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1.1 Context, motivations and objectives

From the first digital computers to the Data Deluge.

Digital computers have been originally designed in the 1950s to automate calculation
tasks [Holbrook and Brown, 1982]: “[...] calculations were performed in part with slide rules
and, mainly, with desk calculators. The magnitude of this load of very tedious routine computation
and the necessity of carefully checking it indicated a need for new methods”. As an extension of
these calculation tasks, digital computers have rapidly been dedicated to data processing
and analysis.

In parallel with the continuous increase of computing and storage capacity of digital
computers [Moore, 1965], the need for (tele)communicating data through computers led
to their massive and systematic interconnection in networks. The Internet was born in the
1990s as a global world-wide network of computers. The (World Wide) Web [Berners-Lee
et al., 1994] led to the fast adoption of the Internet. The Web has generalized, on a global
scale, the access to information through hypertext documents. Following the example
of interconnected computers in networks, Web documents are linked together through
HyperText links. These links allow users to read and transparently navigate, without
specifying documents locations, into a global network of documents.

The generalization of (i) computers, with to a continuous increase of their computing,
storage and communication capacities, and (ii) a Web which evolved from interconnected

http://www.w3.org/WhatIs.html
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documents towards interconnected data (or things), leads nowadays to massive data ac-
quisition, production, and publication (also known as Data Deluge) which exceeds by far
our current data processing and analysis capacities [Bell et al., 2009] [Baraniuk, 2011].

As an example, high energy physics experiments conducted by CERN on the Large
Hadron Colider (LHC) produced in 2010 13 petabytes of data. This amount of data
would represent a 14 km high tower of CD-ROMs [Brumfiel, 2011]. To support these
experiments, data is processed through a dedicated large-scale distributed computing
infrastructure, the LHC Computing Grid, comprising around 200.000 computing cores,
150 petabytes of storage, and distributed over 34 countries. As another example, the
Google web search engine was processing in 2008 more than twenty petabytes of data
per day [Dean and Ghemawat, 2008]. Beyond pure data, we also witness a noticeable
increase of medical knowledge discovery since 800.000 medical articles were catalogued
in 2008 and 1 million articles were expected for 2012 [Gillam et al., 2009].

This massive and often poorly coordinated data production raises the general issue
of finding the appropriate information in an unprecedented amount of data, spread at an
unprecedentedly large scale.

Translational research in the Data Deluge.

Scientific activities nowadays face the data explosion challenge. Paradoxically, continu-
ously producing more data does not imply that we have a better access to information
and better means to interpret, analyze data, possibly opening opportunities for scientific
discoveries. Data is massively produced from diverse sources, geographically dispersed,
and constrained under their proper governance model. Data explosion is not only a mat-
ter of volume but also a matter of diversity [Goble and Stevens, 2008]: “Not only are the
datasets growing in size and number, but they are only partly coordinated and often incompati-
ble” [Goble and Roure, 2009].

Translational science results from the need to cross several data, and several methods,
both originating from diverse sources and scientific disciplines to more rapidly trans-
late research outcomes. Translational science needs to cope with the multiplicity of data
sources, their diversity, their size, while still considering data as hardly relocatable. The
cost of copying large amount of data to a single workstation might be non realistic due
to the multiplicity and the size of sources. In addition, distributing data to several in-
dependent research centers may require dedicated and expensive infrastructures, which
are often not affordable in the context of academic scientific research: “For research to be
affordable, data analysis must increasingly be done where data sets reside [...]” [Bell et al., 2009].
Moreover, in a life-science context, biomedical data are sensitive and non relocatable for
legal or ethical reasons.

Translational medicine thus faces the challenging issues of efficiently and coherently
integrating large, but also diverse, distributed data, involving both structural1 and se-
mantic2 heterogeneity.

1e.g. data may be expressed in incompatible formats.
2data may refer to several conceptualizations, terminologies or thesauri, whose meanings have several
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While the data deluge raises the issue of the mass and the distribution of data, trans-
lational research, in this context, raises the issues of poorly coordinated data production
from diverse and autonomous data sources, resulting in data heterogeneity. Translational
research discoveries are consequently conditioned by the way we handle the distribution
of massive, and diverse, data. How to search over multiple distributed and autonomous
data sources ? How to efficiently find data ? How to interpret the resulting data originat-
ing from these diverse data sources ?

Understanding and integrating diverse data through Knowledge Engineering
methods and Semantic Web technologies.

To coherently integrate multi-sources data, scientists need to have a clear understanding
of the content of data sources. Knowledge Engineering, a discipline that emerged from
Artificial Intelligence, is dedicated to build scalable knowledge based systems [Studer
et al., 1998]. In the context of the continuous increase of available data sources, Knowl-
edge Engineering has gained a lot of interest to ease the understanding of diverse data
and their coherent integration. The Semantic Web is a technological layer based on
Knowledge Engineering principles and applied at the scale of the Web: “information
is given a well-defined meaning, better enabling computers and people to work in coopera-
tion” [Berners-Lee et al., 2001]. More recently, Linked Data principles [Bizer et al., 2009a]
more directly addressed the issue of the increase of data sources at the scale of the Web:
“Linked Data is simply about using the Web to create typed links between data from different
sources. These may be as diverse as databases maintained by two organizations in different ge-
ographical locations, or simply heterogeneous systems within one organization that, historically,
have not easily interoperated at the data level”. We have been moving from human-readable
interlinked documents (the Web) to machine-readable interlinked resources, at global
scale, with explicit and formal meaning (Knowledge Engineering).

Semantic e-Science.

Translational science relies on computing infrastructures to foster cooperations/collab-
orations and shorten the “time-to-discovery”. E-Science [Hey and Trefethen, 2005] ap-
peared in this context of “Data Deluge” in which scientists need to achieve compute in-
tensive tasks in highly distributed environments. We envisage in this thesis collaborative
e-Science platforms as means to (i) perform in-silico experiments (ii) share the involved
resources, and (iii) produce new meaningful information. For instance, such platforms
should allow scientists to evaluate a single data analysis procedure onto several shared
databases. Another typical use case would consist in comparing several data analysis
procedures provided by several partners with a common reference database.

Reusing and re-purposing data sources is a major concern in this context of growing
availability of, possibly opened, (linked-)data sources [Fox and Hendler, 2009]. Seman-
tic e-Science relies on Semantic Web technologies and standards to address the sharing

precisions.
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and cooperation challenges of data-intensive science. Semantic approaches for e-Science
allow scientists to refer to common conceptual referents (ontologies or controlled vocab-
ularies) so that the interpretation of diverse multi-source data is facilitated. Beyond data
integration, methods integration is also facilitated by Semantic approaches, easing the
composition of data processing units through scientific workflows.

Objectives of this work.

To address the data volume, data distribution and data heterogeneity issues arising from
medical translational research in the Data Deluge, the main objective of this thesis is to
tackle the coherent production and sharing of knowledge in life-science.

The main challenge for knowledge sharing is to be able to perform advanced querying
on diverse and multi-source data while still considering data sources as dynamic and
autonomous.

Scientific data analysis procedures participate to the massive production of data
whose interpretation is difficult, even for e-Scientists. Data might be considered as noisy,
foggy, due to their volume and to the lack of clear meaning, thus hampering their inter-
pretation and analysis. The underlying idea of knowledge production is that e-Science
data analysis procedures, without being instrumented with knowledge engineering, con-
tribute to the Data Deluge in its negative aspect. They massively feed data stores with
hardly searchable / interpretable data. How to, on one hand, ease the access and the
interpretation of massive diverse multi-sources data, while on the other hand producing
new data, positively feeding the Data Deluge ?

The knowledge production challenge addressed in this thesis consists in tackling the
production of a limited amount of meaningful data – opposed to the systematic produc-
tion of generic technical (meaningless) data – so that data interpretation keeps simple,
but not simpler3.

1.2 Research questions

In this thesis manuscript, we investigate how to coherently produce and share knowl-
edge from distributed Life-science resources. To address this general research question,
we will defend the following 3 thesis:

3“Everything should be made as simple as possible, but not simpler.” – Albert Einstein
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T1 In spite of the continuous increase of computing and storage capacities,
the federation of distributed resources (versus centralized warehousing)
becomes a cornerstone to enhance the adoption and the scalability of col-
laborative e-Science platforms.

T2 Large-scale data analysis or processing is complex for end-users. Enhanc-
ing e-Science platforms with Knowledge Engineering reduces the com-
plexity of experiments setup, and eases the exploitation of data analyzed
or produced.

T3 Widely spread into Life-science communities, Knowledge Engineering
methods and Semantic Web technologies are at the heart of domain mod-
eling, and a foundation for knowledge sharing and capitalization.

While T1 is related to how is envisaged the architectural setup for resource distribution
in the general research question, T2 and T3 are more related to the semantic coherency of
sharing and the expected knowledge resulting from the usage of collaborative platforms.

More precisely, we will address in the remainder of this manuscript the following con-
crete questions :

RQ1 How to collect knowledge from multiple distributed data sources.
RQ1 will lead to strong architectural constraints to address distri-
bution issues, and covers the areas of Distributed databases, Dis-
tributed Query Processing, and Knowledge Representation (T1,
T3).

RQ2 How to enable collaborations in a competitive environment.
RQ2 depends on architectural choices resulting from Q1 and cov-
ers Security in Distributed Systems (T1).

RQ3 How to optimize the semantic querying over distributed resources.
RQ3 also depends on RQ1 architectural choices (T1, T3) and is
directly related to distributed query processing, knowledge rep-
resentation and retrieval.

RQ4 How to correctly annotate produced data with semantics.
RQ4 covers Knowledge Representation and semantic description
of data analysis procedures (T3).

RQ5 How to enhance the understanding of scientific data analysis results.
RQ5 also depends on RQ4 and covers Provenance (in scientific
data) and Automated Reasoning.
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1.3 Thesis contributions

Investigating these concrete research questions led to three main contributions in the
fields of distributed knowledge bases and scientific data analysis procedures (modeled
and digitally represented through workflows). Two of them focus on knowledge sharing
in the context of e-Science platforms, through (i) “secured collaborations”, which address
the control of data sharing in a competitive environment, and (ii) “knowledge base feder-
ation”, which provides efficient and still expressive enough distributed query processing
over scattered Semantic Web data graphs. The third contribution of this thesis focuses on
the “production of knowledge based on the exploitation of workflow runs in e-Science
platforms”. It provides meaningful experiment summaries leveraging domain ontologies
and eases the understanding of massively produced data through “in silico” experiments.

1.3.1 Secured collaborations

We propose in this thesis a model for secured collaborations in the context of distributed
e-Science platforms. Distributed access control strategies have been proposed and im-
plemented in the NeuroLOG neuroimaging platform, thus allowing the setup of multi-
centric studies. This approach, based on classical public key infrastructures (PKIs), in-
troduce an original and pragmatic strategy to enable collaborations in a competitive en-
vironment (RQ2). This work has been published in the HealthGrid’09 conference as a
short paper [Gaignard and Montagnat, 2009] and has been integrated and used in pro-
duction in the NeuroLOG middleware [Montagnat et al., 2008b]. Secured collaborations
are described in the chapter 3 of this manuscript.

1.3.2 Knowledge base federation

The second contribution of this thesis addresses the sharing of knowledge distributed
over multiple data sources possibly participating in e-Science collaborative platforms.
In the context of collaborative platforms dedicated to life-sciences, the autonomy prop-
erty of participating data providers is fundamental. Indeed, for ethical or legal is-
sues, it is generally not possible to re-locate sensitive data outside the data provider
sites. For this reason, data warehousing approaches are disqualified. We propose in
this thesis, transparent and efficient semantic federated querying strategies. Transpar-
ent, in the sense that the query engine interprets standard SPARQL queries and thus does
not require explicit distribution directives to be provided by query designers. Effective,
in the sense that the cost of transparent federated querying is reduced through a set of
static and dynamic optimizations. Moreover, our approach is based on abstract knowl-
edge graphs and thus allows mediating structural heterogeneity, as soon as data sources
can provide a graph view on hosted data. This approach allows to efficiently collect
knowledge (RQ3) fragmented over distributed semantic repositories (RQ1), thus easing
knowledge sharing through collaborating data providers. Our approach for transpar-
ent semantic federated querying is precisely described in chapter 4 and its implemen-
tation is described in chapter 7. Our approach has been evaluated in a real controlled
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distributed infrastructure in chapter 8. This work has also been published in the national
workshop [Gaignard et al., 2012b] of the IC’12 conference, dedicated to semantic interop-
erability in e-Health, in the MICCAI-DCICTAI workshop [Gaignard et al., 2012a] of the
MICCAI’12 international conference, dedicated to Data- and Compute-Intensive Clinical
and Translational Imaging Applications, and as a research paper of the Web Intelligence
(WI’12) international conference [Corby et al., 2012]. Finally, this work let us envisage
the evolution of the NeuroLOG platform from classical relational database federation to-
wards semantic knowledge base federation, thus enabling distributed reasoning. It opens
new research perspectives such as those currently under investigation by the CrEDIBLE 4

initiative, tackling the new challenges of massive scientific data management.

1.3.3 Semantic scientific workflows

The last salient contribution of this thesis addresses the production of knowledge
through the usage of e-Science platforms. On one hand, ontological modeling ap-
proaches and knowledge engineering techniques are nowadays a corner-stone to provide
meaningful and coherent data integration, and thus ease the navigation within the deluge
of heterogeneous data the scientific communities are facing. On the other hand, scientific
workflows, based on service oriented architectures, became the agreed paradigm to pro-
cess data and finally populate scientific databases. We propose in this thesis to bridge
together scientific workflows and domain ontologies to (i) assist in silico experiment de-
signers in semantically composing data processing services together, through semanti-
cally annotated composable services (RQ4), and (ii) to assist scientists in the exploitation
of their massive processed data (RQ5) through semantic experiment summaries, based
on technical fine-grained provenance information, and inference rules involving con-
cepts and properties of domain ontologies. This work has been introduced in the IC’10
national workshop [Gaignard and Montagnat, 2010] dedicated to the medical seman-
tic web, and presented in the KEOD’11 international conference [Gaignard et al., 2011],
focusing on the requirements for role taxonomies to disambiguate the semantic annota-
tion of data processing services. This work is extensively described in chapters 6, and
in the experimental evaluations presented in chapter 8. Finally, this approach has been
implemented through the NeuSemStore software framework introduced in chapter 7.
NeuSemStore is currently used in production in the NeuroLOG neuroimaging platform
and the VIP [Forestier et al., 2011a] virtual imaging platform.

1.4 Applicative context: neurosciences and medical image simu-
lation

This work took place in the context of two projects funded by the French National Re-
search Agency (ANR): the NeuroLOG project (ANR-06-TLOG-024) and the VIP project
(ANR-09-COSI-03). These two projects share methodological commonalities as they both

4http://credible.i3s.unice.fr

http://credible.i3s.unice.fr
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heavily rely on Life-science ontologies and in-silico experiments performed through e-
Science workflows.

1.4.1 Collaborative neuroscience (NeuroLOG project)

The NeuroLOG project [Montagnat et al., 2008b], [Michel et al., 2010], aimed at federat-
ing four neuroscience research centers in France. It enables collaborative neurosciences
through the support of multi-centric studies and the coherent sharing of large population
datasets and neuroimaging processing tools.

Motivations and challenges. The NeuroLOG project has been driven by four test-bed
clinical application: multiple sclerosis, brain strokes, brain tumors and Alzheimer’s dis-
ease. In this clinical context, neuroscientists manage, process and analyze a huge variety
of data. Neuroimages differ by their nature (modalities for neuroimaging data such as
T1 or T2 MRI, MRIs with gadolinium contrast agent, Diffusion MRI, etc.) and their struc-
ture (several neuroimaging data formats such as DICOM, Nifti, Analyze, etc.). Moreover
neuroimaging studies relies on the setup of brain image databases in which raw data are
complemented with descriptive metadata. These metadata may describe the context of
the clinical studies, the data acquisition protocols, the examined subjects, and the scores
of neuropsychological tests. Data and metadata involved in neuroscience studies are thus
highly heterogeneous both in terms of nature and structure. Coherently sharing these
data and metadata is challenging and requires advanced neuroimaging data integration.

Neuroscientists require means to achieve collaborative multi-centric studies, to coher-
ently share valuable data or data analysis procedures. However, due to the sensitivity of
data and the competitive nature of scientific research, neuroscientists want to collaborate
but often in a limited extent, i.e. with a subset of the partners and over a subset of the
available neuroimaging resources (both data and tools). The autonomy of neuroscience
research centers must be guaranteed in terms of (i) daily operation of legacy databases,
and (ii) access control over the hosted resources, which is partly conflicting with the setup
of large-scale multi-centric studies.

Finally, neuroimaging data analysis pipelines involve generally several complex pro-
cessing steps, and may be launched over large population datasets. The cost of these
analysis procedures can be handled through large-scale distributed computing infras-
tructures such as the EGI European Grid. However, these infrastructures are difficult to
comprehend for non IT experts. Although they propose security over distributed com-
puting resources, they are not yet convincing in terms of sites autonomy, and resources
access control.

Objectives. The NeuroLOG platform addresses several challenging issues when ad-
dressing the setup of multi-centric collaborative neurosciences. First it needs to lever-
age existing large-scale distributed computing infrastructures while still guaranteeing
the autonomy of participating sites. Then, it needs to address the distribution and the
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heterogeneity of neuroimaging data sources to ease the coherent sharing of both large
population datasets and data analysis procedures.

NeuroLOG thus aims at easing the setup of neuroscience multi-centric studies
through an ontology driven sharing of (i) complex data analysis workflows, enacted
over dedicated large-scale distributed computing infrastructures, and (ii) autonomous,
heterogeneous and distributed neuroimaging data sources.

Platform coarse-grained architecture. Figure 1.1 illustrates the main components of
the NeuroLOG platform. It consists in a middleware which coordinates several neuro-
science research centers while still guaranteeing their autonomous operation. NeuroLOG
sites are thus loosely coupled. They present data and metadata interfaces which adapt,
through a mediator, to the specificities of their legacy databases.

NeuroLOG Site #1

Metadata Manager

Distributed 
computing 

infrastructure
Neuroimaging  

raw data
Site-specific 

database

Semantic data

NeuroLOG  
database

Mediator

NeuroLOG user desktop

Federated metadata view

Neuroimaging workflows

NeuroLOG Site #n

•••

Data & Metadata 
Manager

Site-specific 
database

Mediator

Raw data 
Manager

Figure 1.1: The NeuroLOG platform eases the setup of neuroimaging multi-centric studies through a seman-
tic driven data federation.

NeuroLOG metadata manager: data sharing has been driven in NeuroLOG by a se-
mantic approach. The NeuroLOG ontology has been developed to provide a uni-
form and strong conceptualization of the neuroimaging domain. This ontology has
then been derived into a relational schema aimed at providing a federated view
over the heterogeneous site-specific legacy databases. Each site thus exposes its
(read-only) legacy database through a mediator and allows uniform querying over
the distributed legacy databases. In addition on each site, a writable NeuroLOG
database is deployed, natively using the federated schema. This database aims at
storing the data produced by the neuroimaging workflows enacted through the
platform.
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NeuroLOG semantic data repository: to allow rich semantic querying, a semantic data
store was periodically populated from the federated relational databases based on
an SQL-to-RDF mapping tool.

NeuroLOG raw data manager: the raw data manager aims at retrieving and storing
raw neuroimaging files, indexed either in the legacy database, or in the NeuroLOG
database. Raw neuroimaging data are considered as sensitive and the raw data
manager thus requires strong access control, taking into account local security poli-
cies.

NeuroLOG user desktop: the NeuroLOG client application mainly presents two facets.
First, a user interface aims at navigating and searching for available distributed
data, in the context of multi-centric studies. Then, once selected, data can be pushed
as input data of neuroimaging workflows which are enacted over either local or
global (EGI infrastructure) computing resources.

NeuroLOG challenges provide strong motivations for this thesis. NeuroLOG fed-
erates four neuroscience research centers and operates at a national scale (IFR49-Paris,
GIN-Grenoble, IRISA-Rennes, INRIA-Sophia Antipolis). The heterogeneity and the po-
tential volume of neuroimaging data correspond to the problematics of the data deluge
considered in this work (RQ1).

Moreover NeuroLOG integrates two levels of metadata representation, distributed
relational data and centralized semantic data. This is confusing from an end-user per-
spective, due to different levels of query expressivity, and different distribution setups.
Indeed, federated query processing has been implemented for relational databases in
NeuroLOG but distributed querying technologies were not yet mature for handling
distributed semantic data sources. In addition, NeuroLOG faces the issue of periodi-
cally synchronizing a centralized semantic data repository, based on distributed and au-
tonomous relational data sources, which also presents a single point of failure. In this
context, studying how to combine expressive querying and distributed semantic data
stores seems particularly appealing (RQ3).

Finally, NeuroLOG, as a collaborative e-Science platform, faces the challenge of easing
the setup of multi-centric studies, while still guaranteeing the autonomy of participating
data sources, at least in terms of access control. This security issue (RQ2) is relevant in
the context of this thesis since working with life-science resources differs from working
with open datasets, due to legal or ethical concerns.

1.4.2 Multi-modal and multi-organ medical image simulation (VIP project)

The Virtual Imaging Platform (VIP) [Glatard et al., 2013] addresses multi-modal and
multi-organ medical image simulation. A medical image simulation consists in com-
bining, i) a description of a medical image acquisition device, specifying its physical
characteristics and its parameters, ii) a description of the simulation scene, specifying
the geometry and the spacial coordinates of both the device and the object for which



1.4. Applicative context: neurosciences and medical image simulation 11

an acquisition should be performed, and iii) an object model, representing anatomical
(possibly pathological) or physiological objects.

Medical image simulation is envisaged in VIP as multi-modal and multi-organ.
Multi-modal, because the platform integrates several simulators and predefined sim-
ulation workflows for each modality (Computed Tomography, Magnetic Resonance,
Positron Emission Tomography, and Ultrasound) ; and multi-organ, because the platform
allows for using several anatomical or physiological models.

Motivations and challenges. This platform has been first motivated by medical image
simulation needs. Simulating the production of medical images is crucial when designing
and prototyping new medical imaging devices. Moreover it is possible to perform several
acquisition protocols on a single device. Simulation is also crucial when prototyping new
acquisition protocols.

Beyond device manufacturers, simulating medical images is also interesting for sci-
entists involved in medical image processing. Synthetic medical images are a form of
ground truth needed when evaluating or comparing image processing algorithms. In
addition, these synthetic medical images can be used to adapt the parameters of the
anatomical/pathological models, to finally obtain more realistic simulation results.

Finally, having a platform which eases the production of synthetic medical images
based on several medical image modalities and several anatomical models has lot of ed-
ucational interests. Indeed, such a platform can help students focusing on the physi-
cal, anatomical, pathological, or physiological parameters of a simulation rather than the
technical specifies of several independent simulators.

Performing medical image simulation is challenging due to the following reasons.
First, simulators are complex softwares with a steep learning curve (fine parameteriza-
tion, requiring for a deep understanding of their physical principles) and hardly interop-
erable. Second, the organ models are also complex, possibly involving complex anatom-
ical/pathological characteristics, movement or longitudinal follow-up. Finally, from a
computing perspective, realistic simulation are heavy, in terms of calculation tasks, and
thus require dedicated computing infrastructures.

Objectives. The VIP platform aims first at easing the access to medical image simula-
tors through a simple web interface which integrates several simulators, several organ
models, and leverage a dedicated distributed computing infrastructure required to han-
dle multiple heavy simulation tasks. The second objective of the platform is to ease the
sharing of both organ models, and simulators, following a semantic approach.

Platform architecture. Figure 1.2 illustrates the main components of the VIP platform
which, based on organ models such as the thorax model on the left part of the figure,
allows producing synthetic medical images of this model, such as the CT and PET virtual
acquisitions on the right part of the figure.
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VIP Platform

VIP Portal

Simulated data

VIP Execution Service

VIP Data Service

Distributed computing infrastructure

Organ models

Simulation workflows

Figure 1.2: The VIP platform, easing the access to medical image simulators, organ models, and leveraging
the EGI distributed computing infrastructure to handle heavy simulation.

VIP Portal: the portal component provides a user interface with a direct web access
without requiring any software installation on the user workstation. Basically, it
allows end-users to launch medical image simulations by selecting the appropriate
simulator and specifying its parameters based on already launched simulations or
new set of parameters. When launched, simulation tasks can be monitored through
the portal. Due to their computing cost and their complex distribution over the EGI
distributed computing infrastructure, it is important to provide information on the
status of running simulations.

VIP Catalogs: the VIP platform is based on two main catalogs corresponding to the left
and right parts of figure 1.2. The organ model catalog is a semantic repository
which stores, for each model, the set of its source raw files, and a set of semantic
annotations leveraging the VIP simulation ontology. It allows associating a clear
and formal meaning to organ model entities, and performing advanced querying.
Similarly, the simulated data catalog consists in a set of semantic annotations de-
scribing the nature of simulated data (their modality, their physical characteristics,
etc.) based on the VIP ontology, and their provenance, in terms of input organ
models and input parameters.

VIP Execution service: the execution service is based on the MOTEUR data-driven
workflow engine which handles the parallelization and the relocating of computing
tasks. Simulation workflows are executed on the VIP platform and the generated
computing tasks are processed on dedicated computing resources (the EGI euro-
pean grid infrastructure).

VIP Data service: the data service is responsible for achieving the data transfers be-
tween the VIP platform and the EGI storage elements. Simulation processes are
computed on the EGI resources and require having data stored and accessible be-
forehand. At the end of a simulation, end-users want to retrieve their simulated
data, and the data service is responsible for transferring back, on-demand, the re-
sulting data through the portal.
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The challenges of the VIP platform are particularly relevant in the context of this the-
sis. Indeed VIP is an e-Science platform in which simulation workflows can be considered
as heavy “in silico” experiments. Medical image simulations are demanding in terms of
computing resources, and VIP relies as a consequence on the EGI large-scale distributed
computing infrastructure. Between november 2011 and november 2012, 1155 simulations
were run, which corresponds to almost 400 CPU years, for 321 registered user originating
from 38 countries.

VIP massively produces simulated data. It faces the issue of coherently sharing both
the input organ models, the simulator themselves, the simulated data and their associ-
ated knowledge. VIP faces the issues of producing not only raw data, but also populat-
ing the simulated-data repository with meaningful data (RQ4, RQ5), bridging the gap
between the technical simulation workflows and the VIP domain ontology.

1.5 Thesis outline

This report is organized in three parts. Part I addresses the coherent sharing of knowl-
edge in the context of digital life-science platforms. Part II addresses the coherent pro-
duction of knowledge resulting from the usage of e-Science platform. Finally, part III
presents how the thesis contributions have been implemented and evaluated, mainly in
terms of querying scalability and expressivity, and in terms of automated knowledge
production in a concrete medical image analysis scenario.

The remainder of this document is organized as follows:

Chapter 2: We first delineate, valuable life-science resources in the context of collabora-
tive e-Science platforms, and we introduce the main approaches and challenges of
life-science data integration (RQ1). One of the challenges consists in providing rich
enough information sharing while still taking into account the specificities of life-
science data sources. We then provide some background information on semantic
data and analyze state-of-the art approaches targeting virtualized semantic data in-
tegration (RQ4). We finally explore how data integration issues have been faced
through concrete and significative life-science collaborative platforms.

Chapter 3: We focus in the security issues arising from the setup of life-science multi-
centric studies (RQ2). After introducing the security requirements for life-science
collaborations, and analyzing the related works, we propose a security model
which addresses mainly two partly conflicting objectives: (i) guaranteeing au-
tonomous distributed life-science data sources with prevailing access control poli-
cies, and (ii) allowing for data sharing through coherent multi-centric studies. The
implementation of the proposed security strategies is then described in the context
of the NeuroLOG platform. This chapter is based on [Gaignard and Montagnat,
2009].
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Chapter 4: We propose a set of strategies and algorithms dedicated to the efficient dis-
tributed query processing over multi-source semantic data (RQ1, RQ3), while still
allowing for high expressivity with respect to the SPARQL 1.1 language features.
Then we propose first experiments aimed at assessing the benefits of our approach
(more deeply evaluated through chapter 8). This chapter is based on [Gaignard
et al., 2012b], [Gaignard et al., 2012a], [Corby et al., 2012], and concludes the part
I of this report, dedicated to knowledge sharing in collaborative life-science plat-
forms.

Chapter 5: Towards automated knowledge production in e-Science platforms (RQ5), we
analyze first the state-of-the-art approaches aimed at bridging web services with
domain ontologies, and by extension, at providing semantic scientific workflows.
Then, we describe and discuss approaches based on provenance information result-
ing from workflow runs. We finally position our proposal for semantic e-Science
experiment summaries with respect to semantic workflows and provenance-based
approaches.

Chapter 6: We highlight the need for precise enough semantic service annotations, both
in terms of the nature of parameters, but also in terms of their role. We introduce
the need for roles modeling in service ontologies to disambiguate the meaning of
consumed and produced data through processing services involved in workflows.
Based on disambiguated semantic service annotations and fine-grained technical
provenance information, we then propose to automatically produce, through infer-
ence rules, new meaningful semantic annotations, leveraging domain ontologies
and workflow runs. This chapter is based on [Gaignard and Montagnat, 2010]
and [Gaignard et al., 2011], and concludes the part II of this report, dedicated to
automated knowledge production in collaborative life-science platforms.

Chapter 7: This chapter provides technical details on the implementation of our contri-
butions. The NeuSemStore framework is first introduced as a mean to support se-
mantic scientific workflows. Then, we technically described the distributed query
processing extensions of the KGRAM framework which implements our approach
for knowledge base federation.

Chapter 8: This chapter reports an experimental evaluation of the methods proposed
and the software designed. It consists in three experiments exploring how the dis-
tributed query processing with KGRAM behaves at large scale, and in terms of
heterogeneity and expressivity. We also explore through a real-life medical image
analysis workflow, how our approach towards automated knowledge production
allows better interpretation of workflows results.
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2.1 Introduction

Collaborative e-Science platforms (also known as “scientific gateways”) are developed to
ease the setup of scientific collaborations. These collaborations require exchanging scien-
tific data and/or associated data analysis tools, in order to reduce the "time-to-discovery".
In this thesis, we address data sharing issues, in the context of life-sciences, through the
coherent integration of multi-source data (RQ1). We both consider raw data, and asso-
ciated domain-specific knowledge to achieve coherent integration of heterogeneous data
sources.
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This chapter delineates the contributions of this thesis with respect to the state-of-the-
art approaches in semantic data integration. We first introduce specific resources under-
lying life-science collaborative platforms (section 2.1.1), general data representations and
understanding layers (section 2.1.2), and the general data integration approaches (sec-
tion 2.1.3). Then we provide in section 2.2 some background information on semantic
data representation, querying, reasoning and persistency. The most relevant approaches
for virtualized semantic data integration are described in section 2.3 and recent opera-
tional life-science platform are described in section 2.4 in terms of data and knowledge
integration.

2.1.1 Life-science resources

In the context of translational biomedical research, collaborative e-Science platforms gen-
erally provide a wide range of resources, covering:

• Data resources correspond to the observational entities previously introduced and
possibly associated information or knowledge. Life-science data resources are char-
acterized by an important variability in the nature of data. Translational Life-
science platforms may manipulate genomic data, micro and macro imaging, clinical
case reports, thus facing structural and semantic heterogeneity. Moreover, several
open databases may be contributing to the scientific activities conducted in the con-
text of a given Life-science platform. Such platforms face distribution and integra-
tion issues since data querying should be coherently achieved over several data
providers, and coherently integrated back into the Life-science platform.

• Data processing resources are application codes, possibly exposed remotely through
processing services. They are responsible for data analysis or data transforma-
tions. In the context of e-Science platforms, data processing resources are gener-
ally pipelined through scientific workflows to achieve complex data processing.
Scientific workflows and their constituting data processing units are more deeply
introduced in chapter 5.

• Coordinating resources correspond to a set of metadata which coherently associate
the raw data to the information needed to achieve a particular, possibly multi-
centric, scientific or clinical study. These coordinating resources may involve in-
formation on pathologies or epidemiology, on available research or clinical raw
datasets, information on open reference databases, information on the coordinator
of the study and the participating researchers, etc.

• Middleware resources correspond to a set of software components hiding the un-
derlying computing and storage infrastructure. Since the analysis and process-
ing of life-science data, especially biomedical imaging data, requires compute-
and storage-intensive capabilities, collaborative e-science platform generally rely
on dedicated high-throughput clusters or open large-scale infrastructures such as
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the European Grid Infrastructure (EGI). Collaborative e-Science platforms gener-
ally provide user interfaces to bridge the gap between e-Science activities and mid-
dleware operation, however, user knowledge on the underlying middleware may
be required to understand and analyze possible e-science experiment failures.

• Computing and storage resources are a set of physical resources responsible for data
storage and the computations resulting from data processing. Similarly, these re-
sources should be hidden from the end-user perspective, but in some cases, in-
vestigating e-Science experiment failures may require technical knowledge on the
underlying computing or storage infrastructure.

The contributions of this thesis mainly focus on data and data processing resources.
Indeed we address in this work (i) the sharing of distributed knowledge associated to
biomedical data and (ii) the production of knowledge through the usage of collaborative
e-Science platforms, more precisely, through complex data processing achieved by the
enactment of semantically enhanced scientific workflows.

2.1.2 Data representation and understanding

Several levels of data understanding are commonly represented through a pyramid
grounded on data (observational entities). The data layer is topped with the information
layer linking together data entities. The information layer is topped with the knowledge
layer which organizes, or categorizes information. The knowledge layer is finally topped
with wisdom, considered as a set of knowledge applied to a specific area [Ackoff, 1989].

Data results from observational entities. Data is generally qualified as raw data. It may
represent sensor acquisitions, medical image acquisitions in the context of the biomed-
ical research area, or neuro-psychological test results in the context of the cognitive-
neuroscience community.

Information consists in linked data entities through established relations. In computer-
based systems, information is generally materialized through descriptive metadata phys-
ically stored in files of relational databases. For instance some medical image formats
include a file header (a text file companion). In the “Analyze” medical imaging format,
the raw image file contains binary data and is suffixed with a .img, and a textual metadata
file suffixed with .hdr. Metadata describes for instance, the spacial organization of each
voxel, thus informing on how voxels are related to image slices, to patient orientation,
finally allowing for navigation in 3D medical images and anatomical interpretation.

In the context of biomedical research studies, data are generally organized through
databases to facilitate data search and scientific investigation. Relational databases of-
fer a mean to represent information in the sense that data and relations are materialized
through a set of tables, columns, and associations (through join operators and relation
tables).
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Knowledge represents the step further, in which information is coherently organized into
categories. In the knowledge representation area, ontologies and controlled vocabularies
play a key role in categorizing information. Indeed they generally result from a consen-
sual community effort, and aim at being adopted by a large community to foster infor-
mation understanding, comparison, exchange and reuse.

Knowledge representation systems have traditionally been implemented through Re-
lational Database Management Systems (RDBMS) which allow to organize information
(relational tuples) through typed columns inside tables. However RDBMS are not con-
venient to represent hierarchical organizations commonly used to understand several
abstraction (generalization or specialization) layers, and they do not allow automated
reasoning (i.e. classifying data) over possibly multiple categories.

Knowledge representation formalisms and languages such as Conceptual Graphs,
OWL ontologies or RDF Schemas (RDFS) are dedicated to model the organization of
information through categories (OWL or RDFS classes), and allow automated reasoning
(entailments) through reasoners or inference engines. In these formalisms, Knowledge can
be seen as a graph linking together semantic data entities trough semantic relations (prop-
erties). Data and relations are qualified as semantic since they are grounded to meaningful
concepts from ontologies or controlled vocabularies. Recently, ontologies have largely
been adopted in collaborative e-Science initiatives to both capture domain knowledge,
and address interoperability when retrieving data from multiple and heterogeneous data
repositories.

Wisdom can be defined as making use of knowledge. If we stay close to the information
technology area, wisdom could be seen as the final, long-term objective of complex
systems dedicated to decision support, or artificial intelligence.

With regards to these four layers, the contributions of this thesis, towards distributed
knowledge sharing and production in collaborative e-science platforms, focus on both
the information layer (the linked data entities) and the knowledge layer (the categorization
of information).

2.1.3 Data integration: approaches and challenges

Data integration1 consists in providing a unified, transparent, mean to work with multi-
ple distributed data sources. Two main approaches exist to tackle data integration [Haase
et al., 2010], namely, materialized data integration, also known as data warehousing or
Extract-Transform-Load approaches, and virtualized data integration, also known as fed-
erated querying or Distributed Query Processing (DQP).

1“Information integration” may also be found in the literature to highlight the understandability of inte-
grated data, but in this manuscript, we consider as synonyms “data integration” and “information integra-
tion”.
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2.1.3.1 Materialized or Virtualized data integration

Materialized data integration. This approach consists in populating a centralized
repository from multiple distributed data sources, following an Extract-Transform-Load
(ETL) approach. The extract phase consists in selecting, from the available data sources,
the target data to be integrated. Then, the transform phase is critical and possibly com-
plex. It consists in transforming the target data to obtain an homogeneous representation
from the centralized data warehouse perspective. This step addresses structural and/or
semantic heterogeneity between data sources and the data warehouse, and each transfor-
mation is specific to a data source. Finally, transformed data are aggregated and merged
into the centralized data warehouse through the Load phase, possibly addressing redun-
dancy and replication issues. Integrated data retrieval is achieved through centralized
query processing against the populated data warehouse. Figure 2.1 illustrates the gen-
eral principles for materialized data integration.

Materialized 
query processor

Data source 1

Data source 2

Data source N

Data warehouseQuery

ETL
 1

ETL 2

ETL N

results

query

Figure 2.1: A sample materialized data integration where data from several distributed and heterogeneous
data sources is extracted, transformed and loaded into a centralized data warehouse.

Virtualized data integration. This approach, also known as data federation, consists on
the other hand, in (i) splitting the initial query into subqueries, (ii) then evaluating these
subqueries against the multiple distributed data sources, and (iii) finally providing re-
sults combined together by the federated querying engine. In federated data integration
approaches, data source heterogeneity is addressed through (i) query rewriting mecha-
nisms, and (ii) data mediation to coherently fusion the results into a single query results
set. Figure 2.2 illustrates the general principles for virtualized (or federated) data inte-
gration.
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Federated 
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results

Figure 2.2: A sample federated data integration setup in which result data is dynamically retrieved from
multiple distributed and heterogeneous data sources through query rewriting and distributed query evalu-
ation.

To cope with the heterogeneity of multiple data sources, virtualized data integration
systems provide a unified querying interface, based on a global schema. The global schema
provides an homogeneous model over the organization of distributed data. Since data
sources are generally autonomous in their day-to-day operation, they rely on local schemas
to model the organization of their data. Inconsistencies between local schemas are tackled
through mappings between local schemas and the global schema. Two main approaches are
popular to address local schema heterogeneity in federated data integration, Global-as-
View and Local-as-View.

Definition 1 Global-As-View (GAV) approaches consist in representing the content of the global
schema as a view over the data sources [Lenzerini, 2002].

GAV approaches are considered as bottom-up approaches since the global schema is
built from a set of data sources. The main drawback is that it is not adapted to dynamic
federations when a new data source is added to the federation. Indeed, a new source
added to the federation involves modifying the global schema. Moreover, a modification
in a local schema may have an impact on the overall federation.

Definition 2 Local-As-View (LAV) approaches consist in representing the content of each data
source as a view over the global (unifying) schema [Lenzerini, 2002].

LAV approaches are considered as top-down approaches since the global schema is
fixed a priori, and data source participating into the federation describe the database they
want to publish, based on the global schema. The main advantage is that the federation
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may evolve without any modification on the global schema. Thus a new participating
data source should have no impact on the other participating data sources. However,
query rewriting mechanisms addressing global to local schema mapping are complex.

Haase and co-workers analysed the advantages and drawbacks of these two ap-
proaches [Haase et al., 2010]. Data warehousing might be inefficient in the context of
a single user or application. Indeed, the complete distributed datasets must be trans-
formed and loaded even if a query returns a small subset of data. Moreover, this ap-
proach is not suitable in the context of rapidly evolving remote data sources and requires
for periodically going through the entire ETL process to update the content of the data
warehouse. However, query processing against a single centralized data warehouse can
be very efficient since no data communications are needed, and all content of data sources
is available, thus allowing for optimized query processing.

But relocating the content of remote data sources into a single data warehouse may
not always be feasible, due to the size and the multiplicity of data sources, or to autonomy
constraints of data providers. This applies in particular to sensitive biomedical data. The
main advantage of federated approaches is that data resides at data source and its com-
plete loading is not needed anymore. Moreover, this approach is well suited for dynamic
federation. Indeed data is retrieved at query evaluation time and there is no need to pe-
riodically synchronize a data warehouse. However the main drawback is the difficulty
of achieving efficient Distributed Query Processing. This is due to (i) the physical distri-
bution of data sources and thus the cost of communicating intermediate data needed to
perform distributed joins and (ii) the possible heterogeneity of autonomous data sources
that requires specific query rewriting mechanisms.

2.1.3.2 Life-science data integration challenges

Data integration challenges have been discussed in [Langegger, 2010] in terms of auton-
omy, distribution, and heterogeneity. These dimensions are not necessarily independent
since when the level of autonomy of a data provider increases, the overall distribution
and heterogeneity of the data integration system increases to. We propose to extend these
dimensions with three other dimensions, particularly relevant in the context of collabo-
rative life-science platforms, namely, scalability, security and knowledge.

Autonomy. Data providers participating in data integration initiatives, specially in the
context of collaborative life-science platforms, generally operate legacy environments.
To foster the adoption of collaborative e-science platforms and thus data sharing and
reuse, the normal operation of the legacy environment should not be altered. Thus, data
integration should be transparent, and not-invasive with respect to day-to-day legacy en-
vironment operations. Moreover, data providers may keep their autonomy in controlling
the access over their hosted data. Access control is particularly relevant when dealing
with life-science data sources. Resources providers must generally enforce strict secu-
rity policies as soon as they host sensitive clinical or biomedical data. Moreover, valu-
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able life-science data generally results from a long and costly process including popula-
tion selection, data acquisition, data curation, data organization and publication through
databases. Research activities being as much collaborative as competitive, researchers
may be reluctant to share their material if they loose control over its management. It be-
comes thus challenging to provide data integration facilities while still guaranteeing data
sources autonomy.

Heterogeneity. Heterogeneity is related to the autonomy property of data sources in
the sense that when considering several data sources, they may all operate their own
legacy environment. There is no reason for them to adopt homogeneous data repre-
sentations or technical/logical organization strategies. Moreover, life-science is a broad,
multi-disciplinary area involving a huge variability in the nature of observed and ana-
lyzed data (biological datasets including genomic data, micro- macro-imaging data from
intra-cellular to organ scales, clinical case data, epidemiological data, etc.). Life-science
data integration thus faces challenging syntactic and semantic heterogeneity to study sci-
entific/clinical questions over this wide variety of data. Syntactic (or structural) hetero-
geneity refers to a same kind of data expressed through different structures or formats.
For instance, patient information may be encoded through several formats. Semantic
heterogeneity refers to a same kind of data described through several vocabularies, the-
saurus, or semantic referents. For instance, two distinct clinical data sources may rely
on different semantic referents such as the RadLex controlled vocabulary for radiology,
or the general Systematized Nomenclature of Medicine – Clinical Terms (SNOMED-CT)
thesaurus, thus preventing from unified querying through a unique vocabulary.

Distribution. Distribution is also closely linked to the autonomy challenge. It refers
to geographically and thus physically distributed data sources, inter-connected through
network communications. In the context of large-scale distribution setups (large distance
between data sources, and large number of data sources), communications between data
sources, especially in the case of federated data integration, highly depend on network
bandwidth. Their cost need to be strongly considered. In that case, distributed infor-
mation from multiple data sources need to be joined and the efficient (i.e. low-cost)
distributed querying becomes challenging. Moreover, distribution raises security issues
when communicating sensitive data, and fault-tolerance issues when for instance, an au-
tonomous data source becomes unavailable.

Scalability. The scalability challenge directly derives from both the distribution of data
sources, and a continuous increasing amount of data to be integrated. In addition, the
web offers the opportunity to discover and interconnect world-wide data sources. In the
context of collaborative life-science platforms, the data integration system must adapt
to new data sources, not considered in the initial data integration plan, thus leading to
an increasing amount of data to integrate. The data integration system must adapt (i)
in terms of system operation (the data integration scenario could easily be augmented
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with new data sources, and it should be transparent for participating data sources), and
(ii) in terms of performances (end-user querying the data integration system should not
be impacted by prohibitively low performances resulting from the increasing amount of
data to be integrated and distribution overheads).

Security. The security challenge for data integration systems is also linked to the au-
tonomy properties of data sources. For legal or ethical reasons, life-science data sources
must keep the control over the sensitive clinical data they host. In the context of dis-
tributed data sources, data privacy (pseudonimization, encryption) must be enforced. A
fine-grained distributed access-control must also be guaranteed, while still being able to
log sensitive data access through journalisation. Distributed access control is particularly
challenging since data sources must remain autonomous in complying with prevailing lo-
cal security policies, while still allowing for collaborations in the context of multi-centric
studies.

Knowledge. The knowledge challenge for data integration consists in providing a
mean, through knowledge representation/management techniques, to (i) address se-
mantic interoperability between autonomous data sources, thus fostering data reuse, and
(ii) to provide high expressivity and automated reasoning for data retrieval. Ontologies
have gained a lot of interest in the life-science area. They are generally used to (i) build a
semantic referent delineating community knowledge for a specific field, (ii) to drive the
setup of data integration system through global schemas derived from ontologies, and
more recently (iii) to query heterogeneous and distributed multiple data sources through
Semantic Web standards.

Towards collaborative life-science platforms, materialized data integration becomes
disqualified as soon as we consider the autonomy property of data sources as a first-
order requirement. Although virtualized data integration (or federated data integration)
lead to costly distributed query evaluations, and possibly complex query rewriting mech-
anisms, they are appropriate to address the main challenges faced when providing life-
science data integration.

Since ontologies, and more generally knowledge engineering methods and tech-
niques have recently gained a huge interest in life-science areas, they open promising per-
spectives towards a better understanding of shared scientific data (and processing tools)
and a better support to address interoperability issues faced by autonomous distributed
scientific data sources. Section 2.2 briefly provides some background information on
semantic data representation, on their querying, on the possible reasoning capabilities
offered by semantic engines, and on their storage.
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2.2 Background informations on semantic data: representation,
querying, reasoning and persistency

2.2.1 Semantic data representation

2.2.1.1 The Semantic Web as a foundational technological layer

Representing the meaning of data is a need that has recently emerged from the Semantic
Web area, which intends to bring meaning to the unprecedented and tremendous amount
of data published over the Web.

Tim Berners-Lee presents the Semantic Web [Berners-Lee et al., 2001] as “not a separate
Web but an extension of the current one, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation”. He also conditions its success to
automated reasoning: “computers must have access to structured collections of information and
sets of inference rules that they can use to conduct automated reasoning”. The Semantic Web is
based on Ontologies - languages to formally describe domain specific concepts and their
relations - coupled to reasoning engines, to perform domain fact deductions.

Representing the semantics of data generally consists in associating meaningful and
structured metadata (i.e. descriptive information) to raw data. Such metadata (i) classifies
raw data through well-defined concepts and (ii) link raw data together through well-
defined relationships. The main objective is that metadata can be automatically processed
in order, for instance, to help users in retrieving relevant information from a jungle of
resources, typically data or services, spread over the Internet. But some technical means
are needed to address (i) the unambiguous and unique identification of resources over the
Internet, (ii) the description and linking of these resources, and (iii) the conceptualization
of domains to formally express the meaning of resources (i.e. the setup of an ontology).

A lot of standardization efforts have been made through the W3C (or the Internet
Engineering Task Force (IETF)) that led to the definition of three frameworks to address
the above mentioned needs, namely URI2 (Universal Resource Identifier), RDF (Resource
Description Framework), and OWL (Web Ontology Language) which constitute the main
components of the Semantic Web, and by extension provide a strong support to the
Knowledge Engineering area.

2.2.1.2 Linking data

In order to share information, URIs are the de facto standard to unambiguously iden-
tify information. No particular assumption is made on the resources identified by a URI.
They might be abstract or concrete, and are potentially not accessible over the Internet.
Standard URLs are specific URIs used to locate resources over a network, and thus URLs
syntax can be used to define URIs. For instance “Saint-Malo” is an ambiguous name for
a city and might refer to either a french city or a canadian city. We are able to disam-

2more precisely, originating from the IETF RFC 3986
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biguately identify “Saint-Malo” with two URIs such as “http://canada/quebec/saint-
malo” and “http://france/bretagne/saint-malo”.

As soon as resources are well identified through URIs, RDF can be used to attach de-
scriptions to these resources and link them together. The main idea of RDF is to describe
the semantics of the data by expressing simple statements of the form Subject – Predicate –
Object which can also be considered as simple sentences involving a subject, a verb, and
a complement. Note that when several statements are grouped together, the objects of
some statements may also act as a subject of other statements which lead to a graph repre-
sentation. Indeed, a set of RDF statements can be considered as a directed labelled graph
where Subjects and Objects define nodes and Predicates define labelled directed edges.

Let us consider an example from the neuro-imaging domain where a medical image
has been acquired from a scanner and is processed to extract brain tissues.

http://fr/cnrs/i3s/data#img1

http://fr/cnrs/i3s/devices#scan1

http://fr/cnrs/i3s/properties#aquiredBy
http://fr/cnrs/i3s/tools#bet

http://fr/cnrs/i3s/properties#processedBy

http://fr/cnrs/i3s/data#seg1

http://fr/cnrs/i3s/properties#segmentedFrom

Figure 2.3: Linking raw and processed data to the acquisition equipment and processing tool

Figure 2.3 represents an RDF graph linking neuro-imaging resources identified by
their URIs. It first states that a medical image has been acquired from a scanner, then,
that this image has been processed by a brain extraction tool, and finally, that brain tissues
have been extracted from the “Bet” brain extraction tool.

2.2.1.3 Classifying data

So far, we have seen how RDF can be used to attach descriptive information to data and
to establish relationships between data. But another aim of RDF is also to allow user com-
munities to define controlled vocabularies (or terminologies) by describing the domain
specific concepts and how they are related to each others. RDFS, which stands for “RDF
Schema”, is an extension of RDF3 that provides a language to define such vocabularies.

3as “XML Schema” extends XML to support the definition of complex types
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Two main constructs are provided that aim at describing Classes and Properties.

Classes are used to group resources together. Resources that belong to a particular
class are called instances or individuals of that class. Hierarchies of classes can be con-
structed through the definition of sub-classes.

Properties are used to define relationships between classes, and in the same way, it
is also possible to define hierarchies of properties through sub-properties. Properties
are characterized by (i) their domain – the set of classes from which the property can be
attached, in other world its applicability domain – and by (ii) their range – the set of
classes to which the property can be attached.

The following example shows a simple controlled vocabulary covering the previous
example (figure 2.3).

