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MICHEL LENCZNER Directeur de Thèse Professeur des Universités, Université de

Technologie Belfort-Montbéliard
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ABSTRACT

In this dissertation, we establish a two-scale model both for one-dimensional
and two-dimensional Cantilever Arrays in elastodynamic operating regime with
possible applications to Atomic Force Microscope (AFM) Arrays. Its derivation
is based on an asymptotic analysis for thin elastic structures, a two-scale approx-
imation and a scaling used for strongly heterogeneous media homogenization. We
complete the theory of two-scale approximation for fourth order boundary value
problems posed in thin periodic domains connected in some directions only. Our
model reproduces the global dynamics as well as each of the cantilever motion. For
the sake of simplicity, we present a simplified model of mechanical behavior of large
cantilever arrays with decoupled rows in the dynamic operating regime. Since the
supporting bases are assumed to be elastic, cross-talk effect between cantilevers
is taken into account. The verification of the model is carefully conducted. We
explain not only how each eigenmode is decomposed into products of a base mode
with a cantilever mode but also the method used for its discretization, and report
results of its numerical validation with full three-dimensional Finite Element sim-
ulations. We show new tools developed for Arrays of Microsystems and especially
for AFM array design. A robust optimization toolbox is interfaced to aid for de-
sign before the microfabrication process. A model based algorithm of static state
estimation using measurement of mechanical displacements by interferometry is
presented. We also synthesize a controller based on Linear Quadratic Regulator
(LQR) methodology for a one-dimensional cantilever array with regularly spaced
actuators and sensors. With the purpose of implementing the control in real time,
we propose a semi-decentralized approximation that may be realized by an analog
distributed electronic circuit. More precisely, our analog processor is made by Pe-
riodic Network of Resistances (PNR). The control approximation method is based
on two general concepts, namely on functions of operators and on the Dunford-
Schwartz representation formula. This approximation method is extended to solve
a robust H∞ filtering problem of the coupled cantilevers for time-invariant system
with random noise effects.

Keywords: Cantilever arrays, Two-scale modeling, Homogenization, Model ver-
ification, Optimization design, Interferometry measurements, Semi-decentralized
control, Functional calculus, Cauchy integral formula
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Résumé
Dans cette thèse, nous établissons un modèle à deux échelles à la fois pour des
matrices de cantilevers unidimensionnels et bidimensionnels en régime de fonc-
tionnement élastodynamique avec des applications possibles aux réseaux de mi-
croscopes à force atomique (AFM). Son élaboration est basée sur une analyse
asymptotique pour les structures minces élastiques, une approximation à deux
échelles et une mise à l’échelle utilisée pour l’homogénéisation des milieux forte-
ment hétérogènes. Nous complétons la théorie de l’approximation à deux échelles
pour les problèmes aux limites du quatrième ordre posés dans des domaines minces
périodiques connexes seulement dans certaines directions. Notre modèle reproduit
la dynamique globale du support ainsi que les mouvements locaux des cantilevers.
Pour simplifier la suite du travail, nous concentrons nos travaux à l’étude de ma-
trices de leviers constituées de lignes découplées en régime dynamique. Comme le
support des leviers est élastique, l’effet du couplage entre levier est pris en compte.
La vérification du modèle est soigneusement réalisée. Nous montrons que chaque
mode propre peut être décomposé en produits d’un mode de base avec un mode
de levier. Nous présentons une méthode de discrétisation du modèle et effectuons
sa vérification numérique en la comparant avec des résultats de simulation par
éléments finis du problème d’élasticité tridimensionnel. Par ailleurs, nous avons
élaboré de nouveaux outils d’aide à la conception de réseaux d’AFM. Une boîte à
outils d’optimisation robuste est interfacée avec le modèle permettant d’optimiser
un design avant micro-fabrication. Un algorithme d’estimation de l’état statique
combinant la mesure de déplacements mécaniques par interférométrie et le mod-
èle a été introduit. Nous avons également synthétisé un régulateur quadratique
linéaire (LQR) pour un réseau de cantilevers en mode dynamique comprenant ac-
tionneurs et capteurs régulièrement espacées. Dans le but de mettre en œuvre le
contrôle en temps réel, nous proposons une approximation semi-décentralisée qui
peut être réalisé par un circuit électronique distribué analogique. Plus précisé-
ment, notre processeur analogique peut être réalisé par un réseau périodique de
résistances (PNR). La méthode d’approximation de commande est basée sur deux
concepts généraux, à savoir sur un calcul fonctionnel (c’est-à-dire des fonctions
d’opérateurs) et sur la formule de représentation d’une fonction d’opérateur de
Dunford-Schwartz. Cette méthode d’approximation est étendue pour la résolution
d’un problème de filtrage optimal robuste de type H∞ de la dynamique d’un réseau
de leviers couplés avec sources aléatoires de bruit.

Mots-clés: Matrice de levier, modélisation à deux échelles, homogénéisation, véri-
fication de modèle, conception par optimisation robuste, mesures d’interférométrie,
contrôle semi-décentralisé, calcul fonctionnel, formule intégrale de Cauchy.
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INTRODUCTION

Since its invention by [1], the Atomic Force Microscope (AFM) has opened new
directions for a number of operations at the nanoscale with an impact in various
sciences and technologies. A number of research laboratories are now developing
large Arrays of AFM [2], [3] that can achieve imaging resolution similar to a single
standalone AFM in parallel, (see Figure 1).

Figure 1: (a) optical image of a 4 ×17 probe array with SiN cantilevers anchored
on parallel-beam base. The dark square at the end of each cantilever corresponds
to the pyramidal shaped tip. (b) SEM images of a probe arrays with SiN can-
tilevers anchored on a gridlike base. Courtesy of Centre Suisse d’Electronique et
de Microtechnique (CSEM), Neuchâtel Switzerland.

The state-of-the art system that employs an array of cantilever probes is the
Millipede device from IBM [4],[5],[6] designed for data-storage, but again, a number
of new architectures are emerging, see [7], [8], [9], [10], [11], [12], [13], [14], [15].
For nanolithography applications, a two-dimensional probe array is utilized for dip
pen nanolithography [16] and nanoprobe maskless lithography is reported in [17].

The main limitation of AFM devices is their low speed of operation and their
low reliability. Thus, modeling and model based control of AFM employing a single
cantilever probe has found extensive attention, (see M. Napoli [18], S.M. Salapaka
et al. [19], M. Sitti [20] for instance). To improve the performance of AFM, an
H∞ controller was employed in [21] and for AFM scanner in [22]. G. Schitter et al.
[23] present a control strategy employing a model-based two-degrees-of freedom
controller for high-speed topographical imaging. Regarding arrays, the group of
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B. Bamieh, see [24] and the reference therein, has published a model of coupled
cantilever arrays. It takes into account electrostatic coupling of cantilevers, and
its derivation is phenomenological. In [25], both mechanical and electrostatic cou-
pling neighboring cantilevers are modeled for an array of electrostatically actuated
microcantilevers. In an array of cantilever probes, it is important to address the
issue of cross-talk between cantilevers. Such cross-talk may have mechanical, ther-
mal or electromagnetic origins and is an important effect to be considered while
designing the array.

We propose a simplified model for the elastic behavior of large cantilever two-
dimensional arrays. It extends results in [26] by taking into account the dynamical
regime instead of the static regime, and is applicable to two-dimensional arrays
instead of to one-dimensional arrays. Moreover, it takes into account the possible
interaction between AFM tips and sample being interrogated. A similar analysis
for one dimensional array ignoring the interaction between the tip and the sample
is reported in [27]. The detailed derivation of the results in [28], not yet reported,
follows from the results in this thesis.

Our method is mainly based on a homogenization technique applicable to
strongly heterogeneous materials or systems expressed in the framework of two-
scale convergence (or approximation) as introduced in works of M. Lenczner [29],
[30] or in D. Cioranesco, A. Damlamian and G. Griso [31]. In a preliminary step,
its derivation also uses the asymptotic method for thin structures developed by
P.G. Ciarlet [32] and of P. Destuynder [33]. We remark that the choice of a method
for the modeling of the periodic array is not straightforward. Here, a standard ho-
mogenization method is not applicable, where the local mechanical displacements
of the moving parts may be of the same order as the displacements of the common
support. Another aspect is that the lowest local eigenfrequencies of the moving
parts are also in the same range of magnitude as those of the common support-
ing base. These features are usual in many microsystems arrays. However, the
homogenization method was developed for typical continuum mechanics applica-
tions where the usual methods even with introduction of additional techniques has
proven inadequate for modeling an array of micro-cantilever.

We review the main features of our simplified model. The array is comprised
of cantilevers clamped in a common base, each possibly interacting with an object
through its tip. We assume that the base is much stiffer than the cantilevers. This
is expressed by saying that their stiffness have different asymptotic behaviors. The
resulting model is composed of two evolution equations, one for the macroscopic
behavior, related to the supporting base, and the other, at the microscopic level,
which takes into account the cantilever dynamics. As required, their time scales
are in the same range of magnitude and so are their mechanical displacements.
We further assume that the tip is perfectly rigid, which is a commonly accepted
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assumption. Then, we consider that the rigid objects interacting with tips have
their own dynamics where the interaction is modeled via a friction law. All these
assumptions yield the general model. As an introduction, we also present a slightly
simpler model, referred to as the Simple Model, for which we have carried numerical
simulations and validations. It does not include possible interaction with objects
and it neglects the width effect in cantilevers.

For real-time control for arrays of microsystems like arrays of atomic force
microscopes, micro-mirrors, or micro-membranes, we present a new approximation
method based on the Simple Model. The microsystems are comprised of a very
large number of units subjected to wanted or unwanted interactions (cross-talk
effect). Achieving global control of such a system remains a challenging task. Here,
we propose a computational strategy with very fine-grained computing processors
allowing semi-decentralized exchanges, i.e. between neighbors only. We refer to
this concept by using the term semi-decentralized architecture or computing.

In the past decade, a number of articles have focused on semi-decentralized
distributed optimal control for systems with distributed actuators and sensors.
Most of them deal with infinite length systems, see [34] and [35] for systems gov-
erned by partial differential equations, and [36] for discrete systems. In articles
[37] and [38] authors have introduced an approximation, for optimal control de-
sign purposes, optimal control to a finite length beam endowed with a periodic
distribution of piezoelectric sensors and actuators. Even-though here satisfactory
results are obtained, it suffers from limitations of applying simple optimal control
strategy, namely LQR, with simple control objective.

In [39] and [40], a comprehensive framework is introduced applicable to cover
a large range of systems, with increased precision and robustness. The method is
based on a general theory of optimal control for linear infinite dimensional systems.
It does not require that all operators involved are functions of a same operator in
the system. They only need to be functions of this operator up to some change of
variables. Regarding precision of our method, the Taylor series approximating a
function of an operator has been replaced using the integral Cauchy formula from
functional calculus followed by a quadrature rule for the contour integral.

A first investigation for real-time vibration control of a one-dimensional can-
tilever array has been carried out in the LQR framework. In view of real-time
control applications, we have derived a Semi-Decentralized Approximation of the
controller based on the two mathematical concepts of functional calculus and
Dunford-Schwartz representation formula, and formulated its realization through
PNR, see [41]. This Semi-Decentralized approximation method can be extended
to other linear control theories, such as Linear Quadratic Gaussian (LQG) and
H∞ control.

For real-time control of the cantilever arrays, one of the most important part
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is the sensing system. Regarding sensing, in some cantilever arrays, the deflec-
tion of cantilever is measured by piezoresistive sensor integrated in the cantilever.
In [42], a cantilever arrays equipped with piezoresistive sensors was employed in
liquid environment. However, this approach suffers from the complexity of the mi-
crofabrication process of implementing the sensor in the cantilever. Additionally,
the signal to noise ratio of piezoresistive arrays is limited due to the sensor noise.
An interferometric readout method with imaging optics is provided in [43]. This
approach does not suffer from optical cross-talk since the laser light reflected from
one point on the cantilever is collected by only one pixel of the detector, and is in-
dependent of the direction the reflected laser beam. However, interferometric data
processing requires heavy computation due to the large number of cantilevers,
which represents a barrier to rapid operation. Thanks to a new approach for
deflection estimation of cantilever arrays through interferometry measurement in
quasi-static regime, it is turning into reality for real-time estimation and control
of cantilever arrays in the dynamic regime.

This dissertation is organized as follows. In chapter 1, we start by shortly in-
troducing the Simple Model. We then formulate the general model precisely. The
model implementation is detailed both for two-dimensional and one-dimensional
cantilever arrays. The Base/Cantilever displacement decomposition of the Sim-
ple Model is also discussed. Chapter 2 addresses the verification of the simple
model. The eigenvalues and eigenmodes of the simple model are compared to
those obtained by a direct three-dimensional Finite Element Method (FEM) both
for one-dimensional and two-dimensional cantilever arrays. The verification of the
model in static and dynamic regime is also presented. To meet the design re-
quirements of AFM arrays, an optimization tool is introduced with an illustrative
example. The interferometry measurement for AFM arrays is presented in chapter
3. The least square algorithm for phase computation is provided. In chapter 4, we
present the semi-decentralized approximation method which is used LQR control
and H∞ filtering problem.

We draw our conclusion in chapter 5 with some remarks on future research
work. A new software, AFMALab, for performing simulations for an array of
cantilevers is presented in appendix B.
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Chapter 1

TWO-SCALE MODEL FOR
ARRAY OF CANTILEVERS

Contents
1.1 Model Description . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 The Simple Two-Scale Model . . . . . . . . . . . . . . . 10

1.1.2 The General Two-Scale Model . . . . . . . . . . . . . . . 11

1.2 Model Implementation . . . . . . . . . . . . . . . . . . . 17

1.2.1 The Two-dimensional Case . . . . . . . . . . . . . . . . 18

1.2.2 The One-dimensional Case . . . . . . . . . . . . . . . . . 21

1.3 Base/Cantilever Displacement Decomposition of the
Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 FEM discretization in Base . . . . . . . . . . . . . . . . 25

1.3.2 Modal decomposition in Cantilevers . . . . . . . . . . . 26

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

This chapter is devoted to the derivation of simple two-scale model in section 1.1.1,
and general two-scale model in section 1.1.2 for a two-dimensional array of can-
tilevers. Each cantilever may be equipped with a rigid tip which can interact with
the sample. For the simple model, we assume that there is no tip-sample inter-
action and the variation of the displacement in the width direction of cantilevers
is negligible. All these assumptions are not present in the general model. Here,
cantilevers can be modeled by a classical Euler-Bernoulli beam equation and the
motion of the base is governed by a Kirchhoff-Love plate equation. The mathemat-
ical proofs of the two-scale approximation technique are detailed in a submitted
paper [28].
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

In section 1.2, we show the model implementation both for two-dimensional
and one-dimensional array of cantilevers. At the end of this chapter, we propose
a Base/Cantilever displacement decomposition of the simple model.

1.1 Model Description

We consider a two-dimensional array of cantilevers, (see Figure 1.1). It is com-

Figure 1.1: Array of Atomic Force Microscopes

prised of bases crossing the array in which cantilever are clamped. The bases are
connected both in the x1-direction and in the x2-direction (see Figure 1.3 (a)),
so they constitute a single common support clamped on its external boundary.
Cantilevers may be equipped with a rigid tip, as in Atomic Force Microscopes.

The two-scale model derivation steps are illustrated in Figure 1.2. First, (a)
the two-scale transform (also called the unfolding operator) and the two-scale
approximation are successively applied to map a thin plate model in bending from
the physical domain to a two-scale domain comprised of a reference cell and the
macroscopic domains. Then, (b) the displacement variation in the width direction
of cantilevers is neglected. In (c), base displacements in the reference cell are
explicitly calculated and eliminated to yield the model in the so-called two-scale
domain where the optimal control is implemented. Finally, (d) an inverse two-
scale transform technique is applied to map the solutions in the two-scale domain
back to the physical domain.

The whole array can be viewed as a periodic repetition of a same cell, in the
two directions x1 and x2, (see Figure 1.3 (a)).
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1.1. Model Description

Figure 1.2: Two-scale transform and inverse two-scale transform in two-scale do-
main

Figure 1.3: A two-dimensional view of (a) an array and (b) a cell

We suppose that the numbers of rows and columns of the array are sufficiently
large, namely larger or equal to 10. The simplified model will be an approximation
of the full model in the sense of small values of ε∗, the ratio of the cell size ε, to
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

array size µ, i.e.

ε∗ = ε/µ. (1.1)

To build it, we shall make use of the two-scale approximation that we briefly
introduce. Consider any point x = (x1, x2, x3) of the three-dimensional space is
decomposed as

x = xc + ϵy,

where xc represents the coordinates of the center of the cell of x, ϵ =

 ε∗ 0 0
0 ε∗ 0
0 0 1

,

and y = ϵ−1(x−xc) is the dilated relative location of x with respect to xc. In current
cell, the points are identified by determining the cell in which the points (x1, x2) lie
(see Figure 1.3 (a)). Then, points with coordinates y vary in the unique so-called
reference cell, that is obtained through a translation and the dilatation ϵ−1 of any
current cell, (see Figure 1.3 (b)) for a two-dimensional view of the reference cell.

Now, considering a distributed field u(x), we introduce its two-scale transform

ûϵ(x̃, y) = u(xc + ϵy),

defined for any x̃ = (x1, x2) belonging to the two-dimensional filled section of
the cell, centered at xc = (xc1, x

c
2, x

c
3), and for any y = (y1, y2, y3) varying over the

reference cell. We emphasize that through this construction x̃ varies in a filled
rectangle covering the full array, which we refer to as ω. By construction, the
two-scale transform is constant, with respect to its first variable x̃, over each cell.
Since it depends on the ratio ε∗, it may be approximated by the asymptotic field,
denoted by uA, obtained when ε∗ approaches (mathematically) 0:

ûϵ = uA +O(ε∗).

The approximation uA is called the two-scale approximation of u. We mention
that as a consequence of the asymptotic process, the partial function x̃ 7→ uA(x̃, .)
is continuous unlike the map x̃ 7→ ûϵ(x̃, .).

Now, we observe that uA(x̃, y) is a two-scale field, and therefore cannot be
directly used as an approximation of the field u(x) in the real array of cantilevers.
So, an inverse two-scale transform must be applied to uA. However, since x̃ 7→
uA(x̃, y) is continuous, uA does not belong to the range of the two-scale transform.
Hence we introduce an approximated inverse for the two-scale transform,

v(x̃, y) 7→ v(x),
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1.1. Model Description

in the sense

û = u+O(ε∗) and v̂ = v +O(ε∗),

for sufficiently regular functions u(x) and v(x̃, y). We are led to make two
different choices for x 7→ v(x), when x belongs to a cell centered at xc. The first
one applies to x belonging to a cantilever,

v(x) =
⟨
v(., ϵ−1(x− xc))

⟩
x̃
,

it is a mean in x̃ over the cell. The other is for x in the base,

v(x) = v(., ϵ−1(x− xc)).

Once an approximate inverse two-scale transform is defined, we retain uA as
our approximation of u in the physical system. In the dissertation, we apply
this technique to the mechanical displacements in the array, and we derive the
equations governing the resulting two-scale field uA.

Notations The reference cell is divided into the mechanical device YS and the
object YO. Furthermore, the device YS is divided into the base YB, the cantilever
flexible part YC , and the cantilever rigid part YR, (see Figure 1.4). The filled
reference cell Y is a rectangle parallelepiped in R3.

