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Résumé
Les sources de couplage thermomécanique dans les matériaux viscoélastiques sont multiples : thermo-
élasticité, dissipation visqueuse, évolution des caractéristiques mécaniques avec la température. La
simulation numérique de ces couplages en calcul des structures présente encore un certain nombre de
défis, spécialement lorsque les effets de couplage sont très marqués (couplage fort). De nombreuses
approches algorithmiques ont été proposées dans la littérature pour ce type de problème. Ces méthodes
vont des approches monolithiques, traitant simultanément l’équilibre mécanique et l’équilibre thermique,
aux approches étagées, traitant alternativement chacun des sous-problèmes mécanique et thermique.
La difficulté est d’obtenir un bon compromis entre les aspects de précision, stabilité numérique et coût
de calcul. Récemment, une approche variationnelle des problèmes couplés a été proposée par Yang et al.
(2006), qui permet d’écrire les équations d’équilibre mécanique et thermique sous la forme d’un prob-
lème d’optimisation d’une fonctionnelle scalaire. Cette approche variationnelle présente notamment les
avantages de conduire à une formulation numérique à structure symétrique, et de permettre l’utilisation
d’algorithmes d’optimisation. Dans ce travail on utilise l’approche variationnelle pour résoudre le prob-
lème thermo-visco-elastique fortement couplé, puis on compare plusieurs schémas algorithmiques afin
de trouver celui qui présente des meilleures performances

Mots-clés: Formulation variationnelle, couplage thermo-mécanique, problèmes couplés, thermo-visco-
élasticité, approche monolithique.

Abstract
Sources of thermo-mechanical coupling in visco-elastic materials are various: viscous dissipation, de-
pendence of material characteristics on temperature, ...
Numerical simulation of these kinds of coupling can be challenging especially when strong coupling
effects are present. Various algorithmic approaches have been proposed in the literature for this type
of problem, and fall within two alternative strategies:

• Monolithic (or simultaneous) approaches that consists of resolving simultaneously mechanical
and thermal balance equations, where time stepping algorithm is applied to the full problem of
evolution.

• Staggered approaches in which the coupled system is partitioned and each partition is treated
by a different time stepping algorithm.

The goal is to obtain a good compromise between the following aspects: precision, stability and com-
putational cost. Monolithic schemes have the reputation of being unconditionally stable, but they may
lead to impossibly large systems, and do not take advantage of the different time scales involved in the
problem, and often lead to non-symmetric formulations. Staggered schemes were designed to overcome
these drawbacks, but unfortunately, they are conditionally stable (limited in time step size).
Recently, a new variational formulation of coupled thermo-mechanical boundary value problems has
been proposed (Yang et al., 2006), allowing to write mechanical and thermal balance equations under
the form of an optimisation problem of a scalar energy-like functional. This functional is analysed in the
framework of a thermo-visco-elastic strongly coupled problem, considering at first a simplified problem,
and then a more general 2D and 3D case. The variational approach has many advantages, in particular
the fact that it leads to a symmetric numerical formulation has been exploited in deriving alternative
optimization strategies. These various algorithmic schemes were tested and analysed aiming to find the
one that exhibits the best computational costs.

Keywords: Variational formulation, thermo-mechanics, coupled problems, monolithic approaches, thermo-
visco-elasticity

1



École Centrale Nantes

École Doctorale

Science Pour l’Ingénieur, Géosciences, Architecture

Année 2012 NoB.U. : ...

Thèse de Doctorat

Spécialité : Mécanique des solides, des matériaux, des structures et

des surfaces

Présentée et soutenue par:

Charbel BOUERY

Le 12 Décembre 2012
à l’École Centrale Nantes

Contribution to algorithmic strategies for solving

coupled thermo-mechanical problems by an

energy-consistent variational approach

Jury

Président Pierre VILLON Professeur, Université de Technologie de Compiègne

Rapporteurs David DUREISSEIX Professeur, INSA Lyon
Jörn MOSLER Professeur, TU Dortmund

Examinateurs Jean-Philippe PONTHOT Professeur, Université de Liège
Francisco CHINESTA Professeur, Ecole Centrale de Nantes
Laurent STAINIER Professeur, Ecole centrale de Nantes

Directeur de thèse Laurent STAINIER
Laboratoire Institut de Recherche en Génie Civil et Mécanique, École Centrale de Nantes

NoE.D. : ...





Acknowledgments

I would like to offer my sincerest gratitude to my supervisor Professor Laurent Stainier
for his guidance, support and encouragement throughout my Ph.D. study at the Ecole
Centrale de Nantes. His outstanding expertise, advice and his human qualities made me
enjoy working with him and learn a lot. I guess that without his good supervision, my
thesis would not have finished.
A special thanks to Prashant Rai, Kamran Ali Syed and Hodei Etxezarreta Olano for
having lengthly discussions about teaching philosophies and life in general. Additionally
I would like to thank Augusto Emmel-Selke, Shaopu Su, Laurent Gornet, Elias Safatly
and Chady Ghnatios for their time spent to answer my questions when I was stucked.
I am grateful to my collegues in the Simulation & structure team for their help and
friendship. Additionally I want to thank many of the great friends that I have met in
my time at Nantes, Hodei Etxezarreta Olano, Willington Samedi, Josu Imaz Aranguren,
Oscar Fornier, Tony Khalil, Modesto Mateos, Prashant Ray, Alexandre Langlais, Rocio
Aguirre Garcia, Isabelle Farinotte, Farah Mourtada, Jane Becker, Vanessa Menut among
others who made me feel at home, and given me an outlet outside the school.
All these years, I owe a lot to the SWAPS-Nantes that provided me dancing and sports
activities, thus allowed me to get away from the lab and keep my sanity in some of
those very difficult days. A special thanks also to "café polyglotte" (language exchange
events) organized by the association "Autour du Monde". Without these hobbies and
many good friends it would have been very hard to finish my Ph.D.
A special thanks to Dr. Patrick Rozycki, Pascal Cosson and Jean-Yves monteau for
the opportunity they offered me as a teacher associate in solid mechanics, vibration and
automatics. These teaching reaffiremed my motivation to finish this degree and look for
an academic position.
The author would like to acknowledge the direct support of the Pays de la Loire region
during the last three years.
Last but not the least, I am grateful to the support of my family and my very close
friend Roger A-smith that i missed his company and these deep conversations we used
to share in those old days

2



Contents

1 Introduction to coupled systems 10

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Coupled systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Strong vs weak coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Weak coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Strong coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Monolithic and staggered schemes . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Monolithic scheme: . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Staggered scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 Monolitic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Staggered scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.3 Comments on respective advantages and merits . . . . . . . . . . 15

2 Basics of coupled thermo-mechanical problem 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Basics of continuum mechanics . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Small perturbations assumption . . . . . . . . . . . . . . . . . . . 18
2.2.2 Balance laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Basics of heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Fundamental modes of heat transfer . . . . . . . . . . . . . . . . . 21

2.4 Basics of thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Thermodynamic state . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Thermodynamic state variable . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Specific internal energy . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.5 First law of thermodynamics . . . . . . . . . . . . . . . . . . . . . 25
2.4.6 Free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.7 Second law of thermodynamics . . . . . . . . . . . . . . . . . . . 27
2.4.8 Clausius-Duhem inequality . . . . . . . . . . . . . . . . . . . . . . 28
2.4.9 Developping the general thermo-mechanical heat equation . . . . 29

2.5 General thermo-mechanical heat equation . . . . . . . . . . . . . . . . . 31
2.5.1 Interpretation of coupled terms . . . . . . . . . . . . . . . . . . . 33

3



2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.1 Linear thermo-elasticity . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.2 Thermo-visco-elasticity . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.3 Thermo-plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Numerical simulation of classical coupled thermo-mechanical problems 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Finite element discretization of the classical non-symmetric thermo-mechanical

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Solving the coupled thermo-mechanical problem . . . . . . . . . . . . . . 46
3.4 Monolithic solution scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Staggered schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Isothermal staggered scheme . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Adiabatic staggered scheme . . . . . . . . . . . . . . . . . . . . . 51

3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.1 Application of the FEM on a general thermal problem . . . . . . 53
3.6.2 Application to a thermo-elastic problem . . . . . . . . . . . . . . 56

4 Energy consistent variational approach to coupled thermo-mechanical

problems 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Finite element approach for the variational formulation . . . . . . . . . . 71
4.4 Mixed boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Solution schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Newton scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.2 Alternated scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.3 Uzawa-like algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6.1 Weak coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6.2 Strong coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Applications to coupled thermo-mechanical boundary-value problem 86

5.1 Thermo-visco-elastic behaviour of a rectangular plate with a hole in 2D . 87
5.1.1 Adaptive time step . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.3 Reference solution . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.4 Algorithmic analysis . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Extension of the thermo-visco-elastic rectangular plate with a hole to 3D 99
5.3 Necking in a 3D elasto-plastic rectangular bar . . . . . . . . . . . . . . . 100

5.3.1 Elasto-plastic model . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4



5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.4 Algorithmic analysis . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Stability overview 134

A.1 Monolithic scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Isothermal split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3 Adiabatic split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.3.1 Limitation of the adiabatic staggered scheme . . . . . . . . . . . . 137

B Complementary results for the thermo-visco-elastic behaviour of a

rectangular plate with a hole in 2D plane 139

5



General Introduction

With the development of science and research, the design of engineering products de-
mands a more accurate description of different physics involved, since many important
engineering problems require an integrated treatment of coupled fields. In recent years
there has been an increasing interest in the computational modelling of coupled systems
[89, 87, 112, 94, 95, 97, 100, 19, 21, 104]. Note that non-linearities and the interaction
between its different components often results in complex systems.
Coupled systems are systems whose behavior is driven by the interaction of function-
ally distinct components. Multi-physics treats simulations that involve multiple physical
models or multiple simultaneous physical phenomena [103, 37].
This field of study is so crucial, since chosen models, algorithms and implementation
grow systematically in the number of components, and often models that work correctly
with isolated components break down when coupled. Therefore it is useful to proceed
in particular solution algorithms.

Sources of thermo-mechanical coupling are various in nature: thermo-elasticity, viscous
dissipation, dependence of material characteristics on temperature and so on ...
Numerical simulation of these kinds of coupling can be challenging, especially when a
strong coupling effect is present.
Various solution algorithms are found in the engineering literature of coupled problems.
In the framework of this thesis we will consider concurrent approaches that can be clas-
sified into two broad categories: monolithic and staggered approaches

• Monolithic (or simultaneous) approaches that consist of resolving simultaneously
mechanical and thermal balance equations, where time stepping algorithm is ap-
plied to the full problem of evolution. In this case, using implicit schemes always
lead to unconditional stability, which mean that the difference between two ini-
tially close solution always remains bounded independently by the time step size
[32, 43, 60, 108] etc...

• Staggered approaches where coupled system is partitioned, then each of the me-
chanical and thermal problem is solved alternatively, and each partition is treated
by a different time stepping algorithm [31, 24, 108, 42, 37] etc...
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Monolithic schemes have the advantage of being unconditionally stable, but their dis-
advantage is that it might lead to impossibly large systems, same time scale involved in
the problem and this scheme is in general non-symmetric.
The goal of the partitioned (or staggered) schemes is to overcome these inconveniences,
but unfortunately, often at the expense of unconditional stability.
In the framework of this thesis, we treat the thermo-mechanical coupled problem, via
an energy-consistent variational formulation for coupled thermo-mechanical problems
proposed by in 2006 by Yang et al [115].
This variational approach has many advantages: it leads to a symmetric numerical for-
mulation, possibility to derive staggered or simultaneous schemes, it is useful for adaptive
approach (adaptive time, mesh), and allows the use of optimization algorithms in par-
ticular for strongly coupled problems.

We start the first part by introducing notions about continuum thermo-mechanics, where
we introduce basic notions of general continuum mechanics and thermodynamics and
we can write the general heat equation.
Secondly, we introduce classical solving of the coupled thermo-mechanical problem, and
different algorithmic schemes used in the literature.
Eventually, we expose the variational formulation of coupled thermo-mechanical boundary-
value problem, where our work reclines.

The main objective of this framework is the validation, analysis and improvement of
monolithic algorithmic schemes via an energy-consistent variational formulation of cou-
pled thermo-mechanical problems.
Since the variational formulation allows to write mechanical and thermal balance equa-
tion under the form of an optimization problem of a scalar energy-like functional, differ-
ent optimization algorithmic schemes will be used, the classical Newton-Raphson scheme,
the alternated algorithm, and Uzawa-like algorithms.

To show the validation of the energetic formulation, and compare the efficiency of differ-
ent algorithms, various applications of coupled thermo-mechanical problems have been
exposed in details, such as thermo-visco-elastic strong coupled problem from a simplified
problem consisting of an infinitesimal control volume to a more general 2D and 3D cou-
pled thermo-elastic boundary-value problem, and then another application of a necking
in a bar with an thermo-elasto-plastic coupling.
In each case the effects of heat capacity, intrinsic dissipation and the heat exchange with
the environment are included in the model.
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Introduction générale

Les sources de couplage thermo-mécanique dans les matériaux visco-élastiques sont
multiples : thermo-élasticité, dissipation visqueuse, évolution des caractéristiques mé-
caniques avec la température. La simulation numérique de ces couplages en calcul des
structures présente encore un certain nombre de défis, spécialement lorsque les effets de
couplage sont très marqués (couplage fort).
De nombreuses approches algorithmiques ont été proposées dans la littérature pour ce
type de problème et se résument en deux stratégies alternatives:

• Approches monolithiques (ou simultanées) qui consistent de résoudre simultané-
ment les équations d’équilibre mécanique et thermique. Dans ce cas, l’utilisation
des schémas implicites conduisent toujours à une stabilité inconditionelle .

• Approaches étagées où le problème thermo-mécanique est décomposé en deux sous-
problèmes thermique et mécanique, et chaque partition est traité par un algorithme
différent.

La difficulté est d’obtenir un bon compromis entre les aspects de précision, stabilité
numérique et coût de calcul.

Récemment, une approche variationnelle des problèmes couplés a été proposée par Yang
et al. (2006), qui permet d’écrire les équations d’équilibre mécanique et thermique sous
la forme d’un problème d’optimisation d’une fonctionnelle scalaire. Cette approche vari-
ationnelle, présente notamment les avantages de conduire à une formulation numérique
à structure symétrique, et de permettre l’utilisation d’algorithmes d’optimisation.

Dans le cadre de ce travail, on s’intéresse à la validation de la formulation énergé-
tique variationnelle du problème thermo-visco-mécanique couplé, ainsi que l’analyse des
schémas algorithmiques monolithiques, traitant un problème allant d’un cas simplifié
consistant en un élément de volume jusqu’au cas plus général 2D et 3D consistant en
une plaque trouée en son centre et soumise à un chargement en contrainte, avec un com-
portement thermo-visco-élastique de type kelvin voigt, en incluant les effects de capacité
thermique, dissipation intrinsèque et d’échange de chaleur avec l’environnement. Le cou-
plage thermo-mécanique est complété en incluant une dépendance forte des coefficients

8



mécaniques par rapport à la température.
Le problème thermo-visco-élastique à été testé considérant différents schémas algorith-
miques dont une approche intéressante de type Uzawa qui semble réduire le temps global
de calcul. Cependant, ces résultats ont été obtenus sur un cas particulier, ce qui nous
a amené à considerer un autre problème (striction d’une barre) avec un comportement
elasto-plastique, où le schéma de Newton semble donner des meilleures performances.
On peut conclure, d’après ce travail, que l’algorithme le plus robuste dépend du type du
couplage considéré. Cependant il reste intéressant de tester les différents schémas sur
d’autre type de problème (visco-plasticité etc...)
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Chapter 1

Introduction to coupled systems

Résumé
Le premier chapitre introduit des concepts généraux liés à la multi-physique et les prob-
lèmes couplés.
Avec l’avancement de la technologie, la simulation des systèmes mécanique demandent
plus de précision. La multi-physique sera indispensable lorsqu’on a besoin de concevoir
un produit qui ne peut être décrit qu’en couplant des différentes physiques. Prenant par
exemple l’action du vent sur un panneau solaire, la partie de dynamique des fluides agit
comme une entrée de la partie mécanique, mais il en est de même dans le sens inverse,
la partie mécanique provoque un changement de l’écoulement du fluide. Pour faire face
à ce problème, on a besoin de combiner les modèles physiques. La multi-physique reflète
plus exactement ce qui se passe dans le monde réel, qui est le but de tous les scientifiques
et les ingénieurs.

1.1 Introduction

Pace of scientific investigation and research is faster today then ever before, this accel-
erated development is directly due to advancements made in understanding the laws of
nature, and in using that understanding to make better products, therefore computer
simulation has emerged as an indispensable tool. In fact it is plausible to say that the
future of technology and simulation are vitally linked. Simulation of physical systems
was one of the first applications of digital computers, with today advances and simula-
tion technology and computational power one can solve just about any physics based
engineering problem on a standard PC, such as heat transfer, structural mechanics, fluid
dynamics, electromagnetism, chemical reactions, acoustics and so on.
The multi-physics come when we need to design a product where it can only be described
accurately by coupling different physics, lets take for instance the wind mode on a solar
panel, the fluid dynamics part of the simulation act as input to the mechanical part, but
the same is true in reverse, the mechanics causes the change in the flow pattern. To deal
with this issue, engineers using simulation software knew to combine physical models
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and algorithms, simulating all these physics together is required to achieve reliable sim-
ulation results. Multi-physics ultimately reflects what happens in the real world more
accurately, which is the goal for all scientists and engineers.

1.2 Coupled systems

The dictionary states eight meanings for the word "system". In multi-physics, a system
is used in the sense of a functionally related group of components forming or regarded
as a collective entity [109], in other words a system is a set of interacting entities, such
as fields of continuum mechanics, evolving in time.

A coupled system is one in which physically or computationally heterogeneous me-
chanical components interact dynamically. In other words a coupled system is a set
of interacting sub-systems, where each sub-system is different by :

• The type of differential equation

• The type of discretization technique

• The type of physics

• The geometric domain

Sub-systems interact through interfaces, the interaction is called "one way" if there is
not feedback between subsystems for two subsystems as X and Y. The interaction is
called "two-way" or "multiway" if there is feedback between sub-systems
We are interested in this case, where the response has to be obtained by solving simul-
taneously the coupled equations which model the system.

1.3 Strong vs weak coupling

In computational multi-physics, two types of coupling exist, strong and weak coupling.
Each of those two coupling is linked directly to computational cost and performance.
Consider for instance a system, where u1 and u2 are the two fields.
We can write the coupled system u1(t) and u2(t) as:

du1
dt

= L1(u1, u2) (1.1)
du2
dt

= L2(u1, u2) (1.2)
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1.3.1 Weak coupling

A system is weakly coupled1 if sub-system 1 has significant influence on sub-system 2,
while subsystem 2 has moderate (or small) influence on subsystem 1.
In this case we can apply a sequential solution scheme where we can solve sub-system 1
first (subsystem 1 as an input), then we solve sub-system 2.

L1(u1, u2) � L̂1(u1) (1.3)

du1
dt

� L̂1(u1) ⇒ u1(t) (1.4)
du2
dt

= L2(u2, u1(t)) (1.5)

1.3.2 Strong coupling

A system is called strongly coupled2, if both sub-system 1 and sub-system 2 have influ-
ences on each others.
In this case we can apply different kind of schemes to solve the problem :

• Concurrent solution scheme such monolithic schemes where we solve simultane-
ously all equations in one algorithm.

• Staggered schemes where the coupled problem is split and each physic is treated
by different strategy.

1.4 Monolithic and staggered schemes

1.4.1 Monolithic scheme:

Consider the interaction between two scalar fields u1 and u2, where each field has only
one state variable u1(t) and u2(t).
The monolithic scheme consists of resolving simultaneously the fields equations u(t) (in
u1 and u2) with one algorithm (whether implicit or explicit), where u(t) is defined as:

1Examples of weakly coupled systems : aero-accoustics
2examples of strongly coupled systems : thermo-mechanics, thermo-visco-elasticity, aero-elasticity

and so on
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{u(t)} = {u1(t), u2(t)}T (1.6)
{u(0)} = {u0} (1.7)

d{u}
dt

= L({u}) (1.8)

Therefore we obtain a complex system with a very large size, but have the benefit to
be unconditional stable for implicit algorithms, meaning that we can go for larger time
steps without affecting the stability of the system.
On the other hand, explicit algorithms lead to conditional stability, which means that
the stability of the system is influenced by the size of time step, the time step shall be
less than a critical time step ∆t < ∆tcrit.
If we denote ∆tcrit1 the critical time step for the stability of the sub-system 1, and ∆tcrit2

the critical time step for the stability of the sub-system 2, min(∆tcrit1 , ∆tcrit2) may be �
max(∆tcrit1 , ∆tcrit2)
The system obtained is very large, and the tangent matrix has the following form:

�
δL1
δu1

δL1
δu2

δL2
δu1

δL2
δu2

�

(1.9)

The system obtained is generally non-symmetric due to the coupled terms of δL1
δu2

and
δL2
δu1

, and this lead to big computational cost generated by the inversion of the tangent
matrix, especially when the coupling is strong, where the sub-diagonal matrices should
be taken into account. In fact, when coupling is weak, these matrices can be neglected.
Strong coupling may influence convergence, but not inversion time with direct solvers.

1.4.2 Staggered scheme

The goal of a staggered scheme is to split the coupled problem into a set of sub-problems,
therefore the staggered scheme (also called partitioned (without a fixed point)) solves
different physic separately L({u}) = L2 ◦ L1({u}). The system becomes simpler due to
the reduction of degrees of freedom of each sub-system. Some of the advantages is that
we can use the best algorithm of resolution for each sub-system, the best discretization
for each sub-system and may use the best time increments for each sub-system (which
is not so obvious in practice). One of the disadvantages is that a staggered scheme is
not always stable [101, 102].

1.5 Application

Consider strong coupling between two scalar fields X and Y. Each field has one state
variable identified as x(t) and y(t), respectively, which are assumed to be governed by
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the first-order differential equation:

ẋ + ax + cy = f(t) (1.10)
ẏ + by + dx = g(t) (1.11)

where f(t) and g(t) are the applied forces.
Equation 1.10 can be written in the following form:

L1(x, y) = f(t) − ax − cy (1.12)
L2(x, y) = g(t) − dx − by (1.13)

or more generally Li(x, y) = Ai(x, y) + fi(t).
The initial conditions are given by:

x(0) = x0 ẋ(0) = ẋ0 (1.14)
y(0) = y0 ẏ(0) = ẏ0 (1.15)

1.5.1 Monolitic approach

Let’s treat the system by Backward Euler integration in each component:

xn+1 = xn + ∆tẋn+1 (1.16)
yn+1 = yn + ∆tẏn+1 (1.17)

xn+1 = xn + ∆t (f(tn+1) − axn+1 − cyn+1) (1.18)
yn+1 = yn + ∆t (g(tn+1) − byn+1 − dxn+1) (1.19)

where xn = x(tn), etc. At each time step n = 0, 1, 2, ... we get:
�

xn+1
yn+1

�

=
�

1 + a∆t c∆t

d∆t 1 + b∆t

�−1 �
xn + ∆tfn+1
yn + ∆tgn+1

�

(1.20)

in which [x0, y0] are provided by the initial conditions. In the monolithic or simultaneous
solution approach, the system (1.20) is solved at each time step till the final time tf .

1.5.2 Staggered scheme

The system treated above can be written as:
�

1 + a∆t c∆t

d∆t 1 + b∆t

� �
xn+1
yn+1

�

=
�

xn + ∆tfn+1
yn + ∆tgn+1

�

(1.21)
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A simple partitioned solution procedure is obtained by treating the system (1.21) with
the following staggered partition with prediction on y:

�
1 + a∆t 0

d∆t 1 + b∆t

� �
xn+1
yn+1

�

=
�

xn + ∆tfn+1 − c∆ty
p

n+1
yn + ∆tgn+1

�

(1.22)

1. Predictor : y
p

n+1 = yn + ∆tẏn

2. Solve x (or Advance x) : xn+1 = 1
1+a∆t

(xn + ∆tfn+1 − cy
p

n+1)

3. Transfer (or Substitute) : xn+1 = xn+1

4. Solve y (or Advance y) : yn+1 = 1
1+b∆t

(yn + ∆tgn+1 − d∆txn+1)
where y

p

n+1 is the predictor. Two common choices for the predictor are y
p

n+1 = yn (called
the last solution predictor) and y

p

n+1 = yn + ∆tẏn

1.5.3 Comments on respective advantages and merits

Since Backward Euler integration conserves the stability of the system, the features of
each schemes will be commented as follows:

A scheme is called stable if the eigenvalues of the amplification matrix is < 1.