Acquisition device

Scanner
Probe

MRI 
scanner

CT scanner
Ultrasound probe

Medical image

MRI
CT

Processing tool

Bias correction Segmentation

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

http://fr/cnrs/i3s/properties#processedBy

rdfs:domain
rdfs:range

http://fr/cnrs/i3s/properties#correctedBy

rdfs:domain rdfs:range

Figure 2.4: A sample controlled vocabulary expressed in RDFS

Figure 2.4 illustrates how RDFS can be used to define the concepts of a domain and
their relationships. The rounded boxes represent the domain classes. Note thawt they
are also identified through URIs but for readability, we only show their label. Arrows
labeled rdfs:subClassOf constitute the hierarchies of concepts. Arrows labeled rdfs:domain
and rdfs:range define domain-specific properties. For instance processedBy and correctedBy
differ by their rdfs:domain and rdfs:range. More precisely correctedBy can only be applied to
MRI images and bias correction tools, whereas processedBy is applicable for any medical
image and any processing tool. In addition we can state in RDFS that correctedBy is a sub
property of processedBy. In the remainder of the document we will refer to both RDF or
RDFS standards by the RDF(S) notation.
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However, for some user communities, these languages may not be sufficient to pre-
cisely model their domain, and they usually develop a more complex domain ontology.
An ontology can be defined as a set of class axioms, property axioms, and facts about indi-
viduals (or instances). While axioms aim at formally defining the semantics of classes or
properties, facts are assertions (or statements) describing the instances. Note that axioms
are used to place constraints on classes and on their relationships (properties). The OWL
language [W3C OWL Working Group, 2012], is a standard framework to build ontolo-
gies. OWL ontologies are written and stored in RDF (or XML) syntax so that they really
appear as an extension of the existing RDF(S) stack. OWL brings new constructs, through
axioms and allows richer exploitation through the possible entailments operationalized
through reasoning engines. This document does not detail the whole extensions, with
regards to the RDF(S) language, but rather illustrates some of them through the previous
examples.

• TransitiveProperty: the “derivedFrom” property could be stated as a transitive prop-
erty so that it can be automatically inferred that if A “derivedFrom” B and B “de-
rivedFrom” C then A “derivedFrom” C.

• InverseOf: we could also imagine a consume property starting from the processing
tool class and directed towards the medical image class, which is the inverse of
the processedBy property. This would be useful, if we consider a set of instances
related by only one of these two properties, to generate the inverse property with
an inference engine, and thus to complete the set of relationships.

• disjointWith: this construction helps in validating the nature of a set of instances. For
instance we could state that MRI and CT are disjoint classes so that when validating
a set of instances, the system can check that none of the instances belong to both
MRI and CT classes (similar to an exclusive disjunction, also known as the XOR
logical operator).

• unionOf: OWL classes, generally stated as “complex classes”, can be defined
through axioms representing basic set operators such as union, intersection or com-
plement. We can easily imagine that the Acquisition device class can be defined as
the union of the two classes Scanner and Probe, so that an OWL reasoner infer that
all instances of Scanner and Probe classes also belong to the Acquisition device class.

• cardinality: another interesting feature is the ability to define some constraints on
the number of possible individuals linked together through properties. We could
imagine that a medical image (i.e. an instance of the Medical image class) cannot be
acquired from two different devices. This restriction can be stated by the maxCardi-
nality set to 1 for the acquiredBy property.

OWL constructs allow richer description of domain-specific knowledge but the coun-
terpart is that possible deductions through reasoners become more complex and time
consuming. More insights will be given on the possible entailments and the impact on
their computation in sections 2.2.3.1 and 2.2.3.3.
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We have seen that the two standardized languages of the Semantic Web, RDF(S) and
OWL, are the cornerstones in the process of building semantic applications either for
storing knowledge about the domain-specific concepts or about the data itself. OWL
being expressed through the existing RDF stack of the W3C, it seems thus natural to
lean on RDF tools to express semantic data, either considering simple conceptualizations
through RDF(S) or complex conceptualizations through OWL ontologies.

2.2.2 Semantic data querying

Following the widely adopted Semantic Web stack from the W3C, semantic data is usu-
ally represented as RDF triples. RDF data being possibly serialized through an XML
syntax, it could thus be possible to use standard XML query languages to retrieve in-
formation. However, XML query languages are not suitable to query graph structures.
This fact motivates the design of specific query languages adapted to the graph-based
representation of RDF data. RDF query languages generally adopt an SQL-like syntax to
retrieve data.

The SPARQL Protocol and RDF Query Language (SPARQL 1.0) has been standard-
ized through a W3C recommendation [Prud’hommeaux and Seaborne, 2008]. It is the
most popular RDF query language. The queries are composed of two clauses. The first
one specifies the kind of the query. The second clause, the WHERE clause, consists ba-
sically in specifying a graph pattern through a set of triple patterns in which variables
match target data. Queries may include conjunctions, disjunctions, or optionality. Four
kinds of queries are available through the SPARQL 1.0 language:

• SELECT: returns all or a subset of the values of variables bound in the query pattern
match (the WHERE clause).

• CONSTRUCT: returns RDF triples (defined in the CONSTRUCT clause) correspond-
ing to the bound variables of the query pattern (the WHERE clause).

• ASK: returns true or false with respect to the matching of the query pattern.

• DESCRIBE: returns an RDF graph describing resources found through the graph
pattern matching.

Listing 2.1: sample SPARQL query selecting all medical images acquired by a Scanner device

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX myOntology: <http://fr/cnrs/i3s/myontology#>
3

4 SELECT ?image WHERE {
5 ?image myOntology:acquiredBy ?device .
6 ?device rdf:type myOntology:Scanner .
7 }
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Listing 2.1 illustrates a sample SPARQL query aimed at retrieving the URIs of all med-
ical images acquired by a scanner acquisition device. Variables are prefixed by a question
mark. The first triple pattern searches for acquiredBy properties. For each of them, the
engine searches for all devices of type Scanner. Finally the source of the remaining ac-
quiredBy property are returned as resources matching the whole WHERE clause.

2.2.3 Semantic reasoning

We have seen in the two previous sections how semantic data can be represented (OWL
and RDF(S) languages) and queried, through graph pattern matching (SPARQL lan-
guage). But semantic data representation provides even more valuable benefits through
“reasoning”, which consists in performing automated logical deductions based on data
representation models and associated rules.

2.2.3.1 Description Logics

Description Logics (DL) [Nardi and Brachman, 2003, Baader and Nutt, 2003] are used
to provide a logical formalism for Ontologies and Semantic Web by modeling concepts,
roles, individuals and their relationships. More generally, Description Logics are used as a
foundation for building knowledge bases from two main components, the terminological
knowledge box, the TBox and the assertional knowledge box, the ABox. The TBox refers
to statements regarding the terminology itself. It describes the hierarchy of concepts, and,
the relationships between concepts, whereas the ABox refers to statements regarding the
individuals, their relationships, and how they are associated to concepts of the TBox. In
description logics, together TBox and ABox constitute a knowledge base.

What makes DL sound “exotic” for classical computer system users or program-
mers, is that DL are based on “open world” assumptions. Classical systems are based
on “closed world” assumptions which means that if a fact is not known to be true, it is
considered as false. On the contrary, “open world” assumptions mean that, ABox being
considered as incomplete, if a fact is not known to be true (in the ABox), it does not mean
that the fact is false, and it becomes potentially true. It becomes then much more complex
to determine if something is true.

The Web ontology language OWL [Horrocks et al., 2003, Grau et al., 2008] is based on
Description Logics. Indeed, OWL axioms can be considered as statements of the TBox
while OWL facts can be considered as statements of the ABox. Finally, an OWL ontology,
encompassing axioms and facts, can be bound to a DL Knowledge Base.

Being much more expressive than RDF(S) languages and allowing for richer infer-
ences, OWL lead to computational issues such as decidability (related to the “open
world” assumption). Three variant of OWL are thus proposed to tackle these compu-
tational issues: (i) OWL-DL which has a readable DL-like syntax allows for decidable
inferences, (ii) OWL-Lite a subset of OWL-DL with an even more simpler syntax with
tractable inferences, and finally (iii) OWL-Full, a syntactic and semantic extension of
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RDF(S) without any usage restriction. Regarding the computational complexity of these
variants, OWL-Full is undecidable, OWL-DL has exponential time complexity, and finally
OWL-Lite is more tractable, with a deterministic and exponential time complexity. OWL
evolved recently in OWL2 [W3C OWL Working Group, 2012]. This version introduces a
new non-RDF syntax and offers new expressivity. In addition, OWL2 introduces 3 pro-
files dedicated to tractable reasoning, with different limitations on expressivity: OWL2-
EL is well suited for large ontologies, OWL2-QL is focused on tight integration with re-
lational databases and is suitable for large set of individuals, and finally OWL2-RL is
focused on tight integration with rule engines.

2.2.3.2 Conceptual graphs

Conceptual graphs are a formalism introduced by John Sowa [Sowa, 1984] to capture the
underlying meaning of data, to link them together and to identify patterns between them
[Polovina, 2007]. Conceptual graphs (CGs) are appealing because their formalism is log-
ically precise, their representation is human-readable, and finally they are computation-
ally tractable. RDF graphs can easily be mapped to Conceptual Graphs since they share
a similar principle: concept nodes are connected to relation nodes and form together a
labelled graph.

Projection is the key operation providing reasoning capabilities in CG. It consists in
calculating a specialization/generalization relation between two graphs. It is generally
stated that a “general” graphs “projects” into a more “specialized” graph. The projection
operation lead to the identification of patterns in data which is particularly suited in the
context of information retrieval.

2.2.3.3 Reasoning tasks

As presented in section 2.2.1.1, one of the objectives of the Semantic Web (and by exten-
sion, the Knowledge Engineering area) is to lean on reasoning engines to exploit seman-
tically annotated data and therefore deduce new knowledge specific to a domain covered
by the underlying domain ontology. Based on different constructs and level of expressiv-
ity, the languages of the Semantic Web allow several kinds of deductions with different
complexities and computation costs.

Inherited from Description Logics, reasoning tasks target the meaningful exploitation
of knowledge bases by means of validation or deduction of new facts. Reasoning tasks
are generally split between the TBox and the ABox as some are related to inferences or
validation at the conceptual level, while other ones are more related to instances valida-
tion and classification. Some of the main reasoning tasks are briefly introduced below
and illustrated through the TBox graphically defined in figure 2.4.

Several reasoning tasks may be achieved over the TBox of a knowledge base:

• Subsumption is a key reasoning task which consists in determining if a concept is
more general than another one. For instance, the class “Acquisition device” sub-
sumes the class “Scanner” as a scanner is a specialization of an acquisition device.
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• Classification consists in determining the appropriate place of a newly defined con-
cept into a hierarchy of concepts linked together by subsumption relations. For
instance if we define a “Medical device” as the union of “Probe”, “Scanner”, this
class should appear as a sub-class of “Acquisition device” and as a super-class of
both “Probe” and “Scanner”.

• Logical implication consists in checking if relationships between concepts are logical
consequences of the assertions of the TBox.

• Equivalence consists in testing if two classes or properties, potentially defined by
different set of assertions or axioms, are equivalent. Note that the OWL sameAs
construct is used to state that entities are strictly the same.

• Satisfiability is a key reasoning task with the following underlying idea. A newly
added concept in the TBox must make sense with regards to the TBox and does
not lead to any contradictory knowledge. The logical foundation of satisfiability is
that an interpretation (the set of deductible facts) of the concept must satisfy all the
axioms (all the assertions) of the TBox.

Reasoning tasks regarding the ABox of a knowledge base:

• Instance checking is the main reasoning task over the ABox (and also the TBox, by
extension). It validates that an individual belongs to a specified concept. Instance
checking is the foundation for all other reasoning tasks.

• Knowledge base consistency consists in verifying that each concept of the TBox admits
at least one individual (different from ).

• Realization consists in, for a given individual, finding the most specific concept it
belongs to. For instance, given an instance of the “Medical image” class, it may
not be useful to qualify it with an intermediate concept in the hierarchy of medical
image classes, such as MR image. It is much more useful to qualify it with the most
precise concept such as its proper modality, “T1-weighted-MRI” for instance, taking
into account that all abstract super-classes are also considered when asserting that
a medical image belongs to the class “T1-weighted-MRI”.

• Retrieval: which finds all the individuals belonging to a given concept. This reason-
ing task is particularly important when searching information into a knowledge
base. We can easily imagine some basic queries aiming at finding all T1-weighted
MRIs registered into the knowledge base.

• Satisfiability: the underlying idea is similar to satisfiability at the concept defini-
tion level (TBox) in the sense that a newly created instance should not lead to any
contradiction concerning other instances or concerning the concepts of the TBox.
For instance if we consider the acquiredBy property of figure 2.4 with its cardinality
constraint (maximum one device), linking an instance of a medical image with two
acquisition devices would lead to an unsatisfiability issue.
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Unlike OWL, RDF(S) does not define any Description Logics, but the semantics spec-
ification of RDF(S) [Hayes and McBride, 2004] defines a full set of valid inferences with
regards to an RDF graph or its underlying RDF Schema. Thirteen rules define the se-
mantics of RDFS and they can be applied to infer new RDF triples through the inferred
closure4 of the source graph.

2.2.3.4 Rule-based reasoning

The use of rule engines, also known as inference engines is a general data-driven and
declarative paradigm to deduce new conclusions from a set of models, data and inference
rules. An inference rule is made of two parts, the antecedent and the consequent, and is
generally expressed through an If clause and a Then clause. Inference engines are the
core of reasoners, since inference rules are internally used to perform reasoning tasks
such as subsumption, classification, instance checking, etc.

Forward chaining is one of the two main strategies to perform reasoning based on
inference rules. Forward chaining consists in starting from the whole available data and
applying iteratively the inference rules. The produced data is then merged into the origi-
nal set of data and the set of available rules is again executed to produce additional data.
This process continues until a termination goal, or saturation is reached.

Unlike forward chaining which iterates over the antecedent of the rules to reach one of
the goals (the consequent), backward chaining starts from the goals, and search for a rule
which has an antecedent known to be true. If it is not the case, this antecedent is added to
the list of goals and the engine goes for a new iteration. Being goal-driven, the backward
chaining strategy is well adapted to prove facts. On the other hand, forward chaining
is more considered as a data-driven approach allowing the inference engine to produce
new knowledge, based on the existing data set.

SWRL [Horrocks et al., 2004] is a Semantic Web Rule Language combining OWL with
RuleML5, the Rule Markup Language. SWRL rules represent implications between the
antecedent and the consequent clauses. Each clause is made of a set of atoms interpreted as
a conjunction. Each atom may represent (i) the belonging of a variable to an OWL class,
(ii) the existence of an OWL property between two variables, (iii) similarity or difference
between two variables. A variable represents either an OWL individual or an OWL data
value. More recently, the W3C proposed the Rule Interchange Format (RIF) [Kifer and
Boley, 2010] aimed at addressing interoperability of rule languages and engines.

We have seen that forward chaining engines iteratively produce new facts into the
knowledge base through the computation of its inferred closure. But in order to be
queried or retrieved, the results of this inferred closure must be made available. Most
of the time, semantic stores provide such a capability generally known as materialization.

4which consists in iteratively saturating the graph with all possible inferred statements
5http://ruleml.org

http://ruleml.org
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With the assumption that adding new facts to the knowledge base never implies that ex-
isting facts are retracted (also known as monotonic entailments) some tools provide a total
materialization strategy which consists in computing the inferred closure after each mod-
ification of the knowledge base. The main benefits are the consistency of the knowledge
base and efficiency of queries (no reasoning needed at query/retrieval time) but on the
other hand, addition, updates or deletions of new facts are costly in terms of computing
resources.

2.2.4 Semantic data persistency

RDF being the de facto standard for expressing semantic data, several possibilities can
be envisaged to permanently store RDF triples. RDF stores are generally built on top of
(i) file storage, or (ii) relational database management systems (RDBMS), or (iii) native
graph model storage. Via their proper API, RDF stores generally propose in-memory
RDF statement management, but since it is a non-persistent storage, this capability will
not be addressed in this section.

File-system back-ends might be useful for development purpose because of an easy
deployment and the simplicity of storing a small set of RDF statements into a unique file.
But this approach requires to manually manage RDF files and would not be suitable in
the context of concurrent access or large set of files. RDF stores usually operate a native
storage back-end with optimized storage and loading procedures.

RDBMS back-ends appear to be a convenient and scalable approach with regards to
the continuous growing amount of produced RDF triples. Indeed, RDF stores can be
independent from underlying RDBMS and may benefit from replication, clustering, or
simple access control mechanisms. But RDF stores become also impacted by the different
performances of these RDBMS. The counterpart of RDBMS back-ends appears when con-
sidering reasoning tasks, especially using rule-based engines. These reasoning engines
dynamically generate database accesses to propagate the effects of inference rules which
dramatically impact the performances of the reasoning engine.

With native storage back-ends, RDF stores are able to implement optimizations strate-
gies to more efficiently store or retrieve RDF triples. Some of them natively adopt a
graph structure which better fits the way of representing RDF statements. RDF storage
is achieved through dedicated and optimized data structures thus increasing the overall
performances.

2.2.4.1 Existing stores

The following section briefly describes existing semantic data stores and focus on their
underlying physical storage, their support for reasoning and their performance.

Jena framework [McBride, 2002, Company, 2009] is a widely adopted framework cov-
ering most of the concerns related to the development of Semantic Web applications. Jena
provides a unified programming environment to address the management of RDF(S) and
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OWL ontologies. Moreover, it provides some interesting features regarding the persis-
tence of semantic data and the reasoning through its inference engine, or external state-
of-the-art engines.

Jena provides two subsystems to persist RDF and OWL data, namely SDB and TDB.
While TDB focuses on high-performance through a native indexing and storage engine
in a local filesystem, SDB is built on top of a classical relational database and benefits
from non-functional properties provided by the database engine such as authentication,
logging, clustering, etc. These two components do not let the user specify or tune a
schema for storing semantic data but use their own schemas to efficiently perform storage
or retrieval. Different levels of caching are used to transparently let the user manage its
Jena model without taking care of the persistency layer.

Jena can enable or disable reasoning capabilities. For each category of reasoning, a
dedicated ontology model is available. These ontology models cover ontology languages
such as OWL-{Lite, DL, Full}, RDFS, or DAML+OIL6, with different kinds of reasoners
(transitive class-hierarchy inferences, or rule-based reasoners). Based on these reasoning
capabilities, Jena distinguishes between the asserted model (or base model, i.e. without
inferences) and the inferred model, mainly because depending on the application, it is
not always useful to store (materialize) inferred statements7.

Some limitations of the Jena SDB persistence engine have been pointed out in [Kim
et al., 2008b].

Joseki is a web server aimed at accessing semantic data through the SPARQL RDF
query language [Prud’hommeaux and Seaborne, 2008] and the SPARQL protocol
[Grant Clark et al., 2008]. The SPARQL protocol consists in defining a standard web
service interface for SPARQL query processors. Joseki implements both SPARQL/Query
and SPARQL/Update [Seaborne et al., 2008] protocols and thus provides a web service
interface to query and update RDF graphs. RDF data are internally managed through the
Jena framework.

Owlgres [Stocker and Smith, 2008] is a Description Logics reasoner (DL-Lite family
[Calvanese et al., 2007] of Description Logics, with its corresponding OWL2 QL Profile
recommended by the W3C [Motik et al., 2009]), with a relational database backend. This
engine does not show recent development activities (first and last release in May 2008).
The engine is released with a simple Joseki endpoint and some scripts to load ontologies
into the relational PostgreSQL database. This semantic repository has some limitations
regarding its reasoning capabilities (no transitive properties, no cardinality restrictions,
no individual equality assertions) but performs queries with logarithmic time with re-
spect to the size of the data.

6the OWL predecessor
7which could be considered as volatile statements
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Virtuoso is a commercial8, general-purpose, data and application container, with ex-
tensive SPARQL and RDF support [Erling and Mikhailov, 2007]. It additionally provides
a Jena interface. Virtuoso addresses scalability for both semantic data storage and reason-
ing tasks. In its commercial distribution, Virtuoso also addresses information distribution
and heterogeneity issues through the setup of a unified data model on top of its Virtual
Database Engine.

With regards to the inference scalability [Orri and Ivan, 2009], whereas common ap-
proaches consists in beforehand materializing deduced facts, Virtuoso performs as much
as possible runtime and on-demand inferencing. To guarantee responses in a fixed time,
incomplete results may be returned through partial evaluation of SPARQL queries. Vir-
tuoso also provides a realtime implementation of the owl:sameAs property, and supports
transitivity through the rewriting of transitive SPARQL subqueries. While one subquery
starts from the source, the second subquery starts from the target, and the first intersec-
tion of paths produces a first partial result.

Allegrograph is a commercial product providing a high-performance disk-based stor-
age with standard HTTP and SPARQL interfaces. Multiple RDF triple stores, can be
assembled into a virtual single store, thus enabling the federation of distributed stores.
Allegrograph provides some limited but effective and practical reasoning through its
RDFS++ engine. RDFS++ supports the following predicates: rdf:type, rdfs:subClassOf,
rdfs:range, rdfs:domain, rdfs:subpropertyof, owl:sameAs, owl:inverseOf, owl:TransitiveProperty,
and owl:hasValue. This engine can be topped with a Prolog interface allowing to perform
rule-based reasoning. The Prolog engine can also be used on top of RDF data to allow
more complex deductions based on domain-specific reasoning.

Sesame Sesame [Broekstra et al., 2002] is an open-source, community-supported frame-
work to store and query RDF(S) data. It can be connected to several storage mechanisms
such as standard file systems or relational databases through its SAIL API (Storage and
Inference Layer). The repository can be queried through the standard SPARQL query
language and provides reasoning capabilities through the support of an RDFS inferencer
(also provided by SAIL). Sesame additionally provides a standard web service interface
which implements the SPARQL protocol. Sesame is extensible through a plugin architec-
ture.

In the context of the Sesame engine development, a specific query language SeRQL
(Sesame RDF Query Langugage) has been proposed. According to its authors, some
original features has been proposed such as the support for graph transformation, basic
set operators (union, intersection, and minus). SPARQL and SeRQL have been developed
during simultaneous initiative but merge efforts have been achieved from both sides to
benefits, in SPARQL, from features of SeRQL and conversely.

Alibaba is an extension to the Sesame RDF repository which allows to bind Java ob-
jects and classes to RDF triples and RDFS/OWL classes. Alibaba also exposes them

8and open-source distribution
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through an HTTP server. A federation feature is additionnaly provided with the set
up of virtual RDF stores based on multiple distributed RDF data sources. Based on the
SPARQL Protocol, these federations are therefore read-only.

OWLIM [Kiryakov et al., 2005] is a high-performance semantic repository published
as an extension of Sesame through a SAIL implementation. Two versions are available,
SwiftOWLIM, the free edition and BigOWLIM, the “enterprise” edition (usable for free
in a research context). Both editions provide a persistence strategy guaranteeing data
preservation and consistency, and support for reasoning with OWL dialects, covering
most of OWL-Horst9, OWL-Lite, RDFS, and OWL2 RL10. SwiftOWLIM is dedicated to
prototyping since it loads the full content of the knowledge base in central memory and
performs fast reasoning and query evaluation. On the other hand, BigOWLIM scales
over billions of triples, performs query and reasoning optimizations, but still, at the cost
of slower performances. OWLIM products have recently been renamed 11. OWLIM-Lite
corresponds to a fast in-memory semantic repository, OWLIM-Lite SE provides better
scalability and robustness, and finally OWLIM-Enterprise provides a semantic repository
possibly deployed on a replication cluster and allows for load balancing and scalable
query performance.

Tupelo [Futrelle et al., 2009] is a middleware supporting large-scale e-Science through
a decentralized semantic data repository. Tupelo has been driven by general principles to
enhance metadata interoperability: (i) when data or metadata are re-located, they should
retain their meaning (underlying model/ontology), (ii) metadata should be automatically
interpreted in order to scale , and (iii) the knowledge on how data has been processed
might be more valuable than the data itself.

To implement these principles, Tupelo leans on semantic web technologies for repre-
senting metadata, on content management system technics to handle data and on the
open provenance model [Moreau et al., 2009] to record complex processes and data
provenance. Tupelo offers two categories of operations, covering both metadata man-
agement – through the assertion, the deletion, and the search of statements – and data
management allowing users to read, write and delete large binary objects (BLOBs) glob-
ally identified by their URIs. Some interfaces are provided to connect to RDF triple stores
(Jena, Sesame), local or remote file systems (SSH), or HTTP servers.

Distribution issues are handled through the ability of globally identifying resources
across several data and metadata providers. Semantic data can be linked across repos-
itories through different identification policies and mappings. Moreover computational
inferences are available through the extension of the middleware with dedicated plugins,
similarly to the Jena framework.

9a decidable rule extension to OWL
10an OWL2 profile dedicated to scalable reasoning (polynomial time) through a rule engine
11http://www.ontotext.com/owlim

http://www.ontotext.com/owlim
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Jena ! ! ! ! ≈OWL-Lite ! dynamic 	
OWLGres - ! - ! no trans., no card. - ? ⊕

Virtuoso ! ! ! subsumption same/equivalent dynamic ⊕⊕
AllegroGraph - - ! RDFS++ < OWL-Lite ! dynamic unavailable

Sesame ! ! ! ! - - - ⊕
SwiftOWLIM ! ! - ! ≈OWL-Lite ! static ⊕

BigOWLIM - ! - ! ≈OWL-Lite ! static 	

Table 2.1: Comparison of several existing stores regarding their storage back-end and reasoning capabilities

2.2.4.2 Stores comparison

Rohloff and co-workers [Rohloff et al., 2007] and Bizer & Shultz [Bizer and Schultz, 2009]
evaluated the most popular RDF Stores in terms of capabilities and performances over
large set of semantic data. The LUBM [Guo et al., 2005] methodology and datasets is
dedicated to benchmarking RDF stores and has been used to measure both load and
query12 time.

Rohloff and co-workers chose to evaluate, among others, Sesame, {Swift,Big}OWLIM,
and AllegroGraph through the LUBM benchmark. Their results confirmed that
SwiftOWLIM was not designed to address large datasets, and Jena/Sesame with a
MySQL backend was not suitable for handling large datasets (more than 100M triples).
“Winners” are Sesame + BigOWLIM, Sesame + DAMLDB13 and Jena + DAMLDB. The
authors also noticed that Jena + DAMLDB provided faster answers to low complexity
queries.

From the single client use case, Bizer & Shultz conclude that Sesame has good perfor-
mances for small datasets (1 Million triples), and Virtuoso is faster for large datasets (25M
to 100M triples). For simultaneous queries from multiple clients, Bizer & Shultz showed
that Virtuoso outperforms its competitors, namely Sesame and Jena SDB/TDB. Regard-
ing the overall performances, it is confirmed that Jena SDB/TDB is out-of-competition.

Based on [Rohloff et al., 2007] and [Bizer and Schultz, 2009], table 2.1 summarizes the
capabilities and the overall performances of popular semantic repositories. In particu-
lar, we highlight the kinds of reasoning and their limitations with regards to the OWL-*
families, and their materialization strategy. Virtuoso shows good performance but has
limited reasoning capabilities. Sesame + OWLIM shows a good coverage of storage and
reasoning capabilities (with static materialization) with in one hand, high performances
in the context of small datasets, and on the other hand a slower behavior in the context

12the set of queries also cover reasoning soundness (returns correct responses to a query) and completeness
(returns all of the correct responses to a query)

13dedicated and optimized database for storing DAML content, predecessor of OWL content
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of large datasets. Performance of AllegroGraph could not be evaluated in the study of
Rohloff and co-workers mainly due to a buggy early release. Finally Jena shows slow per-
formances but is highly documented, extensible, and can be plugged to state-of-the-art
DL reasoners.

Through this section, we briefly described standards and technologies aimed at rep-
resenting, querying, reasoning and storing semantic data. These elements can be con-
sidered as raw material to address the challenging issue of semantic data integration in
the context of collaborative e-science platforms. Section 2.3 focuses on state-of-the-art
approaches addressing the distribution of SPARQL queries over multiple remote data
sources.

2.3 Virtualized data integration

Contrasting with data warehousing approaches (also known as materialization based
approaches) where the content of distributed data sources is replicated into a centralized
data warehouse, distributed querying consists in pushing the query to the distributed
data sources and gathering the results from the querier side. Distributed query process-
ing approaches are generally presented as virtual integration since from the querier point
of view, distributed data sources are virtually integrated as if a single data source was
queried.

2.3.1 Distributed query processing approaches

Querying Linked Data [Bizer et al., 2009a] is presented in [Ladwig and Tran, 2010] as a
kind of federated query processing since datasets are hosted by distributed data sources
with established links across these hosted datasets. RDF, introduced in section 2.2.1.2 is
the de facto standard to represent linked dataset over the Web. In the remainder of this
thesis, we use the terminology commonly associated to the Linked Data area, namely
triple patterns, basic graph patterns (BGPs) and data sources.

Definition 3 A triple pattern (s,p,o) formalizes a statement involving a subject resource (s)
linked to an object resource (o) through a predicate (p), where s, p or o can be either variables
or values. In Conceptual Graphs (or Knowledge Graphs), triple patterns may be used to represent
edges forming the knowledge graphs.

Definition 4 A Basic Graph Pattern (BGP) is a set of triple patterns linking together resources
through subject or object labels, and predicates. A basic graph pattern may form a graph.

Definition 5 A data source, identified with a Universal Resource Identifier (URI), represents a
set of triple patterns. In the context of distributed systems in general, but with Linked Data in
particular, data sources may be geographically distributed over a network.
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Linked data querying present new fascinating challenges [Ladwig and Tran, 2010]
related to the nature of a quickly evolving Web of data. These challenges are close to the
characteristics of data sources. Scalability is a major issue since the volume of exposed
data through a single source may increase constantly, in a context where data sources
are multiplying. Dynamicity is also challenging since due to the nature of the web, there
is no guaranty that data sources are always available. Moreover, the content of a data
source may be changing rapidly. Even more challenging, data sources are considered
as autonomous entities and present thus real heterogeneities in terms of access protocols,
content size, source description, underlying data models, schemas, or ontologies.

2.3.1.1 General principles

The general phases for query processing have first been introduced in [Haas et al., 1989]
and are re-used in [Kossmann, 2000] through an extensive state of the art over distributed
query processing (DQP) approaches. DQP approaches are composed, in general, with the
following steps :

(i) Source selection depends on the part of the query to distribute. It consists in select-
ing the most appropriate data source contributing to the result set. As a corollary, it
may sometimes consists in determining irrelevant sources, thus preventing the en-
gine to send distributed queries to sources that will not contribute to the result set.
This phase can be generally considered as a static optimization since it is performed
before the effective evaluation of the query with an a-priori knowledge on the con-
tent of data sources [Quilitz and Leser, 2008, Alexander et al., 2009, Harth et al.,
2010, Görlitz and Staab, 2011]. Recently, source selection has also been proposed at
query runtime to correct source ranking [Ladwig and Tran, 2010], thus addressing
the dynamic aspect of Linked Data.

(ii) Query rewriting: this step consists in building a set of sub-queries that will be indi-
vidually sent to each data source contributing to the result set. Some optimization
may be realized in order to minimize the communication cost or maximize the pro-
cessing that can be achieved remotely by each contributing source.

(iii) Query planning: given a set of sub-queries, the query planner searches for the op-
timal sequence of sub-query to be sent to remote data sources. Dynamic program-
ming (or “iterative dynamic programming”) is a classical approach [Selinger et al.,
1979] widely used in query planning. It consists in iterating over all possible query
execution plans and, given a cost estimation function, the algorithm selects the op-
timal plan.

(iv) Query evaluation: given a query execution plan, the evaluation consists in following
the sub-query sequence to incrementally construct a final result set. The query eval-
uation requires joining intermediate results possibly resulting from distributed data
sources. Distributed join can be realized either through nested-loop joins14 or through

14which naively iterates over the distributed data sources
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bind joins [Haas et al., 1997] and are more precisely described through the following
distributed query processing approaches.

2.3.1.2 State-of-the-art approaches

DARQ [Quilitz and Leser, 2008] tackles semantic data integration through a federated
approach. It aims at transparently federating multiple distributed and autonomous RDF
data providers. The approach is based on service descriptions to allow accurate data source
selection, and on a query optimization algorithm to reduce the cost of sub-query distribu-
tion. The general process consists in (i) parsing the initial SPARQL query, then (ii) based
on the service descriptions the initial SPARQL query is decomposed into sub-queries (query
planning), (iii) the resulting query plan (sequence of sub-queries) is optimized and finally
(iv) distributed to all data providers (query execution).

Based on service descriptions, The DARQ query planner searches for relevant sources
contributing to the query results and then builds a set of suitable sub-queries. Service
descriptions are represented in RDF and encompass:

(i) data description through predicate capabilities in the form of existing predicates and
their associated value constraints on subjects or objects ;

(ii) access pattern limitations [Florescu et al., 1999] to represent, from the data source point
of view, triple patterns that must be included into a query in order to provide re-
sults ;

(iii) statistical informations describing the total number of triples N , and optional infor-
mation describing the capability of the source for a given predicate. This optional in-
formation covers the number of triples for a given predicate n(p), and two triple pat-
tern selectivities, the first one considering that the subject is bound (sSel = 1/n(p)

by default), the other one considering that the object is bound (oSel = 1 by default).

Once available, these service descriptions are used by the query planner first, to perform
source selection and second, to build sub-queries. For each basic graph pattern (BGP)
constituting the initial SPARQL query, the source selection consists in matching all triple
patterns against the predicate-based capabilities of the sources. These predicate-based
capabilities constitute a limitation of DARQ since it is not possible to select a source if a
predicate is unbound in the basic graph pattern. For example, queries containing triples
patterns like (<aPerson>, ?p, <aLocation>) with ?p a variable predicate, cannot
be processed through DARQ.

Once sources have been selected, the query planner decompose the initial basic graph
patterns into sub-queries with the following principle. A set of triple patterns is associ-
ated to each data source. If a triple pattern matches exactly one data source, it is added to
the set associated to the data source, and this set is finally processed to build a single sub-
query to be sent to this precise data source. On the contrary, if a triple pattern matches
multiple data sources, it must be sent through independent sub-queries to all matching
data sources.
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The second contribution of DARQ consists in a set of logical (query rewriting) and
physical optimizations of the sub-queries produced through the query planning phase.
When FILTER expressions are available, the value constraints are reused to replace vari-
ables by constants. Moreover, based on the rules proposed in [Pérez et al., 2006, Pérez
et al., 2009], the query optimizer merges several basic graph patterns forming the initial
SPARQL query. Finally, when possible, value constraints from the FILTER expressions,
are incorporated to the sub-queries to avoid transferring useless intermediate results. The
physical optimizations consist in finding the query plan that will reduce the size of trans-
ferred data, thus achieving faster global querying. The DARQ optimizer is based on a
dynamic programming algorithm to find the optimal query plan. The DARQ engine im-
plements both a nested-loop join and a bind join [Haas et al., 1997]. While the nested-loop join
naively iterates over bindings provided by the outer relation with bindings provided by
the inner relation, the bind join aims at exploiting already known bindings to ultimately
replace join variables by their already known values. Finally, sub-queries containing
bound join variables are sent multiple times, and allow to reduce the size of transferred
results.

SPLENDID [Görlitz and Staab, 2011] is a query optimization strategy aiming at trans-
parently federating distributed SPARQL endpoints, by exploiting statistical data describ-
ing their content. Statistical data are provided by the Vocabulary of Interlinked Data
(VoID) first introduced in [Alexander et al., 2009]. VoID has been designed from both
the data producer and the data consumer perspectives, and aims at describing the con-
tent of a dataset (a set of RDF triples published through a single provider), its relation to
other datasets (interlinking information) and the vocabularies used in the dataset (RDF-
S/OWL classes or properties). SPLENDID relies on two main components, namely the
index manager and the query optimizer.

The index manager is responsible for associating each VoID description to the corre-
sponding SPARQL endpoint through an index structure. Basically, two indices are pro-
vided, the first one describing the cardinality of a given predicate (or RDFS/OWL prop-
erty) for a given endpoint, the second one describing the cardinality of a given type (or
RDFS/OWL class) for a given endpoint.

VoID descriptions are exploited by the query optimizer to reduce the cost of the over-
all distributed querying. After the query rewriting step, the optimizer performs the (i)
data source selection, and (ii) a join re-ordering optimization. The data source selection
consists in, for each triple pattern, retrieving a matching data source for the type/predi-
cate indices. If a predicate is unbound in the triple pattern, all data sources are associated
since no information is available from the indices. The source selection is refined for
triple patterns having bound variables because they are supposed to be located into a
single data source. But VoID descriptions do not cover this particular case. To overcome
this issue, SPARQL ASK queries are sent to all data sources to determine which one(s)
actually host(s) the triple. Indeed, the result of the ASK query (true/false) indicates
if a matching triple pattern can be found in the target data source. Except in the case
of exclusive groups introduced in [Schwarte et al., 2011] and aiming at grouping triple
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patterns that are exclusively hosted in a single data source, triple patterns are sent indi-
vidually to the data sources to not miss any result that would be joined across distributed
data sources.

Once the data sources have been accurately selected, the query optimizer performs
the join re-ordering, based on a dynamic programming algorithm.

At query runtime, two strategies are used to distribute joins: parallel joins and bind
joins. While parallel joins consist in sending requests in parallel to the distributed data
sources and finally joining locally the results (a strategy adapted to selective joins, leading
to small result sets), bind joins exploit the results obtained from the first join operand into
the second operand.

SemWIQ [Langegger et al., 2008] is a collaborative knowledge sharing platform, tar-
geting, in particular, e-Science communities which adopt ontologies to semantically de-
scribe scientific data. SemWIQ is based on a mediator-wrapper approach for handling data
heterogeneity and provides a unified query interface through an extended SPARQL en-
gine. The general approach consists in (i) analyzing a global SPARQL query designed
with respect to a global schema (generally modeled through ontologies), (ii) selecting
in a data source registry, relevant data sources based on the concepts referred to in the
query, then, (iii) a canonical query plan is optimized through a federation optimizer
which groups sub-queries through relevant data sources, and finally (iv) the global query
plan is executed over possibly wrapped data sources.

The heterogeneity of data sources is addressed through the DR2-Server, for relational
data sources. For non-RDF and non-relational data sources, a local wrapper may allow
remote sub-query plans execution by performing native data access and transformations.

The distributed query processing is achieved as follows. SemWIQ relies on a concept-
based data integration approach, thus requiring for all data to be described as instances
of ontology classes. Based on the data source registry, source content statistics (RDF-
Stats [Langegger and Wöß, 2009]), and declarative rules (JBoss Rules15), simplified Basic
Graph Patterns (BGPs) are grouped together, in a first step, to be sent towards appropriate
data sources throughService operators. Moreover, Service operators may be combined
through (i) Union operators, allowing for querying several target data sources for a same
BGP, and (ii) Join operators allowing for combining data resulting from several triple
patterns sharing the same variables. In a second step, the resulting global query plan is
re-ordered trough an iterative dynamic programming algorithm, aiming at finding the
cheapest query evaluation plan.

SemWIQ has some limitations with regards to the expressivity of SPARQL. Indeed,
(i) only SELECT queries are supported, (ii) subjects of triple patterns must be variables,
and (iii) the distribution query processing does not support for unknown data types,
i.e. ontology classes of data instances must be known statically (asserted data types), or
implicitly deduced through description logic constraints.

15http://www.jboss.org/drools

http://www.jboss.org/drools
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FedX [Schwarte et al., 2011] is another SPARQL distributed query processor address-
ing the querying of federated SPARQL endpoints. The originality of FedX is that no as-
sumptions are made over the content of the distributed datasource, and no metadata or
statistics are needed to perform static sources selection. Similarly to the approaches pre-
sented above, and following the general distributed query processing model proposed in
[Kossmann, 2000], FedX performs in a first step data sources selection, followed by a set
of static join optimizations (triple pattern grouping and join re-ordering). Final dynamic
join optimizations are performed to exploit intermediate results at query runtime.

On-demand data sources selection is realized without any a priori knowledge over the
content of the federated data sources. Indeed, each triple pattern forming the basic graph
pattern is annotated with a relevant data source through the execution of a SPARQL ASK
query which populates a local cache preventing from re-executing the ASK when not
necessary.

Once annotated with the relevant data source, triple patterns are grouped together
when belonging to exclusive groups. This notion is introduced to characterize triple pat-
terns that can be matched into a single data source, and thus do not require a costly
distributed join. This grouping technique can drastically reduce the number of remote
invocations and thus the number of transferred results through the network.

Then joins are re-ordered through a rule-based join optimizer. The proposed algo-
rithm is based on the variable counting technique [Stocker et al., 2008] to evaluate the
cost of the joins. This heuristic consists in estimating the number of free variable con-
sidering that subject variables are more selective than object variables, themselves more
selective than predicate variables.

Finally, joins are optimized at query runtime by exploiting the intermediate results
provided by the previously computed joins. The FedX engine is based on an optimized
nested-loop join technique. More precisely, in classical bind join techniques presented
above, mappings resulting from the left part of the join are pushed individually to the
right part of the join leading to a huge number of remote invocations if the amount of
intermediate results (mappings) is high. To avoid this issue, the proposed optimization
consists in grouping a set of mappings into a single sub-query through SPARQL UNION
constructs, thus avoiding numerous remote invocations. The single sub-query finally
need to be post-processed to correctly associate the results of this UNION query to the
global result graph. FedX additionally provides a parallel implementation through a
pool of worker threads, and a pipelining strategy to exploit intermediate results as soon
as they are available.

SPARQL-DQP. Buil-Aranda et al. propose in [Buil Aranda and Corcho García, 2010] to
federate SPARQL queries over a set of SPARQL endpoints based on relational database
distributed query processing (DQP) techniques. SPARQL-DQP relies on the transfor-
mation of a subset of SPARQL queries to their equivalent SQL queries. The distributed
query processing is then supported by the OGSA-DAI and OGSA-DQP [Lynden et al.,
2009] framework.

To address multiple RDF data sources querying, the SPARQL 1.0 language has been
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slightly extended (SPARQL-D) through possibly multiple FROM clauses (included into
SELECT queries and referring to a SPARQL endpoint) allowing to determine the source
endpoint to which the query must be evaluated. After being parsed, SPARQL-D queries
are transformed into a set of SQL queries (based on a relational algebra for SPARQL [Cy-
ganiak, 2005]) which forms a logical query plan (LQP). The query plan is optimized and
evaluated through OGSA-DQP. Queries can be evaluated through both pipelined and par-
titioned parallelism. While pipelined parallelism relies on a multi-threaded implementa-
tion of iterators, allowing to provide tuples as soon as they become available, for di-
rectly being processed by the next operator, the partitioned parallelism relies on several
distributed nodes being queried in parallel and providing blocks of result tuples finally
being merged by the DQP coordinator.

The RDF data publication is realized through a specific OGSA-DAI data resource,
implementing the WS-DAIOnt-RDF(S) specification, and allowing for wrapped RDF data
to be accessed through OGSA-DAI/OGSA-DQP.

Finally, a set of OGSA-DAI data-centric workflows are generated from the optimized,
partitioned, Logical Query Plan (LQP). These workflows are connected through their
inputs and outputs and enacted to return SPARQL results from the multiple virtual RDF
data sources.

Optimizations for SPARQL 1.1 Federation. Well-designed graph patterns have been
introduced in [Pérez et al., 2009] to restrict the usage of SPARQL OPTIONAL clauses
thus leading to more effective query evaluations. Based on these results, Buil-Aranda et
al. propose in [Aranda et al., 2011] optimizations based on query rewriting in the con-
text of distributed SPARQL 1.1 Federation16 query evaluations. The main idea consists
in reordering the initial SPARQL query so that the most selective operators are executed
first and OPTIONAL clauses – OPTIONAL being the most expensive SPARQL opera-
tor [Pérez et al., 2009] – are executed the latest. These optimizations, and a well-designed
graph patterns checker, have been implemented in the SPARQL-DQP framework.

Dynamic source discovery Approaches presented above are characterized as top-
down [Ladwig and Tran, 2010] since they rely on a statically fixed set of distributed data
sources, for which it is possible to build a priori knowledge on the content of data sources.
To adapt to dynamically evolving data sources, whose availability is unpredictable, Lad-
wig and co-workers propose a hybrid approach which consists in dynamically ranking
sources at query runtime. The bottom-up query evaluation strategy consists in (i) ex-
tracting data sources from the query, (ii) starting to evaluate the query while discovering
new data sources from intermediate results at runtime, (iii) evaluating the query against
the new data sources, and (iii) terminating the evaluation when all possible data sources
have been explored. A hybrid strategy consists in refining, at query evaluation time, an
optimized query plan based on partial knowledge on the content of data sources. The

16which introduces the SERVICE and VALUES clauses to distributed sub-parts of a SPARQL query over a
set of SPARQL endpoints.
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proposed implementation rely on non-blocking join operators as introduced in [Hartig
et al., 2009] and [Ladwig and Tran, 2011]. This approach is particularly promising since
it allows for static optimization, while still considering the dynamicity, and the volatility
of data sources distributed over the Web.

2.3.2 Discussion

In the previous section, we described general purpose semantic data federation ap-
proaches. These approaches are mainly focusing on performance issues faced when per-
forming semantic data federation. Table 2.2 provides a synthesis of the static and dy-
namic optimizations aiming at enhancing the efficiency of distributed SPARQL queries.

STATIC OPTIMIZATIONS DYNAMIC OPTIMIZATION

Source selection Query rewriting Query planning Query evaluation
DARQ Service capabilities Triple pattern grouping Dyn. prog. Nested-loop join

Filter pushing Bind join
SPLENDID VoID descriptions Triple pattern grouping Dyn. prog. Nested-loop join (parallel)

SPARQL ASK Bind join
SemWiq Source registry Triple pattern grouping Dyn. prog. Nested-loop join

RDFStats Filter/Optional pushing Bind join
Dyn. join re-ordering

FedX SPARQL ASK Triple pattern grouping Variable count. Block bind join (pipelined)
SPARQL-DQP – Triple pattern grouping OGSA-DQP query OGSA-DQP parallelism

partitioner & pipelining
Ladwig et al. Partial knowledge – Refined dyn. prog. Corrective src. ranking

Join reordering
Non-blocking joins

Table 2.2: Static and dynamic optimizations proposed by state-of-the-art federated querying approaches.

All these approaches address the scalability challenge for data integration through
performance-oriented distributed query processing techniques. They aim at lowering
the impact of massive semantic data querying on end-users.

The SPARQL-DQP approach, does not address transparent semantic federation, and
rely on SPARQL Service clauses. These clauses help in implementing distributed query
processing when the content of data sources is well partitioned and known at query de-
sign time. However, this assumption does not hold in many real use cases, and specially
in the context of life-science collaborative platforms. This approach is not suitable in
the context of dynamic knowledge base federations in which pre-designed SPARQL 1.1
queries must be adapted to take into account the data source availability.

Addressing transparent17 semantic federation, DARQ, Splendid, SemWiq, Fedx, and
Ladwig and co-workers , address performance issues and tend to reduce the amount
of data communication between the federation querier and the multiple remote data
sources. Precise data source selection thus becomes crucial to prevent unnecessary com-
munications through optimized distributed joins. Whereas Splendid and DARQ are
based on a priori knowledge on the content of data sources to perform source selection,
this task is dynamically achieved through SPARQL ASK queries in the FedX approach

17from the query designer point of view
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which provides better flexibility and prevents from maintaining additional data source
content descriptions. However Ladwig and co-workers propose an interesting hybrid
approach in which source selection can be driven by a priori source content descriptions
and a dynamic refinement, thus allowing to adapt to the dynamic nature of data sources
federated over the web.

With respect to the knowledge challenge for life-science data federation, all these ap-
proaches are based on SPARQL distributed querying, thus allowing, in theory, to ex-
ploit ontologies and possible inferences from federated query processing. However all
approaches suffer from limitations with respect to the expressiveness of the supported
SPARQL features. All of them only support SELECT queries. They may impose con-
straints with regards to the basic graph patterns supported. For instance, SemWiq cannot
federate triple patterns with bound subjects, and all instances must be associated to an
ontology class.

Towards a better exploitation of domain ontologies through life-science collaborative
platforms, it is critical to find a good balance between expressiveness and performance
when federating semantic queries at large-scale.

2.4 Data sharing through Life-science collaborative platforms

Several e-Science collaborative platforms resulted recently from large-scale projects ad-
dressing collaborative e-Health activities. @neurIST, ACGT, CaBIG and BIRN, aimed at
providing large-scale distributed computing and storage resources to ease the setup of
collaborative e-Health activities, and tending to accelerate scientific discoveries.

The remainder of this section describes state-of-the-art collaborative e-science plat-
forms with a particular focus on the methodologies adopted to tackle data sharing
through autonomous, distributed and possibly heterogeneous scientific data sources.

2.4.1 Life-science collaborative platform examples

CaBIG. The Cancer Biomedical Informatics Grid (CaBIG) results from a joint initia-
tive of the US National Cancer Institute and the UK National Cancer Research Insti-
tute. It aims at providing a software infrastructure, CaGRID [Saltz et al., 2006] adopting
a service-oriented and model-driven approach, dedicated to the management and the
analysis of multi-source heterogeneous biomedical data. In CaGRID, structural meta-
data, giving the form of data units, are implemented as UML18 models. CaGRID data
services expose native data (raw files or relational databases) as object-oriented UML
models. Data can be queried through the CaGRID object-oriented Common Query Lan-
guage (CQL). CQL queries, expressed in terms of objects-attributes-associations, are nav-
igational queries in the sense that data retrieval is specified through traversing UML class
diagrams which reflect metadata structure. On top of that, domain metadata are concep-

18UML stands for the Unified Modeling Language, an industrial software design standard supported by
the Object Management Group (OMG).
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tualized through the NCIt ontology [Hartel et al., 2005], whose concepts are associated to
structural UML models through linkage referent metadata.

However CaGRID CQL queries do not benefit from the semantic annotations of
UML models, intended to address semantic inter-operability. Beltran & al. propose
in [González-Beltrán et al., 2010, 2012] to let end-users concentrate on the domain en-
tities rather than understanding the several underlying fine-grained UML class diagram.
The proposed Cancer ONtology QUErying SysTem (COnQueSt) for CaBIG semantic data
federation follows the LAV approach since the NCIt ontology is considered as the global
schema and queries over the global-schema are rewritten following the data source local-
schema. COnQueSt is based on two components, an OWL generation service and a Seman-
tic query service:

• the OWL generation service is responsible for (i) generating OWL classes and prop-
erties from the annotated UML models exposed through Data services, and (ii) for
importing the NCI thesaurus ontology.

• the Semantic query service is responsible for mediating the different abstraction levels
from ontology-based queries. More precisely, this service rewrites ontology-based
queries in CQL, or DCQL (a distributed extension of CQL allowing for basic multi-
source data federation).

BIRN. The Biomedical Information Research Network (BIRN) is a national initiative from
the USA, aiming at supporting Biomedical research through multi-source data sharing
and online collaborations. The BIRN mediator [Ashish et al., 2010] targets heterogeneous
and distributed biomedical data integration while still coping with the autonomy of data
providers. More precisely, data sources participating into the BIRN network do not need
to adapt their legacy environment, and keep the control over their hosted data.

Data sharing is achieved in BIRN through the concepts of virtual organizations (VOs),
communities of data providers and data users sharing some specific objectives through
data access, sharing or analysis ; and domain models, which consist in agreed views on
data at the scale of the VO, useful in the context of this VO.

