
HAL Id: tel-00824116
https://theses.hal.science/tel-00824116

Submitted on 21 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decomposition by complete minimum separators and
applications

Romain Pogorelcnik

To cite this version:
Romain Pogorelcnik. Decomposition by complete minimum separators and applications. Other. Uni-
versité Blaise Pascal - Clermont-Ferrand II, 2012. English. �NNT : 2012CLF22301�. �tel-00824116�

https://theses.hal.science/tel-00824116
https://hal.archives-ouvertes.fr


N◦ d’ordre : 2301

EDSPIC : 590

Université Blaise Pascal - Clermont II

Ecole Doctorale

Sciences Pour l’Ingénieur de Clermont-Ferrand

THÈSE
présentée par

Romain Pogorelcnik
pour obtenir le grade de

Docteur d’Université
Spécialité : Informatique

préparée au laboratoire LIMOS

Décomposition par séparateurs minimaux
complets et applications

Soutenue publiquement le 4 décembre 2012

devant le jury composé de :

Président :

Alain QUILLOT Professeur en informatique, Université Blaise Pascal, LIMOS

Rapporteurs :

Irena RUSU Professeur en informatique, Université de Nantes, LINA

Alain DENISE Professeur en informatique, Université Paris-Sud, LRI

Examinateurs :

Vassilis GIAKOUMAKIS Professeur en informatique, Université de Picardie

Directrice de thèse :

Anne BERRY Mâıtre de conférences, Université Blaise Pascal, LIMOS



2



Remerciements

Je tiens tout d’abord à remercier ma directrice de thèse, Anne Berry, pour

m’avoir conseillé, encouragé et soutenu tout au long de la thèse avec patience

et disponibilité.

Je remercie Alain Denise et Irena Rusu pour l’intérêt qu’ils ont porté à ce

travail et pour les remarques constructives et les différentes corrections qu’ils

ont pu apporter.

Je remercie Vassilis Giakoumakis et Alain Quillot pour avoir accepté de par-

ticiper à mon jury de thèse.

Je remercie mes collègues et amis en particulier Jean-Christophe, Cédric,

Frédéric, Olivier, Jan, Hélène pour tous les moments de détente que l’on a

pu passer ensemble et pour leurs conseils.

Enfin je tiens à remercier mon épouse pour m’avoir toujours encouragé et

pour le soutien moral qu’elle a su m’apporter.

3



4



Résumé

Nous avons utilisé la décomposition par séparateurs minimaux complets.

Pour décomposer un graphe G, il est nécessaire de trouver les séparateurs

minimaux dans le graphe triangulé H correspondant. Dans ce contexte, nos

premiers efforts se sont tournés vers la détection de séparateurs minimaux

dans un graphe triangulé.

Nous avons défini une structure, que nous avons nommée ’atom tree’.

Cette dernière est inspirée du ’clique tree’ et permet d’obtenir et de représenter

les atomes qui sont les produits de la décomposition.

Lors de la manipulation de données à l’aide de treillis de Galois, nous

avons remarqué que la décomposition par séparateurs minimaux permettait

une approche de type ‘Diviser pour régner’ pour les treillis de Galois.

La détection des gènes fusionnés, qui est une étape importante pour la

compréhension de l’évolution des espèces, nous a permis d’appliquer nos al-

gorithmes de détection de séparateurs minimaux complets, qui nous a permis

de détecter et regrouper de manière efficace les gènes fusionnés.

Une autre application biologique fut la détection de familles de gènes

d’intérêts à partir de données de niveaux d’expression de gènes. La structure

de ‘l’atom tree’ nous a permis d’avoir un bon outils de visualisation et de

gérer des volumes de données importantes.

Mots-clés : décomposition par séparateurs minimaux complets, treillis de

Galois, réseaux de similarités, réseaux de co-expression, gènes fusionnés,

graphe triangulé.

5



6



Abstract

We worked on clique minimal separator decomposition.

In order to compute this decomposition on a graph G we need to compute

the minimal separators of its triangulation H. In this context, the first efforts

were on finding a clique minimal separators in a chordal graph.

We defined a structure called atom tree inspired from the clique tree to

compute and represent the final products of the decomposition, called atoms.

The purpose of this thesis was to apply this technique on biological data.

While we were manipulating this data using Galois lattices, we noticed that

the clique minimal separator decomposition allows a divide and conquer ap-

proach on Galois lattices.

One biological application of this thesis was the detection of fused genes

which are important evolutionary events. Using algorithms we produced in

the course of along our work we implemented a program called MosaicFinder

that allows an efficient detection of this fusion event and their pooling.

Another biological application was the extraction of genes of interest us-

ing expression level data. The atom tree structure allowed us to have a good

visualization of the data and to be able to compute large datasets.

Keywords: clique minimal separator decomposition, Galois lattice, simi-

larity network, expression level network, fused genes, microarray, chordal

graph.

7



8



Contents

Introduction 11

1 Preliminaries 17

1.1 Graph notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Galois lattice notions . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Biological notions . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Decomposition, state of the art 31

2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Definitions and examples . . . . . . . . . . . . . . . . . . . . . 32

2.3 Computing the decomposition . . . . . . . . . . . . . . . . . . 34

3 Chordal graph generators 39

3.1 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Generators of Lex-BFS . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 The Atom tree 47

4.1 The clique tree: state of the art . . . . . . . . . . . . . . . . . 48

4.2 The atom tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Computing an atom tree from a clique tree . . . . . . . . . . . 52

4.4 Computing an atom tree in O(n(n+ t)) time . . . . . . . . . . 56

9



10 CONTENTS

4.5 Computing the Atom Tree in one step . . . . . . . . . . . . . 59

4.5.1 Expanded-MCS-M . . . . . . . . . . . . . . . . . . . . 59

4.5.2 MCS-Atom-Tree . . . . . . . . . . . . . . . . . . . . . 61

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Decomposing bipartite graphs 65

5.1 Decomposing the bipartite graph and the relation . . . . . . . 66

5.2 Decomposing the lattice . . . . . . . . . . . . . . . . . . . . . 68

5.3 Reconstructing the lattice . . . . . . . . . . . . . . . . . . . . 69

5.4 Using the decomposition as a layout tool . . . . . . . . . . . . 72

6 Fused gene detection 75

6.1 Fused gene detection: state of the art . . . . . . . . . . . . . . 76

6.2 MosaicFinder implementation . . . . . . . . . . . . . . . . . . 78

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Test of MosaicFinder on simulated fused genes families 83

6.3.2 Test on real data . . . . . . . . . . . . . . . . . . . . . 84

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Extraction of genes of interest 87

7.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 From expression level data to graph . . . . . . . . . . . . . . . 88

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Conclusion 97



Introduction

The central tool of this thesis is a decomposition called clique minimal separa-

tor decomposition. A separator is a set of vertices whose removal disconnects

a previously connected graph. A separator is a clique if all its vertices are

pairwise adjacent.

The decomposition consists in finding a separator, breaking up the graph

into a set of subgraphs inside which the separator is copied, and reproducing

this step until there is no more subgraph containing clique separators. These

subgraphs are called Atoms.

In 1985 Tarjan, used clique separator decomposition to solve, by a divide

and conquer approach, hard problems such as vertex colouring, maximum

clique and graph perfection testing. He proposed an O(nm) time algorithm

to do this.

One major problem of the algorithm Tarjan proposed is the fact that

it leads to a non unique decomposition. Leimer in 1993 optimized this de-

composition using only clique minimal separators, which leads to a unique

decomposition.

There are still two drawbacks to this decomposition:

• First, not every graph has a clique separator.

• Second, the subgraphs obtained are not disjoint, which means that if

the overlap is large, little is to be gained by a Divide-and-Conquer

approach.

However recent research on data mining and microarray have modelized

11



12 CONTENTS

the data by a graph and have used clique minimal separator decomposition

[10, 24]. The graphs obtained almost always have a clique separator. More-

over clique minimal separators are often important loci since they reflect

maximum interaction. Finally, the subgraph overlaps can be an advantage

in applications. For example, when searching for clusters in microarray, it is

interesting to allow a gene to interact with different groups of genes, which

is not the case with classical gene clustering.

For those reasons we decided to enhance this technique in order to apply

it to different problematics.

Before implementing, we examined some theoretical algorithmic issues.

We started by studying clique separator decomposition extensively and pub-

lished a survey [9]:

An introduction to clique minimal separator decomposition.

A. Berry, R. Pogorelcnik, and G. Simonet.

Algorithms, 3:197–215, 2010.

This explains the decomposition in detail and contains detailed algorithms

which are destined to help practicians with the implementation. This work

is described in Chapter 2.

Tarjan [39] used the property that a clique separator of a graph G is a

clique separator of any minimal triangulation of G. Thus, finding the clique

separators of a graph can be done by first computing a minimal triangulation,

then finding the minimal separators of this triangulation. The second step

of our work was to examine how we could generate the minimal separators

of a chordal graph. This gave birth to paper [7] described in Chapter 3:

A simple algorithm to generate the minimal separators and the maximal

cliques of a chordal graph.

A. Berry and R. Pogorelcnik.

Information Processing Letters, 111(11):508 – 511, 2011.

Once we had a simple and efficient algorithm to detect clique minimal

separators in a chordal graph, we investigated a way to represent the clique



CONTENTS 13

minimal separators of a minimal triangulation H of the input graph G, in or-

der to efficiently test the completeness of the separators of G. In this process,

we used the article of Blair and Peyton [12] which was a real breakthrough

for us. In this article, they precisely define the clique tree which represents a

chordal graph in a compact way, nodes represent cliques and there is an edge

between two nodes if the intersection between them is a clique minimal sep-

arator. We define an atom tree of a graph as a generalization of the clique

tree of a chordal graph: its nodes are the atoms obtained by clique mini-

mal separator decomposition, and its edges correspond to the clique minimal

separators of the graph.

Once an atom tree was defined, we developed an algorithm to compute

it using clique tree of a minimal triangulation. For that we proved that

merging cliques of the clique tree linked by an edge representing a non clique

separator of the original graph leads to an atom tree.

In addition, we worked on algorithms allowing a faster merging process

based on the atom tree structure and properties.

The implementation of the triangulation and the clique tree gave rise to

an extension of the Blair and Peyton algorithm to compute the triangulation

of a graph and one of its clique trees in a single pass. This in turn led to

compute an atom tree of a graph in a single pass. The main advantages of

this algorithm is the fact it is easy to implement and for our biological pur-

poses it allowed us to investigate atoms as they are constructed, thus gaining

time for large datasets. This work is described in Chapter 4, and led to a

submitted article:

Efficiently computing clique separator decomposition using an atom tree.

A. Berry , R. Pogorelcnik, G. Simonet.

Submitted to Discrete Applied Mathematics.

During the thesis, we used Galois lattices to represent biological informa-

tions to add some knowledge on clusters produced by clique minimal sepa-

rator decomposition on microarray data and for data mining purposes. This

work which is not exposed here prompted us to apply clique minimal separa-



14 CONTENTS

tor decomposition to the bipartite graph corresponding to the binary relation

of a Galois lattice. We applied clique minimal separator decomposition to

decompose this bipartite graph that has the particularity to have separators

of size one or two which can be found in a linear time. Using this process we

obtain atoms which correspond to smaller relations. This work, described in

Chapter 5, was presented in an article [8] and was selected for submission in

the special issue of AMAI:

Vertical decomposition of a lattice using clique separators.

A. Berry, R. Pogorelcnik, and A. Sigayret.

The 8th International Conference on Concept Lattices and

their Applications (CLA11), 2011.

Submitted to the special issue of AMAI.

The review written at the beginning of this thesis, attracted the attention

of a bioinformatic team composed by Pierre-Alain Jachiet, Eric Bapteste and

Philippe Lopez, who contacted us to work on fused gene detection. Fused

genes are important evolutionary events. They yield valuable information

to infer protein interactions and functions. Fused genes are genes similar

to two other non-similar genes. Working on this application we determined

that clique minimal separators were appropriate to modelize fused genes. We

implemented a method, based on the detection of clique minimal separators

with a variation of the extension of Blair and Peyton algorithm presented in

Chapter 3, into a C++ program MosaicFinder, to find fused genes and to

group them into families and to group genes they derived from that we call

family components. The program, detailed in Chapter 6, can be downloaded

at [30] and an article explaining it is submitted to Bioinformatics and cur-

rently in revision for them.

MosaicFinder: Identification of fused genes families in sequence

similarity networks.

P.A. Jachiet, R. Pogorelcnik, E. Bapteste and P. Lopez.

In revision for Bioinformatics.



CONTENTS 15

We worked on level expression network data using our new representation,

the atom tree, to extract information on experimental data. The implemen-

tation of the decomposition allowed us to detect atoms composed by genes

that have a variation of their expression along time. The idea is to repre-

sent expression level measures of a large amount of genes by a graph and

using clique minimal separators to decompose the graph. This process al-

lows biologists to focus on a small subset of genes. This work was and is in

collaboration with differents teams of INRA, and specially with the private

partner BIOGEMMA. Two papers are under way, but due to the confiden-

tility of the data, this work will just be explained on some partial examples

using open data.

To summarize, the thesis is organized as follows:

• Chapter 1 gives some general graph, lattice and biological notions.

• Chapter 2 provides a precise definition of clique minimal separators,

decomposition, properties and algorithms to find the clique minimal

separators of a graph efficiently using known methods.

• In Chapter 3, we detail our work to find clique minimal separators and

maximal cliques using LEX-BFS and MCS in a chordal graph.

• In Chapter 4, we recall the clique tree definitions and properties, as well

as the algorithm to produce one. The rest of this chapter is devoted to

the new notion of Atom Tree. We describe this tool and the different

ways to compute it.

• Chapter 5 explains how this decomposition can be used on Galois lat-

tices to break up some hard problems and optimize the graphic visual-

ization.

• Chapter 6 emphasizes the detection of fused gene in a similarity net-

work.

• Chapter 7 shows how the atom tree can be useful for the extraction of

genes of interest in an expression level network.



16 CONTENTS



Chapter 1

Preliminaries

Contents

1.1 Graph notions . . . . . . . . . . . . . . . . . . . . 17

1.2 Galois lattice notions . . . . . . . . . . . . . . . . 24

1.3 Biological notions . . . . . . . . . . . . . . . . . . 27

1.1 Graph notions

In this thesis we assume readers are familiar with the elementary graph no-

tions. Let G = (V,E) be an undirected graph with V a set of vertices,

|V | = n, and E a set of edges, |E| = m, an edge {x, y} is denoted xy. The

complement G = (V,E) of graph G = (V,E) is the graph where, for any pair

of vertices {x, y} such that x 6= y, xy ∈ E if and only if xy 6∈ E. If X ⊂ V

is a set of vertices of G = (V,E), G(X) denotes the subgraph induced by X

(which is a graph whose vertices are the elements of X and such that xy is

an edge of G(X) if xy ∈ X and xy ∈ E). Two vertices x and y are said

to be adjacent if (x, y) ∈ E. A path is a sequence (x1, x2, ..., xk) of different

vertices such that for i < k, xi is adjacent xi+1. A chord in a path is an edge

xixj where j > i and j 6= i + 1. A path is chordless if it has no chord. A

cycle is a sequence x1, x2, ..., xk, x1 of vertices, with x1, x2, ..., xk all different,

such that for i < k, xi is adjacent to xi+1 and xk is adjacent to x1. A graph

17



18 CHAPTER 1. PRELIMINARIES

is connected if there is a path between any pair of vertices. When a graph is

disconnected, a maximal connected subgraph is a connected component. A

2-pair is a pair {x, y} of non-adjacent vertices such that every chordless path

from x to y is of length 2.

Neighbourhood:

The neighbourhood of a vertex x in G is NG(x) = {y 6= x | xy ∈ E}; we omit

subscript G when it is clear from the context which graph we work on.