For the monolithic scheme the amplification matrix is given by
�

1 + a∆t c∆t

d∆t 1 + b∆t

�−1

(1.23)

For the staggered scheme, we can write system (1.22) in a alternative manner, by con-
sidering the predictor y

p

n+1 = yn:
�

1 + a∆t 0
d∆t 1 + b∆t

� �
xn+1
yn+1

�

=
�

1 −c∆t

0 1

� �
xn

yn

�

+
�

∆tfn+1
∆tgn+1

�

(1.24)

In this case the amplification matrix is given by:
�

1 + a∆t 0
d∆t 1 + b∆t

�−1 �
1 −c∆t

0 1

�

(1.25)

If we select certain values for a, b, c and d where a > 0, b > 0 and a × b − c × d > 0, we
can see clearly that the eigenvalues of the amplification matrix (eq. 1.23) are < 1, while
the eigenvalues of the amplification matrix (eq. 1.25) may be > 1, then we can deduce
that the monolithic schemes are unconditionally stable, whereas the staggered schemes
are conditionally stable.

15



Chapter 2

Basics of coupled

thermo-mechanical problem

Résumé
Dans ce chapitre on rappelle les concepts de base, et la formulation des équations réagis-
sant le comportement d’un milieu continu, ainsi que les principes fondamentaux de la
thermodynamique et du transfert de chaleur. Le formalisme développé peut prendre en
compte la production de grandes déformations ainsi que les couplages pouvant apparaître
entre les champs mécanique et thermique.

L’approche adoptée est basé sur l’hypothèse d’état local thermodynamique à l’équilibre,
d’où les fonctions thermodynamique sont déterminées à partir des variables d’état, qui ne
dépendent que de ces derniers (indépendant de leur gradient et leur dérivées temporelles).
Les variables d’état sont de trois types, décrivant l’état de déformation du corps, sa tem-
pérature et sa structure interne représentée par des variables d’état interne. Le choix de
ces variables d’état , qui doit être bien adéquat, est une des difficultés d’utilisation de la
formulation thermodynamique

Afin de développer l’équation de chaleur, qui met en evidence les termes de couplage
thermo-mécanique, il convient de rappeler les fonctions thermodynamiques (comme l’énergie
libre) qui sont des fonctions des variables d’état, ou bien de leur grandeur thermody-
namiquement conjuguée.

A la fin de ce chapitre, l’équation de chaleur la plus générale est développée, afin de
mettre en évidence l’évolution de la variable température, qui se traduit par le principe
de conservation de l’énergie. L’équation de la chaleur est une réécriture du premier
principe en utilisant les lois d’état et les lois complémentaire exposées dans le chapitre.
Elle permet de mettre en évidence les couplages entre les effets mécaniques et thermique
et de préciser les grandeurs énergétiques qui se transforment en chaleur lors d’un pro-
cessus thermo-mécanique.
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2.1 Introduction

In this chapter we recall the basic concepts in continuum mechanics and the fundamental
principles of thermodynamics and heat transfer. The theories that we examine here are
all based on the assumption of local thermodynamic state in equilibrium, this means
that the thermodynamic functions are determined through a finite set of variables, called
state variables. These functions depending only on these variables will be independent
of their gradients (local state) and their time derivatives (system in equilibrium). In
these theories, the state variables are almost always describing three types: the state of
deformation of the body, its temperature and internal structure [47, 83, 67, 48, 56, 98].

2.2 Basics of continuum mechanics

Continuum mechanics is a branch of mechanics that deals with the analysis of the kine-
matics and the mechanical behavior of materials modelled as a continuous mass rather
than as discrete particles. The French mathematician Augustin Louis Cauchy was the
first to formulate such models in the 19th century, but research in the area continues
today.
On a macroscopic scale, materials have cracks and discontinuities. However, certain
physical phenomena can be modelled assuming the materials exist as a continuum, mean-
ing the matter in the body is continuously distributed and fills the entire region of space
it occupies. A continuum is a body that can be continually sub-divided into infinitesimal
elements with properties being those of the bulk material.
To develop an appropriate formalism, we will need to refer to two different configura-
tions of a continuous body. Let B0 denotes the reference configuration that represents
the configuration at time t = t0, occupying a volume V0 defined by a boundary A0,
and by Bt the current configuration at time t, occupying a volume Vt and a boundary
At. The positions of material particles belonging to the reference configuration B0 are
denoted by X, and those belonging to the current configuration Bt, are denoted by x.
Each material point will move and have its own trajectory path. Hence, the trajectory
is defined by the evolution of the material point x as follow:

x = φ(X, t) (2.1)

The gradient of the deformation relative to the motion between the reference and the
current configuration is defined as follow:

F = ∂φ(X, t)
∂X

= ∂x(X, t)
∂X

(2.2)

where F is a second order tensor.
In general F is a non symmetric tensor. The measurement of deformation is dependent
on the configuration (the actual configuration B0 or the current configuration Bt. In
our work, the chosen configuration is the reference configuration (B0). In this case, the
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deformation is measured through the Green-Lagrange deformation tensor , defined by:

E = 1
2 (C − I) = 1

2
�
F

T
F − I

�
(2.3)

where the index T is the transpose of the tensor F, C = F
T
F is called right Cauchy-

Green stretch tensor, it is symmetric, and I is the identity tensor.

The gradient of the transformation can be written in function of the gradient of dis-
placement:

F = ∂x

∂X
= ∂(X + u)

∂X
= I + ∂u

∂X
(2.4)

Where u is the displacement vector.
We can write then the Green-Lagrange tensor as follow:

E = 1
2(C − I) (2.5)

= 1
2(FT

F − I) (2.6)

= = 1
2

�

( ∂u

∂X
) + ( ∂u

∂X
)T + ( ∂u

∂X
)T · ( ∂u

∂X
)
�

(2.7)

2.2.1 Small perturbations assumption

Small perturbations assumption states that displacements (and rotations) between the
reference and actual configuration are very small, as well as the gradient of the displace-
ment.

Under these conditions (small perturbations), the current and the reference config-
urations are very close to each others, then we can substitute the variable x by X, ∀
x ∈ Ω, therefore we can neglect the quadratic term in equation (2.7):

E ≈ 1
2

�
∂u

∂X
+ ( ∂u

∂X
)T

�

= � (2.8)

In this case, the deformation tensor of the current configuration, called Euler-Almansi
tensor, gives the same expression as (2.8).

2.2.2 Balance laws

Let f(x, t) be a physical quantity that is defined through a field. Let g(x, t) be sources
on the surface of the body and let h(x, t) be sources inside the body. Let n(x, t) be the
outward unit normal to the surface A . Let u(x, t) and v(x, t) be the displacement and
the velocity field of the physical particles that carry the physical quantity that is flowing
respectively. Also, let the speed at which the bounding surface A is moving be un (in

18



the direction n).
Then, balance laws can be expressed in the general form:

d

dt

��

V

f(x, t) dV
�

=
�

A

f(x, t)[un(x, t)−v(x, t)·n(x, t)] dA+
�

A

g(x, t) dA+
�

V

h(x, t) dV
(2.9)

Note that the functions f(x, t), g(x, t), and h(x, t) can be scalar valued, vector valued,
or tensor valued depending on the physical quantity that the balance equation deals
with. If there are internal boundaries in the body, jump discontinuities also need to be
specified in the balance laws.
In the followings, we write the balance laws of a solid (balance laws of mass, momentum,
and energy) under the Lagrangian point of view.

Law of Conservation of Mass

The mass M is defined as:

M =
�

V0
ρ0dV0 =

�

V

ρ0dV (2.10)

The law of conservation of mass is written as :

dM

dt
=

�

V

(ρ̇0 + ρ0 ∇ · v) = 0 (2.11)

Where ρ0 initial density (kg/m
3), ρ0 current density ,v the velocity of the body (m/s),

and ∇ is the divergence operator.
Local form of equation 2.11 is written as :

ρ̇0 + ρ0 ∇ · v = 0 (2.12)

Law of conservation of Linear momentum

The linear momentum Q is defined as:

Q =
�

V

ρ0 vdV (2.13)

Where Q is the linear momentum (kg.m/s).
Let t be denoted as the applied traction forces on the boundary (N/m

2), b body forces
vector (N/kg), then the resultant mechanical force of the body R (N) can be written
as:

R =
�

A

tdA +
�

V

ρ0bdV (2.14)

The law of conservation of linear momentum is written under the following form:

dQ

dt
= R (2.15)
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Using the relation linking the traction vector force on the boundary t0 to Cauchy stress
tensor t0 = σ · n, where σ is the cauchy stress tensor (N/m

2) and n is the normal to
the surface. The local equation of the linear momentum is written under the following
form :

ρ0v̇ = ρ0b + ∇ · σ (2.16)

Law of conservation of angular momentum

The angular momentum MQ is defined as :

MQ =
�

V

ρ0(x ∧ v)dV (2.17)

The resultant moment of mechanical forces is:

MR =
�

A

(x ∧ t)dA +
�

V

ρ0(x ∧ b)dV (2.18)

the conservation of angular momentum is written as:

dMQ

dt
= MR (2.19)

The local equation of the conservation of angular momentum shows that Cauchy
stress tensor is symmetric.

σ = σ
T (2.20)

Note that the law of conservation of energy will be presented in a subsequent section,
since we need to expose general concepts of heat transfer and thermodynamics.

2.3 Basics of heat transfer

Heat transfer is a discipline of thermal engineering that concerns the generation, use,
conversion, and exchange of thermal energy and heat between physical systems. Heat
transfer is classified into various mechanisms, such as heat conduction, convection, ther-
mal radiation, and transfer of energy by phase changes. Engineers also consider the
transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer.
While these mechanisms have distinct characteristics, they often occur simultaneously
in the same system [2, 75].
Heat is defined in physics as the transfer of thermal energy across a well defined boundary
around a thermodynamic system. Fundamental methods of heat transfer in engineer-
ing include conduction, convection, and radiation. Physical laws describe the behavior
and characteristics of each of these methods. Real systems often exhibit a complicated
combination of them. Heat transfer methods are used in numerous disciplines, such as
automotive engineering, thermal management of electronic devices and systems, climate
control, insulation, materials processing, and power plant engineering.
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Various mathematical methods have been developed to solve or approximate the results
of heat transfer in systems. The amount of heat transferred in a thermodynamic process
that changes the state of a system depends on how that process occurs, not only the net
difference between the initial and final states of the process. Heat flux is a quantitative,
vectorial representation of the heat flow through a surface [76].
Heat conduction, also called diffusion, is the direct microscopic exchange of kinetic en-
ergy of particles through the boundary between two systems. When an object is at
a different temperature from another body or its surroundings, heat flows so that the
body and the surroundings reach the same temperature, at which point they are in ther-
mal equilibrium. Such spontaneous heat transfer always occurs from a region of high
temperature to another region of lower temperature, as required by the second law of
thermodynamics [96, 63].
Heat convection occurs when bulk flow of a fluid (gas or liquid) carries heat along with
the flow of matter in the fluid. The flow of fluid may be forced by external processes,
or sometimes (in gravitational fields) by buoyancy forces caused when thermal energy
expands the fluid (for example in a fire plume), thus influencing its own transfer. The
latter process is sometimes called "natural convection". All convective processes also
move heat partly by diffusion, as well. Another form of convection is forced convection.
In this case the fluid is forced to flow by use of a pump, fan or other mechanical means.
The final major form of heat transfer is by radiation, which occurs in any transparent
medium (solid or fluid) but may also even occur across vacuum (as when the Sun heats
the Earth). Radiation is the transfer of energy through space by means of electromag-
netic waves in much the same way as electromagnetic light waves transfer light. The
same laws that govern the transfer of light govern the radiant transfer of heat.

2.3.1 Fundamental modes of heat transfer

Conduction

On a microscopic scale, heat conduction occurs as hot, rapidly moving or vibrating
atoms and molecules interact with neighboring atoms and molecules, transferring some
of their energy (heat) to these neighboring particles. In other words, heat is transferred
by conduction when adjacent atoms vibrate against one another, or as electrons move
from one atom to another. Conduction is the most significant means of heat transfer
within a solid or between solid objects in thermal contact. Fluids, especially gases are
less conductive.
The law of heat conduction, also known as Fourier’s law, states that the time rate of heat
transfer through a material is proportional to the negative gradient in the temperature
and to the area, at right angles to that gradient, through which the heat is flowing [45].
The differential form of fourier’s law for isotropic materials is written as follow:

H = −k∇T (2.21)

Where H is the local heat flux (Wm
−2), k is the material’s conductivity (Wm

−1
K

−1),
and ∇T is the temperature gradient (Km

−1).
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The thermal conductivity, k, is often treated as a constant, though this is not always
true. While the thermal conductivity of a material generally varies with temperature, the
variation can be small over a significant range of temperatures for some common materi-
als. In anisotropic materials, the thermal conductivity typically varies with orientation;
in this case K is represented by a second-order tensor. In heterogeneous materials, K

varies with spatial location.

Convection

Convection is the transfer of thermal energy from one place to another by the movement
of fluids. Convection is usually the dominant form of heat transfer in liquids and gases.
Although often discussed as a distinct method of heat transfer, convection describes the
combined effects of conduction and fluid flow or mass exchange [10].
Two types of convective heat transfer may be distinguished:

1. Free or natural convection : when fluid motion is caused by buoyancy forces that
result from the density variations due to variations of temperature in the fluid.
In the absence of an external source, when the fluid is in contact with a hot
surface, its molecules separate and disperse, causing the fluid to be less dense. As
a consequence, the fluid is displaced while the cooler fluid gets denser and the fluid
sinks. Thus, the hotter volume transfers heat towards the cooler volume of that
fluid.

2. Forced convection : when a fluid is forced to flow over the surface by an exter-
nal source such as fans, by stirring, and pumps, creating an artificially induced
convection current.

Internal and external flow can also classify convection. Internal flow occurs when a fluid
is enclosed by a solid boundary such when flowing through a pipe. An external flow
occurs when a fluid extends indefinitely without encountering a solid surface. Both of
these types of convection, either natural or forced, can be internal or external because
they are independent of each other.
Convection-cooling can sometimes be described by Newton’s law of cooling in cases
where convection coefficient is independent or relatively independent of the temperature
difference between object and environment.
Newton’s law states that the rate of heat loss of a body is proportional to the difference
in temperatures between the body and its surroundings. Mathematically, this can be
written as:

dQ

dt
= Q̇ = hA(Tenv − T (t)) = −hA∆T (t) (2.22)

where, Q is the thermal energy (J) and h is the heat transfer coefficient (Wm
−2

K
−1).
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Radiation

Thermal radiation is the emission of electromagnetic waves from all matter that has
a temperature greater than absolute zero (theoretical temperature at which entropy
reaches its minimum value) [81], it represents a conversion of thermal energy into elec-
tromagnetic energy.
The Stefan-Boltzmann law states that the total energy radiated of a black body1 is di-
rectly proportional to the fourth power of the black body’s thermodynamic temperature
T:

e(T ) = σT
4
. (2.23)

where σ is the Stefan-Boltzmann constant (5.67 × 10−8
Wm − 2K − 4) and e is the total

energy (J/m
2).

A more general case is of a grey body, the one that doesn’t absorb or emit the full amount
of radiative flux. Instead, it radiates a portion of it, characterized by its emissivity, �:

e(T ) = εσT
4 (2.24)

where ε is the emissivity of the grey body (ε ≤ 1); if it is a perfect blackbody, � = 1. Still
in more general (and realistic) case, the emissivity depends on the wavelength, � = �(λ).
In space engineering, thermal radiation is considered one of the fundamental methods
of heat transfer such as in satellites and outer space, but is counted less in industrial
problem where only convection and conduction heat transfer are only considered.

2.4 Basics of thermodynamics

Thermodynamics is a physical science that studies the effects on material bodies, of
transfer of heat and of work done on or by the bodies. It interrelates macroscopic vari-
ables, such as temperature, volume and pressure, which describe physical properties of
material bodies, which in this science are called thermodynamic systems.
A thermodynamic system is a system that performs heat exchange under the form of
heat/work with the environment.

2.4.1 Thermodynamic state

A thermodynamic state is a set of values of properties of a thermodynamic system that
must be specified to reproduce the system. The individual parameters are known as
state variables, state parameters or thermodynamic variables. Once a sufficient set of
thermodynamic variables have been specified, values of all other properties of the system
are uniquely determined. The number of values required to specify the state depends
on the system, and is not always known.

1A black body is an idealized physical body that absorbs all incident electromagnetic radiation,
regardless of frequency or angle of incidence
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2.4.2 Thermodynamic state variable

A state variable is a characteristic quantity of a thermodynamic system or sub-system,
that can be scalar (temperature ...), a vector, or a tensor (strain ...).
When a system is at thermodynamic equilibrium under a given set of conditions, it is
said to be in a definite thermodynamic state, which is fully described by its state vari-
ables.
Thermodynamic state variables are of two kinds, extensive (mass, volume ...) and in-
tensive (temperature, pressure ...).
The choice of state variables is guided by the desired fineness of the description and the
observation of phenomena to be modeled

2.4.3 Entropy

Entropy is a thermodynamic property that can be used to determine the energy not
available for work in a thermodynamic process, such as in energy conversion devices,
engines, or machines. Such devices can only be driven by convertible energy, and have
a theoretical maximum efficiency when converting energy to work. During this work,
entropy accumulates in the system, which then dissipates in the form of waste heat [90].
The concept of entropy is defined by the second law of thermodynamics, which states
that the entropy of an isolated system always increases or remains constant.
Entropy is a tendance of a process to reduce the state of order of the initial systems
(spontaneous flow of thermal energy), and therefore entropy is an expression of disorder
or randomness.

2.4.4 Specific internal energy

In thermodynamics, the internal energy is the total energy contained by a thermody-
namic system. The internal energy is a state function of a system, because its value
depends only on the current state of the system and not on the path taken or process
undergone to arrive at this state. It is an extensive quantity. A corresponding intensive
thermodynamic property called specific internal energy is defined as internal energy per
a unit of mass [13].
The expression that relates the specific internal energy to specific entropy is given by:

T = du(η)
dη

(2.25)

where T is the temperature (K), u is the specific internal energy (J/kg), and η is the
specific entropy (entropy per unit mass) (J.kg/K), and u(η) is a convex state function
in order to ensure material stability.
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2.4.5 First law of thermodynamics

The first law of thermodynamics states that energy can be transformed, but cannot be
created nor destroyed. It is usually formulated by stating that the change in the internal
energy of a system is equal to the amount of heat supplied to the system, minus the
amount of work performed by the system on its surroundings, in other words it is a
transformation from heat energy to mechanical energy and vice versa. It can be written
as:

dU

dt
+ dKe

dt
= Pext + Pth (2.26)

Where

U =
�

V

ρ0udV (2.27)

Ke =
�

V

1
2ρ0v · vdV (2.28)

Pext =
�

V

b · vdV −
�

A

t · vdA (2.29)

Pth =
�

V

ρ0rdV −
�

A

H · ndA (2.30)

Where

• U : Internal energy of the system

• Ke : Kinetic energy of the system

• Pext : Power done by external forces

• Pth : Power done by heat supplies

• r : Heat supply field

• H : Heat flux

• u : Specific internal energy

Using the principle of virtual power, with physical velocity field chosen as virtual field,
we can write :

Pi + Pext = Pa = dKe

dt
(2.31)

Where Pi, Pext and Pa are the virtual power of internal, external and acceleration forces
respectively.
The internal power is given by the following expression [99]

Pi = −σ : D (2.32)

where σ is the Cauchy stress tensor and D is the rate of deformation tensor.
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Equations (2.26) and (2.31) lead to:

dU

dt
= −Pi + Pth (2.33)

and
d

dt

�

V

ρ0udV =
�

V

σ : DdV +
�

V

ρ0rdV −
�

A

H · ndA (2.34)

The local form is given as follow:

ρ0
du

dt
= σ : D + ρ0r − ∇ · H (2.35)

where ∇ · H is the divergence operator.

2.4.6 Free energy

The internal free energy (or Helmholtz free energy) is a thermodynamic potential that
measures the useful work obtainable from a closed thermodynamic system at a constant
temperature and volume. The internal free energy W is a state function, concave func-
tion of T , Legendre-Fenchel transform of the specific internal energy with respect to the
specific entropy η. Mathematically it is written as follows:

W (T ) = inf
η

(u(η) − ηT ) (2.36)

Where η linked with T through equation (2.25)
We can write the heat equation (2.35) in entropy form:

u̇ = du

dη
η̇ = T η̇ (2.37)

ρ0η̇ = 1
T

(σ : D + ρ0r − ∇ · H) (2.38)

Lets denote η
∗ by the solution of (2.36), therefore:

W (T ) = u(η∗) − η
∗
T (2.39)

dW

dT
= du

dη

dη
∗

dT
− dη

∗

dT
T − η

∗ (2.40)

dW

dT
=

�
du

dη
− T

�
dη

∗

dT
− η

∗ (2.41)

Comparing equations (2.41) and (2.25), we can write

η = −dW (T )
dT

(2.42)
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If we consider a pure thermal problem, the heat equation in entropy form is written as :

ρ0η̇ = 1
T

(ρ0r − ∇ · H) (2.43)

ρ0
dη

dT
Ṫ = 1

T
(ρ0r − ∇ · H) (2.44)

−ρ0
d

2
W

dT 2 Ṫ = 1
T

(ρ0r − ∇ · H) (2.45)

We define the specific heat capacity as:

C(T ) = −T
d

2
W (T )
dT 2 (2.46)

Therefore the heat equation is written in its classical form as:

ρ0CṪ = ρ0r − ∇ · H (2.47)

2.4.7 Second law of thermodynamics

The second law of thermodynamics is an expression of the tendency that over time,
differences in temperature, pressure, and chemical potential equilibrate in an isolated
physical system. From the state of thermodynamic equilibrium, the law deduced the
principle of the increase of entropy and explains the phenomenon of irreversibility in
nature [55].
The first law of thermodynamics provides the basic definition of thermodynamic energy
(or internal energy), associated with all thermodynamic systems, and states the rule of
conservation of energy in nature. However, the concept of energy in the first law does not
account for the observation that natural processes have a preferred direction of progress.
For example, spontaneously, heat always flows to regions of lower temperature, never
to regions of higher temperature without external work being performed on the system.
The first law is completely symmetrical with respect to the initial and final states of an
evolving system. The key concept for the explanation of this phenomenon through the
second law of thermodynamics is the definition of a new physical property, the entropy
S, defined as :

S =
�

V

ρ0ηdV (2.48)

and verifying
dS
dt

≥
�

V

Q

T
dV =

�

V

ρ0r

T
dV −

�

A

H · n

T
dA (2.49)

where Q, r, H, η are the total heat transfer, body heat supply, heat flux arriving on the
surface and specific entropy, respectively.
Using the divergence theorem, equation (2.48) can be written under the local form :

ρ0η̇ − Q

T
≥ 0 (2.50)
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or
ρ0η̇ + ∇ · H

T
− ρ0r

T
≥ 0 (2.51)

To note that in the particular case of a closed system driving a reversible process, the
entropy equation will be written under the following

dS

dt
=

�

V

Q

T
dV (2.52)

By developing equation (2.51), we write:

ρ0η̇ − 1
T

ρ0r + 1
T

∇ · H

� �� �
= 0 (eq. (2.43))

− 1
T 2 H · ∇T ≥ 0 (2.53)

Considering a purely thermal problem, by comparing equations (2.43) and (2.53) we
deduce:

− 1
T 2 H · ∇T ≥ 0 (2.54)

often written under an alternative manner
1
T

D
∗
ther

≥ 0 (2.55)

where

D
∗
ther

≡ −H · ∇T

T
is the thermal dissipation (2.56)

The thermal dissipation D
∗
ther

is always positive, physically it means that energy cannot
be created, while the system can lose it. More interestingly, it shows why conduction k

in Fourier law must be positive.

2.4.8 Clausius-Duhem inequality

Coming back to the general case, combining equations (2.35) and (2.53), and applying
the divergence theorem:

∇ ·
�

H

T

�
= ( 1

T
)∇ · H − 1

T 2 H · ∇T (2.57)

we obtain the fundamental inequality of Clausius-Duhem:

ρ0 (T η̇ − u̇) − σ : D − H · ∇T

T
≥ 0 (2.58)

Equation (2.39) gives
Ẇ = u̇ − Ṫ η − T η̇ (2.59)
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Combining equations (2.58) and (2.59) leads to Clausius-Duhem inequality:

σ : D − ρ0
�
Ẇ + ηṪ

�
− H · ∇T

T
≥ 0 (2.60)

The left hand side is the total dissipation that can be decomposed into mechanical and
thermal dissipation denoted by D

∗
mech

and D
∗
therm

, respectively.
We have already showed that the thermal dissipation is always positive ( 2.55). It is
usually assumed that the mechanical dissipation is also positive on its own, therefore we
can write:

D
∗
mech

= σ : D − ρ0
�
Ẇ + ηṪ

�
≥ 0 (2.61)

D
∗
ther

= −H · ∇T

T
≥ 0 (2.62)

The two local equations of the first and the second principle, as well as the Clausius-
Duhem inequality, constitute the fundamental concepts of thermodynamics.

