relaxed constraint, and In = 1, 0

according to whether arm n is activated or not.

We have the objective by the classic Lagrangian multiplier as follows:

maxE
[ N∑
n=1

rn + ν
N∑
n=1

In

]
= maxE

[ N∑
n=1

(rn + νIn)
]
.

We thus have an ν-subsidy problem

γk(ν) + fk = max
[
Lk1fk, ν + Lk2fk

]
,

where ν is referred as subsidy for passivity.

We define the index Wk(i) of arm k in state i ∈ Ωk as the value of ν which makes the active



Chapter 2. RMAB and its Application in Communication Networks: State-of-the-art Analysis 10

and the passive phases equally attractive:

Lk1fk = ν + Lk2fk.

Let Dk(ν) be the set of states for which arm k would be make passive under a ν-subsidy

policy. Then the arm is indexable if Dk(ν) increases monotonically from ø to Ωk as ν increases

from −∞ and +∞.

Thus, if all arms are indexable, arm k will be activated in slot t if Wk(sk(t)) > ν. Therefore,

we obtain the following Whittle index policy.

Definition 2.2 (Whittle Index Policy). If all the bandits are indexable, activate the K arms of

the greatest indices in each slot.

Conjecture 1 (Whittle Conjecture). Suppose all arms are indexable, the index policy is optimal

in terms of average yield per arm in the limit.

2.3 Application of RMAB in Communication Networks

As illustrated in the previous section, to obtain the Whittle index of an RMAB needs to prove

the indexability firstly, which is dramatically difficult in applications, and in general, the Whittle

index policy can only achieve the asymptotically optimal performance even under the index-

ability. Therefore, the research efforts on addressing the RAMB problem arising in various

applications, especially communication systems and networks and dynamic systems, usually

fall into the following three categories:

• The first one is to seek sufficient conditions for simple and robust policies (e.g., myopic

policy, greedy policy) under which the optimality of such policies is guaranteed.

• The second one is to construct particular policy whose performance to the optimal is

bounded.

• The third one, following the research line of Whittle, is to calculate the Whittle index and

to derive policies based on the Whittle index.

In the following analysis, we provide an overview of the three research thrusts.
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2.3.1 Myopic and Greedy Policy

This line of research consists of seeking simple myopic policies which maximize the short-term

reward and studying their performance.

In [13], the authors studied the RMAB problem arising from a multi-channel communication

system, where the channel states evolve as independent and statistically identical Markov chains.

The objective was to design a sensing policy for channel selection to maximize the average

reward. The optimality of the myopic policy was established for the two-channel case and

conjectured for the general case based on numerical results. This model was further studied

in [14] where the objective is to design a channel selection policy that maximizes the expected

discounted or average reward accrued over a finite or infinite horizon. The authors showed

that the myopic policy maximizing the immediate one-step reward is optimal when the state

transitions of all channels are positively correlated over time and it is also optimal for two or

three channels in the case of negatively correlated channel model. The optimality of the myopic

policy was extended to the case of accessing arbitrary channels when the state transitions of all

channels are positively correlated over time in [15]. When channel state detection is subject to

errors, the same simple structure of the myopic policy was established in [16] under a certain

condition on the false alarm probability of the channel state detector. The optimality of the

myopic policy was proved for the case of two channels and conjectured for general cases. Lower

and upper bounds on the performance of the myopic policy were obtained in closed-form, which

characterize the scaling behavior of the achievable throughput of the multichannel opportunistic

system.

In [17], an opportunistic channel access problem over multiple primary frequency bands

was investigated by exploiting primary ACK/NAK packets overheard by the secondary user to

overlay their communications on top of active primary channels. The conditions were derived

to prove the optimality of the myopic policy with a simple decision structure without relying

on a priori knowledge of channel state-transition probabilities by the secondary user.

In [18], the authors considered the downlink of a cellular system where the channel between

the base station and each user is modeled by a two-state Markov chain and the ARQ feedback

signal arrives at the scheduler with a random delay that is i.i.d. across users and time. The

problem was formulated as an RMAB problem to maximize the throughput by indirectly esti-

mating the channel via accumulated delayed-ARQ feedback. For the case of two users in the
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system, a greedy policy was proved to achieve the optimal sum throughput for any distribution

on the ARQ feedback delay. For the case of more than two users, the greedy policy is suboptimal

and has near optimal performance.

2.3.2 Constant Factor Approximation

In [19] [20], the authors developed a novel and general duality-based algorithmic technique that

yields a simple and intuitive 2 + ε-approximate greedy policy to the problem and then defined a

general sub-class of restless bandit problems called monotone bandits, for which the policy is a

2-approximation. The technique is robust enough to handle generalizations of these problems to

incorporate various side constraints such as blocking plays and switching costs. This technique

is also of independent interest for other restless bandit problems, and finally shows the policies

are closely related to the Whittle index.

2.3.3 Whittle Index

In [21], the author considered a class of restless multi-armed bandit processes that arises in

dynamic multichannel access, user/server scheduling, and optimal activation in multi-agent

systems. For this class of RMAB problem, the indexability was established and Whittle index

was obtained in closed form for both discounted and average reward. When arms are stochasti-

cally identical, Whittle index policy was shown to be optimal under certain conditions without

knowing the Markov transition probabilities. For nonidentical arms, efficient algorithms were

developed for computing a performance upper bound given by Lagrangian relaxation.

In [22], the authors developed efficient sampling policies—link sampling and node sampling—

based on the Whittle’s indices for tracking the topology of dynamic networks under sampling

constraints, and proved its indexability under certain conditions. In [23], the authors inves-

tigated a discrete dynamic unmanned aerial vehicle routing problem with a potentially large

number of targets and vehicles by regarding each target as an independent two-state Markov

chain, and then formulated this problem as an RMAB problem and obtained its closed-form

Whittle index. In [24], the real-time multicast scheduling of access point in wireless broadcast

networks with strict deadlines was formulated as an RMAB problem in a finite state space, and

the indexability was established and Whittle index was obtained in closed-form. In [25], the

optimality of an index policy was studied for allocating a singer server to N parallel queues
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when the queue size is not perfectly observed, the arrivals are bernoulli and the services are

differentiated, and sufficient condition for the index was established to guarantee the optimality

in both the finite horizon and infinite horizon cases.

In [26], a comprehensive modeling framework for the RMAB problem of scheduling a finite

number of finite-length jobs where the available service rate is time-varying was introduced

and, a priority index to minimize the mean waiting time was obtained to improve the flow-

level performance and proved to achieve the maximum stability regions. And it was extended

in [27] to multi-class job scheduling with user abandonment to minimize the sum of linear

holding costs and abandonment penalties, and a simple index was obtained which is, under

certain conditions, equivalent to the asymptotically optimal cµ/θ-rule in multi-server system

with overload conditions. The simple index would degenerate to cµ-rule without abandonment.

In [28], a closed-form index for Markovian time-varying channels was evaluated arising in

opportunistic flow-level scheduling of wireless downlink systems where the index value of the

bad channel takes into account both the one-period and the steady-state potential improvement

of the service completion probability while the good channel gets an absolute priority with the

cµ-rule. In [29], the anticipative congestion control mechanism in the Internet with time-

varying input flow was formulated as an RMAB problem, and the closed-form Whittle index

was obtained and proved to be optimal.

In [30], a resource allocation in the security surveillance of an infrastructure consisting

of various sectors modeled by a continuous-time Markov decision process was considered as an

RMAB problem, and the index was implemented as a basis of a heuristics to define a suboptimal

rule to reduce the required memory.

In [31], a novel sensing scheme for dynamic multi-channel access was formulated as an RMAB

problem with flexible ratio between transmission period and sensing interval, and the Whittle

index obtained was applied as a sorting standard for second users to choose which channel

to sense. Throughput was proved to converge to a fixed bound when the ratio approaches to

infinity while sensing cost diverged in some cases.

In [32], a distributed best-relay node selection scheme was proposed to maximize the achiev-

able data rate for cooperative communications over underlay-paradigm based cognitive radio

networks. The CR relay network was formulated as an RMAB problem where the time-varying

channel state is characterized by the finite-state Markov chain, and then the optimal relay node

selection policy was obtained by a primal-dual priority-index heuristic.
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In [33], a distributed relay selection and power allocation was presented to investigate the

channel states of all related links and residual energy state of the relay nodes for cooperative

transmission in cognitive radio networks where the cognitive radio network is formulated as an

RMAB problem with the channel state and residual energy state characterized by finite state

Markov chains.

In [34], a novel multi-channel access scheme based on the TCP throughput in the transport

layer in cognitive radio networks was formulated as an RMAB problem and then the opti-

mal channel access policy was obtained to improve the TCP throughput with the cross-layer

technology.

In [35], a distributed network selection scheme in heterogeneous wireless networks was pro-

posed to study the multimedia application layer QoS by formulating the integrated network as

an RMAB problem, and the index policy was obtained by a primal-dual heuristic.

In [36], opportunistic multiuser scheduling in downlink networks with Markov-modeled out-

age channels was considered where the scheduler does not have full knowledge of the channel

state information, but instead estimates the channel state information by exploiting the memo-

ry inherent in the Markov channels along with ARQ-styled feedback from the scheduled users.

The scheduling problem was formulated as a partially observable Markov decision process with

the classic ‘exploitation vs exploration’ trade-off or Restless Multi-armed Bandit Processes and

furthermore, indexability was proved and the closed-form Whittle index was derived for this

kind of downlink scheduling under imperfect channel state information.

In [37], a cooperative opportunistic multiuser scheduling using ARQ feedback in multi-

cell downlink systems was formulated as an RMAB problem where two typical scenarios are

investigated. When the cooperation between the cells is asymmetric, the optimal scheduling

policy was shown to have a greedy flavor and be simple to implement. Under symmetric

cooperation, a low complexity index scheduling policy was proposed only if the scheduling

problem is Whittle indexable, and then extensive numerical experiments were carried out to

demonstrate that the proposed policy is near-optimal.

2.4 Non-Bayesian MAB

Another extension of MAB is the so-called non-bayesian MAB where the channels’ availability

statistics are not correlated in time as Markov chains and are initially unknown to the users and
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need to be estimated via learning. This leads to a tradeoff between exploration—sensing new

channels to obtain more statistical information, and exploitation—ensuring successful trans-

mission in the current slot. Research using this approach seeks to optimize the asymptotic

performance by minimizing the regret of the developed policy, given that the system regret

under a policy π is defined as the accumulative expected reward loss up to time T under the

policy π compared to the genie-aided policy where the available probabilities of channels are

known to the users at each slot. In this thesis, we do not consider this kind of MAB, and readers

can refer to the literatures [38–46].



Chapter 3

Optimality of Myopic Sensing Policy

in OSA: a Motivating Analysis

3.1 Introduction

As introduced in Chapter 1, the basic idea of Opportunistic Spectrum Access (OSA) in multi-

channel communication system is to exploit instantaneous spectrum availability by allowing

users to access those good channels in an opportunistic fashion. In this context, a well-designed

channel sensing and access policy is crucial to achieve efficient spectrum usage. In this chapter,

we provide a primary study on the optimality of the myopic sensing policy, which serves as a

motivating analysis of the subsequent chapters.

We consider a generic scenario where there are N slotted spectrum channels, each one

evolving as an independent and identically distributed (i.i.d.), two-state discrete-time Markov

chain. The two states for each channel, bad (state 0) and good (state 1), indicate whether

the channel is free for a user to transmit its packet on that channel at a given slot. The

state transition probabilities are given by {pij}, i, j = 0, 1. A user seeks a sensing policy to

opportunistically exploit the good channels to transmit its packets. To this end, in each slot,

the user selects a subset of channels to sense based on its prior observations, and obtains one

unit reward if at least one of the sensed channel is in the good state, indicating that the user

can effectively send one packet using the good channel (or one of the good channels) in the

current slot. The objective of the user is to find the optimal sensing policy that maximizes the

reward accrued over a finite or infinite horizon.

16
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As stated in [13], the design of the optimal sensing policy can be formulated as a partial-

ly observable Markov decision process (POMDP), or a restless multi-armed bandit problem

(RMAB), of which the application is far beyond the domain of cognitive radio systems. Un-

fortunately, obtaining the optimal policy for a general POMDP or RMAB is often intractable

due to the exponential computation complexity. Hence, a natural alternative is to seek simple

myopic policies for the user. In this line of research, a myopic sensing strategy is developed

in [14] for the case where the user is limited to sensing only one channel at each slot. The

myopic sensing policy in this case is proven to be optimal when p11 ≥ p01.

In this chapter, we naturally extend the proposed myopic policy in [14] to the generic case

where the user can sense more than one channel in each slot and get one unit reward if at least

one of the sensed channels transmits packet successfully. Theoretical analysis shows that the

myopic policy is optimal only for a small subset of cases where the user senses two channels in

each slot. In the generic cases, we give counterexamples to show that the myopic policy, despite

its simple structure, is not optimal. It is insightful to compare our results obtained in this

chapter with another parallel extension [15] on the similar problem. In [15], the authors show

that when p11 ≥ p01 holds, the myopic sensing policy is optimal even for the case where the user

senses more than one channel in each slot. However, that result seems to be contradictory to our

conclusion. In fact, this contradiction is due to the fact that the objective of the user in [15] is to

find as many good channels as possible so that the user can transmit over all the good channels.

In contrast, our results are focused on the scenario where the user can successfully transmit on

one good channel even though multiple good channels are sensed in the current slot. In another

word, the user aims at maximizing the probability of successful transmission. It is insightful

to notice that the nuance on the model (more precisely on the utility function) indeed leads

to totally contrary results, indicating that more research efforts are required to understand the

intrinsic relation between the myopic policy and the optimal policy, which motivates our work

in this thesis.

The rest of the chapter is organized as follows: Section 3.2 formulates the system model and

the myopic sensing policy; Section 3.3 analyzes the optimality of the myopic policy; Section 3.4

summarizes the results.
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3.2 Problem Formulation

We are interested in a synchronously slotted multi-channel opportunistic communication system

where a user can opportunistically access a set N of N i.i.d. channels. The state of each channel

i in time slot t, denoted by Si(t), is modeled by a discrete time two-state Markov chain. At the

beginning of each slot t, the user selects a set A(t) (A(t) ⊂ N , |A(t)| = k) of channels to sense,

and further obtains the observations {Oi(t) ∈ {0, 1} : i ∈ A(t)}, herein Oi(t) = 1 indicates

channel i is sensed good while Oi(t) = 0 indicates channel i is sensed bad. If at least one of the

sensed channels is in the good state, the user transmits its packet and collects one unit reward.

Otherwise, the user cannot transmit, and thus no reward is obtained. The decision procedure

is repeated for each slot t (1 ≤ t ≤ T ).

Obviously, by sensing only k out of N channels, the user cannot observe the state information

of the whole system. Hence, the user has to infer the channel states from its past decision and

observation history so as to make its future decision. To this end, we define the channel state

belief vector (hereinafter referred to as belief vector for briefness) Ω(t) , {ωi(t), i ∈ N}, where

0 ≤ ωi(t) ≤ 1 is the conditional probability that channel i is in good state (i.e., Si(t) = 1).

Given the sensing action A(t) and the sensing observations {Oi(t) ∈ {0, 1} : i ∈ A(t)}, the belief

vector in t+ 1 slot can be updated recursively using Bayes rule as shown in (3.1):

ωi(t+ 1) =


p11, i ∈ A(t), Oi(t) = 1

p01, i ∈ A(t), Oi(t) = 0

T (ωi(t)), i 6∈ A(t)

(3.1)

where, T (ωi(t)) = ωi(t)p11 + [1− ωi(t)]p01.

A sensing policy π specifies a sequence of functions π = [π1, π2, · · · , πT ] where πt maps

the belief vector Ω(t) to the action (i.e., the set of channels to sense) A(t) in each slot t:

πt : Ω(t)→ A(t), |A(t)| = k.

We are interested in the user’s optimization problem to find the optimal sensing policy π∗

that maximizes the expected total reward over a finite horizon:

π∗ = argmax
π

E

[
T∑
t=1

R(πt(Ω(t)))

∣∣∣∣∣Ω(1)

]
(3.2)
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where R(πt(Ω(t))) is the reward collected in slot t under the sensing policy πt with the initial

belief vector Ω(1)1.

We derive the dynamic programming formulation of (3.2) as follows:

VT (Ω(T )) = max
A(T )

E
[
1−

∏
i∈A(T )

(1− ωi(T ))
]

Vt(Ω(t)) = max
A(t)

E
[
[1−

∏
i∈A(t)

(1− ωi(t))] +
∑
E∈A(t)

∏
i∈E

ωi(t) ·
∏

j∈A(t)\E

(1− ωj(t)) · Vt+1(Ω(t+ 1))
]
,

where, Vt(Ω(t)) is the value function corresponding to the maximal expected reward from time

slot t to T (1 ≤ t ≤ T ) with the believe vector Ω(t+1) following the evolution described in (3.1)

given that the channels in the subset E are sensed in good state and the channels in A(t)\E are

sensed in bad state.

As argued in Introduction, the optimization problem (3.2) is by nature a POMDP, or RMAB,

of which the optimal policy is in general intractable. Hence, a natural alternative is to seek

simple myopic policy, i.e., the policy maximizing the immediate reward based on current believe

vector.

The following definition gives the structure of the myopic sensing policy maximizing the

reward for the current slot in the generic scenario.

Definition 3.1 (Myopic Policy under Homogeneous Channel Model with Perfect Sensing). Sort

the elements of the belief vector in descending order such that ω1(t) ≥ ω2(t) ≥ · · · ≥ ωN (t), the

myopic sensing policy in the generic case, where the user is allowed to sense k channels, consists

of sensing channel 1 to channel k.

In the next section, we show that the myopic sensing policy is optimal for the case k = 2,

T = 2 when p11 ≥ p01 and for the case k = 2, T = 2 and N ≤ 4 when p11 < p01. Beyond this

small subset, we show that the myopic policy, despite its simple structure, in general, is not

optimal by giving representative counterexamples.

3.3 Optimality of Myopic Sensing Policy

In this section, we study the optimality of the myopic sensing policy. More specifically, we

proceed our analysis in two cases: (1) T = 2, k = 2, (2) T > 2, k > 2 .

1If no information on the initial system state is available, each entry of Ω(1) can be set to the stationary
distribution ω0 = p01

1+p01−p11
.
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3.3.1 Optimality of myopic policy in the case of T = 2, k = 2

This subsection is focused on the case where the user is allowed to sense two channels each slot

and aims at maximizing the reward of the upcoming two slots. This case models the behavior

of a short-sighted user. The following two theorems study the optimality of the myopic sensing

policy in the setting with p11 ≥ p01 and p11 < p01, respectively.

Theorem 3.1 (optimality of myopic sensing policy when p11 ≥ p01 for T = 2 and k = 2). In

the case where T = 2 and k = 2, the myopic sensing policy is optimal when p11 ≥ p01.

Proof. We sort the elements of the believe vector [ω1(t), ω2(t), · · · , ωN (t)] at the beginning of

the slot t in descending order such that ω1 ≥ ω2 ≥ · · · ≥ ωN
2. Under this notation, we can

write the reward of the myopic sensing policy (i.e., sensing channel 1 and 2), denoted as R∗, as

R∗ = 1− (1− ω1)(1− ω2)︸ ︷︷ ︸
A

+ω1ω2[1− (1− p11)(1− p11)]︸ ︷︷ ︸
B

+ ω1(1− ω2)[1− (1− p11)(1− T (ω3))]︸ ︷︷ ︸
C

+ (1− ω1)ω2[1− (1− p11)(1− T (ω3))]︸ ︷︷ ︸
D

+ (1− ω1)(1− ω2)[1− (1− T (ω3)(1− F ))]︸ ︷︷ ︸
E

, (3.3)

where F = p01 when N = 3 and F = T (ω4) when N ≥ 4. More specifically, the term A denotes

the immediate reward in the current slot t; the term B denotes the expected reward of slot

t+ 1 when both channels are sensed to be good; the term C (term D, respectively) denote the

expected reward of slot t+ 1 when only channel 1 (channel 2) is sensed to be good; the term E

denotes the expected reward of slot t+ 1 when both channels are sensed to be bad.

