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General introduction 

 

The semiconductor technology is actually scaling down the feature size of transistors 

towards the nanometer regime to continue increasing the density of devices on a single chip. 

This strategy has been very effective and successful in the past to improve the overall 

performance of circuits. However, the power density per unit volume tends to be dependent 

on the channel length Lg and proportional to Lg
-1.7 [Rowlette08]; which raises new problems: 

For a 20 nm channel length device, the power density is in the order of 10 TW/cm3. Hence, 

the high current densities flowing in active areas of such small devices generate significant 

local heating due to phonon emission by hot carriers leading to reductions in performance and 

even to failures. This phenomenon, called self-heating effect, is identified as one of the most 

critical for the continued increase in the integration density of circuits.  

At this scale, the transport of both electrons (charge) and phonons (heat) are ballistic or 

quasi-ballistic, accordingly both heat and charge transports are non-stationary.. In addition, 

the thermal conductivity of semiconductor thin films, in particular silicon (Si) films, is 

significantly reduced because of the boundary and surface scattering. It is therefore 

appropriate to model not only the electron transport and the generation of phonons, but also 

the transport of non-equilibrium phonons and the coupling of the two non-equilibrium 

populations of particles to evaluate the electro-thermal effects in nanoscale devices. 

In this context, the aim of this thesis is to study (i) the heat transport in Silicon nano-

structures and in short channel Si MOSFET (Metal-Oxide-Semiconductor Field-Effect 

Transistor), and (ii) the coupling of non-equilibrium electron and phonon transport in this 

transistor.  

In the first chapter, we review the models that can be used to study the transport of 

electrons and phonons at deep sub-micron dimensions, for which the Boltzmann transport 

equation (BTE) describes well the transport of both electrons and phonons, together with their 

coupling in view of electro-thermal simulation.  
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In the second chapter, a new algorithm to solve the steady-state phonon Boltzmann 

transport equation (pBTE) under relaxation time approximation is presented. The relaxation 

time set in this work is validated by the comparison of calculated and experimental thermal 

conductivity of bulk Si. Both analytic and numerical calculations have been implemented and 

performed. The analytic model can predict the thermal conductivity for various geometries at 

different scales by including the phonon-boundary scattering, as well as the roughness 

scattering. 

The novelty in the numerical BTE algorithm is the introduction of the scattering 

temperature at which the relaxation time is calculated and injected in the steady-state pBTE. 

This scattering temperature is given by the heat diffusion equation. The results on the thermal 

conductivity of Si bulk are presented as a validation of this algorithm which allows us to 

describe all transport regimes in Si and their physical origin, from diffusive to ballistic 

regimes. Then, the same procedure is used to analyse the thermal conductivity of GaAs 

ballistic point contacts. 

In chapter 3, we study the self-heating effects in a 20 nm-channel length double-gate 

MOSFET. The phonon generation in Si bulk and in Si DG-MOSFET is extracted from 

electron Monte Carlo (eMC) simulation and compared to the simple macroscopic evaluation 

of the Joule heating. The generation term is used as an input for steady state pBTE solver in 

this DG-MOSFET. The temperatures, thermal flux and the non-equilibrium transport are 

investigated for different bias conditions.  

The procedure of coupled non-equilibrium electro-thermal simulation in this transistor is 

finally presented in this chapter. The resulting ballisticity, electron velocity, energy and 

potential are compared with these of the isothermal eMC simulation. The degradation of drain 

current is estimated as a function of the source-drain bias and the surface roughness.   
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Etude numérique des effets thermoélectriques dans les 
nanodispositifs silicium 

Introduction 

Le développement des technologies de composants pour les filières CMOS ultimes à grille 

ultra-courte (L < 20 nm) se heurte à de nombreuses difficultés technologiques, mais 

également à des limites thermiques qui perturbent notablement les règles de mise à l'échelle 

communément employées jusqu'à présent. Les fortes densités de courant obtenues dans des 

zones actives aussi réduites génèrent un important échauffement local (par effet Joule), lié à 

l'émission de phonons par les porteurs chauds, qui peut conduire à des réductions très 

sensibles des performances, voire à des défaillances. Ce phénomène est identifié comme un 

des plus critiques pour la poursuite de l'augmentation de la densité d'intégration des circuits. 

Cela est particulièrement crucial dans les technologies SOI (silicium sur isolant), où la 

présence de l'isolant enterré constitue un frein à l'évacuation de la chaleur.  

À l'échelle nanométrique, l'étude théorique de ces phénomènes d'échauffement n'est plus 

possible par des modèles macroscopiques (coefficient de diffusion de la chaleur) mais 

nécessite une description microscopique détaillée des transferts de chaleur qui sont 

localement hors équilibre. Il s'agit donc de modéliser de façon appropriée, non seulement le 

transport électronique et la génération de phonons, mais aussi le transport de phonons hors 

équilibre et les interactions  phonons-phonons et électrons-phonons. 

Le formalisme de l’équation de transport de Boltzmann (BTE) est très bien adapté à l'étude 

de ce problème. En effet, il est largement utilisé avec succès depuis des années pour l'étude du 

transport des particules chargées dans les composants semi-conducteurs. Ce formalisme est 

cependant beaucoup moins commun pour étudier le transport des phonons bien qu'il soit en 

principe très approprié. La difficulté provient du couplage de la BTE des électrons et celle des 

phonons. 

Au cours de ce travail de thèse, un algorithme de calcul du transport de phonons par 

résolution directe de la BTE a été développé. Ce modèle est présenté au chapitre 1. Ensuite, le 

chapitre 2 décrit le couplage au transport électronique simulé par le logiciel "MONACO", 

basé sur une résolution statistique (ou Monte Carlo) de la BTE, développé dans l'équipe. 

Finalement, ce nouveau simulateur électro-thermique a été utilisé pour étudier les effets 
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d’auto-échauffement dans les nano-transistors. L’intérêt principal de ces travaux est de 

permettre une analyse du transport électro-thermique au-delà du formalisme de Fourier. En 

effet, il donne accès aux distributions locales de phonons dans le dispositif pour chaque mode 

de phonon. En particulier, ce simulateur apporte une meilleure compréhension des effets des 

électrons chauds au niveau des points chauds et leur relaxation dans les accès. 

Sommaire 

INTRODUCTION.....................................................................................................................................................11 

SOMMAIRE ...........................................................................................................................................................12 
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CONCLUSION.........................................................................................................................................................21 

 

Chapitre 1 : Introduction 

 

Dans ce chapitre, nous passons en revue les modèles qui peuvent être utilisés pour étudier 

le transport des électrons et des phonons dans des structures submicroniques en utilisant 

l'équation de transport de Boltzmann (BTE). On détaille en particulier les modèles de la 

littérature couplant les deux équations, en vue de simuler le transport électro-thermique 

[Sadi12, Vasileska10, Kamakura10, Ni12].   

Parmi les principales méthodes de résolution de la BTE, une résolution statistique de type 

Monte-Carlo a été retenue pour résoudre le transport électronique. Cette méthode éprouvée 

permet de décrire rigoureusement le transport d’électrons hors d’équilibre qui a lieu dans les 

dispositifs réels de taille nanométrique. Nous avons donc utilisé le simulateur MONACO 
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développé dans l’équipe [HDRDollfus99]. Pour le transport des phonons, notre choix s'est 

porté sur une résolution directe de la BTE, dans l'approximation du temps de relaxation. Nous 

avons développé un nouveau modèle à cet effet, couplé ensuite à MONACO. 

 

Chapitre 2 : Modèles de transport de phonons et conductivités 

thermiques des nanostructures 

 

Dans ce chapitre, nous détaillons les modèles utilisés pour décrire le transport thermique 

dans cette thèse. L'équation de transport de Boltzmann (BTE) est utilisée pour décrire le 

transport des phonons dans des structures submicroniques. Les modèles utilisés pour décrire 

les différents mécanismes d’interactions sont présentés. Le modèle numérique de résolution 

de la BTE est également détaillé. Ensuite, des conductivités thermiques dans des 

nanostructures (Films, fil Si, GaAs) sont calculées. Enfin, on illustre les différents régimes de 

transport de phonons du diffusif au balisitique. 

 

Modèle de transport 

 

Formalisme de Boltzmann 

Les modèles utilisés dans cette thèse sont basés sur l’équation de transport de Boltzmann 

(BTE) qui est l’équation d’évolution de la fonction de distribution ( ), ,f r k t
��

. Cette fonction 

décrit la densité de probabilité d’une particule d’être à la position r
�

 et d’avoir un vecteur 

d’onde k
�

 à l’instant t. La connaissance de cette fonction permet de calculer toutes les 

grandeurs physiques pertinentes liées à la population de phonons : énergies, vitesse…  

De façon très générale, la BTE s’écrit comme : 

r k
coll

f F f
v f f

t t

∂ ∂
+ ⋅∇ + ⋅∇ =

∂ ∂
� �

�
�

ℏ
 

où r
�

, k
�

 et t sont la position, le vecteur d’onde et le temps. v est la vitesse de particule, F
r

 

est la force externe appliquée aux particules et h  est la constante de Planck réduite. Pour les 

phonons, il n'y a pas de force appliquée et le terme correspondant disparaît de l'équation. 
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La détermination l'intégrale du terme de collision 
coll

f

t

∂

∂
 est une difficulté majeure dans la 

résolution de la BTE, spécialement pour les phonons.  

Aussi, l'intégrale de collision est souvent simplifiée en écrivant la fonction de distribution 

hors-équilibre comme : 

S

coll

f ff

t τ

−∂
= −

∂
 

Où τ  est un temps de relaxation qui décrit comment la fonction de distribution relaxe vers 

fS qui est la distribution d'équilibre. Cette simplification est appelée l'approximation du temps 

de relaxation (RTA). Cette approximation est valable lorsque la diffusion est isotrope. Le 

temps caractéristique τ peut être vu comme un temps moyen entre deux collisions. 

Relation de dispersion des phonons 

Dans ce travail, nous utilisons la dispersion isotrope et quadratique proposé par Pop et al. 

[Pop05]. Cette dispersion donne une bonne approximation dans la direction cristalline (100). 

Elle s’écrit sous la forme : 2
0s s s sv q c qω ω= + ⋅ + ⋅  

Mécanismes d’interaction des phonons 

Les interactions à trois-phonons liés aux effets anharmoniques sont de deux types : Normal 

et Umklapp. Le modèle utilisé dans cette thèse provient du modèle de Holland [Holland63]. 

Le temps de relaxation pour les phonons optiques dans le Silicium a été fixé à 3.5 ps 

[Menéndez84].  

( )2 3 LA, Umklapp+ Umklapp
NU L

B Tτ ω=  

( )1 4 TA, Normal
N TN

B Tτ ω− =  

( )

( )

1/2

1

2
1/2

0 TA, Umklapp for

/ sinh TA, Umklapp for ,
U

TU

B

B
k T

ω ω

τ ω
ω ω ω

−

<


=  
> 

 

h  

où 1/2ω  est la fréquence qui correspond à q/qmax = 0.5, et BL, BTN et BTU sont des paramètres 

empiriques [Holland63]. 

Pour les interactions avec les impuretés, nous avons utilisé le modèle développé par 

[Asheghi02], avec un temps de relaxation qui s'écrit sous la forme ; 

( )1 4
impurity M R xA A Aδ δτ ω− = + + ⋅ , 
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Où MAδ , RAδ  et xA  sont de paramètres empiriques décrivant l'influence respectivement 

de la différence de masse Mδ  entre une impureté et un atome du cristal, de la différence Rδ  

entre la distance impureté-atome et la distance atome-atome dans le cristal, et enfin du niveau 

de dopage et de la nature du dopant. 

Pour décrire les interactions aux frontières du cristal, nous utilisons le modèle de Holland 

avec un temps de relaxation de la forme [Holland63] : 

1 g

b

v

LFτ
= , 1 2

2
L l l

π
=  

Où L est la section de l'échantillon et F est un facteur représentant la correction liée à la 

rugosité de la surface et au rapport longueur/épaisseur de l'échantillon. 

 

Conductivités thermiques analytiques 

 

Dans le formalisme de Boltzmann la conductivité thermique s’écrit :  

( )
( ) ( )

( )

( )( )

2
2 2

2 2 2
, 0

exp1
. .

3 2exp 1

G
ss

s s s

s LA TA B s

Xq dq
K v q q q

k T X

ω
τ

π=

= ⋅ ⋅
−

∑ ∫
ℏ

. (2.17) 

En utilisant les temps de relaxation présentés précédemment, les conductivités thermiques 

dans des barreaux massifs de silicium ont été calculées pour valider l’approche. Ensuite, des 

conductivités thermiques dans des nanofilms de Si et des nanofils de Si et de GaAs ont été 

évaluées. En particulier, les estimations de ce modèle ont été comparées avec succès avec des 

mesures sur des fils réalisé dans le laboratoire dans le groupe MicroNanoBio. Ces résultats 

pour des fils de section rectangulaire d’épaisseur 160 nm et de largeurs 80 nm, 140 nm, 200 

nm et 260 nm sont rappelés ci-dessous.  

Les valeurs de rugosité qui donnent les meilleurs résultats sont raisonnables par rapport à 

la technologie utilisée. 
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Résolution numérique de la BTE 

 

Pour aller au-delà de la résolution de la BTE en situation de quasi équilibre (modèle 

précédent de conductivité thermique), une méthode numérique originale pour résoudre 

l'équation de Boltzmann stationnaire pour les phonons est présentée.  

Ce modèle comprend les phonons LA et TA avec la relation de dispersion quadratique 

(voir chapitre I) et le modèle modifié de Holland pour les interactions dans l'approximation du 

temps de relaxation. La solution de l'équation de la chaleur de Fourier est couplée pour 

estimer la température intervenant dans le terme d’interaction, c’est à dire la température Tscatt 

dans les équations suivantes : 

Pour les modes optiques, l’équation de transport s’écrit: 

( ) ( ) ( ) ( ) ( )

( ) ( )

, ,, , ,

,
s

g s LTO q s s s Tscatt

e LTO
LTO

v q q N r q N r q N r q

G q r q

τ

τ−

 ⋅ ⋅ ∇ = − − 

+ ⋅

�
�� � � � � � � � �

� � �

 

Pour les modes acoustiques, l’équation de transport s’écrit: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,, , ,

, , ,

g s s q s s s Tscattering

e LTA LTO LTA

s s s s

v q N r q N r q N r q

G q r q G q r q

τ

τ τ− →

 ⋅ ⋅∇ = − − 

+ ⋅ + ⋅

�

�� � � � � � � �

� � � � � �  

Le terme G
LTO->LTA est un terme calculé selon une approche similaire à celle de 

[Rowlette08] afin de prendre en compte la relaxation des modes optiques en modes 

acoustiques tout en essayant de garantir la conservation de l’énergie.  

Les équations sont discrétisées en utilisant l’approche des différences finies. Les 

températures à chaque extrémité sont fixées. Le transport le long des dispositifs est supposé 

adiabatique.  

 

Validation et conductivités thermiques. 

 

Ce modèle est utilisé pour calculer la conductivité thermique dans les films de silicium 

dans la plage de température de [100 K-600 K]. Les prédictions numériques sont en très bon 

accord avec les données expérimentales pour le silicium pur jusqu'à150 K. L’interaction 

phonons-bord est prise en compte pour prévoir la conductivité dans le plan (in-plane) ainsi 

que la conductivité transverse (cross-plane). La conductivité thermique dans le plan (in-plane) 

correspond très bien aux données expérimentales. En outre, la conductivité transverse (cross-

plane) qui est jusqu'à présent difficile à mesurer expérimentalement est étudiée avec notre 

modèle de BTE. La conductivité transverse résultante est plus proche de l'expérience que 

d'autres approches théoriques.  

Nos résultats numériques sont évalués avec succès dans différents régimes de transfert de 

chaleur, de diffusif à balistique, comme l'illustre la figure ci-dessous. Notre méthode est en 

d'accord avec la loi de Stefan-Boltzmann à la limite balistique et à la loi de Fourier dans la 

limite du régime diffusif. 

De plus, les occupations de phonons LA et TA ont été étudiées pour illustrer clairement ces 

différents régimes de transport. 
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Nanofils de GaAs 

Par cette approche les conductances thermiques de nanofils de GaAs ont aussi été évaluées. 

Une dispersion sinusoïdale et des paramètres d’interaction spécifiques au matériau GaAs 

massif ont été ajustés. Des conductances thermiques de nano-piliers de 4 nm et 6 nm de 

diamètre en bon accord avec les valeurs mesurées ont été obtenues. Notre approche montre 

que pour des piliers nanométriques (6 nm de long) fonctionnent très probablement en régime 

balistique pour des températures inférieures à 100 K.  

Chapitre 3 : Génération de phonons et effet d'auto-échauffement 

dans les dispositifs de Si 

 

Dans ce chapitre, nous nous concentrons sur la génération de phonons dans le matériau Si 

massif puis dans des nano-transistors SOI, en particulier dans un MOSFET à double-grille 

(DG-MOSFET). Puis, nous étudions le transport de phonons dans un tel dispositif grâce au 

modèle présenté dans le chapitre précédent.  

Enfin, le couplage entre les transports d’électrons et de phonons est réalisé. Les effets 

électro-thermiques sont analysés.  

Génération de phonons 

 

En utilisant le simulateur Monte Carlo (MONACO) et en tenant compte de la dispersion 

quadratique pour les phonons, nous obtenons les phonons générés par les interactions 

électron-phonon dans les dispositifs de Si. Le transistor étudié est le suivant : 
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Le drain est étendu pour que les électrons puissent relaxer totalement leur énergie avant 

d'atteindre le contact.  

 

Comme illustré sur la figure ci-dessus, la dissipation thermique (principalement composé 

de LA et TA) a été comparée à une approche macroscopique(J.E). Un grand écart est observé 

entre ces deux modèles à la fin du canal. En effet, ce n’est pas là où le champ électrique est le 

plus fort que la majorité des phonons est réellement générée. Cela est en contradiction avec 

l’approche macroscopique qui localise mal la génération thermique.  

 

Transport de phonons 

 

Notre modèle inclut la décroissance des phonons optiques vers les modes acoustiques. 

Notre étude a mis en évidence deux populations de phonons hors équilibre. L’une est généré 

par les électrons chauds, l’autre par la décroissance des modes optiques. On constate 

néanmoins que cet écart est relativement faible et que l’utilisation de la distribution de Bose-

Einstein dans ces dispositifs reste globalement pertinente.  

 

 

 

TsiO2 = 1.2nm 

Tsi =20nm 

50nm 20nm 150nm 
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15
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Transport couplé des électrons et des phonons - Auto-échauffement 

 

Enfin, nous avons couplé le transport des électrons et phonons dans les DG-MOSFET. 

Comme schématisé ci-dessous, une boucle de simulation comprend une résolution e-MC 

suivis par une résolution pBTE. Au début de chaque boucle, les taux d’interaction des 

électrons dans le simulateur Monte Carlo sont modifiés pour tenir compte de la température 

effective obtenue à partir de la solution de la BTE pour les phonons. La convergence est 

atteinte après seulement 3 ou 4 boucles.  

eMC

Phonon BTE

Génération de phonons

Tphonon

 

 

Les effets électro-thermiques dans les DG-MOSFET ont été analysés : on observe 

notamment une modification de la température effective, du flux thermique, du potentiel 

électronique, de la vitesse des électrons et de leur énergie. 

Les effets électro-thermiques augmentent le nombre d'interactions subies par les électrons 

le long du dispositif, et diminue donc la balisticité. Par conséquent, la vitesse et l’énergie des 

électrons sont réduites par rapport au cas de la simulation isotherme à 300K.  

Le courant est aussi diminué, avec une dégradation de courant qui peut atteindre 8.1% à la 

polarisation de Vg = 0.5V, Vds = 1.5V, comme on peut le voir sur la figure ci-dessous. Il 

s'avère également que le profil de température et la dégradation de courant dépendent de la 

rugosité de l'interface silicium/oxyde. 
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Conclusion 

 

Au cours de ce travail de thèse nous avons développé un algorithme de calcul du transport 

de phonons par résolution directe de la BTE des phonons. Ce modèle a ensuite été couplé au 

le logiciel "MONACO" de transport électronique basé sur une résolution statistique (Monte 

Carlo) de la BTE, développé auparavant dans l'équipe. Finalement, ce nouveau simulateur 

électro-thermique a été utilisé pour étudier les effets d’auto échauffement dans les nano-

transistors. L’intérêt principal de ces travaux est de permettre une analyse du transport 

électro-thermique au-delà du formalisme de Fourier. En effet, il donne accès aux distributions 

locales de phonons dans le dispositif, et ce pour chaque mode de phonon. En particulier, ce 

simulateur apporte une meilleure compréhension des effets des électrons chauds au niveau des 

points chauds et leur relaxation dans les accès. 
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1. INTRODUCTION TO MOSFETs 

Silicon (Si) based integrated circuits (ICs) have become the pivot of today’s semiconductor 

world [Slisher12]. The heart of the Si based ICs is the transistor, dominated by CMOS 

(Complementary Metal Oxide Semiconductor) [Thompson] which makes use of both n-

channel and p-channel MOSFETs (Metal Oxide Semiconductor Field Effect Transistors).  

The semiconductor technology is actually scaling down the feature size of transistors 

towards the nanometer regime to continue increasing the density of devices on a single chip. 

This strategy has been very effective for many years to improve the overall performance of 

circuits. The size of device is governed by the Moore’s law which predicts that the number of 

transistors per integrated circuit doubles every 24 months. In 2012, the 22 nm is introduced as 

the next CMOS step following the 32nm step on the International Technology Roadmap for 

Semiconductor (ITRS).  

The short channel effects, such as threshold voltage roll-off and drain-induced-barrier-

lowering [Kumar05], increase significantly as the gate length of semiconductor devices is 

reduced to the nanometer scale. In short channel devices, electron transport can be quasi-

ballistic or even ballistic with a ballisticity up to 65% [StMartin04-1, StMartin04-2]. In a 

quasi-ballistic and ballistic channel, electrons injected from the source region to the drain 

region do not undergo or undergo few scattering when they cross the channel. Their energy 

gained in the electric field cannot be relaxed efficiently along their trajectory via the lattice 

through electron-lattice collisions. Therefore, a non-equilibrium situation occurs, referred as 

hot electron transport. An over-population of phonons is emitted in the drain extension 

beyond the gated region of the channel, which induces local heating. Hot electron phenomena 

have become an important issue for the understanding of modern ultra-scale semiconductor 

devices [Young89, Balkan99, Vitusevich03]. This unwelcome effect gives rise to a 

degradation of transistor characteristics and may lead to circuit failure.  

Numerical simulation can greatly reduce the design cost of new devices. That is mandatory 

not only for the device engineering, but also for the understanding of underlying fundamental 

physics. At the beginning, analytical MOS models were relevant in device modeling. But 

when the gate length was scaled down to the submicron-scale short channel and hot-electron 
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effects became a problem and analytical modeling had to be backed by more advanced 

models [Jungeman03].  

The main approaches in ultra-scale semiconductor simulation (for electron and also for 

phonon transport) is solving the semi-classical Boltzmann equation (BTE), the balance 

equations derived for different moments of the BTE, the hydrodynamic (HD) models 

[Jungeman03] and the drift-diffusion (DD) one that is the most commonly used and the 

simplest. Despite their limitations, the two former models are still frequently used in 

“corrected” releases to include the effects of small size [Odanaka04, Degond04, Degond05, 

Baro05, Granzner06, Gardner94, Romano01]. However, in the case of deep submicron 

device, some problems like spurious velocity overshoot or artificially enhanced particles 

diffusion occur. These problems are avoided by solving the BTE directly. There are two 

groups of methods: one group consists of direct numerical solvers, and the other one 

comprises stochastic approaches based on the Monte Carlo (MC) method [Jungeman03]. The 

MC model includes various scattering mechanisms, the band structure (analytical and/or full 

band structure). As a result, the MC method is able to provide accurate predictions for non-

equilibrium effects occurring in short channel devices.  

To compare the three models, in Fig. 1.1, we plot the drain currents obtained using the 

above methods in 20 nm- and 100 nm-long gate MOSFETs. These results are taken from the 

work of R. Granzner and co-workers [Granzner06].  

(a)  (b)  

Fig. 1.1. (a) Cross-section of the double gate MOSFETs structure studied. The source and drain regions are 

doped to 1020 cm-3. (b) The drain current as a function of gate voltage for MOSFET of 20nm- and 100nm-gate 

length obtained using the three models: DD, HD, MC [Granznier06]. 
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They showed that the DD currents are in good agreement with the MC results for the long 

single-gate device. For the 20-nm gate transistor, however, DD underestimates the on-current 

by about 25% due to the increasing role of non-stationary carrier transport and ballistic effects 

[Granzner06].  

As the size of the device still decreases, quantum models for electron and phonon transport 

are necessary to include and explain quantum effects such as quantum interference, size 

quantization and tunneling current. Such attempts make use of the Wigner function 

[Querlioz10] or the Green function [Anantram08, HVNguyen09, Mazzamutto11, 

Mazzamuto12].  

An illustration of the hierarchy of transport models is represented in Fig. 1.2. 

 

Fig. 1.2. Illustration of the hierarchy of transport models [Vasileska08]. 

In this work, we focus on devices with sizes comparable to the mean free path of electrons 

and phonons, in which the BTE describes well enough the transport of electrons and phonons. 

We describe the electron transport models in section 2 and phonon transport modes in section 

3. The main electro-thermal models for transistors are reviewed in section 4. Finally, the aim 

of the present work will be presented in section 5.  
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2. ELECTRON TRANSPORT MODELS 

In this subsection, a brief introduction into semi-classical transport models: BTE, drift-

diffusion and Monte Carlo is presented. These models are well described in many textbooks 

and reviews ([Jungeman03], [Lungstrom00], [Vasileska08]). Several parts of this section are 

inspired by these references. 

2.1. Boltzmann transport equation 

The distribution function ( ), ,f r k t
��

 gives the probability of finding carriers at time t, 

located at a position r
�

, with a wave vector k
�

. The BTE accounts for all possible mechanisms 

by which f may change [Lungstrom00]. Here, we represent the BTE in terms of trajectories in 

position-momentum spaces. 