2.4.9 Developping the general thermo-mechanical heat equa-

tion

To define the thermodynamic state of the system, we will need to refer to state variables
. The hypothesis of local state postulate that the continuum thermodynamic state is
defined through state variables that can be external or internal. Internal variables are
linked to dissipative processes and describe the internal structure of the material on the
microscopical level.
In thermo-mechanical context, states variables are the strain �, the temperature T and
internal variables ξ that can be scalar valued, vector valued, or tensor valued.
The free energy W is dependent on the strain tensor, temperature and internal variables

W = W (�, T, ξ) (2.63)
Therefore

Ẇ = ∂W

∂�
�̇ + ∂W

∂T
Ṫ + ∂W

∂ξ
ξ̇ (2.64)

Combining equations (2.60) and (2.64), and splitting the stress into a reversible and
irreversible part

σ = σ
rev + σ

irr (2.65)
leads to

�

σ
rev − ρ0

∂W

∂�

�

: �̇ − ρ0

�

η + ∂W

∂T

�

Ṫ + σ
irr : D − ρ0

∂W

∂ξ
ξ̇ − H · ∇T

T
≥ 0 (2.66)
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where D is identified as the strain rate �̇[114], σ
rev and σ

irr are the reversible and
irreversible stress, respectively.
To obtain a simpler equation, we consider the case of thermo-elastic process with a
uniform temperature, therefore we can write equation (2.66) as

�

σ
rev − ρ0

∂W

∂�

�

: �̇ − ρ0

�

η + ∂W

∂T

�

Ṫ ≥ 0 (2.67)

where the terms between brackets are independent of time derivative terms, therefore

σ
rev = ∂ρ0W

∂�
= ρ0

∂W

∂�
(2.68)

and
η = −∂W

∂T
(2.69)

Note that ρ0 is considered constant in small strain hypothesis.
We admit that equations (2.68) and (2.69) are verified for all different admissible pro-
cesses. Growth of entropy implies that the specific free energy is concave with respect
to temperature.
We deduce the reduced form of the Clausius-Duhem inequality

σ
irr : D − ρ0

∂W

∂ξ
ξ̇ − H · ∇T

T
≥ 0 (2.70)

or
σ

irr : D + X · ξ̇ − H · ∇T

T
≥ 0 (2.71)

where
X = −∂ρ0W

∂ξ
(2.72)

X are called the thermodynamic forces associated to the internal variables ξ, or simply,
X is conjugate to ξ. From equations (2.68) and (2.69) we can say that the specific
entropy η is conjugate to temperature T , and the reversible stress σ

rev is conjugate to
strain �.

From equation (2.71) we can write the mechanical dissipation as

D
∗
mech

= σ
irr : �̇ + X · ξ̇ (2.73)

where D is identified to the strain rate �̇.
We notice that the mechanical dissipation is composed into a sum of products "force-flux"
involving the state variable’s rate. The notion of force-flux is very common and consists
of assuming a linear dependency. However this assumption is not always satisfied when
the material behavior presents some aspect of plasticity or nonlinear visco-elasticity.
The generalized standard material framework assumes that forces, or the dual force-flux
is derived from a dissipation pseudo-potential function.
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Table 2.1: Number of unkowns

Variable(s) number of unknown(s)

Displacement u 3
Deformation � 6

reversible stress σ
rev 6

stress tensor σ 6
Temperature T 1

Heat flux H 3
Entropy η 1

Internal variables ξ n
Conjugate to internal variables X n

Total number of unknowns 2n + 26

Generalized standard materials

When we count the number of equations and the number of unknowns in a thermo-
mechanical problem, we find that the number of unknowns is 2n+26 and the number of
equations is n + 20, where n is the number of internal state variables (table 2.1 & 2.2 ),
therefore we are interested in introducing the generalized standard material formalism
allowing to write dissipative processes and obtain the missing n + 6 equations [28].
For this, we consider that there exists a pseudo-potential function denoted by D(�̇, ξ̇)

that depends on the rate �̇ and ξ̇, positive, minimum and D(0, 0) = 0, where

σ
irr = ∂D(�̇, ξ̇)

∂�̇
(2.74)

and
X = ∂D(�̇, ξ̇)

∂ξ̇
(2.75)

2.5 General thermo-mechanical heat equation

The heat equation is deduced from the first principle using state and complementary
laws. It reveals the coupling between mechanical and thermal effects and specifies the
variables that transform energy into heat during thermo-mechanical processes. The heat
sources are diverse in nature and can be directly related to microstructural transforma-
tions undergone by the material [57].

To develop the heat equation, we have to rewrite equation (2.35) by substituting the
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Table 2.2: Number of equations

Variable(s) Number of equation(s)

Equations of motion 3
Constitutive law of the material 6

State law σ
rev = ρ0

∂W

∂�
6

Heat equation 1
Fourier’s law 3

State law η = −∂W

∂T
1

Conjugate to internal variables X = −∂ρ0W

∂ξ
n

Total number of equations n + 20

specific internal energy u̇ by the internal free energy Ẇ , for this, we write:

ρ0u̇ = ρ0r − ∇ · H + σ : �̇ (2.76)

knowing that
u (η, �, ξ) = sup

T

[W (T, �, ξ) + ηT ] (2.77)

leads to
ρ0u̇ = ρ0

∂u

∂η
η̇ + ∂ρ0u

∂�
�̇ + ∂ρ0u

∂ξ
ξ̇ (2.78)

ρ0u̇ = ρ0T η̇ + ∂ρ0W

∂�
�̇ + ∂ρ0W

∂ξ
ξ̇ (2.79)

ρ0u̇ = Tρ0η̇ + σ
rev : �̇ − X · ξ̇ (2.80)

Combining equations 2.76 & 2.80, and splitting σ to σ
rev + σ

irr lead to:

ρ0T η̇ = X · ξ̇ + P
irr + ρ0r − ∇ · H (2.81)

where
P

irr = σ
irr : �̇ (2.82)

Equation (2.81) is the heat equation in entropy form. Note that the internal dissipation
(the term Xξ̇) can be more than one variable.
Knowing that

η = −∂W

∂T
(T, �, ξ) (2.83)

leads to
ρ0η̇ = −∂

2
ρ0W

∂T 2 Ṫ − ∂
2
ρ0W

∂T∂�
�̇ − ∂

2
ρ0W

∂T∂ξ
ξ̇ (2.84)
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By defining the specific heat capacity C as:

C = −T
∂

2
ρ0W

∂T 2 (T, �, ξ) (2.85)

we obtain the general thermo-mechanical heat equation:

ρ0CṪ = T
∂

2
ρ0W

∂T∂�
: �̇ + T

∂
2
ρ0W

∂T∂ξ̇
ξ̇ + X · ξ̇ + P

irr + ρ0r − ∇ · H (2.86)

The term Xξ̇ +P
irr = Xξ̇ +σ

irr : �̇ is the mechanical dissipation D
∗
mech

(equation 2.73).
We can rewrite the equation under the following:

ρ0CṪ + ∇ · H = T
∂

2
ρ0W

∂T∂�
: �̇ + T

∂
2
ρ0W

∂T∂ξ̇
ξ̇ + D

∗
mech

+ ρ0r (2.87)

This latter equation, shows that the variation of temperature created by the coupled
terms, as well as by the stress and heat supply, will modify the temperature of the
system (term ρ0CṪ ), or will be evacuated through conduction, outside the system (term
∇ · H).
In our applications, we will model the heat flux by Fourier’s law (eq.2.21).

2.5.1 Interpretation of coupled terms

In this section we will interpret the coupled terms in the heat equation (eq. 2.86). The
coupled terms reveal the interactions between the temperature and other state variables
that define the material. For a defined material in a thermo-mechanical problem, the
state variables are the temperature, and a set of other state variables (�, ξi ...).
The general form of the coupled terms in heat equation has the following form:

T
∂

2
ρ0W

∂T∂α
α̇

Where α is any state variable (T, �, ξ).

As an example, a material that has a thermo-elastic behaviour, the state variables are T

and �, and in this case the corresponding coupled term deformation-temperature (also
called isentropic term), will be written as:

T
∂

2
ρ0W

∂T∂�ij

˙�ij (2.88)

The coupled terms are interpreted as follows:
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Term 1: P
tot = σ

irr : �̇ + X · ξ̇ These classical terms are called: irreversible total
power, and they describe the total irreversible power produced in the material. The first
term σ

irr : �̇ is the viscous dissipation, and the second term Xξ̇ is the dissipation due
to plasticity.

Term 2 : P
s = T

∂
2
ρ0W

∂T ∂ξ
ξ̇ This term models the irreversible power that is stored in

the material, that is due to the disorder and creation of defects during an irreversible
process and which is not dissipated as heat.

Term 3 : P
T hElas = T

∂
2
ρ0W

∂T ∂�
�̇ This term models the thermo-elastic power developed

in the material. It is connected to Gough-Joule effect that predicts a decrease of tem-
perature when the body is extended, and vice versa, an increase of temperature when
elastic deformation is created by compression.

Note that the evaluation of the increase of temperature is done by neglecting the term
P

s [4]. Various work where exposed in the engineering literature concerning this area
[50, 117, 38, 12, 82] including the pioneering work of Taylor & Quinney [35]. After many
experiments, they have concluded that the term X · ξ̇ represent between [5 − 15%] of
the term σ

rev : �̇
p, therefore we can write

P
tot = σ

irr : �̇ + βσ
rev : �̇

p (2.89)

where β is called Taylor-Quinney factor β ≤ 1, often fixed to 0.9.

2.6 Applications

2.6.1 Linear thermo-elasticity

State variables The state variables of a linear thermo-elastic problem are:

• T : the temperature

• � : the strain tensor

Free energy There’s no internal variable in linear thermo-elasticity, therefore the free
energy is only function of the temperature and the stress tensor:

ρ0W (T, �) = 1
2� : C : � − � : C : α (T − T0) − ρ0C

(T − T0)2

2T0
(2.90)

where C is the elasticity tensor (tensor of order 4), α is the thermal dilatation tensor
(tensor of order 2), and T0 is the initial temperature of the body, usually taken equal to
the environmental temperature (or the outside temperature).
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Mechanical dissipation

D
∗
mech

= σ
irr : �̇ = 0

No mechanical dissipation in thermo-elasticity σ
irr = ∂D

∂�̇
= 0.

Constitutive law of the material

σ = σ
rev + σ

irr (2.91)

σ = σ
rev + σ

irr

= ∂ρ0W

∂�

= C : (� − α (T − T0))

Hypothesis of small temperature fluctuations We consider that temperature
fluctuations are small, therefore we can write:

T − Tref = θ < ε (2.92)

or
| T

Tref

− 1| < ε (2.93)

where Tref is the reference temperature, usually taken equal to T0, the initial tempera-
ture, and ε is an infinitesimal value close to zero.

Specific heat capacity In this section we will consider that the mechanical coeffi-
cients and dilatation coefficient are independent of temperature therefore we can write
the heat capacity as

C = −T
∂

2
W

∂T 2 = C
T

T0
� C

Thermo-elastic heat equation

ρ0CṪ = T
∂

2
ρ0W

∂T∂�
: �̇ + ρ0r − ∇ · H (2.94)

ρ0CṪ = −Tα : C : �̇ + ρ0r − ∇ · H (2.95)
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Isotropic case In an isotropic case, the thermo-elastic equation can be rewritten as
follows:

ρ0CṪ = −Tα0I : C : �̇ + ρ0r − ∇ · H (2.96)

where I is the identity matrix and

I : C : �̇ = κ tr(�̇)

where κ is the bulk modulus and tr(�̇) = ˙�11 + ˙�22 + ˙�33 is the trace of �̇.
We can also write, in this case, the 2D elastic tensor as (Voigt notation):

C =




λ + 2µ λ 0

λ λ + 2µ 0
0 0 2µ



 (2.97)

where λ and µ are Lamé’s coefficients defined as:

λ = νE

(1 + ν)(1 − 2ν)
and

µ = E

2(1 + ν) (2.98)

where E and ν are Young and Poisson moduli, respectively.
The stress tensor is written as

σ = σ
rev = ∂ρ0W

∂�
= T

T0
C : (� − α(T − T0))

For 1D case we can write
σ = E (� − α0(T − T0))

If σ is constant and �= 0, we can see clearly that an increase of temperature will lead to
a decrease of strain.

2.6.2 Thermo-visco-elasticity

In our work, we will consider Kelvin-Voight’s behaviour for visco-elastic problems. This
model consists of a Newtonian damper and Hookean elastic spring connected in parallel,
(see picture 2.1 ). It is used to explain the creep behaviour of polymers [105].

State variables The state variables are the same as introduced in the linear elastic
model (temperature T and the strain �)

Free energy It has the same expression as in thermo-elasticity, as a consequence, the
heat capacity and the reversible stress as well.
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Figure 2.1: Kelvin Voigt model

Dissipation potential The dissipation potential has a quadratic form with respect
to the strain rate, and is written as:

D = φ(�̇) = 1
2 �̇ : Cv : �̇ (2.99)

Where Cv is the viscosity tensor of order 4.

Mechanical dissipation

σ
irr = ∂φ

∂�̇
= Cv : �̇ (2.100)

The mechanical dissipation will be written as

D
∗
mech

= �̇ : Cv : �̇ (2.101)

Constitutive law of the material The reversible part of the stress has the same
expression as in linear elasticity

σ
rev = ∂ρ0W

∂�
= C : (� − α(T − T0))

while the irreversible stress is written as

σ
irr = ∂φ

∂�̇
(2.102)

= Cv : �̇ (2.103)
Therefore the total stress is

σ = σ
rev + σ

irr = C : (� − α(T − T0)) + Cv : �̇ (2.104)
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Heat equation of a thermo-visco-elastic problem

ρ0CṪ = T
∂

2
ρ0W

∂T∂�
: �̇ + D

∗
mech

+ ρ0r − ∇ · H (2.105)

ρ0CṪ = −Tα : C : �̇ + �̇ : Cv : �̇ + ρ0r − ∇ · H (2.106)
In the case of an isotropic material, the viscous rigidity matrix (in 2D) is written as:

C
v =




λ

v + 2µ
v

λ
v 0

λ
v

λ
v + 2µ

v 0
0 0 2µ

v



 (2.107)

where λ
v and µ

v are viscous Lamé’s coefficients defined as:

λ
v = ν

v
E

v

(1 + νv)(1 − 2νv)
and

µ
v = E

v

2(1 + νv) (2.108)

where E
v and ν

v are viscous Young modulus and Poisson ratio moduli, respectively.

2.6.3 Thermo-plasticity

State variables The state variables in thermoplasticity are

• The temperature T

• The strain �

• The plastic part of strain �
p

Free energy The free energy in thermo-plasticity is defined as

ρ0W (T, �, �
p) = ρ0W

e(T, � − �
p) + ρ0W

p(�p
, T ) + ρ0W

h(T ) (2.109)

Mechanical dissipation In thermo-plasticity, the mechanical dissipation can be writ-
ten as

D
∗
mech

= X : �̇
p (2.110)

where the driving thermodynamic force of the plastic strain is written as

X = −∂ρ0W

∂�p
= −

�

−∂ρ0W
e

∂�e
+ ∂ρ0W

p

∂�p

�

(2.111)
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where
σ

rev = ρ0W
e

∂�e
= C : ((� − �

p) − α(T − T0)) (2.112)

and
−∂ρ0W

p

∂�p
≡ σ

c (2.113)

where σ
c is called back-stress. Therefore equation (2.111) becomes

X = σ − σ
c (2.114)

Therefore we obtain the mechanical dissipation

D
∗
mech

= (σ − σ
c) : �̇

p (2.115)

In simulation normally we replace the term σ − σ
c by the term βσ, with β a scalar ≤ 1.

The mechanical dissipation becomes

D
∗
mech

= βσ : �̇
p (2.116)

Taylor, Quinney have measured β ∈ [0.8, 1.0] for most material, but for some other
material it can have different range, but never greater than one.

Constitutive law of the material

σ = σ
rev = ∂ρ0W

e

∂�e
(2.117)

σ = C : ((� − �
p) − α(T − T0)) (2.118)

Heat equation of thermo-plasticity In a thermo-plastic problem, the heat equation
is written as

ρ0CṪ = T
∂

2
ρ0W

∂T∂�
: �̇ + T

∂
2
ρ0W

∂T∂�p
: �̇

p + D
∗
mech

+ ρ0r − ∇ · H (2.119)

where
∂

2
ρ0W

∂T∂�p
= −∂

2
ρ0W

e

∂T∂�e
+ ∂

2
ρ0W

p

∂T∂�p
(2.120)

The heat equation of a thermo-plastic problem becomes

ρ0CṪ = T
∂

2
ρ0W

e

∂T∂�e
: (�̇ − �̇

p) + T
∂

2
ρ0W

p

∂T∂�p
: �̇

p + βσ : �̇
p + ρ0r − ∇ · H (2.121)

Where the term T
∂

2
ρ0W

2

∂T ∂�
: (�̇ − �̇

p) is the thermo-elastic contribution, whereas T
∂

2
ρ0W

p

∂T ∂�p :
�̇

p is the thermal effect on backstress. Note that the heat capacity does not change by
hardening [44].
Dissipation and dilatation terms contribute much in thermo-elasticity and thermo-plasticity
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(thermo-elastic contribution is typically smaller than plastic contribution, by at least one
order of magnitude)
Thermal behaviour depend on the type of loading we apply (fast or slow loading).

In the section of applications in the next chapters, we will consider different thermo-
mechanical problems, using the concepts defined in this chapter,many tests will be done
considering different behaviours from weak to strong coupled problems.
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Chapter 3

Numerical simulation of classical

coupled thermo-mechanical

problems

Résumé
Dans ce chapitre, on considère la formulation thermo-mécanique classique, telle que
développée dans le chapitre précédent. On décrit l’implémentation de la formulation élé-
ment fini, ainsi que les différentes méthodes de résolution, avec une analyse numérique
de chaque schéma algorithmique.

La simulation numérique des couplages thermo-mécaniques en calcul des structures présente
encore un certain nombre de défis, spécialement lorsque les effets de couplage sont très
marqués (couplage fort). De nombreuses approches algorithmiques ont été proposées dans
la littérature pour ce type de problème. Les méthodes les plus utilisées sont:

• les approches monolithiques, qui traitent simultanément l’équilibre mécanique et
l’équilibre thermique, où l’algorithme de résolution est appliqué au problème non
partitionné. Dans ce cas, l’utilisation des schémas implicites conduisent toujours
à une stabilité inconditionelle.

• les approches étagées, qui traitent alternativement chacun des sous-problèmes mé-
canique et thermique, où chaque partition est traitée avec un algorithme different.

La difficulté est d’obtenir un bon compromis entre les aspects de précision, stabilité
numérique et coût de calcul.

Les schémas monolithiques on l’avantage d’être inconditionnellement stable, mais ils
présentent des désavantages tel que les coûts de calculs énormes qu’ils peuvent engendrer
(liés à l’inversion de la matrice tangente totale qui est en générale non-symmétrique),
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ainsi que leur incapacité à tirer avantage des différents temps caractéristiques des prob-
lèmes mécanique et thermique.

Les schémas étagés on été conçus dans le but de surmonter les difficultés liées aux sché-
mas monolithiques. Ils consistent à décomposer le problème thermo-mecanique afin de
réduire la taille des système algébriques. Dans ce cas la matrice tangente est plus facile-
ment évaluée, comme les sous-matrices de couplage n’existent plus ou quasi-plus.

3.1 Introduction

In this chapter, we will consider the thermo-mechanical formulation developed in the
previous chapter, implementation of the finite element method, exposing different algo-
rithmic procedures, and numerical analysis for each scheme.

Various time stepping algorithmic approaches have been proposed in the literature for
thermo-mechanical problems [106, 108, 80, 32], such as :

• Monolithic (or simultaneous) approaches that consist of resolving simultaneously
mechanical and thermal balance equations, where time stepping algorithm is ap-
plied to the full problem of evolution. In this case, using implicit schemes always
lead to unconditional stability, which mean that the difference between two ini-
tially close solution always remains bounded independently by the time step size
[9] (precision is always affected by time step size, but numerical error are not am-
plified (stability)).

• Staggered approaches where coupled system is partitioned (without a fixed point),
then each of the mechanical and thermal problem is solved alternatively, and each
partition can be treated by a different time stepping algorithm [110, 41, 111, 112].

Monolithic schemes have the advantage of being unconditionally stable, but their dis-
advantages is that they might lead to impossibly large systems, do not take advantage
of the different time scales involved in the problem and often lead to non-symmetric
structure (non-symmetric tangent matrix).
The goal of the partitioned (or staggered) schemes is to overcome these inconveniences,
but unfortunately, they often lead to conditional stability [31, 39, 42, 108].
Two types of staggered algorithm will be presented is this chapter: "isothermal split
staggered algorithm" and "adiabatic split staggered algorithm".
Stability analysis is exposed in the appendix, and summarized in this chapter when ex-
posing monolithic and staggered schemes that are generalized to all non-linear coupled
problems.
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3.2 Finite element discretization of the classical non-

symmetric thermo-mechanical problem

In this section we will apply the finite element method to the general thermo-mechanical
problem. In subsequent sections FEM will be applied to particular cases such as thermo-
elastic and thermo-visco-elastic problems.

Let ν ⊂ Rndim denote the admissible thermo-mechanical configurational space of a con-
tinuum body B0, where ∂B0 is its smooth boundary, with ndim = 1, 2 or 3. Let u and T

denote the displacement field and the temperature field, respectively.
The evolution of thermal and mechanical equations treated in the previous chapter (eq.
2.16 & eq. 2.86 respectively ) are supplemented by the following boundary conditions:

ν
mech =

�
u : B0 → R3|u = u on ∂uB0 × [0, t]; σ : B0 → R6|σ · n = t0 on ∂σB0 × [0, t]

�

(3.1)
and

ν
th =

�
T : B0 → R+|T = T on ∂T B0 × [0, t]; H : B0 → R

3|H · n = Hn on ∂HB0 × [0, t]
�

(3.2)
where

ν = ν
mech ∪ ν

th (3.3)
The boundary ∂Ω is decomposed as:

∂Ω = ∂uB0 ∪ ∂σB0 = ∂T B0 ∪ ∂HB0 (3.4)

with
∂uB0 ∩ ∂σB0 = ∂T B0 ∩ ∂HB0 = ∅ (3.5)

The initial conditions are given by





u = u0

u̇0 = v0

T = T0

in B0 × {0} (3.6)

From local mechanical and thermal equations (eq. 2.16 & eq. 2.86 respectively ),
we apply weighted residual method in order to obtain the weak form linked to thermo-
mechanical operator, that will be discretized using the finite element method.

�

B0
ζ · (ρ0v̇ − ρ0b − ∇ · σ) dV = 0 (3.7)

where ζ is the weighted function, and is set to zero on the boundary ∂uB0.
By integrating by part we obtain:

�

B0
(ζ · ρ0v̇ − ζ · ρ0b − ∇ · (ζ · σ) + ∇ζ : σ) dV = 0 (3.8)
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Using equation 2.20 leads to

σ : ∇su = (∇ · u) · σ − u · (∇ · σ) (3.9)

where
∇su = 1

2
�
∇u + ∇T

u

�
(3.10)

where the T index denotes the transpose.
Using the divergence theorem, we can rewrite equation 3.9 under

�

B0
(ζ · ρ0v̇ − ζ · ρ0b + ∇ζ : σ) dV −

�

∂σB0
ζ · t0dA = 0 (3.11)

Following the same manner, we obtain the weak form for the thermal problem:
�

B0
ζ

�

ρ0CṪ − T
∂

2
ρ0W

∂T∂�
: �̇ − T

∂
2
ρ0W

∂T∂ξ̇
ξ̇ − X · ξ − σ

irr : �̇ − ρ0r + ∇ · (H)
�

dV = 0

(3.12)
By integrating by part we can write

ζ∇ · (H) = ∇ · (Hζ) − H · ∇ζ

Using divergence theorem leads to
�

B0

�

ζ

�

ρ0CṪ − T
∂

2
ρ0W

∂T∂�
: �̇ − T

∂
2
ρ0W

∂T∂ξ̇
ξ̇ − Xξ − σ

irr : �̇ − ρ0r

�

− H · ∇ζ

�

dV

−
�

∂
H

B0
ζH · ndA −

�

∂hB0
ζh(T − Tenv)dA = 0

(3.13)

where the term
�

∂hB0 ζh(T − Tenv)dA is the heat exchange with the environment by con-
vection, where Tenv is the outside temperature and h is the convection coefficient. We
recall that H usually follows Fourier’s law (H = −K · ∇T ), where K is the thermal
conduction matrix.