The proof consists of showing that sensing any subset of two channels {i, j} 6= {1, 2} cannot

lead to more reward. We proceed our proof for two cases:

• {i, j} is partially overlapped with {1, 2}, i.e., {i, j}
⋂
{1, 2} 6= ∅;

• {i, j} is totally distinct to {1, 2}, i.e., {i, j}
⋂
{1, 2} = ∅.

Case 1. When {i, j} is partially overlapped with {1, 2}, without loss of generality, assume

that i = 1 and j ≥ 3, we can derive the upper bound of the expected reward of sensing channel

{i, j} = {1, j} in (3.4) (j = 3) or (3.6) (j > 3). Here by upper bound we mean that the user,

2For the simplicity of presentation, by slightly abusing the notations without introducing ambiguity, we drop
the time slot index of ωi(t).
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first sensing channel i and j in slot t and then sensing the two channels with the largest available

probability in slot t+ 1, cannot obtain the maximal reward that the user can achieve.

when j = 3,

R1 =1− (1− ω1)(1− ωj) + ω1ωj [1− (1− p11)(1− p11)]

+ ω1(1− ωj)[1− (1− p11)(1− T (ω2))] + (1− ω1)ωj [1− (1− p11)(1− T (ω2))]

+ (1− ω1)(1− ωj)[1− (1− T (ω2)(1− F ))]. (3.4)

With some algebraic operations, we have

R∗ −R1 = (1− ω1)(ω2 − ω3)(1− (1− p11)(F − p01)) ≥ 0. (3.5)

when j > 3,

R2 =1− (1− ω1)(1− ωj) + ω1ωj [1− (1− p11)(1− p11)]

+ ω1(1− ωj)[1− (1− p11)(1− T (ω2))] + (1− ω1)ωj [1− (1− p11)(1− T (ω2))]

+ (1− ω1)(1− ωj)[1− (1− T (ω2))(1− T (ω3))]. (3.6)

Furthermore, we have

R∗ −R2 =ω1(1− ω2)(ω3 − ωj)(p11 − p01)

+ (1− ω1)(T (ω2)− T (ωj))[ω2(1− p11) + (1− T (ω3))(1− ω2)]

+ (1− ω1)(T (ω2)− T (ωj))[1− (1− p11)(T (ω3)− p01)] ≥ 0. (3.7)

Thus, (3.5) and (3.7) show that the myopic sensing policy achieves the maximal reward in

this case.

Case 2. When {i, j} is totally distinct to {1, 2}, implying N ≥ 4, we can write the reward

of sensing channel {i, j} in (3.8):

R3 =1− (1− ωi)(1− ωj) + ωiωj [1− (1− p11)(1− p11)]

+ ωi(1− ωj)[1− (1− p11)(1− T (ω1))] + (1− ωj)ωj [1− (1− p11)(1− T (ω1))]

+ (1− ωi)(1− ωj)[1− (1− T (ω1))(1− T (ω2))]. (3.8)
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With some algebraic operations, we have

R2 −R3 =(1− ωj)(ω1 − ωi) + ωj(ω1 − ωi)(p11 + p11 − (p11)2)

+ (1− ωj)[p11(ω1 − ωi) + (1− p11)(ω1T (ω2)− T (ω1)ωi)]

+ ωj [(1− p11)((1− ω1)T (ω2)− (1− ωi)T (ω1))− p11(ω1 − ωi)]

+ (1− ωj)
[
− (ω1 − ωi) + (1− T (ω2))[(1− T (ω1))(1− ωi)− (1− ω1)(T (ω3))]

]
≥(1− ωj)(ω1 − ωi) + ωj(ω1 − ωi)(p11 + p11 − (p11)2)

+ (1− ωj)[p11(ω1 − ωi) + (1− p11)(ω1T (ωi)− T (ω1)ωi)]

+ ωj [(1− p11)((1− ω1)T (ωi)− (1− ωi)T (ω1))− p11(ω1 − ωi)]

+ (1− ωj)
[
− (ω1 − ωi) + (1− T (ω2))[(1− T (ω1))(1− ωi)− (1− ω1)(T (ωi))]

]
=(1− ωj)(ω1 − ωi)[p11 + (1− p11)p01 + (1− p11)(1− T (ω2))] ≥ 0

Therefore, we have

R∗ −R3 = (R∗ −R2) + (R2 −R3) ≥ 0 (3.9)

meaning that the myopic sensing policy achieves the maximal reward in this case, too.

Combining the results of both cases completes the proof of the theorem.

The following theorem studies the optimality of the myopic sensing policy when p11 < p01.

The proof follows the similar way as that of Theorem 3.1 and is thus omitted.

Theorem 3.2 (optimality of myopic sensing policy when p11 < p01 for T = 2 and k = 2). In

the case where T = 2 and k = 2, the myopic sensing policy is optimal when p11 < p01 for the

system consisting of at most 4 channels (i.e., N ≤ 4).

The optimality of the myopic sensing policy derived in this subsection, especially when

p11 ≥ p01, hinges on the fact that the eventual loss of reward in slot t + 1, if there is, is over

compensated by the reward gain in the current slot t. However, this result cannot be iterated

in the general cases. On the contrary, in the next subsection, we show that the myopic sensing

policy may not be optimal by providing a serials of representative counterexamples.

3.3.2 Non-optimality of myopic sensing policy in general cases

Counterexample 1 (k = 3, T = 2, N = 6). Consider a system with k = 3, T = 2, N = 6

and p11 > p01, the reward generated by the myopic sensing policy (sensing the 3 channels with
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highest elements in the believe vector at each slot, i.e., ω1, ω2, ω3) is given by

R∗1 =1− (1− ω1)(1− ω2)(1− ω3) + ω1ω2ω3[1− (1− p11)3]

+ [ω1ω2(1− ω3) + ω1(1− ω2)ω3 + (1− ω1)ω2ω3][1− (1− p11)2(1− T (ω4))]

+ [ω1(1− ω2)(1− ω3) + (1− ω1)ω2(1− ω3) + (1− ω1)(1− ω2)ω3]·

[1− (1− p11)(1− T (ω4))(1− T (ω5))]

+ (1− ω1)(1− ω2)(1− ω3)[1− (1− T (ω4))(1− T (ω5))(1− T (ω6))].

On the other hand, considering the sensing policy that senses the 2 highest elements and the

forth highest element in the believe vector (i.e., ω1, ω2 and ω4 according to our notation) in slot

t and senses the highest 3 elements in the believe vector in slot t+ 1, the reward generated by

this policy is

R1 =1− (1− ω1)(1− ω2)(1− ω4) + ω1ω2ω4[1− (1− p11)3]

+ [ω1ω2(1− ω4) + ω1(1− ω2)ω4 + (1− ω1)ω2ω4][1− (1− p11)2(1− T (ω3))]

+ [ω1(1− ω2)(1− ω4) + (1− ω1)ω2(1− ω4) + (1− ω1)(1− ω2)ω4]·

[1− (1− p11)(1− T (ω3))(1− T (ω5))]

+ (1− ω1)(1− ω2)(1− ω4)[1− (1− T (ω3))(1− T (ω5))(1− T (ω6))].

It is straightforward to verify that under the setting p11 = 0.5, p01 = 0.3, [ω1, ω2, · · · , ω6] =

[0.99, 0.50, 0.40, 0.39, 0.25, 0.25], it holds that R1 −R∗1 = 0.00005625 > 0.

In the case of p11 < p01, k = 3, T = 2 and N = 6, we have the reward as follows:

R∗2 =1− (1− ω1)(1− ω2)(1− ω3) + ω1ω2ω3[1− (1− T (ω6))(1− T (ω5))(1− T (ω4))]

+ [ω1ω2(1− ω3) + ω1(1− ω2)ω3 + (1− ω1)ω2ω3][1− (1− p01)(1− T (ω6))(1− T (ω5))]

+ [ω1(1− ω2)(1− ω3) + (1− ω1)ω2(1− ω3) + (1− ω1)(1− ω2)ω3][1− (1− p01)2(1− T (ω6))]

+ (1− ω1)(1− ω2)(1− ω3)[1− (1− p01)3].

R2 =1− (1− ω1)(1− ω2)(1− ω4) + ω1ω2ω4[1− (1− T (ω6))(1− T (ω5))(1− T (ω3))]
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+ [ω1ω2(1− ω4) + ω1(1− ω2)ω4 + (1− ω1)ω2ω4][1− (1− p01)(1− T (ω6))(1− T (ω5))]

+ [ω1(1− ω2)(1− ω4) + (1− ω1)ω2(1− ω4) + (1− ω1)(1− ω2)ω4][1− (1− p01)2(1− T (ω6))]

+ (1− ω1)(1− ω2)(1− ω3)[1− (1− p01)3].

Thus, we have R2 − R∗2 = 0.00002 > 0 when the parameters are set as p11 = 0.30, p01 = 0.50

and [ω1, ω2, · · · , ω6] = [0.99, 0.50, 0.40, 0.39, 0.25, 0.25].

Counterexample 2 (k = 2, T = 3, N = 6). Consider a system with k = 2, T = 3, N = 6

and p11 > p01, the reward generated by the myopic sensing policy (sensing the 2 channels with

highest elements in the believe vector at each slot, i.e., ω1, ω2) is given by

R∗ =1− (1− ω1)(1− ω2) + ω1ω2R
∗
A + [ω1(1− ω2) + (1− ω1)ω2]R∗B + (1− ω1)(1− ω2)R∗C .

R∗A =1− (1− p11)(1− p11) + p11p11[1− (1− p11)(1− p11)]

+ (p11(1− p11) + (1− p11)p11)[1− (1− p11)(1− T (ω3))]

+ (1− p11)(1− p11)[1− (1− T (ω3))(1− T (ω4))].

R∗B =1− (1− p11)(1− T (ω3)) + p11T (ω3)[1− (1− p11)(1− p11)]

+ (p11(1− T (ω3)) + (1− p11)T (ω3))[1− (1− p11)(1− T (ω4))]

+ (1− p11)(1− T (ω3))[1− (1− T (ω4))(1− T (ω5))].

R∗C =1− (1− T (ω3))(1− T (ω4)) + T (ω3)T (ω4)[1− (1− p11)(1− p11)]

+ (T (ω3)(1− T (ω4)) + (1− T (ω3))T (ω4))[1− (1− p11)(1− T (ω5))]

+ (1− T (ω3))(1− T (ω4))[1− (1− T (ω5))(1− T (ω6))].

On the other hand, considering the sensing policy that senses the highest element and the third

highest element in the believe vector (i.e., ω1, ω3 according to our notation) in slot t and senses

the highest 2 elements in the believe vector in slot t + 1 and t + 2, the reward, R1, generated

by this policy can be obtained by the similar induction of R∗.

It is straightforward to verify that under the setting p11 = 0.5, p01 = 0.4, [ω1, ω2, · · · , ω6] =

[0.999, 0.800, 0.700, 0.600, 0.500, 0.400], it holds that R1 −R∗ = 0.0001 > 0.

In the case of p11 < p01, k = 2, T = 3 and N = 6 under the setting p11 = 0.4, p01 = 0.5,

[ω1, ω2, · · · , ω6] = [0.99, 0.50, 0.40, 0.39, 0.25, 0.25] with the similar policy as that of p11 > p01,

it holds that R1 −R∗ = 0.0025 > 0.
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We are now ready to state the major result in this paper.

Theorem 3.3 (Non-optimality of Myopic Sensing Policy in General Cases). The myopic sensing

policy is not guaranteed to be optimal in the general cases.

To conclude this section, it is insightful to note that the optimality of the myopic sens-

ing policy, stated in Theorem 3.1, Theorem 3.2 and Theorem 3.3, hinges on the fundamental

trade-off between exploration, by sensing unexplored channels in order to learn and predict the

future channel state, thus increasing the long-term reward (e.g., term B,C,D,E in (3.3)), and

exploitation, by accessing the channel with the highest estimated good probability based on cur-

rently available information (the belief vector) which greedily maximizes the immediate reward

(e.g., term A in (3.3)). For a short-sighted user (T = 1 and T = 2), exploitation naturally dom-

inates exploration (i.e., the immediate reward overweighs the potential gain in future reward),

resulting in the optimality of the myopic sensing policy in a subset of this scenario. In contrast,

to achieve maximal reward for T ≥ 3, the user should strike a balance between exploration and

exploitation. In such context, the myopic sensing policy that greedily maximizes the immediate

reward is no more optimal.

3.4 Conclusion

We study the optimality of the myopic policy in the generic scenario of opportunistic spectrum

access of multi-channel communication system. We show that the myopic sensing policy is

optimal only for a small subset of cases where a user is allowed to sense two channels each slot.

In the generic case, we give counterexamples to show that the myopic sensing policy, despite its

simple structure, is not optimal, which is contrary to the results [47] where the myopic policy

is optimal when a user is permitted to accrue the reward on every channel sensed to be good.

More research thus should be devoted to studying the intrinsic structure of the myopic policy

and its optimality, which is the focus of the following chapters of this thesis.



Chapter 4

An Axiomatic Analysis on

Optimality of Myopic Sensing Policy

in OSA under Imperfect Sensing:

the Case of Homogeneous Channels

4.1 Introduction

As illustrated in the chapter 3, the optimality of myopic policy is not always guaranteed. In

such context, a natural while fundamentally important question arises: under what conditions

is the myopic policy guaranteed to be optimal? In this chapter and the next chapter, we

answer the above posed question by performing an axiomatic study on the optimality of the

myopic policy for the the case of homogeneous channels and the case of heterogeneous channels,

respectively. More specifically, we develop three axioms characterizing a family of functions

which we refer to as regular functions, which are generic and practically important. We then

establish the optimality of the myopic policy when the reward function can be expressed as a

regular function and the discount factor is bounded by a closed-form threshold determined by

the reward function. We also illustrate how the derived results, generic in nature, are applied

to analyze a class of RMAB problems arising from multi-channel opportunistic access.

In our study, we also take into consideration the imperfect channel state sensing due to

sensing error. Note that the vast majority of studies in the area assume perfect observation of

26
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channel states. However, sensing or observation errors are inevitable in practical scenario (e.g.,

due to noise and system limitations), especially in wireless communication systems which is the

focus of our work. More specifically, a good (bad, respectively) channel may be sensed as bad

(good) and accessing a bad channel leads to zero reward. In such context, it is crucial to study

the structure and the optimality of the myopic sensing policy with imperfect observation. We

would like to emphasize that the presence of sensing error brings two difficulties when studying

the myopic sensing policy in this new context.

• The belief vector evolves as a non-linear mapping instead of a linear one in the perfect

sensing case;

• In the non-perfect sensing case, the belief value of a channel depends not only on the

channel evolution itself, but also on the observation outcome, meaning that the transition

is not deterministic.

Due to the above particularities1, our problem requires an original study on the optimality

of the myopic sensing policy that cannot draw on existing results in the perfect sensing case.

We would like to report that despite its practical importance and particularities, very few work

has been done on the impact of sensing error on the performance of the myopic sensing policy,

or more generically, on the RMAB problem under imperfect observation. To the best of our

knowledge, [48] is the only work in this area, where the optimality of the myopic policy is

proved for the case of two channels with a particular utility function. In this chapter, we derive

closed-form conditions to guarantee the optimality of the myopic sensing policy under imperfect

sensing for arbitrary N and for a class of utility functions.

The rest of the chapter is organized as follows: Section 4.2 formulates the system model;

Section 4.3 establishes a set of axioms characterizing a class of generic utility functions; Sec-

tion 4.4 studies the optimality of the myopic policy and illustrates the application of the derived

results via two typical examples; The chapter is concluded by Section 4.5.

1Please refer to the remark of (4.1) for a detailed analysis
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4.2 Problem Formulation

4.2.1 System Model

We consider a multi-channel opportunistic communication system, in which a user is able to

access a set N of N independent channels, each characterized by a Markov chain of two states,

good (1) and bad (0). The channel state transition matrix P(i) for channel i (i ∈ N ) is given as

follows

P(i) =

p(i)
11 1− p(i)

11

p
(i)
01 1− p(i)

01

 ,
where

p
(i)
01 = prob(channel i is good in the current slot given being bad in the previous slot),

p
(i)
11 = prob(channel i is good in the current slot given being good in the previous slot).

We assume that channels go through state transition at the beginning of each slot t. The sys-

tem operates in a synchronous time slot fashion with the time slot indexed by t (t = 1, 2, · · · , T ),

where T is the time horizon of interest.

Due to hardware constraints and energy cost, the user is allowed to sense only k (1 ≤ k ≤ N)

of the N channels at each slot t. We assume that the user makes the channel selection decision

at the beginning of each slot after the channel state transition. Once a channel is chosen, the

user detects the channel state Si(t), which can be considered as a binary hypothesis test:

H0 : Si(t) = 1 (good) vs. H1 : Si(t) = 0 (bad).

The performance of channel i state detection is characterized by the probability of false alarm

εi and the probability of miss detection δi:

εi , Pr{decide H1 | H0 is true },

ζi , Pr{decide H0 | H1 is true }.

We denote the set of channels chosen by the user at slot t by A(t) where A(t) ⊆ N and

|A(t)| = k.We assume that the user only transmit packets on the channels sensed to be good.

We also assume that when the receiver successfully receives a packet from a channel, it
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sends an acknowledgement to the transmitter over the same channel at the end of the slot. The

absence of an ACK (NACK) signifies that the transmitter does not transmit over this channel or

transmitted but the channel is busy in this slot. We assume that acknowledgement are received

without error since acknowledgements are always transmitted over idle channels [48].

4.2.2 Restless Multi-Armed Bandit Formulation

Obviously, by imperfectly sensing only k out of N channels, the user cannot observe the state

information of the whole system. Hence, the user has to infer the channel states from its

past decision and observation history so as to make its future decision. To this end, we define

the channel state belief vector (hereinafter referred to as belief vector for briefness) Ω(t) ,

{ωi(t), i ∈ N}, where 0 ≤ ωi(t) ≤ 1 is the conditional probability that channel i is in good

state (i.e., Si(t) = 1). As stated in [48], in order to ensure that the user and its intended

receiver tune to the same channel in each slot, channel selections should be based on common

observations {0 (NACk), 1 (ACK)}k rather than the detection outcomes at the transmitter.

Given the sensing action A(t) and the common observations {Oi(t) ∈ {0, 1} : i ∈ A(t)}, the

belief vector in t+ 1 slot can be updated recursively using Bayes Rule as shown in (4.1):

ωi(t+ 1) =


p

(i)
11 , i ∈ A(t), Oi(t) = 1

Ti(ϕi(ωi(t))), i ∈ A(t), Oi(t) = 0

Ti(ωi(t)), i 6∈ A(t)

(4.1)

where,

Ti(ωi(t)) , ωi(t)p
(i)
11 + (1− ωi(t))p(i)

01 , (4.2)

ϕi(ωi(t)) ,
εiωi(t)

1− (1− εi)ωi(t)
. (4.3)

Note that the belief update under Oi(t) = 0 results from the fact that the receiver i cannot

distinguish a failed transmission (i.e., collides with the primary user with probability δi(1 −

ωi(t))) from no transmission (with probability εiωi(t) + (1− δi)(1− ωi(t))) [48].

Remark. We would like to emphasize that the sensing error introduces further complications in

the system dynamics (i.e., ϕi(ωi(t)) is non-linear with ωi(t)) compared with the perfect sensing

case. Therefore, those results [10, 15, 49] obtained without sensing error cannot be trivially
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extended to the scenario with sensing error.