• The phase space and density function 

The set of all possible positions r
�

 and wave vector k
�

 is called the phase space of the 

system; in other words a set of three coordinates for each position coordinate x, y, z, and three 

more for each momentum component kx, ky, kz. The entire space is 6-dimensional: a point in 

this space is ( ) ( ), , , , , ,x y zr k x y z k k k=
�� , and each coordinate is parameterized by time t. The small 

volume ("differential volume element") is written 3 3
x y zd r d k dx dy dz dk dk dk=

�� . 

Since the probability of N particles which all have r
�

and k
�

within 3 3d r d k
��  is in question, at 

the heart of the equation is a quantity f which gives this probability per unit phase-space 

volume, or probability per unit length cubed per unit momentum cubed, at an instant of time t. 

This is a probability density function: ( ), ,f k r t
� �

, defined so that, 

 ( ), ,dN f k r t drdk=
� �� �

 (1.1) 

is the number of particles which all have positions lying within a volume element d3
r
�

 about 

r
�

 and wave vector lying within a wave vector space element d
3

k
�

 about k
�

, at time t. 

Integrating over a region of position space and momentum space gives the total number of 

particles which have positions and momenta in that region: 
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 ( ) ( )3 3 , , , , , , , ,x y z x y z

positions wave vector

N d r d k f r k t f x y z k k k t dxdydzdk dk k= =∫ ∫ ∫∫∫ ∫∫∫
� �� �

. (1.2)  

 

• General equation (principal form) 

The general equation can be written such as 

 
force diff coll

df f f f

dt t t t

∂ ∂ ∂
= + +

∂ ∂ ∂
 (1.3) 

where the "force" term corresponds to the forces exerted on the particles by an external 

influence (not by the particles themselves), the "diff" term represents the diffusion of 

particles, and "coll" is the collision term - accounting for the forces acting between particles 

in collisions. Expressions for each term on the right side are provided below. 

• The force and diffusion terms 

Consider particles described by f, each of them experiencing an external force F
�

 not due 

to other particles (see the collision term for the latter treatment). 

Suppose at time t some particles have energy ε, position r
�

 within element d3
r
�

 and wave 

vector k
�

 within d3
k
�

. Note that some authors use the particle velocity 1
v kε−= ∂ ∂

��
ℏ  instead 

of wave vector k
�

; in the case of parabolic energy band of effective mass m, they are related 

in the definition of momentum by p mv k= =
�� �
ℏ . If a force F

�
 instantly acts on each particle, 

then at time t + ∆t their position will be r
�

+ ∆ r
�

 = r
�

+ k
�
ℏ ∆t/m and wave vector  k

�
 + ∆ k

�
 = 

k
�

 + 
F
�

ℏ
∆t. Then, in the absence of collisions, f must satisfy 

 ( )3 3 3 3, , , ,
F

f r v t k t t t d rd k f r k t d rd k
 

+ ∆ + ∆ + ∆ =  
 

�
� � � �� � � � �

ℏ
 (1.4) 

Note that the phase space volume element 3 3
d rd k

��
 is constant. However, since collisions 

do occur, the particle density in the phase-space volume 3 3
d rd k

��
changes, so 
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 ( )

3 3

3 3 3 3

3 3

, , , ,

coll

coll

f
dN t d r d k

t

F
f r v t k t t t d r d k f r k t d r d k

f d r d k

∂ 
= ∆ 

∂ 

 
= + ∆ + ∆ + ∆ −  

 

= ∆

��

�
� � � �� � � � �

ℏ
��

 (1.5) 

where ∆f  is the total change in f.  

Dividing (1.5) by 3 3
d r d k t∆

��
 and taking the limits ∆t → 0 and ∆f → 0, we have  

 
coll

df f

dt t

∂
=

∂
 (1.6) 

The total difference of f is: 

( )

( )

( )

, ,

. , ,

. , ,

x y z

x y z

r k

r k

f f f f f f f
df dt dx dy dz dk dk dk G r k t dt

t x y z k k k

f
dt f dr f dk G r k t dt

t

f F
dt f v dt f dt G r k t dt

t

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂
= + ∇ ⋅ + ∇ +

∂

∂
= + ∇ ⋅ + ∇ +

∂

��

��

��

��� ��� � �� �

�
��� ��� �� �

ℏ

 (1.7) 

Where ( ), ,G r k t
��

 is the generation rate, 
r

∇�
���

, 
k

∇ �

���
 are the spatial and reciprocal gradient 

operator, respectively and  “⋅” is the dot product. 

• General equation (stronger form) 

Dividing (1.7) by dt and substituting into (1.6) gives the stronger form of the equation: 

 
r k

coll

f F f
v f f

t t

∂ ∂
+ ⋅∇ + ⋅∇ =

∂ ∂
� �

�
�

ℏ
 (1.8) 

The term on the right hand side is added to describe the effect of collisions between 

particles; if it is zero then the particles do not collide.  

This equation is more useful than the principal one above, yet still incomplete, since f 

cannot be solved unless the collision term in f is known. This term cannot be found as easily 

or generally as the others - it is a statistical term representing the particle collisions, and 

requires knowledge of the statistics the particles obey, like the Maxwell-Boltzmann, Fermi-

Dirac or Bose-Einstein distributions. 



30 

 

• Integral of the collision term - Relaxation Time Approximation 

Determining the integral of the collision term 
coll

f

t

∂

∂
 is one major difficulty in the 

resolution of BTE. The net rate of increase of ( ), ,f k r t
� �

 due to collisions is a result of the 

competition between the in-scattering process (carriers at 'k
�

 could be scattered to k
�

 thereby 

increasing f) and out-scattering process (carriers at k
�

 could scatter out decreasing f) and is 

given by 

 ( ) ( ) ( ) ( )
' '

' ', , '
coll k k

f
f k S k k f k S k k

t

∂
= −

∂
∑ ∑
� �

� � � � � �
 (1.9) 

The transition rate ( )',S k k
� �

 is the probability per second that a carrier at 'k
�

 will scatter to 

k
�

 (assuming that the state 'k
�

 is occupied and that state k
�

 is empty). 

The collision integral is commonly simplified by writing the non-equilibrium distribution 

function as 

 S

coll

f ff

t τ

−∂
= −

∂
 (1.10) 

Where τ is a characteristic time which describes how the distribution function relaxes and 

fS is a symmetric equilibrium distribution. This approach is called the relaxation time 

approximation (RTA). This approximation is valid when the scattering is isotropic. The 

characteristic time, τ, is just the average time between collisions. 

In what follows it is better to use the velocity v than /k mℏ , which is only true for a 

parabolic band and is not applicable for the full-band simulation. We will use v in the 

formulas below. 

2.2. Drift-diffusion model 

The widely used drift-diffusion (DD) current equations can be easily derived from the BTE 

by considering moments of the BTE. For simplicity, a 1-D geometry is considered at the 

steady state. With the use of the RTA, the BTE may be written as 
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 0

f

f feE f f
v

xk τ

−∂ ∂
+ =

∂∂

�
�

�
ℏ

 (1.11) 

The charge e has to be taken with the proper sign of the particle (positive for holes and 

negative for electrons). The current density is defined as  

 ( ) ( ),
v

J x e vf v x dv= ∫
�

� � �
 (1.12) 

Here, to make easier the access to this definition, the distribution function f is rewritten as a 

function of position x and velocity v
�

. Note that in the case of a parabolic energy band of 

effective mass m, or in the so-called effective mass approximation, the velocity v
�

 and the 

wave vector k
�

 are related by p mv k= =
�� �
ℏ . Then, the Eq. 1.11 is rewritten such as 

 
( )0 ,f f v xeE f f

v
m v x τ

−∂ ∂
+ =

∂ ∂

� �
�

�  (1.13) 

The definition of current density can be related to Eq. 1.13 after multiplying both sides of 

Eq.1.13 by v
�

 and integrating over v
�

. From the right-hand-side of Eq. 1.13, we get 

 ( )
( )

0

1
,

v v

J x
vf dv vf v x dv

eτ τ

 
− = − 

 
∫ ∫
� �

� � � � �
 (1.14) 

The equilibrium distribution function is symmetric in v
�

, and hence the first integral is zero. 

Therefore, we have 

 ( ) ( )2
*

,
v v

e f d
J x e E v dv e v f v x dv

m v dx

τ
τ

∂
= − −

∂∫ ∫
� �

� � � �
�  (1.15) 

Integrating by parts, we have 

 ( ) ( ) ( ), ,
v v

f
v dv vf v x f v x dv n x

v

∞

−∞

∂
 = − = − ∂∫ ∫

� �

� � � � � �
�  (1.16) 

And we can write 

 ( ) ( )2 2,
v

v f v x dv n x v=∫
�

� �
 (1.17) 

Where 2v  is the average of the square of the velocity. The drift-diffusion equations are 

derived by introducing the mobility 
e

m

τ
µ =  and replacing 2v  with its average equilibrium 
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value Bk T

m
for a 1D and 

3 Bk T

m
 for a 3D case, therefore neglecting thermal effects. The 

diffusion coefficient D is also introduced and the resulting DD current expression for 

electrons and holes are 

 
( ) ( ) ( )

( ) ( ) ( )

( )

( )

n n n

p p p

dn x
J x q n x E x q D

dx

dp x
J x q p x E x q D

dx

µ

µ

= +

= −

, (1.18) 

respectively, where q is used to indicate the absolute value of the electron charge.  

For the 3D geometry and at stationary state, Eq. 1.19 can be extended under the form 

 
( ) ( )

( ) ( )

, , ( , )

, , ( , )

n n n

p p p

J r t q n r t E q D n r t

J r t q p r t E q D p r t

µ

µ

= + ∇

= − ∇

� �� � �

� �� � �  (1.19) 

With B
n n

k T
D

q
µ=  and B

p p

k T
D

q
µ= . 

The complete DD model is based on the Eq. 1.19 and the following set of equations 

Continuity equations:  

( )
( ) ( )

( )
( ) ( )

, 1
, ,

, 1
, ,

n n

p p

n r t
G r t J r t

t q

p r t
G r t J r t

t q

∂
= + ∇

∂

∂
= − ∇

∂

�
�� �

�
�� �

 (1.20) 

Poisson’s equation: ( ) ( ) ( ), ,
D A

E q p r t n r t N Nε  ∇ = − + + 
� � �

 (1.21) 

Where ( ),nG r t
�

 and ( ),pG r t
�

 are the net generation-recombination rates. ND and NA are 

the donor and acceptor doping densities, respectively.  

In the derivation of Eq. 1.19, the choice of equilibrium (thermal) velocity means that the 

DD equations are only valid for small perturbations of the equilibrium state (low fields). The 

validity of the DD equations is empirically extended by introducing field-dependent mobility 

( )Eµ  and diffusion coefficient ( )D E , obtained from empirical models or detailed 

calculation to capture effects such as velocity saturation at high electric fields due to hot 

carrier effects. 

In the approach of the DD model, the carrier temperatures are assumed to be in equilibrium 

with the lattice temperature that is TC = TL. However, in the presence of a strong electric field, 
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electrons gain energy from the field and the temperature Tn of the electron gas is elevated. To 

inform about the average carrier energy is available in form of carrier temperature, the 

hydrodynamic (HD) model is introduced. Many parameters in this model depend on this 

average carrier energy, e.g., the nobilities and the energy relaxation times. In the 

computational electronics community, the necessity for the HD transport model is normally 

checked by comparison of simulation results for HD and DD simulations [Vasileska08]. 

2.3. Particle based Monte Carlo method 

In the previous sub-section, we have considered the drift-diffusion model that was derived 

from the BTE. This approximation of the BTE, at some limit, becomes inaccurate or fails 

completely. In these cases, the Monte Carlo (MC) method is widely used. The MC method 

solves the BTE by simulating the trajectories of individual carriers. They move through a 

device under the influence of an electric field and random scattering forces. If the number of 

simulated particle trajectories is large enough, the average results are a good approximation of 

the behavior of the device. By using a large ensemble of particles, the time-dependent 

evolution of electron and hole distributions may be simulated. 

To simulate a single free flight stopped by a scattering event, a sequence of random 

numbers is generated. The first number quantifies the free-flight duration. This duration is 

determined by a random number r varying from 0 and 1, and by the sum of all scattering rates 

at a given energy Γ0. To simplify the treatment, we introduce a fictitious scattering 

mechanism whose scattering rate always adjust itself in such a way that the total rate is a 

constant in time. Hence, the free flight duration is given by 

 
0

ln
r

r
t = −

Γ
. (1.22) 

During the free flight the carrier moves in accordance with the Newton’s law. 

 
e

dp
F qE

dt
= = −

�� �
 (1.23) 

At the end of the free flight, the carrier’s position and momentum are updated according to 

the following equations 
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 ( ) ( )0
F

k t k t= +

�
� �

ℏ
 and ( ) ( ) ( )

0

0 ' '
t

r t r v t dt= + ∫
� � �

 (1.24) 

According to the scattering effects, we calculate the magnitude and direction of the wave 

vector after the scattering event. In this step, two more random numbers are then generated to 

specify the polar and azimuthal angles after scattering. 

We assume that the interaction process is instantaneous, which is valid as the interaction 

time is very small compared to the free flights duration. After the interaction, a new free flight 

in real and reciprocal spaces occurs. To determine the electrostatic field which governs the 

particle motion during the free flight, the MC simulator is self-consistently coupled with 

Poisson equation solver. The boundary conditions to the Poisson equation are carefully 

studied by the group of J.E. Velázquez-Perez [Volovichev08].  

Then, the contribution of each carrier to the electronic concentration ne is weighted by the 

time tm passed in each mesh, such that ne = ne + tm/∆t. The solution of the Poisson’s equation is 

performed periodically to update the electric field within the device. The time step δt between 

two solutions is adjusted according to the dielectric relaxation time. The processes are iterated 

until the stationary state is reached, i.e. when the carrier flux becomes constant.  

For moderate and high carrier energies, where MC simulations are typically employed, the 

energy bands are considered within the non-parabolic approximation, this is frequently used 

as the model for conduction bands. 

 For extremely high energies, particularly in the presence of strain, the transport properties 

in realistic Si devices are affected by a strong anisotropy of the valence band [Thompson06], 

and a full-band description is necessary.  

In the next paragraphs, we describe the general principle of our particular simulator 

MONACO. MONACO has been developed by our group for 30 years [Hesto84, Galdin92, 

Brisset94, HDRDollfus99, SaintMartin04, HDRBournel06, Huet08, Querlioz08]. A non-

parabolic band structure is used for electrons, while a full-band description is used for hole 

transport in double gate MOSFETs.  
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2.3.1. Analytic band structure – Conduction band 

The electronic band structures are generally described by an analytic approach based on 

the effective mass approximation, which provides a direct relationship between wave vector 

and energy.  

The minimum of the conduction band in Si is made of six ellipsoidal valleys which are 

along the three principal axes and are centered at 85% of the X-Γ distance. These valleys, 

called ∆ valleys, are characterized by a longitudinal effective mass ml and a transverse 

effective mass mt. Taking into account the non-parabolicity coefficient α, leads to energy 

dispersion is written as [HDRDollfus99] 

 ( ) ( )( )
2 22

0

1
2

l t

l t

k k
E k E k

m m m
α

 
+ ⋅ = + 

 

� � ℏ
 (1.25) 

With 
0

0

0.9163

0.1905

0.5

l

t

m m

m m

α

=


=
 =

. 

The density of states effective mass per valley mD is defined as ( )
1/32

00.32
D t l

m m m m= = . 

2.3.2. Full-band valence band structure 

Ab initio methods, such as the density functional theory, allow calculating the band 

structure from first principles (without any fitting parameters) to the price of large 

computational resources. More efficient semi empirical methods, involving fitting parameters, 

such as empirical pseudo-potentials (EPM), tight-binding (TB) or k.p, are commonly used. 

The k.p method is based on the perturbation theory and some symmetry considerations 

[Rideau06; Luttinger, Cardona66; Richard04].  

For a periodical lattice, the wave functions Φnk can be expressed in a periodical Bloch 

function basis (unk): 

 ( ) ( )expnk nkik r u rΦ = ⋅
� � �

, (1.26) 

where n is the band number, k
�

the reciprocal lattice vector and r
�

 the (real space) position 

vector of the atoms. 
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Using the Bloch theorem and assuming that eigenfunctions (wave functions) and 

eigenvalues (energies) at state k
�

 = 0 are known, the Schrödinger equation writes: 

 

2
2

0
0 02k nk nk nk nk

k
H u H k p u E u

m m

 
 

= + ⋅ + = 
 
 

�
ℏ� �ℏ

 (1.27) 

where H0 is the Hamiltonian at k
�

= 0, m0 the free carrier mass, p
�

the carrier momentum 

and Enk the energy associated with a carrier wave vector k
�

 and a band n. 

The Hamiltonian H is projected on a truncated basis, here the Zinc-Blende Γ-centered 

Bloch functions. The resulting matrix is diagonalized to obtain the eigenenergies and wave 

functions. Adding spin-orbit interaction gives a better description of the band structure but 

doubles the size of H. The matrix elements of H depend on interband coupling parameters and 

eigenenergies at k
�

= 0. The matrix elements are adjusted to fit the band gap and the effective 

masses around specific k-points. The accuracy of the resulting band structure depends on the 

number of bands that are taken into account (i.e. the number of Bloch functions of the 

truncated basis). When “full-zone” k
�

. p
�

 methods are considered, a great number of interband 

coupling parameters is needed. In this work, the k
�

. p
�

 approach with 30 bands and spin-orbit 

coupling is used. Due to the lack of experimental data, they are determined thanks to ab initio 

calculations. To include mechanical strain in the calculation, the other band calculation 

methods (EPM, TB) treat the strained crystal as a new system. However, taking strain into 

account in the k
�

. p
�

 formalism, as first introduced by Bir and Pikus [Bir & Pikus74], is 

straightforward using correctly adjusted deformation potentials [Rideau06].  

The influence of biaxial strain, extracted from [Aubry-Fortuna11] can be seen on Fig. 1.3. 

For unstrained Si, the “heavy hole” band (hereafter called the 1st band) shape is very 

anisotropic and the “light hole” band (hereafter called the 2nd band) shape is more isotropic. 

Under strain, the degeneracy at the Γ point is lifted. For compressive strain, the nature of the 

bands is similar to the unstrained case. For tensile strain, the nature of the bands is inverted at 

low energy and returns to the unstrained case shape at higher energies. For the 2nd band, the 

effective mass in the [100] direction does not vary significantly with strain. For the 1st band, 

it shows a 20% decrease under compressive strain and a 3% decrease under tensile strain. 
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(a) Compressive -2MPa  

 

(b) Unstrained   

 

(c) Tensile +2MPa  

Fig. 1.3. Si bandstructures obtained using 30 band k.p method with and without strain. On the left: constant 

energy surface at 40 meV from band edge for the 1st hole band (heavy holes). On the right: corresponding E(k) 

(eV) in [100] and [110] directions for the 1st (HH) and 2nd (LH) bands. (a) Compressive strain - 2 GPa, (b) 

unstrained, (c) tensile strain + 2 GPa. 

By using the 30 band k
�

. p
�

 approach together with the hypothesis of A.C.H. Rowe 

[Rowe08], we have successfully reproduced the giant piezo-resistivity in Si nanowires in the 

first year of my PhD. The main results obtained in this first year are presented in the 

Appendix A. The giant effect was investigated by He&Yang [He&Yang08] in 2008, while it 
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was very promising at the beginning of my PhD. But, it has been seriously questioned by the 

experimental work of [Milne10]. Hence, I have reoriented my PhD subject to the thermal 

effects in Si structures and the electro-thermal effects in Si devices.  

3. PHONON AND PHONON TRANSPORT MODELS 

In this subsection, we summarize briefly the basic notions related to heat conduction in a 

crystalline material. The main vailable models to study the thermal transport in Si such as 

Fourier model and BTE model (pBTE) will be described. In particular, we will focus on the 

different approaches to solve the pBTE.  

3.1. Lattice vibrations – phonons 

The fundamentals of the lattice dynamic properties of a crystal have been widely described 

[Ziman99], [Kittel71], [Yu&Cardona95].  

A crystal may be treated as a three dimensional array of massive particles interacting with 

each other through interatomic forces. For simplicity, a one dimensional chain with two atoms 

per unit cell is considered (as illustrated in Fig. 1.4). These atoms which are treated like hard 

spheres have masses M1 and M2, connected by springs with the spring constant C. The lattice 

constant is a. 

 

Fig. 1.4. Schema of a 1D chain with two atoms per unit cell. 

The equations of motion for this atomic chain can be written in the form of coupled 

oscillators as: 

 
( )

( )

2

1 12

2

2 12

2

2

n
n n n

n
n n n

d u
M C v v u

dt

d v
M C u u v

dt

−

+


= + −


 = + −


 (1.28) 

M1 5x

10
1

Spring constant C 

a/2 +un-vn-1 a/2 +vn-un 
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Where un, un+1 are the displacement from the equilibrium positions of n
th and (n+1)th 

particles of mass M1; vn  and vn-1 are the deviations from the equilibrium positions of nth and 

(n-1)th
 particles of mass M2.  

By considering that the plane waves of these oscillators propagate as:  

 
inqa i t

s

inqa i t

s

u u e e

v v e e

ω

ω

−

−

 = ⋅ ⋅


= ⋅ ⋅

� �

� �  (1.29), 

The dynamic matrix governing the dispersion behavior of the system is: 

 
( )

( )

2
1

2
2

2 1
0

1 2

iqa

iqa

C M C e u

vC e C M

ω

ω

−

−

 − − +    ⋅ =  − + −   

��

�� .  (1.30) 

This equation in ω yields two roots, i.e. two phonon polarizations (acoustic and optical); 

the corresponding dependence ( )kω
�

 is called the dispersion relation. The ( )kω
�

relationship 

is ( )1 3i
G

−

�
 periodic where ( )1 3i

G
−

�
 are the reciprocal lattice vectors. The dispersion relationships 

for the optical and acoustic branches are given by: 

 ( )
2 2

2

1 2 1 2 1 2

4sin1 1 1 1 qa
C C

M M M M M M
ω+

   
= + + + −   

   

��

 (optical branch),   (1.31) 

 ( )
2 2

2

1 2 1 2 1 2

4sin1 1 1 1 qa
C C

M M M M M M
ω−

   
= + − + −   

   

��

  (acoustic branch).  (1.32) 

These vibrational branches are illustrated in Fig. 1.5. 

 

 
Fig.1.5. Optical and acoustic phonon branches of the dispersion relation for a diatomic linear lattice, 

showing the limiting frequency at 0q =
�

and /q aπ=
�

, taken from [Kittel71]. 
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The group velocity is the velocity of a wave packet and is defined as 

 
g k

v ω= ∇ �
�

 (1.33) 

If there are p atoms in the primitive cell, there will be 3p branches in the phonon dispersion 

relation: 3 acoustic branches and 3p-3 optical branches. Thus silicon with two atoms in a 

primitive cell has six phonon branches: one longitudinal acoustic mode (LA), one longitudinal 

optical mode (LO), two transverse acoustic modes (TA) and two transverse optical modes 

(TO). The Fig.1.6 illustrates this relation in Si. 

The number of vibration modes in the frequency range [ω, ω+dω] for polarization s 

(s = LA, TA) is Ds(ω) dω where Ds is the density of states (DOS). The DOS Ds(ω) of mode s 

can be derived from the dispersion ( )qω
�

. In the case of isotropic three-dimensional crystal 

(V = L
3), we will have: 

 ( )
2

22s s

g

Vq d
D d

v

ω
ω ω

π
= ,  (1.34) 

where gs is the degeneracy of the considered branch (gs = 1 for LA and 2 for TA).  

 
Fig. 1.6. Phonon dispersion curves in Si along high-symmetry axes, taken from [Yu&Cardona95]. The circles 

are data points from [Nilsson72]. The continuous curves are calculated with the adiabatic bond charge model of 

Weber ([Weber90]). 

The isotropic dispersion relation in Si has been proposed by E. Pop [Pop05], and 

coworkers in 2004 by using quadratic polynomials, which offers a good fit in the (100) crystal 

direction. These quadratic dispersions are written as: 

 2
0s s s sv q c qω ω= + ⋅ + ⋅ .  (1.35) 
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The quadratic dispersion coefficients are represented in Table 1.1. The resulting 

dispersions are plotted in Fig. 1.7a and the group velocity as a function of frequency in Fig. 

1.7b. Within this approximation, the Brillouin zone is generally assumed to be a sphere of 

diameter 2π/a. 

 
ω0 

1013 rad/s 
vs 

105 cm/s 

c 
10-3 cm2/s 

LA 0 9.01 -2.00 

TA 0 5.28 -2.26 

LO 9.88 0.00 -1.60 

TO 10.20 -2.57 1.11 

Table 1.1. Quadratic phonon dispersion coefficients cf. Eq 1.46. [Pop05], 

(a)  (b)  

Fig. 1.7. (a) Phonon dispersion in silicon along the (100) direction from quadratic approximation. (b) 

Group velocity of the four phonon modes as a function of frequency from quadratic approximation. 

This approximation is frequently used to treat the phonon transport ([Pop05], [Lacroix05], 

[Lacroix06], [Sinha06], [Rowlette08], [Martin09], [Terris09], [Mittal10],[Vasileska10] 

[Ramayya12]).  

3.2. Phonon distribution and related quantities 

The vibrational energy can be described by the quantum theory of phonons [Kittel71]. 

Phonons are quanta of the lattice vibrational energy. The energy of a vibrational mode can be 

written as: 

 1

2
nε ω
 

= + 
 

h ,  (1.36) 
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where n is the phonon occupation number, h  is the Planck constant and ħω/2 is the zero 

point energy of the mode.  

The equilibrium distribution of phonons at a temperature T is given by the Bose-Einstein 

distribution 

 ( )
1

exp 1
B E

B

f

k T

ω
ω

− =
 

− 
 

h
,  (1.37) 

where kB is the Boltzmann constant. 

� The phonon density corresponding to all phonons of all polarizations is obtained by 

integrating over all phonon modes 

 ( ) ( )s B E s

s

N D f g d
ω

ω ω ω−= ⋅ ⋅ ⋅∑∫  (in m-3) (1.38) 

where s is the polarization mode. The phonon density as a function of energy for each 

phonon mode is plotted in Fig. 1.8.  

  

  
Fig. 1.8. Phonon distribution as a function of energy for four phonon modes: LA, TA, LO and TO. 
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Then, the evolution of the phonon density (number of phonons in an elementary volume) 

with temperature is displayed in Fig. 1.9a. The probability to find a phonon of a given mode is 

shown in Fig. 1.9b. 