Three components target data integration in BIRN:

• The mediator, follows the GAV approach (with envisaged support for LAV and the
OWL2 query language (OWL2-QL) in future works) to data federation and exposes
multiple data sources as a single virtual database. Users query the virtual database
by using terms of the domain model. The mediator is then responsible for selecting
appropriate data sources, based on the description of their content, and for rewrit-
ing domain-level queries into source-level queries.

• The distributed query evaluation engine is based on the OGSA-DAI/OGSA-DQP
framework to evaluate the source-level queries resulting from the mediation step.
While OGSA-DAI [Antonioletti et al., 2007] propose streaming data-centric work-
flows to access multiple wrapped data sources, OGSA-DQP [Lynden et al., 2009]
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extends the OGSA-DAI framework with an engine capable of building distributed
query plans and performing optimized (aiming at pushing the workload to the re-
mote data sources) distributed evaluations.

• Source wrappers are based on OGSA-DAI resources which include a set of predefined
connectors to access either relational databases, XML data bases or raw file systems.

With respect to security, a critical concern for biomedical applications, BIRN relies
on the Grid Security Infrastructure [Lang et al., 2006] (GSI) which provides encryption
through Public Key Infrastructures (PKIs) and thus enforces data privacy, and a logging
and auditing component letting data source providers and administrators in general,
track data access.

@neurIST. The @neurIST European Integrated Project [Benkner et al., 2010] provides an
infrastructure dedicated to biomedical research addressing (i) the secured management
of heterogeneous and distributed clinical and research datasets, and (ii) their complex
processing through high throughput computing services. The clinical application of the
project targets the investigation and the clinical treatment of cerebral aneurisms. Clin-
icians and researchers benefit from seamless secured access and computations over a
federation of distributed and heterogeneous aneurism data sources. The @neurIST mid-
dleware is organized through two main components. While @neuInfo provides data man-
agement services through a generic data management and integration framework, @neu-
Compute provides an autonomous grid middleware topping the Fura middleware [Ar-
bona, 2009] which allows for distributed data processing over heterogeneous computing
infrastructures through jobs dispatching, parallelization and monitoring.

The @neuInfo data management layer relies on a mediator-based, global-as-view
(GAV), approach to cope with data source heterogeneity. On top of the OGSA-
DAI/OGSA-DQP [Antonioletti et al., 2007, Lynden et al., 2009] frameworks, @neuInfo
defines a Data Access Services (DAS) and a Data Mediation Services (DMS) which both
provide, through a virtual schema (also known as “global schema” in GAV/LAV ap-
proaches), a transparent access to possibly heterogeneous data sources. DMSs are respon-
sible for (i) translating queries expressed through the global schema, into local schemas
specific queries, (ii) accessing remote data sources, and (iii) translating back local result
data according to the global schema. The underlying mediation engine [Koehler and
Benkner, 2009] is responsible for generating the mappings between the global schema
and local schemas, based on the @neurIST ontology [Boeker et al., 2007]. Data mediation
is achieved through the following steps:

1. Virtual query plan generation: this first step consists in parsing the initial relational query
based on the virtual schema to generate a virtual query plan. This step is achieved
through the OGSA-DQP query parser.

2. Concrete query plan generation: this step addresses the data heterogeneity between the
virtual schema and the several concrete schemas (also known as “local schemas” in the
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GAV/LAV terminology.). It is achieved through the proposed Data Mediation Service
(DMS) in the following phases:

(i) Virtual query parsing identifies for each OGSA-DQP operator forming the virtual
query plan, the corresponding mapping rules in the mediation schema ;

(ii) Partial mediation query plan generation consists in, for each OGSA-DQP operator,
building the corresponding concrete query plan resulting from the application of
the mapping rules ;

(iii) Mediation query plan assembling finally consists in substituting the OGSA-DQP
operators in the virtual query plan with the partial mediation query plans.

3. Concrete query plan execution is achieved through the OGSA-DQP engine, which dis-
tributes the query plan partitions to appropriate evaluation services.

With regards to security concerns, @neurIST preserves the autonomy of each partic-
ipating data source. Since @neurIST supports both research on aneurism and clinical
decision, patient data privacy becomes a high-order priority. Due to the distributed na-
ture of the @neurIST platform, the security architecture targets the authentication and
the authorization of several stakeholders across multiple domains and border. Secu-
rity enforcement has been implemented through (i) the Public Key Infrastructure (PKI)
to authenticate users into a single virtual organization (VO), and to guaranty message-
and transport-layer security, and (ii) authorization policies (based on role and location
attributes) and a distributed access control mechanism. The distributed access control
consists in, at client-side, (i) requesting a security token to the local security token service,
then (ii) incorporating the received token which includes the role and location attributes
to the service request, and finally (iii) performing the service call. From server-side, the
remote access control is performed as follows : the first step consists in calling the remote
security token service, then checking locally the authorizations, and finally, depending on
the security decision, invoking the service. This distributed access control has been im-
plemented through the Security Assertion Markup Language (SAML) and the WS-Trust
OASIS19 standard.

ACGT. ACGT was an EU funded project (2006-2010) aiming at improving Medical
Knowledge Discovery through a semantically rich infrastructure supporting multic-
centric and post-genomic clinical trials [Bucur et al., 2011]. Post-genomic data covers
a wide variety of natures, going from pathology data, genomic data, micro- and macro-
imaging data, to clinical data collected through Case Reports (symptoms, treatments,
etc.). A large heterogeneity in data sources must be tackled to achieve post-genomic
clinical trials. Moreover, external source of knowledge are generally considered in the
context of post-genomic trials, which require coherent and efficient querying over dis-
tributed data sources.

19OASIS stands for the Organization for the Advancement of Structured Information Standards, providing
standards for e-business and web-services.
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The ACGT Master Ontology on Cancer [Martín et al., 2008] has been built as the se-
mantic interoperability framework for the Data Access Layer of the ACGT platform. The
Data Access Layer cope with (i) syntactic interoperability through database wrappers
based on the OGSA-DAI framework, and (ii) semantic interoperability through a dedi-
cated Semantic Mediator [Martín et al., 2007] based on a Local-as-View (LAV) approach,
which adapts to continuously reaching new data sources:

• the proposed Data Access Service offers, through an OGSA-DAI web service inter-
face, a single query interface based on the SPARQL language. Relational database
and DICOM20 wrappers have been developed through the D2RQMap [Bizer and
Seaborne, 2004] language. They allow SPARQL querying over virtual RDF graphs.

• the proposed Semantic Mediator is based on a Local-as-View approach in which
the ACGT MO ontology acts as the global schema and provides (i) a mean to setup
the local views and (ii) the semantic referent over which user queries can be formu-
lated. A SPARQL query rewriting mechanism has been developed to adapt global
SPARQL queries into source-specific SPARQL queries. Results are then accumu-
lated into a single OWL document representing ontology instances and returned
back to the querier.

2.4.2 Discussion

We briefly introduced above four popular life-science collaborative platforms resulting
from US or EU large initiatives, namely CaGRID, BIRN, @NeurIST, and ACGT. All these
platforms share a lot of commonalities to address the main challenges of life-science data
integration.

Towards data source autonomy preservation, these four platforms adopted federation
approaches and thus distributed query processing techniques. They all consider dis-
tributed and heterogeneous data sources. Distribution and heterogeneity sub-challenges
are addressed by @NeurIST, ACGT and BIRN through an extensive use of the OGSA-
DAI/OGSA-DQP frameworks and platform-specific mediation services based on data
source wrappers and query/data adapters. The ACGT approach is based on a Local-As-
View mediation and thus provides better scalability when adapting to new data sources
reaching the collaborative platform. Indeed, it is the responsibility of the new participat-
ing site to provide site-specific schema mappings to resolve the heterogeneity with the
global schema. The global schema does not need to be adapted and the other participat-
ing sites are not impacted. BIRN and @NeurIST mediators are based on a Global-As-View
approach. They provide less scalability since the global schema may evolve to adapt to
new data sources thus impacting the other participating data sources. With respect to
these distribution and heterogeneity sub-challenges, CaGRID differs since it is based on a
model-driven approach, and relies on project specific query languages and query pro-
cessing engines (CQL/DCQL) to address, possibly distributed, object-oriented querying
over UML models and the underlying data units stored as raw files or relational data.

20DICOM stands for the Digital Imaging and Communications in Medicine standard.
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Even if CaGRID relies on the NCIt domain ontology, participating data sources must de-
scribe their data in terms of CaGRID specific structures (Common Data Elements), and
CaGRID alters consequently the data source autonomy.

The security sub-challenge is part of the autonomy challenge since life-science data
sources are responsible for the sensitive biomedical data they host, and must comply to
strict security policies. Although all described platforms rely on Grid Security Infras-
tructure (GSI) and the underlying Public Key Infrastructure (PKI), they address differ-
ently data privacy and access control in the context of distributed and autonomous life-
science data sources. The most advanced and suitable approach has been developed by
the @NeurIST project and relies on distributed security token providers and distributed
access control enforcement points.

All four initiatives rely on domain ontologies to capture and conceptualize knowl-
edge associated to the integrated data, thus constituting a semantic referent (knowledge
challenge for data integration). However, several levels of ontology exploitation are pro-
vided through these platforms. The BirnLEX ontology (which evolved through NIFSTD
ontologies and NeuroLEX wiki [Imam et al., 2011]) aims at providing a controlled vo-
cabulary to annotate BIRN data sources, but its usage in the context of BIRN data source
federation is not clear, even if multi source data integration is envisaged in [Imam et al.,
2012]. More precisely, [Ashish et al., 2010] focus on providing unified relational querying
capabilities, and it does not seem possible yet to express semantic queries over NeuroLEX
concepts to retrieve distributed data from federated BIRN data sources. Similarly, a spe-
cific ontology resulted from the @NeurIST project but only relational federated querying
can be achieved through OGSA-DAI and a mediation service. More recently, semantic
querying on top of federated CaBIG data sources has been studied [González-Beltrán
et al., 2012]. However, the proposed approach follows an Extract-Transform-Load data
warehousing approach to populate a semantic repository from distributed CaBIG data
sources. But this approach does not appear to be scalable in the context of continuous
increases of data amounts, and does not cope with the autonomy preservation of data
sources managing hardly relocatable data. Finally ACGT is the only platform providing
semantic federated querying through a SPARQL query interface, thus allowing to exploit
the ACGT Master ontology, and possible inferences, directly when querying distributed
ACGT data sources.

The most challenging tasks for collaborative life-sciences appear thus as (i) being able
to preserve the autonomy of participating distributed data sources while still providing
sufficient security guarantees, and (ii) exploiting domain ontologies at query design-time
and run-time over autonomous distributed and heterogeneous life-science data sources.

2.5 Conclusion

In this chapter, we introduced the main concepts related to data integration and knowl-
edge sharing needed to build collaborative life-science platforms. Addressing knowledge
data management, section 2.2 briefly introduced standard languages and reference tools
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dedicated to semantic data representation, querying, reasoning, and persisting. State-
of-the-art approaches dedicated to semantic data federation have been described from a
general-purpose and performance-oriented perspective in section 2.3, and from an life-
science application perspective in section 2.4.

The security sub-challenge for life-science data integration is addressed in chapter 3
as a contribution to support the setup of secured multi-centric studies.

To address the autonomy preservation of distributed and heterogeneous data sources
participating in life-science collaborative platforms, we propose in chapter 4, methods
and algorithms to achieve transparent semantic data federation with a particular focus
on both language expressivity and performances.

Towards a better exploitation of ontologies in the context of life-science data inte-
gration (knowledge challenge for life-science data integration), chapter 4 aims at bridging
the gap between generic performance-oriented approaches described in section 2.3 and
collaborative life-science platforms described in section 2.4, through distributed query
processing strategies balancing both performance and expressivity. We also propose a
set of experiments in chapter 8 evaluating our approach at large-scale (section 8.2), and
over distributed and heterogeneous neuroscience data sources (section 8.3).

Key Points

• Life-science data repositories cover a wide variety of data na-
tures which leads to interoperability issues in collaborative ac-
tivities.

• Semantic data representation have gained a lot of interest to
address interoperability issues and to perform highly expres-
sive graph-based querying/reasoning.

• Data integration approaches based on a centralized data ware-
house are not suitable in the context of autonomous life-science
data source, which manage hardly relocatable data.

• Local-As-View approaches for virtualized (federated) data in-
tegration better adapt to dynamic federations (scalability) but
require complex query rewriting mechanisms.

• General purpose and performance-oriented semantic data fed-
eration approaches still suffer from expressivity limitations.

• Although collaborative life-science platforms rely on domain
ontologies, they generally only support relational distributed
querying and do not allow semantic querying over distribut-
ed/heterogeneous data sources.
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3.1 Introduction

Federating data sources is increasingly needed to address many challenging societal is-
sues such as large scale epidemiology or rare diseases studies. Grid technologies are
appealing to deal with the distribution of life-science data providers [Breton et al., 2005].
However, the take up of grid technologies is slowed down by the difficulty to manipulate
sensitive medical data in a distributed environment on the one hand, and the reluctance
of medical centers to openly deliver valuable data sources which acquisition is a costly
process on the other hand. In pre-clinical or clinical research, the fear to loose control
over local data sources often counter balance the temptation to share data in spite of the
growing need for collaborations through multi-centric studies.

For example, the NeuroLOG project, introduced in section 1.4.1, aimed at building a
federation of collaborative neuroscience sites to address challenging public health prob-
lems. The sites participating to the federation have both collaborative interests and com-
petitive activities. In addition, each site has set up a local and satisfying working envi-
ronment which should be preserved. Consequently, it is needed to offer a data federation
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system which does not compromise sites data beyond the objects of collaboration decided
and which does not interfere with the normal autonomous operation of the sites.

3.1.1 Motivations

As an example of valuable neuroimaging data, we consider here the setup of neuro-
science experiments which rely heavily on the availability of brain image databases. The
setup of these experiments is generally a long and costly process in which neuroscien-
tists are involved to (i) select a target (and control) population, (ii) design specific acqui-
sition protocols by parametrizing the image acquisition device to obtain signals or recon-
structed images relevant to their studies, (iii) post-process the acquired data to finally
obtain as much as possible homogeneous brain databases (e.g. intensity normalization,
data registration). Producing such valuable databases is a long and costly process but
remains the first requirement to launch further scientific activities. Considering this ef-
fort, the set-up of such databases is often the source of collaborations between scientific
partners sharing similar objectives.

However, sharing life-science resources (data and application codes) in computational
sciences still remains challenging and face two major obstacles.

Regulatory obstacles. The sharing and processing of personal medical data for health-
care or bio-medical research must strictly conform to national and supra-national (for
european member countries) policies. Rahmouni and co-workers provide in [Rahmouni
et al., 2010] several examples of privacy requirement at the european scale. Most of eu-
ropean data protection laws ban the processing of personal data, except if data is priorly
anonymized (or de-personalized). It consists in eliminating all pieces of data possibly
leading to the identification of the corresponding person. Another common regulation
is that data must be collected in specified, explicit and legitimate purposes (Article 6b of
the EU directive 95/46/EC, 1985), while still allowing for further scientific exploitation
provided that Member States present safeguards.

As an example of national legal issues, the CNIL1 – the french national commission
for information technology and civil liberties – provides several guidelines helping in-
formation technology providers or users to conform with laws. Some of these guidelines
are dedicated to health data management. For instance, each health practitioner or each
person responsible for files must comply to security obligations. He or she must take the
necessary precautions to guarantee the confidentiality of data and ensure that they are
not communicated to non-authorized parties. Thus, sensitive health data must be acces-
sible to people granted with the necessary permission only. As more practical guidelines,
some technical measures must be taken in the context of health applications deployed
over a network. For instance, a connection to the system by several users using the same
login and password must be forbidden, connections and data usage must be journalized,

1http://www.cnil.fr/english

http://www.cnil.fr/english
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personalized data should be partially or fully ciphered (as well as communications), data
access must be restricted to authorized users, etc.

Social obstacles. Stodden provides in [Stodden, 2010] a literature review leading to
the conclusion that decision on sharing is based on self-interested and communitarian
motivations. In addition, Stodden proposes an empirical study2 of sharing behavior of
researchers manipulating both data and application codes (i.e. computer scientists). Her
study reveals the main obstacles hampering data and codes sharing in computational sci-
ences communities. On one hand, the top reasons motivating scientists to share data and
codes are “encouraging scientific advancement”, “encouraging sharing and having others share
with you”, and “being a good community member”. On the other hand, the top reasons moti-
vating to prevent sharing are “the time it takes to clean up and document for release” and “the
possibility that your data/codes, may be used without citation”, and to a lesser extent “competi-
tors may get an advantage” or “the potential loss of future publications based on this data/codes”.
While reasons for sharing appear as driven by communitarian considerations, reasons
for not sharing appear as driven by personal interests.

In line with this study, Goble and co-workers [Goble et al., 2011] depict scientists
as self-interested (as any other group of persons) mainly motivated by finding funding
(and sufficient resources to achieve there research) and building their reputation. In this
context, sharing happens when scientists are rewarded for it, and when both sharing
risks (loosing competitiveness) and sharing costs (time and effort to prepare reusable
data/codes, or potential sustainability/support constraints) are minimized.

These barriers have been faced during the NeuroLOG project in which distributed
neuroscience partners required for the setup of collaboration while still coping with (i)
competitiveness and ownership concerns and (ii) regulatory issues applying to sensitive
biomedical datasets.

3.1.2 Related works

We briefly study in this section the existing approaches to enforce security in health-
oriented distributed systems.

3.1.2.1 Basic notions of security in distributed information systems

Authentication is a process guaranteeing the identity of parties when accessing/ex-
changing information. Public key infrastructures [Housley and Polk, 2001] (PKIs) and
the X509 norm provide a standardized way for authentication in telecommunication sys-
tems. A certification authority (CA) is a component empowered to deliver certificates as
proof of identity. In addition, these certificates are signed by the CA so that a certificate is
non-repudiable and its provenance is traceable. The signature process can be configured

2based on interviews of conference attendees for NIPS (Neural Information Processing Systems conference)
and ICML (International Conference on Machine Learning)
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hierarchically so that the signed certificate is also empowered to deliver certificates, and
thus becomes a “sub-CA”. A certificate is composed of descriptive information such as
the name of the owner, its organization unit, the identifier of the certificate issuer, etc. A
pair of public/private keys is associated to the certificate and used for both asymmetric
encryption, and owner authentication.

Authorization is the process of verifying that an authenticated user has the privilege
(is authorized) to perform a certain operation or more generally to access a certain re-
source. Note that it is mandatory to check beforehand, that the user is authenticated.
Such combination of authentication and authorization is also known as Access Control.
As an example, the user “John” requests for the removal of a dataset, the authorization
procedure will check the security policy to assert that removal privilege is granted to
“John” for this dataset. If not, the removal operation will fail.

Matrix authorization rules, also known as Access Control Lists (ACL) consist in basic
rules which assign a specific permission from a subject to a protected resource. Such a
rule can be seen as a triplet (s, a, r) in which s is the subject, a is an access type (per-
mission), and r the resource to protect. The main disadvantage of this model is that the
security policy (the set of rules) is made of “per user” rules, implying an high cost of
management.

Whereas permissions are assigned to users in ACL, they are assigned to roles (the
user possible functions) in role-based access control (RBAC) [Sandhu et al., 1996] in such
a way that security policies become lighter and more understandable. The cost of policy
management is then reduced. The concept of group is often distinguished in this kind
of patterns. A group is considered as an identified set of user (as in operating systems)
whereas a role, identifying a particular function assigned to users, is rather a collection
of permissions.

Confidentiality guaranties no leaks of sensitive or private information in the system. It
usually relies on cryptography to assert that only authorized people can access to confi-
dential resources. Encryption is closely related to confidentiality. It relies on cryptography
techniques to protect sensitive or private information. This process transforms a message
with an algorithm that makes it unreadable (ciphering). People which possesses the de-
ciphering key can access the message. Symmetric algorithms, AES for instance, use the
same key for encryption / decryption whereas asymmetric algorithms, RSA for instance,
use a public key for encryption and a private key for decryption.

The Secured Socket Layer (SSL) is based on asymmetric cryptography to guaranty
confidential network communications. It uses X509 certificates and their associated pri-
vate keys. A client C owns an X509 public certificate Ccert and an associated private key
Ckey. A server S recognizes a number of client certificates that are stored locally in a trust
store, or certificates which have been preliminary signed by a trusted certification author-
ity. When a client connects, the server and the client proceed with an hand-shaking: the
server checks the identity of the client. If Ccert is valid (i.e. it is not outdated and it was
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signed by a known certification authority) the socket is opened and the communication
begins. Otherwise the server closes the connection. An SSL channel can be configured to
perform dual hand-shaking: both the client and the server authenticate to each other.

3.1.2.2 State-of-the-art approaches

Widely adopted in production grids (e.g. EGI, the European Grid Infrastructure), the
Virtual Organization Management System VOMS [Alfieri et al., 2003] is an authorization
service, delivering an extended proxy certificates to an authenticated user. This extended
certificate, (i) enables single sign-on across the grid, (ii) enables the authentication to
various Virtual Organizations (VOs), and (iii) binds groups and roles to the user through
attributes embedded into certificates.

To tackle the centralization issues of VOMS, the Shibboleth’s [shi] decentralized ap-
proach to authentication and authorization, is gaining adoption in grid communities. The
central idea is that remote authentication is delegated to the user’s referee authority. In
other words, the question “Where are you from” is asked to the client. Hence, the user’s
authority authenticates him/her, and generates a security assertion including user’s se-
curity attributes. The main advantage of this approach is the decentralized authentication
and attributes assignment through Shibboleth authorities.

Chadwick and co-workers propose PERMIS [Chadwick et al., 2008], a modular au-
thorization infrastructure suitable for grid environments. This flexible and distributed
framework provides (i) credential and hierarchical RBAC policies management and (ii)
an access control decision engine, including credential validation.

Sinnott and co-workers analyzed the management of roles through large scale and
dynamic virtual organizations (VOs) and the impact of both centralized and distributed
approaches [Sinnott et al., 2008]. Centralized VO roles management is well suited in the
context of static virtual organization in which roles and users do not change rapidly. The
management of roles is simpler and easier since a single VO administrator is responsible
for role assignment to users. But it can also be seen as a disadvantage, especially in the
context of life-science collaborative platforms requiring for autonomy. These approaches
are also considered as less scalable since the VO administrator needs a detailed knowl-
edge on all VO users and roles. On the other side, decentralized role management allows
for more dynamic and scalable collaborations (particularly needed in the context of this
work). It also provides a better autonomy since sites make their own local decisions on
their resources, which is decoupled from the role assignment to users. However, in de-
centralized approaches, roles may be scattered over several collaborating sites, leading
to non-trivial role usage and advertisement thus hampering their adoption.

An in-depth review of federated access control through grid authentication and au-
thorization technologies have been proposed by Jie and co-workers [Jie et al., 2011]. They
promote Shibboleth as (i) a single-sign-on scalable user-friendly authentication solution
and (ii) a strong basis to support, coupled with PERMIS, fine-grained authorization in
grid environments. However, Jie and co-workers note that Shibboleth cannot be con-
sidered as a universal solution since clinical sites/hospitals or commercial organizations
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may not trust academic identity federations, and security standards are still flux (W3C,
IETF, OASIS standards).

Data protection is a major requirement in health environments. Elaborated solutions
are proposed to protect from the “insider abuse” issue such as the use of Shamir se-
cret sharing scheme in [Seitz et al., 2003] and in the Medical Data Manager [Montagnat
et al., 2008a] leaning on the Secure Storage Service provided by the gLite middleware [sec,
2005] [Scardaci and Scuderi, 2007]. Blanquer and co-workers propose in [Blanquer et al.,
2009] an enhancement which consists in also protecting decryption keys from “insider
abuse”.

Stell and co-workers describe in [Stell et al., 2007] an in-depth analysis of security
requirements for Neuroscience dedicated e-Infrastructures: “On the one hand, the local
administrator must find a way to translate their local policies to a common interface that can be
understood by remote users as local. On the other hand, there must be a way for the remote user
to gain fine-grained and secure access to individual data fields and parameters”.

This last statement illustrates the partly conflicting needs for (i) autonomous data
providers, responsible for the sensitive medical data they host, and (ii) the need of end-
users to access distributed data in the context of multi-centric collaborations. The pro-
posed security measures in the context of life-science data integration (see the security
challenge introduced in section 2.1.3.2) are thus non-trivial to finely balance these con-
flicting interests.

3.1.3 Requirements for secured life-science collaborations

In this chapter, we propose a security model addressing collaborative life-sciences driven
by partly conflicting requirements, namely

(R1) medical data protection ;

(R2) distributed control over data sources with prevailing local policies ;

(R3) support for multi-centric studies involving data sharing ;

(R4) autonomous sites administration.

R1 is achieved through classical data encryption techniques. R2 and R3 are achieved
through a novel distributed data access control policy described in details in this chapter.
In the system proposed, there is no global authority nor any super-administrator with
specific access rights, thus guaranteeing to the system users that they solely control the
access to the data they own. The solution proposed addresses R4 through minimal cen-
tralization. It was designed for simplicity of use and lightened administration overhead.

Although collaborative life-science platforms involve several data representations,
such as raw file, relational databases, or semantic data, the proposed security model only
target raw files. Addressing these non-trivial security requirements over other data rep-
resentations such as tables (relational databases), or graphs (semantic data) would open
interesting perspectives.
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3.2 Life-science distributed security model

We consider in this chapter life-science collaborative platforms in which the contributing
centers have set up working environments over years that are well suited for their site-
specific objectives. Although federating resources is generally considered as an high-
order priority, the system proposed has to adapt to these legacy environments and most
importantly, it should not interfere with the normal autonomous operation of the sites
(R4). The proposed security model is based on thoroughly validated methods to identify
collaborating partners. The user credentials are managed at the application level in such
a way that the end-user authenticates only once (single sign-on).

3.2.1 From independent to collaborative trust domains

Each center involved in the federation is responsible for registering its own local users,
as it is usually the case in autonomous entities. It is administrating a local certification
authority (Site CA), empowered to deliver and sign site user certificates, thus delineating
a local trust domain. The widely adopted X509 certificates used contain descriptive in-
formation such as the name of the owner, her organization unit, and the identifier of the
certificate issuer. They are non-repudiable proofs of identity all over the trust domain.

To enable multi-centric studies (R3) in a secured environment (R1), the research cen-
ters involved have to interconnect their trust domains. Our system is relying on a root
certification authority taking part in a coordinating node named Federation Registry. The
Root CA is delivering certificates to all participating sites (Site-CA certificates). It delegates
certification ability to each site administrator for local users. End users receive individual
certificates that are thus resulting from a 2-levels signature chain (Root CA and Site CA).
Being ultimately signed by the Root CA, the user certificate of a particular site is used to
establish a secured communication with another participating site.

Figure 3.1 depicts the use of the 2-levels trust chain to establish secured communi-
cations, either locally to one participating site, or to another site of the federation. A
user of Site A owns a signed certificate used to establish secured communication with all
services. When she attempts to retrieve a data from Site B for instance, the certificates
signature chain makes identity control possible at Site B without prior registration of the
user. The trust chain resulting from the signature of both Root CA and Site A is used
by Site B to determine that the request comes from a legitimate user at the scale of the
federation.

3.2.2 Data protection

As outlined in R1, data protection and access control are critical in any healthcare ded-
icated information system. Another advantage of X509 certificates is that they enable
secured communications between users and service providers within and across local
trust domains through Secured Socket Layers (SSL). SSL makes an extensive use of asym-
metric cryptography to perform mutual authentication and to negotiate communication



62 Chapter 3. Secured collaborations in a life-science platform

Site A Site B

Site A - user

data retrieval

Site A - CA

Site B - CA

Root - CA

data storage

Si
te

 A
 tr

us
t d

om
ai

n

Si
te

 B
 tr

us
t d

om
ai

n

: certificate signature / trust relation

Figure 3.1: Bridging independent sites trust domains.

encryption keys. We use the AES encryption algorithm to protect data content. Two pro-
tection policies, corresponding to two levels of privacy, are implemented in our system:
(i) minimally, all communications are protected so that data is encrypted during trans-
fers only, (ii) potentially, the system can be configured so that data is also encrypted on
disk. The first policy is acceptable in a research context where the data manipulated is
de-personalized prior to its importation in the system. It facilitates data manipulation
locally while guaranteeing that data is protected when transferred outside. The second
policy addresses the stronger data protection that must be considered in the context of
clinical deployment or sites on which all local users should not access to the complete
data base.

3.2.3 Decentralized access control policy

The key contribution of this work is a decentralized data access control policy where lo-
cal policies prevail for controlling access to local data (R2) in a collaborative environment
(R3). Our access control mechanism is based on traditional Role-Based Access Control
(RBAC) [Ferraiolo et al., 2001] for ease of use. The remainder of this section exposes a de-
centralized role-based access control across the federation in which multi-centric study
instigators independently assign roles to users, and site administrators manage the shar-
ing of resources by assigning them roles and permissions.

The proposed RBAC access control policy decouples and distributes two administra-
tion tasks: (i) the assignment of roles to users and (ii) the definition of access rights for
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each role. Most existing RBAC systems are centralized and these two tasks are simulta-
neously managed in a single system.

Data access control policy. On each site, at least one administrator has special capabili-
ties to register the site users and to maintain the site’s access control policy. To satisfy our
requirements, the assignment of user’s role and the definition of roles access rights are
decoupled. In the distributed environment, users may belong to different trust domains
(a system administrator usually has no complete view of the potential users of the sys-
tem) while the access rights to data of a given domain has to be ultimately controlled by
this domain’s administrator. The compromise to enable collaborative work while ensur-
ing site-wise access control to local data is as follows:

• Site administrators are capable of creating federation-wide roles, as many as needed
to describe their access control policies;

• The creator of a role controls the assignment of all system users to that role: the
management of a particular role is centralized on one of the sites.

• Each site administrator controls the assignment of federation-wide roles to permis-
sions related to their local resources.

A user is granted access to a data item if she belongs to at least one role that is locally
authorized to access this item. This policy framework ensures that sites solely control ac-
cess to their data: only a site administrator can bind some role to her data. It also ensures
that each role is well defined and administrated: only the role creator can bind users to
that role. It implies a collaboration between the data owner and the role creator: the data
owner agrees to make some data accessible for a particular role (e.g. in the context of a
particular multi-centric study) ; the role administrator is trusted and recognized as the
administrator for this particular study. Any user in the federation can collaborate to the
study. Through the certification chains, the role administrator can validate the identity
of any user before assigning the role to her. Finally, the roles are guaranteed to be unique
federation-wide through the coordination registry.

3.3 Results and implementation

The proposed distributed access control policy is illustrated in the context of a secured,
cross-sites data sharing and retrieval use case in the context of the NeuroLOG project.

3.3.1 Use case: secured sharing of datasets through decentralized RBAC

Let us consider three sites A, B and C participating in the federation, given a collaborative
study initiated by site A, the goal of site B is to share a set of owned data with partners
involved in that study. Various actions are involved in this secured data sharing and a
minimum of coordination is needed to achieve this goal, such as agreeing on the name
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of a collaboration role. Figure 3.2 illustrates the interactions between administrators and
site services (data storage/retrieval and access control services), and between site services
and the coordination registry.
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Figure 3.2: Activities involved in coherently sharing data

1. The administrator of Site A creates a new role named StudyA corresponding to the
multi-centric study, to which datasets intended to be shared can be attached (step
1).

2. The administrator shares effectively the study by:

(a) declaring that role on the Registry, associated to its initiator site (step 1.1);

(b) potentially granting permissions onto hosted data for this shared role through
the local access control policy (study read permission, for instance).

3. The administrator registers any user (local or foreign) participating in the study
by assigning her the role previously created (step 2). If the user is unknown from
the site, she is registered with her distinguished name (DN of her certificate) after
validation of her certificate signature chain.

4. Finally, after importation of dataset D within Site B (step 3), the administrator of
Site B is able to decide to share D with participants in StudyA (step 4), involving the
retrieval of assignable roles for data access control (step 4.1) and the creation of a
local authorization rule (step 4.2).

Let us now consider a user of Site C, involved in StudyA who needs to retrieve a shared
data hosted by Site B. Figure 3.3 presents how the access control is performed thanks to
the delegation of roles checking.
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Figure 3.3: Decentralized access control

1. The user from Site C requests from Site B the retrieval of dataset D (step 1);

2. Site B controls the permissions of the user over D (step2) by:

(a) retrieving in the local access control policy, the collection of roles attached to
D (step 2.1);

(b) retrieving the initiator sites for the resulting collection of roles (step 2.2);

(c) delegating to each initiator site, the checking of role assignment to the user
(step 3), in other words “does the user own the role StudyA ?” (step 3.1);

3. If one of the collaborating sites validates the role assignment checking, then the
access control is performed regarding the permission associated to the data and the
role.

3.3.2 Implementation

The security model exposed in this chapter has been implemented within the core of the
NeuroLOG middleware. The remainder of this section details how our security concerns
have been operationalized. The NeuroLOG platform involves a registry dedicated to the
coordination of the platform, multiple intercommunicating site servers which are imple-
menting most of the middleware functionality and distributed clients from which users
authenticate and connect to the system. To ensure scalability and sites independence, the
administration of the platform is distributed and handled site-wise. In particular, sites
are responsible for (i) granting access to the platform for their users and (ii) managing a
local access control policy over hosted resources.
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3.3.2.1 Middleware and Application services

Figure 3.4 illustrates the main software components involved in the NeuroLOG middle-
ware and where have been implemented the distributed access control. A NeuroLOG
user is able, through its Client application (and a dedicated graphical user interface), to
perform queries against the Relational data manager on its site server. It provides a unified
view over the distributed and heterogeneous data published by the other collaborating
sites through the commercial Data Federator integration engine. As it has been introduced
in section 3.1.3 relational (or semantic) data are considered in this platform as public
whereas raw files are considered as sensitive and their access need to be strictly con-
trolled. End-users are able to retrieve either local files or remote files through secured
communication channels. For each participating site, sensitive raw files are accessed by
a dedicated Raw data manager which is responsible for access control through a policy
enforcement point (PEP). Then the distributed access control is performed by the Site
manager through a dedicated policy decision point (PDP) as described in section 3.3.1.
Finally, based on the access control decision, raw files might be directly communicated
to the end-user.
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Figure 3.4: Policy decision and enforcement points in the NeuroLOG middleware.

The software stack uses standard frameworks such as MySQL database,
EJB3/Hibernate API to handle object/relational mappings, and JAX-WS web-services
to expose application and middleware services.

Transverse security concerns are addressed through OpenSSL, Java Secure Socket Ex-
tension, Java Public Key Infrastructure and Java Cryptography Architecture. OpenSSL is
involved in the setup of the certification authorities as mentioned in section 3.2.1 and in
the delivering and signing of X509 certificates. Java Security frameworks ease the estab-
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lishment of secured communication channels through SSL.

3.3.2.2 Authentication service

Through the establishment of trust chains over the federation, each participant can com-
municate through SSL channels. We had to cope with an authentication issue, related to
using high-level protocols (e.g. SOAP protocols) over pre-established SSL connections.
Once an SSL communication is established, those protocols do not provide control, at
server side, over the identity of the caller emitting high-level protocol messages. For
instance, while opening an SSL channel with a Site Server, the identity of a user is vali-
dated through SSL handshaking. However, several clients may similarly connect to the
same server. Thus, the Site Server receives requests without knowing who effectively
performed each of them. This issue brings a major security requirement at application
level that is authentication (re-identification) of the caller of a specific operation in the
service.

Regarding web services, the security context depends on the service container. A web
server transporting messages over HTTPS will benefit from SSL handshaking to identify
the caller. However, with simple stand alone web services, re-identifying the user con-
nected is not possible and an authentication token is needed in the WS operation call to
perform access control at the service level. Alternatively, web services can be hosted in
a container such as Apache Tomcat. In this case, the container provides the functionality
needed to retrieve the SSL identity of any caller, thus enabling re-identification without
any additional operation.

3.3.2.3 Authorization services

The authorization component makes use of the same software stack. To manage the
sharing of roles over the federation, the coordination registry handles the persistency
of roles and their associated initiator sites. Authorization services deployed in the Site
Servers handle the persistency of users and their assigned roles, and authorization rules.
In order to collaborate with their peers, as proposed in the decentralized access control
use case, they expose a service responsible for validating that a user owns a role. They
finally expose an access control service which asserts that given (i) an authentication
token, (ii) a resource identifier, and (iii) a permission, the identity extracted from the
token owns the permission over the requested resource.

The flexibility of the proposed system allowed to extend this distributed access con-
trol policy to also protect the invocation of data processing services. This requirement has
been gathered through the NeuroLOG community. It is related to the social motivations
preventing sharing introduced in section 3.1.1. As an example, partners developing im-
age processing tools also wanted to protect the access over tools whose algorithm were
not fully exploited, in terms of scientific publication. During their deployment as web
service through the JGASW [Rojas Balderrama et al., 2010] web service wrapper, data
processing tools have been instrumented with a policy enforcement point preventing for
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non-authorized invocations.

3.4 Discussion and conclusion

Considering the analysis of Sinnott and and co-workers in [Sinnott et al., 2008], we pro-
posed in this chapter an hybrid security model dedicated to health-oriented distributed
platforms. Indeed, the proposed security model allows for distributed access control
while still considering prevailing local policies. In addition, the coordination registry
eases the agreement on roles at the scale of the federation, and thus copes with the dis-
advantage of fully decentralized VO role management systems in which roles may be
scattered over participating sites.

Compared to VOMS, the NeuroLOG platform is based on a lighter infrastructure and
the certificates are decoupled from the authorization framework, thus enabling more dy-
namic permission control. In addition, with VOMS, user, group and role management are
centralized at the VOMS server level. Conversely, NeuroLOG authorization mechanisms
are decentralized over the participating sites in the sense that (i) a site administrator reg-
isters her users by providing them a valid certificate, and (ii) authorizing users, either
local or remote, through role assignments.

The Shibboleth approach is not really suitable in the context of the NeuroLOG plat-
form (R2 and R3). Indeed, despite a similar authentication pattern, the attributes man-
agement (roles in our terminology) is quite different. A key contribution in our work is
the role management, under responsibility of the site which initiates a multi-centric study,
and exclusively that site. On the contrary, with the Shibboleth approach, data sharing in
the context of multi-centric clinical studies, would not be solely under the responsibility
of the study initiator site but distributed to all administrators of participating sites, which
serves badly the required autonomy (R4) of participating sites.

PERMIS enables the definition of various security policies, involving distribution of
attributes in site-wise repositories whereas our approach propose a non-trivial security
policy where federation-wide unique roles are recognized and coherently managed in
the federation. In the NeuroLOG platform, local policies are understandable all over the
federation through availability and unicity of federation-wide roles. Moreover we pro-
pose a compromise between fine-grained and coarse-grained policies with authorization
rules scaled to clinical studies and their related datasets.

Rajasekaran et al. identified in [Rajasekaran et al., 2008] similar security requirements
in the design of the @neurIST platform, aimed at improving research and clinical care of
cerebral aneurisms. Solutions appear to be close to our approach but at this stage, avail-
able documents do not provide sufficient information to compare the role management
at the scale of the virtual organization and how data sharing can be performed in the
context of multi-centric studies.

We summarize the positioning of our approach with respect VOMS, Shibboleth and
PERMIS as follows. On the one hand, VOMS relies on a centralized management of users,
groups and roles. On the other hand, PERMIS provides a fully distributed management
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of authorization policies with roles, uniquely defined at the scale of a site. We propose a
hybrid approach in which the management of roles is centralized at the scale of the fed-
eration. This choice is a trade-off which eases the agreement on roles at the scale of the
federation, and avoids complex mappings between site-specific roles needed if each site
deploys a prevailing local PERMIS authorization framework. Moreover, in the context
of a multi-centric study, Shibboleth would hamper the autonomy property of participat-
ing sites since data sharing would be under the responsibility of all data-providers. Our
hybrid model allows to have a single study coordinating site which manages users par-
ticipating in that study, and at the same time allows each data provider to control the
access over the data they publish through the federation-wide roles.

Providing a security infrastructure for medical applications running in a wide-scale,
open grid infrastructure is difficult due to (i) the sensitivity of medical information but
also (ii) the conflicting requirements of medical users to be able, at the same time, to share
data and to still control their data resources. The foundational security layers integrated
in the lower stack of most grid middlewares is addressing the first point but the second
one requires elaborated and domain-specific security control policies.

In this chapter, we proposed a distributed security framework that addresses neuro-
scientists needs for enabling multi-centric studies by federating existing, heterogeneous
site environments. The security layer is founded on state of the art security tools. In
addition, we propose a distributed access control management policy that enables data
sharing while respecting local data access policies (thesis research question RQ2). The
proposed infrastructure enables autonomous sites operation and it does not require a cen-
tralized administration. This distributed security policy is validated through an imple-
mentation ; practical set up problems related to client-server communications are taken
into account.

This work addresses the access control over distributed raw data files and data pro-
cessing services. It opens interesting perspectives since valuable life-science data relies
more and more on complex and rich data representations such as knowledge graphs.
Indeed, life-science data providers would be open to share their domain models (ontolo-
gies) but would be much more reluctant to share their research semantic data (ontol-
ogy instances/individuals) without a strong access control. A lot of research activities
are currently being conducted to address the access control over semantic data [Flouris
et al., 2010], [Sacco et al., 2011]. Context-aware access control for distributed semantic
data stores [Costabello et al., 2012] would be particularly relevant in the context of fed-
erated semantic queries (chapter 4) addressing distributed health data shared through
linked data principles. Providing a flexible enough security framework still coping with
the autonomy of semantic health data providers is an interesting perspective to foster
the adoption of semantic web and knowledge-oriented technologies by clinical research
communities.
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Key Points

• Even if foundational security framework have been available
for a long time in distributed computing infrastructures, they
do not suit application-level security requirements in the con-
text of life-science resource sharing.

• Life-science resource sharing faces two partly conflicting con-
cerns: setting-up collaborative multi-centric studies while still
letting data providers operate local access control policies.

• Decentralized access control policies decoupling (i) the assign-
ment of roles to users and (ii) the assignment of permissions
to resources through roles, allows for facing secured enough
life-science data sharing.

• Similar security requirements should be considered to address
secured collaboration involving semantic data representations
in collaborative life-science platforms.
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4.1 Introduction

Aimed at easing the setup of large scale scientific collaborations, collaborative life-science
platforms provide data sharing and processing facilities while still considering partners
as autonomous data providers. Preserving the autonomy of participating organizations,
as introduced in section 2.1.3.2, is a prime-order constraint since life-science data are
hardly relocatable for ethical or legal constraints, and life-science data providers must
keep the control over their owned data. Such constraint strongly motivates for handling
distributed querying over multiple data sources.

Through materialized or virtualized approaches, data integration systems (introduced
in section 2.1.3) are used to coherently provide a uniform access over these distributed
data sources. Materialized approaches consist in (i) extracting data from distributed data
sources, (ii) possibly performing data transformations and finally (iii) populating a ho-
mogeneous and centralized data warehouse. These materialized (or data warehousing)
approaches are not suitable in the context of autonomous data sources managing possi-
bly sensitive data, hardly relocatable for ethical or legal reasons. An alternative solution
consists in considering virtualized (or federated) approaches which allow pushing queries
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over distributed data sources, without requiring for prior data migration, through Dis-
tributed Query Processing (DQP). Query results are finally integrated at querier side.

In the context of virtualized data integration, data may be partitioned with or without
constraints on their nature. Two distribution setups may be envisaged: a first one in
which each data source is specialized for a specific kind of data, and a second one in
which no assumption can be made on the content of data sources. This second setup is
the more appropriate to preserve the autonomy of data sources participating into life-
science collaborative platforms. Moreover, this usage scenario is relevant in the context
of collaborative platforms allowing semantic data sharing through a common ontology.
This imply that all data sources possibly host any kind of data represented through the
ontology, and consequently no assumption can be made on data sources content. This
hypothesis on data partitioning requires “transparent” data federation strategies coping
with the lack of prior knowledge on data sources content.

Moreover, we assist nowadays to a continuous increase in the number of initiatives
aimed at publishing on the web open databases through the Linked Data principles [Bizer
et al., 2009a]. These published data are generally semantically described with ontolo-
gies and are published through standard semantic data representations (OWL/RDF(S)).
Collaborative life-science platforms being also supported by domain ontologies, there is
an opportunity to benefit from knowledge exchanges in both ways: a collaborative life-
science platform could benefit from “open” knowledge originating from Linked Open
Data sources, and conversely publishable platform data or models as Linked Open Data,
would enrich the Linked Open Data sources available over the Web.

Semantic data representations and techniques are well spread into both Linked Data
initiatives, and collaborative life-science platforms. But as discussed in section 2.4.2, few
of the recent large scale collaborative life-science platforms benefit from semantic data
representation and querying when performing data integration, and most of them only
rely on relational data federation. This lack of ontology exploitation in data integration
thus prevents from performing highly expressive queries and automated reasoning.

Recently, the W3C published a pre-recommendation1[Prud’hommeaux et al., 2011] ad-
dressing the federated querying of distributed knowledge bases through a set of lan-
guage extensions for SPARQL 1.1, the SERVICE and VALUES clauses. But it requires
prior knowledge on how to distribute the subsets of the query to particular semantic
data providers. For instance the following query Q4.1 searches for person metadata dis-
tributed over two knowledge bases site1 and site2, where data is partitioned as follows.
The first data source hosts foaf:name properties and the second one hosts dbpedia:birthDate
properties. This particular setup requires for the query designer to have this prior knowl-
edge on which site hosts which kind of properties in order to drive the semantic query
evaluator through the SERVICE clauses.

In the context of life-science collaborative platforms hosting homogeneous semantic
annotations, i.e. data semantically described through a common ontology, it is not re-

1http://www.w3.org/TR/sparql11-federated-query

http://www.w3.org/TR/sparql11-federated-query
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Listing 4.1: SPARQL 1.1 federated query performed against two distributed SPARQL Endpoints

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?x ?name ?date WHERE {

SERVICE <http://people.site1.org> {
?x foaf:name ?name .
FILTER (CONTAINS (?name, ’Bobby A’))

}
SERVICE <http://people.site2.org> {

?x dbpedia:birthDate ?date
}

}

alistic to let the query designer decide on which site a sub-set of the query should be
pushed. Moreover, considering the previous example, we could easily envisage that site2
also hosts foaf:name properties. The query then must be adapted in order not to miss
any person described through site2. More generally, this approach is not suitable in the
context of dynamic knowledge base federations. If we envisage a new site joining the
federation, the pre-designed SPARQL queries must be consequently adapted to take it
into account. In the same way, an unreachable partner site would lead to a necessary
adaptation of the federated queries.

Several research activities have been recently conducted to address transparent seman-
tic data federation [Quilitz and Leser, 2008, Görlitz and Staab, 2011, Langegger et al., 2008,
Schwarte et al., 2011, Ladwig and Tran, 2010]. They have been more precisely discussed
in section 2.3.2. They all highlight the cost of performing distributed query processing
over geographically spread semantic data sources. Through performance-oriented ap-
proaches (possibly involving parallelization), they tend to minimize the amount of net-
work communication needed to join data coming from distributed data sources. How-
ever these approaches generally only cover a limited subset of the SPARQL querying lan-
guage, thus preventing their adoption in the context of demanding collaborative life-
science platforms.

Since collaborative life-science platforms strongly rely on autonomous data source
providers, their underlying data integration systems generally face the issues of feder-
ating heterogeneous data sources (heterogeneity challenge described in section 2.1.3.2).
We propose in this chapter to (i) rely on abstract knowledge graphs as a unifying model
to represent, query and reason on semantic data while still coping with possible heteroge-
neous data structures, and (ii) a set of optimization strategies to implement efficient dis-
tributed query processing over geographically spread abstract knowledge graphs. The
remainder of this chapter, addressing both research questions RQ1 and RQ3, proposes a
set of static and dynamic optimizations in section 4.2 and a first evaluation of the pro-
posed algorithms in section 4.3. Results are finally summarized and discussed in sec-
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tion 4.4.

4.2 Strategies for semantic query distribution

Based on the notion of abstract knowledge graphs, this section proposes strategies to
statically and dynamically optimize the distributed query processing for geographically
spread semantic data sources.

4.2.1 Abstract knowledge graphs

Abstract knowledge graphs have been introduced in [Corby and Faron-Zucker, 2010]
through the KGRAM framework. They result from an initiative [Dieng-Kuntz and Corby,
2005] aimed at easing the design of semantic web applications through conceptual graphs
(CGs) [Sowa, 1984]. They are particularly well suited in the context of collaborative life-
science platforms since (i) they allow representing and querying semantic data (such as
standard RDF data and RDFS controlled vocabularies) and (ii) they allow addressing
structural data source heterogeneity as soon as a graph-based view on the underlying
data structure can be provided.

In spite of subtle differences [Dieng-Kuntz and Corby, 2005], the mapping between
RDF data and Abstract Knowledge Graphs was almost straightforward:

RDF(S) Abstract Knowledge Graphs
RDFS class Concept as a node
RDF(S) property Relations as directed labelled edges
RDF graph Abstract Knowledge Graph
RDF resource (subject or object) Node
RDF predicate Node
RDF triple Directed labelled edge

Table 4.1: Mapping between RDF(S) and abstract knowledge graph representations

The Knowledge Graph Abstract Machine [Corby and Faron-Zucker, 2010] (KGRAM)
is a framework aimed at representing, querying and reasoning over semantic data rep-
resented as abstract knowledge graphs2. KGRAM interprets an abstract language which
generalizes SPARQL 1.1, thus benefiting from its high expressivity (aggregate functions,
subqueries, negations and property paths).

To mediate several, possibly heterogeneous data sources, KGRAM introduces a set
of abstract operators manipulating abstract graph data structures (abstract Nodes and
Edges forming abstract Graphs). Graphs are navigated through Producers responsible for
the iteration over Nodes and Edges, thus acting as graph mediators. For each kind of data
source, a specific Producer is needed that abstracts its representation provided that it is
able to produce a graph view of hosted data.

2KGRAM is part of the Corese [Corby and Faron-Zucker, 2010] Semantic Web Factory.
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Figure 4.1: Graph-based querying with KGRAM.

Figure 4.1 illustrates graph-based querying with KGRAM. After being parsed, a query
is transformed through an abstract query language (AQL) generalizing SPARQL 1.1. The
query evaluation consists then in sending AQL queries to data Producers. Queries are
rewritten through the native query language to address the specificities of a data source.
When native data is returned, the Producer transforms it back into its abstract knowledge
graph representation (AKG) to the query engine. Data is finally matched and filtered by
the query engine and returns an AKG as result.

Abstract knowledge graphs, and graph Producers provide thus a well adapted model to
study the performance issues of distributed query processing over autonomous (dis-
tributed and heterogeneous) data sources, and to adapt to their potential structural het-
erogeneity.

4.2.2 Distributed Query Processing principles

We consider semantic data as knowledge graphs, fragmented over multiple semantic
data stores. The distributed query processing (DQP) of a semantic query consists in
identifying graph patterns into a virtually unified graph, based on the appropriate sub-
querying of multi-sources graphs. We adopted a federated approach to achieve querying
over distributed knowledge bases while coping with site autonomy and scalability con-
straints. Federated approaches rely on a central federator component, and a set of feder-
ated data providers. From a unique query, the federator is responsible for the coherent
sub-querying of the federated data providers and for unifying all results into a global
result set.

