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Abstract

This thesis investigates the employment of different deformable registration tech-

niques to register pre-operative magnetic resonance and inter-operative ultrasound

images during prostate biopsy. Accurate registration ensures appropriate biopsy

sampling of malignant prostate tissues and reduces the rate of re-biopsies. Therefore,

we provide comparisons and experimental results for some landmark- and intensity-

based registration methods: thin-plate splines, free-form deformation with B-splines.

The primary contribution of this thesis is a new spline-based diffeomorphic registra-

tion framework for multimodal images. In this framework we ensure diffeomorphism

of the thin-plate spline-based transformation by incorporating a set of non-linear

polynomial functions. In order to ensure clinically meaningful deformations we also

introduce the approximating thin-plate splines so that the solution is obtained by a

joint-minimization of the surface similarities of the segmented prostate regions and

the thin-plate spline bending energy. The method to establish point correspondences

for the thin-plate spline-based registration is a geometric method based on prostate

shape symmetry but a further improvement is suggested by computing the Bhat-

tacharyya metric on shape-context based representation of the segmented prostate

contours. The proposed deformable framework is computationally expensive and

is not well-suited for registration of inter-operative images during prostate biopsy.

Therefore, we further investigate upon an off-line learning procedure to learn the

deformation parameters of a thin-plate spline from a training set of pre-operative

magnetic resonance and its corresponding inter-operative ultrasound images and

build deformation models by applying spectral clustering on the deformation pa-

rameters. Linear estimations of these deformation models are then applied on a test

set of inter-operative and pre-operative ultrasound and magnetic resonance images
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respectively. The problem of finding the pre-operative magnetic resonance image

slice from a volume that matches the inter-operative ultrasound image has further

motivated us to investigate on shape-based and image-based similarity measures

and propose for slice-to-slice correspondence based on joint-maximization of the

similarity measures.



Resum

En aquesta tesi s’investiga l’ús de diferents tècniques de registre deformable per

registrar imatges de ressonància magnètica preoperatòries i imatges d’ultrasò in-

teroperatòries en la biòpsia de pròstata. Un registre correcte garanteix l’adequada

presa de mostres de biòpsia dels teixits malignes de la pròstata i redueix la taxa de

re-biòpsies. Aquesta tesis inicialment presenta una comparació i resultats experi-

mentals d’uns dels mètodes de registre més utilitzats basats en intensitat i en punts

(landmarks): thin-plate splines i deformacions free form utilitzant B-splines. La

principal contribució d’aquesta tesi és una nova metodologia de registre per imatges

multimodals basada en splines i formulació difeomòrfica. En aquesta metodologia,

s’assegura el difeomorfisme de la transformació basada en thin-plate splines mit-

jançant la incorporació d’un conjunt de funcions polinòmiques no lineals. Per tal de

garantir deformacions cĺınicament significatives també introdüım thin-plate splines

aproximants de manera que la solució s’obté mitjançant una minimització conjunta

de les similituds de la superf́ıcie de les regions de la pròstata segmentades i de

l’energia de la curvatura del thin-plate spline.

El mètode per establir les correspondències de punts per el registre en thin-plate

splines és un mètode geomètric basat en la simetria de la forma de la pròstata.

Alhora, es suggereix una millora addicional basada en la utilització de la mètrica

Bhattacharyya en la representació de forma (shape context) dels contorns de la

pròstata segmentats.

La metodologia de deformació proposada inicialment és computacionalment cos-

tosa i no està ben adaptada per el registre interoperatiu durant la biòpsia de

pròstata. Per tant, s’investiga més a fons un procediment d’aprenentatge off-line

per aprendre els paràmetres de deformació dels thin-plate splines a partir d’un con-
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junt d’entrenament de dades ressonància magnètica preoperatòries i les seves corre-

sponents imatges d’ultrasò interoperatòries i es construeixen models de deformació

mitjançant l’aplicació de mètodes d’agrupació espectral (spectral clustering) en els

paràmetres de deformació. Les estimacions lineals d’aquests models de deformació

s’apliquen després en un conjunt de test de ressonància magnètica i ultrasò.

El problema de trobar la llesca del volum de ressonància magnètica preoperatòria

que coincideixi amb la imatge d’ultrasò interoperatòria ens ha motivat a investigar

sobre les mesures de similitud basades en la forma i contingut de la imatge i ens ha

portat a proposar un nou mètode per a la correspondència tall a tall basat en la

maximització conjunta de les mesures de similitud esmentades.



Résumé

Introduction au problème

Le Cancer de la prostate (CaP) est l’un des problèmes médicaux les plus fréquemment

diagnostiqués au sein de la population masculine. En Europe, c’est une tumeur (ma-

ligne ou bénigne) concernant 214 cas pour 1000 hommes et représente un type de

cancer bien plus nombreux que les autres, comme ceux des poumons ou les cancers

colorectaux [25, 71]. Environ 15% des cancers touchant la population masculine

sont des CaP dans les pays développés, contre 4% des cancers dans les pays sous-

développés [125]. Par conséquent, il est un problème de santé majeur dans les pays

développés dotés d’une plus grande proportion d’hommes âgés où il représente la

deuxième cause de décès par cancer dans la population masculine [81]. Les premiers

stades de CaP sont généralement non-symptomatiques, mais avec l’avancée de la

maladie, les hommes peuvent éprouver des difficultés à uriner. Environ 62% des cas

de CaP sont diagnostiqués chez des hommes de 65 ans et plus, et 97% se produisent

chez des hommes de 50 ans et plus. Par conséquent, de nombreux programmes de

dépistage de masse ont été initiés en Europe et aux Etats-Unis depuis les 15 dernières

années, programmes ciblants des populations jugées à risque de CaP [6, 42, 136].

L’objectif des programmes de dépistage est de détecter plus d’adénocarcinomes (ma-

lignes formes du CaP) et ainsi de réduire le taux de mortalité dû au cancer de la

prostate, le taux de survie est cependant fortement influencée par le délai de diag-

nostic.

Le diagnostic du cancer de la prostate est principalement fait par toucher rectal

(TR), par mesure de la concentration de l’antigène prostatique spècifique (PSA) et

par l’échographie transrectale (ETR). Son diagnostic définitif dépend de la présence
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(e) Base-Apex régions de la
prostate

(f) Prostate par zones

Figure 1: Prostate anatomie.

d’un adénocarcinome dans les tissus biopsiés de la prostate. Environ 68% des can-

cers de la prostate sont principalement situés dans la zone périphérique par rapport

à 24% dans la zone de transition et 8% dans la zone centrale de la prostate [107](voir

la Figure 1). L’examen médical TR permet de déceler des excroissances de plus de

0,2 ml. Une valeur du PSA de plus de 4,0 ng/ml avec une vitesse de PSA de 0,4

à 0,75 ng/ml/an peut être considérée comme étant associée au risque de cancer de

la prostate [29]. Toutefois, les niveaux de PSA peuvent également augmenter en

raison de l’élargissement de la prostate, par exemple pour l’hyperplasie prostatique

bénigne. Par conséquent, les niveaux de TR et de PSA ne suffisent pas à eux seuls

pour statuer sur le’éventualité d’un cancer de la prostate et doivent être suivis d’une

biopsie.

Les biopsies de la prostate guidée par échographie sont maintenant une norme

suivie par les urologues. La plupart des biopsies sont effectuées en utilisant une

approche transrectale. Porter et al. [126] suggère 10 − 12 prèlévements par biopsie

par rapport à la British Prostate Testing for Cancer and Treatment Study qui en

recommandait 10 [45]. La figure 2 montre les zones typiques de biopsie guidée par

échographie.

L’aspect le plus commun pour les cancers de la prostate en échographie transrec-

tale (ETR) est une lésion hypoéchogène (zone foncée par rapport au tissu normal)

dans la zone périphrique. Cependant, seulement 43% des lésions hypoéchogènes

de la zone périphérique sont des tumeurs malignes. Les tissus cancéreux peuvent

également apparaitre comme des zones isoéchogènes dans 25% − 42% des cas, bien

que les tissus isoéchogènes soient normalement associées à des tissus sains. La Figure
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(a) Zones de biopsie de la prostate (b) Typique 11-
noyau biopsie

Figure 2: Les sites de biopsie de la prostate. (a) Un modèle pour les zones de biopsie
de la prostate. PZ-peripheral zone, Mid PZ-Mid peripheral zone, Lat PZ-Lateral
peripheral zone, AH-Anterior horn, LH-Lateral Horn, TZ-Transition zone; (b) Un
modèle de biopsie multi-dirigée de la prostate. Image courtesy Carroll et al. [29]

3 montre deux cas de lésions hypoéchogènes et isoéchogène CaP. En revanche, les

modalités T1 et T2 en imagerie IRM permettent d’apprécier pleinement l’anatomie

de la prostate ainsi que les tissus cancéreux [34, 4, 128, 17](voir la Figure 4).

Par conséquent, l’IRM peut servir de test de triage pour les hommes jugés à risque

de CaP et permettre ainsi de réduire le nombre de re-biopsies tout en fournissant

des informations plus utiles pour les patients qui sont envoyés pour une biopsie. Par

conséquent, la fusion des deux modalités, images IRM pré-biopsie et images ETR

inter-opératoires pourraient augmenter la précision globale des prélèvements lors de

la biopsie [75, 85, 142, 168].

Dans cette thèse, nous avons exploré différentes méthodes de recalage

déformables pouvant être appliquées entre les images IRM et les images

ETR acquises pendant la biopsie. Nous avons observé à partir d’une étude de la

littérature que les méthodes de recalage déformables existantes pour le recalage des

images de prostate multimodales ne fournissent pas de précisions satisfaisantes et que

la plupart sont coûteuse en ressources informatiques, notre méthode proposée n’étant

pas une exception à cette tendance. Dans ce contexte, notre objectif secondaire

a été de rechercher une méthode de recalage déformable qui puisse être

appliquée au cours des interventions (nécessitant du temps réel). Par
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(a) Adénocarcinome
hypoéchogène

(b) Adénocarcinome isoéchogène

Figure 3: L’échographie de CaP (adénocarcinome). (a) Axial ETR montre une zone
hypoéchogène dans la zone périphérique gauche et une petite zone hypoéchogène
dans la zone périphérique droite (les flèches). La biopsie a révélé un adénocarcinome;
(b) Axial ETR balayage d’un patient présentant des signes cliniques hyperplasie
bénigne de la prostate. L’élargissement de la zone de transition est présent, mais
aucune anomalie focale est observée dans la zone périphérique. Une biopsie a révélé
un adénocarcinome de deux lobes de la prostate (c’est une tumeur isoéchogène dans
la zone périphérique des deux lobes de la prostate). Copyright © 1994-2012 par
WebMD LLC.

(a) (b)

Figure 4: IRM de la prostate. (a) T1-pondéré IRM image du bassin montre un noeud
obturateur élargie gauche (flèche) révélée par une biopsie du cancer, (b) endorectale,
axiale, T2 image IRM d’un patient atteint d’un cancer du côté droit de la prostate.
Signal de faible intensité est démontré dans la zone périphérique droite (flèche).
Copyright ©1994-2012 par WebMD LLC.
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conséquent, nous proposons un schéma d’apprentissage où les paramètres

de déformation sont appris sur une série d’images d’entrâınement puis

modélisés et une estimation linéaire de ces modèles est ensuite appliquée

pour recaler les images ETR-IRM . Cette solution assure une vitesse de calcul

sans compromettre beaucoup la précision de recalage.

Dans les expérimentations réalisées pour valider nos travaux, la sonde tran-

srectale de biopsie n’était pas équippée pour permettre une localisation 3D (par

conséquent, la position spatiale (coordonnée z) des ETR images par rapport au

système d’imagerie n’était pas disponible). Toutefois, pour la fusion ETR-IRM, il

est important d’identifier la coupe pré-biopsie axiale IRM qui correspond à l’image

ETR acquise au cours de la biopsie. Par conséquent, un autre objectif de ce tra-

vail a été d’identifier automatiquement la coupe axiale IRM d’un volume

pré-biopsie correspondant à l’image ETR en utilisant une méthode qui

exploite les métriques de similarité basées sur l’image et la forme.

Les solutions proposées

Les principales contributions de cette thèse sont les suivantes:

1. Une nouvelle méthode non linéaire de recalage déformable, spécifique à la

prostate est proposée afin de minimiser l’erreur algébrique entre les masques

binaires d’une image fixe et d’une image transformée en mouvement. L’image

ETR de la prostate est l’image fixe et l’image IRM est l’image en mouvement

dans toutes nos expérimentations.

2. Une méthode pour apprendre les paramètres de déformation hors-ligne est

proposée pour améliorer la vitesse de recalage entre l’image fixe et l’image en

mouvement afin d’être applicable en temps réel pendant les interventions.

3. Une méthode automatique pour identifier la coupe axiale IRM à partir d’un

volume prè-biopsie qui corresponde bien a l’image ETR vue lors de la biopsie

est proposée.
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Les résumés des trois contributions sont fournis dans les paragraphes suivants.

Recalage non-linéaire déformable

Méthode: Nous présentons une nouvelle méthode de recalage non-rigide de l’écho-

graphie transrectale et des images IRM de la prostate basée sur un cadre non-linéaire

régularisée de correspondances de points obtenus à partir d’une mesure statistique

des contextes de formes [14]. Les formes de la prostate segmentée sont représentées

par des contextes de formes et la distance de Bhattacharyya entre les représentations

de formes est utilisée pour trouver les points de correspondance entre les images 2D

fixe et en mouvement. La méthode de recalage exploite l’estimation paramétrique

d’un difféomorphisme non-linéaire entre les images multimodales et est basée sur

la solution d’un ensemble d’équations non-linéaires de thin-plate splines. La solu-

tion est obtenue comme la solution des moindres carrés d’un système sur déterminé

d’équations non linéaires construits par l’intégration d’un ensemble de fonctions

non linéaires définies sur les images fixes et en mouvement. Toutefois, ceci ne

peut aboutir à des transformations cliniquement acceptables respectant des objectifs

anatomiques. Par conséquent, l’énergie de flexion régularisée des thin-plate splines

ainsi que l’erreur de localisation de correspondances établies ont été incluses dans le

système d’équations.

Résultats: La méthode de recalage déformable proposée est comparée aux méth-

odes de recalage basées sur des thin-plate splines [23] et sur des B-splines [137] ainsi

qu’à deux autres variantes de la méthode proposée. Des évaluations quantitatives

sur 20 patients montrent que la méthode proposée donne un coefficient similarité

(DSC) de 0,980 ± 0.004 avec une erreur de recalage des objectifs anatomiques de

1,60 ± 1.17 mm et est statistiquement-significativement meilleure avec p < 0,0006

que les autres méthodes. La méthode proposée montre ègalement une meilleure

précision dans le recalage des images des glandes non-centrales. La Figure 5 montre

un résultat qualitatif de la méthode de recalage proposée.
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Figure 5: Les résultats qualitatifs de recalage. Les deux premières colonnes sont les
images ETR et IRM respectivement, suivis par le résultat de fusion et un affichage
de l’image ETR et de l’image transforme IRM en damier.

L’apprentissage des paramètres de déformation

Méthode: Nous proposons une méthode pour apprendre les paramètres de déform-

ation hors-ligne pour le recalage rapide des images ETR et IRM de la prostate au

cours de la biopsie guidée. La méthode est basée sur une phase d’apprentissage

lorsque les modèles de déformation sont construits à partir des paramètres de déform-

ation non-linéaire d’une thin-plate spline utilisée pour recaler un ensemble d’images

entrâınement ETR et IRM de la prostate en utilisant la classification spectrale. Les

modèles de déformation comprenant des eigen-modes (modes propres) de chaque

groupe dans un espace gaussien sont appliqués sur une nouvelle image d’IRM. Le

modèle de dformation avec le moins d’erreur de recalage est finalement choisi comme

le modèle optimal pour le recalage déformable. Ceci permet de réaliser rapidement

le recalage des images multimodales de la prostate tout en conservant une précision

de recalage.

Résultats: La validation de la méthode se fait en utilisant une approche de

leave-one-out à partir de 25 patients. Une erreur d’alignement de 2,44 ± 1.17

mm est atteint, ce qui est cliniquement significatif pour les procédures de biop-

sie. Néanmoins, le temps de calcul est considérablement réduit à 4,99 ± 3.52 secs,

ce qui est statistiquement-significativement meilleure avec p < 0,0001 par rapport à

la méthode sans l’apprentissage des paramètres de déformation. La Figure 6 mon-

tre le résultat qualitatif du recalage avec l’apprentissage préalable de paramètres de

déformation non-linéaire.
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Figure 6: Les résultats de recalage qualitatif de l’apprentissage de déformation hors-
ligne. Les deux premières colonnes indiquent l’ETR fixe et l’image IRM en mou-
vement respectivement. Le 3ème et le 4ème colonnes présentent les résultats de
recalage pour la méthode proposée avec des acquis des paramètres de déformation
non-linéaire.

La correspondance des tranches 2D ETR-IRM

Méthode: Dans cette partie, nous présentons une nouvelle méthode pour identifier

la coupe 2D axiale IRM d’un volume pré-acquis correspondant à la tranche 2D

axiale ETR obtenue au cours de biopsie de la prostate. La méthode combine des

informations sur la forme et sur l’intensité des images. Les contours segmentés de la

prostate dans les deux modalités sont décrits par des contextes de forme et appariés

en utilisant la distance du Chi-deux. Les valeurs issues des calculs de l’informations

mutuelle normalisée (NMI) et d’inter-corrélation (CC) entre l’ETR et les coupes

IRM sont calculés afin de trouver des similarités entre les différentes images. Enfin,

les valeurs de probabilité conjointe associant la forme et les indices d similarités

d’image sont utilisés dans un cadre à base de règles pour fournir la coupe IRM qui

corresponde bien à la coupe ETR acquise au cours de la biopsie.

Résultats: Les résultats sont validés par rapport aux choix des coupes IRM à plus

ou moins une coupe obtenue à partir d’un radiologue expert et d’un urologue expert

pour 20 patients. On observe que le choix automatique des coupes IRM correspond

au moins à l’un des choix des experts pour 18 des cas alors que les experts sont

d’accord avec leurs choix pour seulement 11 des cas, signifiant que la précision inter-

expert est de 55%, comparativement à un taux global de précision de 90% avec notre

méthode automatique. La Figure 7 montre les résultats choix adoptés par les deux

experts et par notre méthode.
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Figure 7: Choix de lacoupe IRM correspondant à la coupe ETR. La première colonne
indique la coupe ETR et les deuxième et troisième colonnes montrent les choix
adoptés par les deux experts. La dernière colonne montre le choix de la coupe par
notre méthode qui est juste une coupe loin des choix des experts et qui est très
proche visuellement.
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Désiré Sidibé, Fabrice Meriaudeau, Computer Methods and Programs in Biomedicine

, In Press, http://dx.doi.org/10.1016/j.cmpb.2012.04.006, June 2012.

Conferences Intérnationales

• “Graph Cut Energy Minimization in a Probabilistic Learning Framework for

3D Prostate Segmentation in MRI”, S. Ghose, J. Mitra, A. Oliver, R. Mart́ı,
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Advanced Concepts for Intelligent Vision Systems (ACIVS), to appear, Brno,

Czech Republic, September 2012.

• “Spectral Clustering of Shape and Probability Prior Models for Automatic

Prostate Segmentation in Ultrasound Images”, S. Ghose, J. Mitra, A. Oliver,
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Chapter 1

Introduction

The aim of this research is to search for a registration method with good accuracy

that would facilitate sampling of prostate tissues during transrectal ultrasound guided

needle biopsy. In this chapter we elaborate on prostate cancer, diagnosis of prostate

cancer, imaging modalities involved in the diagnosis of prostate cancer like ultra-

sound and magnetic resonance imaging and provide the objectives for our research.

Finally, we provide the general image registration framework and overview of the

remaining chapters in the thesis.

1.1 Prostate Cancer

Prostate cancer (PCa) is one of the most frequently diagnosed medical problems

facing the male population. In Europe it is a common solid neoplasm with an inci-

dence rate of 214 cases per 1000 men outnumbering others like lung and colorectal

cancers [25, 71]. An estimate of 240,890 new cases of PCa had been made for US

in 2011 [143]. About 15% of male cancers are PCa in developed countries compared

to 4% of male cancers in undeveloped countries [125]. Therefore it is a major health

concern in developed countries with its greater proportion of elderly men and is also

the second leading cause of cancer deaths in men [81].

Early stages of PCa are usually non-symptomatic, however with the advanced

disease, men may experience difficulties in urinating. There are three well-established

risk factors associated with PCa: increasing age, ethnicity and heredity. About 62%

1
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(a) Prostate Base-Apex regions (b) Prostate by zones

Figure 1.1: Prostate anatomy

of all prostate cancer cases are diagnosed in men 65 years of age and older, and 97%

occur in men 50 and older. African American men and Jamaican men of African

descent have the highest prostate cancer incidence rates in the world. Strong famil-

ial predisposition is also contributes to 5%−10% of PCa. Therefore, mass screening

programs have been existent in Europe and USA for the past 15 years targeting

asymptomatic men deemed to be at risk of PCa [6, 42, 136]. The goal of the screen-

ing programs is to detect more and more adenocarcinomas and reduce the mortality

rate from PCa, while survival rate is strongly influenced by the lead-time from

diagnosis.

1.2 Diagnosis

The diagnosis of PCa is primarily done by Digital Rectal Examination (DRE), serum

concentration of Prostate Specific Antigen (PSA) and Transrectal Ultrasonogra-

phy (TRUS). Its definitive diagnosis depends on the presence of adenocarcinoma

in prostate biopsy cores and thereafter a histopathological examination allows the

grading and determination of the extent of tumor growth. A larger proportion of

about 68% of prostate cancers are located mostly in the peripheral zone compared

to 24% in transition zone and 8% in the central zone of the prostate [107] (see Figure

1.1 for prostate zone anatomy). Therefore prostate volumes of more than 0.2 ml can

be determined by DRE and may be recommended for a follow-up biopsy.

The measurement of PSA level has revolutionized the diagnosis of PCa [146]. A
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(a) Prostate biopsy zones (b) Typical 11-core biopsy

Figure 1.2: Prostate biopsy sites. (a) A template for prostate biopsy zones. PZ-
peripheral zone, Mid PZ-Mid peripheral zone, Lat PZ-Lateral peripheral zone, AH-
Anterior horn, LH-Lateral Horn, TZ-Transition zone; (b) A template for multisite-
directed prostate biopsy. Image courtesy Carroll et al. [29]

PSA level of over 4.0 ng/mL with a PSA velocity of 0.4 − 0.75 ng/mL/yr may be

considered to be associated with the risk of PCa [29]. However, PSA levels may also

be increased due to prostate enlargement i.e. benign prostatic hyperplasia. There-

fore, DRE and PSA levels are inconclusive about PCa without biopsies.

Prostate biopsies guided by ultrasound is now a standard followed by urologists.

Most biopsies are done using a transrectal approach although some urologists prefer

the transperineal approach. The sample sites for a biopsy should be as far pos-

terior and lateral as possible in the peripheral gland. Additional cores may also

be obtained from suspect areas determined by DRE/TRUS that are chosen on an

individual basis. A glandular volume of 30 − 40 mL requires at least 8 cores to be

sampled while more than 12 cores are not significantly more conclusive [49]. Porter

et al. [126] suggests 10 − 12 core biopsies while the British Prostate Testing for

Cancer and Treatment Study has recommended 10 core biopsies [45]. Figure 1.2

shows the typical biopsy zones for ultrasound guided prostate biopsy.
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(a) Hypoechoic Adenocarcinoma (b) Isoechoic Adenocarcinoma

Figure 1.3: Ultrasonography of PCa (adenocarcinoma). (a) Axial TRUS scan shows
a hypoechoic area in the left peripheral zone and a small hypoechoic area in right
peripheral zone (arrows). Biopsy revealed an adenocarcinoma; (b) Axial TRUS
scan in a patient with clinical benign prostatic hyperplasia. Enlargement of the
transition zone is present, but no focal abnormality is observed in the peripheral
zone. A systematic, 6-core biopsy revealed adenocarcinoma from both lobes of the
prostate (i.e. this is an isoechoic tumor in the peripheral zone of both prostatic
lobes). Copyright © 1994-2012 by WebMD LLC.