• A vertex is isolated if it has no neighbour.

• The closed neighbourhood of a vertex x is NG[x] = NG(x) ∪ {x}.

• The neighbourhood of a set of vertices X is NG(X) =
⋃

x∈X NG(x)\X,

and its closed neighbourhood is NG[X] = NG(X) ∪X.

• Let X ⊆ V be a set of vertices, we will call common neighbourhood, de-

noted CN(X), the intersection of the neighbourhoods of all the vertices

of X.

CN(X) =
⋂
x∈X

N(x)

• A module is a set of vertices X such that for all x, y ∈ X we have

N(x) ∩N(X) = N(y) ∩N(X)

Figure 1: A clique of size 5, all vertices see the others



1.1. GRAPH NOTIONS 19

Clique:

A clique is a set of vertices which are pairwise adjacent. A vertex x is said

to be simplicial if the subgraph induced by N(x) is a clique.

Figure 2: A bipartite graph with two vertex sets U and V . The vertex set
circled in blue is a biclique included in a maximal biclique circled in red.

Bipartite graph:

• A bipartite graph G = (U +V, E), is built on two vertex sets, U and V,

with no edge between vertices of U and no edge between vertices of V.

• A biclique of a bipartite graph G = (U + V,E) is an induced subgraph

G′ = (U ′+V ′) with all the edges between vertices from U ′ and vertices

from V ′.

Chordal graph:

A graph is chordal or triangulated if it has no chordless cycle of length more

than 3.



20 CHAPTER 1. PRELIMINARIES

Perfect elimination ordering (peo):

A graph is chordal if and only if one can repeatedly find a simplicial vertex,

and remove it, until no vertex left [33]. Since at each step a vertex is removed,

this defines a series of transitory graphs, the simplicial vertex is found in this

transitory graph. This process is called a simplicial elimination scheme, and

defines an ordering on the vertices called perfect elimination ordering (peo).

In this work we will use the algorithm introduced by Rose, Tarjan and

Lueker, so called Lexicographic Breadth First Search Lex-BFS [33] Algorithm

Lex-BFS and a simplification of this algorithm Maximum Cardinality Search

MCS [40] Algorithm MCS.

Algorithm 1: Lexicographic breadth first search - Lex-BFS [33]

Input: A graph G = (V,E).

Output: A perfect elimination ordering α of G.

forall the vertices v ∈ V do L(v) = ∅;
for i = n downto 1 do

Choose an unnumbered vertex v with largest label;

α(v)← i;

foreach unnumbered neighbour x of v do

Add i to label(x);

Algorithm 2: Maximum Cardinality Search - MCS [40]

Input: A graph G = (V,E).

Output: A perfect elimination ordering α of G.

forall the vertices v ∈ V do w(v) = 0;

for i = n downto 1 do

Choose an unnumbered vertex v of maximum weight w;

α(v)← i;

foreach unnumbered neighbour x of v do

w(x)← w(x) + 1;



1.1. GRAPH NOTIONS 21

Minimal triangulation:

A triangulation is a chordal completion of a graph.

Let G = (V,E) be a non chordal graph. A chordal graph H = (V,E+F )

is called a triangulation of G, and F is called the fill. The triangulation is

said to be:

• minimal if for no proper subset F ′ of F such as H ′ = (V,E + F ′) is

chordal.

• minimum if no other minimal triangulation has less fill edges. Com-

puting a minimum triangulation is NP-complete [44].

Minimal elimination ordering (meo):

One way to compute a triangulation is to force the graph into having a per-

fect elimination ordering by repeatedly picking a vertex and adding any edges

missing in its neighbourhood and removing it, until no vertex is left. This

will yield a triangulation whose fill is the set of all edges added in this pro-

cess. Efficient algorithms have been designed for doing this, Lex M [33] and

MCS-M [3] . Both these algorithms yield a minimal triangulation H of the

input graph G and an ordering α that is both a minimal elimination ordering

of G and a perfect elimination ordering of H.

Madj(x) :

Given a chordal graph G and an ordering α of G which is a bijection α :

V → {1, 2, ..., 3}. We use α to index the vertex set, such that, α(vi) = i for

1 ≤ i ≤ n where i will be referred to as the number of vi. Let v1, v2, ..., vn

be an ordering of V , for any vertex vi, MadjG(vi) is the monotone adjacency

set of vi:

MadjG(vi) = {vj ∈ NG(vi) | j > i}



22 CHAPTER 1. PRELIMINARIES

Algorithm 3: Lex M [33]

Input: An undirected graph G = (V,E).
Output: A minimal elimination ordering α on V and a minimal

triangulation H = (V,E + F ) of G.

F ← ∅;
forall the vertices v ∈ V do L(v)← ∅;
for i =n downto 1 do

Choose an unnumbered vertex x of G of maximal label ;
α(x)← i;
Y ← NG(x);
foreach unnumbered vertex y of G not belonging to NG[x] do

if there is a path from x to y in G such that every internal
vertex on the path has a label strictly smaller than L(y) and is
unnumbered then

F ← F ∪ {xy}; Y ← Y ∪ {y};
foreach y ∈ Y do Add i to L(y);

H ← (V,E + F );

Algorithm 4: MCS-M [3]

Input: An undirected graph G = (V,E).
Output: A minimal elimination ordering α on V and a minimal

triangulation H = (V,E + F ) of G.

F ← ∅;
forall the vertices v ∈ G do w(v)← 0;
for i =n downto 1 do

Choose an unnumbered vertex x of G of maximal weight w;
Y ← NG(x); α(x)← i;
foreach unnumbered vertex y of G not belonging to NG[x] do

if there is a path from x to y in G such that every internal
vertex on the path has a weight strictly smaller than w(y) and
is unnumbered then

F ← F ∪ {xy}; Y ← Y ∪ {y};

foreach y in Y do w(y)← w(y) + 1;

H ← (V,E + F );



1.1. GRAPH NOTIONS 23

Figure 3: The set of red vertices form a clique minimal separator. Indeed
its removal lead to two connected components C1 and C2 and N(C1) =
N(C2) = S and a connected component C3. The red vertices is an xy-
separator non minimal as it includes z which is a minimal xy-separator

Separators:

A set S of vertices of a connected graph G is a separator if G(V \ S) is not

connected.

• A separator S is an xy-separator if x and y lie in two different connected

components of G(V \ S).

• S is a minimal xy-separator if S is an xy-separator and no proper

subset S ′ of S is also an xy-separator.

• Equivalently, in a connected graph, S is a minimal separator if and

only if G(V \ S) has at least two connected components C1 and C2

such that NG(C1) = NG(C2) = S, called full components. A clique

minimal separator is a minimal separator which is a clique.



24 CHAPTER 1. PRELIMINARIES

• A graph is chordal if and only if all its minimal separators are cliques.

• In a bipartite graph, the clique minimal separators are of size one or

two. They are called articulation points when they are of size one, and

we will call them articulation edges when they are of size two.

• We will refer to minimal separator generators in a chordal graph H:

given a perfect elimination ordering α of H, x is called a minimal

separator generator if Madj(x) is a minimal separator.

Clique separator decomposition:

This process introduced in [39] repeatedly finds a clique separator S and

copies it into the connected components of G(V \ S). When only minimal

separators are used, the decomposition is unique and the subgraphs obtained

at the end, called atoms, are exactly the maximal subgraphs containing no

clique separator [25]. This decomposition is detailed in Chapter 2.

1.2 Galois lattice notions

Relation:

Let O and A be finite sets, a relation is a subset of the Cartesian product

O ×A. The relation can be represented by a matrix as in Figure 4.

A relation R ⊆ O × A is associated with a bipartite graph G, which is de-

noted by Bip(R); for x ∈ O and y ∈ A, (x, y) is in R if and only if xy is an

edge of G.

Context:

A context is a triplet (O,A,R) corresponding to a binary relationR ⊆ O×A
on a finite set O of objects and a finite set A of attributes.



1.2. GALOIS LATTICE NOTIONS 25

a b c d e
1 × × × ×
2 × × ×
3 ×
4 × × ×
5 ×

Figure 4: A relation R and the corresponding bipartite graph Bip(R).

Concept:

Let C = (O,A,R) be a context, O1 ⊆ O and A1 ⊆ A. The pair (O1, A1) is

a concept or maximal rectangle of C if:

O1 = {o ∈ O : (o, a) ∈ R for all a ∈ A1},

A1 = {a ∈ A : (o, a) ∈ R for all o ∈ O1}

and

for all x ∈ O −O1, ∃y ∈ A1 such that (x, y) /∈ R,

for all y ∈ A− A1,∃x ∈ O1 such that (x, y) /∈ R.

O1 is called the extent and A1 the intent of the concept (O1, A1).

The maximal bicliques of bip(R) correspond to the concepts.

Lattice:

A lattice is a partially ordered set in which every pair of elements has both

a lowest upper bound and greatest lower bound.

Galois lattice:

Let C = (O,A,R) be a context. Let (O1, A1) and (O2, A2) be two concepts

of C. We denote (O1, A1) � (O2, A2) if and only if O1 ⊆ O2 (or, equivalently

A1 ⊇ A2). The concepts of C, ordered with �, define the Galois lattice of C

(also called concept lattice).



26 CHAPTER 1. PRELIMINARIES

Hasse diagram:

The Hasse diagram is a directed graph representing a partial order omitting

transitivity and reflexivity edges. The Hasse diagram of a Galois lattice can

be drawn with two strategies:

• top-down: from the maximal extent to the minimal one.

• bottom-up: from the minimal extent to the maximal one.

Example 1. Figure 5 shows the Hasse diagram of the Galois lattice of the

relation in Figure 4.

Figure 5: The Galois lattice of the relation R of Figure 4 .

Atom (resp. co-atom):

An atom (resp. co-atom) of L(R) is a concept covering the minimum element

(resp. covered by the maximum element).

Introducer:

The object-concept associated with a given object x is defined as the concept

which intent is R(x). The attribute-concept associated with a given attribute

y is defined as the concept which extent is R−1(y). The object-concept of

x is the first (from bottom to top) concept having x in its extent. The

attribute-concept of y is the last (from bottom to top) concept having y in

its intent. Object-concepts and attribute-concepts are also called introducers.



1.3. BIOLOGICAL NOTIONS 27

1.3 Biological notions

Fused genes

Fused genes, as illustrated in Figure 6, result from the fusion of previously

physically unrelated genes, or parts of their sequences. We called the process

that leads to a fused gene a fusion event. Gene fusion can provide to new

functions [26], a greater catalytic activity or a more efficient co-regulation

between proteins whose genes have been fused. When such fused genes in-

crease the fitness of their carrier, they are maintained in genomes and give

rise to new gene families. Numerous cases of gene fusions have been reported,

both in Prokaryotes [29] and in Eukaryotes [46].

Figure 6: A fused gene C and the two sequences it stems from. A and B are
similar to disjoint parts of C. A and B are dissimilar.

Microarray

A microarray is a solid surface where are bound synthesized probes. This

allows to monitor the expression level of thousands of genes simultaneously

in a cell or tissue in different conditions or at different times. The expression

profiling allows to extract from a large number of genes some whose expres-

sion responds to a stimulus for further investigation.

Biological network

Applications of the thesis were on biological networks. These networks are

graphs where vertices represent gene or protein sequences and where the

edges represent a relation between them. This relation can be of sequence

similarity, interaction, expression level similarity. Here we worked on:



28 CHAPTER 1. PRELIMINARIES

• expression level network: Using technologies such as microarray, we

can measure the expression level of genes in a specific condition. Using

output data, we can compute a distance between all gene expression

levels with the widely used distance measures Euclidean distance or

Pearson correlation distance [20].

– Euclidean Distance Measure

D(xi, xj) =

√√√√ d∑
l=1

(xil − xil)2

– Pearson Correlation-Based Distance Measure

Cor(xi, xj) =

∑d
l=1(xil − µxi

)(xjl − µxj
)√∑d

l=1(xil − µil)2
√∑d

l=1(xil − µil)2

µxi and µyi represent the sample means. The distance between xi

and xj is computed as:

D(xi, xj) = 1− Cor(xi, xj)

• Sequence similarity network: To represent relationships between

proteins, a sequence similarity network can be constructed. The pro-

teins are represented as vertices in a network (graph), and the signifi-

cant similarities as edges connecting the proteins. One way to measure

the similarity of proteins is to evaluate the similarity of their sequences

by a pairwise sequence alignment. The region of sequence similarity de-

tected may describe a relationship (evolutionary, functional...) between

the proteins.



1.3. BIOLOGICAL NOTIONS 29

Figure 7: An example of a similarity network.



30 CHAPTER 1. PRELIMINARIES



Chapter 2

Clique minimal separator

decomposition: State of the art

Contents

2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Definitions and examples . . . . . . . . . . . . . . 32

2.3 Computing the decomposition . . . . . . . . . . . 34

Corresponding article:

An introduction to clique minimal separator decomposition.

A. Berry, R. Pogorelcnik, and G. Simonet.

Algorithms, 3:197–215, 2010.

In the genesis of the thesis, we studied the clique minimal separator decompo-

sition in detail to improve the known algorithms to apply them on biological

data. This led to the creation of article [9]. This chapter recalls this article

to explain the history, definitions and to give algorithms to compute the de-

composition as it was defined by Tarjan [39] and refined by Leimer [25].

31



32 CHAPTER 2. DECOMPOSITION, STATE OF THE ART

2.1 History

Clique minimal separator decomposition was used to solve hard problems

with a divide and conquer approach. The input graph is decomposed into

smaller subgraphs called atoms, then the problem is solved on each subgraph.

Finally results are merged until obtaining the input graph solution.

In 1976, Gavril [19] described the class of clique separable graphs in the

context of solving in a polynomial time the hard problems of minimum colour-

ing and maximum clique. In 1980, the problem of finding a clique separator

in an arbitrary graph was addressed by Whitesides [42], who presented an

O(n3) algorithm to find one clique separator. In 1983, Tarjan [39] addressed

the problem of finding a decomposition of an arbitrary graph using clique sep-

arators. He noted that using Whitesides’ algorithm would require O(nm3)

time. He proposed an O(nm) time algorithm to do this, by showing that

no fill edge of a minimal triangulation can join two connected components

defined by a clique separator. He proved that using a minimal elimination

ordering, a clique separator decomposition can be computed in O(nm) time.

Tarjan left open the question of defining a unique clique separator decom-

position. In 1990, Dahlhaus, Karpinsky and Novick [14] proposed a parallel

algorithm for clique separator decomposition. In 1990, concurrently, Leimer

[25], described how to obtain an optimal and unique decomposition using

the clique minimal separators of the graph. Leimer also described how to use

Lex M to find the clique minimal separator decomposition in O(nm) time.

2.2 Definitions and examples

A decomposition step was defined by Tarjan [39] as follows:

Definition 1 (Decomposition Step). Let G = (E, V ) be a undirected graph.

Let A,B,C be a partition of V with A and B non empty and C is a clique.

Then (A,B,C) is a decomposition of G into subgraph G1 = G(A ∪ C) and

G2 = G(B ∪ C), separated by C.



2.2. DEFINITIONS AND EXAMPLES 33

Repeating this decomposition step on a subgraph which has a clique sep-

arator, until none of the subgraphs has a clique separator, results in clique

separator decomposition.

Definition 2 (Clique separator decomposition). The recursive decomposition

of G using the Decomposition Step of Definition 1, until no further decompo-

sition is possible, decomposes G into a collection of atoms, each a subgraph

of G containing no clique separator.

Tarjan showed that this decomposition is not unique, by the following

counter example:

Figure 8: A graph with different decompositions. (a) A decomposition using
the clique minimal separator {a, e} (b) Another decomposition using the
non-minimal clique separator {a, c, e}.

Tarjan left open the question of defining a unique clique separator decom-

position. Leimer proved in [25] that by using only clique separators, which

are minimal separators, at each decomposition step, the decomposition is

unique.