Figure 1.4: Reference cell of AFM array

We will use the tilde notation on variables x or y to refer to their two first com-
ponents, x̃ = (x1, x2) and ỹ = (y1, y2) where x = (x1, x2, x3) and y = (y1, y2, y3).
Accordingly, we will use the in-plane gradient ∇ỹ = (∂y1 , ∂y2), the in-plane Laplace
operator ∆ỹ = ∂2y1y1+∂

2
y2y2

, the in-plane unit outward external normal components
nx̃ = (nx1 , nx2) and nỹ = (ny1 , ny2) to the boundary of ω and of the reference cell.
The in-plane section of the reference cell Y is refereed as Ỹ when the sections of
its subdomains are denoted by ỸS, ỸB and ỸC for instance. Similar notations are
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

used for their interfaces and for boundaries. The inverse of the cell section surface
is constantly used, so it is referred to as

κ̃ =
1

|Ỹ |
. (1.2)

The jump of a field v at an interface γ is written as [[v]]γ. Finally, we use the
operation ” : ” for the inner product between two matrices A and B of same
dimensions, A : B =

∑
i,j AijBij.

1.1.1 The Simple Two-Scale Model

Our models are formulated from the Kirchhoff-Love thin plate model of the whole
structure, and we will always assume that the ratio of cantilever thickness hC to
base thickness hB is small, namely

hC
hB
≈ ε∗4/3. (1.3)

Applying the two-scale approximation technique to the third component of
the vector of mechanical displacement fields yields uA3 (t, x̃, y) where t represents
the time variable and is treated as a parameter. In the following, we detail the
equations governing uA3 , all parameters of its model being stated in section 1.1.2.

From the analysis, it appears that uA3 is independent of y3 everywhere. In
the Simple Model, we consider cantilevers made of an isotropic material and there
variations of y1 7→ uA3 (t, x̃, y) are neglected. So their motions are governed by a
classical Euler-Bernoulli beam equation in the microscopic space variable y2,

mC0∂2ttu
A
3 + rC0∂4y2...y2u

A
3 = FC0, (1.4)

with mC0 their linear mass density, rC0 their linear stiffness coefficient, and
FC0 their load per unit length, see (1.17), (1.13), (1.21).] This model holds for all
x̃ = (x1, x2), and therefore represents motions of an infinite number of cantilevers
parameterized by x̃ and y capture the relative motion with respect to this.

For y varying along the base, y 7→ uA3 (t, x̃, y) is constant and there the dis-
placement uA3 (t, x̃) is governed by a Kirchhoff-Love plate equation

ρB∂2ttu
A
3 + divx̃(divx̃(R

B : ∇x̃∇T
x̃u

A
3 )) + ℓ0Cr

C(∂3y2y2y2u
A
3 )|junction = fB, (1.5)

where ρB, RB, RB and ℓ0C are respectively its effective surface mass, its homog-
enized stiffness tensor, its effective load per unit surface, and the cantilever width
in the reference cell, see (1.15), (1.14), (1.18). The term rC(∂3y2y2y2u

A
3 )|junction is a

distributed load originating from shear forces exerted by cantilevers on the base
at base-cantilever junctions.
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1.1. Model Description

At base-cantilever junctions, a cantilever is clamped in the base, so

uA3|cantilever = uA3|base and ((∂y1 , ∂y2)u
A
3 .(n1, n2)

T )|cantilever = 0, (1.6)

because ∇yu
A
3 = 0 in the base. Other cantilever ends may be free with equations,

∂2y2y2u
A
3 = 0 and ∂3y2y2y2u

A
3 = 0, (1.7)

or may be equipped with a rigid part (usually a tip in Atomic Force Microscopes),
then

JR∂tt

(
uA3
∂y2u

A
3

)
+ rC0

(
−∂3y2y2y2u

A
3

∂2y2y2u
A
3

)
= FR0 (1.8)

at a junction between an elastic part and a rigid part. Here, JR is a matrix of
moments and FR0 is comprised of effective forces and moments stated in (1.32).
Last, the external base boundary being clamped in a fixed support

uA3 = 0 and ∇x̃u
A
3 .nx̃ = 0 (1.9)

on its boundary.

1.1.2 The General Two-Scale Model

In section 1.1.1, the model was introduced assuming that the base and cantilevers
are rectangle parallelepiped, and that their deformations in the y1 direction are
negligible. Now, we relax these assumptions, and we present in detail a more gen-
eral two-scale model that may also take into account possible interactions between
tips and rigid objects. We restrict the presentation to the situation where the
bodies are in contact with friction. This is applicable to contact mode microscopy
with atomic force microscopes. In addition to approximation of displacements,
we provide approximations of elastic strains and stresses. The approximations are
still posed in the Kirchhoff-Love thin plate model where we still neglect mean (in
the thickness direction) in-plane displacements.

Model Parameters The model parameters result from two-scale approxima-
tions of the physical data, namely coefficients, loads and initial conditions.

Remark 1 It is natural to consider that the problem geometry and equation coef-
ficients are parameterized by ε∗, but it is artificial to say the same thing regarding
other data as loads or initial conditions. However, to follow the common use we
proceed as if they were also known sequences of ε∗, with a known two-scale approx-
imation. For some of them, we do not require their direct two-scale approximation
but this of their product by a power of ε∗. This provide a measure of the asymptotic
behavior required so that the model be well justified. Remark that for actual model
computations, we do not use the two-scale approximation of parameters but only
their two-scale transform.
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

Let RP be the thin plate stiffness per unit area, for instance for a plate with
thickness h made of an isotropic material

RP
αβγρ =

Eh3

12(1 + ν)
(

ν

1− ν
δαβδγρ + δαγδβρ), (1.10)

the assumption (1.3) on ratio thicknesses may be restated with respect to stiff-
ness as

RP
|ΩC

RP
|ΩB

∼ ε∗4. (1.11)

Posing the order of magnitude of base stiffness in the range of 1 with respect to
ε∗, the two-scale stiffness tensors rB (respectively rC) per unit area in ω and per
unit area in the base ỸB (respect. in cantilever ỸC) is defined as the two-scale
approximation of κ̃RP (respect. of ε∗−4κ̃RP ), that we write simply as,

rB ≈ κ̃R̂P in ω × ỸB (respect. rC ≈ ε∗−4κ̃R̂P ). (1.12)

The stiffness per unit area in ω and per unit length in cantilever of the Simple
Model is therefore rC0 = ℓ0C(1 − ν2)rC , where we recall that ℓ0C is the scaled
cantilever width ℓC/ε∗ in the reference cell. In case of an isotropic material,

rC0 ≈ ε∗−4κ̃ℓ0CE
CIC = ε∗−4κ̃

ECh
3
Cℓ

0
C

12
, (1.13)

EC being the cantilever elastic modulus and IC = h3C/12 the second moment
of cantilever section. We introduce the effective stiffness tensor RB per unit area
in the base,

RB
αβγρ =

∫
ỸB

rBαβγρ + rBαβξζLB
ξζγρ dỹ, (1.14)

where the tensor LB is defined in (A.6) below. Then, ρ representing the volume
mass density, the effective mass density ρB per unit area in the base is

ρB ≈ κ̃

∫
YB

ρ̂ dy in ω. (1.15)

The other mass densities appearing in the model are two-scale densities: in
cantilever mC is per unit area times area when in the rigid tips and in objects ρR
and ρO are per unit area times volume. Indeed,

mC ≈ κ̃

∫ hC/2

−hC/2

ρ̂ dy3 in ω×ỸC , ρR ≈ κ̃ρ̂ in ω×YR and ρO ≈ κ̃ρ̂ in ω×YO. (1.16)
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1.1. Model Description

The two-scale mass density mC0 per unit area in ω and per unit length in
cantilevers follows,

mC0 = ℓ0Cm
C . (1.17)

The base effective load fB per unit area, the base effective moments gBα about
the plate section per unit area are derived from the two-scale approximations of
the vector of loads f = (f1, f2, f3) per unit volume,

fB ≈ κ̃

∫
YB

f̂3 dy, and gBα ≈ κ̃

∫
YB

y3f̂α dy in ω. (1.18)

The cantilever two-scale load FC and the moment GC per unit area times area
in ω × ỸC , the tip two-scale load FR and the moment GR per unit area times
volume, and the object two-scale load FO per unit area times volume are defined
similarly from f

FC ≈ κ̃

∫ hC/2

−hC/2

f̂3 dy3 and GC
α ≈

κ̃

ε∗

∫ hC/2

−hC/2

y3f̂α dy3 in ω × ỸC , (1.19)

FR ≈ κ̃f̂3, G
R
α ≈

κ̃

ε∗
y3f̂α in ω × YR and FO ≈ ε∗κ̃f̂ in ω × YO. (1.20)

The cantilever two-scale load of the Simple Model follows

FC0 = ℓ0CF
C . (1.21)

The two-scale load and moment corresponding to a periodic distribution of con-
centrated load (

∑
c fciδzc(x))i=1..3 applied at points zc = xc + ϵy0 is

FD =
1

(ε∗)d

∑
c

χỸ ε(xc)(z)fcδy0(y) ≈ |Ỹ |
∑
c

δx̃c(z)fcδy0(y) (1.22)

and GD =
1

(ε∗)d+1

∑
c

χỸ ε(xc)(z)fcy
0
3δy0(y) ≈

|Ỹ |
ε∗

∑
c

δx̃c(z)fcy
0
3δy0(y).

The two-scale friction coefficient at the two-scale tip-object interface ω × γR,O

is an approximation built from the tip-object friction coefficient ζ,

zFr ≈ κ̃
ζ̂

ε∗2
. (1.23)

For given initial transverse displacement u03 and velocity u13 in the whole system
together with lateral displacements u0α and velocity u1α in objects, the two-scale
initial displacements and velocities are defined by the approximations

uA0
3 ≈ û03, u

A1
3 ≈ û13 in ω × (YS ∪ YO),

and uA0
α ≈ ε∗û0α, u

A1
α ≈ ε∗û1α in ω × YO.
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

Moreover, uA0 and uA1 are assumed to fulfil the forthcoming kinematics (1.24-
1.28).

Admissible kinematics The two-scale fields uA satisfies a kinematics inher-
ited from the Kirchhoff-Love kinematics and from the two-scale approximation of
derivatives. In the whole mechanical structure comprised of a base and of can-
tilevers,

uA3 and uB are independent of y3. (1.24)

We neglect mean in-plane displacements, and we assume that the surface y3 = 0
corresponds to the mean section of the cantilevers and of the base. So,

uAα = −y3∂xαu
A
3 in ω × YB and uAα = −y3∂yαuA3 in ω × (YC ∪ YR). (1.25)

In the base, uA3 is independent of (y1, y2), that is

∇ỹu
A
3 = 0. (1.26)

The conditions of rigidity for tips and for objects are formulated as

∇ỹ∇T
ỹ u

A
3 = 0 in tips and sy(uA) = 0 in objects, (1.27)

where sy(u) = 1
2
(∇yu+ (∇yu)

T ) is the usual strain tensor in the y variables. The
contact condition between tips and rigid objects results in normal displacement
continuity through their interface γR,O,

[[uA]]γR,O
.ny = 0, (1.28)

where ny denotes the unit outward normal vector to boundaries in the reference
cell.

Equations of motion In cantilevers, the transverse displacement uA3 is gov-
erned by a Love-Kirchhoff thin plate equation in the y variables,

mC∂2ttu
A
3 + divỹ(divỹ(M

C(uA3 ))) = FC in ω × ỸC , (1.29)

and the shear force matrix in cantilevers is MC(uA3 ) = rC : ∇ỹ∇T
ỹ u

A
3 . In

the base, the transverse displacement uA3 is also governed by a thin plate Love-
Kirchhoff model in the macroscopic variables, with a contribution of the bending
moment exerted by the cantilever distribution. This coupling with cantilevers
appears under the form of an integral along the interface line γ̃B,C between ỸB

and ỸC ,

ρB∂2ttu
A
3 + ∂2xαxβ

MB
αβ(u

A
3 )−

∫
γ̃B,C

divỹ(M
C(uA3 )).nỹ ds̃ = fB in ω × ỸB, (1.30)
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1.1. Model Description

where the shear forces in the base are given by

MB
αβ(u

A
3 ) = RB

αβγδ∂
2
xγxδ

uA3 .

For the sake of shortness, we write the motion equations in tips and in objects under
their variational formulation. This avoids formulating in detail their dynamics
together with the interface condition. The admissible displacement set is built
from the above admissible conditions,

WA = {uA defined in YR ∪ YO satisfying (1.24, 1.25, 1.27, and 1.28)}.

For a given vector field v ∈ WA, we introduce its tangent component vT on the
interface γR,O defined as,

vT = v − (v.ny)ny,

and γ̃C,R the interface between ỸC and ỸR. The linear form of the right hand side
is

lR(v) =

∫
YR

FR
3 v3 −GR.∇ỹv3 dy +

∫
YO

FO.v dy −
∫
γ̃C,R

GC .nỹ v3 ds̃,

and the bilinear forms are

cR(uA, v) =

∫
YR

ρRuA3 v3 dy +

∫
YO

ρOuA.v dy,

bR(uA, v) =

∫
γR,O

zFr[[uAT ]]γR,O
.[[vT ]]γR,O

ds

aR(uA3 , v3) =

∫
γ̃C,R

(MC(uA3 )nỹ).∇ỹv3 − divỹ(MC(uA3 )).nỹ v3 ds̃.

The variational formulation states as uA(t, x, .) ∈ WA and

∂2ttc
R(uA, v) + ∂tb

R(uA, v) + aR(uA3 , v3) = lR(v) for all v ∈ WA. (1.31)

For the Simple Model, this equation was restated as a boundary condition (1.8) at
γ̃C,R where

JR =

(
J0 J1
J1 J2

)
and FR0 =

( ∫
YR
FR
3 dy − ℓ0CGC

|γ̃C,R∫
YR
FR
3 (y2 − y2|γ̃C,R

) dy −GR
2

)
, (1.32)

with Jk =
∫
YR
(y2−y2|γ̃C,R

)k dy2 being a kth moment of the rigid part YR about the
junction γ̃C,R in the direction y2.

Interface and boundary conditions Cantilevers being clamped in a base,
the deflection uA3 and its derivatives are continuous through the base-cantilever
interface γ̃B,C ,

uA
3|ω×ỸC

= uA
3|ω×ỸB

and (∇ỹu
A
3 )|ω×ỸC

= 0 at γ̃B,C . (1.33)
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

At free cantilever boundaries,

nT
ỹM

C(uA3 )nỹ = 0, ∇ỹ(n
T
ỹM

C(uA3 )τ ỹ).τ ỹ + divỹ(M
C(uA3 )).nỹ = 0 (1.34)

where τ ỹ is the tangent vector to the reference cell’s boundary. Along the complete
boundaries of ω where base is clamped, the two-scale transverse displacement fulfils
clamping like conditions,

uA3 = ∇x̃u
A
3 .nx̃ = 0 at ∂ω × ỸB. (1.35)

Initial conditions The two-scale transverse displacement and its velocity are
initialized in the whole system ω × (YS ∪ YO) by

uA3 = uA0
3 , ∂tuA3 = uA1

3 .

In-plane displacements and their time derivatives are initialized, in objects ω×YO
only, by

uAα = uA0
α and ∂tuAα = uA1

α . (1.36)

Eigenvalue Problem We consider the model without object, and we state the
associated eigenvalue problem as well as a property of factorization of eigenvectors.
An eigenvalue λA and an eigenvector ψA(x̃, ỹ) satisfy the constraints

∇ỹψ
A = 0 in ỸB, ∇ỹ∇T

ỹ ψ
A = 0 in YR, (1.37)

an equation in the base

divx̃(divx̃(M
B(ψA)))−

∫
γ̃B,C

divỹ(M
C(ψA))|ỸC

.nỹ ds = ρBλAψA in ω× ỸB, (1.38)

an equation in cantilevers

divỹ(divỹ(M
C(ψA))) = λAmCψA in ỸC , (1.39)

and a variational formulation in the rigid part,

ψA
|YR
∈ WA, aR(ψA, v) = λAcR(ψA, v) for all v ∈ WA, (1.40)

endowed with the reduced definition

WA = {v defined in YR | ∂y3v = 0 and ∇ỹ∇T
ỹ v = 0}.

The boundary and interface conditions for ψA are not detailed since they are the
same as for uA3 in (1.33-1.35).
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1.2. Model Implementation

Factorization of the Eigenvectors Now, we state that each eigenvector ψA

can be written as the product of a macroscopic eigenvector defined in ω only by
a microscopic (or local) eigenvector defined in ỸC ∪ YR only. We first introduce
the macroscopic eigenvalue problem where λB and φB(x̃) denote respectively an
eigenvalue and an eigenvector,

divx̃(divx̃(M
B(φB))) = λBρBφB in ω,

φB = ∇x̃φ
B.nx̃ = 0 on ∂ω.

Then, for each λB we define the microscopic eigenvalue problem in cantilevers
where λC and φC represent an eigenvalue and an eigenvector,

divỹ(divỹ(M
C(φC))) = λCmCφC in ỸC ,

λBρBφC − divỹMC(φC)nỹ = λCρBφC and ∇ỹφ
C = 0 at γ̃B,C ,

and nT
ỹM

C(φC)nỹ = 0,

∇ỹ(n
T
ỹM

C(φC)τ ỹ).τ ỹ + divỹ(M
C(φC)).nỹ = 0 at free boundaries,

together with the variational formulation in rigid parts,

φC
|YR
∈ WA, aR(φC , v) = λCcR(φC , v) for all v ∈ WA.

Finally, we state the decomposition property. For the sake of brevity its proof
is omitted.

Proposition 2 For each pair (λA, ψA) solution to (1.37-1.40), there exists a unique
pair (λB, φB) and a unique pair (λC , φC) such that ψA(x̃, ỹ) = φB(x̃)φC(ỹ) and
λA = λC . Reciprocally, for any pair (λB, φB) and any pair (λC , φC), its combi-
nation (φB(x̃)φC(ỹ), λC) determines the pair (ψA(x̃, ỹ), λA) which is solution to
(1.37-1.40).

1.2 Model Implementation

In this section, we provide further details in view of the model implementation
for a two-dimensional array and then for a one-dimensional array without object.
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

First, we summarize the coefficient expressions in case of constant coefficients

ℓ0C =
ℓC
ε∗
, L0

C =
LC

ε∗
, κ̃ =

1

|Ỹ |
, RP

αβγρ =
Eh3

12(1 + ν)
(

ν

1− ν
δαβδγδ + δαγδβρ),

rB ≈ κ̃RP in ω × ỸB, rC = (1− ν2)rC1111 = ε∗−4 κ̃Eh
3

12
,

RB
αβγρ =

∫
ỸB

rBαβγρ + rBαβξζLB
ξζγρ dỹ,

ρB ≈ κ̃|YB|ρ|YB
, mC ≈ κ̃hCρ|YC

, ρR ≈ κ̃ρ|YR
,

Q = N

(
J0 J1
J1 J2

)
N, with N =

(
1 0
0 1/L0

C

)
and Jk =

∫
YR

(y2 − L0
C)

k dy,

fB ≈ κ̃

∫
YB

f̂3 dy, and gBα ≈ κ̃

∫
YB

y3f̂α dy in ω, FC ≈ κ̃

∫ hC/2

−hC/2

f̂3 dy3

and GC
2 ≈

κ̃

ε∗

∫ hC/2

−hC/2

y3f̂2 dy3 in ω × ỸC , FR ≈ κ̃f̂3, G
R
α ≈

κ̃

ε∗
y3f̂α in ω × YR.