The discretization of the thermal and mechanical weak form equation (eq. 3.11 &
eq. 3.13) will lead to a set of non-linear algebraic equations, that are function of the
generalized displacements ui and Ti evaluated at node i of the discretized space, where
ui and Ti are the displacement and the temperature connected to node i.
Inside each element the unknown generalized displacements are obtained through inter-
polation of nodal values using the shape function φi of the element. We have chosen
here, for simplicity, the same shape function for the thermal and mechanical problem.
Using iso-parametric elements (fig. 3.1), the geometry of each element is deduced
through shape functions and the position of nodes.
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Figure 3.1: Connection between isoparametric coordinates and real coordinates

If we denote by z = [ϕi, Ti]T = [ui, Ti]T the generalized displacement in the real space,
then we can write

z (ξ, η) =
Nnodes�

i=0
φi(ξ, η)zi(t)

where zi = [ui, Ti]T , Nnodes the total number of nodes that make up the finite elements,
and φi(ξ, η) is the shape function that is independent of time.

FEM implementation Applying the finite element method as described previously,
we can rewrite equations 3.11 and 3.13 as follow:

��

Ω̂
ρ0φφ

T
ĴdV̂

�
v̇ −

�

Ω̂
ρ0φbĴdV̂ +

�

Ω̂
BσĴdV̂ −

�

∂tΩ̂
φtĴdÂ = 0 (3.14)

and
��

Ω̂
ρ0Cφφ

T
ĴdV̂

�
Ṫ −

�

Ω̂
ẆφĴdV̂ −

�

Ω̂
KBB

T
ĴdV̂ T −

�

∂H Ω̂
H̄φĴdV̂

−
��

∂hΩ̂
hφφ

T
ĴdÂ

�
T +

�

∂hΩ̂
hTenvφĴdÂ = 0

(3.15)

where

• Ω̂ : Domain in the iso-parametric space

• V̂ : Elementary volume in the iso-parametric space

• Â : Elementary surface in the isoparametric space

• B : Gradient Matrix of shape functions

• φ : Assembly matrix of shape functions φi
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Note that the matrix φ has a different form for the mechanical or the thermal field.
For the mechanical field φ a matrix of dimension (Nnode × ndim) where ndim = 1, 2 or 3
is the space dimension, Nnode is the total number of nodes. For the thermal field φ is
an array of dimension Nnodes.

3.3 Solving the coupled thermo-mechanical problem

The general thermo-mechanical problem with boundary and initial conditions, is reduced
to a system of nonlinear algebraic equations, through space and temporal discritization.
State variable being known at time t = t

n, the system of algebraic equations will solve
the state variable at t = t

n+1.
Equations (3.14) and (3.15) can be written in an alternative way:

F
int

i
− F

ext

i
= 0 where i = 1, ..., N

nodes (3.16)
where F

int is the assembly of all mechanical and thermal volumic forces, and F
ext is the

assembly of all mechanical and thermal surface forces.
For this case we can write

F
mechanical

int
=

Nelements�

e=1

��

Ω̂e

ρ0φφ
T

ĴdV̂

�
v̇ −

Nelements�

e=1

�

Ω̂e

ρ0φbĴdV̂

+
Nelements�

e=1

�

Ω̂e

BσĴdV̂

(3.17)

F
mechanical

ext
=

Nelements�

e=1

�

∂tΩ̂e

φtĴdÂ (3.18)

F
thermal

int
=

Nelements�

e=1

��

Ω̂e

ρ0Cφφ
T

ĴdV̂

�
Ṫ −

Nelements�

e=1

�

Ω̂e

ẆφĴdV̂

−
Nelements�

e=1

�

Ω̂e

KBB
T

ĴdV̂ T

(3.19)

F
thermal

ext
=

Nelements�

e=1

�

∂H Ω̂e

H̄φĴdV̂ +
Nelements�

e=1

��

∂hΩ̂e

hφφ
T

ĴdÂ

�
T

−
Nelements�

e=1

�

∂hΩ̂e

hTenvφĴdÂ = 0
(3.20)

where
Fint = F

mechanical

int
∪ F

thermal

int
(3.21)

and
Fext = F

mechanical

ext
∪ F

thermal

ext
(3.22)

The solution of the thermo-mechanical problem is achieved when the generalized dis-
placement z

∗ = [u∗
i
, T

∗
i
] satisfies equation 3.16. In next sections, we will skim the two

alternative strategies for time stepping algorithms of the thermo-mechanical problem.
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3.4 Monolithic solution scheme

In monolithic (also called simultaneous) strategies, the time stepping algorithm is ap-
plied to the full problem of evolution. The coupling between mechanical and thermal
fields is done at each iteration where the internal and external mechanical forces are
evaluated by taking into account the actual temperature, and for the thermal problem,
the internal and external thermal force are evaluated by taking into account the actual
displacement. It is until the last iteration that the actual temperature and displacement
characterize the mechanical and thermal equilibrium state. Implicit schemes are most
often used as a mean of achieving unconditional stability.

What we have exposed in the previous paragraph reveals the simultaneous solution
of thermal and mechanical equilibrium. The goal is to find the generalized displacement
that satisfies equation (3.16). For this we will solve the system of equations in an iter-
ative manner, therefore we introduce the notion of residual force (or off-balance force)
denoted by Fo−b and defined as:

Fo−b = Fint − Fext (3.23)

By linearizing the system of equations (eq. 3.23), we can write

Fo−b(zk+1) = Fo−b(zk) +
�

∂Fo−b(zk)
∂zk

�

∆z (3.24)

where ∆z = z
k+1 − z

k, and the index k stands for the iteration number.
We define the tangent stiffness matrix as

K =
�

∂Fo−b(zk)
∂zk

�

(3.25)

In our applications, the thermo-mechanical problem is solved using Newton schemes,
that consist of iterating on the generalized displacement until the thermal and mechan-
ical equilibrium is achieved ( see table 4.1).

The decomposition of the generalized displacement z = [ϕ
n+1, Tn+1]T = [un+1, Tn+1]T ,

and the residual forces Fo−b = [Fmechanical

o−b
, F

thermal

o−b
] allows us to rewrite the tangent

matrix as follow:

K =
�

KUU KUT

KT U KT T

�

=



∂F

mechanical

o−b

∂U

∂F
mechanical

o−b

∂T

∂F
thermal

o−b

∂U

∂F
thermal

o−b

∂T



 (3.26)

where

F
mechanical

o−b
= F

mechanical

int
− F

mechanical

ext
(3.27)
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and

F
thermal

o−b
= F

thermal

int
− F

thermal

ext
(3.28)

The size of the tangent stiffness matrix K is�
ndof

mechanical + ndof
thermal

�
×

�
ndof

mechanical + ndof
thermal

�
, where ndof

mechanical &
ndof

thermal denote numbers of mechanical and thermal degrees of freedom. The tangent
stiffness matrix K is generally non-symmetric. We will expose in the next chapter the
variational formulation of coupled thermo-mechanical problems that will lead to a sym-
metric formulation [79].

The goal is being to obtain a set of generalized displacement z
k+1 until balance is at-

tained, this is written as
Fo−b(zk+1) ≈ 0 (3.29)

Therefore equation (3.24) is written as:
�

KUU KUT

KT U KT T

� �
δU

δT

�

= −
�

RU

RT

�

(3.30)

where RU = F
mechanical

o−b
(t = t

k) and RT = F
thermal

o−b
(t = t

k) are the residuals of the
mechanical and thermal problem respectively.

The inversion of the tangent stiffness matrix is the most crucial parameter determining
the computational cost. In fact the evaluation of the coupled off-diagonal sub-matrices
KUT & KT U that can be difficult to determine analytically, influences considerably the
time cost. The accurate evaluation of the coupled sub-matrices is indispensable for the
conservation of quadratic convergence rate of Newton scheme, otherwise convergence
rate is deteriorated, as well as the limitation of the scheme stability, if coupled sub-
matrices are neglected.
For this, alternative algorithms for the monolithic schemes are developed in this frame-
work, aimed to circumventing this drawback, by neglecting, or at the limit taking into
account a part of the coupled sub-matrices (for Uzawa-like scheme). Both algorithms
will be exposed in the next chapter, and will be applied to thermo-mechanical problems
in the application section.
Another disadvantage of the monolithic scheme is that it does not take advantage of
the different time scales involved in the problem which means its inability to take
into consideration the difference between thermal and mechanical characteristic time.
For example, during a given time step, even though the initial temperature may be a
good approximation of the solution problem, the tangent stiffness matrix still has the
same dimension

�
ndof

mechanical + ndof
thermal

�
×

�
ndof

mechanical + ndof
thermal

�
, and not

(ndof
mechanical × ndof

mechanical) as we expect to have.
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Aside from these disadvantages, the monolithic (or simulataneous) scheme benefits from
the unconditional stability property and has a better precision due to taking into account
the coupled terms (see annex A for more details about stability).

3.5 Staggered schemes

Despite the unconditional stability property of monolithic schemes, they may lead to
non-symmetric large systems that sometimes are hard to solve, and staggered schemes
were designed to overcome the disadvantages linked to simultaneous schemes.
Staggered schemes (also called sequential schemes) were developed since two decades
by Argyris & Doltsinis [110], Park & Felippa [41], Simo & Miehe [74, 30], Pelerin [80],
etc... they were designed to decompose the coupled problem into a set of sub-problems,
that will lead to a reduced size algebraic systems. In this case, the evaluation of the
tangent stiffness matrix is easier given that coupled sub-matrices are no longer here (re-
call that difficulties in monolithic schemes were mainly from coupling stiffness matrices ).

In this chapter, we will only deal with two types of staggered schemes:

• Isothermal staggered scheme

• Adiabatic staggered scheme

Despite they lead to a smaller system, and take advantage of the different time scales
involved in the problem, staggered schemes methods are not all unconditional stable.

Staggered scheme reduces considerably the size of the system, in this case we obtain two
systems of reduced size,

�
ndof

mechanical × ndof
mechanical

�
and

�
ndof

thermal × ndof
thermal

�

for the mechanical and thermal phase respectively.
In the classical approach the mechanical stiffness matrix can be symmetric if the stress
in the material is small with respect to elastic material properties [113] and if pressure or
contact boundary conditions are not present in the problem, the thermal stiffness matrix
is symmetric if thermal conductivity is independent of time, and if thermo-mechanical
contact boundary conditions are not present [114], whereas in variational approach these
matrices are always symmetric [73, 79]

In the following sections, we will discuss the features of each staggered schemes.

3.5.1 Isothermal staggered scheme

The isothermal split, is a strategy in which first a mechanical phase is solved at constant
temperature, followed by a purely thermal phase at fixed configuration (displacement).
The split will be dealt at time step level in such a way that Newton-Raphson iterations
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Table 3.1: Isothermal staggered scheme

1 Predict the temperature field z
thermal(t = t

k+1) = z
thermal(t = t

k)

2 Solve for the mechanical field F
mechanical

h−e
(z) = 0

3 Which provides z
mechanical(t = t

k+1)

4 Correct the temperature field F
thermal

h−e
(z) = 0

5 Which provides z
thermal(t = t

k+1)

6 Compute velocity, acceleration u̇, ü and H

and flux fields

7 Move to next step t = t + ∆t

are performed, until convergence, on the mechanical phase, and then Newton iterations
are applied on the thermal phase.
To be more explicit, the mechanical phase is solved, where T (tn+1) = T (tn) until me-
chanical equilibrium:

F
mechanical

o−b

�
z

�
t = t

n+1
��

≈ 0 (3.31)

then we solve the thermal phase at constant configuration until thermal equilibrium (see
table 3.1 ).

Despite their time cost benefits, isothermal staggered schemes lead to conditional sta-
bility when the thermo-mechanical system exhibit a strong coupling, even if each of
the phases is solved with an unconditionally stable implicit method (see annex A). For
thermo-elastic problems, a convenient measure of the strength of the coupling is given
by [108]:

� = (3λ + 2µ)2
α

2
T

ref

C (λ + 2µ) (3.32)

where � is a dimensionless parameter (� < 1 for weak coupling), λ and µ denote the Lamé
constants, and α, T

ref
and C denote the coefficient of thermal expansion, the reference

temperature (usually taken equal to the environmental temperature) and the heat capac-
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ity, respectively. Note that for most metals, � has a value range between [1.5−3.5×10−2].

Stabilization techniques have been proposed in the literature aiming to acquire the un-
conditional stability property of staggered schemes [91, 9, 92, 7, 24, 31, 5, 39] etc..., they
are efficient to a certain extent and do not represent a general methodology that leads
to the unconditionally stable staggered schemes (stabilization techniques are restricted
to the linear semi-discrete problem).

3.5.2 Adiabatic staggered scheme

The adiabatic staggered scheme consists of partitioning the thermo-mechanical problem
into an adiabatic elasto-dynamic phase, in which the entropy of the system is held con-
stant, followed by a heat conduction phase at fixed configuration (eq. 3.33 & 3.34). This
scheme allows to overcome the conditional stability property exposed by the isothermal
staggered scheme.

Even though adiabatic staggered scheme solves a part of the heat equation (since the
entropy and not the temperature is held constant), it is still interesting time costwise, in
addition to, the heat equation can be solved analytically under certain hypotheses [114].

ϕ̇ = V

ρ0η̇ = 0
F

mec

h−e
(z) = 0





Problem 1 : elasto-dynamic phase =⇒ constant entropy (3.33)

ϕ̇ = 0
ρ0V̇ = 0

F
the

h−e
= 0





Problem 2 : heat conduction phase at fixed configuration (3.34)

From first principle, free energy, stress and entropy equations we have shown in the
previous chapter (eq. 2.81) that:

ρ0T η̇ = ρ0r − ∇ · H + σ
irr : �̇ + X · ξ̇ (3.35)

The first phase of the adiabatic scheme being at constant entropy, we can write

ρ0r − ∇ · H + σ
irr : �̇ + X · ξ̇ = 0 (3.36)

Therefore the heat equation becomes

51



ρ0CṪ = T
∂

2
ρ0W

∂T∂�
: �̇ + T

∂
2
ρ0W

∂T∂ξ̇
· ξ̇ (3.37)

or we can write it in an alternative way

ρ0CṪ = T
∂σ

rev

∂T
: �̇ + T

∂X

∂T
· ξ̇ (3.38)

The second member of the equation 3.38 can be neglected [4] (see chapter 2 section
2.5.1).
By assuming that elastic properties are independent of temperature, the heat equation
becomes [114]

ρ0CṪ = −3καT �̇ii (3.39)

where α and κ = λ+ 2
3µ denote the thermal dilatation and the bulk modulus, respectively.

Under certain conditions (incompressibility of strain and if damage is not present ([114]
chapter 4)), �̇ii is given by

�̇ii = J̇

J
(3.40)

where J is the Jacobian of the deformation. The analytical solution of the adiabatic
temperature field Ta can be written as:

Ta(t = t
n+1) = T (t = t

n) exp
�

−3κα

ρ0C

�
ln J(t = t

n+1) − ln J(t = t
n)

��

(3.41)

In the framework of this thesis, a preliminary study will be considered on a simplified
problem, where first we consider a weak coupling where the mechanical properties are
independent of temperature, in this case we can use equation 3.41 if we wish to use the
staggered scheme that will lead to unconditional stability. Afterward a strong coupling
will be included to the thermo-mechanical problem by considering a strong dependence
of mechanical properties on temperature, in this case, it is no longer possible to use
the adiabatic temperature given by (3.41) if we wish to use staggered algorithm, the
equation can be written under the following

ρ0CṪ = T

�
∂µ

∂T

s
rev

µ
+

�
∂κ

∂T

1
κ

�

pI − 3καI

�

: �̇ (3.42)

where µ is the shear modulus, κ the bulk modulus, I = δij is the identity tensor (of order
2), s

rev is the deviatoric reversible stress tensor, pI is the mean normal stress component
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of the stress field (or mean hydrostatic stress tensor ) that is defined as:

p = σkk

3 (3.43)

Equation 3.42 can be written in an alternative manner:

ρ0CṪ = T

�
∂µ

∂T

σ
rev

µ
+

�
∂κ

∂T

1
κ

− ∂µ

∂T

1
µ

�

pI − 3καI

�

: �̇ (3.44)

In equation 3.44, �̇ is supposed constant in the time interval where integration is
held.
In general the term

�
∂κ

∂T

1
κ

− ∂µ

∂T

1
µ

�
is usually taken to zero, since only the Young modulus

is temperature dependent (generally the Poisson’s ratio exhibits no thermal dependence).
In that case, we can rewrite equation 3.42 as

ρ0CṪ = T

�
∂µ

∂T

σ
rev

µ
− 3καI

�

: �̇ (3.45)

The adiabatic staggered scheme has a different feature from the simultaneous and
isothermal scheme, since when we treat the adiabatic elasto-dynamic phase, a part
of the thermo-mechanical coupling is used in order to evaluate the mechanical forces
F

int
and F

ext. The second part of the split (heat conduction phase at fixed mechanical
configuration) is similar to the isothermal staggered scheme since the thermal equilib-
rium is evaluated at fixed mechanical configuration.
The adiabatic staggered scheme in known as an alternative split of the thermo-mechanical
problem which leads to unconditionally stable staggered algorithm, even in the full non-
linear regime. Despite its theoretical unconditional stability, the adiabatic staggered
algorithms is limited for a random time discretization and when a strong coupling is
present. In fact, this scheme has the features of unconditional stability when consider-
ing time discretization characterized by a constant time step (see annex A).

3.6 Applications

3.6.1 Application of the FEM on a general thermal problem

Let us consider an isotropic body B0 with temperature-dependent heat transfer. Denote
by ν the admissible thermal configurational space:

ν =
�
T : B0 → R+|T = T (tn+1) on ∂T B0; H : B0 → R3|H · n = H(tn+1)n on ∂HB0

�

(3.46)

We write equation (2.47) under the weak form:
�

B0

�
ρ0CṪ − ρ0r + ∇ · H

�
δTdV = 0 (3.47)
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Using the divergence theorem, we can write:
�

B0
(∇ · H) δTdV = −

�

B0
H · ∇δTdV +

�

δHB0
H · nδTdA (3.48)

Where H satisfies Fourier’s law (eq.2.21).
Equation (3.47) becomes:

�

B0
ρ0CṪδTdV +

�

B0
k∇T · ∇δTdV =

�

B0
ρ0rδTdV −

�

∂HB0
H · nδTdA (3.49)

A domain B0 is divided into finite elements connected at nodes. We shall derive a finite
element formulation via Galerkin approach.
Global equations for the domain can be assembled from finite element equations using
connectivity information. Shape functions Ni and Nj are used for interpolation of tem-
perature inside a finite element:

T (x) =
�

i

Ni(x)Ti (3.50)

δT (x) =
�

j

Nj(x)δTi (3.51)

we obtain:

Nnodes�

i

Nnodes�

j

CijTiδTj +
Nnodes�

i

Nnodes�

j

KijTiδTj =
Nnodes�

j

qjδTj ∀δTj (3.52)

where:

Cij =
�

B�
ρ0CNi(x)Nj(x)dV (3.53)

Kij =
�

B0
k∇Ni(x).∇Nj(x)dV (3.54)

qj =
�

B0
ρ0rNj(x)dV −

�

∂HB0
H · nNj(x)dA (3.55)

where Cij and Kij the entries of capacity and conductivity matrix, respectively. The
system can be written in a matrix form:

[C]
�
Ṫ

�
+ [K] {T} = {q} (3.56)

The stationary problem is obtained by setting Ṫ = 0, and leads to a problem similar to
elasticity:

[K] {T} = {q} (3.57)
For the discretization in time, we consider a temporal interval [tn, tn+1], called time

step ∆t, as a part of sequences of steps covering the whole simulation time [0, tf ], where
the thermal state [Tn, qn] are supposed known at time t = tn.
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Generalized trapezoidal rule integration

{Tn+1} = {Tn} + (1 − α) ∆t

�
Ṫn

�
+ α∆t

�
Ṫn+1

�
(3.58)

We can write :

[C]
�
Ṫn+1

�
+ [K] {Tn+1} = {q(tn+1)} (3.59)

If α = 0 the scheme is called explicit, in this case:

{Tn+1} = {Tn} + ∆t

�
Ṫn

�
(3.60)

and �
Ṫn+1

�
= [C]−1 ({q(tn+1)} − [K] {Tn+1}) (3.61)

Although the explicit scheme works well for first order elements, it encounters problems
of stability. The solution (eq. 3.61 ) is trivial if [C] is diagonal.

The Crank-Nicholson method, (α = 1
2) is unconditionally stable for many problem (ex.

diffusion). However, the approximate solutions can still contain (decaying) spurious os-
cillations if the ratio of time step to the square of space step is large (typically larger
than 1/2) [68]. For this reason, whenever large time steps or high spatial resolution is
necessary, the less accurate backward Euler method is often used, for α = 1, which is
both stable and immune to oscillations.

Generalized mid point rule integration

{Tn+α} = {Tn} + α∆t

�
Ṫn+α

�
(3.62)

Where
{Tn+α} = (1 − α) {Tn} + {αTn+1} (3.63)

The system becomes:

[C]
�
Ṫn+α

�
+ [K] {Tn+α} = {q(tn+α)} (3.64)

Where
{q(tn+α)} = (1 − α){q(tn)} + α{q(tn+1)} (3.65)

For stability purpose, the time step is limited by

∆t <
1

6α

ρ0Ch
2

k
(3.66)

where h is the element size. We remark that the time step decreases according to h
2,

therefore refining the mesh leads to a small time step in numerical simulation (while in
elasticity it is large).
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3.6.2 Application to a thermo-elastic problem

In this application we will consider a linear thermo-elastic problem, we will show the
finite element discretization for the monolithic solution, and a quick overview for the
discretization solution for the staggered schemes described earlier.

We consider a body B under the action of a general system of external forces and
prescribed temperatures, and ∂B = ∂Bu

�
∂Bσ = ∂Bθ

�
∂BH .

