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Résumé

Un grand dé� pour les personnages virtuels est de pouvoir interagir avec des opérateurs

humains en e�ectuant des tâches dans des environnements virtuels physiquement réalistes.

Cette thèse s'intéresse particulièrement à l'interaction avec des opérateurs faiblement

immergés, c'est-à-dire avec des opérateurs disposant du minimum d'équipement nécessaire

à l'interaction, par exemple, une simple capture de mouvement des mains. Cela implique

de doter le personnage virtuel de la capacité d'ajuster ses postures de manière autonome,

d'accomplir les tâches requises par l'opérateur en temps réel en tâchant de suivre au mieux

ses mouvements, tout en gérant de manière autonome les multiples contraintes dues aux

interactions avec l'environnement virtuel.

Il existe actuellement deux types de méthodes pour animer des personnages virtuels.

La première issue du domaine computer graphics consiste à restituer une trajectoire préal-

ablement enregistrée avec un système de capture de mouvements. La seconde proche du

domaine de la robotique, consiste à commander les actionneurs du modèle dynamique

associé au personnage virtuel a�n d'atteindre plusieurs objectifs et en respectant des con-

traintes relatives à l'environnement. L'objectif de cette thèse est de trouver le meilleur

couplage de ces deux méthodes a�n de béné�cier de leurs avantages.

Cette thèse présente un système de contrôle hybride original qui permet de réaliser

un personnage virtuel interactif avec certains niveaux de l'autonomie. Une approche

d'optimisation de posture est proposée, qui permet au personnage virtuel de chercher

des postures optimales et robustes, y compris les positions de contact, avant d'e�ectuer

une tâche de manipulation donnée. Cette approche peut être utilisée soit dans la prépara-

tion d'une tâche de manipulation, soit pour l'évaluation de la faisabilité d'une tâche. Un

cadre de contrôle multi-objectif est développé, pouvant gérer plusieurs objectifs de tâches

et de multiples contacts unilatéraux et bilatéraux avec ou sans frottements. Il permet

au personnage d'e�ectuer les tâches de suivi de mouvement et les tâches de manipulation

d'objets dans un environnement virtuel physiquement réaliste, tout en interagissant avec

un opérateur en temps réel. Un élément important développé dans ce cadre est une méth-

ode de type wrench-bound. Cette méthode peut gérer les con�its des tâches et d'assurer la

performance du contrôleur de la tâche de haute priorité. Il s'agit d'une nouvelle approche
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de contrôle hiérarchisé comportant di�érents niveaux de priorité, permettant d'imposer

des contraintes d'inégalité sur la tâche de haute priorité, tout en assurant la passivité du

système pour garantir la stabilité des opérations.

Notre système de contrôle basé sur toutes les approches développées dans cette thèse

permet à un personnage virtuel d'e�ectuer une variété de tâches, telles que le suivi des

mouvements capturés et la manipulation d'objets. Il améliore les performances des tâches

par la capacité du personnage virtuel de gérer les e�orts d'interaction. Il permet égale-

ment au personnage virtuel d'e�ectuer des séquences de tâches de manière autonome, a�n

d'atteindre un objectif à long terme.

Mots Clés : Personnage virtuel, Contrôle basé sur la physique, Contrôle global du

mouvement, Interaction humain-robot, Commande multi-objectifs, Contrôle hiérarchisé,

Optimisation de posture.



Abstract

A great challenge for interactive virtual characters is to be able to interact with human

operators by performing tasks in physics-based virtual environments.

This dissertation is particularly interested in the interaction with operators who are

slightly immersed, that is to say, with operators having the minimum equipment necessary

for the interaction, for example, a simple motion capture of the hands. This involves

endowing the virtual character with the ability to adjust its postures autonomously, and

to accomplish tasks required by operators in real time by trying to follow their motions as

best as it can, while autonomously handling multiple constraints due to interactions with

virtual environments.

There are currently two types of methods to animate virtual characters. The �rst

is related to the domain of computer graphics, consisting in restoring a captured motion

sequence. The second is close to the domain of robotics, consisting in controlling the

actuators of the dynamic model associated with a robot to achieve several objectives

while respecting the constraints related to the environment. Objective of this dissertation

is to �nd the best combination of these two types of methods, so as to take advantages of

their bene�ts.

In this dissertation, we present an original hybrid control system that allows us to

realize an interactive virtual character with certain levels of autonomy. We propose a

posture optimization approach, which allows the virtual character to search for optimal

and robust postures, including contact positions, before performing a given manipulation

task. This approach can be used in either the preparation for a manipulation task, or

the evaluation of the feasibility of a task. We develop a multi-objective control framework,

which can handle multiple task objectives and multiple unilateral and bilateral contacts

with or without friction. It allows the character to perform motion tracking and object

manipulation tasks in a physics-based virtual environment, while interacting with an op-

erator in real-time. An important component developed in this control framework is a

method to compute wrench bounds for prioritized control, which can handle task con�icts

and ensure the controller performance of the higher-priority task. It is a novel prioritized

control, which allows inequality constraints on the higher-priority task, and can ensure
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the passivity of the system to guarantee stable operations.

Our control system based on all the approaches developed in this dissertation can

allow a virtual character to perform a variety of tasks, such as tracking captured motions

and object manipulation. It can improve task performance by enhancing the character's

ability to handle interaction forces. Moreover, it also allows the character to autonomously

perform sequences of tasks to achieve a long-term goal.

Keywords: Virtual character, Physics-based control, Whole-body motion control,

Human-robot interaction, Multi-objective control, Prioritized control, Posture optimiza-

tion.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A review of character control . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Character animation using motion capture data . . . . . . . . . . . . 6

1.3.2 Character control in physics-based environments . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Virtual characters are simulated digital characters that behave in interactive graphical

virtual environments. They may come in all shapes and sizes. Virtual characters concerned

in this dissertation can be on one hand as avatars, graphical representations of human

bodies; and on the other hand as digital robots driven by robotic control systems. The

goal of this dissertation is to develop approaches for the control of virtual characters that

perform actions in virtual environments and interact with human operators.

1.1 Motivation

With the development of computer science and computerized control, virtual characters

have come on the scene in computer games and virtual reality. Control issues in virtual

characters can help us make computer animations more realistic. Moreover, the researches

on virtual character control can help people to better understand the biomechanics of a

human body, as well as how humans interact with their environments.

Today, virtual characters have also walked their way into industry. In industry design,

interactions between human operator and a product can be modeled, ergonomics can be

studied to improve human well-being, and overall system performance can be optimized.



2 Chapter 1. Introduction

Another application is virtual training environments, which are tools that allow a user

to interact virtually with a working environment by animating his avatar. Such train-

ing environments are created to reduce training time and expenses. Training in virtual

environments provides a tolerance for errors, which may not be acceptable during real

practices. On the other hand, training environments also help to ensure the security of

learners. Learners can �rst practice skills in virtual environments, before directly being

exposed to such environments, which can be dangerous or di�cult to realize in reality.

This dissertation aims to advance the state of the art in both robotics and computer

graphics. We focus on the design of controllers that improve the behaviors of virtual

characters. The control approaches developed here are also expected to be applied to

real robots. This dissertation is also dedicated to enhance virtual characters' ability of

interacting with human operators, by executing their orders with a high �delity in virtual

environments. Another motivation is to produce realistic computer animations, where vir-

tual characters can handle interaction forces when performing tasks such as manipulating

di�erent objects.

1.2 Problem statement

This dissertation proposes a hybrid control system for interactive virtual characters,

which are controlled by both human operators and a robotic controller.

The virtual character used in this dissertation is shown in Fig.1.1. Its body weighs

79kg, with a height of 1.7m. Its skeleton model can be considered as a set of rigid links

connected with joints. Its body consists of 45 degrees of freedom (DoF), including 6 DoFs

for the root position and orientation, and 39 DoFs for the joints. The joint DoFs are listed

in Table 1.1. There are four contact points on each foot.

The system of an interactive virtual character can be decomposed into several hierar-

chical layers as described in Fig.1.2.

� The Data Layer collects data from all kinds of communication interfaces, such as

data coming from motion capture systems, keyboards, space mouses, and so on. It

can be used as an interface for receiving information during interactions with human

operators.
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Figure 1.1: The virtual human.

� The Behavior Layer decides what to do according to the information received from

Data Layer. It is responsible for the behaviors to perform. Here a behavior refers to

a sequence of actions that create responses to user inputs or character's intentions.

A behavior may involve movements of the whole or a part of the character's body.

A complex behavior can be decomposed into a sequence of other simpler behaviors.

For example, a behavior of �moving an object� can be described as: walk towards

an object if it is out of reach, grasp it, then (walk to) move it to a target position,

and �nally release it.

� The Task Control Layer solves the problem of how to do. This layer operates at

a higher speed than the Behavior Layer. A task controller is implemented at this

level, which computes joint torques at each simulation time step. The joint torques

are used to drive the virtual character to accomplish the desired behaviors. Here

a task means that a certain frame on the virtual human's body should move from

its current state to a desired state. So a behavior can be decomposed into several

low-level tasks. Taking the �moving an object� behavior for example, we can de�ne

a foot task for walking, a center of mass task for balance control, a hand task for

hand motion control and object manipulation control, and a joint task for posture
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Table 1.1: Degrees of freedom for the joints

Joint Rotational DoFs

neck 3

torso 3

lumbar 3

hip (×2) 3 (×2)

knee (×2) 2 (×2)

ankle (×2) 2 (×2)

toe (×2) 1 (×2)

shoulder (×2) 3 (×2)

elbow (×2) 2 (×2)

wrist (×2) 2 (×2)

control.

� The Physics Layer takes as inputs joint torques, as well as external forces applied

on the virtual character, then computes the kinematic states according to physical

laws.

� The Graphics Layer outputs the visual appearance of the virtual character, such

as its global position and posture.

The problems studied in this dissertation are related to the top three layers, especially

the Task Control Layer. The virtual character is in real-time interaction with an operator

through a motion capture system. It should �gure out what actions to perform in order to

achieve a global goal, based on interactions with the operator and the simulated events.

Finally it should �nd appropriate joint torques to generate desired motions and ful�ll

desired tasks.

This dissertation focuses on the two main capabilities of virtual characters:

� The capability of interacting with a human operator in real-time. The characters

are expected to be able to ful�ll the tasks required by the operator.

� The capability of autonomously improving task performance. The characters are

expected to autonomously adjust their motions for dealing with multiple contact
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Figure 1.2: The system of a interactive virtual character.

forces and constraints due to interactions with virtual environments.

The main di�culty in our research topic is due to the fact that the character has to

handle interactions with virtual environments. Since a virtual character's body is under-

actuated, it should make contacts with the environment and use contact forces to perform

desired movements. The operator's motions may be used as reference motions for virtual

characters, but they can be inappropriate for a given task. This can be because

� the human operator is not completely immersed into the virtual environment and

cannot sense forces applied to the character;

� or the operator is not able to perform the desired actions in his world, which is

di�erent from the virtual environment;

� or the operator is not skillful enough for providing suitable reference postures for

some di�cult tasks.

So the control system should be able to adjust the character's motions to adapt them

to unknown external contact forces; so that the character can ensure the balance and

ful�ll the required tasks. To achieve this, the controller must take into account multiple

objectives and constraints. Moreover, since a virtual character's body has many degrees

of freedom (DoF), the controller must handle redundancy and �nd an optimal posture

among all the possibilities.
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1.3 A review of character control

One great concern in virtual character control is how to generate realistic interactive

motions. There are currently two basic ways to animate virtual characters. The �rst

one consists in restoring captured motion sequences. In this way, virtual characters are

completely controlled by human operators by simply emulating their movements. The

second one consists in controlling the actuators of the dynamic model associated with

a robot to achieve several objectives and constraints. Such methods endow characters

with a certain level of intelligence, allowing them to make decisions by themselves on

how to perform tasks and react to environments, without constant guidance of human

operators. This dissertation will show that, in order to improve task performance in

virtual environments, virtual characters should have some autonomy, instead of being

completely controlled by human operators.

1.3.1 Character animation using motion capture data

One aspect of this dissertation is the research on virtual character animation using

motion capture techniques. Motion capture, or mocap, refers to techniques of recording

movements of human bodies or other objects for analysis or playback. We have developed

a control framework that allows virtual characters to track captured key frame motions

of human operators in real-time. Related work on character control using motion capture

data is brie�y reviewed here.

Motion capture techniques have been widely used to restore a captured motion, so as

to obtain natural and life-like motions. The idea of animating characters by using motion

capture data can be traced back to the late 1970's, when a method called rotoscoping was

used in animated �lms. A traditional way to realize such applications is to attach some

optical trackers on an operator's body; then the positions of these markers are measured

and recorded for driving a character. Such kind of application has �rst been realized in

the context of computer graphics by the Graphical Marionette [Ginsberg ] in 1983.

Today, a lot of work has been dedicated to the animation of virtual characters or robots

based on motion capture data. Motion retargetting method has been used to adapt the

captured motion from one character to other characters with di�erent sizes or morpholo-
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gies [Gleicher 1998,Monzani 2000]. In the domain of robotics, the approach of Direct

Marker Control [Ott 2008,Lee 2010] has been applied for imitating human motions. The

measured trackers on the operator's body are connected with corresponding points on

the character's body by virtual springs, the forces generated by which help to guide the

character's motions. Many motion synthesis techniques have been developed to generate

new animations from a motion capture database. Some motion editing techniques, such

as [Wiley 1997,Zordan 2005,Cooper 2007], use blending methods to produce new anima-

tions by interpolating motion capture data. Motion blending was combined with optimal

control, which takes into account some kinematic constraints, to change captured motions

for dynamic interactions with objects [Jain 2009a]. Inverse kinematics was combined with

dynamic correction to modi�es motion capture data to respond to physical collision forces

during speci�ed tasks [Zordan 2002,Multon 2009]. Reference locomotion motions have

been adapted to new physically simulated environments by applying constrained inverse

kinematics [Komura 2004], model predictive control [Da Silva 2008a], linear quadratic

regulator [da Silva 2008b] and nonlinear quadratic regulator [Muico 2009].

The motion tracking that is presented in this dissertation shares the same objective

with many motion synthesis approaches, which is to produce realistic physics-based mo-

tions from captured motions. The control approaches that have been developed aims at

dynamically adapting captured motions to unpredictable simulated events, and trying to

follow human operator's orders as close as possible.

1.3.2 Character control in physics-based environments

In real world and in physically simulated environments, motions should be generated

subject to the system geometrics and dynamics constraints to ensure physical correctness.

Constraints related to character's body, such as joint limits, should be respected. Since

(virtual) humanoid characters are under-actuated systems, they should handle contact

forces to realize desired physical interactions and maintain balance at the same time. One

important problem with characters totally driven by human operators is that they may fail

to ful�ll a task due to poor human guidance, because human operators may not possess all

the necessary information and conditions for guiding the character, as mentioned in Section

1.2. Therefore, this dissertation aims to endow characters with certain levels of autonomy
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to make some decisions by themselves on how to handle objectives and constraints in

physics-based environments.