1.2.1 The Two-dimensional Case

We detail the formulation of the model when variations of displacements in can-
tilever width are ignored. We recall that uA3 is solution of the problem: Find
uA3 ∈ V A

3 such that

∂2ttc
A(uA3 , v

A
3 ) + ãA(uA3 , v

A
3 ) = lA(vA3 ) for all vA3 ∈ V A

3 (1.41)

accompanied with initial conditions

uA3 = uA0
3 and ∂tuA3 = uA1

3 at t = 0,

where
ãA(uA3 , v

A
3 ) =

∫
ω
[
([
RB : ∇x̃∇T

x̃u
A
3

]
: ∇x̃∇T

x̃ v
A
3

)
|ỸB

+ℓ0C
∫ L0

C

0
rC∂2y2y2u

A
3 ∂

2
y2y2

vA3 dyC2 ]dx̃,
(1.42)

cA(uA3 , v
A
3 ) =

∫
ω
[(ρBuA3 v

A
3 )|ỸB

+ ℓ0C
∫ L0

C

0
mCuA3 v

A
3 dyC2

+
∫
YR
ρRuA3 v

A
3 dy]dx̃,

(1.43)

and

lA(vA3 ) =
∫
ω
[(fBvA3 − gB.∇x̃v

A
3 )|ỸB

+
∫
ỸC
FC vA3 −GC

2 ∂y2v
A
3 dỹ

+
∫
YR
FRvA3 −GR

2 ∂y2v
A
3 dy]dx̃+ (FD −GD)vA3 .

(1.44)

The eigenmodes ψA ∈ V A
3 are solution of

ãA(ψA; vA3 ) = λAcA(ψA, vA3 ) for all vA3 ∈ V A
3 (1.45)
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with the normalization condition cA(ψA, ψA) = 1.
For a rectangle domain ω = (0, L1)× (0, L2), we introduce the factorization of

ψA(x̃, y2) = φB( x1

L1
, x2

L2
)φC(

yC2
L0
C
) where φB and φC are solution to the two following

eigenvalue problems where yC2 is the translation of y2 equal to zero at the clamping
point of the cantilever to the base. First, φB ∈ H2

0 ((0, 1)
2) with λB are solution

to the weak formulation

aB(φB, vB) = λBcB(φB, vB) for all vB ∈ H2
0 ((0, 1)

2)
normalized by the condition cB(φB, φB) = 1,

(1.46)

where the bilinear forms are defined on the scaled domain (0, 1)2 by

aB(φB, vB) =
∫
(0,1)2

[
RB0 : ∇ξ∇T

ξ
φB
]
: ∇ξ∇T

ξ
vB dξ

and cB(φB, vB) =
∫
(0,1)2

φB vB dξ,
(1.47)

and RB0 is the scaled homogenized stiffness tensor

RB0
αβγδ =

RB
αβγδ

RB
maxL

0
αL

0
βL

0
γL

0
δ

with L0
α = Lα

µ
,

µ = L1+L2

2
and RB

max = maxα,β,γ,δ(R
B
αβγδ).

(1.48)

Next, φC ∈ V C = {v ∈ H4(0, 1) | ∂ξv(0) = 0} with λC are solution to the weak
formulation

aC(φC , vC) = λCcC(φC , vC) for all vC ∈ V C

normalized by cC(φC , φC) = rC

(L0
C)4mC ,

(1.49)

where

aC(φC , vC) =
|ω|RB

max

µ4
λB
(
φC vC

)
|ξ=0

+
|ω|ℓ0C
(L0

C)
3

∫ 1

0

rC∂2ξξφ
C∂2ξξv

C dξ, (1.50)

and

cC(φC , vC) = |ω|rC
(L0

C)4mC [(ρ
BφCvC)|ξ=0 + ℓ0CL

0
C

∫ 1

0
mCφCvC dξ

+ρR
∫
YR
φCvC dy].

(1.51)

So, the normalization condition reads as

|ω|[ρB(φC
|ξ=0)

2 + ℓ0CL
0
C

∫ 1

0

mC(φC)2 dξ + ρR(φC , ∂ξφ
C)|ξ=1Q

(
φC

∂ξφ
C

)
|ξ=1

] = 1.

The boundary value problem satisfied by φC states therefore as

∂4ξξξξφ
C = λCφC in (0, 1) (1.52)
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with the boundary conditions

∂ξφ
C = 0 and

RB
max(L

0
C)

4mC

rCµ4ρB
λBφC +

mCℓ0CL
0
C

ρB
∂3ξξξφ

C = λCφC at ξ = 0, (1.53)

and (
−∂3ξξξφC

∂2ξξφ
C

)
=

λCρR

ℓ0CL
0
Cm

C
Q

(
φC

∂ξφ
C

)
at ξ = 1. (1.54)

Then

λA = λC
rC

(L0
C)

4mC
.

Finally, the weak formulation of the cell problem is: Find wB ∈ V B such that,∫
ỸB

MB0 : ∇ỹ∇T
ỹ v

B dỹ = −
∫
ỸB

FB : ∇ỹ∇T
ỹ v

B dỹ for all vB ∈ V B, (1.55)

where MB0 = rB : ∇ỹ∇T
ỹw

B, FB = rB : ζ, ζ being a symmetric 2× 2 matrix.
The evolution problem (1.41) is solved using the modal decomposition

uA3 (t, x̃, y2) =
∑
k

Uk(t)ψ
A
k (x̃, y2),

where the modal coefficients Uk are solution to the ordinary differential equation

∂2ttUk + λAk Uk = lA(ψA
k ). (1.56)

In view of insuring fast computations, we further assume (it is a strong assump-
tion that may be relaxed) that the loads are products of functions of microscale,
macroscale or time variable. Precisely, we consider loads fi as

f̂3(t, x̃, y) = f 0
3 (x̃, y)f

B2(t),

f̂α(t, x̃, y) = f 0
α(x̃, y)g

B2
α (t) in YB,

f̂3(t, x̃, y2, y3) = FC0(x̃)fC1
3 (y2, y3)F

C2(t),

f̂2(t, x̃, y2, y3) = GC0(x̃)fC1
2 (y2, y3)G

C2(t) in YC ,
f̂3(t, x̃, y) = FR0(x̃)fR1

3 (y)FR2(t),

f̂2(t, x̃, y) = GR0(x̃)fR1
2 (y)GR2(t) in YR,

(1.57)

plus a concentrated load at the tips with microscale coordinate ytip,

f̂ tip
i (t, x̃, y) =

∑
c

f tip
i,c (t)δx̃c(x̃)δytip(y). (1.58)
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Posing

fB0(x̃) ≈ 1

|YB|

∫
YB

f̂3 dy, fB1 = κ̃|YB|, gB0
α (x̃) ≈ 1

|YB|

∫
YB

y3f̂α dy, gB1
α = κ̃|YB|,

FC1(y2) = κ̃

∫ hC/2

−hC/2

fC1
3 dy3, G

C1(y2) =
κ̃

ε∗

∫ hC/2

−hC/2

y3f
C1
2 dy3,

FR1 = κ̃fR1
3 , GR1 =

κ̃

ε∗
y3f

R1
2 , FD

c = |Ỹ |f tip
3c , GD

c =
|Ỹ |
ε∗
y3f

tip
2c ,

we derive the two-scale loads,

fB(t, x̃) = fB0(x̃)fB1fB2(t), gBα (t, x̃) = gB0
α (x̃)gB1

α gB2
α (t) in YB,

FC(t, x̃, y2) = FC0(x̃)FC1(y2)F
C2(t), GC

2 (t, x̃, y2) = GC0(x̃)GC1(y2)G
C2(t) in YC ,

FR(t, x̃, y) = FR0(x̃)FR1(y)FR2(t), GR
2 (t, x̃, y) = GR0(x̃)GR1(y)GR2(t) in YR,

FD(t, x̃, y) =
∑
c

FD
c (t)δx̃c(x̃)δytip(y), G

D(t, x̃, y) =
∑
c

GD
c (t)δx̃c(x̃)δytip(y).

Inserting these expression in the right hand side of the modal equation (1.56), we
can rewrite it as

lA(ψA) =
∫
ω
fB0φB dx̃ φC(0)fB1fB2(t)

−
∑

α

∫
ω
gB0
α

∂ξαφB

Lα
dx̃ φC(0)gB1

α gB2
α (t)

+
∫
ω
FC0φB dx̃

∫ L0
C

0
FC1φC dyC2 F

C2

−
∫
ω
GC0φB dx̃

∫ L0
C

0
GC1 ∂ξφ

C

L0
C

dyC2 G
C2

+
∫
ω
FR0φB dx̃

∫
YR
FR1φC dyFR2

−
∫
ω
GR0φB dx̃

∫
YR
GR1 ∂ξφ

C

L0
C

dyC2 G
R2

+
∑

c F
D
c ψ

A(xc, ytip)−GD
c ∂y2ψ

A(xc, ytip).

(1.59)

1.2.2 The One-dimensional Case

The one-dimensional model can be formulated in a manner which is very close to
the two-dimensional model. Here, we present its formulation and we mainly quote
the differences with the two-dimensional one. The rectangle ω is replaced by a
single row ω = (0, L1) × (0, ε∗ℓ2), so |ω| = ε∗ℓ2L1. The weak formulation (1.41)
remains the same but with other bilinear forms,

ãA(uA3 , v
A
3 ) = ε∗ℓ2

∫ L1

0
[
(
RB∂2x1x1

uA3 ∂
2
x1x1

vA3
)
|ỸB

+ℓ0C
∫ L0

C

0
rC∂2y2y2u

A
3 ∂

2
y2y2

vA3 dyC2 ]dx1.
(1.60)

cA(uA3 , v
A
3 ) = ε∗ℓ2

∫ L1

0
[(ρBuA3 v

A
3 )|ỸB

+ ℓ0C
∫ L0

C

0
mCuA3 v

A
3 dyC2

+
∫
YR
ρRuA3 v

A
3 dy]dx1,

(1.61)
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and

lA(vA3 ) = ε∗ℓ2
∫ L1

0
[(fBvA3 − gB∇x̃v

A
3 )|ỸB

+
∫
ỸC
FC vA3 −GC

2 ∂y2v
A
3 dỹ

+
∫
YR
FRvA3 −GR

2 ∂y2v
A
3 dy]dx1 + (FD −GD)vA3 .

(1.62)

The eigenvalue problem in ψA and λA keeps the same expression, and the resulting
decomposition of the solution, which is a function of (t, x1, y2) only, states as

uA3 (t, x1, y2) =
∑
k

uA3k(t)ψ
A(x1, y2).

Here, ψA(x̃, ỹ) = φB( x1

L1
)φC(

yC2
L0
C
) where φB and λB are solution to the macroscopic

eigenvalue problem (1.46) in H2
0 (0, 1) with the bilinear forms

aB(φB, vB) =

∫ 1

0

∂2ξξφ
B∂2ξξv

B dξ and cB(φB, vB) =

∫ 1

0

φB vB dξ. (1.63)

Next, φC ∈ V C with λC are solution to the eigenvalue problem (1.49) with RB
max

replaced by RB in the expression of aC(., .). The associated normalization condition
and the boundary value problem are formally unchanged, excepted that RB

max and
µ are replaced by RB

1111 and L1 respectively in the second boundary conditions at
ξ = 0 :

RB
1111(L

0
C)

4mC

rCL4
1ρ

B
λBφC +

mCℓ0CL
0
C

ρB
∂3ξξξφ

C = λCφC at ξ = 0. (1.64)

The cell problem is kept the same excepted that the matrix ζ in the right hand
side has a vanishing ζ22 component. When ỸB is a rectangle, the exact expression
of wB, LB and of RB

1111 can be derived. Precisely, the solution to the cell problem
is

wB(y1, y2) = −
νζ11
2
y22 and MB = − κ̃EBh

3
Bνζ11

12(1− ν2)

(
ν 0
0 1

)
.

The linear operator LB
αβγρ = −νδα2δβ2δγ1δρ1, which implies the expression of RB =∫

ỸB
rB + rBLB dỹ,

RB
αβγρ =

κ̃|ỸB|EBh
3
B

12(1 + ν)
(

ν

1− ν
δαβδγρ + δαγδβρ −

ν2

1− ν
δαβδγ1δ1ρ + νδα2δ2βδγ1δ1ρ),

then
RB

1111 =
ℓ0BEBh

3
B

12ℓ2

where ℓ0B is the width of ỸB.
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In the load expressions (1.57) x̃ is replaced by x1, so

f̂3(t, x1, y) = f 0
3 (x1, y)f

B2(t),

f̂α(t, x1, y) = f 0
α(x1, y)g

B2
α (t) in YB,

f̂3(t, x1, y2, y3) = FC0(x1)f
C1
3 (y2, y3)F

C2(t),

f̂2(t, x1, y2, y3) = GC0(x1)f
C1
2 (y2, y3)G

C2(t) in YC ,
f̂3(t, x1, y) = FR0(x1)f

R1
3 (y)FR2(t),

f̂2(t, x1, y) = GR0(x1)f
R1
2 (y)GR2(t) in YR,

f̂ tip
i (t, x1, y) =

∑
c

f tip
ic (t)δxc

1
(x1)δytip(y).

Thus, the right hand side of the modal equation (1.56) is

lA(ψA) = ε∗ℓ2
∫ L1

0
fB0φB dx1 φ

C(0)fB1fB2(t)

−
∑

α ε
∗ℓ2
∫ L1

0
gB0
α

∂ξαφB

Lα
dx1 φ

C(0)gB1
α gB2

α (t)

+ε∗ℓ2
∫ L1

0
FC0φB dx1

∫ L0
C

0
FC1φC dyC2 F

C2

−ε∗ℓ2
∫ L1

0
GC0φB dx1

∫ L0
C

0
GC1 ∂ξφ

C

L0
C

dyC2 G
C2

+ε∗ℓ2
∫ L1

0
FR0φB dx1

∫
YR
FR1φC dyFR2

−ε∗ℓ2
∫ L1

0
GR0φB dx1

∫
YR
GR1 ∂ξφ

C

L0
C

dyC2 G
R2

+
∑

c F
D
c ψ

A(xc, ytip)−GD
c ∂y2ψ

A(xc, ytip).

(1.65)

1.3 Base/Cantilever Displacement Decomposition
of the Simple Model

In this section, we propose a new approach based on base and cantilever displace-
ment decomposition instead of global modal decomposition for the Simple Model
of one-dimensional cantilever array. We recall that the global modal decomposition

uA3 (t, x1, y2) =
∑
k

Uk(t)ψ
A
k (x1, y2),

where the global eigenvector

ψA(x̃, ỹ) = φB(
x1
L1

)φC(
yC2
L0

C

),

as introduced in section 1.2.2. We have observed that the global approximation
with ψA for the number of base modes nB = 10 and the number of cantilever
modes nC = 3 is not very good, as shown in Figure 1.5.
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Figure 1.5: Static displacements comparison between FEM model and two-scale
model with global modal decomposition.

We remark that the approximation based on global modal decomposition gets
worse with increasing nB and nC . This is due to the coupling in ψA of the micro
and macro modes. We note that the eigenvector of cantilever φC depends on the
eigenvalue of base λB, see the boundary condition (1.64). Thus, φC is not a pure
cantilever mode. It seems that a solution with discoupled modes works better.

We introduce the extension y2 7→ u(., y2) of the restriction y2 7→ uA3|base(., y2)

the displacement in base (which is in fact independent of y2) to the values taken
by y2 in cantilevers. So, u is defined in the whole two-scale domain and we can
define its difference with uA3 , ũ = uA3 − u, also defined in the whole domain. In
the base, it is obvious that ũ = 0 and ∇yu = 0 since uA3 is independent of y2. We
reformulate the equations (1.5) and (1.4) for one-dimensional cantilever arrays,
satisfied by the couple (u, ũ),{

ρB∂2ttū+RB∂4x1···x1
ū+ ℓ0Cr

C(∂3y2y2y2ũ)|junction = fB, in base
mC0∂2ttũ+mC0∂2ttū+ rC0∂4y2...y2ũ = FC , in cantilever (1.66)

In practice, we will work on a model reduced at the microscopic scale through
modal decompositions on cantilever modes {ϕk(y2)}k=1..nC in L2(0, L0

C), where nC

is the number of cantilever modes and the parameter L0
C represent the cantilever

length in the microscale domain. We have

ũ(t, x1, y2) ≈
nC∑
k=1

ũk(t, x1)ϕk(y2) and FC(t, x1, y2) ≈
nC∑
k=1

fC
k (t, x1)ϕk(y2). (1.67)
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In this approximation, equations (1.66) yields,{
ρB∂2ttu+RB∂4x1···x1

u+ ℓ0Cr
C(∂3y2y2y2ũ)|junction = fB in base,

mC0∂2ttũk +mC0∂2ttūϕ̄k + rC0 λC
k

(L0
C)4
ũk = fC

k for each k, (1.68)

where ϕ̄k =
∫ L0

C

0
ϕk dy2 and ϕk(y2) = φk(

y2
L0
C
). The eigenelements (λk,φk)k∈N are

solutions to the eigenvalue problem, posed in (0, 1),
φ′′′′
k = λCk φk in (0, 1)

φk(0) = φ′
k(0) = 0, at 0(

−φ′′′
k

φ′′
k

)
= λkQ

(
φk

φ′
k

)
at 1.

(1.69)

where Q = N

(
J0 J1
J1 J2

)
N with N =

(
1 0
0 1/L0

C

)
and Ji =

∫
YR
(y2 − L0

C)
i dy,

i = {0, 1, 2}.
The weak formulation associated to (1.68) states as,

ε∗ℓ2
∫ L1

0
[(
(
ρB + ℓ0CL

0
Cm

C0
)
∂2ttūv̄ +RB∂2x1x1

ū∂2x1x1
v̄)|Γ + ℓ0C

∫ L0
C

0
mC0∂2tt(ũv̄ + ūṽ + ũṽ)

+rC0∂2y2y2ũ∂
2
y2y2

ṽ dy2]dx1 = ε∗ℓ2
∫ L1

0
[(fB v̄)|Γ + ℓ0C

∫ L0
C

0
fC(v̄ + ṽ) dy2]dx1 + FD(v̄ + ṽ),

(1.70)
which is satisfied by the couple (ū, ũ). In the following, we show that the displace-
ments in base ū are solved by a classical FEM, and the displacements in cantilevers
ũ are solved by using the modal decomposition introduced in (1.67).

1.3.1 FEM discretization in Base

We use a FEM to approximate, ū, the solutions in base. The normalized interval
[0, 1] is discretized by elements ei = [ζ i1, ζ

i+1
1 ] with i ∈ {1, · · ·N e}, and the ends of

the nodes are 0 < ζ11 < ζ21 < · · · < ζN+1
1 = 1. We approximate the solution by a

function of the class C1(0, 1) and third order polynomials on each elements, ūh ∈
P3(0, 1). The global degree of freedoms are the displacements and the derivatives
at each nodes, ū2n−1 = uh(ηn) and ū2n = u′h(ηn) for n = 1, · · · , N e + 1, and in
total there are 2(N e + 1) degree of freedoms.

The local degrees of freedom are the displacements and derivatives at nodes

ūei1 = ūh(ξ
ei
1 ), ū

ei
2 = ū′h(ξ

ei
1 ), ū

ei
3 = ūh(ξ

ei
2 ), ū

ei
4 = ū′h(ξ

ei
2 ),

where ξei1 = ζ i1, ξ
ei
2 = ζ i+1

1 . The shape functions are Nk(ξ) :
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N1(ξ) =
−(ξ − ξ2)2(−h+ 2(ξ1 − ξ))

h3
, N2(ξ) =

(ξ − ξ1)(ξ − ξ2)2

h2
,

N3(ξ) =
(ξ − ξ1)2(h+ 2(ξ2 − ξ))

h3
, N4(ξ) =

(ξ − ξ1)2(ξ − ξ2)
h2

The local and global approximations are represented,

ūei(t, ζ1) = NT (ζ1)U
ei(t) in ei where U ei = (ūei1 , ū

ei
2 , ū

ei
3 , ū

ei
4 )

T (1.71)

and

ūh(t, ζ1) =

2(Ne+1)∑
n=1

ūn(t)ϕn(ζ1).