A sensing policy π specifies a sequence of functions π = [π1, π2, · · · , πT ] where πt maps

the belief vector Ω(t) to the action (i.e., the set of channels to sense) A(t) in each slot t:

πt : Ω(t)→ A(t), |A(t)| = k.

Given the imperfect sensing context, we are interested in the user’s optimization problem

to find the optimal sensing policy π∗ that maximizes the expected total discounted reward over

a finite horizon:

π∗ = argmax
π

E

[
T∑
t=1

βt−1R(πt(Ω(t)))

∣∣∣∣∣Ω(1)

]
(4.4)

where R(πt(Ω(t))) is the reward collected in slot t under the sensing policy πt with the initial

belief vector Ω(1)2, 0 ≤ β ≤ 1 is the discount factor characterizing the feature that the future

rewards are less valuable than the immediate reward. By treating the belief value of each

channel as the state of each arm of a bandit, the user’s optimization problem can be cast into

a restless multi-armed bandit problem.

4.2.3 Myopic Sensing Policy

In order to get more insight on the structure of the optimization problem formulated in (4.4)

and the complexity to solve it, we derive the dynamic programming formulation of (4.4) as

follows:

VT (Ω(T )) = max
A(T )

E
[
R(πt(Ω(T )))

]
,

Vt(Ω(t)) = max
A(t)

E
[
R(πt(Ω(t))) + β

∑
E⊆A(t)

∏
i∈E

(1− εi)ωi(t)
∏

j∈A(t)\E

[1− (1− εj)ωj(t)]Vt+1(Ω(t+ 1))
]
.

In the above Bellman equations, Vt(Ω(t)) is the value function corresponding to the maximal

expected reward from time slot t to T (1 ≤ t ≤ T ) with the belief vector Ω(t+ 1) following the

evolution described in (4.1) given that the channels in the subset E are sensed in good state

(i.e., receiving ACK) and the channels in A(t)\E are sensed in bad state.

Solving (4.4) using the above recursive iteration is computationally heavy due to the fact

that the belief vector {Ω(t), t = 1, 2, · · · , T} is a Markov chain with uncountable state space

when T →∞, resulting the difficulty in tracing the optimal sensing policy π∗. Hence, a natural

2If no information on the initial system state is available, each entry of Ω(1) can be set to the stationary

distribution ω
(i)
0 =

p
(i)
01

1+p
(i)
01 −p

(i)
11

, 1 ≤ i ≤ N .
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alternative is to seek simple myopic sensing policy which is easy to compute and implement

that maximizes the immediate reward, formally defined as follows:

Definition 4.1 (Myopic Policy). Let the expected reward function F (ΩA(t)) , E[R(πt(Ω(t)))]

denote the expected immediate reward obtained in slot t under the sensing policy πt (i.e., sensing

the channels in A(t)). The myopic sensing policy A(t), consists of sensing the k channels that

maximizes F (ΩA(t)), i.e., A(t) = argmaxA(t) F (ΩA(t)).

Despite its simple and robust structure, the optimality of the myopic sensing policy is not

guaranteed. More specifically, when the channels are stochastically identical (i.e., all channels

follow the same Markovian dynamics P(i) = P,∀i ∈ N ) and positively correlated, the myopic

sensing policy is shown to be optimal when the user is limited to sensing one channel each slot

(k = 1) and obtains one unit of reward when the sensed channel is good [13]. The analysis [49]

and our work in the previous chapter further extend the study on the generic case where k ≥ 1.

However, the authors [49] show that the myopic sensing policy is optimal if the user gets one

unit of reward for each channel sensed to be good3, while our work shows that the myopic

sensing policy is not guaranteed to be optimal when the user’s objective is to find at least one

good channel4. Given that such nuance on the reward function leads to totally contrary results,

a natural while fundamentally important question arises: how does the expected slot reward

function F (ΩA(t)) impact the optimality of the myopic sensing policy? Or more specifically,

under what conditions on F (ΩA(t)) is the myopic sensing policy guaranteed to be optimal?

In the sequel analysis in Section 4.3-4.4 by performing an axiomatic study, we shall give

affirmative answer to the above posed questions and study some important engineering impli-

cations behind the myopic sensing policy for the case of homogeneous channels in this chapter,

while the case of the heterogeneous channels would be discussed in the next chapter.

In the following we summarize the assumptions in this chapter:

A1. P(i) = P,∀i ∈ N (Homogeneous Channels);

A2. p
(i)
11 > p

(i)
01 ,∀i ∈ N (Positively Correlated Channels);

A3. εi = ε, ∀i ∈ N .

3Formally, in [49], the expected slot reward function is defined as F (ΩA(t)) =
∑
i∈A(t) ωi(t)

4In the previous chapter, the expected slot reward function is defined as F (Ω(t)) = 1−
∏
i∈A(t)(1− ωi(t))
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Note that the channel model under Assumption A2 corresponds to the realistic scenarios where

the channel states are observed to evolve gradually over time. Under the assumptions A1–A3,

we drop the channel index for notation simplicity in the rest of this chapter.

To conclude this subsection, we state some structural properties of T (ωi(t)) and ϕ(ωi(t))

that are useful in the subsequent proofs.

Lemma 4.1. For positively correlated channel, i.e., p01 < p11, we have

• T (ωi(t)) is monotonically increasing in ωi(t);

• p01 ≤ T (ωi(t)) ≤ p11, ∀ 0 ≤ ωi(t) ≤ 1.

Proof. It follows from T (ωi(t)) = (p11 − p01)ωi(t) + p01 straightforwardly.

Lemma 4.2. If 0 ≤ ε ≤ (1−p11)p01
p11(1−p01) and p01 < p11, then

• ϕ(ωi(t)) increases monotonically in ωi(t) with ϕ(0) = 0 and ϕ(1) = 1;

• ϕ(ωi(t)) ≤ p01, ∀p01 ≤ ωi(t) ≤ p11.

Proof. Noticing that ϕ(ωi) = εωi(t)
εωi(t)+1−ωi(t) , the lemma follows straightforwardly.

4.3 Axioms

This section introduces a set of three axioms characterizing a family of generic and practically

important functions, to which we refer as regular functions. The axioms developed in this

section and the implied fundamental properties serve as a basis for the further analysis on the

structure and the optimality of the myopic sensing policy in Section 4.4.

Throughout this section, for the convenience of presentation, we sort the elements of the

believe vector Ω(t) = [ω1(t), · · · , ωN (t)] for each slot t such that A = {1, · · · , k} (i.e., the user

senses channel 1 to channel k) and let ΩA , {ωi : i ∈ A} = {ω1, · · · , ωk}5. The three axioms

derived in the following characterize a generic function f defined on ΩA.

Axiom 1 (Symmetry). A function f(ΩA) : [0, 1]k → R is symmetrical if ∀i, j ∈ A it holds that

f(ω1, · · · , ωi, · · · , ωj , · · · , ωk) = f(ω1, · · · , ωj , · · · , ωi, · · · , ωk).
5For presentation simplicity, by slightly abusing the notations without introducing ambiguity, we drop the

time slot index t.
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Axiom 2 (Monotonicity). A function f(ΩA) : [0, 1]k → R is monotonically increasing if it is

monotonically increasing in each variable ωi, i.e., ∀i ∈ A

ω′i > ωi =⇒ f(ω1, · · · , ω′i, · · · , ωk) > f(ω1, · · · , ωi, · · · , ωk).

Axiom 3 (Decomposability). A function f(ΩA) : [0, 1]k → R is decomposable if ∀i ∈ A it holds

that

f(ω1, · · · , ωi, · · · , ωk) = ωif(ω1, · · · , 1, · · · , ωk) + (1− ωi)f(ω1, · · · , 0, · · · , ωk).

Axioms 4 and 5 are intuitive. Axiom 6 on the decomposability states that f(ΩA) can always

be decomposed into two terms that replace ωi by 0 and 1, respectively. The three axioms

introduced in this section are consistent and non-redundant. Moreover, they can be used to

characterize a family of generic functions, referred to as regular functions, defined as follows:

Definition 4.2 (Regular Function). A function is called regular if it satisfies all the three

axioms.

The following definition studies the structure of the myopic sensing policy if the expected

reward function is regular.

Definition 4.3 (Structure of Myopic Sensing Policy). Sort the elements of the belief vector in

descending order such that ω1 ≥ · · · ≥ ωN , if the expected reward function F is regular, then

the myopic sensing policy A, where the user is allowed to sense k channels, consists of sensing

channel 1 to channel k.

Remark. In case of tie, we sort the channels in tie in the descending order of ωi(t+1) calculated

in (4.1). The argument is that larger ωi(t+ 1) leads to larger expected payoff in next slot t+ 1.

If the tie persists, the channels are sorted by indexes.

We would like to emphasize that the developed three axioms characterize a set of generic

functions widely used in practical applications. To see this, we give two examples to get more

insight: (1) The user gets one unit of reward for each channel that is sensed good and is

indeed good. In this example, the expected reward function (for each slot), denoted as F , is

the expected slot reward function is F (ΩA) =
∑k

i=1[(1 − ε)ωi]; (2) The user gets one unit of

reward if at least one channel is sensed good. In this example, the expected reward function
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is F (ΩA) = 1 −
∏k
i=1[1 − (1 − ε)ωi]. It can be verified that in both examples, F is regular by

satisfying the three axioms.

4.4 Optimality of Myopic Sensing Policy under Imperfect Sens-

ing

The goal of this section is to establish closed-form conditions under which the myopic sensing

policy, despite of its simple structure, achieves the system optimum under imperfect sensing.

To this end, we set up by defining an auxiliary function and studying the structural properties

of the auxiliary function, which serve as a basis in the study of the optimality of the myopic

sensing policy. We then establish the main result on the optimality followed by the illustration

on how the obtained result can be applied via two concrete application examples.

For the convenience of discussion, we firstly state some notations before presenting the

analysis:

• N (m) denotes the first m channles in belief vector;

• Given E ⊆M ⊆ N , Pr(M, E) ,
∏
i∈E

(1− ε)ωi(t)
∏

j∈M\E

[1− (1− ε)ωj(t)];

• PE11 denotes the vector of length |E| with each element being p11;

• Φ(l,m) , [τ(ωi(t)) : l ≤ i ≤ m] where the components are sorted by belief value;

Φi(l,m) , [τ(ωj(t)) : l ≤ j ≤ m, j 6= i, ωj(t) ≥ ωi(t)]; Φj(l,m) , [τ(ωi(t)) : l ≤ i ≤ m, i 6=

j, ωj(t) > ωi(t)]; Φj
i (l,m) , [τ(ωh(t)) : l ≤ h ≤ m,h 6= i, h 6= j, ωj(t) > ωh(t) ≥ ωi(t)];

• Given E ⊆ M ⊆ N , QM,E , [T (ϕ(ωi(t))) : i ∈ M \ E ] where the components are sorted

by belief value; Q
M,E,l

, [T (ϕ(ωi(t))) : i ∈ M \ E \ {l} and ωi(t) ≥ ωl(t)]; QM,E,l ,

[T (ϕ(ωi(t))) : i ∈M \ E \ {l} and ωi(t) < ωl(t)];

• Let ω−i , {ωj : j ∈ A, j 6= i} and


∆max , max

ω−i∈[0,1]k−1
{F (1, ω−i)− F (0, ω−i)},

∆min , min
ω−i∈[0,1]k−1

{F (1, ω−i)− F (0, ω−i)}.
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4.4.1 Definition and Properties of Auxiliary Value Function

In this subsection, inspired by the form of the value function Vt(Ω(t)) and the analysis in [47],

we first define the auxiliary value function with imperfect sensing and then derive several funda-

mental properties of the auxiliary value function, which are crucial in the study on the optimality

of the myopic sensing policy.

Definition 4.4 (Auxiliary Value Function under Imperfect Sensing). The auxiliary value func-

tion, denoted as Wt(Ω(t)) (1 ≤ t ≤ T , t+ 1 ≤ r ≤ T ) is recursively defined as follows:


WT (Ω(T )) = F (ΩA(T ));

Wr(Ω(r)) = F (ΩA(r)) + β
∑
E⊆A(r) Pr(A(r), E)Wr+1(ΩE(r + 1));

Wt(Ω(t)) = F (ΩN (k)(t)) + β
∑
E⊆N (k) Pr(N (k), E)Wt+1(ΩE(t+ 1)),

(4.5)

where ΩE(t+1) and ΩE(r+1) are generated by 〈Ω(t),N (k), E〉 and 〈Ω(r),A(r), E〉, respectively,

according to (4.1), and then sorted by belief value.

The above recursively defined auxiliary value function gives the expected discounted accu-

mulated reward of the following sensing policy: in slot t sense the first k channels in the belief

vector and then sense the channels in A(r) (t+ 1 ≤ r ≤ T ) (i.e., adopt the myopic policy from

slot t + 1 to T ). If N (k) = A(t), then the above sensing policy is the myopic sensing policy

with Wt(Ω(t)) being the total reward from slot t to T .

In the subsequent analysis of this subsection, we prove some structural properties of the

auxiliary value function.

Lemma 4.3 (Symmetry). Given 0 ≤ ε ≤ (1−p11)p01
p11(1−p01) , if F is regular, the correspondent auxiliary

value function Wt(Ω(t)) is symmetrical in ωi, ωj where i, j ∈ A(t) or i, j /∈ A(t) for all t =

1, 2, · · · , T , i.e.,

Wt(ω1, · · · , ωi, · · · , ωj , · · · , ωN ) = Wt(ω1, · · · , ωj , · · · , ωi, · · · , ωN ).

Proof. The proof is given in the appendix.

Lemma 4.4 (Decomposability). Given 0 ≤ ε ≤ (1−p11)p01
p11(1−p01) , if F is regular, then the correspon-

dent auxiliary value function Wt(Ω(t)) is decomposable for all t = 1, 2, · · · , T and ∀l ∈ N ,
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i.e.,

Wt(ω1, · · · , ωl, · · · , ωN ) = ωlWt(ω1, · · · , 1, · · · , ωN ) + (1− ωl)Wt(ω1, · · · , 0, · · · , ωN ).

Proof. The proof is given in the appendix.

To demonstrate the property of decomposability of the auxiliary function which is crucial

to the study of the optimality, we provide an illustrative example in the following.

Lemma 4.4 can be applied one step further to prove the following corollary.

Corollary 4.1. Given 0 ≤ ε ≤ (1−p11)p01
p11(1−p01) , if F is regular, then for any l,m ∈ N , t = 1, 2, · · · , T ,

it holds

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN )−Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN )

= (ωl − ωm)
[
Wt(ω1, · · · , 1, · · · , 0, · · · , ωN )−Wt(ω1, · · · , 0, · · · , 1, · · · , ωN )

]
.

4.4.2 Optimality of Myopic Sensing under Imperfect Sensing

In this section, we study the optimality of the myopic sensing policy under imperfect sensing.

We start by showing the following important auxiliary lemmas (Lemma 4.5, 4.7 and 4.8) and

then establish the sufficient condition under which the optimality of the myopic sensing policy

is guaranteed.

Lemma 4.5. Given that (1) ε < p01(1−p11)
P11(1−p01) , (2) β ≤ ∆min

∆max

[
(1−ε)(1−p01)+

ε(p11−p01)
1−(1−ε)(p11−p01)

] , and (3)

F is regular, if p11 ≥ ωi ≥ p01, i ∈ N , l < m and ωl > ωm, for any 1 ≤ t ≤ T , it holds that

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN ) ≥Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN ).

Lemma 4.6. Given that (1) ε < p01(1−p11)
P11(1−p01) , (2) β ≤ ∆min

∆max

[
(1−ε)(1−p01)+

ε(p11−p01)
1−(1−ε)(p11−p01)

] , and (3)

F is regular, if p11 ≥ ω1 ≥ · · · ≥ ωN ≥ p01, for any 1 ≤ t ≤ T , it holds that

Wt(ω1, · · · , ωk−1, ωk, · · · , ωN−1, ωN )−Wt(ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1) ≤ (1−ωN )∆max,

Based on Lemma 4.3, Wt(ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1) = Wt(ωN , ω1, · · · , ωN−1), com-

bined with Lemma 4.6, we have the following Lemma 4.7:
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Lemma 4.7. Given that (1) ε < p01(1−p11)
P11(1−p01) , (2) β ≤ ∆min

∆max

[
(1−ε)(1−p01)+

ε(p11−p01)
1−(1−ε)(p11−p01)

] , and (3)

F is regular, if p11 ≥ ω1 ≥ · · · ≥ ωN ≥ p01, for any 1 ≤ t ≤ T , it holds that

Wt(ω1, · · · , ωk−1, ωk, · · · , ωN−1, ωN )−Wt(ωN , ω1, · · · , ωk−1, ωk, · · · , ωN−1) ≤ (1−ωN )∆max,

Lemma 4.8. Given that (1) ε < p01(1−p11)
P11(1−p01) , (2) β ≤ ∆min

∆max

[
(1−ε)(1−p01)+

ε(p11−p01)
1−(1−ε)(p11−p01)

] , and (3)

F is regular, if p11 ≥ ω1 ≥ · · · ≥ ωN ≥ p01, for any 1 ≤ t ≤ T , it holds that

Wt(ω1, · · · , ωN )−Wt(ωN , ω2, · · · , ωN−1, ω1) ≤ (p11−p01)∆max
1− [β(1− ε)(p11 − p01)]T−t+1

1− β(1− ε)(p11 − p01)
.

Lemma 4.5 states that by swapping two elements in Ω with the former larger than the latter,

the user does not increase the total expected reward. Lemma 4.7 and 4.8, on the other hand,

give the upper bounds on the difference of the total reward of the two swapping operations,

swapping ωN and ωj (j = N − 1, · · · , 1) and swapping ω1 and ωN , respectively. For clarity of

presentation, the detailed proofs of the three lemmas are deferred to the Appendix. From a

technical point of view, it is insightful to compare the methodology in the proof with that in the

analysis presented in [49] for the perfect sensing case with k = 1. The key point of the analysis

in [49] lies in the coupling argument leading to Lemma 3 in [49]. This analysis, however, cannot

be directly applied in the generic case with imperfect sensing due to the non-linear update of

the belief vector as stated in the remark after equation (4.1). Hence, we base our analysis on

the intrinsic structure of the auxiliary value function W and investigate the different ‘branches’

of channel realizations to derive the relevant bounds, which are further applied to study the

optimality of the myopic sensing policy, as stated in the following theorem.

Theorem 4.1. If p01 ≤ ωi(1) ≤ p11, i ∈ N , the myopic sensing policy is optimal if the following

conditions hold: (1) F is regular; (2) ε < p01(1−p11)
P11(1−p01) ; (3) β ≤ ∆min

∆max

[
(1−ε)(1−p01)+

ε(p11−p01)
1−(1−ε)(p11−p01)

] .

Proof. It suffices to show that for t = 1, · · · , T , by sorting Ω(t) in decreasing order such that

ω1 ≥ · · · ≥ ωN , it holds that Wt(ω1, · · · , ωN ) ≥ Wt(ωi1 , · · · , ωiN ), where (ωi1 , · · · , ωiN ) is any

permutation of (1, · · · , N).

We prove the above inequality by contradiction. Assume, by contradiction, the maximum

of Wt is achieved at (ωi∗1 , · · · , ωi∗N ) 6= (ω1, · · · , ωN ), i.e.,

Wt(ωi∗1 , · · · , ωi∗N ) > Wt(ω1, · · · , ωN ). (4.6)
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However, run a bubble sort algorithm on (ωi∗1 , · · · , ωi∗N ) by repeatedly stepping through

it, comparing each pair of adjacent element ωi∗l and ωi∗l+1
and swapping them if ωi∗l < ωi∗l +1.