Based on the sample query Q4.2, this section provides both an informal description
of the distribution principles and a naive algorithm to spread a SPARQL query over a
set of distributed semantic data stores. Results are retrieved as if all resulting data were
virtually gathered into a centralized knowledge base.

The sample query Q4.2 aims at searching for people (designated by the two variables
?x and ?z) who share a common friend (variable ?y). The body of the query is composed
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Listing 4.2: Sample SPARQL query distributed over remote knowledge bases

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT DISTINCT ?x ?z WHERE {
3 ?x foaf:knows ?y .
4 ?y foaf:knows ?z .
5 }

by two edge requests (line 3 and line 4) forming a Basic Graph Pattern (i.e. a set of triple
patterns). Graph edges are composed of a subject node, an object node, and a predicate
linking together the subject to the object. For the ?x foaf:knows ?y edge request, the subject
?x and the object ?y are linked together through the predicate foaf:knows. We consider the
case where friendship relations are fragmented over distributed knowledge bases. Then,
several evaluation strategies can be envisaged:

(i) Sequential evaluation, drafted in algorithm 1, consists basically in iterating over each
edge request ; for each one, the query processor iterates over each distributed knowl-
edge base to push the current edge request. This strategy implies to wait for the
response of each knowledge base at each iteration step.

(ii) Fine-grained parallel evaluation consists in exploiting the parallel querying of dis-
tributed knowledge bases and wait, through a synchronization barrier at each edge
iteration, for the complete set of results.

(iii) Coarse-grained parallel evaluation consists in limiting the number of remote edge re-
quests by grouping them together through independent basic graph patterns and
enabling a parallel evaluation for each independent basic graph pattern. This strat-
egy could only be considered if triples from the same independent graph pattern
are not spread over distributed knowledge bases. This strategy aims at limiting the
number of remote queries to federated endpoints.

(iv) Pipelined evaluation consists, for a given edge request, in exploiting partial results
as soon as they are available into the remaining edge requests. Although promis-
ing, this strategy is complex since it requires a completely asynchronous evaluation
engine.

In a first step, let us consider the sequential distributed query processing of the query
Q4.2 as it is proposed in Algorithm 1. The federator first iterates over the two edge re-
quests ?x foaf:knows ?y and ?y foaf:knows ?z, (line 1). Then, for the current edge (line 2),
the federator iterates over the remote producers and performs a remote evaluation of the
current edge (line 3). Results are finally merged into the federator (line 3). This proposed
algorithm 1 could be easily enhanced by exploiting the parallelism of distributed data
providers such as proposed in the fine-grained parallelism strategy (ii).
The remainder of this chapter mainly focuses on fine-grained evaluation, suitable when
data is scattered without any consideration of the data model (ontology or controlled
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Algorithm 1: Sequencial distributed query processing, waiting after each remote
invocation.

Data: Producers the set of SPARQL endpoints,
EdgeReq the set of edge requests forming the SPARQL query,
scheduler a thread pool allowing for parallel executions.

Result: Results the set of SPARQL results.

1 foreach (e ∈ EdgeReq) do
2 foreach (p ∈ Producers) do
3 Results← p.getEdges(e) ;

vocabulary), and on coarse-grained parallel evaluation, suitable when data is partitioned
considering several data models.

4.2.3 Query rewriting optimizations

Algorithm 1 illustrates the basic principle envisaged to transparently query distributed
knowledge bases without specifying, into the query, any distribution directive so that
no additional knowledge on the content of the distributed stores is required. The main
drawback of this approach is that, for all federated endpoints, we need to send remote
queries for all edge requests constituting the initial query. The number of matching edges
returned to the federator might be high and they are finally joined or filtered by the feder-
ator itself. The main idea under the proposed optimization strategies consists in minimiz-
ing the amount of edges to be processed by the federator, and maximizing the processing
performed by remote federated endpoint. To achieve distributed query processing of
SPARQL queries, we consider the following four query rewriting strategies :

(i) Naive: consists in segmenting a global SPARQL SELECT query into a set of elemen-
tary SPARQL queries, one for each edge request. Since SELECT queries return results
as a set of of pairs {variable, value} (SPARQL RESULTS format3), it is preferable to
generate CONSTRUCT queries because results are directly returned as RDF data. In
that format, results do not require any transformation process4 in order to be incor-
porated back into the federator.

(ii) Filter: consists in incorporating an applicable FILTER expression to a generated edge
request, in order to delegate the filtering of irrelevant results directly to the remote
federated endpoint.

(iii) Binding: consists in exploiting partial results gathered from previous edge requests.
More precisely, the value of variables are exploited as soon as they are known into
the generated edge requests. They become thus simpler since variables are replaced

3http://www.w3.org/TR/rdf-sparql-XMLres
4that would be needed if results were transferred as {variable, value} pairs

http://www.w3.org/TR/rdf-sparql-XMLres
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by their corresponding values. They additionally reduce the amount of transferred
results.

(iv) Full: consists in combining both the filter and the binding strategies.

4.2.3.1 Filter rewriting strategy

While the naive query rewriting strategy consists in simply encapsulating an edge request
into a SPARQL CONSTRUCT query, the FILTER rewriting strategy consists in aggregating
to the select query, an applicable FILTER expression which represents a value restriction
for one or more variables. The FILTER expression is extracted from the global SPARQL
query. The idea is the following: in order to prevent from transferring results that will
be locally filtered, ultimately, by the federator, it should be more effective to filter results
directly at the source, behind the federated endpoints.

For example, let us consider the following query Q4.3 which aims at searching for
persons whose name contains “Bobby A” and their birth date.

Listing 4.3: Full SPARQL query distributed over remote KGRAM endpoints

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?x ?name ?date WHERE {

?x foaf:name ?name .
?x dbpedia:birthDate ?date .
FILTER (CONTAINS (?name, ’Bobby A’))

}

This query is decomposed into two edge requests: ?x foaf:name ?name, and ?x dbpe-
dia:birthDate ?date. Searching for the first edge would be traduced by the query Q4.4 in
the naive strategy and it would be traduced by the query Q4.5 in the filter strategy which
is much more effective as it will be shown in the experiment results.

Listing 4.4: Generated SPARQL query encapsulating a single edge request through the naive rewrit-
ing strategy

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT {?x foaf:name ?name} WHERE {

?x foaf:name ?name.
}

This naive query Q4.4 will lead to the transfer of all foaf:name properties for all fed-
erated endpoints. This will impact both the network load and the federator since it will
ultimately filter all irrelevant results. Query Q4.5 allows for filtering directly all irrelevant
results behind federated endpoints, and thus limit both the size of transferred results and
the load of their processing by the federator.
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Listing 4.5: Optimized SPARQL query encapsulating a single edge request through the filter rewrit-
ing strategy

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT {?x foaf:name ?name} WHERE {

?x foaf:name ?name.
FILTER (CONTAINS (?name, ’Bobby A’))

}

4.2.3.2 Binding rewriting strategy

The VALUES keyword proposed by the W3C in the SARQL 1.1 federated querying pre-
recommendation allows the federator to constrain federated endpoints with already
known results. Based on this idea, we propose to systematically and transparently ex-
ploit these intermediate results (i.e. mappings between variables and their associated
values). The benefits are twofolds since (i) the query does not need to be adapted (no
need to incorporate SERVICE or VALUES clauses) to take into account the partial results,
(ii) the federated endpoint will process simpler edge requests, leading to less expensive
joins, from the federator point of view, because of less results to be transferred.

Let us consider that during the evaluation of the same query Q4.3, the federator has
already performed the first edge request ?x foaf:name ?name and gathered a set of inter-
mediate results. Let us then consider one of these results in the form of the following
mappings: { ?x→ http://dbpedia/bobbyauyeung ; ?name→ Bobby Au-Yeung }. We propose to
exploit these results to replace the variables by their associated values (already known
through the evaluation of previous edge requests). The following query Q4.6 illustrates
an optimized encapsulated edge request exploiting an intermediate result. It enables
faster execution by the federated endpoint since only one variable need to be searched
for, and only one triple should be produced from its evaluation.

Listing 4.6: Optimized SPARQL query encapsulating a single edge request through the binding
rewriting strategy

PREFIX dbpedia: <http://dbpedia.org/ontology/>
CONSTRUCT {<http://dbpedia/bobbyauyeung> dbpedia:birthDate ?date} WHERE {

<http://dbpedia/bobbyauyeung> dbpedia:birthDate ?date
}

The experiments presented in section 4.3 will show that the global query evaluation
time is drastically reduced when combining these two query rewriting strategies.

4.2.3.3 Data source selection

In our work, KGRAM is provided with a cache index, dynamically created with SPARQL
ASK queries. This cache mechanism prevents from unnecessary communications. For
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each KGRAM EDGE request, this index stores the identified data sources providing candi-
date edges and thus potentially contributing to the result set. By using its index, KGRAM
is able to send remote EDGE requests only to data sources hosting candidates. This strat-
egy answers Linked Data querying scenarios where remote data sources and their asso-
ciated producers are specialized into one kind of data. The proposed cache index thus
allows saving the cost of unnecessary remote communications.

4.2.3.4 Coarse-grained parallelism from data source selection

As it has been drafted in section 4.2.2 point (iii), the main idea consists in grouping
together edge requests into a single sub-query that will be performed against a single
source. This is possible if candidate edges are not spread over multiple data sources.
Data source selection indexes, introduced in the previous paragraph, are used to de-
termine the edge requests to be grouped together, based on the content of data sources.
Finally, through query rewriting, a new SPARQL 1.1 query is generated that includes SER-
VICE clauses to group, when possible, edge requests.

Coarse-grained parallelism is achieved through the following steps:

Step 1. Indices initializations. This first step consists in populating two indexes needed
to determine which edge request can be performed against a single data source.
idxEdgeSrc, implemented with a {key,value} map, associates to each edge re-
quest a set of data sources hosting edge candidates and idxSrcEdge, similarly
implemented, associates to each data source, edge requests which are exclusively
hosted by this data source. This second index is used as input to generate a set
of SPARQL 1.1 Service clauses.

Step 2. Service clauses generation. Service clauses are generated by simply navigating the
idxSrcEdge index and constructing a Service clause per indexed data source (the
keys of the index).

Step 3. Query rewriting. Finally, the query rewriting step consists in, from the initial
query, distinguishing the edge requests that will be included in Service clauses,
from the edge requests that must remain outside Service clause (because possible
edge candidates are spread over multiple data sources). Then the new query is
assembled by re-associating the ungrouped edge requests and the edge requests
grouped through Service clauses.

Sample rewritten query The following paragraph illustrates the coarse-grained paral-
lelism through a sample SPARQL query (Q4.7) evaluated in a distributed setup. We con-
sider in this example two knowledge bases. The first one exposes DBpedia [Bizer et al.,
2009b] statements though the sample http://dbpedia endpoint, and the second one exposes
NeuroLOG statements through the sample http://neurolog endpoint.
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Listing 4.7: Initial SPARQL query distributed over two remote KGRAM endpoints.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 PREFIX dbpedia: <http://dbpedia.org/ontology/>
3 PREFIX linguistic−expression: <http://www.irisa.fr/visages/linguistic−expression−owl−lite.owl#>
4 SELECT DISTINCT ?x ?y ?name ?date WHERE {
5 ?x foaf:name ?name .
6 ?x dbpedia:birthDate ?date .
7 ?y linguistic−expression:has−for−name ?z .
8 FILTER (CONTAINS (?name, ’Bob’))
9 }

The initial query Q4.7 involves three edge requests: foaf:name (line 5), dbpedia:birthDate
(line 6), and linguistic-expression:has-for-name (line 7). The data source selection strategy
proposed in section 4.2.3.3 already prevents unnecessary requests. It is indeed useless to
send DBpedia edge requests to the NeuroLOG endpoint, and conversely. Moreover the
proposed coarse-grained parallelism strategy allows grouping DBpedia edge requests
into a single “Service” subquery, and NeuroLOG edge requests into a similar “Service”
subquery. The following query Q4.8 illustrates the rewritten query including Service
clauses.

Listing 4.8: Automatically rewritten SPARQL query using SPARQL 1.1 Service clauses.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 PREFIX dbpedia: <http://dbpedia.org/ontology/>
3 PREFIX linguistic−expression: <http://www.irisa.fr/visages/linguistic−expression−owl−lite.owl#>
4 SELECT DISTINCT ?x ?y ?name ?date WHERE {
5 SERVICE <http://dbpedia> {
6 ?x foaf:name ?name .
7 ?x dbpedia:birthDate ?date .
8 FILTER (CONTAINS (?name, ’Bob’))
9 }

10 SERVICE <http://neurolog> {
11 ?y linguistic−expression:has−for−name ?z .
12 }
13 }

By grouping edge requests into SPARQL Service clauses, the evaluation of this op-
timized query saves the communication of some intermediate results. Indeed, whereas
three distributed joins are needed when evaluating Q4.7, only two are needed for the eval-
uation of Q4.8. The join between lines 6 and 7 of Q4.8 is performed by the http://dbpedia
endpoint.

Edge grouping algorithms The following paragraphs detail the three main steps re-
quired to achieve the coarse-grained parallelism strategy. Algorithm 2 describes how is
built a first index associating to each edge request, the possible data source hosting the
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corresponding edge candidates. In the previous example (query Q4.7), we would obtain
the following index :

idxEdgeSrc = { foaf:name → {http://dbpedia};
dbpedia:birthDate → {http://dbpedia};
linguistic-expression:has-for-name → {http://neurolog} }

The algorithm consists in iterating over all expressions forming the initial query (line
1). In the case of an OPTIONAL clause (line 2), a recursive call is performed to index all
optional edge requests (line 5). In the case of a UNION clause, similar recursive calls are
performed to index the content of the UNION arguments (lines 8 and 9). Finally when the
current expression is an edge request (line 10), SPARQL ASK queries are sent in parallel
to remote producers to determine the target data source hosting edge request candidates
(line 12).

Algorithm 2: initIdxEdgeSrc(exp, idxEdgeSrc) initializes an index associating an
edge request to a set of data sources, based on SPARQL ASK queries.

Data: idxEdgeSrc an empty index storing for each edge request, the set of data
sources hosting edge candidates.

Result: idxEdgeSrc the populated edge to sources index.
1 foreach (exp ∈ Query) do
2 if (exp.isOptional()) then
3 option← exp ; // adds exp to the option set (+=)
4 foreach (optionalExp ∈ option) do
5 initIdxEdgeSrc(optionalExp, idxEdgeSrc) ; // recursion

6 else if (exp.isUnion()) then
7 union← exp ;
8 initIdxEdgeSrc(union.getArg(0), idxEdgeSrc) ; // recursion
9 initIdxEdgeSrc(union.getArg(1), idxEdgeSrc) ; // recursion

10 else if (exp.isTriple()) then
11 foreach (p ∈ Producers) do in parallel
12 scheduler.submit(p.askEdge(exp)) ;

13 wait for scheduler ;

The resulting index is then used as input to initialize the second index idxSrcEdge

more usable in the context of SPARQL SERVICE clauses. Indeed, algorithm 3 aims at re-
versing, somehow, the previous index, to provide a description of the content of data
sources, sorted by data sources. If we come back to the previous example, algorithm 3
would lead to the following index :



4.2. Strategies for semantic query distribution 83

idxSrcEdge = { http://dbpedia → {foaf:name ; dbpedia:birthDate} ;
http://neurolog → {linguistic-expression:has-for-name} }

Algorithm 3 consists in iterating over the keys of the first index, idxEdgeSrc (line 1).
For each edge, the optimizer selects exclusively edges hosted in a single data source (line
3). For each selected single source edge, it is added to the set of edges associated to the
corresponding data source (lines 6 or 10).

Algorithm 3: Initialization of an index associating data sources to a set of hosted
edges. The initialization is based on the reversed index previously introduced in
algorithm 2

Data: idxEdgeSrc a populated index associating for each edge request, the set of
data sources hosting edge candidates,
idxSrcEdge an empty index associating for each data source, the set of
hosted edges.

Result: a populated sources to edges index.

1 foreach (edge ∈ idxEdgeSrc) do
2 sourceSet← idxEdgeSrc.get(edge) ;
3 if (sourceSet.size() = 1) then
4 url← sourceSet.get(0) ;
5 if (idxSrcEdge.containsKey(url)) then
6 idxSrcEdge.get(url).add(edge) ;

7 else
8 edges← new Set<Edges>() ;
9 edges.add(edge) ;

10 idxSrcEdge.put(url, edges);

Once these two indices have been initialized, thus completing the step 1 of the coarse-
grain parallelism strategy, the optimizer can now generate a list of SPARQL SERVICE

clauses by exploiting the idxSrcEdge index. Algorithm 4 details how these SERVICE

clauses are constructed, thus fulfilling step 2 of the strategy.
Algorithm 4 iterates over all data sources indexed in idxSrcEdge (line 1). For each

one, all associated edge requests are retrieved and gathered (line 3) into a basic graph
pattern (line 4). Applicable filters are extracted (line 5) from the initial query in the same
way as presented above, in section 4.2.3.1. Finally, a SERVICE clause is generated (line 6)
for each indexed data source.

Once the SERVICE clauses are available, the final query rewriting can be performed
(step 3).
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Algorithm 4: Generation of SPARQL SERVICE clauses, based on the idxSrcEdge as-
sociating data sources and the corresponding hosted edges.

Data: idxSrcEdge an empty index associating for each data source, the set of
hosted edges,
queryF ilters the list of query filters.

Result: services a set of SPARQL Service clauses.

1 foreach (url ∈ idxSrcEdge) do
2 bgp← BasicGraphPattern.create() ;
3 triples← idxSrcEdge.get(url) ;
4 bgp← triples ;
5 bgp← getApplicableFilters(queryF ilters, bgp) ;
6 bgp← Service.create(url, bgp) ;

Algorithm 5 describes this final query rewriting step. It consists in iterating over
the expressions forming the initial query (line 1). In this first version of the algorithm,
optional statements have not been addressed, and they are thus kept outside SERVICE

clauses (line 3). Similarly to Algorithm 2, UNION clauses lead to two recursive calls (lines
8 and 9). Then, when the current expression is an edge, if it does not exist in the data
source index (idxSrcEdge), it is kept outside the SERVICE clauses (line 13), otherwise
it has to be integrated within SERVICE clauses (line 15). The query rewriting is finally
performed from line 16 to line 21. SERVICE clauses (retrieved from line 18) are first added
to the new query (line 19) and “non-Service” clauses are concatenated to the new query
(line 21).

This coarse-grained parallel strategy is interesting because from very simple indices,
it allows saving communication costs by grouping together query edge requests, if they
are hosted by a single data source.

However, Algorithm 5 introduces combinatory complexity resulting from order is-
sues when re-assembling the optimized query. We chose in this algorithm to first process
“non-service” expressions, but we will see in the first experiments presented in section 4.3
that in some cases, this strategy can be particularly inefficient. Still, such coarse-grained
parallelism opens new optimization perspectives in terms of cost based query planning
through automated SERVICE clauses generation.

4.2.4 Federator parallelism optimizations

We have proposed in the previous section a set of distributed query processing opti-
mizations based on query rewriting. We will describe now distributed query processing
enhancements through parallelism exploitation in the context of remote data sources.
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Algorithm 5: rewriteQueryWithServices(exp,idxSrcEdge)) introduces SPARQL 1.1
SERVICE clauses in a SPARQL query based on the previously introduced index.

Data: idxSrcEdge the index associating for each data source, the hosted edges.
query, the initial query to be rewritten with SPARQL SERVICE clauses.
toKeep, an edge set to be kept inside SERVICE clauses.
toDrop, an edge set to be kept outside SERVICE clauses.

Result: a rewritten query with SPARQL SERVICE clauses.

1 foreach (exp ∈ query) do
2 if (exp.isOptional()) then
3 toDrop.add(exp) ;

4 else if (exp.isUnion()) then
5 union← exp ;
6 union.set(0,rewriteQueryWithServices(union.getArg(0),idxSrcEdge)) ;

// recursion
7 union.set(1,rewriteQueryWithServices(union.getArg(1),idxSrcEdge)) ;

// recursion
8 toDrop.add(exp) ;

9 else if (exp.isTriple()) then
10 if (¬ existsInSourceIndex(exp, idxSrcEdge)) then
11 toDrop.add(exp) ;

12 else
13 toKeep.add(exp) ;

14 bgp← BasicGraphPattern.create() ;
15 if (¬ toKeep.isEmpty()) then
16 serviceClauses← getServiceClauses(idxSrcEdge) ;
17 bgp← serviceClauses ;

18 if (¬ toDrop.isEmpty()) then
19 bgp← toDrop ;
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4.2.4.1 Parallel-wait strategy

Based on the fine-grained parallelism (strategy (ii) of section 4.2.2), the following algo-
rithm 6 illustrates how to distribute the query over a set of federated knowledge bases by
exploiting the parallelism of each remote producer. Results follow the “SPARQL Result”
W3C recommendation5 and are represented as a set of Results, each of them encompass-
ing a set of Mappings between variables and values.

Algorithm 6: Fine-grained parallel distributed query processing, with an explicit
wait condition.

Data: Producers the set of SPARQL endpoints,
EdgeReq the set of edge requests forming the SPARQL query,
scheduler a thread pool allowing parallel execution.

Result: Results the set of SPARQL results.

1 foreach (e ∈ EdgeReq) do
2 foreach (p ∈ Producers) do in parallel
3 scheduler.submit(p.getEdges(e)) ;

4 wait for scheduler ;
5 foreach (task ∈ scheduler.getFinished()) do
6 Results← task.getResults() ;

The principle consists in iterating over each edge request forming the initial SPARQL
query (line 1). Then, for each edge request, all federated SPARQL endpoints are queried
concurrently (line 3). The federator then wait for all federated endpoints to finish through
a synchronization barrier (line 4). Results are finally accumulated for the current edge re-
quest (lines 5 and 6) and the next edge request iteration can be processed (line 1). In the
following section, we consider reducing the cost of the synchronized barrier by anticipat-
ing the post-processing of the results through a classical producers-consumer pattern.

4.2.4.2 Parallel-pipeline strategy

The following set of algorithms is a first step towards an asynchronous distributed eval-
uation of the SPARQL query. Since this work is based on the KGRAM abstract machine,
we do not address a complete asynchronous query evaluation that would require an in-
depth redesign of the core evaluation strategy. The main idea consists in enabling the
federator to handle results as soon as they are available. Instead of post-processing the
results when all endpoints have terminated, already known results can be post-processed
sooner. The global evaluation time is expected to be reduced, in particular when end-
points are producing large amounts of intermediate results.

Figure 4.2 illustrates a fictive evaluation for a given edge request (from t0 to t3 or
t4, depending on the strategy) pushed to two federated endpoints, Producer#1 and Pro-

5http://www.w3.org/TR/rdf-sparql-XMLres/

http://www.w3.org/TR/rdf-sparql-XMLres/
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Figure 4.2: Distributed semantic query processing with KGRAM

ducer#2. The top rectangle sketches the query evaluation through the “parallel-wait”
strategy whereas the bottom rectangle sketches the “parallel-pipeline”. The first edge
request is launched by the federator at time t0 for the two strategies. For the “parallel-
wait” strategy, the federator is waiting until the completion of the two remote producers
(time t2). Then results are centrally post-processed from time t2 to t4 and the new edge
request is launched at time t4. The “Parallel-pipeline” strategy is more effective since
results begin to be post-processed at time t1 as soon as they are available. Similarly, re-
sults produced by the second endpoint begin to be post-processed at time t2 allowing the
federator to launch the new edge request sooner, at time t3.

This strategy seems to be beneficial for the global query evaluation time in case the
post-processing of the results is significant compared to the time spent to remotely pro-
cess the query, and if one of the remote producers is penalizing for the rest of the federa-
tion due to lower CPU performance or network bandwidth.

Algorithms 7 and 8 illustrate the N-producers (federated endpoints) / 1-consumer
(federator) pattern used to optimize the parallel evaluation. We removed the explicit
wait condition present in the previous algorithm 6 (line 4) and replaced it by an implicit
wait condition provided by a synchronized blocking “First-In-First-Out” queue (sync-
Queue). Indeed the queue provides blocking put and take operations (represented by the
" symbol). We also extended the queue with a blocking next (algorithm 9) and a non-
blocking hasNext operations (algorithm 10). The blocking next operation aims at iterating
over partial results and waits until all current results have been consumed. The hasNext
operation checks if an endpoint is still producing results or if there are still results to be
consumed from the queue.
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Algorithm 7: Edge producer for the parallel-pipelined strategy
Data: Producers the set of SPARQL endpoints,

EdgeReq the set of edge requests forming the SPARQL query,
syncQueue a synchronized FIFO queue allowing thread-safe put and take of
objects.

Result: a synchronized blocking queue aiming at streaming results as soon as they
are available to the edge consumer.

1 foreach (e ∈ EdgeReq) do
2 syncQueue← new LinkedBlockingQueue() ;
3 foreach (p ∈ Producers) do
4 do in parallel
5 PartialRes← p.getEdges(e) ; // (costly) remote invocation
6 foreach (edge ∈ PartialRes) do
7 syncQueue " edge

8 syncQueue " STOP

Algorithm 8: Edge consumer for the parallel-pipelined strategy
Data: syncQueue the result edges stored in a synchronized FIFO queue allowing

for thread-safe blocking (") put and take.
Result: Results the set of SPARQL results.

1 while (syncQueue.hasNext()) do
2 edge " syncQueue.next() ;
3 addToKgramGraph (edge) ;

The experiments presented in section 4.3 will show that this parallel-pipeline strategy
has a positive effect on small knowledge bases, with queries producing a large amount of
intermediate results. However the gain is not significant for large scale knowledge bases,
except in the case of federated endpoints showing heterogeneous response times.

4.3 Distributed query processing performance and scalability
evaluation

The following section presents some results on the evaluation of the previous strategies
for performing distributed query processing over remote semantic data stores.

Implementation In KGRAM, briefly presented in section 4.2.1, the evaluation of
SPARQL queries consists basically in searching for matching edges in a knowledge
graph. MetaProducers have been introduced to handle several sources of edges, and thus
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Algorithm 9: the next() operation aimed at retrieving the next available object in the
synchronized queue, waiting if needed.

Data: nbPendingTasks the number of started concurrent call to remoteProducers
(SPARQL endpoints)

Result: Results the set of SPARQL results.

1 res " syncQueue.take() ; // gets and removes the head of the queue.
2 while (res instance of STOP ) do
3 nbPendingTasks← nbPendingTasks− 1 ;
4 res " syncQueue.peek() ; // get the head of the queue.
5 if (res instance of STOP ) then
6 syncQueue.poll() ; // removes the head of the queue.

enable for mash-up applications while querying several sources of linked data.
We propose a software extension for the KGRAM engine allowing for semantically

querying remote federated KGRAM engines through web service endpoints. Figure 4.3
illustrates the main elements involved in the distributed semantic query processing.
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Figure 4.3: Semantic distributed query processing with KGRAM

We provided a web service implementation of the RemoteProducer of Figure 4.3 allow-
ing to distribute semantic data stores. Web service endpoints are queried over the standard
SOAP protocol. The RemoteProducer acts as a web service client and is responsible for
(i) the encapsulation of a KGRAM edge request into a SPARQL CONSTRUCT query that
will be pushed to the Web service endpoint and (ii) returning back the RDF results to the
ParallelMetaProducer. Based on the algorithm 6, the ParallelMetaProducer is responsible for
the parallelization of the edge requests over each federated KGRAM endpoint. A synchro-
nization barrier makes the ParallelMetaProducer wait for the pending results which are
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Algorithm 10: the hasNext() operation aimed at checking if the synchronized queue
has a next element, even if empty.

Data: syncQueue synchronized FIFO queue allowing for thread-safe blocking put
and take results

Result: Results the set of SPARQL results.

1 next← queue.peek() ;
2 if (next = null) then
3 if (nbPendingTasks = 0) then return false ;
4 else return true ;

5 else
6 while (next instance of STOP ) do
7 nbPendingTasks← nbPendingTasks− 1 ;
8 syncQueue.poll() ; // removes the head of the queue.
9 next← queue.peek() ;

10 if ((next = null) AND (nbPendingTasks = 0)) then return false ;
11 else return true ;

finally returned back to the QueryProcess module and merged into the federated knowl-
edge base. Several versions of the ParallelMetaProducer have been implemented to evalu-
ate the impact of both the query rewriting and federator parallelism optimizations.

Experimental setup. The following experiments have been conducted through the ex-
perimental Grid’5000 infrastructure [Bolze et al., 2006]. Grid’5000 is a french scientific
instrument dedicated to the study of large-scale parallel and distributed systems. Highly
reconfigurable and controllable, Grid’5000 is considered as an experimental and research
grid compared to “production” grids, where stability and availability are crucial. The
Grid’5000 infrastructure interconnects 9 sites in France and 1 in Porto Alegre, Brazil. It
makes available more than 7000 CPU cores for the research community. Sites are com-
municating through the RENATER network (10Gbps). Through an SSH frontend for each
site and the OAR scheduler [Capit et al., 2005], users are able to select and reserve grid
resources. The same OAR scheduler is also used to submit either interactive or batch
jobs. The experiment setup generally consists in :

(i) reserving the resources from the “Suno” cluster of the Sophia Antipolis site. The
“Suno” cluster is composed of 45 nodes, each node has 2 Intel CPUs (2.26GHz) with
4 cores per CPU, 32GB of RAM, and 519GB of disk storage. Generally one node is re-
served for the federator and as many nodes as needed are reserved for the federated
endpoints ;

(ii) for each federated endpoint, an Apache Tomcat server is installed and the KGRAM
web-service endpoint is deployed ;
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(iii) each federated endpoint is populated with the testbed knowledge base ;

(iv) from the federator node, a distributed SPARQL query is launched ;

(v) the logs produced are finally analyzed in order to measure the performance and the
scalability of the overall setup.

4.3.1 Impact of the query rewriting optimizations

The following experiment measures the time needed to distribute two sample queries
over two federated knowledge bases of DBpedia-person [Bizer et al., 2009b] statements,
both forming a virtual single repository of 338K statements (169K statements each).

Material and methods. Table 4.2 measures the performance of the evaluation of the fol-
lowing SPARQL queries - “all persons whose name contains ‘Bobby A’ and their birth
date” (Q4.3), and “all persons whose name contains ‘Bob’, their birth date and optionally
their birth place” (Q4.9) - over two federated KGRAM endpoints. “Transferred triples”
measure the number of intermediate results transferred to the federator by the federated
endpoints. It is a good indicator to evaluate the cost of the distributed query processing.
Finally, the DQP time measures the global time needed to (i) push the query to all fed-
erated KGRAM endpoints, (ii) wait for the results, and (iii) integrate them back into the
federated knowledge base.

Listing 4.9: Less selective SPARQL query with an optional statement

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?x ?name ?date ?place WHERE {

?x foaf:name ?name .
?x dbpedia:birthDate ?date .
OPTIONAL {?x dbpedia:birthPlace ?place}
FILTER (CONTAINS (?name, ’Bob’))

}

naive filter binding full

Query 4.3 (10 ws calls, 3 results)
Transfered triples 169927 115448 54486 7
DQP time (s) 9.730 7.918 4.350 2.387
Query 4.9 (944 ws calls, 244 results)
Transfered triples 17472950 17418766 54835 651
DQP time (s) 518.683 498.416 8.608 6.981

Table 4.2: Searching, over two distributed DBpedia datasets,
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Results. We can observe that the full strategy, which combines both the filter and bind-
ing strategies drastically reduces the cost of the distributed evaluation for both queries
(selective and less selective). For the less selective query, the naive strategy terminates in
more than 8 minutes whereas only 7 seconds are needed to get the results with the full
strategy.

The following table 4.3 provides some details to understand the contribution of each
strategy on the overall distribution process, for a sample query involving a single dis-
tributed join.

Query 4.3 (10 ws calls, 3 results) naive filter binding full

DQP#1 {?x foaf:name ?name} (ms) 4424 2193 4065 2265
DQP#2 {?x dbpedia:birthDate ?date} (ms) 1676 2132 15 14
DQP#3 {?x dbpedia:birthDate ?date} (ms) 1042 1098 11 12
DQP#4 {?x dbpedia:birthDate ?date} (ms) 1284 1295 9 10
DQP#5 {?x dbpedia:birthDate ?date} (ms) 1025 1042 9 8

Table 4.3: Evaluation of the time needed to perform each edge request. The combination of both filter and
binding strategies shows the best results.

The first edge request (DQP#1) is computed and retrieves 4 matching persons (their
name contains “Bobby A”). The distributed join consists in, for each of the 4 resulting
persons, retrieving their birth date. It leads to 4 distributed evaluation of the same edge
requests, ?x dbpedia:birthDate ?date, over the federated endpoints.

We can observe that under the naive strategy, the evaluation of these edge requests
(DQP#2, #3, #4 and #5) are expensive and not very clever because they do not exploit the
4 values of ?x retrieved from the first edge request. Ideally, their evaluation should return
at most 4 results, but actually, the totality of the dbpedia:birthDate properties are retrieved
from the federated endpoints, and the join is finally processed by the KGRAM federator
at a high cost. The filter strategy improves the results but in a limited extent since it only
affects the first edge request (it is not applicable for the other edge requests, since they
do not involve the ?name). The binding strategy addresses this issue by not impacting
the cost of the evaluation of the first edge request, but by drastically reducing the cost of
the following edge requests. Finally we can observe that the combination of these two
strategies - filter impacting the first edge request and binding impacting the remaining
edge requests - lead to the best results, as shown in table 4.2.

4.3.2 Impact of the federator parallelism optimizations

In this experiment, we show that the pipelined implementation of the federator is posi-
tive for non-selective queries, in the context of small size knowledge bases. However, for
larger ones, or very selective queries, this optimization has no significant impact, except
in the case of knowledge bases having heterogeneous response time.
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Material and methods. The experimental setup consists in two queries, a selective one
and another less selective (queries Q4.3 and Q4.9 presented above), a virtual single knowl-
edge base composed by 338K DBpedia-person RDF statements, fragmented over 1, 2, 4,
6 and 8 distributed stores, and two KGRAM federator implementations. Both imple-
mentations exploit the full query rewriting optimization. The first one implements the
parallel-wait strategy while the second one implements the parallel-pipeline strategy. This
experiment is also conducted on the “Suno” cluster of the Grid’5000 infrastructure in
which 9 nodes have been reserved allowing to deploy 1 KGRAM federator and up to 8
federated KGRAM endpoints.

Figure 4.4: Impact of the federator parallelism optimization on a medium size (338K triples) knowledge
base, fragmented into 1, 2, 4, 6 and 8 distributed stores. The parallel-pipeline strategy is beneficial for queries
producing a lot of intermediate results.

Results. Figure 4.4 compares several distributed query processing evaluations for both
the selective query and the less selective one. For the selective query, no improvement is
measured (blue and purple curves are almost superposed). For the less selective query,
a gain is observed starting from 4 distributed stores. Indeed, the more the dataset is
fragmented, the more threads are launched in parallel from the federator side, allowing
to better anticipate the post-processing of results sent by federated endpoints. We also
observe that starting from 4 distributed stores, the global query evaluation time increases.
This can be explained by the cost of network communications that becomes penalizing
when the number of distributed stores is increasing.

We also observe from figure 4.5 that on the full DBpedia-person dataset (1.7M triples),
the pipelined strategy has no impact. Indeed, by being fragmented into sub-parts of the
same size, we can imagine that remote edge requests will terminate at the same time,
making impossible to anticipate the post-processing while other federated endpoints are
still working.

We propose a complementary experiment assessing the interest of the parallel-pipeline
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Figure 4.5: Decreasing distributed query processing (DQP) time for a large scale knowledge base (1.7M
triples) fragmented into 1, 2, 4, 6 and 8 data stores, under full query rewriting strategy.

strategy when federated endpoints that have different response time, due to the size of
the hosted knowledge base.

Parallel-wait Parallel-pipeline

run 1 (ms) 108890 98834
run 2 (ms) 108179 97867
run 3 (ms) 107020 95787
mean (ms) 108029.66 97496

std dev (ms) 943.90 1557.01

Table 4.4: Several distributed query processing times under the parallel-wait and parallel-pipeline strategies
for the non-selective query Q4.9 performed over 8 inhomogeneous knowledge bases.

Table 4.4 shows the interest of the parallel-pipeline strategy when data is fragmented
unevenly. Indeed, the fragmentation setups (knowledge base fragmented in chunks of
the same size) used in the previous experiments are not realistic in the context of au-
tonomous distributed knowledge bases where really different response times might be
observed. This variability could be due to knowledge base hosted through heteroge-
neous hardware, such as different CPU performance or RAM capacity, or even network
bandwidth. Moreover, it is unlikely that each distributed knowledge base has exactly
the same size. To reflect this variability, we consider in this experimental setup 8 feder-
ated endpoints. These endpoints are deployed through 8 nodes of the “Helios” cluster
of Grid’5000 (composed of 56 nodes, each node has 2 AMD CPUs (2.2GHz) with 2 cores
per CPU, 4GB of RAM, and 63GB of disk storage) and are hosting respectively 25K, 50K,
100K, 150K, 200K, 250K, 300K and 670K triples. If we observe the mean time needed to
perform the distributed querying, we measure a gain of 9.75%, thus assessing the interest
of anticipating the post-processing of results, especially in the context of heterogeneous
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distribution setups.

4.3.3 Impact of the dynamic source selection

In this experiment, we compare the evaluation of the seven life-science queries (LS1 to
LS7) of the FedBench benchmark with and without data source selection as proposed
in section 4.2.3.3. The FedBench benchmark is more precisely described in chapter 8
dedicated to experimental evaluations.

Material and methods. The experimental setup consists in seven identical nodes re-
served on the Grid’5000 Suno cluster, the first node is dedicated to the query federation
engine, and the following six nodes are dedicated to host the FedBench datasets (totaliz-
ing 49 million statements).

Results. Table 4.5 shows a significant gain (up to 15%) for only two queries LS3, and
LS5. Indeed, since these two queries are known to generate a lot of intermediate re-
sults, thus leading to costly distributed joins, the proposed cache mechanism used in
data source selection allows for saving communication costs. However, this optimiza-
tion has no significant impact on selective queries, being evaluated in less than a few
seconds.

LS1 LS2 LS3 LS4 LS5 LS6 LS7
Federated querying without source selection
Eval. Time (s) 0.55 0.74 44.37 0.30 21.36 1.28 12.61
Std. Dev. (s) 0.00 0.00 2.96 0.00 1.73 0.04 1.20
Federated querying with source selection
Eval. Time (s) 0.59 0.74 37.62 0.30 18.85 1.31 12.71
Std. Dev. (s) 0.00 0.00 1.36 0.00 0.85 0.03 3.36

Table 4.5: FedBench results for the KGRAM federation engine with and without source selection.

4.3.4 Impact of the edge grouping algorithm

In this experiment, we (i) validate the interest of the edge grouping strategy and through
the automated generation of SPARQL SERVICE clauses, and (ii) illustrate the non-trivial
ordering issues introduced by this optimization strategy, possibly leading to sub-optimal
evaluations.

Material and methods In this scenario, we consider two distributed data sources. The
first one, Src1 deployed at http://dbpedia, hosts 100K DBpedia-persons statements. The
second one, Src2 deployed at http://neurolog, hosts the 15K statements of the NeuroLOG
platform. Query Q4.10 involves two edge requests specific to the dbpedia repository,
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and one specific to the neurolog repository. Query Q4.11 represents the corresponding
optimized query including SERVICE clauses.

Listing 4.10: SPARQL query involving both NeurolOG-specific and DBpedia-specific statements

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 PREFIX dbpedia: <http://dbpedia.org/ontology/>
3 PREFIX linguistic−expression: <http://www.irisa.fr/visages/linguistic−expression−owl−lite.owl#>
4 SELECT DISTINCT ?x ?name ?date WHERE {
5 {
6 ?x foaf:name ?name .
7 ?x dbpedia:birthDate ?date .
8 } UNION {
9 ?y linguistic−expression:has−for−name ?name .

10 }
11 FILTER (CONTAINS (?name, ’Bob’))
12 }

Listing 4.11: Optimized SPARQL query through edge grouping in SERVICE clauses.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 PREFIX dbpedia: <http://dbpedia.org/ontology/>
3 PREFIX linguistic−expression: <http://www.irisa.fr/visages/linguistic−expression−owl−lite.owl#>
4 SELECT DISTINCT ?x ?name ?date WHERE {
5 {
6 SERVICE <http://dbpedia> {
7 ?x foaf:name ?name .
8 ?x dbpedia:birthDate ?date .
9 FILTER (CONTAINS (?name, ’Bob’))

10 }
11 } UNION {
12 SERVICE <http://neurolog> {
13 ?y linguistic−expression:has−for−name ?name .
14 FILTER (CONTAINS (?name, ’Bob’))
15 }
16 }
17 }

Query Q4.12 illustrates a particularly inefficient SPARQL query, by design. More pre-
cisely, a statement has been introduced line 6 to search for all classes of instances. We will
see in the results table that the “Service-first” heuristic of the rewriting strategy allows for
drastically reducing the evaluation cost of this kind of query. Query Q4.13 illustrates the
corresponding optimized query in which this costly edge request statement (?x rdf:type
?t) has been rewritten (line 11) after the first SERVICE clause (line 6).

Evaluations have been performed on a standard Apple laptop (2.6GHz Core2Duo
CPU / 8Go RAM). Two instances of the apache Tomcat container were running on two
different ports and hosting each a KGRAM endpoint. Src1 was implemented by the first
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Listing 4.12: SPARQL query involving both NeurolOG-specific and DBpedia-specific statements

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 PREFIX dbpedia: <http://dbpedia.org/ontology/>
3 PREFIX linguistic−expression: <http://www.irisa.fr/visages/linguistic−expression−owl−lite.owl#>
4 SELECT DISTINCT ?x ?name ?date WHERE {
5 {
6 ?x rdf:type ?t .
7 ?x foaf:name ?name .
8 ?x dbpedia:birthDate ?date .
9 } UNION {

10 ?y linguistic−expression:has−for−name ?name .
11 }
12 FILTER (CONTAINS (?name, ’Bob’))
13 }

Listing 4.13: Optimized SPARQL query through edge grouping into SERVICE clauses

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 PREFIX dbpedia: <http://dbpedia.org/ontology/>
3 PREFIX linguistic−expression: <http://www.irisa.fr/visages/linguistic−expression−owl−lite.owl#>
4 SELECT DISTINCT ?x ?name ?date WHERE {
5 {
6 SERVICE <http://dbpedia> {
7 ?x foaf:name ?name .
8 ?x dbpedia:birthDate ?date .
9 FILTER (CONTAINS (?name, ’Bob’))

10 }
11 ?x rdf:type ?t .
12 } UNION {
13 SERVICE <http://neurolog> {
14 ?y linguistic−expression:has−for−name ?z .
15 FILTER (CONTAINS (?name, ’Bob’))
16 }
17 }
18 }
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KGRAM endpoint to host the sub DBpedia-persons dataset, and Src2 was implemented
by the second KGRAM endpoint to host the NeuroLOG dataset. The KGRAM federation
engine was configured with all proposed optimizations, namely filter rewriting, binding
rewriting, source selection and edge grouping.

Results Table 4.6 summarizes the evaluation of the sample queries Q4.10 and Q4.12 with-
out and with edge grouping in SERVICE clauses (queries Q4.11 and Q4.13). We measured
in this experiment an average time through three runs, and the corresponding number
of remote SPARQL queries handled by data source Src1 and Src2. ASK queries corre-
spond to the construction of the cache index needed for both source selection and edge
grouping strategies. SERVICE queries correspond to sub SPARQL queries, resulting from
the edge grouping strategy, evaluated in a single block. CONSTRUCT queries represent
unitary edge requests as already presented for filter and binding rewriting. All queries
lead to 53 SPARQL results.

ASK SERVICE CONSTRUCT

Average time (s) Src1 Src2 Src1 Src2 Src1 Src2 Remote invocations
Q4.10 2.3 3 3 0 0 103 1 110
Q4.11 1.2 3 3 1 1 0 0 8
Q4.12 118 4 4 0 0 25035 1 25044
Q4.13 2.1 4 4 1 1 53 53 118

Table 4.6: Prohibitive evaluations (Q4.12) can be achieved in a reasonable amount of time through edge
grouping optimizations (Q4.13).

Table 4.6 shows that the amount of remote invocations is reduced by a factor 13 when
performing edge grouping for the sample query Q4.10. In the context of a particularly
inefficient query (Q4.12), the amount of remote invocations is reduced by a factor of 212.
If we focus on the measured average times, the edge grouping saves 52% of evaluation
time for query Q4.10, and 98% for query Q4.12. These results are encouraging, and show
that the edge grouping strategy may be useful to drastically reduce the amount of remote
invocations.

Discussion The optimized query Q4.13 resulting from the “Service-first” heuristic used
in the edge grouping strategy allowed saving many remote communications and thus
drastically reducing the evaluation time.

It can be implemented thanks to the query reordering achieved when the initial query
has been rewritten. Indeed, the costly edge request ?x rdf:type ?t (let us name it E1),
is positioned after the first SERVICE clause, S1. The order {S1, E1, S2} is particularly
well adapted because S1 leads to few intermediate results (by including a filter value
restriction), and these few intermediate results are joined with S1 by using the dynamic
bind joins introduced through the join rewriting strategy (see section 4.2.3.2).

The evaluation time would have been much longer when considering an “Edge-first”
heuristic because of the cardinality of E1, and results would have been similar to those
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observed for the evaluation of Q4.12. Indeed, Q4.12 starts with E1 and is particularly in-
effective for the same reasons. E1, executed first, leads to a huge amount of result candi-
dates which are then reinjected into distributed joins. 25035 CONSTRUCTS are performed
over repository Src1.

However, as a counter example, we could imagine a single edge E′1 similarly lo-
cated on both repositories Src1 and Src2, that would be very selective. Then, it would
be more efficient to adopt an “Edge-first” heuristic thus leading to the following order
{E′1, S1, S2}. We could also imagine that S1 and S2 have different selectivity6 and their
order has an impact on the distributed evaluation of the overall query. Finally, when
considering two edges E2 and E3 linked together through a common variable, thus ben-
efitting from bind joins introduced in section 4.2.3.2, it might be sub-optimal to group
each of them in separate SERVICE clauses because this pattern breaks the bind join opti-
mization.

To conclude, it is difficult to propose a robust edge grouping strategy without consid-
ering a full query planner addressing the ordering issues introduced above. Similarly
to relational database query optimizer, dynamic programming techniques as well as a
cost function based on the cardinality of subqueries (single edge requests, and SERVICE

clauses) should be carefully studied to enhance the robustness and the effectiveness of
the proposed edge grouping strategy federated querying over distributed knowledge
graphs. Moreover, this work could benefit from more sophisticated indices such as the
frequent graph pattern indices introduced in [Basse et al., 2010] used to advertise the
content of RDF triple stores and thus helping the federated querier to select the most
appropriate data source.

4.4 Discussion and conclusion

In this chapter, we addressed semantic data sharing through the federation of distributed
multi-source abstract knowledge graphs. We adopted a transparent federated approach
to cope with application-level constraints encountered in the life-science area. As a re-
minder, in the context of distributed neuroimaging data providers, semantic data might
be shared through a common domain ontology which prevents from knowing, at query
design-time, the potential content of a data source. The other prime-order constraint
is the autonomy property of data providers which do not allow data-warehousing ap-
proaches. As a consequence, we consider distribution setups involving homogeneous
data (sharing the same semantics), with possibly heterogeneous data structures, due to
independent/historical data source operation.

To achieve transparent federated querying, and thus collect knowledge from multiple
distributed data sources (RQ1), we considered a fine-grained parallel evaluation strategy.
It allows to make no assumption on the content of the distributed data sources, but the
main drawback is its cost. Indeed, a naive implementation leads generally to a large

6Selective expressions leads to few intermediate results and thus lead to more efficient distributed joins.
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amount of network communications, which, in some cases, makes the distributed eval-
uation prohibitive. We introduced, all along this chapter, optimization strategies aiming
at reducing the cost (RQ3) – in time and volume of network communications – of the
distributed evaluation of SPARQL queries over fragmented and distributed knowledge
graphs.

The first family of optimizations consists in query rewriting strategies (section 4.2.3),
both static and dynamic, which (i) incorporate, when applicable, filters remotely com-
puted at data source, and (ii) reuse intermediate results by using variable bindings (al-
ready known values) to finally prevent from recomputing already known values (from
the federator side). The combination of these query rewriting strategies showed promis-
ing results. However, the impact of the binding strategy should further be studied. More
precisely, we could imagine some cases, possibly leading to sub-optimal distribution
evaluations. Indeed, if we consider two consecutive edge requests, with a first one which
is very expensive (leading N intermediate results, N being huge), the evaluation of the
second edge request would lead to N distributed evaluations incorporating the interme-
diate results. Without the binding strategy, we would have a single evaluation, possibly
transferring more results, and thus more expensive from the data sources perspective.
Even if SPARQL queries are sometimes written beginning with the most selective edges
first, this question should further be studied to find a tradeoff between joins performed
with the binding strategy and traditional joins, to avoid sub-optimal evaluations.

In addition to these query rewriting strategies, we proposed a pipelined strategy (sec-
tion 4.2.4.2) aimed at consuming results as soon as they become available from the fed-
erator perspective. We observed that this evaluation is beneficial for distributed query
evaluations producing a large amount of intermediate results.

Finally, based on dynamic data source selection with SPARQL ASK queries, we
proposed an algorithm (section 4.2.3.4) to achieve coarse-grained parallelism through
dynamic edge requests grouping into SPARQL 1.1 SERVICE clauses. In the less favorable
query considered in the experiment of section 4.3.4, this strategy allowed to save 52%
of the distributed evaluation time, which is promising. However we showed that triple
pattern grouping may lead to sub-optimal evaluations, mainly due to ineffective groups
and edges reordering. This edge grouping strategy opens interesting perspectives
but still needs to be studied through cost functions and query planning approaches.
Moreover, advanced indices, such as the ones introduced in [Basse et al., 2010] may be
considered to efficiently and precisely describe the content of RDF triple stores, thus
allowing edge request grouping based on advanced graph pattern indices.

Results of this chapter 4 open interesting perspectives for efficient transparent
querying over distributed knowledge bases, while still benefitting from almost all the
expressivity of the SPARQL 1.1 language (except SPARQL 1.0 named graphs).

For short-term perspectives, another enhancement would consist in evaluating asyn-
chronously disjunctive queries. More precisely, the two operands of a SPARQL UNION

query could be parallelized. In addition, to complete our approach with a full compati-
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bility with SPARQL 1.1, named graph should be operationalized in a distributed setup.

This chapter opens several long-term perspectives:

Efficient DQP. Indeed, still concerned by the efficiency of distributed query processing,
query planning techniques could tackle order issues when composing SPARQL SER-
VICE clauses generated through the proposed edge grouping strategy.

Dynamic semantic alignment. Since it has been possible to address structural hetero-
geneity by providing a KGRAM Producer dedicated to enumerate relational data as
graph components, we could imagine another kind of KGRAM Producer dedicated
to semantic alignment thus addressing a challenging semantic interoperability is-
sue. This alignment component would be responsible to (i) align a semantics into
the data model of its associated data source, and (ii) re-align back the matching data
to the data model associated to the initial query.