1.3.2 Modal decomposition in Cantilevers

As indicated at the beginning of section 1.3, the solutions in the cantilevers are
decomposed ũ by

ũ(t, x1, y2) ≈
nC∑
k=1

ũk(t, x1)ϕk(y2) (1.72)

with ϕk(y2) = φk(
y2
L0
C
). Here, the basis φk is the solution of eigenvalue problem

with fixed-free boundary condition (1.69) instead of the boundary condition (1.53)
for φC based on global modal decomposition.

The approximation of the integrals by Galerkin method for (1.70):Msys∂
2
tt


U

Ũ1
...

ŨnC

+Ksys


U

Ũ1
...

ŨnC


 = Fsys, (1.73)

where the vectors of the coefficients U =
(
0 0 ū3 ū4 · · · ū2Ne−1 ū2Ne 0 0

)T
and Ũk =

(
0 0 ũk,2 ũk,2 · · · ũk,2Ne−1 ũk,2Ne 0 0

)T for k varying from 1
to nC . The matrices

Msys = |ω|
( (

ρB + ℓ0CL
0
Cm

C0
)
MB (φ̄k)k=1,...,nCℓ0CL

0
Cm

CMB

(φ̄k)
T
k=1,...,nCℓ

0
CL

0
Cm

C0MB ℓ0CL
0
Cm

C0Id

)
, and

Ksys = |ω|

(
KB

L4
1

0

0
ℓ0CrC0

(L0
C)3

(λCk )k=1,··· ,nC

)
.
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where the rectangle domain ω = (0, L1)×(0, ε∗ℓ2), the matricesMB =
Ne∑
i=1

∫
ei
N(ξ)NT (ξ)

dξ , KB =
Ne∑
i=1

∫
ei
N ′′(ξ)N ′′T (ξ) dξ, and Id is identity matrix with size of nC×2(N e+

1).

1.4 Conclusion
In this chapter, we have presented a two-scale model for two-dimensional arrays
of cantilevers in dynamic regime based on a theory of strongly heterogeneous ho-
mogenization. We have also considered the dynamics of the possible interaction
between the rigid tips and the objects in the General Model. The model imple-
mentation has been reported both for one-dimensional and two-dimensional arrays
of cantilevers. We have proposed a new approach of base/cantilever displacement
decomposition which is different from the approach based on the decomposition
on the global modes ψA.

In the next chapter, we shall focus on the model verification and it will be
followed by a presentation of design optimization for arrays of AFMs.
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Contents
2.1 Simple Model Verification . . . . . . . . . . . . . . . . . 30

2.1.1 Qualitative Properties of the Modal Structure of Can-
tilever Arrays . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 Quantitative Verification . . . . . . . . . . . . . . . . . . 36

2.2 Model Verification in Static and Dynamic Regime . . . 40

2.2.1 Verification in Static Regime . . . . . . . . . . . . . . . 40

2.2.2 Verification in Dynamic Regime . . . . . . . . . . . . . . 42

2.3 Robust Design Optimization . . . . . . . . . . . . . . . . 44

2.3.1 Design Problem . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Phases of the Design Optimization Process . . . . . . . 49

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

In chapter 1, we presented the Simple Model and the General Model for two-
dimensional cantilever arrays. We also detailed the model implementation and
the model decomposition of the Simple Model. In this chapter, we conduct the
verification of the two-scale model. It includes the following contents.

1. Eigenvalue and eigenmode shape comparison between the two-scale model
and a direct Finite Element Model both for one-dimensional and two-dimensional
cantilever arrays.
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2. Verifications in static and dynamic regime for one-dimensional array of can-
tilevers.

Additionally, an optimization tool is presented. It has been used for designing
arrays of cantilevers satisfying all the design requirements.

2.1 Simple Model Verification

2.1.1 Qualitative Properties of the Modal Structure of Can-
tilever Arrays

An infinite number of eigenvalues λA and eigenvectors φA(x̃, y2) are solutions to the
eigenvalue problem (1.45), which are associated to the model of two-dimensional
array of cantilevers. For convenience, we parameterize them by two independent
indices, i ∈ N and j ∈ N, both varying in an infinite countable set. The first
index i refers to an infinite set of eigenvalues λBi and eigenvectors φB

i (x̃) of a
problem posed in the base. The eigenvalues (λBi )i∈N constitutes a sequence of
positive number increasing towards infinity. At each such eigenvalue, another
eigenvalue problem is posed for a cantilever, which also has a countable infinity of
solutions denoted by λCij and φC

ij(y2). The index i of λBi being fixed, the sequence
(λCij)j∈N is a positive sequence increasing towards infinity. On the other hand, when
the index j is fixed, the sequence (λCij, φ

C
ij)i∈N is an infinite sequence converging

to an eigenelement associated to a clamped-free cantilever. We can show that
the eigenvectors φA

ij(x̃, y2) are the product of a mode in the base by a mode in
a cantilever φB

i (x̃)φ
C
ij(y2). Note that x̃ is replaced by x1 for the model of one-

dimensional array of cantilevers. Now we report observations made on eigenmode
computations.

Verification for Eigenvalues of One-dimensional Array of Cantilevers

We consider an array of N = 10 cantilevers, with base dimensions 500µm ×
16.7µm× 10µm, and cantilever dimensions 41.7µm× 12.5µm× 1.25µm, (see Fig-
ure 2.1) for the two possible geometries, with or without tips. We have carried
out our numerical study on both cases, with or without tips. But we limit the
following comparisons to cantilevers without tips, because configuration including
tips yields similar results.

We restrict our attention to a finite number of eigenvalues λBi with i varying
from 1 to nB. Computing the eigenvalues λA, we observe that they are grouped
in bunches of size nB accumulated around a clamped-free cantilever eigenvalues.
A number of eigenvalues are isolated far from the bunch. It is remarkable that
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2.1. Simple Model Verification

(a) (b)

Figure 2.1: Cantilever array without tips (a) and with tips (b)

the eigenelements in a same bunch share a same cantilever mode shape, (close
to a clamped-free cantilever mode) even if they correspond to different indices j.
That is why, these modes will be called "cantilever modes", (see Figure 2.2 (a)).
Isolated eigenelements share also a common cantilever shape, which looks like a
first clamped-free cantilever mode shape except that the clamped side is shifted far
from zero. The induced global mode φA is then dominated by base deformations
and therefore will be called "base modes", see Figure 2.2 (b).

(a) (b)

Figure 2.2: Cantilever mode (a) and Base mode (b)

Then, for arrays of 15 and 20 cantilevers, only the cantilever width is changed so
that to keep the same characteristic values of λAij. The densities of square roots of
eigenvalues in logarithm scale are presented in the sub-figures 2, 4 and 61 of Figure
2.3 for the number of base modes nB = 10, 15 and 20 respectively. These figures
show three bunches with size nB and isolated modes that remain unchanged.

1Sub-figures are counted from top to bottom.

31



Chapter 2. MODEL VERIFICATION AND DESIGN OPTIMIZATION FOR AFM ARRAYS

Figure 2.3: Distributions of log(
√
λA) of the FEM model and of the two-scale

model

Verification for Eigenvalues of a Two-dimensional Array of Cantilevers

In this section, we show our preliminary work on the eigenmode and eigenvalue
verifications for a two-dimensional array of N × N cantilevers without tips, (see
Figure 1.1). We have carried our computation with small number N = 3, 4 and 5
due to long computing time of FEM simulations on a personal computer. Thanks
to super computer facilities of the Mésocentre de calcul de Franche-Comté, we
have performed a simulation for N = 10. We consider an array of cantilever with
base dimensions of left base 30µm × 10µm × 10µm, right base 30µm × 10µm ×
10µm, top base 50µm× 10µm× 10µm, bottom base 50µm× 10µm× 10µm and of
cantilever dimensions 25µm× 10µm× 1.25µm for one cell. Here, we still focus on
the comparisons where cantilevers are without tips as for one-dimensional arrays
of cantilevers.

Densities of square roots of eigenvalues in logarithm are reported in sub-figures
2, 4 and 6 of Figure 2.4 for N = 3, 4 and 5 respectively. These figures show two
bunches with size of the number of base mode nB and the isolated modes that
remains unchanged.
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Figure 2.4: Eigenvalue density comparison for N = 3, 4 and 5

We report the eigenmode density comparison for N = 10 in Figure 2.5.
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Figure 2.5: Eigenvalue density comparison for N = 10

The first bunch with size N × N and the isolated modes that remains un-
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changed. We remark that a number of eigenvalues in the FEM spectrum do not
have their counterparts in the two-scale model spectrum for log(

√
λA) > 18. We

have checked that these missing elements correspond to modes which have mem-
brane displacement in some local cells and torsion in the cantilevers. These cases
are not modeled in the current simple two-scale model.

We also compare the eigenmodes and especially those belonging to bunches of
eigenvalues, (see Figure 2.6 for N = 10). We have found that the mode shapes of
the FEM model and of our model are similar for identical eigenvalues.

(a) (b)

(c) (d)

Figure 2.6: The first base mode of (a) FEM model and (b) Two-scale model. The
first cantilever mode of (c) FEM model (d) Two-scale model

In order to compare the distribution of the spectrum for a 100-cantilever array,
we operate a truncation of mode list. It corresponds to the range [0 17.46] of
log(
√
λA) in Figure 2.5. We have reported the eigenvalue distribution both in our

model and in the FEM model, see Figure 2.7 (a). The relative errors between both
eigenvalues sequences are represented in Figure 2.7 (b). Note that errors are far
from being uniform among eigenvalues. In fact, the main error source resides in
a poor precision of the beam model for representing base deformations in some
particular deformation modes.
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Figure 2.7: (a) Eigenvalue density distributions and (b) its relative errors for the
FEM model and for the two-scale model

Verification for eigenmodes

We discuss the comparison with the modal structure of the three-dimensional linear
elasticity system for the cantilever array discretized by a standard FEM analysis
both for two-dimensional and one-dimensional arrays of cantilevers. The eigen-
values of the three-dimensional elasticity equations constitute also an increasing
positive sequence that accumulates at infinity. As for the two-scale model, its
density distribution exhibits a number of concentration points and also some iso-
lated values. Here bunch sizes equal the number of cantilevers, see sub-figures
1, 3 and 5 in Figure 2.3, Figure 2.4 (a) and sub-figure 1 in Figure 2.4 (b) repre-
senting eigenmode distributions. Extrapolating this observation shows that when
the number of cantilevers increases to infinity bunch size increases proportion-
ally. Since the two-scale model is an approximation in the sense of an infinitely
large number of cantilevers, this explains why the two-scale model spectrum ex-
hibit mode concentration with infinite number of elements. This remark provides
guidelines for operating mode selection in the two-scale model. In order to deter-
mine an approximation of the spectrum for an array of cantilevers, we suggest to
operate a truncation in the mode list so that to retain a simple infinity of eigen-
values (λAij)i=1,..,N and j∈N. It is remarked that a number of eigenvalues in the FEM
spectrum have not their counterparts in the two-scale model spectrum. We found
that the missing eigenmodes in the two-scale model correspond to physical effects
not taken into account in the two Euler-Bernoulli models for the base and the
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cantilevers.

2.1.2 Quantitative Verification

The quantitative verification is focused on the case of a one-dimensional array with
10-cantilevers, i.e. for N = 10. The results relate to the first 40 modes in the FEM
model and to the eigenelements (λAij, φ

A
ij) for i ∈ {1, ..., 10} and j ∈ {1, 2, 3}, the

latter being listed in Table 2.1. Note that the computation time is 0.76s for the

Table 2.1: List of log(
√
λAij) of the two-scale model

ȷ�i 1 2 3 4 5 6 7 8 9 10
1 14.44 15.38 15.51 15.51 15.51 15.51 15.51 15.51 15.51 15.51
2 15.54 15.61 16.16 16.65 17.05 17.31 17.34 17.35 17.35 17.35
3 17.36 17.36 17.36 17.36 17.37 17.43 17.69 17.93 18.15 18.33

modes of the two-scale model implemented in a non optimized MATLAB R⃝ code
versus 88.14s for the finite element modes using COMSOL R⃝ with 20, 859 quadratic
elements with a regular laptop. We stress the fact that the N−eigenvalue bunches
are not corresponding to a single row in Table 2.1 i.e. not corresponding to a single
j. This is because the modes dominated by the deformation of base are interposed
between the clusters of modes dominated by the deformations of cantilevers. The
counterpart in terms of base modes is that they follow each other on consecutive
columns but with possible line breaks.

To conduct a quantitative comparison of eigenvalues, it is required to match the
modes of the two-scale model with those of the FEM model. Because of the prox-
imity of many eigenvalues, a tool like the conventional Modal Assurance Criterion
(MAC) is necessary to discriminate them, see [44]. For any couple of an eigenvec-
tor φA from the two-scale model and the transverse displacement component φref

of an eigenvector from the FEM model,

MACφ =
|
⟨
φrefT

, φA
⟩
)|2

|
⟨
φrefT , φref

⟩
| |
⟨
φAT , φA

⟩
|
,

it is equal to one if the shapes are identical and to zero when they are orthogonal
in the sense of the inner product ⟨., .⟩. Each subspace of eigenvectors φref cor-
responding to a quasi-multiple eigenvalue is rotated so as to optimize the MAC
matrix. The results are shown in Figure 2.8 where the modes φA are arranged in
the order such that the index i varies faster than the index j. The inner product
is based on a sum over 300 points distributed along six parallel lines in the base
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Figure 2.8: MAC matrix between the two-scale model modes and the FEM modes

and over 6× 10×N points along six lines in each cantilever. In both cases the six
lines are along the four edges and along the central axes of the upper and lower
faces and the points are regularly spaced. The FEM computation has been carried
out with 20, 859 elements. All modes φref from the FEM model which are not
sufficiently correlated with a mode φA i.e. with a MAC lower than 0.5 are not
considered for comparison because they correspond to physical effects not modeled
by the Euler-Bernoulli models. Some modes φA seem to correlate well with several
modes φref , like the eigenmodes 2, 11 and 12 so an additional criterion for selec-
tion should be applied. The most general method would be to add more points
in the inner product, but here it was enough to eliminate the unwanted modes by
comparing the magnitudes of eigenvalues. Figures 2.9 (a) and (b) and 2.9 (c) and
(d) are two examples of paired modes using this strategy. In Figure 2.10 (a) paired
eigenvalues are represented and relative errors are plotted on Figure 2.10 (b). Note
that errors are far from being uniform among eigenvalues. In fact, the main error
source resides in a poor precision of the Euler-Bernoulli model for representing
base deformations in few particular cases. A careful observation of Finite Element
modes shows that base torsion can be predominant for some modes, such as in the
first mode of the first cantilever mode bunch.
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(a) (b)

(c) (d)

Figure 2.9: Eigenmode shapes of (a) φA
1,1, (b) φref

1 , (c) φA
2,2, (d) φref
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In Figure 2.10(a), the distinction between the base modes and the cantilever
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2.1. Simple Model Verification

modes is also marked. Their distinction could be done from the ratio of the
amplitudes of deformation in the base and in the cantilevers. An equivalent way
is to use the sensitivities with respect to characteristic parameters of the two
modes of deformations. To find the influential parameters, the sensitivities of
the model through parameter variations is established using a first-order finite
difference method applied to the eigenvalues. The results are presented in Figure
2.11 where all parameters have been tested, i.e. the Young’s modulus, the volume
mass, the thicknesses, the lengths and the widths.

Figure 2.11: First-order finite difference sensitivity analysis

Their values are denoted by E, ρ, hB, LB, lB, hC , LC , and lC where the
superscripts B and C stand for base and cantilevers. The eigenvalues are mainly
sensitive to the thickness hB of the base, to the length LC of the cantilevers, and for
a lesser extent to the thickness hC of the cantilevers. Most of the eigenvalues are
sensitive to only one of the two parameters hB or LC then they can be identified as
a base mode or as a cantilever mode. The cantilever modes are clearly organized
in clusters of N = 10 modes separated by base modes. At their interfaces some
modes are almost equally sensitive to base and to cantilever parameters, they are
referred as mixed mode in Figure 2.12. However, for simplicity they are considered
as base modes in Figure 2.10.
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(a) First eigenmode (b) Second eigenmode

(c) Eleventh eigenmode (d) Twelfth eigenmode

Figure 2.12: Eigenmodes of the two-scale model

To illustrate the distinction between the three kind of modes, the sub-figures
2.12 (a) and (c) present a base mode and a cantilever mode when the sub-figures
2.12 (b) and (d) show two mixed modes.

2.2 Model Verification in Static and Dynamic Regime
We recall that we have introduced the base/cantilever displacement decomposition
in section 1.3. In this section, we compare the reformulated two-scale model (a
simplified model) to a FEM build from the system of elasticity equations in the
three-dimensional domain. Here, we refine sufficiently the discretization of both
models so that to evaluate the two-scale model itself but not its discretization. The
solution of the FEM model is denoted by uFEM.. Excepted when it is explicitly
said, all computations are carried out for a 10-cantilever array.

2.2.1 Verification in Static Regime

The vertical displacement shown on Figure 2.13 are obtained after applying a
10µN concentrated force at the middle point of the free end of the fifth and sixth
cantilevers. To better estimate the model quality, four loading conditions have
been tested: A- Same load on all cantilevers, B- Only the fifth cantilever is loaded,
C- The fifth and the sixth cantilevers are equally loaded, and D- Opposite loads
on even and odd cantilevers. In table 2.2, the relative L2-norm errors,

E =

(∫
ω
|u− uFEM |2 dx∫
ω
|uFEM |2 dx

)1/2

,
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(a) (b)

Figure 2.13: Displacement of a 10-cantilever array under a static load of (a) Two-
scale Model (b) FEM model

are reported. The errors of the model are small enough to use it in a model based

Table 2.2: L2-norm error for different loads
Loads A B C D

Errors (%) 5.12 4.49 2.42 1.36

control loop. Deeper investigations show that the largest errors come when all
loads are operating in the same direction and therefore when the base is subjected
to a large deformation. Then, Figure 2.14 represents displacements in a single
cantilever, namely the fifth cantilever, in the loading case A. We noticed that the
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Figure 2.14: Displacement comparison of static analysis of 10-cantilever array at
fifth cantilever

error originate from the clamping zone, and after a careful inspection we have
concluded that it could have been corrected if torsion effects have been taken into
account in the base.
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Next, we report results of a study on static cross-talk effect. The load is this of
case C. The ten ratios of the displacements at the free end of cantilevers to this of
loaded cantilevers are reported in Table 2.3, they show a good agreement between
the two models in terms of static cross-talk.