1.3 Transrectal Ultrasound (TRUS)

The TRUS procedure involves laying the patient down in either the right or left

lateral decubitus position that allows easy insertion of the ultrasound probe. A

5.0 to 7.5 mHz transducer probe is gently advanced into the rectum, to the base

of the bladder until the seminal vesicles are visualized. Transverse images are then

obtained as the probe is moved back from the prostate base to the prostate apex. The

most common appearance for PCa is a hypoechoic lesion (dark compared to normal

tissue) in the peripheral zone. The chance of a hypoechoic peripheral zone lesion

being malignant has a sensitivity of 85.5%, specificity of 28.4%, a positive predictive

value of 29%, a negative predictive value of 85.2% and an overall accuracy of 43%

[46]. The prevalence of isoechoic PCa lesions on TRUS ranges from 25%−42% while

isoechoic tissues are normally associated with healthy prostate tissues. Figure 1.3

shows two cases of hypoechoic and isoechoic PCa lesions.

An 18-gage biopsy needle with spring-action attached to the end-firing or side-

firing biopsy probe is used to procure multiple 1.5 cm prostate biopsy specimens
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Figure 1.4: Transverse sonogram showing a hypoechoic nodule in the PZ (arrow)
whose biopsy revealed a benign hyperplasia. Image courtesy Tang et al. [151]

from multicore sites in a systematic biopsy. If specimens from a suspicious lesion as

visible on TRUS needs to sampled, then it is important to place the probe at the

boundary of the lesion before firing the needle that ensures sampling accuracy. A

hypoechoic lesion detectable with gray-scale TRUS is not necessarily a malignant

lesion [157]. For instance, the chances of a hypoechoic lesion evaluated in TRUS

guided biopsy being malignant is between 7% − 57% [21]. This results in multiple

negative biopsies and thereby increases the number of re-biopsies required. Figure

1.4 shows hypoechoic benign hyperplasia in the peripheral zone of the prostate.

1.4 Magnetic Resonance Imaging (MRI)

The magnetic resonance imaging of the prostate is usually done in a 1.5 T (Tesla)

whole-body scanner using a pelvic phased-array coil combined with an inflatable

balloon-covered surface coil placed inside the rectum. The endorectal coil allows

better visualization of the prostate zonal anatomy and accurate delineation of tumor,

estimation of tumor volume and its extent [132]. Prostate MRI can also be done in

a 3.0 T whole-body scanner using a torso phased-array coil without the endorectal

coil. However it has been demonstrated by Beyersdorff et al. [18] that both 1.5

and 3.0 T MRI have the accuracy of 73% in local staging of cancer and that the

image quality and tumor delineation are significantly better with 1.5 T pelvic coil
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(a) (b)

Figure 1.5: MRI of the prostate. (a) T1-weighted MRI scan of the pelvis shows an
enlarged left obturator node (arrow) proven to be cancer by biopsy, (b) endorectal,
axial, T2-weighted MRI scan in a patient with a right-sided prostate cancer. Low
signal intensity is demonstrated in the right peripheral zone (arrow). Copyright
©1994-2012 by WebMD LLC.

combined with the endorectal coil than only with the torso coil in 3.0 T scanner.

T1- and T2-weighted spin-echo MRI of the prostate are required to evaluate

PCa. Thin axial or coronal images are acquired that are helpful for tumor localiza-

tion and assessment of the extracapsular or seminal vesicle invasion of PCa [30]. The

prostate gland is seen with intermediate signal intensity in T1-weighted images and

therefore the neither the prostate zonal anatomy nor the intraprostatic pathology

can be fully appreciated. However, on T2-weighted images the peripheral zone is

of high signal intensity and is surrounded by a thin rim of low signal intensity that

represents the capsule of the gland (see Figure 1.5). The central and transition zones

are both of lower T2 signal intensities than the peripheral zone. The transition zone

increases in size with increase in patient ages, thereby compressing the peripheral

zone that increases the T2 signal intensity of the peripheral zone. PCa is character-

ized by low T2 signal intensity in the normally high signal intensity peripheral zone.

However, certain benign conditions like prostatitis, intra-prostatic hemorrhage and

scarring may also have similar appearances therefore, only T2-weighted MRI has a
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Figure 1.6: Multiparametric MRI. (a) Axial T2-weighted scan shows low signal
intensity nodular lesion (arrow) within left peripheral zone, suspicious PCa, (b)
DCE-MRI images shows early wash-in and wash-out curves from region of interest
of lesion (arrow) suspicious for cancer, (c) MRS image shows normal metabolic curve
within voxel from lesion (arrow), and (d) apparent diffusion coefficient map from
DWI shows restricted diffusion from lesion (arrow), suspicious for malignant tumor.
Biopsy was positive for prostate cancer within the peripheral zone. Image courtesy
Vilanova et al. [158]

low specificity ranging from 54%−82% and a widely varied sensitivity of 46%−92%
in detecting PCa [89, 51, 163]. MRI can determine the physiological properties

of the tissue through different imaging techniques such as the diffusion-weighted

MRI (DWI), which measures the diffusion of water molecules in the tissue. PCa in

DWI is identified by lower diffusion due to increased cellular density of PCa tissues.

Similarly, dynamic contrast-enhanced MRI (DCE-MRI) measures the microvascu-

lar properties of tissue and therefore, PCa having abundant microvasculature, the

tumors show an early enhancement and wash-out of signal intensities. Finally, mag-

netic resonance spectroscopic imaging (MRS) can be used to measure metabolite

levels in the tissue particularly choline, citrate, creatine, and various polyamines.

PCa usually shows an increased concentration of choline, a reduction of citrate and

lower levels of polyamines while, creatine is usually unaffected [93].
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Recently, the combination of different imaging modalities of MRI such as mul-

tiparametric scanning has improved the specificity and sensitivity in detection of

PCa [90, 154, 70]. Vilanova et al. [158] demonstrated the accuracy of detecting PCa

combining endorectal T2-weighted MRI with functional imaging of DWI, MRS and

DCE-MRI and PSA ratio. The method showed an accuracy for all combinations

of the imaging methods and PSA ratio within a range of 90.2% − 95.2%, sensitivity

between 64.7%−88.2%, specificity between 89.9%−95.5%, a positive predictive value

ranging from 83.0%− 92.3% and a negative predictive value between 82.7%− 93.1%
to detect PCa. Figure 1.6 shows PCa in T2-weighted MRI, DCE-MRI, MRS and

DWI.

1.5 Thesis Objectives

TRUS biopsy is currently the ‘gold standard’ for PCa detection that relies on random

sampling of the prostate [121]. Sampling error is an inherent feature of a prostate

biopsy procedure because only a small amount of tissue is used to evaluate the whole

organ. Therefore, it is absolutely possible that certain areas of adenocarcinoma

within the prostate may be missed during biopsy. Although each of the standard

cores on average contains a similar amount of prostatic tissue, the areas of the

prostate sampled differ significantly in size. This problem is further complicated by

the fact that different areas of the prostate are known to vary in their propensity

to harbor cancer. Furthermore, it is possible that certain areas of the prostate

could be more difficult to access via biopsy needles introduced through the rectum.

Therefore, a standard 12 core TRUS guided biopsy can detect PCa with an average

sensitivity ranging between 39.8%−48%, an overall accuracy between 55.7%−64.2%
and a negative predictive value ranging between 43%−62.8% [78]. Hence the recent

trend is to sample from a greater number of cores during biopsies in order to increase

the detection of PCa [100, 82, 138].

The isoechogenicity of PCa lesions and low probabilities of hypoechoic lesions

being malignant in addition to the need of increasing the number of biopsy cores have

driven the use of pre-biopsy MRI data to direct TRUS biopsies. The use of MRI has

been shown to have greatly improved PCa detection in patients with prior negative

biopsy and suspicion of harboring malignancy [34, 4, 128, 17]. Therefore, MRI may
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serve as a triage test for men deemed to be at risk of PCa and may reduce the number

of re-biopsies while at the same time provide more useful information for those

who are sent for biopsy. Consequently, fusion of pre-biopsy MR images onto inter-

operative TRUS images might increase the overall biopsy accuracy [75, 85, 142, 168].

The prostate of the same patient may exhibit some deformations under certain

conditions. The inflation of the endorectal coil inside the rectum during the MRI

procedure, full bladder, bowel or gas inside the rectum and altered patient positions

between the TRUS and MRI procedures may deform the prostate [28]. In order to

cope with these deformations, non-rigid (deformable) registration methods need to

be applied for prostate multimodal registration [2, 11, 47, 31, 109, 112, 133, 167].

In this research we have explored the possibility of various deformable regis-

tration methods that may be applied to translate the pre-biopsy MRI information

onto the TRUS images during prostate biopsy. More specifically, the primary

goal of this research is to propose a new deformable registration method

that may be applied to register 2D TRUS and 2D MR images. We have

observed from a literature study that deformable methods that exist for prostate

multimodal images do not provide satisfactory accuracies and most of the existing

deformable registration methods are computationally expensive and our proposed

method is not an exception to this trend. In this context, our secondary goal is

to search for a deformable registration method that can be applied during

real-time interventions. Therefore, we propose a learning scheme where

the deformation parameters learned from a training set of corresponding

TRUS-MR images are modeled and a linear estimation of these models

are applied to register a test set of TRUS-MR images. This scheme ensures

speed of computation without compromising much on the registration accuracies.

In the experiments carried out to validate this research, an electro-magnetic

(EM) tracker was not attached with the TRUS biopsy probe. Therefore, the spatial

location (z-coordinate) of the TRUS images with respect to the imaging system has

not been available. However, for the TRUS-MRI fusion it is important to identify the

pre-biopsy axial MR image slice that corresponds to the axial TRUS slice acquired

during biopsy. Hence, a sub-goal of this research is to automatically identify

the axial MR slice from a set of slices in the pre-biopsy volume that

closely corresponds to the TRUS slice, exploiting the image-based and
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shape-based similarity metrics.

1.6 Overview of the Thesis

The remaining of the thesis consists of 7 chapters in total. The 2nd chapter deals with

some preliminary concepts related to image registration i.e. the general registration

methodology, the similarity measures used, the optimization techniques and the

interpolation methods.

Chapter 3, provides with a literature review related to prostate registration

which are mostly mutlimodal registration techniques. The registration methods

are categorized into rigid and non-rigid methods, where the deformable methods are

sub-categorized into radial-basis transformations, deformable model, biomechanical

finite-element modeling and non-parametric methods like demons registration. The

chapter provides a consensus on the efficient use of radial-basis transformations in

prostate TRUS-MR registrations.

The study of the state-of-the art methods of prostate registration led us to inves-

tigate further on radial-basis transformations and Chapter 4 provides a detailed dis-

cussion on two commonly used spline-based transformations, the thin-plate splines

and the B-splines. Additionally, the chapter provides a proposed variant of B-splines

with NMI as similarity metric on quadrature local energy images and its comparison

with the other methods presented.

Chapter 5 provides a discussion of a new diffeomorphic registration of prostate

multimodal images proposed in this thesis. The chapter includes a discussion of the

proposed point correspondence method and the diffeomorphism based on a set of

non-linear equations. The chapter provides extensive details on the various experi-

ments performed to validate the proposed method.

The diffeomorphic method in Chapter 5 being computationally expensive, an

offline learning of deformation parameters is proposed in Chapter 6. The method

involved offline spectral clustering of deformation parameters and online linear esti-

mation of the obtained deformation clusters to achieve fast multimodal registration.

Chapter 7 provides a discussion of the method to achieve the sub-goal of our

research as mentioned in Section 1.5. This chapter provides the discussion of a
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new method that identifies the axial MR slice from a pre-acquired volume that

closely corresponds to the axial TRUS slice during prostate biopsy. Finally, Chapter

8 provides some general conclusions on the different proposals of our thesis and

highlights some of the avenues of future research.
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Chapter 2

Preliminaries

The primary objective of the thesis being image registration, this chapter provides

a basic overview of an image registration framework and its components. The sur-

veys of Maintz and Viergerver [103] and Zitová and Flusser [174] provide excellent

overviews and categorizations of general image registration techniques and those ap-

plied to register medical images. Much of the contents presented in this chapter follow

the surveys. However, we limit our discussions in the thesis to the registration of

2D multimodal images and affine and non-rigid geometric transformations.

2.1 Image Registration: An Overview

Registration is a procedure of geometrical alignment of one image (moving) into

another image (fixed) of the same scene taken at different times and from different

viewpoints so that they match each other as closely as possible. The procedure

involves a geometric transformation that includes matching of homologous points or

image intensities on the images by trying to maximize the similarity between such

points or the intensities while estimating the transformation parameters.

A typical image registration algorithm consists of four coupled components: an

alignment measure (also known as similarity measure) that quantifies the quality of

alignment; a class of admissible geometric transformations that can be applied to

the image(s), i.e., employed to spatially warp the image(s); an optimizer that seeks

the transformation that maximizes the similarity as quantified by the alignment

13
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Figure 2.1: A schema of a typical image registration algorithm.

measure; and an interpolator that interpolates intensities at non-grid locations of the

transformed moving image. Figure 2.1 shows a typical image registration framework.

2.2 The Theory of Image Registration

This section provides the formulation of the registration problem and mathematical

interpretations of the different components described in Section 2.1.

2.2.1 Problem Definition

Let the fixed image F and the moving image M be defined in Ω, which is a finite

subset of Rd, where d ∈ Z+ denotes dimensionality. The relationship between the

images F and M may be written as

F = Φ(M), (2.1)

where, Φ ∶ Rd ↦ Rd is the geometric transformation that models the misalignment

that we want to recover. In this model (F,Φ(M)) is a (optimally) registered pair

of images. The goal of the algorithm is to estimate Φ, by maximizing an alignment

measure (or, minimizing a misalignment measure).
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2.2.2 Alignment Measure

Let us consider F , M and Φ be random variables. F and M follow a uniform

distribution and Φ can be uniformly distributed over a set of admissible rigid-body

transformations. In a maximum likelihood framework, a registration problem can

be framed as

argmax
Φ

p(F,M ∣Φ) (2.2)

In order to compute Equation (2.2), we need to make certain modeling assumptions.

For example, let us consider a mono-modal case, where the mapping between the

images may be considered as an identity function. Then the log-likelihood function

of Equation (2.2) can be shown to be proportional to the sum-of-squared differences

(SSD) [124, 152] as in Equation (2.3).

log p(F,M ∣Φ) ∝ − ∑
f,m∈Ω

(F (f) −Φ(M(m)))2 (2.3)

where f and m are the pixel intensities on images F and Φ(M) respectively. The

SSD of Equation (2.3) can also be extended for a homologous pair of extrinsic

fiducials [111, 27, 110, 155, 60, 52, 162] or intrinsic anatomical landmarks [85, 120]

placed on the fixed and the moving images.

Another common alignment measure is the Cross Correlation (CC) between the

pixel intensities of the fixed and the moving images [130]. This is related with the

well-known Pearson’s correlation (r) where a linear relationship is assumed to exist

between the pixel intensities of the fixed and the moving images.

CC = r(F,Φ(M)) =
∑

f,m∈Ω
(F (f) − F (f))(Φ(M(m)) −Φ(M(m)))

√
∑
f∈Ω
(F (f) − F (f))2

√
∑
m∈Ω
(Φ(M(m)) −Φ(M(m)))2

, (2.4)

where, F (f) and M(m) are the average intensities of the fixed and the moving

images respectively.

A commonly used information theoretic measure used for image alignment is

the Mutual Information (MI) that measures the mutual dependence between the
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images F and M [166, 149], i.e. if the images are mutually dependent, knowing F

should provide enough information about M . MI is defined in terms of the joint and

marginal probability density functions (pdf’s) of the fixed and the moving images

derived from their 2D-normalized joint intensity histograms [35] as

MI(F,Φ(M)) = ∑
f∈Ω

∑
m∈Ω

p(f,m) log2 p(f,m)
p(f)p(m) , (2.5)

where p(f,m) is the joint probability of the fixed and the moving images and p(f),
p(m) are the respective marginal probabilities.

A normalized version of MI is sometimes used for image alignment that is repre-

sented as the symmetric uncertainty between the fixed and the moving images [131]

as

NMI(F,Φ(M)) = 2 MI(F,Φ(M)
H(F ) +H(M) , (2.6)

where H(F ) and H(M) are the marginal entropies of the fixed and moving images

respectively.

H(F ) = −∑
f∈Ω

p(f) log2 p(f) (2.7)

H(M) = − ∑
m∈Ω

p(m) log2 p(m)

However, Studholme et al. [149] defined the NMI as

NMI(F,Φ(M)) = H(F ) +H(M)
H(F,Φ(M)) , (2.8)

where H(F,Φ(M)) is the joint entropy of the fixed and the transformed moving

images,

H(F,Φ(M)) = − ∑
f,m∈Ω

p(f,m) log2 p(f,m). (2.9)

Here, any change in uncertainty of the image values and therefore, the marginal

entropies, will not result in a change in the alignment measure. Maximization of
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NMI seeks a transformation where the joint entropy is minimized with respect to

the marginal entropies.

2.2.3 Geometric Transformations

Different transformation models are utilized for various registration applications.

In general, there are two approaches to define a geometric transformation: using

parametric models, and in a nonparametric fashion using a dense deformation field.

The first approach employs a small number of parameters to define the warp, whereas

the latter method defines a deformation or motion vector at each pixel location.

For the sake of compactness let us assume a 2D space where x = (x, y) ∈ (R)2 and
x′ = Φ(x). In this thesis we will concentrate on two basic parametric transformation

models:

• Affine: In 2D, it is parameterized by six parameters (a1, a2, a3, a4, a5, a6):

x′ = a1 + a2x + a3y (2.10)

y′ = a4 + a5x + a6y

which can map a parallelogram onto a square. This model is defined by three

non-collinear corresponding points that preserves straight lines and straight

line parallelism. Rigid-body (rotation and translation), reflective-similarity

(rotation, translation and global scale) and affine (rotation, translation, scale

and shear) are the special cases.

• Radial-basis: This method provides a group of global transformations that

can handle local distortions. In general, they can be expressed as:

x′ = a1 + a2x + a3y +∑
i

cig(∥x − pi∥) (2.11)

y′ = a4 + a5x + a6y +∑
i

cig(∥x − pi∥),

where x = (x, y), pis are called the control points and g(.) is the radial basis function.
Popular choices for g(.) are the thin-plate spline, where g(r) = r2 log r2 [23], and
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B-splines [137] where the basis functions are Bernstein’s polynomials discussed in

details in Chapter 4.

The advantage of parameterized techniques is that the dimensionality of the

problem is relatively low and thus robust optimization is possible.

In a nonparametric approach each image pixel is transformed independently.

One popular technique to impose some regularization on this formulation employs

a global objective function that consists of two terms: the alignment measure and

an external regularization term that reflects our expectations by penalizing unlikely

transformations as in the demons [153]. Other methods employ modeling the trans-

formation under the principles of linear elasticity, thereby yielding the deformation

vectors for the triangular or tetrahedral mesh nodes used to model the image/volume

e.g. biomechanical modeling [69]. Some methods employ a Bayesian approach with

a prior distribution model, e.g. Brownian warps [119]. An alternative strategy is an

iterative scheme where a ‘rough’ warp field obtained from the gradient of the simi-

larity measure is projected onto a known function space. This projection is done by

spatial smoothing [122] and has yielded fast nonrigid registration algorithms [39].

2.2.4 Optimization

Registration is merely an optimization problem that finds the optimum transforma-

tion parameters maximizing the alignment measure. Some methods that deal with

simple transformation spaces (e.g. translation only) and simple alignment measures

(e.g. SSD) can be easily solved. Most methods, on the other hand, do not enjoy a

well-behaved, low dimensional objective function. Typically, registration algorithms

attempt to solve the optimization using an iterative strategy. A detailed survey is

available in [102]. Popular choices of optimizers are gradient-descent and its vari-

ants [159], Powell’s method [127], Downhill simplex method [115] and Levenberg-

Marquardt optimization [104]. The similarity measure gradient (with respect to

transformation parameters) is commonly used to speed up this search.

2.2.5 Interpolation

The purpose of image registration (or matching) is to spatially align two or more

single modality images taken at different times or several images acquired by multiple
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imaging modalities. In the registration process it is often required to estimate the

gray value at a point which does not lie on the transformed image grid. A gray value

for such a non-grid point can be found by interpolation of grid values in the vicinity

of the point. The type of interpolation is dependent on the geometric transformation

used for the registration. The commonly used interpolation methods are bilinear,

nearest-neighbor, bicubic [87], spline and inverse-distance weighting [141] method.

2.3 Evaluation of Image Registration

The accuracy of a registration method is evaluated using some standardized mea-

sures. The registration accuracies that measure global overlap are evaluated in terms

of Dice Similarity Coefficient (DSC) ([43]) and 95% Hausdorff Distance (HD) ([76]).

Local registration accuracies of anatomical structures inside the prostate gland are

measured by Target Registration Error (TRE) and Target Localization Error (TLE)

([106], [105]).

DSC is a measure of overlap of the same foreground labels (E) between the

transformed moving image (M(E)) and the fixed image (F (E)) and is given by

DSC = 2(M(E) ∩ F (E))
M(E) + F (E) . (2.12)

This means that a high DSC (> 90%) signifies a good overlap between the prostate

regions after registration.

Given a finite set of points A = {a1, . . . , ap} and B = {b1, . . . , bq}, the Hausdorff

distance between the point sets is defined by

HD(A,B) =max(h(A,B), h(B,A)) (2.13)

where

h(A,B) =max
a∈A
(min
b∈B
∥a − b∥) (2.14)

The HD measure plays a significant role in identifying the similarity between the

deformed moving image contour and the fixed image contour. A low value of HD sig-

nifies good contour registration accuracy. Therefore, even if a DSC measure signifies

good region overlap, the HD measure may not signify a good contour registration.
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A target is an anatomical landmark in the patient’s body and is normally the

centroid of a lesion, tumor, gland, etc. that is not used to compute the transforma-

tion of the moving image to the fixed image. TRE is the root mean square distance

of such homologous targets tpi and tqi, i = 1,2,⋯,N on the moving and the fixed

images respectively and is given by

TRE = 1

N

¿ÁÁÀ N

∑
i=1

(Φ(tpi) − tqi)2 (2.15)

where, Φ(.) is the transformation of the moving image.

The targets used in our experiments in the following chapters are primarily the

centroids of lesions and tumors in the central gland, the prostatic urethra, sometimes

the centroids of tumors in the peripheral region and the centroid of the central gland

in few cases where lesions or other homologous structures are not visible in TRUS

as in the corresponding MRI. One target for each pair of TRUS and MR image is

used for the experiments. The repeatability error in the localization of the targets

is given as the TLE computed from the centroids of manually selected regions from

5 independent trials by an experienced radiologist and an experienced urologist.

A low TRE and a low TLE values signify good local registration accuracy. The

clinical significance of TRE is the accuracy in identifying the anatomical targets in

the deformed moving image. Actual TRE values may also incorporate TLE values,

which is useful for clinical purposes to avoid under-estimation of the true TRE

values.

2.4 Summary

In this chapter we provided the general framework of image registration and briefly

described its components. The similarity measures that are primarily used for mul-

timodal registration are defined and the notations are being consistently used in the

remaining thesis. The registration methods have been broadly categorized as para-

metric and non-parametric based on the geometric transformations. The following

chapter however follows a more specific categorization to organize the state-of-the-

art prostate registration methods. The registration evaluation metrics and their
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clinical significances have been discussed in this chapter and these metrics have

been consistently used in the following chapters.
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Chapter 3

A Literature Review

In this chapter we focus on registration methods that have been applied on prostate

images or volumes for needle guided biopsy, radiation therapy, brachytherapy and

surgery. This discussion also involves different prostate imaging modalities like US,

MRI, MRS and CT. Some of the methods involved only rigid or affine transfor-

mations while some required additional deformable geometric transformations to

cope with the prostate deformations exhibited in the multimodal images. There-

fore we have made a broad categorization of the prostate registration methods into

rigid/affine and deformable transformations.