Since a character is a complex system with many DoFs, a great number of posture

con�gurations are possible. In order to simplify some high dimensional control problems,

stability criteria and simpli�ed models that abstract the most important characteristics

of the complete model have been proposed. In many balance controllers, stability criteria

such as the Center of Mass (CoM) and the Zero Moment Point (ZMP) have been used

for the analysis of equilibrium. An algorithm was presented in [Bretl 2008] to compute

the set of CoM positions (the support region), which ensures the static equilibrium of a

legged robot making multiple non-coplanar contacts with any type of terrain. The work

in [Harada 2004] formulated the region of ZMP that ensures the dynamic balance of a robot

grasping an environment. Simpli�ed models have been introduced for the analysis of the

dynamics of robots. For example, a robot's whole body is abstracted into a point mass in

the linear inverted pendulum (LIP) model [Kajita 1991], or into two point mass attributed

to the head and the hip in the Spatial Double Inverted Pendulum Model [Xinjilefu 2009].

In addition to the LIP model, centroidal angular momentum has also been treated by

the Angular Momentum Pendulum Model [Komura 2005], the Linear Inverted Pendulum

Plus Flywheel Model [Pratt 2006], and the Reaction Mass Pendulum Model [Lee 2009].

In case of multiple non-coplanar contacts, the multiple-limbed robot with one mass point

and multiple frictional point contacts has been used [Bretl 2008,Mansour 2011].

In addition to control approaches using simpli�ed models, the control of whole-body

behaviors to handle multiple objectives and constraints has received much attention. A

variety of control systems have been proposed to handle complex tasks such as loco-

motion and object manipulation, subject to multiple constraints due to external per-

turbation forces, frictional contacts and geometric con�gurations. Many research works

have been devoted to the development of multi-objective control systems. Some of

them use optimization techniques [Abe 2007,Collette 2008,Ye 2010,Bouyarmane 2010]

to �nd postures that optimize several objectives subject to multiple constraints. Some

multi-task controllers treat tasks with di�erent priority levels. Related work on pri-

oritized control include the strategy of solving a sequence of quadratic programs [Ka-

noun 2009,Escande 2010,Kanoun 2011a] and the use of null-space projection methods [Si-
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ciliano 1991,Sentis 2004,Khatib 2008,Sentis 2010,Raunhardt 2011]. One main contribu-

tion of this dissertation is a novel prioritized multi-objective control framework based on

Jacobian-transpose method. We analyze the advantages and disadvantages of this control

framework by a comparison with the prioritized control based on projection in Section

4.5.3.

1.4 Contributions

This dissertation studies virtual character control problem involving interactions with

human operators, and motion control for performing multiple tasks in physics-based en-

vironments. Below are the contributions of this work:

Task-driven posture optimization (see Chapter 2 and [Liu 2012b]). We propose a

posture optimization approach, which can be used in either the preparation for a manipu-

lation task, or the evaluation of the feasibility of a task. This approach optimizes postures,

including contact con�gurations, for the required task. The optimized postures ensure that

the virtual character's end-e�ector can follow the desired manipulation trajectory. It also

allows the character to apply manipulation forces as strongly as possible, and meanwhile

to avoid foot slipping. Moreover, potential perturbation forces can be taken into account

in the optimization to make postures more robust to perturbations. The realism of our

approach is demonstrated with di�erent types of manipulation tasks in Chapter 5.

Multi-objective control framework (see Chapter 3 and [Liu 2011b,Liu 2012a]). We

design a multi-objective control framework, which adopts the Jacobian-transpose method

and uses optimization techniques to compute appropriate motions for a virtual character.

On one hand, this control framework allows an operator to interact with a virtual character

in real-time; on the other hand, it allows the virtual character to compromise between

following an operator's motions, and deciding by itself how to handle interactions with

a physics-based virtual environment. This control framework allows a human operator

to control a virtual character from a high level by just specifying an objective. So the

operator is not responsible for providing appropriate postures. Task execution is realized

by the multi-objective controller, which works at a low level.

Prioritized control with wrench bounds (see Chapter 4 and [Liu 2011a,
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Liu 2012a]). We develop a new prioritized control approach, which is compatible with

our multi-objective control framework based on Jacobian-transpose method. The novelty

of this approach is that it can handle inequality constraints on a higher-priority task, and

maintain the passivity of the system as well. An advantage of this method is that an

operator does not need to compromise the balance of a virtual character when guiding its

movements by real-time interactions.

The approaches developed in this dissertation are validated by experiments that are

carried out on the simulator XDE [XDE ] developed by CEA-LIST. XDE is a software

environment that manages physics simulation in real time. Its physics simulation kernel

handles multiple rigid and deformable bodies interacting with one another, and can achieve

accurate collision detection.
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Task-driven Posture Optimization
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This chapter presents a generic approach to �nd optimal postures, including contact

positions, for manipulation tasks. It can be used in either the preparation for a task, or

the evaluation of the feasibility of a task during planning stages. With such an approach,

an animator can control a virtual character from a high level by just specifying a task,

such as moving an object along a desired path to a desired position; the animator does

not need to manually �nd optimal postures for the task. For each task, an optimization

problem is solved, which considers not only geometric and kinematic constraints, but also

force and moment constraints. The optimized postures allow the virtual character to

apply manipulation forces as strongly as possible, and meanwhile to avoid foot slipping.

Moreover, potential perturbation forces can be taken into account in the optimization to

make postures more robust. In this chapter, results using this approach are demonstrated

on a simpli�ed model of a character, by tasks of manipulating objects along di�erent paths

and towards di�erent directions. The realism of this approach is further demonstrated on
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a complete virtual character in Chapter 5, where posture optimization results are used by

our multi-objective controller to improve task performance.

2.1 Introduction

A prime functionality of a virtual character is to perform manipulation tasks. The

choice of postures can impact the possibility of ful�lling a task successfully. Here we call

posture a set of body con�gurations including contact positions. Optimal postures usually

vary from task to task. For example, the virtual character may have to lean forward to

push an object, but lean backward to pull it; the feet may have to be separated from each

other to be able to generate manipulation forces that are su�ciently strong. Even for

the same kind of tasks, for example pushing, the optimal posture should be adjusted to

adapt to di�erent object's physical properties. Moreover, available contact positions are

sometimes restricted due to environment constraints. For example, the virtual character

may need to choose foot positions that allow the end-e�ector to manipulate an object

without moving the feet. These questions suggest that before performing a task, it is

important and bene�cial for the virtual character to choose postures that are optimal for

the task.

In the context of computer animation where motion capture has become an essential

technique, an operator's postures can be taken as references for the virtual character.

Captured motions are lifelike, but they need to be adjusted to handle manipulation forces

and to deal with disturbances. This is because the operator usually does not really manip-

ulate objects and thus cannot sense interaction forces between the virtual character and

the virtual environment. Moreover, the operator may not be skillful enough for providing

suitable reference postures for some tasks. Consequently, his postures can be inappropriate

for the virtual character to balance the interaction forces or to improve task performances.

Many existing methods focus on the generation of foot contact positions for locomotion

tasks. The choice of contact positions with the purpose of improving manipulation task

performances by taking into account contact forces remains a challenge.

This chapter introduces a generic approach that can automatically �nd optimal pos-

tures for a wide variety of manipulation tasks. For each manipulation task, a constrained
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optimization problem is solved o�-line to �nd a sequence of optimal postures associated

with a desired manipulation path, in the neighborhood of a given initial posture. The op-

timization problem is based on a simpli�ed model of the character. This simpli�ed model

takes into account interaction forces with the environment and the kinematic relations

between control frames. Here control frames are some coordinate frames attached to the

character's body, the positions of which are to be optimized. Once a solution is found,

one can use a motion controller to make the character adjust the contact positions, then

to perform object manipulation by following the desired motions of the control frames

and by applying desired forces. Our approach considers quasi-static cases where dynamic

e�ects can be ignored; therefore, we suggest applying a quasi-static task controller for

object manipulation, such as the one described in [Liu 2011b].

The main contributions of this approach are as follows:

� It is a generic posture optimization approach that couples geometric and kine-

matic constraints (G-K constraints) with force and moment constraints

(F-M constraints).

� It can improve task performance by choosing suitable postures in a preparation stage

before actually performing the task. Contact con�gurations for manipulation tasks

are optimized for user-speci�ed manipulation paths and forces.

� It deals with the redundancy of poses, and can make contact positions as robust

as possible. The structure of our posture optimization problem allows us to take

precaution against mechanical interactions and possible perturbations. By adopting

the optimized postures, the risk of failures either due to poor postures or due to

perturbations can be greatly decreased.

2.2 Related work

Task-based constraints should take into account kinematic constraints related to the

character's body structure and geometric relations between the character and the environ-

ment. For example, the character may need to �nd postures that allow its hand to move

an object along a desired trajectory without violating the constraint of its body structure.

The constraints related to a body structure can be formulated based on forward kinematics,
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which provides a mapping between a body frame and the joint angles. One example is the

virtual kinematic loop equation [Smits 2010], which can be used to force the frame of a link

to coincide with another frame in the environment. Researchers in robotics have adopted

such a constraint in the path tracking of robot manipulators and wheeled robots [de Schut-

ter 2005,De Schutter 2007,Stilman 2010]. Our approach applies this constraint on a virtual

character to �nd kinematically feasible motions for manipulation tasks. To perform spec-

i�ed interactions with the environment, some kinematic-based motion editing approaches

modify input human motions [Peinado 2009,Jain 2009a]. In [Liu 2002], environmental

restrictions are represented as positional and sliding constraints, and linear and angular

momentum constraints are used to improve the realism of motions. Constrained inverse

kinematics has been combined with a database of example postures to synthesize motions

that satisfy a set of G-K constraints for manipulation tasks [Yamane 2004]. However, in

a physics-based simulation environment, these approaches are limited when the character

needs to react to interaction forces during manipulation tasks; and moreover, approaches

based on a motion database usually cannot generate certain behaviors to handle interac-

tions if such behaviors are not included in the motion database.

To adapt output motions to interaction forces, F-M constraints should be taken into

account. For example, the equilibrium of forces and moments should be considered to

ensure balance; and contact forces should be handled for manipulation tasks, because the

character's body is under-actuated and it needs to use contact forces to perform desired

motions. In some optimization based motion synthesis approaches, physical constraints

based on forces and torques are included in the optimization to ensure physical real-

ism [Fang 2003,Jain 2009b]. F-M constraints have been considered in many task control

frameworks [Khatib 2004,Abe 2007,Collette 2007,Liu 2011b], where the desired foot con-

tact positions are either given a priori, or computed without considering interaction forces

during object manipulation. Our posture optimization can be considered as a preparation

step that can be executed before applying these task controllers. In fact, our approach

provides these task controllers with a pre-computed solution of suitable postures for given

manipulation tasks. These postures, including contact positions such as foot positions, are

optimized with respect to user-speci�ed manipulation paths and forces. We achieve this by

taking into account F-M constraints to handle physical interactions, and G-K constraints
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to generate kinematically feasible motions with environment awareness.

The con�guration of contacts is a major aspect that is focused on in this chapter.

A support polygon reshaping approach has been proposed in [Yoshida 2006], the idea of

which is to �rst try to reach the target with an initial support polygon, and then reshape

the support polygon according to the feedback task error. An approach to plan foot

placements according to kinematic tasks has been described in [Kanoun 2011b]. Compared

with these approaches, ours is more general in that besides G-K constraints, we also take

into account F-M constraints in the optimization of contact positions. Moreover, under

many circumstances, the feet of the character are �xed when its hands are manipulating

objects along a segment of manipulation path [Saab 2009,Hauser 2011]. Our approach

can provide a support polygon that is suitable for a segment of end-e�ector motion path

instead of for only one �xed end-e�ector task target; therefore the character will not need

to adjust its foot positions frequently during task execution.

Besides, we also optimize contact positions to generate robust postures with respect to

perturbation forces. An optimal control which allows the adaptation of walking motions to

physical perturbations has been proposed in [Ye 2010]. Contact forces are �rst generated

o�-line to reproduce reference motions, and then adjusted on-line to maintain contacts

and balance during perturbations. But such contact forces that satisfy current contact

con�guration may not exist. As our approach considers manipulation tasks with the

desired interaction forces known a priori, contact forces and contact con�gurations are

optimized simultaneously before task execution. Possible perturbation forces can also

be taken into account in our optimization to make the solution more robust. Moreover,

kinematic relations between contacts and control frames are not considered in [Ye 2010],

which may generate kinematically unfeasible motions. Such kind of relations is taken into

account in our approach.

2.3 Posture optimization

The goal of this section is to formulate an optimization problem, which will be solved

to �nd optimal postures in the neighborhood of a given one. Such postures should allow

the hand to follow a manipulation path de�ned by the task, and to apply su�ciently
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strong interaction forces on the object. We seek to improve the robustness of the posture

against external perturbation forces, and in addition, to make the postures as comfortable

as possible. Besides, the optimization result also provides possible contact forces on the

feet and the maximum allowable interaction force between the end-e�ector and the object.

2.3.1 Simpli�ed model

Our posture optimization problem uses a simpli�ed model, which considers essential

elements of the character, such as contact forces, the positions of the CoM and some other

control frames, as well as the kinematic relations between these control frames. This

simpli�ed model consists of a punctual mass (m) at the CoM, one massless back, one

massless arm and two massless legs (see Fig.2.1). The model has 15 degrees of freedom

(DoF), including 6 root DoF (3 translational DoF and 3 rotational DoF), 2 DoF for each

hip and shoulder and 1 DoF for each knee and elbow. It has two contact points, one on

Figure 2.1: Simpli�ed model.

each foot; and it has one end-e�ector, which is the hand. The contacts on each foot and

hand are abstracted into one frictional point contact as in [Bretl 2008], which means only

the net contact force between each body segment and the environment is considered. These

simpli�cations help to reduce the dimension of the optimization problem while retaining

the important characteristics of the interaction model.

The following notation is used in this chapter.



2.3. Posture optimization 17

� All the position vectors X are de�ned with respect to a global reference frame with

axis x, y, and z. The z axis points upwards.

� The l-th joint angle is denoted as ql.

� The gravity force applied at the CoM is denoted as FG.

� Each frame j on the body of the virtual character is generally denoted by subscript

j. More speci�cally, frames are denoted by subscripts: com for the CoM, lf and rf

for the left and right foot respectively, h for the hand, and g for the ground.

� The upper and lower limits of a variable a are denoted by aU and aL respectively.

The manipulation path is discretized into sampled points. A term associated with a

discretized point i is denoted by the superscript i. The desired position of the object at

each discretized point i is denoted as Xi
obj. The hand force at the position Xi

obj is de�ned

as Fi
h = kiF̂i

h, where F̂i
h is a unit vector indicating the desired force direction at point i,

and ki is its magnitude.

2.3.2 Optimization with respect to one discretized point on the manip-

ulation path

For clarity, we �rst describe a posture optimization problem with respect to one pair

of object position and desired manipulation force direction (Xi
obj, F̂i

h). The optimization

takes into account the objectives of increasing the maximum allowable manipulation forces,

minimizing the risk of foot slipping, and reducing joint discomfort, subject to all the G-K

and F-M constraints.

The set of the optimization variables is de�ned as

Θi =
{
Xi

com,q
i,Fi

lf,F
i
rf,Γ

i
lfz
,Γirfz , k

i
}

(2.1)

The optimization problem is written as follows:

min
Θi

(whG
i
h(Θi) + wfG

i
f (Θi) + wqG

i
q(Θ

i))

s.t. Ψi
GK(Xi

com,q
i)

Ψi
FM(Θi)

(2.2)

where Gh, Gf and Gq are the objectives, and ΨGK and ΨFM are G-K and F-M constraints

respectively. The optimization weights w are chosen based on di�erent task requirements.
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We will discuss how to make the choice of these weights in section 5.3.