Table 2.3: Ratios of the displacements at the free end of cantilevers to this of a
loaded one in static regime

Free ends Two-scale FEM Absolute
model (%) model (%) errors

1 0.6 0.9 0.3
2 4.9 5.9 1
3 11.3 13 1.7
4 17.7 20 2.3
5 100 100 0
6 100 100 0
7 17.7 20.1 2.4
8 11.3 13 1.7
9 4.9 5.9 1
10 0.6 0.9 0.3

2.2.2 Verification in Dynamic Regime

To study the dynamic regime, the fifth cantilever free end is excited with a load
oscillating to the first base eigenfrequency (303kHz). Figure 2.15 shows the sixth
and ninth cantilever end motion for both models.
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Figure 2.15: Displacement at (a) sixth cantilever end, and (b) ninth cantilever end
in dynamic regime
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We conclude to a good fit between the models in terms of phase shift but
a noticeable difference regarding amplitudes. In the same experiment, dynamic
cross-talk is characterized through the ratios of maximum displacements at the
cantilever free ends to this of a loaded one. They are reported in Table 2.4 where
the maximum displacements are taken over the time interval [0, 15µs]. In that

Table 2.4: Ratios of maximum displacements at the free end of cantilevers to this
of a loaded one under first base eigenfrequency excitation

Free ends Two-scale FEM Absolute
model (%) model (%) errors

1 3.1 2.4 0.7
2 23.2 21.5 1.7
3 51.6 47.9 3.7
4 77.2 71.5 5.7
5 100 100 0
6 92.5 86.8 5.7
7 77.5 73.7 3.8
8 51.6 49.9 1.7
9 23.3 22.5 0.8
10 3.1 2.5 0.6

case, the observations show that the energy originating from an excited cantilever
propagates more than in the static operating regime. Finally, Table 2.5 reports
results of dynamic cross-talk effect when the fifth cantilever is excited at the first
cantilever frequency (2.34MHz). In this case, the simulation have been carried
out in the time interval [0, 2µs]. As expected, the dynamic cross-talk effect, at this
frequency, is smaller than this at the first base frequency. However, the absolute
errors is increasing due to the poor precision of the beam model when exciting the
cantilever at high frequency.
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Table 2.5: Ratios of maximum displacements at the free end of cantilevers to this
of a loaded one under first cantilever eigenfrequency excitation

Free ends Two-scale FEM Absolute
model (%) model (%) errors

1 1.2 3.6 2.4
2 4.9 9.3 4.4
3 2.6 18.3 15.7
4 5.4 31.2 25.8
5 100 100 0
6 12.6 24.5 11.9
7 6.2 18.3 12.1
8 6.0 22.8 16.8
9 10.4 21.1 10.7
10 2.5 5.7 3.2

2.3 Robust Design Optimization
Parameters of an array, such as the cantilever length, width and thickness, spring
constant and deflection angle of the cantilevers for a given force, footprint of the
array and lateral pitch between two adjacent cantilever, must satisfy initial re-
quirements for good operation. Thanks to SIMBAD a decision making tool for
development design, which we introduced in [45], we perform various optimization
analyzes for the design of AFM probe arrays:

1. Sensitivity analysis: selection of the subset of model design variables with
the greatest impact on system performance

2. Deterministic design optimization: searching the design space for solutions
which optimize system behavior while satisfying design constraints

3. Uncertainty quantification: quantifying the impact of manufacturing uncer-
tainties on the optimized system performance.

In this section, we introduce these tools through a static design optimization
application for a one-dimensional array of cantilevers which is a collaboration
with CSEM. Two dimensional arrays with unconnected rows are made by aligning
several one-dimensional arrays. A parameter can be used to define the geometry
of the array of levers and it may be a:

• fixed variable: a variable that its value is fixed (assessed value)
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2.3. Robust Design Optimization

• free variable: a variable that can be freely chosen between two limits, or from
a known list of values

• dependent variable: a variable that is depended to another free variable

• variable to be optimized: a variable that we seek to define the nearest possible
to a target value which is included into two limitations

• variable to be minimized: a variable has to be minimized, which has a max-
imum threshold

• variable to be maximized: a variable has to be maximized, which has a
minimum threshold

A constraint limits the choice of parameter values. It can be a:

• variable to be optimized: a variable that we seek to define the nearest possible
to a target value which is included into two limitations

• variable to be minimized: a variable has to be minimized, which has a max-
imum threshold

• variable to be maximized: a variable has to be maximized, which has a
minimum threshold

• threshold: a variable depends on other values or variables, which should not
exceed a critical threshold, but what we seek is neither to be optimized nor
to be minimized and nor to be maximized.

After definition of the boundary conditions, such as minimal and maximal val-
ues of the parameters to be optimized and material properties, SIMBAD computes
the optimal design of the probe arrays.

2.3.1 Design Problem

We consider an one-dimensional array of cantilevers, (see Figure 2.16). It is com-
prised of bases crossing the array in which cantilever are clamped. The support
is clamped on its external boundary. Cantilevers may be equipped with a rigid
tip, as in AFMs, (see Figure 2.17). The whole array can be viewed as a periodic
repetition of a same cell, referred as reference cell shown in Figure 2.18, in the
two directions or in one direction. We suppose that the number of cells in each
direction is sufficiently large, namely larger or equal to 10.
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Figure 2.16: A one-dimensional view of (a) an Array and (b) a Cell

Figure 2.17: One-dimensional arrays of AFM. Courtesy of André Meister and of
Thomas Overstolz, CSEM Neuchâtel Switzerland.

(a) (b)

Figure 2.18: (a) Side view and (b) Top view of a reference cell
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Design Variables

The design variable space is, X = [x1, x2, · · · , xd] ∈ R. We list the design variables
for this application in Table 2.6.

Table 2.6: List of design parameters
Label X Description Initial value Bound Uncertainty

LC x1 Lever length 200 µm [60 400] µm ±4 µm
lC x2 Lever width 40 µm [40 80] µm ±1 µm
hC x3 Lever thickness 0.5 µm [0.25 0.70] µm ±2%
EC x4 Young modulus of lever 335 Gpa fixed ±10%

rhoC x5 Mass density of lever 3100 kg/m3 fixed ±3%
activtip x6 Tip presence 1 (or 0) fixed

hB x7 Base thickness 30 µm [30 60] µm ±10 µm
lB x8 Base width 40 µm [10 200] µm ±1 µm
EB x9 Young modulus of Base 169 Gpa fixed ±10%

rhoB x10 Mass density of Base 2330 kg/m3 fixed ±3%
L1 x11Array size in x-direction 1000 µm fixed
nx x12No. levers in x-direction 10 [2 20]
ny x13No. levers in y-direction 1 fixed
ltip x14 Tip beam width x2 − 10 µm dependent ±1 µm
ytip x15 position of tip apex x2/2 dependent ±4 µm
Sarray x16 Array size 1× 1 mm2 fixed
Dim x17 Array dimension 1 (or 2) fixed
LB x18 x-direction pitch floor( x11

x12×50
)× 50 µm proportional to 50 µm

Lcell2 x19 y-direction pitch (floor( x1+x8

5×10−5 ) + 1)× 50 µmproportional to 50 µm

Design Features

The design feature space is,

S = [s1, s2, · · · , sns ] ∈ R.

For a static design problem of AFM arrays, we list the design response features in
Table 2.7.
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Table 2.7: Design features
Label S Description Equation

S_Spring s1 Spring constant of lever x4x2x3
3

4x3
1

S_Tapex1 s2 Static displacement at the tip apex solved by AFMALab
S_Base s3 Static displacement at the base solved by AFMALab

Gap s4 Gap between two levers x18 − x2
Gapcell s5 Gap percentage of each cell 1− x1x2+x18x8

x18x19

S_MTn s6 Mechanical–thermal noise not used
S_FP s7 Footprint size x11(x1 + x8)
S_hB s8 Base thickness x7

1 maximum deflection at tip when the lever is bent by a known static point
force in the x3-direction Fmax.

Design Objectives

The design objective functions are defined as

Fi(x), with i = 1, · · · , nF

which depend on the design variables. An aggregated mono-objective minimization
with nonlinear constraints standard form is considered to solve the optimization
problem,

min
x

(

nF∑
i=1

ωiFi(x))

where ωi is the weight for ith design objective. The standard form of design
objectives are presented in Table 2.8.

Table 2.8: Design objectives
Label F (x) Description Equation
F_Gap F1(x) Gap between two levers s4

F_Gapcell F2(x) Gap percentage of each cell s5
F_hB F3(x) Base thickness s8

Nonlinear Design Constraints

We have certain number of nonlinear constraints, transformed into standard form,
presented in Table 2.9.

48



2.3. Robust Design Optimization

Table 2.9: Nonlinear design constraints
Label Description Equation Tolerance

C_Base Maximum displacement at base must smaller than s3 − 50 nm≤ 0
50 nm for small array and 80 nm for large array or s3 − 80 nm≤ 0

C_Gap Minimum gap between two levers larger than lC/2 x2

2
− s4 ≤ 0 ±1 µm

C_Gapcell Minimum gap percentage
of each cell greater than 40% 0.4− s5 ≤ 0

C_Angle Maximum deflection angle at tip end less than 3π
180

arctan( 3S2

2(x1−x2/2)
)− 3π

180
≤ 0

C_Spring Spring constant equals to 0.03 with Fmax = 2 nN s1 − 0.03 = 0 ±50%
C_FP Maximum footprint size of s7 − 1× 1 mm2 ≤ 0

small and large array or s7 − 2× 2 mm2 ≤ 0

2.3.2 Phases of the Design Optimization Process

Design Sensitivity and Effects Analysis

• First-order sensitivity analysis

We perform a first-order sensitivity analysis to select the most influential
design variables by a steepest descent algorithm. The result of the first-
order sensitivity analysis plot is shown in Figure 2.19.

Figure 2.19: First-order finite difference sensitivities

The analysis result shows that the length and width of cantilever arrays are
most critical parameters.

• Parametric analysis
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We perform a parametric analysis to see the relationships between design
variables. A parametric analysis of AFM array is represented in Figure 2.20.

(a) (b)

Figure 2.20: Parametric analysis of active design parameters and features (a)
S_Tapex (b) S_Spring

• Monte-Carlo analysis

Monte-Carlo analysis generates random points in the design space consistent
with the uncertainty distributions for the different design parameters (eg.
Gaussian, uniform, etc). Stratified random search algorithms such as Latin
Hypercube Sampling can also be used to guarantee a better coverage of the
design space of a given number of evaluations. These methods can be used
in view of either a global sensitivity analysis or for the quantification of
uncertainty. We perform a Monte-Carlo analysis to see the changes of design
variables. Plot the results of the Monte-Carlo analysis. Scatter plots with
Monte-Carlo sampling are shown in Figure 2.21.
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(a) (b)

Figure 2.21: Scatter plots of Monte Carlo sampling

• Principal component analysis

Principal component analysis (PCA) is a way of identifying patterns in data,
and expressing the data in such a way as to highlight their similarities and
differences. Since patterns in data can be hard to find in data of high dimen-
sion, where the luxury of graphical representation is not available, PCA is a
powerful tool for analyzing data. We perform a Principal component analy-
sis to find the patterns of design variables. A principal component analysis
based on Monte Carlo sampling is shown in Figure 2.22.

Figure 2.22: Principal component analysis
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Design Optimization

An optimal design is the best feasible design according to a preselected quantita-
tive measure of effectiveness. In current application, aggregated mono-objective
optimization with design constraints and multi-objective optimization with design
constraints problems are written in standard forms.

• Aggregated Mono-objective optimization with design constraints
The mono-objective optimization is the standard optimization problem, see
[46] for an introduction. Given the function F that depends on the design
variables x = [x1, x2, · · · , xd] ∈ R, the optimization problem is to find:

min
x∈X

(
nF∑
i=1

ωiFi(x)

)

subject to the constraints:

x ∈ X

gj(x) ≤ 0, j = 1, · · · , ng

hk(x) = 0, k = 1, · · · , nh

where ωi are weighting coefficients taking into account the relative impor-
tance of each objective. We perform a mono-objective optimization analysis
to find the best solution of the designs. The results of a mono-objective op-
timization with nonlinear constraints are shown in Figure 2.23. The results

Figure 2.23: Evolution plot by solving mono-objective optimization problem

indicate that some of the objectives, for instance F_Gap and F_Gapcell,
are decreased when all the nonlinear constrains are satisfied.
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• Multi-objective optimization with design constraints

Multi-objective optimization, also known as multi-criteria or multi-attribute
optimization, is the process of simultaneously optimizing two or more con-
flicting objectives subject to certain constraints. Given the function fi(x)
that depends on the design variables x ∈ X = [x1, x2, · · · , xd] ∈ Rd, the
optimization problem is to find:

min
x
{f1(x), · · · , fnf

(x)}

subject to:

xL ≤ x ≤ xU

gj(x) ≤ 0, j = 1, · · · , ng

hk(x) = 0, k = 1, · · · , nh

The solution to the above problem is a set of Pareto points. We perform a
multi-objective optimization analysis to find the best solution of the designs.
The results of a multi-objective optimization with nonlinear constraints are
shown in Figure 2.24.

(a) (b)

Figure 2.24: Pareto plot of Monte Carlo sampling between (a) F_Gapcell and
C_FP and (b) F_Gap and C_base

Uncertainty Quantification

Uncertainty quantification (UQ) is the science of quantitative characterization and
reduction of uncertainties in applications. It tries to determine how likely certain
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outcomes are if some aspects of the system are not exactly known. We perform an
uncertainty quantification analysis with Monte-Carlo samples. The results of an
uncertainty qualification analysis with uniform probability density function (PDF)
are represented in Figure 2.25.

(a) (b)

Figure 2.25: Uncertainty qualification analysis

Application of Robust Design Optimization for Arrays of AFMs

In this application, we consider designing six types of array of AFMs on a single
wafer. The six types of arrays correspond to three different cantilever spring
constants, and to two different cantilever pitch conditions. For some applications,
the pitch between cantilevers cannot be freely chosen. The three spring constants
correspond to 0.03, 0.3 and 3 N/m, and the two pitch conditions define the lateral
and longitudinal cantilever pitches as a multiple of 10µm, respectively 100µm.
Table 2.10 summarizes the results of the optimization computation.
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Table 2.10: Designs of probe arrays defined using the design decision making tool
SIMBAD. The values in italic correspond to the initial conditions, and the values
in bold to the optimized design parameters.

Array design 1 2 3 4 5 6
Pitch condition [µm] 10 10 10 100 100 100

Spring constant [N/m] 0.03 0.3 3 0.03 0.3 3
No. lever in x-direction 16 16 11 10 10 10
No. lever in y-direction 2 4 5 2 3 5

Pitch in x-direction [µm] 60 60 90 100 100 100
Pitch in y-direction [µm] 500 250 200 500 300 200
Length of cantilever [µm] 300 150 100 300 150 100
With of cantilever [µm] 40 40 56 40 40 56

Optimized spring constant 0.033 0.33 2.7 0.033 0.33 2.7

A microfabrication run to produce cantilever arrays with the optimized design
was launched. An example of a computed optimized design and of a produced
cantilever array are shown in Figure 2.26.

Figure 2.26: Example of an optimized design geometry. The larger cantilevers with
larger and higher tip situated in the corner of the probe array are used to land
and adjust the probe array onto the sample surface. Courtesy of André Meister
and Thomas Overstolz, CSEM Neuchâtel Switzerland.

Normally, the optimal design is not unique. A compromise between the design
objectives should be made with the consideration of meeting the requirements for
microfabrication.

2.4 Conclusion
In this chapter, we have carried out the model verification by comparing the eigen-
value density distribution and eigenmodes to a direct FEM simulations. The verifi-
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cations for an array of cantilevers, without tips both in static and dynamic regimes,
have been reported. The results shown a globally good agreement with the three-
dimensional elasticity model. We have also reported results of design optimization
for an array of AFMs. It opens the way for future works on model calibration,
other design problems, such as for dynamical problem, and for control synthesis.

In the next chapter, we shall present a global phase computation algorithm
of interferometry measurement of cantilever displacements in quasi-static regime,
which is an improvement to an algorithm introduced in [47].
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In this chapter we focus on a method based on interferometry for cantilever dis-
placement measurement in quasi-static regime. Cantilevers are illuminated by an
optical source. Interferometry produces fringes enabling cantilever displacement
measurement. A high speed camera is used to analyze the fringes. In view of real
time applications, images need to be processed quickly and then a fast estimation
method is required to determine the displacement of cantilevers. In [43], an al-
gorithm based on splines has been introduced for cantilever position estimation.
The overall process gives accurate results where computations are performed on
a standard computer using LabViewr. Consequently, the main drawback of this
implementation is that bandwidth offered by the computer is a limitation. In pa-
per [47], authors have proposed a new algorithm based on the least square method
which achieves the better precision with less operations than the algorithm based
on a spline method. However, this algorithm is limited since it assumes that the
cantilevers are uncoupled. Here we relax this assumption in a global computation
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of the phases based on our two-scale model presented in section 1.3. A topographic
scan application for an array of AFMs in quasi-static regime is reported.

3.1 Measurement of Displacement in a Cantilever
Array

In this section, we detail our global phase computation algorithm of interferometry
measurement for array of AFMs in quasi-static regime. Section 3.1.1 describes
the experimental set-up at CSEM, and Section 3.1.2 presents the global phase
computation algorithm.

3.1.1 The Experimental Set-up

An illustrative picture of the experimental set-up [43], developed by CSEM, is
shown in Figure 3.1.

Figure 3.1: AFM experimental setup

In contrast to other optical based systems using a laser beam deflection scheme,
which is sensitive to the angular displacement of the cantilever, interferometry is
sensitive to the optical path difference induced by the vertical displacement of the
cantilever. The interferometric system is based on a Linnik interferometer [48]. A
laser diode is first split into a reference beam and a sample beam both reaching the
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3.1. Measurement of Displacement in a Cantilever Array

cantilever array. The complete system including a cantilever array and the optical
system can be moved thanks to a translation and rotational hexapod stage with
six degrees of freedom. Thus, the cantilever array is centered in the optical system
which can be adjusted accurately. The beam illuminates the array by a microscope
objective and the light reflects on the cantilevers. Likewise the reference beam
reflects on a movable mirror. A CMOS camera chip records the reference and
sample beams which are recombined in the beam splitter and the interferogram.
Then, cantilever motion in the transverse direction produces movements in the
fringes. They are detected with the CMOS camera where images are analyzed by
a LabViewr program to recover the cantilever deflections.

3.1.2 Cantilever Displacement Estimation

We consider an array made with uncoupled rows of AFM cantilevers, see Figure
3.2.

Figure 3.2: A one-dimensional view of array of AFMs.

In [43], as shown in Figure 3.3, the cantilever is covered by interferometric
fringes. They distort when cantilevers deflect. For each cantilever, the displace-
ment is derived from phase shift of the light intensity. A phase shift corresponds
to the lateral shift of the intensity profile along a segment of pixels induced by
the cantilever bending. Three segments of pixels, parallel to its width, are used.
The first one is located just above the AFM tip (tip profile), it provides the phase
shift modulo 2π. The second one is close to the base junction (base profile) and
is used to determine the exact multiple of 2π through an operation called un-
wrapping where it is assumed that the displacements along the two measurement
segments are linearly dependent. The third one is on the base (reference profile)
and provides a reference for cancelling the effect of base motion.

Each profile is expressed in a normalized interval (0,M − 1) where M is the
number of pixels of the profile. The gray-level light intensity is under the form

I(xp) = axp + bA cos(2πfxp + θ). (3.1)

where xp ∈ (0,M − 1), f and θ are the frequency and the phase of the inter-
ferometric signal, and the affine function axp + b corresponds to cantilever surface

59



Chapter 3. INTERFEROMETRY MEASUREMENT FOR AFM ARRAYS

Figure 3.3: Intensity profiles: close to base-cantilever junction Θ∗
1 and above the

tip of cantilevers Θ∗
2.

tilt with respect to the light source. The phase computation is done either using
a spline method or a least square method detailed in [47]. For a given phase θ, we
denote by θ∗ ∈ [0, 2π) its value modulo 2π i.e.

θ = θ∗ + 2nπ and n = [
θ

2π
], (3.2)

where [α] represents the integer part of α. The relation between the phase and the
displacement is

θ = 2πfc(b− 2u) (3.3)

where b, c are constants related to the tilt of the beam splitter and are determined
in a calibration phase. Moreover, the constant b corresponds to a constant phase
shift that is ignored in the following, so we use only the proportionality relation

θ = −mu. (3.4)

As u is decomposed into u+ ũ, the phase θ is also decomposed as θ = θ + θ̃. The
base and tip profiles are taken at positions y2 = y2,1 and y2,2 and all corresponding
notations are indexed by 1 and 2, as for instance θ1 and θ2. In the setup [43], the
reference profile is used to determine θ. The displacements of the base are assumed
to be sufficiently small so that θ∗ = θ. The base profile is sufficiently close from
the base so that θ1 = θ∗1 also. And, the linear relation between ũ1 and ũ2, or θ̃1
and θ̃2, is used to determine the integer n2. In total, u, ũ1 and ũ2 are determine
from three measurements and the tip force can be deduced.