3.1 Rigid/Affine Registration Applied to Prostate

Fusion of TRUS-MRI for guided needle biopsy of the prostate was reported by [85]

where a set of axial pre-biopsy MRI slices were rigidly registered with the axial

ultrasound (US) images acquired during a transrectal biopsy procedure. The reg-

istration was driven by the minimization of the corresponding fiducials manually

chosen in both the US and MR images. The experiment was validated with two pa-

tient datasets with only qualitative results provided as the results of the registration

process.

A validation and integration for 3D TRUS-guided robotic surgery for prostate

brachytherapy was done by Wei et al. [164], where they performed a rigid reg-

istration of 3D point sets using a least-squares fitting algorithm [8]. The needle

23
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placement accuracy of the robot was found to be 0.15±0.06 mm when evaluated on

two phantoms.

Fei et al. [53] registered 0.2 T live time-interventional magnetic resonance imag-

ing (iMRI) slices to previously obtained high resolution 1.5 TMRI volume of prostate

images for iMRI guided radio frequency thermal ablation of prostate cancer. They

proposed a rigid registration (3 translations and 3 rotations) method with a multires-

olution approach and automatic restarting of the algorithm to avoid local maxima.

The similarity measures used for registration were MI and CC respectively for high

and low resolution images and volumes. They observed smooth peak of CC while

noisy edges and false peaks of MI at low resolution. In case of high resolution im-

ages and volumes, MI had a sharper peak than CC. On the first two low resolutions,

CC was applied and MI on the higher resolutions. The algorithm automatically

restarted on each resolution depending on a threshold value of absolute CC to avoid

the false maxima of CC and MI. Downhill Simplex [115] or Powell’s method [127]

was applied for optimization. The registration was evaluated on simulated iMRI

images from the 12 pair of MRI volumes, where one volume of each pair was used

to simulate thick iMRI slices and register to the other volume. Evaluation of slice-

volume registration was also done for 3 patients each having 3 MRI volumes and

50 actual iMRI slices in three standard orthogonal orientations. Voxel displacement

error was used on a volume of interest around the prostate and compared against the

volume-volume registration method [55] previously established by the authors. For

the simulated images, the transverse slice had the least registration error in terms

of average voxel displacement of (0.4 ± 0.2 mm) followed by the coronal (0.5 ± 0.2
mm) and the sagittal (2.6 ± 1.6 mm) orientation slices. The results further showed

that the transverse slice centered on the prostate provided less registration error

than the slice above the prostate that contained the deformable bladder and that

below contained muscles and fat from the hip region that were also deformable. The

actual iMRI data showed an average and standard deviation of 1.1± 0.7 mm for the

transverse slice. The speed for the slice to volume registration was typically around

15 seconds. The authors claimed that the slice to volume registration method for

transverse slices covering the prostate area was effective for image-guided therapy.

Steggerda et al. [147] proposed a method of rigid registration between TRUS and

CT images of the prostate based on the position of the TRUS transducer present
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in both modalities. The main idea of the authors was to evaluate the dose dis-

tribution after implantation of the radioactive iodine (I-125) seeds in the prostate.

The CT provides better visualization of the seeds but poor contrast between the

prostate and surrounding tissues and hence is not very promising for delineation of

the prostate. However, the TRUS provides a better contrast between the prostate

and the surrounding tissues but a poor visualization of the implant seeds. There-

fore, a method was proposed to fuse the two modalities based on the visibility of the

transducer probe. Thereafter, a fine-tuning of the registration was performed based

on the seed visibility. The method involved three steps of registration. Firstly, the

prostate phantom with the transducer probe inside was scanned in both TRUS and

CT. A manual registration was performed to fuse these two modalities based on

the visibility of the two needles and the transducer probe. The CT was resampled

to be the same voxel size as the TRUS. Hence, a relation between the TRUS and

the CT in the experimental phantom setup was established. However, the original

patient TRUS and CT scan had different transducer positions in their own cartesian

coordinates and so the second step was manual translation of a region of interest of

the patient TRUS volume on the reference TRUS to align the transducer. This es-

tablished a transformation between the patient TRUS and the reference (phantom)

TRUS. The transformation between the reference TRUS and CT was already estab-

lished. Therefore, what remained was the transformation between the reference CT

and the patient CT based on the position of the transducer in both volumes. This

was achieved by minimizing the voxel-wise RMS gray level differences of the two

modalities. This total procedure provided a nearly approximate registration based

on the transducer visibilities. This brought the implanted seeds also close to each

other in the two modalities. However, again a gray-scale based minimization on

the voxels was performed based on the visibility of the individual seeds for greater

accuracy. This minimization employed the RMS difference of the gray level of vox-

els and the correlation ratio [134] between the voxel intensities. Downhill simplex

method was used as optimization. The deviation error for the gray level seed reg-

istration against the transducer registration was measured in terms of translation

along left-right, cranio-caudal and anterior-posterior directions for rotations along

these axes respectively. The highest translational error was 0.5 mm along the left-

right direction for a rotation of 1.4○ along the same axis. Successful transducer gray
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value-based registration was obtained in 21 cases out of a total of 23 cases. The

authors stated that poor visualization of the seeds led to the failure of the two cases

in the seed gray value-based registration.

Betrouni et al. [16] described a method of registration for effective conformal

radiotherapy between tracked US images and a set of planning images or planning

volume obtained from prior MR/CT examinations. The patient was setup in the

operating room (OR) and MR/CT planning images were acquired. During the

treatment the US images were captured and the 3D positions of the ultrasound

were determined from epipolar geometry of the stereo video cameras capturing the

movement of the US probe with 3 LEDs attached. A rigid registration method was

applied based on a sequence of coordinate transformations between the US images

and the OR and subsequently between the OR and the MR/CT planning images.

Multiplanar reconstruction of the previously acquired MR/CT volume yielded a

volume with the same orientation as the US. Prostate images were automatically

segmented (using active contours) from the 3D US while the planning images were

manually segmented. Consequently, both the US and planning image contours were

represented with 3D points. The registration involved alignment of these sets of

points using the ICP algorithm [15] with the translations of the sets of points about

contour centroids. Target localization error (TLE) [111] was used to evaluate the

registration accuracy. The TLE after registration of phantom balloons was 1.34

mm, while the highest TLE obtained among three volunteers was 1.48 mm. The

registration time required was 13 to 20 secs.

Xu et al. [168] presented a method for real-time registration of US and MRI

for guided prostate biopsies. Before the biopsy procedure, a 3D TRUS volume (re-

constructed from 2D axial sweep of the prostate with a US probe attached to a

electro-magnetic tracker) was manually registered with a 3D MRI volume acquired

previously using rigid body transformation. Thereafter, an image based registration

was employed for motion correction between the intra-operative 2D US frames and

the reference US volume. A set of 2D frames within a short time frame were rigidly

registered using a SSD based minimization with their respective 2D slices in the

reference US volume. Finally, to further compensate for in-plane prostate motion,

the current 2D US frame and its corresponding reconstructed frame from the refer-

ence US volume were registered using an image gradient and correlation coefficient
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based registration. In patient studies for a new target the average time taken for

biopsy was 101± 68 secs. The registration method was validated on phantoms with

a registration accuracy of 2.4 ± 1.2 mm. A total of 20 patient studies showed an

average overlap between MRI and the US images of 90% ± 7% after motion com-

pensation. The authors further validated their method with 101 patient cases [84]

and the clinical results showed significant improvement of target visualization and

of positive cancer detection rates during TRUS-guided biopsies.

Singh et al. [142] proposed a method of fusion-guided prostate biopsy from

TRUS images. The 2D US was automatically converted into a 3D volume and this

volume was registered with the pre-acquired MR volume manually with the help of

a workstation attached to the operating room. Thereafter, the real-time 2D TRUS

slices were registered with the 3D US volume using the method of Xu et al. [168].

The RMS value was found to be 3.3 ± 0.4 mm and the maximum mean distance

was found to be 12.7± 1.2 mm. The registration process was completed in about 10

mins.

3.2 Deformable Registration Applied to Prostate

Although rigid registration has been frequently used for prostate multimodal fusion,

the prostate of the same patient may undergo deformations under certain condi-

tions. The inflation of the endorectal coil inside the rectum during MRI procedure,

full bladder or bowel or gas inside the rectum and altered patient positions during

the TRUS and MRI procedures may deform the prostate. In order to cope with

these deformations, non-rigid registration methods need to be applied for prostate

multimodal registration [109, 47, 133, 2, 88, 112, 11, 167, 72, 37, 139]. It may be

noted that to initiate a deformable registration method an initial manual rigid or

an automatic affine alignment is generally required. In this section we propose to

sub-categorize the prostate deformable registration methods based on the employed

geometric transformations.
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3.2.1 Radial-basis Transformations

Spline-based transformations have been commonly used to register prostate images

or volumes. TPS warping was also employed by Lu et al. [99] to generate a statistical

volumetric model of the prostate for localization of prostate cancer. The registration

error reported was too high to be considered for clinical procedures. The TRE for

7 cases was reported to be 295.66 pixels, but the physical dimensions were not

provided. Similarly, prostate MR volumes were warped using TPS by Fei et al. [54]

for brachytherapy and the registration was driven by the maximization of NMI. The

accuracy of the registration showed that the lowest prostate centroid displacement

for a volume pair out of 17 volume pairs was 0.6 mm.

Cheung and Krishnan [32] registered prostate MR volumes with and without the

deformation of the endorectal coil using TPS with manually placed correspondences.

Although the qualitative results were shown in terms of checkerboard overlap, the

quantitative registration error was not reported. An improved system was proposed

by Reynier et al. [133] for brachytherapy where manually segmented point clouds

from MRI and TRUS were used to either rigidly or elastically align MRI with TRUS.

The advantage of this system was the ability to model potential nonlinear deforma-

tion between the two modalities using octree splines [150]. The elastic registration

results were validated using 11 patient cases with an average residual distance of

1.11±0.54 mm for surface points on TRUS and MRI. Daanen et al. [38] used octree

splines elastic registration to fuse TRUS and MRI prostate volumes for dosimetric

planning of brachytherapy. The registration accuracy showed an average TRE of

2.07 ± 1.57 mm for 4 patients. Vishwanath et al. [160] registered prostate histolog-

ical slices and MR slices to detect prostate cancer using B-splines. Since the aim

was to detect cancer, quantitative values related to registration accuracy were not

presented. A recent work by Xiao et al. [167] proposed to build a spatial disease

atlas of the prostate using both B-splines and TPS. However, only qualitative results

were presented.

Oguro et al. [120] registered pre- and intra-operative MR images for prostate

brachytherapy using B-splines based deformation. The DSC value for the total

gland was reported as 0.91 and the fiducial registration error was 2.3 ± 1.8 mm for

16 cases. The accuracies of surface-based and image-based registration methods to
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register intra-session 3D TRUS-TRUS volumes were evaluated by Karnik et al. [86].

The surface-based registration involved a rigid registration using the ICP algorithm

[15] and the non-rigid registration was based on TPS. The image-based registration

employed the block-matching technique of Ourselin et al. [122] for rigid registration

and the non-rigid deformation was defined by a 3D uniform grid of B-splines control

points. A total of 16 patient datasets were used in the evaluation of the registration

accuracies. The mean TRE for 60 fiducials for the TPS based registration was

reported to be 2.09± 0.77 mm and for the B-splines based registration was found to

be 1.50 ± 0.83 mm.

A recent work by Cool et al. [36] suggested a pre-biopsy 3D TRUS-MR fusion

with a landmark-based rigid registration and a subsequent deformable registration

using TPS. Thereafter an image-based registration using the methods of Chriso-

choides et al. [33] and Ourselin et al. [122] was performed to rigidly register the

intra-biopsy 3D TRUS and prebiopsy 3D TRUS (already co-registered with the pre-

biopsy MR). The TRUS-TRUS rigid registration required 60 secs. The MRI-TRUS

fusion study was carried out on 19 patients with a retrospective study on 5 patients

showing a mean TRE of 4.3± 1.2 mm. Prostate cancer was identified in 42% (8/19)
of all patients having suspicious lesions.

3.2.2 Registration based on Deformable Models

Narayanan et al. [112] proposed elastic registration between 3D TRUS and 3D

MRI surfaces using adaptive focus deformable model [140] and elastic warping [41]

for localization of prostate biopsy targets. The average Fiducial Registration Error

(FRE) was shown to be 3.06 ± 1.41 mm for 6 and 12 bead phantoms.

Natarajan et al. [113] also proposed elastic warping of MR volume to match the

TRUS volume acquired for targeted prostate biopsy. The fusion method involves

rigid alignment of the two volumes using manually selected anatomical landmarks

and thereafter, the methods of Narayanan et al. [112] and Karnik et al. [86] were

used for surface deformation. The MR-fusion based targeted biopsy was performed

on 47 patients where a 33% biopsy positivity rate was found versus a 7% positivity

rate for systematic biopsy. The biopsy procedure took 15 minutes with an additional

5 minutes for the TRUS-MR fusion.
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3.2.3 Registration based on Biomechanical Finite Element

Modeling

Bharatha et al. (2001) proposed a method of rigid and non-rigid registration based

on biomechanical finite element modeling to fuse intraoperative 0.5 T MR images

with preoperative 1.5 TMR images. The evaluation of registration accuracy involved

10 patient cases that showed DSC values of 0.94 for the deformed total gland, 0.86

for the deformed central gland and 0.76 for the deformed peripheral zone. The total

system worked in about 6 mins.

Alterovitz et al. (2004) proposed a deformable registration method for aligning

MRS prostate images acquired with the help of endorectal coil with the MR images

taken during treatment, based on the biomechanical model of the prostate tissue

stiffness and force parameters. The input for the registration were manually seg-

mented prostate and rectum images from probe-in MRS and probe-out MR. The

deformations of the soft tissues were based on the finite element model and the

nodal displacements of the tetrahedral volume mesh were obtained using the Gauss-

Siedel method. The force and stiffness parameters were additionally optimized by

Steepest Descent method with Armijo’s rule [13] for line search. The evaluation of

the registration for 5 patient datasets show a mean DSC for the central gland and

the peripheral zone was obtained 95.6% ± 1.3%. The time taken to complete the

registration was 27.8 ± 17.6 seconds. In a further work [3], the authors improved

their DSC value to 97.5% when evaluated on 10 patient cases

Bois d’Aische et al. [40] proposed a non-rigid registration method based on

finite element model and MI with an elastic constraint for fast registration of pre-

operative 1.5 T MR images and 0.5 T MR intra-operative images of the prostate

for guided biopsy. The registration of the two datasets involved several stages.

The datasets were first centered and scaled proportionately to match each other

using an affine transformation. Then the surface of the prostate of both datasets

was matched using conformal mapping [7]. The volumetric displacement field was

estimated from the finite element model of both the datasets. A MI based non-rigid

registration applied with a linear elastic energy constraint to smooth the nodes of

the finite element model ensured registration of the internal structures properly.

The optimization scheme used was based on Simultaneous Perturbation Stochastic
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Optimization introduced by Spall [145]. The surface registration required around 90

secs and the final MI registration required 2 mins. The minimum distance between

the landmarks after surface and MI registration was 0.3 mm. The largest distance

of 3.8 mm went down to 2.5 mm after surface registration; and after MI registration

the mean distance of 2.3 mm went down to 1.3 mm for a voxel size of 0.9× 0.9× 2.5
mm.

Brock et al. [26] proposed a similar method as Bharatha et al. [19] to estimate

the large deformations of the prostate due to the endorectal receiver coil during

radiotherapy. A finite element model based elastic registration with different mate-

rial properties was used to predict the prostate deformations due to the endorectal

balloon inflated from 0cc to 100 cc. The registration time was around 7.3 mins.

Gold seed markers were used to estimate the displacements that showed an average

residual error for all three seeds of 8 patients as 0.21 cm.

Hu et al. [74, 75] proposed a model-to-image registration method to fuse a

patient-specific biomechanically simulated finite element-based statistical motion

model of the pre-acquired MR volume with the TRUS volume during biopsy proce-

dure. The deformable registration involved maximizing the likelihood of a particular

model shape given a voxel intensity-based feature that provided an estimate of sur-

face normal vectors at the boundary of the gland. The registration was constrained

by the statistical motion model subspace. This statistical motion model subspace

accommodated the random TRUS probe induced deformations of the gland. The

median RMS TRE for 8 patients with 100 MR-TRUS registration experiments for

each patient was found to be 2.40 mm.

3.2.4 Other Non-parametric Registration Methods

Mizowaki et al. [109] proposed a simple method of registration of MRS volumes with

the US/CT images with the assumption that any position inside the prostate did not

change with respect to the prostate contours and the center of mass. Therefore, they

accommodated the deformations of the prostate that resulted from the insertion of

the endorectal coil in MRS. The deformations were assumed to be along the z-axis

(craniocaudal) in direct proportion to the superior-inferior dimensions of the gland

with respect to its center of mass. During the registration procedure, the center of
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mass of both the volumes of MRS and US/CT were computed. The z-coordinates of

both the volumes were adjusted proportionate to the superior and inferior aspects

of the prostate. Similarly, the x- and y- coordinates of the volumes were adjusted

maintaining the same aspect ratio in the left-right and anterior-posterior directions

respectively. The experiment was carried out on a phantom for which two series of

CT scans were acquired one without the endorectal balloon inflated and the other

with the inflated endorectal balloon. The second series simulated the MRS. The

average 3D positional displacement of seeds implanted into the prostate phantom

was observed as 2.2 ± 1.2 mm. The maximum displacement was about 4.9 mm.

Experiment with a patient showed that the absolute difference between the predicted

and the measured seed displacement was about 2.4 ± 1.3 mm. The registration was

performed in real-time and was accurate.

Chen et al. [31] proposed a non-rigid registration technique for image guided

prostate radiotherapy. The registration process took place after the segmentation

of planning CT and intraoperative cone beam CT images using level sets method

of deformable models. Both the CT and cone beam CT volumes were resampled to

equal voxel sizes. Sampling points on the surface of the level sets segmented volumes

were used for the registration process. The deformation process was considered to

be a combination of a global and local deformations. The global affine deformation

for each sampling point in each iteration was obtained by minimizing the weighted

least-squares distance. The local deformation of a sampling point was based on a

modification of the demons forces acting on the sampling point [153]. A total of

15 datasets were used for validation and after registration the volumetric similarity

was observed to be around 91% and the maximum registration time as 44 secs.

Khamene et al. [88] proposed a deformable registration technique based on a

similarity measure that considers prior intensity distribution of the regions to be

registered. The authors suggested dividing the fixed image into non-overlapping

regions where the regions were indexed to be zero, if there existed, a corresponding

pixel of the fixed image in the moving image that was to be transformed. Else, the re-

gions were indexed with non-zero values. For regions indexed as zero, SSD was used

as a similarity metric and for other regions a log-likelihood based energy constraint

was used based on the prior probability of the intensity distributions derived from

several training images. Finally, the deformation was formulated as the summation
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of these similarity measures of the regions along with a global elastic regularization

term of the deformation (displacement) field. Euler-Lagrange formulation was em-

ployed to compute the deformation field for each iteration. A total of 20 datasets of

CT abdominal images from 10 patients were used for the validation of results and

three different similarity metrics were used like SSD, MI and the proposed method.

It was always observed that the proposed method outperformed the two former met-

rics in terms of the average surface distance measured for the prostate, bladder and

rectum with values 2.4 mm, 3.0 mm and 4.1 mm respectively. The total registration

process took less than 30 secs including a rigid initial alignment.

3.3 Summary

The state-of-the-art registration methods applied to prostate intramodal and mul-

timodal images/volumes have been discussed in this chapter. A broad classification

into rigid and non-rigid registration methods has been made to organize the meth-

ods available in the literature. While the rigid registration methods are strictly

parametric as described in the previous chapter, the deformable registration meth-

ods comprise of both parametric and non-parametric approaches. The deformable

registration methods are sub-categorized based on the underlying geometric trans-

formations. It is observed from the previous sections that radial-basis functions and

deformable models have been successfully used for TRUS-MR fusion. However, de-

formable models have been more suitable in case of 3D registration. Finite element

model-based registration has been successfully used for same modality 3D volumes

but with increased computation time that may not be suitable for real-time proce-

dures. Certain other non-parametric approaches also showed promising registration

accuracies, however, they were primarily used to register same modality prostate

volumes.
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Chapter 4

Registration based on

Radial-Basis Transformations

In this chapter we focus on the details of the radial-basis functions that may be ap-

plied for deformable registration between TRUS and MR prostate images. Analyzing

Chapter 3 we found that deformable registration is necessary to accommodate the

inter-modal prostate deformations. We also found that spline-based deformations

have been a popular choice and provided clinically significant TREs [156] required

for 90% tumor hit-rate during biopsy. Therefore, we considered TPS [23] with auto-

matic point-correspondences and B-splines with uniformly-spaced control points [137]

for the deformable registration between pre-biopsy MR and inter-operative TRUS im-

ages.

4.1 Point correspondences

In the works of Lu et al. [99] and Fei et al. [53] manually chosen point corre-

spondences were used to drive the TPS transformation. Establishing point cor-

respondences can be a challenging task when the shapes of the prostate in the

respective modalities have deformations. Hill et al. [73] proposed a method of

polygon-based, automatic corresponding landmarks generation between two simi-

lar shapes and thereby, generated a mean point distribution model. Salient points

on prostate contour were automatically identified using equal angle sampling by

35
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Padilla-Castañeda and Arámbula-Cośıo [114]. Yan et al. [169] used equally spaced

salient points on prostate contour based on Euclidean distance to build a partial

active shape model for segmentation. Zhan et al. [171, 172] used both the sim-

ilarities between the prostate boundary landmarks and salient internal landmarks

to drive the registration between histological and MR images. The boundary land-

marks were identified as the nodes of the triangular mesh used to parameterize

the prostate surface. The Euclidean distance between the attribute vectors of the

boundary landmarks were used to find the landmark correspondences across the two

modalities [140]. On the other hand, the internal landmarks were obtained from the

Laplacians of scale-spaces (blob-detection). Finally, the similarity measure between

the detected landmarks in terms of NMI was minimized to find the correspondences.

In this thesis, we propose a novel approach to establish an optimal set of correspon-

dence points automatically in the US and MR modalities to achieve deformable

multimodal prostate registration employing TPS.

4.1.1 Automatic Point Correspondences (Geometric)

The 2D MR slice corresponding to the US slice is manually resliced from the MR

volume and the prostates in both the images are automatically segmented using the

method of Ghose et al. [66]. The US image is treated as the reference and the MR as

the moving image. Principal Component Analysis (PCA) of the segmented contour

in the reference US image provides the principal axes of the prostate. These axes are

then projected on the center of gravity of the prostate MR image. The intersection

points of the principal axes with the prostate boundaries for both the reference and

moving images are identified automatically. All correspondence point generation

methods described hereafter, are based on the principal axes of the prostate.

Our proposed method to establish point correspondences is based on triangu-

lated approximation of the prostate quadrants. The triangulation method begins

by traversing the intersections of the principal axes in a clockwise or anti-clockwise

manner in each image. Triangles are generated by joining the adjacent intersections

of the principal axes forming a quadrant and dropping a perpendicular from the

midpoint of the line joining these intersections. The adjacent intersection points

and the point of intersection of the perpendicular dropped on the prostate contour
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comprise a triangular approximation of the prostate region in the quadrant. Like-

wise, other quadrants of the shape are processed for both the reference and moving

images. Hence, new points formed by the triangulation method are generated on the

shape contours for the first level (see Figure 4.1(b)). The points are reordered and

further triangulations are made at subsequent resolutions, approximating smaller

prostate regions close to the boundary. The process may be summarized as follows:

Let pi, where, i = 1, ..., n and n = 4 for level r = 0, represent the four intersections

of the principal axes with the prostate contour. With the final level R = 3, the

algorithm is as follows:

1. Level r = 0.
2. Loop while r <= R.

3. r = r + 1.
4. Generate midpoint qi between pi and pi+1 as (pi + pi+1)/2.
5. Find a point di on the contour between pi and pi+1 such that slope(pi, pi+1) ×

slope(di, qi) = −1.
6. (pi, di, pi+1) comprise the triangulated region of the prostate between pi and

pi+1.

7. Repeat steps 4-6 until pi = pn and pi+1 = p1.
8. If r <= R, then update n = 2n and save p1, d1, p2, ..., pn−1, dn−1, pn, dn as new pi

with i = 1, ..., n and repeat from Step 3. Else, end the loop.