(a)  (b)  

Fig. 1.9. (a) Total and mode-dependent phonon distribution as a function of temperature. (b) Probability to find 

a mode as a function of temperature. 

 

�  The total lattice energy corresponding to all phonons of all polarizations is obtained 

by integrating over all phonon modes 

 ( ) ( )s B E s

s

E D f g d
ω

ω ω ω ω−= ⋅ ⋅ ⋅ ⋅∑∫ h ,  (1.39) 

� The volumic phonon heat capacitance ( ),C Tω  is defined by  

 
( )

2

2
1

X

B
X

E X e
C k

T e

∂
= =

∂ −
,  (1.40) 

where /
B

X k Tω= h . 

� The conductivity coefficient K is also defined with respect to the steady-state flow of 
heat across a long bar with temperature gradient dT/dz: 

 
dT

J K
dz

= − ,  (1.41) 

Where J is the flux of thermal energy (energy transmitted across unit area per unit 

time). 

 

In the next subsections, we will focus on some common models used to describe for the 

phonon transport, such as the heat diffusion model and BTE model for phonon (pBTE). We 

will review the main dispersion relationships that are used: gray model, semi-gray model and 
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non-gray model. Then the main resolution methods will be presented: analytical solution, the 

discrete ordinate method and statistical model (Monte Carlo).  

3.3. Heat diffusion equation and Fourier’s law 

The phonons travel through the seconductor and could engage anharmonic interactions 

with another phonon (phonon-phonon interaction), with electrons, with impurities or with 

geometric boundaries. Phonon-phonon scattering helps to restore the thermodynamic 

equilibrium. If the characteristic size is much larger than the mean free path of phonons (the 

mean distance between two scattering events), the number of scattering events is large. A 

local thermodynamic equilibrium is achieved and the heat transport occurs within the 

diffusion regime [MazumderJHT01]. Under these conditions, the heat transport is governed 

by the standard Fourier heat equation (or diffusion equation) 

 ( )/ TT t K T∂ ∂ = ∇ ⋅ ∇ ,  (1.42) 

Where KT is the thermal conductivity that depends on the “local” temperature. 

When the temperature difference is small (i.e. KT = K is assumed uniform), the equation 

can be simplified into: 

 /T t K T∂ ∂ = ∆ .  (1.43) 

If the characteristic size of the device is smaller than the phonon mean free path, which is 

approximately 300 nm in Si at room temperature [Ju99], scattering events are rare, and then a 

thermodynamic equilibrium even local may not exist in the active region of the 

semiconductor device. That is the length scale limitation of this model.  

3.4. Models based on Boltzmann transport equation (BTE)  

The general form of the BTE is described in subsection 1.2.1 (Eq. 1.8). For phonons which 

are quasi-particles and have no charge, i.e. there is no force term in the BTE becomes 

 
g r

coll

f f
v f

t t

∂ ∂
+ ⋅∇ =

∂ ∂
�

�
, (1.44) 
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where f = f( r
�

, k
�

,t) is the distribution function of phonons. The space and momentum 

dependences make the equation very expensive to solve in terms of computation time. A 

number of approximations have been developed to make it tractable.  

As the scattering term is very complex (like in the BTE for electrons), it is common to 

introduce the relaxation time approximation (RTA) to solve the pBTE: 

 
( ) ( ) ( ), , , , ,

eq

g

f r k t f T f r k t
v f

t

ω

τ

∂ −
+ ⋅∇ =

∂

� �� �
�

. (1.45) 

Here, feq is the equilibrium Bose-Einstein distribution function and it depends on both 

frequency and temperature. The time τ  is the effective relaxation time associated with all 

scattering processes.  

3.4.1. Approximation of the dispersion relationship 

3.4.1a. Non gray model 

The complete details of this model have been described in [Narumanchi04, 

Narumanchi05]. The acoustic branches are divided into (Nbands-1) frequency bands of spread 

∆ωi centered around ωi. The number and spread of the bands are chosen to satisfactorily 

compute the dispersion curve.  

In this model, the pBTE is written for the energy density associated with each band in each 

angular direction eω (J/m3). 
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∫

∫ ∫
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ℏ

�
,   (1.46) 

Where "'
eω  is the volumetric energy density per unit frequency per unit solid angle 

(Js/(m3.sr.rad)), "
eω  is the volumetric energy density per unit solid angle (Js/m3 sr) for a given 

frequency band, r
�

 is the position vector, and ŝ  is the unit direction vector, 0
eω  is the angular 

average of the volumetric energy density eω . The frequency integration is done over a 

discrete frequency band ∆ωi.  
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The optical mode for Si has a negligible group velocity ( )0
g

v ≈
�

 and therefore the pBTE 

for this mode can be written as 
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0
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j T
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C dT e q
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−
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where 
o
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e C dT= ∫ , ( )
00
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oj oj

oj

d
ω

γ τ ω
ω τ

= = ∫  is the band-averaged inverse relaxation 

time for the interaction between the optical phonons and the jth band of an acoustic branch, 

and Co is the optical mode specific heat. The interaction temperature Toj is defined below in 

Eq. 1.49. The term qvol is the volumetric heat generation. In microelectronic applications, it 

would represent the transfer of energy from the energetic electrons to the optical phonons.  

The pBTE for the ith
 frequency band of the acoustic branches (valid for both LA and TA) 

in the direction ŝ  is written as 

 ( ) ( )
"

" 0 " "

1
1

1
ˆ

4

ij
bands

ref

TN

i
i i i i ii i i ij

j T
j

e
v se e e C dT e

t
γ γ

π=
≠

  ∂  
 + ∇ = − + − 
 ∂    

∑ ∫  (1.48) 
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Where vi is the band-average group velocity, Cωi is the specific heat per unit frequency in 

band i, Ci is the band-integrated specific heat, "
i

e  is the band-integrated energy density per 

unit solid angle, 
ii

γ  is the band-averaged inverse relaxation time for interaction time for 

interaction of band i with itself, and 
ij

γ  is the band-averaged inverse relaxation time for 

interaction time for interaction of band i and band j. Tij is an interaction temperature between 

the two bands i and j. In order to satisfy energy conservation, the scattering terms on the right 

hand side of the pBTE (Eq. 1.47) must cancel out the sum over all bands. This requirement 

leads to 
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i i
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d d
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ω ω
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∆ ∆

=∫ ∫  (1.49) 

Where i is any frequency band in a given phonon branch and j is any other band, in the 

same or different branch, with which energy is being exchanged. 

The equilibrium energy density is defined as 

 0 "
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1 1
4 4 4
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ref
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e
e e d C dT

ππ π π
= Ω = =∫ ∫  (1.50) 

Where Ti is the temperature associated with the ith band of the branch considered.  

To satisfy energy conservation [Narumanchi04], the following condition is also required: 

 
ij ji

ref ref ref
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∫ ∫ ∫  (1.51) 

This is satisfied for all i and j band combinations (with i ≠ j) including the optical phonon 

band. Eq. 1.51 serves as the definition of the interaction temperature Tij. An overall lattice 

temperature TL may be defined as follows [Narumanchi04] 

 
1

1

o iL bands

ref ref ref
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e CdT C dT C dT
−

=
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 
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∑∫ ∫ ∫  (1.52) 

Where C is the total specific heat of the solid, and etotal energy density.  

This model has been checked [Narumanchi04]. It recovers the bulk thermal conductivity of 

Si at different temperatures [Narumanchi05]. 

3.4.1b. Gray model 

In this approach, all phonons are assumed to have the same group velocity and relax to 

equilibrium with the same relaxation time τ. The pBTE becomes 

 ( )
" 0 "

"ˆ
vol

e e e
vze q

t τ

∂ −
+ ∇ = +

∂
 (1.53) 

 ( )0 "

4

1 1

4 4 L refe e d C T T
ππ π

= Ω = −∫  (1.54) 

Where e” is the energy density per unit solid angle, e0 is the equilibrium energy density, C 

is the total specific heat, and TL is the lattice temperature. The value of v for Si is chosen to be 
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6400 m/s [Klemens69], while C is 1.66×106 J/m3K at 300 K. The relaxation time of 

τ = 6.28 ps is obtained from the relation K = 1/3Cv
2τ, where K = 142.3 W/mK for Si.  

3.4.1c. Semi-Gray model 

The next modeling approach is a semi-gray model proposed in [Sverdrup00, Sverdrup01] 

and it is compared with other approaches in the work of S. V. J. Narumanchi et al. 

[Narumanchi05]. In this approach, the phonons are divided into propagating and reservoir 

modes. Propagating mode phonons are responsible for transporting energy while the reservoir 

mode phonons are purely capacitive which means that they are only involved in energy 

storage. Longitudinal acoustic phonons are considered to be propagating modes, while the 

transverse acoustic and optical phonons are lumped together in the reservoir mode. The pBTE 

is written as 
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Where TL is the lattice temperature, TP is the propagating mode phonon temperature, TR is 

the reservoir mode phonon temperature, CP and CR are the propagating and reservoir mode 

specific heats, respectively, τ is the relaxation time, vP is the propagating mode group 

velocity, "
P

e  is the propagating mode energy density per unit solid angle (J/m3 sr). TL is the 

overall lattice temperature and is to be interpreted as an average value of the propagating and 

reservoir mode temperatures as expressed in Eq. 1. 58. The value of CP is 0.32×106 J/m3K, τ 

is 74.2 ps, vP is 4240 m/s [S. Sverdrup00, Sverdrup01]. 

The semi-gray model captures some of the complexities of the phonon dispersion curves at 

a relatively low cost. Since the reservoir mode equation does not involve direction, it is 

relatively inexpensive to compute, even if the cost of the propagating mode computation is 

similar to that of the gray model. However, the value of τ Ycomputed using this model is 
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typically far larger than the value of typical optical-to-acoustic relaxation times, leading to 

temperature overestimation in FET simulations [Narumanchi03].  

3.4.2. The different approaches to solve the pBTE 

In the previous subsection, we have presented different models based on the dispersion 

relationship approximations. In this subsection, we present three models to solve BTE: 

analytical model, the discrete ordinate method (DOM) and the Monte Carlo (MC) model. 

3.4.2a. Analytic model – Kinetic theory of gases 

Pioneer works by Klemens [Klemens51], Callaway [Callaway59] and Holland [Holland63] 

have used analytical solution as they assume a single relaxation time approximation. Within 

this formalism, boundary and impurity scattering as well as three-phonon processes (Normal 

and Umklapp) contributions to phonon scattering can be described by a single relaxation time. 

The resulting models have successfully predicted the bulk thermal conductivity for various 

semiconductors (Si, Ge, with several dopant concentrations) at low and high temperatures. 

These models are derived from the pBTE under the relaxation time approximation (RTA). 

The steady-state pBTE for the mode s (Eq. 2.11) in direction x can be reduced to 

 
( ) ( ) ( )

( )
, scatts s Ts

x

s

n nn
v

x

ω ωω

τ ω

−∂
=

∂
,  (1.59) 

or to ( ) ( ) ( ) ( )
( )

, ,. .
scatt

s

s s T s s x

n
n n v

x

ω
ω ω τ ω ω

∂
= +

∂
. (1.60) 

By writing
( ) ( )s s

n n T

x T x

ω ω∂ ∂ ∂
= ⋅

∂ ∂ ∂
, we have 

 ( ) ( ) ( ) ( )
( )

, ,. .
scatt

s

s s T s s x

n T
n n v

T x

ω
ω ω τ ω ω

∂ ∂
= + ⋅

∂ ∂
 (1.61). 

The heat flux is calculated as:  

 ( ) ( ), . .s x x sj v n d
ω

ω ω ω ω= ∫ h .  (1.62) 

By substituting Eq. 1.61 in Eq. 1.62, the heat flux becomes    
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 ( )
( )

, , ,
ssymmetric

s x s x s x

n
j j v d

Tω

ω
ω ω ω

∂
= + ⋅ ⋅ ⋅

∂∫ h ,  (1.63) 

where ,
symmetric

s x
j is the symmetric term that includes the equilibrium and symmetric phonon 

number , scatts Tn .  

We rewrite here the expression of the phonon number (Eq. 1.38) 

 ( ) ( )
( ) ( )

3

3

1 1

2exp exp
B B

dq
n d DOS d

q

k T k T

ω ω ω ω
ωω π

= ⋅ = ⋅
   
   
   

∫∫
�

�
ℏℏ

.  

In the spherical coordinates, the term 3dq  is 2 sinq dq d dθ θ ϕ , with [ ]0,θ π= , [ ]0,2ϕ π= . 

By subtitling this term and integrating over θ andϕ , and using the Fourier’s law 

/
x

j K R x= ⋅∂ ∂ , we obtain the common thermal conductivity formula as 
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ℏ

. (1.64) 

 

3.4.2b. The Discrete Ordinate method  

In the phonon transport problem, this numerical tool is frequently used to solve the BTE in 

a form similar to the radiative heat transfer equation (RTE) which was originally proposed by 

Majumdar [Majumdar93]. In this method, a set of discrete directions (or ordinates) is chosen 

and directional fluxes are evaluated for these directions.  

A specific spectral intensity ( ), ,pI r uω

� �
for phonons which depends on the angular frequency 

ω, on the polarization branch p, on the location r
�

 and on the direction u
�

 is introduced. Under 

the RTA and in steady-state, the pBTE reads [Terris09] 

 
( )

( ) ( ), 0
, , , ,

,
,p

p p p p

I r u
u I r u I r

r

ω

ω ω ω ωκ κ
∂

+ =
∂

� �
� � � �

�  (1.65) 

, pωκ  is an equivalent phonon absorption coefficient which can be expressed in terms of  

relaxation times ( ), , ,1/
p g p pω ω ωκ υ τ= ⋅ ; and 0

, pIω  is an equilibrium phonon specific intensity 

which is written as 
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where ,g p
v ω  is the group velocity and , p

vϕω is the phase velocity.  

In complete generality, the reflexion conditions at a point r
�

 on the wall, in the direction u
�

 

can be written 

 ( ) ( ) ( ), , ,

' 0

ˆ, , ' ' ' ,
d

s

p p p

u n

I r u I r u u n d I r uω ω ω

ρ
ρ

π
⋅ <

= ⋅ Ω +∫
� �

� � � � � � �
, (1.67) 

where û  is the incident specular direction relatively to u
�

 and 'u
�

 is the other incident 

direction. d ′Ω  is an infinitesimal part of the solid angle associated to the direction 'u
�

. ρd is 

the diffusive reflectivity and ρs corresponds to specular reflectivity.  

In the in-plane configuration, with three direction cosines (µ, η, ξ), the discretized equation 

in rectangular mesh in the (x, z) plane reads 

 , , 0
, , , ,

p p

p p p p

I I
I I

x z

ω ω

ω ω ω ωµ ξ κ κ
∂ ∂

+ + =
∂ ∂

 (1.68) 

To obtain the intensity field, one can use the following iterative integration procedure. The 

equation is solved by starting from one of the surfaces on which the temperature is imposed. 

This solution is worked out given the initial temperature field in the medium. It is then solved 

in the same way starting from the second surface. The new temperature field is calculated at 

the end of the iteration by expressing the conservation of the heat flux in the steady-regime 

( 0q∇ = ). The integral phonon intensity equation over the frequencies and solid angles is then 

[Volz09] 

 0I d d I dω ω ω ωκ ω κΩ = Ω∫ ∫  (1.69) 

At each point, the temperature satisfies the previous relationship. The iterative process is 

continued until both the intensity and temperature fields converge, in accordance with a 

previously specified criterion [Volz09].  

Majumdar [Majumdar93] used this method to study the steady-state heat transport in 

diamond thin films. By including the quadratic dispersion for Si (Eq. 1.35) Terris et al. 

[Terris09-1, Terris09-2] obtained the thermal conductivity of Si bulk and of Si nanowires in 

good agreement with the experimental data. 
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3.4.2c. Monte Carlo method 

As described in subsection 2.3, as in most statistical techniques, the accuracy of the results 

is related number of particles in the sample. This method (MC) is widely used to solve the 

pBTE without any approximation [Mazumder01, Lacroix05, Lacroix06, Wong11, Terris01-1, 

Hamzeh11]. The results of these studies that use these techniques are very close to the 

experimental data.  

 Lacroix and co-workers [Lacroix05] showed that this model can reproduce all regimes of 

phonon transport (Fig. 1.10a). By taking into account the boundary scattering, the 

conductivities in nanowires obtained by this method are very close to the experimental ones 

(Fig. 1.10b) [Lacroix06]. 

(a)  (b)  

Fig. 1.10. (a) Steady-state temperature for Si, influence of the slab thickness; comparison to the analytical 

solution in the diffusive and ballistic limits (taken from [Lacroix05]). (b) Nanowire thermal conductivity; 

comparison between MC simulations - solid lines, experimental data (taken from [Lacroix06]). 

Using this method, H. Hamzeh and F. Aniel [Hamzeh11] calculated the scattering rates for 

all individual three-phonon processes with only one adjustable parameter. They also studied 

the zone-centre LO lifetimes and the decay dynamics, the distributions evolution with time in 

GaAs and InP. 

4. COUPLED ELECTRON-PHONON TRANSPORT IN SI-FET 
AND SI-MOSFET 

As mentioned at the beginning of this chapter, electro-thermal simulation of sub-micron 

electron devices is of great interest for both academia and industry, due to the fact that self-
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heating may cause device performance degradation in submicron devices [Ni12]. When the 

transistor dimensions become sub-micron, the thermal model should be carefully chosen. 

As the MC method can capture the complexities of electron transport in real device and 

gives electrical characteristics extremely close to experimental results, we review the coupled 

electron-phonon transport simulation of Si transistors by using the MC method for electrons 

and various thermal models.  

Sadi et al. used a 2D electron Monte Carlo (eMC) simulation coupled with a 2D solution 

of the heat diffusion equation to study the electro-thermal phenomena in SOIFETs and in 

Silicon-Germanium-on-Insulator metal-oxide FETs [Sadi10]. They highlighted the electron 

velocity and the drain current degradations in a 0.1µm-long-channel transistor. Then, the 

coupled simulations are extended to study the self-heating effect in InGaAs channel high-

electron mobility transistor (HEMT) at nanoscale by the group of T. Sadi and J-L. Thobel 

[Sadi12]. 

Ravela, Vasileska and Goodnick [Raleva08, Vasileska09, Vasileska10, Raleva12] coupled 

eMC simulation with transport equations for optical and acoustic energy transfer derived from 

the BTE which has been developed by [Lai96]. They defined three temperatures in the device: 

electron temperature Te, optical temperature TO and acoustic temperature TA that was assumed 

to be the lattice temperature TL . A constant energy transfer rate for the optical-acoustic 

phonon of 10 ps was used. The temperature profile was changed when different boundary 

conditions were applied (Neumann/Dirichlet). They showed that the drain current is degraded 

by the heating. Furthermore, it was obtained that this degradation depends on the thermal 

conductivity of thin Si film that was introduced analytically in the model [Vasileska10]. 

Although they solved the equations for optical and acoustic energy transfer derived from 

pBTE, the transfer model used was too simplistic model which might not be able to capture 

detailed physics of phonon transport in sub-micron devices [Ni12]. They studied the self-

heating with channel lengths devices in the range from 25 nm to 180 nm. Hatakeyama and 

Fushinobu [Hatakeyma08] employed this model to study the thermal cross-talk between the 

nMOS and pMOS FETs that were set side-by-side to design a CMOS device. The channel 

length of the two MOSFETs was 90 nm while their entire length is 680 nm.  

More complex, Kamakura et al. [Kamakura10] coupled the MC method to solve the 

transient BTE for both electrons and phonons. They simulated a simple 1D n-i-n Si device. 
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The contribution of optical phonons was neglected, while the heating modes can only be 

dissipated through the conversion into acoustic modes with a relaxation time of 10 ps. The 

acoustic phonons were approximated by the Debye approximation with a constant velocity of 

vac = 5.9 km/s. The solution of transient pBTE was validated by calcultating the thermal 

conductivity obtained for some temperatures. The temperatures of both acoustic and optical 

modes were estimated. 

To build a better thermal transport model in submicron devices, it is necessary to take into 

account the phonon dispersion.  Pop et al. [Pop04] proposed an isotropic and quadratic 

relationship for Si in the [100] direction. The frequency-dependent net phonon generation was 

exploited [Pop05, Pop10] by using the eMC simulation. That is an important point to study 

the heat transport at the submicron scale. 

Rowlette and Goodson [Rowlette08] coupled the eMC model of Pop et al. [Pop04] with 

the split-flux model for phonon transport to perform a self-consistent simulation of non-

equilibrium transport in Si-FETs. Their coupled simulation begun with an isothermal eMC 

simulation at 300 K, and then the net phonon generation rates as a function of position and 

phonon frequency were collected and used as an input for the split-flux phonon transport 

model. The solution gives an updated distribution of phonons at each spatial position. The 

simulator iterates until satisfactory convergence is reached. The model was used to study a 1D 

20 nm-long-n-region in a n
+
-n-n

+ Si diode. They emphasized the role of g-LO and the phonon 

bottleneck effect.  

More recently, Ni et al. [Ni12] estimated the hotspot temperature in a MOSFET device by 

using an anisotropic relaxation time in a pBTE solver. The phonon generation spectrum 

obtained via eMC simulation was incorporated into the anisotropic relaxation time pBTE 

model of [Ni09]. The phonon dispersion includes six branches (TA1, TA2, LA, TO1, TO2 

and LO). A fully anisotropic Brillouin zone is also taken into account. However, the 

computational cost of this model is expensive [Ni09].  
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5. PURPOSE OF THIS WORK 

This chapter highlighted the importance of studying the self-heating of nano-scale devices. 

Various models for electron and phonon transports were presented. The BTE appears of great 

interests for studying non-equilibrium thermal effects at the nanoscale.  

In Chapter 2, the numerical pBTE solver developed in this thesis is described in detail and 

validated against experimental results. Next in Chapter 3, the coupling with this new pBTE 

solver and our eMC (MONACO) simulator will be presented and discussed. Fully self-

consistent Electro-thermal simulations in nano-scale DG-MOSFET were performed and 

deeply investigated in terms of microscopic (non-equilibrium transport) and macroscopic 

effects (current degradation). 
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1. INTRODUCTION 

In this chapter, we will summarize the basic notions related to the phonon heat conduction 

in a crystalline material. The phonon dispersion and phonon scattering mechanisms will be 

described. We will focus on the particular case of Silicon (Si). By using an isotropic and 

quadratic dispersion approximation, a new set of scattering parameters will be introduced and 

implemented to reproduce the thermal conductivity of bulk Si.  

In equilibrium conditions (300K), the quasi-equilibrium heat conduction is principally 

carried by acoustic phonons in a sample where a small temperature gradient is forced. In out 

of equilibrium, a situation that occurs in conventional operation of transistors, the decay of 

hot optical phonons into acoustic phonons plays an important role too. A model of this decay 

mechanism is proposed and used to simulate realistic devices. As mentioned in the first 

chapter, at the micro- and nano-scales, the phonon transport can be well described by the 

BTE. An analytic model is presented to adjust the scattering rates and to evaluate the 

dependence of the thermal conductivity on the size and the geometry of the sample. This 

model is also used to interpret recent measurements in silicon nanowires. 

In the third part of this chapter, we present a numerical algorithm developed in the present 

work and specially dedicated to directly solve the steady-state BTE under the relaxation time 

approximation considering the quadratic phonon dispersion. The main advantage of this 

method is its ability to point out the local thermodynamics of phonons along the sample. After 

having validated the model for Si bulk, different phonon transport regimes are investigated, 

from the diffusive regime to the ballistic regime.   

2. SCATTERING MECHANISMS 

Phonons in a crystal are scattered according to a variety of mechanisms, including three-

phonon interactions, scattering on lattice imperfections as vacancies and impurities, and 

boundary scattering [Murthy05]. Scattering mechanisms are either elastic when the energy (or 

frequency) of the phonon remains unchanged, or inelastic when the energy (or frequency) are 

changed during the scattering event. Scattering due to impurities are considered to be elastic 

[Klemens58]. Boundary scattering is an important type of scattering encountered in micro- 

and nano-structures that induces phonon reflection at sample boundaries with a fraction of 
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specular/diffusive reflections. The two main types of inelastic scattering processes for 

phonons are normal (N) and Umklapp (U) phonon-phonon scattering processes that are 

described below. The decay of optical phonons into acoustic modes is also included. 

2.1. Three-phonon scattering for acoustic phonon 

The three-phonon scattering processes are related to the anharmonic nature of the 

interatomic forces and the discrete nature of the lattice structure. Phonon-phonon scattering 

involving four or more phonons is important only at temperature much higher than the Debye 

temperature (645K for silicon) [Murthy05] and are not considered here since 645K is higher 

than the operating temperature of most electronic devices. 

Both Normal (N) and Umklapp (U) processes are governed by energy and momentum 

conservation rules  

 ' "ω ω ω+ ↔ (Normal and Umklapp) (2.1a) 

 ' "q q q+ ↔
� � �

(Normal) (2.1b) 

 ' "q q q G+ ↔ +
�� � �

(Umklapp) (2.1c) 

Where ω, ω’ and ω” are the angular frequencies of the interacting phonons, q
�

, 'q
�

 and 

"q
�

are their wave vectors and G
�

 is a reciprocal lattice vector.  

In normal processes the total wave vector is conserved (Eq. 2.1b). In Umklapp processes 

(or U processes) that is not the case. A typical Umklapp process is shown in Fig. 2.1 for a 

linear lattice. After a U process two phonons, both having a positive qx, may generate a 

phonon with a negative qx [Kittel71].   

  

Fig.2.1. Illustrations of Normal and Umklapp phonon–phonon scattering mechanism. 
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N processes do not impact the heat transfer because they conserve the momentum. 

However, they can change the frequency distribution of phonons, and hence indirectly affect 

other scattering processes that depend on frequency. U scattering do not conserve the crystal 

momentum directly, but must satisfy Eq. 2.1c. U processes create a resistance to heat transfer 

and must be modeled carefully.  

Some three-phonon interactions are listed in the Table 2.1 [Mittal10]. 