In the following, we introduce an alternate method to avoid the reference mea-
surement, based on the two-scale model.
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3.1. Measurement of Displacement in a Cantilever Array

For an array of N cantilevers, we refer the ith cantilever with the subscript
i ∈ {1, ..., N}, and we use the relation (3.4) applied to each of them,{

θ1,i = θ∗1,i = −m(ūi + ũ1,i),
θ2,i = −m(ūi + ũ2,i).

The above equation written in vector form is{
Θ1 = Θ∗

1 = −m(Ū + Ũ1),

Θ2 = −m(Ū + Ũ2).
(3.5)

The two-scale model is discretized, and the N -dimensional vectors Ū , Ũ1 and Ũ2

represent the displacements in the base and in cantilevers at y2 = y2,1 and y2,2
respectively at the coordinates x1 of the cantilever centers. Neglecting all external
forces excepted the tip forces f tip = (f tip

i )i=1,..,N and considering the system in the
quasi-static regime, there exists three N×N stiffness matrices K̄, K̃1 and K̃2 such
that

Ū = [K̄]−1f tip, K̃1Ũ1 = f tip and K̃2Ũ2 = f tip. (3.6)

Eliminating f tip in the two last relations using the first one,{
Ū = [K̄]−1K̃1Ũ1,

Ũ2 = [K̃2]
−1K̃1Ũ1.

(3.7)

By (3.5) and (3.7), we derive the relation between the phases of two profile lines,

Θ2 = KΘ1 (3.8)

where the matrix K = ([K̄]−1 + [K̃2]
−1)K̃1([K̄]−1K̃1 + Id)−1 and Id being the

identity matrix. Using this relation and the fact that Θ1 = Θ∗
1 we deduce n2 in

the phase decomposition (3.2) and Θ2,

n2 = [
KΘ∗

1

2π
] and Θ2 = Θ∗

2 + 2n2π. (3.9)

Thus, combining the relations (3.5), (3.6) and (3.9) we can establish that

Θ∗
1 = D1f

tip or Θ∗
2 + 2n2π = D2f

tip

with D1 = −m([K̄]−1 + [K̃1]
−1) and D2 = −m([K̄]−1 + [K̃2]

−1). In conclusion, we
estimate the tip forces from (3.6) and we deduce Ū the base displacement and U2

the total tip displacement, all being expressed with the measurements Θ∗
1 and Θ∗

2,

f tip = D−1
1 Θ∗

1 or f tip = D−1
2 (Θ∗

2 + 2n2π), (3.10)

Ū = [K̄]−1f tip, U2 = −
1

m
(Θ∗

2 + 2n2π) with (3.9). (3.11)
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Algorithm 1: Phase correction algorithm.
1 Θ1 ← phase of the base profile
2 Θ2 ← First tip-profile phase estimated by (3.9)
3 Θ′

2 ← Second tip-profile phase estimated by (3.8)
4 δΘ2 = Θ′

2 −Θ2

5 Θ2 = Θ2 + 2π ∗ round(Θ2

2π
)

In practice, the formula (3.9) may produce inaccurate phase of tip profile by a
perturbation of 2π. The source of the error comes from the integer part calculation
due to its discontinuity. We state Algorithm 1 that eliminates the error, where ε
is in the range of the error.

Remark 3 The scanner operates with a sufficient small step, so that we can lo-
cate the positions where the integer calculation generates inaccurate phases through
algorithm (1). Then, these positions are saved in the memory for real-time control
applications.

3.2 Least Square Algorithm (LSQ) for Phase Com-
putation

For the sake of simplicity of the notations, we consider the light intensity I a
function on the interval [0,M−1] which itself is the range of a one-to-one mapping
defined on the physical segment. The pixels are assumed to be regularly spaced
and centered at the positions xp ∈ {0, 1, . . . ,M−1}. We use the simplest definition
of a pixel, namely the value of I at its center. The pixel intensities are considered
as pre-normalized so that their minimum and maximum have been resized to −1
and 1,.

We compute the phase during the acquisition loop, equation (3.1) has only
4 parameters: a, b, A, and θ, f and xp being already known. A least square
method based on a Gauss-Newton algorithm can be used to determine these four
parameters. This kind of iterative process ends with a convergence criterion, so
it is not suited to our design goals. Fortunately, it is quite simple to reduce the
number of parameters to θ only. Firstly, the affine part axp + b is estimated from
the M values I(xp) to determine the rectified intensities,

Icorr(xp) ≈ I(xp)− axp − b.

To find a and b we apply an ordinary least square method

a =
covar(xp, I(xp))

var(xp)
and b = I(xp)− a.xp
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3.2. Least Square Algorithm (LSQ) for Phase Computation

where overline symbols represent average. Then the amplitude A is approximated
by

A ≈ max(Icorr)−min(Icorr)
2

.

Finally, the problem of approximating θ is reduced to minimizing

min
θ∈[−π,π]

M−1∑
i=0

[
cos(2πf.i+ θ)− Icorr(i)

A

]2
,

which will allow to determine an angle θ∗(t, x02) ∈ (−π, π). Note that the solution
of minimizing this problem is not unique.

An optimal value θ∗ of the minimization problem is a zero of the first derivative
of the above argument,

2

[
cosθ∗

M−1∑
i=0

Icorr(i).sin(2πf.i) + sinθ∗
M−1∑
i=0

Icorr(i).cos(2πf.i)
]

−A
[
cos2θ∗

M−1∑
i=0

sin(4πf.i) + sin2θ∗
M−1∑
i=0

cos(4πf.i)

]
= 0

Several points can be noticed:

• The terms
M−1∑
i=0

sin(4πf.i) and
M−1∑
i=0

cos(4πf.i) are independent of θ, they can

be precomputed.

• Lookup tables (namely lutsfi and lutcfi in the following algorithms) can be
set with the 2.M values sin(2πf.i) and cos(2πf.i).

• A simple method to find a zero θ∗ of the optimality condition is to discretize
the range [−π, π] with a large number nbs of nodes and to find which one
is a minimizer in the absolute value sense. Hence, three other lookup tables
(luts, lutc and lutA) can be set with the 3× nbs values sin θ, cos θ, and[

cos2θ
M−1∑
i=0

sin(4πf.i) + sin2θ
M−1∑
i=0

cos(4πf.i)

]
.

• The search algorithm can be very fast using a dichotomous process in log2(nbs).

The overall method is synthesized in an algorithm (called LSQ in the following)
divided into the precomputing part and the acquisition loop, see [47].
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Algorithm 2: LSQ algorithm - before acquisition loop.
1 M ← number of pixels of the profile
2 I[] ← intensity of pixels
3 f ← frequency of the profile
4 s4i←

∑M−1
i=0 sin(4πf.i)

5 c4i←
∑M−1

i=0 cos(4πf.i)
6 nbs ← number of discretization steps of [−π, π]
7 for i = 0 to nbs do
8 θ ← −π + 2π × i

nbs

9 luts[i] ← sinθ
10 lutc[i] ← cosθ
11 lutA[i] ← cos2θ × s4i+ sin2θ × c4i
12 lutsfi[i] ← sin(2πf.i)
13 lutcfi[i] ← cos(2πf.i)

14 end

64
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Algorithm 3: LSQ algorithm - during acquisition loop.
1 x̄← M−1

2

2 ȳ ← 0, xvar ← 0, xycovar ← 0
3 for i = 0 to M − 1 do
4 ȳ ← ȳ+ I[i]
5 xvar ← xvar + (i− x̄)2
6 end
7 ȳ ← ȳ

M

8 for i = 0 to M − 1 do
9 xycovar ← xycovar + (i− x̄)× (I[i]− ȳ)

10 end
11 slope← xycovar

xvar

12 start← ȳ − slope× x̄
13 for i = 0 to M − 1 do
14 I[i]← I[i]− start− slope× i
15 end
16 Imax ← maxi(I[i]), Imin ← mini(I[i])

17 amp← Imax−Imin

2

18 Is← 0, Ic← 0
19 for i = 0 to M − 1 do
20 Is← Is+ I[i]× lutsfi[i]
21 Ic← Ic+ I[i]× lutcfi[i]
22 end
23 δ ← nbs

2
, bl ← 0, br ← δ

24 vl ← −2.Is − amp.lutA[bl]
25 while δ >= 1 do
26 vr ← 2.[Is.lutc[br]+Ic.luts[br]]− amp.lutA[br]
27 if !(vl < 0 and vr >= 0) then
28 vl ← vr
29 bl ← br
30 end
31 δ ← δ

2

32 br ← bl + δ

33 end
34 if !(vl < 0 and vr >= 0) then
35 vl ← vr
36 bl ← br
37 br ← bl + 1
38 vr ← 2.[Is.lutc[br]+Ic.luts[br]]− amp.lutA[br]
39 else
40 br ← bl + 1
41 end
42 if abs(vl) < vr then
43 bθ ← bl
44 else
45 bθ ← br
46 end

47 θ ← π ×
[
2.bref
nbs
− 1
]
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3.3 Application: Topographic Scan
We illustrate the algorithm by a sample surface topographic scan simulation for
an array of AFMs in quasi-static regime. We consider an 10-cantilevers array with
base dimensions LB×ℓB×hB = 500µm×16.7µm×10µm, and those of cantilevers
LC × ℓC × hC = 25µm × 10µm × 1.25µm. The other model parameters are the
bending coefficient RB = 1.09× 10−5N/m, RC = 2.13× 10−4N/m and the masses
per unit length mB = 0.0233kg/m, mC = 0.00291kg/m, and the light wavelength
is λ = 0.633µm. The number of pixels in all measurement segments is taken as
20. The position of the base profile line is defined as y2,1 =

L0
C

10
. The topography of

the samples is defined with bumps that are regularly distributed both in x1- and
y2-directions, see Figure 3.4.

Figure 3.4: AFM arrays and samples.

The scan procedure is following:

1. The AFM arrays is a low position to put tips in contact with the sample
surface.

2. The scanner moves in the negative y2-direction and the deflection at tips are
measured by interferometry in each scan step.

3. At the end of the line, the scanner moves back to the initial y2-position, then
increase the x1-position to the next line.

4. Repeat step 2 and 3 until the required number of lines is obtained.

5. Save data.

All these steps together with the method for estimation of cantilever deflection
have been implemented in a simulation. The sample is an array of 10× 10 bumps.
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Their dimensions are LS × ℓS × hS = 10µm × 20µm × 0.1µm. Twenty scan lines
distant from 2µm are recorded in the x1-direction with 128 scan points each distant
from 1µm. The estimated three-dimensional topography with Formula (3.9) is
presented in Figure 3.5.

Figure 3.5: Estimated sample topography with Formula (3.9).

It shows peaks due to the integer part calculation in Formula (3.9). The use
of Algorithm (1) eliminates them as seen in Figure 3.6.

Figure 3.6: Estimated sample topography after phase correction.

Here, we also present the topographic scan results through the commercial
software MountainsMapr. In this simulation, we use the same configuration of the
AFM arrays and the topography of samples. One surface view in three-dimensional
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is shown in Figure3.7 (a). A stitching technique is used to recover the topography
of the sample, (see Figure 3.7 (b)).

(a) (b)

Figure 3.7: (a) One surface viewed in three-dimensional (b) Stitched surface

3.4 Conclusion
In this paper, we have presented an effective global phase computation algorithm of
interferometry for deflection measurement in an array of cantilevers in quasi-static
regime. It improves a method using three measurements in each cantilever by
avoiding one of them. It has been tested in a full simulation including a cantilever
array, a scanner and an analyzed surface. Applications are also envisioned as for
instance topographic scans for different samples and force spectroscopy.

In the next chapter, we shall present the semi-decentralized approximation
method and its application to LQR control problem and H∞ filtering problem for
an array of cantilevers.
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In spite of significant development of large AFM arrays, the status of achiev-
ing their global distributed control is still at its preliminary stage. Due to the
extremely huge data exchanges between distributed sensors and actuators, appro-
priate architectures of distributed processors allowing for highly parallel processing
are wished. So, appropriate distributed control algorithms are required to operate
on such architectures. Some groups have reported algorithms of semi-decentralized
optimal control for systems with distributed actuators and sensors. In [34] and
[35], the authors have considered the systems with infinite length, which are gov-
erned by partial differential equations. And the paper [36] has focused on discrete
systems. A preliminary investigation of semi-decentralized control for partial dif-
ferential equations in a bounded domain has been carried out for vibration control
by M. Kader et al. and reported in [37] and [38]. It uses distributed piezoelectric
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actuators and sensors, and implement a simple optimal control strategy, namely
a Linear Quadratic Regulator (LQR), using a distributed analog electronic cir-
cuits. Other authors, [49], [50], [51], [52], have also worked on the same concept
of distributed control realized by distributed circuits. The approach [37] has been
significantly improved by [39], [40]. The polynomial approximation of a function of
a self-adjoint operator was replaced by an approximation derived from the Cauchy
integral formula. Here, we improve this method, apply it to control problems for
cantilever arrays, and show how it can be implemented as Periodic Network of
Resistors (PNR). The latter is a general method presented in [53], [54] for solving
a large class of partial differential equations by analog computation. Two applica-
tions are studied, one to an LQR control problem published in [55], and one to an
H∞ filtering problem.

This chapter is organized as follows. In section 4.1, we focus on the derivation
of the semi-decentralized approximation method and its applications to the LQR
control problem for a one-dimensional AFM arrays. This is followed in section 4.2
by the application to an H∞ filtering problem.

4.1 Semi-decentralized Approximation Method of
an LQR Problem

We apply, with some improvements, the theory presented in [39], [40] on the re-
formulated two-scale model of one-dimensional micro-cantilever arrays introduced
in section 1.3. The calculations are carried out using a simple Linear Quadratic
Regulator (LQR) optimal control strategy, for the purpose of canceling vibrations.
We study the quality of the approximation method, i.e. its precision and its cost.
We also provide a realization of the semi-decentralized control scheme through
PNR circuits.

4.1.1 Statement of the LQR Problem

By recalling the reformulated model in section 1.3, ρB∂2ttu+RB∂4x1···x1
u+

ℓ0CrC

(L0
C)3

∑
k

ũkck = fB in base,

mC0∂2ttũk +mC0∂2ttūϕ̄k +
rC0λC

k

(L0
C)4

ũk = fC
k for each k,

(4.1)

where ck = ∂3ξ2ξ2ξ2φk(0) with ξ2 = y2
L0
C
. We can write the LQR problem in

an abstract setting, see [56], even if we do not justify the functional frame-
work. We set zT =

(
u (ũk)k=1,··· ,nC ∂tu ∂t(ũk)k=1,··· ,nC

)
the state variable,

uT =
(
fB (fC

k )k=1,··· ,nC

)
the control variable. The LQR problem, consisting
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in minimizing the functional under the constraint, can be written under its usual
form as

dz
dt

= Az (t) + Bu (t) for t > 0 and z (0) = z0,
min
u∈U

J(z0, u) = min
u∈U

∫ +∞
0
||Cz||2Y + (Su, u)Udt.

(4.2)

where A =

(
0 Id

−M−1
arrayKarray 0

)
the state operator, with the matrices Marray

and Karray

Marray =

(
ρB 0

mC0L0
Cφ̄k mC0L0

CId

)
,

and

Karray =

(
RB∂4x1···x1

0

0
RCλC

k +L0
Cℓ0CrC0ck

(L0
C)4

Id

)
,

Id is the identity matrix with size nC +1 and B =

(
0

M−1
array

)
the control operator,

C =


∂2xx 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0


the observation operator, and S = Id the weight operator. The choice for B and
C is the simplest one so that it can guarantee the controllability and observability
of the system. We denote by X the space L2(Γ). Here, A is the infinitesimal
generator of a continuous semigroup on the separable Hilbert space Z = H2

0 (Γ)×
X nC× X× X nC with dense domain D(A) = H4(Γ)∩H2

0 (Γ)×X nC ×H2
0 (Γ)×X nC .

It is known that the control operator B ∈ L (U ,Z), the observation operator
C ∈ L (Z,Y) , and S ∈ L (U ,U), where Y = X 2(nC+1) and U = X nC+1. We
admit that (A,B) is stabilizable and that (A,C) is detectable, in the sense that
there exist G ∈ L (Z,U) and F ∈ L (Y ,Z) such that A − BG and that A − FC
are the infinitesimal generators of two uniformly exponentially stable continuous
semigroups. It follows that for each z0 ∈ Z, the LQR problem (4.2) admits a
unique solution

u∗ = −Kz (4.3)
where K = S−1B∗Pz, and P is the unique self-adjoint nonnegative solution of the
operational Riccati equation(

A∗P + PA− PBS−1B∗P + C∗C
)
z = 0, (4.4)

for all z ∈ D (A), see [56]. The adjoint A∗ of the unbounded operator A is defined
from D (A∗) ⊂ Z to Z by the equality (A∗z, z′)Z = (z, Az′)Z for all z ∈ D (A∗)
and z′ ∈ D (A). The adjoint B∗ ∈ L (Z, U) of the bounded operator B is defined
by (B∗z, u)U = (z, Bu)Z , the adjoint C∗ ∈ L (Y ,Z) is defined similarly.
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4.1.2 Derivation of Semi-decentralized Approximation Method

This section is devoted to formulate the approximation method. Its mathematical
derivation has been introduced in the paper [39] and detailed in the thesis [40]
where many illustrating examples have been presented.

Matrices of functions of a self-adjoint operator

We denote by Λ, the mapping: Λ : f −→ w, where w is the unique solution of
∂4x···xw = f in Γ with the boundary conditions w = ∂xw = 0 for x = {0, LB}.
The spectrum σ of Λ is discrete and made up of real eigenvalues λk. They are
solutions to the eigenvalue problem Λϕk = λkϕk with ||ϕk||L2(Γ) = 1. In the sequel,
Iσ = (σmin, σmax) refers to an open interval that includes the complete spectrum.
For a given real valued function g, continuous on Iσ, g(Λ) is the linear self-adjoint

operator on the space X defined by g(Λ)z =
∞∑
k=1

g(λk)zkϕk, where zk =
∫
Γ
zϕk dx.

Factorization of K by a Matrix of Functions of Λ

In this part, we introduce the factorization of the controller K under the form of
a product of a matrix of functions of Λ. To do so, we introduce the operators of

change of variables ΦZ =


Λ

1
2 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 Id

 ∈ L(X 2(nC+1),Z
)
, ΦU = Id ∈

L
(
X nC+1,U

)
and ΦY =


∂2xxΛ

1
2 Id 0 0 0

0 Id 0 0
0 0 Id 0
0 0 0 Id

 ∈ L(X 2(nC+1),Y
)
, from

which we introduce the matrices of functions of Λ, a (Λ) = Φ−1
Z AΦZ , b (Λ) =

Φ−1
Z BΦU , c (Λ) = Φ−1

Y CΦZ and s (Λ) = Φ−1
U SΦU , simple to implement on a semi-

decentralized architecture. A straightforward calculation yields

a (λ) =


0 0 Λ− 1

2 0
0 0 0 Id

−RB

ρB
Λ− 1

2 0 0 0
RB ϕ̄

T
k

ρB
Λ

1
2 − rC0

(L0
C)4
diag(λCk + L0

Cℓ
0
Cck) 0 0

 , b (λ) =

(
0

M−1
array

)
,

c (λ) =

(
Id 0
0 0

)
, and s (λ) = Id.
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Endowing Z, U and Y with the inner products (z, z′)Z =
(
Φ−1

Z z,Φ−1
Z z′

)
X 2nC+2 ,

(u, u′)U =
(
Φ−1

U u,Φ−1
U u′

)
XnC+1 , and (y, y′)Y =

(
Φ−1

Y y,Φ−1
Y y′

)
X 2nC+2 , we find the

subsequent factorization of the controller K in (4.3) which plays a central role in
the approximation.