The order of traversing the pis should be the same for both the reference and mov-

ing images. Figure 4.1 shows the triangulation method for three subsequent lev-

els/resolutions.

Instead of considering only the contour points for the deformable registration,

certain points inside the prostate contour are also considered for a smooth deforma-

tion of the internal glandular structures of the prostate that are quite evident in MR

images and sometimes partially visible in US images. The internal points are pri-

marily the qi’s generated in resolution r = 1 and the prostate centroid c (see Figure



38 Chapter 4. Registration based on Radial-Basis Transformations

(a) Level 0 (b) Level 1 (c) Level 2, only shown for
right-bottom quadrant

Figure 4.1: Method of generating correspondence points in different resolutions.

4.1(b)). However, we noticed that if the lower part of the prostate has higher concav-

ity then either of these internal points (qi) may fall outside the prostate boundary

and therefore will hinder in obtaining a proper deformation field. Therefore, we

further improved the choice of the internal points by considering the mid-points of

the qi’s and c as zi’s. Figure 4.2 shows the points generated for the 1st level and the

37 final correspondences at the 3rd level on the fixed and moving prostate contour

images respectively with the modified internal points.

Two methods of prostate contour sampling with equal angles and equal spaces are

also implemented to compare the accuracies of our proposed correspondence genera-

tion method. These geometric sampling methods are intuitive where, in equal-angle

sampling, the angles are equally spread inside each quadrant formed by the prin-

cipal axes. In equal-space contour sampling, the points are also generated in each

quadrant i.e. depending on the number of points falling in each quadrant, the points

are sampled in equal intervals. Figure 4.3(a) and Figure 4.3(b) show the contour

points obtained with equal-angle sampling and equal-space sampling approaches

respectively. Figure 4.4 shows a case when non-uniformly spaced correspondences

are generated with equal-angle sampling due to significant deformation between the

reference and moving images. The plausible reason for the difference in sampling

points between our method and other methods is that our method makes triangu-

lar approximations of prostate quadrants and smaller regions and moves towards

the prostate boundary in a symmetric manner with the perpendicular bisector of

the triangle as reference. While, other methods use the prostate centroid only as

the reference lying far from the boundary and therefore the localization error of
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(a)

(b) (c)

Figure 4.2: Point correspondences example with modified internal points. (a) Points
generated for 1st level, (b) fixed image points at 3rd level and (c) moving image
points at 3rd level.

correspondences increases.

4.2 Thin-plate Splines (TPS)

A thin-plate is conceived as a 2D thin metal plate which when tacked by a point or

set of points produces bending of the surface in z-direction i.e. the surface

z(x, y) = −U(r) = −r2 log r2 (4.1)

where, r is the Euclidean distance of the Cartesian co-ordinate points on the surface

from the tacked points. Here, U is a so-called fundamental solution of the biharmonic

equation ∆2U = 0, the equation for the shape of a thin steel plate lofted as a function

z(x, y) above the xy-plane (see Figure 4.5).

The thin-plate spline is a commonly used basis function in 2D-Euclidean space

[22] to map the coordinates of a moving image into a fixed image, when a set of
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(a) Equal-angle sampling (b) Equal-space sampling

Figure 4.3: Geometric methods for correspondence points generation.

(a) Points generated in US (b) Points generated in MR

Figure 4.4: Points correspondences with different methods of contour sampling. The
‘*’s indicate points generated with equal-angle sampling and the squares indicate
the points generated with our approach. Note that in the bottom-left quadrant, our
method is able to get a uniform set correspondences on the prostate contours even
in the presence of a significant deformation.

homologous correspondence points are established in both images. In its regular-

ized form, the deformable TPS model includes the affine model as a special case.

Correspondences are generated automatically on both the moving and fixed images

as described in the previous section. Following is a brief algebraic description of the

crux of the TPS model.

If pi = (xi, yi) and qi = (x′i, y′i), i = 1, . . . , n represent two sets of corresponding

landmarks in the moving and fixed images respectively, then, the TPS interpolant

Φ(x, y) minimizes the bending energy or the integral bending norm

IΦ = ∫
R2

∫ ⎛⎝(∂
2Φ

∂x2
)2 + 2( ∂2Φ

∂x∂y
)2 + (∂2Φ

∂y2
)2⎞⎠dxdy (4.2)
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Figure 4.5: Fundamental solution of the biharmonic equation: a circular fragment
of the surface z(x, y) = −r2 log r2 viewed from above. The ‘X’ is at (0,0,0); the
remaining zeros of the function are on the circle of radius r = 1 drawn. Image
courtesy Bookstein [22].

and the transformation function has the form

Φ(x, y) = au1 + au2x + au3y + n∑
i=1

wiuU(∥(xi, yi) − (x, y)∥), (4.3)

where, u = 1,2, U = r2 log r2 is the radial-basis function and wiu’s are the weights

assigned to each of the control point of the moving image. Φ(x, y) should have

square integrable derivatives if

n∑
i=1

wiu = 0 and
n∑
i=1

wiuxi =
n∑
i=1

wiuyi = 0 (4.4)

The boundary conditions in Equation (4.4) ensures that the thin-plate does not

bend or rotate when acted upon by the loads of the control points.

Considering the interpolation conditions as Φ(xi, yi) = qi, let us rewrite ri,j =∥pi − pj∥, i, j = 1, . . . , n as the distances between all the control points pi and pj.

Then a linear system is obtained for the TPS as

⎡⎢⎢⎢⎢⎣
K P

P T O

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
W

A

⎤⎥⎥⎥⎥⎦ = Q. (4.5)
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The matrices may be defined as

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 U(r12) ⋯ U(r1n)
U(r21) 0 ⋯ U(r2n)
⋯ ⋯ ⋯ ⋯

U(rn1) U(rn2) ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, n × n;

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1

1 x2 y1

⋯ ⋯ ⋯
1 xn yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, n × 3; L =

⎡⎢⎢⎢⎢⎣
K P

P T O

⎤⎥⎥⎥⎥⎦ , (n + 3) × (n + 3);

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11 w12

w21 w22

⋮ ⋮
wn1 wn2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, n × 2; A =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a21

a12 a22

a13 a23

⎤⎥⎥⎥⎥⎥⎥⎦
, 3 × 2

and

Q =
⎡⎢⎢⎢⎢⎣
x
′

1
x
′

2
⋯ x

′

n 0 0 0

y
′

1
y
′

2
⋯ y

′

n 0 0 0

⎤⎥⎥⎥⎥⎦
T

, (n + 3) × 2,
where O is a 3 × 3 matrix of zeros, W and A are the matrices for the TPS weight

parameters and the affine parameters respectively that need to be estimated. Let

us define G = [W ;A]. Therefore, the linear system of equations may be solved in

the least-squares sense as

L.G = Q, G = L−1Q (4.6)

The interpolation condition Φ(pi) = qi is based on the assumption that the con-

trol points on the moving image exactly maps onto the fixed image control points.

However, in a real situation this is not always true as there may be some error in

the localization of the point correspondences across the two images. Localization

errors of the correspondence points may be considered by extending the interpola-

tion to approximation and regularization of the TPS bending energy [135]. This is



4.2 Thin-plate Splines (TPS) 43

accomplished by the minimization of

HΦ =
n∑
i=1

(qi −Φ(pi))2
σ2

i

+ λIΦ. (4.7)

The covariance σ2

i is the sum of the covariances of the points pi and qi across both the

fixed and moving images and λ is the regularization or smoothing term. The weight-

ing of the correspondence localization error with the inverse of the variances ensures

that if the variance is high i.e. if the measurements are uncertain, less penalty is

given to the approximation error at this point. The relative weight between the

approximation behavior and the smoothness of the transformation is determined by

the parameter λ > 0. If λ is small we obtain a solution with good approximation

behavior (in the limit of λ → 0) we have an interpolating transformation. In the

other case of a high value for λ we obtain a very smooth transformation, with little

adaption to the local structure of the distortions determined by the sets of point

correspondences. In the limit of λ →∞ we get a global transformation that has no

smoothness energy IΦ at all.

Finally, the quadratic approximation term of Equation (4.7) can be analytically

introduced into the linear system of equations of Equation (4.5) as

⎡⎢⎢⎢⎢⎣
K + nλC−1 P

P T O

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
W

A

⎤⎥⎥⎥⎥⎦ = Q (4.8)

where,

C−1 =
⎛⎜⎜⎜⎝
σ2

1
0

⋱
0 σ2

n

⎞⎟⎟⎟⎠
Introducing the term nλC−1 yields a better conditioned linear system and a robust

numerical solution. After obtaining the affine and TPS weight parameters, the

moving image pixels are transformed using Φ as in Equation (4.3). An example

TPS transformation is shown in Figure 4.6.
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(a) (b) (c) (d)

Figure 4.6: An example TPS transformation with correspondences established across
the fixed and the moving images in ‘blue’ dots. (a) Shows the fixed image with
control points, (b) shows the moving image with the corresponding control points,
(c) shows the TPS transformation without gray value interpolation, and (d) shows
the interpolated TPS transformation using inverse weighted distance.

4.3 B-spline free-form deformations (FFDs)

The local deformation of an anatomical part may be described by FFDs based on

B-splines. The basic idea of FFD’s is to deform an object by manipulating an under-

lying mesh of control points [94, 95, 9]. The resulting deformation controls the shape

of the 2D/3D object and produces a smooth and continuous C2 transformation.

4.3.1 Deformation modeling with B-splines

Let us consider a domain of image as Ω = {(x, y)∣0 ≤ x <X,0 ≤ y < Y }, Ψ as a mesh

of nx ×ny control points φi,j with uniform spacing δ. Then a spline-based FFD may

be defined as a 2D tensor product of the familiar 1D cubic B-splines as

Tlocal(x, y) = 3∑
l=0

3∑
m=0

Bl(u)Bm(v)φi+l,j+m (4.9)
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Figure 4.7: B-splines control point mesh. Control point φi,j affects points only inside
its 4δ × 4δ neighborhood domain ωi,j. Image courtesy Ino et al. [77].

where i = ⌊x/δ⌋ − 1, j = ⌊y/δ⌋ − 1, u = x/δ − ⌊x/δ⌋ , v = y/δ − ⌊y/δ⌋ and Bl represents

the lth basis function of the 1D cubic B-spline [129] given as

B0(u) = (1 − u)3/6
B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u + 1)/6
B3(u) = u3/6.

Unlike thin-plate splines [22], B-spline FFDs are locally controlled that makes

them computationally efficient even for a large number of control points. It is evident

from Equation (4.9) that the deformation at any point (x, y) is determined by its

surrounding 4×4 neighborhood of control points. In other words, as shown in Figure.

4.7, each control point φi,j affects only its 4δ × 4δ neighborhood domain which is a

sub-domain of Ω.

In particular, the basis functions of cubic B-splines have a limited support, i.e.,

changing control point affects the transformation only in the local neighborhood of

that control point. The control points Ψ act as parameters of the B-spline FFD

and the degree of nonrigid deformation which can be modeled depends essentially

on the resolution of the mesh of control points. A large spacing of control points

allows modeling of global nonrigid deformations, while a small spacing of control

points allows modeling of highly local nonrigid deformations. At the same time, the
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resolution of the control point mesh defines the number of degrees of freedom and

consequently, the computational complexity. The trade-off between model flexibility

and computational complexity is mainly an empirical choice which is determined by

the accuracy required to model the deformation of the object versus the increase in

computing time. However, the best approach is to adopt a hierarchical multireso-

lution approach [95] in which the resolution of the control point mesh is increased,

along with the image resolution in a coarse to fine fashion.

Let us consider Ψ1, . . . ,ΨL as a hierarchy of control point meshes at different

resolutions. The spacing between the control points decreases from resolution Ψl to

Ψl+1, i.e. the resolution of control points increases. It is assumed that the spacing of

the control points in Ψl+1 is half of those in Ψl and the new positions of the control

points in Ψl+1 can be computed directly from Ψl using the B-splines subdivision

algorithm [57].

In order to constrain the spline-based FFD transformation to be smooth, a

penalty term which regularizes the transformation may be introduced. The gen-

eral form of such a penalty term has been described by Wahba [161]. In 2D, it

is equivalent to the TPS integral bending norm defined in Equation (4.2) and is

written as:

Csmooth = ∫ X

0
∫ Y

0

⎛
⎝(

∂2T

∂x2
)
2

+ 2( ∂2T

∂x∂y
)
2

+ (∂2T

∂y2
)
2⎞
⎠dxdy (4.10)

where T is the total transformation that comprises of Tglobal i.e. an affine transfor-

mation and Tlocal a non-rigid transformation. It is to be noted that the regularization

term is zero for any affine transformations and, therefore, penalizes only non-affine

transformations. A step-by-step description of the FFD based deformation is given

in Algorithm 1.

4.3.2 Similarity

The multimodal image alignment as proposed by Rueckert et al. [137] employing

B-splines, is based on the maximizing the similarity of pixel intensities using the

NMI as defined in Equation (2.8) of Chapter 2. It has been experimentally proved

by Studholme et al. [149] that NMI is more robust in multimodal registration than
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Algorithm 1 The non-rigid registration algorithm using B-splines.

calculate the optimal affine transformation parameters Θ by maximizing
Csimilarity.
initialize the control points Ψ.
repeat

calculate the gradient vector of the cost function in Equation (4.11) with

respect to the non-rigid transformation parameters Ψ: ∇C = ∂C(Θ,Ψl

∂Ψl .
while ∥∇C∥ > ε do

recalculate the control points Ψ = Ψ + µ ∇C
∥∇C∥ .

recalculate the gradient vector ∇C.
end while
increase the control point resolution to Ψl+1 from Ψl.
increase the image resolution.

until finest level of resolution is achieved.

MI proposed by Maes et al. [101]. In this chapter, we refer to the NMI image

similarity as Csimilarity.

4.3.3 Optimization

To find the optimal transformation, the cost function associated with the global

transformation parameters Θ, as well as the local transformation parameters Ψ.

The first term of the cost function represents the cost associated with the image

similarity Csimilarity, while the second term corresponds to the cost associated with

the smoothness of the transformation Csmooth as in Equation (4.10). The cost func-

tion is defined as

C(Θ,Ψ) = −Csimilarity(F,T(M)) + λCsmooth. (4.11)

The term λ is the regularization factor that makes the trade-off between alignment

of the images and the smoothness of the transformation. It is to be noted that

the regularization factor is of more importance at finer resolutions than coarser

resolutions. A λ value equals to 0.01 provides a good trade-off between alignment

and smoothness of the transformation as has been also mentioned in Section 4.2.

The optimization proceeds in two stages. During the first stage, the affine trans-

formation parameters Θ are optimized, using an iterative multiresolution search
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strategy [148]. This step is equivalent to maximizing the image similarity measure

defined in Csimilarity. The nonrigid transformation parameters Ψ are optimized as a

function of the cost function in Equation (4.11) in the subsequent stage. A simple

gradient descent optimization is employed at each stage and the algorithm stops if

the magnitude of the gradient of the cost function ∥∇C∥ is below a small value ε.

4.4 A variant of B-splines multimodality registra-

tion based on quadrature local energy

In this section we propose a new registration method involves B-spline deformations

with NMI as the similarity measure computed from the texture images obtained from

the amplitude responses of the directional quadrature filter pairs. The novelty of the

proposal is to use directional quadrature filter pairs to transform both the MR and

TRUS images into texture images obtained from the amplitude response of the filter

pairs and use these transformed images for NMI computation. A similar method

has been used by Jarc et al. [80] employing Law’s texture to compute the MI in

order to register far-infrared and visible spectrum gray-scale images. Francois et al.

[58] used texture-based statistical measures to register carotid ultrasound volumes

where the texture information was given by spatial Gabor filters. The advantage of

computing NMI by this method is that the gray level differences in the TRUS and

MR modalities are minimized, enhancing the inherent texture information of the

prostate. A schematic diagram in Figure 4.8 shows the work flow of the proposed

algorithm. The optimization is to minimize the cost function as in Equation (4.11)

is solved using a quasi-Newton optimization method as Limited Memory Broyden-

Fletcher-Glodfarb-Shanno (L-BFGS) algorithm [98].

4.4.1 Quadrature filters

Band-pass quadrature filters have been used in computer vision to access multi-scale

image information like local-phase, energy, angular frequency etc. Central to the

theory of quadrature filters in the analytical domain is the Hilbert transform [24].
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Figure 4.8: A schematic diagram of the proposed algorithm.

Figure 4.9: Even and Odd log-Gabor quadrature filter pairs in spatial domain.

The analytical signal of a 1D real signal f(x) is given by

fA(x) = f(x) − ifH(x); (4.12)

where i =√−1 and fH(x) is the Hilbert transform of f(x) defined by:

fH(x) = 1

π
∫ +∞

−∞

f(τ)
τ − xdτ (4.13)

⇔ FH(ω) = F (ω).i sign(ω),
where, F (ω) is the Fourier transform of f(x) and

sign(ω) = ⎧⎪⎪⎨⎪⎪⎩
−1 ω < 0
+1 ω ≥ 0 (4.14)
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Therefore, the analytical signal in Fourier domain is obtained from Equation (4.12)

and Equation (4.14) as

FA(ω) = F (ω). [1 + sign(ω)] . (4.15)

To compute the local features of an image, localization of both space and frequency

is required and is not possible directly from the resulting analytical signal since

the Hilbert transform or analytical signal in Equation (4.12) and Equation (4.14)

is defined over the entire signal. Therefore, an alternative approach is to compute

the local phase or energy from the filtered version of the signal. The filter is an

even, symmetric, zero-DC filter fe(x) and its odd counterpart is fo(x) which is the

Hilbert transform of fe(x), hence they are in quadrature. Therefore, the analytical

signal can be written as

f̂A(x) = fe(x) ∗ f(x) − iH(fe(x) ∗ f(x)) (4.16)

= (fe(x) − iH(fe(x)) ∗ f(x)
= (fe(x) − ifo(x)) ∗ f(x),

where H(.) is the Hilbert transform and ‘*’ is the 1-D convolution operator.

In practice, an approximation of the local amplitude or energy (Â(x)) and phase

(φ̂(x)) is obtained by using band-pass quadrature even and odd filter pair, fe(x)
and fo(x) respectively, where,

Â(x) =√[fe(x) ∗ f(x)]2 + [fo(x) ∗ f(x)]2 (4.17)

φ̂(x) = arctan{fe(x) ∗ f(x)/fo(x) ∗ f(x)} . (4.18)

A generalization of quadrature filters in 2-D is provided as a set of filters tuned to

a particular orientation and are therefore called directional quadrature filters [79].

The magnitude of the complex filter response with images gives the power por-

tions of the texture process contained in different spectral bands [1]. Log-Gabor

quadrature filters are used in this paper that are Gaussian functions on the log-

arithmic scale. The 1-D representation of a log-Gabor function in the frequency
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domain is given by

Gl(ω) = exp(− ln2(ω/ω0)
2 ln2(κβ) ) (4.19)

where ω0 is the peak tuning frequency at π/3 and 0 < κβ < 1.

κβ = exp(−1
4

√
2 ln(2)β) ,

where β is the bandwidth fixed to 2 octaves. The peak tuning frequency and band-

width are optimized values obtained from the MATLAB toolbox provided by An-

dersson and Knutsson [5]. Quadrature filters in directions 0○,45○,90○ and 135○ are

used and the individual even and odd filter responses are added to provide the mag-

nitude of the combined filter response. The even and odd filters tuned to 0○ are

shown in Figure 4.9. Figure 4.10 shows the texture energies of the fixed TRUS and

the moving MR images when the 4 directional even-odd quadrature filter pairs are

applied. It is evident that the gray level differences between the internal structures

of the prostate are minimized in MR image as well as the shadow regions which have

disappeared in the TRUS image.

4.5 Data and Analysis

The proposed method is evaluated for prostate mid-gland images of 20 patient

datasets with average prostate volume of 56.7 ± 22.0 cm3. The TRUS images were

acquired with a 6.5MHz side-firing probe with SIEMENS Allegra and TOSHIBA

Xario machines and the axial T2 fast relaxation fast spin echo MRI slices with slice

thickness of 3 mm, repetition time of 3460−3860 ms and echo time of 113.62−115.99
ms were acquired with a GE Signa HDxt. The axial middle slices in TRUS are cho-

sen for which the corresponding axial MR slices are identified by an expert. Ideally

the axial MR slice corresponding and parallel to the axial TRUS slice should be

obtained by rotating the MR volume in accordance with the rotational angle of

the TRUS slice and then resampling the axial MR slice parallel to the axial TRUS

slice under observation. However, we have not quantified the TRUS rotational an-

gle in our current experimental process. The prostate is manually segmented from

both the moving MR and fixed TRUS images. A NMI-based affine transformation
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(a) (b)

(c) (d)

Figure 4.10: Application of quadrature filters on TRUS and MR images. (a) and (c)
are the fixed TRUS image and its corresponding quadrature texture; and (b) and
(d) are the moving MR image and its corresponding quadrature texture respectively.

between the TRUS and the MR images is followed by the free-form B-spline defor-

mation. A uniform initial B-spline control grid with a spacing of 64 × 64 is placed

on the moving image with an average image size of 256 × 256. Figure 4.11 shows

the uniform B-spline control grids on the moving MR image of size 219× 249 at the

initial and final resolutions. The size of each image pixel is 0.2734×0.2734 mm. The

B-splines deform at each resolution to maximize the NMI computed from texture

images that are obtained from the magnitudes of quadrature filter responses.

We have compared the proposed method against two spline-based registration

methods; 1) B-splines registration that maximizes the NMI computed from the

raw intensities of the multimodal images [137], and 2) registration using TPS that

uses contour-based automatic correspondences to solve the affine and TPS weight

parameters [22, 108].
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(a) (b)

Figure 4.11: B-splines control grid with 2 refinements over the initial placement
on the moving MR image of size 219 × 249. (a) shows the initial placement of the
B-spline grids with 64 × 64 pixel spacing on the moving MR image and (b) shows
the final set of B-spline control grids on the transformed moving image.

4.6 Results and Discussions

The registration accuracies of our proposed method are evaluated in terms of DSC

and 95% HD values for mid-gland images of 20 patients and TRE and TLE values

for 18 patients i.e. only where homologous structures are visible both in TRUS

and the transformed MR images. Table 4.1 shows the DSC, TRE, TLE and 95%

HD values as obtained from the experiments for B-spline deformations with NMI

computed from intensities [137] as explained in Section 4.3, our method for B-spline

deformations with NMI computed from textures (Section 4.4) and TPS registration

[22, 108] (Section 4.2). A statistically significant reduction with two-tailed t-test

p = 0.02 is observed in the average TRE value for B-splines with NMI computed

from texture when compared to B-splines with NMI computed from intensities with

2.64 ± 1.37 mm and 4.43 ± 2.77 mm respectively. Our proposed method shows an

improvement of 1.18 times in TRE when compared with TPS registration with av-

erage TRE of 3.11±2.18 mm. However, this improvement of average TRE over TPS

is not statistically significant. The average TLE for all the methods are similar with

0.16 ± 0.11 mm, 0.12 ± 0.08 mm and 0.15 ± 0.12 mm for our method, B-splines with

NMI from intensities and TPS registration respectively.

The DSC value is a global measure of region overlap and the average DSC values

for our method of B-splines with NMI computed from texture, B-splines with NMI



54 Chapter 4. Registration based on Radial-Basis Transformations

Table 4.1: A comparison of registration accuracies of the B-spline registration with
NMI computed from intensities, from texture and TPS registration. µ is the mean
and σ is the standard deviation of the measures.