Example 2. In Figure 8 the example of Tarjan shows that his decomposition

is not unique. The separator {a, c, e} used in Figure 8 (b) is not minimal

since {a, e} is included in this separator and is also a bd-separator. Figure 8

(a) is the unique decomposition using Leimer’s extension.



34 CHAPTER 2. DECOMPOSITION, STATE OF THE ART

Leimer gave the following characterization of the atoms obtained when

using only clique minimal separators (he calls these atom mp-subgraphs). In

the rest of this thesis, we will call these atoms.

Characterization 1. An atom of a graph is a maximal induced subgraph

containing no clique minimal separator.

Note that the resulting atoms do not depend of the order in which the

decomposition steps are executed. This is because of the following property:

Property 1. [25] Let G = (V,E) be a connected graph, let S be a clique

minimal separator of G and let C be a full component of S in G; then the

set of atoms of G is the disjoint union of the set of atoms of G(C ∪ S) and

of G(V \ C).

2.3 Computing the decomposition

To decompose a graph G efficiently, a minimal triangulation H is required.

Once H is computed it is sufficient to have a perfect elimination α of H:

according to [32], for each clique minimal separator S of H, there is a vertex

x such that MadjH(x) = S (x is then called a minimal separator generator).

Once we find the separators of the triangulated graph H, we look for the

minimal separators of H that are cliques in G due to the following property:

Property 2. [25, 28, 5] Let G = (V,E) be a connected graph, let H = (V,E∪
F ) be a minimal triangulation of G. Then the clique minimal separators

of G are the minimal separators of H that are cliques in G; any minimal

separator S of H is a minimal separator of G, and G(V \ S) has the same

connected components as H(V \ S) with the same neighbourhoods.

Based on these properties, we describe an algorithm to compute the

unique decomposition using only clique minimal separators of H. The al-

gorithm consists in three steps:

1. Compute a minimal triangulation H of the input graph G.



2.3. COMPUTING THE DECOMPOSITION 35

2. Compute a perfect elimination ordering α of H and the minimal sepa-

rator generators of H with respect to α.

3. Process the vertices from 1 to n using α. For each vertex x, if x is a

minimal separator generator ofH, letX be a vertex set of the connected

component of V \MadjH(x) containing x, and Y = V \(MadjH(x)∪X).

If MadjH(x) is a clique in G and Y 6= ∅, then MadjH(x) is a clique

minimal separator of G: decompose G into G1 = G(X ∪MadjH(x))

and G2 = G(Y ∪MadjH(x)), store G1 as an atom, and replace G with

G2.

Figure 9: Decomposition using clique minimal separators. We start by a
triangulation using a minimal elimination ordering.

Example 3. In Figure 9 the vertices are numbered by a MCS. There are five

clique minimal separators in the triangulated graph: {2}, {4, 3}, {4, 5}, {5, 6},
{6, 7}. The clique minimal generators are 1, 2, 3, 4, 5. Madj(1) = {2} is a

clique of G. G is decomposed into the graphs G({1, 2}) and G({2, 3, 4, 5, 6,
7, 8}). Madj(2) = {3, 4} is not a clique of G({2, 3, 4, 5, 6, 7, 8}). The graph



36 CHAPTER 2. DECOMPOSITION, STATE OF THE ART

is not decomposed. Madj(3) = {4, 5} is a clique of G({2, 3, 4, 5, 6, 7, 8}).

This graph is decomposed into the graphs G({2, 3, 4, 5}) and G({4, 5, 6, 7, 8}).

Madj(4) = {5, 6} is not a clique of G({4, 5, 6, 7, 8}). This graph is not

decomposed. Madj(5) = {6, 7} is a clique of G({4, 5, 6, 7, 8}). This graph

is decomposed into the graphs G({4, 5, 6, 7}) and G({6, 7, 8}).

LEX M and MCS-M both yield a minimal triangulation H of the input

graph G and an ordering α that is both a minimal elimination ordering of G

and a perfect elimination ordering of H [6]. Thus, we can implement Steps 1

and 2 in a single pass using an ordering provided by algorithm MCS-M. Once

the ordering and the triangulation are computed, we use a second algorithm

which generates the atoms.

We give below a detailed algorithm, MCS-M+, to compute the trian-

gulation, the perfect elimination ordering and the set of minimal separator

generators which is MCS-M with an optimal implementation of “if there is

a path from x to y in G such that every internal vertex on the path has a

label strictly smaller than label(y) and unnumbered”.

We do this in a similar way as in the implementation of LEX M given in

[33] by a single search in G. For each label value j, set reach(j) contains the

reached vertices having label j, as well as the vertices having a label strictly

smaller than j reached from a vertex having label j.

Moreover in MCSM+, we compute the set X of vertices that generate the

minimal separators of the triangulation H, as described in Chapter 3. The

idea behind this, which we detail in Chapter 3, is that as long as the labels

of the chosen vertices keep getting larger, we are inside a clique of H; when

suddenly the label of the chosen vertex x stops getting larger, x is a minimal

separator generator of H. Each such vertex x is added to set X.

Once we have obtained the ordering α, the corresponding minimal trian-

gulation H of G and the set X of minimal separators generators of H, we

run through the vertices from 1 to n as explained above, using the transitory

subgraphs G′ and H ′ of G and H, initialized as G and H, respectively. At

each step i processing vertex x = α(i), we check whether x is in the set X.



2.3. COMPUTING THE DECOMPOSITION 37

Algorithm 5: MCS-M+

Input: An undirected graph G = (V,E).
Output: A minimal triangulation H = (V,E + F ) of G, a minimal

elimination ordering α of H and the set X of vertices which
generate a clique minimal separator of H.

init: F ← ∅; G′ ← G;
Initialize the labels of all vertices as 0; s← −1 ; X ← ∅ ;
for i =n downto 1 do

Choose a vertex x of G′ of maximal label ;
Y ← ∅ ; Z ← NG′(x);
if label(x) ≤ s then X ← X + {x};
s← label(x) ;
Mark x reached and mark all other vertices of G′ unreachable;
for j =0 to n− 1 do reach(j)← ∅;
foreach y in NG′(x) do

Mark y reached;
Add y to reach(label(y));

for j =0 to n− 1 do
while reach(j) 6= ∅ do

Remove a vertex y from reach(j);
foreach z in NG′(y) do

if z is unreached then
Mark z reached;
if label(z) > j then

Y ← Y + {z};
Z ← Z + {z};
Add z to reach(label(z));

else
Add z to reach(j);

foreach y in Y do F ← F + {xy};
foreach z in Z do

label(z)← label(z) + 1;

α(x)← i ;
Remove x from G′;

H ← (V,E + F ).



38 CHAPTER 2. DECOMPOSITION, STATE OF THE ART

If it is, the neighbourhood NH′(x) of x in H ′ is a minimal separator of H; we

check whether it is a clique in G. If it is, then S is a clique minimal separa-

tor of G. In that case we compute the connected component C of G(V \ S)

which contains x; G′(S ∪C) is an atom [39], and is stored as such; C is then

removed from G′. In any case, we then remove x from H ′, as described by

the following algorithm.

Algorithm 6: Atoms

Input: A graph G = (V,E), a minimal triangulation H = (V,E + F )
of G, the set X of vertices that are minimal separator
generators of H, a peo α of H.

Output: The set A of atoms of G, the set Sc of clique minimal
separators of G.

G′ ← G ; H ′ ← H ; A ← ∅ ; SH ← ∅ ; Sc ← ∅ ;
for i =1 to n do

x← α(i) ;
if x ∈ X then

S ← NH′(x);
if S is a clique in G then

Sc ← Sc ∪ {S};
C ← the connected component of G′ \ S containing x ;
A ← A + {G′(S ∪ C)}; G′ ← G′ \ C ;

Remove x from H ′;

A ← A + {G′}.



Chapter 3

Generating the clique minimal

separators and the maximal

cliques of a chordal graph

Contents

3.1 Main theorem . . . . . . . . . . . . . . . . . . . . 40

3.2 Generators of Lex-BFS . . . . . . . . . . . . . . . 43

3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . 44

Corresponding paper:

A simple algorithm to generate the minimal separators and the maximal

cliques of a chordal graph.

A. Berry and R. Pogorelcnik.

Information Processing Letters, 111(11):508 – 511, 2011.

At the beginning of this thesis we studied a way of finding clique minimal

separators and maximal clique simply and quickly to allow us to implement

the decomposition steps. We wrote an algorithm using Lex-BFS or MCS

to obtain in a single pass the perfect elimination ordering, maximal cliques

and minimal separators of a chordal graph, as well as the minimal separator

generators. This algorithm is based on a theorem formulated and proved in

this chapter.

39



40 CHAPTER 3. CHORDAL GRAPH GENERATORS

3.1 Main theorem

In this section, we use graph search algorithms Lex-BFS and MCS, both

generate a perfect elimination ordering. Both algorithms number the vertices

from n to 1 (n is the number of vertices of the graph) and each vertex x

carries a label, which is the list of numbers of the neighbours of x with a

higher number for Lex-BFS or the cardinality of this list for MCS.

Definition 3. Given a chordal graph G and a perfect elimination ordering

α of G defined by either Lex-BFS or MCS, we call:

• minimal separator generator any vertex xi with number i by α, such

that Madj(xi) is a minimal separator of G and label(xi) ≤ label(xi+1),

where xi+1 = α(i+ 1).

• maximal clique generator a vertex y such that Madj(y)∪{y} is a max-

imal clique of G.

Theorem 3.1.1. Let α be a perfect elimination ordering defined by either

Lex-BFS or MCS, let xi be the vertex with number i, let xi+1 be the vertex

with number i+ 1.

a) xi is a minimal separator generator if and only if label(xi) ≤ label(xi+1).

b) xi+1 is a maximal clique generator if and only if label(xi) ≤ label(xi+1)

or i+ 1 = 1.

We now discuss the proof of theorem 3.1.1. We first present moplex

elimination, which is a process that explains how both MCS and Lex-BFS

scan the minimal separators and the maximal cliques of a chordal graph,

then we prove Theorem 3.1.1 for Lex-BFS.



3.1. MAIN THEOREM 41

Definition 4. [4] A moplex is a clique X which is a module and such that

N(X) is a minimal separator. We extend this definition to a clique whose

neighbourhood is empty. A simplicial moplex is a moplex whose vertices are

all simplicial.

Property 3. [4] Any chordal graph which is not a clique has at least two

non-adjacent simplicial moplexes.

Characterization 2. [4] A graph is chordal if and only if one can repeatedly

delete a simplicial moplex until the graph is a clique (which we will call the

terminal moplex). We call this process moplex elimination.

Note that moplex elimination on a chordal graph is a special case of

simplicial elimination, since at each step a set of simplicial vertices is elim-

inated. Note also that for a connected graph G, the transitory elimination

graph obtained at the end of each step remains connected.

Moplex elimination defines an ordered partition (X1, X2, ..., Xk) of the

vertices of the graph into the successive moplexes which are defined in the

successive transitory elimination graphs. We will call this partition a moplex

ordering.

Theorem 3.1.2. [4] Let G be a chordal graph, let (X1, X2, ..., Xk) be a moplex

ordering of G. At each step i < k of the elimination process finding moplex

Xi in transitory graph Gi,

• NGi
(Xi) is a minimal separator of G,

• Xi ∪NGi
(Xi) is a maximal clique of G.

The terminal moplex Xk is a maximal clique.

There are no other minimal separators or maximal cliques in G.



42 CHAPTER 3. CHORDAL GRAPH GENERATORS

To prove this, we will first recall a result from Rose [32]:

Property 4. [32] Let G be a chordal graph, let α be a perfect elimination

ordering of G, let S be a minimal separator of G. Then there is some vertex

x such that Madj(x) = S, and in every full component C of S, there is some

vertex y such that S ⊆ N(y) (such a vertex is called a confluence point of

C).

Proof of Theorem 3.1.2. NGi
(Xi) is a minimal separator of G: in transitory

graph Gi, Si = NGi
(Xi) is by definition a minimal separator of Gi, with at

least two full components C1 and C2, each containing a confluence point,

which we will call x1 and x2. Suppose Si is not a minimal separator of G.

Then there must be a chordless path from x1 to x2 in G which contains no

vertex of Si. Let y be the first vertex of this path to be eliminated, at step

j < i; the vertex y must be simplicial in Gj, but this is impossible, since

y has two non-adjacent neighbours on the path. Thus every NGi
(Xi) with

i < k, is a minimal separator of G, and by property 4, all minimal separators

of G have thus been encountered.

Xi ∪ NGi
(Xi) = Ki is a maximal clique of G: Ki is a maximal clique of

Gi and thus a clique of G. Suppose it is not a maximal clique of G. Let xj

be a vertex belonging to the moplex Xj with j < i, of largest number which

can be added to Ki to make a larger clique in G.

In Gj, the set Sj = NGj
(xj) is a minimal separator, which contains all the

vertices of Ki. But in Gj, Sj must have a full component C, disjoint from Xj;

C must contain a confluence point z, which is adjacent in Gj all the vertices

of Sj, and thus all the vertices of Ki. The confluence point z must belong

to a moplex of number larger than j, which contradicts the assumption that

Xj is of maximum number. Thus every Xi ∪ NGi
(Xi) (i < k) is a maximal

clique of G.

The same argument can be given to prove that the terminal moplex is a

maximal clique of G.



3.2. GENERATORS OF LEX-BFS 43

Note that for a given chordal graph G, there may be many different

moplex orderings, but there is always the same number of moplexes, since

this is the number of maximal cliques of the graph.

With any moplex ordering (X1, X2, ..., Xk), we can associate a peo α by

processing the moplexes from 1 to n and giving consecutive numbers to the

vertices of a given moplex. Using α, we can define the minimal separators

and maximal cliques as vertex neighbourhoods:

Property 5. Let G be a chordal graph, let (X1, X2, ..., Xk) be a moplex or-

dering of G, let α be a peo associated with this moplex ordering. Then in the

course of a moplex elimination, at each step i that processes moplex Xi.

• The vertex x of moplex Xi whose number is the smallest by α defines

a maximal clique {x} ∪Madj(x) of G.

• The vertex y of moplex Xi whose number is the largest by α defines a

minimal separator Madj(y) of G.

3.2 Generators of Lex-BFS

Lex-BFS defines a moplex ordering and an associated peo: [4] showed that

Lex-BFS always numbers as 1 a vertex belonging to a moplex (which we call

X1). They also proved that the vertices of X1 receive consecutive numbers

by Lex-BFS. These properties are true at each step of Lex-BFS in the tran-

sitory elimination graph. Therefore, Lex-BFS defines a moplex elimination

(X1, ..., Xk), by numbering consecutively the vertices of X1, then numbering

consecutively the vertices of X2, and so forth:

Theorem 3.2.1. [4] In a chordal graph, Lex-BFS defines a moplex ordering.

Note that it is easy to deduce from [12] that MCS also defines a moplex

ordering. Since the vertices of any transitory moplex Xi are numbered con-

secutively, when running Lex-BFS (numbering the vertices from n to 1), as

long as the labels increase, we are defining a moplex, Xi. When the labels



44 CHAPTER 3. CHORDAL GRAPH GENERATORS

stop increasing (when numbering vertex y), then we have started a new mo-

plex Xi−1 which contains y. Using Property 5, we can deduce that Lex-BFS

and MCS generate the minimal separators and the maximal cliques.

1

2

6 4

8

7

3

5 c

a

d

g
h

f

e

b

[6,5,4]

[6,5,4]

[]

[8,7]

[7,6]

[6,5]

[8]
[6,5]

Figure 10: A graph with a Lex-BFS ordering. The circled numbers are labels
of the vertices.

Example 4. Figure 10 shows the numbers and labels of a Lex-BFS execution

on a chordal graph.