Note that when the algorithm terminates, the channel belief vector are sorted decreasingly,

that is to say, it becomes (ω1, · · · , ωN ). By applying Lemma 4.5 at each swapping, we have

Wt(ωi∗1 , · · · , ωi∗N ) ≤Wt(ω1, · · · , ωN ), which contradicts to (4.6). Theorem 4.1 is thus proven.

As noted in [48], when the initial belief ωi(1) is set to p01
p01+1−p11 as is often the case in

practical systems, it can be checked that p01 ≤ ωi(1) ≤ p11 holds. Moreover, even the initial

belief value does not fall in [p01, p11], all the the belief values are bounded in the interval from

the second slot following Lemma 4.1. Hence our results can be extended by treating the first

slot separately from the future slots.

4.4.3 Discussion

In this subsection, we illustrate the application of the result obtained above in two concrete

scenarios and compare our work with the existing results.

Consider the channel access problem in which the user is limited to sense k channels and gets

one unit of reward if a sensed channel is in the good state (i.e., receiving ACK), thus the utility

function can be formulated as F (ΩA) = (1− ε)
∑

i∈A ωi. Note that the optimality of the myopic

sensing policy under this model is studied in [48] for a subset of scenarios where k = 1, N = 2.

We now study the generic case with k,N ≥ 2. To that end, we apply Theorem 4.1. Notice in

this example, we have ∆min = ∆max = 1 − ε. We can then verify that when ε < p01(1−p11)
P11(1−p01) , it

holds that ∆min

∆max[(1−ε)(1−p01)+
ε(p11−p01)

1−(1−ε)(p11−p01)
]
> 1. Therefore, when the condition 1 and 2 holds,

the myopic sensing policy is optimal for any β. This result in generic cases significantly extends

the results obtained in [48] where the optimality of the myopic policy is proved for the case of

two channels and only conjectured for general cases.

Next consider another special scenario where the user can sense and access all channels

that are sensed as good, and gets one unit of reward if any of the channels has a successful

transmission. Under this model, the user wants to maximize its expected throughput. More

specifically, the slot utility function F = F (ΩA) = 1−Πi∈A[1− (1− ε)ωi], which is regular. In

this context, we have ∆max = (1−ε)k−1pk−1
11 and ∆min = (1−ε)k−1pk−1

01 . The third condition on

for the myopic policy to be optimal becomes β ≤ pk−1
01

pk−1
11 [(1−ε)(1−p01)+

ε(p11−p01)
1−(1−ε)(p11−p01)

]
. Particularly,

when ε = 0, β ≤ pk−1
01

pk−1
11 (1−p01)

. It can be noted that even when there is no sensing error, the
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myopic policy is not ensured to be optimal for any β.

4.5 Conclusion

In this paper, we have investigated the problem of opportunistic channel access under imperfect

channel state sensing. We have derived closed-form conditions under which the myopic sensing

policy is ensured to be optimal. Due to the generic RMAB formulation of the problem, the

obtained results and the analysis methodology presented in this paper are widely applicable in

a wide range of domains.

4.6 Appendix

4.6.1 Proof of Lemma 4.3

Recall Wt(Ω(t)) = F (ΩN (k)(t)) + β
∑
E⊆N (k) Pr(N (k), E)Wt+1(ΩE(t+ 1)), we prove the lemma

by distinguishing the following two cases:

• Case 1: i, j ∈ A(t). Noticing that (1) both F and
∑
E⊆N (k)

Pr(N (k), E) =
∑
E⊆A(t)

Pr(A(t), E)

are symmetrical w.r.t. ωi and ωj , (2) (ω1, · · · , ωi, · · · , ωj , · · · , ωN ) and (ω1, · · · , ωj , · · · , ωi, · · · , ωN )

generate the same belief vector ΩE(t+1) for any E , and (3) myopic policy is adopted from

slot t+ 1 to T , it holds that Wt+1(ΩE(t+ 1)) is symmetrical w.r.t. ωi and ωj .

• Case 2: i, j /∈ A(t). Noticing that (1) both F and
∑
E⊆N (k)

Pr(N (k), E) =
∑
E⊆A(t)

Pr(A(t), E)

are unrelated to ωi, ωj , (2) (ω1, · · · , ωi, · · · , ωj , · · · , ωN ) and (ω1, · · · , ωj , · · · , ωi, · · · , ωN )

generate the same belief vector ΩE(t+1) for any E , and (3) myopic policy is adopted from

slot t+ 1 to T , it holds that Wt+1(ΩE(t+ 1)) is symmetrical w.r.t. ωi and ωj .

Combing the analysis completes the proof.

4.6.2 Proof of Lemma 4.4

We prove the lemma by backward induction. Firstly, it can be checked that Lemma 4.4 holds

for slot T .

Assume that Lemma 4.4 holds for slots t + 1, · · · , T , we now prove that it holds for slot t

by distinguishing the following two cases.
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• Case 1: l is not sensed in slot t, i.e. l ≥ k + 1. In this case, let M , N (k) = {1, · · · , k},

we have

Wt(ω1, · · · , ωl, · · · , ωn) =F (ω1, · · · , ωk) + β
∑
E⊆M

Pr(M, E)Wt+1(ΩEl (t+ 1)),

where

ΩEl (t+ 1) =(PE11,Φl(k + 1, N), τ(ωl),Φ
l(k + 1, N),QM,E).

Let ωl = 0 and 1, respectively, we have

Wt(ω1, · · · , 0, · · · , ωn) =F (ω1, · · · , ωk) + β
∑
E⊆M

Pr(M, E)Wt+1(ΩEl,0(t+ 1)),

Wt(ω1, · · · , 1, · · · , ωn) =F (ω1, · · · , ωk) + β
∑
E⊆M

Pr(M, E)Wt+1(ΩEl,1(t+ 1)),

where

ΩEl,0(t+ 1) =(PE11,Φl(k + 1, N), p01,Φ
l(k + 1, N),QM,E),

ΩEl,1(t+ 1) =(PE11,Φl(k + 1, N), p11,Φ
l(k + 1, N),QM,E).

To prove the lemma in this case, it is sufficient to prove

Wt+1(ΩEl (t+ 1)) = (1− ωl)Wt+1(ΩEl,0(t+ 1)) + ωlWt+1(ΩEl,1(t+ 1)). (4.7)

From the induction result, we have

Wt+1(ΩEl (t+ 1)) =τ(ωl) ·Wt+1(PE11,Φl(k + 1, N), 1,Φl(k + 1, N),QM,E)

+ (1− τ(ωl)) ·Wt+1(PE11,Φl(k + 1, N), 0,Φl(k + 1, N),QM,E),

(4.8)

Wt+1(ΩEl,0(t+ 1)) =p01 ·Wt+1(PE11,Φl(k + 1, N), 1,Φl(k + 1, N),QM,E)

+ (1− p01) ·Wt+1(PE11,Φl(k + 1, N), 0,Φl(k + 1, N),QM,E),

(4.9)
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Wt+1(ΩEl,0(t+ 1)) =p11 ·Wt+1(PE11,Φl(k + 1, N), 1,Φl(k + 1, N),QM,E)

+ (1− p11) ·Wt+1(PE11,Φl(k + 1, N1), 0,Φl(k + 1, N),QM,E).

(4.10)

Combing (4.8), (4.9), (4.10), we obtain (4.7).

• Case 2: l is sensed in slot t, i.e. l ≤ k. In this case, let M , N (k) \ {l} = {1, · · · , l −

1, l + 1, · · · , k}, it follows (4.5) that

Wt(Ω(t)) =F (ω1, · · · , ωl, · · · , ωk)

+ β(1− ε)ωl
∑
E⊆M

Pr(M, E)Wt+1(PE11, p11,Φ(k + 1, N),Q
M,E,l

,QM,E,l)

+ β[1− (1− ε)ωl]
∑
E⊆M

Pr(M, E)Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, τ(ϕ(ωl)),Q
M,E,l).

Let ωl = 0 and 1, respectively, we have

Wt(ω1, · · · , 0, · · · , ωn) =F (ω1, · · · , 0, · · · , ωk)

+ β
∑
E⊆M

Pr(M, E)Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, p01,Q
M,E,l),

Wt(ω1, · · · , 1, · · · , ωn) =F (ω1, · · · , 1, · · · , ωk)

+ β(1− ε)
∑
E⊆M

Pr(M, E)Wt+1(PE11, p11,Φ(k + 1, N),Q
M,E,l

,QM,E,l)

+ βε
∑
E⊆M

Pr(M, E)Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, p11,Q
M,E,l).

To prove the lemma in this case, it is sufficient to show

[1− (1− ε)ωl]Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, τ(ϕ(ωl)),Q
M,E,l)

= (1− ωl)Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, p01,Q
M,E,l)

+ εωlWt+1(PE11,Φ(k + 1, N),Q
M,E,l

, p11,Q
M,E,l). (4.11)

From the induction result, we have

Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, τ(ϕ(ωl)),Q
M,E,l)

= τ(ϕ(ωl))Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, 1,QM,E,l)
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+ (1− τ(ϕ(ωl)))Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, 0,QM,E,l), (4.12)

Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, p01,Q
M,E,l)

= p01Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, 1,QM,E,l)

+ (1− p01)Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, 0,QM,E,l), (4.13)

Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, p11,Q
M,E,l)

= p11Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, 1,QM,E,l)

+ (1− p11)Wt+1(PE11,Φ(k + 1, N),Q
M,E,l

, 0,QM,E,l). (4.14)

Combing (4.12), (4.13), (4.14), we obtain (4.11).

Combing the above analysis completes our proof.

4.6.3 Proof of Lemma 4.5, Lemma 4.6, Lemma 4.7 and Lemma 4.8

Due to the dependency among the three lemmas, we prove them together by backward induction.

We first show that Lemma 4.5 – 4.8 hold for slot T . It is easy to verify that Lemma 4.5

holds.

We then prove Lemma 4.6, 4.7 and 4.8. Noticing the conditions p01 ≤ ωN ≤ ωk ≤ p11 ≤ 1

in Lemma 4.7 and p01 ≤ ωN ≤ ω1 ≤ p11 in Lemma 4.8, we have

WT (ω1, · · · , ωN )−WT (ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1) = F (ω1, · · · , ωk)− F (ω1, · · · , ωk−1, ωN )

= (ωk − ωN )[F (ω1, · · · , ωk−1, 1)− F (ω1, · · · , ωk−1, 0)] ≤ (1− ωN )∆max,

WT (ω1, · · · , ωN )−WT (ωN , ω1, · · · , ωk−1, ωk, · · · , ωN−1) = F (ω1, · · · , ωk)− F (ωN , ω1, · · · , ωk−1)

= (ωk − ωN )[F (ω1, · · · , ωk−1, 1)− F (ω1, · · · , ωk−1, 0)] ≤ (1− ωN )∆max,

WT (ω1, · · · , ωN )−WT (ωN , ω2, · · · , ωN−1, ω1) = F (ω1, · · · , ωk)− F (ωN , ω2, · · · , ωk)

= (ω1 − ωN )[F (1, ω2, · · · , ωk)− F (0, ω2, · · · , ωk)] ≤ (p11 − p01)∆max.

Lemma 4.6, 4.7 and 4.8 thus hold for slot T .

Assume that Lemma 4.5 – 4.8 hold for slots T, · · · , t+ 1, we now prove that they
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hold for slot t.

We first prove Lemma 4.5. We distinguish the following three cases:

Case 1: l,m /∈ N (k). This case follows Lemma 3.

Case 2: l ∈ N (k) and m /∈ N (k). In this case, M , N (k) \ {l}, it can be noted that

QM,E = (QM,E,l,Q
M,E,l

) = (QM,E,m,Q
M,E,m

) and (Φm(k + 1, N),Φm(k + 1, N)) = (Φl(k +

1,m− 1),Φl(m+ 1, N),Φl(k + 1,m− 1),Φl(m+ 1, N)). In this case, we have

Wt(ω1, · · · , ωl, · · · , ωm, · · · , ωN )−Wt(ω1, · · · , ωm, · · · , ωl, · · · , ωN )

=(ωl − ωm)[Wt(ω1, 1, · · · , 0, · · · , ωN )−Wt(ω1, · · · , 0, · · · , 1, · · · , ωN )]

=(ωl − ωm)
{
F (ω1, · · · , 1, · · · , ωk)− F (ω1, · · · , 0, · · · , ωk)+

β
∑
E⊆M

Pr(M, E)
[
(1− ε)Wt+1(PE11, p11,Φm(k + 1, N), p01,Φ

m(k + 1, N),QM,E)

+ εWt+1(PE11,Φm(k + 1, N), p01,Φ
m(k + 1, N),Q

M,E,l
, p11,Q

M,E,l)

−Wt+1(PE11,Φl(k + 1,m− 1),Φl(m+ 1, N), p11,Φ
l(k + 1,m− 1),Φl(m+ 1, N),Q

M,E,m
, p01,Q

M,E,m)
]}

≥(ωl − ωm)
{

∆min + β
∑
E⊆M

Pr(M, E) ·
[
(1− ε)Wt+1(p01,P

E
11, p11,Φm(k + 1, N),Φm(k + 1, N),QM,E)

+ εWt+1(p01,P
E
11,Φm(k + 1, N),Φm(k + 1, N),QM,E , p11)

−Wt+1(PE11, p11,Φl(k + 1,m− 1),Φl(m+ 1, N),Φl(k + 1,m− 1),Φl(m+ 1, N),QM,E , p01)
]}

=(ωl − ωm)
{

∆min + β
∑
E⊆M

Pr(M, E) ·
[
(1− ε)Wt+1(p01,P

E
11, p11,Φm(k + 1, N),Φm(k + 1, N),QM,E)

+ εWt+1(p01,P
E
11,Φm(k + 1, N),Φm(k + 1, N),QM,E , p11)

−Wt+1(PE11, p11,Φm(k + 1, N),Φm(k + 1, N),QM,E , p01)
]}

≥(ωl − ωm)
[
∆min − β

∑
E⊆M

Pr(M, E)·

(
(1− ε)(1− p01)∆max + ε(p11 − p01)∆max

1− [β(1− ε)(p11 − p01)]T−t

1− β(1− ε)(p11 − p01)

)]
≥(ωl − ωm)

∑
E⊆M

Pr(M, E)·[
∆min − β

(
(1− ε)(1− p01)∆max + ε(p11 − p01)∆max

1

1− (1− ε)(p11 − p01)

)]
≥ 0,

where the first inequality follows the induction result of Lemma 4.5, the second inequality

follows the induction result of Lemma 4.7 and 4.8, the forth inequality follows the condition in

the lemma.
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Case 3: l,m ∈ N (k). This case follows Lemma 4.3.

Lemma 4.5 is thus proven for slot t.

We then proceed to prove Lemma 4.6. We start with the first inequality. We develop

Wt w.r.t. ωk and ωN according to Lemma 4.4 as follows:

Wt(ω1, · · · , ωk−1, ωk, · · · , ωn−1, ωn)−Wt(ω1, · · · , ωk−1, ωn, ωk, ..., ωn−1)

=ωkωn[Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 1)−Wt(ω1, · · · , ωk−1, 1, 1, ωk+1, · · · , ωn−1)]

+ ωk(1− ωn)[Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 0)−Wt(ω1, · · · , ωk−1, 0, 1, ωk+1, · · · , ωn−1)]

+ (1− ωk)ωn[Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 1)−Wt(ω1, · · · , ωk−1, 1, 0, ωk+1, · · · , ωn−1)]

+ (1− ωk)(1− ωn)[Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 0)−Wt(ω1, · · · , ωk−1, 0, 0, ωk+1, · · · , ωn−1)].

(4.15)

We proceed the proof by upbounding the four terms in (4.15).

For the first term, we have

Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 1)−Wt(ω1, · · · , ωk−1, 1, 1, ωk+1, · · · , ωn−1)

=β
∑

E⊆N (k−1)

Pr(N (k − 1), E) ·
[
(1− ε)Wt+1(PE11, p11,Φ(k + 1, N − 1), p11,Q

N (k−1),E)

+ εWt+1(PE11,Φ(k + 1, N − 1), p11,Q
N (k−1),E , p11)

− (1− ε)Wt+1(PE11, p11, p11,Φ(k + 1, N − 1),QN (k−1),E)

− εWt+1(PE11, p11,Φ(k + 1, N − 1),QN (k−1),E , p11)
]
≤ 0,

where, the inequality follows the induction of Lemma 4.5.

For the second term, we have

Wt(ω1, · · · , ωk−1, 1, ωk+1, · · · , ωn−1, 0)−Wt(ω1, · · · , ωk−1, 0, 1, ωk+1, · · · , ωn−1)

=F (ω1, · · · , ωk−1, 1)− F (0, ω1, · · · , ωk−1)

+ β
∑

E⊆N (k−1)

Pr(N (k − 1), E) ·
[
(1− ε)Wt+1(PE11, p11,Φ(k + 1, N − 1), p01,Q

N (k−1),E)

+ εWt+1(PE11,Φ(k + 1, N − 1), p01,Q
N (k−1),E , p11)−Wt+1(PE11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

]
≤F (ω1, · · · , ωk−1, 1)− F (0, ω1, · · · , ωk−1)
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+ β
∑

E⊆N (k−1)

Pr(N (k − 1), E) ·
[
(1− ε)Wt+1(PE11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

+ εWt+1(PE11,Φ(k + 1, N − 1),QN (k−1),E , p11, p01)−Wt+1(PE11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)
]

=F (ω1, · · · , ωk−1, 1)− F (0, ω1, · · · , ωk−1) + β
∑

E⊆N (k−1)

Pr(N (k − 1), E)·

[
εWt+1(PE11,Φ(k + 1, N − 1),QN (k−1),E , p11, p01)− εWt+1(PE11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

]
≤∆max

following the induction of Lemma 4.5.

For the third term, we have

Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 1)−Wt(ω1, · · · , ωk−1, 1, 0, ωk+1, · · · , ωn−1)

=F (ω1, · · · , ωk−1, 0)− F (1, ω1, · · · , ωk−1)

+ β
∑

E⊆N (k−1)

Pr(N (k − 1), E)
[
Wt+1(PE11,Φ(k + 1, N − 1), p11,Q

N (k−1),E , p01)

− (1− ε)Wt+1(PE11, p11, p01,Φ(k + 1, N − 1),QN (k−1),E)

− εWt+1(PE11, p01,Φ(k + 1, N − 1),QN (k−1),E , p11)
]

≤−∆min + β
∑

E⊆N (k−1)

Pr(N (k − 1), E)
[
Wt+1(PE11, p11,Φ(k + 1, N − 1),QN (k−1),E , p01)

− (1− ε)Wt+1(p01, p11,P
E
11,Φ(k + 1, N − 1),QN (k−1),E)

− εWt+1(p01,P
E
11,Φ(k + 1, N − 1),QN (k−1),E , p11)

]
≤−∆min + β

∑
E⊆N (k−1)

Pr(N (k − 1), E)·

[
(1− ε)(1− p01)∆max + ε(p11 − p01)∆max

1− [β(1− ε)(p11 − p01)]T−t

1− β(1− ε)(p11 − p01)

]
≤

∑
E⊆N (k−1)

Pr(N (k − 1), E)·

[
−∆min + β

[
(1− ε)(1− p01)∆max + ε(p11 − p01)∆max

1

1− (1− ε)(p11 − p01)

]]
≤ 0,

where the first inequality follows the induction result of Lemma 4.5, the second equality fol-

lows the induction result of Lemma 4.7 and 4.8, the forth inequality is due the condition in

Lemma 4.7.
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For the fourth term, we have

Wt(ω1, · · · , ωk−1, 0, ωk+1, · · · , ωn−1, 0)−Wt(ω1, · · · , ωk−1, 0, 0, ωk+1, · · · , ωn−1)

=β
∑

E⊆N (k−1)

Pr(N (k − 1), E)·

[
Wt+1(PE11,Φ(k + 1, N − 1), p01,Q

N (k−1),E , p01)−Wt+1(PE11, p01,Φ(k + 1, N − 1),QN (k−1),E , p01)
]

≤β
∑

E⊆N (k−1)

Pr(N (k − 1), E)·

[
Wt+1(PE11,Φ(k + 1, N − 1),QN (k−1),E , p01, p01)−Wt+1(p01,P

E
11,Φ(k + 1, N − 1),QN (k−1),E , p01)

]
≤β(1− p01)∆max,

where the first inequality follows Lemma 4.5, the second follows the induction result of Lem-

ma 4.7.