Patient#

B-spline Registration TPS Registration

NMI from Intensities NMI from Texture Bookstein [22]
Rueckert et al. [137]

DSC
TRE
(mm)

TLE
(mm)

HD
(mm)

DSC
TRE
(mm)

TLE
(mm)

HD
(mm)

DSC
TRE
(mm)

TLE
(mm)

HD
(mm)

1 0.902 5.07 0.10 9.35 0.896 4.09 0.22 7.31 0.971 9.36 0.22 1.84

2 0.980 0.37 0.09 1.07 0.964 1.50 0.14 1.30 0.957 3.98 0.10 2.32

3 0.973 - - 2.08 0.953 - - 5.45 0.974 - - 2.09

4 0.985 1.91 0.28 1.07 0.962 1.40 0.29 3.96 0.982 5.21 0.49 1.40

5 0.889 9.08 0.04 8.06 0.869 5.65 0.05 6.76 0.972 2.11 0.07 2.35

6 0.869 6.11 0.04 6.16 0.975 2.70 0.07 2.23 0.979 1.17 0.05 2.32

7 0.959 0.90 0.12 5.04 0.889 1.94 0.09 8.82 0.977 4.43 0.12 2.61

8 0.976 4.70 0.03 3.38 0.964 1.11 0.10 5.81 0.978 3.57 0.05 2.96

9 0.960 - - 4.93 0.982 - - 1.32 0.978 - - 2.39

10 0.952 8.29 0.09 5.98 0.981 4.04 0.13 1.04 0.972 6.09 0.04 1.98

11 0.962 6.12 0.04 3.03 0.950 1.69 0.04 3.72 0.972 2.98 0.12 2.22

12 0.944 1.58 0.25 4.60 0.934 0.31 0.16 5.18 0.971 2.44 0.12 5.00

13 0.961 1.00 0.05 4.83 0.878 3.42 0.05 7.39 0.980 3.06 0.07 1.84

14 0.896 7.32 0.05 6.50 0.965 1.85 0.05 3.12 0.986 1.75 0.07 0.82

15 0.942 5.01 0.05 6.06 0.948 2.32 0.13 5.02 0.968 2.29 0.07 2.22

16 0.974 7.27 0.13 2.90 0.950 4.71 0.13 6.50 0.970 1.86 0.07 2.71

17 0.894 4.32 0.12 7.18 0.872 3.22 0.23 7.64 0.982 0.18 0.32 1.04

18 0.985 0.51 0.26 2.32 0.975 1.77 0.29 2.87 0.982 0.91 0.26 1.64

19 0.936 5.12 0.19 7.01 0.969 2.91 0.43 7.09 0.983 1.47 0.23 1.66

20 0.939 5.03 0.20 5.51 0.975 2.83 0.21 2.45 0.973 3.11 0.30 2.08

µ 0.944 4.43 0.12 4.85 0.943 2.64 0.16 4.75 0.975 3.11 0.15 2.17

σ 0.036 2.77 0.08 2.30 0.039 1.37 0.11 2.40 0.007 2.18 0.12 0.85

computed from intensities and TPS registration are 0.943± 0.039, 0.944± 0.036 and

0.975 ± 0.007 respectively. 95% HD provides the contour accuracy for which the

average values of 4.75±3.40 mm, 4.85±2.30 mm and 2.17±0.85 mm are obtained for

our method of B-splines with NMI from texture, B-splines with NMI from intensties

and TPS respectively. We observe that TPS registration based on control points

placed over the contours always has higher average DSC and lower average HD val-

ues over the proposed B-splines registration with statistical significance (two-tailed

t-test) of p < 0.001 and p < 0.0001 for DSC and 95% HD measures respectively.

TRE values of all patients are much lower with the proposed method when
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compared to the B-spline method with NMI computed from intensities except for

patients 2, 7, 13 and 18 where the dark shadows near the edges of the TRUS images

are misinterpreted as the black background. Higher DSC values are obtained from

the proposed method when compared to B-spline with NMI computed from inten-

sities especially for patients 6, 9, 10, 14, 15, 19 and 20 and for patients 2, 9, 10 and

20 when compared to TPS.

Figure 4.12 shows the qualitative B-spline registration using NMI from raw inten-

sities, using NMI from texture and the TPS registration in the form of checkerboards

for 5 patients (patient 6, 8, 10, 11 and 13). As seen in Figure 4.12 for patients 6

(column 1) and 10 (column 3), the checkerboards (row 6) show good region overlaps

that are also evident from Table 4.1 for the proposed method. TRE is a reliable

measure of registration accuracy than region overlap measure specially when local-

ization of biopsy site is involved. Therefore, in spite of the less satisfactory region

overlaps in Figure 4.12 for the proposed method (row 6) with patients 8 (column

2) and 11 (column 4) when compared to other methods (rows 4 and 8), lower TRE

values are obtained for the same patient cases with our proposed method as seen in

Table 4.1. In Figure 4.12 we observe poor region overlaps for patients 11 and 13 in

columns 4 and 5 respectively. There may be two reasons for the poor registration

accuracy around the prostate contour, 1) acoustic shadows in TRUS images around

the rectum do not provide any texture information and are considered homogeneous

with the black background, and 2) part of the contour of the moving image may lie

far from the respective fixed image contour. In both these cases, the control grids

placed on the moving image around the contour consider a large part of the black

background for the maximization of NMI with the corresponding TRUS (textured)

region and therefore the maximization process fails to reach a global maximum.

However, blurring of the prostate around the bladder or rectum would not affect the

contour registration accuracy since blurred regions still may contain some texture.

It is also observed that shadow artifacts and calcifications inside the prostate do not

affect the contour registration accuracy. For instance, for patient 11 (row 1, col-

umn 4), the acoustic shadow region inside the prostate does not affect the overlap

accuracy; however, the large part of the shadow on the lower-right contour region

deteriorates the contour overlap accuracy.

The texture obtained from the magnitude of directional quadrature filter trans-
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forms of an image measures the power portions of the image. The MR and TRUS

images have varied gray-level intensities and contrasts. Therefore, transforming the

MR and TRUS images as texture energy images homogenizes the intensity varia-

tions between them and reveals the underlying prostate architectural information

that is common to both the modalities. Hence, the proposed method shows better

registration accuracies in terms of TRE than traditional B-splines deformation with

NMI from intensities. The proposed algorithm is validated only on TRUS-MR slices

from the prostate mid-gland region and the performance of the same on the base

and apex regions is yet to be validated.

The algorithms are implemented in MATLAB 2009b with a machine configu-

ration of 1.66 MHz Core2Duo processor and 2 GB memory. The average time re-

quirements of our method of B-splines with NMI computed from texture, B-splines

with NMI computed from intensities and TPS registrations are 797.72±202.59 secs,

147.25 ± 43.81 secs and 76.22 ± 29.79 secs respectively. The computation time in-

cludes the time for affine and nonrigid registrations for each of the methods. The

obvious reason of B-splines with NMI computed from texture being computation-

ally expensive is due to the use of 4 quadrature convolutions for each of the fixed

and moving images at each resolution of B-splines deformations. The lowest time

of 397 secs and the maximum time 1316 secs are recorded for the proposed method.

However, quadrature convolution and registration of 256×256×256 3D volumes are

achievable at 3.05 secs when programmed in GPU [50]. Therefore, parallelization of

the convolutions and our algorithm implemented on GPU would ideally reduce the

execution time to less than 3 secs which is closer to the clinical requirement.

4.7 Conclusions

In this chapter a new method to register TRUS and MR prostate 2D images have

been presented that uses B-spline deformations with a novel method of computing

the NMI. NMI as the similarity measure for the registration is computed from tex-

ture energy of the images obtained from the magnitude of the directional quadrature

filter pair responses. Log-Gabor filters with narrow bandwidth have been used that

allows to measure power portions of the signal representing texture energy in case

of 2D TRUS and MR images. NMI computation involves reduction of the entropy
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of the images. The entropy between TRUS and MR raw intensity images is typi-

cally more than the entropy of texture images due to variations in the gray-levels.

Therefore, B-spline registration with NMI computed from texture images is more

accurate than that with NMI computed from intensity images. The method is also

consistent in terms of TRE that is evident from the high precision and low standard

deviation of the average TRE value. We observed from the experiments that the

average DSC and 95% HD values for TPS registration show smaller error compared

to the proposed method and B-splines with NMI computed from intensities. This

is due to the fact that the TPS registration in [22, 108] is based on control points

primarily placed on prostate contour. This results in higher contour accuracy (re-

lated to both DSC and HD measures), while B-spline control points are uniformly

spread over the prostate image. Since the final aim is accurate localization of biopsy

samples and TRE provides a measure of registration accuracy for localized regions,

TRE may be a more clinically relevant metric than DSC or other contour accuracy

measures. In this respect our method of B-splines with NMI computed from texture

shows statistically significant improvement over B-splines with NMI computed from

intensitites; and 1.18 times improvement over TPS registration. However, if the

clinical requirement is contour accuracy, TPS registration may be preferred over the

B-splines registration.
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Figure 4.12: Qualitative B-spline registration using NMI from intensity images,
NMI from texture images and TPS registration. Patients 6, 8, 10, 11 and 13 in
columns. 1st row shows the fixed TRUS slices, 2nd row shows the moving MR slices,
3rd − 4th rows show the fused MR and the checkerboards for B-spline using NMI
from intensity images, 5th − 6th rows show the fused MR and the checkerboards for
B-spline using NMI from texture images and 7th − 8th rows show the fused MR and
checkerboard for TPS registration.



Chapter 5

A Spline-based Non-linear

Diffeomorphism for Prostate

Registration

In this chapter, we present a novel method for non-rigid registration of transrec-

tal ultrasound and magnetic resonance prostate images based on a non-linear reg-

ularized framework of point correspondences obtained from a statistical measure of

shape-contexts. The segmented prostate shapes are represented by shape-contexts

and the Bhattacharyya distance between the shape representations is used to find the

point correspondences between the 2D fixed and moving images. The registration

method involves parametric estimation of the non-linear diffeomorphism between

the multimodal images and has its basis in solving a set of non-linear equations

of thin-plate splines. The solution is obtained as the least-squares solution of an

over-determined system of non-linear equations constructed by integrating a set of

non-linear functions over the fixed and moving images. However, this may not re-

sult in clinically acceptable transformations of the anatomical targets. Therefore, the

regularized bending energy of the thin-plate splines along with the localization error

of established correspondences should be included in the system of equations.

59
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5.1 Introduction

As observed in Chapter 3, spline-based deformations have been commonly used to

register prostate images or volumes. The interpolating Thin-plate Splines (TPS)

originally proposed by [23] that involves the establishment of a set of point corre-

spondences on a pair of images. However, these sets of correspondences are prone

to error in real applications and therefore [135] extended the bending energy of TPS

to approximation and regularization by introducing the correspondence localization

error. Nevertheless, all these methods ([23, 135]) are dependant on a set of point

correspondences on the pair of images to be registered. Domokos et al. [116, 117, 44]

proposed a class of non-rigid registration that does not require explicit point corre-

spondences and instead registers binary images solving a set of non-linear equations.

In this work, we have improved the generic non-linear registration framework

of [44] by establishing prostate-specific point correspondences and regularizing the

overall deformation. The point correspondences under the influence of which the

thin-plate bends are established on the prostate contours by a method based on

matching the shape-context [14] representations of contour points using Bhattacharyya

distance. The approximation and regularization of the bending energy of the thin-

plate splines are added to the set of non-linear TPS equations and are jointly mini-

mized for a solution.

The primary contributions of this chapter may be summarized as follows:

1. The use of shape-context and Bhattacharyya distance to establish point cor-

respondences on both fixed and moving images,

2. the use of a prostate-specific TPS transformation in the non-linear framework

of [44],

3. and constraining the non-linear diffeomorphism by adding the approximation

error and regularization of the TPS bending energy.

Analyzing the state-of-the art methods in Chapter 3 that exist for prostate

TRUS-MR image registration, or are based on spline-based transformations, we

observe that many methods provided clinically significant registration accuracies,

while some methods provided target registration accuracies greater than 3 mm.
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The methods that reported the gland overlap accuracies exhibited significantly poor

overlap (approx. 90%). Additionally, few methods also required manual interven-

tion at some stage to drive the registration procedure. In contrast, our proposed

deformable registration method is automatic and capable of providing improved

global and local registration accuracies that seem to be necessary for TRUS-guided

biopsy procedure.

To evaluate the effects of the proposed method to the existing framework of

[44] we have compared our method against two variations; 1) the method of [44]

where the TPS control points are placed on a uniform grid over the prostate mask

images, and 2) the non-linear TPS deformation same as [44], but with point corre-

spondences established by our proposed method and without the approximation and

regularization of bending energy. The proposed method is also evaluated against

two commonly used spline-based deformable registration methods of TPS ([23, 135])

and B-splines ([137]). The point correspondences required for the algorithm are

established by the method explained in Section 5.2. The non-linear registration

as described in Section 5.3 involves TPS transformation of the moving MR image

non-linearized by a set of polynomial functions. The registration process aims to

minimize the difference between the fixed image and the TPS transformed moving

image both non-linearized by the same set of polynomial functions. In addition, the

TPS bending energy is minimized with a regularization and considers the localiza-

tion errors of the point correspondences. The schema of the proposed registration

method is shown in Figure 5.1. The rectangles in dotted lines represent the point

correspondences method of Section 5.2 and the overdetermined system of equations

for the non-linear registration framework of Section 5.3 respectively.

5.2 Shape-contexts and point correspondences

The segmented prostate contour points are uniformly sampled using fixed Euclidean

distance of ε i.e. if ci is a contour point, i = 1, . . . ,N , then find the number of points

Ns such that

argmax
j

∥ci − cj∥2 ≤ ε, i ≠ j. (5.1)
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Figure 5.1: Schema diagram of the proposed registration framework.

Figure 5.2 shows the uniformly sampled segmented contours on the TRUS and MR

images.

Let the number of uniformly sampled points now be represented as n, then each

sample point ci may be represented by a shape descriptor that is a n − 1 length

vector of log-polar relative distances to points cj, where i ≠ j. The shape descriptor
is binned into a histogram that is uniform in log-polar space and this histogram is

the shape-context representation of a contour point ([14]) i.e. ci is represented by a

histogram hi(k, θ) such that

hi(k, θ) =#{cj, i ≠ j ∶ (ci − cj) ∈ bin(k, θ)} . (5.2)

k is the log r = log(√(xi1 − xj1)2 + (xi2 − xj2)2) and θ = tan−1 xj2−xi2

xj1−xi1
of the relative

distance (ci − cj), where, ci = (xi1, xi2) and cj = (xj1, xj2). As suggested by [14], a

total of 5 bins are considered for k and 12 bins for θ that ensures that the histogram

is uniform in log-polar space. This also means that more emphasis is given to the
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(a) (b)

Figure 5.2: Uniformly sampled contours. (a) and (b) are the uniformly sampled
segmented prostate contours on the TRUS and MR images respectively.

nearby sample points than those that are far away.

In the original work of [14], the point correspondence between two shapes is

obtained by a bipartite graph matching method. However, in this work we choose to

compute the Bhattacharyya distance ([20]) between the shape-context histograms

of two shapes to find the point correspondences. The bipartite graph matching

using the Hungarian method ([123], [83]) is robust with O(n3) time complexity in

finding point correspondences in shapes which are significantly different and belong

to different shape categories ([14]) e.g. correspondences between bird and elephant

or bone and apple, etc. However, we considered the Bhattacharyya distance since, it

finds point correspondences with O(n2) time complexity and is sufficient for shapes

such as prostate contours in TRUS and MRI which do not significantly differ from

each other except for some deformation. Thus, to match a point ci in a shape to a

point c′j in another shape, the Bhattacharyya coefficients between the shape-context

histograms of ci and all c′j are computed and the c′j that maximizes the relation in

Equation (5.3) is chosen as the corresponding point.

argmax
c′
j

5∑
k=1

12∑
θ=1

√
ĥi(k, θ).ĥ′j(k, θ), (5.3)

where, ĥi(k, θ) and ĥ′j(k, θ) are the normalized shape-context histograms of ci and

c′j respectively.

Figure 5.3 shows the log-polar bins of a histogram, the histograms of a point

correspondence in two shapes and the contour correspondences overlaid on the

TRUS and MR prostate shapes. Figure 5.4 additionally shows some examples
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Point correspondences example. (a) Log-polar histogram bins; (b) con-
tour points in TRUS; (c) point correspondences of (b) in MR; (d) log-polar shape-
context histogram of ‘○’ in (b); (e) log-polar shape-context histogram of ‘○’ in (c)-
both (d) and (e) show visual correspondence; (f) histogram of ‘×’ in (c) does not
show visual correspondence with histogram in (d). The x-y axes in the log-polar
shape-context histograms correspond to θ and log r respectively.

where the prostates are significantly deformed in the MR image than the TRUS

image. Nonetheless, Bhattacharyya distance could successfully extract point corre-

spondences on the prostate contours.

The first point correspondence established on both the TRUS and MR prostate

boundaries is marked with a ‘�’ in the posterior part of the axial gland in Figure

5.3(b) and Figure 5.3(c) respectively. This point is obtained in the TRUS image

as the intersection point of the longitudinal principal axis with the boundary. The

first two principal axes are computed from the principal component analysis of all

the contour points of the prostate shape in TRUS. The 8 point correspondences are

chosen on the prostate boundary with the rationale of capturing the inflexions of

the prostate curve. Therefore, once the first point at the posterior part of the gland

is defined on the TRUS boundary, the remaining 7 points are automatically placed

dividing the total number of uniformly sampled contour points by 8. Thereafter, the

8 point correspondences are searched for in the MR image using the afore-mentioned
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Figure 5.4: Point correspondences on TRUS and MR prostate contours using Bhat-
tacharyya distance. The left column shows the TRUS images and the right column
shows the MR images. The MR images show more deformed prostates than those
on the TRUS images. The 8 point correspondences are marked in ’red’.



66Chapter 5. A Spline-based Non-linear Diffeomorphism for Prostate Registration

method.

It is evident from the figures 5.3(b) and 5.3(c) respectively that the correspon-

dences are explicitly defined on the prostate contours. Therefore, the regularization

of the correspondences will not take the correspondences inside the prostate gland

into account and may cause deformations of the gland that are not acceptable for

clinical procedures. Hence, the prostate centroids and 4 other points that are the

midpoints of the straight lines between ‘�’ and ‘+’, ‘+’ and ‘×’, ‘×’ and ‘◇’ and
‘◇’ and ‘�’ respectively are considered (see Figure 5.5). The manner in which the

internal points are formed i.e. by the mid-points of the lines joining the boundary

control points in alternating sequence starting from the first point (‘�’), is neces-

sary to ensure that the control points are placed inside the prostate gland and yet

not too close to the boundary control points. The 13 point correspondences finally

established may be termed as pi, where, i = 1, . . . ,13 for further references.

(a) (b)

Figure 5.5: Point correspondences on TRUS and MR images. Correspondences
inside the prostate are shown by white ‘●’s. The dashed line signifies that the
white ‘●’ falling on the line is the mid-point of the same joining the correspondences
established on the contour.

5.3 Non-linear Diffeomorphism

To align a pair of binary shapes, let us consider the moving and the fixed images be

x = [x1, x2] ∈ R2 and y = [y1, y2] ∈ R2 respectively, such that there exists a bijective
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transformation ϕ(.) between the images as

y = ϕ(x)⇔ x = ϕ−1(y). (5.4)

The deformation field ϕ(.) can be decomposed for the 2D coordinates respectively

as ϕ(x) = [ϕ1(x), ϕ2(x)], where ϕ1, ϕ2 ∶ R
2 → R. If explicit point correspondences

are not established then the diffeomorphism is obtained by integrating over the

foreground pixels of the fixed and moving image domains If and Im respectively

([44]):

∫
If

ydy = ∫
Im

ϕ(x) ∣Jϕ(x)∣dx, (5.5)

where the integral transformation y = ϕ(x) and dy = ∣Jϕ(x)∣dx. ∣Jϕ∣ ∶ R2 → R is the

Jacobian determinant of the transformation at each foreground pixel of the moving

image as

∣Jϕ(x)∣ =
RRRRRRRRRRR

∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ2

∂x1

∂ϕ2

∂x2

RRRRRRRRRRR (5.6)

It is to be noted that the identity relation of Equation (5.4) is also valid under

the influence of a set of non-linear functions ωk(.) ∶ R2 → R, k = 1, . . . , l ([44]), acting
on both sides of Equation (5.5) as

∫
If

ωk(y)dy = ∫
Im

ωk(ϕ(x)) ∣Jϕ(x)∣dx. (5.7)

Therefore to estimate the parameters of the transformation the number of non-

linear functions l, must be larger than the number of parameters to generate a set

of linearly independent equations.

In this work, the underlying transformation is considered to be the radial-basis

function of TPS where the foreground pixels of the moving image deform under the

influence of the control points pi ∈ R2 established by the method of Section 5.2. The
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TPS transformation may be written as

ϕv(x) = av1x1 + av2x2 + av3 +
n∑
i=1

wivU(pi − x), (5.8)

where, i = 1, . . . n, v = 1,2, U ∶ R → R is the radial-basis function as U(r) = r2 log r2,
av1, av2 and av3 are the 6 affine parameters and wiv are the 2n TPS weight parameters

for the control points. The additional constraints for the TPS interpolation are that

the sum of the weights applied to the plate as well as moments with respect to both

axes should be 0 to ensure that the plate will not deform under the action of the

loads and are given as

n∑
i=1

wiv = 0 and
n∑
i=1

piuwiv = 0, u, v = 1,2. (5.9)

If, ϕ ∶ R2 → R2, ϕ(x) = [ϕ1(x), ϕ2(x)]T represents a TPS map with 6+2n parameters,

then the Jacobian Jϕ(x) is composed of the partial derivatives ([44]) given below

(u, v = 1,2)
∂ϕv

∂xu

= avu −
n∑
i=1

2wiv(piu − xu)(1 + log(∥pi − x∥2)) (5.10)

where, ∥.∥ is the Euclidean norm.

However, the transformation of Equation (5.8) when replaced in Equation (5.7)

will only consider the point set on the moving image under the influence of which

the image deforms to match the fixed image, therefore, the gray-level deformations

of the regions inside the prostate may not be meaningful for clinical applications.

The correspondences pi, established across the fixed and moving image domains as

p
f
i = [pfyi1 , pfyi2] and pmi = [pmxi1

, pmxi2
], i = 1, . . . , n respectively, play an important role

in constraining these deformations. We introduce the bending energy of the TPS

along with the correspondence localization errors ([135]) as an additional constraint

to solve the set of equations in Equation (5.7) as

ETPS = ∫
i
∫
i

⎡⎢⎢⎢⎢⎣
⎛⎝ ∂2ζ

∂pmxi1

2

⎞⎠
2

+ 2
⎛⎝ ∂2ζ

∂pmxi1
∂pmxi2

⎞⎠
2

+
⎛⎝ ∂2ζ

∂pmxi2

2

⎞⎠
2⎤⎥⎥⎥⎥⎦∂p

m
xi1

∂pmxi2
, (5.11)
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where, ζ ∶ R2 → R2, ζ = [ζ1(pmi ), ζ2(pmi )] is the transformation of the point corre-

spondences established on the moving image to match with those of the fixed image

is defined as

ζ = ζv(pmi ) = av1pmxi1
+ av2p

m
xi2
+ av3 +

n∑
j=1

wjvU(pmi − pmj ), v = 1,2. (5.12)

The 1st and 3rd terms in Equation (5.11) may be written analytically as follows:

∂2ζv

∂pmxiu

2
= n∑

j=1

2wjv

⎡⎢⎢⎢⎢⎣1 + log(∥p
m
i − p

m
j ∥2) + 2(pmxiu

− pmxju
)

∥pmi − pmj ∥2
⎤⎥⎥⎥⎥⎦, u = 1,2 (5.13)

and the 2nd term in Equation (5.11) can be written as

∂2ζv

∂pmxi1
∂pmxi2

= n∑
j=1

4wjv

⎡⎢⎢⎢⎢⎣
(pmxi1

− pmxj1
)(pmxi2

− pmxj2
)

∥pmi − pmj ∥2
⎤⎥⎥⎥⎥⎦, v = 1,2. (5.14)

Finally, the equation acting as a constraint is the regularized TPS bending energy

with the quadratic approximation term that considers the correspondence localiza-

tion error, is as follows:

1

n

n∑
i=1

∥pfi − ζ(pmi )∥2
σ2

i

+ λETPS = 0, (5.15)

where, σ2

i s are sum of the variances of the correspondences between the fixed and

moving images i.e. σ2

i = σf
i

2

+σm
i

2. The parameter λ is a regularization factor set with

a small value 0.0001 that ensures that the thin-plate adapts well to the deformation

of the local structures ([135]). Finally, ζ(pmi ) is obtained from Equation (5.12) and

ETPS from Equation (5.11).