The basic mechanical and energy balance equations for the linearized isotropic cou-
pled thermo-elasticity theory are given by:

Balance equation of the linear momentum:

ρ0v̇ = ∇ · σ + ρ0b (3.67)

Energy balance equation:

T η̇ = −∇ · H + r (3.68)

where
H = −K · ∇θ (3.69)

where K is the thermal conduction tensor (of second order)
Under the assumption of small perturbation in temperature we can write

T = T
ref + θ (3.70)

with
θ

T ref
� 1 (3.71)

Under this assumption, we can write that

T η̇ ∼= T
ref

η̇ (3.72)

We recall that for thermo-elastic problem, the stress and entropy are given by:

σ = ∂ρ0W

∂�
(�, T ) (3.73)

and
ρ0η = −ρ0

∂W

∂T
(�, T ) (3.74)

where
ρ0W (�, T ) = 1

2� : C : � − 1
2

ρ0c

T ref
θ

2 − θα : C : � (3.75)
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where C is the heat capacity, and α is the thermal dilatation tensor (of second order),
and � is given by the following expression

� = ∇s
u = 1

2
�
∇u + (∇u)T

�
(3.76)

Expressions of stress and entropy become

σ = C : (� − θα) (3.77)
and

η = c
θ

T ref
+ α : C : � (3.78)

where c = ρ0c. Equations 3.78 and 3.72 lead to

T η̇ ∼= cθ̇ + T
ref

α : C�̇ = −∇ · H + b (3.79)
Arranging equation 3.79, we write

θ̇ = 1
c̃
∇ ·

�
K̃.∇θ

�
− 1

c̃
α : C : ∇s

v + r

c
(3.80)

where
c̃ = c

T ref
(3.81)

and
K̃ = K

T ref
(3.82)

Therefore the problem of evolution for linearized thermo-elasticity can be written under
the following






u̇ = v

v̇ = 1
ρ0

∇ ·
�

C : (∇s
u − θα)

�
+ b

θ̇ = 1
c̃
∇ ·

�
K̃.∇θ

�
− 1

c̃
α : C : ∇s

v + r

c

(3.83)

The thermo-elastic problem defined by 3.83, can be written as

Ẋ (t) = AX (t) + f (3.84)
where

X (t) =






u(t)
v(t)
θ(t)





(3.85)
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AX (t) =






v

1
ρ0

∇·
�

C : (∇s
u − θα)

�

1
c̃
∇ ·

�
K̃ · ∇θ

�
− 1

c̃
α : C : ∇s

v






(3.86)

and

f =






0
b

r

c





(3.87)

The evolution equations (3.84) are supplemented by the following boundary condi-
tions

u = u on Bu θ = θ on Bθ (3.88)
σ · n = t on Bσ H · n = H on BH (3.89)

along with the initial conditions

u(0) = u0 θ(0) = θ0 (3.90)
u̇(0) = v0 θ̇(0) = θ̇0 (3.91)

Monolithic scheme

Equations 3.84 and 3.83 are discretized in time with an implicit scheme

1
∆t

�
χ

n+1 − χ
n

�
= Aχ

n+α
+ f(tn+α) (3.92)






1
∆t

(un+1 − un) = vn+α

1
∆t

(vn+1 − vn) = 1
ρ0

∇ ·
�

C : (∇s
un+α − θn+αα)

�
+ bn+α

1
∆t

(θn+1 − θn) = 1
c̃
∇ ·

�
K̃.∇θn+α

�
− 1

c̃
α : C : ∇s

vn+α + rn+α

Tref

(3.93)

where
(.)n+α = (1 − α)(.)n + α(.)n+1 (3.94)

For the displacement and velocity field

un+α = (1 − α) un + αun+1 (3.95)
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vn+α = (1 − α) vn + αvn+1

= un+1 − un

∆t

(3.96)

then

un+1 = un + ∆tvn+α

= un + ∆t(1 − α)vn + ∆tαvn+1
(3.97)

Equations 3.95 and 3.97 lead to

un+α = un + α (1 − α) ∆tvn + α
2∆tvn+1 (3.98)

Now, we can discretize the differential equations (eq. 3.93) using the finite element
methods.
Taking the weak form, we can write






1
∆t

�(un+1 − un) , δu� = �vn+α, δu�
1

∆t
�(vn+1 − vn) , δv� = 1

ρ0

�
∇ ·

�
C : (∇s

un+α − θn+αα)
�

+ bn+α, δv

�

1
∆t

�(θn+1 − θn) , δθ� = 1
c̃

�

∇ ·
�
K̃ · ∇θn+α

�
− 1

c̃
α : C : ∇s

vn+α + rn+α

Tref

, δθ

�

(3.99)

where < ., . > denotes the inner product which induces the natural norm √
< ., . >,

where
< AX , X >=

�

Ω
(A · X ) · X dV (3.100)

For simplicity, we will consider the 1 D case for finite element analysis.
Neglecting body forces, we can write

�Xn+1 − Xn

∆t
, δX

�
= �AXn+α, δX � (3.101)

�Xn+1 − Xn

∆t
, δX

�
=

�

Ω

�
1

∆t
(�n+1 − �n) : C : δ� + ρ0

vn+1 − v

∆t
: δv + c̃

θn+1 − θn

∆t
δθ

�

dV

(3.102)
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�AXn+1, δX � =
�

Ω

�
∇s

un+α : C : δ� + ∇·
�
C : (�n+α − θn+αα)

�
δv

+
�

∇ ·
�

K̃ · ∇θn+α

�

− α : C : ∇s
vn+α

�

δθ

�

dV

(3.103)

In a classical form, shape functions are defined on the connected node, and are set to
zero elsewhere. For simplicity, the shape functions are taken the same for the mechanical
and thermal field.

v(x, t) =
N

node�

i=1
φ

i(x)vi(t) (3.104)

θ(x, t) =
N

node�

i=1
φ

i(x)θi(t) (3.105)

δv(x, t) =
N

node�

j=1
φ

j(x)δv
j(t) (3.106)

δθ(x, t) =
N

node�

j=1
φ

j(x)δθ
j(t) (3.107)

By discretizing the mechanical and thermal equations, in time and space, final weak
form for the equation is given by

1
∆t

�vn+1 − vn, δv� =
�

Ω
ρ0

vn+1 − vn

∆t
δvdV

=
�

Ω



ρ0
N

node�

i=1

�

φ
i(x)v

i

n+1 − v
i

n

∆t

�
N

node�

j=1

�
φj(x)δv

j
�



 dV

=
N

node�

i=1

N
node�

j=1

��

Ω
ρ0φiφjdV

�
v

i

n+1 − v
i

n

∆t
δv

j

(3.108)
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�
∇ ·

�
C : (∇s

un+α − θn+αα)
�

, δv

�
=

�

Ω
∇ ·

�
C : (∇s

un+α − θn+αα)
�

δvdV

= −
�

Ω
∇s

δv : C : (∇s
un+α − θn+αα) dV

+
�

δΩ
δv

�
C : (∇s

un+α − θn+αα)
�

ndA

= −
�

Ω




N

node�

j=1
φ

�
j
δv

j



 E




N

node�

i=1
φ

�
i
u

i

n+α
−

N
node�

i=1
φiθ

i

n+α
α0



 dV

= −
N

node�

i=1

N
node�

j=1

��

Ω
Eφ

�
i
φ

�
j
dV

�
u

i

n+α
δv

j

+
N

node�

i=1

N
node�

j=1

��

Ω
α0Eφiφ

�
j
dV

�
θ

i

n+α
δv

j

(3.109)

We can write equation 3.109 in matrix form
1

∆t
[M] ({vn+1} − {vn}) = −

�
K

mechanical
� �

{un} + α (1 − α) ∆t{vn} + α
2∆t{vn+1}

�

+
�
G

mechanical
�

((1 − α) {θn} + α{θn+1})
(3.110)

where the mass matrix Mij, mechanical stiffness matrix K
mechanical

ij
and thermo-elastic

coupling matrix G
mechanical

ij
are defined as

M ij =
�

Ω
ρ0φi(x)φj(x)dV (3.111)

K
mechanical

ij
=

�

Ω
Eφ

�
i
(x)φ�

j
(x)dV (3.112)

and
G

mechanical

ij
= Gij =

�

Ω
α0Eφiφ

�
j
dV (3.113)

Discretizing the heat equation (equation 3.93), we can write

c̃

∆t
�θn+1 − θn, δθ� =

�

Ω
c̃
θn+1 − θn

∆t
δθdV

=
�

Ω
c̃




N

node�

i=1
φi

θ
i

n+1 − θ
i

n

∆t








n+1�

j=1
φjδθ

j



 dV

=
N

node�

i=1

N
node�

j=1

��

Ω
c̃φiφjdV

� �
θ

i

n+1 − θ
i

n

∆t
δθ

j

�

(3.114)
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and
�
∇ ·

�
K̃ · ∇θ

�
, δθ

�
=

�

Ω
∇ · [K · ∇θ] δθdV

= −
�

Ω
∇δθ · K · ∇θdV +

�

δΩ
K∇θδθndA

(3.115)

where
�

∂Ω
K∇θδθndA = 0 (3.116)

then
�
∇ ·

�
K̃ · ∇θ

�
, δθ

�
= −

�

Ω
∇δθ · K · ∇θdV

= −
�

Ω




N

node�

j=1
φ

�
j
δθ

j



 K




N

node�

i=1
φ

�
i
θ

i

n+α



 dV

= −
N

node�

i=1

N
node�

j=1

��

Ω
K̃φ

�
i
φ

�
j
dV

� �
θ

i

n+α
δθ

i
�

(3.117)

�
α : C : ∇s

vn+α, δθ

�
=

�

Ω

�
α : C : ∇s

vn+α

�
δθdV

=
�

Ω
α0E

N
node�

i=1
φ

�
i
v

i

n+α

N
node�

j=1
φjδθ

j
dV

=
N

node�

i=1

N
node�

j=1

��

Ω
α0Eφ

�
i
φjdV

�
v

i

n+α
δθ

j

(3.118)

We can write then the heat equation of the thermo-elastic problem under a matrix form

1
∆t

�
C̃

�
({θn+1 − θn}) = −

�
K̃

�
thermal

((1 − α) {θn} + α{θn+1})−
�
G

thermal
�

((1 − α){vn} + α{vn+1})
(3.119)

where the capacity matrix C̃ij, thermal conductivity K̃
thermal

ij
and the thermo-elastic

coupling matrix G
thermal

ij
are defined as

C̃ij =
�

Ω
K̃φ

�
i
(x)φ�

j
(x)dV (3.120)

K̃
thermal

ij
=

�

Ω
K̃φ

�
i
(x)φ�

j
(x)dV (3.121)

and
G

thermal

ij
= G

mechanical

ji
= G

T

ij
=

�

Ω
α0Eφi(x)φ�

j
(x)dV (3.122)
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Combining equations 3.110 and 3.119, we can write the basic solution of both mechanical
and thermal




1

∆t
[M] + α

2∆t

�
K

mechanical

�
−α [G]

α [G]T 1
∆t

�
C̃

�
+ α

�
K̃

thermal

�




�

{vn+1}
{θn+1}

�

=





1
∆t

[M] {vn} −
�
K

mechanical

�
({un} + α (1 − α) ∆t {vn}) + (1 − α) [G] {θn}

1
∆t

�
C̃

�
{θn} − (1 − α)

�
K̃

thermal

�
{θn} − (1 − α)

�
G

thermal

�
{vn}






(3.123)

Equation 3.123 is the basic solution of the thermo-elastic problem, in the absence of
body forces and gravity, only initial conditions are considered.
The obtained system 3.123 is relatively costly computationalwise especially for the eval-
uation of the tangent matrix. In the next paragraph we will consider two types of
staggered scheme that will reduce system 3.123, thus the computational time cost.

Isothermal staggered scheme

Now the full thermo-elastic problem of evolution will be split into two:

• Isothermal phase

• Heat conduction phase at fixed mechanical configuration

Therefore, the operator defined for the full problem will be split into two

A = A1 + A2 (3.124)
where

A1X =






v

1
ρ0

∇·
�
C : (∇s

u − θα)
�

0






Problem 1: isothermal phase (3.125)

A2X =






0
0
1
c̃
∇ ·

�
K̃ · ∇θn+α

�
− 1

c̃
α : C : ∇s

v(n+α) or (n+1)






Problem 2: Heat conduction phase

(3.126)
The obtained system has been reduced considerably (ndof

mechanical × ndof
mechanical) for

the first phase and (ndof
thermal × ndof

thermal) for the second phase. In that case the
result is directly obtained with a simple discretization, which is the advantage of this
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split, but at the expense of unconditional stability
By assuming that the temperature θ is not changing in the first phase, we can write

1
∆t

[M] ({vn+1} − {vn}) = −
�
K

mechanical
� �

{un} + α (1 − α) ∆t{vn} + α
2∆t{vn+1}

�

+
�
G

mechanical
�

{θn}
(3.127)

while the second phase leads to
1

∆t

�
C̃

�
({θn+1 − θn}) = −

�
K̃

thermal

�
((1 − α) {θn} + α{θn+1})−

�
G

thermal
�

{v(n+α) or (n+1)}
(3.128)

In the latter equation we can use vn+α or vn+1 .
The linear thermo-elastic problem of evolution can be written under the following system




1

∆t
[M] + α

2∆t

�
K

mechanical

�
0

[G]T
�
− 1

∆t

�
C̃

�
+ α

�
K̃

thermal

��




�

{vn+1}
{θn+1}

�

=





1
∆t

[M] {vn} −
�
K

mechanical

�
({un} + α (1 − α) ∆t {vn}) + [G] {θn}

1
∆t

�
C̃

�
{θn} − (1 − α)

�
K̃

thermal

�
{θn}






(3.129)

Adiabatic split

In the case of adiabatic staggered algorithm, the thermo-mechanical problem is split
into an adiabatic elasto-dynamic phase followed by a heat conduction phase at fixed
configuration. Under these conditions, we can write the split as

A1X =






v

1
ρ0

∇·
�
C : (∇s

u − θα)
�

− 1
c
α : C : ∇s

u






Problem 1: Elasto-dynamic phase (3.130)

A2X =






0
0
1
c̃
∇ ·

�
K̃ · ∇θn+α

�






Problem 2: Heat conduction phase (3.131)

We can remark in the first phase that the term −1
c
α : C : ∇s

u is the source term of the
elasto-dynamic phase, where the temperature is no longer constant, but the entropy is.
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Basing on the discretization done in the previous paragraph, the adiabatic split of the
thermo-elastic problem, is written as

1
∆t

[M] ({vn+1} − {vn}) = −
�
K

mechanical
� �

{un} + α (1 − α) ∆t{vn} + α
2∆t{vn+1}

�

+ [G]
�
(1 − α) {θn} + α{θ

adiabatic

n+1 }
�

(3.132)

where the adiabatic temperature is computed through the following equation

1
∆t

�
C̃

� �
{θ

adiabatic

n+1 − θn}
�

= − [G]T ((1 − α){vn} + α{vn+1}) (3.133)

where the second phase leads to

1
∆t

�
C̃

� �
{θn+1 − θ

adiabatic

n+1 }
�

= −
�
K̃

thermal

� �
(1 − α) {θ

adiabatic

n+1 } + α{θn+1}
�

(3.134)

Adiabatic temperature is computed through equation 3.133, It can be written as follow
�
θ

adiabatic

n+1
�

= {θn} − ∆t

�
C̃

�−1
[G]T ((1 − α){vn} + α{vn+1}) (3.135)

By injecting equation 3.135 into 3.132, we can determine the mechanical configuration
of the current step

� 1
∆t

[M] + α
2∆t

��
K

mechanical
�

+ [G]
�
C̃

�−1
[G]T

��
{vn+1} = 1

∆t
[M] {vn}

−
�
K

mechanical
�

({un} + α (1 − α) ∆t {vn}) + (1 − α) [G] {θn}

+ α [G]
�

{θn} − (1 − α)∆t

�
C̃

�−1
[G]T {vn}

�

= 1
∆t

[M] {vn} −
�
K

mechanical
�

{un} + α(1 − α)∆t

��
K

mechanical
�

+ [G]
�
C̃

�−1
[G]T

�
{vn} + [G] {θn}

(3.136)

The temperature of the current step in determined by a simple injection of equation
3.135 into the equation of heat conduction phase (equation 3.134 ), we get

1
∆t

�
C̃

�
({θn+1} − {θn}) + [G]T ((1 − α){vn} − α{vn+1}) +

�
K̃

thermal
�

(α{θn+1} + (1 − α)θn)

−(1 − α)∆t

�
K̃

thermal
� �

C̃

�−1
[G]T ((1 − α){vn} + α{vn+1}) = 0

(3.137)
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The condensation in equations 3.136 and 3.137 may be surprising at first, but in fact
the Schur complement is not computed.
The local adiabatic problem that we have treated here avoid the condensation, in fact
equation 3.133 is solved point by point, although we have showed it in a matrix form.

Comparison to thermo-visco-elastic problem

From basic mechanical and energy balance equations for the coupled thermo-visco-
elasticity, the problem of evolution can be written under the following form






u̇ = v

v̇ = 1
ρ0

∇ ·
�

C : (∇s
u − θα) + Cv : ∇s

v� �� �

�
+ b

θ̇ = 1
c̃
∇ ·

�
K̃.∇θ

�
− 1

c̃
α : C : ∇s

v + 1
c̃
∇s

v : Cv

Tref

: ∇s
v

� �� �
+r

c

(3.138)

From the above system of equations, two additional terms as compared to thermo-

elasticity (Cv : ∇s
v and 1

c̃
∇s

v : Cv

Tref

: ∇s
v )

These terms are non-linear in nature, we can discretize them and use some stable scheme.
In this application we are not going to skim into the details, but we will write the prob-
lem of evolution in the case of isothermal and adiabatic split.

If we use an isothermal split, it can be written as





u̇ = v

v̇ = 1
ρ0

∇ ·
�

C : (∇s
u − θ

p
α) + Cv : ∇s

v� �� �

�
+ b

θ̇ = 0

Problem 1: isothermal phase

(3.139)






u̇ = 0
v̇ = 0

θ̇ = 1
c̃
∇ ·

�
K̃ · ∇θ

�
− 1

c̃
α : C : ∇s

v

+ 1
c̃
∇s

v : Cv

Tref

: ∇s
v

� �� �
+r

c

Problem 2: Heat conduction phase (3.140)

Better results can be obtained if we applied the adiabatic split, in this case the system
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of equations can be split into





u̇ = v

v̇ = 1
ρ0

∇ ·
�

C :
�
∇s

u − θ
ad

α

�
+ Cv : ∇s

v� �� �

�
+ b

θ̇ = −1
c̃
α : C : ∇s

v (η̇ = 0)

Problem 1: Adiabatic elasto-dynamic phase

(3.141)






u̇ = 0
v̇ = 0

θ̇ = 1
c̃
∇ ·

�
K̃ · ∇θ

�
− 1

c̃
α : C : ∇s

v + r

c

Problem 2: Heat conduction phase

(3.142)
Those two problems are both linear, where time step plays an important rule. Stability
is not assured if the problem is not well posed.
Adiabatic formulation are not used in commercial codes, by the term −1

c̃
α : C : ∇s

v.

In the next chapter we will expose variational approach strategy for coupled thermo-
mechanical problems that will be the base of our work.
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Chapter 4

Energy consistent variational

approach to coupled

thermo-mechanical problems

Résumé
Dans ce chapitre, on expose la formulation du principe variationnel qui caractérise le
problème aux conditions limites thermo-mécanique couplé pour des solides dissipatifs.
Cette approche variationnelle permet d’écrire les équations d’équilibre mécanique et ther-
mique sous la forme d’un problème d’optimisation d’une fonctionelle scalaire de type
énergie.
Cet approche variationnelle présente plusieurs avantages dont:

• une formulation numérique à structure symétrique, qui fait défaut aux formulations
couplées thermo-mécaniques alternatives que l’on peut trouver dans la littérature

• la possibilité de dériver des algorithmes étagés

• elle est utile pour des approches adaptives (maillage, temps)

• elle permet l’utilisation d’algorithmes d’optimisation, en particulier pour les prob-
lèmes fortement couplées

Ce principe consiste en la minimisation d’une énergie incrémentale, afin d’obtenir une
approximation consistante de l’état thermomécanique, et le principe variationnel s’écrit

inf
ϕn+1

sup
Tn+1

Φ∗∗
n

(ϕn+1, Tn+1) (4.1)

On montre également que les conditions de stationnarité conduisent aux équations dis-
crétisées d’équilibre mécanique et thermique.
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Dans la deuxième partie de ce chapitre on introduit les différents schémas algorithmiques
afin de résoudre le problème thermo-mécanique.
Le problème thermo-mécanique est résolu d’une manière itérative jusqu’à ce que l’équilibre
soit atteint (equations de stationarité) par des procédures Newton-Raphson, schéma al-
terné et enfin un schéma de type Uzawa.
Le schéma alterné consiste à effectuer la minimisation par rapport au déplacement, en
gardant la température constante, ensuite la maximisation par rapport à la température,
tout en gardant le déplacement constant, jusqu’à convergence. Tandis que l’algorithme
de type Uzawa consiste à limiter la maximisation par rapport à la température à une
seule itération.
Dans cette dernière approche, on considère deux types d’algorithme, le premier utilisant
le complément de Schur, et le deuxième avec une expression simplifiée.

On termine ce chapitre par une application sur un cas simplifié en traitant un problème
consistant en un volume élémentaire de matière soumis à un chargement en contrainte,
avec un comportement thermo-visco-élastique de type Kelvin-Voigt. On considère deux
cas: couplage faible où on peut comparer avec une solution analytique, et le couplage
fort (en incluant la dépendance des coefficients mécaniques par rapport à la tempéra-
ture). Dans ce dernier cas la dérivation d’une solution analytique est difficile, et la
solution de référence sera établie via une discrétisation temporelle très fine.
Ce cas simplifié permet de tirer deux résultats intéressant :

• L’algorithme de type Uzawa semble offrir un coût de calcul intéressant

• La fonctionnelle présente un point de selle dans les deux cas envisagés

Cependant, ces résultats ont été obtenus sur un cas très particulier, et il reste à les
vérifier dans des conditions plus générales.

4.1 Introduction

In this chapter, we will introduce the formulation of variational principles characterizing
the solutions of the coupled thermo-mechanical problem for general dissipative solids,
here understood as the static equilibrium problem of an inelastic deformable solid to
which the heat conduction problem is added.
Following the pioneering work of Biot [20, 64], the variational form of the coupled thermo-
elastic and thermo-visco-elastic problems has been extensively investigated
([88][107][116][72][65]). In addition, at present there are well-developed variational prin-
ciples for the equilibrium problem of general dissipative solids in the absence of heat
conduction (Han et al.[23, 26], Ortiz and Stainier [6]). By contrast, the case of thermo-
mechanical coupling in dissipative materials has received comparatively less attention
[108].
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When the equilibrium and heat conduction problems for general dissipative solids are
combined, the resulting coupled problem lacks an obvious variational structure. This
lack of variational structure reveals itself upon linearization of the coupled problem,
which results in a non-symmetric operator.
A new variational formulation of coupled thermo-mechanical boundary-value problems
has been recently proposed by Yang et al. [115] leading to a symmetric structure.
It allows to write mechanical and thermal balance equation under the form of an optimi-
sation problem of a scalar energy-type functional. This formulation can be implemented
for a wide range of materials including generalized standard material [28].
This variational approach has many advantages especially that it leads to a symmetric
numerical formulation, allows to derive staggered or simultaneous schemes, is useful for
adaptive approach (adaptive time, mesh), and allows the use of optimization algorithms,
in particular for strongly coupled problems [115, 79]

4.2 Variational formulation

We consider a time increment [tn, tn+1], where the thermo-mechanical state variables
(ϕ

n
, Tn, ξ

n
) are known at t = tn. We recall that ϕ

n
, Tn, ξ

n
are the displacement map-

ping, temperature, and internal variables depending on the modeled material behavior,
respectively. It has been shown [115, 73], that thermo-mechanical state variables at
t = tn+1 are obtained through the minimization of an incremental energy of the follow-
ing variational principle

inf
ϕn+1

sup
Tn+1

Φ∗∗
n

(ϕn+1
, T

n+1) (4.2)

where

Φ∗∗
n

�
ϕ

n+1, Tn+1; ϕ
n
, Tn, ξn

�
=

�

B0
[Wn − ∆tχ (Gn+1)] dV +

�

B0
∆t

Tn+1
Tn

ρ0r (tn+1) dV

−
�

∂HB0
∆t

Tn+1
Tn

H (tn+1) ndA −
�

B0
ρ0b(tn+1) · ∆ϕdV −

�

∂σB0
t(tn+1) · ∆ϕdA (4.3)

ϕ = ϕ(tn+1) on the boundary ∂uB0 (4.4)

T = T (tn+1) on the boundary ∂T B0 (4.5)
and

• Wn : Incremental potential

• ρ0r : Volumic heat supply

• H : imposed heat flux on the boundary ∂HB0
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• χ : conduction potential

• b : body force

• t : imposed surface forces on the boundary
The nominal heat flux is a function of Fourier’s conduction potential χ(G), also called
Biot dissipation function [54], and is given by the following expression

H = ∂χ

∂G
(G) (4.6)

where
G = −∇T

T
(4.7)

The local incremental potential Wn (Fn+1, Tn+1; Fn, Tn, ξ
n
) is given by

Wn(Fn+1, Tn+1; Fn, Tn, ξ
n
) = inf

ξ
n+1



Wn+1 − Wn + ρ0ηn(Tn+1 − Tn)

+ ∆tψ
∗

�
Tn+1
Tn

∆ξ

∆t

� 

 + ∆tφ
∗

�
Tn+1
Tn

∆F

∆t

� (4.8)

ρ0ηn = −∂Wn

∂T
(4.9)

δξ = ξ
n+1 − ξ

n
(4.10)

δF = Fn+1 − Fn (4.11)
where F, W (F, T, ξ), ψ

∗(ξ̇) and φ
∗(Ḟ, F) are the gradient of transformation, Helmholtz

free energy density, internal dissipation pseudo-potential and external viscous dissipation
pseudo-potential, respectively.
The specific details relative to the formulation of the incremental potentiel for particular
constitutive models can be found in [61] and [62, 86, 85] for large transformation in
plasticity, and in [1] for non-linear visco-elasticity with large transformation.

4.3 Finite element approach for the variational for-

mulation

As defined before, we consider an admissible thermo-mechanical configurational space
of a continuum body B0, denoted by ν , where ∂B0 is its smooth boundary.