3.3 Algorithm

We can now derive from Theorem 3.1.1 a generalized algorithm to generate

the minimal separators and the maximal cliques of a chordal graph.

In the Algorithm Minseps-Maxcliques, it is considered that either LexBFS

or MCS is used. “Increment the label of y” is translated as label(y) ←
label(y)∪{i} for LexBFS and as label(y)← label(y)+1 for MCS. The labels

are all considered initialized at the beginning, as ∅ for LexBFS and as 0 for

MCS.

GNUM ← GNUM+{xi} is shorthand for “VNUM ← VNUM+{xi}; GNUM ←
G(VNUM)”. In the same fashion, GELIM ← GELIM − {xi} is shorthand for

VELIM ← VELIM − {xi} ; GELIM ← G(VELIM) ;



3.3. ALGORITHM 45

Algorithm 7: Minseps-Maxcliques

Input: A chordal graph G = (V,E).
Output: Set S of minimal separators of G;
Set S of minimal separator generators of G;
Set K of maximal cliques of G;
Set K of maximal clique generators of G;

init: GNUM ← G(∅); GELIM ← G;
S ← ∅; S ← ∅ ; K ← ∅ ; K ← ∅;
for i =n downto 1 do

Choose a vertex xi of GELIM of maximum label;
GNUM ← GNUM + {xi};
if i 6= n and label(xi) ≤ λ then

//xi is a min. sep. generator and xi+1 is a max. clique
generator S ← S + {xi}; S ← S ∪ {NGNUM

(xi)};
K ← K + {xi+1};
K ← K + {(NGNUM

(xi+1) ∪ {xi+1}};
λ← label(xi);
foreach y ∈ NGELIM

(xi) do
Increment the label of y;

GELIM ← GELIM − {xi};
K ← K + {x1} ; K ← K + {NG(x1) ∪ x1};

Example 5. In Figure 10, S = {{6, 7}, {5, 6}, {4, 5, 6}, {5, 6}}; S = {5, 4, 2, 1};
K = {{6, 7, 8}, {5, 6, 7}, {3, 4, 5, 6}, {2, 4, 5, 6}, {1, 5, 6}} K = {6, 5, 3, 2, 1}.

The complexity of the above algorithm is the same as for Lex-BFS or

MCS, which is in O(n+m) time.

A minimal separator may be generated several times, depending on the

number of full components it defines:

Property 6. Let α be a peo defined by Lex-BFS or MCS, let S be a minimal

separator, let k be the number of full components of S. Then S has k − 1

generators by α.



46 CHAPTER 3. CHORDAL GRAPH GENERATORS



Chapter 4

The Atom tree

Contents

4.1 The clique tree: state of the art . . . . . . . . . . 48

4.2 The atom tree . . . . . . . . . . . . . . . . . . . . 51

4.3 Computing an atom tree from a clique tree . . . 52

4.4 Computing an atom tree in O(n(n+ t)) time . . 56

4.5 Computing the Atom Tree in one step . . . . . . 59

4.5.1 Expanded-MCS-M . . . . . . . . . . . . . . . . . . 59

4.5.2 MCS-Atom-Tree . . . . . . . . . . . . . . . . . . . 61

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 62

Corresponding paper:

Efficiently computing clique separator decomposition using an atom tree.

A. Berry , R. Pogorelcnik, G. Simonet.

Submitted to Discrete Applied Mathematics.

In order to represent the atoms obtained by clique minimal separator

decomposition, we introduced a new notion named atom tree. This extension

of the notion of clique tree of a chordal graph yields not only its atoms, but

also a compact representation of their organization.

An atom tree of a graph G is a tree whose vertices are the atoms of G,

and whose edges are the clique minimal separators of G.

47



48 CHAPTER 4. THE ATOM TREE

We examined how to compute an atom tree from a clique tree of a minimal

triangulation, thereby providing a completely different approach from the

classical one from [39] and [25], which requires O(n) graph searches. Let

G = (V,E) be a graph, H = (V,E ∪ F ) a minimal triangulation of G, with

|F | = f . We can compute an atom tree in O(min(m+nf, nm)) time given a

minimal triangulation. In the case we already have the triangulation and the

clique minimal separators we can compute the atom tree in linear O(m+ f)

time.

We also present a new technique to compute an atom tree of a graph

in O(n(n + t)) time with t the number of 2-pair which is a pair {x, y} of

non-adjacent vertices such that every chordless path from x to y is of length

2 with t ≤ m.

In the last part, we present an extension of MCS-M to produce a trian-

gulation and a clique tree of a graph as well as an extension that produced

its atom tree in a single pass.

4.1 The clique tree: state of the art

Let G = (E, V ) be a graph and C = {C1, C2, ..., Ck} the set of maximal

cliques with k the number of cliques. For any chordal graph there exist

clique trees of C [40]. This allows to represent chordal graphs in a compact

way.

Example 6. Figure 11 shows a chordal graph composed of five cliques (3 of

size 3, 1 of size 2 and 1 of size 4) and one of its clique trees is shown in

Figure 12.

Definition 5. Let H = (V,E) be a connected chordal graph. A clique tree

is a tree T = (C, E) with C the set of nodes representing the maximal cliques

and E the set of edges, such that for any vertex x of H, the subgraph Tx of

T induced by the set of nodes of T containing x is a subtree of T .



4.1. THE CLIQUE TREE: STATE OF THE ART 49

Property 7. [12] Let H be a connected chordal graph, let T be a clique tree

of H, and let S be a set of vertices of H; then S is a minimal separator of

H if and only if there is an edge C1C2 of T such that S = C1 ∩ C2.

To prove that for each edge C1C2 of T , the intersection C1 ∩ C2 is a

minimal separator of H, [12] show the following result.

Property 8. [12] Let H be a connected chordal graph, let T be a clique tree

of H, let C1C2 be an edge of T , let S = C1 ∩ C2, and for each i ∈ {1, 2}
let Ti be the connected component of T − {C1C2} containing Ci and let Vi

be the union of the nodes of Ti; then (V1 \ S, S, V2 \ S) is an elementary

decomposition by clique minimal separator of H.

Property 9. [18] A chordal graph has at most n maximal cliques, and the

sum of their sizes is at most n+m.

Figure 11: A chordal graph with five maximal cliques: {2,4,5}, {4,5,6},
{3,4,6},{5,6,7,8} and {1,5}.

Property 10. [12] A vertex is simplicial if it belongs to only one clique.

Property 11 (Clique intersection property [12]). If two cliques Ci and Cj

contain a vertex x, then all the cliques in the path between Ci and Cj contain

x.

Example 7. In Figure 12, a clique tree from Figure 11 which respects the

clique intersection property. For example C1 ∩ C4 = {6} is included in C2.



50 CHAPTER 4. THE ATOM TREE

Figure 12: A clique tree of the chordal graph from Figure 11.

Property 12. [12] A graph is chordal if and only if there exists a clique tree

that respects the clique intersection property.

A clique tree can be computed in linear time with the nodes labelled

by the maximal cliques and the edges labelled by the minimal separators.

The algorithm of Blair and Peyton [12] use an extension of MCS to create

a tree of a chordal graph that respect the clique intersection property. We

need the following terminology in this algorithm. An ordering α of G is a

bijection α : V → {1, 2, ..., n}. We use α to index the vertex set, such that,

α(vi) = i for 1 ≤ i ≤ n where i will be referred to as the number of vi.

Let v1, v2, ..., vn be an ordering of V . We define Ni to be the set of vertices

with number greater than i − 1. Let vi1 , vi2 , ..., vim be the representative

vertices of the cliques C1, C2, ..., Cm. Blair and Peyton define a function

cli : V → {1, 2, ..., n} by cli(vj) = r where vj ∈ {vir , vir+1, ..., vir−1−1} with

ir ≤ j ≤ ir−1. In other words, cli(v) is the lowest index of a clique that

contains v: cli(v) = min{r|v ∈ Cr}.

This algorithm, called Expanded-MCS, computes a perfect elimination

ordering and each time a new clique begins it is linked to the one corre-

sponding to the clique Cp for which p = cli(vj) where j is the vertex with

the smallest number in the separator.



4.2. THE ATOM TREE 51

Algorithm 8: Expanded-MCS [12]

Input: A connected chordal graph H = (V,E).
Output: A perfect elimination ordering α and a clique tree

T = (C, E) of H.

prev-card← 0;
s← 0; C ← ∅; E ← ∅; Nn+1 = ∅;
foreach i from n downto 1 do

Choose an unnumbered vertex v in V such that |N(v) ∩Ni+1| is
maximum;
α(v)← i; // v becomes vi
new-card← |N(vi) ∩Ni+1|;

if new-card ≤ prev-card then // a new clique begin

C ← C ∪ {Cs};
s← s+ 1;
Cs ← N(vi) ∩Ni+1;
if new-card 6= 0 then // get edge to parent

k ← min{j | vj ∈ Cs};
p← cli(vk);
E ← E ∪ {Cp, Cs};

cli(vi)← s;
Cs ← Cs ∪ {vi};
Ni ← Ni+1 ∪ {vi};
prev-card← new-card;

C ← C ∪ {Cs};

4.2 The atom tree

We extend the definition of clique tree:

Definition 6. Let G = (V,E) be a connected graph. An atom tree of G is

a tree T = (A, E) such that A is the set of atoms of G and for any vertex x

of G, the subgraph Tx of T induced by the set of nodes of T containing x is

a subtree of T .

The intersection of two adjacent nodes is a clique minimal separator in

the atom tree as in clique tree. Moreover each clique minimal separator is

represented in the atom tree.



52 CHAPTER 4. THE ATOM TREE

Property 13. Let G be a graph, let T be an atom tree of G, and let S be a

set of vertices of G. Then S is a clique minimal separator of G if and only

if there is an edge A1A2 of T such that S = A1 ∩ A2.

Proof. To prove this, we will use the graph G∗ introduced by [25]: G∗ is the

graph obtained from G by adding edges to the atoms to make them cliques.

It is chordal and its maximal cliques are the atoms of G [25]. Hence T is a

clique tree of G∗. S is a clique minimal separator of G if and only if it is a

minimal separator of G∗ [25], i.e. if and only if there is an edge A1A2 of T

such that S = A1 ∩ A2 by Property 7.

4.3 Computing an atom tree from a clique

tree

In order to find clique minimal separators of a graph, we need to triangulate

it. The resulting chordal graph can be represented by a clique tree. To

compute the atom tree from the clique tree, we used a merging technique

which contracts all nodes of the clique tree that are not separated by an edge

representing a clique of the input graph.

Theorem 4.3.1. Let G = (V,E) be a connected graph, let H = (V,E + F )

be a minimal triangulation of G, let T = (C, E) be a clique tree of H, and let

T ′ be the forest obtained from T by removing all edges C1C2 such that C1∩C2

is a clique in G, let T ′′ be the tree obtained from T by merging the nodes of

each tree of T ′ into one node; then T ′′ is an atom tree of G.

Proof. As the merging process preserves the connexity of the subgraph Tx

for each vertex x of G, it is sufficient to show that the nodes of T ′′ are the

atoms of G. We prove this by induction on the number of edges C1C2 of

T such that C1 ∩ C2 is a a clique in G. If there is no such edge then, by

Properties 7 and 2, G has no clique minimal separator and therefore V is

the unique atom, and T ′′ is reduced to node V , so the property holds. We

assume that it holds if T has at most k edges C1C2 such that C1 ∩ C2 is a a



4.3. COMPUTING AN ATOM TREE FROM A CLIQUE TREE 53

clique in G. Let us show that it holds if T has k + 1 such edges. Let C1C2

be such an edge of T , let S = C1 ∩ C2, for i ∈ {1, 2} let Ti be the connected

component of T − {C1C2} containing Ci, let T ′′i be the tree obtained from

Ti by the merging process, let Vi be the union of the sets of vertices of the

nodes of Ti, let Gi = G(Vi) and let Hi = H(Vi).

(V1 \ S, S, V2 \ S) is a partition of V , no vertex of V1 \ S is adjacent to a

vertex of V2 \ S in H and there exist a vertex x1 of V1 \ S and a vertex x2

of V2 \ S such that S is a minimal x1x2-separator in H [12]. By Property 7,

this is also the case in G. It follows that the set of atoms of H (resp. G) is

the disjoint union of the sets of atoms of H1 and H2 (resp. G1 and G2).

Next we show that G1 and H1 are connected, that H1 is a minimal tri-

angulation of G1 and that T1 is a clique tree of H1. Clearly, H1 is connected

and is a triangulation of G1. We claim that this triangulation is minimal: if

it is not, let H ′ be a triangulation of G1 that is a strict subgraph of H1; the

union of H ′ and H2 is a triangulation of G that is a strict subset of H, which

is impossible. As H1 is a minimal triangulation of G1 and H1 is connected,

G1 is also connected. Let us show that T1 is a clique tree of H1. First we

show that the nodes of T1 are the maximal cliques of H1. As the atoms of a

chordal graph are its maximal cliques, the set of maximal cliques of H is the

disjoint union of the sets of maximal cliques of H1 and of H2. As moreover

no maximal clique of H1 can be a subset of V2 and no maximal clique of

H2 can be a subset of V1 (otherwise it would be a subset of V1 ∩ V2 = S,

and therefore a strict subset of C1 and C2) the maximal cliques of H1 are

exactly the nodes of T1. For each vertex x of H1, Tx is a subtree of T , so its

restriction to T1 is a subtree of T1. By induction hypothesis, the nodes of T ′′1

are the atoms of G1. Similarly, the nodes of T ′′2 are the atoms of G2, so the

set of nodes of T ′′, which is the disjoint union of the sets of nodes of T ′′1 and

of T ′′2 , is the disjoint union of the sets of atoms of G1 and of G2, which is the

set of atoms of G.

From Theorem 4.3.1, we derive an algorithm to compute the atom tree

from a clique tree of a minimal triangulation. Our algorithm defines the

connected components of the forest T ′ by contracting each pair of adjacent



54 CHAPTER 4. THE ATOM TREE

Figure 13: A minimal triangulation of graph. The red dashed lines represent
the fill edges.

Figure 14: A clique tree (a) and its corresponding atom tree (b). The dashed
edges represents separators that are not cliques in the graph G from Figure
13.

nodes in T separated by an edge which is not a clique minimal separator.

The contraction of two nodes C1 and C2 into a single node classically consists

in replacing C1 and C2 with node C1 ∪ C2; the set of its neighbours in the

new tree is the union of the sets of neighbours of C1 and of C2.



4.3. COMPUTING AN ATOM TREE FROM A CLIQUE TREE 55

Algorithm 9: Atom-Tree

Input: A graph G = (V,E), a clique tree T = (C, E) of a minimal
triangulation of G.

Output: T is merged into the corresponding atom tree of G.
foreach edge C1C2 of T do

if C1 ∩ C2 is not a clique in G then
Contract C with C ′ ;

Example 8. In Figure 14 (a) a clique tree of the triangulated graph of Figure

13. The separator C3C4 is the only complete one. To obtain the atom tree

we merge the cliques of the two trees of the forest resulting from the deletion

of edge C3C4. This leads to the atom tree shown in Figure 14 (b).

The complexity of the algorithm is stated and proved in the following

theorem.

Theorem 4.3.2. Let G = (V,E) be a graph, H = (V,E ∪ F ) a minimal

triangulation of G, with |F | = f ; Algorithm Atom-Tree computes an atom

tree of G from a clique tree of H in time:

• O(m+ f) if the clique minimal separators of G are provided.

• O(min(nm,m+ nf)) otherwise.

Proof. As T is a tree, it can be searched from one of its nodes in such a way

that for each processed edge C1C2, C2 is still unreached, and therefore is a

node of the initial tree T with the same degree as in T . Computing C1 ∩ C2

and contracting C1 with C2 can be done in O(max(|C1|, |C2|) + |NT (C2)|)
time, hence in O(m+f) time globally since the sum of the sizes of the nodes

of T is at most n+m+ f and T has less than n edges.