The adopted set of non-linear functions in Equation (5.7) are the power functions

as proposed in [44]

ωk(x) = xak
1
xbk
2
, (5.16)

with (ak, bk) ∈ ⟨(0,0), (1,0), (0,1), (1,1), (2,0), (0,2), (2,1), (1,2), (2,2), . . . ,(6,6)⟩. The total number of parameters to be estimated is 32 that comprises of
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6 affine and 13 × 2 TPS weight parameters for 13 correspondences. Therefore, 49

linearly independent equations are generated using the power set of ωk(.) functions
with additional 4 equations for Equation (5.9) and one for Equation (5.15). The

solution to the set of non-linear equations i.e. Equation (5.7), Equation (5.9) and

Equation (5.15) is obtained using Levenberg-Marquardt (LM) algorithm ([104]). It

is to be noted that depending on the ωk functions in Equation (5.7), numerical in-

stability may arise due to the summation of the polynomial functions, i.e. the power

functions ωk(.) act on the set of coordinate values of the images, therefore summing

up the coordinate values (raised by some factor) would result in very large values.

In order to solve this problem, the foreground pixels of the moving and fixed images

are normalized within a unit square [−0.5,0.5]×[−0.5,0.5] so that the shape centers

become the origins while the range of ωk functions are chosen within the interval[−1,1]. A detailed explanation on the normalization of the image coordinates and

the interval of ωk(.) functions is provided by [44].

5.4 Experimental setup

The aim of this work is to register a TRUS prostate image acquired during biopsy

with a pre-acquired MR image of the same patient. Since the current proposition

is to ascertain the feasibility and accuracy of the registration algorithm for biopsy

procedures, the method requires an initial step of finding the MR slice correspond-

ing to the axial TRUS slice under observation. This may be accomplished by using

an electromagnetic (EM) tracker attached to the TRUS biopsy probe ([168]) or a

3D US-based tracking system ([12]). Slice correspondences are therefore determined

manually by an expert for the proposed research. However, a method to automati-

cally determine axial TRUS-MR slice correspondences will be discussed in Chapter

7.

In this work, after the TRUS-MR slice correspondences are established, the

prostate is manually segmented from the respective modalities. Although, our re-

search team is investigating on automatic prostate segmentation methods from both

TRUS and MRI ([65, 67, 62]), we use manual segmentation to avoid incorporating

the segmentation errors in the evaluation of the registration algorithm. The choice

of an automatic or semi-automatic prostate segmentation method can be made from
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the review paper published by [173].

Prostate mid-gland images of the same 20 patients as described in Section 4.5 of

Chapter 4 are used for the evaluation of our algorithm. The axial middle slices in

TRUS are chosen for which the corresponding axial MR slices are identified by one

expert radiologist and one expert urologist. Axial sweeps of the prostate gland from

base to apex/mid-gland are only available for 2 patient cases in TRUS whose corre-

sponding MR slices could also be identified. Therefore, these two cases are used to

show the accuracy of the proposed registration method for off-mid-gland TRUS-MR

slices. The prostates are manually segmented from both the moving MR and fixed

TRUS images. The image backgrounds are removed and only a region of interest

i.e. the prostate is used for the evaluation of the algorithm. The proposed point

correspondence and registration methods were implemented on MATLAB 2009(b)

and were run on an Intel Core2Duo 1.66 GHz processor with 2 GB RAM.

5.5 Experiments and Results

The TRUS slice is the fixed image and the respective MR slice is the moving image

for all the experiments. The evaluation metrics used are the same as defined in

Chapter 4, Section 4.5.

Various experiments are performed owing to the selection criteria of the number

of boundary and internal control points for a smooth and accurate deformation of

the prostate gland and its internal structures. The validations of such experiments

with varying number of control points are shown in Section 5.5.1. The experimental

results with different registration methods are shown in Section 5.5.2. The validation

of registration accuracies on a subset of patients when automatic segmentation is

used is shown in Section 5.5.3 and experimental results for the validation of the

proposed registration method for off mid-gland slices are shown in Section 5.5.4. A

comprehensive statistical analysis of the results is presented in Section 5.5.5.

5.5.1 Control Points

As mentioned in Section 5.2 that a total of 8 point correspondences are required on

the boundary and 4 internal points along with 1 point on the prostate centroid for
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(a) (b)

Figure 5.6: 6 point correspondences on the boundary with 3 internal points and 1
point on prostate centroid. The ‘�’s mark the first set of point correspondences on
the boundary. (a) Point sets on the TRUS image, (b) corresponding points of TRUS
image on the MR prostate image.

a smooth deformation. Therefore, to validate the number of boundary and internal

points, several experiments are performed with less and more than 8 boundary points

along with the internal points generated in an alternating manner as mentioned in

Section 5.2.

The first experiment is done with only 6 points on the boundary and the internal

points are generated accordingly as the mid-points of the lines joining the alternate

boundary points starting from the first point ‘�’ as shown in Figure 5.6. It can

be seen clearly from Figure 5.6(a) and Figure 5.6(b) respectively that the inflexion

points at the posterior parts of the prostate axial slices are not captured properly.

The following experiment is done increasing the number of boundary points from

8 (proposed) to 10. Accordingly the internal points are also generated. Figure 5.7(a)

and Figure 5.7(b) show the 10 boundary and 5 internal points along with 1 prostate

centroid. Although the boundary has several points to capture the inflexions of the

prostate curve, the internal points generated are placed near the boundaries. This

may result in distorted deformations of the prostate internal structures.

Finally an experiment is performed using 8 boundary points without any internal

points or centroid. Figure 5.8(a) and Figure 5.8(b) show the point correspondences

placed on the boundary for the TRUS and the MR prostate images respectively.

Table 5.1 shows the registration accuracies in terms of DSC, TRE and TLE for

the experiments performed with varied number of control points for all 20 patient
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(a) (b)

Figure 5.7: 10 Point correspondences on the boundary with 5 internal points and
1 point on prostate centroid. The ‘�’s mark the first set of point correspondences
on the boundary. (a) Point sets on the TRUS image, (b) corresponding points of
TRUS image on the MR prostate image.

cases. M1 is defined for 6 boundary points and 4 internal points, M2 is defined for

10 boundary points and 6 internal points and M3 is defined for 8 boundary points

and no internal points. These abbreviations are being consistently used in the

remaining document. As shown by the DSC values of Table 5.1 that with varying

point correspondences on the boundary, the global registration accuracies do not

change significantly by the virtue of the diffeomorphic function. However, the local

registration accuracies measured in terms of TRE have a lot of variation between

the different methods M1, M2 and M3 respectively. Figure 5.9 shows the qualitative

registration results using the proposed method with different sets of control points

for patient 6. Although the qualitative results with M1 and M2 (rows 2 and 3) do

not show significant differences with the proposed 8 boundary and 5 internal points

(last row), the unconstrained deformation in the absence of the internal points is

seen for the method M3 (row 4), i.e. the prostatic urethra in the deformed image is

away from that on the fixed image.

5.5.2 Registration Methods

The proposed method and its two variants as mentioned in Section 5.1 are replaced

by acronyms for further references as NLTPS-REGCORR (proposed), NLTPS-UNI

(non-linear TPS with control points placed on a uniform grid) and NLTPS-CORR

(non-linear TPS with proposed point correspondences without regularization of
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Table 5.1: A comparison of global and local registration accuracies for the proposed
method with varying control points. M1 is the acronym for 6 boundary points and
4 internal points, M2 is the acronym used for 10 boundary points and 6 internal
points and M3 is the acronym used for 8 boundary points and no internal points.
P# represents the patient number, µ is the mean and σ is the standard deviation of
the measures. A high DSC value signifies good global registration accuracy, while
a low TRE and TLE signifies good local registration accuracies around anatomical
landmarks.

P#
Varying Point Correspondences

M1 M2 M3
DSC TRE TLE DSC TRE TLE DSC TRE TLE

(mm) (mm) (mm) (mm) (mm) (mm)
1 0.974 1.08 0.23 0.957 2.79 0.09 0.968 2.37 0.25
2 0.985 1.78 0.06 0.985 1.46 0.05 0.978 1.29 0.05
3 0.980 2.29 0.07 0.981 1.22 0.04 0.980 0.98 1.14
4 0.986 3.01 0.50 0.988 2.39 0.30 0.984 1.85 0.84
5 0.984 0.79 0.05 0.979 0.59 0.07 0.978 1.39 0.95
6 0.970 0.39 0.03 0.973 0.26 0.04 0.971 1.76 0.05
7 0.984 3.89 0.09 0.982 3.60 0.12 0.985 12.05 0.03
8 0.981 5.59 0.20 0.984 2.08 0.58 0.981 2.30 0.32
9 0.983 1.33 0.28 0.981 1.98 0.15 0.981 1.87 0.24
10 0.985 3.98 0.05 0.986 4.03 0.04 0.986 4.15 0.03
11 0.983 2.38 0.08 0.982 1.93 0.08 0.980 2.81 0.05
12 0.982 1.15 0.26 0.982 0.98 0.32 0.981 1.33 0.26
13 0.984 3.84 0.06 0.981 5.21 0.05 0.983 5.64 0.07
14 0.982 0.65 0.04 0.986 0.46 0.02 0.986 2.52 0.04
15 0.984 14.05 0.08 0.982 14.07 1.10 0.984 17.40 0.07
16 0.985 2.91 0.09 0.979 1.44 0.08 0.980 2.08 0.10
17 0.981 2.12 0.28 0.982 1.87 0.19 0.984 2.45 0.16
18 0.977 0.67 0.30 0.980 1.42 0.28 0.980 0.60 0.33
19 0.979 1.96 0.08 0.979 2.05 0.04 0.978 1.36 0.17
20 0.976 0.76 0.21 0.982 1.13 0.36 0.984 0.60 0.19

µ 0.981 2.73 0.15 0.981 2.55 0.20 0.981 3.34 0.27
σ 0.004 3.01 0.12 0.006 2.98 0.26 0.005 4.16 0.33
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(a) (b)

Figure 5.8: 8 Point correspondences on the boundary with no internal points or
centroid. The ‘�’s mark the first set of point correspondences on the boundary. (a)
Point sets on the TRUS image, (b) corresponding points of TRUS image on the MR
prostate image.

bending energy) respectively. The method in NLTPS-REGCORR and NLTPS-

CORR use 13 point correspondences established by the method in Section 5.2.

A total of 16 uniform grid-points are used for NLTPS-UNI. We have quantita-

tively compared the registration results of NLTPS-REGCORR against NLTPS-UNI,

NLTPS-CORR, traditional TPS ([135]) and B-splines ([137]) method with their

global registration accuracies in terms of DSC, 95% HD, local registration accu-

racies in terms of TRE, TLE and timing requirements in Table 5.2 and Table 5.3

respectively. The traditional TPS ([135]) registration method is used with a total

of 32 point correspondences on the boundary with 5 internal points as discussed in

[108]. The B-splines registration follows a multiresolution framework in 3 spatial

resolutions and uses uniform control grids with 16 × 16 pixel spacing in the final

resolution ([91]). Table 5.3 also shows the number of uniform control grids used for

the B-splines ([137]) registration. It is to be noted that the traditional TPS requires

a total of 37 point correspondences to provide a smooth transformation, while our

proposed method can perform well with only 13 point correspondences. The tradi-

tional TPS finds the transformation as a solution to a least-squares problem. Any

least-squares solution requires an over-determined system of equations to provide

numerically stable solutions. Therefore, the traditional TPS uses more number of

control points than our proposed method since only one equation is associated with

each control point. On the contrary, a set of power function polynomials are involved
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Figure 5.9: Deformation of the prostate gland with different sets of control points
for Patient 6. Row 1 shows the TRUS and the MR images, row 2,3 and 4 show the
qualitative results of methods M1, M2 and M3 respectively and row 5 shows the
results with the proposed optimum set of control points.
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with each control point for our method; thereby providing an over-determined sys-

tem of equations with less number of control points. Since the B-splines of [137]

uses uniform control grid; therefore a consistent number of control points similar to

the traditional TPS or the proposed method could not be used.

Figure 5.10 shows some results of the transformation using the methods NLTPS-

UNI, NLTPS-CORR and NLTPS-REGCORR respectively. The results for patients

7,8,11 and 12 are shown in each column. Figure 5.11 shows some of the results of

TRUS-MR fusion with traditional TPS and B-splines and the corresponding results

using our proposed method. The TPS uses point correspondences as described in

Section 4.1.1 and the B-splines used uniform grids. The results for patients 1,5,15

and 17 are shown in columns. The choice of a different set of patient cases for Figure

5.11 ensures that more qualitative results obtained from the proposed algorithm are

shown. Moreover, the results that are unbiased towards the proposed method and

have acceptable registration accuracies when traditional spline-based methods are

used are also presented.

5.5.3 Automatic Segmentation

The registration methods as discussed in Section 5.3 are performed using manu-

ally segmented prostate contours for both the TRUS and MR images in order to

avoid the automatic segmentation errors in the process of evaluating the registra-

tion accuracies. However, we have used 10 patient cases i.e. patients 5 − 14 among

the 20 patients to evaluate the sensitivity of the registration accuracies when an

automatic segmentation method is employed. The method of [62] is used to seg-

ment the prostate from both the TRUS and MR images. Figure 5.12 shows the

final segmented contours in red lines for the TRUS and the MR images, the point

correspondences placed accordingly and the qualitative registration results for the

same patient case. It is observed from the figure that the automatic segmentation

of the prostate contour in the MR image has the maximum overlap with the manual

segmentation while a satisfactory overlap is obtained for the prostate contour in the

TRUS image.

Table 5.4 shows the DSC, HD, TRE and TLE values for the 10 patients (pa-

tient 5− 14). It is to be noted that despite some segmentation inaccuracies induced
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Table 5.2: A comparison of registration accuracies of the non-linear TPS registration
NLTPS-UNI, NLTPS-CORR, NLTPS-REGCORR, traditional TPS and B-splines
respectively. µ is the mean and σ is the standard deviation of the measures. A high
DSC and low TRE and TLE values signify good registration accuracy. The ‘-’ values
indicate that the targets could not be identified due to significant deformation of
the gland after the transformation.
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2 0.987 2.59 0.09 0.989 5.00 0.21 0.981 1.34 0.07 0.957 3.98 0.10 0.980 0.37 0.09
3 0.987 2.63 0.03 0.984 5.80 0.09 0.980 1.12 0.09 0.974 7.92 0.13 0.973 9.93 0.11
4 0.989 1.42 0.07 0.989 2.76 0.02 0.982 0.93 0.54 0.982 5.21 0.49 0.985 1.91 0.28
5 0.990 1.63 0.03 0.989 3.97 0.06 0.979 0.50 0.08 0.972 2.11 0.07 0.889 9.08 0.04
6 0.989 7.03 0.78 0.990 3.24 0.04 0.971 0.29 0.03 0.979 1.17 0.05 0.869 6.11 0.04
7 0.989 14.29 0.26 0.987 13.99 0.50 0.984 3.86 0.10 0.977 4.43 0.12 0.959 0.90 0.12
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9 0.987 1.89 0.02 0.988 1.99 0.03 0.981 1.10 0.24 0.978 2.70 0.46 0.960 1.56 0.41
10 0.989 2.15 0.02 0.989 3.07 0.02 0.984 3.58 0.03 0.972 6.09 0.04 0.952 8.29 0.09
11 0.990 12.95 0.38 0.989 12.68 0.34 0.980 2.63 0.07 0.972 2.98 0.12 0.962 6.12 0.04
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16 0.984 4.91 0.06 0.986 3.40 0.02 0.980 2.01 0.10 0.970 1.86 0.07 0.974 7.27 0.13
17 0.984 1.11 0.10 0.987 3.22 0.08 0.982 1.30 0.27 0.982 0.18 0.32 0.894 4.32 0.12
18 0.985 0.65 0.02 0.983 1.26 0.01 0.979 1.34 0.23 0.982 0.91 0.26 0.985 0.51 0.26
19 0.983 3.08 0.20 0.983 3.66 0.13 0.978 1.14 0.12 0.983 1.47 0.23 0.936 5.12 0.19
20 0.985 1.61 0.04 0.986 2.41 0.17 0.983 1.07 0.19 0.973 3.11 0.30 0.939 5.03 0.20

µ 0.987 4.27 0.16 0.985 4.86 0.13 0.980 1.60 0.15 0.975 3.33 0.17 0.944 4.56 0.13
σ 0.003 4.20 0.19 0.010 3.49 0.13 0.004 1.17 0.12 0.007 2.33 0.14 0.036 2.98 0.10
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Table 5.3: Comparison of registration accuracies in terms of 95% HD and timing
requirements for NLTPS-UNI, NLTPS-CORR and NLTPS-REGCORR, TPS ([135])
and B-splines ([137]) registration methods. µ signifies the mean values and σ the
standard deviation. A low HD value corresponds to good contour registration accu-
racy.
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2 72.21 0.78 67.78 0.78 67.93 1.07 22.71 2.32 13×15 98.30 1.07
3 122.02 1.47 115.19 1.64 115.05 1.74 83.91 2.09 15×20 126.30 2.08
4 123.66 0.82 116.91 0.94 109.70 1.30 94.58 1.40 17×19 140.47 1.07
5 111.06 1.07 105.54 0.82 105.73 1.30 55.35 2.35 14×19 107.82 8.06
6 99.08 0.82 93.81 0.82 93.46 1.98 47.20 2.32 14×18 89.98 6.16
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Figure 5.10: Qualitative registration results of NLTPS-UNI, NLTPS-CORR and
NLTPS-REGCORR for patients 7,8,11 and 12. Rows 1 and 2 are the fixed TRUS
and the moving MR images respectively. Rows 3 and 4 show the transformed MR
images for the methods NLTPS-UNI and NLTPS-CORR respectively. Rows 5 and
6 show the transformed MR images and the checker-board of the fixed TRUS and
the transformed MR images for the method NLTPS-REGCORR (proposed).
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Figure 5.11: Qualitative registration results for TPS, B-splines compared with the
proposed method (NLTPS-REGCORR). The columns signify patient cases 1,5,15
and 17 respectively. Rows 1 and 2 show the fixed TRUS and moving MR images
respectively. Rows 3 and 4 show the transformed MR and checkerboard using tra-
ditional TPS. Similarly, rows 5 and 6 show the results of B-splines and rows 7 and
8 show the results of the proposed method.
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Figure 5.12: Qualitative registration results with point correspondences established
according to automatically segmented prostate contours. The first row shows the
contours obtained using automatic segmentation method (in red) and manual seg-
mentation (in green) on both TRUS and MR images. The second row shows the
point correspondences on the prostate for both the TRUS and MR images and the
third row shows the resulting fused TRUS-MR image and the TRUS-MR checker-
board.
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Table 5.4: Quantitative global and local registration accuracies when automatic
segmentation ([62]) method is used. µ denotes the mean and σ denotes the standard
deviation of the respective measures. A high DSC, low HD, low TRE and low TLE
represent good registration accuracy.

P# DSC HD (mm) TRE (mm) TLE (mm)
5 0.986 0.78 1.28 0.09
6 0.981 1.30 0.90 0.02
7 0.985 1.30 2.27 0.06
8 0.983 1.56 1.40 0.07
9 0.982 1.56 1.58 0.23
10 0.987 1.10 1.65 0.04
11 0.977 1.66 1.60 0.05
12 0.983 1.40 2.03 0.22
13 0.981 1.30 3.04 0.12
14 0.979 1.40 1.67 0.04

µ 0.982 1.34 1.74 0.09
σ 0.003 0.25 0.59 0.07

by the automatic segmentation process; the registration accuracies do not change

significantly when compared to the registration with manually segmented contours.

5.5.4 Registration of Non Mid-Gland Slices

The proposed registration method has been evaluated with one axial mid-gland

slice for each of the 20 patients. However, 2D sweeps of the prostate from base

to apex/mid-gland in TRUS are available for two patients 6 and 7 respectively.

Therefore, to validate the proposed registration method for non mid-gland slices the

afore-mentioned patient datasets are used. Since a tracking system is not used with

the TRUS probe, the probe angle cannot be retrieved; that obviates an assumption

in the validation process that the TRUS slices are parallel to the corresponding MR

slices. A total of 9 axial slices are taken for patient 6 and 7 axial slices for patient 7

respectively. Table 5.5 shows the slice-by-slice registration accuracies for the patients

6 and 7 in terms of DSC, TRE and TLE. Figure 5.13 shows the TRUS-MR slices

from base to apex for patient 6 and their qualitative registration results.

Table 5.6 summarizes the different experiments performed for mid-gland/non

mid-gland registrations with manual/automatic segmentation on different patient
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Figure 5.13: Qualitative results of the proposed method when applied to non mid-
gland slice. The rows show the base to apex slice registrations (rescaled) top-to-
bottom for Patient 6.
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Table 5.5: Slice-by-slice registration accuracies for base to apex slices. µ denotes the
mean and σ denotes the standard deviation of the respective measures. S# denotes
slice number from base to apex. A high DSC, low TRE and low TLE represent good
registration accuracy.

S#
Patient 6 Patient 7

DSC TRE (mm) TLE (mm) DSC TRE (mm) TLE (mm)
1 0.961 1.39 0.12 0.978 1.73 0.06
2 0.974 1.26 0.09 0.985 2.69 0.03
3 0.981 0.70 0.02 0.981 0.95 0.02
4 0.977 1.66 0.21 0.980 2.20 0.08
5 0.974 0.73 0.03 0.974 2.80 0.56
6 0.973 0.29 0.01 0.976 3.21 0.23
7 0.972 1.09 0.54 0.984 3.57 0.19
8 0.980 0.95 0.25 - - -
9 0.982 1.08 0.08 - - -

µ 0.975 1.02 0.15 0.980 2.45 0.17
σ 0.006 0.41 0.17 0.004 0.90 0.19

cohorts.

Table 5.6: Quantitative registration results for mid-gland and off mid-gland regis-
tration with manual or automatic segmentation on different patient cohorts.

Exp# 1 2 3
Method NLTPS-REGCORR NLTPS-REGCORR NLTPS-REGCORR

Segmentation manual manual automatic
Prostate mid-gland off mid-gland mid-gland
Patients 1 − 20 6,7 5 − 14
DSC 0.980 ± 0.004 0.977 ± 0.006 0.982 ± 0.003

TRE (mm) 1.60 ± 1.17 1.64 ± 0.97 1.74 ± 0.59

5.5.5 Statistical Analysis

5.5.5.1 Control Points

It is observed from Table 5.7 for a varied number of control points (M1, M2 & M3)

and for the proposed with 13 control points (NLTPS-REGCORR) that the average

DSC values are almost similar. Therefore, to measure the statistical significance

of the null hypothesis that the mean values of all the methods are similar we need

to verify the normality and homogeneity of the variances (homoscedasticity) of the
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Table 5.7: A comparison of the global and local registration accuracies for the
different methods and their statistical significance. The methods are abbreviated
from A to H for M1, M2, M3, NLTPS-UNI, NLTPS-CORR, NLTPS-REGCORR,
TPS and B-splines respectively. HD and TRE are in (mm) with µ denoting the
mean and σ the standard deviation. Statistical significance is computed for 95%
confidence interval i.e a p < 0.05 is considered as similarity of means with high
statistical significance, while a very low p-value denotes significantly different means.
The letters within brackets in the p-value field (p) denote the methods that are used
for comparison. The empty p-value fields signify that either the comparisons are
irrelevant or could not be computed due to non-normal and heteroscedastic data.