ν =
�
ϕ : B0 → R3|ϕ = ϕ on ∂uB0 × [0, t]; σ : B0 → R6|σn = t0 on ∂σB0 × [0, t]

T : B0 → R+|T = T on ∂T B0 × [0, t]; H : B0 → R3|Hn = H on ∂HB0 × [0, t]
�

(4.12)
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From the variational principle defined above (eq. 4.2, 4.33 and 4.8) we can derive a finite
element formulation via Ritz-Galerkin approach.
In a classical form, shape functions are defined on the connected nodes, and are set to
zero elsewhere. For simplicity, the shape function are taken the same for the mechanical
and thermal field. Eventually, we consider the sub-space of admissible functions νh

constructed at the element mesh Eh of the domain B0

ν =



ϕ
h

: B0 → R3 | ϕ
h
(X) =

N
node�

i=1
Ni(X)xi(t); T : B0 → R+ | Th(X, t) =

N
node�

i=1
Ni(X)Ti(t)






(4.13)

Discretized gradients of deformation and temperature are given by the following expres-
sions

Fh(X, t) =
N

node�

i=1
xi(t)∇Ni(X) (4.14)

Gh(X, t) = −
�

N
node

i=1 Ti(t)∇Ni(X)
�

Nnode

i=1 Ti(t)Ni(X)
(4.15)

where xi = ϕ(Xi, tn+1) are the positions of the N
nodes in the current configuration, and

Ti = T (Xi, tn+1) are the temperatures on these same nodes. h index refer to the mesh
element Th.
We can rewrite the variational principle on each sub-domain νh

inf
ϕ

h
∈νh

sup
Th∈νh

Φn∗∗

�
ϕ

hn+1 , T
hn+1; ϕn, Tn, ξ

n

�
(4.16)

and the stationary equations (min-max) of the variational principle can be written as

Nelt�

i=1
f

mechanical

i
· δxi =

Nelt�

i=1
{

�

B0

�
∂Wn

∂xi

− ρ0bNi

�

−
�

∂σB0
tNidA}δxi = 0 ∀ · δxi(4.17)

Nelt�

i=1
f

thermal

i
· δTi =

Nelt�

i=1
{

�

B0

�
∂Wn

∂T
+ ∆t

∂χ

∂Ti

+ ∆tρ0r
Ni

Tn

�

dV

−
�

∂HB0
∆tH · Ni

Tn

ndA} · δTi = 0 ∀ ∂Ti (4.18)

∂Wn

∂xi

= ∂Wn

∂F
· ∂F

∂xi

= Ph · ∇Ni

(4.19)

where the stress tensor Ph is defined as

Ph = ∂Wn

∂F
(Fn+1h

, Tn+1h
; Fn, Tn, ξ

n
) (4.20)
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∂Wn

∂Ti

= ∂Wn

∂T
· ∂T

∂Ti

= −ρ0∆η
eff

h
Ni

(4.21)

where effective entropy variation ∆η
eff

h
is defined as

ρ0∆η
eff

h
= −∂Wn

∂T
(Fhn+1 , Thn+1 ; Fn, Tn, ξ

n
) (4.22)

∂χ

∂Ti

= χ

∂G
· ∂G

∂Ti

= Hh ·
�

∇Ni

Th

+ Gh

Th

Ni

� (4.23)

where the heat flux Hh is defined as

Hh = ∂χ

∂G
(Gh; Fn, Tn, ξ

n
) (4.24)

The stationary equations can be written as
Nelt�

i=1
f

mechanical

i
· δxi =

Nelt�

i=1
{

�

B0
[Ph · ∇(Ni) − ρ0bNi] dV −

�

∂σB0
tNidA}δxi = 0 ∀ δxi(4.25)

Nelt�

i=1
f

thermal

i
· δTi =

Nelt�

i=1
{

�

B0

�

−ρ0∆η
eff

h
Ni + ∆tHh ·

�
∇(Ni)

Th

+ Gh

Th

Ni

�

+ ∆tρ0r
Ni

Tn

�

dV

−
�

∂HB0
∆tH · Ni

Tn

ndA} · δTi = 0 ∀ δTi (4.26)

Stationary conditions (eq. 4.25 and 4.26) lead to discretized equations for mechanical
and thermal equilibrium that can be written in an alternative manner:

F
int

i
− F

ext

i
= 0 where i = 1, ..., N

nodes (4.27)

where

F
mechanical

int
=

Nelt�

e=1

�

Be

0

Ph · ∇NidV (4.28)

F
mechanical

ext
=

Nelt�

e=1

�

Be

0

ρ0bNidV +
Nelt�

e=1

�

∂σBe

0

tNidA (4.29)

F
thermal

int
=

Nelt�

=1

�

Be

0

�

ρ0∆η
eff

h
Ni − ∆tHh ·

�
∇Ni

Th

+ Gh

Th

Ni

��

dV (4.30)

F
thermal

ext
=

Nelt�

e=1

�

Be

0

∆t
ρ0
Tn

NidV −
Nelt�

e=1

�

∂HBe

0

∆t
H · n

Tn

NidA (4.31)

73



where � is the assembly operator of the elements at each node, and Be

0 is the elementary
domain.
Note that the thermo-mechanical problem (eq. 4.27) features a non-linear quasi-static
problem, even thought heat capacity effects are included in the term ρ0∆η

eff

h
. Thermal

equilibrium that is used in the variational formulation, is based on the balance of entropy,
evaluated on a (current) temporal increment, where as in classical approaches , thermal
equilibrium is based on the instantaneous flux equilibrium equation.
Implicit schemes (implicit backward Euler) are typically used in this framework for
the resolution of the equilibrium equations 4.27, as a mean of achieving unconditional
stability, and the evaluation of derivatives of expressions 4.20, 4.22 and 4.24 with respect
to the variation of nodal unknowns is necessary.
To note a interesting or fundamental feature of the variational approach that it leads
to a symmetric tangent matrix (the tangent matrix is linked to the second derivative of
the incremental potential (eq. 4.8)).

4.4 Mixed boundary conditions

The variational formulation developed so far, does not take into account mixed boundary
conditions (heat exchange with the environmental surrounding).
Thus the convection term can be written by analogy with the conduction potential,
therefore an additional term in the variational formulation (eq. 4.33) is added

−∆t

�

∂HB0

1
2hTref

�
Tn+1 − Text

Tn+1

�2

Jn+1dA (4.32)

where h is the convection coefficient and Jn+1 is the jacobian of the element (surface).

Therefore we can write the incremental energy as

Φ∗∗
n

�
ϕ

n+1, Tn+1; ϕ
n
, Tn, ξn

�
=

�

B0
[Wn − ∆tχ (Gn+1)] dV +

�

B0
∆t

Tn+1
Tn

ρ0r (tn+1) dV

−
�

∂HB0
∆t

Tn+1
Tn

H (tn+1) ndA −
�

B0
ρ0b(tn+1) · ∆ϕdV −

�

∂σB0
t(tn+1) · ∆ϕdA

− ∆t

�

∂HB0

1
2hTref

�
Tn+1 − Text

Tn+1

�2

Jn+1dA (4.33)

4.5 Solution schemes

The variational formulation described above, allows to write mechanical and thermal
balance equation under the form of an optimisation problem of a scalar functional, thus
allows the use of optimization algorithms.

In the framework of this thesis, we are interested to validate the energetic formulation
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of the coupled thermo-mechanical problems considering different algorithmic schemes,
the goal being to obtain a good compromise between the following aspects: precision,
stability and computational cost.
Wy setting Fo−b = Fint − Fext, we can write

Fo−b(zk+1) = Fo−b(zk) +
�

∂Fo−b(zk)
∂zk

�

∆z (4.34)

4.5.1 Newton scheme

Newton scheme consist of iterating on the generalized displacement z until equilibrium is
achieved (equation (4.27)), in other words until Fo−b(zk+1), this will lead to the following
system

�
KUU KUT

KT U KT T

� �
δU

δT

�

= −
�

RU

RT

�

(4.35)

In this case the total matrix of size
�
ndof

mechanical + ndof
thermal

�
×

�
ndof

mechanical + ndof
thermal

�

( see table 4.1)

Table 4.1: Newton scheme

1 If k=0 z = z
n else z = z

k+1

If F
k+1
o−b

(z) ≈ 0
2 then move to next time else (k=k+1) & move to 3

step t = t + ∆t

3 z
k+1 = z

k − (K)−1
F

k

o−b
(zk) & loop to 1

4.5.2 Alternated scheme

To compare with Newton scheme, we apply the alternated algorithm that consists in
minimizing with respect to displacement, at a constant temperature, then maximizing
with respect to temperature at a constant displacement, until convergence. (see table
4.2)

The alternated algorithm reduces the size of the system at a defined step but not neces-
sarily the global time step, therefore it is interesting to compare it with Newton schemes
to see which algorithm exhibits more interesting time cost results.
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Table 4.2: Alternated algorithm (Uzawa-like scheme: only 1 iteration in step 3)

1 Prediction on temperature field eg. Tn+1p = Tn

2 Solving the optimisation
problem for the displacement field inf

ϕn+1
Φ∗∗

n
(ϕn+1, T

p

n+1)

3 Solving the temperature field sup
Tn+1

Φ∗∗
n

(ϕn+1, Tn+1)

4 Loop to 2 until convergence �Tn+1 − T
p

n+1� < η

4.5.3 Uzawa-like algorithm

The idea of this scheme consists of minimizing with respect to displacement, at a constant
temperature, then maximizing with respect to temperature at a constant displacement
but limiting the maximization on temperature to only one iteration.

After many investigations of such kind of schemes, various Uzawa-like schemes are con-
sidered in the application chapter. In this paragraph we will consider two types of Uzawa
schemes, the first one with an enhanced Jacobian, and the second one with a simpler
expression. Those schemes will be compared to the two others defined above.

The Uzawa-like scheme will be defined by decomposing the thermo-mechanical prob-
lem obtained previously (eq. 3.30 into two)

Problem 1: mechanical problem.

[KUU ] {δU} = −{RU} (4.36)

when the mechanical equilibium is achieved ({RU} � 0), we solve problem 2 defined as
follow:

Problem 2: thermal problem

[KUU ] {δU} + [KUT ] {δT} = 0 (4.37)
[KT U ] {δU} + [KT T ] {δT} = −{RT } (4.38)

Combining equations 4.36, 4.37 and 4.38, we can write
�
[KT T ] − [KT U ] [KUU ]−1 [KUT ]

�
{δT} = −{RT } (4.39)

76



Since the incremental variational formulation lead to a symmetric structure [115] we can
write

KUT = K
T

T U
(4.40)

A simpler alternative scheme is

[KT T ]{δT} = −{RT } (4.41)

Note that is also possible to solve the thermal problem using equations (4.37) and (4.38)
instead of the Schur complement (4.39).

4.6 Preliminary analysis

We consider, in this application, a simplified problem consisting of an infinitesimal con-
trol volume under compressive load, having a visco-elastic behavior satisfying Kelvin-
Voigt model (creep).
The goal being to validate the energetic variational thermo-mechanical formulation of
the coupled problem, we consider two types of coupling, weak and strong coupling. For
the weak coupling, an analytical solution can be found (under certain simplification),
and compared to the variational formulation, but it is not the case for the second case
(strong coupling), the analytical solution cannot be provided, thus a numerical reference
solution will be suggested in this case.
In each case, we show an important property of the variational thermo-mechanical cou-
pled problem, the solution of the scalar energy-like functional is a saddle point (note that
proof or existence conditions of the saddle point solution of the variational formulation
are difficult and have not yet been established, but in this simplified case, we can show
graphically that the solution is a saddle point).
Note that since we consider an infinitesimal control volume, only time discretization is
considered (no FEM).
The effects of heat capacity, intrinsic dissipation and the heat exchange with the envi-
ronment are included in the model.
By neglecting body force, heat supply field, and taking into account the assumption of
small displacement, the variational problem for the elementary control volume can be
written under the following form

inf
�n+1

sup
Tn+1

�
W (�n+1, Tn+1) − W (�n, Tn) + ρ0ηn(Tn+1 − Tn) + ∆tφ

∗
�

Tn+1
Tn

�n+1 − �n

∆t

�

−∆tχ

�
Tn+1 − Text

Tn+1

�

− σ (�n+1 − �n)
�

(4.42)

where
W (�, T ) = 1

2E�
2 − 1

2C
(T − T0)2

T0
(4.43)
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and
ρ0ηn = −∂W

∂T
(�n, Tn) = C

θn

T0
(4.46)

Thermo-visco-elastic characteristics of the material are given in table 4.3

Table 4.3: Material characteristics of the problem

Characteristic Value Unit

Young modulus (E) 2 × 109
Pa

Visco-elastic modulus (Ev) 5 × 1013
Pa.s

Density (ρ0) 1450 Kg.m
−3

Specific heat capacity (C) 148 J.Kg
−1

.C
−1

Convective heat coefficient (h) 25 W.m
−2

.C
−1

Temperature small perturbation Under the assumption of small perturbation in
temperature, and by setting Text = T0, we can deduce the following expressions

Tn+1
Tn

≈ 1 + θn+1 − θn

T0
(4.47)

and
Tn+1 − Text

Tn

≈ θn+1
T0

(4.48)

4.6.1 Weak coupling

At first, we consider constant mechanical properties thus leading to a weak coupling
(mechanical coefficients not dependent on the temperature). The variational problem
is solved via the 3 types of algorithms described above, and compared to the derived
analytical solution. In this case, we see no difference between the efficiency of different
algorithms, thus the results we be exposed using one algorithm (Newton Raphson).
Figures 4.1 and 4.2 show the evolution of the temperature and strain fields.
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Figure 4.1: Evolution of the temperature field

Figure 4.2: Evolution of the strain field

Figures 4.1 and 4.2 clearly show that the results of variational problem and the analytical
solution coincide.
The properties of the scheme are given in figures 4.3, and 4.4. They show clearly the
precision of the scheme, the smallest the time step is, the more precise the scheme is,
with convergence of order 1.

Figure 4.5 show clearly the saddle point property, the functional is convex with re-
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Figure 4.3: Convergence of the Newton-Raphson algorithm in strain field

Figure 4.4: Convergence of Newton scheme in temperature

spect to strain and concave with respect to temperature, thus the solution (�solution, Tsolution)
is a saddle point, and this is verified for different simulation times t.
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Figure 4.5: Saddle point property of the functional

4.6.2 Strong coupling

In a second phase, we take into account the thermal softening phenomenon where me-
chanical coefficients are dependent on temperature, thus creating a strong coupling.
In our simulation we consider only Young modulus (E) and viscous modulus (Ev) de-
pendent on temperature [99], this is shown in figure 4.6. In fact, the material being
thermo-sensible, it has a strong dependency on temperature. The evolution of mechan-
ical coefficients has been observed experimentally (figure 4.7) [27]

Figure 4.6: Evolution of Young modulus and visco-elastic modulus function of temper-
ature
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Figure 4.7: Experimental evolution of mechanical properties of a PVC

Figure 4.6 show a sudden drop of mechanical moduli, the temperature interval where
the sudden drop occur is called transition section area, which will have a strong effect
on the convergence of the algorithmic scheme. This temperature dependency will create
a strong coupling. Our goal is to mesure its effect in our numerical simulation for the
thermo-mechanical problem, especially when the temperature reach the transition sec-
tion.
The thermal softening phenomenon will lead to the impossibility of deriving an analyt-
ical solution. Initially, we will apply the algorithm of Newton-Raphson for solving the
thermo-visco-elastic problem. The reference solution is discretized at small time step
(∆t = 10−6

s). We verify as well, the conservation of the saddle point property of the
energetic variational formulation.

Numerical simulations show sudden increase of temperature in the transition section
area (see Fig. 4.8), the same behavior is observed for the strain field.

Different algorithmic schemes are compared at different time steps, and convergence
has been analyzed. In this case, we find that alternated optimization algorithm offers
more interesting results in time cost than Newton-Raphson (simultaneous optimization).
First tests have been also achieved by limiting the maximisation on the temperature to
one iteration, leading to an algorithm of the type of Uzawa’s algorithm. This approach
seems to reduce more the global time cost (table 4.4). Nevertheless, these results have
been obtained within a very particular case, and in the next chapter we will expose a
more general coupled thermo-mechanical boundary-value problem case.

Figure 4.9 shows the comparisons between the three algorithms for the temperature
field. In this case, these three algorithms almost coincide in term of precision. This has
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Figure 4.8: Sudden increase of temperature in the transition section area

Table 4.4: Comparison between the three algorithmic schemes, with a precision of 10−8

and a simulation time of 30 s

Algorithm Iteration nb. time cost (s)

Newton 19 921 3.873
Alternate 120 321 3.205

Uzawa 131 674 3.024

been verified as well for the strain field (figure 4.10).

Eventually, it is important to verify if the saddle point property is still verified in the
case of strong coupling, especially when the temperature reaches the transition section
interval.
Figure 4.11 shows that the structure at saddle point is always conserved, and this is
verified for different time steps.

4.6.3 Conclusion

In this simplified application we have presented the monolithic energetic variational for-
mulation applied to a coupled thermo-mechanical problem, consisting of an elementary
control volume, satisfying Kelvin-Voigt model. Initially, we consider a weak coupling
where mechanical coefficients are constant. Afterward, we take into account, the tem-
perature dependency, of the mechanical coefficients, leading to a strong coupling, where
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Figure 4.9: Comparaison between the three different types of algorithm for the temper-
ature field

Figure 4.10: Relative error for the strain field

the goal is to measure its effect in our numerical simulation. Uzawa-like algorithm seems
to offer an interesting computational cost in comparison with other type of algorithms.
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Figure 4.11: Conservation of the structure at saddle point for strong coupling

We obtain as well a second interesting result, the solution point is a saddle point in both
cases. However, these results are obtained for a very particular case and we still need
to verify them to a more general coupled thermo-mechanical boundary-value problem,
which is the goal of the next chapter.
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Chapter 5

Applications to coupled

thermo-mechanical boundary-value

problem

Résumé
Ce dernier chapitre est consacré à l’application de la formulation variationnelle au prob-
lème aux condition limites thermo-mécanique.
La première application sera une extension du problème simplifié défini dans le chapitre
4, et consiste en une plaque rectangulaire (2D) trouée en son centre, soumise à un
chargement en compression appliqué sur les deux extrêmes, avec un comportement ther-
moviscoélastique de type Kelvin-Voigt.
Les effect de capacité thermique, de dissipation intrinsèque et d’échange de chaleur avec
l’environnement sont inclus dans le modèle. Le couplage thermomécanique est complété
en incluant une dépendance forte des coefficients mécaniques par rapport à la tempéra-
ture.
Pour comparer, on considère 3 types de maillage différents, et on choisi un pas de temps
adaptatif selon le nombre d’itérations effectués au pas précédent.
Le résultat montre la propagation d’une zone de déformation localisée, accompagnée
d’une zone de localisation de la température. L’évolution de ces bandes explique bien
le phénomène d’auto-échauffement. Les concentrations de contrainte au bord du trou,
associées aux termes de couplage thermo-mécanique, conduisent à un échauffement local
du matériau, puis à son adoucissement. La perte de rigidité qui en résulte autorise une
déformation locale plus importante, qui à son tour accroît les mécanismes de dissipation.
Lorsque l’échauffement correspond à la largeur de la zone de transition, les modules de
rigidité décroissent rapidement avec l’augmentation de la température ce qui cause une
diminution des phénomènes dissipatifs. Lorsque le niveau de la température est au delà
de la zone de transition, les phénomènes dissipatifs deviennent négligeables sur le plan
thermique. A noter que les zones de propagation localisée ne dépendent pas du maillage
suite à la prise en compte de la conduction.
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En comparant les différents algorithmes, l’algorithme de type Uzawa montre sa diffi-
culté de converger, tandis que les deux autres montrent un bon résultat. Par suite un
schéma alternatif de type Uzawa est prise en compte, en limitant la minimisation sur le
champs de déplacement à une seule itération, puis des itérations de type Newton sur le
champs de température, jusqu’a convergence. Ce schéma alternatif de type Uzawa semble
réduire le temps global, et donne une meilleur performance.

La 2ème application est une extension du cas 2D. En effet on considère la même plaque
mais en 3D avec les mêmes conditions que le cas précédent. Les résultats montrent tou-
jours la propagation d’une zone de localisation de déformation accompagnée par une zone
de localisation de température. Le schéma alternatif de type Uzawa offre de nouveau un
temps de calcul réduit, et des meilleurs performances.

Dans notre 3ème application, on considère le problème de striction d’une barre rect-
angulaire, avec un comportement élasto-plastique. La striction de la barre est due à la
non-homogénéité dans le champs de température, qui se produit suite à la combinaison
de l’échauffement uniforme de la barre dû à la création de déformations plastiques et
du refroidissement causé par les conditions limites de convection appliquées sur la sur-
face libre. Cette combinaison conduit à un champ de température non homogène dont
le point chaud se situe au centre de la barre. La température influence le comporte-
ment du matériau, en particulier sa limite élastique. La barre est par suite affaiblie en
son centre conduisant à une concentration de déformation, et donc sa striction au centre.

Le résultat de la simulation montre que même si la déformation, donc l’échauffement
associé est initialement homogène, l’échange de chaleur avec le milieu extérieur crée une
inhomogénéité dans le champ de température.
En comparant les trois algorithmes, le schéma de Newton apparait supérieur aux deux
autres schémas, et par suite offre un meilleur temps de calcul.
Une conclusion importante peut être donc tirée à partir de ces applications, que le schéma
qui peut être robuste dans un cas particulier, ne le sera pas forcément dans un autre cas
de couplage.

5.1 Thermo-visco-elastic behaviour of a rectangular

plate with a hole in 2D

We consider a rectangular plate of dimension 50 × 32 (mm), with a hole in the center of
diameter 5mm. A compression loading is applied on its two extreme sides, and the heat
exchange with the environment is performed through the free sides and the hole (Figure
5.1).
The considered material of the rectangular plate is a PVC, satisfying a thermo-visco-

elastic behavior of type Kelvin-Voigt. The material characteristics of a PVC are given
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Figure 5.1: Rectangular plate under compressive loading [99]

by table 5.1. This example is taken from the thesis of Meissonnier [99].

An experiment has shown that bands appear on the specimen, initiating on the border
of the hole and propagating at a direction of 45◦ with a symmetric pattern (see figure
5.2). On the mechanical scale, these bands correspond to localisation of deformation.
An infrared thermography has shown that those bands also appear on a thermal scale,
and correspond to the localization of temperature [99, 93].

As done in the previous chapter, a strong coupling is included due to strong temperature
dependency of mechanical properties (figure 4.6) and displacement dependent thermal
effects (source term in the heat equation that is dependent on the strain rate).

Boundary conditions The compression on the rectangular plate’s sides, is simulated
by imposing a vertical displacement u(t) on its two extreme sides. Numerically this
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Table 5.1: Thermoviscoelastic characteristics of a PVC at 23◦
C

Characteristic Value Unit

Young modulus (E) 2 × 109
Pa

Visco-elastic modulus (Ev) 5 × 1013
Pa.s

Poisson coefficient (ν) 0.35 -
Viscous Poisson coefficient (νv) 0.35 -

Specific heat capacity (C) 148 J.kg
−1

.C
−1

Convective heat coefficient (h) 25 W.m
−2

.C
−1

Thermal dilatation (α0) 6 × 10−5 ◦
C

−1

Figure 5.2: Compressive test on the speciment, we see on the left the localized deforma-
tion, on the middle the thermal image by infrared, and on the right the thermal power
by infrared [99]

compression is simulated by imposing the following Dirichlet condition in displacement

u(t) = −4 × 10−5
t (ms

−1) (5.1)

The lateral sides are free from mechanical constraints, whereas a convective heat ex-
change is performed on the hole and all free sides, and the convection coefficient is
supposed constant of value

h = 25W.m
−2

.C
−1 (5.2)

By symmetry we consider one fourth of the geometry. Displacements and fluxes are set
to zero on the axes corresponding to symmetry, whereas the mixed boundary condition
is set on the sides and the hole (see figure (5.1).
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Initial conditions We suppose that the plate has a uniform temperature at t = 0s of
value 293K, the initial condition are given by






u(0) = 0 m

u̇(0) = 0 m.s
−1

θ(0) = 0K

θ̇(0) = 0K.s
−1

(5.3)

Note that in our simulation is done in plane strain, although the original problem was
in plane stress, that will serve later as a reference solution.

Mesh To compare we chose three types of mesh for our simulation, shown in figure
5.3 and their characteristics in table 5.2. We denote by mesh 1, mesh 2 and mesh 3, the
meshed plates shown (figure 5.3) on the left, middle and right, respectively.

The meshes are finely refined on the hole’s border and the direction of 45◦ in order to
obtain a better precision of the results and to show clearly the propagated band .
Note that mesh number 3 is more refined on the direction of 45◦ than the others.
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Figure 5.3: Three different types of mesh chosen for our simulation

Table 5.2: Characteristics for each mesh

node’s number element’s number (2nd degree)

Mesh 1 1506 800
Mesh 2 1711 492
Mesh 3 2718 1398

5.1.1 Adaptive time step

After many tests, we have decided to choose an optimized adaptive time step according
to the number of iterations till convergence of the previous step, following a rule sum-
marized in table 5.3
The termination criteria is determined by the minimum time step allowed and the maxi-
mum number of iterations. If the algorithm did not converge after the maximum number
of iterations allowed, the time step is divided as defined by table 5.3, and if after many
divisions of the time step the algorithm still not converge, while the time step is at its
minimum value, we suppose that the algorithm has not converged, and the simulation
is interrupted.