Optimized evaluation for multi-core CPUs. We observe nowadays a stagnancy of CPU
frequency. However, CPUs become parallel by involving more and more inde-
pendent computing units (multi-core, multi-CPU computers). Similar distributed
evaluation strategies could be envisaged to perform optimized evaluation on such
multi-core, multi-cpu computers. Technically, the Java 7 Fork/Join capability could
be used to benefit from multi-core infrastructures.

SPARQL Update in a distributed setup. We have seen in this chapter how it is possible
to efficiently collect knowledge from distributed multi-source knowledge graphs.
But SPARQL 1.1 includes directives to not only query but also insert new statements
into a knowledge graph. In the context of the distributed e-Science platform con-
sidered in this thesis, it would be interesting to study how resulting semantic data
may be introduced back in a distributed setup. Distributed “updates” opens new
opportunities to handle, for instance, semantic data synchronizations in a dynamic
distributed setup, where the availability of data sources is not guaranteed.

Elastic SPARQL endpoint. Towards cloud computing areas, the distributed querying
techniques envisaged in this thesis could be reused to propose an elastic cloud-
based SPARQL endpoint. The idea would be the following. We have seen in Fig-
ure 4.4 that starting from 4 distributed endpoints, it is useless to continue frag-
menting the initial dataset. However if we consider a growing dataset, at some
time, it would be more interesting to increase the fragmentation of data. Auto-
nomic computing techniques could thus be used to monitor the distributed dataset
and the distributed evaluation response time for some sample queries. Deployed
on a cloud infrastructure (or a cluster) KGRAM-DQP could automatically allocate a
new computing node, fragment and redeploy the dataset to offer better scalability.
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Key Points

• Our federation approach does not require, at query design-
time, for prior knowledge on the content of the federated data
sources.

• The proposed federated querying adapts to federation changing
such as joining or leaving partner sites and is non invasive
with respect to the initial SPARQL queries.

• The distributed query processing is efficient through static and
dynamic optimizations while still benefitting for almost all the
expressivity of the SPARQL 1.1 query language.

• Dynamic source selection allows for triple pattern grouping
through SPARQL Service clauses but may lead to sub-optimal
evaluation plans.
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5.1 Introduction

Semantic web services have emerged as a research domain on its own. Semantic web ser-
vices aim at exploiting semantic technologies to enhance service oriented architectures.
In particular, benefits are expected when discovering and composing services, but also in
the process of mediating syntactically incompatible services.

These expected benefits are promising in the context of scientific workflows which
generally rely on service oriented architectures. In this chapter, we first review, in sec-
tion 5.2 the main approaches towards the provision of Semantic Web Services. These
approaches are directly related to the research questions RQ3 and RQ4 addressed in
this manuscript towards unambiguous semantic service annotations and user assistance
when composing services together into scientific workflows. Then we review in sec-
tion 5.3 the current approaches for provenance data management in order to enhance the
overall quality and reproducibility of e-Science experiments (achieved through scientific
workflows) and to ease the exploitation of produced data (RQ5).
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We defend the idea of concise but meaningful provenance statements to finally assist
en-user in the exploitation of their experiment results. To achieve this objective we couple
semantic services and provenance approaches. Our approach is positioned in the context
of these two areas in sections 5.2.4 and 5.3.5.

5.2 Semantic Web Services

Nowadays, organizations heavily rely on Service-Oriented Architecture (SOA) to improve
their agility in a quickly evolving and competing world. Enterprises need to cost-
effectively and almost instantly react to evolving markets. Similarly, scientific communi-
ties need to continuously react to novel conceptual or technical approaches to tackle their
information processing challenges. Inside or outside organizational boundaries, sharing
is also a major issue to foster collaborations. Service-oriented architectures provide some
solutions by focusing on loosely-coupled processes, on their description and therefore on
reusability.

More precisely, service-oriented architectures provide software infrastructures to
publish and consume, over a network, units of information processing, Services. The
World Wide Web has evolved to allow the distribution and the consumption of such ser-
vices through Web Service standards, over established web protocols. Web services rely
mainly on message exchanges between service providers and service consumers. Mes-
sages are encoded in XML and conform to the Simple Object Access Protocol (SOAP)
standard. The Web Service Description Language (WSDL) standard focus mainly on
describing the SOAP messages a Web Service can understand and produce as results.
Web Services are interoperable in the sense that a consumer does not need to know how
the provider implemented the service, but only needs to know the service requirements,
through its WSDL descriptor, in order to provide the needed SOAP messages for invoca-
tion, and for interpretation of results.

But Web Services do not provide any external understanding about the nature of the
information processing implemented so that, even supported by service orchestration
tools or languages, elaborating a flow of services (workflow), must be down manually
with a clear understanding of how the data is processed. The nature of data transforma-
tion is highly dependent on the domain in which the service is created or used. Another
reason that prevents automation when designing workflows is the lack of description
about (i) requirements on domain entities prior to service invocation, and (ii) effects on
domain entities when the service invocation is finished. All this additional descriptive
information involving domain specific concepts is generally called semantic description,
opposed to syntactic description provided by WSDL.

Semantic-Web technologies are good candidates to address issues raised by coher-
ently managing a huge variety of published services over the Web or institutional net-
works. Semantic Web Services area tackles several challenges, such as the reliability
of service search tasks, the assistance when plugging together available services, or the
several degrees of (in)compatibility between services either at composition-time, or run-
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time. In that sense, the Semantic Web Services Challenge initiative [Petrie et al., 2008]
promotes Semantic Web Service technologies and aims at enhancing their common un-
derstanding through a set of use cases.

The semantic web services area addresses the following challenges:

Annotation. The annotation task is a prerequisite to bridge Web Services and the Seman-
tic Web. Annotating a service consists in using an ontology to bind technical con-
cepts, usually elements describing web services (including their messages), to do-
main specific concepts. This is a costly task mainly because the expert performing
the annotation need both technical and domain specific knowledge. For instance,
let us consider a medical image processing tool performing a de-noising operation.
From a technical or syntactical point of view, the service might be implemented by
an executable binary taking as input a raw file and producing as output another
raw file containing the de-noised image. But from a semantic point of view, this de-
noising service might implement a kind of algorithm characterizing how the image
is processed. The service might additionally require a specific medical image for-
mat, and a specific modality of acquisition, for instance ultrasound. Moreover, the
resulting de-noised image should conserve the same modality. In other world, even
de-noised, the image still has been acquired through an ultrasound device. Achiev-
ing automation in the generation of such new annotation is part of the Semantic
Web Services challenges.

Discovery. Once annotated, the service can be searched through natural terms for do-
main experts. This task is generally known as semantic discovery process. Capabili-
ties of services can therefore be classified with reasoners so that semantic search en-
gines expose most adequate services. Search requests can also involve the descrip-
tion of information to process, or to be processed, in order to retrieve the service
candidates most able to consume or produce this kind of information. Service dis-
covery activities rely on so-called matchmaking algorithms, generally operational-
ized through inference rules and reasoners.

Composition. Whereas Web Service Choreography languages address complex issues
such as global web services coordination and collaboration, the service composition
challenge aims at providing assistance to the workflow designer when plugging
together services. Considering a given semantic web service S, the process of com-
position rely mainly on discovering either candidate services able to produce se-
mantically compatible data as inputs of S, or able to consume data semantically
compatible with data produced by S. Semantic compatibility will be presented
later on.

Mediation. The mediation challenges consist in, considering two heterogeneous services
which are semantically pluggable, taking into account syntactic mismatches. Ser-
vices able to perform data transformations or conversions to conform to syntactic
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constraints are not always available, and it might be not desirable to expose them
as services. Some semantic web service approaches therefore consider providing
data transformation guidelines or implementations to fulfill syntactic mismatches.

The following sections 5.2.1, 5.2.2, and 5.2.3 describe respectively “top-down”,
“bottom-up”, and domain-specific approaches addressing these semantic web services
challenges.

5.2.1 From service models to semantic web services

OWL-S is one of the major initiatives to bring Semantics to Web Services [Martin et al.,
2007a, 2004]. OWL-S is a set of notations based on OWL [Mcguinness and van Harmelen,
2004], the Semantic Web ontology language. This framework is composed of three linked
ontologies, (i) the profile ontology which describe what the service does, (ii) the process
ontology which describe how the service is used and (iii) the grounding ontology which de-
scribes the service interface. High-level objectives are to provide a standard1 representa-
tional framework for Web Services, to support automation of Web Services management
and to be comprehensive enough to cover the whole lifecycle of service tasks. Key con-
cepts used to describe Services are inputs, outputs, preconditions, and results which refer to
effects (postconditions) on outputs specifications. The goal of the profile sub-ontology is to
support capability-based discovery. The profile defines functional, classification, and non-
functional aspects of a service. The functional aspect represents actually the information
transformation between the inputs and the outputs, and the domain transformation be-
tween the preconditions and the effects. The classification aspect represents the type of
a service in a taxonomy. The non-functional aspect represent transverse concerns such
as security or quality of service, that can be defined “by extension” using service param-
eters that refer to another ontology. The process sub-ontology is another workflow lan-
guage based on atomic processes (without internal structure), and composite processes
(with both control flow and data flow). The grounding sub-ontology links (i) each atomic
process to a deployed Web Service, and more precisely, to a WSDL2 [Christensen et al.,
2001] operation, and (ii) abstract inputs and outputs to WSDL messages. Other works on
the applications of OWL-S are shown in terms of service enactment, service discovery,
service composition (planning techniques). Related approaches to OWL-S such as WS-
BPEL, ebXML, CDL, SWSF, WSMO or WSDL-S are presented in [Ankolekar et al., 2004].

WSMO (Web Service Modeling Ontology) is another major initiative to address Se-
mantic Web Services challenges. Roman and coworkers propose a unified framework
composed of a conceptual model for Semantic Web Services, a formal language for their
description, and an execution environment hosting semantic web services [Roman et al.,
2006]. WSMO is proposed to describe Web Services, User Goals, and to tackle the inter-
operability issues through Ontologies (potentially domain specific) and Mediators. The

1from both Semantic Web and Web Services standards
2WSDL is the de facto standard to describe Web Services, but the grounding sub-ontology of OWL-S can

be exploited with other service implementations such as UPnP.
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usage of such mediators is specific to WSMO. They capture mappings that cannot be ex-
pressed through ontologies and are used as computing elements to resolve mismatches
when plugging together WSMO elements. They are able to address the heterogeneity of
ontologies, of goals, of web services, and also the one from web services to user goals.
WSML is a syntactic framework for a set of layered languages covering the description of
ontologies, web services, user goals and mediators. The execution environment WSMX
originally designed to be a testbed for WSMO provides support for semantic web services
discovery and invocation but also provides an internal workflow engine and a resource
manager able to store/retrieve general data produced within the environment.

5.2.2 From legacy web services to semantic web services

Derived from WSDL-S, the World Wide Web Consortium (W3C) released in 2007 the
SAWSDL standard [Farrell and Lausen, 2007], aimed at defining Semantic Annotations
for WSDL and XML Schema. Martin and co-workers argue that a joint usage of OWL-S
and SAWSDL [Martin et al., 2007b] is a good way to tackle Semantic Web Services chal-
lenges. SAWSDL is indeed presented as lightweight but too modest to address Semantic
Web Services objectives. SAWSDL introduces the annotations modelReference (for both
WSDL and XSD) and {lifting,lowering}SchemaMapping (only for XSD). Some limitations of
the modelReference annotation are pointed out. For instance, if we consider two WS oper-
ations with two input parameters sharing the same XML Schema type but two different
semantic referents A and B, the two services become ambiguous and it hampers the dis-
covery process. Indeed the two services cannot be distinguished if the two parameters
p1 and p2 have for semantic referent respectively A and B for the first service and p1 and
p2 have for semantic referent respectively B and A for the second service. OWL-S classes
(input, output, and process) should be used as an intermediate description between a WS
and a domain ontology. The authors conclude by giving a set of recommendations for
annotating web services with both SAWSDL and OWL-S.

Similarly to the joint usage of SAWSDL and OWL-S presented before, Vitvar & al. pro-
pose WSMO-Lite [Vitvar et al., 2008], a bottom-up service modeling approach to benefit
from the SAWSDL standard in WSMO-fashioned Semantic Web Services. This frame-
work is lighter than WSMO: mediators are considered as provided by the infrastructure,
similarly to user goals which are supposed to be provided by the discovery mechanism.
Contrary to WSMO, WSMO-Lite does not constraint to use WSML but allows the usage
of any ontology written in an RDF syntax. This lightened version no more focuses on
semantics of pre/post-conditions and effects as they are domain specific. The main dif-
ference between the OWL-S approach to conform to the SAWSDL standard, is that they
chose to reduce WSMO to a minimal model for Semantic Web Services.

Derouiche & Nicole propose to extend the Windows Workflow Foundation with
SAWSDL documents to guarantee semantic type correctness in scientific workflows [Der-
ouiche and Nicole, 2007]. Their contribution consists in adding a new “Semantic Web Ser-
vice” activity responsible of annotating web services (WS) annotation. The semantic type
checking is performed by extending the binding activity (data flows between services) of
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the framework with calls to this “Semantic Web Service” activity. Structural mismatch
are solved using lifting and lowering schema mappings in conjunction with XSLT trans-
formations. The authors also refer to a prototype from the Taverna workbench used to
address semantic mismatch detection and resolution in workflows, but the binding of
concrete and semantic datatypes is not addressed and prevent the support for workflow
enactment.

Lécué & Moreau also tackle semantic and syntactic web services composition in a
quite similar approach [Lécue et al., 2008]. Their motivation is based on the large num-
ber of approaches dealing with service discovery but the lack of these addressing syntac-
tic message transformation to perform effective mediation. As background information,
they describe causal links and data integration in the Web. Causal links are defined in a
formal model [Lecue and Léger, 2006] and represent semantic connections between func-
tional output and input parameters of a service. From an operational point of view, the
semantic annotation of these parameters might be realized using SAWSDL, WSMO capa-
bility or OWL-S profile. The matching / binding of parameter is described and catego-
rized between five matching types: exact, plugin, subsume, intersection, and disjoint which
allows at design time, to qualify several levels of (in)compatibilities. Data integration
in the Web is considered through the use of XSL technologies to transform XML mes-
sages. The proposed semantic matchmaker consists in, being assumed that the control
flow is already determined, scoring all causal links between parameters. For syntactic
adaptations, no guidelines are provided by the SAWSDL standard. The proposed syn-
tactic engine automatically generates, from the semantic links, an XSL transformation to
adapt XML messages between services trough a syntactic and structural analysis of XML
schemas [Boukottaya and Vanoirbeek, 2005].

Often syntactically described through WSDL, Grid Services are also desired to be se-
mantically discovered [Selvi et al., 2006]. Thamarai Selvi & al. propose a bottom-up
approach leading to a matchmaking system not only based on input/output description
of services but also based on their functionalities. The proposed framework is based on
OWL-S tools to generate an OWL-S instance of a service from its WSDL. The similar-
ity distance between services is computed through a Domain ontology which describes
input and output datatypes, and a Function ontology which describes the capabilities of
services. The authors conclude with a favorable evaluation showing that the elimination
of irrelevant services, by considering also their functionalities, is more efficient that by
considering only their parameters.

The FUSION project [Kourtesis and Paraskakis, 2008] aims at supporting enterprise
application integration through Semantic Web Services technologies, namely UDDI [OA-
SIS, 2004], SAWSDL and OWL. Service discovery requirements cover functional and
non-functional properties. Inputs, Outputs, Preconditions and Effects (IOPE) are gener-
ally considered but FUSION only focus on Inputs and Outputs (i.e. information trans-
formations between services and not state-wise conditions) at both message and schema
levels.The classification of the service within a classification scheme is considered as a
non-functional property. The proposed architecture is independent from any standard
implementation of UDDI, or OWL knowledge bases. Software components UDDI4J,
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SAWSDL4J, WSDL4J, OWL-API and Pellet reasoner are the basis of a set of web services
used to publish and discover services.

The METEOR-S research project is another major initiative in the Semantic Web Ser-
vices area [Sheth et al., 2008]. The approach is based on a peer-to-peer middleware to
address service discovery and publication. SAWSDL is used for both services annotation
(through modelReferences) and data mediation (through schema lifting/lowering). A new
approach, gaining more and more popularity, is introduced as a lightweight manner to
address semantic web services. It is based on RESTful web services and microformats for
their description. RESTful web services are often presented as simple Web API through
HTTP (GET, PUT, POST, DELETE, etc.) without any description language like WSDL
which prevents discovery capabilities. This need is therefore addressed through the rec-
ommended usage of the hRESTs microformat [Kopecký et al., 2008], which can be directly
embedded within web pages and searched through regular web search engines.

Cardoso and co-workers review the state-of-the-art in Web Service Discovery and
propose a new algorithm to tackle semantic discovery [Cardoso et al., 2008]. The nov-
elty of the approach consists in (i) considering a judgment process on both similar and
distinguishing features (Tversky’s model), (ii) not only considering inputs and outputs
but also the functionality of the service, and (iii) considering potentially different se-
mantic references. This work is based on the METEOR-S infrastructure. The authors
review the three main approaches developed in the Semantic Web Services research area,
namely OWL-S, WSMO, and SAWSDL annotations, with a focus on SAWSDL. Four dis-
covery approaches are covered: (i)I/O matching, (ii) Multi-level matching by exploiting
functional and non-functional service information, (iii) Graph-based matching based on
directed graph representing service descriptions and linked concepts from domain on-
tologies, and (iv) Syntactic matching based on information retrieval techniques. Two tools
(Eclipse plugins) resulting from the METEOR-S project are used in this context: Radiant
for service annotation and Lumina for service discovery/advertisement.

Built upon the Semantic Web search engine CORESE [Corby et al., 2004], Lo & Gan-
don propose an approach to address enterprise application integration through Semantic
Web Services [Lo and Gandon, 2005]. To annotate services, their approach relies on the
profile and grounding ontologies, and on the input and output of the OWL-S process ontol-
ogy. From the user point of view, a Semantic Web Portal embedding CORESE is used
to discover services trough SPARQL queries. This portal is also dedicated to assist the
user during Web Service composition tasks. The CORESE engine can therefore be seen
as a semantic UDDI, acting as a Web Service Broker in classical service oriented archi-
tectures. Two cases are considered for interactive WS composition addressing inputs
availability or desired outputs. Sequences of services (a set of service combinations) can
also be discovered to achieve several data transformations between available inputs and
desired outputs. The composability is computed by the engine through the execution of
production rules.

To address semantic mediation between business partners (one of the Semantic Web
Services challenges) Küster & König-Ries [Küster and König-ries, 2007] propose the DI-
ANE Service Description (DSD). Contrary to OWL-S, DSD focuses on a clear distinction
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between service offers and requests. Instead of instantiating an ideal service and search-
ing through the reasoner for the closest “real-world” service, DSD specifies a service
request with a fuzzy set of acceptable services and thus copes with user’s preferences. In
other worlds, it copes with what is really needed. DSD is used to solve one of the Seman-
tic Web Services Challenge mediation problem in an original way: the mediation issue
is viewed as a discovery issue. The DIANE middleware both captures service requests,
and service offers, performed by stakeholders, and its matchmaker discovers suitable ser-
vices to handle the requests. The DIANE middleware can also handle the invocation of
services through grounding information of the service description offer and through their
proper data lifting/lowering between XML messages and ontological DSD data. In order
to promote Semantic Web Services sharing and evaluation, the OPOSsum portal [Küster
et al., 2008] has been developed and allows, among others, categorizing services, editing
semantic annotations based on several standards (OWL-S, WSML, WSDL).

5.2.3 Applied Semantic Web Services

In the context of the SIMDAT Pharma Grid project, Qu and co-workers propose a
semantics-enabled service discovery framework based on OWL-S descriptions and on-
tology reasoning [Qu et al., 2008]. The service discovery component is a major require-
ment for biologist end-users to conduct in silico experiments, at a high level of abstraction.
OWL-S has been chosen for its maturity in comparison with WSMO and for its expres-
sivity in comparison with WSDL-S, from which has been derived SAWSDL. The authors
highlight that “non-semantic” information, for instance non-functional infrastructure re-
quirements such as site memory or bandwidth need to be added in an early stage of the
service discovery process in order to avoid time consuming reasoning.

Built upon the myGrid ontology, a bioinformatics service and domain ontology,
FETA [Lord et al., 2005] is a service discovery framework characterized by a light-weight
semantic support and a semi-automatic approach. Three main actors are distinguished
in this framework: both knowledge engineers and service annotators provide semantic en-
hanced web services consumed by scientists. During the annotation process, services are
registered in a UDDI repository (used as an intermediate component within the FETA
architecture) and an XML description file is produced to link the service to concepts of
the ontology. To cope with the light-weight requirements, they avoid usage of Descrip-
tion Logics reasoning and predefine a set of RDF queries covering the major needs of the
bioinformatics community. Feta is part of the myGrid technologies and referenced in a
work focusing on discovery and reusing of scientific workflows [Wroe et al., 2007]. In a
bioinformatics context, the authors highlight that for usability purpose they do provide
full description logic reasoning. The myGrid ontology is described in [Wolstencroft et al.,
2007] with relevant information on the usability of semantic technologies by scientists to
build in silico experiments. In particular, two kind of services are distinguished, namely
domain services aimed at performing a scientific function, and shim services (“helper” ser-
vices) aimed at gluing domain services. While complex Description Logics reasoning is
needed to precisely and automatically select shim services aimed at resolving mismatches,
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simple RDFS descriptions are more suitable to service discovery. Indeed, RDFS descrip-
tions are simpler and it is preferable to retrieve a shortlist of candidate services and let
scientists realize the final decision. Authors also reported that OWL created a barrier of
adoption for the user communities and that OWL flavors should be hidden to the end-
users.

Belhajjame & al. overview in [Belhajjame et al., 2008b] the management of Metadata
in the scientific workflow design and enactment workbench, Taverna. Metadata are pre-
sented as valuable structured and descriptive information about (i) workflows and their
related entities, and (ii) workflow executions. The main objectives are the enhancement of
the components of workflow systems and the usage of such systems. The classification of
workflow entities with domain specific concepts is described. Annotations are proposed
to cover both tasks and parameters of processing units with benefits on focused (domain
based) browsing and also on accurate description by domain experts. Additionally, pa-
rameter instances are proposed to populate a repository of test data to prevent regressions,
and assert availability and reliability of processing units. Metadata describing the work-
flow execution, namely provenance metadata, is also described through both process and
data point of view. The metadata life cycle is described through creation, maintenance and
curation tasks. It takes into account third-party constraints such as service description
importation, metadata storage in RDF/XML repositories, references to external domain
ontologies. Semantic Web Services challenges and provenance metadata usage are inves-
tigated through an implementation within the Taverna workbench.

Semantically annotating services is a time consuming task. Belhajjame & al. pro-
pose an automatic annotation framework based on existing annotated workflows from
the myGrid repository [Belhajjame et al., 2008a]. The derivation of a set of annotations
for input or output parameters consist in inferring from existing compatible connections
between outputs and inputs, the semantics type candidates. An annotation algorithm
is proposed and as a favorable side effect, the detection of conflicts lead to the curation
of already annotated workflows, by excerpting errors, in workflows or in annotations.
An annotation workbench as been implemented, covering both manual annotation (en-
hanced by hints with derived annotations), annotation conflicts identification and reso-
lution, and workflow inspection.

The BioMOBY project aims at providing interoperability for biological data centers
and analysis center. SAWSDL has been used in this context and this real-world applica-
tion is one of the few existing initiatives [Gordon and Sensen, 2008]. The focus is on in-
teroperability and therefore on schema mapping annotations of SAWSDL, implemented
through XSLT stylesheets. The entry-point is a SAWSDL Proxy servlet, in front of a web
service provider, a semantic registry, and a schema mapping server.

Larvet and co-workers propose in [Larvet et al., 2008] a process covering the seman-
tization of legacy web services using SAWSDL. The framework assists the service devel-
oper by providing a way to add semantic tags to the service inputs, outputs, or to its goal,
avoiding manipulation of ontologies or XML files. Few details are shown about concepts
retrieving and services publishing.
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5.2.4 Positioning our contributions towards Semantic Scientific Workflows
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WSMO • x x x x s 2005
OWL-S • x x x - s 2004

Taverna •/+ x x x - d 2008
Lécué & al. + - x x x s 2008
METEOR-S + x x - x s 2008

hRESTs + x x - - s 2008
Cardoso & al. + x x - - s 2008

OWLS-MX + x x - - s 2009
SAWSDL-MX + x x - - s 2009

SIMDAT + x x - - d 2008
FETA •/+ x x - - s/d 2005

BioMOBY • x - - x d 2008
CORESE + - x x - s 2005

DIANE + - x - x s 2008
Derouiche & al. + - - x x s 2007

SAWSDL + x - - - s 2007
WSMO-Lite + x - - - s 2008

Yasa4wsdl • x - - - s 2008
Larvet & al. + x - - - d 2008
Vouros & al. + x - - - s 2008

Selvi & al. + - x - - s 2006
FUSION + - x - - s 2008

Table 5.1: Despite most approaches cover annotation and discovery, none of them address all challenges and
target the domain experts.

Through a large number of initiatives, this review shows a huge interest in enhanc-
ing web services with semantic web technologies. Table 5.1 categorizes the existing ap-
proaches by highlighting the tackled challenges. Criteria also cover the use of proper (•)
or external (+) formalisms (language, model or ontology), and the targeted end-users:
service experts (s) or domain experts (d).

A consensus appears in relying on the SAWSDL standard to bridge the gap between
traditional web services and semantically enhanced services. Such a technological con-
sensus could minimize the software development efforts and foster its adoption. How-
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ever SAWSDL features cannot, alone, tackle Semantic Web Services challenges. Reason-
ing engines and precise enough descriptions of services are needed, being originally
addressed by OWL-S and WSMO approaches. Domain experts seemed to be reluctant
to adopt the WSMO environment and rather preferred the lighter framework OWL-S,
which aims at modeling first and which leans on third party OWL reasoners.

Section 5.2.3 focuses on approaches driven by demanding user communities, espe-
cially from the Bioinformatics area. A lot of work has been achieved and should be
considered for Semantic Web Services applications in the Neuroinformatics or Medical
imaging fields. Approaches should rely on SAWSDL and OWL-S for a technical descrip-
tion of services, and additionally, a domain ontology to address at least service classi-
fication through their functionality, and parameters compatibility checking at workflow
design-time.

Scientists involved in the NeuroLOG and VIP projects are building medical imaging
domain ontologies, modeling knowledge on manipulated medical imaging data, simu-
lated images, simulation parameters, and knowledge on their dedicated processing or
simulation tools, exposed as services. They also rely on large-scale grid infrastructure to
support storage- and compute-intensive tasks described in their workflows similarly to
“in silico” experiments in the SIMDAT Pharma Grid or workflows in the myGrid environ-
ment.

Our approach, developed in chapters 6 and 8 globally addresses Semantic Scientific
Workflows (RQ4, RQ5). We are in line with a lightweight top-down approach such as
OWL-S to semantically associate domain knowledge to workflow activities through se-
mantic annotations for both the service functionality, and its parameters. However, for
ontological integration issues – OntoNeuroLOG and OntoVIP are both grounded to the
DOLCE foundational ontology – it has been preferred to ground the service modeling
to foundational concepts, which resulted in a small sub-ontology of the OntoNeuroLOG
modeling framework, dedicated to Web Services Modeling. Still, our implementation is
flexible enough to provide, with limited development effort a service annotator provid-
ing OWL-S service descriptions.

5.3 Provenance in scientific workflows

Interest in provenance is growing in the e-Science area since the scientific community
agreed on its importance to enhance the overall quality of resulting data and the quality
of analysis procedures themselves. If we focus on the neuroimaging area, medical image
acquisitions are generally acquired as brain scans and stored inside the PACS3 of radiol-
ogy departments. These clinical datasets embed a large variety of descriptive metadata
such as nominative information (patient name, birth date, clinician and physician names,
eventually a reference to a clinical study identifier, etc.) or physical acquisition infor-
mation describing the acquisition procedure or the physical parameters of the medical
imaging equipment. To be used in the context of medical imaging research, these clinical

3Picture Archiving and Communication System.
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data sets are generally pre-processed and normalized. The data pre-processing usually
anonymizes (or pseudonimizes4) clinical datasets, and normalizes them so that datasets
become comparable in the context of scientific studies. This is an example of information
loss that can be retrieved back if provenance information is carefully kept. Moreover,
provenance data is needed to maintain connections between both the pre-clinical area
(involving scientific data) and the clinical area (involving patient data) and give a chance
to associate back resulting scientific data to patients.

Moreover, scientific activities achieved through e-Science platforms are generally con-
sidered as competitive, and provenance gained also a lot of interest since it helps in deter-
mining the ownership of the resulting scientific outcomes. But beyond these ownership
concerns, provenance is a key element towards enhanced data analysis quality, enhanced
“in silico” experiments reproducibility. Provenance management for e-Science platforms
is promising for large and various scientific communities.

5.3.1 Scientific workflows

Scientific workflows are nowadays the de facto formalism to represent and conduct in
silico experiments through e-Science platforms. Bowers reviews in [Bowers, 2012] the
main challenges and approaches for the Scientific workflow and Provenance areas (an
extensive survey on scientific workflows has been published in [Deelman et al., 2009]).
While complex data analysis procedures was traditionally based on scripting approaches
(Shell, Python, or R scripts), scientific workflow environments possibly allows for user as-
sistance at workflow design-time, monitoring at workflow run-time, dynamic optimiza-
tions while benefitting from data parallelism, or workflow instrumentation to dynami-
cally track, for instance, provenance information. For the most adopted approaches, we
could cite the Taverna [Hull et al., 2006] workbench initially dedicated to the bioinfor-
matics area, Kepler [Altintas et al., 2004], Wings for Pegasus [Gil et al., 2007], or the Loni
pipeline [Dinov et al., 2009].

Designing scientific workflows can be seen as coarse-grained programming since it
requires, for the designer, to compose together data processing activities through data
dependency links. Workflows generally adopt graph-based representations where nodes
consist in either atomic or composite5 data processing activities and edges consists in
data links connecting together activities through their exposed ports6, thus providing
pipelines in which large amount of data can be processed. Such data-oriented approaches
are attractive, specially in the context of distributed computing infrastructure since they
offer implicit parallelism, and a way to efficiently achieve compute-intensive experi-
ments.

4While anonimization removes all nominative information, and more generally all information that can
lead to the patient identity, pseudonimization transforms nominative information so that the dataset is
linked to a virtual identity.

5While atomic activities wrap a unitary data processing as a black box, composite activities are sub-
workflows wrapping other activities and data connection links as a grey-box.

6From a processing activity perspective, input ports represent a specific data consumption, and output
ports represent a specific data production.
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Based on the Gwendia Workflow language [Montagnat et al., 2009], the Mo-
teur [Glatard et al., 2008] workflow designer and enactor proposes innovative iteration
strategies to address complex data flows. Iteration strategies [Montagnat et al., 2009,
Sroka et al., 2010] define how input data may be combined when they are consumed by
an activity through input ports.

Role of provenance in scientific workflows. We have just seen that scientific workflows
are a common mean to achieve large-scale in silico experiments. They may lead to a huge
amount of data processing activities, potentially re-located on large-scale distributed in-
frastructure. Moreover we have seen that, through possible iteration strategies, scientific
workflows may result in complex data combinations and execution plans. For all these
reasons, provenance in scientific workflows is crucial to (i) enhance the quality of pro-
duced data, (ii) enhance the quality of the scientific workflows themselves, (iii) finally
enhance the reproducibility of e-Science experiments through a better interoperability of
workflow environments.

5.3.2 Domain-agnostic provenance

The NeuGRID european project aims at providing a computing infrastructure dedicated
to the study of neurodegenerative diseases such as the Alzheimer disease. NeuGrid relies
on grid infrastructures to achieve storage- and compute-intensive data analysis and pro-
cessing. To enhance the reproducibility of data analysis/processing and to guarantee the
ownership of resulting scientific outcomes, these large-scale analysis rely on the CRISTAL
workflow and provenance environment [Anjum et al., 2011]. Through the NeuGRID por-
tal, end-users are able to author LONI [Dinov et al., 2010] pipeline or KEPLER [Altintas
et al., 2004] workflows. Workflow descriptions are then translated into the CRISTAL in-
ternal format. Workflows are then enacted on the grid infrastructure and synchronized to
a virtual instance of the workflow which simulates its execution to finally capture prove-
nance information. Once the execution is terminated, provenance is stored in a relational
database. The main disadvantage of this approach is that the NeuGrid-specific model
for provenance does not rely on standards and makes it difficult to exchange provenance
information outside the NeuGrid boundaries.

[Madougou et al., 2012] propose an e-infrastructure for biomedical research, e-
BioInfra, enhanced with a provenance store populated from a post mortem analysis of
the Moteur workflow enactor logs. The proposed provenance store is loosely coupled
to the Moteur workflow environment and thus suitable for other workflow enactors. The
proposed system populates a relational SQL backend with OPM provenance statements,
queried through the HQL (Hibernate Query Language). In spite of the maturity and scal-
ability of relational database management systems, the graph representation of prove-
nance is lost into a relational representation, and the approach can not benefit from graph-
based querying languages such as SPARQL . Moreover, only domain-agnostic provenance
is considered in this approach which makes it generally difficult to comprehend, due to
its size and genericity, from the end-user perspective. However, the future semantic en-
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richment of the e-Bioinfra components (data, services, workflows and executions) would
certainly enhance the exploitation of provenance information through domain-specific
annotations and queries.

A similar approach is the RDFProv [Chebotko et al., 2010], a relational RDF prove-
nance store focusing on scientific workflows. The proposed system mainly addresses
scalable semantic provenance data management by, on one hand, exploiting the expres-
sivity, the reasoning capabilities of semantic web standards, and on the other hand, ben-
efitting from the power, the scalability and the general maturity of relational database
management systems. The system adapts to any provenance model expressed as an
OWL-DL ontology. The scalability of the approach results from indexing strategies of
provenance storage in relational database, and mapping from SPARQL to SQL queries to
efficiently query the RDFProv store.

The ProvBase [Abraham et al., 2010] also addresses the scalability of provenance in-
formation by considering highly distributed storage and querying techniques. Google’s
Bigtable technology provides a reliable web-scale cache mechanism. In line with
Bigtable, Abraham and co-workers study how the HBase7 open-source implementation
of Bigtable, on top of the Hadoop8 intensive data communication framework, can pro-
vide massive scalability for large provenance datasets. HBase tables differ from tradi-
tional relational tables since their columns and rows are stored in separate data struc-
tures, allowing to partition rows in regions that are spread over the distributed infras-
tructure. ProvBase propose a specific provenance storage schema suited for HBase stores
and for efficient matching of SPARQL triple patterns. The proposed schema consists in
three tables storing provenance statements, and differing in their row keys. The first one
has RDF subjects as row keys, the second one has predicates as row keys and the last one
has object as row keys. ProvBase proposes in addition an algorithm of basic SPARQL
querying based on row and value iterators. The evaluation of ProvBase is promising and
new query rewriting optimizations are planned to incorporate already matched data and
thus avoid useless data communications.

5.3.3 Provenance and interoperability

The Open Provenance Model [Moreau et al., 2011] initiative (OPM) is a community effort
aiming at homogenizing the expression of provenance information on the wealth of data
produced by e-Science applications. Among other things, OPM enables the exchange
of provenance information between several workflow environments. It eases the devel-
opment of tools to process such provenance information, and finally facilitates the re-
producibility of e-Science experiments. OPM is materialized through a natural language
specification and three formal specifications: an XML schema (OPMX), an OWL ontol-
ogy (OPMO) and a controlled vocabulary, with simpler OWL constructs (OPMV). OPM
defines directed graphs representing causal dependencies between “things”. A Causal
dependency is defined as a directed relationship between an effect (the source of the edge)

7http://hadoop.apache.org/hbase
8http://hadoop.apache.org

http://hadoop.apache.org/hbase
http://hadoop.apache.org
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and a cause (the destination of the edge). The nodes of the provenance graph might be ei-
ther an Artifact (immutable, stateless element), or a Process (actions performed on Artifacts
and producing new ones), or an Agent (entity controlling or affecting the execution of a
Process). The edges of the graph represent (i) dependencies between two artifacts (was-
DerivedFrom) to track the genealogy of artifacts (data lineage), (ii) dependencies between
two processes (wasTriggeredBy) to track the sequence of processes, and (iii) dependencies
between artifacts and processes (used/wasGeneratedBy) to track the consumption and the
production of artifacts through processes. In addition, OPM allows to track the links
between processes and their enactor agents through wasControlledBy dependencies.

ProcessArtifact

Agent

used(R)

wasGeneratedBy(R)

wasControlledBy(R)

wasTriggeredBywasDerivedFrom

Figure 5.1: The main causal dependencies introduced in the OPM provenance model.

Figure 5.1 summarizes these causal dependencies. Used, wasGeneratedBy and wasCon-
trolledBy are parametrized with a label R. It is interpreted as a role in the specification
which aims at syntactically distinguishing several dependencies of the same kind.

OPM recently made a step further since it evolved through a W3C standardization
process towards the Prov-* specifications9. PROV-O is an OWL specification of the W3C
provenance data model (PROV-DM), currently published as a working draft. It extends
the Open Provenance Model with some classes and properties. For instance, PROV-DM
introduces the notion of Plan to describe the context of execution of an Activity (the for-
mer Process OPM concept), which can be seen as a set of instructions, as a recipe, or a
workflow.

Missier & Goble propose in [Missier and Goble, 2010] a lossless bidirectional map-
ping between Taverna workflows and OPM graphs. The objective is to promote the usage
of a standard provenance model as a concrete mean towards interoperable workflow en-
vironments and thus a better reproducibility of e-Science experiments. The proposed
round-trip between OPM and Taverna demonstrates the feasibility of OPM graph trans-
formations directly into Taverna workflows and conversely. This contribution open new
opportunities for Taverna to “replay” e-Science experiments enacted on other workflow
environments based on their OPM provenance traces, OPM thus providing a pivot model
for workflow interoperability. Similar efforts addressing the mapping between OPM and

9http://www.w3.org/TR/prov-primer

http://www.w3.org/TR/prov-primer
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other workflow environment would considerably enhance workflow interoperability and
consequently e-Science experiments reproducibility.

The Linked Provenance Data initiative [Ding et al., 2010] addresses (i) provenance repre-
sentation interoperability by leveraging domain knowledge through the OWL Semantic
Web language, and (ii) provenance infrastructure interoperability by relying on Linked
Data approaches. More precisely, application-level queries require both domain-agnostic
and domain-specific provenance, and potentially multi-source provenance data needed
to be interconnected to further be aggregated and queried. Ding and co-workers propose,
(i) in line with the OPM 1.1 Profiles, a taxonomy of OPM subconcepts to more precisely
model domain entities, and (ii) the use of owl:sameAs properties to declare equivalent en-
tities, thus easing the comparison of workflow traces. The Linked Provenance Data infras-
tructure stores directly provenance data in RDF (or converts XML traces) and publishes it
on the web through Linked Data principles (RDF and de-referencable URIs). Provenance
data may finally be queried through the SPARQL Semantic Web query language.

5.3.4 Meaningful, domain-specific provenance

The Wings/Pegasus environment [Kim et al., 2008a] addresses through semantic reason-
ing on application-level constraints, the generation of valid and execution-independant
workflows, finally enacted over distributed computing infrastructures. In addition, the
proposed system is able to produce both application-level and execution provenance.
Wings/Pegasus uses a proper OWL ontology to model application-level provenance data
and uses a provenance tracking catalog, based on a relational database, to record execu-
tion provenance. Two language are thus required to query provenance data, SPARQL
for application-level (and thus domain-specific) provenance, and SQL for execution,
domain-agnostic, provenance.

Nowadays, a lot of scientific data publication initiatives rely on the RDF Semantic
Web standard. The PaCE (Provenance Context Entity) approach [Sahoo et al., 2010]
aims at representing provenance of RDF triples directly through the RDF Semantic Web
Standard, in a concise form. The RDF reification vocabulary has been initially intro-
duce to track provenance in RDF documents through the following terms : rdf:statement,
rdf:subject, rdf:predicate, and rdf:object. Such reification generally makes use of RDF blank
nodes which have no sense outside the context of a particular RDF graph, and reified
statements makes the reasoning difficult through RDF entailments [Hayes and McBride,
2004]. Moreover, the reification vocabulary is very verbose to express a single relation
between two RDF statements. Through the reification terms, 4 statements are needed to
describe a single RDF triple. To address these issues, in the PaCE approach, provenance
is defined through the Provenir upper-level ontology [Sahoo and Sheth, 2009] modeled
with the OWL-DL profile of the Web Ontology Language. Provenir provides the minimal
OWL classes and properties (3 classes and 10 relations [Smith et al., 2005]) allowing for
RDF and OWL inferencing. Provenir conceptualize the notion of Data, Agent and Process
similarly to OPM Artifact, Agent, and Process. e-Science applications can define domain-
agnostic provenance through the Provenir ontology, or domain-specific provenance, by



5.3. Provenance in scientific workflows 121

extending Provenir with domain-specific concepts. Compared to the reification approach
to track provenance in RDF documents, the usage of the Provenir ontology allows for
domain-specific provenance and allows for much more scalable provenance data man-
agement.

In Janus, [Missier et al., 2010] introduce semantic provenance as technical provenance
graphs coupled with domain knowledge. The main objective is to enhance the usefulness
of provenance graphs in responding to typical user queries. Semantic provenance was
first introduced by [Sahoo et al., 2008], without any concrete implementation. Missier
and co-workers propose with Janus a domain-aware provenance model by extending the
Provenir upper-level ontology [Sahoo and Sheth, 2009] grounded to BFO (Basic Formal
Ontology) concepts, and a prototype implementation within the Taverna workflow work-
bench. In Janus the modeling of domain entities relies on four ontologies registered in
NCBO, the National Center for Biomedical Ontologies, namely the BioPAX (dedicated to
the modeling of biological pathways), the National Cancer Institute (NCI) Thesaurus, the
Foundational Model of Anatomy (FMA) and the Sequence ontology. Once web services
composed into Taverna workflows are semantically annotated, simple inference rules for
each service run are responsible for the propagation of semantic annotations to the pro-
duced domain-agnostic provenance, thus providing new domain-specific (meaningful)
provenance. To answer provenance queries, a specific transitive closure implementation
was proposed based on low-cost SPARQL ASK queries.

5.3.5 Positioning the provenance-based e-Science experiment summaries

The approach defended in this thesis (detailed in chapters 6 and 8) towards Semantic
Scientific Workflows and provenance-based experiment summaries (RQ4, RQ5), relies
on (i) standards models resulting from a community effort (the OPM provenance model),
and (ii) Semantic Web standards allowing for the querying and reasoning on execution
provenance, to finally infer concise domain-specific annotations on produced data.

Compared to provenance management in NeuGrid and e-BioInfra, our approach pre-
serves the underlying graph structure of provenance through the RDF format, thus al-
lowing for graph-based querying and reasoning. However, the technical provenance
storage is possible through the Jena Semantic Web persistence facilities, namely SDB for
a relational backend, and TDB for an optimized binary file storage. When using Jena
SDB, we thus benefit from the maturity of relational backends while still allowing for
graph-based querying through SPARQL . Our approach is in line with RDFProv, but does
not require complex mappings to rewrite SPARQL queries to SQL . Moreover since prove-
nance data is stored in RDF and identified through URIs, its publication as Linked Data
is facilitated, and opens perspectives to exchange and reproduce experiments outside a
particular collaborative life-science communities (NeuroLOG or VIP in the context of this
thesis).

To address scalability issues, we propose, through meaningful experiment sum-
maries, concise domain-specific statements inferred from OPM graphs captured at work-
flow runtime. The main idea is the following. Domain-agnostic fine-grained OPM prove-
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nance graphs are useful at workflow design time, or for workflow debugging activities,
but such fine-grained information might be annoying and difficult to comprehend for
end-users launching in silico experiments and expecting their data to be processed, and
easily retrieved. Thus we propose to store fine-grained, domain-agnostic OPM graphs,
in a short term repository dedicated to workflow design and debugging, and inferred
(domain-specific) meaningful experiment summaries in a long term repository dedicated
to the exploitation, at long-term, of data produced through e-Science experiments. Our
approach is in line with the PaCE which tends to minimize, through domain-specific
statements, the size of the provenance graphs. Modern noSQL approaches are promis-
ing. This is the case for the HBase schema proposed in ProvBase, and dedicated to the
distributed and highly scalable storage of provenance statements. However, complete
SPARQL querying needs still to be investigated since only basic querying is supported
over HBase tables.

Compared to meaningful provenance approaches, our work provides domain-
specific execution provenance whereas the approach promoted in Wings/Pegasus only
provides domain-specific provenance annotation at workflow design-time (queried
through SPARQL), and relational provenance at workflow run-time (queried through
SQL). It is thus not possible to perform rich semantic querying and reasoning on ex-
ecution provenance. Moreover we rely on a single graph-based representation format,
RDF, for both fine-grained domain-agnostic provenance and coarse-grained meaning-
ful provenance. However, reasoning on semantic annotation at workflow design-time is
interesting and we plan to couple provenance annotations to conceptual workflows as
introduced in [Cerezo and Montagnat, 2011]. Our approach is in-line with the PaCE ap-
proach which promotes the usage of the Provenir upper-level provenance ontology, and
its extension through domain-specific concepts subsumed by Provenir concepts. Moti-
vated by the community effort promoting OPM as a standard model for provenance, we
finally adopted OPM. Relying on domain-specific ontologies grounded to the DOLCE
foundational (upper-level) ontology, it would have been interesting to benefit from a
provenance ontology also grounded to a foundational ontology, such as Provenir, to
provide a more conceptually coherent integration of domain-agnostic provenance and
domain-specific provenance.

Janus is definitely the closest approach to our proposal for meaningful e-Science ex-
periment summaries. The main differences are the use of the OPM and medical imaging
ontologies (OntoNeuroLOG [Gibaud et al., 2011b] and OntoVIP [Forestier et al., 2011b]
grounded to DOLCE [Masolo et al., 2003] as foundational ontology) in our work, com-
pared to Provenir and biomedical ontologies in Janus. To address scalability issues, we
propose to make a clear distinction between short-term fine-grained domain agnostic
provenance and inferred long-term domain-specific provenance through the notion of
meaningful experiment summaries. Janus extends domain-agnostic provenance with do-
main specific statements, which requires to manage the large amount of fine-grained
provenance along e-Science experiment runs. Moreover we rely in this thesis on the
KGRAM Semantic Web query and reasoning engine, fully compatible with the SPARQL

1.1 standard thus allowing to publish and query provenance data captured through the
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NeuroLOG and VIP platform as Linked Data.

5.4 Conclusion

We studied in this chapter the current approaches aimed at building semantic workflow
environments.

Considering scientific workflow environment as service oriented architectures, we
review in section 5.2 how web services can bridge the gap with domain knowledge
to enhance their discovery, their composition through orchestrations (workflows), and
broadly speaking, their overall usage. We reviewed top-down approaches starting
from services models towards technical service descriptions, namely OWL-S, WSMO or
FLOWS [Gruninger et al., 2008] ; followed by bottom-up approaches starting from techni-
cal service descriptions such as WSDL, towards semantically annotated services, namely
WSDL-S, SAWSDL, WSMO-Lite or METEOR-S for the most famous. We finally reviewed
application-driven approaches in which a lot of work has already been achieved, spe-
cially targeting the bioinformatics area. The application-driven approaches promote both
SAWSDL and OWL-S for making web-services benefitting from domain knowledge.

Section 5.3 reviews the current approaches for managing provenance information as-
sociated to scientific workflow runs. We reviewed first domain-agnostic provenance ap-
proaches, mainly focusing on scalability issues. Then, we described how standardized
provenance model can help to enhance the reproducibility of e-Science experiments. We
described finally provenance approaches aimed at producing domain-specific informa-
tion (Wings/Pegasus, Provenir, Janus) representing meaningful information on work-
flow runs.

Towards Semantic Web Services in the context of in silico neuroimaging experiments,
we propose through chapter 6 to produce new semantic annotations based on work-
flow runs. More precisely, we show (i) how semantic annotations associated to service
ports can be disambiguated through Role concepts, and (ii) how disambiguated service
annotations, coupled to fine-grained domain-agnostic provenance and domain-specific
inference rules, can lead to the production of new meaningful statements. Chapter 7 de-
scribes how the system has been implemented and chapter 8 provides an evaluation of
domain-specific provenance, distributed through Linked Data principles, which finally
provides experiment summaries to end-users.

Key Points

• Lightweight ontologies such as OWL-S are popular to seman-
tically annotate services.

• The W3C proposes standards for semantically annotating
web-services, SAWSDL, and for representing provenance,
Prov-DM “derived from” the OPM community effort.
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• Data processing services involved in MOTEUR workflows,
and annotated through the DOLCE-based web-service sub-
ontology of OntoNeuroLOG could easily by semantically an-
notated though the OWL-S service ontology.

• Domain-agnostic fine-grained provenance is too much tech-
nical, and too much verbose to address end-user concerns.
Coarse-grained domain-specific provenance has to be consid-
ered with a high interest.

• Scalability of provenance is a real concern. When provenance
is published as Linked Data, distributed querying should en-
hance the scalability.

• Publication of provenance as Linked Data, and through stan-
dards, is an opportunity towards better e-Science experiment
reproducibility.
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Semantic scientific workflows for
knowledge capture and extension
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6.1 Introduction

Semantic web services, introduced in section 5.2, make the nature of both processed data
and applied information processing explicit, thus bridging the gap between syntactic de-
scriptions and domain knowledge. Through enhanced service discovery, composition,
or possible mediation between syntactical incompatibilities, semantic web services form
a basis towards semantic workflow environments. Rather than focusing on how the de-
sign of scientific workflows could be enhanced through semantic services, we address
in this chapter the exploitation of precise enough service descriptions to finally populate
knowledge repositories based on workflow runs. The long-term objective is to foster data
sharing and repurposing when conducting e-science experiments.

However, semantically describing services is critical to precisely identify the func-
tionality of data processing or their input or output parameters. More precisely, gen-
eral approaches such as SAWSDL, OWL-S, or WSMO provide a mean to attach domain
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knowledge to services but may, in some cases, lead to ambiguities when semantically
identifying the processed data.

The workflow illustrated in Figure 6.1 represents a typical image registration process
commonly encountered in neuroimaging workflows. It consists in superimposing two
medical images acquired independently into the same coordinate system. The sample
registration process is decomposed into two steps. First, the registration itself consists
in calculating, from the input brain MRI and a brain atlas, a geometrical transformation
expressed by a transformation matrix. Second, the resampling step effectively aligns
the input brain MRI by applying the transformation expressed through the registration
matrix.

Registration Re-sampling
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MRI

MRI

MRI

Matrix

Figure 6.1: A typical neuroimaging workflow mixing several nature of data and processing.

In spite of its apparent simplicity, this workflow mixes several natures of data and
processing. It may face ambiguity when semantically distinguishing the two input pa-
rameters (left part of the figure) if we only consider the nature of data or processing.

• First, this workflow mixes two services of different nature, whose meaning has been
agreed upon within the neuroimaging community. In other words, the knowledge
about what kind of underlying information processing is clear for the community
but is generally not explicit at the tooling level.