LA LO TA TO 

LA +TA↔LA 

LA+TA↔LO 

LA+TA↔TO 

LA+LA↔LO 

LA+TA↔TO 

LO↔LA+TA 

LO↔LA+LA 

LO↔TA+LA 

TA+TA↔LA 

TA+LA↔LA 

TA+LA↔LO 

TA+LA↔TO 

TO↔LA+TA 

TO↔LA+LA 

TO↔TA+LA 

Table 2.1. Main three-phonon scattering mechanism [Mittal10]. 

Using a perturbative approach in combination with calibration to experimental data, 

Holland [Holland63] developed frequency and temperature dependent expressions for the 

relaxation time of scattering for LA and TA phonons as 

 ( )2 3 LA, +NU LB T Normal Umklappτ ω=  (2.2a) 

 ( )1 4 TA,N TNB T Normalτ ω− =      (2.2b) 

 

( )

( )

1/2

1

2
1/2

0 TA, ω<ω

/ sinh TA, ω>ω ,
U

TU

B

Normal for

B Umklapp for
k T

τ ω
ω

−




=  
 
 

ℏ   (2.2c) 

where 1/2ω  is the frequency corresponding to q/qmax = 0.5, and BL, BTN and BTU are 

empirical parameters [Holland63], that need to be calibrated against experimental data. 

Holland made two important assumptions for calculating these time-scales: (1) only high 

frequency TA phonons undergo U processes and (2) LA phonons do not undergo U processes 

at all. Despite these strong assumptions, the expressions provided by Holland continue to be 

popular because of their simplicity and the ease of their implementation. It has been checked 

by A. Mittal [Mittal10] from detailed MC simulation that these parameters give reasonable 

results. 
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By using this model with a linear dispersion, Holland [Holland63] obtained the thermal 

conductivity of Si bulk in good agreement with the experimental one. The linear dispersion is 

expressed as [Holland63] 

 ( ) , if
2s g s

G
q v q qω = ⋅ ≤  (2.3a)  

 ( ) '
, if

2 2 2S gs g s

G G G
q v v q q Gω

 
= ⋅ + ⋅ − < ≤ 

 
. (2.3b) 

For / 2q G= , the frequency values are called ωcut,S (with s = LA,TA). The parameters of 

Holland’s dispersion are reported in Table 2.2. 

Model vT vL vS ωcutT ωcutL 

Holland (a) 

(b) 

5860 

2000 

8480 

4240 

6400 

6400 

2.375×1013 

2.771×1013 

4.618×1013 

7.521×1013 

Table 2.2. Parameters of the dispersion model: (a) for
cutS

ω ω≤ , (b) for
cutS

ω ω> . Velocity is in [ms-1], 

frequency in [rads-1]. [Holland63] 

2.2. Relaxation time of optical phonon 

The lifetime, as well as the relaxation time, of LO and TO (LTO) modes have been 

calculated and measured from the Raman spectra [Menéndez84] [Lang99]. The calculated and 

Raman linewidth which have been compared in [Menéndez84], [Lang99], are reported in 

Fig. 2.2. 

The frequency at the half maximum is  

 ( )
( )1

1

2

FWHM cm
cm

−

−Γ = .  (2.4) 

The mean lifetime of optical phonons can be estimated as 

 
( ) ( )1

1 1
/ 2rad s c cm

τ
π −

= =
Γ × Γ

. (2.5) 
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Fig. 2.2. Raman linewidth (full width at half maximum – FWHM)  in Si, taken from [Lang99]. The diamond 

symbols are experimental data after [Menéndez84], the continuous curve is the calculated result.  

At 300 K, the lifetime of optical phonon is estimated to be 3.5 ps, while at 400 K, its value 

drops to about 2.7 ps. By using molecular dynamic and lattice dynamic simulations, and 

taking into account the normal mode decay, A.S. Henry and G. Chen have found that the 

relaxation time of these phonon modes varies very weakly, in the order of some picoseconds. 

In addition, the group velocity of LTO modes is noticeably smaller than the one of acoustic 

phonons. Therefore, we use a relaxation time of 3.5 ps for the LTO modes in this work. 

2.3. Phonon mode coupling - Optical phonon decay into acoustic 

phonon 

The anharmonic decay of phonons into vibrations of lower frequency is a crucial 

mechanism for energy relaxation in semiconductors as it controls the formation and time 

evolution of non-equilibrium (hot) phonon populations, which are emitted by high-density hot 

carriers when they decay towards their ground state [Debernardi95]. Based on the simple 

lattice model consisting of a linear chain of atoms, lifetimes of optical phonons were first 

considered by Klemens[Klemens66]. Klemens assumed that the optical phonons decay into a 

pair of acoustic phonons on the same branch but with opposite momenta. In contrast to 

Klemens, based on DFT calculation, Debernardi et al [Debernardi95] showed that in silicon 

the zone-center optical phonons mainly decay into pairs of acoustic phonons involving one 

phonon of the longitudinal branch and another one of the transverse branch.  
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If only three-phonon processes are considered, energy and momentum must be conserved. 

That means 0 1 2q q q G= + +
�� � �

 and 0 1 2ω ω ω= + . The inverse lifetime Γ of the LO and TO modes 

(LTO) writes as [Klemens66] [Debernardi95] 

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

1 2

1 2 1 2 1 2 1 2

1 2

2
3

1 2

2 3
, , , 0 1 2 1 2

1 2

1

16

,

s s

q q s s LTO s s s s LTO

LTO s s

n q n qE

N M u q u q u q q q q

q q q

π

ω ω ω

δ ω ω ω

  + +∂
Γ = ×  ∂ ∂ ∂ 

× − −

∑
� �

� �
ℏ

� � � � � �

� � �

 (2.6) 

where N is the number of unit cells in the crystal, M is the atomic mass, ωs are the phonon 

frequencies, n is the thermal occupation numbers, s indicates the phonon branch (s = LA and 

TA in bulk semiconductors), E is the crystal energy, and us( q
�

) is the amplitude of the s 

phonon of wave vector q
�

. 

Rowlette et al. [Rowlette08] made the calculation by using the full phonon dispersion and 

assuming that the third-order matrix elements are equal to a constant deformation potential U0 

which is fitted to the Raman line width data of [Menendez84]. The expression for the 

transition rate in this case is given by 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )

1 2

1 2 1 2 1 2

1 2

2

0 1 2 1 2
0

, , , 0 1 2 1 2

1 2
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q q s s s s LTO

LTO s s

q q q n q n q
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s s s q q q

q q q

ω ω ω

δ ω ω ω

+ +  
Γ∝ ×  

  

× − −

∑
� �

� � � � �

� � �

� � �

 (2.7) 

To be consistent with the isotropic phonon dispersion considered in this work (Eq.1.35, 

chapter 1) which is more complex than that used by Klemens but simpler than those of 

Rowlette, Eq. 2.7 is computed with only two branches LA and TA. Only third-order processes 

in which the initial optical phonons decay into two lower energy modes are considered. 

Thus, in this work, the density g2(ω,ωLTO-ω) of final states for pairs of phonons which 

conserve both energy ( ( ) ( ) ( )
0 1 20 1 2s s s

q q qω ω ω= +
� � �

) and crystal momenta ( 0 1 2q q q G= + +
�� � �

) for 

an optical phonon with initial wave vector 0q
�

 and branch index s0 were calculated considering 

a parabolic dispersion. We restrict our calculations to normal process, i.e. 0G =
�

. The results 

for LO phonons with the initial wave vector [ ]0 0,0,q G α= ×
�

, where α = 0, 0.3, 0.5, 0.7 and 

1.0 are shown in Fig. 2.3. The TA+LA decay channel is illustrated by the green curve, the 

LA+LA one by the red curve.  
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Fig. 2.3. g2(E,E0-E) for an LO phonon of initial energy and wave vector at the point G×[0,0,α], where α = 0, 0.3, 

0.5, 0.7 and 1, decaying into two lower energy phonons. 
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g2(ω,ωLTO-ω) spectra are always symmetric with respect to ω=ωLTO/2 (in order to achieve 

energy conservation). The ω0 value in each case is indicated by a straight line. As expected, 

the Klemens channel, presented by a central peak is relatively weak. These results are 

consistent with the DFT calculation of Debernardi et al. [Debernardi95] and the work of 

Rowlette et al. [Rowlette08].  

Then, the total phonon density of the final state considering the anharmonic LTO-phonons 

decay is calculated by computing the decay of 3000 optical phonons uniformly distributed 

along the optical branches. The frequency final state spectrum, i.e. the probability per unit 

time that LTO phonon decays into one mode of given frequency ω and one of frequency 

ωLTO-ω, is obtained by restricting the sum over branch s and q
�

 in Eq. 2.7 to those values for 

which ( )s
qω ω=
�

, as defined in [Debernardi95]. The resulting normalized distribution of LA 

and TA modes generated by optical phonon decay are plotted in Fig. 2.4a. We see two peaks 

in Fig. 2.4a: one around 20 meV which belongs to the TA branch and one around 45 meV 

which belongs to the LA branch. This final state spectrum is in agreement with the DFT 

calculation in [Debernardi95] and [Aksamija10]. It should be noted that we do not considered 

phonons in the TA mode in the energy range from 20 meV to 30 meV. Thus, the probability 

of LA mode at 20 meV differs. However, this optical decay calculation considering a 

parabolic dispersion and a spherical Brillouin zone can be used to conserve energy in the 

phonon system. 

(a) (b)

Fig. 2.4. Energy distribution of the phonons generated by the anharmonic decay of g-type longitudinal optical by 

using a) our calculation: LA-blue curve; TA green curves; LA+TA red curve b) results from [Aksamija10]: LA 

blue curve; TA red curve; dot full phonon dispersion. 
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2.4. Impurity scattering 

The impact of impurity scattering on the thermal conductivity has been carefully studied 

by Fortier and Suzuki for low Phosphorus doping [Fortier76] and by Asheghi et al. 

[Asheghi02] for high doping. They measured the thermal conductivity of 3 µm-thick films in 

the temperature range of 15-300 K. By varying the doping concentration, the thermal 

conductivity of this film is reduced. This effect is more important at low temperature, in 

particular below 100 K.  

The mass difference Mδ between an impurity and a crystal atom of mass M and the 

interatomic difference of distance Rδ between the defect-crystal atom distance and the atom-

atom distance are involved in the impurity-phonon scattering mechanism. The imperfections 

and unintentional impurities are modeled in doped samples by a term Axω
4 [Asheghi02]. The 

corresponding scattering rate is [Klemens55, Asheghi02] 

 ( )1 4
impurity M R x

A A Aδ δτ ω− = + + ⋅ ,  (2.8) 

where ω is the angular frequency in rad s
-1. 

The average sound velocity is defined as
1 1 1 2

3
s L T

v v v

 
= ⋅ + 

 
, where 

L
v  and 

T
v  are the 

velocities of longitudinal and transverse modes, respectively.  

By evaluating the reduction in thermal conductivity near the maximum of conductivity, 

Asheghi et al. [Asheghi02] proposed the three parameters of doping scattering (see Eq. 2.8) 

for Boron (B) and Phosphorus (P) are reported in Table 2.3. 

Doping 
concentration  

(cm-3) 

Ax 

(x1045 
s3) 

AδR 

(x1045 s3) 
AδM 

(x1045 s3) 

1.0x1017 (P) 0 0.0015 0.00014 

1.0x1018 (P) 1.17 0.015 0.0014 

3.0x1019 (P) 2.35 0.45 0.042 

1.0x1017 (B) 0 0.025 0.005 

1.0x1018 (B) 1.76 0.25 0.05 

1.0x1019 (B) 2.54 25.4 0.50 

1.0x1018 (P) bulk 11.17 0.015 0.0014 

Table 2.3. Values of three parameters Ax, AδR and AδM obtained by Asheghiet al. [Asheghi02]  
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Here, we suppose that for each doping type (P or B) the Ax varies linearly with doping 

density, while AδR and AδM are proportional to the doping density as indicated in Table 2.4. 

Table 2.4. Doping density-dependence of impurity scattering parameters Ax, AδR and AδM assumed in this work. 

 

2.5. Boundary and roughness scattering 

 

2.5.1 Boundary scattering in Si bulk 

Boundary scattering is important at low temperature due to the “freezing out” of three-

phonon processes. The corresponding increase in the phonon mean free path implies that 

interaction with the boundaries becomes the dominant scattering mechanism at temperatures 

below 50 K for silicon [Ni09]. Holland modelled the relaxation time of this mechanism in the 

form [Holland63] 

 
1 g

b

v

LFτ
= , 1 2

2
L l l

π
= ,  (2.9) 

where l1l2 is the sample cross section, F is a factor representing the correction due to both 

the smoothness of the surface and the finite length/thickness ratio of the sample.  

2.5.2 Boundary and roughness scattering in nano-structure 

It’s well known that the roughness of interfaces is an important element which influences 

strongly the thermal conductivity in two- and one-dimensional structures. Generally, the 

surface of bulk materials is very rough and the boundary scattering is considered to be 

Doping 
type 
(cm-3) 

Ax 

(x1045 s3) 
AδR 

(x1045 s3) 
AδM 

(x1045 s3) 

P 

18 310Pn cm
−< : 0P

xA =  

18 310Pn cm
−≥ : 

181.17 0.118
10

P P
x

n
A = + ×  17

0.0015
10

P P
R

n
Aδ = ×  

17
0.00014

10
P P
M

n
Aδ = ×  

B 

18 310Bn cm
−< : 0B

xA =  
18 310Bn cm

−≥ : 
18

1.76 0.078
10

B B
x

n
A = + ×  17 0.025

10
B B
R

n
Aδ = ×  

17
0.005

10
B P
R

n
Aδ = ×  
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completely diffusive. However, at other interfaces, as in nanostructures, the surface roughness 

may be much smaller, and specular scattering may take place [Baillis09].  

Each boundary is assumed to be rough with a deviation from an ideal surface characterized 

by surface-roughness height ( )z r
�

. Goodnick et al. demonstrated experimentally by using 

high-resolution transmission electron microscopy that the surface roughness ( )z r
�

 is a 

random variable with a Gaussian distribution so that the average value 0z =  and 2 2z = ∆ , 

where ∆ is the root mean square height of the surface roughness. They showed that for the 

interface Si(100) –SiO2, ∆ ranges from 1.33 to 50 Å [Goodnick87]. Recently, Park et al. have 

measured the average roughness of single-crystal VLS-grown (vapor-liquid-solid) Si 

nanowires in the <111> direction, which is from 2Å to 36Å [Park11].  

When a particle of wave vector q
�

 hits a rough surface with the incident angle
B

θ , the 

reflected wave contains a specular component and a diffusive component. In the case of weak 

correlation of autocovariance function of Si surface, the surface roughness scattering can be 

effectively characterized by a specularity parameter ( )p q
�

[Soffer67] with dependence as 

 ( ) ( )2 2 2exp 4 cos
B

p q q θ= − ∆
�

.  (2.10) 

The specular parameter ( )p q
�

 is used to model the different values of the thermal 

conductivity measured experimentally. If the interface Si-SiO2 is perfect (∆=0), i.e. ( )p q
�

=1, 

each collision between phonon and boundary will be specular. Hence, the transport is the 

same as in bulk material. In the case of very rough Si-SiO2 interface, ( )p q
�

 
tends to 0, the 

phonon-boundary scattering is completely diffusive. 

The phonon-boundary scattering rate can be written in the following form [Berman1953] 

 ( )
( ) ( ),

,

1
min .i

s B

s i

L
q

v q F q
τ

  
=  

  

�
� � ,  (2.11) 

where i refers to the direction (x, y or z) and the form factor ( )F q
�

 is 

 
( )

( )
( )

11
1

p q

F q p q

+
=

−

�

� �  (2.12) 
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We calculate the specular parameter p for LA and TA modes in a typical film of 20 nm 

thickness and roughness of ∆ = 5 Å. The evolution of this parameter as a function of the 

frequency ω is shown in Fig. 2.5. 

 

Fig.2.5. Specular parameter vs. angular frequency for LA and TA modes in an Si film of thickness 20 nm and 

roughness 5 Å. 

For both modes, the phonon-boundary scattering part is rather specular for 

92.5 10q < ×
�

m-1. This corresponds to 131.17 10 /TA rad sω ×;  and 132.05 10 /LA rad sω ×; ). At 

high q
�

, diffusive scattering is dominant for both LA and TA modes. 

The specular parameter 
s

p  for the LA and TA branches with various ∆ value, is averaged 

over all phonon wave vectors as 

 
( ) ( )( )

( )( )

3

3

s

s

s

p q N q dq
p

N q dq

ω

ω
=
∫
∫

� � �

� � , (2.13) 

where N is the equilibrium Bose-Einstein phonon distribution function. 
s

p depends on the 

temperature and ∆. Some results are plotted as a function of the temperature in Fig. 2.6a and 

as a function of ∆ in Fig. 2.6b. 
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(a)  (b)  

Fig. 2.6. Average specular parameter for LA (solid red line) and TA (dashed green line). (a) Temperature 

dependence of the parameters sp  for surface roughness ∆ of 1 A and 5 A. (b) Roughness surface 

dependence of sp  at 300 K and 50 K. 

The TA phonon scattering is more diffusive than the LA scattering. As expected, the 

diffusive scattering probability is more important in rough films, i.e. when ∆ is greater. In 

addition, the specular-to-diffusive transition occurs at lower temperature for TA modes than 

for the LA branch. The temperature dependence of the phonon population explains this 

phenomenon.  The frequency of TA modes is almost constant at large q, where the diffusive 

scattering occurs; in contrast, for LA modes, the frequency increases with q (see Fig. 1.7-

chapter I). In addition, as seen in Fig. 2.6a, the higher the temperature is, the more diffusive is 

the phonon-boundary scattering. Above discussed average specular parameters are in good 

agreement with the work of Aksamija and Knezevic [Aksamija10-1] and that of Duda et al. 

[Duda00]. 

 

3. ANALYTIC MODEL OF THERMAL CONDUCTIVITY  

In the relaxation time approximation (RTA), the stationary Boltzmann Transport equation 

(BTE) for the mode s (Eq. 2.23) in direction x can be reduced to 

 
( ) ( ) ( )

( )
, scatts s Ts

x

s

n nn
v

x

ω ωω

τ ω

−∂
=

∂
, (2.14) 

where 
s

τ is the overall scattering time of the phonon due to all scattering processes and is 

calculated by the Mathiessen’s rule 
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, , , ,

1 1 1 1 1

s s N s U s I s B
τ τ τ τ τ

= + + + .  (2.15) 

Where ,s I
τ  is the phonon-impurity interaction frequency and ,s B

τ  is the phonon-boundary 

interaction one.  

At equilibrium, the number of phonon is 

 ( ) ( )
( ) ( )( )

3

3

1 1

2exp expq d

B B

dq
n d DOS d

q

k T k T

ω ω ω ω

ω ω ω ω
ωω π< < +

= ⋅ = ⋅
   
   
   

∫∫∫
�

�

�
ℏℏ

. (2.16) 

In spherical coordinates, the thermal conductivity formula can be written as 

 
( )

( ) ( )
( )

( )( )

2
2 2

22 2
, 0

exp1
. .

3 2exp 1

G

s s

s s s

s LA TA B s

q X dq
K v q q q

k T X

ω
τ

π=

= ⋅ ⋅
−

∑ ∫
ℏ

. (2.17) 

3.1. Adjustment of scattering rate for bulk Si 

The Holland's model [Holland63] gives thermal conductivities of bulk Si in a good 

agreement with experimental data. However this model was developed for a linear phonon 

dispersion. When using a quadratic dispersion, the resulting conductivity is significantly 

shifted relatively to the experimental curve. Terris et al. [Terris09] have modified the 

Holland’s scattering parameter, BL and BTU to fit better the experimental conductivity as 

shown in Fig. 2.7, but they still over-estimate the conductivity [Lacroix09]. In our scattering 

model, we take the same BL, BTU as in Terris’s model (see Table 2.5, in green); the parameter 

BT and the geometric factor F are modified (see Table 2.5, in red). 

Model B
τ  

I
τ  ,N Tτ  (BT) ,U Tτ  (BTU) ,NU Lτ (BL) 

0 2×10-24sK-3 
Holland (a) 

(b) 
L

 = 7.16×10-3m 
F = 0.8 

9.3×10-13K-3 
0 5.5×10-18s - 

0 1.18×10-24sK-3 Terris (a) 
(b) 

L
 = 7.16×10-3m 

F = 0.8 
9.3×10-13K-3 

0 2.89×10-18s - 

0 1.18×10-24sK-3 Our model 
(a) 
(b) 

L
 = 7.16×10-3m 

F=0.68 

A = 1.32 
×10-45s3 

 
 

10.5×10-13K-3 
0 2.89×10-18s - 

Table 2.5. Relaxation time parameters: (a) for
cutS

ω ω≤ , (b) for
cutS

ω ω> . (F is defined in Eq. 2.6) 
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We compared the thermal conductivity obtained by combining different sets of scattering 

parameters with the quadratic dispersion. The results are shown in Fig. 2.7. The thermal 

conductivity calculated using our set of scattering parameters and the quadratic dispersion fits 

very well the experimental curve, not only at high temperature, but also at very low 

temperature. In this study, we use this set of parameters for Si. 

 

Fig. 2.7. Influence of the dispersion and time relaxation on the silicon bulk thermal conductivity calculation. 

Triangles are experimental data after [Glassbrenner64] full blue line is for Holland’s scattering model with 

Holland’s dispersion, black dashed line for Holland’s scattering model with Pop’s dispersion, green dashed line 

for Terris’s scattering model with Pop’s dispersion, red dashed line for our scattering model with Pop’s 

dispersion. 

 

Finally, the intrinsic (phonon-phonon) and total relaxation time in this work, and the 

intrinsic and total mean free path corresponding to the new set of scattering parameters are 

displayed in Fig. 2.8. 
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(a)  (b)  

(c)  (d)  

Fig. 2.8. (a) Phonon-phonon (intrinsic) relaxation time used in this work for LA and TA modes as a function 

of the wave vector. (b) Intrinsic mean free path of LA and TA modes. (c) Relaxation time of LA & TA 

modes. (d) The mean free path of LA & TA modes. 

 

Cartesian coordinates: 

 

If we use the discretization in the ensemble of Cartesian coordinates, the elementary 

volume 3dq
r

 takes the form 3
x y z

dq dq dq dq=
r

. Then, the thermal conductivity is: 

( )
( ) ( ) ( )

( )( )

2

2
, 22 3

,

, , exp1
. , , . , ,

3 8exp 1

G G G
s x y z x y zs

g s x y z s x y z

s LA TA BG G G s

q q q dq dq dqX
K v q q q q q q

k T X

ω
τ

π= − − −

= ⋅
−

∑ ∫ ∫ ∫
ℏ

.(2.18) 

Here we consider a spherical Brillouin zone, so a wave vector of this zone satisfies the 

condition 2 2 2 2
x y z

q q q G+ + ≤ , where G = 2×π/a is the reciprocal vector and a is the crystal 

parameter.  

The important parameter to check is the minimum number of discretization steps Nq on 

each axis qx, qy, qz to have a good physical description. The cell number in the Brillouin zone 
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is proportional to Nq
3. If Nq = 50, the Brillouin zone is divided in about 125.000 cells. In 

Fig. 2.9a, we plot the bulk conductivity as a function of the number of discretization cells at 

300 K and 400 K. We see that the conductivity reaches quickly the expected value when 

increasing the number of cells. When the cell number is high enough, i.e. the cells are 

sufficiently small, the bulk conductivity reaches the value of 149 Wm-1K-1. In what follows, 

we discretize the q-space with Nq = 120 (~106 cells).  

The calculated thermal conductivity is plotted as a function of the temperature in Fig. 2.9b. 

It’s seen that the conductivity obtained varying Eq. 2.18 is close enough to that obtained using 

Eq. 2.17, and also to the experimental ones [Glassbrenner64]; this validates our approach. 

(a)  (b)

Fig.2.9. (a) Thermal conductivity of bulk silicon as a function of step number in our calculation for 300 K 

and 400 K. (b) The thermal conductivity from Glassbrenner & Slack’s experience [Glassbrenner64] 

(triangle), from Eq. 2.16 (dashed red line) and from Eq. 2.17 (dotted square line).  

3.2. Thermal conductivity in nanostructure (Analytical approach) 

In this sub-section, a model of thermal conductivity, derived from simple physical 

considerations, is developed to include easily the influence of the sample geometry and of the 

interface roughness with the scattering parameters validated above.  

While at 300 K optical phonons can contribute up to 20 % to the thermal conductivity in 

nanostructures (10-20 nm film-thicknesses or wire diameters) [Tian11], but only up to 4 % in 

bulk materials [Broido05], therefore we will ignore them here to preserve the simplicity of the 

model.  
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We intend to calculate the conductivity for films and wires schematized in Fig. 2.15. Lx is 

the length, Lzis the thickness and the Ly is the width. 

 

 

 

 

Fig.2.10. The 3D-schematic and 2D-side view of the device geometry considered in this sub-section. 

The scattering rate takes into account all the previously mentioned scattering via the 

Matthiessen’s rule 

 
, ,

1 1 1

s s bulk s B
τ τ τ

= + ,  (2.19) 

where τs,B is the boundary scattering of mode s (s = LA, TA), defined as in Eq. 2.11. 

 

3.2.1 Thermal conductivity in Si films 

For the film (2D structure), Lx and Ly are equal to 10 m, and the film thickness Lz is much 

smaller than Lx and Ly. The phonon-boundary scattering time in the purely diffusive case 

(specular parameter 0p =
�

) is 

 Z
b

gz

L

V
τ = .  (2.20) 

In Fig. 2.11, we plot the thermal conductivity as a function of the film thickness Lz. The 

thermal conductivity approaches Kbulk for 10 µm
z

L ≥ . Available experimental thermal 

conductivity data for silicon films at 300 K are reported for comparison.  

LY 

LZ 

LX 
Ly 

Lz 
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Fig.2.11. Comparison of our thermal conductivity model w/o specular parameter and experimental 

data for Si films. 

The model prediction is in good agreement with experimental data of five independent 

studies, in particular in the thin-film thickness zone from 20 nm to 100 nm. We obtain a 

conductivity value of 29.1 Wm-1K-1 for 20 nm-film thickness – the minimum measured film 

thickness available in the literature, for which the experimental value is about 24.6 Wm-1K-1 

in Liu et al. [Liu04] and about 29.7 Wm-1K-1 [Ju05]. For 100 nm-thickness films, the 

conductivity obtained from our model is 62.5 Wm-1K-1, which is very close to the 

experimental data of Liu et al. [Liu05]. Above this zone, there are some discrepancies 

between our model predictions and measured values, but the model captures the experimental 

trend. The highest error at 1.6 µm-thickness film is about 12 Wm-1K-1, which is about 8 % of 

error in comparison with the measured data. 