If the set clique minimal separators of the input graph G = (V,E) are

provided, determining whether C1 ∩ C2 is one of them costs O(m + f) time

globally: we build the tripartite graph I = (V,ET ,S ∗, EI), where ET is the



56 CHAPTER 4. THE ATOM TREE

set of edges of the clique tree, S ∗ is the set of clique minimal separators of G,

and EI is the set of edges of the tripartite graph, defined as follows: vy ∈ EI

if v ∈ V and y is either a minimal separator of S ∗ containing v or an edge of

the clique tree representing a minimal separator containing v. The graph I

has less than 3n vertices and less than 2(n+m+ f) edges, since there are at

most n clique minimal separators in a graph and since the sum of the sizes

of the clique minimal separators is at most m. In I, we search for pairs of

vertices {x, y}, x ∈ S ∗, y ∈ ET , with identical neighbourhoods. Finding sets

of vertices with identical neighbourhoods can be done in linear time using

partition refinement on the neighbourhoods [23].

If the clique minimal separators of G are not provided, determining

whether C1 ∩ C2 is a clique in G costs O(m) time, and therefore O(nm)

time globally. Another way to determine whether C1 ∩C2 is a clique in G is

to check for each fill edge whether it belongs to C1 ∩ C2, which can be done

in O(f) time per edge of T , hence in O(nf) time globally, which makes the

total complexity in O(m+ nf) time.

The time complexity in O(m+nf) may be better than O(nm) when f is of

small size. This is interesting in the context of triangulations computed with

the Minimum Degree Heuristic, which approximates minimum triangulation

and can yield a small fill in practice [11].

4.4 Computing an atom tree from a clique

tree in O(n(n + t)) time

To determine which minimal separators of H are cliques in G, we use a new

technique. We consider a directed version of the clique tree (by choosing an

arbitrary root). We use the property that a minimal separator S is a clique

in G if and only if it contains no edge of F . We traverse the clique tree from

the root down, and maintain information on the subset X of V represented

by the node or edge of the tree we are on. We maintain for each vertex y of V

the number dFX(y) of vertices x in the current subgraph X such that xy ∈ F



4.4. COMPUTING AN ATOM TREE IN O(N(N + T )) TIME 57

(i.e. the number of neighbors of y in the graph (V, F ) that are in X). Thus

X is a clique in G if and only if for every vertex x of X, dFX(x) = 0; dFX is

updated by vertex additions and removals when going downwards from node

u to node v through edge (u, v).

The clique tree is represented by a rooted tree T = (VT , Child, Atom),

where Child maps each node of T to the set of its successors in T , and Atom

maps each node of T to a subset of V , which is a maximal clique of H at the

beginning, and an atom of G at the end.

Algorithm 10: Algorithm DF-Atom-Tree

input : A connected graph G = (V,E), the set F of fill edges of a
minimal triangulation H of G, a rooted clique tree
T = (VT , Child, Atom) of H, the root r of T .

output: T is merged into the corresponding atom tree of G.
init: dFr(x) is 0 for each vertex x of r;
foreach x ∈ Atom(r) do

foreach y ∈ V such that xy ∈ F do dFr(y)← dFr(y) + 1;

REC-AT-DF(r, dFr);
foreach edge (u, v) of T do

if not Complete(u, v) then contract u with v ;

Theorem 4.4.1. Let G = (V,E) be a connected graph. Given a minimal

triangulation H = (V,E + F ) of G and a clique tree T of H, Algorithm DF-

Atom-Tree computes an atom tree of G in O(n(n + t)) time, where t is the

number of 2-pairs of H.

Proof. The algorithm process in a way of a Depth-first search all the sep-

arators of H to check if they are clique in G. The cliques separated by

non-clique separators are contracted, it follows from Theorem 4.3.1 that the

tree produced is an Atom tree. Let (u, v) be an edge of T . Determining

Complete(u, v) costs O(n) time, and therefore O(n2) time for all edges of

T . A vertex x of V is added exactly once to the current subset X repre-

sented by dF (when processing the predecessor of the root of Tx if it ex-



58 CHAPTER 4. THE ATOM TREE

Algorithm 11: REC-AT-DF

input : A node u of T , the mapping dFu associated with Atom(u)
output: The mapping Complete from the set of edges of the subtree of

T rooted at u to {true, false} defined by: Complete(v, w) =
true if and only if Atom(v) ∩ Atom(w) contains no edge of F .

foreach v ∈ Child(u) do
dFv ← dFu;
foreach x ∈ Atom(u)− Atom(v) do

foreach y ∈ V | xy ∈ F do dFv(y)← dFv(y)− 1;

Complete(u, v)← true ; // Atom(u) ∩ Atom(v) is set as a clique
in G;
foreach x ∈ Atom(u) ∩ Atom(v) do

if dFv(x) 6= 0 then Complete(u, v)← false;

if Child(v) 6= ∅ then
foreach x ∈ Atom(v)− Atom(u) do

foreach y ∈ V | xy ∈ F do dFv(y)← dFv(y) + 1;

REC-AT-DF(v, dFv);

ists and when computing dFr otherwise). Thus vertex additions to X cost

O(n2) time globally. Let us show that the number of removals from X, i.e.

Σ(u,v) edge of T |Atom(u) \ Atom(v)|, is bounded by t. For this it is sufficient

to show that there is an injective mapping f from the set of triples (x, u, v)

such that (u, v) is an edge of T and x ∈ Atom(u) \ Atom(v) to the set of

2-pairs of H. Let f(x, u, v) = {x, y}, where y ∈ Atom(v) \ Atom(u). We

show that {x, y}, is a 2-pair in H, or, equivalently, that NH(x) ∩ NH(y) is

a minimal xy-separator in H [2]. As Atom(u) and Atom(v) are cliques of

H containing x and y respectively, Atom(u) ∩ Atom(v) ⊆ NH(x) ∩ NH(y).

As Atom(u) ∩ Atom(v) is an xy-separator in H [12], NH(x) ∩ NH(y) is an

xy-separator in H too, and it is a minimal one since it is a subset of each

xy-separator. Thus vertex removals from X cost O(nt) time globally, which

puts the complexity of Algorithm DF-Atom-Tree in O(n(n+ t)) time.

Example 9. In Figure 14a) dF(C1) is initialized as follows (0 0 0 0 0 1 1 0)t

dF(C1)(6) and dF(C1)(7) get 1 from each other. dF(C2) = (0 0 0 0 1 1 0 0)t,



4.5. COMPUTING THE ATOM TREE IN ONE STEP 59

since dF(C2)(6) = 1 the separator 6, 7 is not complete so C1 and C2 will be

merged.dF(C3) = (0 0 0 0 0 1 1 0)t and C1 and C3 are merged. dF(C3)(4) is

increased. When the completeness of C3C4 is tested dF(C4) = (0 0 0 0 0 1 1 0)t

so it is complete. After the completeness test dF(C4)(4) is increased. Since

dF(C4)(4) = 1 C4C5 and C4C6 are merged.

The complexity bottleneck of Algorithm DF-Atom-Tree resides in the

number of vertex removals from dFX . There are some instances where this

number is small: this is the case when the number of 2-pairs is in O(n), when

the number of leaves of T is bounded, and when the minimal triangulation is

an interval graph or a path graph. Note that in the general case, the number

of vertex removals is often much smaller than the number of 2-pairs.

4.5 Computing the Atom Tree in one step

We derive from Algorithm Expanded-MCS from [12] an algorithm computing

an atom tree directly from the input graph. The intermediate step was the

creation of Algorithm Expanded-MCS-M which computes a minimal elimina-

tion ordering (peo of the corresponding triangulated graph) and a clique tree

from a random graph. This work logically results in the creation of the MCS-

Atom-Tree algorithm that generates a triangulation, a minimal elimination

ordering and an atom tree of a graph.

4.5.1 Expanded-MCS-M

Algorithm Expanded-MCS-M is derived from Algorithm MCS from com-

puting a perfect elimination ordering of a chordal graph in linear time.

Expanded-MCS computes both a perfect elimination ordering and a clique

tree of a chordal graph in linear time. We define Algorithm Expanded-MCS-

M from algorithm MCS-M in the same way as Algorithm Expanded-MCS is

defined from Algorithm MCS.

Algorithm MCS-M computes a minimal elimination ordering of the input

graph and the associated minimal triangulation in O(nm) time. Algorithm



60 CHAPTER 4. THE ATOM TREE

Algorithm 12: Expanded-MCS-M

Input: A connected graph G = (V,E).
Output: a meo α of G, the associated minimal

triangulation H = (V,EH) of G and a clique tree
T = (C, E ,MinSep) of H.

prev-card← 0; Nn+1 = ∅; EH ← E;
s← 0; C ← ∅; E ← ∅; H ← (V,ET );
foreach i from n downto 1 do

Choose an unnumbered vertex v in V such that |N(v) ∩Ni+1| is
maximum;
α(v)← i; // v become vi
new-card← |NH(vi) ∩Ni+1|;

if new-card ≤ prev-card then
C ← C ∪ Cs;
s← s+ 1;
Cs ← NH(vi) ∩Ni+1;
if new-card 6= 0 then

k ← min{j | vj ∈ Cs};
p← cli(vk);
E ← E ∪ {Cp, Cs};
MinSep(ps)← |NH(vi) ∩Ni+1|;

cli(vi)← s;
Cs ← Cs ∪ {vi};
F ← ∅;
foreach w ∈ V \ (Ni+1 ∩NG(vi)) do

if there is an viw-path µ in G(V \ Ni+1) such that for each
internal node x of µ |NH(x)∩Ni+1| < |NH(w)∩Ni+1| and w is
unnumbered then

F ← F + {viw};

EH ← EH + F ;
Ni ← Ni+1 ∪ {vi};
prev-card← new-card;

C ← C ∪ Cs;



4.5. COMPUTING THE ATOM TREE IN ONE STEP 61

Expanded-MCS-M computes in O(nm) a minimal elimination ordering of G,

the chordal graph H and a clique tree of H in O(nm) time. We remind the

following terminology used in Algorithm Expanded-MCS-M. An ordering α

of G is a bijection α : V → {1, 2, ..., n}. We use α to index the vertex set,

such that, α(vi) = i for 1 ≤ i ≤ n where i referred to as the number of vi. Let

v1, v2, ..., vn be an ordering of V . We define Ni to be the set of vertices with

number greater than i − 1. Let vi1 , vi2 , ..., vim be the representative vertices

of the cliques C1, C2, ..., Cm. The function cli : V → {1, 2, ..., n} by cli(vj) = r

and vj ∈ {vir , vir+1 , ..., vir−1−1}. In other words, cli(v) is the lowest index of

a clique that contains v: cli(v) = min{r|v ∈ Cr}.

In Algorithm Expanded-MCS-M, a clique tree of a chordal graph H is

represented by a labelled tree T = (C, E ,MinSep), where C represents the

set of maximal cliques of H, E represents the set of edges and MinSep maps

each edge of E to a minimal separator of H, with MinSep(ps) = Cp ∩ Cs.

The algorithm computes a minimal elimination ordering of G, the tri-

angulation H of G. Each time a new clique begins it is linked to the one

corresponding to the clique Cp for which p = cli(vj), where j is the vertex

with the smallest number in the separator.

4.5.2 MCS-Atom-Tree

To explain the Algorithm MCS-Atom-Tree, we need the following notation.

Let vi1 , vi2 , ..., vim be the representative vertices of the atoms A1, A2, ..., Am.

In the same fashion as in Algorithm MCS-Expanded we define a function

ato : V → {1, 2, ..., n} by ato(vj) = r where vj ∈ {vir , vir+1, ..., vir−1−1} with

ir ≤ j ≤ ir−1. In other words, ato(v) is the lowest index of an atom that

contains v: ato(v) = min{r|v ∈ Ar}.

In the MCS-Atom-Tree algorithm an atom tree of a graphG is represented

by a labelled tree T = (A, E , CliqueMinSep), where A represents the set of

atoms of G and CliqueMinSep maps each edge of E to a clique minimal

separator of G, with CliqueMinSep(ps) = Ap ∩ As.

In Expanded-MCS-M each edge {Ap, As} of the clique tree of the mini-



62 CHAPTER 4. THE ATOM TREE

mal triangulation H computed is a minimal separator. When adding edge

{Ap, As} to E , NH(vi) ∩Ni+1 corresponds to the separator Ap ∩ As of H.

Thus, in order to compute an atom tree of a graph G, it is sufficient to

modify Algorithm Expanded-MCS-M, as follows. In case new-card ≤ prev-

card, we determine whether NH(vi) ∩ Ni+1 is a clique in G. If it is a clique

in G and prev-card 6= 0 then we increment s, and add edge {Ap, As} to E ,

where p = ato(vj) where j is the vertex with the smallest number in the

separator. If it is not, then we merge Ap and As by setting s to p.

Theorem 4.5.1. Let G = (V,E) be a connected graph. Algorithm MCS-

Atom-Tree computes an atom tree of G in O(nm) time.

Proof. Correctness follows from correctness of Algorithm Expanded-MCS-M

and Theorem 4.3.1. O(nm) time complexity follows from O(nm) time com-

plexity of Algorithm Expanded-MCS-M and from the fact that determining

whether NH(x) is a clique in G costs O(m) time, and therefore O(nm) time

globally.

4.6 Conclusion

In conclusion, our work on clique minimal separator decomposition and on

generating the minimal separators and the maximal cliques of a chordal graph

enabled us to define a new approach to generate the atoms of a graph, by

introducing the notion of atom tree.

The atom tree not only enables to find the atoms in a single pass (which

may be interesting for very large graphs) but also yields structural informa-

tion and helps to visualize how the atoms interact. This is useful for the

biological applications described in Chapter 7.



4.6. CONCLUSION 63

Algorithm 13: MCS-Atom-Tree

Input: A connected graph G = (V,E).
Output: an atom tree T = (A, E , CliqueMinSep) of G.
prev-card← 0; Nn+1 = ∅ ;
s← 0; A ← ∅; E ← ∅;
EH ← E; H ← (V,EH);
foreach i from n downto 1 do

Choose an unnumbered vertex v in V such that |N(v) ∩Ni+1| is
maximum;
α(v)← i; // v become vi
new-card← |NH(vi) ∩Ni+1|;

if new-card ≤ prev-card then
if new-card 6= 0 then

k ← min{j | vj ∈ As};
p← ato(vk);

if NH(vi) ∩Ni+1 is a clique in G or an empty set then
A ← As;
s← s+ 1;
As ← NH(vi) ∩Ni+1;
if new-card 6= 0 then
E ← E + {Ap, As};
CliqueMinSep(ps)← NH(vi) ∩Ni+1;

else
s← p;

ato(vi)← s;
As ← As + {vi};
F ← ∅;
foreach w ∈ V \ (Ni+1 ∩NH(vi)) do

if there is an viw-path µ in G(V \ Ni+1) such that for each
internal node x of µ |NH(x)∩Ni+1| < |NH(w)∩Ni+1| and w is
unnumbered then

F ← F ∪ {viw};

EH ← EH ∪ F ;
Ni ← Ni+1 ∪ {vi};
prev-card← new-card;

A ← As;



64 CHAPTER 4. THE ATOM TREE



Chapter 5

Decomposing bipartite graphs

Contents

5.1 Decomposing the bipartite graph and the relation 66

5.2 Decomposing the lattice . . . . . . . . . . . . . . 68

5.3 Reconstructing the lattice . . . . . . . . . . . . . 69

5.4 Using the decomposition as a layout tool . . . . 72

Corresponding paper:

Vertical decomposition of a lattice using clique separators.

A. Berry, R. Pogorelcnik, and A. Sigayret.

The 8th International Conference on Concept Lattices and

their Applications (CLA11), 2011.