Combing the above results of the four terms, we have

Wt(ω1, · · · , ωN )−Wt(ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1)

≤ωk(1− ωN ) ·∆max + (1− ωk)(1− ωN ) · (1− p01)β∆max

≤ωk(1− ωN )∆max + (1− ωk)(1− ωN )∆max ≤ (1− ωN )∆max,

which completes the proof of Lemma 4.6.

Based on Lemma 4.3, Wt(ω1, · · · , ωk−1, ωN , ωk, · · · , ωN−1) = Wt(ωN , ω1, · · · , ωk−1, ωk, · · · , ωN−1),

combined with Lemma 4.6, we conclude the proof of Lemma 4.7.

Finally, we prove Lemma 4.8. To this end, denote M , {2, · · · , k}, we have

Wt(ω1, · · · , ωN )−Wt(ωN , ω2, · · · , ωN−1, ω1)

=(ω1 − ωN )[Wt(1, ω2, · · · , ωN−1, 0)−Wt(0, ω2, · · · , ωN−1, 1)]

=(ω1 − ωN )
{
F (1, ω2, · · · , ωk)− F (0, ω2, · · · , ωk) + β

∑
E⊆M

Pr(M, E)·

[
(1− ε)Wt+1(PE11, p11,Φ(k + 1, N − 1), p01,Q

M,E) + εWt+1(PE11,Φ(k + 1, N − 1), p01, p11,Q
M,E)

−Wt+1(PE11,Φ(k + 1, N − 1), p11,Q
M,E , p01)

]}
≤(ω1 − ωN )

{
∆max + β

∑
E⊆M

Pr(M, E)
[
(1− ε)Wt+1(PE11, p11,Φ(k + 1, N − 1), p01,Q

M,E)
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+ εWt+1(PE11,Φ(k + 1, N − 1), p11,Q
M,E , p01)−Wt+1(PE11,Φ(k + 1, N − 1), p11,Q

M,E , p01)
]}

=(ω1 − ωN )
{

∆max + β
∑
E⊆M

Pr(M, E)
[
(1− ε)Wt+1(PE11, p11,Φ(k + 1, N − 1), p01,Q

M,E)

− (1− ε)Wt+1(PE11,Φ(k + 1, N − 1), p11,Q
M,E , p01)

]}
≤(ω1 − ωN )

{
∆max + β

∑
E⊆M

Pr(M, E)
[
(1− ε)Wt+1(PE11, p11,Φ(k + 1, N − 1),QM,E , p01)

− (1− ε)Wt+1(p01,P
E
11,Φ(k + 1, N − 1),QM,E , p11)

]}
≤(p11 − p01)

[
∆max + β

∑
E⊆M

Pr(M, E)(1− ε)1− [β(1− ε)(p11 − p01)]T−t

1− β(1− ε)(p11 − p01)
(p11 − p01)∆max

]
=
∑
E⊆M

Pr(M, E)(p11 − p01)
[
∆max + β(1− ε)1− [β(1− ε)(p11 − p01)]T−t

1− β(1− ε)(p11 − p01)
(p11 − p01)∆max

]
=
∑
E⊆M

Pr(M, E)
[
1 + β(1− ε)(p11 − p01)

1− [β(1− ε)(p11 − p01)]T−t

1− β(1− ε)(p11 − p01)

]
(p11 − p01)∆max

=
1− [β(1− ε)(p11 − p01)]T−t+1

1− β(1− ε)(p11 − p01)
(p11 − p01)∆max,

where the first two inequalities follows the induction result of Lemma 4.5, the third inequality

follows the induction result of Lemma 4.8.

We thus complete the whole process of proving Lemma 4.5–4.8.



Chapter 5

An Axiomatic Analysis on

Optimality of Myopic Sensing Policy

in OSA under Imperfect Sensing:

the Case of Heterogeneous Channels

In the previous chapter, we have studied the optimality of the myopic policy under imperfect

sensing for the case of homogeneous channels. In this chapter, we further consider the more

challenging scenario of heterogeneous channels.

5.1 System Model and Problem Formulation

We are interested in the user’s optimization problem to find the optimal sensing policy π∗ that

maximizes the expected total discounted reward over a finite horizon. More specifically, we

establish closed-form conditions under which the myopic sensing policy is guaranteed to be

optimal.

In this chapter, we adopt the same system setting as previous chapter. Hence for this

part, readers can refer to the System Model and Restless Multi-Armed Bandits Formulation of

Chapter 4. Moreover, some results are quoted from the previous chapter and extended to the

case of heterogeneous channels.

In the following, we summarize the assumptions of this chapter:

48
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A2. p
(i)
11 > p

(i)
01 ,∀i ∈ N ;

A3. εi = ε, ∀i ∈ N .

We would like to point out that compared with the previous Chapter 4, the assumption A1 is

dropped in this chapter to cover the heterogeneous channels.

We next state some structural properties of Ti(ωi(t)) and ϕ(ωi(t)) that are useful in the

subsequent proofs.

Lemma 5.1. For any positively correlated channel i (i.e., p
(i)
01 < p

(i)
11 ), the following structural

properties of Ti(ωi(t)) hold:

• Ti(ωi(t)) is monotonically increasing in ωi(t);

• p(i)
01 ≤ Ti(ωi(t)) ≤ p

(i)
11 , ∀ 0 ≤ ωi(t) ≤ 1.

Proof. Noticing that Ti(ωi(t)) can be written as Ti(ωi(t)) = (p
(i)
11 − p

(i)
01 )ωi(t) + p

(i)
01 , Lemma 5.1

holds straightforwardly.

Lemma 5.2. ϕ(ωi(t)) monotonically increases with ωi(t) when 0 ≤ ε < 1.

Proof. Noticing that ϕ(ωi) = εωi(t)
εωi(t)+1−ωi(t) , Lemma 5.2 follows straightforwardly.

5.2 Axioms

This section defines three axioms characterizing a family of generic and practically important

functions referred to as g-regular functions, which serve as a basis for the further analysis on

the structure and the optimality of the myopic sensing policy1.

Axiom 4 (Symmetry). A function f(ΩA) : [0, 1]k → R is symmetrical if for any two distinct

channels i and j, it holds that

f(ω1, · · · , ωi, · · · , ωj , · · · , ωk) = f(ω1, · · · , ωj , · · · , ωi, · · · , ωk).
1Throughout this section, for the convenience of presentation, we sort the elements of the believe vector

Ω(t) = [ω1(t), ω2(t), · · · , ωN (t)] in the descending order for each slot t such that A = {1, 2, · · · , k} (i.e., the
user senses channel 1 to channel k) and let ΩA , {ω1, ω2, · · · , ωk}2. The three axioms derived in the following
characterize a generic function f defined on ΩA.
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Axiom 5 (Monotonicity). A function f(ΩA) : [0, 1]k → R is monotonically increasing if it is

monotonically increasing in each variable ωi, i.e.,

ω′i > ωi =⇒ f(ω1, · · · , ω′i, · · · , ωk) > f(ω1, · · · , ωi, · · · , ωk), ∀i ≤ k.

The above axioms are the intuitive with Axiom 4 stating that once the sensing set A is given,

the sensing order will not change the final reward under a symmetrical function f . The following

axiom, however, significantly extends the axiom of decomposability in chapter 4 and [10] so as

to cover a much larger range of utility functions.

Axiom 6 (g-Decomposability). A function f(ΩA) : [0, 1]k → R is decomposable if there exists a

continuous and increasing function g : [0, 1]→ [0,∞) and a constant c such that for any i ≤ k

it holds that

f(ω1, · · · , ωi−1, ωi, ωi+1, · · · , ωk) = c · g(ωi)f(ω1, · · · , ωi−1, 1, ωi+1, · · · , ωk)

+ c · (1− g(ωi))f(ω1, · · · , ωi−1, 0, ωi+1, · · · , ωk).

Axiom 6 on the g-decomposability states that f(ΩA) can always be decomposed into two

terms by introducing the function g and replacing ωi by 0 and 1, respectively. It is insightful

to note that Axiom of g-decomposability significantly extends Axiom of decomposability in

chapter 4 by covering a much larger range of utility functions which cannot be covered by

formal, particularly the logarithmic function (e.g., f(ΩA) =
∑k

i=1 loga(1 + ωi) (a > 1), where

c = 1
log2 a

, g(ωi) = log2(1 + ωi) ) and the power function (e.g., f(ΩA) =
∑k

i=1 ω
a
i , a > 0, where

c = 1, g(ωi) = ωai ) that are widely used in engineering problems. By setting g(ωi) = ωi and

c = 1, Axiom 6 degenerates to the Axiom of decomposability in chapter 4.

In the following, we use the above axioms to characterize a family of generic functions,

referred to as g-regular functions, defined as follows.

Definition 5.1 (g-Regular Function). A function is called g-regular if it satisfies all the three

axioms.

If the expected reward function F is g-regular, the myopic sensing policy, defined in Defini-

tion 4.3, consists of sensing the k channels with the largest belief values. In case of tie, we can

sort the channels in tie in the descending order of ωi(t + 1) calculated in (4.1). The argument
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is that larger ωi(t+ 1) leads to larger expected payoff in next slot t+ 1. If the tie persists, then

the channels are sorted by their indexes.

5.3 Optimality of Myopic Sensing Policy under Imperfect Sens-

ing

In this section, we establish the closed-form conditions under which the myopic sensing policy

achieves the system optimum under imperfect sensing. To this end, we study its structural

property which is then used to establish the main result on the optimality.

5.3.1 Auxiliary Value Function

Armed with the three axioms, this section first derives a fundamental property of auxiliary

value function, which is crucial in the study on the optimality of the myopic sensing policy.

Definition 5.2 (Auxiliary Value Function). The auxiliary value function, denoted as Wt(Ω)

(t = 1, 2, · · · , T and t < r < T ) is recursively defined as follows:



WT (Ω(T )) = F (ΩA(T ));

Wr(Ω(r)) = F (ΩA(r)) + β
∑
E⊆A(r)

Pr(A(r), E)Wr+1(ΩE(r + 1));

Wt(Ω(t)) = F (ΩA(t)) + β
∑
E⊆A(t)

Pr(A(t), E)Wt+1(ΩE(t+ 1))

︸ ︷︷ ︸
Γ(Ω(t))

.

(5.1)

where ΩE(t+ 1) and ΩE(r+ 1) are generated by 〈Ω(t),A(t), E〉 and 〈Ω(r),A(r), E〉, respectively,

according to (4.1). If A(t) = A(t), then Wt(Ω(t)) is the total reward generated by the myopic

sensing policy.

Lemma 5.3. If the expected reward function F (ΩA) is g-regular, the correspondent auxiliary

value function Wt(Ω) is symmetric in any two channel i, j ∈ A or i, j /∈ A for all t = 1, 2, · · · , T ,

i.e.,

Wt(ω1, · · · , ωi, · · · , ωj , · · · , ωN ) = Wt(ω1, · · · , ωj , · · · , ωi, · · · , ωN ).

Proof. The proof follows the similar way as the proof of Lemma 2 in [10] and is omitted for

briefty.
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Lemma 5.3 further implies that under the condition of Lemma 5.3, the auxiliary value

function is robust against channel permutation given that all the permutated channels are

sensed or none of them are sensed. Hence, it can be defined on the set ΩA instead of the

channel belief vector Ω, as stated in Corollary 5.1.

Corollary 5.1 (Robustness against Channel Permutation). Let ΩA denote any permutation

of the belief values of the elements in A, if F (ΩA) is symmetrical, it holds that Wt(ΩA) has

a unique value. In other words, Wt(Ω) is robust against channel permutation and thus can be

defined as a function of ΩA or A.

5.3.2 Myopic Sensing Policy: Condition of Optimality

In this subsection, we study the optimality of the myopic sensing policy. For the convenience

of discussion, we firstly state some notation before presenting the analysis.

• pmax11 , max
i∈N

{
p

(i)
11

}
, pmin01 , max

i∈N

{
p

(i)
01

}
;

• δmaxp , max
i∈N

{
p

(i)
11 − p

(i)
01

}
, δminp , min

i∈N

{
p

(i)
11 − p

(i)
01

}
;

• g′min , min
pmin01 ≤ω≤pmax11

{∂[g(ω)]

∂ω

}
, g′max , max

pmin01 ≤ω≤pmax11

{∂[g(ω)]

∂ω

}
;

• Let ω−i , {ωj : j ∈ A, j 6= i} denote the believe vector except ωi, and


∆max , max

ω−i∈[0,1]N−1

{
F (1, ω−i)− F (0, ω−i)

}
,

∆min , min
ω−i∈[0,1]N−1

{
F (1, ω−i)− F (0, ω−i)

}
.

We start by showing the following important lemma (Lemma 5.4) and then establish the

sufficient condition under which the optimality of the myopic sensing policy is ensured. In

Lemma 5.4, we consider Ωl = [ω1, · · · , ωl, · · · , ωN ] and Ω′l = [ω1, · · · , ω′l, · · · , ωN ] which differ

only in one element ω′l ≥ ωl. Let A′ and A denote the largest k elements in Ω′l and Ωl,

respectively3, Lemma 5.4 gives the upper and lower bounds of Wt(ΩA′)−Wt(ΩA).

Lemma 5.4. If the expected reward function F is g-regular, ∀l ∈ N , ωl ≤ ω′l and 1 ≤ t ≤ T ,

we have

3The tie, if exists, is resolved in the way as stated in remark after Definition 4.3
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1. if l ∈ A′ and l ∈ A, then

c · (ω′l − ωl)g′min∆min ≤Wt(ΩA′)−Wt(ΩA) ≤ c · (ω′l − ωl)g′max∆max

T−t∑
i=0

βi(δmaxp )i;

2. if l /∈ A′ and l /∈ A, then

0 ≤Wt(ΩA′)−Wt(ΩA) ≤ c · (ω′l − ωl)g′max∆max

T−t∑
i=1

βi(δmaxp )i;

3. if l ∈ A′ and l /∈ A, then

0 ≤Wt(ΩA′)−Wt(ΩA) ≤ c · (ω′l − ωl)g′max∆max

T−t∑
i=0

βi(δmaxp )i.

Proof. The proof is given in the appendix.

Remark. It can be noted that there does not exist the case l /∈ A′ and l ∈ A according to the

definition of the myopic sensing policy.

In the following lemma, we consider Wt(ΩAl) and Wt(ΩAm) where Al and Am differ in one

element (l ∈ Al and m ∈ Am and ωl > ωm). Lemma 5.5 establishes the sufficient condition

under which Wt(ΩAl) > Wt(ΩAm) when F is g-regular.

Lemma 5.5. If F (Ω) is g-regular and
g′min∆min

g′max∆max
≥

T−1∑
i=1

βi(δmaxp )i, then Wt(ΩAl) ≥ Wt(ΩAm)

holds for 1 ≤ t ≤ T .

Proof. Let Ω′ denote the set of channel belief values in Al with ω′l = ωm and ω′i = ωi for ∀i 6= l,

apply Lemma 5.4, we have

Wt(ΩAl)−Wt(ΩAm) = [Wt(ΩAl)−Wt(Ω
′)]− [Wt(ΩAm)−Wt(Ω

′)]

≥ c · (ωl − ωm)g′min∆min − c · (ωl − ωm)g′max∆max

T−t∑
i=1

βi(δmaxp )i

≥ c · (ωl − ωm)g′max∆max ·

[
g′min
g′max

· ∆min

∆max
−
T−1∑
i=1

βi(δmaxp )i

]
≥ 0

if the conditions in the lemma hold.

The following theorem studies the optimality of the myopic sensing policy under imperfect

sensing.
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Theorem 5.1. The myopic sensing policy is optimal if the following two conditions hold: (1)

the expected slot reward function F is g-regular; (2)
g′min∆min

g′max∆max
≥

T−1∑
i=1

βi(δmaxp )i.

Proof. We prove the theorem by backward induction. The theorem holds trivially for t = T .

Assume that it holds for T, T − 1, · · · , t+ 1, i.e., the optimal sensing policy is to sense the best

k channels from time slot t+ 1 to T . We now show that it holds for t.

To this end, assume, by contradiction, that given the belief vector Ω , {ωi1 , · · · , ωiN }, the

optimal sensing policy is to sense the best k channels from time slot t + 1 to T and at slot t

to sense channels {i1, · · · , ik} 6= {1, · · · , k}, given that the latter contains the best k channels

in terms of belief values at slot t. There must exist im and il where m ≤ k < l such that

ωim < ωk ≤ ωil . It then follows from Lemma 5.5 that

W
{i1,i2,··· ,ik}
t (Ω) < W

{ωi1 ,ωi2 ,··· ,ωim−1
,ωil ,ωim+1

,ωik}
t (Ω),

implying that sensing {i1, · · · , im−1, il, im+1, · · · , ik} at slot t and then following the myopic

sensing policy is better than sensing channels {i1, · · · , ik} at slot t and then following the

myopic sensing policy, which contradicts with the assumption that the latter is the optimal

sensing policy. This contradiction completes our proof.

The following theorem further establishes the optimality conditions in asymptotic case T →

∞. The proof follows straightforwardly from Theorem 5.1 by noticing that
∑∞

i=1 x
i = x/(1−x)

for any x ∈ (0, 1).

Theorem 5.2. In the infinite horizon case T → ∞, the myopic sensing policy is optimal if

the following conditions hold: (1) the expected slot reward function F is g-regular; (2) β ≤
g′min∆min

(g′min∆min + g′max∆max)δmaxp

.

5.3.3 Discussion

For the technical perspective, compared with [10] and the previous chapter, we extend the

third axiom in [10] to cover a much larger class of reward functions including the logarithmic

and power functions. Moreover, the imperfect sensing leads to the non-linearity of system

dynamic update, and thus the closed-form conditions of the optimality are non-trivially derived

in the more general form. In essence, the RMAB with imperfect sensing is the same with

that [10] (RMAB with perfect sensing) since the closed-form optimal conditions don’t relate
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with the parameter characterized by the imperfect sensing. This can be explained as follows:

although the sensing error brings the non-linearity of the system dynamic update, this kind of

non-linearity does not change the decomposability characteristics of the value function which

serves as the cornerstone in deriving the closed-formed condition of optimality and therefore, the

RMAB in [10] is isomorphic with our considered RMAB from the perspective of decomposability.

From the perspective of channel model, we consider the channel access problem where a

user is limited to sensing k of N independently identical channels and gets one unit of reward if

the sensed channel is in the good state, i.e., the utility function can be formulated as F (ΩA) =

(1 − ε)
∑

i∈A ωi. To that end, we apply Theorem 4.1 and have ∆min = ∆max = 1 − ε. We

can then verify that when ε < p01(1−p11)
P11(1−p01) , it holds that ∆min

∆max

[
(1−ε)(1−p01)+

ε(p11−p01)
1−(1−ε)(p11−p01)

] > 1.