 
Fig.2.12. Thermal conductivity as a function of the roughness ∆ for film of 20 nm, 50 nm, 100 nm 

and 1.6 µm thickness; symbols with same colours are the experimental data. (20 nm from [Ju05], 

50 nm from [Ju05], 100 nm from [Liu04] and 1.6 µm from [Asheghi97]). 
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In Fig. 2.12, we plot the thermal conductivity as a function of the roughness height ∆ at the 

Si-SiO2 interface for various thicknesses. Our simple approach predicts a strong impact of ∆ 

on thermal conductivity. 

3.2.2. Thermal conductivity in Si wires 

3.2.2a. Circular and square cross-section wires 

In this section, we compare the thermal conductivity between circular cross-section and 

square cross-section Si wires.  

For a circular-section wire, the in-plane group velocity is defined as 

 2 2
in plane y z

v v v= + .  (2.21) 

Then, in the purely diffusive case, the related lifetime is 

 ( ), ,
b x y z

in plane

D
q q q

v
τ = .  (2.22) 

Where D is the wire diameter. 

 

 

 

 

 

Fig.2.13. Circular section wire structure and coordinates used in this work. 

The phonon-boundary lifetime in the square wire is extracted from Eq.2.32, as  

 ( ), , min ,b x y z

gy gz

A A
q q q

V V
τ

  
=  

  

.  (2.23) 

In Fig. 2.20, we compare the different kinds of wires with the same cross-sectional area, so 

we have 

 
2

2

4
D

S Aπ= × = . (2.24) 

Lx 

Ly 

Lz 

Diameter 
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Our model captures the experimental trend. As expected, it is close to the experimental 

data for large wires. It should be mentioned that there is a large spreading among available 

experimental data. For 50 nm-diameter wires, the calculated conductivity is 47.3 Wm-1K-1, 

while the experimental values are 41.3 Wm-1K-1 [Li03] and 8.75 Wm-1K-1 [Hochbaum08].  

 

Fig. 2.14. Comparison of the calculated thermal conductivity with experimental data for circular and 

square cross-section Si wires. 

At the same wire size, the measured conductivity of Hochbaum is much lower than that of 

Li, due to the fact that the surface roughness in Hochbaum’s wires (~ 3 nm) is greater than in 

Li’s wires (~0.3 nm) [Martin09]. In these wires, the full phonon dispersion and the phonon 

confinement should be included. The discrepancy for small diameters may be due to the 

phonon dispersion confinement and the surface roughness [Balandin98, Chen08, Martin09]. If 

the two effects were included, the lattice thermal conductivity would decrease. 

3.2.2b. Rectangular cross-section wire 

In this sub-section, we investigate the dependence of the thermal conductivity on the 

geometry of rectangular cross-section Si wire. Using the 3ω method, the experimental 

measurements have been performed by P. Allain (MicroNanoBio research group, IEF) 

[Allain12] to determine the thermal conductivity of several rectangular wires. The wires have 

the same thickness of 160 nm, while the widths are 80 nm, 140 nm, 200 nm and 260 nm.  

The measured and calculated results in the temperature range from 200 K to 450 K are put 

together in Fig. 2.15. The calculation was made for several cases: roughness of 0.5Å, 1 Å, 2 

Å, 5 Å and purely diffusive phonon – boundary collisions. The measured values are in circles, 

with error bars representing an error of 25 %. 
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Fig.2.15. Thermal conductivity of four rectangular wires: 80 nm×160 nm, 140 nm×160 nm, 

200 nm× 160 nm and 260 nm×160 nm in the temperature range from 200 K to 450 K. ∆ is the roughness 

standard deviation. 

Taking into account this measurement error, a roughness value in each wire can be quite 

well estimated. The slopes of calibrated conductivities as a function of the temperature are in 

good agreement with those obtained experimentally. The values of the roughness are in the 

range of what was expected as regard to the technological process. 

3.2.2c. Transition between wires and films 

Here we analyze the transition between wires and films. The wire thickness Lz is fixed to 

be 100 nm, while the width Ly varies from 0.05 Lz to 100 Lz.  

In Fig. 2.16, the thermal conductivity is plotted as a function of the width/thickness ratio 

for different thicknesses. The dashed lines are the values for the film of the same thicknesses.  

There is no longer any size effect of the width (film-like behavior) when the width is about 

ten times greater than the thickness. 
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Fig.2.16. Thermal conductivity as a function of the width/thickness ratio for thickness of 40 nm (blue line), 50 

nm (green line) and 100 nm (red line). The related film values for each thickness are in dashed lines, 

respectively. 

3.3. Conclusion 

In conclusion, we have presented a new set of scattering parameters for bulk silicon with a 

quadratic dispersion relation for phonons in the direction [100]. We have obtained thermal 

conductivities for bulk silicon in good agreement with experimental data.   

For 3D (bulk), 2D (film) and 1D (wire) Si structures, the results capture well the 

experimental trends of thermal conductivity as a function of film thickness or of wire size 

expected. The accuracy of results for nanowires of small diameters (below 50 nm) could be 

improved by taking into account the phonon confinement effect. Then, by tuning the values of 

the roughness, we have found an excellent agreement between the calculated and the 

measured [Allain12] thermal conductivity as a function of temperature for various rectangular 

cross-section nanowires of different dimensions. Fitting the experimental data with the model 

allows us to predict realistic values of the roughness of these wires. 

 4. NUMERICAL SOLUTION OF BTE 

Until now we have considered the set of scattering parameters and the phonon dispersion 

in bulk Si, and also the phonon-boundary scattering and the roughness effects in Si 

nanostructures. This set of parameters is used to solve numerically the stationary BTE for 

phonons under the relaxation time approximation (RTA). 
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In this section, we will describe the algorithm, the discretization and initialization 

processes, and the boundary conditions used to solve the BTE. The validation will be carried 

out via the thermal conductivity in bulk Si and in Si films. Then, we will study the heat 

transport in Si bars from diffusive to ballistic transport regimes. 

4.1. General algorithm  

We propose to solve numerically the stationary BTE under the RTA which writes 

 ( )
( )

( ),

,
, | ,s

g s r s scatt

dN r q
v N r q G r q

dt
⋅∇ = − +�

� �
�� � � � �

, (2.25a) 

where 

 
( ) ( ) ( )

( )( )
,, ,,

|
,

s s Tscatts

scatt

s scatt

N r q N r qdN r q

dt T r qτ

−
≈ −

� � � �� �

�  (2.25b) 

is the scattering term in the RTA approximation and ( ),G r q
� �

 is the phonon generation term. 

4.1.1. Fourier equation 

The first step of the algorithm is to find a good approximation of the scattering term. 

Indeed, the RTA requires the knowledge of the temperature Tscatt which characterizes the 

quasi equilibrium phonon distribution Ns,Tscatt. Unfortunately, the ambient temperature Tamb is 

not a good approximation for Tscatt in the presence of high temperature gradients.  

Thus, the scattering temperature Tscatt is evaluated by solving the macroscopic Fourier heat 

equation by considering a uniform thermal conductivity KT = KT (Tamb) 

 ( ) 0K T G r∆ + =
�

 (2.26) 

In the following, Tscatt will be referred as TFourier. Next, if the temperature differences in the 

device are higher than 10 K, the dependence of the thermal conductivity on the temperature 

(KT-T relation) is taken into account. Then, the heat equation (Eq. 2.27) with non-uniform KT
  

is solved iteratively to the temperature TFourier (particular analytical solutions of this equation 

are described in appendix A.):  

 ( ) ( ) 0
T

K T G r∇ ∇ + =
�

  (2.27) 
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4.1.2. BTE for each phonon mode  

For optical phonons, the BTE becomes: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
, ,, , ,

,
s

g s LTO s s s TFourierq

e LTO

LTO

v q q N r q N r q N r q

G q r q

τ

τ−

 ⋅ ⋅∇ = − − 

+ ⋅

�

�� � � � � � � � �

� � � ,  (2.28) 

where the average lifetime τLTO takes the value of 3.5 ps [Menéndez84], ( ),e LTO

s
G q r

→ � �
is 

the generation term of LTO phonons resulting from electron-phonon scattering. ( ),g s
v q
� �

 is the 

group velocity of the mode s for the wave vector q
�

.  

For acoustic phonons, considering electron-phonon scattering and the decay of LTO modes 

as a source of acoustic phonons, the BTE can be written as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, ,, , ,

, , ,

g s s s s s TFourierq

e LTA LTO LTA

s s s s

v q N r q N r q N r q

G q r q G q r q

τ

τ τ− →

 ⋅ ⋅∇ = − − 

+ ⋅ + ⋅

�

�� � � � � � � �

� � � � � �   (2.29) 

where the generation terms includes the contribution of electron-phonon scattering 

( ),e LTA

s
G q r

− � �
 and of LTO decay ( ),LTO LTA

s
G q r

→ � �
 that is supposed to depend on electron-LTO 

generation rate and on the probability ( )( )LTO LTA

s s
P qω→ �

 to have a LTA phonon resulting from 

LTO decay as presented in sub-section 2.3 (cf. Fig. 2.4).  

 ( ) ( )
( )( )

( ) ( )' '

, ,
LTO

s s

LTO LTA

s sLTO LTA e LTO

s LTO

q q q q

P q
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 
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� �
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, (2.30) 

where ( ),
LTO

e LTO

LTO

q

G q r
−∑

�

� �
 is the total generation rate of LTO modes extracted from MC 

simulation (which, in stationary regime is exactly the number of optical phonons that decay to 

generate acoustic phonons). The probability of final states for each acoustic mode is 

normalized to ensure that the total probability is unity. 
( ) ( )' 's s

q q q
N

ω ω=
�

� � is the number of wave 

vectors 'q
�

 satisfying the condition ( ) ( )'s sq qω ω=
� �

. Indeed, the optical phonons are generated 

by hot electrons, so they can have various wave vectors. Since one optical phonon mode with 



84 

 

a given wave vector can decay into LTA modes with large spreading in wave vectors, we 

assume that at a given frequency ω, LTA phonons due to the LTO decay can have any wave 

vector 'q
�

 that satisfies the condition ( ) ( )'s sq qω ω=
� �

. The probability to have an acoustic 

phonon with wave vector q
�

, which satisfies this condition, is then
( )' '

1

s
q q

N
ω ω=

�
�

. The scattering 

rate τs includes the phonon-phonon, phonon-impurity and phonon-boundary (as in Eq. 2.15).  

4.2. Discretization and initialization 

4.2.1. Discretization 

Consider a film oriented so that the cross-plane direction and the thermal gradient are 

along the z-direction. For this one-dimensional (space coordinates) system, the Eq. 2.25a can 

be written as 

 ( )( ) ( ) ( ) ( ) ( ), ,, 1 , , ,
s z s s s Tscatt

T r q v q N z q N z q G z q
z

τ
∂ 

⋅ ⋅ + = + 
∂ 

� � � � �
.  (2.31) 

The group velocity v
�  and its projection vz are defined by the following expressions: 

 s
s

v
q

ω∂
=

∂
, ,

z
z s s

q
v v

q
= ⋅

�
� .  (2.32) 

The derivative term /
s

N z∂ ∂  at point j is approximated by using the finite difference 

method. The positive direction (along the z axis) is from left to right. Phonons which have a 

positive group velocity can only travel from the left to the right and the others can only go 

from the right to the left. So, this derivative term is considered differently in the two cases. 

 

 

 

Fig. 2.17. Diagram of discretization. 

• If the group velocity is positive: 
1i i i

s s s

i i

N N N

z z

+∂ −
=

∂ ∆
 

z 

i i+1 i-1 

vgx>0 vgx<0 
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•  If the group velocity is negative: 
1i i i

s s s

i i

N N N

z z

−∂ −
=

∂ ∆
. 

The interval z∆ must be equal to or smaller than the mean free path to ensure that the 

solution is exact.  

4.2.2. Discretization in reciprocal space 

The first step of the simulation procedure is the choice of geometry and mesh. 

The choice of the step number Nq along qx, qy and qz axes is important. After having 

investigated the effect of the step number and therefore of the number of bins in the first 

Brillouin zone, we have chosen a discretization by 100 steps along each axis, i. e. about 5×105 

bins in ω.  

The density of phonon at the boundaries is fixed at equilibrium as: 

 
( )

( )

3
3

3

1
( , )

8
exp 1

s s

s

B Fourier

dq
N r q dq g

q

k T r

πω
= × ×

 
−  

 

�
� � �

�
ℏ

�

.  (Rewritten from Eq. 2.16)

 

The first cell is raised to the hot temperature Th, the last one to the cold temperature Tc.  

At a given position, it is required that the distribution of initialized phonon obeys the 

occupation in energy at a given temperature, which can be calculated from the following 

expression: 

 ( )

( )

( )

( )

2

2

1 1
,

2
exp 1 exp 1

s s s s

ss s

B B

K
N r D g d g d
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πω ω

= ⋅ = ⋅
   

− −      
   

�

ℏ ℏ
� �

.  (2.33) 

The LA and TA phonon occupation densities are plotted in Fig. 2.18a as a function of ω at 

300 K and 500 K and compared with the theoretical curves, showing an excellent agreement. 

Phonon occupations in a wave vector projection (for example, qz) that are meaning with the 

theoretical calculations are shown in Fig. 2.18b. 
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(a)   

(b)   

Fig. 2.18. (a) Theoretical and sampled frequency phonon distribution at 300K and 500K for silicon.  

(b) Normalized LA and TA occupations at 300K and 500K as a function of wave vector projection. 

4.3. Boundary condition 

At the two contacts, the boundary condition consists in fixing the temperature and thus in 

fixing the phonon number according to the corresponding Bose-Einstein distribution. This 

boundary condition ensures that all phonons scatter diffusively when they interact with the 

system boundaries [Sellan10]. 

4.4. Matrix form 

As seen previously, the derivative in the left-hand-side is discretized differently in two 

cases of vgz.  

+ If the group velocity projection vgz is positive: 
1i i i

s s s

i i

N N N

z z

+∂ −
=

∂ ∆
.  
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So, we obtain the following numerical scheme: 

 ( )( ) ( ) ( ), 1 1 1, 1 ,
i

i i

s scatt z s s i i i

i

T r q v q N z q A N B N
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where 
( )( ) ,

1

,
1 is scatt i z si

i

T z q v
A
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τ ⋅
= +

∆
and

( )( ) ,
1

,
is scatt i z si

i

T z q v
B

z

τ ⋅
= −

∆
.  

By fixing the temperature at the two contacts, we can write the transport equation under the 

following matrix form: 
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+ If the group velocity projection vgz is negative: 
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Similarly, this schema under the matrix form is 
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4.5. Effective temperature 

At the nanoscale and/or for non-equilibrium phonon distribution, the concept of 

temperature is meaningless. Considering the phonon distribution, a “phonon distribution 

field” is more relevant than using a temperature field. Nevertheless, the information on 

distribution of phonons can be reduced to an “equivalent temperature” field by using the local 

phonon energy resulting from the actual phonon distribution (which may be out of 

equilibrium).  Thus, an equilibrium phonon distribution following the Bose–Einstein 

distribution thermalized at the effective temperature provides the same local energy density 

[Pop06]. 

The equilibrium local phonon energy density is obtained by 

 ( ) ( )
( )
( )

3
3

3

1
( , ) , . .

8,
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s s s s
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dq
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∫ ∫ ∫ ∫ ∫ ∫
�

� � � � � �
ℏ � �

ℏ
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.  (2.38) 

The temperature evolution of the energy density is plotted in Fig. 2.19 for each mode of 

bulk Si. 

 

Fig. 2.19. Phonon energy density as a function of the temperature for each phonon mode. .  

By using this definition of the effective temperature four mode temperatures (TLA, TTA, TLO 

and TTO) and the total temperature (Teff) can be defined. 
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4.6. Validation - Thermal conductivity 

 In this sub-section, we validate the algorithm implemented to solve the steady-state BTE 

for phonons by calculating the thermal conductivity in bulk Si and Si films and comparing our 

simulation results with the experimental ones. Only the LA and TA modes are considered 

here. We solve Eq. 2.56 in a Si bar at quasi-equilibrium state with a small gradient of 

temperature, and without the generation term.  
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Fig. 2.20. Schema of the simulated Si bar. 

The cold temperature along the bars and also at the right contact is Tc, while at left contact, 

the temperature is raised to Th (Th > Tc). The thermal conductivity is extracted from the 

phonon heat flux along the sample, according to 

 ( ) ( ) ( ) ( ), ,, , ,
z s z s z

s q

J r q r v q r N q rω= × ×∑∑
�

� � � � � � �
ℏ , (2.39) 

where Jz is the z component of the heat flux in the structure. ( ),s z
v q
�

is the z component 

group velocity of s-mode phonons. 

From Eq.1.41 (Chapter I), if the thermal conductance K is constant, it can be deduced from 

the slope of flux J as a function of the temperature difference ∆T for a sample of length Lz as 

 
( )

0

z
z

T

dJ
K L

d T
∆

= ⋅
∆

≃

.  (2.40) 

4.6.1. Thermal conductivity in bulk Si 

As described in section 4.1, we solve the Fourier equation (Eq. 2.26) by assuming that the 

thermal conductivity is uniform (small gradient of temperature ∆T).  
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We plot in Fig. 2.21a the heat flux for different Si bar lengths. Heat fluxes in z-direction 

are maintained by a temperature difference of 2 K, centered at 300K.  

(a)  (b)  

Fig. 2.21. (a) Heat flux along Si bars of different lengths with a temperature difference of 2K, centered at 300K. 

(b) Derivative of the heat flux divided by the corresponding flux at the middle of Si bars of different lengths 

with the same conditions. Inset: zoom in the range 0-2 µm 

Because the two ends are fixed at 300 K as the boundary condition, there is no heat which 

flows inside these contacts. Therefore, for the continuity condition, the values of heat flux 

near the contacts are close to zero. The shorter the length is, the stronger the heat flux is. That 

is due to the fact that the flux is proportional to the gradient of temperature dT/dx (see Eq. 

2.14) which is higher in the short bars than in the long bars. For a Si-bar of 2µm length, the 

heat flux does not attain a constant value. When the bars are longer (4 µm, 8 µm, 12 µm), 

constant values are obtained. We can say that the equilibrium heat transport is established in 

these cases. 

 (a)  (b)  

Fig. 2.22. (a) The heat flux at 300 K as a function of temperature difference ∆T in 6µm, 8µm, 10µm and 12µ

length samples and the correspondent linear fit curves, respectively. (b) The thermal conductivity inside 

silicon films as a function of film length.  
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To evaluate the length over which the flux can reach its equilibrium value, the derivation 

of the heat flux is calculated and divided by the value of flux in the middle of the structure. 

These quantities along the bar for different lengths are displayed in Fig. 2.21b. For all the 

considered bar, except the 2 µm-bar, the curves haves a flat shape in the centre of the 

structure, at about 2 µm, which is about 2 times greater than the mean free path of acoustic 

phonons (see Fig. 2.8d). We assume that the heat transport in Si reaches the equilibrium 

regime when phonons undergo a sufficient amount of collisions through the distance as long 

as about two times the average mean free path or more, from the contacts.  

The heat flux is plotted in Fig. 2.22a as a function of temperature difference in 6 µm, 8 µm, 

10 µm and 12 µm-length films together with the linear fitting-curves. This fitting-curves are 

obtained with two constraints: they must pass through the zero point and fit well the slope of 

Jx(dT) near the zero point (∆T from 0 to 5 K). Fig. 2.22b shows the thermal conductivity of 

silicon at 300 K and 400 K for a film length ranging from 10 nm to 12 µm. It is observed that 

for a length smaller than 4 µm, the thermal conductivity of silicon deviates significantly from 

(its bulk value, which is 148.8 Wm-1K-1 at 300K) in our model. That is coherent with the 

above analysis for the flux profiles in different lengths. 

Further, simulations have been carried out in the temperature range from 100 K to 600 K 

on 12 µm-thick samples. The comparison of the thermal conductivities obtained from our 

numerical method for BTE with our analytic model and the experimental data of Glassbrenner 

& Black [Grassbrenner64] is shown in Fig. 2.23.  

 

Fig. 2.23. Comparison of the thermal conductivity obtained from the numerical method, our analytic 

model and experimental data from [Grassbrenner64]. 
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As shown in this figure, conductivities obtained from BTE are in agreement with the 

experimental data at high temperature ( 150KT ≥ ). For low temperature (lower than 150 K), 

the discrepancies between experimental data and numerical calculation increase. This 

difference can be explained by the fact that when the temperature decreases the mean free 

path of phonons rises strongly, and it becomes larger than the length of the structure. 

We fit the evolution of the experimental conductivity as a function of temperature with an 

expression form C×T
α, i. e.  

 
5

1.33

3.0 10
T

K
T

×
= .  (2.41) 

By using the Monte Carlo method to solve the BTE, Lacroix et al. found: [Lacroix05]  

 
( ) 5

1.326 1.326

exp 12.570 2.88 10
T

K
T T

×
= ≈ .  (2.42) 

In our work, the relation between thermal conductivities K and temperature is 

 
5

1.34

3.09 10
T

K
T

×
= , (2.43) 

This is very close to Eq. 2.41 for experimental data. This expression will be used in the 

next section to solve the non-linear conductivity effect when the temperature difference is 

high.  

4.6.2. Thermal conductivity in Si films 

In this sub-section, the phonon-boundary scattering is taken into account in the BTE to 

evaluate the in-plane (diffusive regime occurring in long bar) and cross-plane (ballistic regime 

in ultra-short bar) thermal conductivities in silicon thin-films at 300 K. 

4.6.2a. In-plane conductivity 

The same procedure of thermal conductivity calculation as in sub-section 4.6.1 is used but 

including roughness. Our results are plotted in Fig. 2.24 and compared to results from 

Discrete Ordinate Method (DOM) [Terris09] and to experimental data. 

It is seen that the thermal conductivity achieved by our model is in very good agreement 

with that of the conductivity model (it was described in the previous chapter). Even if both 
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theoretical results match quite well the experimental results for all film thicknesses ranging 

from 20nm to 10µm. The predictions of our model are more accurate than that of the DOM 

that underestimates the thermal conductivity by at least 20% [Terris09]. 

 
Fig. 2.24. Thermal conductivity of silicon thin-films at 300 K: our model of BTE (full line), our 

model of thermal conductivity calculation (crosses), DOM model (dashed line and circles), and 

experimental data by : Asheghi et al.[Asheghi97] (squares), Ju and Goodson[Ju99] [Ju05] (blue 

triangle and red triangles), Liu and Asheghi [Liu04] [Liu05](red circles and blue quadrangle) 

4.6.2b. Cross-plane conductivity 

To measure the cross-plane conductivity, a gradient of temperature is applied between the 

two surfaces of a short (but large) bar.  The heat transport in this cross-plane direction is 

ballistic. Until now, there is only one experimental cross-plane value for 500 nm-thick silicon 

film obtained by Hopkins and co-workers in 2012 [Hopkins12]. The analytical model of 

McGaughey et al. [McGaughey11] predicts better the experimental trends than the models of 

Flik [Flik90] and Majumdar [Majumdar93]. However, this analytical model over-estimates by 

more than 2 times the experimental data. More recently, in 2012, Jeong, Datta and Lundstrom 

[Jeong12] used the Landauer approach and took into account a surface roughness of 0.5 nm. 

Their results, which are reported in Fig. 2.25a, are quite close to the experimental values.  

Our model considers the phonon-boundary diffusive scattering in the cross-plane direction 

which is defined as the time needed for a phonon to hit one of two sides, so that 
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The cross-plane conductivity results at 300 K are plotted in Fig. 2.25a as a function of the 

film thickness. The measured data are also indicated.  

(a)  (b)  

Fig. 2.25. (a)  Cross-plane conductivity versus film thickness at 300K: this work (continued curve)  and the 

experimental data [Hopkins11]. (b) Cross-plane thermal conductance of Si film for various thicknesses at 400K: 

our work (red curve), DOM (blue curve) and MC method (green curve) [Terris09]. 

For a 500 nm-thick film, our calculated result is 54.3 Wm
-1

K
-1, while the measured value is 

39.2±4.8 Wm-1K-1
 [Hopkins12]. The Monte Carlo method and DOM calculations of Terris 

and coworkers [Terris09] for the cross-plane conductance at 400 K are shown in Fig. 2.31b. 

For film thicknesses at the micro scale, the results of the three models are quite close. At 

smaller sizes, our results are smaller than that of DOM and MC methods.  

4.7 Study of heat transport in Si bars 

By solving BTE for phonons in a Si bar of different lengths, we can study different 

transport regimes and also the transition from the diffusive to the ballistic regime. The non-

linear conductivity effect observed when we apply high gradients of temperature is also 

discussed.  

4.7.1. Heat transport regimes 

We solve the BTE for various 1D-sample lengths, from 2 nm to 4 µm with different 

temperatures on both sides: Th = 310 K and Tc = 290 K. The temperature in these samples is 

plotted in Fig. 2.26 and compared with diffusive equation results and with the ballistic 

temperature which is derived from the Stefan-Boltzmann law [Heaslet65]. 
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With the above temperatures Th and Tc, the ballistic one is 300.5 K. 

 

Fig. 2.26. Effective temperature profile for different sample lengths and for diffusive and ballistic limits. 

The heat transport is very different for different bar lengths. For a quite long bar, the 

diffusive regime is obtained at ambient temperature and the temperature profile is quite linear 

and consistent with the Fourier law. While in very short bars, as for the 2 nm-length are, the 

transport is very close to the ballistic case (see Fig. 2.26). The transition between both 

regimes – referred as the intermediate regime- can be seen in the 20 nm and 200 nm-long Si 

bars.  

To analyze the phonon transport, we will calculate the phonon occupation of the phonon as 

a function of the wave vector q
�

 by the following expression: 

 ( )
( ) 3

1
,

8
exp 1x y

z
s z s

q q

B

dq
N r q g

q

k T

πω
= ⋅ ⋅

 
− 

 

∑∑
�

�
ℏ

 (2.46) 

This expression can be deduced from the Eq. 2.16. 