• Second, this workflow consumes and produces data of several natures (medical
images, transformation matrix) expressed through raw files at the tooling level.
Again, these files have a precise meaning from the user community point of view,
with regard to their content.

• Finally, the first step of the workflow takes two files as input, sharing the same
nature, both are brain MRIs, but playing different roles from the processing tool
perspective. The first one is used as the reference image for the registration process
(atlas) whereas the second one is used as the floating (moving) image.

Even if the several natures of data and processing allow to semantically distinguish
most of the entities involved in this workflow, it is not sufficient to distinguish the “atlas”
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MRI from the “moving” MRI both considered as inputs of the registration step. Precisely
characterizing the role of data from a service perspective would allow to disambiguate
the semantic annotation of its parameters.

Provenance in scientific workflows has been introduced in section 5.3 as crucial infor-
mation to enhance the quality of data analysis procedures and produced data through
a better understanding of the detailed history of applied processing (also known as
data/process lineage). Due to possible data iteration strategies1, a single workflow ex-
ecution may lead to a huge amount of fine-grained provenance information. Tracking
all this detailed information is required (i) to help in identifying the cause of possible
failures or abnormalities, and (ii) to enhance the overall workflow reproducibility. How-
ever, provenance produced through scientific workflow environments is generally tech-
nical and domain-agnostic, thus making it difficult to comprehend from an end-user per-
spective. Concise and meaningful information, summarizing complex and fine-grained
provenance information, would be valuable for e-Scientists to better interpret, share or
repurpose their “in silico” experimental results.

The simple workflow of Figure 6.1 also illustrates several level of semantic information:

(i) domain-agnostic information, related to the technical description of services or re-
lated to the service invocation which can later be used to produce provenance traces.
For instance, through an OWL-S profile, the registration service from figure 6.1
would be described with the following properties: one serviceCategory, two hasInput
and one hasOutput. Through the OPM provenance model, all causal dependencies
represented by the arrows would be tracked as a set of used and wasGeneratedBy
properties. These description are generic and are not yet related to any domain
knowledge.

(ii) domain-specific information related to the Nature of the information processing per-
formed and the Nature of the manipulated data. For instance, this would correspond
in the previous example to the domain knowledge associated to the content of the
data, i.e. “Brain MRI” for input and output data, or “geometrical transformation”
for the intermediate matrix.

(iii) domain-specific information related to the Role played by the data involved in the
service execution, from the service point of view. This level of information describes
the differences between the two input parameters of the neuroimaging workflow,
the first one considered as a reference “atlas” and the second one considered as the
“moving image”. This third level of semantic information allows to disambiguate
the semantic annotation of service parameters and is thus needed to precisely reason
on the service invocation effects on the processed data.

1A single workflow processing step may be executed several times when taking as input, and possibly
combining, several data collections.
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Leveraging existing ontologies to describe domain-agnostic information (service de-
scription and provenance) as well as domain-specific Nature of data and processing tools,
this chapter focuses on the third level of semantic information to tackle:

• knowledge capture through a clarification of the bindings between service descrip-
tions and domain concepts, using a taxonomy of domain-specific Roles (RQ4).

• knowledge extension through the automated production of new concise domain-
specific statements along e-Science platform usage, i.e. workflow runs (RQ5).

The remainder of this chapter is organized as follows. Our approach is first motivated
through a simple running example in section 6.2, and some background information are
provided in section 6.3 which describes Role modeling and how roles could be consid-
ered in semantic web services and e-science workflow environments. Then, we introduce
a domain-specific Role taxonomy in section 6.4, as an intent to enhance knowledge cap-
ture on neuroimaging processing tools. Based on the resulting disambiguated semantic
annotations for neuroimaging processing tools, we provide a method in section 6.5 ad-
dressing the automated production of new meaningful statements through inferences on
workflow provenance traces. Finally, results and perspectives are discussed in section 6.6.

6.2 Motivating use case

We propose in this chapter a methodology for producing and deducing new concise
meaningful statements. If we consider the result of the registration workflow presented
in Figure 6.1, it would be interesting to associate the atlas used as input in the registra-
tion process to the registered image produced. More generally, our approach address
the propagation of the effect of services (or sub-parts of workflow) to the produced data.
For instance, we would like to automate the generation of a fact saying that “a dataset
can be superimposed with another one”, because in some cases, processing tools might
require that their input data are expressed in the same coordinate system, and thus have
beforehand been registered.

Registration Re-sampling
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Figure 6.2: Linking data and processes through generic and domain-specific relations.
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Figure 6.2 illustrates the causal dependencies established between entities involved in
the sample workflow, i.e. data and services. Black arrows are relations tracked on-the-fly
during each service invocation and forming provenance information. Provenance states
data production and consumption. Beyond linking together data and process invocations
(i.e. capturing provenance information) at a fine-grained level, we want to benefits from
a domain ontology and its associated inference rules to automate the production of rel-
evant domain-specific statements. For instance, the dashed arrow represents such infor-
mation derived through a domain-specific inference rule embedding domain knowledge
on the overall registration process.

As it will be shown in Section 6.4.2, this kind of inferences is possible if the semantic
description of services is rich enough to properly define the Roles of processed data in the
context of services invocation.

6.3 Background information

6.3.1 Role modeling

Conceptual or domain modeling generally consists in separating several categories of
concepts, for instance those characterizing the nature of an entity from those character-
izing their relations to each others. Henriksson and coworkers propose a methodology
based on the design of role-based ontologies, extending standard ontologies, to enhance
ontology modularization and reusability. They promote a clear delineation between Nat-
ural Types and Role Types [Henriksson et al., 2008] : “In role modeling, concepts that can stand
on their own are called natural types, while dependent concepts are called role types”. Sowa
first introduced Natural Types [Sowa, 1984] to describe what is essential to characterize
the identity of an individual, and Role Types to describe temporal or accidental relations
to other individuals. The methodology proposed by Henriksson coworkers consists in
(i) identifying the natural types of the domain, (ii) identifying accidental or temporary
relationships between individuals and ensuring that role models are self-contained (for
reusability) and finally (iii) defining bridge axioms to bind role types to natural types (or
to link individuals through properties defined in the role model). This approach is par-
ticularly interesting in our context since in life science ontologies, the design effort gen-
erally focuses on the first step. Moreover, e-Science experimental platforms are generally
data-driven and well supported by ontologies describing the nature of data. However,
few efforts concentrate in making explicit the knowledge relating data to their analysis
services more deeply than just using information on data nature.

6.3.2 Roles in web service ontologies

Semantically enhanced e-Science experimental platforms usually rely on generic service
ontologies to describe data analysis services. The following paragraphs briefly describe
how these service ontologies consider the relations between data to service invocations.
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The OWL-S Profile ontology [Martin et al., 2007a], one of the three ontologies forming
the OWL-S proposal, aims at describing what the annotated service does. According
to the OWL-S specification, nothing is said regarding how these parameter values are
related to the service process and as a consequence, these types should be considered as
natural types as they are defined in [Sowa, 1984]. To specify the relationship of parameter
values to the process, it should be beneficial to rely, through the parameterType property,
on a role ontology designed according to the methodology proposed by Henriksson and
coworkers.

FLOWS [Gruninger et al., 2008, Battle et al., 2005] specifies a first-order logic ontol-
ogy for Web Services. It aims at enabling reasoning on the semantics of services and their
interactions. FLOWS has largely been influenced by OWL-S but in addition, it addresses
interactions with business process industry standards such as BPEL. FLOWS differs from
OWL-S by properly handling messages as core concepts. Messages are defined in FLOWS
by a message_type, characterizing the type of the content, and a payload, representing the
full content. FLOWS also defines three relations to relate atomic process invocations
to messages they consume as input or they produce as output: produces, reads, and de-
stroy_message. The relations are very generic and do not characterize more precisely
the consumption/production of messages through domain-specific entities. However,
FLOWS proposes the described_by relation to associate a fluent to a message. Fluents are
used to model “changing” parts of the world. The described_by relation aims at providing
information on how the content of the message impacts the service invocation while con-
suming/producing it. Intuitively, since role types are defined by Sowa as accidental (or
evolving during time) relationships between entities, FLOWS’s fluents could be a way to
model how data are interpreted by analysis services through Roles.

WSMO [Roman et al., 2006] is a rich service modeling and enacting framework but
it does not cover precisely the characterization of how processed or produced data are
related to services in terms of roles. However, since WSMO relies on external ontolo-
gies, it remains compatible with any domain ontology designed using a clear separation
between natural types and role types.

SAWSDL [Kopecký et al., 2007] is the W3C recommendation to semantically annotate
WSDL and XML Schemas specifying standard Web Services. Again, this specification
does not bring anything new to separate the natural type of the annotated WSDL message
from how it is related to the Web Service (its role type). However, depending on the
availability of an ontology of roles, modelReference attributes could be used to bind role
types to service parameters.

The BioCatalogue [Bhagat et al., 2010] initiative is a community-driven, and curated
service registry aimed at guiding users into a wealth of web services through the reg-
istration and annotation of web services and the browsing of resulting annotated web
services. Several kinds of annotations are available going from free text, to tags or on-
tology terms. BioCatalogue allows, among other kind of annotations to operationally (e.g.
infrastructure, runtime constraints) or functionally describe a service. Functional anno-
tation covers information related to what the service does, but also its function and the
format of input or output data. The function annotation of data with regard to a given
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web service seems to be close to Role types previously introduced but few information is
available to precisely describe this kind of annotation.

As a continuation of the BioMOBY initiative, the SADI project [Withers et al., 2010]
proposes guidelines and best-practices to enhance semantic service discovery at work-
flow design time. Semantic services are indexed in the catalog through the new set of
RDF properties describing the resulting new semantic features associated to input data.
The service discovery is based on searches over properties of data consumed as input
and over the new properties produced. This approach also aims at reducing ambiguity
of search queries through more precise properties, describing the relationships between
input and output data.

All these approaches do not really address the distinction of service parameters shar-
ing a similar nature but acting differently from the service perspective. Few approaches
tackle this issue through specific representations such as FLOWS fluents or BioCatalogue
functions. We propose, in the following section, to clearly make the distinction between
Role and Nature concepts at domain ontology design time. Roles can then be used to dis-
ambiguate semantic service descriptions finally enabling reasoning and producing new
meaningful statements from workflow runs.

6.4 Knowledge capture in neuroimaging data processing

6.4.1 Supporting ontologies

The OntoNeuroLOG ontology [Temal et al., 2008] is used as a semantic referent to query
and retrieve heterogeneous data, as well as to annotate consistently the shared neu-
roimaging services, by denoting what sort of processing services actually achieve and
what data they accept as input and produce as result.

OntoNeuroLOG was designed as a multi-layer application ontology for neuroscience,
relying on a number of core ontologies modeling entities that are common to several
domains. The whole ontology relies on DOLCE (Descriptive Ontology for Language
and Cognitive Engineering) [Masolo et al., 2003], a foundational ontology that provides
both the basic entities (at the top of the entities’ taxonomy) and a common philosoph-
ical framework underlying the whole conceptualization. The ontology was designed
according to the OntoSpec methodology, which focuses on the writing of semi-formal
documents capturing rich semantics. This is followed by an implementation of a subset
of the ontology in OWL, the web ontology language. The definition of this subset and
the choice of the relevant OWL dialect take into account the specific needs of the target
application. Two subsets of OntoNeuroLOG were used in the context of this work, the
ontology of Dataset and the ontology of Dataset processing, introduced hereafter.

Dataset module. Datasets are Propositions, i.e. non physical endurants, that represent the
content of data files used in neuroimaging. The taxonomy of Datasets is organized ac-
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cording to several semantic axes. The first one denotes what facet of the subject is ex-
plored, e.g. Anatomical datasets explore the subject’s anatomy whereas Metabolic datasets
explore chemical processes happening in cells. The second axis classifies Datasets accord-
ing to the common imaging modalities, such as Computed Tomography (CT), Magnetic res-
onance (MR), or Positron emission tomography (PET). This axis includes the numerous sub-
modalities met, e.g., in MR imaging such as T1-weighted MR dataset, Diffusion-weighted
MR dataset, etc. The third axis focuses on Datasets that result from some kind of post-
processing, such as Reconstructed datasets, Registration datasets, Segmentation datasets, etc.

Datasets may bear properties of Representational objects (since Propositions are Repre-
sentational objects), such as ’refers-to’, which denotes the ability to refer to any kind of
Particular. This property can be used to refer to the Subject (i.e. the patient) concerned
by a particular Dataset. For instance, a property called ’can-be-superimposed-with’ was
introduced to relate two Datasets that can be superimposed with each other, such as a
Segmentation dataset (i.e. an object mask obtained through a segmentation procedure) and
the original dataset from which it was obtained.

Dataset processing module. Dataset processings are conceptual actions, i.e. Perdurants
that affect Datasets. The taxonomy of Dataset processings covers the major classes of image
processing met in neuroimaging, such as: restoration, segmentation, filtering, registration,
re-sampling, etc. Axioms attached to each Dataset processing class usually denote which
classes of Datasets are being processed or result of the corresponding processing. For
example, a Reconstruction processing ’has-for-data’ some Non-reconstructed dataset and ’has-
for-result’ some Reconstructed dataset, as well as a Segmentation processing ’has-for-result’
some Segmentation dataset.

Web Services module. In addition to these neuroimaging-specific modules, a domain-
agnostic module has been defined to describe Web Services grounded to the DOLCE
foundational concepts. It introduces the notions that are classically involved in WS spec-
ifications such as interfaces (ws-interface), operations (ws-operation), and service inputs
and outputs (input/output-variable). Besides, the model benefits from the ’refers-to’ prop-
erty (inherited from DOLCE) to establish relationships with the classes of data process-
ing that a particular ws-operation implements (such as rigid-registration or segmentation),
as well as with the classes (natural types) of entity that the input and output variables
actually represent.

OntoNeuroLOG provides a coherent conceptual framework, grounded on the DOLCE
foundational ontology, which allow to semantically represent data and services involved
in neuroimaging workflows. Since the Web Service module remains domain-agnostic it
can be reused beyond the scope of neuroimaging.
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6.4.2 Role concepts

To benefit from expert knowledge conceptualized through domain ontologies (such as
the OntoNeuroLOG ontology), services involved in e-Science workflows are manually
associated to domain ontology concepts. Semantically annotating a service consists in us-
ing an ontology to bind technical concepts, i.e. elements syntactically describing services,
to domain-specific concepts. Most of semantic web-services initiatives, namely OWL-S,
WSMO, or SAWSDL, distinguish the annotation of the functionality of the service from
the annotation of the service parameters which consume or produce data.

As an example, let us consider a medical image processing tool performing a de-
noising operation. From a technical or syntactical point of view, the service is imple-
mented by an executable binary taking as input a raw file materializing a noised medical
image and producing as output another raw file materializing the resulting de-noised im-
age. From a semantic point of view, this de-noising service implements a particular kind
of algorithm characterizing how the image is processed. This “how” is described through
the annotation of the functionality of the service, i.e. a particular class of restoration pro-
cessing. The service additionally requires a specific medical image format (e.g. Analyze),
and a specific modality of acquisition (e.g. ultrasound) to be successfully invoked. More-
over, the resulting de-noised image should preserve the input modality; in other words,
even de-noised, the image still remains an ultrasound image. The service input/output
parameters are usually annotated with concepts describing the nature of consumed or
produced data. We will see in the following section that such semantic annotation on the
nature of consumed or produced data is generally not sufficient to be precisely exploited,
at invocation time, to produce new domain-specific annotations.

6.4.3 Differentiating neuroimaging Natural and Role concepts

To precise, and possibly disambiguate, the semantic service descriptions, service anno-
tations should also make explicit how consumed or produced data items are related to
the processes. For instance, if we consider the registration service involved in the work-
flow shown in Figure 6.1, both input parameters should share the same intrinsic nature.
Indeed, in this example, the reference image parameter and the floating image parame-
ter have been acquired both through the same Magnetic Resonance modality (MR) and
should be materialized with the same file format. In this geometrical realignment proce-
dure, the two input parameters are not distinguished by their intrinsic nature but rather
by their relationship to the registration process, namely “floating” and “reference”. It is
important to note that these two concepts only make sense in the context of a particular
kind of image processing, the registration. Without the knowledge of “which data is act-
ing as the reference image” or “which data is acting as the floating image”, it is difficult
to deduce any meaningful information from the execution of the registration workflow,
such as “this resulting image can be superimposed with this reference image”, or more
generally to retrieve images that have been registered with the same reference and thus,
that can be superimposed together. To tackle this issue we propose to distinguish Natural
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concepts and Role concepts when annotating semantic service parameters by relying on a
domain-specific role taxonomy.

Figure 6.3 illustrates the taxonomy of roles dedicated to the characterization of the
relationships between neuroimaging data and their dedicated processing. Role concepts
are organized following the main classes of neuroimaging processing similarly to the
OntoNeuroLOG dataset processing ontology.

Figure 6.3: A domain-specific role taxonomy characterizing how neuroimaging data can be related to neu-
roimaging processing tools.

This taxonomy illustrates another example of disambiguation in the context of resam-
pling processes. Indeed, the two roles As-affine-transformation and As-transformation-field
precise how a matrix should be interpreted by a resampling process. If we consider two
3 × 3 matrices, they could share the same nature and representation format. However,
one could be interpreted as a set of parameters for translation, rotation and scaling, in
the context of an affine geometrical transformation, whereas the other one could be inter-
preted as a deformation field in the context of a non-rigid transformation.

Relying on this taxonomy of roles, we are now able to precisely annotate the input and
output parameters of our image registration service considered in the running example
(figure 6.2) with both Natural and Role concepts. Both input images are characterized by
a same Natural concept, T1 weighted magnetic resonance image (T1-MR). T1-MR can be
considered as a Natural concept because it stands on its own and does not characterize
how input data are related with any other entities. On the other hand, service input pa-
rameters can be annotated with two distinct Role concepts to characterize how input data
are related to the registration process. The service input parameter interpreting data as
floating (the moving data, that will finally be realigned) is annotated with role As-floating-
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image, and the second service input parameter interpreting data as the geometrical refer-
ence is annotated with role As-reference-image. Figure 6.4 illustrates the annotation with
Role concepts for the two services involved in the full registration use-case workflow.

Registration Re-sampling
100
btz
ayx

As-resampled
As-unprocessed

As-floating

As-transformationAs-reference
As-transformation

Figure 6.4: Roles involved in the registration workflow.

We have seen how the semantic annotation of services can be disambiguated through
the notion of domain-specific Roles. We present in the following section how Roles,
coupled with reusable inference rules (instrumenting domain ontologies) and workflow
provenance, enable automated production of new meaningful statements.

6.5 Knowledge extension through semantic workflow runs

6.5.1 OPM provenance ontology

Workflow runs are described through provenance information tracked at runtime. Prove-
nance is expressed through the OPM ontology [Moreau et al., 2011] (presented in sec-
tion 5.3.3) which provides a modeling framework to represent causal dependencies be-
tween Artifacts, Processes, and Agents. But OPM graphs are very generic and verbose. Fig-
ure 6.5 illustrates the OPM statements captured from a single execution of our running
example workflow. Although the sample workflow involves only two input data and
two processes, the produced provenance graph resulting from its invocation is verbose
(49 RDF triples) and is difficult to comprehend. http://Registration and http://Resampling
represent the services which have been invoked. #Registration-3e8e52... and #Resampling-
b32e7296... represent their invocation. Finally the medium sized MyAtlas, MyInput, etc.
nodes represent the data entities involved either as input, output or intermediate data.
Due to the reification of the relations in the OPM model, a lot of nodes and arcs are
needed to interlink data, process invocations and services, thus leading to a verbose rep-
resentation even in the case of a simple workflow.

To distinguish several causal dependencies of the same kind, OPM allows to an-
notate used or wasGeneratedBy dependencies with syntactic roles. A Role is defined
in OPM as a particular function of an artifact (or an agent) in a process. The
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Figure 6.5: OPM provenance statements tracked from the invocation of the running example (Figure 6.1).

OPM model does not formally define roles but allows to associate labels to depen-
dencies between artifacts (or agents) and processes. In OPM the execution of the
sample registration process illustrated in Figure 6.1 could be translated with these
two causal dependencies: “{ProcessRegistration, used(floating), ArtifactImage}” and
“{ProcessRegistration, used(reference), ArtifactAtlas}”. The syntactic roles “floating”
and “reference” aim at distinguishing how artifacts are related to processes, but their
meaning remains highly dependent on their usage within a given process, and thus, re-
mains highly domain-specific.

In the following section we propose to exploit both the semantic roles introduced in
figure 6.3, and the domain-agnostic and verbose provenance statements to deduce new
concise and meaningful statements.

6.5.2 Reusable and service independent rules to infer new meaningful state-
ments

The use of rule engines (or inference engines) is a well adopted data-driven and declara-
tive approach to deduce/produce new conclusions/facts from a set of initial statements.
In an OPM-instrumented execution engine, the invocation of services generates prove-
nance statements such as the ones simplified in Figure 6.6. The graphical syntax in-
troduced by [Moreau et al., 2011] is reused: Artifacts are represented by ellipses and
Processes are represented by rectangles, used and wasGeneratedBy causal dependencies,
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parametrized with roles, are represented by plain arrows.
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Figure 6.6: OPM statements tracked through the invocation of the registration workflow.

To automate the production of a statement linking the resulting data to the source
data through a domain-specific property, an inference rule is proposed using the role-
parameterized provenance causal dependencies. As an example, Figure 6.7 illustrates the
inference rule deducing the can_be_superimposed_with property in the case of the registra-
tion workflow. The left part of the implication, the antecedent, corresponds to the If clause
of the inference rule and consists in identifying a conjunction of statements necessary to
produce the statements expressed in the consequent, at the right part of the implication
(the Then clause of the rule). The first two lines assert that processes must refer, for the
first one, to a Registration dataset processing, and for the second one, to a Resampling
data set processing. In other words, the services invoked by the processes should have
been annotated with the corresponding Natural concepts of the OntoNeuroLOG domain
ontology. The two following lines of the If clause identify artifacts and processes through
their Role concepts: the resulting image is identified through the As-resampled-image role,
the registration matrix is identified through the As-affine-transformation role, and the ref-
erence image is identified through the As-reference-image role. Finally, when the reference
image and the resulting resampled image are identified, the rule engine is able to produce
a new statement saying that both images can be superimposed (can_be_superimposed_with
property of the OntoNeuroLOG ontology).

Using Role concepts, domain ontologies can be instrumented with inference rules
which remain service independent. Such inference rules can be reused in the context
of several service implementations realizing a same kind of treatment. Let us consider
the deployment of a new registration service, implemented with a new algorithm. As
soon as this new service is annotated with Role and Natural concepts of the same class2

as the concepts appearing in the registration inference rule, there is no need to rewrite an
inference rule specific to this particular service. As a consequence, workflows involving
this new service will also benefit from the generation of annotations stating the “super-
imposability” of data. With this approach, domain experts can enrich their ontologies

2or subsumed by
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Figure 6.7: Reusable inference rule automating the annotation of superimposable images.

with inference rules that provide meaningful information to end-users independently
from the services deployed. Service providers can focus on their services, transparently
reusing these service independent inference rules.

6.6 Discussion and conclusion

E-Science experimental platforms strongly rely on service-oriented architectures to as-
semble data analysis workflows. However, their usability is hampered by the level of
expertise required for experiment designers, as they are expected to have a clear under-
standing of the semantics of the data processing, i.e. what kind of data is processed and
how they are effectively processed. To improve the usability of e-Science workflows,
domain ontologies, semantic service annotations and reasoning engines have been inte-
grated.

Regarding the sharing of the neuroimaging role taxonomy with other user communi-
ties, two approaches could be considered as a continuation of this work: (i) the creation
of an OPM profile dedicated to the neuroimaging domain, or (ii) the articulation of the
OPM ontology with the DOLCE foundational ontology.

OPM profiles constitute a good opportunity to share knowledge associated to the
role of neuroimaging data. OPM profiles consist in a domain specialization of generic
OPM graph, thus addressing domain-specific concerns. An OPM neuroimaging profile
could be constituted with the two subsets of the OntoNeuroLOG ontology supporting
this work, the Dataset ontology to extend OPM Artifacts, and the Dataset-processing on-
tology to extend OPM Processes. The Role taxonomy proposed in this chapter could be
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integrated almost directly as sub-classes of the OPM Role class3. OPM recently evolved
through a W3C standardization process which led to the PROV-* standards. Extensibility
in PROV-* standards is not envisaged through profiles but through several extensibility
points for PROV-DM (PROV data model), or specialization of PROV-O (PROV OWL on-
tology) classes or properties.

The second approach, more conceptual, would consist in proposing an OPM ontol-
ogy whose main classes are grounded to foundational ontologies such as DOLCE or BFO
(Basic Formal Ontology). It would allow to smartly articulate OPM and domain ontolo-
gies based on foundational ontologies such as BIOTOP (Top-Domain ontology for the life
sciences) or OBI (Ontology of Biomedical Investigation) life science ontologies, and thus
exploit these ontologies at workflow runtime. Indeed considering our approach from an
ontology design perspective, a significant effort is still needed for a complete integration
in the OntoNeuroLOG framework, since Role concepts, designated through the refers-to
property, should conform to the DOLCE foundational ontology and its related core on-
tologies. This ontology integration task could also cover the semantic overlap between
OPM Artifacts and OntoNeuroLOG Datasets. However, in the context of this work, this
preliminary integration of OPM and OntoNeuroLOG still allows (i) retrieving service
descriptions, or provenance statements through SPARQL queries and (ii) producing new
meaningful statements through domain-specific inference rules.

We adopted in this chapter an integrative approach to address knowledge capture and
extension in the context of e-Science workflows. This approach (i) promotes a clear de-
lineation between Role and Natural concepts in domain ontologies to disambiguate the
semantic annotation of service parameters (RQ4), thus providing more accurate seman-
tic service descriptions, and (ii) propose a methodology to instrument domain ontolo-
gies with inference rules that leverage both the description of Roles and domain-agnostic
provenance information to finally extend semantic repositories with meaningful domain-
specific annotations at runtime (RQ5). Two main perspectives could be studied as a con-
tinuation of this work:

Modeling. As previously discussed, the modeling of domain-specific roles should be
studied with particular attention, especially when domain ontologies are grounded
to foundational ontologies such as DOLCE. Similar studies could also be envis-
aged when bridging provenance ontologies, such as OPM or PROV-*, with DOLCE-
based domain ontologies.

Inference rules design. The proposed inference rules adapt to several service implemen-
tations as soon as they are semantically annotated with the same concepts (or sub-
concepts) of the domain ontology. However, they remain highly dependent on the
structure of scientific workflows. Workflow evolutions would lead to a necessary

3which was not present in the OPM 1.1 specification [Moreau et al., 2011] but was introduced in the OPM
OWL ontology [Moreau et al., 2010].
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adaptation of the inference rules. Abstract (or conceptual/template) workflow ini-
tiatives such as the conceptual workflows introduced in [Cerezo and Montagnat,
2011] could help in the design of inference rules. Indeed, fine-grained workflow
structures could be hidden by higher level conceptual workflow elements and in-
ference rules could be attached to these abstract workflow components instead of
being attached to fine-grained provenance statements, thus enhancing their gener-
icity. This genericity issue is more precisely discussed in the experiment presented
in section 8.4.

Initially applied to computational neurosciences, this work goes beyond this scope, as
the same principles are planned to be applied in the context of the VIP project. It is en-
visaged to validate the applicability and usability of the delineation of Role and Natural
concepts in domain ontologies to (i) ease the design of simulation workflows (e.g. simu-
lated cardiac images through ultrasound modality) and (ii) extend semantic repositories
with new meaningful statements describing either simulated data or the simulated or-
gans and their constituting anatomical entities. The experiment of section 8.4 evaluates
our approach through concrete medical image simulation workflows deployed in the VIP
platform.

Key Points

• A clear delineation between Role and Natural concepts in do-
main ontologies allows for disambiguating semantic annota-
tion of service parameters.

• Domain ontologies, instrumented with inference rules, allows
for producing new meaningful statements based on workflow
execution provenance.

• The reusability of inference rules is enhanced by involv-
ing domain-specific service annotations, rather than labels in
provenance traces.
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7.1 Introduction

This chapter briefly illustrates the software artifacts resulting from the thesis research
contributions. It shows how they are related to the concrete research questions intro-
duced in section 1.2.

E-Science environments aim in general in easing, through computing infrastructures,
the setup of “in silico” experiments. These environments may address some, or part
of, data acquisition, data curation, data selection or data processing (through scientific
workflows) requirements. Collaborating activities rely on the coherent sharing of data
or processing tools through such environments. They generally benefit from domain on-
tologies, capturing the knowledge of a particular area. The software developed in this
work aims at easing (i) data selection, typically in the context of distributed e-Science
platforms, (ii) data processing at both workflow design-time and run-time, and (iii) re-
sults publication through semantic guidance into massive data productions.

NeuSemStore The first software contribution, NeuSemStore, supports semantic sci-
entific workflows, with a particular focus on life-science applications. More precisely,
NeuSemStore proposes a semantic catalog of composable services, an extension of the
Moteur workflow environment capturing on-the-fly provenance information, and means
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to infer new meaningful statements from technical provenance information, usually dif-
ficult to comprehend. NeuSemStore leverages domain ontologies in the in silico exper-
iments design process, and more technically, through Role annotations, how semantic
service annotations can be disambiguated (RQ4). NeuSemStore improves the under-
standing of workflow results (RQ5), through new meaningful statements inferred from
provenance information.

KGRAM-DQP The second software contribution, KGRAM-DQP, is an extension of the
KGRAM Semantic Web Framework, supporting federated querying and reasoning over
multiple distributed and heterogeneous data sources. More precisely, KGRAM-DQP al-
lows collecting knowledge fragmented over multiple data sources (RQ1), while still cop-
ing with the autonomy property of clinical/medical data providers (data is sensitive and
may not be relocated externally). In addition, KGRAM-DQP implements the optimiza-
tion strategies developed in chapter 4, in order to reduce the evaluation cost of distributed
query processing (RQ3).

The remainder of this chapter describes the NeuSemStore and the KGRAM-DQP soft-
ware. It highlights their main features, drafts their architecture (through UML models),
shows their current limitations and finally discuss their integration to enrich existing re-
search software platforms (Moteur and KGRAM).

7.2 Supporting semantic scientific workflows: NeuSemStore

NeuSemStore is a semantic data store supporting neuroimaging workflows. It is aimed
at persisting, retrieving and reasoning on semantic annotations. Semantic data is par-
titioned between descriptive annotation (service annotation) and invocation annotation
(provenance information collected at workflow run-time).

This framework, currently composed of more than 16000 source lines of Java code,
was initiated during the NeuroLOG project (ANR-06-TLOG-024) and it was extended
during the VIP project (ANR-09-COSI-03). In the context of NeuroLOG the objectives of
the framework were twofolds: (i) enhancing the design of neuroimaging workflows by
providing means to validate the composition of services, and (ii) generating metadata de-
scribing the processed data in order to reinsert workflow results into federated databases.
In the context of the VIP platform, NeuSemStore aimed at (i) storing and retrieving se-
mantic annotations describing the simulation models, and (ii) automating the semantic
annotation of simulated data resulting from simulation workflows.

To ease its integration within two distinct platforms (NeuroLOG and VIP), NeuSem-
Store has been designed with an important focus on code reusability and modularity.
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7.2.1 Features summary

Annotating semantic services. Through a dedicated graphical user interface, illus-
trated in Figure 7.1, service providers are able to describe the functionality of the service
by “drag-and-drop”-ing ontology concepts displayed in the right side of the window into
the dedicated Functions panel located in the left side. A similar operation is necessary
to annotate the nature and eventually the role of input and output parameters. Semantic
descriptions can then be saved as a collection of RDF statements, or directly published
into the service catalog.

Figure 7.1: A graphical user interface aiming at semantically annotating a grid-instrumented jGasw service
with VIP ontology concepts.

Cataloging semantic services. To enhance the overall coherency of workflows at design
time, the semantic service catalog can be queried to retrieve services realizing a particular
kind of treatment (through an associated concept of the domain ontology), or to retrieve
services able to consume a particular kind of data at a given step of the workflow con-
struction.

Recording workflow provenance. From the end-user perspective, recording workflow
provenance consists in deploying the Moteur-provenance-plugin into the Moteur work-
flow environment. The plugin is then dynamically loaded when the workflow starts.
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Provenance statements are stored on-the-fly, after each successful process invocation. In
the current version of NeuSemStore, and to cope with the VIP platform requirements,
provenance statements are following the OPM model. They are finally persisted into a
JENA-TDB triple store.

Navigating workflow provenance. To help scientific workflow designers in testing
their workflows, we propose a simple graphical user interface illustrated in Figure 7.2
which provides hierarchical views focusing on (i) process provenance (left side), and (ii)
data provenance (right side).

Figure 7.2: A graphical user interface aiming at navigating within process-oriented provenance and data-
oriented-provenance.

End-users may first select the workflow invocation to be browsed. Then all services
involved might be listed. When a service is selected, it is possible to list all its invoca-
tions, and all data that have been consumed as input or produced as output. When an
input/output data is selected, it appears on the right side (data-oriented provenance).
From this part of the window, end-users may iteratively develop causal dependencies to
list either originating data, or derived data.

7.2.2 Architecture

The UML class diagram drafted in Figure 7.3 illustrates the main classes involved in the
NeuSemStore framework.

To ease the extensibility of the software, interfaces have been proposed when possible.
It allows to easily switch between several implementations when assembling NeuSem-
Store software components.

Knowledge graphs persistency. Triple persistency is handle through the RDFManager
interface which provides a template for existing impletations, namely RDFManagerSD-
BImpl and RDFManagerTDBImpl. While RDFManagerSDBImpl relies on JENA-SDB and
an existing SQL backend to perform reliable persistency, RDFManagerTDBImpl relies on
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List<SDataItem> listWorkflowInvocations()
List<SDataItem> listDerivedData(URI uri)
List<SDataItem> listInvoquedServicesForWF(URI uri)
...

ProvenanceReader
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void finnishInvocation(URI uri)
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ProvenanceWriter
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URI genURI(String prefix, String label)
void insert(List<Statement> sts)
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boolean existsResource(URI uri)
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Querier
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GenericTree<String> classify()
List<URI> query(String sparqlQuery)
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SemanticServiceBroker
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<<Interface>>

MoteurJSPFPlugin
<<Interface>>

SemanticServiceAnnotator
GUI

WorkflowListenerPlugin
<<Interface>>

void executionStarted()
void executionCompleted()
void processorRun()
void processorRan()
...

SemanticWorkflowListener

SemanticServiceCatalogWS

SemanticServiceCatalogWSStub

SemanticServiceRepository
GUI

Provenance
GUI

Figure 7.3: A UML static class diagram illustrating the main Java classes composing the NeuSemStore frame-
work.

JENA-TDB to perform high-performance triples reading and writing through an opti-
mized binary file system. RDFManagers are responsible for standard CRUD1 operations
on semantic annotations. They are also used to guarantee a coherent identification policy
through the generation of URIs from a generated UUID2, a given prefix, and a given label
(the genURI() method).

MOTEUR Plugins. Semantic annotations are generated from the semantized Moteur
workflow environment, namely Moteur-S. Moteur has been slightly extended with the
JSPF plugin framework. Two kind of plugins were envisaged : ServiceRepositoryPlugins
and WorkflowListenerPlugins.

ServiceRepositoryPlugins are dedicated to plug several kinds of Moteur processor cata-
logs. We could thus envisage a specific catalog for beanshell3 processors, or another one
for grid-instrumented services (jGasw or Gasw services) or yet another one for external
web services.

WorkflowListenerPlugins are intercepting workflow and processor invocations to en-
able pre- or post-processing. In the context of NeuSemStore, the SemanticWorkflowListener
plugin is responsible, after each successful processor invocation, for recording all input
and output data to generate on-the-fly provenance information.

1Create, Read, Update, Delete operations.
2a Universal Unique Identifier.
3a lightweight Java scripting language.
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Workflow provenance. The SemanticWorkflowListener plugin is thus linked with a Prove-
nanceWriter implementation responsible for the persistence of provenance information
through a dedicated provenance model (OPM or OntoNeuroLOG ontologies). Prove-
nance information may be navigated through a dedicated graphical user interface (the
ProvenanceGUI class) which is linked to a ProvenanceReader implementation. The Prove-
nanceReader allows for navigating into workflow provenance graphs through a set of
list*() methods. Since provenance information is persisted as knowledge graphs, it is
queried through a Querier class topping either the ARQ Jena engine (JenaQuerier class),
or the KGRAM engine (KGRAMQuerier class).

Semantic Service Catalog. To exploit workflow provenance with domain-specific
knowledge, semantic service description must be accessible. The SemanticServiceCata-
logWS exposes service descriptions – which result from manual annotation (SemanticSer-
viceAnnotatorGUI class) – through a web service. The main cataloging features are located
into the SemanticServiceBroker which enables (i) managing service descriptions (publish-
Service() and deleteService() methods), (ii) searching services through SPARQL queries or
eventually searching for pluggable services (listSuccessors() method), and (iii) classifying
service descriptions by sorting them into a functionality taxonomy. Note that services
are considered as pluggable if they can be connected through semantically compatible
data links. The listSuccessors implements both exact match4 and plugin match5 strategies as
introduced in [Mehandjiev et al., 2010].

The NeuSemStore software is organized in modules as follows:

• NeuSemStore-core: a module dedicated to RDF triples persistency. It is based on
either JENA-SDB, to benefit from a scalable SQL backend, or on JENA-TDB to pro-
pose an optimized, performance-oriented backend. In addition, it relies heavily
on the Corese/KGRAM semantic engine to perform in-memory semantic querying
and reasoning (forward chaining inference rules and RDFS entailments) ;

• NeuSemStore-broker: a module providing a catalog of semantically annotated ser-
vices;

• NeuSemStore-provenance: a module handling the creation of provenance annota-
tions, and their querying through predefined SPARQL queries. Two ontologies are
currently supported, the OntoNeuroLOG ontology and Open Provenance Model
(OPM) ;

• NeuSemStore-gui: a set of graphical user interfaces to annotate services and inter-
act with the service catalog. Another graphical user interface is dedicated to the
navigation through provenance annotations ;

4when the output Oi of service S1 is described with exactly the same concept than the input Ij of service
S2 consuming Oi.

5when the output Oi of service S1 is described with a sub-concept of the concept describing the input Ij
of service S2. The plugin match is also known as narrower match.
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• NeuSemStore-catalog-moteur-plugin: a module providing a semantic repository of
composable services for the MOTEUR workflow engine ;

• NeuSemStore-provenance-moteur-plugin: a module enabling the recording of prove-
nance informations during workflow executions when plugged to the MOTEUR
workflow engine ;

• NeuSemStore-simulation-objects: a module dedicated to the management of domain
specific annotations, such as simulation objects in the context of the VIP project.

The NeuSemStore framework has been built upon open source libraries such as
Apache JENA for RDF data persistency, KGRAM for abstract graphs querying and rea-
soning through Semantic Web standards and novel extensions, JAX-WS for the standard
Java Web Service stack, Apache Commons and Log4J for helper classes, or JSPF for a
simple java plugin framework.

7.2.3 Discussion

Through NeuSemStore, we propose a set of integrated software components supporting
Semantic Scientific Workflows. However, exploiting semantic scientific workflows to au-
tomate the production of new meaningful statements still remains a complex process :
(i) services composed through workflows must be beforehand semantically annotated,
(ii) workflow engines must be instrumented to produce and store fine-grained domain-
agnostic provenance, (iii) inference rules must be designed, based on provenance, and
domain ontologies, to infer new domain-specific statements, and finally (iv) inference
rules must be enacted and new resulting inferred statements must be retrieved and per-
sisted back.

The scalability of our approach has been experimented, in the context of the VIP plat-
form, through the setup of two distinct triple stores, managed through NeuSemStore.
The first one is dedicated to short-term, fine-grained OPM provenance. The second one
is a long-term repository aimed at storing the concise new inferred domain-specific state-
ments constituting the meaningful experiment summaries, and representing a real value-
added for end-users.

The NeuSemStore architecture is versatile enough to enable the management of
provenance and service annotations through several ontologies. With a limited devel-
opment effort, we provided two implementations for managing provenance. While the
OpmProvenanceWriter is responsible for storing provenance trough the OPM standard, the
NlogProvenanceWriter has been experimented to produce provenance statements through
the OntoNeuroLOG ontology. We could similarly envisage to evolve from the OPM
provenance model to the the Prov-DM model that is under standardization by the W3C.
In a same way, it could be envisaged, with a limited development effort, to produce se-
mantic service descriptions through the OWL-S ontology. This versatility results from
the NeuSemStore software architecture design. It was consolidated by its integration



150 Chapter 7. Implementation

into two e-Science platforms – NeuroLOG dedicated to multi-centric neuroscience stud-
ies, and VIP dedicated to multi-modal and multi-organ medical image simulation – that
enforced reusability throughout the software development process.

7.3 Semantic federation engine: KGRAM -DQP

KGRAM, also known as Corese/KGRAM and introduced in section 4.2.1, is a Semantic
Web Framework, , implementing the W3C standards: RDF , RDFS , SPARQL 1.1 Query &
Update and SPARQL Rules for RDF . KGRAM is distributed as an open source software
with a CeCCILL-C6 Licence.

7.3.1 Features summary

The distributed query processing strategies developed in chapter 4 have been imple-
mented as two extensions for the KGRAM Semantic Web Framework. They provide
means (i) for data providers, to expose semantic data through a remote semantic query
interface, and (ii) for data queriers, to federate multiple distributed data sources through
distributed query processing.

KGRAM Endpoint A server capability is the first feature needed to achieve a federa-
tion over multiple KGRAM Producers. In this first prototype, we developed a standard
web service aimed at exposing a KGRAM Producer to the Internet. These Producer servers
are hosted into a standard Apache Tomcat container.

KGRAM Federator To allow KGRAM for querying and reasoning, not only on local
graphs, but also on graphs spread over the Internet, we slightly extended the KGRAM
framework. We first implemented a new Producer aimed at enumerating remote graph
edges and nodes. This producer integrates the static and dynamic optimizations devel-
oped in chapter 4. In addition, we implemented a new MetaProducer aimed at exploiting
the service parallelism offered by distributed endpoints, also benefitting from the opti-
mizations strategies developed in chapter 4.

Even if it has only been experimented in the context of distributed KGRAM end-
points, the proposed federation implementation is not limited to KGRAM-interfaced
stores. It can exploit any standard SPARQL endpoint. Indeed, since all subqueries trans-
ferred over the network are expressed through standard SPARQL queries, we can federate
not only KGRAM endpoints but any standard SPARQL endpoints.

7.3.2 Architecture

The UML class diagram drafted in the following Figure 7.4 illustrates the main classes in-
volved in the KGRAM framework extensions, dedicated to distributed query processing.

6http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html

http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html
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While black UML classes represent existing Java classes composing the initial KGRAM
framework, green UML classes represent new Java classes extending KGRAM to address
distributed and heterogeneous multi-source federated querying.

Iterable<Entity> getNodes()
Iterable<Entity> getEdges()

Producer
<<Interface>>

ProducerImpl

MetaProducer

RemoteProducerWS-
Server

RemoteProducerWS-
Client ParallelMetaProducer

*

RemoteQueryOptimizer
Full

RemoteQueryOptimizer
Filter

RemoteQueryOptimizer
Bindings

RemoteQueryOptimizer
Simple

Iterable<Entity> getSparqlQuery(Edge e, Environment env)

RemoteQueryOptimizer
<<Interface>>

«use»

String getSparqlASKQuery(Edge e, Environment env)
boolean ask(predicate)

SourceSelector

 
HashMap<String, Boolean> cacheIndex

RemoteProducerWSImpl
«use»

void addRemote(URL url) 
void addRemoteSQL(URL url) 

QueryProcessDQP

«use»
«use»

Graph

Mappings query(String sparqlQuery) 

QuerySolver

Figure 7.4: An UML static class diagram illustrating the main Java classes composing the KGRAM dis-
tributed query processing extension. Green classes represent the KGRAM extensions dedicated to the dis-
tributed query processing.

Data provider perspective. From the data provider perspective, the publication of data
consists in (i) loading the data to be published into a Graph object and (ii) exposing
its content through a remote query interface. We developed a KGRAM web service
(RemoteProducerWS-Server) based on the JAX-WS standard web service stack. The pro-
posed KGRAM endpoint can (i) be populated with RDF content, (ii) be remotely queried
through SPARQL 1.1 queries embedded within SOAP messages. It returns RDF results
also embedded within SOAP messages. The proposed KGRAM endpoint extends the
ProducerImpl class and allows navigating into the hosted Graph.

Data querier perspective. From the data querier perspective, querying activities consist
in (i) configuring KGRAM with a set of URLs identifying and localizing the distributed
data sources, and (ii) submitting to KGRAM a standard SPARQL 1.1 query, without spec-
ifying any distribution directive (such as the service SPARQL extension proposed by the
W3C).

The configuration of the KGRAM engine is achieved through the QueryProcessDQP
class. This class extends the QuerySolver class responsible for the evaluation of SPARQL
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1.1 queries on abstract graph structures. Target distributed data sources are collected
through the addRemote() method and the distributed evaluation is launched through the
query() method inherited from the QuerySolver class.

Throughout its configuration, the KGRAM engine instantiates a specialized Pro-
ducer which will not handle a local knowledge graph but act as a client for a remote
knowledge graph exposed through the RemoteProducerWS-Server. The RemoteProducer-
WSImpl indeed implements the Producer interface and embeds the web service client
stubs (RemoteProducerWS-Client).

All data sources are handled in KGRAM through MetaProducers which iterate over
a collection of Producers. We implemented a ParallelMetaProducer aimed at exploiting
service parallelism, and based on the algorithms proposed in chapter 4. Object-oriented
techniques such as polymorphism were used to easily integrate several versions of the
ParallelMetaProducer (using the “parallel-pipeline” strategy introduced in section 4.2.4.2
for instance).

Optimizations. Query rewriting optimizations are located into the classes implement-
ing the RemoteQueryOptimizer Java interface. During experiments, query optimizers can
easily be switched directly from the RemoteProducerWSImpl class. The filter rewriting
strategy introduced in section 4.2.3.1 is implemented in the RemoteQueryOptimizerFilter
class, and the binding rewriting strategy introduced in section 4.2.3.2 is implemented in
the RemoteQueryOptimizerBinding class. Finally, the RemoteQueryOptimizerFull class com-
bines these two optimizations.

The ASK-based source selection algorithm introduced in section 4.2.3.3 is imple-
mented in the SourceSelector class. This class is responsible for the generation of SPARQL

ASK queries based on edge requests, and their evaluation on a given remote pro-
ducer. The ASK results finally populate a cache associated to remote producers (the
HashMap<String,boolean> cacheIndex attribute). This memory cache allows remote pro-
ducers checking if a predicate is hosted on the associated endpoint, and thus prevents for
unnecessary remote invocation.

7.3.3 Integration of KGRAM-DQP within the existing framework

The KGRAM framework is organized through the following Maven modules:

• kgram: the core abstract graph entities, and an associated abstract query language
(an abstract SPARQL interpreter) ;

• sparql: a concrete SPARQL parser ;

• kgenv: a concrete SPARQL compiler ;

• kgtool: an utility classes aimed at, among other things, loading or serializing knowl-
edge graphs through RDF or XML Results sandards ;

• engine: an inference rule engine ;
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• kgengine: the Corese API, maintained in KGRAM to guarantee backward-
compatibility ;

• kggui: the graphical user interface in which users may load knowledge graphs or
inference rules, edit/execute SPARQL queries.

Based on these pre-existing modules, we propose three new modules dedicated to
federated querying:

• kg-server: a standard web service, encapsulating a KGRAM instance, allowing for
knowledge graph publication through a SPARQL remote querying interface ;

• kg-server-stubs: the automatically generated web service client classes, used for
communicating with the KGRAM server exposed as a web service ;

• kg-dqp: the KGRAM extensions providing optimized federated querying and rea-
soning over multi source knowledge graphs.

7.3.4 Discussion

This first version of KGRAM-DQP exposes knowledge graphs through a web service
endpoint. An HTTP version is under development and few modifications have been re-
quired to handle HTTP-based communications, instead of SOAP-based communications.
However, since the federated querying is handled through standard SPARQL queries, any
SPARQL endpoint may be federated through KGRAM-DQP.

The current limitations of this first version are :

• named graphs are not yet supported in federated querying ;

• the cost of SPARQL negations should be studied in a distributed setup.

KGRAM can still benefit from more optimization opportunities to enhance the end-
user experience when querying massive distributed datasets, specifically when address-
ing edge grouping through the dynamic generation of SPARQL Service clauses (see sec-
tion 4.2.3.4). However we have seen that edge grouping might, in some cases, lead to
less effective invocations. These optimizations require more investigations in the field of
query planning (intra and inter group order).

Finally, KGRAM-DQP could also be used to study how new SPARQL 1.1 constructs
such as UPDATE could be handled in a distributed context.

7.4 Conclusion

We propose in this chapter a technical description of the software implementing the main
thesis contributions.

NeuSemStore provides support towards Semantic Scientific Workflows and finally al-
lows for producing valuable knowledge through the usage of e-Science platforms. More
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precisely, its Annotator module directly addresses the semantic annotation of services
involved in scientific workflows (RQ4) by proposing a graphical user interface allow-
ing service providers to annotate the service functionality and its parameters through
Natural and Role concepts. Its Broker and Service-catalog-plugin modules allows select-
ing and composing semantically, appropriate services into the Moteur workflow work-
bench at design-time. Finally, its Provenance and Provenance-plugin modules are respon-
sible for provenance management at workflow run-time, and for ultimately inferring
new meaningful statements which constitute the proposed meaningful experiment sum-
maries (RQ5).

KGRAM-DQP provides support for sharing knowledge distributed over multiple,
possibly heterogeneous, data sources. More precisely, its ParallelMetaProducer and its Re-
moteProducers enable federated semantic querying over multiple distributed data sources
(RQ1). KGRAM-DQP integrates a set of static and dynamic optimizations (RQ3) reduc-
ing the cost of federated semantic querying.

Regarding the dissemination of these software components, while KGRAM-DQP is
still under integration into the Corese/KGRAM Semantic Web factory, the NeuSemStore
software has been used in production into the NeuroLOG and the VIP platforms, involv-
ing significant user communities. The provenance capabilities of NeuSemStore have also
been experimented at the Amsterdam Academic Medical Center, to compare provenance
traces captured through post-mortem analysis of Moteur logs [Benabdelkader et al., 2011].

Key Points

• NeuSemStore extends, through two plugins, the Moteur
workflow engine with (i) a semantic catalog of composable ser-
vices, and (ii) the capture of OPM provenance at workflow
run-time.

• NeuSemStore is versatile and allows to adapt to ontologies
evolutions (provenance and service ontologies).

• KGRAM-DQP provides transparent semantic federated
querying. KGRAM-DQP is data-source content-agnostic,
and thus does not require explicit distribution directives into
SPARQL queries.

• KGRAM-DQP is versatile and allows, through abstract
knowledge graphs, to adapt to distributed and heterogeneous
knowledge bases.
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8.1 Introduction

In this chapter, we propose a set of experiments exploring several scientific challenges
related to the Distributed Systems, Knowledge Engineering, or e-Science areas.