Proposition 4 The controller K admits the factorization

K = ΦUq (Λ)Φ
−1
Z ,

where q (λ) = s−1 (λ) bT (λ) p (λ) , and where for all λ ∈ σ, p(λ) is the unique
self-adjoint nonnegative matrix solving the algebraic Riccati equation.

aT (λ) p+ pa (λ)− pb (λ) s−1 (λ) bT (λ) p+ cT (λ) c (λ) = 0. (4.5)

Proof. The algebraic Riccati equation can be found after replacing A, B, C and
S by their decomposition

A = ΦZa (Λ)Φ
−1
Z , B = ΦZb (Λ)Φ

−1
U , C = ΦY c (Λ)Φ

−1
Z and S = ΦUs (Λ)Φ

−1
U .

in the Riccatti equation (4.4).

Remark 5 In this example, ΦU and ΦZ are some matrices of functions of Λ, and
so is K,

K = k(Λ). (4.6)
Thus, the approximation is developed directly on k(Λ), but we emphasize that in
more generic situations it is pursued on q(Λ).

Remark 6 Introducing the isomorphisms ΦZ, ΦY , and ΦU allows to consider a
broad class of problems where the operators A, B, C and S are not strictly functions
of a same operator. In this particular application, the observation operator C is
composed with the operator ∂2xx. This is taken into account in ΦY in a manner in
which Φ−1

Y CΦZ is a function of Λ only.

Remark 7 We indicate how the isomorphisms ΦZ, ΦY , and ΦU have been chosen.
The choice of ΦZ comes directly from the expression of the inner product (z, z′)Z =(
Φ−1

Z z,Φ−1
Z z′

)
(L2(Γ))2N

and from

(zn , z
′
n)H 2

0 (Γ ) =
(
(∆2)

1
2 zn, (∆2)

1
2 z′n

)
L2 (Γ )

with n = 1, .., N . For ΦY , we start from C = ΦY c (Λ)Φ
−1
Z and from the relation

(y , y ′)Y =
(
Φ−1

Y y ,Φ−1
Y y ′)

(L2 (Γ ))2N

which implies that ∂2xx = (ΦY )i,i ci,i (Λ)Λ
− 1

2 and 0 = (ΦY )j,j cj,jΛ with i = 1, .., N
and j = N + 1, .., 2N . The expression of ΦY follows. Choosing ΦU is straightfor-
ward.

73



Chapter 4. SEMI-DECENTRALIZED APPROXIMATION METHOD AND ITS APPLICATIONS

Approximation of Functions of Λ

Our approximation method is based on the Cauchy integral formula from func-
tional calculus, see [57], representing a function of an operator. We build the
approximation in two steps. Since the function k(Λ) is not known, the spectrum
σ cannot be easily determined, so firstly, the function is approximated by a highly
accurate rational approximation. We notice that k(λ) may be a singular function
when λ approaches to 0, (see Figure 4.1).

0 0.5 1 1.5 2

x 10
−3

50

100

150

200

250

300

Spectrum λ

k(
λ)

Figure 4.1: One component of the function k(λ)

To avoid the singularity of k(λ), for each component kij(λ), we introduce a
componentwise rational approximation, operating on the logarithm of λ instead of
on λ as done in [39], [40]

kR (λ) =

RN∑
m=0

dm(lnλ)
m

RD∑
m′=0

d′m′(lnλ)m
′

, (4.7)

where dm, d′m′ are two coefficient matrices, and R =
(
RN , RD

)
is a couple of

matrices of polynomial degrees. Now, we approximate kR (λ) by another function
kR,M(λ) which is simple to discretize. To do so, we use the Cauchy integral formula,

kR (Λ) =
1

2iπ

∫
C
kR (ζ) (ζId− Λ)−1 dζ, (4.8)

because it involves only the resolvent (ζI − Λ)−1 , which may be simply and ac-
curately approximated. We apply it to the rational approximation with a path
C tracing out an ellipse including Iσ but no poles. It is chosen to be an ellipse
parameterized by

ζ(θ) = ζ1(θ) + iζ2(θ), with θ ∈ [0, 2π],
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4.1. Semi-decentralized Approximation Method of an LQR Problem

(see Figure 4.2). The parametrization is used as a change of variable, so the integral
can be approximated by a quadrature formula involving M nodes (θl)l=1,..,M ∈
[0, 2π], and M weights (ωl)l=1,..,M ,

IM (g) =
M∑
l=1

g (θl)ωl.

Figure 4.2: The contour in the Cauchy integral formula

So, for each z ∈ X 2(nC+1) and ζ ∈ C, we introduce the 2(nC + 1)-dimensional
vector field

vζ = −iζ ′kR (ζ) (ζId− Λ)−1 z.

Decomposing vζ into its real part vζ1 and its imaginary part vζ2, the couple (vζ1, v
ζ
2)

is solution of the system{
ζ1v

ζ
1 − ζ2v

ζ
2 − Λvζ1 = Re (−iζ ′kR (ζ)) z,

ζ2v
ζ
1 + ζ1v

ζ
2 − Λvζ2 = Im (−iζ ′kR (ζ)) z.

(4.9)

Thus, combining the rational approximation kR and the quadrature formula yields
an approximate realization kR,M (Λ) of k (Λ) ,

kR,M (Λ) z =
1

2π

M∑
l=1

v
ζ(θl)
1 ωl. (4.10)

This formula is central in the method, so it is the center of our attention in the
simulations. A fundamental remark is that, a "real-time" realization, kR,M (Λ) z,
requires solving M systems like (4.9) corresponding to the M quadrature nodes
ζ(θl). The matrices kR (ζ(θl)) could be computed "off-line" once and for all, and
stored in memory, so their determination would not penalize a rapid real-time com-
putation. In total, the ultimate parameter responsible of accuracy in a real-time
computation, apart from spatial discretization, is M the number of quadrature
points.
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Spatial Discretization

The final step in the approximation consists in a spatial discretization and syn-
thesis of equation (4.9). The interval Γ is meshed with regularly spaced nodes
separated by a distance h, we introduce Λ−1

h the finite difference discretization of
Λ−1, associated with the clamping boundary condition. In practice, the discretiza-
tion length h is chosen small compared to the distance between cantilevers. Then,
zh denoting the vector of nodal values of z, for each ζ we introduce (vζ1,h, v

ζ
2,h), a

discrete approximation of (vζ1, v
ζ
2), solution of the discrete set of equations,

ζ1v
ζ
1,h − ζ2v

ζ
2,h − Λhv

ζ
1,h = Re (−iζ ′kR (ζ)) zh, (4.11)

ζ2v
ζ
1,h + ζ1v

ζ
2,h − Λhv

ζ
2,h = Im (−iζ ′kR (ζ)) zh. (4.12)

Finally, an approximate optimal control, intended to be implemented in a set of
spatially distributed actuators, could be estimated from the nodal values at mesh
nodes,

kR,M,hzh =
1

2π

M∑
l=1

v
ζl
1,hωl.

• Analog Computation of Λhv1 and Λhv2

We propose a synthesis of (4.11-4.12) by a distributed electronic circuit that
could be integrated in a physical device. For this purpose, the system is rewritten
under the manageable form

v1 =
ζ1

ζ21 + ζ22
(α + Λhv1) +

ζ2
ζ21 + ζ22

(β + Λhv2) , (4.13)

v2 =
ζ1

ζ21 + ζ22
(β + Λhv2)−

ζ2
ζ21 + ζ22

(α + Λhv1) , (4.14)

where we use the notations α = Re (−iζ ′kR (ζ)) zh, β = Im (−iζ ′kR (ζ)) zh, v1 =
vζ1,h, and v2 = vζ2,h. The analog computation of Λhv1 and Λhv2 are made by Periodic
Network of Resistances (PNR) circuits [54]. These electronic circuits have been
developed to solve a large class of PDEs by analog computation. More exactly,
PNR circuits compute the finite difference solution of a PDE. PNR circuits are
gathering of cells (Figure 4.3), the interior cells are indexed by k = 1, . . . , N − 1,
while the boundary cells correspond to k = −1, 0, N and N+1. We will show that
the circuits solve the equations Au1 = i1. If the current sources i1 are replaced by
voltage controlled current sources defined by i1 = gv1 (with g is a real number),
the voltage outputs of the circuits u1 solve g(Λhv1) and so Λhv1. The computation
of Λhv2 is done in the same way. The interior cell k which computes (Λhv1)k is
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Figure 4.3: Analog computation of Λhv1.

represented on Figure 4.4 with its two adjacent cells on each side. We call ρ1 the
resistance value between the potentials u(k)1 and u(k±2)

1 , and ρ2 the resistance value
between the potentials u(k)1 and u

(k±1)
1 . By applying the Kirchhoff Current Law

1

22
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(k−1)
1 i

(k+1)
1 i

(k+2)
1

i
(k−2)
1 = gv

(k−2)
1 i

(k−1)
1 = gv

(k−1)
1 i

(k)
1 = gv

(k)
1 i

(k+1)
1 = gv

(k+1)
1 i

(k+2)
1 = gv

(k+2)
1

k − 2 k − 1 k k + 1 k + 2

g(Λhv1)k−2 g(Λhv1)k−1 g(Λhv1)k g(Λhv1)k+1 g(Λhv1)k+2

u
(k−2)
1 u

(k−1)
1 u

(k)
1 u

(k+1)
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Figure 4.4: Five adjacent interior cells.

(KCL) at node u(k)1 , rearranging some terms and dividing by h4, the equation of
the cell k can be written under the form:

1
h4 − 1

ρ1
u
(k−2)
1 − 1

ρ2
u
(k−1)
1 + 2u

(k)
1

(
1
ρ1

+ 1
ρ2

)
− 1

ρ2
u
(k+1)
1 − 1

ρ1
u
(k+2)
1 = 1

h4 i
(k)
1 .

If one choose the negative potential ρ1 = −h4ρ0 and the positive potential ρ2 =

h4ρ0/4, then the potential at node u(k)1 is expressed as a function of its neighbor
voltages as

1

h4
u
(k−2)
1 − 4u

(k−1)
1 + 6u

(k)
1 − 4u

(k+1)
1 + u

(k+2)
1 = ρ0i

(k)
1 ,

which is the stencil of the differential operation Λ−1. Consequently, the whole elec-
tronic circuit composed of N−1 cells computes the finite differences approximation
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u1 = Λhi1 = g (Λhv1). The numerical value of ρ0 only changes the magnitude of the
voltages u(k)1 . The values of the resistances inside a cell depend only on the circuit
topology and are easily expressed as a function of ρ1 or ρ2. Here the resistances of
the cells can be taken as r1 = r3 = r4 = r6 = ρ1/4 and r2 = r5 = ρ2/2.

The Voltage Controlled Current Source (VCCS) i(k)1 of Figure 4.4 is controlled
by the voltage v(k)1 through the equation i

(k)
1 = gv

(k)
1 . The four boundary cells

are represented on Figure 4.5. The imposed values of the voltages correspond to
the clamping boundary condition. Remark that the terminals denoted by a cross
are not connected, so the resistances which are linked by one side at them can be
removed without changing the behavior of the circuits. They are saved to show
clearly the real difference between interior cells and boundary cells.

vB

0 N N + 1−1

vA

g(Λhv1)0 = 0 g(Λhv1)N = 0

vB = g(Λhv1)N−1vA = g(Λhv1)1

g(Λhv1)N+1 = vBg(Λhv1)
−1 = vA

Figure 4.5: Four boundary cells.

• Analog Computation of Equation (4.13)

The analog computation of (4.13) can be made by an array of classical non
inverting summing amplifiers of Figure 4.6. Notice that there is no current ex-
change between these circuits and PNR inputs and outputs, see buffers in Figure
4.4. Analysis of the circuit of Figure 4.6 leads to (4.15). With a proper choice of
resistances, Figure 4.6 solves (4.13),

v
(k)
1 =

R1 +R2

R1

Ru

Ra

α+
Ru

Rb

g (Λhv1)k +
Ru

Rc

β +
Ru

Rd

g (Λhv2)k , (4.15)

where 1
Ru

= 1
Ra

+ 1
Rb

+ 1
Rc

+ 1
Rd
.

• Analog Computation of Equation (4.14)

In a very similar way, the analog computation of equation (4.14) can be made
by an array of classical difference summing amplifiers of Figure 4.7.
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Figure 4.6: Analog computation of the k-th equation (4.13).
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Figure 4.7: Analog computation of the k-th equation (4.14).

Analysis of the circuit of Figure 4.7 leads to (4.16). With a proper choice of
resistances, Figure 4.7 solves (4.14),

v
(k)
2 =

Rv

Rw

R′
2

R′
a

β +
Rv

Rw

R′
2

R′
b

g (Λhv2)k −
R′

2

R′
c

α− R′
2

R′
d

g (Λhv1)k , (4.16)

where 1
Rv

= 1
R′

a
+ 1

R′
b
+ 1

R′
1

and 1
Rw

= 1
R′

c
+ 1

R′
d
+ 1

R′
2
.

4.2 H∞ Filtering Problem Based on Functional Cal-
culus

In this section, we extend our semi-decentralized approximation method to a mod-
ern control theory, i.e. a robust H∞ control problem. We focus on an H∞ filtering
problem using interferometry measurements of the displacements for AFM arrays
which has been introduced in chapter 3. Here, we improve the quadrature rule
used for the Cauchy integral thanks to the approach presented in [58]. This signif-
icantly improves the computation of the function k(λ) when λ is closed to 0 and
improves the accuracy of the quadrature rule.
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4.2.1 Statement of H∞ Filtering Problem

For the filtering problem in AFM array application we take into account unknown
noise associated to interferometry measurements as well as other noise sources as
air or liquid environment, thermal effect, electromagnetic noise. To deal with these
uncertainties, we uses an H∞ theory which is based on the worst case approach.
According to the dynamic equation of (4.1) stated in section 4.1.1, we set the state
variable zT =

(
u (ũk)k=1,··· ,nC ∂tu ∂t(ũk)k=1,··· ,nC

)
, the state operator A and

B =
(
0 Id

)T the perturbation operator. The perturbations in the state system
being denoted by w1 ∈ W1 = X × X nC

, the state equation is

∂tz = Az +Bw1 for t ∈ R+ and z(0) = z0. (4.17)

Here A is the infinitesimal generator of a continuous semigroup on the separable
Hilbert space Z = H2

0 (Γ)× X nC× X× X nC with dense domain D(A) = H4(Γ) ∩
H2

0 (Γ)×X nC ×H2
0 (Γ)×X nC

. The perturbations operator B ∈ L(W1,Z).
The observation comes from interferometry measurement but takes into ac-

count an additional unknown noise w2. We observe the phase of base profile plus a
very small constant which has not effect on the observation in normalized domain,
as introduced in section 3.1.2. Then, using the modal decomposition with respect
to y2, the noise disturbed measurement turns to be given by

Y = Cz +Dw2 ∈ Y = X

the space of measurements, with the observation operator

C =
(
−4π

λ̄
Id −4π

λ̄
φk(y

0,1
2 )k=1,..,nC 0 0

)
∈ L(H,Y), w2 ∈ W2,

with λ̄ is the light wave length and the weight operator for the measurement noise
D = Id ∈ L(W2,Y). We assume that (A,B) is stabilizable and that (C,A) is
detectable. The output operator is L : Z −→ ZN , and the partial state to be
estimated is

Z = Lz.

Here, we estimate the displacement at base, so L =
(
Id 0 0 0

)
and ZN =

H2
0 (Γ). We define the estimation Ẑ of Z and the worst-case performance measures

as

J = sup
(z0,W1×W2)

||Z − Ẑ||2ZN

||w1||2W1
+ ||w2||2W2

.

The filtering problem is stated as: Given γ > 0, find a filter Y −→ Z, such that
J < γ2. This problem has a solution if and only there exists a unique self-adjoint
non-negative solution P to the operational Riccati equation, [59].

(AP + PA∗ − PC∗CP +
1

γ2
PL∗LP +BB∗)y = 0, (4.18)
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for all y ∈ D(AN∗). The filter Y 7→ Ẑ is given as follows

∂tẑ = Aẑ +Ky, (4.19)
Ẑ = Lẑ for t ∈ R+,

where the filter gain is K = PCN∗ and y = Y − Cẑ.

4.2.2 Functional Calculus Based Approximation

As introduced in section 4.1.2, we have the factorization of the filter gain K under
the form of a product of a matrix of functions of Λ. Here, we introduce the change
of variable operators

ΦH =


Λ

1
2 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 Id

 ∈ L(X 2(nC+1),Z
)
,

ΦW = Id ∈ L
(
X nC+1,W1

)
, ΦZ = Λ

1
2 ∈ L

(
X ,ZN

)
, and ΦY = Id ∈ L (X ,Y),

from which we introduce the matrices of functions of Λ, a (Λ) = Φ−1
H AΦH , b (Λ) =

Φ−1
H BΦW , c (Λ) = Φ−1

Y CΦH and ℓ (Λ) = Φ−1
Z LΦH , simple to implement on a semi-

decentralized architecture. We note that the filter gain K in (4.19) is function of
operator Λ.

Proposition 8 The filter gain K admits the factorization K = ΦHq(Λ)ΦY , where
q(λ) = p(λ)cT (λ), and where for all λ ∈ σ, p(λ) is the unique symmetric non-
negative matrix solving the algebraic Riccati equation

ap+ paT − p(c̄T c̄− 1

γ2
ℓ̄T ℓ̄)p+ b̄b̄T = 0.

where ℓ̄(λ) = ΦZ(λ)ℓ(λ), c̄(λ) = Φ−1
Y (λ)c(λ) and b̄(λ) = b(λ)Φ−1

W (λ).

Approximation of Functions of Λ

We refer to the same rational approximation and Cauchy integral formula as stated
in section 4.1.2. In order to improve the accuracy of the approximation, before
computing kR (Λ), a slight change should be done for the formula (4.8),

kR (Λ) =
Λ

2iπ

∫
Cζ
ζ−1kR (ζ) (ζId− Λ)−1 dζ. (4.20)
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We introduce a new variable ω = ζ1/2, and dζ = 2ωdω, then the above formula
becomes

kR (Λ) =
Λ

iπ

∫
Cω
ω−1kR

(
ω2
) (
ω2Id− Λ

)−1
dω. (4.21)

Thus we have a new contour integral problem, where the contour maps from ζ-
plane to ω-plane and encloses [λ

1/2
min, λ

1/2
max], (see Figure 4.8). The integral can be

approximated by a quadrature formula involving M nodes.
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Figure 4.8: The contour in the Cauchy integral formula

We apply the trapezoid rule withM equally spaced nodes in (−Kp+iK
′
p/2, Kp+

iK ′
p/2), the Cauchy integral formula for the method applied to Λ can be written

as

kR,M (Λ) =
−8KpΛ(λminλmax)

1/4

iMkp
Im

M∑
l=1

kR (ω2(tl)) (ω
2(tl)I − Λ)

−1
cn(tl)dn(tl)

ω(tl)(k−1
p − sn(tl))2

,

where tl = −Kp +
iK′

p

2
+ 2

(l− 1
2
Kp)

M
, 1 ≤ l ≤ M, the values of Kp and K ′

p are the
complete elliptic integrals associated with the parameters kp

kp =
(λmax/λmin)

1/4 − 1

(λmax/λmin)1/4 + 1
.

The Jacobi elliptic function

u = sn(tl) = sn(t|k2p),

and the combination of the further Jacobi elliptic functions

cn(tl)dn(tl) =
√

1− k2pu2
√
1− u2.
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Finally, the transformation

ω = (λminλmax)
1/4

(k−1
p + sn(t))

(k−1
p − sn(t))

.