Therefore, when the condition 1 and 2 of Theorem 4.1 hold, the myopic sensing policy is

always optimal for 0 ≤ β ≤ 1, which significantly extends the result obtained in [48]. For the

same scenario, we have c = 1, g(ω) = ω and ∆min = ∆max = 1 − ε, and furthermore know

that the myopic policy is optimal for 0 ≤ β ≤ 1 without any constraint on ε if δmaxp ≤ 0.5

according to Theorem 5.2. Compared with the optimal conditions in Theorem 4.1 with the

independently identical channels, although both focusing on the optimality of the myopic policy,

the closed-form conditions of optimality derived in this chapter are much stricter with respect

to the transmission probabilities (δmaxp ≤ 0.5, 0 ≤ ε < 1) but much looser in the sensing error

(0 ≤ δmaxp < 1, ε < p01(1−p11)
P11(1−p01) in Theorem 4.1). The stricter constraint on the transmission

probabilities is due to the proposed method itself which sacrifices part of the optimality to

cover the case of the heterogeneous channels. On the other hand, since the analysis in this

chapter does not rely on any particular sorting order of the channel list as in previous chapter

(which itself relies on Lemma 4.2 with the condition on ε), the condition on ε is no more present

here.

5.4 Conclusion

We have investigated the optimality of the myopic policy in the RMAB problem, which is of

fundamental importance in many engineering applications. We have developed three axioms

characterizing a family of generic and practically important functions which we refer to as g-

regular functions. By performing a mathematical analysis based on the developed axioms, we

have characterized the closed-form conditions under which the optimality of the myopic policy
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is guaranteed.

5.5 Appendix

5.5.1 Proof of Lemma 5.4

We prove the lemma by backward induction.

For slot T , noticing that WT (Ω) = F (ΩA) and that g′min ≤
g(ω)−g(ω′)
ω−ω′ ≤ g′max for any

pmin01 ≤ ω′ ≤ ω ≤ pmax11 , we have

1. For l ∈ A′, l ∈ A, it holds that

c ·(ω′l−ωl)g′min∆min ≤WT (Ω′l)−WT (Ωl) ≤ c · [g(ω′l)−g(ωl)]∆max ≤ c ·(ω′l−ωl)g′max∆max;

2. For l /∈ A′, it holds that l /∈ A, WT (Ω′l)−WT (Ωl) = 0;

3. For l ∈ A′, l /∈ A, it exists at least one channel m such that ω′l ≥ ωm ≥ ωl. It then holds

that

0 ≤ c · (ω′l − ωl)g′min∆min ≤WT (Ω′l)−WT (Ωl) ≤ c · [g(ω′l)− g(ωm)]∆max

≤ c · [g(ω′l)− g(ωl)]∆max ≤ c · (ω′l − ωl)g′max∆max;

Therefore, Lemma 5.4 holds for slot T .

Assume that Lemma 5.4 holds for T, · · · , t+ 1. We now prove the lemma for slot t.

We first prove the first case: l ∈ A′ and l ∈ A. By rewriting Γ(Ω(t))4 in (5.1) and

developing ωl(t+ 1) in Ω(t+ 1) , we have:

Γ(ΩA′) = (1− ε)ω′l(t)Γ(Ω1
A′) + (1− (1− ε)ω′l(t))Γ(Ω

ϕ(ω′l)
A′ ) (5.2)

Γ(ΩA) = (1− ε)ωl(t)Γ(Ω1
A) + (1− (1− ε)ωl(t))Γ(Ω

ϕ(ωl)
A ) (5.3)

where, Ω1
A′ and Ω

ϕ(ω′l)
A′ denote ΩA′ with ω′l(t) = 1 and ϕ(ω′l) , respectively, while Ω1

A and Ω
ϕ(ωl)
A

denote ΩA with ωl(t) = 1 and ϕ(ωl), respectively.

4Following Corollary 5.1, Γ(Ω(t)) can also be expressed as a function of ΩA.
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Noticing Ω1
A′ = Ω1

A, we have

Γ(ΩA′)− Γ(ΩA)

=(1− ε)(ω′l(t)− ωl(t))
[
Γ(Ω1

A′)− Γ(Ω
ϕ(ω′l)
A′ )

]
+ (1− (1− ε)ωl(t))

[
Γ(Ω

ϕ(ω′l)
A′ )− Γ(Ω

ϕ(ωl)
A )

]
Considering the whole realization of the belief vector, we further have

Γ(Ω′l(t))− Γ(Ωl(t))

=
∑
E⊆A(t)

∏
i∈E

(1− ε)ωi(t)
∏

j∈A(t)\E

[1− (1− ε)ωj(t)](Γ(ΩA′)− Γ(ΩA))

=
∑

E⊆A(t)\{l}

∏
i∈E

(1− ε)ωi(t)
∏

j∈A(t)\E\{l}

[1− (1− ε)ωj(t)]

·
[
(1− ε)(ω′l(t)− ωl(t))

[
Wt+1(Ωl=1(t+ 1))−Wt+1(Ωl=ϕ(ω′l)

(t+ 1))
]

+ (1− (1− ε)ωl(t))
[
Wt+1(Ωl=ϕ(ω′l)

(t+ 1))−Wt+1(Ωl=ϕ(ωl)(t+ 1))
]]

(5.4)

where, Ωl=a(t+ 1) (a ∈ {1, ϕ(ω′l), ϕ(ωl)}) denotes the belief vector at slot t+ 1 under Ω(t) with

ωl(t+ 1) = Tl(a).

Next, we derive the bound of Wt+1(Ωl=1(t+1))−Wt+1(Ωl=ϕ(ω′l)
(t+1)) through three cases5:

Case 1: if l ∈ A′(t+ 1) and l ∈ A(t+ 1), according to the induction hypothesis, we have

0 ≤ c · (p(l)
11 − Tl(ϕ(ω′l)))g

′
min∆min ≤Wt+1(Ωl=1(t+ 1))−Wt+1(Ωl=ϕ(ω′l)

(t+ 1))

≤ c · (p(l)
11 − Tl(ϕ(ω′l)))g

′
max∆max

T−t−1∑
i=0

βi(δmaxp )i

Case 2: if l /∈ A′(t+ 1) and l /∈ A(t+ 1), according to the induction hypothesis, we have

0 ≤Wt+1(Ωl=1(t+1))−Wt+1(Ωl=ϕ(ω′l)
(t+1)) ≤ c·(p(l)

11−Tl(ϕ(ω′l)))g
′
max∆max

T−t−1∑
i=1

βi(δmaxp )i

Case 3: if l ∈ A′(t+ 1) and l /∈ A(t+ 1), according to the induction hypothesis, we have

0 ≤Wt+1(Ωl=1(t+1))−Wt+1(Ωl=ϕ(ω′l)
(t+1)) ≤ c·(p(l)

11−Tl(ϕ(ω′l)))g
′
max∆max

T−t−1∑
i=0

βi(δmaxp )i

5It can be noted that the case l /∈ A′(t + 1) and l ∈ A(t + 1) is impossible.
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Combining the three cases, we obtain

0 ≤Wt+1(Ωl=1(t+ 1))−Wt+1(Ωl=ϕ(ω′l)
(t+ 1))

≤ c · (p(l)
11 − Tl(ϕ(ω′l)))g

′
max∆max

T−t−1∑
i=0

βi(δmaxp )i

= c ·
[
1−

εω′l
1− (1− ε)ω′l

]
(p

(l)
11 − p

(l)
01)g′max∆max

T−t−1∑
i=0

βi(δmaxp )i (5.5)

According to Lemma 4.1 and 4.2, we have Tl(ϕ(ω′l)) ≥ Tl(ϕ(ωl)) when ω′l ≥ ωl. Thus we

have the bounds of Wt+1(Ωl=ϕ(ω′l)
(t + 1)) −Wt+1(Ωl=ϕ(ωl)(t + 1)) by the similar induction as

follows:

0 ≤Wt+1(Ωl=ϕ(ω′l)
(t+ 1))−Wt+1(Ωl=ϕ(ωl)(t+ 1))

≤ c · (Tl(ϕ(ω′l))− Tl(ϕ(ωl)))g
′
max∆max

T−t−1∑
i=0

βi(δmaxp )i

= c ·
ε(ω′l − ωl)

[1− (1− ε)ω′l][1− (1− ε)ωl]
(p

(l)
11 − p

(l)
01)g′max∆max

T−t−1∑
i=0

βi(δmaxp )i. (5.6)

Combining equations (5.4), (5.5) and (5.6) and recalling p
(l)
11 − p

(l)
01 ≤ δmaxp , we have

0 ≤ Γ(Ω′l(t))− Γ(Ωl(t)) ≤ c · (ω′l − ωl)δmaxp g′max∆max

T−t−1∑
i=0

βi(δmaxp )i.

Since Wt(Ω
′
l(t)) −Wt(Ωl(t)) = F (Ω′l(t)) − F (Ωl(t)) + β(Γ(Ω′l(t)) − Γ(Ωl(t))) and c · (ω′l −

ωl)g
′
min∆min ≤ F (Ω′l(t))− F (Ωl(t)) ≤ c · (ω′l − ωl)g′max∆max, we have

c · (ω′l − ωl)g′min∆min ≤Wt(Ω
′
l(t))−Wt(Ωl(t))

≤ c · (ω′l − ωl)g′max∆max + β · c · (ω′l − ωl)g′maxδmaxp ∆max

T−t−1∑
i=0

βi(δmaxp )i

= c · (ω′l − ωl)g′max∆max

T−t∑
i=0

βi(δmaxp )i.

We thus complete the proof of the first part (l ∈ A′ and l ∈ A) of Lemma 5.3.
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Secondly, we prove the second case l /∈ A′ and l /∈ A. To this end, we have:


Γ(Ωl(t)) =

∑
E⊆A(t)

∏
i∈E

(1− ε)ωi(t)
∏

j∈A(t)\E

[1− (1− ε)ωj(t)]Wt+1(Ωl(t+ 1))

Γ(Ω′l(t)) =
∑
E⊆A(t)

∏
i∈E

(1− ε)ωi(t)
∏

j∈A(t)\E

[1− (1− ε)ωj(t)]Wt+1(Ω′l(t+ 1))

,

where Ωl(t + 1) and Ω′l(t + 1) are the belief vector for slot t + 1 generated by Ωl(t) and Ω′l(t)

based on the belief update equation (4.1).

We distinguish the following four cases:

Case I. If channel l is never chosen for Ωl(t+ 1) and Ω′l(t+ 1) from the slot t+ 1 to the end

of time horizon of interest T , that is to say, l /∈ A′(r) and l /∈ A(r) for t+ 1 ≤ r ≤ T , it is easy

to know Γ(Ω′l(t))− Γ(Ωl(t)) = 0, furthermore Wt(Ω
′
l(t))−Wt(Ωl(t)) = 0;

Case II. There exists t0 (t+1 ≤ t0 ≤ T ) such that l /∈ A′(r) and l /∈ A(r) for t+1 ≤ r ≤ t0−1

while l /∈ A′(t0) and l ∈ A(t0). For this case, it holds A′(r) = A(r) for t + 1 ≤ r ≤ t0 − 1

while A′(r) and A(r) differ in one element, assume that m ∈ A′(t0) and m /∈ A(r). According

to the definition of the myopic policy, it follows ωl(t
0) ≥ ωm(t0) and ω′l(t

0) ≤ ωm(t0), which

leads to contradiction since ω′l(t+ 1) = p
(l)
11 > ωl(t+ 1) = p

(l)
01 leads to ω′l(t

0) > ωl(t
0) following

Lemma 4.2. This case is thus impossible to happen;

Case III. There exists t0 (t+ 1 ≤ t0 ≤ T ) such that l /∈ A′(r) and l /∈ A(r) for t+ 1 ≤ r ≤

t0 − 1 while l ∈ A′(t0) and l ∈ A(t0). For this case, according to the hypothesis (l ∈ A′ and

l ∈ A), we have

0 ≤Wt0(Ω′l(t
o))−Wt0(Ωl(t

o)) ≤ c · (ω′l(to)− ωl(to))g′max∆max

T−to∑
i=0

βi(δmaxp )i

= c · (p(l)
11 − p

(l)
01)t

o−t(ω′l(t)− ωl(t))g′max∆max

T−to∑
i=0

βi(δmaxp )i.

Noticing t0 ≥ t+ 1, we have

0 ≤Wt+1(Ω′l(t+ 1))−Wt+1(Ωl(t+ 1)) ≤ c · (p(l)
11 − p

(l)
01)(ω′l(t)−ωl(t))g′max∆max

T−t−1∑
i=0

βi(δmaxp )i.
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Furthermore,

0 ≤Wt(Ω
′
l(t))−Wt(Ωl(t)) ≤ β · c · (p

(l)
11 − p

(l)
01)(ω′l(t)− ωl(t))g′max∆max

T−t−1∑
i=0

βi(δmaxp )i

≤ β · c · δmaxp (ω′l(t)− ωl(t))g′max∆max

T−t−1∑
i=0

βi(δmaxp )i

= c(ω′l(t)− ωl(t))g′max∆max

T−t∑
i=1

βi(δmaxp )i.

Case IV. There exists t0 (t+ 1 ≤ t0 ≤ T ) such that l /∈ A′(r) and l /∈ A(r) for t+ 1 ≤ r ≤

t0 − 1 while l ∈ A′(t0) and l /∈ A(t0). For this case, by the induction hypothesis (l ∈ A′ and

l /∈ A), we have

0 ≤Wt0(Ω′l(t
o))−Wt0(Ωl(t

o)) ≤ c · (ω′l(to)− ωl(to))g′max∆max

T−to∑
i=0

βi(δmaxp )i

= c · (p(l)
11 − p

(l)
01)t

o−t(ω′l(t)− ωl(t))g′max∆max

T−to∑
i=0

βi(δmaxp )i.

Noticing that t+ 1 ≤ to, we have

0 ≤Wt+1(Ω′l(t+1))−Wt+1(Ωl(t+1)) ≤ c·(ω′l(t)−ωl(t))(p
(l)
11−p

(l)
01)g′max∆max

T−t−1∑
i=0

βi(δmaxp )i.

Therefore, we have

0 ≤Wt(Ω
′
l(t))−Wt(Ωl(t)) ≤ β · c · (ω′l(t)− ωl(t))(p

(l)
11 − p

(l)
01)g′max∆max

T−t−1∑
i=0

βi(δmaxp )i

≤ β · c · (ω′l(t)− ωl(t))δmaxp g′max∆max

T−t−1∑
i=0

βi(δmaxp )i

= c(ω′l(t)− ωl(t))g′max∆max

T−t∑
i=1

βi(δmaxp )i.

Combining the above results, we complete the proof of the second part (l /∈ A′ and l /∈ A)

of Lemma 5.3.

Last, we prove the third case l ∈ A′(t) and l /∈ A(t). In this case, there must exist a
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channel m such that ω′l ≥ ωm ≥ ωl and ω′l ∈ A′ and ωm ∈ A. We then have

Wt(Ω
′
l(t))−Wt(Ωl(t)) =Wt(ω1, · · · , ω′l, · · · , ωN )−Wt(ω1, · · · , ωl, · · · , ωN )

=Wt(ω1, · · · , ω′l, · · · , ωN )−Wt(ω1, · · · , ωl = ωm, · · · , ωN )

+Wt(ω1, · · · , ωl = ωm, · · · , ωN )−Wt(ω1, · · · , ωl, · · · , ωN ) (5.7)

According to the induction hypothesis (l ∈ A′ and l ∈ A), the first term of the right hand

of (5.7) can be bounded as follows:

0 ≤Wt(ω1, · · · , ω′l, · · · , ωN )−Wt(ω1, · · · , ωl = ωm, · · · , ωN )

≤ c · (ω′l(t)− ωm(t))g′max∆max

T−t∑
i=0

βi(δmaxp )i (5.8)

Meanwhile, the second term of the right hand of (5.7) is bounded by induction hypothesis

(l /∈ A′ and l /∈ A) as:

0 ≤Wt(ω1, · · · , ωl = ωm, · · · , ωN )−Wt(ω1, · · · , ωl, · · · , ωN )

≤ c · (ωm(t)− ωl(t))g′max∆max

T−t∑
i=1

βi(δmaxp )i (5.9)

Therefore, we have, combining (5.7), (5.8) and (5.9),

0 ≤Wt(Ω
′
l(t))−Wt(Ωl(t)) ≤ c · (ω′l(t)− ωl(t))g′max∆max

T−t∑
i=0

βi(δmaxp )i,

which completes the third part (l ∈ A′ and l /∈ A) of Lemma 5.3.

Lemma 5.3 is thus proven.



Chapter 6

Beyond Myopic Sensing: a Heuristic

ν-step Lookahead Policy

6.1 Introduction

In the previous chapters, we have studied the optimality of the myopic sensing policy in the case

where the user is allowed to sense k out of N channels. In this chapter, we further investigate the

more challenging problem where the user has to decide the number of channels to sense in order

to maximize its utility 1. This optimization problem hinges on the following tradeoff between

exploitation and exploration: sensing more channels can help learn and predict the future

channel state, thus increasing the long-term reward, but at the price of sacrificing the reward

at current slot as sensing more channels reduces the time for data transmission, thus decreasing

the throughput in the current slot. Therefore, to find the optimal number of channels to sense

consists of striking a balance between the above exploitation and exploration. After showing

the exponential complexity of the problem, we develop a heuristic ν-step lookahead policy

which consists of sensing channels in a myopic way and stopping sensing when the expected

aggregated utility from the current slot t to slot t+ν begins to decrease. In the developed policy,

the parameter ν allows to achieve a desired tradeoff between social efficiency and computation

complexity. We demonstrate the benefits of the proposed strategy via numerical experiments

on several typical settings.

1‘Sense’ should be understood generally, i.e., detecting, or probing etc. Herein, we use the terminology ‘sense’
for the consistency of narrative
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6.2 Problem Formulation

6.2.1 System Model

We consider the same scenario as the previous chapters in which a user tries to access a multi-

channel opportunistic communication system consisting of a set N of N channels, each given

by a two state Markov chain with transition probabilities {p(k)
ij }i,j=0,1 (1 ≤ k ≤ N). The system

operates in a slotted fashion where the slots are indexed by t (1 ≤ t ≤ T ), where T is the time

horizon of interest (or the user gives up accessing the system). Specifically, we assume that

channels go through state transition at the beginning of a slot. The length of each time slot is

denoted as ∆, which is further divided into two parts: the sensing phase and the transmission

phase. Let δ = a∆ (a ≤ 1) denote the time needed to sense one channel, the sensing phase lasts

na∆ if the user senses n channels and the transmission phase consists of the rest of the time

(1− an)∆.

The user’s objective is to maximize its throughput by choosing the appropriate set of chan-

nels to sense. Let A(t), OA(t) denote the set of channels sensed and the set of sensing results

OA(t) = {Oi(t) ∈ {1, 0}, i ∈ A(t)} by the user at slot t who can sense at most M (1 ≤M < N

and aM ≤ 1) channels for the limit of hardware and sensing constraint. If at least one of the

sensed channel is in the good state, the user can successfully transmit one packet.2 In our s-

tudy, we also take into consideration the imperfect sensing which is characterized by the missed

detection (the channel is sensed good but is in fact bad) rate denoted as ζ and the false alarm

rate denoted as ε (the channel is sensed bad but is in fact good).

Obviously, by imperfectly sensing only |A(t)| out of N channels at each slot t, the user

cannot observe the state information of the whole system. Hence, the user has to infer the

channel states from its past decision and observation history so as to make its future decision.

