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Abstract

In this thesis we use a stochastic approach to address the upscaling of mixing dominated

reactions in flows thorough heterogeneous porous media.

For the case where the transport is represented only by diffusion, fluctuations in spatial con-

centration distribution lead to segregation of chemicals and thus to anomalous kinetics. We

show that the transition from the expected behavior shown by well mixed systems to this

anomalous kinetics is intimately linked to the evolution of the concentration PDF from a

Gaussian to non-Gaussian shape. This fact establishes a direct relationship between anoma-

lous reaction kinetics, incomplete mixing and the non-Gaussian nature of the concentration

PDF.

Introducing advective transport processes in our analysis, we studied the impact of incomplete

mixing on effective reaction kinetics at the front between two solutes, one displacing the other,

in a 2d heterogeneous porous medium. While classical Fickian models predict a scaling for the

mass production as t
1
2 , we show that the kinetics follow 2 non-Fickian regimes. An early times

the invading reactant is organized in fingers and the mass production scales as t2. For later

times the mass production slows down, but it is still faster then the t
1
2 . It does not depends on

diffusion and is totally controlled by advective spreading. In this regime, anomalous kinetics

is directly related to superdiffusive advective spreading. In order to relate the pore scale flow

heterogeneity to advective spreading and subsequently to anomalous kinetics, we analyze the

distribution and correlation of Lagrangian velocities. We show the existence of long range

temporal correlation of Lagrangian accelerations, which are at the root of the breakdown of

classical Fickian dispersion models. Thus, similarly to turbulent media, flow through porous

media displays strong intermittent properties. We demonstrate that they can be quantified by

a correlated Continuous Time Random Walk approach, which provides a consistent upscaling

framework.

We finally perform a laboratory experiment where a quasi 2D system is studied through

an Hele-Shaw cell in which two reactive chemicals are injected, one displacing the other.

A new experimental set up based on chemiluminescence reactions allows high resolution

quantification of the pore scale concentration pdf and reaction rate. The anomalous kinetics

of the reactive front is observed and is very consistent with our theoretical predictions.
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Chapter 1

Introduction

This thesis focuses on the theoretical and experimental study of rate of reactions between

chemicals that mix while transported by flows in porous media.

1.1 A framework for reactions

It is a matter of our daily experience that reactions are not instantaneously transformed into

products. Transformations can take place only between molecules that are close enough to

exchange electrons forming and breaking chemical bonds Connors [1990]. In other words, if

reactants are placed at large distance no collisions, and thus no reactions, between them are

possible (Neufeld and Hernandez-Garcia [2010]). In this thesis we consider a reaction as the en-

semble of processes that leads to the transformation of one set of reactants to a set of products

through changes that strictly involve a short range interaction between reactants. The short

nature of interaction of such a systems requires transport mechanisms in order to produce

collisions and thus reactions (Neufeld and Hernandez-Garcia [2010]; Horsthemke et al. [2010]).

Systems made by long range interacting particles (e.g. plasmas or gravitational systems) can-

not be described in the presented framework and their behavior will not be discussed here.

More generally, many phenomena are based on the short range interactions between particles

or agents. Thus, it is possible to model not only the molecular interactions, but also a wide

spectrum of processes such as the population dynamics of biological species (e.g. Tel et al.

[2005]; de Anna et al. [2010]), ecological activity (e.g. Lugo and McKane [2008]), social behavior

(e.g Schweitzer [2003]) as a reaction. In this framework, reactive phenomena are omnipresent

in our daily lives, in nature and many industrial applications.

In the context of hydrology, chemical reactions of particular interest are those between the

1



2 CHAPTER 1. INTRODUCTION

constituents of the soil and solutes dissolved in water flowing through it including, for ex-

ample, dissolution reactions responsible for karst formations and biochemical reactions that

control the dynamics of bacteria population in soil (e.g. denitrification, biodegradation).

The reaction kinetics plays a crucial role in the fate of reactive systems (e.g. Dentz et al. [2011]).