2.3.2.1 Objectives

To improve the manipulation ability, the hand force magnitude along the given direc-

tion is maximized by setting the following hand force objective.

Gih(ki) = −ki (2.3)

To avoid foot slipping, the foot contact forces should remain inside their friction cones.

This non-sliding constraint will be referred to later in this chapter. As this constraint is not

su�cient to fully determine the tangential foot contact forces, these forces are minimized

by the following objective function, which helps to reduce the risk of foot slipping.

Gif (Fi
lf,F

i
rf) =

1

2

∥∥SlfF
i
lf

∥∥2
+

1

2

∥∥SrfF
i
rf

∥∥2
(2.4)

where Slf and Srf denote matrices to select the directions of the tangential friction forces.

A real human always intend to reduce joint discomfort during manipulation tasks. An

objective function of joint discomfort Gq is used so as to imitate such human behaviors.

The discomfort measure [Yang 2004,Ma 2009] is applied here. The objective function is

de�ned as follows.

Giq(q
i) =

DoF∑
l=1

[
φl(∆q

n
l )2 +QU il +QLil

]
∆qnl =

qil − qNl
qUl − qLl

QU il = (0.5cos
3π
2 (qUl − qil)
qUl − qLl

+ 0.5)100

QLil = (0.5cos
3π
2 (qil − qLl )

qUl − qLl
+ 0.5)100

(2.5)

This objective guides the optimization to choose joint angles based on their neutral values

and limits. It attempts to push joint angles qi away from their upper limits qU and lower

limits qL, and pull them towards a neutral value qN , so as to increase posture comfort

level. As mentioned in [Yang 2004], the concept behind the discomfort measure is to

enhance the preference of using certain joints to ful�ll a motion task, by regulating the

joint weight φl.
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We will show in section 5.3 that a careful choice of the value of φl helps to improve

the behaviors of the virtual character, making them closer to those of a real human.

2.3.2.2 Geometric and kinematic constraints

Our G-K constraints take into account the geometric relations between the character

and the virtual environment, as well as the kinematic relations between the control frames.

An example of the constraints Ψi
GK is listed below.

Joint angles should respect joint limit constraints.

qL ≤ qi ≤ qU (2.6)

We search for position solutions within a constrained region of interest, which is a polygon

around the object.

AcomXi
com + bcom ≤ dcom

AlfXlfx,y(X
i
com,q

i) + blf ≤ dlf

ArfXrfx,y(X
i
com,q

i) + brf ≤ drf

(2.7)

The hand position is constrained to point Xi
obj, which implies that the hand moves along

the desired manipulation path, as the object does.

Xh(Xi
com,q

i)−Xi
obj = 0 (2.8)

The following constraint is imposed to prevent the feet from overlapping each other. The

distance between the feet is kept lager than a minimum value.

ψ(Xlfx,y(X
i
com,q

i),Xrfx,y(X
i
com,q

i)) ≥ df (2.9)

where ψ(X1,X2) denotes the distance between X1 and X2. The angle between the facing

direction of the character and the direction of the object is constrained in (2.10), where ϑ

denotes the angle between the two vectors.

ϑ(Xi
com,q

i,Xi
obj) ≤ dϑ (2.10)

The positions of some control frames j may have to respect some additional geometric

constraints (2.11) in constrained environments. For example, the optimal positions of the

feet should not penetrate into an object.

ψ(Xobj,Xj(X
i
com,q

i)) ≥ 0 (2.11)
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The contacts between the feet and the ground should be maintained (2.12):

Xlf,rfz(X
i
com,q

i)−Xgz = 0 (2.12)

Since the position of each control frame can be obtained by forward kinematics, they

are expressed as a function of the CoM position Xi
com and joint angles qi. As a result,

constraints due to the skeleton structure are implicitly included in these G-K constraints.

2.3.2.3 Force and moment constraints

This chapter is interested in manipulation tasks where the major perturbation comes

from mechanical interactions. The character should be able to keep its balance under

external contact forces. To achieve this goal, the following F-M constraints Ψi
FM are

imposed. Only the quasi-static cases are considered here, and the dynamic e�ects such as

acceleration are neglected.

To maintain the static equilibrium, the constraint of force and moment balance (2.13)

is imposed.

Fi
lf + Fi

rf + Fi
h(ki) + FG = 0

Xlf(X
i
com,q

i)× Fi
lf + Xrf(X

i
com,q

i)× Fi
rf

+ Xh(Xi
com,q

i)× Fi
h(ki) + Xi

com × FG + Γilfz + Γirfz = 0

(2.13)

In order to avoid foot slipping, each foot contact force is constrained to remain inside a

friction cone in (2.14). ∥∥∥∥[Flf,rf
i
x,Flf,rf

i
y

]T∥∥∥∥ ≤ µ∥∥Flf,rf
i
z

∥∥ (2.14)

with µ denoting the friction coe�cient between the feet and the ground. The hand force

magnitude is constrained as follows.

kL ≤ ki ≤ kU (2.15)

The lower bound kL is de�ned by the task. It stands for the minimum magnitude of the

interaction force that is necessary for performing the object manipulation.

2.3.3 Optimization with respect to a manipulation path

Given a manipulation path and the desired force directions along the path, the whole

posture optimization problem is solved with respect to each discretized point i. We want
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the foot positions to be �xed during the manipulation task (Figure 2.2), so the following

constraints are used between each discretized step.

Xlf,rf(X
i
com,q

i)−Xlf,rf(X
i−1
com ,q

i−1) = 0, i > 2. (2.16)

In this way, the �nal solution of foot positions satisfy not only the constraints associated

with a local point i, but also those for the whole motion path. It should be noticed that

we did not impose similar constraints on the CoM position and joint angles. Therefore the

virtual character is allowed to move its body and change its posture during manipulation,

even though its feet are �xed.

Figure 2.2: Postures along a motion path with �xed foot positions.

Moreover, the minimum value of ki is maximized to maximize the hand force along

the whole path. Hence, instead of using (2.3) as the hand force objective function, the

following one is used for the whole path:

Gh(
{
ki
}

) = −min
i

{
ki
}

(2.17)

An advantage of our posture optimization is that it can be used to improve the robust-

ness by taking account of perturbations in the optimization problem. This can be done

by adding more pairs of hand position and hand force direction. For example, at point i

of the original motion path, some perturbations (δXobj, δFh) of di�erent magnitudes and



22 Chapter 2. Task-driven Posture Optimization

directions can be added to Xi
obj and Fi

h.

X̃i
obj = Xi

obj + δXobj

F̃i
h = Fi

h + δFh

(2.18)

The optimization problem is solved with respect to a set of possible hand positions X̃i
obj and

force directions F̃i
h, so that the posture solution can better cope with the perturbations.

The optimization problem is summarized as follows:

min
Θ=

⋃
i Θi

whGh +
∑
i

(wfG
i
f + wqG

i
q)

s.t.
{

Ψi
GK(Xi

com,q
i)
}

{
Ψi

FM(Θi)
} (2.19)

The above optimization problem contains several equality and inequality constraints, most

of which are nonlinear. We solve it by using CFSQP algorithm [C. Lawrence 1997].

Note that the optimization problem presented here is just an example to explain the

idea. It can be generalized to handle other problems with di�erent contact con�gurations,

such as a character moving one foot using both hands and the other foot as �xed contacts.

2.4 Results

The approach presented in the above section has been tested on the simpli�ed model.

The following three types of experiments (Exp1, Exp2 and Exp3) are considered. A

solution of postures and especially foot positions are to be found.

� Exp1:

Find a solution which allows the robot to move its hand between two points, X1
obj and

X2
obj, and to maximize the manipulation force along one given direction F̂h. This problem

can be written as Π(
{

Θ1,Θ2
}
|
{

(X1
obj, F̂h), (X2

obj, F̂h)
}

).

� Exp2:

Find a solution which allows the robot to move its hand between two points, X1
obj and

X2
obj, and to maximize the manipulation force in two inverted directions, F̂h and −F̂h.

This problem can be written as Π(
{

Θ1,Θ2
}
|
{

(X1
obj, F̂h), (X2

obj,−F̂h)
}

).

� Exp3:
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Find solution which allows the robot to move its hand along a given curve with n dis-

cretized points
{
Xi

obj, ∀i ∈ N = {1, 2, ..., n}
}
, and to maximize the manipulation force,

which points to several di�erent directions throughout the path. This problem can be

written as Π(
{

Θi, ∀i ∈ N
}
|
{

(Xi
obj, F̂

i
h),∀i ∈ N

}
).

We conducted several experiments for these types of problems. The results of postures

are shown in Fig.2.3 - Fig.2.5 for problem type Exp1, in Fig.2.6 - Fig.2.8 for problem type

Exp2, and in Fig.2.9 for problem type Exp3.

The results of optimization demonstrates that the above-mentioned optimization prob-

lem can be successfully resolved based on G-K constraints and F-M constraints. The

computation time depends on the problem to solve, especially the number of discretized

points. According to the data obtained from Exp1, where there are 2 discretized points, it

takes a duration of time ranging from 0.08s to 2.06s, with an average of 1.33s. Generally

it takes less than one minute if the number of points is smaller than 5.

Figure 2.3: Results of postures for Exp1. Each row corresponds to one manipulation direction.

Figures in the left and right column correspond to the start states and the end states respectively.

The path is shown in a black dotted line.
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Figure 2.4: Results of postures for Exp1. Each row corresponds to one manipulation direction.

Figures in the left and right column correspond to the start states and the end states respectively.

The path is shown in a black dotted line.

The approach is capable of providing suitable postures with respect to a variety of

manipulation tasks. The obtained postures are di�erent from task to task, changing not

only in favor of di�erent motion paths, but also of di�erent interaction force directions.

In Exp1, the postures are adapted to the desired interaction force direction. For example

when pushing an object (Fig.2.5(b)), the body leans forward to be able to push more

strongly. The robot deliberately increases the feet distance along the same direction of

the given motion path or manipulation force direction. This makes sense since separating

the feet along a direction helps to generate a more robust posture against the interaction

force along that direction. We can observe similar postures when a real human performs

the same tasks.

The di�erence between Exp1 and Exp2 is that the former is an optimization based on

one desired force direction, whereas the latter is based on two inverted force directions.
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Figure 2.5: Results of postures for Exp1. Each row corresponds to one manipulation direction.

Figures in the left and right column correspond to the start states and the end states respectively.

The path is shown in a black dotted line.
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Figure 2.6: Results of postures for Exp2. The robot is required to �rst pull an object to the

right then pull it back to the left. The path is shown in a black dotted line. The hand positions

at both ends are the same as in Fig.2.3.
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Figure 2.7: Results of postures for Exp2. The robot is required to �rst pull an object down then

pull it up. The path is shown in a black dotted line. The hand positions at both ends are the

same as in Fig.2.4.
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Figure 2.8: Results of postures for Exp2. The robot is required to �rst pull an object back then

push it forward. The path is shown in a black dotted line. The hand positions at both ends are

the same as in Fig.2.5.
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Note that the motion path in Fig.2.6 is the same as in Fig.2.3, but the foot positions

are di�erent. In Fig.2.3 (a) and (b), each foot contact con�guration is optimal for one

manipulation force direction. However, the foot positions in Fig.2.6 are more adaptable to

manipulation forces in both directions. Similar results can be found in Fig.2.7 and Fig.2.8.

Figure 2.9: Results of postures for Exp3. The given curved path is shown in black lines. The

desired force direction is tangent to the curve at each point.

Results of Exp3 suggest that the proposed approach is capable of �nding suitable

postures enabling the hand to track a motion path which is more complex than a straight

line, and to apply forces towards di�erent directions along the path as well (see Fig.2.9).

The maximum allowed manipulation force along a motion path provided in the opti-

mization results may help us to better evaluate a task before executing it. On one hand,

if the task is unrealistic and will con�ict with some constraints, then the optimization will

provide no solution; on the other hand, the optimization solution can provide us with an

idea of the maximum manipulation force that the character can apply on an object along

a motion path. The upper limit of the force magnitude used in each of our experiments is
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150N . We found that in most cases (90 percent) the obtained maximum allowable force

magnitude can attain this upper limit.

As is mentioned in Section 2.3.3, an advantage of this planning method is that we

can use it to make the standing position and the shape of support polygon more robust

to perturbations. The result of such implementation will be shown in Section 5.3.5 to

demonstrate how the optimized postures can better cope with perturbations during ma-

nipulation.

The objective weights are chosen according to task requirements. If the character has

to apply a strong manipulation force, for example, moving a heavy object, then the weight

wh should be set to a high value to enhance the hand force objective, and to ensure that

the maximum allowable manipulation forces are su�cient for the task. If we want to

reinforce non-sliding contacts on the feet, then wf should be assigned with a higher value

to reduce tangential contact forces on the feet; however, the maximum allowable value of

k might be limited as a compromise. The objective weights used in our experiments are:

wh = 1000, wf = 1, and wq = 500.

2.5 Limitations

The current approach has a few limitations.

First, since the posture optimization problem that we are dealing with is not convex,

several local minima may exist. The solution of our posture optimization is a local opti-

mum in the neighborhood of an initial value; and the global optimum might be drastically

di�erent. This is because the CFSQP algorithm that we use to solve our problem is based

on derivatives, which leads to a local minimum. However, we choose to use a derivative-

based optimization algorithm because it converges the fastest. One possible solution to

improve the posture solution is to build a database of captured motion for di�erent kinds

of manipulation tasks, so as to provide natural and lifelike initial postures.

Second, the computation time for solving the optimization problem is sensible to the

given task, especially the complexity of the motion path. Currently we �rst apply posture

optimization o�-line. Then use the optimization results in the on-line task controller.

Moreover, the current posture optimization might not always be able to �nd an optimal
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solution, especially when the manipulation path is too long for the optimization to �nd

a suitable contact con�guration that supports the whole path. We plan to handle this

problem by developing some automatic segmentation techniques; so that the path can be

divided into several segments automatically, and posture optimization will be executed

segment by segment.

2.6 Conclusion

We have developed a generic approach to �nd optimal postures, especially foot posi-

tions, for object manipulation tasks. The optimized posture can enable the end-e�ector

to follow given manipulation path while applying the maximum manipulation forces with-

out causing foot slipping and balance problems. Besides, constraints such as joint limits,

non-sliding contacts, and geometrical relations with the environment can be satis�ed. The

results of our experiments suggest that the proposed posture optimization problem based

on both G-K constraints and F-M constraints can be numerically solved for a wide variety

of tasks. The obtained postures are di�erent from task to task, changing not only in favor

of di�erent motion paths, but also for di�erent interaction forces.

Future work will study how to reduce the computation time when there are a large

number of discretized points along a complex motion path. We also plan to improve

our optimization framework by taking into account objectives concerning joint torques

as in [Boulic 1996,Harada 2006]. Moreover, we can make our approach more generic by

optimizing the trajectory of the center of pressure (CoP) as well. So for each contact, the

CoP will be optimized and will be allowed to move inside the support polygon instead of

being �xed. To realize this, the foot size and the admissible shape of the support polygon

should also be taken into account in the optimization.
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This chapter presents a new control framework for virtual characters in a physics-

based virtual environment. This framework combines multi-objective control with motion

capture techniques. Each motion tracking task is associated with a task wrench. An

optimization problem is solved to compute optimal task wrenches. Finally, joint torques

are computed using the optimal task wrenches. This control framework allows the virtual

character to generate appropriate motions to handle interactions with the virtual environ-

ment, rather than to simply emulate captured motions. The e�ectiveness of our approach

is demonstrated by a virtual character performing manipulation tasks.
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3.1 Introduction

Virtual characters usually need to interact with human operators and with virtual

environments. They should react to operator's instructions and simulated events. Motion

capture has become an essential technique in the control of virtual characters. It is tradi-

tionally used to guide the motions of a virtual character by virtual springs [Lee 2010].