Submitted as a journal paper in the special issue of AMAI.

While examining possible biological representations using lattices, we realized

that clique minimal separator decomposition could be applied efficiently to

a bipartite graph, and the resulting decomposition had interesting effects

on the Galois lattice, which is an ordering of the maximal bicliques of the

bipartite graph.

We show how the lattice is decomposed into smaller lattices, from which

the original lattice can be deduced. This is an interesting application of clique

minimal separator decomposition, providing a Divide and Conquer approach

to generate a Galois lattice.

65



66 CHAPTER 5. DECOMPOSING BIPARTITE GRAPHS

In addition, a bipartite graph has clique minimal separator of size one or

two but not more; algorithms exist to compute the clique minimal separator

decomposition in linear time in this case.

5.1 Decomposing the bipartite graph and the

relation

We use the bipartite graph Bip(R) defined by a relation R ⊆ O×A. Figure

15 shows an example of a relation with the corresponding bipartite graph.

a b c d e f g h i
1 × × × ×
2 × × × × ×
3 × × ×
4 × ×
5 × ×
6 × ×

Figure 15: A relation and the corresponding bipartite graph

We describe the decomposition of the bipartite graph and how it decom-

poses the associated lattice. The decomposition is done in two steps, the first

step consists in decomposing the lattice using minimal separators of size one.

The articulation points (clique minimal separators of size one) can be found

by a simple depth-first search [21], as well as the corresponding decomposi-

tion of the graph (called decomposition into biconnected components).



5.1. DECOMPOSING THE BIPARTITE GRAPHAND THE RELATION67

The removal of an articulation point {x} in a graph G results into compo-

nents C1, ..., Ck, which correspond to a partition V = C1+...+Ck+{x}. The

vertex x is preserved, with its local neighbourhood, in each component, so

that the decomposition step finally replaces G by k subgraphs G(C1 ∪ {x}),
..., G(Ck ∪ {x}).

The second step is the search for clique separators of size two, and cor-

responds to a more complicated algorithm, described in [22]: all separators

of size 2 are obtained, whether they are cliques or not. Once this list of

separators is obtained, it is easy to check which are joined by an edge. The

decomposition can then be obtained easily, and corresponds to the following

decomposition step: the removal of a clique minimal separator {x, y} in a

connected bipartite graph G results into components C1,..., Ck, correspond-

ing to a partition V = C1+ ...+Ck +{x, y}. The decomposition step replaces

G with G(C1 ∪ {x, y}), ..., G(Ck ∪ {x, y}).

A clique minimal separator of size two may include an articulation point.

Thus, it is important to complete the decomposition by the articulation

points first, and then go on to decompose the obtained subgraphs using

their clique separators of size two.

Example 10. Figure 16 shows that the input graph of Figure 15 is decompos-

able into four bipartite subgraphs: G1 = G({2, i}), G2 = G({2, 5, 6, b, g, h}),

G3 = G({1, 2, 3, a, b, c, f}) and G4 = G({1, 4, d, e}).

Figure 16: Complete decomposition of a bipartite graph



68 CHAPTER 5. DECOMPOSING BIPARTITE GRAPHS

5.2 Decomposing the lattice

LetR ⊆ O×A be a relation with O a set of objects and A a set of attributes,

associated with a bipartite graph G = (O+A, E) denote Bip(R). The max-

imal rectangles of the relation correspond exactly to the maximal bicliques of

Bip(R) and to the concepts of the Galois lattice L(R). We now examine how

the set of concepts is modified and partitioned into the subgraphs obtained.

As clique minimal separators are copied in all the components induced, most

of the concepts will be preserved by the decomposition. Furthermore, only

concepts including a vertex of a clique minimal separator may be affected

by the decomposition.

Definition 7. We say that a maximal biclique is a star maximal biclique

if it contains either exactly one object or exactly one attribute. This single

object or attribute is called the center of the star.

Lemma 5.2.1. Let R ⊆ O ×A be a relation, a star maximal biclique {x} ∪
N(x) of Bip(R) is an atomic concept of L(R) (atom or co-atom), unless x

is universal in Bip(R). More precisely, {x} × N(x) is an atom of L(R) if

x ∈ O and N(x) 6= A, or N(x)× {x} is a co-atom if x ∈ A and N(x) 6= O.

Proof. Let {x} ∪N(x) be a star maximal biclique of Bip(R). As a maximal

biclique, it corresponds to a concept of L(R). Suppose the star has center

on x ∈ O. By definition, it contains no other element of O; as a biclique,

it includes all N(x) ⊆ A, and no other element of A by maximality. The

corresponding concept is {x} × N(x) which is obviously the first concept

from bottom to top including x. As the biclique is maximal, and as x is not

universal, this concept cannot be the bottom of L(R) but only an atom. A

similar proof holds for x ∈ A and co-atomicity.

We will now give the property which describes how the maximal bicliques

are dispatched or modified by the decomposition. We will give a general

theorem and its proof, from which these properties can be deduced.

Property 14. Let G = (X+Y,E) be a bipartite graph, let S be a clique min-

imal separator of G which decomposes G into subgraphs G1, ..., Gk. Then:



5.3. RECONSTRUCTING THE LATTICE 69

1. For all x ∈ S, {x} ∪NG(x) is a star maximal biclique of G.

2. For all x ∈ S, {x} ∪NG(x) is not a maximal biclique of any Gi.

3. For all x ∈ S, {x}∪NGi
(x) is a biclique of Gi, but it is maximal in Gi

if and only if it is not strictly contained in any other biclique of Gi.

4. All the maximal bicliques which are not star bicliques with any x ∈ S
as a center are partitioned into the corresponding subgraphs.

With the help of Lemma 5.2.1, this property may be translated in terms of

lattices. Given a relation R, its associated graph G, its lattice L(R), and a

decomposition step of G into some Gis by articulation point {x}:

If x ∈ O (resp. ∈ A) is an articulation point of G, {x} × NG(x) (resp.

NG(x) × {x}) is a concept of L(R). After the decomposition step, in each

subgraph Gi of G, either this concept becomes {x}×NGi
(x), or this concept

disappears from Gi; this latter case occurs when there is in Gi some x′ ∈ O,

the introducer of which appears after the introducer of x in L(R), from

bottom to top (resp. from top to bottom if x, x′ ∈ A). Every other concept

will appear unchanged in exactly one lattice associated with a subgraph Gi.

The same holds for each vertex of a size two clique minimal separator .

5.3 Reconstructing the lattice from the sub-

lattices

We now explain how, given the subgraphs obtained by clique decomposition,

as well as the corresponding subrelations and subsets of concepts, we can

reconstruct the set of concepts of the global input bipartite graph.

Theorem 5.3.1. Let G = (X +Y,E) be a bipartite graph, let Σ = {s1, ...sh}
be the set of all the vertices which belong to any clique separator of G, let

G1, ...Gk be the set of subgraphs obtained by the corresponding clique separator

decomposition. Then:



70 CHAPTER 5. DECOMPOSING BIPARTITE GRAPHS

1. For every s ∈ Σ, {s} ∪NG(s) is a star maximal biclique of G.

2. Any maximal biclique of a subgraph Gi which is not a star with a vertex

of Σ as center is also a maximal biclique of G.

3. There are no other maximal bicliques in G: ∀s ∈ Σ, no other star

maximal biclique of Gi with center s is a star maximal biclique of G,

and these are the only maximal bicliques of some graph Gi which are

not also maximal bicliques in G.

Proof.

1. For every s ∈ Σ, {s} ∪NG(s) is a star maximal biclique of G:

Case 1: s is an articulation point, let Gi, Gj be two graphs which s

belongs to; s must be adjacent to some vertex yi in Gi and to some

vertex yj in Gj. Suppose {s} ∪NG(s) is not a maximal biclique: there

must be a vertex z in G which is adjacent to yi and yj, but then {s}
cannot separate yi from yj, a contradiction.

Case 2: s is not an articulation point, let s′ be a vertex of S such that

{s, s′} is a clique separator of G, separating Gi from Gj. s must as

above see some vertex yi in Gi and some vertex yj in Gj. Suppose

{s} ∪NG(s) is not maximal: there must be some vertex w in G which

is adjacent to all of NG(s), but w must see yi and yj, so {s, s′} cannot

separate Gi from Gj.

2. Let B be a non-star maximal biclique of Gi, containing o1, o2 ∈ O and

a1, a2 ∈ A. Suppose B is not maximal in G: there must be a vertex y

in G−B which augments B. Let y be in Gj, WLOG y ∈ A: y must see

o1 and o2. Since Gi is a maximal subgraph with no clique separator,

Gi+{y} must have a clique separator. Therefore N(y) must be a clique

separator of this subgraph, but this is impossible, since y is adjacent

to two non-adjacent vertices of Gi.

3. Any star maximal biclique B of Gi whose center is not in Σ is also a

star maximal biclique of G: suppose we can augment B in G.



5.3. RECONSTRUCTING THE LATTICE 71

Case 1: v is adjacent to an extra vertex w; Gi + {w} contains as above

a clique separator, which is impossible since N(w) = v and v 6∈ S.

Case 2: A vertex z of Gj is adjacent to all of N(v): again, G + {z}
contains a clique separator, so N(z) is a clique separator, but that is

impossible since N(z) contains at least two non-adjacent vertices. For

s ∈ Σ, no star maximal biclique of Gi is a star maximal biclique of G:

let B be a star maximal biclique of Gi, with s ∈ Σ as center. s ∈ Σ, so

s belongs to some clique separator which separates Gi from some graph

Gj. Therefore, s must be adjacent to a vertex yj in Gj, so B + {yj} is

a larger star including B thus B cannot be maximal in G.

Example 11. We illustrate Theorem 5.3.1 using graph G from Figure 16,

whose decomposition yields subgraphs G1, ..., G4, with G1 = G({1, 2, i}),

G2 = G({2, 5, 6, b, g, h}), G3 = G({1, 2, 3, a, b, c, f}) and G4 = G({1, 4, d, e}).

The corresponding lattices are shown in Figure 17, and their concepts are

presented in the table below. In this table, braces have been omitted; symbol

⇒ represents a concept of the considered Gi which is identical to a concept

of G; the other concepts of Gis will not be preserved in G while recomposing.

L(G) L(G1) L(G2) L(G3) L(G4) star max
biclique
of G ?

1× acde 1× ac yes

2× bcfhi 2× i 2× bh 2× bcf yes

3× abf ⇒
14× de ⇒
5× gh ⇒
6× bg ⇒
13× a ⇒
236× b 26× b yes

12× c ⇒
23× bf ⇒
56× g ⇒
25× h ⇒



72 CHAPTER 5. DECOMPOSING BIPARTITE GRAPHS

Figure 17: Recomposition of a lattice

According to Theorem 5.3.1, the steps to reconstruct the maximal con-

cepts of the global lattice from the concepts of the smaller lattices are:

1. Compute Σ, the set of attributes and objects involved in a clique min-

imal separator. (In our example, Σ = {1, 2, b}.)

2. Compute the maximal star bicliques for all the elements of Σ. (In our

example, we compute star maximal bicliques 1 × acde, 2 × bcfhi and

26× b.)

3. For each smaller lattice, remove from the set of concepts the atoms

or co-atoms corresponding to elements of Σ; maintain all the other

concepts as concepts of the global lattice. (In our example, for L(G3),

we remove 1× ac and 2× bcf , and maintain 3× abf, 13× a, 12× c and

23× bf as concepts of L(G).)

5.4 Using the decomposition as a layout tool

When there is a size two clique separator in the bipartite graph which divides

the graph into two components,the elements not involved in the separator



5.4. USING THE DECOMPOSITION AS A LAYOUT TOOL 73

can be displayed on the two sides of the separator, thus helping to minimize

the number of line crossings in the Hasse diagram.

To illustrate this, we have used our running example with ’Concept Ex-

plorer’ [45], which is a user-friendly tool for handling lattices. Notice however

how clique separator {1, d} is better displayed when put at the right extrem-

ity.

Figure 18 shows the lattice as proposed by Concept Explorer, and then

redrawn with insight on the clique separators of the bipartite graph.

(a) (b)

Figure 18: (a) Lattice constructed by Concept Explorer using the minimal
intersection layout option (8 crossings). (b) Lattice re-drawn using the in-
formation on clique separators (5 crossings).



74 CHAPTER 5. DECOMPOSING BIPARTITE GRAPHS



Chapter 6

Fused gene detection

Contents

6.1 Fused gene detection: state of the art . . . . . . 76

6.2 MosaicFinder implementation . . . . . . . . . . . 78

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Test of MosaicFinder on simulated fused genes

families . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.2 Test on real data . . . . . . . . . . . . . . . . . . . 84

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . 85

Corresponding paper:

MosaicFinder: Identification of fused genes families in sequence

similarity networks.

P.A. Jachiet, R. Pogorelcnik, E. Bapteste and P. Lopez.

In revision for Bioinformatics.

We propose to represent similarity between sequences as a network and a

new characterization of families of fused genes as clique minimal separators.

Our purpose was to find not only fused genes but to group them into families.

The software we implemented, MosaicFinder, not only directly groups fused

and component gene families, but also reduces the risk of outputting a large

number of false positives.

75



76 CHAPTER 6. FUSED GENE DETECTION

6.1 Fused gene detection: state of the art

In this section we will need the following definitions:

Definition 8 (Gene fusion point). The fusion point is the point where two

originally unrelated sequences are linked.

Definition 9 (Fused genes family). A group of fused genes coming from the

same fusion event will be called Fused gene family.

Definition 10 (Component family). The two unrelated groups of sequences

which give birth to a fused gene family will be called Component family.

Figure 19: The red sequences (Gene A) and grey sequences (Gene B) sets
are the component families of the grey and red sequences (Fused gene C)
composing a fused gene family.

Example 12. In Figure 19, we show a fused gene family formed by two non

similars sequences. Red and grey sequences are part of the two component

families and the bicolored sequences are part the fused gene family. The fusion

point is at the confluence of the red and grey sequences in the fused genes.

To the best of our knowledge, current in silico methods for finding fused

genes are based on sequence similarities [27, 16, 37, 38, 15, 31, 34]. The idea



6.1. FUSED GENE DETECTION: STATE OF THE ART 77

is that a fused gene is similar to two genes, which are not pairwise similar

and align on disjoint parts of the fused gene. We designate as a fused triplet

a triplet of genes that exhibits this non transitive pattern of similarity. Many

variations around this idea have been implemented to identify fused genes

and their components since [27] and [16]. They encounter four types of issues:

• First, the number of fused triplets rapidly becomes enormous for big

datasets, namely n3, where n is the number of similarity links. Pre-

vious authors usually distinguished a priori between a query dataset

(genome) within which fused genes were searched for, and a reference

dataset (genomes, COGs) in which components could be found. This

greatly reduced the number of candidate triplets, since only a subset

are thus investigated.

• Second, some triplets may not result from a fusion but from sequencing

or prediction errors [29], if a gene is artificially split into two separate

genes or if two adjacent genes are artificially fused into a single one.

Two types of tests are usually performed to get rid off those false pos-

itives. First, one cross-checks that component genes are not similar,

either with the same algorithm at a more permissive threshold (most

of the time a higher BLAST E-value), or with a more accurate algo-

rithm such as Smith-Waterman [36]. Second, one tests that component

genes align along non-overlapping regions of the candidate fused genes.

These controls eliminate many false positives.

• A third and central issue is the grouping of identified components and

fused genes a posteriori into gene families descending from a common

fusion event. This grouping is necessary to count evolutionary events,

to perform general functional analyses. First, if fused triplets descend-

ing from the same fusion event are grouped, it would summarize the

information contained in this set of triplets of genes. Second, poten-

tially artefactual fused or component genes would be easily identified,

as they are the only representatives of their family.