The distribution obtained from Eq. 2.45 is called phonon occupation in wave vector q
�

, and 

is displayed in Fig. 2.27 for various bar lengths. 
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(a)   

 (b)   

(c)   

(d)   

(e)   
Fig. 2.27. LA (left) and TA (right) phonon occupations at different positions for different sample 

lengths 2 µm(a), 200 nm(b), 20 nm(c) and 2 nm(d) with Th = 400 K and Tc = 300 K. The occupations 

in a 10 µm long sample of with Th = 20 K and Tc = 10 K are in (e). The arrow is to indicate the 

position from left contact (T = Th) to right contact (T = Tc). 
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4.7.1a. Diffusive regime 

The normalized phonon occupations at 400K along the sample are shown in Fig. 2.27a for 

a 2µm-long sample with Th = 400 K and Tc = 300 K. The arrow is to show the direction from 

left (400 K – red continuous line) to right (300 K- blue continuous line). The occupations for 

both LA and TA phonons are symmetric, as a function of wave vector projection qz, which is 

proportional to the group velocity projection vgz (see Eq. 2.32). It’s well known that the 

phonon occupation depends on temperature: the higher the temperature is, the more phonon 

states are occupied. In this case of quasi-diffusive regime, the local thermodynamic 

equilibrium is established for both LA and TA. 

4.7.1b. Ballistic regime 

The ballistic transport regime occurs in small size samples or/and at low temperature. In 

this sub-section, to examine the size effect, we focus on the case of a 2 nm-long sample. The 

effective temperature profile has been plotted in Fig. 2.26.  

The evolution of phonon occupations along the sample in this case is plotted. In Fig. 2. 

26d, we can clearly see that the LA and TA occupations are strongly dissymmetric. Indeed, if 

these phonons travel without scattering, the distribution of these positive-velocity phonons 

remains unchanged along the device. The same mechanism explains the result for phonons 

flowing from the right to the left. Therefore, the phonon occupation is divided in two 

separated populations: phonons with positive velocity coming from the left contact at 400 K 

and phonons with negative velocity coming from the right contact at 300 K.  

 

Fig. 2.28. Temperature profile in 10 µm sample with Th= 20 K and Tc = 10 K (full line) and the 

ballistic temperature (dashed line) given by the Stefan-Boltzmann law (Eq. 2.68). 
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This ballistic regime can also be reached in a long sample at very low temperature. We 

solve the BTE in a sample of 10 µm with Th = 20 K and Tc = 10 K. The temperature profile is 

plotted in Fig. 2.28. The phonon distributions in this case are shown in Fig. 2.27e. The 

temperature obtained at very low temperature follows the Stefan-Boltzmann law. 

4.7.1c. Intermediate regime 

When the sample thickness increases, the intermediate regime dominates - see the case of 

20 nm and 200 nm-long Si bar in Fig. 2.26. In this regime, the mixture of diffusive and 

ballistic transport is observed also in the phonon occupation in Fig. 2.27a and Fig. 2.27c, due 

to the increasing influence of phonon scattering. 

4.7.2. Non-linear conductivity effect 

As seen previously, the thermal conductivity depends on temperature according to Eq. 

2.42. If the temperature gradient ∆T is high, the spatial evolution of temperature can differ 

from the linear shape to show this effect. 

    Temperatures Th = 500 K and Tc = 250 K are applied at the two contacts of a 5 µm-long Si 

bar. The temperature profiles obtained using our method and solving of the Fourier heat 

equation (considering a non-uniform conductivity) are plotted in Fig. 2.29. 

 

Fig. 2.29.  Space distribution temperatures obtained from numerical BTE and from the analytical 

solution of the heat equation (temperature dependent conductivity). 

There are a slight differences between the numerical method (BTE) and the analytical 

result (Fourier law) at the two contacts, in particular at the cold side (see Fig. 2.29). That is 
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observed also by using the Monte Carlo method [Lacroix05, Wong11]. This could be due to 

boundary effects since the mean free path at 250K is quite significant. This can be seen in 

Fig.2.30, in which the LA and TA occupations are shown. 

(a)  (b)  

Fig. 2.30. LA and TA phonon occupations along the same sample as in Fig. 2.29 from left to right (as 

direction of arrow). 

4.7.3. Doping effect 

We use the three parameters of scattering by doping impurities (see Eq. 2.30-2.32) for 

Boron (B) and Phosphorus (P) doping (see Tables 2.3 & 2.4) proposed by Asheghi et al. 

100 nm-long Si samples with different doping level, have been biased with Th = 20 K and 

Tc = 10 K. The results are shown in Fig. 2.30.  

(a)  
(b)  

Fig. 2.30. Temperature profiles in 100 nm-thick film with different the doping concentration. (a) 

Phosphorus. (b) Boron. 
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When the numbers of impurities increase with the same temperature difference, the phonon 

transport becomes more diffusive: as expected, the temperature dropping across the film 

increases. This dropping temperature changes significantly when the doping concentration is 

1022 cm-3 and above, both with B and P doping atoms. For GaAs films of 400 nm-thickness, 

the doping concentration which influences the phonon transport are above 1020 cm-3 

[Mazumder01]. 

Normally, the doping in a device is not as high as 1022 cm-3. In addition, it is seen 

experimentally that this effect is smaller at high temperatures (room temperature and above) 

[Ashghi02]. In the transport of phonons in devices that will be described in the following 

chapter, this effect will not be included.  

4.8 Conclusion 

An original numerical method to solve the stationary Boltzmann equation for phonons has 

been presented. This model includes the LA and TA phonons with a quadratic dispersion 

relation and modified Holland’s model for scattering in the RTA approximation. A solution of 

the Fourier heat equation is coupled to estimate the scattering terms.  

The model is used to compute the thermal conductivity in silicon films in the temperature 

range of [100 K – 600 K]. Numerical results are in very close agreement with experimental 

data for pure silicon until 150 K. Then, the phonon-boundary scattering is taken into account 

to predict in-plane and cross-plane conductivity. In-plane thermal conductivities match very 

well the experimental data. In addition, the cross-plane conductivity which is until now 

difficult to measure experimentally is investigated with our BTE model. The resulting 

conductivity is closer to experiment than the one obtained by other theoretical approaches. 

Our numerical model has been successfully assessed in different heat transfer regimes, 

from diffusive to ballistic. Our method’s results agree with the Stefan-Boltzmann law at the 

ballistic limit and with the Fourier law in the diffusive limit. The LA and TA phonon 

occupations are obtained by our method clarify the physics in each regime.  
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5. ANALYSIS OF THERMAL CONDUCTANCE OF BALLISTIC 
POINT CONTACT OF GA-AS 

In Section 3, we have presented the algorithm and the results of the steady state BTE for 

phonons in silicon to studying the heat transport. In this section, we will follow the same 

procedure to analyze the thermal conductance in ballistic point contacts of GaAs which are 

short enough to achieve quasi-ballistic or even ballistic heat transport.  

Recently, in 2011, Bartsch et al. [Bartsch11] demonstrated the fabrication of air-gap 

heterostructures for GaAs ultra short pillars with a diameter of 100 nm. The lengths of these 

pillars, between GaAs substrate and the capping layers, are 4 nm and 6 nm. They measured a 

thermal conductance reduced by several orders of magnitude with respect to the bulk value in 

GaAs. They explained these results by assuming that the phonon current through the pillars is 

not influenced by phonon scattering, as in perfect ballistic point contacts.  

In this section, by solving numerically the BTE we will compare the results obtained 

depending on whether scattering mechanisms are included or not. Realistic acoustic phonon 

dispersion in GaAs is included. The scattering parameters are tuned to fit the thermal 

conductivity in bulk GaAs. In order to investigate the thermal conductance of nanometer long 

pillars, LA and TA phonon occupations at different temperatures are considered. We show 

that at ambient temperature, some scattering events occur even in 4 nm long pillars. This 

reduces the thermal conductance of pillar as measured in the ref. [Bartsch12], which over-

estimates the ballistic prediction at high temperature.   

5.1. Dispersion relation and scattering parameters 

In this work, we use the sine type approximation for acoustic phonon dispersion in bulk 

GaAs cf. ref. [Strauch90]. The considered dispersion is: 

 ( ) max sin
4s s

qa
qω ω

 
=  

 
,  (2.47) 

where ω is the pulsation, q is wave vector norm, a is the lattice constant and the maximum 

phonon frequency is ωs
max. The values of ωs

max are taken from ref. [Blackemore82].  The 
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optical phonons are neglected because of their low velocities and high activation energies 

[Chen98] as in Bartsch et al.    

For bulk GaAs samples, the RTA is employed. Using the same scattering model proposed 

by Holland as in the Si case, we describe scattering mechanisms as [Holland63]: 

• For LA: ( )2 3 LA, Umklapp+ Umklapppprocesses
NU L

B Tτ ω=  

• For TA: 

o ( )1 4 TA, Normal process
N TN

B Tτ ω− =  

o ( )1 2
1/2/ sinh TA, Umklapp processfor

U TU

B

B
k T

ω
τ ω ω ω−  

= > 
 

ℏ
 

• Point defect scattering: 1 4
i Aτ ω− = . 

• Crystalline boundary scattering: ( )1 /
B g

v L Fτ − = ×  

BL, BTN, BTU, A, L and F are adjusted to match the measured data for bulk samples in ref. 

[Holland64]. Here, the parameter set is: BL = 6.8×10-24 sK-3, BT = 1.98×10-11 K-4, 

BTU = 4.58×10-18 s, A = 1.25×10-44 s-3, L = 0.51×10-2 m and F = 0.68. As seen in Fig. 2.32, the 

fit matches very well the experimental data from 2 K to 300 K. 

 

Fig. 2.32. Thermal conductivity as a function of the temperature in bulk GaAs. Our scattering parameters 

(continued curve). Measurement from ref. [Holland64]. 

The nanopillar is illustrated in Fig. 2.33. The cross-plane phonon-boundary scattering is 

considered diffusive and should be added. Its relaxation time is given by 
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Fig. 2.33. Studied pillar structure and the used coordinates. 

Where the pillar diameter Dpillar = 100 nm [Bartsch12] and vcross-plane is the in-plane group 

velocity defined as 2 2
cross plane gx gy

v v v− = + . The total relaxation time is given by the 

Matthiessen’s rule.  

5.2 Results and discussion 

To discuss the hypotheses of purely ballistic thermal conductance at point contacts in ref. 

[Bartsch12], the thermal conductance per unit area is calculated for several cases: (i) fully 

ballistic and (ii) ballistic in the in-plane direction with cross-plane boundary scattering 

because Dpillar is much longer than Lpillar. Both 4 nm- and 6 nm-long nanopillars are 

investigated. It is clear that the area conductance in the pure ballistic case is the highest and 

the cross-plane boundary scattering in these quite large diameter pillars (D = 100 nm) slightly 

influences the heat conduction. In all cases below 100K all models are equivalent in terms of 

conductance, see Fig. 2.34 (with the same cross section) as the transport is quasi-ballistic and 

length-independent. At higher temperature, the difference can be explained by difference in 

phonon transport regime (diffusive effects rise). The corresponding thermal conductivities 

(normalized by length) are shown in Fig. 2.34b for these pillars. These conductivities are 

much smaller than the GaAs bulk value of 46 Wm-1K-1.  
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v
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(a)  (b)  

Fig. 2.34. (a) Thermal conductance per area in various cases: pure ballistic, ballistic in the in-plane direction 

with the cross-plane boundary scattering and for 4 nm- and 6 nm long pillars with realistic scattering for LA 

and TA. (b) Thermal conductivities in 4nm- and 6nm-long with and without the cross-plane boundary 

scattering. 

To illustrate the ballistic phonon transport, the strongly asymmetric LA and TA phonon 

distribution in 6 nm-long pillars with a temperature difference ∆T = Th - Tc = 20 K are shown 

in Fig. 2.35. 

(a)    

(b)    

Fig. 2.35. Phonon distribution in the 6 nm long pillar with Th and Tc = [60 K, 40 K], [110 K, 90 K] and [310 K, 

290 K], from left to right respectively. The normalization is done with respect to the phonon occupation at the hot 

temperature Th. (a) LA phonon and (b) TA phonon. The arrow is to indicate from hot to cold side. 
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Fig. 2.36 shows the simulated thermal conductance of a single pillar and the data from Ref. 

[Bartsch12]. For a 4 nm-long pillar, the calculated conductance matches very well the 

experimental one. Even at ambient temperature, the ballistic regime is dominant.    

 

Fig. 2.36. Thermal conductance of single pillar: pure ballistic (continued green line), only with cross-plane 

boundary scattering (dashed green line), with scattering in 4 nm (red line) and 6 nm (blue line) long pillars in 

comparing with the experimental data for 4 nm (red circles) and 6 nm (blue triangles) long pillars. 

At ambient temperature [310 K, 290 K], some diffusive effects take place, but the 

conductance remains very close to the ballistic one. 

The experimental data are extracted by adjusting the pillar density to match the computed 

conductance of one single pillar. With the sine-type phonon dispersion and purely ballistic 

model, Bartsch et al. found a pillar density of 6.4 µm2 for 4 nm-long pillars and 3.75 µm2 for 

6 nm-long pillars. Those obtained by using the sine-type phonon dispersion and the quasi-

ballistic model in ref. [Jeong12] give respectively the densities of 3.7 µm2 and 2.5 µm2. In our 

work, in the model with all scattering mechanisms, the extracted densities are 6.4 µm2 for 

4 nm-long pillars and 4.2 µm2 for 6 nm-long pillars. The slight difference is due to the non-

negligible presence of scattering over the distance of 6 nm. 

5.3 Conclusion 

In this section, we showed that our BTE solver using the RTA approximation with sine 

type phonon dispersion and relevant set of scattering parameters could be used successfully to 

predict the thermal conductance in ultrashort GaAs nano-pillars. The ballistic phonon 

transport dominates clearly the thermal conductivity in nanometer-long pillars, additionally 

the thermal conductivity is slightly affected by scattering at temperatures higher than 100 K. 
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6. CONCLUSIONS OF CHAPTER 

In this chapter, a relevant set of scattering parameters and phonon dispersions have been 

introduced to reproduce the thermal conductivity of Si and GaAs bulk material. Normal and 

Umklapp phonon-phonon, impurity and boundary scatterings have been described. Our own 

model of optical phonon’s decay into acoustic phonons was established.  

Besides, an analytic model has been used to fit the thermal conductivity and tune the 

scattering parameters. The phonon-boundary scattering in various device geometries can be 

easily included in our model. Our results capture well the trend of thermal conductivity in 

films and in square and circular cross-section wires. Finally, our analytical model was 

successfully used to fit experimental thermal conductivities in square wires by using realistic 

roughness. 

Next, an original numerical method to solve the stationary BTE for phonons under RTA 

has been presented. All heat transport regimes can be investigated with our versatile 

numerical solver: diffusive, quasi-ballistic and ballistic regimes. Numerical predictions of 

heat conduction coefficient exhibit a very close match with experimental data for silicon and 

GaAs. The in-plane and cross-plane conductivities in Si thin films are also calculated. The 

results are in good agreement with the experimental measurements and other theoretical 

approaches. 
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1. GENERATION OF PHONON 

To simulate the electronic transport in Silicon, an analytic band approximation is used for 

the electron dispersion in this version of our simulator MONACO, as described in chapter 1.  

1.1. Electron – phonon scattering 

The electron-phonon scattering is separated into two of type interactions: intra-valley and 

inter-valley. In this work, we assume intra-valley scattering to be elastic (i.e. without energy 

exchange), while inter-valley phonon scattering is considered to be inelastic, i.e. electrons 

gain or loss the energy of the phonon exchanged at each event depending on whether the 

phonon is absorbed or emitted.   

1.1.1. Intra-valley scattering 

If the final and initial states, electrons are in the same band minimum and the energy 

exchange between two electron states ∆ε is very small in comparison with the mean electron 

energy 
k

ε  at room temperature, we can neglect this energy exchange and consider this 

scattering mechanism to be elastic. 

We take the isotropic approximation for the deformation potential Dac [Conwell67] and the 

average longitudinal velocity ul corresponding to the spherical symmetry. The scattering rate 

writes [HDRDollfus99]: 

 ( )
3/2 27/2

4 22
B D ac

ac

p

k Tm Dq

v
λ ε ε

ρπ
=

ℏ
.  (3.1) 

where is kB the Boltzmann constant, 23
0D t lm m m m=  is the effective mass in the final 

valley, vp is the longitudinal (or transverse) wave velocity, ρ is the mass density, ε is the 

electron kinetic energy.  
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1.1.2. Inter-valley scattering 

Because of the location of the conduction-band minima in the Brillouin zone, there are two 

types of inter-valley transitions: scattering between valleys of axes perpendicular to each 

other (f-process) and between valleys on the same axis (g-process). The full spectrum of 

intervalley phonons has been established by Asche et Sarbei [Asche81]. 

Since 100
0 0.855k G= ×
� �

, both processes lead to a final k
�

 outside the initial Brillouin zone, i.e. 

they are Umklapp processes. Taking the Umklapp reciprocal lattice vectors 2 / 2 0 0
g

k aπ=
�

 

and 2 / 1 1 1fk aπ=
�

 yields 2 / 0.29 0 0
g

q aπ=
�  and 2 / 0.145 0.145 1

f
q aπ=
�

, respectively. 

The phonon involved in g-scattering has its wave vector 
g

q
�

 along a direction [100] and the 

phonon involved in f-scattering has its wave vector 
f

k
�

 about 11° off the direction [100] 

[Long60].  

1.1.2a. Zero-order scattering 

In most cases the transition matrix element is proportional to Div = D0, where D0 has the 

dimension of energy per unit of length and is independent of the phonon wave vector. The 

corresponding zero-order scattering rate writes [HDRDollfus99]: 

 
( )

( ) ( )

3/2 23/2
0

0 2

1
2 22

1 1 2

iv D
iv p iv iv

iv

iv iv

Z m Dq i
N i

i i

λ ε ε ω ε
ρ ωπ

α ε ω ε α ε ω ε

 
= + − + + ∆  

× + + + ∆ + + + ∆  

ℏ
ℏ ℏ

ℏ ℏ

,  (3.2) 

where i =1 for one absorption, i = -1 for one emission, and Np is the phonon occupation. 

Under equilibrium conditions, this term is governed by the Bose-Einstein statistic. Ziv is the 

number of available final valleys (4 for f-type and 1 for g-type scattering). ε is the energy of 

final state and ∆εiv is the energy difference between initial and final valleys. 

Some zero-order intervalley processes with low-energy phonons are forbidden by 

selections rules [Streitwolf70] [Lax72]. However, many works have shown that such 

intervalley processes with these phonons actually occur [Long60] [Canali75] [Ferry76] 

[Jørgensen78]. To reconcile these points, it has been suggested that these processes may be 

described by a transition matrix element in first order of the phonon wave vector [Ferry76]. 

We follow this approach in MONACO. 
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In this case, the transition matrix element is proportional to Div = D1×q, where D1 has 

energy unit and q is the phonon wave vector. The first-order scattering writes [HDRPhi99]: 

( ) ( ) ( ) ( ) ( )
5/2 25/2

1
1 4

2 1
1 2 ' ' 1 ' ' 1 ' 1

2 2
iv D

iv p

iv

Z m Dq i
Nλ ε αε ε αε ε αε ε αε

π ρ ω

 
= + − × + + + + +    ℏ ℏ

,  (3.3) 

where '
iv iviε ε ω ε= + + ∆ℏ . (i=1 for an absorption, i=-1 for an emission). 

All points of the iso-energy surface in the final ellipsoid are equally probable.  

Finally, the six ∆-∆ intervalley phonons identified in [Asche81] are taken into account 

[HDRDollfus99]. The energy of these phonons is listed in Table 3.1 together with the 

corresponding deformation potentials [HDRDollfus99]. Note that the set of deformation 

potentials is empirically determined to fit experimental results and is not unique: a wide range 

of values have been reported over the past four decades.  

 

Transition Symbol Value Units 

g1 (g-TA) 
ωℏ  

D1 

11.4 
3.0 

meV 
eV 

g2 (g-LA) 
ωℏ  

D1 

18.8 
3.0 

meV 
eV 

g3 (g-LO) 
ωℏ  

D0 

63.2 
3.4 

meV 
108 eV/cm 

f1 (f-TA) 
ωℏ  

D1 

21.9 
3.0 

meV 
eV 

f2 (f-LA) 
ωℏ  

D0 

46.3 
3.4 

meV 
108 eV/cm 

f3 (f-TO) 
ωℏ  

D0 

59.1 
3.4 

meV 
108 eV/cm 

Table 3.1. Characteristics of electrons intervalley ∆-∆ transitions in Si used in this work [HDRPhi99]. 

Our phonon energies set is illustrated in Fig. 3.1a. In the simulation, when the type of inter-

valley scattering mechanism is selected, the state of the electron in the final valley is chosen 

randomly.  
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1.1.2b. Phonon dispersion 

As in traditional MC model, the phonon dispersions used to efficiently compute the 

scattering rates are wave vector independent as seen in Fig. 3.1a and are reported in Table 3.1. 

The phonon wave vector involved in the transition can be calculated as 'q k k= −
� ��

, where 

k
�

and 'k
�

 are the electron wave vector in the initial and final states, respectively.  

In this work, the phonon energy is afterward computed by using the previous wave vector 

'q k k= −
� ��

 but by considering in the first Brillouin zone the quadratic dispersion ℏω(q) 

plotted in Fig. 3.1b (cf. Eq. 2.8). This procedure is applied for both acoustic and optical 

phonons. The resulting phonon energies are spread around the phonon energy implemented in 

the MC code. This approach does not intrinsically ensure energy conservation between 

electrons and phonons; this point must be checked later. 

 
Fig.3.1. (a) Intervalley phonon energies used in MONACO. (b) Quadratic and isotropic phonon dispersion 

proposed by Pop et al. [PopJAP04]. Dashed lines indicate the energy and wave vector of the 6 types of 

scattering. 

1.2. Phonon generation in bulk material 

1.2.1. Monte Carlo generation vs. Joule effect 

Here, simulations of electron transport in Silicon bulk material under uniform field are 

performed to compute the heat dissipation. During the simulation, all absorbed and emitted 

phonons are recorded. The net emitted phonon number is the difference between the numbers 

of emitted and absorbed phonons.  
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The heat generation rate per unit volume for each mode can be expressed as 

 ( ) ( ), , ,
e p em ab

q s q s q s

sim r

G r n n
N dt

ω −
= −� � �

�

ℏ�
 (W/cm3),  (3.4) 

where 
e pω −ℏ  is the energy of the phonon involved in the scattering process, Nsim is the 

number of simulated time steps, dt is the time step duration and ,
em

q sn�  and ,
ab

q s
n�  correspond to 

the density of emitted and absorbed phonons of mode s and wave vector q
�

, respectively. 

Then, the total heat generation rate is obtained by summing the contribution of all modes as 

 ( ) ( ),
,

q s

q s

G r G r=∑ �

�

� �
.  (3.5) 

Fig. 3.2 illustrates the generated phonon spectra under low field (5 kV/cm) and high field 

(50 kV/cm).  

(a)      (b)  

Fig. 3.2. Net density of emitted phonon in Si bulk under uniform field of (a) 5kV/cm and (b) 50kV/cm. 

The number of acoustic phonons generated at low energy via intravalley process is small 

because the density of state of these phonons vanishes near the centre of Brillouin zone. 

Obviously, the strongest peaks of these spectra occur due to the g-type intervalley phonons at 

30% of the BZ edge and to the f-type phonons at BZ edge. The relative magnitude of these 

peaks depends obviously on the choice of deformation potentials. 

Fig. 3.3 shows the integrated net energy dissipations of each branch at various electric 

fields. With the set of deformation potential used here, the most important modes involved in 

Net density of emitted phonons (1/cm3/s) 

E  

(meV) 
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the dissipation process are LA and TO, up to more than 40% for all electric field. In addition, 

in steady-state regime, the sum of the four phonon mode contributions corresponds exactly to 

the Joule heating calculated as the scalar product of the current density J
�

 and the electric 

field E
�

 within the drift-diffusion approach. Thus, energy conservation is conserved in spite of 

our non-rigorous approach of the phonon dispersion. 

 
Fig. 3.3. Heat dissipation per mode as a function of electric field (TA: green line and circles, LA: blue line 

and stars, LO: red purple line and triangles, and TO: light blue line and diamonds) and comparison of total MC 

heat (purple symbols) with Joule effect (top red line). 

1.2.2. Heat generation in DG-MOSFETs 

Fig. 3.4 shows a 2D cross-section of a Si DG-MOSFET that has been used extensively in 

previous works based on the e-MC method [StMartin06, StMartin-Thesis05]. The device 

consists of three regions: the two access regions (source/channel) and the channel one. The 

source and drain extensions are doped to 5×1019 cm-3. The source length is 50 nm, while the 

drain length is 150 nm. They are separated by a 20 nm lightly-doped (1015 cm-3) channel 

region. The thickness of the Si-film is 20 nm. The dissymmetry of the device will be 

explained afterward.  

Fig. 3.4. Simulated device with three regions: source-channel-drain, which are doped uniformly of 5×1019cm-3, 

1015cm-3 and 5×1019cm-3, respectively. 

TsiO2 = 1.2nm 

Tsi =20nm 

50nm 20nm 150nm 

      5x10
19

cm
-3 10

15
 cm

-3 5x10
19
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The electrical characteristics as potential energy (bottom of conduction-band) and effective 

electron temperature of electrons along this device at the steady-state for Vds = 0.5 V are 

shown in Fig. 3.5. 

  
Fig. 3.5. Electrical characteristics in DG-MOSFET. (a) Potential energy (b) Effective electron temperature for 

various Vds at Vgs = 0.5 V. 

The net phonon generation rates in this device for each phonon mode can be extracted 

from MONACO simulations. To extract the net number of generated phonons during the 

electron transport, simulations of 1 picosecond are made for various bias conditions Vgs and 

Vds. The phonon scattering rate for each phonon branch obviously depends on these two 

external bias that control the distribution of the electric field in the device.  

   

Fig. 3.6. Electron-phonon scattering-induced phonon generation rate per mode along the device for Vgs = 0.5 V 

and Vds = 0.5 V (left) and Vds = 1.5 V (right).  