Many motion correction techniques that are based on prerecorded motions [Callen-

nec 2006,Shapiro 2008,Jain 2009a] have shown good results, whereas our work studies

real-time interactions where an operator can interact in an unpredictable way.

There are two main di�culties in this research topic. First, since a virtual character's

body is under-actuated, it should make contacts with the environment and use contact

forces to perform desired movements. However, the operator's postures can be inappro-

priate for the virtual character to deal with contact forces during task execution. This is

because, in order to simplify the interaction system between the operator and the virtual

character and to make the operator more comfortable, it is preferable to use a minimum

of equipments for the interaction. To achieve a low-immersion virtual reality environ-

ment, we choose to use only a motion capture system for the interaction, without using

force sensors. As a result, the virtual character should be endowed with certain autonomy

to improve its performance automatically, in order to compensate for the fact that the

operator is not completely immersed into the virtual environment and cannot adjust his

postures according to the feedback of the forces applied on the virtual character. Con-

sider the scenario where a virtual character pushes an obstacle (Fig.3.1) for example. The

operator just sends out the intention of pushing by reaching out his hands, but the vir-

tual character may have to automatically lean towards the obstacle to push it while the

operator cannot, because the virtual obstacle does not exist in the world of the operator.

Hence captured motions should be adjusted to be more suitable to handle external contact

forces during interactions with the environment. Second, virtual characters are complex

systems, with a high number of degrees of freedom. They can have many postures which

help to accomplish the same task. The controller must �nd the best solution among all

the possible postures.

The contributions of this chapter is the development of a multi-objective control frame-
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Figure 3.1: A virtual character pushing an obstacle according to the operator's order.

work, which enables a virtual character to compromise between following an operator's

motions, and adjusting postures by itself to perform tasks in a physics based virtual en-

vironment. The virtual character is considered as a mechanical system in�uenced by

multiple wrenches. The motion of each task frame is guided by its task wrench. Multiple

tasks are handled by regulating task wrenches.

3.2 Related work

Our control framework is inspired by the work of [Collette 2008] and [Abe 2007], who

have both proposed a framework of multi-objective control based on optimization. Their

approaches use acceleration-based control, which de�nes the objective as:

arg min
Ṫ

∥∥∥JṪ + J̇T− Ẍd
∥∥∥ (3.1)

with Ẍd the desired acceleration derived from the task to perform. However, such a

method may lead to numerical singularities for certain poses, since the process of solving

for joint accelerations Ṫ in (3.1) boils down to computing the inverse of the Jacobian.

Moreover, it is di�cult for the character to adapt to sudden environment changes related

to new established contacts during manipulation by using acceleration-based control. To

deal with these problems, our system uses force-based control as an alternative approach,

which makes the interaction more feasible and safe.
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Our force-based control framework adopts a Jacobian-transpose (JT) control

method, which has been used in [Pratt 1996] for virtual actuator control, and in

[Coros 2010] for a walking controller. In [Demircan 2008], human motion from motion

capture data is reconstructed, by using a simpli�ed version of the framework that is pro-

posed in [Khatib 2008]. This simpli�ed version is close to the JT control method.

The principle of our control framework is similar to those presented in [Wu 2010]

and [Stephens 2010], both of which combined the JT method with optimization. The

work in [Wu 2010] proposed a static resolution of forces based on the relations of some

action-reaction frame pairs. For each frame pair, a force variable applied at the action

frame from the reaction frame is de�ned, as well as an opposite force variable applied at the

reaction frame; then, optimization is used to solve for these variables. Compared with such

a method, ours is more general in the sense that it is not needed to identify action-reaction

frame pairs. Each frame is associated with one force variable; therefore, the number of

optimization variables in our framework is the same as the number of task frames; however,

if there are many body frames that interact with one another, the variable number becomes

much larger with the method in [Wu 2010]. Besides, contact constraints that are associated

with friction cones were not considered in [Wu 2010]. In [Stephens 2010], a synthesis of

control laws involving two main steps was proposed. The �rst step consists of estimating

ground contact forces, which are used in the second step to compute joint torques by

solving dynamics and constraint equations. These equations in the second step are solved

by a damped pseudo-inverse, which leads to a solution that minimizes the norm of the

vector
[

ṪT τT
]T

. This may, in most situations, have the risk of generating unwanted

behaviors or movements; for example, consider a simple gravity compensation, for which

we do not want to move the virtual character at all, but the use of a damped pseudo-inverse

may lead to Ṫ 6= 0.

3.3 Dynamics of the virtual character

The dynamics of the virtual character (Fig.3.2) is considered as a second order system

(3.2).
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Figure 3.2: Example of a virtual character with wrenches associated with di�erent frames.

MṪ + NT + γr = Lτ −
∑
j

JTcjW
r
cj −

∑
k

JTpkW
r
pk

(3.2)

In the notations of this chapter, frames are denoted by subscripts as follows:

� com for CoM frame;

� c for non-sliding contacts at �xed locations, which are known a priori, such as the

contacts between the feet and the ground;

� p for contacts where the environment is not �xed but behaves passively, which means

that the virtual character experiences a passive interaction with the environment;

these contacts are unknown a priori;

� t for task frames that are associated with the end-e�ector motion control.

Note that only passive interactions between the virtual character and the environment

are considered here. The restriction to passive interactions is a natural choice, since the

human can be supposed to behave like a passive environment [Krüger 2008], and a great

number of environments with which people and robots interact are passive [Colgate 1989].

Moreover the following superscripts are used:

� d for �desired� wrench values for the controller,

� r for �real� wrench values in a simulation,

� root for the root DoF,

� ac for the actuated DoF.

With these notations, a Jacobian matrix J is decomposed as J =
[

Jroot Jac
]
.
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3.4 Control framework

The control framework is shown in Fig. 3.3. At each time step of simulation, the

control system computes joint torques from a motion capture sequence, given tasks, and

constraints. The whole control is divided into two steps: the �rst step is the computation of

the optimal wrenches; joint torques are then computed according to the optimal wrenches

in the second step. The joint torques are used to drive the virtual character.

Figure 3.3: Block diagram of the control framework.
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3.4.1 Virtual wrenches computation

The principle of the JT control method [Demircan 2008,Pratt 1996] is as follows. Given

a task wrench W in the space of Cartesian coordinates, the equivalent joint torques τ can

be obtained by τ = JTW, with J the Jacobian matrix at the point where W is supposed

to be applied.

In our multi-objective control, a task means that a certain frame on the virtual char-

acter's body should be transferred from an initial state to a desired state. For each task,

imagine that a �virtual� wrench is applied at a certain frame on the virtual character's

body to guide its motion toward a given target. These virtual wrenches are de�ned to

be applied by virtual characters on environments. They are computed by solving an

optimization problem.

The optimization variables are the CoM task force Fcom, the end-e�ector task wrenches

Wt, and the contact forces Fc. The optimization tries to �nd optimal task wrenches by

taking into account their desired values, as well as the constraints of static equilibrium,

non-sliding contacts, and wrench bounds.

Suppose there are n task frames to control and m �xed contacts. The optimization

problem is written as follows:

arg min
Fcom,Wti ,Fcj

1
2

∥∥∥∥∥∥∥∥∥


Fd
com

Wd
ti

Fd
cj

−


Fcom

Wti

Fcj


∥∥∥∥∥∥∥∥∥

2

Q

(3.3a)

subject to Jrootcom
T
Fcom +

∑
i J

root
ti

T
Wti

+
∑

j Jrootcj
T
Fcj + γr,root = 0 (3.3b)

AcjFcj − dcj > 0 (3.3c)

Wmin
t ≤Wt ≤Wmax

t (3.3d)

with i = 1, 2, ..., n and j = 1, 2, ...,m. The optimization objective is the same for each task,

which is to minimize the error between the variable and its desired value. The objectives

are combined by the diagonal weight matrix Q, whose value is chosen according to the

importance levels or the priorities of di�erent objectives.
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3.4.1.1 Target tracking objectives

The two primary kinds of target tracking tasks considered here are the CoM task

and the end-e�ector tasks. Our control system takes the CoM as the stability criterion

and maintains balance by controlling its position. The end-e�ector tasks can be either

tracking a captured motion sequence or performing some speci�c motions. For each task,

the desired task wrench Wd is computed by using a proportional-derivative (PD) feedback

control law.

Wd = Kδ(Hd,Hr) + Bδ(Vd,Vr) (3.4)

with Hr ∈ SE(3), Hd ∈ SE(3), Vr ∈ se(3) and Vd ∈ se(3), where SE(3) is the

special Euclidean group and se(3) is the Lie algebra of SE(3). δ(Hd,Hr) denotes the

displacement (position and orientation) error between the desired and current states, while

δ(Vd,Vr) denotes the velocity (linear and angular velocity) error between the desired and

current states. K and B denote the proportional and derivative gain matrices respectively.

For the end-e�ector tasks, both the position and orientation errors are considered; for

the CoM task, only the position error is considered.

If a contact is established between the end e�ector and an object during manipulation,

an additional o�set value can be added to the result of (3.4).

Wd = Kδ(Hd,Hr) + Bδ(Vd,Vr) + Wo�set (3.5)

This o�set Wo�set helps to enhance the contact between the end e�ector and the object.

3.4.1.2 Contact force objective

For each �xed contact, only the force component Fcj of the wrench Wcj is considered.

The contact force objective is not a target tracking objective. It is used here for numerical

reason, so that the matrix Q is full rank. As we do not need to know the appropriate

value of each contact force a priori, Fd
cj is set to zero, and a weak weight is assigned to

this objective. Then we let the optimization �nd the appropriate contact forces.
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3.4.1.3 Static equilibrium constraint

The wrenches are constrained by the static equilibrium of the root body under Fcom,

Wti , Fcj , and γ
r. This constraint is written in (3.3b).

3.4.1.4 Contact constraints

The contact force objective mentioned in 3.4.1.2 only tries to minimize the contact

forces Fcj , more appropriate values of which are computed by the optimization. The

optimization searches for a contact force which not only satis�es the static equilibrium

in (3.3b), but remains inside the friction cone as well, in order to maintain a non-sliding

contact. The linearized Coulomb friction model [Abe 2007,Collette 2007] is applied, in

which the friction cone of each contact is approximated by a four-faced polyhedral convex

cone. The contact constraints are written in (3.3c), with

Figure 3.4: Friction cone.

Acj =
[
λ1×λ2 λ2×λ3 λ3×λ4 λ4×λ1

]T
, (3.6)

where λ is the unit edge vector of the approximated friction cone, and dcj is a user de�ned

margin vector. The projection of Fcj on the normal vector of each facet of the friction

cone is constrained to be larger than dcj .

3.4.1.5 Wrench bounds

Wrenches of lower-priority tasks are bounded if these tasks con�ict with a higher-

priority task. Here, wrench bounds associated with motions in SE(3) are considered. The
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computation of wrench bounds is explained in detail in Chapter 4.

3.4.2 Joint torques computation

Joint torques are computed in (3.7) using the solution (F̂com, Ŵti , and F̂cj ) of the

optimization.

τ = Jaccom
T F̂com +

∑
i

Jacti
TŴti +

∑
j

Jaccj
T F̂cj + γr,ac, (3.7)

3.5 Results

The proposed control framework has been implemented on the virtual character de-

scribed in Section 1.2. Experiments have been conducted to demonstrate that the proposed

control system is capable of driving the virtual character to perform a desired manipula-

tion task in an interactive manner, and to change its posture automatically so as to handle

unknown external contact forces.

We have applied our control system to the following object manipulation tasks, all of

which are performed by interactions with the operator:

� Push storage cabinets (Fig. 3.5).

� Take a box up from a table, then move it (Fig. 3.6).

The storage cabinets weigh up to 50kg. The box weighs 10kg. The friction coe�cients

between the feet and the ground, as well as between the objects and the hands are 1.0.

The objects to manipulate only exist in the virtual environment. The CoM task is used

for balance control. The hand tasks are used for reaching or manipulation control. The

control has been realized in real-time with a simulation time step of 0.01s.

The operator wears motion tracking markers on his hands. Only the motions of the

operator's hands are captured. During real-time interactions, the virtual character is

animated according to the hand displacements of the operator, which are taken as the

reference hand displacements for the virtual character. Once the virtual character's hands

are in contact with the object, it starts to perform manipulation according to the guidance

of the operator's motions. The whole-body motions of the virtual character are generated

by our multi-objective controller.

The virtual character's actions are determined based on events from the operator and
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Figure 3.5: Snapshots of the virtual character pushing a storage cabinet according to interactions

with the operator.

Figure 3.6: Snapshots of the character taking a box up, moving it, and then putting it down.
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the simulation environment. Currently, the actions of the virtual character are �xed for a

given task. The virtual character decides how to react according to a �nite state machine

(FSM) illustrated in Fig.3.7. In the future, we plan to develop a more generic method

for intention detection. Hereby, the goal of the experiments is to assess the validity of

our control framework, as well as to illustrate the problematic of our future works on the

topic.

Figure 3.7: A �nite state machine for action decision. d(hand, obj) denotes the distance between

the operator's hand position expressed in the virtual environment and the position of the object.

η1 and η2 are two threshold values with η2 > η1.

� Idle state: At the beginning of the simulation, the character is in the Idle state.

In this state, the character is not in contact with the object to manipulate, and his

hands follow the motions of the operator's hands.

� Tightening state: If the distance between the operator's hand position expressed

in the virtual environment and the position of the object d(hand, obj) is smaller

than a threshold value η1, then the character's hands should make contact with

the object. At this moment, the operator's hands may continue moving; but the

character cannot simply follow the operator's motions. Instead, it has to deal with

the interactions between itself and the object in the virtual environment. During the

Tightening state, the contact forces between the character's hands and the object

increase gradually until the character can move the object.

� Manipulating state: In this state, the character's hands are in contact with the

object. At the same time, the character tries to move the object according to the
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motions of the operator's hands.

� Releasing state: The operator sends out an interruption order for stopping task

execution by moving his hands away. Once the value of d(hand, obj) is larger than

another threshold value η2 (η2 > η1), the character starts to release the object by

gradually reducing the contact forces. Once the action of releasing is performed, the

character returns to the Idle state.

As mentioned in Section 3.4.1.1, the contact forces during manipulation can be adjusted

by our control approach. Once contacts are established between the hands and an object,

an additional o�set value Wo�set
hand is added to the desired hand task wrenches to enhance

the contact. This o�set value can be de�ned according to the physical characteristic of

the object, such as the weight and the friction coe�cient. When moving an object, the

hand contact force o�set Wo�set
hand is set to be perpendicular to the contact surface during

manipulation. In this way, the character is able to strengthen and maintain the contacts

with the object, so as to avoid from dropping it during the manipulation. By simply

emulating captured motions, it is possible to manipulate an object which is not too heavy;

however, to be able to take up heavier objects, the operator has to move his hands much

closer to each other, so as to generate stronger contact forces with the object. As there is

a limitation of how close the operator's hands can be to each other, this can result in a

limit of the weight of the object which the character is able to carry. So an advantage of

our approach over some motion editing approaches, which try to simply emulate captured

motions, is that desired contact forces can be directly taken into account in our controller.