Algorithmic parameters have been chosen as follows:
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Table 5.3: Chosen adaptive time step for the simulation of the problem

Number of iterations Time step

0 2 × ∆t

1 1.5 × ∆t

< 4 1.25 × ∆t

< 6 ∆t

> 6 ∆t/(number of iteration) 1
2

1. ∆tmax = 0.1 sec

2. ∆tmin = 10−6 sec

3. Maximum number of iterations = 20

5.1.2 Results

We apply the three types of algorithms described in the previous chapter (section 4.5):
Newton, Alternated and Uzawa-like schemes. The following figures (fig. 5.4, 5.5, 5.6,
5.7, 5.8, 5.9 and 5.10 ) show the evolution of temperature, displacement, strain and
reaction force considering different meshes (and using different algorithms that show the
same results choosing the same characteristics and the same mesh). The other results
(Velocities and Heat Flux) are shown in Annex II.

These results (figures 5.4, 5.6, 5.7, 5.6) show an evolution and propagation of a localized
deformation zone that is accompanied by a localized temperature zone. The width of
this localization zone is independent of mesh refinement due to taking into account the
conduction process in the material.
Physically, this can be explained by the fact that the plate under compressive loading
will generates stress concentration (on the hole borders) and therefore deformation lo-
calisation due to a local heating linked to thermo-mechanical coupling. This heating
though small, is enough to alter mechanical properties causing thermal softening and
therefore localized material flow. This will result to an increase in dissipative effect that
leads to an increase in temperature; an autocatalytic cycle is then initiated.

5.1.3 Reference solution

The results have been validated by considering for a particular case, 2D plane stress
frame, where we consider the plate with a thickness of 5mm, and the heat exchange
with the environment is performed through free sides. The imposed displacement is set
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equal to 4 × 106 (mm).
Figures 5.11 and 5.13 show the validation of the thermo-visco-elastic problem via vari-
ational approach (right side of the figure), results are compared to the work done by
Meissonnier [99] in plane stress considering the classical approach (left side of the figure).

5.1.4 Algorithmic analysis

The three types of algorithms described previously (section 4.5) are applied on the three
different meshes (figure 5.3), and in this paragraph we will analyse the performance of
each scheme.

Newton scheme Although Newton scheme exhibits good performance in the begin-
ning, it encounters convergence difficulties when coupling becomes stronger and localiza-
tion develops. Table 5.4 shows the limitation of physical time of simulation in function
of the precision taken in each case. This limitation is caused by the non-convergence at
the minimal time step allowed.
In fact, the maximum iteration number being set to 20, after a simulation time, Newton

Table 5.4: Limitation of Newton scheme(sec)

Precision mesh 1 mesh 2 mesh 3
10−3 26.2 36.4 49.4
10−4 18.7 31.7 25.2
10−5 22.6 9.9 23.9
10−6 10.1 9.6 17.2
10−7 9.2 11 14.7

scheme do not converge after 20 iterations, the time step in then divided by the square
root of the iteration number ( ∆t√

numberofiteration
), and then Newton iterations are applied

again. In case of continued lack of convergence, the time step is divided until a minimum
value (set to 10−6

s in this case). If no convergence occurs at ∆tmin then the scheme is
called being limited.

Alternated scheme The alternated scheme offers more interesting results since it has
overcome the limitation for low precision, and allows better performance for higher ones
(table 5.5). On top of that, the alternated scheme performs with better computational
cost, especially for high precision and long simulation time.
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Table 5.5: Alternated algorithm shows a better performance in term of limitation of
physical time (sec)

Precision mesh 1 mesh 2 mesh 3
10−3 ∞ ∞ ∞
10−4 ∞ ∞ ∞
10−5 63.8 58.6 66
10−6 33.9 37.6 44.6
10−7 13 12.6 19.5

Uzawa scheme In this paragraph we will consider two types of Uzawa scheme, the
first one with an enhanced Jacobian, and the second one with a simpler expression. Both
schemes performances will be compared in order to chose the most efficient one, that
will be compared to the two other algorithms.

Problem with enhanced Jacobian During our simulation, some problems have
been encountered with the Uzawa schemes especially with the enhanced Jacobian: since
we need to extract the two coupled sub-matrix KUT and KT U from the total matrix, in
order to evaluate the enhanced Jacobian term, and both of these two operations influence
considerably the computational cost. Indeed in the previous schemes, we have used a
skyline storage, that reduces considerably the size of the system, and the computational
cost, while this is not possible when extracting off-diagonal sub-matrices.
Therefore we consider two types of Uzawa’s scheme as defined beneath.

1. The mechanical part remains the same [KUU ] {δU} = −{RU}

2. The mechanical part differs

(a) Uzawa 1 :
�
[KT T ] − [KT U ] [KUU ]−1 [KUT ]

�
{δT} = −{RT }

(b) Uzawa 2 : [KT T ] {δT} = −{RT }

To compare between these two types of schemes, we consider the mesh nb. 2 for the
thermo-visco-elastic 2D problem. Simulation is ran for 2 sec with a constant time step
∆t = 0.1 sec. Table 5.6 summarizes the results. Both schemes gave the same simulation
results, but scheme Uzawa 2 seems more interesting results since the extraction from the
total matrix and the evaluation of KT T is less costly than the jacobian, on top of that
we can extract KT T from the skyline matrix, which allows to reduce more the global
computational cost.
For comparison between the three different schemes, a constant time step is chosen of
value ∆t = 0.1, and mesh nb.2 is selected as defined in the previous section. This choice
of a constant time step =0.1 was decided after many tests on Uzawa schemes choosing
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Table 5.6: Comparison between the two Uzawa schemes

Total iteration Elapsed computational time

Uzawa 1 274 25 hr 10 min 56 sec
Uzawa 2 244 25 min 52 sec

Table 5.7: Comparison between the three different schemes for the coupled thermo-visco-
elastic 2D problem with a precision of 10−4

Newton Alternated scheme Uzawa 2

Total iteration 177 80 1021
Elapsed computational

time 4m : 39s 5m : 12s 1h : 07m : 37s

different adaptive time steps and constant ones. Table 5.7 shows a comparison between
the 3 different schemes, it gives the total number of iterations needed for each algorithm
for 5 sec of simulations at a constant time step ∆t = 0.1s and a maximum number of
iterations allowed by each algorithm is set to 40 iterations. The simulation shows shows
for that case that the alternated scheme has the least number of general iterations (but
not the total ones), on the other hand the total computational cost that we show is not
comparable with Uzawa scheme since in Newton and the Alternated scheme matrices
are stored in a skyline matrix, while the Uzawa 3 scheme matrices is stored in the total
matrix, where it has a bigger size and therefore extraction of sub-matrices is more costly.
Note that for small physical time Newton has better performance than the Alternated
scheme, because the localization still didn’t develop enough to increase the strength of
coupling.

Alternative Uzawa-like algorithm From what we have exposed so far, Uzawa’s
algorithm was not the best choice to reduce computational costs (at least for this prob-
lem), for this we will try to proceed in another manner by imposing one iteration on the
mechanical problem instead of the thermal one.

The Uzawa 2 algorithm used to apply Newton iterations on the mechanical problem
until convergence while only one iteration for the thermal problem. Now the problem
is inverted, so we consider an alternative Uzawa-like algorithm denoted by Uzawa 3,
defined by table 5.8
To compare with the two other Uzawa algorithms considered earlier, we take the same
thermo-visco-elastic 2D problem as defined before, and we consider again the same mesh
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Table 5.8: One general iteration of Uzawa 3 scheme; (note: "n" denotes the time step,
and "k" denotes the iteration number)

1 If k=0 {U, T}T

k+1 = {U, T}T
n

else {U, T}T
k+1 = {U, T}T

k

2 only one iteration on the
mechanical problem ∆u = [Kuu]−1 {−Ru}

3 Newton iterations on the
Thermal problem ∆T = [KT T ]−1 {−RT }

4 If total residual < ε

then move to the next step If total residu > ε, k = k + 1
Loop to 1

Table 5.9: Comparison between the three Uzawa schemes

Number of iteration

Uzawa 1 274
Uzawa 2 244
Uzawa 3 75

(mesh 2). Simulation is run again for 2sec (table 5.9)
By trying to limit both thermal and mechanical problem to one iteration until conver-
gence, the results don’t change much with respect to Uzawa2 (too many iterations until
convergence).

Now, if we try to use the Uzawa 3 algorithm but starting with thermal iteration in
step 2, and then mechanical iterations in step 3, this modification is given by table 5.10.

With the modified Uzawa 3 the results will change significantly only by inverting the
mechanical and thermal iterations. The same test is made for 2D thermo-visco-elastic
problem for different algorithms, and simulation is run for 15 sec with the adaptive time
step as described above, with a precision of 10−6.

Table 5.11 shows well that the modified Uzawa 3 scheme give the best result. Aiming to
enhance it, we will consider another Uzawa-like scheme with an enhanced Jacobian. For
this we will consider the same thermo-mechanical problem defined previously (equation
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Table 5.10: Modified Uzawa 3

1 If k=0 {U, T}T

n+1 = {U, T}T
n

else {U, T}T
k+1 = {U, T}T

k

2 Newton iterations on the
Thermal problem ∆T = [KT T ]−1 {−RT }

3 only one iteration on the
mechanical problem ∆u = [Kuu]−1 {−Ru}

4 If total residual < ε

then move to the next step If total residu > ε, It = It + 1
Loop to 1

Table 5.11: Comparison between different algorithms for 15 sec of total simulation

Iteration number Elapsed computational time

Uzawa 3 2434 4 hr 14 min 09 sec
Modified Uzawa 3 167 13 min 03 sec

Newton 9491 2 hr 23 min 22 sec
Alternated 1428 2 hr 55 min 15 sec

3.30).
By decomposing equation 3.30 into two problems, we can write:

Problem 1 : thermal problem

{RT } = 0 (5.4)

Newton iterations are applied to problem 1 until thermal equilibrium is achieved, then
we solve the mechanical problem defined by

Problem 2 : mechanical problem

[KUU ] {δU} + [KUT ] {δT} = −{RU} (5.5)
[KT U ] {δU} + [KT T ] {δT} = 0 (5.6)

5.5 ∪ 5.6 ⇒ �
[KUU ] − [KUT ] [KT T ]−1 [KT U ]

�
{δU} = −{RU} (5.7)
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where KUT = K
T

T U
.

The problem defined by equations 5.4 & 5.7 constitutes the Uzawa4 scheme defined
in the same manner as modified Uzawa3 scheme, this means Newton iteration on the
thermal problem first as defined by equation 5.4, and then one iteration only to the
mechanical problem as defined by equation 5.7.
The same thermo-visco-elastic 2D problem has been tested and results shows that 15 sec
of simulation took 154 iterations for Uzawa 4, with an average of one general iteration
per unit step. We didn’t show the computational time taken for 15 sec of simulation
because the extracted sub-matrices KUT and KT U influence considerably the computa-
tional cost since the extraction is done from the full matrix, therefore this kind of storage
is not optimized and we cannot compare it to skyline storage.

To compare the limitation of different Uzawa schemes, as done previously, we consider
the 2D thermo-visco-elastic problem, we set the following parameter:

• ∆tmax = 0.1 sec

• ∆tmin = 10−6 sec

• Maximum iteration = 10

• Maximum total number of steps = 10 000

• Precision = 10−6

Many tests have been made choosing different meshes, and all results have shown that
Uzawa4 scheme exhibits the best performance in term of limitation of physical time.
Table 5.12 show the results choosing mesh nb.1 defined previously

Table 5.12: Limitation of physical time between different algorithms for precision of 10−7

Limitation of physical time (sec)

Uzawa 3, 4 > 55
Newton 9.6

Alternated 37.6

5.1.5 Conclusion

In this application we have validated the energetic variational formulation for a 2D

thermo-visco-elastic coupled problem including a strong coupling. Many algorithmic
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scheme where tested, Newton scheme exhibit good performance in the beginning (for
low precisions), but it ends of being limited. An alternative scheme has overcome the
limitation for lower precision, and exhibits a better performance on higher ones, but
still limited. Different Uzawa-like algorithm were suggested in order to enhance the
limitation encountered in the other two schemes previously mentioned. The algorithm
that showed best performance consisted of maximizing with respect to temperature,
at constant displacement, then minimizing with respect to displacement at constant
temperature, until convergence, but limiting the minimization on displacement to only
one iteration.
These results have been validated on a 2D coupled boundary-value problem, and in
the next section we will extend the same problem to a 3D coupled thermo-visco-elastic
coupled boundary-value problem.

5.2 Extension of the thermo-visco-elastic rectangu-

lar plate with a hole to 3D

In this section we will consider the same previous problem of a plate with a hole in its
center, but this time in 3 dimensions.
The thickness of the rectangular plate is set to 5 mm, the visco-elastic behaviour is
taken of Kelvin-Voigt type. A compressive loading is applied on the two extremes, and
is simulated by imposing a Dirichlet condition in displacement.

u2(t) = −10−4
t (ms

−1) (5.8)

Since we have taken into account the heat exchange of the top surface with the envi-
ronment, the temperature of the plate does not evolve significantly if we take the same
value of displacement as taken in the 2D case. Therefore, to make a clear compari-
son, the loading is increased (eq. 5.8). The two lateral surfaces of the plate are free
from mechanical constraints. We simulate the heat exchange with the environment by
simulating a mixed boundary conditions in temperature as before

(−K∇T ) · n = h(T − T
env) (5.9)

where T
env is the environmental temperature set equal to 30◦

C.
By symmetry, we chose to take the one eighth of the rectangular plate. A tetrahedral
mesh is chosen for the numerical simulation (figure 5.14)

Results The evolutions of temperature and strain fields are given by figures 5.15, 5.16
and 5.17. We can always see the localization of deformation that is followed by the
localization of temperature.

To compare between different algorithms, a simulation is ran for 50 sec. We consider
the modified Uzawa 3 algorithm instead of Uzawa 4 since off-diagonal extraction increases
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Table 5.13: comparison in 3D case between different algorithms

Total number of iterations Elapsed computational time
Uzawa3 324 54h:34m:07

Alternated 521 77h20m43s

Newton no convergence

significantly the computational time, resulting a practical impossibility of computing the
Schur complement.
The same adaptive time step as before (2D case) is chosen (see table 5.3). Newton-
Raphson being limited, it does not achieve 50 seconds of simulation in 10 000 step. The
results are summarized through table 5.13, Newton scheme has shown great difficulties
of convergence, while Uzawa 3 and Alternated schemes have overcome this difficulty.
Once again Uzawa 3 scheme exhibits the best performance. Note that extension to 3D

were aimed to check if the performances of different algorithms are limited only to 2D

case or can also be applied for 3D case.
We are still interested in applying these different algorithmic schemes to other types
of problems that behave differently in order to check the conservation of algorithmic
performances. For this we will expose the problem of necking in a rectangular bar with
a elasto-plastic behaviour.

5.3 Necking in a 3D elasto-plastic rectangular bar

In this application we will simulate the necking of a bar that is due to non-homogeneity
of the temperature field. The non-homogeneity occurs due to the combination of uni-
form heating of the bar due to the creation of plastic deformation, and cooling thereof
via a convective boundary condition applied on its outer surface. Therefore, this com-
bination leads to an inhomogeneous temperature field in which the hot spot is located
in the center of the bar (farthest point of the convective boundary condition). The
temperature influences the material behavior, including the limit of elasticity, the bar is
therefore weakened in its center which induces a concentration of deformation, and thus
the necking of the bar at this location.
Note that this application is treated in various papers and conference proceedings, con-
sidering monolithic or staggered schemes, or both (see in [50], [40],[84] [114] ) etc ...

5.3.1 Elasto-plastic model

The elasto-plastic model chosen for this simulation is exposed in detail in section (2.6.3).
Experimental observations showed that the heat capacity of metals is not influenced by
work hardening, therefore W

p is dependent on the temperature T [44, 46].
Although both experimental observations and theoretical analysis indicate a linear de-
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pendence of elastic constants with respect to the temperature (Weiner, 2002), we decide
to use, for simplicity, constant elastic moduli (constant Young and bulk moduli ). We
will consider the following free energies W

e
, W

p and W
h defined by

W
e(Ce; T ) = 1

2κ(tr[�e])2 + E (dev[�e] : dev[�e]) − 3κα(T − T0)logJ (5.10)

where the third term accounts for thermo-elastic coupling (thermal dilatation coefficient
α).
The plastic free energy W

p is composed of a power-law term and an exponential satu-
ration term, it is given by the following expression:

W
p(�p

, T ) = n

n + 1
σ0
b

(1 + b�
p)

1
n

+1 + σ̂0

�
�

p + 1
d

exp(−d�
p)

�
(5.11)

and the thermal free energy

W
h(T ) = ρ0CT

�
1 − log

T

T0

�
(5.12)

where C
e is the elastic right Cauchy-Green strain tensor

C
e = F

e
T

F
e (5.13)

where F
e denotes the elastic deformation.

�
e = log

�√
Ce

�
(5.14)

J = det

�√
Ce

�
= det [F] (5.15)

The dissipation potential ψ
∗ for the elasto-plastic problem is given by the following

expression
ψ

∗(�̇p; �
p
, T ) = σy(�p

, T )�̇p (5.16)
where

σy(�p
, T ) = σ1(T ) (1 + b

�
�

p)
1

n� (5.17)
where the critical stress σ1 is given by the following expression

σ1(T ) = σ1(T0) [1 − 0.0007(T − T0)] (5.18)

Note that dissipation pseudo-potential ψ
∗ is composed of a rate-independent term (ho-

mogeneous of order 1 in �̇
p), where for the case visco-plasticity a rate dependent term

(power law) can be added [61].

For details about the thermodynamic framework for plasticity see [73, 30, 29, 52, 59,
71, 58]
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5.3.2 Simulation

We consider a rectangular bar of a cross section area 20 × 2 mm
2 and a length of

L = 100mm.
The rectangular bar is made up of an aluminium alloy Al2024-T3 with an elasto-plastic
behaviour, strain rate independent, for which it has been possible to identify the con-
stitutive parameters from the stress-strain curves and adiabatic heating obtained by
Hodowany et al. [15], who conducted tests both in the quasi-static range and the dy-
namic range.

A simple identification procedure, consisting in fitting numerical stress-strain and temperature-
strain curves to experimental ones (figure 5.18 and 5.19), yields to the identification of
constitutive parameters of the alloy listed in table 5.14.

Boundary conditions The metallic rectangular bar is under traction loading on each
side of the plate, which is simulated by imposing a vertical displacement u(t) on its two
extreme sides. Numerically this traction is simulated by imposing the following Dirichlet
condition in displacement

u(t) = 0.5 × 10−3
t (ms

−1) (5.19)

Since we are interested in the coupled thermo-mechanical behavior, it is necessary to
apply thermal boundary conditions. Taking into account the symmetries of the problem,
only one eighth of the bar is being modeled. Heat fluxes are set to zero on the entries
corresponding to symmetry (axes x and y, see figure 5.20), and a mixed boundary con-
dition is set on the free sides .
The mixed boundary condition is modeled as a convective heat exchange with a convec-
tive coefficient of value

h =
�

25W.m
−2

.C
−1 On the side where the displacement is imposed

15W.m
−2

.C
−1 elsewhere on the other free sides

(5.20)
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Table 5.14: Material properties for rate-independent 2024-T3 aluminium alloy at T =
293K

Characteristic Value Unit

Initial temperature T0 293 K

Mass density ρ0 2780 kg.m
−3

Elastic properties

Young modulus E 73.1 × 109
Pa

Poisson coefficient (ν) 0.33 −
Thermo-elastic properties

Thermal dilatation coefficient α0 24.7 × 10−6
K

−1

Plastic properties

Initial yield stress 380.0e6 Pa

Hardening coefficient 66.7 −
Hardening exponent 5.8 −

Thermoplastic properties

Initial yield stress stored σ0 275.0 × 106
Pa

Hardening coefficient stored b −1.9 −
Hardening exponent stored n 1 −

Saturation yield stress stored σ̂0 170 × 106
Pa

Hardening saturation coefficient stored d 14 −
Initial yield stress dissipated σ1 100 × 106

Pa

Hardening coefficient dissipated b
� 8.5 −

Hardening exponent dissipated n
� 1 −

Thermal properties

Conductivity coefficient k 121 W.m
−1

K
−1

Specific heat capacity C 875 J.kg
−1

K
−1
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Figure 5.4: Temperature increase (K) at time t = 10sec, showing different meshes, on
the top left "mesh 1", on the top right "mesh 2" and on the bottom "mesh 3"
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Figure 5.5: Displacement (m) at time t = 10sec, showing different meshes, on the top
left "mesh 1", on the top right "mesh 2" and on the bottom "mesh 3"
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Figure 5.6: Strain at time t = 10sec, showing different meshes, on the top left "mesh 1",
on the top right "mesh 2" and on the bottom "mesh 3"
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Figure 5.7: Temperature increase (K) at time t = 30sec, showing different meshes, on
the top left "mesh 1", on the top right "mesh 2" and on the bottom "mesh 3"
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Figure 5.8: Displacement (m) at time t = 30sec, showing different meshes, on the top
left "mesh 1", on the top right "mesh 2" and on the bottom "mesh 3"
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Figure 5.9: Strain at time t = 30sec, showing different meshes, on the top left "mesh 1",
on the top right "mesh 2" and on the bottom "mesh 3"
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Figure 5.10: Evolution of reaction (in N) function of displacement (in m), for the three
different meshes

Figure 5.11: Reference solution of the 2D thermo-visco-elastic problem, temperature
increase (K) at t = 5s
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Figure 5.12: Reference solution of the 2D thermo-visco-elastic problem, strain evolution
at t = 5s

Figure 5.13: Reference solution of the 2D thermo-visco-elastic problem, temperature
increase (K) at t = 30s
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Figure 5.14: 3D mesh of the rectangular plate
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Figure 5.15: Temperature increase (K) at time t = 50s
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Figure 5.16: Evolution of strain for time t = 50s
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Figure 5.17: Zoom on the strain field at time t = 50s
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Figure 5.18: Stress-strain curve for rate-independent 2023-T3 aluminum alloy
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Figure 5.19: Adiabatic heating curve for rate-independent 2023-T3 aluminum alloy
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Figure 5.20: Necking of a rectangular bar, the center of the bar corresponds to the axes
origin
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Initial conditions The rectangular plate is supposed having a uniform temperature
at t = 0s of value 293K, the initial condition are given by






u(0) = 0 m

u̇(0) = 0 m.s
−1

θ(0) = 0K

θ̇(0) = 0K.s
−1

(5.21)

Mesh The choice of mesh is critical in numerical simulation designs. In addition to
that it affects the computational cost, it affects also the precision of the obtained results.
The mesh is applied, by symmetry, on the eighth of the plate. This is given by figure
5.21

Figure 5.21: Mesh chosen for the simulation, necking of a rectangular bar

Adaptive time step The chosen time step follows the same rule as previous applica-
tion, that is given by table 5.3, and algorithmic parameters have been chosen as follows:

1. ∆tmax = 1 sec

2. ∆tmin = 10−6 sec

3. Maximum number of iterations = 20
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Figure 5.22: Appearance of an inhomogeneity of the temperature field caused by the
convective boundary conditions (figure on the right), although the deformation is ho-
mogenous (figure on the left) for a simulation time close to 0.5s

5.3.3 Results

Although the deformation, and thus the associated heating, is initially completely ho-
mogeneous, heat exchange with the environment quickly creates an inhomogeneity in
the temperature field (see figure 5.22 at a time close to 0.5s).

Note that the temperature variation in the rod is initially negative, because thermo-
elastic effects (thermal expansion) dominate at this stage.

The results given by figures 5.23 5.24 and 5.25 shows the displacement, equivalent plastic
strain and the temperature field for a time t = 40s. We can see clearly that despite the
absence of initial geometric defects, the deformation gradually localizes in the middle of
the bar, leading to its necking.
The inhomogeneity in the temperature field (although it is initially low) leads to the soft-
ening of elastic and plastic mechanical properties, which in turn causes an inhomogeneity
in the mechanical field (total and plastic deformation).

5.3.4 Algorithmic analysis

As done in previous applications, we will summarize and comment the efficiency of the
algorithms that we have described so far.
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Figure 5.23: Displacement field (m) for t = 40s, see figure (5.24)

Table 5.15 summarizes the results of each algorithmic scheme, the simulation is done
with a precision equal to 10−8 and is run for 15s of total simulation time.

Table 5.15: Comparison between the three algorithmic schemes, with a precision of 10−8

and a simulation time of 15 s

Algorithm Total iteration number Elapsed computational time

Newton 51 2min 38s

Alternate 58 8m 45s

Uzawa 1 90 −
Uzawa 2 112 20m 47s

Modified Uzawa 3 1161 1h 49m 52s

Uzawa 4 1052 −
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Figure 5.24: Equivalent plastic strain for t = 40s, localization of deformation that results
from convective boundary conditions

Table 5.15 show an important result, Newton scheme seem to reduce the total iteration
number and time cost, whereas Uzawa-like algorithms (that dominated Newton’s in the
thermo-visco-elastic application), seem to be much less efficient.
When running the simulation, the softening mechanism of mechanical properties, and
thus total and plastic deformation seem to affect more and more the simulation cost for
t beyond 15s, where the algorithmic schemes execute more iterations to converge. For
this we show the limitation of some algorithms, and the deterioration of others.