As seen in Fig. 3.6, the stronger electric field is (Vds or/and Vg are more important), the 

more phonons are generated and the more is noticeably the “hot spot” point. For all biases, 

LA is the most frequently generated phonon, followed by TO. At low field (Vds = 0.5 V), the 

TA and LO scattering rates are close, while under higher field (Vds = 1.5 V), at the hotspot, TA 

scattering is more frequent than LO. 
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Obviously, for a given gate potential Vgs, the power density resulting from the total 

electron-phonon scattering rate depends on Vds. In Fig. 3.7, with Vgs = 0.5 V, nearly all the 

power generation in this device structure occurs within the drain access, which is a common 

characteristic for transistor operating in the quasi-ballistic transport. In order to ensure the 

energy conservation in the device, the drain has been extended to allow the full electron 

energy relaxation within the drain, before reaching the contact. That is the reason behind the 

structure dissymmetry.  

  

Fig. 3.7. (a) Total phonon generation rate vs. Vds for Vgs = 0.5 V. (b) Power density for various Vds at Vgs = 0.5 V. 

Fig. 3.8 shows the spectrum of the energy distribution of the net phonon energy 

generation rate along the device with the bias conditions of Vgs = 0.5 V and Vds = 1.5 V. Under 

high field, electrons can reach high energy and, then experience intervalley scattering. The 

phonon wave vectors resulting are in quite large range. As described above, the phonon 

energy is obtained here by using the quadratic dispersion, so the phonon are extended over a 

quite large range energy in the hot spot region. 

 
Fig. 3.8. Energy distribution of phonon energy generation rate along the device with Vgs = 0.5 V and 

Vds = 1.5 V. 
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Now, we compare the heat dissipation obtained in this short device with the Joule heating 

extracted from the conventional macroscopic law J E⋅
� �

. In what follows, Joule heating or 

Joule effect will refer to the macroscopic quantities calculated through the product J E⋅
� �

, as 

opposed to the quantities calculated from the MC generation of phonons. The comparison of 

these power densities is shown in Fig. 3.9a for Vgs = 0.5 V and Vds = 0.5 V, Vds = 1.5 V.  

 

(a)  (b)  

(c)  (d)  

Fig. 3.9. (a,b) MC power density and Joule effect at Vgs = 0.5 V, Vds = 0.5 V (a) and Vds = 1.5 V (b).  (c)  Drain 

current as a function of Vds for Vgs = 0.3 V (blue line), Vgs = 0.5 V (green line) and Vgs = 0.7 V. (d) Comparison 

between total MC power density (lines) and integrated Joule heating (symbols) at various bias conditions. 

The discrepancy between the macroscopic and MC heat generation profiles is clear. While 

the macroscopic calculation leads to a maximum of dissipated heat at the drain-end of the 

channel where the field is high, the MC simulation shows that electrons lose their energies 

gradually in the drain extension after having been accelerated by the electric field in the 

channel. Therefore, the peak heating rate predicted by MC simulation occurs far into the drain 

extension, in contrast with the macroscopic prediction. For the sake of information, some 

drain current characteristics are shown in Fig. 3.9c, while the corresponding total generated 
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power density is plotted in Fig. 3.9d. Interestingly, Fig. 3.9d shows that even when non-

equilibrium transport is strong the total MC heating and Joule heating are very close, i.e. the 

total electronic energy given gained in the electric field during the transport and transformed 

into phononic energy is the same in both cases. This means that the total energy in the system 

under simulation by our simulator is conserved. However, the MC heat generation model is 

clearly essential for accurate prediction of the mixture of electrons and phonons inside the 

drain “hot spot,” which will be used in the next section as an input to a phonon transport 

model (p-BTE) at the sub-micron scale. 

2. PHONON TRANSPORT IN 20NM-THICKNESS FILM DG-
MOSFETs 

In this Section, by using inputs from e-MC simulation, we investigate the thermal transport 

in the DG-MOSFET with the specific thickness of 20 nm as illustrated in Fig. 3.4 by solving 

the steady-state BTE described in Chapter 2 (Section 3). 

This section is organized as follows: First, the evolution of the thermal conductivity of 

20 nm-thickness films is extracted thanks to the p-BTE. Second, using this thermal 

conductivity evolution (for the evaluation of Tscatt, see chapter 2) and including the power 

dissipation and the LTO decay in the steady-state BTE, the temperature of the four phonon 

modes and also the effective temperature are obtained. Next, by comparing these temperatures 

and the diffusion temperature, we point out the limit of the macroscopic model, particularly at 

the hotspot. Additionally, we investigate the impact of Si-SiO2 interface roughness on thermal 

transport in the device. Finally, the non-equilibrium phonon transport is evidenced.  

2.1. Thermal conductivity of 20 nm-thick Si films 

To inject consistent thermal conductivities as a function of temperature in the BTE model 

(evaluation of Tscatt, see Chapter 2, Section 3), the in-plane thermal conductivity of 20 nm-

thick film is calculated preliminary by solving the pBTE including the roughness of the 

interface Si-SiO2, as described in Chapter 2. In Fig. 3.10, the evolutions of the thermal 

conductivity with temperature from 300K to 800K for several roughness parameters are 

shown.  
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Fig. 3.10. Evolution of the thermal conductivity as a function of temperature in Si films of thickness 20 nm. 

The calculated conductivities are in symbols of the same colors as fitting curves C T α×  for several roughness 

parameters: ∆ = 3.5 Å (blue), 5 Å (green), 10 Å (purple) and 30 Å (red).  

As expected, when increasing the temperature and the roughness, the thermal conductivity 

decreases. We suppose that the conductivity variation as a function of temperature is in the 

formC T
α× , like in the bulk case (see numerical BTE results of chapter 2). These evolution 

curves are illustrated in Fig. 3.10 with the calculated thermal conductivities in symbols. The 

values of C and α for each roughness are reported in table 3.2. 

Parameters\Roughness 3.5Å 5Å 10Å 20Å 30Å 

C (x104) 5.7693 4.1645 2.3766 1.6253 1.7432 

α -1.2053 -1.1689 -1.1006 -1.0511 -1.0684 

Table 3.2. Parameters of the function C T α×  used to fit the conductivity-temperature pBTE results for different 

roughness parameters. 

2.2. Heat transport: Results and discussions 

In this sub-section, we investigate the heat transport in the above DG-MOSFET structure at 

various bias conditions and with different roughness parameters. As shown in sub-Section 

2.1, the thermal conductivity depends not only on the temperature but also on the roughness at 

the oxide-semiconductor interface that generates an additional component to the phonon-

boundary scattering rate to be used to solve the pBTE in thin devices (see chapter 2, section 

2.4.5). To solve the diffusive equation, the conductivity - temperature relations in the form 

C×Tα determined in the previous sub-section for different roughness parameters are used.  
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First, we analyze the behavior of the effective temperature and of the temperature of four 

phonon modes (as defined in chapter 2, section 3.5). The temperature profiles in the DG-

MOSFET under the bias condition Vgs = 0.5 V, Vds = 1.2 V with the roughness ∆ = 30 Å are 

displayed in Fig. 3.11. Let us to point out the difference between phonon modes and also 

between the effective and diffusive (Fourier) temperatures, a zoom of the hotspot is also 

presented in Fig. 3.11b. 

 (a)  (b)  

Fig. 3.11. (a)Temperature profiles along the DG-MOSFET under the bias condition Vgs = 0.5 V, Vds = 1.2 V 

with roughness ∆ = 30 A°. (b) Zoom to point out the phonon-mode-temperature in the hotspot: LA (blue 

dashed line), TA (green dashed line), LO (azure dashed line), TO (purple dashed line); diffusion (scattering) 

temperature TFourier (blue solid line) and effective temperature Teff (red solid line). The same colors are used in 

the two graphs.  

The phonon-modes and effective temperatures in this out of equilibrium regime are 

different in the channel-drain region where many phonons are generated by hot electrons. The 

LTO temperatures are slightly higher than the diffusion temperature in this region. However, 

the LTA phonon temperatures are very high because these phonons are generated 

simultaneously by electron – phonon scattering and by optical phonon decay, the latter 

mechanism being an important source of LTA phonons. Note that with our set of deformation 

potentials, the power density of LTO is up to about 50% of the total one (see Fig. 3.3). With 

the hypothesis that at steady-state, all LTO phonons decay into LA and TA phonons, the 

density of LA and TA phonons produced by this process is comparable to the density of LTO 

phonons (see Chapter 2, sub-section 2.3). In addition, the number of LTA phonons generated 

by LTO phonon decay is equally distributed between LA modes and TA modes, but at a given 

temperature the equilibrium phonon occupation number of TA modes is smaller than that of 

LA modes. Hence, the impact of LTO decay is stronger for TA phonons than for LA phonons, 
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which manifests through the TA temperature that is much higher than the LA temperature. 

This is the origin of the strong enhancement of the TA temperature in the hot spot region. The 

diffusive model underestimates the temperature (482.0 K at X = 91 nm) in the hotspot region 

compared to the effective temperature obtained by the BTE model (491.3 K at X = 86 nm). 

Along the transistor, this difference is visible in the zone from 70 nm (drain-end of the 

channel) to 95 nm where most of the power dissipation is produced (see Fig. 3.9). 

Discontinuities of temperature near the isothermal boundaries are visible in Fig. 3.11a. 

These discontinuities were also seen in the Si bars (see Chapter 2, Section 4.7). The shorter 

the device is, the stronger the discontinuities at the boundaries are. This is in agreement with 

the work of Wong et al [Wong11]. They used Monte Carlo simulation for the phonon 

transport in silicon structures with heat generation in Gaussian form for films of length 

ranging from 10 nm to 5 µm and with a constant temperature of 300 K applied at both ends. 

They showed that the discontinuity was increased when the film was reduced below 100 nm 

due to the decreasing of thermal conductance.  

(a)  (b)  

Fig. 3.12. (a) Bias dependence of temperature discontinuities at two ends and of temperature profiles with 

roughness ∆ = 30 Å and Vg = 0.5 V. Temperatures TFourier and Teff are plotted in dashed and solid lines, 

respectively at Vds = 0.5 V (blue curves), Vds = 1.0 V (green curves) and Vds = 1.2 V (red curves). (b) Zoom at the 

right contact. 

Fig. 3.12 shows that these discontinuities are increased when increasing the drain bias, i.e 

when increasing the power dissipation. At the source contact, the discontinuity of the 

effective temperature reaches 3.1 K at Vds = 0.5 V, 7.8 K at Vds = 1.0 V and 9.7 K at 

Vds = 1.2 V. In addition, at high Vds, the shift between the two temperatures increases in the 

hotspot.  
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Second, we analyze the heat flux which is expressed by Eq. 2.38 (see chapter 2, section 

4.6). Here, we rewrite the flux expression in the form: 

 ( ) ( ) ( ) ( ), ,, , ,
s s x s x

q

J r q r v q r N q rω= × ×∑
�

� � � � � � �
ℏ  (2.38-chapter2) 

Where ( ), ,s xv q r
� �

 and ( ),s xN q
�

 are, respectively, the group velocity and the phonon density 

of the mode s with angular frequency ω at position x. ħ is the reduced Planck constant. The 

convention of group velocity sign is as follows: if the phonon travels from source (left side) to 

drain (right side), ( ),s xv q
�

 
takes the positive sign, and it takes the negative sign if the phonon 

comes from drain to source. The heat flux profile which corresponds to the above case 

(Vgs = 0.5 V, Vds = 1.2 V and ∆ = 30 Å) is shown in Fig. 3.13. 

 
Fig. 3.13. Heat flux along the DG-MOSFET of each phonon mode (LA: blue line, TA: green line, LO : pink 

line and TO: azure line) and the heat flux total (red line). 

According to the expression (Eq. 1.41) of the thermal flux, these curves behaves like the 

gradient of the temperature (-dT/dx). Due to the fixed temperature of 300K at two ends and 

the isotropic hypothesis of phonon distribution, the heat fluxes at these points are zeros. When 

phonons reach the boundaries, they take immediately the velocity values at 300K. Therefore, 

the thermal flux falls very quickly to the zero value. In our model, the contribution of LO and 

TO modes to the heat transport is included by taking into account their group velocity. Hence, 

their fluxes are much smaller than that of the acoustic modes. Since the group velocity of LA 

mode is the highest, the heat carried by this mode is the most important.  

Third, we investigate the impact of roughness on thermal transport. In Fig. 3.14, the power 

density is represented to highlight the relation between this quantity and the effective 

temperature. The total power density extracted from MC is shown (same as Fig. 3.9d). Three 
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roughnesses of 3.5 Å, 10 Å and 30 Å are compared. When increasing the roughness, the heat 

conduction is reduced, so that the highest hotspot temperature is observed in the roughest Si-

SiO2 interface case. For Vgs = 0.3 V (power density of about 1014 W/cm3), the difference 

between the maximal values of effective temperature (position Xmax) between the two cases of 

roughness 30 Å and 3.5 Å is 14.3 K (346 K vs. 332 K, respectively). For higher Vgs values of 

0.5 V and 0.7 V (power density in the order of 1015 W/cm3), the difference between 3.5 Å and 

30 Å cases reaches 47.9 K and 97.2 K, respectively. Hence, the roughness effect plays a 

significant role at high power densities.  

(a)  (b)  

(c)  (d)  
Fig. 3.14. Impact of roughness on the heat transport in the 20-nm-thick-Si-DG-MOSFET. (a) Total power 

density extracted from MC simulation (same as Fig. 3.9.d). (b,c,d) Effective temperature Teff in solid lines, and 

“Fourier” temperatures TFourier for different roughness parameters ∆ and bias conditions. 

Finally, we discuss the non-equilibrium aspects of phonon transport by investigating the 

non-symmetric phonon density distributions at the position Xmax = 86 nm, i.e. in the hot spot, 

for Vgs = 0.5 V, Vds = 1.2 V and ∆ = 30Å. We consider, successively, the cases of LA phonons, 

TA phonons, LO phonons and TO phonons in Fig. 3.15, Fig. 3.16, Fig. 3.17 and Fig. 3.18, 

respectively.  
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Here, to have the distribution as a function of energy, we have defined the phonon density 

distribution. As the phonon distribution in an interval of frequency [ω, ω+dω] depends on the 

width of this interval, following the Eq. 2.16 in chapter 2: 

 ( ) ( )
( ) ( )( )
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3

1 1
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 (Eq. 2.16) 

The phonon density distribution is defined as: 
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Hence, this density distribution is unchanged with the interval dω.  

In Fig. 3.15a we plot the density excess of LA phonon density distribution deduced from 

the eMC results.  

(a)  (b)  

(c)  (d)  

Fig. 3.15. Density distributions of LA phonons at the maximal temperature position Xmax for Vgs = 0.5 V, 

Vds = 1.2 V. (a) Distributions deduced from the eMC results with both contributions of e-ph scattering and 

optical phonon decay. The inset is the zoom from 38meV to 51meV. (b) Distribution obtained after solving the 

pBTE (red solid line), compared to the equilibrium density distribution at Fourier, effective and LA mode 

temperature. (c) Fraction (in %) of excess phonon distribution (from eMC) with respect to the equilibrium 

distribution at T = Teff. (d) Difference between the pBTE distribution and the equilibrium distributions 

previously mentioned in (b). 
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We separate the distribution in two parts, one corresponding to the LA phonons due to 

electron-phonon scattering, and the other are corresponding to LA phonons resulting from 

LTO phonon decay (see sub-Section 2.3). The latter takes the form of a peak at E = 43 meV 

(see also Fig. 2.4, chapter II) while the former is characterized by a peak at E = 50 meV (see 

also Fig. 3.2). It appears that the contribution of LTO decay to the excess density distribution 

of LA phonons is more important than that of electron-LA phonon scattering. The relative 

excess due to these two mechanisms are about 15% and 8%, respectively (Fig. 3.15c) with 

respect to the equilibrium distribution at T = Teff determined after solving the pBTE (plotted in 

Fig. 3.15b). The total phonon density distribution of LA phonons obtained after solving the 

pBTE is plotted in Fig. 3.15b (red line). It is compared to the equilibrium distributions at the 

Fourier temperature (Tdiff = 480.7 K), at the effective temperature (Teff = 491.3 K) and at the 

LA mode temperature (TLA = 501.5 K). The accumulation of LA phonons around 43 meV and 

50 meV is again visible, and is even clearer in Fig. 3.15d in which we plot the difference 

between the pBTE result and the one of all these equilibrium distributions. Due to the fitting 

procedure used to extract the temperature, the integration of the phonon density distribution 

obtained from the BTE is equal to the equilibrium distribution at temperature TLA. Hence, to 

compensate the excess for energy higher than 43 meV, the BTE distribution at low energy is 

lower than the equilibrium one.  

The same quantities are plotted in Fig. 3.16 for the TA mode. There are two sources of TA 

phonon generation: the electron-TA phonon scattering which creates phonons mainly in the 

range 15 meV-20 meV, and the LTO decay (see Eq. 2.54 in chapter 2) which generates TA 

phonons between 17 meV and 20 meV (see Figs. 3.16a and 3.16c). Both resulting phonon 

distributions have a main peak at 20 meV. The total TA phonon excesses reaches to 35% at 

20 meV. It explains the strong enhancement of the TA mode temperature in the hot spot (see 

Fig. 3.11). 
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(a)  

(b) 

 

(c)  (d)  

Fig. 3.16. Density distributions of TA phonons at the maximal temperature position Xmax for Vgs = 0.5 V, 

Vds = 1.2 V. (a) Distributions deduced from the eMC results with both contributions of e-ph scattering and 

optical phonon decay. (b) Distribution obtained after solving the pBTE (red solid line), compared to the 

equilibrium density distribution at Fourier, effective and TA mode temperature. (c) Fraction (in %) of excess 

phonon distribution (from eMC) with respect to the equilibrium distribution at T = Teff. (d) Difference between 

the pBTE distribution and the equilibrium distributions previously mentioned in (b). 

 

For LO and TO modes, there is only one generation term resulting from electron-phonon 

scattering (see Eq. 2.53-chapter 2). The LO mode generation and transport are analyzed in 

Fig. 3.17. As previously seen in Fig. 3.3, the excess of LO phonons contributes only to about 

10% of the total dissipated power. Additionally, most of LO phonons are generated in the 

energy range 60 meV – 65 meV, where the equilibrium phonon distribution is small (see 

Fig. 3.17b). Therefore, though the LO phonon excess reaches about 15%, the LO mode 

temperature remains close to the Fourier temperature. 
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(a)   

(b) 

 

(c)  (d)  

Fig. 3.17. Density distributions of LO phonons at the maximal temperature position Xmax for Vgs = 0.5 V, 

Vds = 1.2 V. (a) Distributions deduced from the eMC simulation via e-ph scattering. (b) Distribution obtained 

after solving the pBTE (red solid line), compared to the equilibrium density distribution at Fourier, effective 

and LO mode temperature. (c) Fraction (in %) of excess phonon distribution (from eMC) with respect to the 

equilibrium distribution at T = Teff. (d) Difference between the pBTE distribution and the equilibrium 

distributions previously mentioned in (b). 

 

The TO mode transport is analyzed in Fig. 3.18. Regarding the TO mode, it is worth noting 

that the excess generated phonon distribution is limited to 4%. Hence, though this f-type 

generation occurs around 57 meV, at which the TO phonon distribution is high, its effect on 

the temperature is small and the TO mode temperature remains close to the Fourier 

temperature Tdiff, as we have seen previously in Fig. 3.11. 
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(a)  

(b) 

 

(c)  (d)  

Fig. 3.18. Density distributions of TO phonons at the maximal temperature position Xmax for Vgs = 0.5 V, 

Vds = 1.2 V. (a) Distributions deduced from the eMC simulation via e-ph scattering. (b) Distribution obtained 

after solving the pBTE (red solid line), compared to the equilibrium density distribution at Fourier, effective 

and TO mode temperature. (c) Fraction (in %) of excess phonon distribution (from eMC) with respect to the 

equilibrium distribution at T = Teff. (d) Difference between the pBTE distribution and the equilibrium 

distributions previously mentioned in (b). 
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3. SELF-HEATING IN DG-MOSFET WITH COUPLED NON-
EQUILIBRIUM ELECTRON-PHONON TRANSPORT 

3.1. Description of coupled electron-phonon transport simulation 

To model the effects of self-heating in transistors, the electron and phonon transport must 

be coupled together. The coupled non-equilibrium electron-phonon transport in the studied 

DG-MOSFETs and its effects on the transport of each type of particle will be described in this 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19. Schema of the coupled electro-thermal simulation. 

Start Teff = 300K 

Initial conditions: potential, field, positions, velocities of 
carriers 

Tcell = Teff 

eMC procedures with electron scattering in each cell i 
at temperature T=Tcell(i) 

Convergence of electron transport with Tcell: electron 
density, velocity and drain current 

Extraction phonon generated by electron in steady state 
with Tcell: net generation rate of phonon per mode 

pBTE solver 

Teff 

Check convergence of electro-thermal simulation: comparison of the Teff, 
potential, velocity and energy of carrier, generation rate, drain current of 

this loop and the previous loop. 

End of electro-thermal simulation 

Yes 

No 
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The schema of the procedure of the coupling electron and phonon transport simulation is 

illustrated in Fig. 3.19. The coupled simulation begins with an isothermal (300K) e-MC 

simulation (open loop). Net phonon generation rates as a function of position and the phonon 

frequency are extracted from e-MC and are used as inputs for the p-BTE solver that gives us 

the phonon temperatures. The resulting effective temperature is then re-injected in the e-MC 

simulator. As seen in the previous Section, each mode has its own temperature and the 

phonon distribution of each mode can be quite well approximated by the equilibrium 

distribution at temperature T = Teff. Hence, we make this approximation for the lattice 

temperature. All electron scattering rates, as electron-phonon and electron-impurity scattering 

rates (see in ref. [Aubry-Fortuna04]), are re-calculated in each cell according to the position-

dependent Teff. Thus, the MC simulation is performed by taking into account the temperature 

effect. The electronic transport is modified through this field of temperature. Once the system 

reaches the stationary regime, the net phonon generation rates are extracted again and sent to 

the p-BTE solver. This two-step process, that successively includes an electron and a phonon 

transport simulation, is called a loop. After each loop, the potential, the drain current, the 

average velocity, the average energy of electrons and also the phonon generation rates are 

examined and compared with the previous loops until the convergence is reached. We have 

been empirically that by using this procedure, the convergence is reached after only three 

loops.  

Then, the impact of self-heating on the electron transport in the 20 nm DG-MOSFET will 

be analyzed, through e.g. the drain current, the scattering location and the ballisticity. 

Regarding the effects on phonon transport, we will analyze mainly the temperature profiles. 

Finally, the effect of changing the roughness parameters (from 3.5Å to 30Å) in the phonon 

scattering rates will be analyzed too. 
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3.2. Convergence and influence of coupled non-equilibrium electron-

phonon transport on the electronic and thermal transport 

Open loop 

 

1st loop 

  
4th loop 

 

2nd loop 

 

Fig. 3.20. Illustration of the coupled electron-phonon transport process in 20 channel length DG-MOSFET : net 

phonon generation rate and Fourier, effective temperature of each loop. 

First, we analyze the convergence through the evolution of the temperature and the phonon 

generation rates after each loop for the 20 nm long channel DG-MOSFET. The results are 

summarized in Fig. 3.20. 

From the open loop to the 1st loop, the phonon generation rates, or in other words, the 

electron-phonon scattering rates, are increased because of the temperature effect (see Eqs. 3.3 

and 3.4). Then, from the 1st to the last loop (4th loop), these scattering rates are almost stable. 

Hence, the lattice temperature from the 3rd and 4th loop remains almost unchanged. In order to 

see clearly the convergence of the temperature, the Fourier and effective temperatures at 

Vgs = 0.5 V, Vds = 1.0 V are put together in Fig. 3.21a. The corresponding thermal fluxes of 

each phonon mode and the total fluxes in the 1st and 4th (last) loop are shown in Fig. 3.21b.  
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(a)  (b)  

Fig.3.21. (a) Fourier (dashed lines) and effective (continued curves) temperatures along the device as a 

function of loop’s number. (b) Thermal flux of each phonon mode and the total fluxes in the 1st and 4th loop. 

In the coupled simulation, although the hot spot still exists, its magnitude is smaller when 

the self-heating is included. It induces smaller temperatures in the hotspot: the maximal value 

of the effective temperature in the 1st loop is 440.9 K, while this maximal value in the last 

loop (convergence value) is only 433.4 K. In addition, the thermal fluxes of each phonon 

mode and the total one in the last loop slightly decrease in comparison with the ones obtained 

in the open loop. This is due to the reduced temperatures of the 4th loop of the coupled 

simulation in comparison with the isothermal simulation (open-loop).  

It is interesting to examine also the evolution of the potential. Fig. 3.22 displays the 

potential profile at Vgs = 0.5 V and Vds = 1.0 V along the source-drain direction after different 

loops.  

 

Fig. 3.22. Potential profile along the DGMOS for open loop (blue curve), 1st loop (green curve) and the 

last (4th) loop (red curve) at Vgs = 0.5 V, Vds = 1.0 V. 
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The electrical resistances of the two accesses are increased in self consistent simulations 

due to the temperature increase in these regions. The inset shows the zoom of this potential 

from 0 nm to 60 nm (mid-channel). As the temperature rises, the electrical resistance 

increases, the potential is modified. We can see that a good convergence is reached after the 

first loop. 

In addition, because of the raised of temperatures throughout the transistor, electrons are 

slowed down by scattering. To identify the most important scattering mechanisms, the 

number of electron interactions with impurities, intravalley acoustic and inter-valley phonons 

and roughness have been collected during 10,000 iterations of e-MC simulation in two cases: 

isothermal and electro-thermal case. In Fig. 3.23, we plot these interaction numbers in 

arbitrary units along the channel for Vgs = 0.5 V and Vds = 1.0 V. The inter-valley interaction is 

the most increased scattering type. In particular, at the channel drain-end, this scattering type 

in coupled simulation is enhanced by 45.6 % in comparison with the case of isothermal 

simulation. 

 
Fig. 3.23. Distribution of interaction number along the channel as a function of interaction types in DG-

MOSFET at Vg=0.5V, Vds=1.0V in both isothermal and electro-thermal case. 