3.6 Discussion

3.6.1 Shared control

The experiments suggest that the proposed control framework can successfully control

the virtual character to perform manipulation tasks through interaction with an operator.

During human-virtual character interaction, the computer and the human operator share

their control on the virtual character. The operator sends higher-level task indications;

the controller handles these tasks from a low level to respect the operator's intentions as

much as possible. Such a mode is sometimes referred to as shared control or human-in-
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the-loop [Chipalkatty 2010].

In our shared control, the operator may not be able to provide an appropriate posture

for a manipulation task, since the operator cannot really apply forces on a virtual object;

however, by taking account of all the objectives and constraints in the optimization, the

controller can adjust captured motions to handle interactions with the virtual environment.

Moreover, the wrench-bound constraints mentioned in Section 3.4.1.5 further ensures the

balance of the virtual character by assigning the CoM task with a higher priority than

all the other motion tracking tasks. As a result, the virtual character can move the end-

e�ector in its reachable space safely, and try its best to track the captured motions. An

advantage of our approach is that the operator can provide any reference motion to guide

the virtual character, without being worried about the virtual character's balance problem.

3.6.2 The choice of optimization objective weights

In our experiments, the weight of contact force objective is set to 1. The weights

that are associated with target tracking objectives can simply be chosen according to

their importance levels. The least important one is assigned with a weight of 100. If the

importance of task i is one level higher than the importance of task j, then the weight of

task i is increased to ten times the weight of task j.

3.7 Conclusions

A novel control framework for virtual characters, which combines multi-objective con-

trol with motion capture techniques, has been presented. The wrench-based control policy

allows the virtual character to be adapted to unknown external contact forces and han-

dle unilateral constraints on contact forces; therefore, the controller can generate motions

suitable in a virtual environment, rather than simply emulating captured motions.

Our approach is suitable for interactive applications such as virtual reality. It can

work fast enough to allow the virtual character to interact with an operator and the

virtual environment in real-time. The e�ectiveness of the proposed approach has been

demonstrated by experiments.
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This chapter extends Chapter 3 by describing in detail a method to compute wrench

bounds for handling con�icting tasks. Bounds are imposed on lower-priority task wrenches

to ensure the controller performance of higher-priority tasks. These wrench bounds are

used in our multi-objective control framework to compute optimal task wrenches. The

novelty of this method is that it can handle inequality constraints on a higher-priority

task and maintain passivity as well. This method allows an operator to interact with the
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virtual character in real-time, without the necessity of compromising the virtual character's

balance. Simulations demonstrate that it can improve the behavior of a virtual character.

4.1 Introduction

A virtual character is often required to perform multiple tasks simultaneously. For

example, we can de�ne a task for the CoM for balance control, or tasks for the end-

e�ectors for motion tracking control. While multiple tasks are performed simultaneously,

some tasks can be incompatible with one or another. The main problem we focus on in

this chapter is how to handle con�icts among multiple tasks.

The contribution of this chapter is the development of a prioritized control approach

based on wrench bounds. Wrench bounds are imposed on lower-priority task wrenches

to ensure that they will not drive a higher-priority task frame out of its admissible do-

main. This method allows inequality constraints on a higher-priority task, and takes into

consideration the passivity of the system.

4.2 Related work

A classical method to realize prioritized control is by using null space projec-

tions [Liégeois 1977,Sentis 2004,Khatib 2008,Yoshida 2010], in which a lower-priority

task is satis�ed only in the null space of higher-priority tasks. The null space projec-

tion ensures that lower-priority tasks are controlled without dynamically interfering with

higher-priority tasks [Khatib 2004,Raunhardt 2011].

Inequality constraints on lower-priority tasks can be realized by the projection of an

arti�cial potential �eld term [Khatib 1986] onto the null space of equality constraints,

which proved especially e�cient for task objectives such as joint limits or object avoidance

[Sentis 2005,Stasse 2008]. A repulsive potential is used in [Saab 2009] to keep the projected

center of mass (CoM) away from the boundary of the support polygon, and the gradient of

the potential is projected onto the null space of the hand task. But in this case, the CoM

task is of lower-priority, so its controller performance can no longer be ensured. Moreover,

when applying such a prioritization method, the higher-priority task frame will remain on
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its desired position, which can be too restrictive and may either reduce the workspace or

result in more body movements in order to ful�ll lower-priority tasks.

Instead of being constrained to a �xed position, a higher-priory task frame is sometimes

allowed to move with a margin of error, within which the task performance can be ensured.

Therefore, a prioritization method which allows inequality constraints at a higher-priority

level is needed. Null space projector has been adopted in [Mansard 2009] to integrate

unilateral constraints at any priority level. This approach has achieved impressive re-

sults, although the computation of some speci�c inverse operators is complex and time

consuming. An alternative solution is to use a sequence of quadratic programs [Ka-

noun 2009,Escande 2010,Saab 2011,Kanoun 2011a]. Such kind of prioritization process

boils down to the classical algorithm based on null space projections when only linear

equalities are considered [Kanoun 2009]. All the methods mentioned here, among many

others, rely on null space projections; but it is shown in [Rennuit 2005,Rennuit 2006] that

prioritization based on projections can break passivity, which is a su�cient condition

to guarantee stable operations [Hannaford 2002,Kim 2010].

To avoid breaking passivity, we propose to impose wrench bounds on lower-priority

tasks, so as to guarantee that they are ful�lled only if their task wrenches will not drive

a higher-priority task frame out of its admissible domain. This prioritized control can be

adaptable to real-time motion tracking tasks. Wrench bounds are computed automatically

at each time step. There is no need to manually tune control parameters, such as weights

or gains used in the optimization. Inequality constraints on a higher-priority task are

allowed, which means the higher-priority task frame is allowed to move as long as the

error remains within a tolerance margin. This provides lower-priority tasks with more

freedom of movement, since they are to some extent allowed to dynamically interfere with

a higher-priority task. The energy is bounded in our method; therefore, the system is

passive, since it cannot supply power inde�nitely.

4.3 Wrench-bound computation

Our two-level prioritized control is realized by imposing bounds on lower-priority task

wrenches to guarantee that a higher-priority task can be ful�lled.
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To explain the idea of this method, suppose that there are w virtual wrenches, one

of which is associated with a higher-priority task. Let L+ = {0, 1, 2, ..., w − 1} and L =

L+\ {0}. The w wrenches are denoted as {Wl : l ∈ L+}. The wrench which is associated

with the higher-priority task is denoted as W0. Each lower-priority task wrench is denoted

as Wl with l ∈ L.

4.3.1 Preliminary conditions

This wrench-bound computation is based on the following conditions:

� Task targets are constant during each time step.

� An admissible domain exists for a higher-priority frame.

� The sum of the kinetic and potential energy at the initial time t0 should be no larger

than a threshold value Umax
0 , which will be de�ned later in this chapter.

The admissible domain of a frame represents a tolerance margin around a desired

con�guration. The performance of a higher-priority task is ensured by constraining the

task frame inside its admissible domain. For example, if the virtual character is standing

on the horizontal ground, the admissible domain of the CoM should be de�ned in such

a way that its vertical projection is inside the support polygon. The CoM should always

lie inside its admissible domain to maintain balance. The bounds of lower-priority task

wrenches should be found, such that the higher-priority frame is kept within its admissible

domain.

4.3.2 Elastic potential energy associated with a wrench

The potential energy which is associated with a target position Xd
l has been used

in [Liu 2011a] for the computation of constraints on translational movement. Such a

method can be extended by de�ning a potential energy function Ul for each wrench Wl

associated with a desired displacement Hd
l . This potential energy Ul will be used later

for the computation of wrench bounds.

The potential energy as a function of a body con�guration H has been studied

in [Fasse 1998], where the potential energy function is decomposed into translational,

rotational, and coupling terms. The total potential energy is the sum of these terms. The
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coupling term is not considered here; therefore, the total potential energy for Wl is de�ned

as

Ul(H
d
l ,Hl) = Utr

l (Xd
l ,Xl) + Urot

l (Rd
l ,Rl), (4.1)

where the translational potential energy Utr

l is de�ned as

Utr

l (Xd
l ,Xl) =

1

2
(Xd

l −Xl)
TKtr

l (Xd
l −Xl), (4.2)

and the rotational potential energy Urot

l is de�ned as

Urot

l (Rd
l ,Rl) = tr(Grot

l )− tr(Grot

l R−1
l Rd

l ) (4.3)

Grot

l =
1

2
tr(Krot

l )I−Krot

l (4.4)

with Ktr

l and Krot

l being the translational and the rotational part of the sti�ness matrix Kl,

respectively, and Grot

l being the co-sti�ness matrix [Fasse 1998] which is associated with

the sti�ness matrix Krot

l . The term tr(Grot

l ) is added to the form of the rotational potential

energy de�ned in [Fasse 1998] to ensure the non-negative property of Urot

l (see Appendix

A.1). With the forms de�ned in (4.2) and (4.3), both Utr

l and Urot

l are non-negative; thus,

Ul(H
d
l ,Hl) is non-negative.

In order to bound wrenches, a scale variable αl is added into the potential energy

function of each lower-priority task:

Ul(αl,Hd
l ,Hl) = αlUl(H

d
l ,Hl), l ∈ L. (4.5)

For the sake of simplicity, Ul(H
d
l ,Hl) will be denoted as Ul in the rest of this chapter.

We use Umax
0 to denote the maximum allowable value of U0. When H0 moves to the edge

of its admissible domain, U0 increases to this maximum allowable value.

The wrenches are associated with the potential:

Wl =


−∇Hl

Ul −BlVl, l = 0,

− αl∇Hl
Ul −BlVl, l ∈ L,

(4.6)

with Bl denoting the damping matrix, and the desired velocity Vd
l being set to zero.

Here the operator of gradient is used to denote the di�erential of the potential energy

function with respect to displacements in SE(3). The details of its computation can be

found in [Fasse 1998].
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4.3.3 Bounds of lower-priority task wrenches

A virtual character is an under-actuated system, which needs to use contact forces to

balance the wrenches due to task execution. Therefore, the wrench Wl should satisfy the

following condition.

∃ contact forces F̂cj : (i) the static equilibrium (4.7) is satis�ed; (ii) the non-sliding

contact constraint (3.3c) is satis�ed:


0 =

∑
l

Jrootl
T
Wl +

∑
j

Jrootcj

T
F̂cj + γr,root

τ =
∑
l

Jacl
TWl +

∑
j

Jaccj
T F̂cj + γr,ac.

(4.7a)

(4.7b)

According to our experiences, the constraints (4.7) and (3.3c) can be satis�ed for many

tasks which do not require very fast motions. One possible reason for this is that task

errors during each time step are small for slow motions, making the values of desired

task wrenches not very large; therefore, the tangential contact forces that are required

to balance task wrenches will not need to be very large either. Therefore, we make the

assumption that the wrench Wl which is given by this method based on wrench bounds

satis�es both (4.7) and (3.3c). Results of our experiments suggest that our method based

on this assumption works well. An investigation about the objective measure to assure

slowness can be found in Appendix A.2.

Using the right members of (4.7a) and (4.7b) in the dynamics of the system (3.2) leads

to

MṪ + NT =


∑
l

Jrootl
T
Wl +

∑
j

Jrootcj
T
F̂cj + γr,root∑

l

Jacl
TWl +

∑
j

Jaccj
T F̂cj + γr,ac


−
∑
j

JTcjF
r
cj −

∑
k

JTpkW
r
pk
− γr

=
∑
l

JTl Wl −
∑
k

JTpkW
r
pk

+
∑
j

JTcj (F̂cj − Fr
cj ).

(4.8)

Separating the higher-priority task 0 from the others yields

MṪ + NT = JT0 W0 +
∑
l∈L

JTl Wl −
∑
k

JTpkW
r
pk

+
∑
j

JTcj (F̂cj − Fr
cj ). (4.9)
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Substituting the expression of Wl (4.6) into (4.9) leads to

MṪ + NT = −JT0∇H0U0 −
∑
l∈L

αlJ
T
l ∇Hl

Ul

− (JT0 B0J0 +
∑
l∈L

JTl BlJl)T

−
∑
k

JTpkW
r
pk

+
∑
j

JTcj (F̂cj − Fr
cj ).

(4.10)

Multiplying both sides of (4.10) with −TT yields

−TTMṪ−TTNT−TT (JT0 B0J0 +
∑
l∈L

JTl BlJl)T

=VT
0∇H0U0 +

∑
l∈L

αlV
T
l ∇Hl

Ul

+
∑
k

VT
pk

Wr
pk
−
∑
j

vTcj (F̂cj − Fr
cj )

=
dU0

dt
−V0

dT∇Hd
0
U0

+
∑
l∈L

(
d(αlUl)

dt
− α̇lUl − αlVl

dT∇Hd
l
Ul)

+
∑
k

VT
pk

Wr
pk
−
∑
j

vTcj (F̂cj − Fr
cj ).

(4.11)

For non-sliding contacts with a �xed environment, the velocity vcj = 0; thus, we have

−TTMṪ−TTNT−TT (JT0 B0J0 +
∑
l∈L

JTl BlJl)T

=
dU0

dt
−V0

dT∇Hd
0
U0

+
∑
l∈L

(
d(αlUl)

dt
− α̇lUl − αlVl

dT∇Hd
l
Ul)

+
∑
k

VT
pk

Wr
pk
.

(4.12)
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Integrating (4.12) with respect to time t from t0 to t0 + T yields

Et0 −Et0+T −
∫ t0+T

t0

Dtdt

=Ut0+T
0 −Ut0

0 −
∫ t0+T

t0

V0
d,tT∇

Hd,t
0

Ut
0dt

+
∑
l∈L

(αt0+T
l Ut0+T

l − αt0l Ut0
l )

−
∫ t0+T

t0

∑
l∈L

(α̇l
tUt

l + αtlVl
d,tT∇

Hd,t
l

Ut
l)dt

+

∫ t0+T

t0

∑
k

Vt
pk

T
Wr,t

pk
dt,

(4.13)

with

Dt = TtT (Jt0
T
B0J

t
0 +

∑
l∈L

Jtl
T
BlJ

t
l)T

t,

Et =

∫ t

t0

(TtTMtṪt + TtTNtTt)dt,

(4.14)

where D is for dissipation, and the superscript t indicates the value of a term at time t.

By using integration by parts, and noting that Ṁ− 2N is skew-symmetric [Spong 2005],

the expression of Et in (4.14) gives the kinetic energy at time t.

Let Φ denote the sum of the kinetic and potential energy. According to [Han-

naford 2002], the term
∫ t0+T
t0

∑
k Vt

pk
T
Wr,t

pkdt should be non-negative for a passive in-

teraction. Applying this property in (4.13) yields

Φt0+T ≤ Φt0 + Λt0+T , (4.15)

with

Φt =Et + Ut
0 +

∑
l∈L

αtlU
t
l ,

Λt =

∫ t

t0

Λ̇tdt,

Λ̇t =
∑
l∈L

(α̇tlU
t
l + αtlV

d,t
l

T
∇

Hd,t
l

Ut
l) + Vd,t

0

T
∇

Hd,t
0

Ut
0 −Dt.