Methods M
1

M
2

M
3

N
L
T
P
S
-U

N
I

N
L
T
P
S
-C

O
R
R

N
L
T
P
S
-R

E
G
C
O
R
R

T
P
S

([
13
5
])

B
-s
p
li
n
e
s

([
13
7
])

Abbrv. A B C D E F G H

D
S
C

µ 0.981 0.981 0.981 0.987 0.985 0.980 0.975 0.944
σ 0.004 0.006 0.005 0.003 0.010 0.004 0.007 0.036
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< 0.03 - - < 0.01 < 0.01 < 0.0001 - -
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µ - - - 1.31 1.35 1.63 2.17 4.85
σ - - - 0.57 0.61 0.48 0.85 2.30
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µ 2.73 2.55 3.34 4.27 4.86 1.60 3.33 4.56
σ 3.01 2.98 4.16 4.20 3.49 1.17 2.33 2.98

p
=0.0035 - < 0.05 - - < 0.005 - < 0.0006
(A,B,C,F) (C,F) (E,F,H) (D-H)

data ([144, 170]). Common data transformations such as log, square-root and arcsine

transformations could not suitably scale the data to a normal distribution. Hence,

Lilliefors test ([97]) was used on the raw data to verify the normality of the distri-

bution. The test rejected the null hypothesis of normal distribution. Consequently,

Levene’s test ([96]) is used to verify the homogeneity of the variances for the three

methods which accepted the null hypothesis (Levene’s test is used to measure the

homogeneity of variances if the data are non-normal, otherwise, Bartlett’s test could

have been used). Since the measurements of DSC are taken for the same samples

over the methods (M1, M2, M3 and NLTPS-REGCORR), we considered Friedman’s
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Figure 5.14: TRE means for different methods with significant difference between
M3 (red line) and NLTPS-REGCORR (blue line).

test ([59]) (similar to two-way ANOVA) for paired data. The test accepted the null

hypothesis that the mean ranks for the DSC of the 4 methods with different sets of

control points are similar with χ2 = 3.45, d.f = 3, p < 0.03.
The TRE values in Table 5.1 and Table 5.2 respectively do not follow a nor-

mal distribution. However, the log transformation of the raw data accepted the

null hypothesis of normality of the data using Lilliefors test. The null hypothesis

of the homoscedasticity of variances for the log-transformed data is also true when

Bartlett’s test ([10]) is used. A one-way ANOVA (Analysis of Variance) ([56]) is

used to test the null hypothesis of similarity of means where the null hypothesis is

accepted at 95% confidence level with F = 5.08, d.f = 3, p = 0.0035. Although, the

ANOVA test accepted the null hypothesis, a Dunn’s post test ([48]) is additionally

performed to identify the dissimilarities in the TRE means of the methods M1, M2,

M3 and NLTPS-REGCORR. The pairwise comparison test revealed that only M3

and NLTPS-REGCORR TRE means are siginificantly different with p < 0.05. Fig-

ure 5.14 shows the mean estimates of the TRE with their confidence intervals for

the given methods. The figure depicts that the mean TRE of the proposed NLTPS-

REGCORR is significantly different than M3 method (proposed method with no

internal points).
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5.5.5.2 Registration Methods

It is observed from Table 5.7 that the DSC and HD values for all the three methods

(NLTPS-UNI, NLTPS-CORR and NLTPS-REGCORR) are similar. Therefore, a

statistical analysis of the mean DSC and HD values is done separately for the afore-

mentioned method leaving out TPS ([135]) and the B-splines ([137]) registration

methods. Common data transformations could not scale the given DSC values of

Table 5.2 into a normal distribution and hence, Lilliefors test used to verify the

normality of the distribution rejected the null hypothesis. Consequently, Levene’s

test is used to verify the homogeneity of the variances for the three methods which

accepted the null hypothesis. Since the measurements of DSC of Table 5.2 and

HD of Table 5.3 are taken for the same samples over the methods (NLTPS-UNI,

NLTPS-CORR and NLTPS-REGCORR), we used Friedman’s test for paired data.

The test rejected the null hypothesis that the mean ranks for the DSC and HD

and values of the 3 methods are similar with χ2 = 25.27, d.f = 2, p < 0.0001 and

χ2 = 17.29, d.f = 2, p < 0.0001 respectively. This signifies that at least one of the

three methods differs in mean rank from the rest. Therefore, Dunn’s post test is

used for pairwise comparison between the methods to identify the dissimilarity. The

test identified that the means of the DSC values for NLTPS-UNI and NLTPS-CORR

are not statistically significantly different and those for NLTPS-UNI & NLTPS-

REGCORR and NLTPS-CORR & NLTPS-REGCORR are statistically significantly

different with p < 0.001 for both respectively. Similar statistical significances are

observed for the means of HD values for the first three methods of Table 5.3.

Analyzing the TRE columns of Table 5.2 it is observed that a log transformation

of the raw data could suitably scale the data into a normal distribution. There-

fore, Bartlett’s test is used to analyze the homoscedasticity of the variances that

accepted the null hypothesis. The data sample sizes being different for the 5 meth-

ods (19 values for NLTPS-UNI & NLTPS-CORR and 20 values for the remaining

methods), the Kruskal-Wallis test (non-parametric one-way ANOVA)([92]) is used

to compare the means of the ranked log-transformed TRE values. The test re-

jected the hypothesis of equality of ranked means with χ2 = 19.6, d.f = 4, p = 0.0006,
which signifies that at least one of the method has statistically significantly different

mean TRE than the remaining. Consequently, the Dunn’s post test is performed
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to find the dissimilarity in the mean ranks of the TRE values. The test revealed

that NLTPS-REGCORR (proposed method) has a statistically significantly differ-

ent mean TRE than NLTPS-CORR and the B-splines registration methods with

p < 0.005, while not so significantly different than NLTPS-UNI and TPS registra-

tion methods. Nevertheless, the analysis of raw data for the TRE columns in Table

5.2 show a 2 − 3 times improvement in mean TRE for the proposed method than

NLTPS-UNI and TPS. The TLE value of 0.15 ± 0.12 mm for NLTPS-REGCORR

signifies a low repeatability error in identification of the anatomical targets by clin-

ical experts. Figure 5.15 shows the box-plot obtained from the Kruskal-Wallis test

for the ranked TRE values of the 5 registration methods. Figure 5.16 shows the

pairwise comparisons of log-transformed TRE values for the different methods. The

figure reveals that NLTPS-REGCORR has statistically significantly different mean

TRE than NLTPS-CORR and B-splines.

Figure 5.15: Kruskal-Wallis comparison of medians of ranked TRE values. Non-
overlapping notches signify that the median values for the given methods are signif-
icantly different at 95% confidence level.

On analysis of the DSC data in Table 5.2 and HD data in Table 5.3 for NLTPS-

REGCORR, TPS and B-Splines respectively, it is observed that the data do not

follow a normal distribution and the data are heteroscedastic. Therefore, none of

the classical statistical hypothesis testing method can be applied to compare the
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Figure 5.16: TRE means for different methods with significant difference between
NLTPS-REGCORR (blue line) and NLTPS-CORR and B-splines (red lines).

means of the DSC and HD measures of the proposed method to that of the TPS

and B-splines. However, the mean DSC and HD values of the proposed method are

better than the TPS and B-splines methods.

5.5.5.3 Automatic Segmentation

The DSC values of Table 5.4 and the DSC values for patients 5−14 related to NLTPS-

REGCORR in Table 5.2 follow a normal distribution with homogeneity of variances.

Therefore, a two-tailed Student’s t-test ([68]) is used to identify the similarity of

the means of the DSC data for the proposed method with manual segmentation

and the proposed method with automatic segmentation. The null hypothesis is

accepted with p < 0.01 signifying that the mean DSC value obtained when automatic

segmentation is employed is similar to that obtained with manual segmentation.

However, for the HD values of the same set of patients as shown in Table 5.4 and

Table 5.3 (HD column of NLTPS-REGCORR) need to be square-root transformed

to be scaled into a normal distribution. Thereafter, the homoscedasticity of the

data is determined and a two-tailed Student’s t-test revealed statistically significant

similar mean HD values with p < 0.01.
The log-transformed TRE data of Table 5.4 and those from TRE column of

NLTPS-REGCORR for patients 5 − 14 of Table 5.2 show a normal distribution but
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heterogeneity of variances. Therefore, a two-tailed Welch’s t-test ([165]) is performed

that accepted the null hypothesis signifying that the means of the log-transformed

TRE of the methods compared are statistically significantly similar with p < 0.01.

5.6 Discussions

The statistical analysis in Section 5.5.5.1 of the DSC data in Table 5.1 for the meth-

ods with different sets of control points reveal that the mean DSC values for all the

3 methods and the proposed NLTPS-REGCORR in Table 5.2 are similar. However,

the mean TRE of M3 (8 boundary points with no internal points) is significantly

lower than the proposed method. This suggests that internal points are necessary to

maintain clinically acceptable deformations of the prostate gland (as seen in Figure

5.9). Although methods M1 (6 boundary and 4 internal points) and M2 (10 bound-

ary and 6 internal points) do not show statistically significantly different mean TRE

values than NLTPS-REGCORR, the values are definitely higher than the proposed

method that signify inaccurate local deformations.

The analysis in Section 5.5.5.2 of the data in Table 5.2 and Table 5.3 allow us to

infer that the region overlap measures (DSC and HD) are slightly better for the meth-

ods NLTPS-UNI and NLTPS-CORR and inferior for traditional TPS and B-splines

methods than those of NLTPS-REGCORR. However, the TRE values are low for

the proposed method with high statistical significance when compared with NLTPS-

CORR and B-splines registration methods. Although, the TRE values of TPS and

NLTPS-UNI are not statistically significantly different than the proposed method,

they are definitely 2 − 3 times higher than NLTPS-REGCPRR. This signifies that

the local deformations of the prostate gland anatomical structures (targets) are clin-

ically acceptable as provided by the method NLTPS-REGCORR. The transformed

MR images obtained as the results of the methods NLTPS-UNI and NLTPS-CORR

(rows 3 and 4 of Figure 5.10) clearly illustrate the fact that the transformation of

the gland anatomical structures are not acceptable for clinical procedures and may

be verified quantitatively from the TRE value columns of NLTPS-UNI and NLTPS-

CORR in Table 5.2 for the respective patients.

The possible reason for slightly improved region overlap measures with NLTPS-

UNI and NLTPS-CORR compared to the proposed NLTPS-REGCORR is that the



92Chapter 5. A Spline-based Non-linear Diffeomorphism for Prostate Registration

non-linear TPS equations aim at minimizing the image differences of the TRUS and

MR binary mask images. Therefore, the prostate boundaries are well aligned for

NLTPS-UNI and NLTPS-CORR. On the contrary, NLTPS-REGCORR constrains

the non-linear transformations with the additional term of regularized bending en-

ergy and correspondence localization errors. This results in smooth and clinically

meaningful gray-level deformations of the gland anatomical structures in addition to

a satisfactory prostate overlap of the transformed MR image with that of the TRUS.

The global overlap measures shown in Table 5.2 and Table 5.3 when compared to

those of the proposed method apparently indicate that our proposed method pro-

vides better prostate gland overlap than B-splines, although not significantly better

than traditional TPS.

Considering the TRE measure to be more appropriate in evaluating registra-

tion accuracy, our method provides the least mean TRE with less than 3 mm (as

suggested by the clinical experts) accuracy when compared to the traditional spline-

based methods or the variations of the proposed method. Patient cases 1,5,15 and

17 of Figure 5.11 (columns 1 − 3 and 5 − 6) reveal that the B-spline transformation

(rows 5 − 6) has significantly distorted the prostate gland, which are also reflected

in the TRE values of the respective patient rows of Table 5.2. Although traditional

TPS transformation (rows 3 − 4) does not show any significant deformation of the

prostate other than rugged transformations around the prostate edges as shown in

Figure 5.11, the TRE values for the respective patients are higher than the proposed

method as seen from Table 5.2. Therefore, the proposed method seems to provide

better registration accuracies when compared with the other methods.

The analysis of the global and local registration accuracies in Table 5.4 and in

Table 5.2 for patients 5 − 14 shows that automatic segmentation does not signifi-

cantly affect the registration accuracies compared to when manual segmentation is

used. The example shown in Figure 5.12 also shows that there are significant over-

laps between the manually and automatically segmented contours both in TRUS

and MR images. Finally, the validation of the proposed registration method on the

base and non mid-gland slices (Table 5.6) have shown high registration accuracies

with < 3 mm average TRE for patients 6 and 7 respectively.

The average times required for the NLTPS-CORR and NLTPS-REGCORRmeth-

ods are similar (see Table 5.3). However, the average time is slightly higher for
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NLTPS-UNI considering 16 control points being used instead of 13 control points

as in NLTPS-REGCORR. The complexity for the algorithms NLTPS-REGCORR

and its variations (NLTPS-UNI and NLTPS-CORR) is O(N +M), where, N and

M are the number of foreground pixels for the fixed and the moving images re-

spectively. The traditional TPS has the least average computation time, since the

complexity O(n) involves only the number of correspondences (n) across the fixed

and moving images. However, it is to be noted that the implementation does not

guarantee bijectivity of the TPS transformation and therefore suffers from distorted

transformations in some cases e.g. see Figure 5.11 patients 5 and 15 (columns 2

and 5, rows 3 and 4 respectively). The B-splines method requires the maximum

time for registration owing to evaluation of the image similarity measure (NMI)

and following a multiresolution framework for 3 resolutions. Despite the use of a

multiresolution framework, the traditional B-splines method fails to provide good

registration accuracy in most cases. On the contrary, our proposed method does

not follow any multiresolution framework; however, by the virtue of the non-linear

polynomial functions, a smooth and bijective transformation is achieved. The com-

putation time of the proposed algorithm being highly dependent on the number of

image pixels can be parallelized and considering its unoptimized implementation in

MATLAB, a speed-up of computation time is possible by C++/GPU programming.

5.7 Conclusions

A new non-linear diffeomorphic framework with TPS being the underlying trans-

formation has been proposed to register prostate multimodal images. A method to

establish point correspondences on a pair of TRUS and MR images has also been

proposed that is based on the computation of Bhattacharyya distance for shape-

context representations of contour points. The bijectivity of the diffeomorphism is

maintained by integrating over a set of non-linear functions for both the fixed and

transformed moving images. The regularized bending energy and the localization

errors of the point correspondences established between the fixed and moving images

have further been added to the system of non-linear equations added to the TPS

constraints. This additional constraint ensured regularized deformations of the local

anatomical structures inside the prostate that are meaningful for clinical interven-



94Chapter 5. A Spline-based Non-linear Diffeomorphism for Prostate Registration

tions like prostate biopsy. The performance of the proposed method has been com-

pared against two variations of non-linear TPS transformations where the control

points had been uniformly placed on a grid for the first and the control points were

established using the proposed point correspondence method for the latter. Both

these methods did not involve the regularization and only relied on the non-linear

transformation functions. The results obtained on real patient datasets concluded

that the overall performance of the proposed method in terms of global and local

registration accuracies is better compared to the two variations as well as traditional

TPS and B-splines based deformable registration methods, and therefore could be

feasibly applied for prostate biopsy procedures. The proposed method has been

validated against a varied number of control points that inferred that control points

inside the prostate gland are necessary to maintain clinically meaningful deforma-

tions and that 8 boundary points capturing the inflexions of the prostate curve are

optimally suitable than less or more boundary control points. The proposed method

has been shown to be not affected by automatic segmentation inaccuracies owing

to the robustness of the automatic segmentation method employed. Validation of

the registration method on the base and non mid-gland slices has shown high global

and local registration accuracies illustrating the robustness of the method.

The proposed non-linear TPS framework with regularization may be applied to

3D prostate volume registration. However, a slice-by-slice point correspondences

may be established after resampling the prostate volumes. The TRUS-MR slice

correspondences chosen manually in our experiment can also be chosen automatically

with the use of an EM tracker attached to the TRUS probe that will provide the

spatial position of the TRUS slice in a pre-acquired prostate TRUS/MR volume

during the needle-biopsy. An automatic method based on information theory and

statistical shape analysis to find the MR slice that closely corresponds to the TRUS

axial slice is discussed in details in Chapter 7.



Chapter 6

Off-line Deformation Learning for

Fast Multimodal Registration

In this chapter, we propose a method to learn deformation parameters off-line for fast

multimodal registration of ultrasound and magnetic resonance prostate images dur-

ing ultrasound guided needle biopsy. The method is based on a learning phase where

deformation models are built from the deformation parameters of a spline-based non-

linear diffeomorphism between training ultrasound and magnetic resonance prostate

images using spectral clustering. Deformation models comprising of the eigen-modes

of each cluster in a Gaussian space are applied on a test magnetic resonance image

to register with the test ultrasound prostate image. The deformation model with the

least registration error is finally chosen as the optimal model for deformable regis-

tration. The rationale behind modeling deformations is to achieve fast multimodal

registration of prostate images while maintaining registration accuracies which is

otherwise computationally expensive.

6.1 Introduction

As mentioned in Chapter 1 that the prostate of the same patient may exhibit de-

formations between the TRUS and the MR images. The deformations are caused

by the insertion of the endorectal probe during the MR acquisition, bowel or gas

inside the rectum and displacement of patient position between the TRUS and MR

95
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imaging procedures. However, the deformation is mostly observed as flattening of

the part of the prostate adjacent to the rectum. Therefore, in our work we attempt

to model such deformations of the prostate from a set of corresponding MR images

co-registered with the TRUS images. The deformable registration of the training

set of TRUS and MR images is done using the method of Chapter 5, Section 5.3.

However, instead of using 13 point correspondences as in Section 5.2, we employ

the shape-context based method of Belongie et al. [14] and Bhattacharyya distance

[20] to set 8 contour point correspondences across the TRUS and the MR prostate

images and only the prostate centroids as the internal points. Reducing the number

of control points from 13 to 8 firstly, speeds-up the training time; furthermore, it

is shown in the results section of this chapter that reducing the number of internal

points does not significantly affect the transformation.

The deformable registration in Section 5.3 is based on the solution of an overde-

termined system of non-linear functions integrated over the segmented prostate re-

gions in both the TRUS and MR. The MR image transformation employs a thin-

plate spline (TPS) interpolation. The combination of TPS based interpolation and

the set of polynomial functions ensures a smooth diffeomorphic transformation of

the MR image at the cost of increased computation time. However, the MR im-

ages need to be registered with the TRUS images in near real time during prostate

biopsy. Therefore, to achieve fast registration we propose to model the TPS weight

parameters obtained from the diffeomorphic registration of training TRUS-MR im-

ages and then apply the modeled parameters to register a new set of TRUS-MR

images. A single deformation model in Gaussian space derived from the principal

eigen-modes of the deformation vectors as shown by [61] is not sufficient to model all

the variations of prostate deformation. Therefore, we propose to cluster the deforma-

tion vectors into similar groups using a spectral clustering approach. The principal

eigen-modes of the deformation vectors of each of these clusters in a Gaussian space

form a deformation model. The registration of a test set of TRUS-MR images in-

volves recovering the affine parameters from the established point correspondences

and the TPS weight parameters of each of the deformation model are consecutively

applied to deform the moving MR image. The model with the least registration

error between the TRUS-MR images is chosen as the optimal deformation model.
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6.2 Learning Prostate Deformations

(a) (b)

Figure 6.1: Point correspondences example. (a) points in TRUS, (b) point corre-
spondences of (a) in MR.

The proposed method is based on the following components:

1. Point correspondences established on both the TRUS and MR images that are

required for both the training and testing phases,

2. the non-linear diffeomorphic framework required for deformation of the train-

ing MR images,

3. spectral clustering of TPS weight vectors during the training and

4. linear estimation of deformation parameters applied on the test MR image.

The point correspondences are established by the method as explained in Chapter

5, Section 5.2. However, unlike the previous method, only 8 correspondences on the

boundary and 1 centroid are selected automatically. Figure 6.1 shows the sets of

point correspondences across the TRUS and the MR images.

After the correspondences are established, the non-linear deformations of the

training set of MR images are achieved by the method as described in Chapter

5, Section 5.3. However, since the number of point correspondences are less in this

case, only 9×2 TPS weight parameters and 6 affine parameters need to be estimated.

Therefore, only 36 equations generated from the ω(⋅) function in Equation (5.16) are

sufficient to obtain a stable solution, where (ak, bk) ∈ ⟨(0,0), (1,0), (0,1), . . . , (5,5)⟩.
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The spectral clustering of the TPS weight parameters to form deformation models

and the application of the linear estimations of the deformation models to deform a

new test MR image are described in subsequent subsections.

6.2.1 Spectral Clustering

The deformation parameters i.e. the TPS weight parameters obtained for the set of

training fixed and moving images are grouped into similar deformation clusters by a

spectral clustering approach that determines the number of clusters automatically.

Since, the TPS weight parameters are essentially row vectors of length 9 × 2 for x-

and y- directions, we firstly compute the resultant direction vector of size 9×1. Then

the cosine similarities of P resultant deformation vectors Wi = (w1, w2, . . . , w9), i =
1, . . . ,P of the training set are used to construct a P ×P similarity matrix W . The

objective is to determine k disjoint clusters and the algorithm may be defined in the

following steps [118]:

1. Form the similarity matrix W ∈ RP×P , i.e. Wij = Wi⋅Wj

∥Wi∥∥Wj∥
, where, Wii = 1.

2. Define the degree matrix D as a diagonal matrix, where Dii is the sum of

elements of the Wi row.

3. Construct the normalized Laplacian L as D−1/2WD−1/2.

4. Compute the first k eigenvectors of L to build the matrix U ∈ RP×k by stacking

the eigenvectors into columns.

5. Re-normalize the matrix U to V so that each row has unit-length, i.e. Vij =
Uij/(∑j U

2

ij)1/2
6. Treating each row of V as a point in Rk, apply K-means clustering to re-

normalized V matrix.

Finally the deformation vector Wi is now assigned to cluster j, iff the row Vi of

the matrix V is assigned to cluster j. Likewise, k disjoint deformation clusters are

formed. In this case, k is the number of largest eigen-vectors of matrix L that

comprises of 88% of the total variations. The size of the training dataset being

small, the choice of 88% energy ensures that more than one deformation vector is

present in one cluster and avoids over fragmentation of the deformation vectors.
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6.2.2 Linear Estimation

Geva et al. [61] showed an off-line linear estimation of basis functions from a de-

formation space. They performed a PCA of the coefficients of a bivariate B-splines

transformation to represent them by their principal eigen-modes. Motivated by such

method, given a test moving image we may also transform it by the linear estimation

of the TPS deformation (weight) parameters as

wiv =
Ns∑
s=1

asbsiv (6.1)

where Ns is the number of principal axes on which the coefficients are projected after

PCA, as and bsiv are the respective eigen-value and the eigen-vector. Therefore, the

transformation ϕ(x) of Equation (5.7) of Chapter 5 may be written as

ϕv(x) = av1x1 + av2x2 + av3

+

n∑
i=1

Ns∑
s

asbsivU(∥pmi − x∥). (6.2)

The number of principal axes Ns for each deformation cluster k is determined by

retaining 95% of the principal modes of variation. Additionally, to consider a Gaus-

sian space of the projections on Ns principal axes, we also take into account the

−2σ,−1σ,0σ,+1σ,+2σ, variations of Ns principal components, where σ is the stan-

dard deviation. Therefore, k × 5 deformation models are formed from the training

set of deformation vectors. The affine parameters of the TPS transformation in

Equation (6.2) are obtained by SSD minimization Equation (2.3) of the point cor-

respondences established on the test moving and fixed images.

Finally to obtain the optimal transformation of the test moving image, the reg-

istration error is computed as the percentage of non-overlapping area γ (Equation

(6.3)) in the prostate foregrounds of the fixed and the transformed moving images

and the one with least registration error is considered as the final transformation.

γ = ∣ϕ(M(E))⊕ F (E)∣
∣M ∣ + ∣F ∣ ⋅ 100% (6.3)

where, E are the foreground pixels of the registered moving image M and the fixed
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Table 6.1: Registration accuracies and computation time for different methods. HD
and TRE are in (mm) and time is in seconds.

Methods NLTPS-REGCORR DEF-NL DEF-L
DSC 0.98±0.004 0.978±0.010 0.927±0.25
HD 1.63±0.48 2.05±1.26 5.14±3.67
TRE 1.60±1.17 1.71±1.23 2.44±1.17
Time 113.77±23.43 106.34±32.45 4.99±3.52

image F .

6.3 Experiments and Results

The validation of our method is done using 25 patients axial mid-gland slices for

both the TRUS and MR images with an average size of 249 × 219 pixels with each

pixel dimension being 0.2734 × 0.2734 mm. A leave-one-out approach is used where

the deformation models are formed from 24 datasets and are applied to transform

the remaining one. The registration accuracy is evaluated in terms of DSC that

measures the global overlap of the prostate regions, 95% HD that measures the

contour accuracy and TRE that measures the extent of overlap of the anatomical

targets in the transformed MR image and the TRUS image. Table 6.1 shows the

registration accuracies for the method NLTPS-REGCORR as described in Chapter

5 with 20 patient datasets, the NLTPS-REGCORR method on 9 point correspon-

dences without deformation learning abbreviated as DEF-NL, and the deformation

estimation (DEF-L) i.e. non-linear deformation applied to a set of training TRUS-

MR images, spectral clustering to group deformations and thereby applying linearly

estimated deformation parameters to transform a test moving MR for 25 datasets

in a leave-one-out framework.