The distributed provenance experiment reported in section 8.4 aims at enhancing the
exploitation of community knowledge capitalized in a domain ontology, through the
execution of e-Science experiments (scientific workflows). The linked data experiment
proposed in section 8.3 aims at showing that federated approaches for semantic data
querying promote knowledge sharing and semantic interoperability. The heterogeneous
federation experiment reported in section 8.3 shows that the proposed KGRAM federated
querying engine transparently adapts to both graph-based and relational databases, and
addresses structural interoperability issues observed in the NeuroLOG neuro-imaging
platform. Finally, large scale experiments reported in section 8.2 evaluate the perfor-
mance and the scalability of the KGRAM federated querying engine through DBpedia
Open Linked Data querying and the FedBench benchmark dedicated to the evaluation of
federated approaches. These experiments are supported by the experimental Grid’5000
infrastructure.
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Table 8.1 illustrates the proposed experiments and how they relate to performance,
scalability, interoperability, usability, or re-usability.

Experiment Performance Scalability Interoperability Usability Re-Usability
Large scale experiments (sec. 8.2) ++ ++ −− −− −−
Heterogeneous federation (sec. 8.3) + −− ++ + −−
Linked neuro-data (sec. 8.3) −− −− + −− ++
Distributed provenance (sec. 8.4) −− + −− ++ +

Table 8.1: Four experiments exploring several challenges related to Distributed systems, Knowledge engi-
neering, or e-Science areas.

8.2 Large scale experiments

For practical reasons, and due to memory/processor consumption, it is not always feasi-
ble to centralize massive datasets and perform queries against a unique repository. Fed-
erated approaches, defended all along this work, aim at coping with multiple distributed
data sources by pushing remote subqueries and merging the partial results to finally
build a virtual data integration. However, although coping with multiple distributed
data sources presents valuable interests such as no central point of failure or no need to
periodically populate a centralized repository, transparent federated querying requires
costly distributed joins both in terms of volume of network communication, and in terms
of overall execution time. The following two experiments aim at (i) demonstrating the
interest of federated semantic querying, in particular when addressing massive datasets
that could not be handle through a classical centralized triple store, (ii) studying the ef-
ficiency of the distributed optimized querying developed in chapter 4, and (iii) bench-
marking our approach against state-of-the art federated engines.

The experiment reported in section 8.2.1 shows that in the case of an expensive query
(leading to numerous distributed joins) fragmenting the initial dataset over multiple dis-
tributed data sources can lead to an important gain (a faster evaluation, up to 7 times),
but starting from 8 distributed fragments, the network overhead starts to penalize the
distributed evaluation.

The benchmarking experiment reported in section 8.2.2 compares the state-of-the-
art transparent federating approaches through a set of predefined Life Science SPARQL

queries (see section 10.1) and a set of “Linked Data” datasets covering mainly geneti-
cal and chemical data but also general DBpedia data. The experiment, deployed on real
distributed infrastructure, shows longer evaluation time compared to the FedX engine,
but still performs better than its other competitors. It also provide a higher expressivity
(SPARQL 1.1 path expressions and RDFS entailment regime) compared to all other ap-
proaches.

To summarize, the objectives of these two large scale experiments are the following:
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• highlighting the interest of federated querying when addressing
massive semantic data querying ;

• studying the scalability of the proposed algorithm ;

• presenting reasonable performances compared to state-of-the-art approaches
through the FedBench benchmark.

8.2.1 Querying distributed DBpedia datasets

8.2.1.1 Material and methods

DBpedia person dataset. DBpedia is one of the major initiatives to publish Linked
Open Data. It consists in extracting data from Wikipedia, and publishing it through
the Semantic Web standards (RDFS ontologies, and RDF triples). The Persondata dataset
represents persons extracted from Wikipedia and their characteristics such as their birth
date, birth place, and given name. The Persondata dataset is structured through the FOAF
1 “Friend-Of-A-Friend” ontology. The Persondata DBpedia subset is a good candidate
to evaluate the performance and the scalability of our approach since it is composed of
1.7 million of RDF statements following a simple FOAF schema. In this experiment, we
compare the querying of the whole dataset through several levels of fragmentation.

Data fragmentation. The 1.7M statements of the Persondata DBpedia subset have been
fragmented in up to 16 fragments of the same size. Precisely, Persondata have been frag-
mented in 2 fragments of 850K statements each, 4 fragments of 425K statements each,
and so on, up to 16 fragments of 106K statements each. The fragmentation was manu-
ally and randomly realized, without any consideration regarding the kind of FOAF state-
ment. This distribution setup corresponds to the initial hypothesis made on collaborative
e-science platforms, such as the NeuroLOG platform, where each collaborating partner
may share the same kind of data.

Selective and expensive queries. The following queries Q8.1 and Q8.2 have already
been introduced in chapter 4. Q8.1 leads to only 8 results while Q8.2 leads to 1184 results.

Distributed query engine. The distributed query engine used in this experiment is
the KGRAM federated engine presented in section 7.3 and implementing the federated
querying strategies developed in chapter 4.

When performing a SPARQL query with KGRAM, the engine first populates a cache
memory used with indexes needed to accelerate queries involving similar edge requests.
For a same query, this internal optimization results in a longer evaluation in the first run
and much faster evaluations for the following runs. This experiment focuses on the first

1http://xmlns.com/foaf/spec

http://xmlns.com/foaf/spec
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Listing 8.1: Selective SPARQL query distributed over the full DBpedia-person dataset

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?x ?name ?date WHERE {

?x foaf:name ?name .
?x dbpedia:birthDate ?date .
FILTER (CONTAINS (?name, ’Bobby A’))

}

Listing 8.2: Expensive SPARQL query with an optional statement

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?x ?name ?date ?place WHERE {

?x foaf:name ?name .
?x dbpedia:birthDate ?date .
OPTIONAL {?x dbpedia:birthPlace ?place}
FILTER (CONTAINS (?name, ’Bobby A’))

}

evaluation only since this experiment aims at showing the benefits of distributing the
evaluation load on massive data (objective O1). Each distributed KGRAM engine (i.e.
acting as a SPARQL endpoint) is consequently reinitialized before each distributed query
evaluation.

Grid’5000 infrastructure. This experiment benefits from the Grid’5000 infrastructure
dedicated to the study of large-scale parallel and distributed systems. The grid resources
reservation is similar to the grid experiment setup introduced in section 4.3.

8.2.1.2 Results and discussion

Performance. The following experiment aims at measuring the efficiency of the pro-
posed distributed querying algorithms through the deployment of 1 to 16 distributed
data stores hosting the full DBpedia-person dataset. We will see that depending on the
cost of the distributed joins involved in a distributed query, and on the level of data frag-
mentation (number of federated endpoints) the overall performance of the distributed
query processor can be clearly impacted.

Figure 8.1 shows the benefits of fragmenting linked data through distributed feder-
ated endpoints. The experiment has been conducted through 17 nodes of the “Suno”
cluster of Grid’5000 (1 node hosting the federator and the 16 remaining nodes hosting
the federated endpoints). We observe that for the selective query (Q8.1), the DQP time
keeps decreasing when the fragmentation of the knowledge base increases, whereas for
the less selective query (Q8.2), the DQP time starts to increase starting from 8 federated
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Figure 8.1: Decreasing distributed query processing (DQP) time for a large scale knowledge base (1.7M
triples) fragmented through up to 16 data stores, under full query rewriting strategy.

endpoints. As expected, the number of transferred triples is constant for all distribution
setups (20 for Q8.1 and 3242 for Q8.2). However, since the fragmentation factor increases,
the number of remote invocations also increases proportionally. We measured from 13 re-
mote invocation (single federated endpoint) to 208 (16 federated endpoints) for Q8.1 and
from 2411 to 38576 remote invocations for Q8.2 in the same distribution scenario. This
high number of remote invocations illustrates the network overhead which explains that
the DQP time stops decreasing for more than 8 federated endpoints.

Speedup and efficiency. In addition we calculate the efficiency (En) of the distributed
query processing to characterize the behavior of the system when the number of feder-
ated endpoints increases. The efficiency is calculated as follows,

En =
T1

n ∗ Tn

where T1 represents the query time using a single federated endpoint, n represents the
number of federated endpoints, and Tn the global query time for a knowledge base frag-
mented over n federated endpoints. The efficiency is represented by a number usually
between 0 and 1, where 1 denotes an ideal use of the resources available (Tn is exactly n

times smaller than T1).
Figure 8.2 illustrates the measured efficiencies when querying Q8.1 and Q8.2 on all

distribution setups (from 1 to 16 federated endpoints). Distributed query processing is
performed under the full query rewriting optimization and the parallel-pipeline strategy. It
has to be noted that the T1 measured does not correspond to a fully centralized setup, that
would avoid any network communication, but rather corresponds to a single distributed
endpoint scenario. These good results (En > 1) are due to a particularly naive querying
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Figure 8.2: Compared to a single distributed endpoint, both distributed queries are “supra-effective”. In the
case of the less selective query Q8.2, the distributed querying becomes “ineffective” starting from 8 federated
endpoints.

in the context of a single distributed endpoint (T1). Indeed, the algorithm pushes remote
queries for each edge request composing the full SPARQL query. In the context of a single
federated endpoint, it is not necessary to do so. Sending the full SPARQL query to the
unique federated endpoint would be much more effective, but as soon as we consider
more than one federated endpoint, this strategy cannot be envisaged.

We finally observe that for the expensive query Q8.2, it becomes “ineffective” to frag-
ment the DBpedia-person dataset over more than 8 federated endpoints. This criterion
corresponds to the increasing DQP time observed in Figure 8.1. This can be explained by
the network overhead paid for performing up to 38576 remote invocations.

Although the efficiency seems to be poor starting from 8 federated endpoints, Figure
8.3 shows that the speedup of the algorithm remains better than a logarithmic speedup
generally observed for “hard-to-parallelize” algorithms. This graph is obtained from the
same experiment, and is calculated as follows,

Sn =
T1

Tn

where T1 represents the query time using a single distributed endpoint, n represents
the number of federated endpoints, and Tn the global query time for a knowledge base
fragmented over n federated endpoints.

Figure 8.3 also compares the speedup that would be obtained if T1 was calculated
with a single remote endpoint queried with the full SPARQL query (105s compared to 118s
through the federation algorithm), thus avoiding to perform all useless unitary remote
invocations. Although the speedup is a bit lower, it still has the same characteristics : bet-
ter than a logarithmic speedup, and supra-linear up to almost 6 distributed endpoints. It
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Figure 8.3: Starting from 8 federated endpoints, the distribution algorithm becomes less efficient due to
communication overhead.

has to be noted that T1 obtained in a standalone setup (avoiding any network communi-
cation) is far better but is not representative to compare the distributed evaluations over
all fragmentation scenarios.

To summarize, this large-scale “DBpedia” experiment brings the following results :

• Performance: for costly query, the distributed query processing time reduced
by a factor 7 when the full DBpedia-person dataset is distributed over 8 data
sources ;

• Efficiency: the proposed distributed query processing strategies are supra-
effective for less than 7 distributed data sources in the context of the studied
costly SPARQL query.
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8.2.2 The “FedBench” federation benchmark

8.2.2.1 Material and methods

The FedBench benchmark. FedBench [Schmidt et al., 2011] is the first benchmark suite
dedicated to the analysis and the evaluation of different federated query processing
approaches. Other benchmarks such as LUBM [Guo et al., 2005], SP2Bench [Schmidt
et al., 2008], or the Berlin SPARQL benchmark [Bizer and Schultz, 2009] only address the
comparison of SPARQL engines under a centralized deployment. FedBench explores
several dimensions of federated approaches and focus on both data level and query
level. Depending on the federation setup, the query engine may process either local
data or remote data physically distributed over the Web, or a combination of both local
and remote data. Moreover data access interfaces (1) may vary from native reposito-
ries to standard SPARQL endpoints or simple HTTP requests and (2) possibly expose
data statistics useful for data source selection and more generally to perform efficient
query processing. With respect to the query dimensions, FedBench also addresses the
variability of query languages (simple conjunctive queries through BGP processing, or
more complex SPARQL 1.1 constructs), and the expected completeness of results. Indeed,
depending on the usage scenario, only the first k results might be of interest due to
responsiveness constraints, or on the contrary end-users are expecting a complete result
set, even if the computation is heavy.

The FedBench datasets. FedBench proposes a set of queries dedicated to federated
querying over 3 datasets. The first one addresses a general collection of Linked Open
Data (DBpedia, GeoNames, Jamendo, LinkedMDB, New York Times and Semantic Web
Dog Food). The second one, SP2Bench, consists in generating synthetic bibliographic
data and fragmenting it following the various types of data to finally assemble a dis-
tributed setup. The third one is more interesting in the context of this work since
it focuses on Life Science Linked Data and the corresponding queries. The Life Sci-
ence Data Collection includes the KEGG (Kyoto Encyclopedia of Genes and Genomes)
Drug dataset, the ChEBI (Chemical Entities of Biological Interest) dictionary of molecu-
lar entities, the DrugBank bioinformatics and cheminformatics dataset describing drugs
and drug targets through a pharmacological perspective, and finally a DBpedia sub-
set. Datasets are interlinked through either the keggCompoundId property (for bridging
DrugBank to KEGG) or the general owl:sameAs property. Moreover some bridges are
established between different data collections by exploiting literal values such as entity
names.

To evaluate KGRAM, we propose in the reminder of this section two experiments
based on this large-scale FedBench benchmark. Experiment 1 (reported in section 8.2.2.2)
positions KGRAM with respect to its competitors based on the experiments conducted
in [Schwarte et al., 2011]. Experiment 2 (reported in section 8.2.2.3) refines this evalua-
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tion by comparing the most efficient engine, FedX, to KGRAM, on the same controlled
distributed computing infrastructure (Grid’5000).

8.2.2.2 Experiment 1: positioning KGRAM with state-of-the-art approaches through
the FedBench benchmark.

Distribution setup

The following distribution setup illustrated in table 8.2, aims at evaluating the perfor-
mance of the KGRAM distributed query processing engine through the evaluation of the
FedBench Life Science queries. The Life Science Data collection totalizes more than 49
millions triples, which have been fragmented over 6 distributed data sources.

Data source Linked Data collection Size (triples)
#1 ChEBI 4.7M
#2 DBpedia sub-set #1 13.1M
#3 DBpedia sub-set #2 18.2M
#4 DBpedia sub-set #3 11.8M
#5 DrugBank 0.5M
#6 KEGG Drug 1M

Table 8.2: FedBench Life Science data collection (49M triples) fragmented over 6 data sources.

Seminal evaluation experiments with the FedBench benchmark [Schwarte et al., 2011]
have been conducted through a virtual federation. More precisely, the physical distribution
of data sources has been simulated trough a single server (HP Proliant DL360 G6 with
2GHz 4Core CPU, 32GB 1333MHz RAM, and a 160 GB SCSI hard drive), running several
SPARQL endpoints, without any network communications.

In the current evaluation of the KGRAM federation engine, we consider both virtual
and physical federation. Experiments were conducted through the Grid’5000 infrastructure
by reserving nodes of the “Suno” cluster (2 Intel CPUs (2.26GHz) with 4 cores per CPU,
32GB of RAM, and 519GB of disk storage):

Virtual federation : A single computing node was allocated for the experiment. An
apache Tomcat application container was configured to host 6 KGRAM web ser-
vice endpoints, one for each data source previously considered. 20GB of RAM
were allocated to the apache Tomcat Java virtual machine, and 1GB to the KGRAM
Metaproducer (federation engine). Endpoints are collocated on a same host and no
network communication is required.

Physical federation : 6 nodes with exactly the same characteristics were allocated for
this experiment. On each node, an apache Tomcat was deployed to host a single
KGRAM endpoint. We also allocated 20GB of RAM for each of the 6 apache Tom-
cat JVMs, and 1GB of RAM for the KGRAM Metaproducer, hosted by a dedicated
computing node. This distribution setup has been chosen to reflect a real-life dis-
tributed scenario, involving network communications between the endpoints.
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Results and discussion

Table 8.3 reports the benchmark results of the KGRAM engine when considering both
the virtual and physical federations. Results were produced through 4 runs of the 7 Life
Science queries. The first run of KGRAM performs a costly initialization of the endpoints
which biases request processing measurement times. It is therefore discarded. We then
consider the 3 following runs, which reflect a real-life scenario where KGRAM endpoints
would be running in production. Table 8.3 finally reports the mean evaluation time over
3 consecutive runs, and the associated standard deviation. It shows that runs on the
physical federation are usually longer than on the virtual federation (all queries but LS6),
especially when the query processing time is longer (queries LS3, LS5 and LS7), and that
the standard deviation is also increasing. These results reflect the impact of network
communication on the query processing time.

LS1 LS2 LS3 LS4 LS5 LS6 LS7
Virtual federation
Eval. Time (s) 0.62 0.51 50.9 0.034 17.79 0.66 9.18
Std. Dev. (s) 0.00 0.00 0.90 0.00 0.13 0.24 0.24
Physical federation
Eval. Time (s) 0.632 0.52 55 0.038 18.44 0.54 9.81
Std. Dev. (s) 0.01 0.00 1.94 0.00 0.83 0.01 0.56
Impact of the physical federation

+1.93 % +1.96 % +8.05 % +11.76 % +3.65 % -18.18 % +6.86 %

Table 8.3: FedBench results for the KGRAM federation engine considering both virtual and physical federa-
tions.

Figure 8.4 compares KGRAM results with the actual state-of-the-art approaches (re-
ported in [Schwarte et al., 2011]). A cross indicates an evaluation error (DARQ with
LS2 and AliBaba with LS6 and LS7), and the sad smiley indicates a timeout2 (AliBaba
with LS3 and DARQ with LS7). It has to be noted that for our physical federation deploy-
ment, response times have been measured for KGRAM on a real distributed infrastruc-
ture (Grid’5000), whereas response times measured in [Schwarte et al., 2011] for FedX/-
DARQ/AliBaba were obtained only in the context of their Virtual federation (a single HP
Proliant server as described previously).

The benchmark results first show that compared to AliBaba and DARQ, KGRAM,
which implements the full SPARQL 1.1 language, benefits from a better expressivity and
is able to answer all the Life Science queries. Moreover the overall response time mea-
sured are similar to the one obtained by its competitors. However, we observe that the
FedX engine keeps a leg up over their competitors on all queries, and in particular when
processing expensive queries such as LS3, LS5 or LS7.

2more than 600s
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Figure 8.4: Compared to state-of-the-art federation approaches, the KGRAM federation engine is able to
process all FedBench Life Science queries. It delivers results in a reasonable amount of time, sometimes
faster than AliBaba or DARQ.

8.2.2.3 Experiment 2: comparing KGRAM and FedX engine in a controlled dis-
tributed computing infrastructure.

Experiment 1 has been proposed to give an idea on how KGRAM performs with respect
to state-of-the-art approaches. We evaluated KGRAM in a supposed less favorable en-
vironment, since KGRAM was deployed on a real distributed computing infrastructure
(Grid’5000), and other engines have been evaluated on a simulated distributed environ-
ment (virtual federation).

To more precisely evaluate the relative performance of KGRAM and FedX, we pro-
pose in this second experiment, (i) to deploy them in exactly the same distributed com-
puting infrastructure and (ii) to measure the distributed query processing time for the
FedBench Life-Science datasets and queries.

Distribution setup

This second experiment has been performed few months after experiment 1. During this
period both the FedBench datasets and queries have slightly evolved. The updated Life
Science Data collections have been fragmented over 5 distributed data sources which
totalizes more than 52 millions triples.

To evaluate FedX (version 2.0 build 73, packaged with FedBench framework version
3), we reserved 6 nodes of the “Suno” Grid’5000 cluster (each node has 2 Intel CPUs
(2.26GHz) with 4 cores per CPU, 32GB of RAM, and 519GB of disk storage). One node
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Data source Linked Data collection Size (triples)
#1 ChEBI 7.3M
#2 DBpedia sub-set #1 25.3M
#3 DBpedia sub-set #2 18.3M
#4 DrugBank 0.7M
#5 KEGG Drug 1M

Table 8.4: Updated FedBench Life Science data collections (52M triples) fragmented over 5 data sources.

was reserved for the execution of the FedX federation engine, the other 5 nodes were
reserved to expose the 5 data sources through a Fuseki SPARQL endpoint (version 0.2.5).
It has to be noted that due to some incompatibilities, it has not been possible to deploy
FedX with OpenRDF-Sesame SPARQL endpoints (versions 2.6.10 and 2.7.0-beta1) as
described in [Schwarte et al., 2011].

To evaluate KGRAM, we deployed a similar environment as previously described in
experiment 1 through the physical federation. We reserved 6 nodes of the “Suno” Grid’5000
cluster, one of which was dedicated to the KGRAM federation engine, and the 5 remain-
ing nodes exposing the 5 data sources through KGRAM endpoints.

Results and discussion

Due to the update of both the FedBench datasets and queries, it has not been possible,
with the two engines, to obtain results for queries LS3 and LS5.

Table 8.5 reports the evaluation of the FedBench Life-Science queries 1, 2, 4, 6, and
7, with FedX. We first observe that the behavior of FedX is different in a real distributed
infrastructure compared to results observed in a virtual federation setup [Schwarte et al.,
2011]. Especially in the case of LS1 and LS6, the measured evaluation times are longer in
this physical federation. In addition, we observe a noticeable variability in the measured
times: LS6 ended with a timeout (set to 3 minutes) for 4 of the 10 runs, and we measured
for LS2 and LS7 an important standard deviation (respectively 1575 ms and 1671 ms)
compared to the mean evaluation time (respectively 1562 ms and 909 ms).

Table 8.6 reports the consecutive 10 evaluations of the 7 FedBench Life-Science queries
with KGRAM. We observe a noticeable stability in the measured evaluation times. The
observed standard deviation for LS1, LS2, LS4 and LS6 varies from 8 ms to 35 ms when
the mean evaluation time varies from 322 ms to 1318 ms. The longest evaluation (11 s) is
observed for query LS7.

Figure 8.5 compares FedX and KGRAM mean evaluation times for LS1, LS2, LS4, LS6
and LS7. The error bars show± 1 stdev. We observe comparable times for LS1 which was
not the case in experiment 1. FedX is the fastest for LS4 and LS7. This might be due to
its advanced query plan optimizations (e.g. triple pattern grouping). However, KGRAM
performs better than FedX for LS2 and LS6. We also observe, for FedX, a huge variability
in the measured times for LS2 and LS7 which makes any interpretation difficult. Given
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Run LS1 LS2 LS4 LS6 LS7
#1 710 3062 22 timeout 5666
#2 482 3055 19 timeout 426
#3 468 3058 16 31201 389
#4 462 3054 16 26639 395
#5 462 68 14 30696 395
#6 465 3057 15 30209 369
#7 460 68 15 timeout 371
#8 459 69 15 28525 357
#9 461 69 16 timeout 357
#10 460 67 15 28490 367
Mean Eval. Time (ms) 488.9 1562.7 16.3 29293.33 909.2
Std. Dev. (ms) 77.98 1575.34 2.40 1716.17 1671.50

Table 8.5: 10 consecutive evaluations of the FedBench Life-Science queries with the FedX engine show an
important variability for LS2 and LS6.

Run LS1 LS2 LS4 LS6 LS7
#1 661 429 355 1407 11031
#2 654 412 317 1310 10858
#3 642 404 319 1331 11030
#4 653 403 319 1313 12018
#5 613 412 319 1325 10735
#6 613 409 319 1309 10772
#7 613 407 322 1302 10880
#8 614 405 319 1280 12076
#10 605 407 320 1325 12366
Mean Eval. Time (ms) 627.4 408.8 322.9 1318.8 11259.7
Std. Dev. (ms) 22.27 8.05 11.34 35.08 630.06

Table 8.6: Stable 10 consecutive evaluations of the FedBench Life-Science queries with the KGRAM engine.
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that KGRAM shows little variability on the computing infrastructure used for this experi-
ment, infrastructure variability cannot explain FedX results variability. FedX implements
non trivial query plan optimizations through a multi-threaded code. Problems with ei-
ther the plans optimizer or the parallel implementation most probably accounts for the
variability observed.

Figure 8.5: Comparing FedX and KGRAM mean evaluation time through the FedBench Life-Science queries.

To conclude this second experiment with the FedBench benchmark, we can say that
(i) providing efficient optimized distributed SPARQL query evaluation is non trivial, and
that (ii) KGRAM already performs in reasonable amount of time with a noticeable sta-
bility. KGRAM is a promising approach for federated semantic querying since it opens
opportunities for new optimizations.

To summarize, these two large-scale experiments show that:

• Performance: through a real distributed setup of the FedBench benchmark,
KGRAM-DQP offers results in line with its competitors (and is most of the
time better than AliBaba or DARQ) ;

• Expressivity: KGRAM-DQP allows for the distribution of most of the
SPARQL 1.1 features, including SPARQL path expressions, and allows in
addition for distributed inferences.
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8.3 Federating distributed and heterogeneous neuroscience data
sources with KGRAM

We show in this experiment how the distributed querying strategies proposed in section 4
allows for federating multiple distributed data sources, in the context of the NeuroLOG
platform, and opens new opportunities through bridging external data sources published
as Linked Data.

Open environments associated to the web of Linked Data generally imply a high di-
versity in data formats, data models or schemas, thus raising heterogeneity issues. These
issues are lowered through the continuously growing adoption of the RDF Semantic Web
standard for the representation of knowledge and the publication/standardization of
controlled vocabularies (SKOS3, RDFS4 or OWL5). In this experiment, we demonstrate
how KGRAM can achieve on-the-fly data transformation to address heterogeneity issues.
More precisely, at runtime and through predefined mappings, we propose to (i) trans-
form a graph-based semantic query into the target data source query languages, and (ii)
return back the results in the form of triples combined to build a knowledge graph result.

Finally, we show in this experiment how the KGRAM federation engine can be used
to bridge the NeuroLOG and the NeuroLex neuroimaging knowledge bases and more
generally, how the generic distributed graph querying proposed in chapter 4 can per-
form Open Linked Data querying and reasoning. Our motivation is as follows. We want
to show that in spite of a consequent modeling effort addressing the neuroimaging area
and how neuroimaging entities are modeled with respect to the DOLCE foundational on-
tology, the NeuroLOG federation can still benefit from ontologies addressing the same
domain but with different objectives (the NeuroLex 6 neuroscience lexicon). More pre-
cisely, we show in this experiment how distributed NeuroLOG datasets can be searched
by reasoning on the NeuroLex ontology concepts.

To summarize, this experiment addresses the following objectives:

• Querying multiple distributed data sources through Semantic Web graph
querying ;

• Mediating structural heterogeneity (relational and semantic data sources)
through abstract graph representation and querying ;

• Bridging the NeuroLOG and the NeuroLex neuroimaging knowledge bases
through Linked Data querying to benefits from several modeling efforts
(knowledge sharing).

3http://www.w3.org/TR/skos-reference
4http://www.w3.org/TR/rdf-schema
5http://www.w3.org/TR/owl2-overview
6http://neurolex.org/wiki/Main_Page

http://www.w3.org/TR/skos-reference
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl2-overview
http://neurolex.org/wiki/Main_Page
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8.3.1 Material and methods

The NeuroLOG federation. The distributed system considered in this evaluation is the
NeuroLOG platform [Montagnat et al., 2008b]. NeuroLOG is a middleware federating
data and computational resources from collaborating neuroscience centers. The prime
objective of NeuroLOG is to adapt non-invasively to the legacy environments deployed
in each participating center, so that each site remains autonomous in the management of
its internal resources and tools, while benefiting from the multi-centric medical studies
support from the middleware. The NeuroLOG platform is a distributed system feder-
ating 5 neuroscience centers spread over France. Each center exposes a sensitive raw
medical data source accessible from the whole federation. On each site, the data source is
composed of raw medical image files, and description metadata linked to these files (in-
formation on image data acquisition, data content, neuropsychological tests associated to
images, etc) [Michel et al., 2010]. The source metadata is often represented and managed
in relational databases for historical reasons. The amount of data federated through the
platform and its sensitive nature disqualify centralized data warehousing approaches.

Blue components in Figure 8.6 sketch the architecture of the NeuroLOG middle-
ware. On each neuroscience site is deployed an independently managed legacy relational
database that is complemented by a NeuroLOG middleware database. The multi-centric
studies conducted by neuroscientists may be perceived under several facets [Gibaud
et al., 2011a], involving both the native relational data representation and a semantic
data representation enabling richer queries. The DataFederator commercial tool [SAP] is
used to dynamically federate relational data sources into a unified view. It can perform
SQL queries that are distributed over all platform data sources. It includes both a me-
diation layer that aligns heterogeneous relational databases schemas, and rewrite SQL

queries applying to the federated view to match the various source schemas. The data
mediation semantic alignment is based on a domain ontology, called ONTONEUROLOG
that was developed in the context of this project. A federated relational schema is de-
rived from OntoNeuroLOG, serving as the federated view schema. In addition to this
relational representation, a semantic representation of the same data sources was created
to enable richer querying features delivered by Semantic Web query engines. A central-
ized approach was adopted, where all relational data sources are mapped to RDF triples
(using the MetaMORPHOSES tool [Svihla and Jelínek, 2007]) and aggregated in a unique
semantic repository. The NeuroLOG platform thus exposes a dual view of the federation
metadata, enabling both dynamic SQL querying and static SPARQL querying. Although
very flexible, this system is also confusing for end users due to the dual view of all data
entities, and the semantic repository is subject to limitations of a static, centralized sys-
tem.

To overcome these issues, the NeuroLOG platform was extended in this experiment
with the KGRAM query engine introduced in section 4.2.1. Figure 8.7 sketches the
upgraded NeuroLOG middleware architecture with the KGRAM federated engine. A
KGRAM remote producer was deployed on top of each site legacy database. This end-
point exposes the site data content in RDF through its Producer. Depending on the site
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Figure 8.6: Data management layer of the initial NeuroLOG platform.

deployment option, it either interfaces directly to the site native relational database (op-
tion 1© in Figure 8.7), or accesses an RDF repository representation of this legacy database
(option 2©). It was performed through an ad-hoc converter able to transform inbound
triple pattern requests from the remote producer into corresponding SQL queries and
to map the SQL results to semantic entities. The site RDF repository was initially created
with MetaMORPHOSES and is accessed through KGRAM ’s native RDF remote producer.
Consequently, NeuroLOG ’s centralized RDF repository (from Figure 8.6) is not needed
anymore. This setting enables the unified querying of the RDF repositories and the plat-
form legacy relational databases through the SPARQL language. It solves the problems
associated to using a central repository by dynamically enabling direct access to the fed-
eration data sources, and distributing the query load over the federation data servers. It
proposes a single view over all data.

The NeuroLex knowledge base. NeuroLex [Imam et al., 2011], supported by The Neu-
roscience Information Framework (NIF7) and the International Neuroinformatics Coor-
dinating Facility (INCF8) is a dynamic Neuroscience Lexicon which describes 22,273 neu-
roscience terms (292 neurons and 940 brain parts, 151 spinal cord parts and 10 other parts
of the nervous system). It aims at delivering a standard lexicon for neuroscience entities,
covering their meaning and their classification, to address data integration issues gener-
ally faced in the neuroscience area.

In this Linked Data experiment, neuroimaging data from the NeuroLOG federation is
linked with neuroscience “open” knowledge capitalized through the NeuroLex initiative,

7http://www.neuinfo.org
8http://www.incf.org

http://www.neuinfo.org
http://www.incf.org
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Figure 8.7: Distributed semantic and relational metadata querying through the KGRAM federated engine.

allowing neuroscientists involved in the NeuroLOG federation to benefit from the Neu-
roLex lexicon and its semantic wiki interface. Thanks to KGRAM versatility, the Neu-
roLOG platform is easily extended with a new data source that exposes the NeuroLex
ontology. To bridge the two knowledge bases, an ad-hoc semantic alignment in which
all NeuroLOG datasets are annotated with the NeuroLex Label property corresponding
to their medical image modality has been implemented.

Query environments. In this experimental study, we compare three query environ-
ments using the NeuroLOG platform deployed in production. The first query environ-
ment (relational federation) only exposes heterogeneous relational databases, virtually inte-
grated through the DataFederator commercial middleware. It corresponds to the seminal
NeuroLOG platform deployment. Two other environments (semantic federations) expose
heterogeneous data sources virtually integrated through the KGRAM framework either
by dynamic access to the legacy databases (option 1©) or by static access to the site RDF

repository created from the legacy database (option 2©). In the following experiments,
we consider an environment named RDF semantic federation were all sites are configured
with option 2©. It corresponds to a modification of the NeuroLOG platform where the
central semantic repository is spread over all participating site. Finally, The SQL+RDF

semantic federation environment is completely heterogeneous, combining one relational
data source and other semantic data sources.

Typical queries. The query illustrated in Listing 8.3 below reflects a real clinical user
concern and is illustrative of the context of linked neuro-data distributed over collabo-
rating neuroscience research centers. Indeed, this query aims at searching for datasets
(acquired with Gadolinium contrast agent) associated to patients (join performed line 4)
in the context of multi-centric studies addressing the Multiple Sclerosis pathology.
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Listing 8.3: SPARQL query (Q1) aiming at retrieving patient study and dataset information in the
context of the Multiple Sclerosis disease.

1 SELECT distinct ?patient ?study ?dataset ?dsName WHERE {
2 ?dataset linguistic−expression:has−for−name ?dsName .
3 ?patient examination−subject:has−for−subject−identifier ?clinID .
4 ?patient iec:is−referred−to−by ?dataset .
5 ?study study:involves−as−patient ?patient .
6 FILTER (CONTAINS(?clinID, ’MS’) && CONTAINS(?dsName, ’GADO’)) }

Since two of the NeuroLOG partners are used to collaborate in the context of the
Multiple Sclerosis disease, they potentially host either target patient or dataset entities
which justify to transparently distribute the query over the federation.

During the evaluation of this typical query, all types of medical images will be
searched in order to match a “GADO” tag generally meaning that the Gadolinium con-
trast agent was used during image acquisition. But the evaluation of this query can be
considerably enhanced by exploiting clinical knowledge represented in an ontology. In-
deed Gadolinium is used in the context of magnetic resonance (MR) acquisitions (T1 or
T2 weighted MRIs for instance) but generally not in the context of any other modality (Ul-
trasound for instance). By exploiting this domain knowledge with KGRAM , the query
time can be seriously reduced since all non-MR datasets (such as Ultrasound datasets) are
excluded. To achieve this, the triple pattern (?dataset rdf:type dataset:MRDataset) should
be added to the query, which leads, under RDFS entailment, to less intermediate results
to be transferred, and an overall faster distributed query evaluation.

The following query from Listing 8.4 achieves the same clinical objective but makes
use of SPARQL Property Path expressions. This syntax aims at representing paths be-
tween two resources by only specifying, in the form of patterns, the sequence of manda-
tory, optional, reverse, or multiple repetition of properties linking the resources together.
It brings a high expressivity to SPARQL and it is particularly adapted in the context of
graph-based querying.

Listing 8.4: SPARQL 1.1 property path expressions to simplify the previous query (list. 8.3).

1 SELECT distinct ?patient ?study ?dsName WHERE {
2 ?patient iec:is−referred−to−by/linguistic−exp:has−for−name ?dsName .
3 ?patient examination−subject:has−for−subject−identifier ?clinID .
4 ?study study:involves−as−patient ?patient .
5 FILTER (CONTAINS(?clinID, ’MS’) && CONTAINS(?dsName, ’GADO’))
6 }

Queries involving path expressions cannot be easily expressed in SQL. It is thus diffi-
cult to implement it with traditional relational databases. As a full SPARQL 1.1 interpreter,
compliant with property path expressions, KGRAM allows performing such graph-based
information retrieval against SQL data sources, which would not have been possible with
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traditional SQL query engines.

Listing 8.5: SPARQL query exploiting the NeuroLex taxonomy for medical image modalities to search
imaging data provided through the NeuroLOG platform.

1 SELECT ?patient ?dataset ?dsName WHERE {
2 ?t property:Label \"MRI protocol\"^^xsd:string .
3 ?s rdfs:subClassOf∗ ?t .
4 ?s property:Label ?label .
5 ?dataset property:Label ?label .
6 ?dataset linguistic−expression:has−for−name ?dsName .
7 ?patient iec:is−referred−to−by ?dataset .
8 }

Figure 8.5 illustrates a SPARQL query which firstly lists all NeuroLEX subclasses of
MRI protocol and their associated label, and secondly exploits these labels to search for
relevant medical images, and their corresponding patients provided by the distributed
NeuroLOG data providers. We could easily imagine that the variety of neuroscience
ontologies do not share the same modeling objectives. Some may focus on particular
pathologies, others may focus on neuro-data processing. In that context, and beyond
the neuroscience area, the KGRAM framework provides a transparent mean to query
distributed and heterogeneous data sources while potentially benefiting from several on-
tologies.

Linked data reasoning and querying framework Distributed querying and reasoning
performed in this experiment are supported by the distributed querying strategies pro-
posed in chapter 4 and by the KGRAM extension proposed in section 7.3.

KGRAM comes with a default implementation of its Producer interface for RDF

sources. To seamlessly cope with querying data sources exposed as RDF or as tradi-
tional relational data, we provide KGRAM with a mediation capability aiming at query-
ing legacy relational databases with SPARQL queries. We developed an implementation
of KGRAM Producer for handling relational data as follows. From a triple pattern form-
ing the initial SPARQL query, this producer is able to generate on-the-fly a corresponding
SQL query. The result of such a query is a set of tuples which are mapped to the variables
of the original SPARQL query to build result graph triples.

The query illustrated in Listing 8.6 consists in constructing relations between ?patient

and ?dataset variables through the iec:is-referred-to-by property. But this property is not ex-
plicit in the relational database. We consecuently perform an SQL query over the Dataset

table (lines 5 and 6) to find the identifier of datasets associated to the patient IRISA-SS-

7. The two selected fields are then mapped to the ?x and ?y SPARQL variables (line 7).
Finally, ?patient and ?dataset resource URIs are reconstructed with a prefix and the value
obtained through ?x and ?y from the relational database (line 8 and 9).

To benefit from intermediate results gathered from contributing remote data sources,
we also implemented a bind join optimization strategy dedicated to relational data
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Listing 8.6: Nested SQL query into an extended SPARQL query.

1 CONSTRUCT {
2 ?patient iec:is−referred−to−by ?dataset
3 } WHERE {
4 {SELECT sql(<jdbc:mysql://db>, <jdbc.Driver>,’user’, ’password’,
5 "SELECT Dataset.subject_id, Dataset.dataset_id FROM Dataset
6 WHERE Dataset.subject_id LIKE ’IRISA−SS−7’ ") as (?x, ?y)
7 uri(concat("http://prefix#subject−",?x)) as ?patient
8 uri(concat("http://prefix#dataset−",?y)) as ?dataset WHERE {}}
9 }

sources. Indeed through a template SQL query, we dynamically generate value constraint
such as the LIKE clause, thus limiting the amount of transferred results, directly from the
data source.

8.3.2 Results and discussion

Distributed querying over structurally heterogeneous knowledge bases. This exper-
iment – and its distributed setup illustrated in Figure 8.7 – shows how the distributed
querying strategies developed in chapter 4 allow querying the knowledge bases of 4 dis-
tributed collaborating neuroscience centers through SPARQL 1.1. It additionally shows
the feasibility of dynamically mediating heterogeneous knowledge bases, namely RDF

and SQL repositories, thus providing virtual data integration overcoming common is-
sues encountered in data warehousing approaches such as periodic synchronization or
fault tolerance. Finally, contrary to the SPARQL 1.1 federation extension which needs
explicit distribution directives (Service clauses), the proposed federation mechanism is
transparent with respect to the initial SPARQL queries since no hypothesis are made at
query design-time on the content of the distributed data sources.

Performance. Table 8.7 compares the distributed query processing times of the relational
federation (using DataFederator) and both semantic federations (RDF and RDF +SQL ) using
KGRAM . Query Q1 corresponds to Listing 8.3 and query Q2 searches for datasets ac-
quired through the T2-weighted MRI modality. Q2 leads to only 5 results and is thus,
a very selective query. To be robust against variability observed in real distributed sys-
tems, results are averaged over three query runs. The average query execution time± one
standard deviation is displayed in table 8.7. It shows that for Q1, leading to 336 remote
invocations, the query times are better with the optimized SQL federation engine than
with the semantic federation, but it remains in the same order of magnitude. For very
selective queries such as Q2, we observe comparable query times for all environments.

Expressive queries and reasoning capabilities. When using a knowledge based sys-
tem, such as the proposed KGRAM federated engine, to query heterogeneous data
sources, query designers possibly benefit from inferences based on domain knowledge:
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Semantic federation Relational federation
RDF RDF+SQL SQL

Q1 6.13 s ± 0.05 11.76 s ± 0.05 3.03 s ± 0.25
Q2 0.60 s ± 0.03 1.53 s ± 0.14 1.52 s ± 0.62

Table 8.7: Comparison of the KGRAM distributed query processing with the DataFederator commercial tool
achieving relational federated querying.

KGRAM implements the RDFS entailment regime (subsumption between classes or prop-
erties), and other inferences based on algebraic properties like the transitivity or symme-
try of properties and inverse properties. It thus provides a richer query interface to legacy
databases participating into the federation, compared to traditional SQL query engines.

In addition, in the context of collaborative platforms exposing legacy relational
databases, we argue that the design of queries is more intuitive through knowledge-
based languages such as SPARQL than through traditional relational languages such as
SQL. Indeed, the navigation through links between entities is explicit in SPARQL but it is
implicit in SQL and generally requires intermediate joins. Listing 8.7 illustrates the SQL

query corresponding to the SPARQL query of Listing 8.3.

Listing 8.7: An SQL translation of the previous sample SPARQL query (fig. 8.3).

1 SELECT Subject.subject_id, Subject.subject_common_identifier, Dataset.name
2 FROM Study, Subject, Dataset, Rel_Subject_Study WHERE
3 Rel_Subject_Study.Subject_subject_id = Subject.subject_id AND
4 Rel_Subject_Study.Study_study_id = Study.study_id AND
5 Dataset.Subject_subject_id = Subject.subject_id AND
6 Subject.subject_common_identifier LIKE ’%MS%’ AND
7 Dataset.name LIKE ’%GADO%’

Whereas joins are naturally expressed in the SPARQL query (line 4 of Listing 8.3), it is
not the case in SQL since a join table may be needed (Rel_Subject_Study table, line 3) and
must be explicit (line 3, 4 and 5). This definitely complicates the query design, generally
considered as a complex, error-prone, and time consuming activity.

Knowledge sharing By allowing the NeuroLOG federation to benefit from other mod-
eling initiatives such as the NeuroLex neuroscience lexicon, we show that, after a se-
mantic alignment, it is possible to exploit NeuroLOG datasets by reasoning on NeuroLex
concepts. Even if this experiment from a clinical application point of view, does not show
a real added valued – mainly because a similar query than Listing 8.5 would have been
possible by exploiting exclusively the OntoNeuroLOG ontology – it opens new perspec-
tives in the fields of semantic interoperability and translational research.

Indeed, if we consider the situation of a new partner site reaching the NeuroLOG
platform. This partner may already have achieved a significant modeling effort result-
ing in a specific ontology, namely Ontonew, addressing for instance the conceptualization
of a specific pathology, with the related data processing tools and datasets. With the
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proposed distributed querying framework, it would be possible to seamlessly query the
NeuroLOG federation and the new partner knowledge base, before a full semantic in-
tegration of Ontonew into the OntoNeuroLOG modeling framework. However, the pro-
posed approach would require a lightweight integration. This integration step would
consists in bridging the data of the new site with concepts of the OntoNeuroLOG ontol-
ogy to search for the new data source through the OntoNeuroLOG concepts, or bridging
the data of the NeuroLOG federation with the concepts of Ontonew, to immediately ben-
efits from Ontonew at the scale of the NeuroLOG federation.

Linked Data querying also opens new opportunities in the field of translational re-
search to the NeuroLOG federation. We could easily imagine a scenario where some
medical images provided by a clinical partner are accompanied with patient genetical
information. The NeuroLOG platform could thus be extended with a connection to a
SPARQL endpoint on top of the the GenBank9 which provides annotated DNA sequences.
New SPARQL queries could finally be designed to search for neuroimaging resources by
providing genetical criterions.

To summarize, this experiment brings the following results:

• Efficient distributed query processing through the SPARQL 1.1 Semantic
Web language ;

• Transparent distributed query processing, since no hypothesis are made at
query design time on the content of data sources, and consequently no direc-
tives are needed to send subqueries to a particular data source ;

• Dynamic mediation over structurally heterogeneous graph-based and rela-
tional knowledge bases ;

• Expressive distributed querying supporting both property path expressions
and RDFS entailment regime ;

• Knowledge sharing through Linked Data querying opportunities for the Neu-
roLOG platform (eased integration of new partners).

9http://www.ncbi.nlm.nih.gov/genbank

http://www.ncbi.nlm.nih.gov/genbank
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8.4 A real-life medical imaging simulation workflow: semantic
mash-up experiment to infer meaningful experiment sum-
maries

The VIP project10 is a french initiative dedicated to multi-modal and multi-organ medical
image simulation [Forestier et al., 2011a] [Glatard et al., 2013]. Integrating several med-
ical image simulators and anatomical models into a unique platform raises challenging
interoperability issues. A semantic approach has been adopted to tackle interoperabil-
ity and to enhance the reusability of simulator components, anatomical models and the
resulting simulated data. To assist users in the setup of new simulation experiments
(simulation workflows) or in the parametrization of existing simulators, the system re-
lies on knowledge bases describing the simulation models, simulation components, and
simulated data involved.

The enactment of simulation workflows produces large amounts of heterogeneous
data. Some of it is intermediate data, necessary to achieve a precise step of the simulation
workflow while the other part, the resulting simulated data, represents a real interest
for end-users. But the size and the diversity of the produced data makes it difficult to
comprehend from the end-user perspective. Moreover, in the case of a failure during
an experiment, or when abnormal results are observed, it can really be challenging to
identify the causes of failures or abnormalities.

In the following experiment, we exploit (i) bridges, developed in chapter 6, between
scientific workflow environments and community knowledge, and (ii) distributed query
processing strategies proposed in chapter 4, to cope with issues commonly faced by the
clinical communities when performing complex medical imaging experiments through
scientific workflows enacted over large-scale distributed infrastructures.

More precisely, we propose in this experiment to track workflow provenance for one
of the four medical image simulation workflows of the VIP platform. This aims at en-
hancing the overall quality of simulation workflows executed through the VIP infras-
tructure. Quality covers here both a technical concern – allowing for workflow designers
and experiment operators, to more easily determine the cause of failure or abnormalities
– and a reliance concern making scientists more confident in the data produced through
their experiments, since the reproducibility of simulation experiments is made easier and
data lineage can be controlled.

We also show in this experiment that provenance information, recorded from work-
flow runs, can be considered as a raw technical material to infer new domain-specific
knowledge based on the VIP ontology. These inferences can consequently automate the
semantic annotation of data produced through workflow runs. The resulting inferred
meaningful statements can then be seen as “semantic experiment summaries” in which a
minimal set of statements link together simulation experiment results to experiment pa-

10funded by the French National Agency for Research under grant ANR-09-COSI-03
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rameters (or data processing services) through a dedicated vocabulary (the VIP ontology)
originating from the end-users community (the VIP project partners).

We implemented this experiment in a distributed setup which differs slightly
from the original VIP platform setup. Indeed, whereas semantic data is centralized
under the VIP portal, we propose here to fragment the provenance data over two
provenance data sources. This choice is motivated by the fact that in general, e-science
workflow environments perform remote invocations for each of their constituting data
processors, and data processor invocations are relocated on a dedicated computing unit
or infrastructure. We could thus easily consider that execution traces are generated
locally to the computing unit, and the overall provenance data is constituted from these
fragmented and distributed execution traces. In addition we consider in a third data
source a semantic service registry that exposes semantic service descriptions involved in
inference rules.

This experiment addresses the following three objectives :

• Tracking of data provenance to enhance quality, considering both technical
quality (engineers) and data quality (scientist end-users) ;

• Inferring new domain-specific knowledge through workflow runs, and thus
automating the semantic annotation of workflow results finally provide
meaningful experiment summaries ;

• Addressing provenance in scientific workflows as distributed linked data.

8.4.1 Materials and methods

Sorteo simulation workflow. Sorteo [McLennan et al., 2009] is a Monte Carlo-based
medical image simulator dedicated to the production of synthetic Positron Emission To-
mography (PET) data.

The SORTEO simulation workflow is presented in Figure 8.8. Blue boxes represent
both compute intensive activities whose executions are relocated on dedicated comput-
ing infrastructure, the EGI grid, and lightweight activities executed locally, by the work-
flow engine. Green ellipses represent input or output data. Intermediate data transiting
over the workflow are not represented in the diagram, but are present through data flows
(black arrows in the diagram).

The main inputs are the protocol, storing all simulation parameters, and the phantom
representing the object model to be virtually imaged. The SORTEO simulation workflow
produces a single output, a sinogram11, representing the simulated PET data.

The core of the simulation consists in two steps:

(i) the parallel computation of “singles” through the sorteoSingles activity ;

11A sinogram represents the information of a single slice under all angles of projection, and a projection
represents the information from all slices, but for a fixed angle.
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(ii) the parallel computation of the “emissions” through the sorteoEmission activity.

parseTextProtocol

compileProtocole generateJobs

sorteoSingles

sorteoEmission

Lmf2RawSino

phantom protocol

sinogram

Figure 8.8: Simplified graphical repre-
sentation of the SORTEO PET medical
image simulation workflow.

The remaining activities can be considered either
as pre-, or post-processing steps, needed to assemble
simulation parameters, or to convert data throughout
the simulation workflow.

Instrumented workflow enactor. In this experiment,
we rely on the MOTEUR-S workflow engine as briefly
presented in section 7.2.2. MOTEUR-S stands for a “se-
mantized” extension of the original MOTEUR work-
flow engine through two plugins: a semantic prove-
nance plugin and a semantic service annotator and
catalog.

The semantic provenance plugin is responsible for
on-the-fly tracking of provenance information. For
each invocation of a single processing step, OPM state-
ments describing the Process, the input and output Ar-
tifacts, and their UsedBy or WasGeneratedBy causal de-
pendencies are generated and persisted through the
NEUSEMSTORE semantic repository introduced in sec-
tion 7.2.

The semantic service annotator and catalog plugin
is responsible for the annotation and the cataloguing
of services involved in Moteur workflows. The service catalog helps in inferring new
meaningful experiment summaries since semantic service annotations are necessary to
perform inferences over workflow runs. Services are semantically described through the
following annotations clearly making the distinction between the nature and the role of
parameters as proposed in chapter 6.

• Functionality: describes the class of action realized by a service invocation.

• Parameter nature: describes the intrinsic nature of the input or output service pa-
rameters.

• Parameter role: describes how a parameter is related to the service. This role aims at
disambiguating the service annotation because in some cases, several parameters
may share the same nature but are interpreted differently from the service perspec-
tive.

Once annotated, the service descriptions are uploaded to the service catalog. The ser-
vice catalog is part of the NeuSemStore framework, and allows graphically navigating
into classified services, sorted by functionality. More selective service searches might be
performed through dedicated SPARQL queries.
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Provenance semantic annotations. The following listings illustrate in TURTLE12 syntax,
the main provenance statements describing the invocation of the last processing step of
the workflow.