(4.16)

In order to maintain the higher-priority frame inside its admissible domain, the total

energy Φt is constrained to be no larger than Umax
0 , the maximum allowed value of U0:

Φt ≤ Umax
0 , ∀t ∈ [t0, t0 + T ]. (4.17)
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Moreover, the potential energy should be non-negative; therefore, αl should be non-

negative. These constraints lead to the following constraint for each αl at initial time:

0 ≤ αt0l ≤
Umax

0 −Ut0
0 −Et0∑

l∈LUt0
l

, (4.18)

which is a su�cient condition for (4.17). Note that according to the third preliminary

condition mentioned in Section 4.3.1, we have Φt0 ≤ Umax
0 , which ensures that the upper

bound of αt0l in (4.18) is non-negative.

Once we have αt0l which satis�es (4.18), we now try to increase its value during the

simulation, as long as (4.17) is satis�ed. To realize this, we �rst try to increase Λt

∀t ∈ (t0, t0 + T ]. The following su�cient condition for (4.17) is applied by using (4.15):

Φt ≤ Φt0 + Λt ≤ Umax
0 ∀t ∈ (t0, t0 + T ]. (4.19)

This relation leads to the following constraint on Λt:

Λt ≤ Umax
0 −Φt0 ∀t ∈ (t0, t0 + T ], (4.20)

which gives an upper limit for Λt. To satisfy (4.20) while trying to increase Λt, Λ̇t is

constrained as follows:

Λ̇t ≤ kt(Umax
0 −Φt0 −Λt) ∀t ∈ (t0, t0 + T ], (4.21)

with kt being a positive gain parameter that regulates the rate of the increase of Λt.

Substituting Λ̇t into (4.21) with its expression in (4.16) yields

∑
l∈L

α̇tlU
t
l ≤ βt (4.22)

with

βt = kt(U
max
0 −Φt0 −Λt)−Vd,t

0

T
∇

Hd,t
0

Ut
0

+ Dt −
∑
l∈L

αtlV
d,t
l

T
∇

Hd,t
l

Ut
l ,

for which the following su�cient condition is applied:

α̇tl ≤
βt∑
l∈LUt

l

. (4.23)

Relation (4.23) gives an upper limit of α̇tl .
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Finally, based on (4.18) and (4.23), the bounded wrench for each lower-priority task is

Wl = −αl∇Hl
Ul −BlVl, l ∈ L, (4.24)

with αl satisfying: 

0 ≤ αt0l ≤ min(
Umax

0 −Ut0
0 −Et0∑

l∈LUt0
l

, αmaxl ),

α̇tl ≤ min[α̇maxl , kα(αmaxl − αtl),
βt∑
l∈LUt

l

],

and αtl ≥ 0, ∀t ∈ (t0, t0 + T ],

(4.25a)

(4.25b)

(4.25c)

where αmaxl and α̇maxl are used to limit the upper limits of αl and α̇l; and kα is a gain

parameter whose value is user de�ned. In practice, we choose a value for αl, which satis�es

(4.25a) at the initial time. Then during the simulation, we use (4.25b) to try to increase αl

and, at the same time, to maintain the higher-priority frame inside its admissible domain.

The bounded wrenches will be used as on one hand, the new desired wrenches W̃d in

the optimization objectives, and on the other hand, the wrench bounds in the optimization

constraints, as is illustrated in Fig.3.3.

4.4 Results

The proposed approach has been implemented on the virtual character described in

Section 1.2. The control has been realized in real-time with a simulation time step of

0.01s.

The CoM task is used for balance control; the hand tasks are used for reaching or

manipulation control. The CoM task is chosen as a higher-priority task. The hand task

wrenches are bounded to prevent them from driving the CoM out of its admissible domain.

The desired CoM position Xd
com is limited by its maximum and minimum values: xmin,

xmax, ymin, ymax, zmin, and zmax. There are di�erent ways to de�ne the CoM admissible

domain, according to the desired CoM position, its limits, and the hand task targets. Two

examples are given in Fig.4.1. In our experiments, the way described in Fig.4.1 (b) is

adopted. The reference frame is de�ned as follows: the x-axis points to the right, the

y-axis points to the front, and the z-axis is determined by the right-hand rule. The CoM

is inside its admissible domain at the beginning of each simulation.



4.4. Results 57

Figure 4.1: Examples of the CoM admissible domain (the shaded ball). The maximum and

minimum values of the CoM position form a cube. The boundary of the admissible domain is a

sphere, with the origin O at Xd
com. (a)Sphere is inscribed in the cube. (b)Radius of the sphere is

the length of the line OA starting from Xd
com and pointing toward the hand task target Xd

hand.

The point A is the intersection point between OA and the cube. If the CoM is very close to xmax,

then the admissible domain in (a) can be too conservative. In fact, if the hand task draws the

CoM toward the direction of xmin, then a less conservative admissible domain as in (b) can be

used, which is allowed to go out of the cube in some directions.

4.4.1 Reaching

In order to test our approach, the virtual character is �rst assigned with di�erent

reaching tasks. It is required to reach out for some objects with its hands but without

moving its feet. The objects are either out of the virtual character's reach (Fig.4.2 left and

middle) or on the ground (Fig.4.2 right). The objects that are situated out of the virtual

character's reach are used to see if the hand task wrenches can be su�ciently bounded

to prevent the virtual character from falling down toward these objects. Our method

has been tested with objects on the ground, since the CoM can easily move out of its

admissible domain while crouching down.

The results with or without the application of wrench bounds, including the norm of

the task force of the right hand and the projection of the CoM position on the ground,

are shown in Fig.4.3. These results suggest that our approach can successfully ensure the
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Figure 4.2: Snapshots of the virtual character performing reaching tasks without wrench bounds

(above) and with wrench bounds (below). The upper part shows how the tasks are poorly per-

formed without the application of wrench bounds. The virtual character loses its balance for the

reaching task to be ful�lled. The lower part shows that when wrench bounds are applied on hand

tasks, the virtual character can keep its balance while trying to reach out for the objects.

controller performance of a higher-priority task. Without the constraint of wrench bounds,

the norm of the hand task force can be very large. Consequently, the hand task force can

drive the virtual character too strongly so that it leans too much toward the objects, and

its CoM may move out of the allowed domain. However, with wrench bounds applied on

the hand task, the CoM can remain inside the admissible domain throughout the task.

The desired value of each optimization variable has been compared with its value found

by the optimization. The results of the task wrench of the right hand during reaching out

for an object in front are shown in Fig.4.4. It can be seen that the optimization solution

of each variable is very close to its desired value.

4.4.2 Object manipulation through interaction with an operator

We have applied our prioritized control to two object manipulation tasks, all of which

are performed by real-time interactions with the operator. The character is required to
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Figure 4.3: Results of reaching for di�erent objects: the norm of the task force of the right hand

(left), the CoM position using wrench bounds (middle) and not using wrench bounds (right). The

reference trajectory of each hand task is an interpolated trajectory from the initial to the target

hand con�guration. The admissible domains are shown by the circles.
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Figure 4.4: The desired hand task wrench W̃d with the application of wrench bounds (dark blue

lines) during reaching out for an object in front, and the optimization solution Ŵ (orange dashed

lines).



4.4. Results 61

crouch down, then turn a lever (Fig.4.5) and a tap (Fig.4.6) located on the ground. Wrench

bounds are applied during task execution to ensure balance.

Figure 4.5: Snapshots of the virtual character manipulating a lever.

In the experiments, when the desired values of hand task wrenches are not bounded in

the optimization, the character can lose balance from time to time. The reasons for this

are, on one hand, a movement of crouching down requires great changes in posture, as a

result, the CoM position can often be too close to or even out of its admissible domain,

as is shown in Fig.4.3 below; on the other hand, the interaction forces due to object

manipulations can perturb the motions of the CoM. However, when bounds are imposed

on hand task wrenches, the CoM movements are restricted throughout the manipulation.

The virtual character can successfully move its body to manipulate the objects without

losing balance.
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Figure 4.6: Snapshots of the virtual character manipulating a tap.

4.5 Discussion

4.5.1 Veri�cation of the assumption

We have assumed in Section 4.3.3 that for many tasks which do not require very

fast motions, the bounded wrenches given by our approach can satisfy the optimization

constraints, and contact forces satisfying these constraints can be found. This assumption

can be veri�ed by comparing the bounded desired values of the optimization variables

with their optimization results, since the former should be equal to the latter if what

we have assumed is true. The experimental results, for example those in Fig.4.4, show

that the desired values are very close to the optimization results. This suggests that the

assumption works well during the experiments.

For motions where the contact constraint (3.3c) can be violated, such as some fast

motions, this assumption does not work well, and the passivity of the system may not be

guaranteed. Future work should �nd a way to early predict and avoid such situations.
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4.5.2 The choice of control parameters

For many multi-objective control using optimization techniques, the control parame-

ters such as task gains should be chosen very carefully, since they can a�ect the relative

performances between tasks of di�erent priority levels. Even though some gains can work

for the tracking of one reference position, they might not be suitable for another one.

In other words, it is di�cult to manually �nd task gains that can ensure prioritization

satisfactorily for a whole reference trajectory. This problem becomes more obvious during

real-time interactions with an operator, where the virtual character is continuously track-

ing the motions of the operator's hands that can be anywhere in the operator's reachable

space, and it is extremely di�cult to manually tune these parameters for the whole reach-

able space. Automated optimization of gains to ensure task priorities has not been realized

in many existing approaches yet. Our experiments suggest that our approach based on

wrench bounds can handle such problem. In our approach, the control gain Kl of a

lower-priority task is not �xed; on the contrary, it is automatically adjusted on-line by

multiplying it with αl for a better task performance according to the state of the system.

An example is shown in Fig.4.7, where the hand task gain is automatically adjusted; and

the choice of the optimization weights of tracking task objectives will no longer a�ect the

performance of prioritization.

4.5.3 Comparison with some other approaches

In our approach, the priority of the CoM task over the hand tasks is realized by

imposing bounds on hand task wrenches. In fact, the hand task wrenches are bounded by

the control of the gains. If the hand task wrench can drive the CoM out of its admissible

domain, then the proportional gain of the hand task is reduced to a safe value. It is also

possible to handle task priorities by two other di�erent approaches as follows.

� Approach I : Constraining the CoM to be within its admissible domain by applying

a CoM task force derived from a repulsive potential �eld. If the CoM is close to the

boundary of its admissible domain, then the repulsive force will pull it back.

� Approach II : Null-space projection methods.
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Figure 4.7: Results using di�erent hand task weights and initial gains: the bounded proportional

gain Kl of the hand tasks (left), the bounded hand task force (middle), and the CoM Position

(right). Only the elements corresponding to the translational movements of the right hand are

shown. The task is to �rst reach for an object at 1.2m on the right with the right hand during

1s and then reach for another one at 1.2m in front with both hands during 1s. The bounded

task gain varies according to system states during task execution. The CoM remains inside its

admissible domain, and the CoM task is allowed to be interfered with hand tasks. The results of

prioritization are stable with respect to di�erent choices of initial gains or weights.
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Approach I is more simplistic compared with our approach. However, the use of a

repulsive potential to constrain the CoM may result in a high CoM task gain. In a

simulated environment, the sampling frequency is limited; therefore, a high CoM task

gain may lead to unstable motions. This is why our approach decreases the gains of

lower-priority tasks, instead of increasing the gain of a higher-priority task.

Approach II is a classical method to handle tasks with di�erent priorities. Our ap-

proach realizes prioritized control by a quite di�erent way from Approach II. The major

di�erences between the two approaches are as follows:

� Our wrench-bound-based control framework provides a quasi-static control; whereas

Approach II can be dynamically consistent, and it requires the knowledge of the

accurate dynamic model of the system.

� Currently, our approach handles task priorities of two levels, while Approach II can

handle more priority levels.

� As is mentioned before, the passivity of the system is respected by our approach,

while projections may cause a risk of breaking the passivity.

� Our prioritized control allows lower-priority tasks to interfere with a higher-priority

task in a limited way. This means that instead of being constrained to one desired

position, the CoM is allowed to be interfered with a lower-priority task, as long as

it remains inside its admissible domain. However, in Approach II, lower-priority

tasks are not allowed to interfere with higher-priority tasks; as a result, more body

movements may be needed to ful�ll given tasks.

Our approach has been compared with Approach II by some experiments, in which

the virtual character is performing reaching tasks. The controller in [Khatib 2008] is used

to implement Approach II. The same tasks, task priorities, as well as task targets, are

used in both approaches. These tasks from the highest priority to the lowest priority are

the foot contacts, the CoM, and the hands. The foot contacts are treated as optimization

constraints in our approach.

It has been observed that when controlled by our approach or Approach II, the virtual

character behaves similarly in most cases but di�erently when mechanical interactions

with the environment occurs during task execution. To simulate a mechanical interaction,

the virtual character's right arm is connected with an object by an elastic Cartesian string
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of sti�ness 500N.m−1. A sudden perturbation force is applied on its arm by pulling

the object. Note that the perturbation is not strong enough to pull the CoM out of its

admissible domain. The resulting behaviors of the character is shown in Fig. 4.8. The

Figure 4.8: Behaviors of the virtual character experiencing mechanical interactions with the

environment. The virtual character is controlled by Approach II in (a) and (c) and by our

approach in (b) and (d). The character's right arm is connected with an object by an elastic

Cartesian string, which is shown by the arrow. Two tasks are performed: In (a) and (b), the

virtual character is moving its hands forward when the object is pulled 0.03m rightward and

0.1m downward; in (c) and (d), The virtual character is moving its hands toward each side when

the object is pulled 0.05m forward and 0.05m downward. The posture before (above) and after

(below) being suddenly pulled by the elastic string are shown. When controlled by Approach II,

the virtual character rotates its body with its arm pulling the string after perturbation.

reaching behaviors of the virtual character controlled by both approaches are similar before

the perturbation. After the perturbation, a lot more body movements are generated with

Approach II, as can be seen in Fig. 4.8 and Fig.4.9. The whole body rotates and the

right arm actively pulls the string. This can be because the hand tasks are not allowed

to interfere with the CoM task when the virtual character is trying to compensate for the
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(a) Joint velocities using Approach II

(b) Joint velocities using our approach

Figure 4.9: Joint velocities of the virtual character controlled by Approach II in (a) and by our

approach in (b). The character's right arm is connected with an object by an elastic Cartesian

string. The virtual character is moving its hands towards each side when the object is suddenly

pulled 0.05m forward and 0.05m downward. After the perturbation, less joint movements are

observed when the character is controlled by our approach.
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perturbation.

4.6 Conclusions

The proposed approach based on wrench bounds provides a new way to handle two-

level task priorities. Such method allows inequality constraints on a higher-priority task;

therefore, lower-priority tasks are allowed to interfere with a higher-priority task. More-

over, the passivity of the system has been taken care of to ensure stable operations. As a

result, the virtual character can keep the higher-priority task frame inside an admissible

domain while trying its best to increase the performance of lower priority tasks in a safe

manner. For example, it can keep balance while trying to increase its workspace. The

operator can provide any reference motion without being worried about the virtual charac-

ter's balance problem. The e�ectiveness of the proposed approach has been demonstrated

by experiments on a virtual character performing a wide variety of tasks, such as reaching

and object manipulation.
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In this chapter, the posture optimization approach presented in Chapter 2 is combined

with the prioritized multi-objective control framework presented in Chapter 3 and Chapter

4. A control system is created, where posture optimization results are adopted by speci�c

task controllers. This control system endows a virtual character with certain levels of

autonomy to achieve a long-term goal by performing sequences of tasks. Experiments

demonstrate that this control system can autonomously improve task performance.