To describe reactions chemical equations are usually adopted (e.g. Connors [1990]). These

equations represent the reactions that occur between N chemical species with αi molecules of

the chemical species Xi for i = 1, . . . N:

α1X1 + α2X2 + . . . αNXN → products (1.1)

where the numbers αi are the so called stoichiometric coefficients. A general law that predicts

the reaction rate as a function of concentrations ci of involved reactants Xi is the well known

mass action law. This law states that the rate of a reaction is proportional to the product of the

concentration of the involved chemicals each one elevated to the power of the representative

stoichiometric coefficient

reaction rate = kcα1
1 cα2

2 . . . cαN
N (1.2)

where the proportionality constant k is the so called reaction constant. The fundamental hy-

pothesis behind this law is that the involved chemicals Xi are well mixed. This implies that

everywhere in the considered system the concentration of chemical Xi must have the same

value. Thus, spatial effects are absent, or can be neglected, and the time evolution of the

concentrations of all involved chemicals is provided by a system of ordinary differential equa-

tions, called rate equations, derived from the previous mass action law (1.3) (e.g. Horsthemke

et al. [2010]; Connors [1990]):

dci

dt
= −αikcα1

1 cα2
2 . . . cαN

N (1.3)

These dynamical systems can be solved through deterministic (e.g. Strogatz [2000]), or stochas-

tic (e.g. Gillespie [1976]) approaches.

If reactions are very fast compared to the mixing processes, the chemicals are depleted and

reactions stop. Only a new mixing of reactants can allow reactions to take place again. Thus,

mixing processes play an important role and will dominate the kinetics of such a systems (e.g.

Neufeld and Hernandez-Garcia [2010]; Horsthemke et al. [2010]; Gálfi and Rácz [1988]; Havlin et al.

[1995]; Kapoor et al. [1997]; Gramling et al. [2002]; De Simoni et al. [2007]; Luo et al. [2008]; Edery

et al. [2010]; Chiogna et al. [2011]; de Anna et al. [2011]).
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In this thesis we focus on mixing limited reactive transport systems to understand the impact

of incompletely mixed systems (Ottino [1989]) on effective reaction rate.

1.2 Mixing

Mixing is the ensemble of mechanisms that change the spatial distribution of an heteroge-

neous system, to make it more homogeneous. As discussed by, for example, Ottino [1989]

and Kitanidis [1994], two or more given substances, originally segregated into different vol-

umes of space, tend to occupy the same volume due to mixing processes. In other words, as

Figure 1.1: Mixing of two ink spots, initially laid side by side, their mixing process is described in

Duplat et al. [2010a], from where the image is taken.

stated by Villermaux and Duplat [2003], a mixture is a transient state between the initial seg-

regation of the constituents and their ultimate homogeneity. This concept is well represented

by the image of the experiment performed by Duplat et al. [2010a] in Figure 1.1 where the

two initially segregated drops of different ink are mixed. As the time goes on, the mixing

mechanisms reduce the heterogeneity of the system until the two drops are homogenized and

thus indistinguishable. Given the above mixing definition, it is therefore necessary to specify

the meaning of homogeneous condition. We define ξ as the smallest length scale over which

it is possible to distinguish the given substances. All information at smaller scale than ξ are

considered to be already homogenized by mixing. Usually ξ is much smaller then the size L of

the considered system (e.g. Whitaker [1999]; Le Borgne et al. [2011a]), implying that the mixing
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shows important features at different, spatial and temporal, scales that are mutually coupled.

The governing equations are usually defined at the homogenization scale, also called the mi-

croscale (e.g. Le Borgne et al. [2011a]), while the observations are typically at a scale much

larger then ξ. The dynamics at this larger observations scale L, or macroscale, is the result

of the collective action of several local phenomena. To quantify local mixing we can solve at

small scale fluid mechanics (e.g. Bear [1988]), described by coupled equations that are derived

from conservation laws. In general, these equations are not solvable due to our ignorance on

the boundary and initial conditions (e.g. Tel et al. [2005]; Dentz et al. [2011]) or due to math-

ematical difficulties, as in turbulence for example where the uniqueness of solutions is not

guaranteed (e.g. Pope [2000]). Alternative solvable descriptions include dynamical system ap-

proach (e.g. Tel et al. [2005]; Ottino [1989]; Horsthemke et al. [2010]; Neufeld and Hernandez-Garcia

[2010]), stochastic approach (e.g. Dentz et al. [2011]) or effective models through volume aver-

aging (Whitaker [1999]). In any case, a physically consistent description must take into account

the first principles formalized by the local equations and provide a link to the macroscale in

terms of simple and solvable models.