Table 5.16 shows the limitation of the alternated algorithm and Uzawa 2, while Newton
scheme exhibit the best computational cost.

5.3.5 Conclusion

In this application we have applied the variational formulation to an example considering
the traction of a rectangular rod, with an elasto-plastic behavior, leading to its necking
due to the inhomogeneity of the temperature field.
Different algorithmic schemes have been applied, in particular Newton, Alternated and
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Figure 5.25: Temperature increase (K) for t = 40s, localization of temperature that
results from convective boundary conditions

Table 5.16: Limitation of different algorithmic schemes, simulation is ran with a precision
of 10−8 and a simulation time of 40s

Algorithm Total iteration number

Newton 2437
Alternate Limitation at t = 17s

Uzawa 1 Limitation at t = 19s

Uzawa 2 Limitation at t = 18.4s

Modified Uzawa 3 7854
Uzawa 4 6742

Uzawa-like scheme (as described previously).
An important conclusion can be extracted through this application, is that Uzawa-
scheme that used to exhibit the best performance between the three schemes in the
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case of thermo-visco-elastic application, seems to loose its role in this case, and Newton
scheme has acceded to the throne.
We can therefore deduce that there is no absolute scheme that exhibits best perfor-
mance. Therefore according to the type of coupling, the use of Newton, Uzawa-like or
the alternated scheme can behave differently.
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Conclusion and Perspective

As we have discussed throughout this manuscript, thermo-mechanical coupling in ma-
terials is due to multiple effects such as thermo-visco-elasticity, visco-plasticity, viscous
dissipation, dependence of mechanical characteristics on temperature (and so on...) Nu-
merical simulations of these kind of coupling is challenging, especially when a strong
coupling effect is present.

We have exposed throughout this work that algorithmic approaches found in the en-
gineering literature of coupled problems fall within two alternative strategies, the mono-
lithic or simultaneous solution scheme that consists of resolving simultaneously mechan-
ical and thermal balance equation, and staggered schemes, in which the coupled system
is partitioned therefore the mechanical and thermal problems are solved alternatively.

The main objective of this work was the validation, analysis and improvement of mono-
lithic algorithmic schemes via an energy-consistent variational formulation of coupled
thermo-mechanical problems. Note that the presented formulation does not include me-
chanical inertial effect, but transient thermal effects are taken into account. However,
they appear dependent on the loading rate, the problem keeps the form of a quasi-
stationary problem. The variational approach has many advantages (see chapter 4),
especially that it leads to a symmetric numerical formulation, thus overcoming the disad-
vantages of classical monolithic strategies that often lead to non-symmetric formulations.

Since the variational formulation allows to write mechanical and thermal balance equa-
tion under the form of an optimization problem of a scalar energy-like functional, differ-
ent optimization algorithmic schemes were used, the classical Newton-Raphson scheme,
the alternated algorithm, and Uzawa-like algorithms.
We recall briefly that alternated scheme consists in minimizing with respect to displace-
ment, at a constant temperature, then maximizing with respect to temperature at a
constant displacement until convergence, while Uzawa-like scheme consists of limiting
the maximization on the temperature to only one iteration (see chapter 4).

To show the validation of the energetic formulation, and compare the efficiency of differ-
ent algorithms, various applications of coupled thermo-mechanical problems have been
exposed in details, such as thermo-visco-elastic strong coupled problem from a simplified
problem consisting of an infinitesimal control volume to a more general 2D and 3D cou-
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pled thermo-elastic boundary-value problem, and then another application of a necking
in a bar with an thermo-elasto-plastic coupling.
In all cases the effects of heat capacity, intrinsic dissipation and the heat exchange with
the environment are included in the model.

The simplified case, showed that all three algorithms exhibit good performance, but
Uzawa-like algorithms seem to reduce the global time cost then the two others.
After many test, we also showed that the solution of the scalar energy-like functional is
a saddle point. Note that this results motivated us to use specific algorithms, such as
Uzawa scheme.

The results of a more general 2D thermo-visco-elastic problem shows an evolution and
propagation of a localized deformation zone that is accompanied by a localized temper-
ature zone. A reference solution validated the obtained results.
Although Newton exhibits good performance in the beginning, it encounters convergence
difficulties when coupling becomes stronger and localization develops, causing the limi-
tation of the scheme. This limitation is caused by the non-convergence at the minimal
time step allowed. The alternated scheme offers more interesting results since it has
overcome the limitation for low precision, and allows better performance at higher ones.
Uzawa scheme encounters some problems of convergence, on top of that the extraction of
sub-matrices from the total matrix influences considerably the time cost. Therefore we
decided to proceed in another manner by treating at first the thermal problem, and then
the mechanical problem by limiting the minimization of the displacement field to one it-
eration. This approach seems to reduce more the global time cost and iteration numbers.

Eventually, the variational formulation is applied to the example of traction of a rectan-
gular rod, with an elasto-plastic behavior, leading to its necking due to the inhomogeneity
of the temperature field.
An interesting result is concluded, Uzawa-scheme that used to exhibit the best perfor-
mance between the three schemes in the case of thermo-visco-elastic application, seems
less efficient in this application, while Newton scheme exhibits good performance by
overcoming the limitation of other schemes and performs with a better computational
cost. This might due to the different types of coupling in each problem, recalling that
we have considered a brutal transition for mechanical coefficients with respect to tem-
perature in the visco-elastic model, whereas in the elasto-plastic application, mechanical
properties are set constants and thermo-plastic properties (Yield stress dissipated) are
modeled with a smoother transition.

Through those various applications, we have showed the capacity of the energy-consistent
variational formulation to deal with coupled problems, in addition to its encouraging
good performance. The aim of the application of different algorithmic schemes is to
find the one that exhibits best performance, and what can be concluded (through these
applications) that there is no unique absolute scheme that achieved this task. There-
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fore according to the type of coupling, the use of Newton, Uzawa-like or the alternated
scheme can behave differently.

Perspective It is still interesting to try to optimize the computation of Schur com-
plement, since the extraction of sub-diagonal matrixes from the total matrix and the
evaluation of the Schur complement deteriorates considerably the computational time.
The extraction from a skyline matrix being not affordable, sparse storage may improve
its evaluation, still need to test it.
We can use for example an optimized system, for example MUMPS (a MUltifrontal
Massively Parallel sparse direct Solver), to evaluate the Schur complement. For this we
just need to introduce KUU ,KT T , KT U and KUT in sparse matrix storage (storage of non
zero elements), and then MUMPS will evaluate the Schur complement in an optimized
way.

Another solution lays on using iterative solver instead of direct solvers. We recall that
our problem is to solve the following

[Kc]{δT} = {−RT } (5.22)

where [Kc] is given by

[Kc] = [KT T ] − [KT U ][KUU ]−1[KUT ] (5.23)

If we choose the conjugate gradient method as an iterative method, the solution of 5.22
transforms into minimizing the following functional:

f(δT) = 1
2{δT}T [Kc]{δT} − {δT}T {−RT } (5.24)

The resulting algorithm to solve 5.22 is detailed as follow :

We set

r0 = {−RT } (5.25)
p0 = r0 (5.26)
k = 0 (5.27)

repeat

αk = r
T

k
rk

p
T

k
Kcpk

(5.28)

{δT}k+1 = {δT}k + αkpk (5.29)
rk+1 = rk − αk[Kc]pk (5.30)
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if rk+1 is sufficiently small then exit loop end if

βk = r
T

k+1rk+1
r

T

k
rk

(5.31)

pk+1 = rk+1 + βkpk (5.32)
k = k + 1 (5.33)

end repeat

Note that α and β are scalar and pk is a vector.
The computation of [Kc]{pk} in the algorithm will be treated as follow

[Kc]{pk} = [KT T ]{pk} − [KT U ][KUU ]−1[KUT ]{pk} (5.34)
we set

[KUT ]{pk} = {V} (5.35)
and

[KUU ]−1{V} = {W} (5.36)
Is this case we obtain {W} by solving

[KUU ]{W} = {V} (5.37)

therefore equation 5.34 becomes

[Kc]{pk} = [KT T ]{pk} − [KT U ]{W} (5.38)

In this case equation 5.38 shows that the construction of the Schur complement is
constructed by an alternative way (1 solve of equation 5.37, and 3 multiplication of
[Matrix] × {V ectors}, and eventually one addition ).
Note that the use of this algorithm requires that the total matrix and therefore the Schur
complement is a positive definite matrix.

In the chapter of application we have showed that the used of the Schur complement
does no change dramatically the iteration numbers (if we compare Uzawa1 and Uzawa2,
or Uzawa3 and 4 the performance of each algorithm is comparable), therefore it is in-
teresting to try to use other methods for future work as staggered algorithms, since the
base of this work lay on the use of monolithic solution that may lead to impossibly large
system and do not take advantage of the time scale involved in the problem.
The use of the staggered strategies will overcome these drawbacks and hopefully, will
lead to better computational costs. These strategies still need to be tested via variational
approach and to be compared to monolithic solution.
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Table 5.17: Isothermal staggered scheme

1 Predict the temperature field z
thermal(t = t

k+1) = z
thermal(t = t

k)

2 Solve for the mechanical field inf
ϕn+1

Φ∗∗
n

(ϕ
n+1, T

p

n+1)

3 Which provides z
mechanical(t = t

k+1)

4 Correct the temperature field sup
Tn+1

Φ∗∗
n

(ϕ
n+1, Tn+1)

5 Which provides z
thermal(t = t

k+1)

6 Compute velocity, acceleration ϕ̇, ϕ̈ and H

and flux fields

7 Move to next step t = t + ∆t

Isothermal staggered scheme This scheme partitions the thermo-mechanical
problem (without a fixed point) according to different coupled field (displacement and
temperature), and the different optimization algorithms may be applied to each parti-
tion. In variational form we can write it as






inf
ϕn+1

Φ∗∗
n

(ϕ
n+1, T

p

n+1)

sup
Tn+1

Φ∗∗
n

(ϕ
n+1, Tn+1)

In this case the phase 1 is solved by an optimization algorithm (say Newton-Raphson),
followed by phase 2 where we may apply another optimization algorithm (and another
discretization and time increment if we wish) then we move to the next time step with-
out verifying the balance equations.
This scheme is summarized in table

Adiabatic staggered scheme This scheme partitions the problem into two:
The first phase is an adiabatic elasto-dynamic phase where the entropy is held constant,
followed by a heat conduction phase at constant mechanical configuration. In variational
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Table 5.18: Adiabatic staggered scheme

1 Solve for the local adiabatic problem inf
ϕn+1

sup
T

A

n+1

Φ∗∗
n

(ϕ
n+1, T

A

n+1) where χ(Gn+1) is ignored

2 Which provides ϕ and T
A

3 Correct the temperature field sup
Tn+1

Φ∗∗
n

(ϕ
n+1, Tn+1)

4 Which provides z
thermal(t = t

k+1)

5 Compute velocity, acceleration ϕ̇, ϕ̈ and H

and flux fields

6 Move to next step t = t + ∆t

form, this is given by :





inf
ϕn+1

sup
T

A

n+1

Φ∗∗
n

(ϕ
n+1, T

A

n+1) where χ(Gn+1) is ignored

sup
Tn+1

Φ∗∗
n

(ϕ
n+1, Tn+1)

Note that the phase 1 feature a local adiabatic problem where the temperature as this
level is an internal variable. The phase 2 is like the isothermal staggered scheme where
the optimization algorithm is applied on the temperature field at a constant mechanical
configuration. The staggered scheme is summarized in table 5.18
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Conclusion générale

Comme nous l’avons vu tout au long de ce manuscrit, les sources de couplage thermomé-
canique dans les matériaux viscoélastiques sont multiples : thermo-élasticité, dissipation
visqueuse, évolution des caractéristiques mécaniques avec la température. La simulation
numérique de ces couplages en calcul des structures présente encore un certain nombre
de défis, spécialement lorsque les effets de couplage sont très marqués (couplage fort).
De nombreuses approches algorithmiques ont été proposées dans la littérature pour ce
type de problème. Ces méthodes vont des approches monolithiques, traitant simul-
tanément l’équilibre mécanique et l’équilibre thermique, aux approches étagées, traitant
alternativement chacun des sous-problèmes mécanique et thermique. La difficulté est
d’obtenir un bon compromis entre les aspects de précision, stabilité numérique et coût
de calcul.

Récemment, une approche variationnelle des problèmes couplés a été proposée par Yang
et al. , qui permet d’écrire les équations d’équilibre mécanique et thermique sous la forme
d’un problème d’optimisation d’une fonctionnelle scalaire. Cette approche variationnelle
présente notamment les avantages de conduire à une formulation numérique à structure
symétrique, et de permettre l’utilisation d’algorithmes d’optimisation.

L’objectif principal de ce travail était la validation, l’analyse et l’amélioration des sché-
mas algorithmiques monolithique par une approche énergétique variationnelle pour le
problème thermo-mécanique couplé. A Noter que la formulation présentée n’inclut pas
les effets d’inertie mécanique, mais les effets thermiques transitoires sont pris en compte.
Cependant, ils apparaissent sous la forme d’une dépendance à la vitesse de chargement,
le problème à résoudre apparait comme un problème quasi-stationnaire et non-linéaire.
A noter que l’équation d’équilibre thermique utilisée ici est basée sur un bilan d’entropie
calculé sur l’incrément temporel en cours, alors que les approches classiques sont basées
sur une équation d’équilibre des flux instantanés.

L’approche variationnelle présente de nombreux avantages (voir chapitre 4), surtout
qu’elle conduit à une structure symétrique, évitant ainsi les inconvénients des stratégies
monolithiques classiques qui conduisent souvent à des formulations non-symétriques.
Comme la formulation variationnelle permet d’écrire les équations d’équilibres mécanique
et thermique sous la forme d’un problème d’optimisation d’une fonctionnelle scalaire, dif-
férent algorithmes d’optimisation ont été utilisés tel que, le schéma de Newton-Raphson
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classique, un schéma d’optimisation alternée, et des algorithmes de type Uzawa.
On rappelle que, la procédure de l’algorithme alterné consiste à effectuer successivement
des minimisations (maximisations) par rapport au déplacement (température), tout en
gardant la température (déplacement) constante, jusqu’à convergence. Tandis que les
schémas de type Uzawa consistent à limiter la maximisation sur la température (ou la
minimisation sur le déplacement) à une seule itération.

Pour montrer la validation de la formulation énergétique variationnelle, et comparer
l’efficacité de différents schémas algorithmiques, différents problèmes de couplage thermo-
mécaniques ont été exposé en détails, allant d’un problème simplifié consistant en un
volume élémentaire de matière, à des problèmes plus généraux aux conditions aux limites
(2D et 3D), avec des comportements thermo-visco-élastique ou élasto-plastique. Dans
tous les cas, les effets de capacité thermique, de dissipation intrinsèque et d’échange de
chaleur avec l’environnement sont inclus dans le modèle.

Le cas simplifié, a montré que les trois algorithmes offrent une bonne performance,
mais les algorithmes de types Uzawa semblent réduire le plus le coût du temps global de
calcul. De même, on obtient un second résultat intéressant que la fonctionnelle présente
toujours un point de selle dans chaque cas envisagé.
Le problème thermo-visco-élastique aux conditions limites (2D et 3D) montre une évo-
lution et propagation d’une zone de déformation localisée qui est accompagné par une
zone de localisation de température . Les résultats sont comparés à une solution de
référence, qui valide bien l’approche variationnelle.

Bien que le schéma de Newton offre une bonne performance au début, il rencontre
des difficultés de convergence lorsque la température atteint la zone de transition (forte
variation des modules élastique et visqueux) et la localisation se développe, causant la
limitation du schéma. Cette limitation est due à la non-convergence du schéma au pas de
temps minimal défini par défaut. Le schéma alterné offre des résultats plus intéressants
surtout qu’il surmonte la limitation observée avec le schéma de Newton pour des faibles
précisions, et permet un meilleur rendement pour des tolérances plus importante. Enfin,
on applique le schéma de type Uzawa. Des difficultés ont été rencontrées à cause de
l’extraction des sous-matrices de couplage de la matrice tangente, de plus l’évaluation
du complément de Schur influence considérablement le temps de calcul global.
Un deuxième type d’algorithme de type Uzawa qui consiste à limiter la minimisation
sur le champs de déplacement à une seule itération a également été étudié. Ce dernier
schéma semble réduire le coût global du temps de calcul.

Finalement, l’approche variationnelle est appliqué au problème de déclenchement ther-
mique de la striction d’un barreau rectangulaire, avec un comportement élasto-plastique.
Les différents algorithmes ont été appliqués afin de tester leurs performances. L’agorithme
de Newton semble offrir les meilleurs performance dans ce cas. Rappelons que pour ce
problème, le type de couplage est différent du problème précédent où on a considéré une
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transition brutale des coefficients mécaniques par rapport à la température, or pour ce
problème de striction de la barre, les propriétées mécaniques évoluent progressivement
par rapport à la température.

Grâce à ces différentes applications, nous avons montré la capacité de l’approche varia-
tionnelle énergétique de traiter les problèmes multiphysiques couplés, ainsi que sa bonne
performance. L’application des différents schémas algorithmiques a pour but de com-
parer les performances que chacun peut offrir, et ce qui peut être conclu est qu’il n’existe
pas de schéma absolu unique qui a des meilleurs performances indépendament du type
du problème. Ainsi, selon le type de couplage, l’utilisation d’un schéma ou un autre
peut se comporter différemment.
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Appendix A

Stability overview

We have already exposed in chapter 3 two types of time stepping method, the mono-
lithic scheme that lead to unconditional stability if we use an implicit scheme, and the
staggered algorithms that are designed to overcome the large system obtained by simul-
taneous schemes, but this is often at the sacrifice of unconditional stability.

In this paragraph we will expose a quick overview about stability analysis of differ-
ent schemes as exhibited by Simo and Miehe [108] , for this we consider, for simplicity, a
coupled non-linear thermo-elastic problem as defined in chapter 3, in which the results
are generalizable to other coupled problems.
We recall that the thermo-elastic problem, neglecting inertial forces, can be written
under the following form (see section 3.6.2)

Ẋ (t) = AX (t) (A.1)

where

X (t) =






u(t)
v(t)
θ(t)





(A.2)

AX (t) =






v

1
ρ0

∇·
�

C : (∇s
u − θα)

�

1
c̃
∇ ·

�
K̃ · ∇θ

�
− 1

c̃
α : C : ∇s

v






(A.3)

The linearized thermo-elastic problem is called stable if it inherits the contractivity
property. In numerical analysis context, an algorithm inherits the contractivity property
[108, 8, 14, 18] if

1
2

d

dt
�X (t)�2 = 1

2
d

dt

�
< Ẋ (t), X >

�
=< AX , X >≤ 0 (A.4)
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where
< AX , X >=

�

Ω
X A.X dV (A.5)

Where X and AX are given by equation A.2 and A.3 given in chapter 3 (section appli-
cation to a thermo-elastic problem).

The norm is given by

�X (t)�2 =< X , X >=
�

Ω

�
∇s

u : C : ∇s
u + ρ0v.v + c̃θ

2
�

dV (A.6)

A.1 Monolithic scheme

What we have developed so far (see chapter 3 section application) monolithic or simul-
taneous solution.
To verify the contractivity property of the thermo-elastic problem, equation A.4 shall
be satisfied

< AX , X >=
�

Ω

�

∇s
v : C : ∇s

u + ρ0
1
ρ0

div

�
C : (∇s

u − θα)
�

.v
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div (K.∇θ) − α : C : ∇s
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�
θ

�
dV

(A.7)

Where
�

Ω

�
∇s

v : C : ∇s
u − α : C : ∇s

v

�
dV =

�

Ω
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v : C : (∇s
u − θθα) dV = 0 (A.8)

and
�

Ω
div

�
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.vdV = −
�

Ω
∇s

v : C : (∇s
u − θθα) dV +

�

δΩ

�
C : (∇s

u − θα)
�

.ndA = 0
(A.9)

Equations A.8 and are the result of divergence theorem, which correspond to the cance-
lation of thermal stresses and the structural elastic heating terms taking place in those
equations. Therefore, equation A.10 becomes

< AX , X >=
�

Ω
div (K.∇θ) dV = −

�

Ω
∇θK∇θdV +

�

δΩ
θ (K∇θ) ndA (A.10)

Where �

δΩ
θ (K∇θ) ndA = 0 Homogeneous boundary condition

then
< AX , X >=

�

Ω
div (K.∇θ) dV = −

�

Ω
∇θK∇θdV ≤ 0 (A.11)

Equation A.11 is the proof of contractivity of A, therefore the simultaneous solution
scheme inherit the contractivity property, therefore it is unconditionally stable. Equa-
tion A.11 shows that energy lost is due to conductivity.
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A.2 Isothermal split

The coupled problem is now split into two operators, the first one where the temperature
is held constant, and the second purely thermal phase where the mechanical configuration
(displacement) is held constant. This split is known as the isothermal staggered split
that can be written as follow

A = A1 + A2 (A.12)
Where

A1X =






v

1
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Problem 1: mechanical phase at a fixed temperature

(A.13)

A2X =



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Problem 2: Heat conduction phase

(A.14)
It has been shown [108] that the admissible isothermal split of the problem of evolution
does not define sub-problems which inherit the contractivity property of the original
problem (A1 cannot generate a quasi-contractive semigroup, thus breaking the contrac-
tive structure of the original problem), thus there is no guarantee of stability for the
staggered isothermal phase.

A.3 Adiabatic split

Now the coupled thermo-elastic problem is split into another two operators, where the
first is an adiabatic elasto-dynamic phase, which the entropy of the system is held
constant, and the second one is a heat conduction phase at fixed configuration, this is
written as

A1X =






v

1
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u
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Problem 1: Elasto-dynamic phase (A.15)
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A2X =



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0
0
1
c̃
div

�
K̃.∇θn+α

�



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Problem 2: Heat conduction phase (A.16)

The inner product of the two operators is given by

�A1X , X � = 0 (A.17)

and
�A2X , X � = −

�

Ω
∇θ.K̃.∇θdV ≤ 0 (A.18)

We can remark that the adiabatic mechanical phase preserves the total energy of the
system (A1 is an operator with no dissipation), whereas the dissipation in the heat
conduction phase is the same as in the coupled problem, therefore the adiabatic split
preserves the contractivity property, rendering the scheme unconditionally stable.

A.3.1 Limitation of the adiabatic staggered scheme

Although the adiabatic scheme is cited as the ultimate solution of instability that may
be encountered after the use of isothermal staggered scheme, adiabatic staggered scheme
is limited for a random time discretization and presence of a strong coupling. In fact,this
scheme has the features of unconditional instability when considering time discretization
characterized by a constant time step [114].
Therefore, it cannot be always limited with such type of discretizaton, especially while
implementing a general software for coupled thermo-mechanical problems.

Adam [114] has illustrated this phenomenon by considering a simple case consisting
of a traction of an axisymmetric element with a thermo-elastic behaviour. Figure A.1
show the evolution of the temperature of the upper side.

Time discretization is caracterized by constant time step except between 4.9 and 5 sec

where it is added an additional time at t = 4.999 sec.
Is is thus found in this moment with two consecutive time steps of very different sizes,
an error of evaluation of the temperature field when using the adiabatic scheme.
Similarly, of a given fraction where (∆t)n−1

(∆t)n

�= 1, the evolution error of temperature is
more important at the presence of strong coupling.
On the other hand this phenomenon does not appear when using a constant time step ,
as in the case illustrated by Armero and Simo [108]
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Figure A.1: Limitation of the adiabatic scheme at time t = 4.999s, while the evolution
of the temperature [114]
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Appendix B

Complementary results for the

thermo-visco-elastic behaviour of a

rectangular plate with a hole in 2D

plane

In this annex we will show the complementary results of thermo-visco-elastic behaviour
of a rectangular plate with a hole in 2D plane, as described in chapter 5 (section 5.1). In
These complementary results, we show the results of Velocities and Heat Flux for time
10s and 30s.
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Figure B.1: Velocities (m.s
−1) at time t = 10sec, showing different meshes, on the top

left "mesh 1", on the top right "mesh 2" and on the bottom "mesh 3"
140



Figure B.2: Heat flux (W.m
−2) at time t = 10sec, showing different meshes, on the top

left "mesh 1", on the top right "mesh 2" and on the bottom "mesh 3"
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Figure B.3: Velocities (m.s
−1) at time t = 30sec, showing different meshes, on the top

left "mesh 1", on the top right "mesh 2" and on the bottom "mesh 3"
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Figure B.4: Heat flux (W.m
−2) at time t = 30sec, showing different meshes, on the top

left "mesh 1", on the top right "mesh 2" and on the bottom "mesh 3"
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