The increased scattering numbers along the device reduce the fraction of ballistic electrons 

that is quantified by the intrinsic ballisticity Bint. Bint corresponds to the percentage of purely 

ballistic electrons at the drain-end of the channel. The definition and the counting procedure 

in e-MC simulation are well detailed in ref. [StMartin04],[StMartin05]. In Fig. 3.24a, we plot 

the evolution of the percentage of ballistic electrons along the channel in two simulation cases 
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for the biases Vgs = 0.5 V, Vds = 0.5 V and Vds = 1.0 V. The reduction of intrinsic ballisticity 

Bint in coupled simulation for different biases Vds is displayed in Fig. 3.24b. 

 

Fig. 3.24. (a) Evolution of the fraction of ballistic electrons along the channel in DGMOS of gate length 

20 nm and TSi = 20 nm at Vgs = 0.5 V, Vds = 0.5 V and 1.0 V. (b). Evolution of intrinsic ballisticity as a 

function of the potential Vds with the same gate voltage Vgs = 0.5 V in two simulation cases : isothermal 

or open loop (dashed line) and electro-thermal or self-consistent simulation (continuous line). 

The Bint reduction is present at all positions along the channel. The higher the drain bias, 

the stronger is the reduction of the ballisticity. At the drain-end of the channel, the difference 

of ballisticity between the isothermal and electro-thermal cases is about 2.8 % for Vds = 0.5 V 

and 7.4% for Vds = 1.0 V.  

Until now, we have quantitatively analyzed the scattering events that slow down electrons 

and increase the electrical resistance. Consistently, taking into account the thermal effects 

tends to reduce the average velocity and kinetic energy of electrons. The results are shown in 

Figs. 3.25 and 3.26 as a function of the number of loops. It illustrates once again the rapid 

convergence: after the 1st loop, the velocity and the kinetic energy of electrons are very close 

to that obtained after the 4th loop.  
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Fig. 3.25. Evolution of average velocity of electron along the channel for Vgs = 0.5 V, and for different drain biases 

Vds = 0.5 V and1.0 V in the isothermal case and in two self-consistent cases. 

  
Fig. 3.26. Evolution of kinetic energy of electron along the channel for Vgs = 0.5 V, and for different drain biases 

Vds = 0.5 V and 1.0 V in the isothermal case and in two self-consistent cases. 

The velocity is slightly reduced when self-heating is included in particular in the middle of 

the channel, where the maximum velocity is reached. After the drain-end of the channel the 

overshoot velocity is rapidly relaxed in the drain extension. The situation is different 

regarding the average kinetic energy. It should be noted that a much greater length is needed 

to relax the kinetic energy in the drain extension than to relax the velocity. The self-heating 

effects influence mainly the energy in the two accesses that is increased due to higher 

temperatures. This is, of course, more visible when the drain bias is higher. 

We plot in Fig. 3.27.a the evolution of the drain current for three bias points as a function 

of the number of loops. We can see again that the convergence can be reached after only 1 or 

2 iterations whatever the drain bias value. The evolution of the Id-Vds characteristics at 

Vgs = 0.5 V is shown in Fig. 3.27b. Relative degradations of 6.9% and 8.1% of the drain 

current are observed for Vds = 0.5 V and 1.0 V, respectively, for a roughness of 30 Å. The 

increase of this degradation as a function of the drain bias is shown in Fig. 3.28. 
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(a)  (b)  

Fig. 3.27. (a) Current convergence as a function of the loop number for three drain bias Vds = 0.3 V, 0.5 V and 

1.0 V. (b) I-Vds curves for Vgs = 0.5 V after open loop, the 1st loop, the 2nd loop and the last loop (4th loop) for the 

roughness of 30 Å. 

 

Fig. 3.28. Self-heating-induced drain current degradation as a function of the drain bias for Vgs = 0.5 V. 

We have seen in sub-section 2.2 of the present chapter that, for given conditions of 

electronic transport, the more the Si-SiO2 interface is rough, the more the temperature is 

raised in the transistor. Here, we analyze the effect of interface roughness on the final 

temperature, the intrinsic ballisticity and the drain current. The effective temperatures of the 

1st loop and of the last loop with different roughness parameters (∆ = 3.5 Å, 10 Å and 30 Å) 

for Vds = 1.0 V and Vgs = 0.5 V are plotted in Fig. 3.29. Note that the change of roughness 

parameters is considered here only for the phonon boundary scattering. 
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Fig. 3.29. Roughness dependence of effective temperature in DGMOS for Vgs = 0.5 V, Vds = 1.0 V. 

As discussed in the sub-Section 2.2, the more the heat transport is impeded by the rough 

Si-SiO2 interface, the more the system is hot. This is observed not only for the temperature of 

the 1st loop but also for the temperature obtained after the self-consistent simulation. 

The effective temperatures reach their maximal value always in the same region. With all 

roughness parameters, the final effective temperature is reduced (by about 8K-9K) in 

comparison with the corresponding temperature in the 1st loop. This reduction occurs 

principally in the drain-end of the channel and in the drain extension. Indeed, by taking into 

account the thermal effects, electrons are less accelerated and less energetic (see Figs. 3.25 

and 3.26) in the drain region than in the isothermal case; consequently, the number of 

generated by electron scattering events is smaller.  

Finally, the degradation of drain current as a function of roughness parameter for two bias 

conditions is displayed in Fig. 3.30. 

 
Fig. 3.30. Roughness dependence of current degradation in DGMOS for Vgs = 0.5 V, Vds = 1.0 V and for 

Vgs = 0.7 V, Vds = 1.0 V. 



137 

 

Even if the effective temperatures are very different when changing the roughness (see 

Fig. 3.27), the drain current degradation varies slightly. For Vgs = 0.7 V, Vds = 1.0 V, this 

degradation is 12.5% with ∆ = 3.5 Å and 13.5% with ∆ = 30 Å. The variation of this quantity 

for Vgs = 0.5 V, Vds = 1.0 V is about 8%. Hence, if the influence of roughness is limited to the 

phonon transport through the change of phonon boundary scattering rate (without changing 

the scattering rate of electrons) the influence on the current through the change of temperature 

is very small. 

 

3.3. Conclusions 

In this chapter, by using a typical Monte Carlo simulator (MONACO) and considering 

quadratic phonon dispersion, we take out the phonon generation due to electron scattering in 

silicon device. The LA and TO generation are the main contributions. This dissipation has 

been compared with a macroscopic approach (of the Joule effect) derived from the drift-

diffusion approach. A discrepancy between these two models is observed at the drain end 

where the electric field is strong and where the majority of phonons is generated. 

Furthermore, in our simulator, the energy conservation is ensured, i.e. the electron energy 

gained during the carrier’s acceleration by the electric field is transformed into phononic 

energy.  

Our model includes the decay of optical phonons into the acoustic modes and a generation 

term from e-MC simulation that is used in the solution of the Boltzmann equation. The profile 

temperature per mode and the comparison between diffusion temperature and the effective 

temperature are presented. Our results show the significant role of LTO decay in heat 

transport, particularly at the hotspot region. One of the main advantages in our model is its 

capacity to take into account rough interface. The temperature in the device is dependent on 

the roughness of the Si-SiO2 interface. In order to reduce the self-heating effect, it is required 

to fabricate transistors with Si-SiO2 interface as smooth as possible. The phonon densities for 

each mode at the hotspot position are shown as an evidence of non-equilibrium phonon 

transport. 

Finally, we have coupled the non-equilibrium transport of electrons and phonons in the 

20nm-long DG-MOSFETs by taking into account in the electron scattering rates the effective 
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temperature obtained from the pBTE. A loop includes an e-MC simulation followed by a 

pBTE solution. The convergence is reached after only 3 or 4 loops. Electro-thermal effects on 

the electron and phonon transport in DG-MOSFETs is analyzed: effective temperature, 

thermal flux, electronic potential, electron velocity and energy… Taking into account electro-

thermal effect increases the scattering of electrons along the devices, and therefore decreases 

the intrinsic ballisticity. Thus, self-heating leads to a current decrease.  
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GENERAL CONCLUSION 

 

In the context of VLSI (Very Large Scale Integration) circuits and the continuation of 

downscaling, self-heating effects are identified as one of the most critical issue. In ultra-short 

transistors, the high power density generated during the working operation is related to the 

emission of phonons by hot electrons at the microscopic scale. As the transistor dimensions 

and the Si film thickness are scaled down to the order of ten nanometers, which is much less 

than the phonon mean free path, non-equilibrium effects will take place. However, it is 

difficult to study experimentally the heat transport in transistors, in particular during the 

device operation. Therefore, the simulation of coupled electron and phonon transports to 

evaluate the electro-thermal effects in nanoscale devices is of great interest for both academia 

and industry.  

In this context, the present work has investigated and estimated theoretically the thermal 

transport in different regimes and in structures of various geometries. In particular, the heat 

generation and transport in bulk Si and the local heating in ultra-short Si devices have been 

studied. Finally, a fully coupled self-consistent electro-thermal simulation has been 

performed. 

In chapter II, a new set of scattering parameters has been introduced to reproduce the 

thermal conductivity in bulk Si and GaAs materials. A model of optical phonon’s decay into 

acoustic phonons was established. Then, an analytical model has been presented to calculate 

the thermal conductivity. By using our set of scattering parameters adjusted for a quadratic 

phonon dispersion and including the phonon-boundary scattering in various device 

geometries, our results capture well the trend of the thermal conductivity in thin films and in 

different kinds of wires. In addition, our analytic model is successfully used to fit the 

experimental thermal conductivities in rectangular cross-section wires by using realistic 

roughness parameters.  

Next, an original numerical method to solve the stationary BTE for phonons under RTA 

for phonons has been presented. A solution of the Fourier heat equation is coupled to the BTE 

to estimate the scattering terms properly. Our method gives the good predictions of thermal 

conductivity for pure Si bulk at 150K and higher temperatures. Then, to predict the thermal 
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conductivity of Si nano-structures, the phonon-boundary scattering is taken into account. In-

plane conductivities match very well with the experimental data. In addition, the cross-plane 

conductivity, which is until now difficult to measure experimentally, is investigated with our 

BTE model. The resulting conductivity is in better agreement with the experiment than other 

theoretical approaches.  

For GaAs nano-pillars, with sine type phonon dispersion and an appropriate set of 

scattering parameters, our BTE solver in the RTA has been used successfully to reproduce the 

thermal conductance in ultra-short GaAs nano-pillars. The ballistic phonon transport is clearly 

dominant though the thermal conductivity in nanometer-long pillars is slightly affected by 

scattering at temperatures higher than 100 K. 

Furthermore, our numerical results have been successfully assessed in all heat transfer 

regimes: diffusive, intermediate and ballistic regimes. Our method is consistent with the 

Stefan-Boltzmann law at the ballistic limit and with the Fourier law in the diffusive limit. The 

LA and TA phonon occupations are analyzed from our simulations to make clear the physics 

in each regime.  

In chapter III, by using the analytical model for electron dispersion in MONACO and by 

employing the quadratic and isotropic phonon dispersion, we showed out the phonon 

generation by electron scattering during the electronic transport in bulk silicon. It appears that 

the highest contribution to the phonon generation comes from LA and TO modes (about 40% 

each), while the TA and LO contributions are smaller. The resulting exact dissipation is 

compared with the Joule heating estimated using conventional macroscopic calculations in 

bulk Si and also in a DG-MOSFET of 20 nm gate length under several bias conditions. In the 

latter case, a strong discrepancy between the two approaches is observed at the drain-end of 

the channel and in the drain extension where almost all phonons are generated by hot 

electrons which relax their energy by emitting phonons. 

Next, we have investigated the heat transport in this transistor by taking into account the 

phonon generation obtained from MONACO as an input in the pBTE solver. The profile 

temperature per mode and the comparison between diffusion temperature and the effective 

temperature are pointed out. The TA and LA mode temperatures are higher than that of the 

LO and TO modes which are higher than the diffusion temperature. The contribution to the 

total heat transport of each mode has been discussed through the analysis of the thermal flux. 
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Then, we have studied the dependence on the Si-SiO2 roughness of the temperature profile. 

As expected, it appears that to reduce the self-heating effect under strong electric field, it is 

required to fabricate the transistors with a Si-SiO2 interface as smooth as possible. Finally, the 

phonon occupation densities for each mode at the hotspot region are shown as an evidence of 

non-equilibrium phonon transport.  

Finally, we have coupled the non-equilibrium transport of electrons and phonons in a 

20 nm-channel DG-MOSFET by taking into account the effective temperature obtained from 

the steady-state pBTE in the update of phonon-electron scattering rates. The convergence is 

reached after only 3 or 4 loops. The influence of electro-thermal effects on the electron and 

phonons transport in DG-MOSFETs is analyzed in terms of effective temperature, thermal 

flux, electronic potential, electron velocity and energy… Because of the raised temperatures 

throughout the transistor, all types of electron interaction are significantly increased in the 

coupled electro-thermal simulation with respect to the isothermal simulation. In particular, at 

channel drain-end, the inter-valley scattering in the coupled simulation is enhanced by 23 % 

for the bias conditions Vgs = 0.5 V, Vds = 1.0 V. As a consequence, the intrinsic ballisticity, 

velocity and kinetic energy of electrons obtained from electro-thermal simulation are reduced. 

Consistently, the drain current is also reduced in comparison with the isothermal simulation. 

This current degradation is discussed as a function of the bias voltage and of the surface 

roughness.  
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Suggestion for the future work 

 

1. Development the RTA for each phonon mode 

As seen in chapter III, we coupled the non-equilibrium electron and phonon transport in 

transistor with the assumption that the lattice temperature is the effective one obtained from 

pBTE and all electron scattering rates are updated at this temperature. At this point, we can 

extend the model for each electron-phonon mode scattering: electrons should scatter with a 

phonon at the temperature Tmode of the phonon. Other scattering mechanisms, such as the 

electron-impurity and alloy scattering could be dependent on the lattice temperature. 

 

2. Extension of the BTE simulation to two dimensions and improved 

treatment of interfaces 

In this work, we solved the pBTE in one dimension to reduce the calculation time for the 

long-drain transistor. For shorter devices and other device architectures, it would be relevant 

to implement the 2D-BTE.  

Then, the energy transmission at the Si-SiO2 interfaces could be taken into account to 

evaluate better the role of SiO2. In addition, with 2D simulation, we could investigate the 

phonon temperature with different boundary conditions (Neumann/Dirichlet).  
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APPENDIX 

 

APPENDIX A:  Giant piezoresistance effect in p-Si nanowires 
[Nghiem11] 

 

The piezoresistance is defined as the change in electrical resistance under the effect of 

mechanical stress [Smith54]. Indeed, depending on its orientation with respect to the 

crystallographic direction, strain can induce major changes in the band structure of 

semiconductors and therefore in the carrier mobility [Leu08, Shiri08, Maegawa09, Huet08-1]. 

This effect has been reported for the first time in the 50s by the group of Smith [Smith54]. 

Recently, He and Yang have reported measurements of giant piezoresistance in p-type 

silicon nanowires, for diameters ranging from 50 to 350 nm. High piezoelectric coefficients 

(up to about 3500×10-11 Pa-1) were obtained for structures of high resistivity (i.e. lightly 

doped) and small diameter [He06]. It opens the way to the design and implementation of very 

small piezoresistive sensors, 5 to 10 times smaller than current MEMS components, with 

performance at least equal or even superior to those of the state of the art. For this purpose, 

the theoretical understanding of this phenomenon by means of accurate simulation is of 

practical importance is necessary. 

Some studies have attempted to explain the origin of this giant piezoresistivity effect 

[Cao08, Nakamura09] which, at the microscopic level is not fully understood yet. In the study 

presented here, we investigate the effect of piezoresistivity in thin silicon layers using the 

particle Monte Carlo (MC) method to solve the Boltzmann transport equation within a "full-

band" description of the band structure [Huet08]. The model proposed by Rowe is used to 

model the effect of stress on the surface potential [Rowe08]. 

Model and simulated structures 

A nanowire is essentially a three-dimensional object. However, in a first approach to the 

problem of giant piezoresistance and to reduce the computation time, we restricted ourselves 

to the consideration of silicon nano-layers of infinite width described in 2D real space. The 
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effect of stress on the surface potential is applied on both sides of the nano-layer. The effect 

of stress on the surface potential is applied on both sides of the nano-layer, as illustrated in 

Fig. A.1 that schematizes the simulated structures. They consist of p-type silicon layers of 

different thicknesses and resistivities (i.e. doping density). 

 

Fig. A.1. Schematic cross-section of simulated structures. 

In nanostructures, the size quantization effects may be very important. Several works on 

silicon nanowires have shown that these effects may substantially influence their electrical 

and mechanical properties. In particular, for diameter smaller than 20 nm, many physical 

quantities such as the Young’s modulus, the Poisson ratio, the electron and hole effective 

mass, the band gap and the mobility are strongly affected with respect to bulk data [Leu06, 

Leu08, Ghetti07]. However, in this study, to compare with available experimental data, we 

simulated structures with minimum thicknesses of 80 nm that are much larger than the critical 

size above mentioned. Thus, though our model is able to include them [StMartin06], 

quantization effects may be neglected here.  

All simulated structures had an effective length of 500 nm. The thicknesses were 80 nm, 

100 nm, 150 nm or 200 nm. The p-type Si layer was doped to 1018 cm−3, 2.7×1017 cm−3 or 

1.49×1016 cm−3, which correspond to bulk resistivities of 0.044 Ωcm, 0.1 Ωcm and 1 Ωcm, 

respectively. At both ends, the Si layer is overdoped to 1019 cm−3 and contacted by an Ohmic 

contact which injects/detects the flux of particles flowing through the structure. An uniaxial 

stress was uniformly applied along the <110> transport direction y. The surface potential ϕ  

was defined as the difference in the top of valence band between the surface and the volume 

of the material where neutrality was assumed to be recovered. The effect of stress was 

modeled along the line proposed by Rowe who investigated the giant piezoresistance effect in 
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Si nanowires using a very simple approach of transport [Rowe08]. For a uniaxial stress X, the 

surface potential is assumed to vary according to the law  

 0.5 /
d

meV MPa
dX

ϕ
=  (A-1) 

considering that for unstrained Si, 0ϕ  = 0.54 eV. The nano-layers were simulated under a 

bias voltage of 0.5 V for stresses ranging from 0 to ± 200 MPa (the sign “+” for a tensile 

stress, the “−” for a compressive stress).  

Simulation results 

+ Potential and hole density 

According to Eq. A-1, the surface potential is reduced under tensile strain while it is 

enhanced under compressive strain.  
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Fig. A.2. (a) Potential and (b) hole density profiles in an 100 nm-thick Si layer of resistivity 0.044 Ω.cm for three 

stress conditions X.  (c) Potential and (d) hole density profiles in an 100 nm-thick Si layer of  resistivity 0.1 Ω.cm 

for three stress conditions X. 



146 

 

Fig. A.2a shows the typical potential profile in the middle of the device along the 

transverse direction for three values of stress and a small resistivity ρ = 0.044 Ω.cm. The 

stress essentially modulates the depth of the surface depleted region, while the potential in the 

center of the structure remains unchanged and equal to its equilibrium position. Accordingly, 

the maximum hole density remains equal to the impurity concentration in the central region. 

The stress controls only the width of this neutral region, i.e. the conductive area, as shown in 

Fig. A.2b.  

The situation is different for a higher resistivity ρ = 0.1 Ω.cm, as shown in Fig. A.2c and 

Fig. A.2d. Due to its lower doping concentration, the depleted region extends more deeply 

into the structure and the potential does not fully recover its equilibrium position (Fig. A.2c). 

Accordingly, there is no longer any neutral region in the device and the stress not only 

controls the width of the conductive area but also the height of the potential barrier for holes 

and the maximum hole density (Fig. A.2d). These results are in qualitative agreement with 

experimental C-V measurements on nanowires [Garnett09].  

+ Current 

Figure A.3 shows the current as a function of stress in the nano-layers for a thickness of 

100 nm and various resistivity values. In the low-resistivity (ρ = 0.044 Ω.cm) structure, the 

current is controlled by the width of the conductive area and is linearly dependent on stress.  

  

Fig. A.3. Currents versus stress in nano-layers of 100 nm-thickness for (a) resistivity of 0.044 cm; (b) resistivity 

of 1 cm. The solid lines are exponential fitting curves.  
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For higher resistivity (ρ = 0.1 Ω.cm and 1 Ω.cm), the current is much lower and controlled 

by the height of the potential barrier in the center of the structure, which leads to a quasi-

exponential dependence of the current with the stress. 

+ Variation of conductivity 
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Fig. A.4. Relative variation of conductivity ∆σ/σ0 as a function of stress with (solid lines) and without (dashed 
lines) inclusion of changes in band-structure for a resistivity of 0.1 Ω.cm. 

To separate the contributions of stress-induced changes in the valence band structure and 

in the surface potential, we first considered the effect of surface potential modulation while 

keeping the band structure of unstrained Si. The results are plotted in Fig. A.4. 

The variation of conductivities is presented by the dashed line. The effect of stress on the 

band structure was considered in a second stage (curves are in solid lines curves). Comparison 

of solid and dashed lines in Fig. A.4 shows that both contributions of the potential surface 

variation and of the change in bands must be taken into account, though the latter is smaller, 

especially in the case of thin layers. The impact of the band’s changes is mainly noticed under 

compressive uniaxial stress. Indeed, in such case the strong reduction of heavy-hole mass 

[Huet08-2] induces a significant enhancement of mobility [Huet08-1,Huet08-2]. The change 

in conductivity is not always linear and it strongly depends on both the doping level and the 

thickness (that is to say, the diameter in the case of a nanowire). For a given resistivity, the 

variation ∆σ/σ0 as a function of stress is higher and more nonlinear when the layer thickness is 

reduced. The amplitude of the conductivity variation obviously increases when increasing the 

resistivity (see fig. A.5a). 
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Fig. A.5. (a) ∆σ/σ0 as a function of stress including stress-effects on bands for the thickness of 80 nm and for 

different resistivities. (b) ∆σ/σ0 as a function of stress for the resistivity of 1 Ω.cm and for different thicknesses. 

For a high resistivity (1 Ω.cm), the relative change in conductivity as a function of stress 

seems to be nearly independent of the layer thickness, as shown in Fig. A.5b. This is probably 

associated to the fact that the current in a quasi-fully-depleted region is exponentially 

controlled by the potential barrier whatever the thickness, which makes the stress-dependent 

change of relative conductivity weakly dependent on thickness. 

Overall, these results are in agreement with trends observed experimentally by He and 

Yang’s for nanowires [He08]. 

+ Piezoresistive coefficient 

The corresponding piezoresistive coefficients were calculated around X = 0 using the 

following expression  

 
0

1
l

d

dX

σ σ
π

σ
=  (A-2) 

where σ0 is the conductivity under zero stress. The resulting piezoresistive coefficients are 

summarized in Table A.1. As expected, they are strongly dependent on the nano-layer 

thickness and resistivity. A large piezoresistive coefficient of 1750×10-11 Pa-1 is obtained for a 

80 nm thick layer with resistivity of 1 Ω.cm.  
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Piezoresistive coefficient ( x 10-11Pa-1)  

Thickness 
d (nm) 

ρ= 0.044 

Ω.cm 

ρ =0.1 

Ω.cm 

ρ = 1 

Ω.cm 

80 141 842 1750 
100 111 420 1589 
150 80 149 1564 
200 60 105 1505 

Table A.1. Piezoresistive coefficient in p-type <110> oriented Si nano-layers for different thicknesses and 

resistivities (values given in 10−11 Pa−1). 

The results obtained are quite consistent with experimental results of He and Yang. For 

instance, they obtained a first order piezoresistive coefficient of 660×10-11 Pa-1 for a 75 nm 

thick <110> oriented nanowire with a resistivity of 0.3 Ω.cm [He06]. Reck et al. obtained 

455×10−11 Pa−1 for a 140×200 nm2 wire of resistivity 0.4 Ω.cm [Reck08]. The highest 

piezoresistive coefficient measured was 3100×10-11 Pa-1 for a nanowire with resistivity of 

102 Ω.cm. Accurate MC calculation in such a high resistivity layer is very difficult because of 

very small current level. 

Conclusion on the simulation of giant piezoresisitif effect 

Using 2D MC simulation, we have been able to reproduce the giant piezoresistance in 

silicon nano-layers with thickness of 80–200 nm which are assumed to behave as nanowires. 

Taking into account the effects of stress on both the surface potential and the valence bands 

make it possible to modulate the depletion depth and the conductivity of the structure. The 

effective conduction area, wide in the case of compression, becomes much narrower in the 

case of tensile strain. The relative variation of conductivity and the piezoresistive coefficient 

show a strong dependence on both the thickness and the resistivity. Our results are in 

satisfying agreement with experimental data available for nanowires. 
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APPENDIX B: Solution of diffusive equation 

 

The diffusive equation is written as 

 ( )/ TT t K T P∂ ∂ = ∇⋅ ∇ + ,  (B-1) 

Where KT is the thermal conductivity that depends on temperature T and P is the power in 
system. In the steady-state, without power P, the above equation is reduced in form like 

 ( ) 0Tk T∇ ∇ = . (B-2) 

The temperature dependence of silicon thermal conductivity KT can be described by  

 
T

k C T
α= ⋅ . (B-3) 

Where C and α are constant. 

By replacing (B-3) in (B-2), we have 

 ( ) 0C T Tα∇ ⋅ ∇ = . (B-4) 

Then, the use of 
1

1
T

T T
α

α

α

+∇
∇ =

+
 gives 

 1 0
1

C
T

α

α
+⋅ ∆ =

+
.  (B-5) 

By setting U = Tα+1, the equation (B-5) has the form similar to the Fourier’s equation form 

 0
1

C
U

α
∆ =

+
. (B-6) 

Numerical solution of (B-6) can be easily obtained, then the temperature T is ( )1/ 1
U

α + .  

 

Analytic solution 

The equation (B-5) for one direction is 

 
2 1

2
0

T

z

α +∂
=

∂
. (B-7) 

By integrating the above equation, we have 

 ( ) ( )1T z F zα + = , (B-8) 
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Where F(z) is a linear function of z. 

For a bar with temperatures at the two extremities are Th and Tc, the limit conditions are 

 ( ) ( )1 10 0hT T Fα α+ += = , (B-9a) 

 ( ) ( )1 1
cT L T F Lα α+ += = . (B-9b) 

The analytic solution is easily obtained as 
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