78 CHAPTER 6. FUSED GENE DETECTION

To group fusion events into families a method is to map genes on pre-

existing family classifications [38, 43], usually COG/KOG [41]. This

is only partially satisfactory, as by definition families of fused genes

do not match a single COG and therefore are overlooked by that ap-

proach. Novel gene families (e.g. environmental) that have not been

associated to a COG family are likewise difficult to detect. Alterna-

tively, [17] grouped fused genes into families by simple linkage. This is

straightforward as similarities between sequences are already computed

to look for fused triplets. But simple linkage will aggregate unrelated

fused genes if multiple fusion events have occurred in the history of

some genes. Moreover, this method does not allow to reconstruct com-

ponent gene families and their relation with fused gene families.

We implemented a program called FusedTriplets that unified the known

methods in the fusion events research based on finding two genes not similar

to each other but similar to a third one.

6.2 MosaicFinder implementation

When exploring a large dataset including several genomes, there may be

several representatives of a given fusion event, which we want to group into

fused families and component gene families.

The approach we choose to deal with this problem is to use a sequence

similarity network. These networks are graphs with sequences (or proteins)

as vertices, directly connected by edges when they show a similarity greater

than a user-defined threshold. We use the tool BLAST [1] to examine this

similarity. BLAST give scores (e-value, pident) to evaluate the sequence sim-

ilarities. The user can choose as a threshold the e-value or/and the pident re-

spectively below and above which sequences as considered similar. As shown

in Figure 20, at stringent thresholds, the sequences are highly disconnected.

By relaxing the threshold, edges corresponding to less significant similarities

are added to the network until all the proteins are interconnected. We leave

the threshold decision to the user in order to obtain a network which met



6.2. MOSAICFINDER IMPLEMENTATION 79

our requirements: sequences that are aligned on most of their length must

all be connected and the threshold must be permissive enough to add edges

between sequences with a partial alignment. In this context, a family of fused

genes has the particularity to connect non connected groups of vertices which

prompts us to characterize fused genes families as clique minimal separators

of the sequence similarity network. A fused gene family is a separator, since

its removal would disconnect component gene families and by extension the

graph. The minimal condition avoids creating different families for the same

event. The additional condition that the separator is a clique describes the

requirement that the family of fused genes is conserved (all members of the

family are similar).

Figure 20: Effect of the threshold on a sequence similarity network. Red and
grey vertices represent sequences of the component families and bicolored
vertices sequences of the fused genes. If the alignment of two sequences is
better than a threshold an edge is added between the two representative ver-
tices. At stringent threshold (1), most of sequences are disconnected. As the
threshold is relaxed sequences from the same families merge together until
they form a complete network. In the intermediate threshold (3), the se-
quences of fused genes are connected to genes of the two component families.

Example 13. In Figure 21, the fused genes (bicolored) form a clique which

separates the two sets of vertices (grey and red) which represent the compo-

nent families.

MosaicFinder works in several consecutive steps. It first uses BLAST

information to construct a sequence similarity network. A variation of the

Algorithms Minseps-Maxcliques and Expanded-MCS-M is then applied to



80 CHAPTER 6. FUSED GENE DETECTION

Figure 21: (a.) Multiple alignment of fused genes (bicolored) and component
genes (grey and red). (b.) Similarity network of those genes. The bicolored
vertices form a fused gene family. They are a clique minimal separator of the
network. The red vertices and the grey vertices form two separate component
families.

triangulate the graph and find clique minimal separators in this network in

a single pass, to propose candidate families of fused genes. The component

families are then defined. False positives are discarded by testing that com-

ponent families align along non overlapping regions of the candidate fused

genes. Finally, MosaicFinder proposes a fusion point family.

STEP 1: Construction of the similarity network

MosaicFinder takes as input the result of all-against-all BLAST comparisons

between the sequences under study, in the form of a simple flat file, including

information about the region which aligns pairs of sequences. To determine

whether two sequences are similar, MosaicFinder considers the user threshold

defined on the BLAST scores.

STEP 2: Identification of fused gene families

We applied Expanded-MCS-M algorithm but we only look for separators and

ignore the atom computing part. These separators are tested for complete-

ness.

STEP 3: Identification of component families

Once a clique minimal separator is found, we associate it with component

families in the following fashion, as shown in Figure 22:



6.2. MOSAICFINDER IMPLEMENTATION 81

• We first compute the common neighbourhood of the clique minimal

separator vertices.

• We then consider the subgraph formed by this common neighbourhood.

• We search the connected components of this subgraph which will be

our component family.

Figure 22: Bicolored nodes are in a clique minimal separator. Black, red
and grey nodes represent common neighbourhood of the clique minimal sep-
arators. The subgraph induced by the common neighbourhood contains two
connected components, which define its component families.

STEP 4: Cross-checking the component families (optional)

MosaicFinder can test if a separator is reliable. If the threshold was too

stringent, similarities between families might not have been detected and

similar genes not connected in the common neighbourhood of a clique mini-

mal separator because some edges remain hidden at this stringent threshold.

Component families defined at that threshold result from artefactual discon-

nection in this neighbourhood. These disconnections would not be observed

at a less stringent threshold of similarity. Consequently, MosaicFinder uses

a second less stringent threshold of similarity to evaluate the number of con-

nected components in the the common neighbourhood. If at this threshold

there are less than 2 component families the separator is not considered.



82 CHAPTER 6. FUSED GENE DETECTION

STEP 5: Use of alignments to eliminate false positives

MosaicFinder tests the presence of false positives using information about the

regions of the sequences that align in BLAST. There is a false positive when

the different component families align in the same region of a candidate fused

gene, because such a significant overlap in an alignment suggests that simi-

larity between sequences of different component families was undetected. As

different genes from a component family may align to slightly different parts

of a potential fused gene, we compute the median alignment. MosaicFinder

rejects a candidate fused gene if the median alignment of different component

families overlaps on more than 20 amino acids. This small overlap is allowed

because BLAST extends alignments as far as possible and small regions align

artefactually. Otherwise, the fused gene is accepted, and a fusion point is

calculated as the middle point between the median alignments of component

families.

STEP 6: Output

MosaicFinder outputs a table of genes involved in fusion events. This table

indicates the fusion event genes are involved in, and their grouping into fused

or component families. It additionally indicates a fusion point for fused genes.

6.3 Results

We implemented MosaicFinder to compare the detection of fused genes fami-

lies with the existing methods for detecting fused genes (FusedTriplets imple-

mentation). As there exists no large manually curated database of fused genes

for testing, we used simulated data to test the accuracy of MosaicFinder.

We also ran tests on real databases, but we have less information on the

validity of our methods in this context. We focussed our attention on the

number of fused genes detected.



6.3. RESULTS 83

6.3.1 Test of MosaicFinder on simulated fused genes

families

Our dataset contains 92,229 sequences, from 2000 independent gene families

and 1000 fused genes families. We compared all pairs of genes from this

dataset with BLAST. We searched the resulting similarity network with Mo-

saicFinder and FusedTriplets, either with a unique 1e-5 E-value threshold,

or with a 1e-10 E-value threshold and a cross-check of the absence of similar-

ity between component genes/families with a more permissive 1e-5 E-value

threshold (STEP 4).

Table 1 reports our results: the total number of true and false positive

is given for each of the two programs, either with one or two thresholds

(optional cross-check). Without distant homology cross-check, FusedTriplets

identified most of the fused genes (92%) but has a high false positive rate

(35% of identified fused genes here). On the other hand, MosaicFinder has

a lower positive rate (76%), but almost no false positives (1%). With the

optional second threshold cross-check, fewer true fused genes are identified,

but the false positive rates drops to 5% for FusedTriplets and 0% for Mo-

saicFinder. These results stress the importance of the two-threshold test for

FusedTriplets, and the comparative robustness of MosaicFinder. We believe

that the robustness of MosaicFinder may be a great advantage on biological

datasets. Real evolution of sequences is more complex than simulated data

which may increase the number of false positives. Regarding the groupings

into families, all the genes which were grouped by MosaicFinder belong to

the same simulated family. MosaicFinder finds 92% of the conserved fused

genes, and exhibits no error in grouping them. Regarding the fusion points,

we find that MosaicFinder accordingly estimates the position of the fusion

points. 94% of the computed fusion points are less than 5 amino acids away

from the true fusion point, and 99% less than 16 amino acids away. This

variation is due to the imprecision of BLAST alignments. Those numbers

validate the 20 amino acids overlap allowed between component families on

fused genes. Regarding the running time, we find that MosaicFinder runs

much faster (30s) on this simulated dataset than FusedTriplets (1m39s).



84 CHAPTER 6. FUSED GENE DETECTION

E-value : 1e-5 E-value : 1e-10 then 1e-5
MosaicFinder Triplets MosaicFinder FusedTriplets

Simulated
fused genes

4833 4833 4833 4833

True posi-
tive

3663 4444 3260 4130

False posi-
tive

45 2380 0 221

Simulated
fused
events

1000 1000 1000 1000

Identified
fused
events

892 - 813 -

Table 1: Results of MosaicFinder and FusedTriplets on simulated gene fusion
events, either with or without two-threshold distant homology cross-check

6.3.2 Test on real data

We built datasets composed of various sizes, composed of 1 to 30 prokaryotic

complete genomes, to search for fused gene families and component families.

Figure 23 presents the number of fusion events and fused triplets respec-

tively output by MosaicFinder and FusedTriplets, compared to the num-

ber of similarity links (edges) between sequences. For the biggest dataset,

FusedTriplets outputs an enormous amount of fused triplets (up to 11 mil-

lions) grouped into 5339 potential fused genes (note that a given fused gene

can correspond to many different triplets), whereas MosaicFinder finds 2490

fused genes grouped into 1821 fusion events. According to our results on sim-

ulated data, FusedTriplet leads to more false positives than MosaicFinder,

this leads us to presume that there is a great number of potentially mislead-

ing fusion events generate by fusedTriplets for this dataset, and shows the

interest of MosaicFinder to identify them.



6.4. DISCUSSION 85

Figure 23: Comparison of the number of similarity links between sequences,
the number of identified fused families by MosaicFinder, and the number of
identified fused triplets by FusedTriplets (logarithmic scales).

6.4 Discussion

We proposed a new characterization of families of fused genes, as clique

minimal separators in sequence similarity networks, and implemented this

method into the C++ program MosaicFinder. We showed that on simulated

data MosaicFinder identifies conserved fused genes families very well and

partially unconserved fused gene families.MosaicFinder proves to have a very

low false positive rate. Moreover, this information may be visualized as an

annotated graph using tool as Cytoscape [35]. Figure 24 gives an example.

We show that MosaicFinder gives good results quickly, with the advan-

tage that genes are grouped into families, thus avoiding the extra work of

regrouping the fused genes after they have been found.



86 CHAPTER 6. FUSED GENE DETECTION

Figure 24: Results layout using Cytoscape. Fused families are represented
as red triangle (blue for families of size one). Component families are repre-
sented in green and purple.



Chapter 7

Extraction of genes of interest

Contents

7.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 From expression level data to graph . . . . . . . 88

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . 92

One of the applications of our work on clique minimal separators was

the decomposition of networks constructed using gene expression data. This

work was in collaboration with different laboratories but the work exposed

here is the fruit of the collaboration with INRA.

To understand the behaviour of cells it is necessary to understand how

genes interact together, transcriptomic tries to answer this question based

on gene expression levels. We consider that genes having a close expression

or correlated expression must be related. The aim of this work was to find

sets of genes of interest using the atom tree to represent microarrays. The

set of genes of interest correspond to genes involved in the cellularisation and

accumulation stage in the wheat grains.

87



88 CHAPTER 7. EXTRACTION OF GENES OF INTEREST

7.1 Dataset

The data we describe here are issued from wheat (Tricutun aestivium) grains

collected at 11 stages after flowering. The two first were taken at the cellular-

isation stage and the nine others one were collected during the accumulation

stage at 50 growing degree days ( # of days * temperature) interval. The

studied genes are 2295 transcription factors.

7.2 From expression level data to graph

t1 t2 t3 t4 t5 t6
Gene1 2.5 3 5 2.5 3 5
Gene2 5 9 5 2.5 3 5
Gene3 6 8 4 2.5 3 5

Table 2: Expression level data.

As explained in the preliminary chapter, we start by creating an expres-

sion level network. The dataset is a flat file formatted as shows in Table 2,

each line is a gene, the first row will be the gene names and the following

row are the expression at different times. Computing the distance between

gene expression levels, we obtain a distance matrix. Once we have this dis-

tance matrix we will apply a threshold under which genes are considered close

enough to have an edge between them in the network. This process leads to

the creation of an adjacency matrix. The threshold was chosen empirically.

7.3 Results

The first investigation was on expression level network computed with the

Euclidean distance. Using our software we created an atom tree of the expres-

sion level network on a range of thresholds. We investigated the atom tree

allowing to extract a humanly manageable amount of genes. The network

shown in Figure 25 was created for a threshold of 2.2.



7.3. RESULTS 89

Figure 25: The expression level network for a threshold of 2.2. Vertices
correspond to the genes. There is an edges between two vertices if the the
Euclidean distance between their expression level for the 11 data points is
lower than 2.2.

At this threshold we have 22 isolated vertices, two connected components

of size two, a connected component of size 8 with one clique minimal separa-

tor, a connected component of size 8 with one separator of size two and the

major connected component of size 2273 with 34 clique minimal separators.

We will describe expression of the genes of these different connected compo-

nents.

Connected components of size one or two

All these connected components are represented by one atom composed by

one or two genes. The expression profiles of these genes exhibit a variation

in their expression levels among the experiments, as can be seen in Figure

26. These genes extracted due to the conformation of the network can be

retained for further investigation.



90 CHAPTER 7. EXTRACTION OF GENES OF INTEREST

Figure 26: Expression profiles of four atoms, two of size one and two of size
two. The expression profiles of the genes of Atom 42 increased through the
first ten stages of the wheat grain development and decreased at the last
stage. Gene expressions of Atom 45 and Atom 48 increased sharply during
the third stage of development before stabilizing. The expression of the gene
in Atom 50 decreased through the eleven stages of wheat grain development.

Connected component of size 8

This connected component with one clique minimal separator can be decom-

posed into two atoms. Genes composing these atoms are highly expressed in

all samples (Figure 27), which explains the fact that they are grouped and

isolated in the graph at this threshold. We can observe how coherently genes

are grouped in these atoms.

Main connected component

For the principal connected component we observe a sun shaped atom tree

with disjoint atoms (Figure 28). Atom 1 in the center of the sun is the

atom regrouping most of the genes (2224/2295). This is due to the fact it



7.3. RESULTS 91

Figure 27: Expression profiles of two atoms of the connected component of
size 8. The expression of the genes of Atom 40 and of Atom 41 is high and
stable through the 11 development stages of the wheat grains.

groups genes with an expression stable through the eleven stages of the wheat

grain development which dominate the dataset. On closer inspection of the

expressions of each gene in Atom 1, we can observe that most of them have

a flat expression profile in the range of expressions from 4.37 to 14.11. The

average expression variance of these genes through the experiment is 0.28.

No genes in Atom 1 have an expression variance greater than 0.69 unlike

genes that are grouped in the other atoms which have an expression variance

greater than 1.

Atoms linked to Atom 1 formed our groups of interests. Genes composing

these atoms have different expression profiles exhibiting variation during time

(Figure 29). The variations of the expressions of these genes show that they

play a specific role during the wheat development and should be investigated.

We can highlight that expression profiles of the atoms are coherent.

When we look at the branch starting from Atom 1 (Atom 17, Atom

26, Atom 28, Atom 36), we observe an expression profile evolution (Figure

30). Atom 17 at distance 1 is composed of genes with an expression increased

during the 4 first collected samples and stabilizes at a high expression value in

the seven last samples. As the distance from Atom 1 grows, genes composing

atoms have the same pattern with a stronger incrementation of the expression

in the fourth stage.