Moreover, the current sensing outcome further serves as statistics for future decision. To this

end, we define the channel state belief vector (hereinafter referred to as belief vector for briefness)

Ω(t) , {ωi(t), i ∈ N}, where 0 ≤ ωi(t) ≤ 1 is the conditional probability that channel i is in

good state. Given the sensing set A(t) and the detection outcomes {Oi(t) ∈ {0, 1} : i ∈ A(t)},
2Our work can be extended to the case where the user is equipped with more than one radio and can access

multiple channels at a time.
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the belief vector in t+ 1 slot can be updated recursively using Bayes Rule as shown in (6.1):

ωi(t+ 1) =


p

(i)
11 , i ∈ A(t), Oi(t) = 1

Ti(ϕ(ωi(t))), i ∈ A(t), Oi(t) = 0

Ti(ωi(t)), i 6∈ A(t),

(6.1)

where,

Ti(ωi(t)) , ωi(t)p
(i)
11 + (1− ωi(t))p(i)

01 , (6.2)

ϕ(ωi(t)) ,
εωi(t)

1− (1− ε)ωi(t)
. (6.3)

6.2.2 Optimal Sensing Problem Formulation: Exploitation vs Exploration

We are interested in the user’s optimization problem to find a channel sensing policy π∗ that

maximize the expected total discounted reward over a finite horizon. Mathematically, a sensing

policy πt is defined as a mapping from the belief vector Ω(t) to A(t) in slot t:

πt : Ω(t)→ A(t), 1 ≤ |A(t)| ≤M, t = 1, 2, · · · , T.

The formal definition of the optimal sensing problem P is given as follows:

P : π∗ = argmax
πt

E

[
T∑
t=1

βt−1R(πt(Ω(t)),OA(t))

∣∣∣∣∣Ω(1)

]
, (6.4)

where the slot reward function R(πt(Ω(t)),OA(t)) = R(A(t),OA(t)) is the user throughput in

slot t under the sensing policy πt with the initial belief vector Ω(1)3, 0 ≤ β ≤ 1 is the discount

factor characterizing the feature that the future rewards are less valuable than the immediate

reward.

Solving P is computationally heavy due to the fact that the belief vector {Ω(t), t = 1, 2, · · · , T}

is a Markov chain with uncountable state space when T → ∞, resulting the difficulty in trac-

ing the optimal sensing policy π∗. More specifically, P can be cast into a class of the RMAB

problem with unknown number of arms to be activated. It is worth noting that the RMAB

3If no information on the initial system state is available, each entry of Ω(1) can be set to the stationary

distribution ω
(i)
0 =

p
(i)
01

1+p
(i)
01 −p

(i)
11

, 1 ≤ i ≤ N .
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problem is proved to be PSPACE-hard. Hence, a natural alternative to tackle P is to seek

myopic sensing policy that maximizes the immediate reward. The motivation of focusing on

the myopic sensing policy is two-fold:

• As demonstrated in our previous work, under certain conditions, the myopic sensing policy

is ensured to be optimal.

• The myopic sensing policy has a simple and robust structure that makes it easy to imple-

ment in practice.

Existing studies on the myopic policy in the RMAB problem implicitly assume that the

number of arms to activate (in the context of our work, the number of channels to sense) is fixed.

A natural while crucial research problem is how many channels to sense at each time slot so as

to maximize the expected total reward, which is the focus of our work presented in this chapter.

We sort Ω(t) for each slot t in the descending order such that ω1(t) ≥ ω2(t) ≥ · · · ≥ ωN (t)

and thus form a channel list l0(t) = (1, 2, · · · , N)4, the optimization problem on the number of

channels to sense at each slot is formalized as follows:

P1 : n∗t = argmax
|A(t)|

E

[
T∑
t=1

βt−1R(A(t),OA(t))

∣∣∣∣∣Ω(1)

]
, (6.5)

where, in slot t, the first |A(t)| channels are sensed, i.e., A(t) = {1, · · · , |A(t)|}.

It is insightful to note that the optimization problem P1 on the number of channels to sense

hinges on the following tradeoff between exploitation and exploration: sensing more channels

can help learn and predict the future channel state, thus increasing the long-term reward, but

at the price of sacrificing the reward at current slot as sensing more channels reduces the time

for data transmission, thus decreasing the throughput in the current slot.

To conclude this subsection, we would like to point out that despite our focus on the oppor-

tunistic access problem of multi-channels communication system, the model formulation and

the consequent analysis to solve the optimization problem can be generalized in the context

of the RMAB problem and are readily applied in a variety of engineering fields such as object

tracking, communication jamming and opportunistic packet scheduling. Therefore, the follow-

ing description and the use of terms in the context of opportunistic spectrum access should be

4The initial order of list is determined by the initial availability probability of each channel: ω1(1) ≥ ω2(1) ≥
· · · ≥ ωN (1)⇒ l0(1) = (1, 2, · · · , N).
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understood generically. Moreover, the slot reward function R(A(t),OA(t)) that we adopt can

be generically expressed in the normalized form as follows:

R(A(t),OA(t)) =


1− C(|A(t)|), if

∏
i∈A(t)(1−Oi(t)) = 0

0, otherwise.

(6.6)

where C(|A(t)|) is the cost function monotonously increasing in |A(t)|, representing the time

associated to channel sensing and frequency switching. The first line of the right hand side

of (6.6) indicates that by sensing the channels in A(t) that contains at least one channel sensed

good, the user obtains a payoff 1−C(|A(t)|). The second line indicates the case where none of

the channels in A(t) is sensed good, the user obtains 0 as payoff. In the channel access model

depicted in Subsection 6.2.1, by normalizing ∆ = 1, we have C(|A(t)|) = a|A(t)|.

6.3 When to Stop Sensing New Channels: the ν-step Lookahead

Policy

It can be noticed that given a policy {n(t), 1 ≤ t ≤ T} (i.e., the number of channels to sense at

each slot, given the myopic sensing order), the belief vectors {Ω(t), 1 ≤ t ≤ T} form a Markov

process with an uncountable state space, which makes the optimization problem P1 intractable.

Therefore, we turn to the following heuristic strategy referred to as ν-step lookahead policy:

at each slot t, the user senses the channels in the decreasing order of Ω(t) and estimates the

expected accumulated payoff from slot t + 1 to slot t + ν (t + ν ≤ T ), assuming that in slots

t + 1, · · · , t + ν, the user stops exploring new channels once an available one is found (or the

maximal number of channels to be sensed, M , is reached); the user stops sensing new channels

when the sum of the reward in the current slot plus that from slot t+ 1 to t+ ν decreases.

We now give the mathematic description of the ν-step lookahead policy. Let lk(t) and Ωk(t)

(k ≤ M) denote the channel list and belief vector formed in the descending order of ωi(t)

(1 ≤ i ≤ N) after sensing the first k best channels in slot t, and lij(t) denote the jth channel in

li(t). Moreover, the key mathematical symbols used in our analysis are summarized in Table 6.1.

To better streamline our presentation, we introduce the pseudo cost function defined as
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Table 6.1: Key mathematical symbols
β discount factor
N number of total channels
N channel set {1, 2, · · · , N}
M the maximum number of channel allowed to sense in a slot
A(t) the set of channels chosen at slot t
T the horizon of time
∆ the length of a slot
δ the length of a mini-slot
ε false alarm rate
ζ miss detection rate
Oi(t) sensing outcome of channel i at slot t
ωi(t) probability of channel i in state 1 at slot t
fi(t) probability of channel i in state 0 at slot t
Ω0(t) belief vector formed at the beginning of slot t
Ωi(t) belief vector formed after sensing i channels at slot t
l0(t) channel list in descendent order of ω at the beginning of slot t
li(t) channel list in descendent order of ω after sensing i channels at slot t

l̃i(t) the reverse channel list of li(t)
lij(t) the jth channel in channel list li(t)
←−
l i(t) channel list formed in the descendent order of ω

if the ith channel of l0(t) would be sensed good at slot t
−→
l i(t) channel list formed in the descendent order of ω

if the ith channel of l0(t) would be sensed bad at slot t
R(A(t),OA(t)) immediate reward under choosing A(t) channels at slot t

and obtaining the sensing outcomes OA(t)
q(A(t),OA(t)) immediate cost under choosing A(t) channels at slot t and

obtaining the sensing outcomes OA(t)
Qt+νt+1(T(Ωi(t))) expected accumulative cost from slot t+ 1 to t+ ν when i channels

are sensed at slot t

Q
t+ν
t+1(Ωi(t)) expected accumulative cost from slot t+ 1 to t+ ν if i+ 1 channel

is sensed at slot t

follows:

q(A(t),OA(t)) , 1−R(A(t),OA(t)) =


C(|A(t)|) = a|A(t)|, if

∏
i∈A(t)(1−Oi(t)) = 0

C0 = 1, otherwise.

(6.7)

The optimization problem P1 can be written as the following optimization problem P2:

P2 : n∗t = argmin
|A(t)|

E

[
T∑
t=1

βt−1q(A(t),OA(t))

∣∣∣∣∣Ω(1)

]
. (6.8)

Given the initial belief vector Ω0(t+1) at the beginning of slot t+1 (with the correspondent
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channel list l0(t+1)), let Qt+νt+1(Ω0(t+1)) denote the expected accumulative pseudo cost accrued

from the beginning of slot t + 1 to slot t + ν, given that the user stops sensing once a channel

is sensed good or M is reached, i.e.,

Qt+νt+1(Ω0(t+ 1)) ,
M∑
i=1

[ [
ωl0i (t+1)(t+ 1)

i−1∏
j=1

(1− ωl0j (t+1)(t+ 1))
]
[C(i) + β ·Qt+νt+2(T(Ωi

1(t+ 1)))]︸ ︷︷ ︸
A

]

+

M∏
j=1

(1− ωl0j (t+1)(t+ 1))[C0 + β ·Qt+νt+2(T(ΩM
0 (t+ 1)))]︸ ︷︷ ︸

B

,

where term A denotes the pseudo cost when l0i (t + 1) channel is sensed good while l01(t +

1), · · · , l0i−1(t + 1) channels are sensed bad; term B denotes the pseudo cost when the first M

channels of l0(t + 1) are sensed bad; Ωi
1(t + 1) and Ωi

0(t + 1) denote the belief vectors where

the channel l0i (t + 1) is sensed good and bad, respectively; T denotes the mapping from Ωk(t)

to Ω0(t+ 1) according to (6.1) at the beginning of slot t+ 1, i.e., T : Ωk(t)→ Ω0(t+ 1).

At each slot t, the ν-step lookahead policy solving P2 can be implemented in a heuristic

approach by transforming it into an optimal stopping problem, i.e., the user stops sensing new

channels when the sum of the reward in the current slot plus that from slot t + 1 to t + ν

decreases. Mathematically, the number of channels to sense in the ν-step lookahead policy,

denoted as n(t), is as follows:

n(t) = inf
{
|A(t)| : C(A(t),OA(t)) + βQt+νt+1(T(Ω|A(t)|(t)))

< C(A′(t),OA′(t)) + βQ
t+ν
t+1(Ω|A(t)|(t)), 1 ≤ |A(t)| ≤M

}
, (6.9)

whereA′(t) = A(t)∪{l0|A(t)|+1(t)} denotes the best |A(t)|+1 channels in l0(t), Qt+νt+1(T(Ω|A(t)|(t)))

is the expected accumulative pseudo cost from slot t+ 1 to t+ ν when the best |A(t)| channels

of l0(t) are sensed, and Q
t+ν
t+1(Ω|A(t)|(t)) denotes the expected accumulative pseudo cost from

slot t + 1 to t + ν when the |A(t)| + 1th channel of l0(t) is sensed good with probability

(1− ε)ωl0|A(t)|+1
(t)(t) and bad with probability 1− (1− ε)ωl0|A(t)|+1

(t)(t), i.e.,

Q
t+ν
t+1(Ω|A(t)|(t)) ,(1− ε)ωl0|A(t)|+1

(t)(t)Q
t+ν
t+1(T(Ω

|A(t)|+1
1 (t)))

+ (1− (1− ε)ωl0|A(t)|+1
(t)(t))Q

t+ν
t+1(T(Ω

|A(t)|+1
0 (t))). (6.10)
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The following theorem further studies the structure of the ν-step lookahead policy by devel-

oping an optimal stopping algorithm to implement it.

Theorem 6.1. The ν-step lookahead policy can be implemented by Algorithm 1. In each itera-

tion of algorithm,

• the user continues to sense new channel if all the sensed channels are bad (exploration);

• if at least one channel is sensed good, the user stops sensing new channels if the expected

pseudo cost increases by sensing a new channel (exploration).

Algorithm 1 ν-step lookahead policy: executed for each slot t

Input: Ω0(t), l0(t)
Output: A(t)
Initialization: A(t) = ∅
while |A(t)| < M do

Sense the (|A(t)|+ 1)th channel in l0(t)
Add the sensed channel in A(t), i.e., A(t)← A(t) + l0|A(t)|+1(t)

if At least one channel in A(t) is sensed good and the following inequality holds:

C(|A(t)|) + βQt+νt+1(T(Ω|A(t)|(t)))) < C(|A(t)|+ 1) + βQ
t+ν
t+1(Ω|A(t)|(t)) (6.11)

then
Terminate the algorithm by outputting A(t)

end if
end while

Proof. It suffices to show that to solve n(t) in (6.9), the user should:

• continue to sense new channel if all the sensed channels are bad;

• if at least one channel is sensed good, stop sensing new channels if the expected pseudo

cost increases by sensing a new channel.

The first action is trivial to prove by noticing that by sensing a new channel

• the pseudo cost for the current slot t will remain the same if the new channel is sensed

bad and will be smaller if the new channel is sensed good;

• the user gets better payoff in the future by exploring the system state.

We now show the second action. If the user stops at the current channel, it holds that

C(A(t),OA(t)) + βQt+νt+1(T(Ω|A(t)|(t))) = C(|A(t)|) + βQt+νt+1(T(Ω|A(t)|(t)))).
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By sensing a new channel, on the expected pseudo cost, it holds that

C(A′(t),OA′(t)) + βQ
t+ν
t+1(Ω|A(t)|(t)) = C(|A(t)|+ 1) + βQ

t+ν
t+1(Ω|A(t)|(t)),

where A′(t) = A(t) ∪ {l0|A(t)|+1(t)}. It can be noted that (6.9) is equivalent to the condition

C(|A(t)|) + βQt+νt+1(T(Ω|A(t)|(t)))) < C(|A(t)|+ 1) + βQ
t+ν
t+1(Ω|A(t)|(t))

in Algorithm 1, which completes our proof.

Remark. It is insightful to note that the proposed ν-step lookahead policy can be decomposed

into two steps:

• Exploitation: the user exploits the current available information Ω(t) in a greedy way so

as to find a good channel;

• Exploration: once a good channel secured, the user proceeds to explore the system state

space for long term gain.

The second step (exploration) can be absent if all the M best channels are sensed bad or if

exploring does not increase gain in the long term (i.e., the condition in Algorithm 1 does not

hold even once).

To conclude this subsection, we note that the complexity of the algorithm implementing

the ν-step lookahead policy lies in the computation of (6.11), whose complexity is exponential

with ν. On the other hand, a larger ν leads to better performance of the lookahead policy.

Hence, the user can tune the parameter ν to achieve a desired tradeoff between complexity and

efficiency.

6.4 One-step Lookahead Policy

Having derived the algorithm implementing the proposed ν-step lookahead policy, in this section

we focus on the system of i.i.d. channels and provide an mathematical analysis on the case where

ν = 1, i.e., the one-step lookahead policy. Our motivation of investigating this particular policy

is two-fold:
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• the study on the one-step lookahead policy can provide structural insights on the compu-

tation of the expected pseudo cost, which is the foundation of the ν-step lookahead policy.

The general case ν > 1 can be extended iteratively from the case ν = 1;

• through extensive numerical experiments (please refer to Section 6.5), we observe that the

benefit of the ν-step lookahead policy is most important in the case of ν = 1 and then

decreases gradually with the increase of ν; this observation, combined with the fact that

the complexity of the ν-step lookahead policy increases exponentially with ν, motivates

a more focused analysis on the one-step lookahead policy, which seems to be the most

practical strategy in many scenarios;

Given the system model presented in Subsection 6.2.1, assume that the user has sensed k

channels with at least one of them is in state good, recalling Algorithm 1, the condition to

decide whether to sense channel k + 1 in the channel list can be written as:

a > β
[
Qt+νt+1(T(Ωk(t)))−Qt+νt+1(Ωk(t))

]
. (6.12)

In the subsequent analysis, we show how to compute Qt+1
t+1(T(Ωk(t)))) and Q

t+1
t+1(Ωk(t)) in

an efficient way. Before presenting the detailed analysis, the following lemma studies how the

channel list should be updated when a new channel is sensed.

Lemma 6.1. For a system with positively correlated homogeneous i.i.d. channels, if 0 ≤ ε ≤
(1−p11)p01
p11(1−p01) , the channel sensed good (bad) should be moved to the head (tail) of the old channel

list to form the new channel list.

Proof. Assume the old channel list is lk(t) = (σ1, · · · , σk, · · · , σN , ) at slot t. We thus have

p11 ≥ ωσ1(t) ≥ · · · ≥ ωσk(t) ≥ · · · ≥ ωσN (t) ≥ p01. If channel σk+1 is sensed good, then

ωσk+1
(t) = 1, and further lk(t) = (σk+1, σ1, · · · , σk, σk+2, · · · , σN ) according to the descending

order of ω. If channel σk+1 is sensed bad, then ωσk+1
(t) = ϕ(ωσk+1

(t)) ≤ p01, and further

lk(t) = (σ1, · · · , σk, σk+2, · · · , σN , σk+1).

Assume that the channel list at the beginning of slot t before sensing any channels is l0(t) =

(1, 2, · · · , N), sorted in the decreasing order of the belief values. Assume that among the k

sensed channels {1, · · · , k}, m (m ≥ 1) channels are sensed good while k−m are bad. It follows

from Lemma 6.1 that m channels are moved to the head of the channel list and others to the
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tail, thus forming the new channel list lk(t). We now show how to compute Qt+1
t+1(T(Ωk(t))),

Qt+1
t+1(T(Ωk+1

1 (t))) and Qt+1
t+1(T(Ωk+1

0 (t))) in the case of m ≥ 1 so as to decide whether to sense

channel k + 1.

To make our analysis more tractable, we first define an auxiliary vector X(T(Ωk(t)),m):

X(T(Ωk(t)),m) ,



1

X1(T(Ωk(t)),m)

X2(T(Ωk(t)),m)

X3(T(Ωk(t)),m+ 2)

X4(T(Ωk(t)),m+ 2)


,



1∏m
j=1(1− ωlkj (t)(t+ 1))

1 +
∑m

i=1

∏i
j=1(1− ωlkj (t)(t+ 1))∏M

j=m+2(1− ωlkj (t)(t+ 1))∑M
i=m+2

∏i
j=m+2(1− ωlkj (t)(t+ 1))


.

The following lemma establishes an important structural property of X(T(Ωk(t)),m) by

showing that X(T(Ωk+1(t)),m + 1) can be recursively derived based on X(T(Ωk(t)),m) in

both cases where the channel k + 1 is sensed good and bad, respectively.

Lemma 6.2. The following recursive update on the auxiliary vector holds:

• If k + 1 channel is sensed good, X(T(Ωk+1
1 (t)),m+ 1) = H1 ·X(T(Ωk(t)),m);

• If k + 1 channel is sensed bad, X(T(Ωk+1
0 (t)),m+ 1) = H2 ·X(T(Ωk(t)),m),

where

H1 =



1 0 0 0 0

0 1− (1− ε)p11 0 0 0

1 0 1− (1− ε)p11 0 0

0 0 0 1
1−ω

lkm+2(t)
(t+1) 0

−1 0 0 0 1
1−ω

lkm+2(t)
(t+1)


,

H2 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0
1−ω

lk
M+1

(t)
(t+1)

1−ω
lkm+2(t)

(t+1) 0

−1 0 0
1−ω

lk
M+1

(t)
(t+1)

1−ω
lkm+2(t)

(t+1)
1

1−ω
lkm+2(t)

(t+1)


.
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Proof. Please refer to the appendix for the detailed demonstration.