It is to be noted in Table. 6.1 that the method NLTPS-REGCORR using 13 cor-

respondences needs more computation time than DEF-NL i.e. our proposed method

with 9 point correspondences only. However, the registration accuracies of DEF-NL

are comparable to that of NLTPS-REGCORR. The area and contour overlap accu-

racies in terms of DSC and HD for our method without the deformation learning

approach are statistically significantly better with Student’s t-test p < 0.0001 and

p < 0.001 respectively than that with the deformation learning. The TRE for our
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Figure 6.2: Qualitative registration results. The first two columns show the fixed
TRUS and the moving MR images respectively. The 3rd and the 4th columns show
the registration results for the proposed method without the deformation learning
and the remaining columns show the results with the deformation learning.

method without the deformation learning approach is also slightly better than that

with the deformation learning with a statistical significance of p < 0.005. Never-

theless, the computation time of our method with deformation learning shows a

statistically significant reduction with p < 0.0001 than the remaining methods. Fig.

6.2 shows the registration results for 2 patients, where it is observed that our method

with and without deformation learning produce similar results. The accuracy of our

method is qualitatively comparable with that of Xu et al. [168] that demonstrates a

near real-time TRUS-MR prostate fusion method with an average registration error

of 2.3 ± 0.9 mm but requires 15 seconds for the registration process. Our method

was implemented in MATLAB 2009(b) with 1.66GHz processor and 2GB memory.

The method shows a significant speed-up of computation time when the off-line de-

formation learning approach is employed while maintaining a clinically significant

average target registration error of < 2.87mm.

6.4 Conclusions

A method of deformable registration between TRUS and MR prostate images with

prior learning of deformation parameters has been proposed in this chapter. Spectral

clustering has been used to group similar deformations from training TRUS-MR

images and thereafter the eigen-modes of deformations for each deformation cluster

in a Gaussian space have been used to deform a new MR image corresponding to the

TRUS image. The method is fast and efficient to transform a moving image with

good registration accuracy and may be used during prostate biopsy if programmed
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on GPU. The accuracy of resulting deformation may be further increased if more

patient sets are used to learn the deformation parameters.



Chapter 7

2D TRUS-MRI Slice

Correspondence for Prostate

Biopsy

This chapter presents a novel method to identify the 2D axial MR slice from a pre-

acquired MR prostate volume that closely corresponds to the 2D axial TRUS slice

obtained during prostate biopsy. The method combines both shape and image inten-

sity information. The segmented prostate contours in both the imaging modalities

are described by shape-context representations and matched using the Chi-square

distance. NMI and CC between the TRUS and MR slices are computed to find im-

age similarities. Finally, the joint probability values comprising shape and image

similarities are used in a rule-based framework to provide the MR slice that closely

resembles the TRUS slice acquired during the biopsy procedure.

7.1 Introduction

Fusion of pre-biopsy MR on interventional TRUS may be done in several ways. An

Electro Magnetic (EM) tracker attached to the 2D TRUS probe may be used that

sweeps the prostate to reconstruct a 3D TRUS volume. The 3D TRUS volume is

then fused with the MR volume to obtain the spatial position of the 2D TRUS slice

during biopsy within the pre-biopsy MR volume [168]. On the other hand, a 3D
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TRUS probe may be directly used to acquire 3D TRUS volume and a volume-volume

registration may be performed [12]. However, neither a 3D TRUS probe is commonly

available in diagnostic centers nor the use of the EM tracker is an established clin-

ical practice. Therefore, intending to solve the 2D TRUS-MR slice correspondence

problem, we propose a method based on Chi-square distance of shape-context rep-

resentations of the prostate contours and image similarity measures like NMI and

CC of the TRUS-MR slices. The probability of an MR slice being the correct match

for the corresponding TRUS slice is determined from the joint probabilities of shape

similarity and each of the image similarity measures (NMI and CC) yielding two

sets of probability values. The shape and image similarities assume independence,

therefore multiplication of the same provides the combined probability. The slice

having the maximum joint probability among the obtained sets of probability val-

ues is normally chosen as the correct match. However, owing to the segmentation

inaccuracies and inter-modality prostate deformations, the overlap area between the

TRUS and MR images will differ in the sense that it would incorporate some error

in the image-based similarity and hence in the choice of the correct MR slice from

joint shape and image similarities. Therefore, a rule-based approach is adopted to

prioritize the shape similarity in such cases over image similarities.

The novelties of the proposed method may be summarized as follows:

1. Using shape context representations of the contours to find prostate shape

similarities between TRUS and MR slices.

2. Combining shape information (here shape context) with image intensity infor-

mation (NMI and CC), thereby yielding the combined probability of an MR

slice that closely resembles the TRUS slice both in shape and intensity spaces.

3. Rule-based approach to prioritize the shape similarity in case of ambiguous

maximum joint probability values of shape and image similarities.

7.2 The Slice Correspondence Method

The prostate is manually segmented from the 2D TRUS axial slice and the pre-

biopsy axial MR volume where the TRUS slices are considered to be parallel to the
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MR axial plane. The manual segmentation ensures better evaluation of our method,

although in future we will use the fast automatic prostate segmentation methods in

both MR and US modalities by Ghose et al. [63, 64]. The shape similarity measure

using Chi-square distance is explained in section 7.2.1, the use of image similarities

(NMI and CC) are explained in section 7.2.2 and the explanation of joint shape and

image similarities with the rule-based approach to choose the best matching MR

slice corresponding to the axial TRUS slice are in section 7.2.3.

7.2.1 Shape Similarity

The first part of establishing a shape similarity measure across the segmented

prostate images in the TRUS and the MR involves establishing point correspon-

dences on the prostate contours of the TRUS slice and all the MR slices in the re-

spective volume. The point correspondences are established using the same method

of shape-contexts and Bhattacharyya distance as discussed in Chapter 5, Section

5.2. However, instead of establishing only 8 points on the contour, we establish

many points depending on the number of uniformly-sampled points on the TRUS

contour.

After the corresponding points are identified, the Chi-square (χ2) distances be-

tween the TRUS slice and each of the MR slices are calculated based on the corre-

sponding shape-context histograms of the point correspondences and is given by Cij
as

Cij = 1

2

5∑
k=1

12∑
θ=1

(ĥi(k, θ) − ĥ′j(k, θ))2
ĥi(k, θ) + ĥ′j(k, θ) . (7.1)

The final distance is the sum of all the χ2 distances of the corresponding points

(shape-context histograms) in TRUS and MR and is given by H as

H = l∑
i=1

Cij , (7.2)

where, ĥi(k, θ) and ĥ′j(k, θ) are the normalized shape-context histograms of the

TRUS and the MR images respectively, and l is the number of point correspondences.

The TRUS-MR slice pair with minimum sum of χ2 distance i.e. H is identified and
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its significance will be discussed in the following subsection.

7.2.2 Image Similarities

Image similarity measures have been extensively used in multimodal image registra-

tion problem to ensure that the moving image is transformed with close resemblance

to the fixed image. Our problem is to find an MR slice in the volume that closely re-

sembles the TRUS slice. Therefore, to find such similarity we employ the well-known

NMI and CC as image similarity measures. Fei et al. [53] demonstrated that CC

is more discriminative as an image similarity in low resolutions and NMI at higher

resolutions for registration problems. Related to our problem, some TRUS slices

have smaller prostate sizes than the other. Therefore, considering the variability in

prostate sizes we decided to use both NMI and CC as image similarity measures.

The TRUS-MR slice pair identified with the minimum H as obtained from Equa-

tion (7.2) is used to retrieve the 2D rigid transformation (in-plane rotation and

translation) parameters between them; and the remaining MR slices in the volume

are rigidly registered with the TRUS slice using the same transformation parame-

ters. This registration step ensures similar 2D in-plane rigid alignment of all the MR

slices of the volume with the 2D TRUS slice. After the alignment of the MR volume

with the TRUS slice, pairwise NMI and CC are computed for each MR-TRUS slice

pair. The NMI and CC are computed according to the Equation (2.8) and Equation

(2.4) as given in Chapter 2.

7.2.3 Choosing the Best Matching MR Slice

The MR slice corresponding to the observed TRUS slice should ideally be the one

with lowest H obtained from Section 7.2.1 and with maximized NMI or CC as ob-

tained from Section 7.2.2. The values of these statistical shape and image similarity

measures are consecutively transformed into probability density functions (pdfs) to

compute the joint probability.

Given a set of independent random variables X = {x1 . . .xn}, each defined by the

pdf p(xi), i = 1 . . . n, the joint probability of the independent random variables is
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given by

p(X = x1, . . .X = xn) = p(X = x1) ⋅ . . . ⋅ p(X = xn) (7.3)

In this work, the set of independent random variables is X = {H′,NMI,CC}, whereH′ = 1 −H and their respective probability values constituting the pdfs. Therefore,

two sets of joint probability values are obtained by combining the shape and image

similarities as

PNMI = p(X =H′,X = NMI) = p(X =H′) ⋅ p(X = NMI) (7.4)

PCC = p(X =H′,X = CC) = p(X =H′) ⋅ p(X = CC)
After obtaining the joint probabilities, the idea is to find the MR slice that corre-

sponds to the TRUS slice jointly maximizing the H′ and NMI or H′ and CC. Let

us consider the maximum joint probabilities of PNMI and PCC be P
max

NMI
and P

max

CC

respectively. Then the rule-based method to identify the best MR slice is given in

Algorithm 2 as

Algorithm 2 The rule to choose the best MR slice

if ∣Pmax

NMI
− P

max

CC
∣ > λ then

Choice = MR slice corresponding to max(Pmax

NMI
, P

max

CC
)

else
Choice = MR slice corresponding to the maximum value of H′

end if

The value of λ is determined through the experimental validation procedure. If

P
max

NMI
and P

max

CC
both have closely separated values then it is difficult to bias on any

one of the joint probability (P
max

NMI
or P

max

CC
) to determine the best matching MR slice.

Therefore, in such cases the shape similarity measure is prioritized in determining

the slice choice.

7.3 Results and Discussions

The results are validated against the MR slice choices obtained from an expert

radiologist and an expert urologist for 20 patients axial mid-gland TRUS slices.
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Table 7.1: Expert choices and the results for the MR slices corresponding to a TRUS
slice obtained by our method. Agr. is the abbreviation used for Agreements. The
matched cases are shown in bold.

Patients/
MR Slice

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Agr.(%)

Expert 1 6 8 9 7 6 10 6 10 5 7 6 5 12 8 6 5 7 7 6 7 65%
Expert 2 2 7 6 5 6 9 6 8 7 6 6 4 13 8 4 8 10 9 6 7 80%
Our method 3 8 3 6 5 9 6 8 7 6 6 5 13 8 6 8 10 6 6 4 -

The axial MR slices have slice thickness of 3 mm with inter-slice gap of 3.5 mm

where the pixel dimension is 0.2734 mm × 0.2734 mm. The value of λ is determined

experimentally as 0.15 that is the value which maximizes the number of cases in

agreement to that of the expert choices. This means that if the maximum joint

probability values P
max

NMI
and P

max

CC
are similar by more than 85% then the slice choice

is dependent only on the maximum shape similarity rather than joint image and

shape similarities. Table 7.1 shows the choices of the axial MR slice corresponding

to an axial TRUS slice provided by the experts (independently) and the results we

obtained using our method. The inter-slice gap being 3.5 mm, we have considered

the [−1,+1] slices i.e. a statistically significant 20% error when computing the inter-

expert and between expert and our method accuracies of slice choice.

It is observed from Table 7.1 that the automatic MR slice choice matched at

least one of the expert choices for 18 cases wherein the experts agree in their choices

for 11 patient cases (patients 2,5,6,7,10,11,12,13,14,19 & 20). The expert choices

matched exactly in 6 cases (5,7,11,14,19 & 20) out of which our result matched

exactly for 4 patient cases (7,11,14 & 19) and −1 slice away for patient 5 respectively.

Since, the expert choices agreed exactly and [−1,+1] slice away in 11 out of 20 cases,

they are in agreement of 55%.

Comparing each of the expert choices independently with our method, the exact

matches with expert 1 are for 7 patients (2,7,11,12,14,15 & 19) while [−1,+1] slice
away for 6 patients (4,5,6,10,13, & 18). Therefore, 13 out of 20 cases i.e. 65%

results are in agreement with that of the choices of expert 1. Similarly for 11 cases

(6,7,8,9,10,11,13,14,16,17 & 19) our results exactly matched expert 2 choices and

are [−1,+1] slice away for 5 patient cases (1,2,4,5, & 12). This signifies that the

results of our method are in 80% agreement with that of expert 2 slice choices. The
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Figure 7.1: TRUS-MR corresponding slices. Rows (top to bottom) show patient
cases 5,3 and 20 respectively. The 1st column shows the TRUS slices, the 2nd and
the 3rd show the expert 1 and 2 MR slice choices respectively and the last column
shows the obtained result using our method.

agreements between our method and each of the expert choices are shown in the

last column of Table 7.1. The inter-expert variability in the choice of MR slice being

high (55% agreement), our method performs better with an agreement of 65% for

expert 1 that shows a 18.18% increase in performance and with 80% agreement for

expert 2 that shows an increase in performance by 45%. The overall performance

of our method is said to be 90% considering accurate slice matches in 18 out of 20

cases while failing for patient 3 and 20. Figure 7.1 shows patient case 5 where the

result obtained is one slice below than that of the choices of experts 1 and 2 as

shown in Table 7.1. Figure 7.1 also shows patient cases 3 and 20 where the results

are not close to any of the expert choices. However, observing the slice choice by

our method and that of the expert for patient 20 it may be noted that both the

choices are visually similar.

The method has been implemented in MATLAB and the complete process takes

3 secs on an average to find out the corresponding MR slice from a set of 12 − 14

slices. It is to be noted that Xu et al. [168] employed an EM tracker to locate
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the spatial position of the 2D TRUS slice (during biopsy) in the 3D TRUS volume.

Thereafter, to compensate for the prostate motion, the sum-of-squared differences

(SSD) between the maximum translational and rotational TRUS slices within a short

time frame of the biopsy and the corresponding spatial 2D TRUS slices obtained

in the 3D TRUS volume was minimized. Similarly, considering an error of [−1,+1]
slices from the actual MR slice, we can directly use the slice obtained by our pro-

posed method for multimodal registration between TRUS and MR employing the

method NLTPS-REGCORR in Chapter 5, Section 5.3. However, if an EM tracker

is additionally attached to the TRUS probe during biopsy, then it would be possible

to locate an approximate position of the TRUS slice in MR volume. Consequently,

our method can be employed to search for the best slice within a smaller subset in

the neighborhood of the correct MR slice thereby improving on the accuracy of slice

choice.

7.4 Conclusions

A method to find out 2D MR slice correspondence of a 2D axial TRUS slice during

biopsy has been reported in this chapter. The method is based on statistical shape

and image similarity measures and their joint probabilities and applying a rule-

based method to prioritize the shape similarity in certain cases. The method is fast

in finding out MR correspondences that are nearly the same as the choices obtained

from two experts. Since EM tracker is not easily available in hospitals in Europe

and 3D TRUS is normally not employed for biopsy purposes, our proposed method

may provide a good starting point for multimodal fusion of TRUS-MR images to

improve the sampling of biopsy tissues. Although the results reported in this paper

are validated only for mid-gland or close to mid-gland axial slices, the validations

for the base/apex TRUS axial slices, TRUS sagittal slices and cross-validation of

our method with the use of an EM tracker have been left as future works.
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Conclusions

In this thesis, we investigated algorithms to spatially align 2D inter-operative TRUS

and pre-operative MR prostate images. This alignment is particularly challenging,

when two different modalities are involved and non-linear geometric transformations

are required to cope with the soft-tissue deformations.

In Chapter 2 we provided the theoretical background of image registration and

Chapter 3 provided an extensive review on the existing methods related to prostate

multimodal registration. The analysis of this chapter led to the consensus that

radial-basis transformations provided more registration accuracies when dealing with

TRUS and MR prostate images. Therefore, in Chapter 4, a detailed investigation

on commonly used radial-basis transformation has been made. A geometric method

to establish point correspondences across the TRUS and MR images has been pro-

posed that was used to drive the TPS spline transformation. A variant of B-spline

based free-form deformation was also proposed that involved computation of the

NMI from images transformed by amplitude responses of directional quadrature fil-

ters. A comparison between the traditional B-splines (with NMI from raw-intensity

images), the variant of the B-splines and the traditional TPS allowed to conclude

that registration accuracy in terms of tumor localization may be improved if NMI

is computed from transformed images to drive the B-splines transformations rather

than NMI computed from raw-intensity images. However, TPS provided a higher

contour accuracy compared to the variant of B-splines transformation.

The search for a registration method that provided high global and local registra-

111



112 Chapter 8. Conclusions

tion accuracies for prostate biopsy, motivated us to propose the new diffeomorphic

non-linear TPS-based registration in Chapter 5. A new method to establish point

correspondences was also proposed that relied on statistical shape measures. Sev-

eral experimental results concluded on the optimal number of point correspondences

required to achieve good registration accuracy. The registration parameters were es-

timated from the solution of an over-determined system of non-linear equations with

TPS as the underlying transformation. The additional constraint as the localization

error of the point correspondences with the regularization of the TPS bending en-

ergy in the registration framework ensured high contour overlap as well as improved

tumor localization.

In Chapter 6 we sought to minimize the computational complexity of the pro-

posed diffeomorphic registration framework of Chapter 5 and proposed a method

to learn the TPS deformation parameters offline from a set of training TRUS-MR

prostate images. Since, all the deformations could not be accommodated in a single

group, a spectral clustering approach was introduced that separated deformations

into disjoint clusters. Linear estimations of deformation clusters in their Gaus-

sian space were then applied to deform an unseen moving MR images using TPS

transformation. While the affine parameters were estimated from the point cor-

respondences established on the test TRUS-MR images. The method exhibited

a statistically significant speed-up in computation while not compromising on the

registration accuracies to larger extents.

Finally, we attempted to provide a solution to the unavailability of an EM tracker

and 3D TRUS for biopsy procedure by proposing an automatic method to search

for the best pre-operative axial MR slice match to the corresponding inter-operative

axial TRUS slice. The method based on joint shape and image similarities provided

better results than the consensus of two human experts.

Future Research

It is to be noted that in this thesis, we primarily focused on 2D transformations due

to unavailability of 3D TRUS data. Therefore, we concentrated on the investiga-

tion of algorithms that can be applied for 2D cases, specifically TPS. We need to

investigate more on intensity-based transformations like demons registrations and
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finite-element model transformations when 3D data is available.

A major challenge in the current thesis is finding the MR slices corresponding to

the TRUS biopsy slice without the employment EM tracker or 3D TRUS. Therefore,

we need to validate our proposed method of slice correspondence and that of the

non-linear diffeomorphic registration in conjunction to the use of the EM tracker.

The proposed methods can be parallelized if programmed on GPU and therefore

may be useful for real-time multimodal fusion of prostate images during biopsy. For

improved biopsy sampling we also intend to develop a method to fuse preoperative

MRS with interoperative TRUS images.

In offline learning of deformation vectors we need more training TRUS-MR data

to accommodate the variations of prostate deformations. Also in the spectral clus-

tering approach we used simple k-means approach where the effect of other methods

like fuzzy C-means, mean-shift would be worth evaluation.
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R. Mart́ı, X. Lladó, J. Freixenet, J. C. Vilanova, J. Comet, D. Sidibé, F. Meri-
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J. C. Vilanova, F. Meriaudeau, Proc. of CARS 2011, vol. 6 (supplement 1),

pp. S12-16, Berlin, Germany, June 2011.



120 Chapter 8. Conclusions



Bibliography

[1] T. Aach, A. Kaup, and R. Mester. On texture analysis: Local energy trans-

forms versus quadrature filters. Signal Processing, 45:173–181, 1995.

[2] R. Alterovitz, K. Goldberg, J. Kurhanewicz, J. Pouliot, and I.-C. Hsu. Image

registration for prostate MR spectroscopy using biomechanical modeling and

optimization of force and stiffness parameters. In Proc. of 26th Annual Int.

Conf. of the IEEE Engineering in Medicine and Biology Society (EMBS),

volume 3, pages 1722–1725, San Francisco, CA, USA, 2004.

[3] R. Alterovitz, K. Goldberg, J. Pouliot, I.-C. Hsu, Y. Kim, S. M. Noworolski,

and J. Kurhanewicz. Registration of MR prostate images with biomechanical

modeling and nonlinear parameter estimation. Medical Physics, 33(2):446–

454, February 2006.

[4] D. Amsellem-Ouazana, P. Younes, S. Conquy, M. Peyromaure, T. Flam,

B. Debré, and M. Zerbib. Negative prostatic biopsies in patients with a high

risk of prostate cancer. is the combination of endorectal MRI and magnetic

resonance spectroscopy imaging (MRSI) a useful tool? a preliminary study.

European Urology, 47:582–586, 2005.

[5] M. Andersson and H. Knutsson. Adaptive filtering.

http://www.imt.liu.se/edu/courses/TBMI02, 2010. Accessed 29th June,

2012.

[6] G. L. Andriole, E. D. Crawford, R. L. Grubb, S. S. Buys, D. Chia, T. R.

Church, M. N. Fouad, E. P. Gelmann, D. J. Reding, J. L. Weissfeld, L. A.

Yokochi, B. O’Brien, J. D. Clapp, J. M. Rathmell, T. L. Riley, R. B. Hayes,

121



122 Bibliography

B. S. Kramer, G. Izmirlian, A. B. Miller, P. F. Pinsky, P. C. Prorok, J. K.

Gohagan, and C. D. Berg. Mortality results from a randomized prostate-cancer

screening trial. The New England Journal of Medicine, 360(13):1310–1319,

2009.

[7] S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. On the Laplace-

Beltrami operator and brain surface flattening. IEEE Transactions on Medical

Imaging, 18:700–711, 1999.

[8] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d

point sets. ’ IEEE Transactions on Pattern Analysis and Machine Intelligence,

9(5):698–700, September 1987.

[9] E. Bardinet, L. D. Cohen, and N. Ayache. Tracking and motion analysis

of the left ventricle with deformable superquadrics. Medical Image Analysis,

1(2):129–149, 1996.

[10] M. S. Bartlett. Properties of sufficiency and statistical tests. Proceedings of

the Royal Society of London, Series A, Mathematical and Physical Sciences,

160(901):268–282, May 1937.

[11] M. Baumann, P. Mozer, V. Daanen, and J. Troccaz. Prostate biopsy assistance

system with gland deformation estimation for enhanced precision. In Proc. of

Medical Image Computing and Computer-Assisted Intervention, volume 5761

of LNCS, pages 57–64, September, 2009.

[12] M. Baumann, P. Mozer, V. Daanen, and J. Troccaz. Prostate biopsy tracking

with deformation estimation. Medical Image Analysis, 16(3):562–576, 2012.

[13] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming:

Theory and Algorithms. John Wiley and Sons Inc., 2 edition, 1993.

[14] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition

using shape contexts. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(4):509–522, April 2002.

[15] P. Besl and N. McKay. A method for registration of 3D shapes. IEEE Trans-

actions on Pattern and Machine Intelligence (PAMI), 14(2):239–256, 1992.



Bibliography 123

[16] N. Betrouni, M. Vermandel, D. Pasquier, and J. Rousseau. Ultrasound im-

age guided patient setup for prostate cancer conformal radiotherapy. Pattern

Recognition Letters, 28:1808–1817, 2007.

[17] D. Beyersdorff, M. Taupitz, B. Winkelmann, T. Fischer, S. Lenk, S. A. Loen-

ing, and B. Hamm. Patients with a history of elevated prostate-specific antigen

levels and negative transrectal US guided quadrant or sextant biopsy results:

value of MR imaging. Radiology, 224:701–706, 2002.

[18] D. Beyersdorff, K. Taymoorian, T. Knösel, D. Schnorr, R. Felix, B. Hamm,
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