92 CHAPTER 7. EXTRACTION OF GENES OF INTEREST

Figure 28: The atom tree of the network of Figure represented using yEd.

7.4 Discussion

Using our decomposition, we easily and quickly creates a subset of interesting

genes. Decomposition of the network using our method often create a big

central cluster at small distance thresholds. This aspect allows biologists to

extract informative genes quickly from experimental data. It is important

to extract modules of closed genes for further experimentation. Through the



7.4. DISCUSSION 93

Figure 29: Expression profiles of atoms linked to the central atom. The
expression of the genes from Atom 6 and Atom 21 increased through the
first ten stages of the wheat grain development and decreased at the last
stage. The expression of the genes of Atom 20 decreased sharply during the
first and second stages of development before it stabilizes. The expression
of genes from Atom 23 increased sharply during the first three stages of
development before stabilizing.

atom tree we can see very coherent clusters of genes with special patterns

that give good hopes for further biological investigation. It is necessary to

highlight that an atom tree computed using the Pearson correlation also

creates coherent atoms but with patterns not corresponding to the same

genes.

The implementation of this method uses our work on the atom tree which

allows a good visualization. We can quickly detect disjoint atoms and groups

of atoms evolving in the same way but with different amplitudes following

chains. Our implementation allows to output the atom tree in GraphML [13]

format as well as dot format. The GraphML output can be vizualized tools

as yEd (in our example). This allows to see the atom tree and to open the



94 CHAPTER 7. EXTRACTION OF GENES OF INTEREST

Figure 30: One branch of size 4 of the atom tree composed of Atom 17,
Atom 26, Atom 28 and Atom 36. The expression of all the genes from these
atoms increased within the first four development stages before it stabilized.
The farther an atom is from Atom 1 the greater the increasement of the
expression level is.

Figure 31: Atom 40 and Atom 41 are opened to see the interactions of genes
in this atoms.

atom we want to inspect and see the gene interaction within the atom Figure

31. The dot output is less friendly for the inspection of atoms but GraphML



7.4. DISCUSSION 95

for big dataset produce heavy files because of the verbosity of this language.

This approach will give rise to two papers currently in preparation, one

presenting the implementation of our decomposition, the second one elabo-

rating on the atom results in collaboration BIOGEMMA on public data.



96 CHAPTER 7. EXTRACTION OF GENES OF INTEREST



Conclusion

In this thesis we worked on graph decomposition using clique minimal sepa-

rators. Our motivation was to improve existing algorithms and to apply this

decomposition to different fields such as biology.

Since the first step of clique separator decomposition is to make the graph

chordal, our first contribution was the creation of an algorithm to generate

minimal separators and maximal cliques of a chordal graph using either Lex-

BFS or MCS.

This first result was followed by a work on the clique tree. Based on

this notion, we defined the atom tree which allows to represent atoms and

clique minimal separators of a graph. Using this structure we developed two

algorithms that in certain contexts allowed a faster decomposition.

We applied our decomposition to bipartite graphs to provide a Divide

and Conquer approach to generate the corresponding Galois lattice and may

help visualizing the lattice by minimizing edges crossing.

We implemented a software, based on our algorithms called MosaicFinder,

to detect fused genes families and their component families. We show that

Mosaic Finder gives good results quickly, with the advantage that genes are

grouped into families, thus avoiding the extra work of grouping the fused

genes after they are output.

We also implemented our method to decompose a gene expression level

network in order to extract genes of interest using microarray data. Several

experiments on expression level data using the atom tree were successful

and the collaboration with BIOGEMMA continues in the spirit of intense

97



98 CHAPTER 7. EXTRACTION OF GENES OF INTEREST

cooperation.

This thesis yields some interesting perspectives.

We ran some experiments to obtain a minimal triangulation by an exact

algorithm or an heuristic adding edges not crossing the clique minimal sepa-

rators. We also have algorithms avoiding the triangulation step that will be

investigated.

For the detection of fused genes our current work consists in breaking

up very long cycles with a local approach since long cycles may mask fusion

families. We are also running some experiment to find minimal separators

which are quasi-cliques to detect unconserved fused gene families.

We also plan to investigate the use of this decomposition to tackle prob-

lems in other biological contexts where a network can be used.



Bibliography

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Ba-

sic local alignment search tool. Journal of molecular biology, 215(3):403–

410, Oct. 1990.

[2] S. R. Arikati and C. P. Rangan. An efficient algorithm for finding a

two-pair, and its applications. Discrete Applied Mathematics, 31(1):71

– 74, 1991.

[3] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton. Maximum

cardinality search for computing minimal triangulations of graphs. Al-

gorithmica, 39:287–298, 2004. 10.1007/s00453-004-1084-3.

[4] A. Berry and J.-P. Bordat. Separability generalizes dirac’s theorem.

Discrete Applied Mathematics, 84(1-3):43–53, May 1998.

[5] A. Berry, J.-P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A

wide-range algorithm for minimal triangulation from an arbitrary order-

ing. Journal of Algorithms, 58(1):33 – 66, 2006.

[6] A. Berry, R. Krueger, and G. Simonet. Maximal label search algorithms

to compute perfect and minimal elimination orderings. SIAM Journal

on Discrete Mathematics, 23(1):428–446, 2009.

[7] A. Berry and R. Pogorelcnik. A simple algorithm to generate the mini-

mal separators and the maximal cliques of a chordal graph. Information

Processing Letters, 111(11):508 – 511, 2011.

99



100 BIBLIOGRAPHY

[8] A. Berry, R. Pogorelcnik, and A. Sigayret. Vertical decomposition of a

lattice using clique separators. In The 8th International Conference on

Concept Lattices and their Applications (CLA11), 2011.

[9] A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique

minimal separator decomposition. Algorithms, 3:197–215, May 2010.

[10] M. D. Biha, B. Kaba, M.-J. Meurs, and E. SanJuan. Graph decomposi-

tion approaches for terminology graphs. In Proceedings of the artificial

intelligence 6th Mexican international conference on Advances in arti-

ficial intelligence, MICAI’07, pages 883–893, Berlin, Heidelberg, 2007.

Springer-Verlag.

[11] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm

for making filled graphs minimal. Theoretical Computer Science, 250(1-

2):125 – 141, 2001.

[12] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and

clique trees. Contract, 56:1–1, 1991.

[13] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall.

Graphml progress report - structural layer proposal, 2002.

[14] E. Dahlhaus, M. Karpinski, and M. B. Novick. Fast parallel algorithms

for the clique separator decomposition. Technical report, 1990.

[15] P. Durrens, M. Nikolski, and D. Sherman. Fusion and fission of

genes define a metric between fungal genomes. PLoS Comput Biol,

4(10):e1000200, Oct. 2008.

[16] A. J. Enright, I. Iliopoulos, N. C. Kyrpides, and C. A. Ouzounis. Protein

interaction maps for complete genomes based on gene fusion events.

Nature, 402(6757):86–90, Nov. 1999.

[17] A. J. Enright and C. A. Ouzounis. GeneRAGE: a robust algorithm for

sequence clustering and domain detection. Bioinformatics, 16(5):451–

457, Jan. 2000.



BIBLIOGRAPHY 101

[18] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.

Pacific J. Math., 15:835–855, 1965.

[19] F. Gavril. Algorithms on clique separable graphs. Discrete Mathematics,

19(2):159 – 165, 1977.

[20] J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2005.

[21] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph

manipulation. Commun. ACM, 16(6):372–378, June 1973.

[22] J. Hopcroft and R. Tarjan. Dividing a graph into triconnected compo-

nents. SIAM Journal on Computing, 2(3):135–158, 1973.

[23] W.-L. Hsu and T.-H. Ma.

[24] B. Kaba, N. Pinet, G. Lelandais, A. Sigayret, and A. Berry. Clustering

gene expression data using graph separators. In Silico Biology, 7(4):433–

452, 01 2007.

[25] H.-G. Leimer. Optimal decomposition by clique separators. Discrete

Mathematics, 113(1-3):99–123, Apr. 1993.

[26] M. Long. A new function evolved from gene fusion. Genome Research,

10(11):1655–1657, Jan. 2000.

[27] E. M. Marcotte, M. Pellegrini, H. Ng, D. W. Rice, T. O. Yeates, and

D. Eisenberg. Detecting protein function and Protein-Protein interac-

tions from genome sequences. Science, 285(5428):751 –753, July 1999.

[28] A. Parra and P. Scheffler. Characterizations and algorithmic applications

of chordal graph embeddings. Discrete Applied Mathematics, 79(1 -

3):171 – 188, 1997.

[29] S. Pasek, J. Risler, and P. Brézellec. Gene fusion/fission is a major con-

tributor to evolution of multi-domain bacterial proteins. Bioinformatics,

22(12):1418 –1423, June 2006.



102 BIBLIOGRAPHY

[30] R. Pogorelcnik. MosaicFinder. http://www.isima.fr/~pogorelc/

MosaicFinder.zip.

[31] R. L. Rogers, T. Bedford, and D. L. Hartl. Formation and longevity

of chimeric and duplicate genes in drosophila melanogaster. Genetics,

181(1):313–322, Jan. 2009. PMID: 19015547 PMCID: 2621179.

[32] D. J. Rose. Triangulated graphs and the elimination process. Journal

of Mathematical Analysis and Applications, 32(3):597 – 609, 1970.

[33] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic Aspects of

Vertex Elimination on Graphs. SIAM Journal on Computing, 5(2):266–

283, 1976.

[34] H. M. W. Salim, A. M. Koire, N. A. Stover, and A. R. O. Cavalcanti.

deFuser / detection of fused genes in eukaryotic genomes using gene

deFuser: analysis of the tetrahymena thermophila genome. BMC Bioin-

formatics, 12:279, 2011. PMID: 21745395.

[35] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ram-

age, N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: A software

environment for integrated models of biomolecular interaction networks.

Genome Research, 13(11):2498–2504, Jan. 2003.

[36] T. F. Smith and M. S. Waterman. Identification of common molecular

subsequences. Journal of molecular biology, 147(1):195–197, Mar. 1981.

[37] B. B. Snel, P. P. Bork, M. M. Huynen, et al. Genome evolution-gene

fusion versus gene fission. Trends in genetics, 16:9–11, 2000.

[38] K. Suhre. FusionDB: a database for in-depth analysis of prokaryotic

gene fusion events. Nucleic Acids Research, 32(90001):273D–276, Jan.

2004.

[39] R. E. Tarjan. Decomposition by clique separators. Discrete Mathemat-

ics, 55(2):221 – 232, 1985.



BIBLIOGRAPHY 103

[40] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test

chordality of graphs, test acyclicity of hypergraphs, and selectively re-

duce acyclic hypergraphs. SIAM J. Comput., 13(3):566–579, July 1984.

[41] R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin,

E. V. Koonin, D. M. Krylov, R. Mazumder, S. L. Mekhedov, A. N.

Nikolskaya, B. S. Rao, S. Smirnov, A. V. Sverdlov, S. Vasudevan, Y. I.

Wolf, J. J. Yin, and D. A. Natale. The COG database: an updated

version includes eukaryotes. BMC Bioinformatics, 4(1):41, Sept. 2003.

[42] S. Whitesides. An algorithm for finding clique cut-sets. Information

Processing Letters, 12(1):31 – 32, 1981.

[43] I. Yanai, A. Derti, and C. DeLisi. Genes linked by fusion events are

generally of the same functional category: A systematic analysis of 30

microbial genomes. Proceedings of the National Academy of Sciences,

98(14):7940–7945, Mar. 2001.

[44] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM

Journal on Algebraic and Discrete Methods, 2(1):77–79, 1981.

[45] S. A. Yevtushenko. System of data analysis ‘concept explorer’. Proc. of

the 7th National Conference on Artificial Intelligence KII-2000, pages

127–134, 2000. Russian.

[46] Q. Zhou, G.-j. Zhang, Y. Zhang, S.-y. Xu, R.-p. Zhao, Z. Zhan, X. Li,

Y. Ding, S. Yang, and W. Wang. On the origin of new genes in

drosophila. Genome Research, Jan. 2008.



104 BIBLIOGRAPHY



List of Figures

1 A clique of size 5, all vertices see the others . . . . . . . . . . 18

2 Bipartite graph . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Clique minimal separators . . . . . . . . . . . . . . . . . . . . 23

4 A relation R and the corresponding bipartite graph Bip(R). . 25

5 The Galois lattice of the relation R of Figure 4 . . . . . . . . . 26

6 Fused gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 An example of a similarity network. . . . . . . . . . . . . . . . 29

8 Clique separators decomposition . . . . . . . . . . . . . . . . . 33

9 Decomposition using clique minimal separators. We start by

a triangulation using a minimal elimination ordering. . . . . . 35

10 A graph with a Lex-BFS ordering . . . . . . . . . . . . . . . . 44

11 A chordal graph with five maximal cliques: {2,4,5}, {4,5,6},
{3,4,6},{5,6,7,8} and {1,5}. . . . . . . . . . . . . . . . . . . . 49

12 A clique tree of the chordal graph from Figure 11. . . . . . . . 50

13 A minimal triangulation of graph. The red dashed lines rep-

resent the fill edges. . . . . . . . . . . . . . . . . . . . . . . . . 54

14 A clique tree and its corresponding atom tree . . . . . . . . . 54

15 A relation and the corresponding bipartite graph . . . . . . . 66

16 Complete decomposition of a bipartite graph . . . . . . . . . . 67

105



106 LIST OF FIGURES

17 Recomposition of a lattice . . . . . . . . . . . . . . . . . . . . 72

18 Lattice layout using clique separator information . . . . . . . . 73

19 Fused gene family and family components . . . . . . . . . . . 76

20 Effect of the threshold on a sequence similarity network . . . . 79

21 Fused gene and similarity network . . . . . . . . . . . . . . . . 80

22 Component family . . . . . . . . . . . . . . . . . . . . . . . . 81

23 Comparison of the number of similarity links between sequences,

the number of identified fused families by MosaicFinder, and

the number of identified fused triplets by FusedTriplets (loga-

rithmic scales). . . . . . . . . . . . . . . . . . . . . . . . . . . 85

24 MosaicFinder results layout using Cytoscape . . . . . . . . . . 86

25 The expression level network for a threshold of 2.2. . . . . . . 89

26 Expression profiles of four atoms, two of size one and two of

size two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

27 Expression profiles of two atoms of the connected component

of size 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

28 The atom tree of the network of Figure represented using yEd. 92

29 Expression profiles of atoms linked to the central atom. . . . . 93

30 One branch of size 4 of the atom tree composed of Atom 17,

Atom 26, Atom 28 and Atom 36. The expression of all the

genes from these atoms increased within the first four devel-

opment stages before it stabilized. The farther an atom is

from Atom 1 the greater the increasement of the expression

level is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

31 Atom 40 and Atom 41 are opened to see the interactions of

genes in this atoms. . . . . . . . . . . . . . . . . . . . . . . . . 94



List of Tables

1 Results of MosaicFinder and FusedTriplets on simulated gene

fusion events, either with or without two-threshold distant ho-

mology cross-check . . . . . . . . . . . . . . . . . . . . . . . . 84

2 Expression level data. . . . . . . . . . . . . . . . . . . . . . . . 88

107



108 LIST OF TABLES



List of Algorithms

1 Lexicographic breadth first search - Lex-BFS [33] . . . . . . . . 20

2 Maximum Cardinality Search - MCS [40] . . . . . . . . . . . . 20

3 Lex M [33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 MCS-M [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 MCS-M+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Minseps-Maxcliques . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Expanded-MCS [12] . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Atom-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10 Algorithm DF-Atom-Tree . . . . . . . . . . . . . . . . . . . . . 57

11 REC-AT-DF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

12 Expanded-MCS-M . . . . . . . . . . . . . . . . . . . . . . . . . 60

13 MCS-Atom-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 63

109