5.1 Introduction

A main ability of virtual characters that we focus on is to perform human operations in

virtual environments, especially in some factory environments, where a virtual character

needs to frequently move around and manipulate di�erent objects. The control system

presented in this chapter aims at endowing virtual characters with some autonomy, so

that they can realize some complex behaviors in such environments.
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An autonomous character may possess two levels of autonomy. We refer to the low-level

autonomy by the ability to automatically generate appropriate motions given a sequence of

tasks to perform. The prioritized multi-objective control framework presented in Chapter

3 and Chapter 4 addresses such kind of autonomy. Although the character is guided

by a human operator, our control framework enables it to automatically adjust captured

motions to satisfy a variety of constraints in virtual environments. We refer to the high-

level autonomy by the ability to automatically select and perform sequences of tasks to

achieve a long-term goal. For example, a human operator may send high-level orders to

virtual character, such as to move an object from position a to position b. The operator

does not provide the character with more information about how to achieve the goal

in detail. The character should be able to achieve the long-term goal by autonomously

choosing an optimal foot positions for the manipulation task, walking to the optimal

position, and �nally performing the required manipulation task.

As the problem of realizing low-level autonomy has already been studied in our multi-

objective control framework, this chapter will focus on the autonomy of high-level. We

investigate a control system, which integrates the posture optimization approach and the

multi-objective control framework. This chapter also complements Chapter 2 by demon-

strating that our posture optimization approach can improve task performance of a virtual

character.

5.2 Control system

The control system used in this chapter is illustrated in Figure 5.1.

Once the human operator gives an order of manipulating an object, the character �rst

de�nes the manipulation task according to the position and the properties of the object,

which are supposed to be known in the virtual environment. The manipulation task

is de�ned by the manipulation path (denoted as Xd
h), the manipulation force direction

(denoted as F̂h), as well as some geometric, kinematic and force related constraints.

Once the manipulation task is de�ned, the following control is divided into three steps:

� Step I : O�-line posture optimization.

Before task execution, the posture optimization module is carried out to �nd suitable
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Figure 5.1: Overview of the control system.
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postures for the manipulation task. A posture optimization problem is solved based on

the actual foot positions of the character and the manipulation task requirements. The

optimization result provides us with the optimal solution Θ∗, from which the joint angles

(q∗), the positions of control frames, especially the CoM positions (Xcom
∗) and the foot

positions (Xlf
∗, Xrf

∗), as well as the maximum allowable value of the manipulation force

magnitude (k∗), can be obtained.

� Step II : On-line posture adjustment.

Before executing a manipulation task, the posture adjustment module adjusts the contact

con�guration and the CoM position of the character according to the optimized posture.

In our implementation, a walking controller is applied to make the character walk to the

optimized position (Xlf
∗, Xrf

∗). The walking motion generator presented in [Herdt 2010]

is applied here, which generates automatically the reference trajectories of the CoM and the

feet according to their initial states and their desired states (Xcom
∗, Xlf

∗, and Xrf
∗). These

trajectories are used in our multi-objective control framework as the reference trajectories

for the tasks of the CoM and the feet to realize the walking motion.

� Step III : On-line manipulation task control.

The character �nally starts to perform the manipulation task by using a manipulation task

controller, which takes as inputs the optimized control frame positions and manipulation

task requirements. Our multi-objective control framework is applied. The positions of

control frames Xj(X
∗
com, q

∗) can be used as reference positions in the controller. The joint

torques are computed based on the comprehensive consideration of the desired control

frame positions, joint angles, contact forces and the gravity force.

A proportional-derivative (PD) control law is applied to compute the desired task force

of each control frame j, based on the state error (position error δP and velocity error δv).

Fd
j = KjδP j(Xj

∗,Xr
j) + Bjδvj (5.1)

with K and B denoting the proportional and derivative gain matrices respectively. The

optimized joint angles may also be taken into account by the computation of desired joint

torques τdq .

τdq = KqδP q(q
∗, qr) + Bqδvq (5.2)

Moreover, additional interaction force k̄F̂h for manipulating the object is added to the
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desired motion task forces of the hand.

Fd
h = KhδP h(Xd

h,Xh
r) + Bhδvh + k̄F̂h (5.3)

with kL ≤ k̄ ≤ k∗ and kL denoting the lower bound of the manipulation force magnitude

de�ned by the task.

In the next section, we will show that the manipulation task performance can be

improved using the optimized postures.

5.3 Results

The proposed control system has been applied on a virtual character, which should take

appropriate actions to achieve some �nal goals of object manipulation. Each module in our

control system plays an important role for the improvement of the task performance of the

character. The posture optimization module helps the character to �nd optimized postures

for object manipulation, and to ensure foot positions are suitable for the manipulation task.

The prioritized multi-objective control framework helps the character to handle a variety

of motion tasks and contact forces. By choosing the CoM task as the higher-priority task,

the wrench bounds imposed on end-e�ector tasks help to maintain the character's CoM

inside a safe domain to ensure its balance.

In Chapter 2, our posture optimization approach has been tested on a simpli�ed model

of the virtual character; while in this section, this approach is implemented on our virtual

character. Since the e�ects of our prioritized multi-objective control framework on the

virtual character's task performance have already been discussed in previous chapters,

the experimental results here will be presented with respect to the e�ects of our posture

optimization approach.

To show how the control system with a preparation stage using the posture optimiza-

tion approach can help to improve task performance, each of the following tests are divided

into two parts:

� In the �rst part, the virtual character tries to perform the task without using posture

optimization results, with its feet remaining at their initial positions.

� In the second part, the control system presented in Section 5.2 is applied. The char-
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acter �rst searches for optimal postures, then adjusts the foot positions according to

their optimal values, and �nally performs the manipulation tasks according to the

optimal control frame positions. The experiment setup for each manipulation task

is in Table 5.1.

Table 5.1: Experiment setup: desired motion path Xh and manipulation force direction F̂h

(applied by the objects on the character) associated with each discretized point, where Oobj

denotes the origin of the valve, and X0
obj denotes the initial contact position between the hand

and the object.

Task Xi
h, F̂i

h

open a valve Oobj+[0, 0, 0.25]T , [−1, 0, 0]T

Oobj+[0.177, 0, 0.177]T , [−0.707, 0, 0.707]T

Oobj+[0.25, 0, 0]T , [0, 0, 1]T

move box X0
obj, [0, 0,−1]T

X0
obj+[0,−0.2, 0.6]T , [0, 0,−1]T

X0
obj+[0, 0.2, 0.6]T , [0, 0,−1]T

push storage X0
obj, [0,−1, 0]T

cabinets X0
obj+[0, 0.4, 0]T , [0,−1, 0]T

5.3.1 Follow a desired motion path

Our approach can choose suitable postures that allow the character's hand to follow

a curved motion path. To demonstrate this, the character has been required to open a

valve with a radius of 0.25m to 90 degrees with his right hand. The hand should follow

exactly the given motion path as quarter of a circle, because the valve can only rotate

around its rotation axle which is �xed. The desired hand force is tangential to the motion

path. The initial foot positions are not optimized for the task, as they can cause a break

of foot contacts during manipulation. The behaviors of the character using non optimized

postures and optimized postures are shown in Figure 5.2 and Figure 5.3 respectively.

When using non optimized postures, the foot positions can not support the whole ma-

nipulation path. The contacts between the feet and the ground are broken. The optimized
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Figure 5.2: The virtual character opening a valve using non-optimized postures.

Figure 5.3: The virtual character opening a valve using optimized postures.
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foot positions make the character walk rightward before starting manipulation. This foot

contact con�guration enables the hand to open the valve along the given motion path

without breaking foot contacts. We have also observed that less upper body movement

is generated by using the optimal postures than not using them, which makes the whole

body motion more natural.

5.3.2 Obstacle avoidance

An experiment of moving an object while avoiding obstacles has been conducted. The

character should change postures so as to allow the hands to easily approach a box located

between a table and a shelf above the table, then move it around the shelf, and �nally put

it on the shelf (Figure 5.4). The desired manipulation path goes around the shelf with a

Figure 5.4: The virtual character moving a box while avoiding obstacles.

safety margin. The postures optimized according to this manipulation path can allow the

character to successfully ful�ll the task without causing collisions with the shelf.

5.3.3 Joint comfort

Our posture optimization provides posture solutions that can take into account the

joint discomfort measure. The function of the joint discomfort objective is to enhance the

preference of using certain joints to ful�ll a motion task. This function can be observed

by comparing the behaviors of the character taking up light and heavy box. In the

experiments, the neutral values qN are set to joint angles of an erect standing posture.



5.3. Results 77

(a) m = 5kg, φback = 0.4 (b) m = 15kg, φback = 10

Figure 5.5: The virtual character lifting box of di�erent mass (m).

A higher value of a joint weight φl reinforces the value of ql to be closer to qNl , which

means we prefer to use joints with weights lower than φl to make the end-e�ector attain

the desired position. Similar to [Yang 2004], we set higher weights for joints on the back of

the character, and lower weights for joints on the arms and the legs. In addition, we adjust

certain joint weights to adapt to di�erent task requirements. For a task of lifting a box,

the character can either lean over with the back then lift it up using the back, or crouch

down while keeping the back straight then lift it by standing up. People tend to choose

the latter one to take up a heavy object. This is what physical therapists usually suggest

people to do in order to protect their backs. Such behaviors can be achieved by tuning the

value of joint weights. For heavy box, high values are assigned to φback associated with

joints on the back of the body. As a result, the character just slightly crouches down to

pick up a light box; whereas it crouches down more and carefully keeps the back straight

to take up a heavy box (Figure 5.5).

5.3.4 Handle interaction forces

When searching for suitable postures for the task of lifting a box, the weight of the

box can be taken into account by kL in (2.15), which indicates the minimum force that

is necessary to lift the box. We have observed that when the box is heavy, the optimized

CoM position is obviously behind its initial position. This result is consistent with the

needs of the character to lean backward so as to balance the interaction force due to the
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weight of the box.

Similar results have been observed during pushing tasks. The character has been

required to push forward a storage cabinet (Figure 5.6) a distance of up to 0.4m. Storage

cabinets of di�erent mass m (from 30kg to 50kg) and di�erent friction coe�cients with

the ground µ (from 0.1 to 0.4) are used.

Figure 5.6: The virtual character pushing a storage cabinet using optimized postures.

The results of optimal foot positions tell the character to separate the feet along the

pushing direction, so as to generate a robust posture against the pushing force. More-

over, the optimal CoM and shoulder positions tell the character to lean forward. Similar

behaviors can be observed when a real human attempts to push strongly.

More �uctuation of the interaction force has been observed without the use of optimal
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postures, which suggests that optimal postures help to generate more coherent motion

during manipulation. The magnitudes of the forces applied by the right hand on one

storage cabinet during pushing tasks are shown in Figure 5.7. It can be seen that the

Figure 5.7: Results of the force applied by the hand on the storage cabinet.

interaction forces resulting from optimal postures is more stable than those resulting from

non-optimal postures. Without an optimization before the task execution, the character

may �nd his posture not quite adaptable for the task from time to time. If continuing

pushing forward as strongly as before will result in the loss of balance, then the character

will sacri�ce the hand task performance to ensure its balance; because the balance task

is of higher priority than all the other motion tasks. Consequently, the pushing force will

be reduced at this moment. However, task performance can be improved by using the

optimized CoM positions as the reference positions in the manipulation task controller,

because the optimized CoM positions provided by our posture optimization are suitable

for the contact con�gurations and the interaction forces.

5.3.5 Robustness to mechanical interactions

Generally, the optimal postures tell the character to increase the distance between

its feet, along the direction of the manipulation force, so as to generate a robust pos-
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ture against this force. For example, when opening a valve, its feet are separated from

each other mainly in the lateral direction. However, when moving an object forward or

backward, the feet are much more separated in the sagittal direction.

As mentioned in 2.3.3, perturbations can be taken into account in posture optimization.

In our experiment, some perturbation forces, including those which are perpendicular

to the manipulation force, are considered. During task execution, external perturbation

forces (up to 120N during 0.5s or up to 90N during 1s ) have been applied on the character

(Figure 5.8). When pushed by strong perturbation forces, the character using non-optimal

postures may abandon the task and sometimes lose its balance. It has to move its foot

to try to keep its balance. However, by adopting optimal postures, the character's ability

to continue task execution under some perturbation forces can be enhanced. Less body

movements have been generated to resist strong pushes and to recover from them, and

neither foot slipping nor a break of foot contacts has been observed.

5.3.6 Perform tasks through interactions with a human operator

In the above-mentioned experiments, posture optimization problems have been solved

according to some desired manipulation trajectories, which are preprogrammed for the

manipulation tasks. In fact, the proposed control system can also make the character

execute an operator's orders through real-time interactions, and at the same time, try to

improve the task performance. In the implementation presented in [Nguyen 2010], the

operator needs to adjust his postures according to the character's balance features, such

as the support polygon and the CoM. Our approach automatically computes adaptable

postures of the character in advance for a task, and then further adjusts its postures

during task execution, so that the operator does not need to compensate for the character's

balance. To demonstrate this, the character has been required to ful�ll some �nal goals

such as turning a value, moving a box, and pushing a storage cabinet, in an interactive

manner. The resulting behaviors of the virtual character during these experiments are

shown in Fig.5.9, Fig.5.10, and Fig.5.11.

The hybrid control coupling the control of the operator and the control of the proposed

robotic control system is realized in the following way.

� At the beginning of each experiment, the posture optimization approach is applied



5.3. Results 81

(a) Before, during, and after perturbations using non-optimized postures

(b) Before, during, and after perturbations using optimized postures

Figure 5.8: Behaviors of the character su�ering from an external perturbation force (shown by

the red arrow) of 120N during 0.5s when pushing a storage cabinet. The optimal postures can

better resist the perturbation.
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Figure 5.9: The virtual character opening a valve through interactions with an operator.
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Figure 5.10: The virtual character moving a box through interactions with an operator.
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Figure 5.11: The virtual character pushing a storage cabinet through interactions with an

operator.
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to �nd optimized postures according to the object to manipulate. In our current

implementation, each object to manipulate is related to one kind of manipulation

task; and a reference manipulation path is given a priori. For example, the character

knows that it can only �turn� the valve, �take up and move� the box, �push� the

storage cabinet. It will not think about �pushing� the valve or �taking up� the

storage cabinet.

� When optimized foot positions have been found, the character walks to the desired

positions.

� Once arrived at the desired position, the character starts to observe the motions of

the operator. For interactions with the operator during object manipulation, a �nite

state machine (FSM) like the one presented in Fig.3.7 in Section 3.5 is implemented.

During the Tightening state, desired contact forces are added to the desired hand

task wrenches to enhance the contacts with an object. During each state, the CoM

task target takes the optimized value found during the posture optimization stage,

instead of being manually chosen a priori. For example, during Manipulating state,

the CoM automatically moves slightly backward to balance the weight of the box;

or automatically moves forward to generate a stronger pushing force against the

storage cabinet.

In our current implementation, for each FSM state (except for the idle state), the task

controller uses the reference motions, which are the smooth interpolations of the optimized

postures computed by posture optimization. The character tries to follow the reference

motions with prede�ned reference velocities. The operator's motions are used to trigger

the state transitions in the FSM. Another way to realize an interactive control is to make

a projection between the operator's motions and the optimized reference motions, and

control the character to move along the reference motion path while trying to follow the

references that is associated with the operator's movements. In this way, the operator's

motions can have two functions: on one hand, they can be used to trigger state changes;

on the other hand, they can guide the motion velocities of the character.