Listing 8.8: OPM statements describing the Lmf2RawSino process invocation.

<http://neurolog.techlog.anr.fr/processingtoolexec#LMF2RAWSINO−a2a7c751949f40bbb06b0136033ff919>
a <http://purl.org/net/opmv/ns#Process> ;
rdfs:comment "LMF2RAWSINO"^^<http://www.w3.org/2001/XMLSchema#string> ;
<http://openprovenance.org/model/opmo#account>

<http://neurolog.techlog.anr.fr/processingtoolexec#workflow−38979af8272641d0b4564bed91df48c5>

Listing 8.8 illustrates the registration of the invocation of the Lmf2RawSino
process. An instance of the Process class is created with the following URI,
http://neurolog.techlog.anr.fr/processingtoolexec#LMF2RAWSINO-a2a7c751949f40bbb06b0136033ff919, con-
structed from a prefix, the name of the workflow processor and a uniform unique
identifier (UUID). Additionally, this process invocation is attached to an OPM Account,
which represents the overall workflow invocation. Note that all OPM Artifacts and
Processes registered through a single workflow invocation are also attached to an OPM
Account.

Listing 8.9: OPM statements describing the WasGeneratedBy dependency between the output sino-
gram and the Lmf2RawSino process.

<http://openprovenance.org/ontology#WasGeneratedBy−703fe5fdc1784923bcf90d2f5db12bac>
a <http://openprovenance.org/model/opmo#WasGeneratedBy> ;
<http://openprovenance.org/model/opmo#account>

<http://neurolog.techlog.anr.fr/processingtoolexec#workflow−38979af8272641d0b4564bed91df48c5> ;
<http://openprovenance.org/model/opmo#cause>

<http://neurolog.techlog.anr.fr/processingtoolexec#LMF2RAWSINO−a2a7c751949f40bbb06b0136033ff919> ;
<http://openprovenance.org/model/opmo#effect>

<http://openprovenance.org/ontology#Artifact−62eb46e9c8f74c43bd04bd370480a871> ;
<http://openprovenance.org/model/opmo#role>

<http://openprovenance.org/ontology#Role−c41b0ed5768d427f84e8a0cab0707833> ;
<http://openprovenance.org/model/opmo#time>

<http://openprovenance.org/ontology#OTime−6dc8f61c7ea24c6fa96e7a3bd6193cc5> .

Listing 8.9 illustrates the causal “data production” dependency registered between
the previous Lmf2RawSino process invocation and the output sinogram. This depen-
dency is represented by an instance of the WasGeneratedBy OPM class and is identified
similarly to processes. This instance is linked to both the process invocation through the
cause OPM property, and the Artifact describing the output sinogram through the effect
OPM property. In addition, the process input or output ports are described through the
role OPM property linking together the data dependency and an instance of the OPM Role
class which corresponds to the label of the process input or output port. Finally, the data

12TURTLE provides a textual syntax for RDF and enhances the readability of RDF documents,
http://www.w3.org/TeamSubmission/turtle

http://www.w3.org/TeamSubmission/turtle
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production is timestamped through the OPM time property towards an instance of the
OPM OTime class.

Listing 8.10: OPM statements describing the sinogram produced as an output of the Lmf2RawSino
process.

<http://openprovenance.org/ontology#Artifact−62eb46e9c8f74c43bd04bd370480a871>
a <http://purl.org/net/opmv/ns#Artifact> ;
<http://openprovenance.org/model/opmo#account>

<http://neurolog.techlog.anr.fr/processingtoolexec#workflow−38979af8272641d0b4564bed91df48c5> ;
<http://openprovenance.org/model/opmo#avalue>

<http://openprovenance.org/ontology#AValue−e856c3dbad6a48ddad6707d863e86ae3> .

<http://openprovenance.org/ontology#AValue−e856c3dbad6a48ddad6707d863e86ae3>
a <http://openprovenance.org/model/opmo#AValue> ;
<http://openprovenance.org/model/opmo#account>

<http://neurolog.techlog.anr.fr/processingtoolexec#workflow−38979af8272641d0b4564bed91df48c5> ;
<http://openprovenance.org/model/opmo#content>

"lfn://lfc−biomed.in2p3.fr/grid/biomed/creatis/vip/data/users/rafael_silva/sorteo−2/
24−01−2012_10:13:30/dataLMF.ccs.sino"^^<http://www.w3.org/2001/XMLSchema#anyURI> .

Finally listing 8.10 describes the OPM Artifact corresponding to the output sinogram
of the Sorteo PET simulation workflow. An Artifact instance is created. It has already
been attached to the WasGeneratedBy causal dependency through the effect property of
the previous listing. An Artifact is an abstract entity and OPM allows for associating
their concrete values. The Artifact is thus linked to an instance of the AValue OPM class
through the avalue property. Finally a content is associated to the value through the OPM
content property. This content finally gives the logical file name (LFN) of the sinogram, an
URI locating the data on the EGI grid infrastructure. Data might be later on downloaded
through a dedicated data transfer interface13.

Figure 8.9: A screenshot of the full OPM graph tracked through the invocation of the Sorteo workflow.

Figure 8.9 and Figure 8.10 provide graphical representations14 for the provenance
graph of a single invocation of the Sorteo workflow. While figure 8.9 represents the

13by using the GLite user interface for instance.
14the graphical representations have been generated through the Gephi [Bastian

et al., 2009] visualization tool (https://gephi.org) and the semantic web import plugin
(https://gephi.org/plugins/semanticwebimport).

https://gephi.org
https://gephi.org/plugins/semanticwebimport
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full graph composed of 4523 nodes and 15154 edges, figure 8.10 represents a simpli-
fied graph in which some nodes have been removed such as the unique instance of
the OPM Account allowing to retrieve all instances generated in the context of a sin-
gle workflow execution. from this simplified graph we can distinguish two main nodes
http://moteur.processor/sorteo_singles and http://moteur.processor/sorteo_emissions which correspond to ser-
vices with a large number of invocations.

Figure 8.10: A filtered OPM provenance graph with removed rdf:type properties for the main OPM classes
such as Artifact, Used, WasGeneratedBy, etc.

Due to its fine granularity and its size, the OPM model leads to complex graphs in-
volving large amounts of generic and technical elements. Interpreting these OPM graphs
is difficult. To address this issue, we segmented the produced semantic annotations
through two distinct semantic repositories. First, a short-term repository, aiming at tem-
porarily storing OPM statements, as the necessary input data to infer new meaningful
statements. Second, a long-term repository, aiming at permanently storing the new state-
ments resulting from inferences involving domain-specific entities provided by the VIP
ontology.

Distributed provenance data. We propose in this experiment a slightly different setup,
compared to the original VIP platform, in which we consider distributed data sources.
We will compare in the results of this experiment the performance of the inference engine
in both a centralized and a distributed setup.

The first semantic repository corresponds to the service registry, hosting the semantic
service descriptions of the processors involved in the Sorteo simulation workflow. The
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two other repositories store each half of the OPM provenance statements (7.5K statements
each). Provenance statements have been split manually without any consideration on
their nature. Each provenance repository is homogeneous in the sense that the same
kind of OPM instances or properties may be present in the two repositories.

Each of the three semantic repositories are exposed through a SPARQL Endpoint de-
ployed in an Apache Tomcat 6 server hosted in three nodes of the Suno cluster of the
Grid’5000 infrastructure. An additional node is reserved to perform distributed query-
ing.

Linked data reasoning and querying framework. The distributed querying of this ex-
periment is performed through the KGRAM extension proposed in section 7.3 and ben-
efits from the optimization strategies proposed in chapter 4. Thanks to the genericity of
KGRAM, our implementation of a distributed Producer leverages the pre-existing query
and forward-chaining inference engine, to finally perform distributed linked data rea-
soning and querying in a reasonable amount of time, over both provenance information
and service descriptions.

Inferring meaningful statements from distributed provenance. To achieve objective,
we propose the inference rule illustrated in Listing 8.11 through a CONSTRUCT SPARQL
query. Its WHERE clause corresponds to the antecedent of the rule (an “If” condition) and
its CONSTRUCT clause corresponds to the consequent of the rule (a “Then” consequence)
where the new meaningful statements are created, involving classes and properties de-
fined in the VIP ontology.

• Lines 29 to 32 identify a process invocation, its corresponding service description
through an ?agent instance, and the achieved class of action through the iec:refers-to
property. In this rule, the class of action is an image reconstruction.

• Lines 33 to 34 identify the output Artifact (?out) through an instance of the Was-
GeneratedBy causal dependency (?wgb). This dependency is linked to the Pro-
cess (?x) through an opmo:cause property, and to the output Artifact through an
opmo:effect property. The value and content are associated to the Artifact through
the opmo:avalue and the opmo:content properties (lines 66 to 67).

• Lines 36 to 39 identify a process invocation realizing a parameters generation action,
similarly to lines 9 to 13.

• Lines 41 to 48 identify, the Artifacts (and their associated values) used as input of a
process invocation realizing a parameters generation action. Additionally, the ?role
characterizing how the Artifact has been used by the process is identified. It allows
to technically identify the parameters in the semantic service description associated
to the process (line 47 and 48).
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Listing 8.11: Inference rule based on a Sparql CONSTRUCT query to associate the input phantom to
the produced output sinogram resulting from an invocation of the Sorteo simulation workflow.

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
3 PREFIX opmo: <http://openprovenance.org/model/opmo#>
4 PREFIX opmv: <http://purl.org/net/opmv/ns#>
5 PREFIX ws: <http://www.irisa.fr/visages/team/farooq/ontologies/web−service−owl−lite.owl#>
6 PREFIX iec: <http://www.irisa.fr/visages/team/farooq/ontologies/iec−owl−lite.owl#>
7
8 PREFIX vip−model: <http://vip.cosinus.anr.fr/vip−model.owl#>
9 PREFIX vip−simulation: <http://vip.cosinus.anr.fr/vip−simulation.owl#>

10 PREFIX vip−simulated−data: <http://vip.cosinus.anr.fr/vip−simulated−data.owl#>
11
12 CONSTRUCT {
13 ?inPhantom rdf:type vip−model:medical−image−simulation−object−model
14 ?inPhantom vip−model:is−stored−in−file ?cInPhantom
15
16 ?inProtocole rdf:type vip−simulation:simulation−parameter−set
17 ?inProtocole vip−model:is−stored−in−file ?cInProtocole
18
19 ?out vip−model:derives−from−model ?inPhantom
20 ?out vip−simulation:derives−from−parameter−set ?inProtocole
21 ?out rdf:type vip−simulated−data:PET−sinogram
22 ?out vip−model:is−stored−in−file ?cOut
23 ?out vip−simulation:is−a−result−of−at ?wf
24
25 ?wf rdf:type vip−simulation:PET−simulation
26 ?wf vip−simulation:uses−as−model−in−simulation ?inPhantom
27 ?wf vip−simulation:uses−as−parameter−in−simulation ?inProtocole
28 } WHERE {
29 ?agent (iec:refers−to/rdf:type) <http://vip.cosinus.anr.vip.fr/vip−simulation.owl#image−reconstruction−simulator−component> .
30 ?wcb opmo:cause ?agent .
31 ?wcb opmo:effect ?x .
32 ?x rdf:type opmv:Process .
33 ?wgb opmo:cause ?x .
34 ?wgb opmo:effect ?out .
35
36 ?agent2 (iec:refers−to/rdf:type) <http://vip.cosinus.anr.vip.fr/vip−simulation.owl#parameters−generation−simulator−component> .
37 ?wcb2 opmo:cause ?agent2 .
38 ?wcb2 opmo:effect ?y .
39 ?y rdf:type opmv:Process .
40
41 ?used1 opmo:cause ?inPhantom .
42 ?used1 opmo:effect ?y .
43
44 ?used2 opmo:cause ?inProtocole .
45 ?used2 opmo:effect ?y .
46
47 ?used1 opmo:role/rdfs:label ?techRolePhantom .
48 ?used2 opmo:role/rdfs:label ?techRoleProtocole .
49
50 ?agent2 ws:has−input ?inPortPhantom .
51 ?inPortPhantom (iec:refers−to/rdf:type) <http://vip.cosinus.anr.fr/vip−model.owl#geometrical−phantom−object−model> .
52 ?inPortPhantom rdfs:comment ?techRolePhantom .
53
54 ?agent2 ws:has−input ?inPortProtocole .
55 ?inPortProtocole (iec:refers−to/rdf:type) <http://vip.cosinus.anr.fr/vip−model.owl#quality−procedure−dataset> .
56 ?inPortProtocole rdfs:comment ?techRoleProtocole .
57
58 ?x opmo:account ?wf .
59
60 ?inPhantom opmo:avalue ?vInPhantom .
61 ?vInPhantom opmo:content ?cInPhantom .
62
63 ?inProtocole opmo:avalue ?vInProtocole .
64 ?vInProtocole opmo:content ?cInProtocole .
65
66 ?out opmo:avalue ?vOut .
67 ?vOut opmo:content ?cOut .
68 }
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• Lines 50 to 56 finally join the service description of (?agent2) to the process invo-
cation (?y) through the label associated to the input port (?role), this input port
referring to a geometrical phantom (lines 51 and 52).

To summarize, the elements involved in this experiment are the (i) the Sorteo simula-
tion workflow, (ii) generic fine-grained RDF statements describing data provenance for a
single workflow invocation, (iii) semantic service annotations, describing the main pro-
cessors of the Sorteo workflow by using the VIP ontology, and (iv) an inference rule using
both provenance and service description annotations to produce new meaningful state-
ments thus providing to end-users a “semantic experiment summary” based on classes
and properties of the VIP ontology.

8.4.2 Results and discussion

Semantic experiment summaries The main result of this experiment is a set of new
meaningful statements inferred from the execution of a medical image simulation exper-
iment. These new statements provide a high-level, and concise “semantic experiment
summary”. We consider the experiment summary as a high-level description since it
only involves domain-specific classes and properties defined in the VIP ontology, com-
pared to the generic and technical entities provided by the OPM provenance ontology.
We also consider the experiment summary as concise since only 7 statements might be
produced, compared to the 15 thousand statements produced through the Moteur OPM
provenance plugin.

Simulation workflow 
run

phantom protocol

sinogram

derives-from-model

derives-from-parameter-set

PET-Sinogram
is-a

PET-Simulation

rdf:type

PET-simulation-
compatible-model

rdf:type is-a

Simulation

is-a-result-of-at

Parameter-set

rdf:type

is-a

Simulated-data

Figure 8.11: New inferred meaningful statements (dashed arrows) constituting the semantic experiment
summary.
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Figure 8.11 illustrates the experiment summary resulting from the invocation of the
Sorteo medical imaging workflow. Green ellipses represent input or output data, the blue
ellipse represents the Sorteo workflow shown as a “black box”, and red rectangles rep-
resent VIP ontology classes. The inference rule presented in Listing 8.11 only automates
the semantic annotation of the output sinogram and the corresponding input phantom,
but it could easily be extended to also annotate the input protocol and the overall sim-
ulation execution as it is shown here in the experiment summary. Dashed green arrows
represent the new inferred statements. For instance, the output sinogram is related to its
corresponding input phantom through the vip:has-for-phantom property (Listing 8.11, line
6). The nature of the sinogram is also determined through the is-a property towards the
VIP class PET-Sinogram (Listing 8.11, line 5).

Usability and quality. The approach considered in this experiment aims at enhanc-
ing the usability of data produced through e-Science workflows, and precisely medical
imaging workflows in the context of the VIP platform. Both usability and quality are
considered here. Workflow designers can exploit raw fine-grained OPM provenance in-
formation while designing and debugging workflows. But due to its size and genericity,
it is not aimed at being directly exploited by scientists. Through the proposed “semantic
experiment summaries” we aim at enhancing the confidence of scientists in the quality
of their e-Science experiments by providing concise domain-specific annotations describ-
ing the produced data (nature and role) and coarse-grained relations between the data
produced and the experiment parameters.

Performance of inferences over distributed data sources. The experiment was run on
the Grid’5000 experimental infrastructure to compare a distributed and a centralized
setup. Results from table 8.8 were obtained through 3 consecutive runs to avoid the
variability observed in a real distributed infrastructure. Results show that although the
performance is better when all semantic annotations are loaded into a single KGRAM en-
gine, inferences performed against 3 distributed data sources are performed in less than
0.5 second, which is very acceptable in the context of real medical imaging workflows
producing large amounts of provenance statements, possibly distributed.

Distributed inferencing Centralized inferencing
mean (ms) ± std. deviation 489 ± 2 185.3 ± 6.8

Table 8.8: Performance evaluation of inference

However, the design of inference rules is an important issue since a non-expert user
may produce very ineffective inference rules, in spite of the optimization strategies pro-
posed in chapter 4. For instance, if we come back to the inference rule (Listing 8.11)
proposed, we could imagine that a query designer proposes a suboptimal rule by re-
ordering the triple patterns. Listing 8.12 illustrates the reordered triple patterns aiming
at identifying process invocations which realize an image reconstruction action.
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Listing 8.12: Reordered triple patterns corresponding to lines 9 to 13 of the listing 8.11

1 ?x rdf:type opmv:Process .
2 ?wcb opmo:effect ?x .
3 ?wcb opmo:cause ?agent .
4 ?agent (iec:refers−to/rdf:type)
5 <http://vip.cosinus.anr.vip.fr/vip−simulation.owl#image−reconstruction−simulator−component> .

This order is ineffective since a lot of candidates are retrieved from the first line. In-
deed, the KGRAM engine enumerates all process invocation without making any selec-
tion. The results space is reduced only at line 4 where candidate process invocations
are joined through an agent responsible for a specific class of action (image reconstruc-
tion). The triple pattern order is even more important in a distributed scenario because
all candidate results are communicated from the distributed data sources. We similarly
reordered lines 9 to 13 and lines 19 to 23 and re-run the inference against the three data
sources deployed on the Grid’5000 infrastructure. We measured 10.8 s ± 0.8 which is ap-
proximately 20 times longer than with the order proposed in the original inference rule.
This can be explained because the service catalog only exposes a single service realizing
an image reconstruction action, and the following triple pattern requests are successively
joined with few intermediate results, thus leading to a short evaluation time.

Reusability of inference rules. Since the order of the triple patterns forming the in-
ference rules has a huge impact on performance, their design is crucial and thus rules
should be as much as possible reused. This is made possible by the loose coupling be-
tween inference rules and technical provenance information. Indeed service parameters
are not identified by their technical label (which depends on the service implementation),
but through their semantic annotations. In this way, as soon as two services, with two
different implementations, are described with the same semantic annotations, the same
inference rule can be applied for the two service invocations.

By designing inference rules exploiting the right abstraction level in a subsumption
hierarchy, we enhance the rule reusability. Figure 8.12 illustrates an updated version
of the Sorteo workflow where the last process, Lmf2RawSino_v3, in purple, is an up-
dated version of the original Lmf2RawSino. We consider that its implementation is com-
pletely different, technical parameters may have changed, but the functionality is still
the same. Since the semantic description of Lmf2RawSino_v3 is subsumed15 by the se-
mantic description of Lmf2RawSino, and the inference rule involves semantic description
of Lmf2RawSino, the same inference rule can be applied to also annotate the results of
Lmf2RawSino_v3 and thus, to similarly produce “semantic experiment summaries” for
the updated version of the Sorteo workflow.

To conclude on reusability, a same inference rule can be reused for several service
implementations realizing the same objectives. However, specific inference rules may be

15we consider that the whole semantic description of a service Schild is subsumed by its parent service
Sparent if the functionality and all parameter annotations of Schild are subsumed by Sparent.



8.4. A real-life medical imaging simulation workflow: semantic mash-up experiment
to infer meaningful experiment summaries 189

parseTextProtocol

compileProtocole generateJobs

sorteoEmission
Lmf2RawSino

phantom protocol

sinogram

Lmf2RawSino_v2 Lmf2RawSino_v3

sorteoSingles

subsumedBy subsumedBy

Figure 8.12: Updated Sorteo workflow involving a refined Lmf2RawSino service.

created for each simulation workflow because the expected “semantic experiment sum-
mary” are supposed to differ. But template rules could be proposed to rule designers,
based on the original rule (Listing 8.11). Indeed, since workflow input/outputs are iden-
tified in the same way for all simulation workflows, rule designers could only “tune” the
template rule by informing the adequate nature/role of data and the specific functional-
ity of processes based on the VIP ontology.

Scalability. Since technical fine-grained OPM provenance information is useful at
workflow design-time and workflow debug-time, it is temporarily stored in a short-term
semantic repository. To perform inferences, only the provenance information related to
a single invocation, and the service descriptions are needed. We finally store in a long-
term repository, the few meaningful statements composing the “experiment summary”.
In this experiment, only 7 statements form the experiment summary are inferred when
more than 15 thousand statements are recorded through the Moteur OPM provenance
plugin. As an illustration, Figure 8.13 represents the content of the VIP long-term repos-
itory storing the meaningful experiment summaries. 118 medical image simulations are
summarized with 2656 RDF triples based on the VIP domain ontology. This graphical
representation has to be compared with Figure 8.9 and Figure 8.10 representing the fine-
grained technical provenance information for a single simulation.

The scalability is finally guaranteed by (i) the materialization of very few inferred
statements, and (ii) the periodic removal of fine-grained technical OPM provenance
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Figure 8.13: Graphical representation of 118 medical image simulations (launched during a single week).
Only 2656 triples summarize 118 medical image simulations while more than 15000 provenance triples were
stored for a single simulation (see Figure 8.9).
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information.

The results of this medical image simulation experiment are summarized trough the
following facets:

• Performance: inference times in a same order of magnitude for both the cen-
tralized and the distributed scenarios ;

• Modeling: distinction between nature and role of service parameters in se-
mantic service annotations ;

• Scalability: materialization of few meaningful statements, and “clean up” of
verbose fine-grained technical provenance ;

• Versatility: no data-warehousing to infer over distributed provenance and
service registries ;

• Usability: experiment summaries and reusable inference rules.
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8.5 Conclusion

This chapter proposes three experimental studies to assess the benefits of federated
approaches to address distributed knowledge sharing and production, in the context of
scientific workflows.

The performance and the scalability of the federated querying strategies (see Chap-
ter 4) are evaluated in Section 8.2. The scalability has been evaluated through a real
distributed setup provided by the Grid’5000 experimental and controlled infrastructure.
The overall performance has been evaluated through the FedBench benchmark, also on
Grid’5000, and showed results in line with the state of the art approaches while still ben-
efitting from the high expressivity of the SPARQL 1.1 language.

The federated querying strategies have been evaluated in Section 8.3, in the context
of the NeuroLOG collaborative neuroimaging platform. This application showed the
suitability of semantic data federations, compared to traditional relational federations.
Moreover the underlying abstract knowledge graphs help in mediating structural het-
erogeneity, thus enabling hybrid federations, typically involving both RDF triple stores
and relational databases, while still providing SPARQL as single querying and reasoning
language. Finally, moving the NeuroLOG platform towards semantic data federation
opens new sharing perspectives through the Web of Linked Data, and makes a step fur-
ther towards translational research.

Finally we evaluate, through a medical imaging simulation workflow deployed
in production in the VIP platform, the suitability of our approach towards semantic
scientific workflows developed in chapter 6 (RQ4) to systematically produce domain
knowledge from their executions (RQ5). Provenance data is captured from a distributed
workflow execution, and semantically queried through the distributed evaluation
strategies developed in chapter 4 (RQ1,3) to finally infer new meaningful statements
constituting valuable semantic experiment summaries (RQ5). This experiment showed
that in the context of this real-life scientific workflow, we are able to efficiently track,
in a distributed setup, both fine-grained domain-agnostic provenance and coarse-grain
domain-specific provenance (meaningful experiment summaries), thus easing both the
quality and the usability of scientific workflows and their massive data production.

Through these three experiments, we encompass the main contributions of the thesis
towards distributed knowledge sharing and production in e-Science collaborative plat-
forms (i) by providing, as much as possible, high-performance and scalable federated
querying over multi-source distributed knowledge graphs while still offering to query
designers the high expressivity of SPARQL 1.1 ; (ii) by opening an existing neuroimag-
ing federations to the Web of Linked Data, thus creating new data sharing perspectives
; (iii) by leveraging domain ontologies at workflow runtime to enhance the quality of
distributed, large-scale “in silico” experiments, and to ease the exploitation of results
through meaningful experiment summaries.
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Key Points

• The performance and the scalability is evaluated on large open
linked datasets, in a real distributed and controlled infrastruc-
ture (Grid’5000).

• The versatility of our approach enables knowledge sharing
while still coping with the autonomy property of collaborative
data providers, in the context of the NeuroLOG platform.

• The usability of scientific workflows and their data production
is enhanced through both fine-grained domain-agnostic prove-
nance and coarse-grained domain-specific provenance, the lat-
ter constituting valuable meaningful experiment summaries.
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Conclusion and perspectives
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9.1 Contributions summary

In this dissertation, we addressed translational life-science data management and pro-
cessing issues in the context of massive data, distributed at large-scale (“Data Deluge”).
Our approach defends, in the context of digital collaborative Life-science platforms, the
use of knowledge engineering methods in distributed data management systems. This
multi-disciplinary approach aims at improving usage, in terms of search, analysis, pro-
cessing of relevant multi-source data, and at accelerating data interpretation, hopefully
leading to scientific outcomes. Our approach defends the following thesis: (T1) data
sources federation enhance the adoption and the scalability of e-Science collaborative
platforms, (T2) knowledge-enabled e-Science platforms reduces the complexity of
experiment setups and ease the exploitation/interpretation of produced data, and (T3)
domain modeling (through Knowledge Engineering and Semantic Web technologies) is
crucial for knowledge sharing and capitalization in life-science.

Knowledge-based life-science resources federation

This manuscript defends the idea that providing ontology-driven resources federation
(versus centralized warehousing) is crucial to improve the scalability of e-Science plat-
forms, and to ease the setup of coherent multi-centric collaborations (T1, T3). We showed
in chapter 2 that (i) life-scientists require rich information sharing while still coping with
the autonomy of data providers, (ii) that semantic distributed querying techniques are
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still under active investigation and often suffer from a lack of expressivity, and (iii) that
significant life-science data integration projects have targeted ontology-driven data shar-
ing but did not clearly succeed in exploiting ontologies when performing distributed
querying. Based on these observations, we proposed a distributed security model for
life-science collaborations in chapter 3 that considers the autonomy of life-science data
sources as a prime-order constraint. While still being applied to raw neuroimages, these
strategies could be extended to multi-sources semantic data opening interesting perspec-
tive in the context of “closed” knowledge graphs. We also tackled in chapter 4 how
semantic distributed querying can be (i) versatile, through scattered abstract knowledge
graphs, and without prior knowledge on data sources content, (ii) performant, through
a set of optimization for transparent federated querying, and (iii) expressive, through
a strong compatibility with the SPARQL 1.1 language. Our approach has finally been
experimentally evaluated at large-scale on concrete scenarios in chapter 8.

Knowledge-based scientific worflows

This manuscript also defends the idea that providing semantically instrumented sci-
entific workflows helps in conducting large-scale data analysis procedures (T2, T3).
Indeed, we showed along this dissertation that attaching a coherent meaning to
both data processing tools, and processed data allows e-Scientists to more precisely
search/combine/share/re-purpose data analysis procedures or processed data. We ex-
plored first, in chapter 5, the state-of-the-art approaches for semantically annotating
web services, which provide a foundational descriptive layer towards semantic scientific
workflows. Then, on the other way around, we explored provenance-based approaches
for representing workflows runs, with a data-centric perspective. We showed that few
approaches are directed towards better interpreting (by exploiting domain ontologies)
data processed or analyzed through workflows. Then, we showed in chapter 6 that (i)
the notion of domain-specific “Roles” was crucial to disambiguate the semantic anno-
tation of service parameters, and (ii) that these “Roles”, coupled with domain-agnostic
provenance information assembled from workflow runs, were needed to infer domain-
specific provenance information, more easily interpretable from an e-Scientist perspec-
tive. We finally experimented our approach in chapter 8 through a concrete medical
imaging workflow, deployed in production in the VIP platform.

Software deployment in production platforms, dissemination

The research contributions proposed through chapters 4 and 6 led to the NeuSemStore
and KGRAM-DQP softwares, detailed in chapter 7. KGRAM-DQP will soon be part of
the Corese/KGRAM Semantic Web factory. NeuSemStore has already been deployed
in both NeuroLOG and VIP platforms. Semantic experiment summaries are inferred in
VIP on a daily basis with currently 18 production rules. One week after its deployment in
VIP, NeuSemStore inferred and stored 118 simulation experiment summaries represented
with 2656 RDF triples (roughly 22 triples per experiment). It has to be compared, for
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instance, with a single SORTEO simulation leading to 1429 generic provenance triples.
Regarding dissemination, NeuSemStore has also be used in the Amsterdam Academic
Medical Center to compare on-the-fly provenance tracking with post-mortem workflow
log analysis.

9.2 Future directions

9.2.1 Towards high performance semantic distributed querying

In spite of its limitations with respect to triple pattern grouping, the distributed query
processing features we integrated into the KGRAM semantic web framework opens ex-
citing perspectives.

From the performance experiments reported in section 8.2.1, we can see that the
querying time decreases importantly when the full DBPedia person dataset is frag-
mented. Unsurprisingly, when the fragmentation increases, the gain is slowed down
until the network overhead starts being penalizing.

With democratized cloud infrastructure in mind, we could conceive a system that
would provide, based on self-adaptation methods (control loops) and dedicated cluster
infrastructures, an elastic semantic data repository dedicated to the SPARQL querying of
massive knowledge graphs. This is particularly relevant since the SPARQL 1.1 language
now propose Update queries allowing for triple writing. The system would then monitor
(i) the size of the global dataset, and (ii) its response time based on a set of predefined
queries. The system would then be able to optimize the ratio between the global size
of the dataset and the number of computing nodes hosting the graph by allocating new
nodes and re-fragmenting the global dataset over these nodes.

A similar principle could be envisaged in the context of modern multi-core comput-
ers. We could indeed imagine better querying performances, since the communication
overhead between different cores is incomparably lower than network overhead. A huge
dataset, if loadable in the central memory, could be queried by fragments, in parallel,
by several CPU cores. Through these highly parallel machines, similar “elasticity” could
be developed to tune the performance of the semantic querier on-demand. KGRAM, as
semantic web framework implemented in Java, could benefit from the novelties of Java
version 7 which eases, by source code annotation, the parallelization of computing tasks
on multi-core computers.

9.2.2 Towards highly expressive semantic distributed querying

Due to the availability1 of significant and largely adopted life-science domain ontologies
such as FMA (general anatomy), RadLex (radiology), SNOMED CT (clinical terms), or
NIFSTD (neuroscience), e-Scientists have become more familiar with semantic querying.

1The BioPortal (http://bioportal.bioontology.org) is catalog of more than 300 biomedical ontologies
defining more than 5 Million terms.

http://bioportal.bioontology.org
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In addition, biomedical formal ontologies appeared as a need to provide logically con-
sistent biomedical concepts. OBO foundry [Smith et al., 2007] (grounded the BFO formal
ontology), BioTOP [Beisswanger et al., 2008] (providing bridges with BFO or the DOLCE
formal ontology), or OntoVIP [Gibaud et al., 2012] (grounded to DOLCE), are initiatives
aimed at providing biomedical conceptualization with strong logical consistency. In this
context, e-Scientists want to benefit from the underlying modeling efforts and are thus
demanding for expressive querying and reasoning capabilities.

Coping with SPARQL complexity

We chose in this thesis to focus on the query expressiveness. We proposed a federation
engine which handles most of the SPARQL 1.1 recommendations in a distributed envi-
ronment, with optimized evaluation. However, due to the complexity of SPARQL [Pérez
et al., 2009] [Schmidt et al., 2010], queries more expressive than conjunctive queries (i.e.
involving aggregate functions (counting, values comparisons), disjunctions, optionals,
or property paths) may lead to performance issues. It would then be necessary to pre-
cisely study these works on complexity, to determine which SPARQL language feature
lead to hardly tractable querying (such as OPTIONAL statements [Aranda et al., 2011], or
NEGATION which would lead to a complete exploration of all available data sources).
As a continuation of our work, it would be interesting (i) to focus on how expressive
SPARQL queries behave in a distributed setup and (ii) propose new heuristics to enhance
their evaluation in a distributed environment.

Taking into account that most of the currents works towards SPARQL federated
querying focus on basic graph patterns (conjunctive queries), the extension of existing
benchmarks such as FedBench with these expressive queries would certainly have a pos-
itive effect, hopefully leading to more research addressing the expressivity of distributed
SPARQL querying.

Distributed Semantic Web reasoning

In our work, we proposed distributed query processing over scattered knowledge
graphs, as an extension of the KGRAM Semantic Web framework. RDFS entailment
regime is provided in the core of the KGRAM federation engine. Thus, reasoning is
performed centrally based on distributed and scattered knowledge graphs. Towards ef-
ficient reasoning with KGRAM, three interesting perspectives could be envisaged.

First, since KGRAM can be deployed as a SPARQL endpoint, it is possible to perform
RDFS entailments remotely (such as subsumption or transitivity) on each fragment of the
distributed knowledge graph. This would allow to distribute both the querying and rea-
soning cost. However it raises the issue of the locality of the ontology (TBox), or the data
(ABox). Indeed, in the context of RDF/RDFS, we could imagine two typical use cases. A
first use case would consist in some data sources hosting only RDF data while a single
source hosts the RDFS schema. In this context, ABox reasoning would only be possible on
the source hosting the RDFS schema. Providing distributed ABox reasoning would also
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necessitate to coordinate multiple data sources. The second use case would consist in a
modular ontology in which some parts are distributed over the data sources. Similarly,
providing distributed TBox reasoning would also necessitate coordination between data
sources. A first pragmatic approach would consist in an hybrid centralized/distributed
strategy based on (i) performing all possible entailments locally to the data source, then
(ii) coordinating data sources with transfers of the ABox or the TBox so that missing en-
tailments become possible. In this direction of distributed ABox/TBox reasoning, the
"peer to peer" and "distributed databases" research communities led to significant re-
sults [Abdallah et al., 2009], [Abiteboul et al., 2012], but still, significant research efforts
should be directed towards highly expressive distributed SPARQL reasoning.

Then, KGRAM being also provided with a forward and backward chaining infer-
ence engine, an interesting research direction for our first results in handling distributed
knowledge bases would consist in studying planning strategies to find the optimal in-
ference rules execution order. These planning strategies could be based on basic statis-
tics [Langegger and Wöß, 2009], [Alexander et al., 2009] or advanced data source indices
giving information on frequent graph structures [Basse et al., 2010].

Finally distributed reasoning is challenging in terms of inferred statement manage-
ment. When considering large amount of distributed semantic data, the transitive clo-
sure of the global graph may be huge. It raises thus the still-open issue of distributing the
inferred statements over the participating sources. Should the distribution of inferred
statements be content-agnostic or content-specific ? In other words, would it be inter-
esting to localize the inferred statements close to the originating data/ontology source ?
What is the impact in terms of access control and autonomy when the originating data
sources are protected ? Tracking the provenance of inferred statements would certainly
be a first step to envisage further studies on these challenging issues.

9.2.3 Towards versatile and reliable knowledge-based data federations

This thesis has been strongly motivated by the autonomy constraints of life-science data
providers. Autonomy requirements are partly contradictory with sharing initiatives.
However, our contributions established compromises tending to ease the setup of multi-
centric studies, the sharing and repurposing of data consumed or produced in e-Science
“in silico” experiments. These first results raise important points that would require sub-
stantial research efforts.

Versatile knowledge-based data federations

It is not realistic to envisage life-science data providers, who exploited legacy databases
for years, rapidly adopting Semantic Web technologies as their foundational IT frame-
work. Although Semantic Web technologies provide means for high expressivity, mean-
ingful and coherent data integration, eventually logical reasoning, openness to other data
sharing initiatives in the context of the Linked Data Cloud, they are still technologically
less mature than relational data models, established at an industrial scale.
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The proposed distributed querying strategies, based on abstract knowledge graphs
open interesting perspectives in terms of versatility. We proposed in our work a simple
ad-hoc KGRAM producer (see figure 8.6 of section 8.3) dedicated to the mediation of SQL
data. Given a set of predefined mappings between RDF predicates and SQL queries, this
KGRAM SQL data producer provides distributed SPARQL querying over both semantic
and relational data sources through dynamic query rewriting.

Although this approach is appealing because of its dynamicity, the mediation capabil-
ity of the proposed SQL KGRAM producer is still limited due to predefined set of map-
pings, yet hardly extensible. Recently, significant research activities have been conducted
to map relational data to RDF data and should be precisely analyzed. These activities
led to the R2RML W3C recommendation [Das et al., 2012], which defines a standard lan-
guage to express customized mappings from relational databases to RDF datasets. Since
most of R2RML engines provide a static extraction of SQL data to build an RDF dataset,
this work opens an interesting perspective of dynamically mediating SQL data through
SPARQL and a KGRAM producer that would be built based on an SQL database end-
point and an R2RML document specifying the mappings. The provision of such struc-
tural mediation would be a first step towards longer-term research activities addressing
advanced ontology-based querying and reasoning over legacy relational databases.

Foundational (formal) ontologies (Dolce/BFO/OBO/BioTop) are gaining a lot of in-
terest to address semantic heterogeneity often faced when dealing with data integration
activities. Semantic heterogeneity is due to several data sources publishing data ex-
pressed through multiple, distinct and possibly overlapping ontologies. Even if a lot
of efforts are dedicated to the sharing and reusing of domain ontologies, we will proba-
bly face the multiplicity and diversity of ontologies for describing a same kind of data.
Towards versatile semantic querying, we could also consider KGRAM Producers as se-
mantic aligner components to address semantic heterogeneity. As a continuation of this
work, we could envisage to study in a first step, how SPARQL querying would behave
when querying for instance two data sources exposing data through two distinct on-
tologies. In a longer-term perspective, we could study how RDFS entailments could be
operationalized in this context.

Reliable knowledge-based data federations

Data source fault-tolerance. Taking into account the autonomy constraint of life-
science data providers, for any reason, technical (electrical outages, modification of site
network security policies, etc.) or operational (data source managers may decide to leave
a data federation), the data sources availability is not guaranteed. Consequently, dis-
tributed joins over multi-source data may fail when one of the data sources is unavail-
able. This raises challenging issues which have not been studied much in the context of
Linked Open Data. Recent research works such as RDFSync [Tummarello et al., 2007]
or Live Linked Data [Ibáñez et al., 2012], aiming at synchronizing semantic data stores,
should be considered to address the reliability of federated data sources. However in
a context of hardly relocatable biomedical data, these approaches would still face the
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autonomy challenges, in terms of access control. Instrumenting such synchronization
techniques with provenance information and cryptography would probably help data
providers in keeping the control over the data they operate.

Generalized provenance tracking. Providing fault-tolerant data federation is crucial to
limit the impact of unavailable data sources. However, it only covers a narrow spectrum
of reliability. Quality and confidence on life-science resources (data or analysis proce-
dures) has become a major criterion of reliability in e-Science. We proposed in chap-
ter 6 a provenance-based approach providing both (i) fine-grained technical information
helping “in silico” experiment designers in determining the cause of workflow failures,
or abnormal/unexpected results, and (ii) coarse-grained semantic annotations providing
ontology-based experiment summaries, helping e-Scientists in comprehending the pro-
duced/analyzed data. Provenance has been considered in this work as tightly coupled to
scientific workflows. The reliability of knowledge-based data federations could consid-
erably be enhanced by extending the usage of provenance in the context of distributed
querying.

Provenance information could be assembled and attached to SPARQL results, finally
informing end users on the data sources the results originate from. This information
could be used to provide explanations of federated querying failures. Explaining seman-
tic querying is currently under investigation in our laboratory [Hasan and Gandon, 2012].
It is particularly relevant in the context of transparent federated querying as proposed in
chapter 4 and would open interesting applications in the context of query explanation.
Closer to e-Scientists, generalizing provenance information to initial research/clinical
databases, or linked open data stores (version, location, curation status, etc.) is partic-
ularly relevant since it would enhance the confidence on consumed/produced/analyzed
data, finally enhancing the overall reliability of e-Science platforms.

Based on the proposed semantic experiment summaries, an interesting future direc-
tion would consist in providing bridges between “experiment provenance” and “data
source provenance” so that e-Scientists navigating their semantic experiment summaries
could be informed about the data sources that contributed to their processed/analyzed
data. This could be a first step towards data rewarding, and motivate data holders for
considering sustainable data provision.

9.2.4 Towards reduced information overload in e-Science

E-science platforms bring together a large variety of data, processing tools, assembled
into scientific workflows, and knowledge captured through domain ontologies. Because
of several intertwined granularities and representation layers, and several end-user ac-
tivities, it is difficult to provide the relevant information to each user. One of our con-
tribution consists in better exploiting processed data through semantic experiment sum-
maries. Another related research activity is conducted in our laboratory and aims at bet-
ter exploiting e-science workflows through their associated domain knowledge [Cerezo
and Montagnat, 2011].
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This work addresses the design of scientific workflows through a goal-based ap-
proach. The objective is to generate workflow descriptions from conceptual descriptions
based on high-level fragments. These Fragments are composed by a Pattern and a Blueprint
responsible for injecting the target workflow activities. Conceptual workflows are de-
rived into concrete workflows by weaving blueprints.

This work on conceptual workflows and our contribution towards meaningful ex-
periment summaries are complementary. Indeed, conceptual workflows could help in
the design of provenance-based inference rules and enhance their genericity. Conversely,
provenance information could be used to suggest annotations at conceptual workflow
design-time based on produced and annotated data.

Key Perspectives

• Efficiency: triple pattern grouping and query planning for
scattered abstract knowledge graphs ; scalable SPARQL end-
point for massive knowledge graphs ;

• Versatility: R2RML-based dynamic mediation of SQL
databases through abstract knowledge graphs ; dynamic se-
mantic alignment through abstract knowledge graphs ;

• Reliability: fault-tolerant semantic data sources ; gener-
alized provenance, from processed data to originating data
sources ;

• Expressiveness: extension of the FedBench benchmark with
more expressive queries ; distributed Semantic Web reasoning
(inference planning, materialization of inferred statements) ;
conceptual workflows to ease the design of provenance-based
inference rules ;

9.3 Concluding remarks

We proposed in this thesis some methods and techniques dedicated to the practice of dig-
ital sciences in the “Data Deluge” and directed towards a rationalized practice of Science.

With regards to a rationalized practice of Science we hope that efficient and semanti-
cally accurate distributed systems will foster the coherent publication, on the Web, of
valuable data and tools, finally opening new sharing and repurposing opportunities
across permeable communities. This still raises the question of the reluctance of data
owners to coherently publish their data, and the question of the sustainability of data
publication to enhance reproducibility and scientific value. We also hope that from “Big
Data” (usually exploited through statistical approaches), research on IT systems will soon
be able to provide valuable “data diets” which would mean few, meaningful and relevant
data at the right time for the right person.
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Knowledge associated to searched/combined/analyzed data has been central in this
work. We consider knowledge engineering as a discipline which moves machines closer
to humans. We hope to contribute in our future works to a virtuous circle in which (i)
knowledge would drive collaborative science, (ii) knowledge would be produced and
published more rapidely from the usage of e-Science platforms, and (iii) the resulting
scientific outcomes would more rapidly be translated to the society (e.g. patients in the
context of translational medicine). Semantic Web technologies and standards, combining
knowledge engineering and distributed systems, are currently a major opportunity to
work in this direction of knowledge-based translational sciences.
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CHAPTER 10

Appendix

10.1 FedBench Life Science Queries

Listing 10.1: LS1 FedBench query

SELECT $drug $melt WHERE {
{ $drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/meltingPoint> $melt. }
UNION
{ $drug <http://dbpedia.org/ontology/Drug/meltingPoint> $melt . }

}

Listing 10.2: LS2 FedBench query

SELECT ?predicate ?object WHERE {
{ <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugs/DB00201> ?predicate ?object . }
UNION
{ <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugs/DB00201>

<http://www.w3.org/2002/07/owl#sameAs> ?caff .
?caff ?predicate ?object . }

}

Listing 10.3: LS3 FedBench query

SELECT ?Drug ?IntDrug ?IntEffect WHERE {
?Drug <http://www.w3.org/1999/02/22−rdf−syntax−ns#type> <http://dbpedia.org/ontology/Drug> .
?y <http://www.w3.org/2002/07/owl#sameAs> ?Drug .
?Int <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/interactionDrug1> ?y .
?Int <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/interactionDrug2> ?IntDrug .
?Int <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/text> ?IntEffect .

}
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Listing 10.4: LS4 FedBench query

SELECT ?drugDesc ?cpd ?equation WHERE {
?drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/drugCategory>

<http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugcategory/cathartics> .
?drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/keggCompoundId> ?cpd .
?drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/description> ?drugDesc .
?enzyme <http://bio2rdf.org/ns/kegg#xSubstrate> ?cpd .
?enzyme <http://www.w3.org/1999/02/22−rdf−syntax−ns#type> <http://bio2rdf.org/ns/kegg#Enzyme> .
?reaction <http://bio2rdf.org/ns/kegg#xEnzyme> ?enzyme .
?reaction <http://bio2rdf.org/ns/kegg#equation> ?equation .

}

Listing 10.5: LS5 FedBench query

SELECT $drug $keggUrl $chebiImage WHERE {
$drug <http://www.w3.org/1999/02/22−rdf−syntax−ns#type>

<http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/drugs> .
$drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/keggCompoundId> $keggDrug .
$keggDrug <http://bio2rdf.org/ns/bio2rdf#url> $keggUrl .
$drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/genericName> $drugBankName .
$chebiDrug <http://purl.org/dc/elements/1.1/title> $drugBankName .
$chebiDrug <http://bio2rdf.org/ns/bio2rdf#image> $chebiImage .

}

Listing 10.6: LS6 FedBench query

SELECT ?drug ?title WHERE {
?drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/drugCategory>

<http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugcategory/micronutrient> .
?drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/casRegistryNumber> ?id .
?keggDrug <http://www.w3.org/1999/02/22−rdf−syntax−ns#type>

<http://bio2rdf.org/ns/kegg#Drug> .
?keggDrug <http://bio2rdf.org/ns/bio2rdf#xRef> ?id .
?keggDrug <http://purl.org/dc/elements/1.1/title> ?title .

}
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Listing 10.7: LS7 FedBench query

SELECT $drug $transform $mass WHERE {
{ $drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/affectedOrganism>

’Humans and other mammals’.
$drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/casRegistryNumber> $cas .
$keggDrug <http://bio2rdf.org/ns/bio2rdf#xRef> $cas .
$keggDrug <http://bio2rdf.org/ns/bio2rdf#mass> $mass

FILTER ( $mass > ’5’ )
}
OPTIONAL {$drug <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank/biotransformation>

$transform .}
}
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Distributed knowledge sharing and production through collaborative
e-Science platforms

Abstract: This thesis addresses the issues of coherent distributed knowledge production
and sharing in the Life-science area. In spite of the continuously increasing computing
and storage capabilities of computing infrastructures, the management of massive scien-
tific data through centralized approaches became inappropriate, for several reasons: (i)
they do not guarantee the autonomy property of data providers, constrained, for either
ethical or legal concerns, to keep the control over the data they host, (ii) they do not scale
and adapt to the massive scientific data produced through e-Science platforms.

In the context of the NeuroLOG and VIP Life-science collaborative platforms, we ad-
dress on one hand, distribution and heterogeneity issues underlying, possibly sensitive,
resource sharing ; and on the other hand, automated knowledge production through the
usage of these e-Science platforms, to ease the exploitation of the massively produced sci-
entific data. We rely on an ontological approach for knowledge modeling and propose,
based on Semantic Web technologies, to (i) extend these platforms with efficient, static
and dynamic, transparent federated semantic querying strategies, and (ii) to extend their
data processing environment, from both provenance information captured at run-time
and domain-specific inference rules, to automate the semantic annotation of “in silico”
experiment results.

The results of this thesis have been evaluated on the Grid’5000 distributed and con-
trolled infrastructure. They contribute to addressing three of the main challenging is-
sues faced in the area of computational science platforms through (i) a model for se-
cured collaborations and a distributed access control strategy allowing for the setup of
multi-centric studies while still considering competitive activities, (ii) semantic experi-
ment summaries, meaningful from the end-user perspective, aimed at easing the nav-
igation into massive scientific data resulting from large-scale experimental campaigns,
and (iii) efficient distributed querying and reasoning strategies, relying on Semantic Web
standards, aimed at sharing capitalized knowledge and providing connectivity towards
the Web of Linked Data.

Keywords: Scientific workflows, Semantic web services, Provenance, Semantic web,
Web of Linked Data, Federated knowledge bases, Distributed data integration, e-Science,
e-Health.



Partage et production de connaissances distribuées dans des plateformes
scientifiques collaboratives

Résumé: Cette thèse s’intéresse à la production et au partage cohérent de connaissances
distribuées dans le domaine des sciences de la vie. Malgré l’augmentation constante
des capacités de stockage et de calcul des infrastructures informatiques, les approches
centralisées pour la gestion de grandes masses de données scientifiques multi-sources
deviennent inadaptées pour plusieurs raisons: (i) elles ne garantissent pas l’autonomie
des fournisseurs de données qui doivent conserver un certain contrôle sur les don-
nées hébergées pour des raisons éthiques et/ou juridiques, (ii) elles ne permettent pas
d’envisager le passage à l’échelle des plateformes en sciences computationnelles qui sont
la source de productions massives de données scientifiques.

Nous nous intéressons, dans le contexte des plateformes collaboratives en sci-
ences de la vie NeuroLOG et VIP, d’une part, aux problématiques de distribution et
d’hétérogénéité sous-jacentes au partage de ressources, potentiellement sensibles ; et
d’autre part, à la production automatique de connaissances au cours de l’usage de ces
plateformes, afin de faciliter l’exploitation de la masse de données produites. Nous nous
appuyons sur une approche ontologique pour la modélisation des connaissances et pro-
posons à partir des technologies du web sémantique (i) d’étendre ces plateformes avec
des stratégies efficaces, statiques et dynamiques, d’interrogations sémantiques fédérées
et (ii) d’étendre leur environnent de traitement de données pour automatiser l’annotation
sémantique des résultats d’expérience “in silico”, à partir de la capture d’informations de
provenance à l’exécution et de règles d’inférence spécifiques au domaine.

Les résultats de cette thèse, évalués sur l’infrastructure distribuée et contrôlée
Grid’5000, apportent des éléments de réponse à trois enjeux majeurs des plateformes
collaboratives en sciences computationnelles : (i) un modèle de collaborations sécurisées
et une stratégie de contrôle d’accès distribué pour permettre la mise en place d’études
multi-centriques dans un environnement compétitif, (ii) des résumés sémantiques
d’expérience qui font sens pour l’utilisateur pour faciliter la navigation dans la masse
de données produites lors de campagnes expérimentales, et (iii) des stratégies efficaces
d’interrogation et de raisonnement fédérés, via les standards du Web Sémantique, pour
partager les connaissances capitalisées dans ces plateformes et les ouvrir potentiellement
sur le Web de données.

Mots-clés: Flots de services et de données scientifiques, Services web sémantiques,
Provenance, Web de données, Web sémantique, Fédération de bases de connaissances,
Intégration de données distribuées, e-Sciences, e-Santé.
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