Figure 1.2: On the left the velocity field resulting from numerical simulations for a given porous

medium at the microscale: the flow around the solid grains is a solution of local Navier-Stokes equation.

On the right the velocity field of a given porous medium at (Darcy) macroscale: the flow is non-zero

everywhere and it is a solution of the Darcy equation.

With regard to porous media, as explained in more details in the following, at the macroscale

the governing equation for flow is the so called Darcy equation (resulting from an upscaling

of local Stokes equations), e.g. Bear [1988]; Whitaker [1999]. We will hence refer to macroscale

as the Darcy scale. This Darcy scale is characterized by the fact that the porous structure of
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the medium is no longer visible. In Figure 1.3 two velocity fields at the pore scale (on the left)

and at Darcy scale (on the right) are compared.

Mixing in porous media

The mechanic processes responsible for mixing in porous media considered in this thesis are

advection and diffusion. We define the dimensionless Peclet number Pe = λv
D that take into

account the effective ratio between advection and diffusion over a given length λ for a given

average velocity v, where D represent the diffusion coefficient. These two processes are cou-

pled in contributing to the degree of mixing. If, on one hand, heterogeneous advection acts

to spread the solutes in the local direction of the flow, on the other hand, diffusion tends to

homogenize their spatial distribution (e.g. Ottino [1989]). This interaction between heteroge-

neous advection and diffusion is typically lumped in a dispersion coefficient to describe the

effective mixing processes of the solute (e.g. Taylor [1953]; Aris [1956]; Gramling et al. [2002]).

The pore scale information can be integrated at the Darcy scale into an upscaled picture us-

ing, for example, the volume averaging approach (e.g. Quintard and Whitaker [1994]; Whitaker

[1999]) or homogenization approaches (e.g. Hornung [1997]). These upscaled models rely on

effective transport parameters among the most investigated of which are included macrodis-

persion coefficients (e.g. Gelhar and Axness [1983]; Janković et al. [2009]). The range of validity

of such macroscopic descriptions has been discussed by Battiato et al. [2009].

Anomalous dispersion

The macrodispersion approach (e.g., Gelhar and Axness [1983]) models effective transport by

the same theoretical framework as local-scale transport: the impact of spatial heterogeneities

on larger scales is taken into account by the so called macrodispersion tensor. It measures

the influence of pore scale heterogeneities on large scale solute spreading. Although useful in

practice, this approach is in general not able to describe qualitatively and quantitatively the

so called anomalous or non-Fickian transport behavior, which is frequently observed (Dentz

et al. [2011]). Such behavior is characterized by non linear growth of the longitudinal (main

flow direction) spatial variance of the solute distribution. A schematic view of the longitu-

dinal spreading temporal evolution is given in Figure 1.4. These anomalous behaviors, can

be described by various theories usually based on spatially and temporally non-local trans-

port equations. Such transport models are generally non-Markovian: the system state at a
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Figure 1.3: On the left and on the middle the concentration field of an injected plume respectively in an

heterogeneous and almost homogeneous porous medium. On the right a schematic view of the scaling

of the spatial variance of the distribution of a plume that undergoes Fickian and non Fickian dispersion.

The former well represent the behavior of a plume in an homogeneous medium while anomalous scalings

are observed for heterogeneous media.

given time depends on the full system history. Non local models that have been used for the

description of effective transport in heterogeneous media include the multirate mass transfer

(MRMT) or multicontinuum approach (e.g. Haggerty and Gorelick [1995]; Harvey and Gorelick

[1995]; Carrera et al. [1998]; Haggerty et al. [2000]), the Continuous Time Random Walk ap-

proach (e.g., Montroll and Weiss [1965]; Berkowitz and Scher [1998]; Metzler and Klafter [2000];

Le Borgne et al. [2008a]), the moment equation approach (e.g. Neuman [1993]; Neuman and Tar-

takovsky [2009]), non equilibrium statistical mechanics using projection formalism approaches

(e.g. Cushman and Ginn [1993]; Cushman et al. [2002]) and the fractional advection dispersion

equation approach (e.g., Meerschaert et al. [1999]; Benson et al. [2000]). The dependence of the

upscaling results on the adopted upscaling technique is discussed in Dagan et al. [2012].