The following theorem further shows thatQt+1
t+1(T(Ωk(t))), Qt+1

t+1(T(Ωk+1
1 (t))) andQt+1

t+1(T(Ωk+1
0 (t)))

can be easily computed by using the auxiliary vector. Consequently, the one-step lookahead

policy can be implemented in an efficient fashion by using the auxiliary vector, which can be

updated recursively.

Theorem 6.2. It holds that

Qt+1
t+1(T(Ωk(t))) = a

[
A1 ·X(T(Ωk(t)),m) +A2 ·X(T(Ωk(t)),m) ·A3 ·X(T(Ωk(t)),m)

]
(6.13)

Qt+1
t+1(T(Ωk+1

1 (t))) = a
[
A4 ·X(T(Ωk(t)),m)+A5 ·X(T(Ωk(t)),m)·A6 ·X(T(Ωk(t)),m)

]
(6.14)

Qt+1
t+1(T(Ωk+1

0 (t))) = a
[
A1 ·X(T(Ωk(t)),m)+A7 ·X(T(Ωk(t)),m)·A8 ·X(T(Ωk(t)),m)

]
, (6.15)

where,

A1 = [0, 0, 1, 0, 0], A2 = [0, 1− ωlkm+1(t)(t+ 1), 0, 0, 0]

A3 = [1, 0, 0, 1
a −M − 1, 1], A4 = [1, 0, 1− (1− ε)p11, 0, 0]

A5 = [0, 1− (1− ε)p11, 0, 0, 0], A6 = [0, 0, 0, 1
a −M − 1, 1]

A7 = [0, 1, 0, 0, 0], A8 = [0, 0, 0, ( 1
a −M)(1− (1− ε)T (ϕ(ωlkm+1(t)(t)))), 0].

Proof. Please refer to the appendix for the detailed demonstration.

Recall Algorithm 1 and (6.13)–(6.15), it can be verified that the one-step lookahead policy

has a linear computational complexity O(M).

6.5 Numerical Experiments

In this section, we demonstrate some of the theoretical results derived in this chapter and gain

further insight on the developed ν-step lookahead policy as well as the performance tradeoff

hinging behind via a set of numerical experiments. Specifically, we present two typical scenarios,

the homogeneous case with i.i.d. channels and the heterogeneous case with non i.i.d. channels.

In both scenarios, we are interested in the performance in terms of average reward (throughput)

of both the myopic policy discussed in previous chapters with fixed number of channels to

sense and the ν-step lookahead policy. The results in this section provide a complementary
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quantitative study on the performance of the ν-step lookahead policy, which is not explicitly

addressed in the analytical part.

6.5.1 Homogeneous Case with i.i.d. Channels

We first consider a homogeneous system with N = 8 i.i.d. channels. The false alarm rate is set

to ε = 0.02. Each slot the user is allowed to sense at most M = 3 channels. The cost coefficient

a = 0.02. The discount factor β is set to 1. The following two representative parameter settings,

corresponding to a strongly and weakly correlated channel model respectively, are studied:

• Case 1: p11 = 0.8, p01 = 0.2;

• Case 2: p11 = 0.5, p01 = 0.4.

Figure 6.1 compares the average throughput of the myopic policy and the one-step lookahead

policy for Case 1. For the myopic policy, the cases of k = 1, 2, 3 are simulated. From the results,

it can be observed that after the stabilization, the one-step lookahead policy can further increase

the throughput by approximately 8% w.r.t. the myopic policy with k = 3. The performance

gain is more significant when compared to the myopic policy with k = 1 and 2. As analyzed

in the theoretic analysis, this gain is due to the fact that the one-step lookahead policy can

achieve a desired tradeoff between exploration and exploitation. This benefit in throughput is

especially attractive given the low computation complexity of the one-step lookahead policy.

Figure 6.2 illustrates the same comparison for Case 2. It can be noticed from the results that

the performance gain in Case 2 is less significant compared to Case 1. This can be explained

by the fact that the channel correlation in Case 2 is less significant in time than Case 1 and

consequently, the effect of prediction is less important.

We also run the same simulation by setting β = 0.95 in order to simulate a more conservative

user. The results are shown in the following figures 6.3 and 6.4. Basically, we obtain the same

finding.

We then proceed to study the performance of the ν-step lookahead policy in the case of

ν > 1. Figure 6.5–Figure 6.8 study the average throughput with ν = 1, 2, 3 for Case 1 and Case

2, respectively. The following effects can be observed:

• For Case 1: statistically, the increase of ν does not enhance the performance gain;
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Figure 6.1: Throughput comparison of myopic policies (k = 1, 2, 3) and 1-step lookahead policy
for homogeneous channels (N = 8,M = 3, β = 1, a = 0.02, ε = 0.02, p11 = 0.8, p01 = 0.2)
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Figure 6.2: Throughput comparison of myopic policies (k = 1, 2, 3) and 1-step lookahead policy
for homogeneous channels (N = 8,M = 3, β = 1, a = 0.02, ε = 0.02, p11 = 0.5, p01 = 0.4)
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Figure 6.3: Throughput comparison of myopic policies (k = 1, 2, 3) and 1-step lookahead policy
for homogeneous channels (N = 8,M = 3, β = 0.95, a = 0.02, ε = 0.02, p11 = 0.8, p01 = 0.2)
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Figure 6.4: Throughput comparison of myopic policies (k = 1, 2, 3) and 1-step lookahead policy
for homogeneous channels (N = 8,M = 3, β = 0.95, a = 0.02, ε = 0.02, p11 = 0.5, p01 = 0.4)
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Figure 6.5: Throughput comparison of 1-,2-,3-step lookahead policy for homogeneous channels
(N = 8,M = 3, β = 1, a = 0.02, ε = 0.02, p11 = 0.8, p01 = 0.2)

• For Case 2: increasing ν from 1 to 2 slightly improve the average throughput (less than

0.5%), but further increasing ν cannot bring more benefit.

The above findings justify our focus on the one-step lookahead policy. More generically, by

taking the complexity into account, we recommend to set ν = 1 in a large variate of parameter

settings.

6.5.2 Heterogeneous Case with non i.i.d. Channels

We now proceed to evaluate the performance of the ν-step lookahead policy in heterogeneous

systems with non i.i.d. channels. To this end, we randomly generate 100 heterogeneous systems

with the following parameter setting: N = 8, M = 3, a = 0.02, ε = 0.02, and p
(i)
11 > p

(i)
01

(1 ≤ i ≤ N). We plot the average throughput in Figure 6.9 for β = 1 and Figure 6.10 for

β = 0.95. Again, we observe similar results as that of homogenous systems, namely, the ν-

step lookahead policy statistically outperforms the myopic policy in all parameter settings, and

increasing ν does not bring significant throughput gain.
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Figure 6.6: Throughput comparison of 1-,2-,3-step lookahead policy for homogeneous channels
(N = 8,M = 3, β = 1, a = 0.02, ε = 0.02, p11 = 0.5, p01 = 0.4)
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Figure 6.7: Throughput comparison of 1-,2-,3-step lookahead policy for homogeneous channels
(N = 8,M = 3, β = 0.95, a = 0.02, ε = 0.02, p11 = 0.8, p01 = 0.2)
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Figure 6.8: Throughput comparison of 1-,2-,3-step lookahead policy for homogeneous channels
(N = 8,M = 3, β = 0.95, a = 0.02, ε = 0.02, p11 = 0.5, p01 = 0.4)
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Figure 6.9: Average throughput comparison of myopic policies (k = 1, 2, 3) and 1-,2-,3-step
lookahead policy for heterogeneous channels (N = 8,M = 3, β = 1, a = 0.02, ε = 0.02)
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Figure 6.10: Average throughput comparison of myopic policies (k = 1, 2, 3) and 1-,2-,3-step
lookahead policy for heterogeneous channels (N = 8,M = 3, β = 0.95, a = 0.02, ε = 0.02)

6.6 Conclusion

In this chapter, we study the optimization problem where the user has to decide the number

of channels to sense in order to maximize its utility. Given the exponential complexity of the

problem, we develop a heuristic ν-step lookahead policy which consists of sensing channels in

a myopic way and stopping sensing when the expected aggregated utility from the current slot

t to slot t + ν begins to decrease. In the developed policy, the parameter ν allows to achieve

a desired tradeoff between social efficiency and computation complexity. We demonstrate the

benefits of the proposed strategy via numerical experiments on several typical settings.
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6.7 Appendix

6.7.1 Proof of Lemma 6.2

Case 1. When channel lkm+1(t) is sensed good, we have ωlkm+1(t)(t + 1) = (1 − ε)p11 according

to (6.1) and false alarm rate. Recalling the definition of Xi (i = 1, 2, 3, 4), we have



X1(T(Ωk+1
1 (t)),m+ 1) = [1− ωlkm+1(t)(t+ 1)]X1(T(Ωk(t)),m),

X2(T(Ωk+1
1 (t)),m+ 1) = 1 + [1− ωlkm+1(t)(t+ 1)]X2(T(Ωk(t)),m),

X3(T(Ωk+1
1 (t)),m+ 3) = X3(T(Ωk(t)),m+2)

1−ω
lkm+2(t)

(t+1) ,

X4(T(Ωk+1
1 (t)),m+ 3) = X4(T(Ωk(t)),m+2)

1−ω
lkm+2(t)

(t+1) − 1.

It is straightforward to verify that

X(T(Ωk+1
1 (t)),m+ 1) = H1 ·X(T(Ωk(t)),m),

where

H1 =



1 0 0 0 0

0 1− (1− ε)p11 0 0 0

1 0 1− (1− ε)p11 0 0

0 0 0 1
1−ω

lkm+2(t)
(t+1) 0

−1 0 0 0 1
1−ω

lkm+2(t)
(t+1)


.

Case 2. When channel lkm+1(t) is sensed bad, we have ωlkm+1(t)(t+1) = (1−ε)T (ϕ(ωlkm+1(t)(t)))

according to (6.1) and false alarm rate. Note, if M = N , we have ωlkM+1(t)(t+1) = ωlkm+1(t)(t+1)
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according to Lemma 6.1. Recalling the definition of Xi (i = 1, 2, 3, 4), we have



X1(T(Ωk+1
0 (t)),m) = X1(T(Ωk(t)),m),

X2(T(Ωk+1
0 (t)),m) = X2(T(Ωk(t)),m),

X3(T(Ωk+1
0 (t)),m+ 2) = X3(T(Ωk(t)),m+ 2)

1−ω
lk
M+1

(t)
(t+1)

1−ω
lkm+2(t)

(t+1) ,

X4(T(Ωk+1
0 (t)),m+ 2) = X4(T(Ωk(t)),m+2)

1−ω
lkm+2(t)

(t+1) − 1 +X3(T(Ωk(t)),m+ 2)
1−ω

lk
M+1

(t)
(t+1)

1−ω
lkm+2(t)

(t+1) .

It is straightforward to verify that

X(T(Ωk+1
0 (t)),m+ 1) = H2 ·X(T(Ωk(t)),m),

where

H2 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0
1−ω

lk
M+1

(t)
(t+1)

1−ω
lkm+2(t)

(t+1) 0

−1 0 0
1−ω

lk
M+1

(t)
(t+1)

1−ω
lkm+2(t)

(t+1)
1

1−ω
lkm+2(t)

(t+1)


.

6.7.2 Proof of Theorem 6.2

Assume that m and k −m channels of k channels are sensed good and bad respectively, and

thus lk(t) is obtained.

Case 1. If the user does not sense channel lkm+1(t), we have by separating the channel lkm+1(t)

from others

Qt+1
t+1(T(Ωk(t))) =

M∑
i=1

C(i)ωlki (t)(t+ 1)

i−1∏
j=1

flkj (t)(t+ 1) +

M∏
j=1

flkj (t)(t+ 1)

=
δ

∆

m∑
i=1

iωlki (t)(t+ 1)
i−1∏
j=1

flkj (t)(t+ 1) +
δ

∆
(m+ 1)ωlkm+1(t)(t+ 1)

m∏
j=1

flkj (t)(t+ 1)

+
δ

∆
flkm+1(t)(t+ 1)

m∏
j=1

flkj (t)(t+ 1)

M∑
i=m+2

iωlki (t)(t+ 1)
i−1∏

j=m+2

flkj (t)(t+ 1) +
M∏
j=1

flkj (t)(t+ 1)

=
δ

∆

[
1 + flk1 (t)(t+ 1) + · · ·+ flk1 (t)(t+ 1)× · · · × flkm−1(t)(t+ 1)−mflk1 (t)(t+ 1)× · · · × flkm(t)(t+ 1)

]
+
δ

∆
(m+ 1)ωlkm+1(t)(t+ 1)

m∏
j=1

flkj (t)(t+ 1)
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+
δ

∆
flkm+1(t)(t+ 1)

m∏
j=1

flkj (t)(t+ 1)×
[
(m+ 2) + flkm+2(t)(t+ 1) + · · ·

+ flkm+2(t)(t+ 1)× · · · × flkM−1(t)(t+ 1)−Mflkm+2(t)(t+ 1)× · · · × flkM (t)(t+ 1)
]

+
M∏
j=1

flkj (t)(t+ 1)

=
δ

∆
X2(T(Ωk(t)),m) +

δ

∆
(m+ 1)(ωlkm+1(t)(t+ 1)− 1)

m∏
j=1

flkj (t)(t+ 1)

+
δ

∆
flkm+1(t)(t+ 1)

m∏
j=1

flkj (t)(t+ 1)×
[
(m+ 2) +X4(T(Ωk(t)),m+ 2)

+ (
∆

δ
−M − 1)X3(T(Ωk(t)),m+ 2)

]
=
δ

∆
X2(T(Ωk(t)),m)− δ

∆
(m+ 1)flkm+1(t)(t+ 1)X1(T(Ωk(t)),m)

+
δ

∆
flkm+1(t)(t+ 1)X1(T(Ωk(t)),m)×

[
(m+ 2) +X4(T(Ωk(t)),m+ 2)

+ (
∆

δ
−M − 1)X3(T(Ωk(t)),m+ 2)

]
=
δ

∆
X2(T(Ωk(t)),m) +

δ

∆
flkm+1(t)(t+ 1)X1(T(Ωk(t)),m)×

[
1

+X4(T(Ωk(t)),m+ 2) + (
∆

δ
−M − 1)X3(T(Ωk(t)),m+ 2)

]
=
δ

∆

{
A1 ·X(T(Ωk(t)),m) + A2 ·X(T(Ωk(t)),m) ·A3 ·X(T(Ωk(t)),m)

}
.

Case 2. If the channel lkm+1(t) (l0k+1(t)) is sensed good, then we have by separating the

channel lkm+1(t) from others

Qt+1
t+1(T(Ωk+1

1 (t))) =
M∑
i=1

C(i)ω←−
l k+1
i (t)

(t+ 1)
i−1∏
j=1

f←−
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Chapter 7

Conclusion and Perspective

7.1 Thesis Summary

This thesis has presented a systematic study on a class of RMAB problems arising from the

context of opportunistic spectrum access. More specifically, we focus on the myopic policy, a

natural strategy with simple and robust structure that seeks to maximize the short-term reward.

In Chapter 3, we provide a generic analysis on the optimality of the myopic sensing policy

where a user can sense more than one channel each time and gets one unit of reward if at least

one of the sensed channels is in the good state. Through mathematic analysis, we show that

the myopic sensing policy is optimal only for a small subset of cases where the user is allowed

to sense two channels each slot. In the general case, we give counterexamples to illustrate that

the myopic sensing policy is not optimal.

Motivated by the above analysis, we then study the following natural while fundamentally

important question: under what conditions is the myopic policy guaranteed to be optimal? We

answer the above posed question by performing an axiomatic study in Chapter 4 and Chapter

5. More specifically, we develop three axioms characterizing a family of functions which we

refer to as regular functions, which are generic and practically important. We then establish

the optimality of the myopic policy when the reward function can be expressed as a regular

function and the discount factor is bounded by a closed-form threshold determined by the

reward function.

Chapter 3, 4, 5 study the optimality of the myopic sensing policy in the case where the

user is allowed to sense k out of N channels. In Chapter 6, we further investigate a more

challenging problem where the user has to decide the number of channels to sense in order
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to maximize its utility. This optimization problem hinges on the following tradeoff between

exploitation and exploration: sensing more channels can help learn and predict the future

channel state, thus increasing the long-term reward, but at the price of sacrificing the reward

at current slot as sensing more channels reduces the time for data transmission, thus decreasing

the throughput in the current slot. Therefore, to find the optimal number of channels to sense

consists of striking a balance between the above exploitation and exploration. After showing

the exponential complexity of the problem, we develop a heuristic ν-step lookahead policy

which consists of sensing channels in a myopic way and stopping sensing when the expected

aggregated utility from the current slot t to slot t+ν begins to decrease. In the developed policy,

the parameter ν allows to achieve a desired tradeoff between social efficiency and computation

complexity. We demonstrate the benefits of the proposed strategy via numerical experiments

on several typical settings.

From the system perspective, our analysis presented in this thesis provides insight on the

following design tradeoff in opportunistic spectrum access: gaining immediate access (exploita-

tion) versus gaining information for future use (exploration). Due to hardware limitations and

the energy cost of spectrum monitoring, a user may not be able to sense all the channels in the

spectrum simultaneously. A sensing strategy is thus needed for intelligent channel selection to

track the rapidly varying spectrum opportunities. The purpose of a sensing strategy is twofold:

to find good channels for immediate access and to gain statistical information on the spectrum

occupancy for better opportunity tracking in the future. The optimal sensing strategy should

thus strike a balance between these two conflicting objectives.

7.2 Open Issues and Directions for Future Research

In this section, we discuss some key open issues and outline some potential directions for further

research.

7.2.1 RMAB-based Channel Access with Multiple Users

In this thesis, we mainly focus on the decision making process and different tradeoff within a

single user. A natural research direction is to take the results obtained in the thesis as a building

block to further study the scenario of multiple users accessing opportunistically a multi-channel

communication system. Here the key research challenge is how to coordinate the users to access
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different channels in a distributed fashion without or with little explicit network-level feedback.

A natural way to tackle this problem is to model the situation as a non-cooperative game

among users and to see how the results obtained in this thesis can further be tailored in the

new context. We are now beginning to perform numerical experiments on the channel sensing

and accessing strategies developed in the thesis in the context of multiple users and exploring

the problem from the perspective of signaling game.

7.2.2 Incorporating Channel Switching Cost

Another aspect that may limit the performance of the channel access mechanism is the channel

switching cost. In the current wireless devices, channel switching introduces a cost in terms of

delay, packet loss and protocol overhead. Hence, an efficient channel access policy should avoid

frequent channel switching, unless necessarily. In the context of RMAB, this problem can be

mapped into the generic RMAB problem with switching cost between arms. Our analysis in

Chapter 6 is a primary step toward taking the channel switching cost into account, but more

systematical works are called for so as to provide more in-depth insight on this problem.

It is important to note that the generic MAB with switching cost is NP-hard and there

does not exist any optimal index policy [50]. More specifically, the introduction of switching

cost renders not only the Gittins index policy suboptimal, but also makes the optimal policy

computationally prohibitive. Given such difficulties, we envision to tackle the problem from the

following aspects:

• Looking for suboptimal policy with bounded efficiency loss compared to the optimal policy;

• Developing heuristic policy achieving a tradeoff between optimality and complexity, as

that presented in Chapter 6;

• Deriving optimal policy in a subset of scenarios or designing asymptotically optimal policy.

7.2.3 RMAB with Correlated Arms

Another practical extension is to consider the correlated channels, i.e., the Markov chains of

different channels can be correlated. This problem can be cast into the RMAB problem with

correlated arms. The introduction of the correlation among arms makes the tradeoff between

exploration and exploitation more sophisticated as sensing a channel can not only reveal the
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state of the sensed channel, but also provide information on other channels as they are not

entirely independent. How to characterize the tradeoff in this new context and how to design

efficient channel access policy are of course pressing research topics in this direction.
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