We decompose ζ into their real part ζ1 and their imaginary part ζ2, and we define
the function

hζ =
8Kp(λminλmax)

1/4cn(tl)dn(tl)

Mkp(ζ
l)1/2(k−1

p − sn(tl))2
.

So, for each y = Y − Cẑ ∈ X 2(nC+1) and ζ ∈ Cζ , we introduce the 2(nC + 1)-
dimensional vector field

vζ = ΛhζkR (ζ) (ζI − Λ)−1 y

and its real part vζ1 and its imaginary part vζ2, the couple (vζ1, v
ζ
2) is solution of the

system {
Λ−1ζ1v

ζ
1 − Λ−1ζ2v

ζ
2 − v

ζ
1 = Re(hζkR (ζ))y,

Λ−1ζ2v
ζ
1 + Λ−1ζ1v

ζ
2 − v

ζ
2 = Im(hζkR (ζ))y.

(4.22)

Thus, combining the rational approximation kR and the contour integration
formula yields an approximate realization kR,M (Λ) y of k (Λ) y,

kR,M (Λ) y =
M∑
l=1

v
ζl
1 . (4.23)

where M is the number of quadrature points.

Spatial Discretization

The final step in the approximation consists in a spatial discretization and synthesis
of Equation (4.22). The interval Γ is also meshed with regularly spaced nodes
separated by a distance h. Denoting by yh the vector of nodal values of y, for
each ζ we introduce (vζ1,h, v

ζ
2,h), a discrete approximation of (vζ1, v

ζ
2), solution of the

discrete set of equations,{
Λ−1

h ζ1v
ζ
1,h − Λ−1

h ζ2v
ζ
2,h − v

ζ
1,h = Re(hζkR (ζ))yh,

Λ−1
h ζ2v

ζ
1,h + Λ−1

h ζ1v
ζ
2,h − v

ζ
2,h = Im(hζkR (ζ))yh.

(4.24)

Finally, an approximate optimal filter could be estimated from the nodal values,

kR,M,hyh =
M∑
l=1

v
ζl
1,h.
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4.3 Conclusion
We have presented the derivation of a semi-decentralized approximation method
and its applications to an LQR control problem and an H∞ filtering problem for
one-dimensional cantilever arrays. The resulting semi-decentralized control can be
realized by PNR circuits. We notice that the entire approach is general and it can
be extended to other linear optimal control problems, e.g. LQG or H∞ controls. It
may apply or be adapted to other systems including a cantilever array, for instance
to parallel AFMs or to storage devices, like the millipede, see [5].
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Chapter 5

CONCLUSIONS AND
PERSPECTIVES

A two-scale model of cantilever arrays in dynamic regime has been presented. Its
derivation, previously carried out, uses a theory of strongly heterogeneous homoge-
nization in which the cantilevers play the role of soft parts. In the resulting model,
only the transverse displacement was retained. We analyzed it and compared it
to ordinary finite element simulations from the viewpoint of modal structure. A
special emphasis was placed on the distinction between modes dominated by base
deformation and those dominated by cantilever deformation. We observe that this
concept can be met in various kinds of arrays of coupled systems, so the analysis
methodology could be re-used in other applications.

The two-scale model and the direct finite element model provide comparable
results but some modes are not absolutely correct. A possible way to improve the
current model would be to take into account the three mechanical displacements
rather than the transverse displacement only. The different phases of the design
optimization problem of AFM arrays have been described. For a static design
problem based on a two-scale model of AFM arrays, the design variables space X
is defined, as well as the response feature space S, the design objective functions
Fi(x) and the design nonlinear constraints space C. We have demonstrated that it
is possible to:

1. Select a set of influential design variables based on sensitivity analysis.

2. Find an optimal solution of the constrained design problem using both mono-
objective and multi-objective optimization algorithms.

3. Quantify the impact of manufacturing uncertainties on the performance char-
acteristics of the AFM array.
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The implemented tools provide an effective means for supporting the decision
making process in arrays of AFM design.

The measurement of cantilever displacements is done by an interferometric
readout method. We have presented an effective global phase computation al-
gorithm based on the least square method . Positive results of sample surface
topographic scan application for an array of AFMs have been reported.

Our semi-decentralized approximation method has been applied to a LQR prob-
lem and H∞ filtering problem of a cantilever array. The system was represented
through a validated two-scale model. We have proposed a possible implementation
of the semi-decentralized controller as a set of distributed electronic circuits. The
method has been validated, and all sources of errors have been quantified. We
arrive to the conclusion that the main limitation comes from the spatial mesh size
h which need to be quite small to reach a good resolution. Conversely, the number
M of quadrature nodes is not needed to be large. This may be interpreted in
terms of analog circuit implementation by saying that a large number of resistors
is needed in the circuit, and a relatively small number of global analog compu-
tations is required to get accurate results. Further applications are now possible,
for instance to more complex systems, as two-dimensional arrays, and to more
sophisticated optimal control laws involving Riccati equations or inequalities.

We remark the future research works in the following:

1. Complete the validation of the whole control loop: from physical domain to
two-scale domain then back to physical domain.

2. Choose the control objectives for different applications, for instance apply
LQR control to an array of AFMs.

3. Extend this approach to other linear optimal control problems, LQG and H∞
control for an array of AFMs operating in contact mode or tapping mode.

4. More design problems, such as dynamics design problem and control design
problem, will be solved by the toolbox SIMBAD presented in this disserta-
tion. Hence the limitations of the current version of AFMLab will be over-
comed in the new version. The method developed in this work is sufficiently
general to apply to multi-physics and multi-scale modeling for a broad range
of arrays of microsystems and nanosystems whose components present some
(wanted or unwanted) couplings.
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Appendix A

Two-scale Model Parameters and
Cell Problem

A.1 Approximations in the Physical System

The two-scale approximation of the transverse mechanical displacement field is
derived following a similar principle as for the Simple Model, but we also take
into account the lateral displacements. This requires additional scaling in the in-
plane displacements. Denoting by uP = (uP1 , u

P
2 , u

P
3 ) the elastic displacements in

the model of a Kirchhoff-Love thin plate interacting with objects, the two-scale
approximation is applied to (uP1 , u

P
2 , u

P
3 ) in the base and to (ε∗uP1 , ε

∗uP2 , u
P
3 ) in the

cantilevers and in objects. Precisely,

(ûPϵ
1 , û

Pϵ
2 , û

Pϵ
3 ) = (uA1 , u

A
2 , u

A
3 ) +O(ε∗) in the base and

(ε∗ûPϵ
1 , ε

∗ûPϵ
2 , û

Pϵ
3 ) = (uA1 , u

A
2 , u

A
3 ) +O(ε∗) in the cantilevers and in the objects.

Conversely, the two-scale approximation in the physical domain is

u ≈ uA in the base and u ≈ (
uA1
ε∗
,
uA2
ε∗
, uA3 ) in the cantilevers and in the objects.

A.2 Strains and Stresses

Once uA together with second order corrector uB (coming from two-scale approx-
imation of second order derivatives) are known, the strains are approximated by

sαβ(u) ≈ −
x3
ε∗2

∂2yαyβu
A
3
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in cantilevers. In the base their expression involve uB,

sαβ(u) ≈ −x3(∂2xαxβ
uA3 + ∂2yαyβu

B). (A.1)

Moreover, in case of isotropic materials, with Young modulus E and Poisson co-
efficient ν, plane stresses are approximated by

σαβ ≈ −
x3h

2
CE

24(1 + ν)ε∗2
(∂2yαyβu

A +
ν

(1− ν)
∆ỹuAδαβ)

in cantilevers, and

σαβ ≈ −
x3h

2
BE

12(1 + ν)
[∂2xαxβ

uA3 + ∂2yαyβu
B +

ν

(1− ν)
(∆x̃uA3 +∆ỹuB)δαβ] (A.2)

in the base.

A.3 Problem PB

The following cell problem is used to compute LB in (1.14) and uB in (A.1,A.2).
For a 2×2 symmetrical matrix ζ, we say that a field wB, independent of y3, solves
the problem PB if it solves the partial differential equation,

divỹ(divỹ(M
B0(wB))) = −divỹ(divỹ(rB : ζ)) in ỸB (A.3)

with MB0 = rB : ∇ỹ∇T
ỹw

B, endowed with the following boundary conditions. The
free base boundary and the base-cantilever interface are subjected to the same
boundary conditions

∇ỹ(n
T
ỹM

B0(wB)τ ỹ).τ ỹ + divỹ(M
B0(wB)).nỹ = −∇ỹ(n

T
ỹ (r

B : ζ)τ ỹ).τ ỹ

−divỹ(rB : ζ).nỹand nT
ỹM

B0(wB)nỹ = −nT
ỹ (r

B : ζ)nỹ.

The rest of the base boundary, which is its boundary common with this of the
whole cell Y, is subjected to periodicity conditions

wB, nT
ỹM

B0(wB)nỹ are Ỹ − periodic, (A.4)

and ∇ỹw
B.nỹ, ∇ỹ(n

T
ỹM

B0(wB)τ ỹ).τ ỹ + divỹ(M
B0(wB)).nỹ are Ỹ − antiperiodic.

(A.5)

Calculation of LB and of ∇ỹ∇T
ỹ u

B The linear mapping which transforms the
matrix ζ into the matrix of functions ∇ỹ∇T

ỹw
B defines a linear operator denoted

by LB,

(∇ỹ∇T
ỹw

B)αβ =
2∑

γ,ρ=1

LB
αβγρζγρ. (A.6)
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Once uA3 is known, ∇ỹ∇T
ỹ u

B is computed using the linear operator LB,

∇ỹ∇T
ỹ u

B = LB∇x̃∇T
x̃u

A in ω × ỸB. (A.7)
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Appendix B

AFMALab: A Simulator of an
Array of AFMs

AFMALab is our new developed interactive environment which is dedicated to
perform various analysis for an array of cantilevers based on the two-scale model
that has been presented in chapter 1. Within AFMALab environment, you can
solve different kinds of model-based problems, such as modal computation, static,
quasi-static and dynamic problems for an array of cantilevers. Moreover, it can
be used for design optimization of arrays of AFMs by integrating with SIMBADr.
AFMALab requires less computation effort comparing with a standard Finite Ele-
ment Method analysis environment, namely COMSOLr. Thanks to an easy-to-use
graphical user interface (GUI), such as menus and buttons built on MATLABr

environment, it is flexible and convenient to configure and modify material prop-
erties, loads, geometry, scanner and parameters of postprocessing.

The script of AFMALab is written in the MATLAB language. It can be in-
tegrated as a toolbox into MATLAB environment. AFMALab can run on any
platform supported by MATLAB. In addition, a compiled run-time version is also
available which can be operated without MATLAB.

B.1 Introduction
Using AFMALab toolbox, the user can perform different types of analysis based
on our two-scale model of an array of cantilevers. The following applications are
available for the current version:

• Modal computation

Compute the global eigenvalue λA and eigenvector ψA.

• Static Analysis
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Solve the static problem by applying various types of loads, such as concen-
trated loads at tips, face loads and body loads.

• Dynamic Analysis

Solve the dynamic problem by exciting a single cantilever with concentrated
loads oscillating to a frequency, i.e. the first base eigenfrequency or the first
cantilever eigenfrequency.

• Design Optimization

A robust optimization toolbox SIMBAD is interfaced with AFMALab and
provides GUI to perform optimization analysis for designing arrays of AFM
before the microfabrication process.

Remark 9 The following typographical conventions have been used throughout:
- Sans Serif All GUI labels, for instance: Project or Model
- Bold Names of buttons, such as the OK button.

B.2 Graphical User Interface
This section describes the major components in the AFMALab environment. When
starting AFMALab, the main interface of AFMALab appears as shown in Fig-
ureB.1.

Figure B.1: The main interface of the software AFMALab.

The main interface of AFMALab includes 6 menus, namely Project, Model,
Compute, Plots, Optimization and Help. We describe each sub-menu in the following
sections.

Remark 10 Most GUI objects in the AFMALab environment have a tooltip as-
sociated with them to provide a more detailed description of their function. The
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tooltip is automatically displayed when the mouse pointer is placed over the object
of interest.

B.2.1 Project

Here the user can begin a new application or import an existing application into
AFMALab, see Figure B.2.

Figure B.2: Menu of Project in AFMALab

The user can also save the configuration and the result of their current ap-
plication in this menu. The Export generates the geometry description file for
COMSOL and the files for mode shapes, static and dynamic displacement at user-
defined points.

B.2.2 Model

The Model menu allows the user to define and modify the parameters associated to
the material, geometry, loads, scanner, tip-sample interaction and optical devices,
as seen in Figure B.3.

Example 11 Define and modify the material parameters, see Figure B.4

1. Click on menu Model, select sub-menu Material Parameters then click.

2. Define or modify the parameters.

3. Click on OK.

Example 12 Define and modify the loads, see Figure B.5
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Figure B.3: Menu of Model in AFMALab

Figure B.4: Material parameter settings.

1. Click on menu Model, select sub-menu Force Settings then click.

2. Define or modify the loads. The loads can be expressed as constant or as an
expression of the coordinates (x, y, z).

3. Close the edit window, the changes will be saved automatically.

B.2.3 Compute

The Compute menu allows the user to perform the modal, static and dynamic
analyses, see Figure B.6. Each analysis involved in Compute has its own sub-menu
with which the user can configure and modify the parameters of the solver.

Example 13 Modify the modal analysis solver properties and perform modal anal-
ysis.
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Figure B.5: Load settings file

Figure B.6: Menu of Compute in AFMALab

1. Click on menu Compute, select sub-menu Parameters Settings then click.

2. Keep the default parameters of modal analysis solver or modify them.

3. Click on OK.

4. Click on menu Compute, select sub-menu Solve then click it to execute the
analysis.

The user can modify the static and dynamic analyses solver properties and
perform their analysis by following the same steps as indicated for modal analysis.

B.2.4 Plots

The Plots menu allows the user to display the solution of the analysis after its
execution. It provides the postprocessing plots for the static solutions in two-
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dimension (2D) and the modal, static and dynamic solutions in three-dimension
(3D), see Figure B.7.

Figure B.7: Menu of Plots in AFMALab

Example 14 Static solution plots in 2D.

1. Click on menu Plots, select sub-menu 2D Plots.

2. Click on its sub-menu Statics. A figure appears to display the static solutions
in the base, the free end of cantilevers and the tips (in case of an array of
cantilevers has tips), see Figure B.8 (a).

3. Click on OK.

Example 15 Static solution plots in 3D

1. Click on menu Plots, select sub-menu 3D Plots.

2. Click on its sub-menu Statics. A menu appears to let the user configure the
parameters of the 3D display.

3. Keep the default parameters of 3D plots or modify them, then click OK, as
seen in Figure B.8 (b).

Example 16 Modal solution plots in 3D

1. Click on menu Plots, select sub-menu 3D Plots.

2. Click on its sub-menu Modes. A menu appears to let the user configure the
parameters of the 3D display.
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(a) (b)

Figure B.8: (a) 2D plot and (b) 3D plot of static analysis.

3. Keep the default parameters of 3D plots or modify them, then click OK, as
seen in Figure B.9.

Figure B.9: Mode plot of modal analysis.

Example 17 Dynamic solution plots in 3D.

1. Click on menu Plots, select sub-menu 3D Plots.

2. Click on its sub-menu Movies. A menu appears to let the user configure the
parameters of the 3D movie.

3. Keep the default parameters of 3D plots or modify them, then click OK.
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B.2.5 Optimization

The Optimization menu contributes to the interface between AFMALab and SIM-
BAD which is an interactive program dedicated to simulation-based design appli-
cations. It allows the user to define different types of arrays of AFMs on a single
wafer, as shown in Figure B.10.

Figure B.10: Menu of Optimization in AFMALab

Example 18 Define and modify the parameters for arrays of AFMs.

1. Click on menu Optimization, select sub-menu Parameters Settings then click.

2. Keep the default parameters of arrays of AFMs or modify them.

3. Click on OK.

Example 19 Run SIMBAD in AFMALab environment.

1. Click on menu Optimization, select sub-menu Run.

2. The main interface of SIMBAD appears, see Figure B.11. A design opti-
mization application has been reported in section 2.3.

B.2.6 Help

The Help menu allows the user open the AFMALab help documentations in html
format, as shown in Figure B.12. It provides the descriptions of the main functions
of AFMALab. The presentation of the two-scale approximation theory and modal
description are also included in the documentation.
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Figure B.11: Main interface of SIMBAD.

Figure B.12: The main page of AFMALab help documentation.

The AFMALab is a pre-alpha version for performing the simulations of array
of cantilevers based on the two-scale model. It is designed for satisfying the basic
requirements of using this tool. More sophisticated object-oriented graphics in
MATLAB environment and more functionalities will be integrated into the next
version of AFMALab.
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Abstract:

We establish a two-scale model both for one-dimensional and two-dimensional Cantilever Arrays
in elastodynamic operating regime with possible applications to Atomic Force Microscope (AFM)
Arrays. Its derivation is based on an asymptotic analysis for thin elastic structures, a two-scale
approximation and a scaling used for strongly heterogeneous media homogenization. We present
the method used for its discretization, and report results of its numerical validation with FEM. A
robust optimization toolbox is interfaced to aid for design before the microfabrication process. A
model based algorithm of static state estimation using measurement of mechanical displacements
by interferometry is presented. We also synthesize a controller based on LQR methodology for a
one-dimensional cantilever array with regularly spaced actuators and sensors. With the purpose
of implementing the control in real time, we propose a semi-decentralized approximation that may
be realized by PNR. The control approximation method is based on two general concepts, namely
on functions of operators and on the Dunford-Schwartz representation formula. This approximation
method is extended to solve a robust H∞ filtering problem of the coupled cantilevers.

Keywords: Cantilever arrays, Two-scale modeling, Homogenization, Model verification, Optimization design,
Interferometry measurements, Semi-decentralized control, Functional calculus, Cauchy integral
formula

Résumé :

Nous établissons un modèle à deux échelles à la fois pour des matrices de cantilevers unidimen-
sionnels et bidimensionnels en régime de fonctionnement élastodynamique avec des applications
possibles aux réseaux de microscopes à force atomique (AFM). Son élaboration est basée sur une
analyse asymptotique pour les structures minces élastiques, une approximation à deux échelles
et une mise à l’échelle utilisée pour l’homogénéisation des milieux fortement hétérogènes. Nous
présentons une méthode de discrétisation du modèle et effectuons sa vérification numérique en la
comparant avec des résultats de simulation par FEM. Une boı̂te à outils d’optimisation robuste est
interfacée avec le modèle permettant d’optimiser un design avant micro-fabrication. Un algorithme
d’estimation de l’état statique combinant la mesure de déplacements mécaniques par interférométrie
et le modèle a été introduit. Nous avons également synthétisé un LQR pour un réseau de cantilevers
en mode dynamique comprenant actionneurs et capteurs régulièrement espacées. Dans le but de
mettre en œuvre le contrôle en temps réel, nous proposons une approximation semi-décentralisée
qui peut être réalisé par un PNR. La méthode d’approximation de commande est basée sur deux
concepts généraux, à savoir sur un calcul fonctionnel et sur la formule de représentation d’une fonc-
tion d’opérateur de Dunford-Schwartz. Cette méthode d’approximation est étendue pour la résolution
d’un problème de filtrage optimal robuste de type H∞ de la dynamique d’un réseau de leviers couplés.

Mots-clés : Matrice de levier, modélisation à deux échelles, homogénéisation, vérification de modèle, con-
ception par optimisation robuste, mesures d’interférométrie, contrôle semi-décentralisé, calcul
fonctionnel, formule intégrale de Cauchy
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