The experiments suggest that, by using optimized postures, the character can accom-

plish the required task and improve task performance, while avoiding failures due to poor

postures of the operator.
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5.4 Conclusion

The experiments presented in this chapter suggest that the control system, which

combines the posture optimization approach with the prioritized multi-objective control

framework, allows the virtual character to autonomously achieve a long-term goal of object

manipulation. The virtual character can autonomously choose an optimal foot positions

for the manipulation task, walk to the optimal position, and �nally ful�ll the required

manipulation task.

The experiments suggest that this control system can improve the behaviors of the

character in several ways. First, the character can autonomously decide its foot positions

with respect to the object to manipulate. The human operator does not need to manually

choose such contact con�gurations for the character. Second, task performance can be

improved by choosing suitable postures in the preparation stage before actually performing

a task. The optimized postures can ensure that constraints such as joint limits, non-

sliding contacts, and geometrical relations with the environment can be satis�ed. The

use of optimized postures in our multi-objective control can enable the end-e�ector to

follow given manipulation path while applying the maximum manipulation forces without

causing foot slipping and balance problems. Moreover, the robustness of postures can be

improved, so that character can cope with perturbations due to mechanical interactions.
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6.1 Summary

In this dissertation, we have developed a hybrid control system for interactive virtual

characters. This work builds on the research in both motion control approaches in the

domain of robotics and motion synthesis approaches in the domain of computer graphics.

Our virtual characters are designed to be interactive with human operators; and they

should act in virtual environments where a lot of mechanical interactions are to be handled.

Since human operators do not experience the same mechanical interactions in the real

world as the characters do in their virtual world, it is not desirable to make a character

follow an operator's motions by simply restoring the captured motions of the operator.

Based on these facts, we believe that virtual character with certain levels of autonomy can

better handle the interactions with both human operators and virtual environments.

We developed a posture optimization approach in Chapter 2, which can be applied in

the preparation for manipulation tasks. Our contribution here is on the formulation of
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an optimization problem to �nd optimal and robust postures, including contact positions,

with respect to manipulation tasks. This optimization problem takes into account not

only geometric and kinematic constraints, but also force and moment constraints. The

comprehensive consideration of these constraints allows the virtual character to apply ma-

nipulation forces as strongly as possible, to avoid foot slipping, to improve body comfort,

and to respect its joint limits and geometrical relations with the environment.

We developed a control framework in Chapter 3, which can drive virtual characters to

accomplish a variety of complex behaviors in a physics-based environment. Our contribu-

tion here is on proposing a constrained optimization problem, which can be solved on-line

to e�ciently compute optimal task wrenches and joint torques for �nding a compromised

solution between following an operator's motions and handling interactions with virtual

environments. We have shown that multiple task objectives, multiple constraints, and

the redundancy of postures can be handled by solving this optimization problem. One

advantage of this control framework based on the Jacobian-transpose method over some

acceleration-based control approaches is that the numerical singularities due to the com-

putation of the inverse of the Jacobian can be avoided. We have demonstrated that, by

taking captured motions as inputs, this control framework can make a character interact

with a human operator in real-time. The character can try to follow captured motions

while autonomously assuring the physical consistency of its motions.

We developed in Chapter 4 a novel two-level prioritized control with wrench bounds,

which provides a new way to handle multiple task goals of two priority levels simulta-

neously. Our main contribution on this subject is on proposing a method to compute

bounds of lower-priority task wrenches, so as to ensure the controller performance of

higher-priority tasks. In contrast with some other approaches, the energy of the system

is bounded in our prioritized control, which ensures the passivity of the system, so as to

guarantee stable operations. Moreover, inequality constraints on a higher-priority task

are supported, which means the higher-priority task frame is allowed to move as long as

the error remains within a tolerance margin. This feature makes the constraint on the

higher-priority task less restrictive, so that lower-priority tasks are provided with more

freedom of movement, as they are to some extent allowed to dynamically interfere with

the higher-priority task. By choosing the CoM task as the higher-priority task, the char-
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acter can keep balance while trying to increase its workspace. As a result, an operator can

interact with the character without the necessity of compromising the character's balance.

Based on the approaches presented in Chapter 2, Chapter 3, and Chapter 4, we have

shown in Chapter 5 how all these approaches can be integrated in one control system

to endow virtual characters with the capability of automatically performing sequences of

tasks to achieve a long-term goal. The combination of all these approaches can greatly

expand the autonomy of virtual characters, allowing human operators to control them

from a high level by just specifying the long-term goal, without the necessity of providing

them with detailed information, such as the motion tasks to perform at each time step

and the suitable postures for performing these motions. We have successfully used this

control system to improve task performance of a virtual character which moves around

and manipulates di�erent objects.

6.2 Future work

6.2.1 Towards more complex behaviors

One possible extension of this dissertation work is to realize more complex behaviors,

such as manipulation during walking. These complex behaviors need motion planning, for

which the predictive control [Muico 2009,Da Silva 2008a] may be adopted in our frame-

work.

6.2.2 Towards a multi-level prioritized control

Our present system can still be improved by extending our two-level prioritized control

with wrench bounds to a prioritized control that can handle multiple priority levels. It

is possible to achieve this by the computation of a sequence of the maximum allowed

potential energy associated with di�erent priority levels.

6.2.3 Improving the task performance during manipulation

One important future direction is to improve the task performance of the character,

by developing approaches to automatically adjust control parameters such as gains and
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optimization weights. Another direction is to endow the character with the ability to

improve its task performance by anticipation, according to the detected intentions of the

operator during interactions.

6.2.4 Realizing object manipulation in a generalized way

To perform an object manipulation task, the character should make a sequence of

decisions to handle the following problems:

(a) where to put its feet in order to reach and manipulate the object,

(b) along which trajectory the hands should approach the object,

(c) which grasp type to use to hold the object,

(d) where to hold the object,

(e) how much force to apply on the object, and

(f) how much joint torques to apply during the manipulation.

In our current implementation, the problem (a) is addressed by our posture optimization

approach; the problem (f) is addressed by our multi-objective controller; the decisions

on problems (b) and (d) can either be made according to human operator's motions or

be preprogrammed; and the decisions on problems (c) and (e) are preprogrammed. For

example, if we want a virtual character to push a storage cabinet, then we manually choose

the pushing controller for the character and tell it how much pushing force to apply; if we

want the character to turn a valve, then we manually choose the turning controller for the

character and tell it how much turning force to apply.

As objects with di�erent shapes, sizes, and poses may require di�erent grasp strategies,

a future research direction is to enable our control system to realize object manipulation

in a generalized way by implementing some automatic grasp generators. One possible

way to allow the character to automatically decide which grasp type to use is to construct

an information database that associates the characteristics of the objects with grasp types,

such as in [Miller 2003], where objects are simpli�ed into a set of shape primitives, and

the grasp strategies are determined using some rules de�ned for the shape primitives.

It is also possible to implement smart objects [Kallmann 1998] that allow the char-

acter to choose suitable operations, or to implement robot programming by demon-



6.2. Future work 91

stration (PbD) [Guenter 2007,Ekvall 2007,Calinon 2009,Stulp 2010,Theodorou 2010,

Pastor 2011,Gribovskaya 2011] to enrich our elementary tasks.

6.2.5 Developing a generic method for intention detection

For a virtual character interacting with a human operator, the character's actions

are determined based on events from the operator and the simulation environment. The

character needs to decide what action to perform by analyzing the motions of an oper-

ator. Currently, our virtual character decides how to react according to a �nite state

machine, which �xes the actions of the virtual character for a given task. Our current

implementation can be improved by the development of a more generic method for inten-

tion detection. This means that instead of behaving according to manually �xed actions,

the character should be able to extract the features of the operator's motions, and based

on which, to understand what the operator wants it to do. For example, during the

whole time of the interaction with an operator, it would be interesting if the character can

continuously detecting whether the operator wants it to take up an object, to push the

object, or to release the object. We can make the character learn to detect the operator's

intentions by using some learning techniques based on some data mining and clustering

approaches, such as Hidden Markov Models [Rabiner 1989,Rigoll 1998], Gaussian Mix-

ture Regression [Sung 2004], Principal Component Analysis [Birk 1997], Dynamic Time

Warping [Müller 2005,G. A. ten Holt 2007], and so on.

6.2.6 Towards more complex task transitions

There are two directions for the improvement of our current task transition. The �rst

direction consists in the improvement of the transition graph for the determination of more

complex task transitions. As mentioned in Chapter 5, our virtual character may sometimes

need to autonomously perform sequences of tasks to achieve a long-term goal required by

the operator. Currently, we use a �nite-state machine for the transitions among several

basic controllers, such as the walking controller and the manipulation task controller. To

improve our current task transition, a dynamic transition graph such as the one used in the

controller composition system presented in [Faloutsos 2001], or a decision making engine
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based on the use of fuzzy logic [Salini 2012], can be constructed for the determination

of more complex task transitions. The second direction consists in the regulation of task

controllers to avoid abrupt changes in joint torques or discontinuities in motions. This

research can be related to the work presented in [Lee 2011,Salini 2011].



Appendix A

Mathematical Proofs

A.1 Rotational potential energy

Here, we prove the non-negative property of the rotational potential energy Urot

l de�ned

in (4.3). The rotational sti�ness matrix and the associated co-sti�ness matrix are denoted

as Krot

l = diag(k1, k2, k3) and Grot

l = diag(g1, g2, g3), respectively. According to (4.4), we

have

g1 = (k2 + k3 − k1)/2,

g2 = (k3 + k1 − k2)/2,

g3 = (k1 + k2 − k3)/2.

(A.1)

Without loss of generality, let R = R−1
l Rd

l denote a matrix for a rotation by an angle of

θ, about an axis in the direction of u = [uxuyuz]
T , which is written as follows:

R =


cθ + u2

x(1− cθ) uxuy(1− cθ)− uzsθ uxuz(1− cθ) + uysθ

uyux(1− cθ) + uzsθ cθ + u2
y(1− cθ) uyuz(1− cθ)− uxsθ

uzux(1− cθ)− uysθ uzuy(1− cθ) + uxsθ cθ + u2
z(1− cθ)

 (A.2)

with cθ = cosθ and sθ = sinθ. With these notations, the rotational potential energy can

be written as

Urot

l = tr(Grot

l )− tr(Grot

l R)

= (g1 + g2 + g3)

− (g1(cθ + u2
x(1− cθ)) + g2(cθ + u2

y(1− cθ)) + g3(cθ + u2
z(1− cθ)))

= (g1 + g2 + g3 − g1u
2
x − g2u

2
y − g3u

2
z)(1− cθ)

(A.3)

Since u is a unit vector, we have u2
x + u2

y + u2
z = 1. Applying this in (A.3) leads to

Urot

l = (g1(u2
y + u2

z) + g2(u2
z + u2

x) + g3(u2
x + u2

y))(1− cθ) (A.4)
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Then applying (A.1) in (A.4) leads to

Urot

l = (k3u
2
z + k1u

2
x + k2u

2
y)(1− cθ) (A.5)

All the terms in the right member in (A.5) are non-negative; therefore, Urot

l is non-negative.

A.2 Objective measure to assure slowness

To provide an idea of objective measure to assure slowness, an analysis on the relation

between motion slowness and contact constraints is given here. The Linear Inverted Pen-

dulum Plus Flywheel Model (LIPPFM) proposed in [Pratt 2006] is adopted. This model

abstracts a biped system as an inverted pendulum with an inertial �ywheel centered at

the CoM (Fig.A.1), which has a constant height of z0. The equations of motion are

Figure A.1: The Linear Inverted Pendulum Plus Flywheel Model

ẍ =
g

z0
x− 1

mz0
τh

θ̈b =
1

J
τh

(A.6)

where x and z are the CoM horizontal and vertical coordinates; θb is the �ywheel angles

with respect to vertical; g is the gravitational acceleration constant; m and J are the mass

and the rotational inertia of the �ywheel, respectively; and τh is the motor torque on the

�ywheel.
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For non-sliding constraints, the ground reaction force (fx, fz) should remain inside a

friction cone with a friction coe�cient µ:

−µ < fx
fz

=
x

z0
− τh
mgz0

< µ (A.7)

which leads to the following constraint on x:

−µz0 +
τh
mg

< x < µz0 +
τh
mg

. (A.8)

LIPPFM allows the robot to move one step to make the support polygon include x. How-

ever, here we need to �nd allowable motions which satisfy current foot contact constraints;

so additionally, the CoM should be above the support polygon, which provides bounds

xmin and xmax for x. Finally, x is constrained by

max(−µz0 +
τh
mg

, xmin) < x < min(µz0 +
τh
mg

, xmax). (A.9)

From LIPPFM, the bounds on velocity ẋ can be obtained. For example, with a step

change in the rotational position of the �ywheel of ∆θb, ẋ is constrained by√
g

z0
(x+

J

mz0
∆θbmin) < ẋ <

√
g

z0
(x̄+

J

mz0
∆θbmax) (A.10)

where x and x̄ denote the lower and upper bounds of x.

With the aforementioned relations, an order of the magnitude of the maximum allow-

able motion velocity can be obtained. For example, consider a virtual character with a

mass of m = 79kg; an inertia of J = 3.125kgm2; the CoM height of z0 = 0.9m; the mini-

mum and maximum �ywheel angles of ∆θbmin = −1
4π and ∆θbmax = 3

4π, respectively; the

minimum and maximum CoM horizontal positions of xmin = −0.03m and xmax = 0.06m,

respectively; and the minimum and maximum hip torques of τhmin = −100Nm and

τhmax = 100Nm, respectively. The friction coe�cient between its foot and the ground is

µ = 1. The gravitational acceleration is g = 9.81ms−2. According to (A.9), the lower and

upper bounds of x are x = −0.03m and x̄ = 0.06m. Then according to (A.10), the lower

and upper bounds of the velocity ẋ are ẋ = −0.2ms−1 and ¯̇x = 0.5ms−1, respectively.
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Representation of Our Motion

Capture System

We use the Advanced Real-time Tracking [Adv 2007] as our motion capture system.

This system requires the following equipments:

� a set of markers,

� four tracking cameras,

� room calibration tools,

� a computer for data processing.

Markers are attached on the operator's body (see Fig.B.1). Each marker is spherical

Figure B.1: Markers are attached to the hands of the operator.

shaped, covered with retro-re�ective material. Each tracked body is associated with a
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group markers geometrically con�gured into a certain form. The con�gurations of marker

groups are di�erent from each other, so that the system can distinguish one marker from

another.

The motions of the markers are scanned by four cameras �xed at four corners of the

room (see Fig.B.2). The positions of the cameras should be chosen so that the markers

Figure B.2: Four cameras are used to scan the motions of the markers.

can be seen by as many cameras as possible. The motion tracking data scanned by the

four cameras are sent to a computer for data processing.

Before starting motion capture, the groups of markers assigned to di�erent tracked

bodies are calibrated, so that the system will be able to recognize each of them during

motion capture. Moreover, the room where motion capture takes place is also calibrated

each time a camera's position changes, by using the room calibration tools. The calibration

tool de�nes the origin and the axes of the coordinate system, in which the position and

orientation of a tracked body is expressed.

This is a 6-DoF tracking system; so �nally we can obtain both the positions and the

orientations of the tracked bodies.
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