Difference between spreading and mixing

Spreading and mixing are two concepts that need to be differentiated in porous media, as

illustrated in Figure 1.4. Spreading has received a lot of attention, however it does not predict

well the degree of mixing of observed solutes. As pointed out by Kitanidis [1994], mixing

and spreading for transport in homogeneous media can both be characterized in terms of

diffusion and dispersion coefficients. In heterogeneous media this is no longer true. Medium



1.2. MIXING 7

heterogeneities lead to a distortion of the solute plume that, for times smaller than the trans-

port time over a typical heterogeneity scale, increase the solute spreading but not its degree

of mixing. Thus, in general these coupled processes of spreading and mixing need to be

Figure 1.4: A numerical simulation of a plume of solute A invading a porous medium saturated by

another solute B. Here it is represented the difference between the concept of mixing and spreading:

intuitively the former measures the length over which the incoming solute A is spread, the latter the

size of the length over which A and B coexist (de Anna et al. in preparation).

separated (e.g. as proposed by Tartakovsky et al. [2008a]). To quantify the coupling between

those two mechanisms, Le Borgne et al. [2011a] introduce and quantify the local mixing scale

ǫ, defined as the length for which the scalar distribution is locally uniform. The anomalous

evolutions of the dispersion scale σ and the mixing scale ǫ result to be complementary, σǫ ∼ t

relating anomalous global dispersion to the dynamics of local mixing.

Probability density function of solutes concentration

Mixing processes are defined as mechanisms that tends to make heterogeneous physical sys-

tem more homogeneous. The mixing state can be quantified by the probability density func-

tion of solutes concentration p(C), defined as the total (volume averaged) probability of the

presence of the concentration value C. Thus, mixing acts to change the shape of p(C) from

a wide distribution representing heterogeneity (and thus an heterogeneity of C values) to a

sharp distribution about the homogenized C value (e.g. Villermaux and Duplat [2003]). From

observations in natural formations, it results that the p(c) is typically far from being Gaus-

sian. Thus, the first two concentration moments do not provide sufficient information to well
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describe the mixing properties (e.g. Bellin et al. [2011]). Currently, the relevant equations to

describe p(C) in porous media is still debated (Dentz et al. [2011]).
136 P. Meunier and E. Villermaux
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Figure 1.5: On the top a schematic view of the elongation of a line in a turbulent flow: image taken

from Meunier and Villermaux [2010]. On the bottom the lamellas superposition: image taken from

Duplat and Villermaux [2008].

For turbulent flows, full descriptions for p(C) have been derived and observed (e.g. Villermaux

and Duplat [2003]). When an initial line distribution of solute of size L is injected in a turbulent

flow its shape is elongated and its length evolves in time L(t). The p(C) is related to the

probability distribution of the elongation p(L) (Meunier and Villermaux [2010]), see Figure 1.5.

For a blob of solute injected on a turbulent flow, its geometric organization is a convoluted

ensemble of interacting strips or lamellas that superpose, see Figure 1.1 or 1.5. In such a

case the p(C) is derived by observing the superposition process of lamellas and it is well

described by a Γ distribution (Meunier and Villermaux [2010]). The validity of such approaches

for porous media is subject of current investigations (collaboration between T. Le Borgne and

E. Villermaux).

Incomplete mixing

The concentration pdf p(C) provides upscaled global informations about the degree of mixing

of solutes. For porous media the evaluation of the full distribution p(C) represents a very

important issue because, as already outlined, real systems display local heterogeneities from
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which non well mixed conditions for transported solutes arise (Dentz et al. [2011]), e.g. see

Figure 1.6. This incomplete mixing has been observed through both the use a high resolution

numerical method to simulate advective-diffusive transport of a passive tracer at pore scale

(e.g. Tartakovsky and Neuman [2008]) and laboratory experiments (e.g. Levy and Berkowitz

[2003]; Zinn et al. [2004]). Incomplete mixing is generally not taken into account by Darcy

scale models that assume well mixed conditions at scale larger than pores volumes (Dentz

et al. [2011]).

Figure 1.6: Incomplete mixing at the pore scale between two chemicals A and B. A is injected from

the left and is invading the pore space initially saturated by the chemical B (not displayed in figure).

The image shows the concentration field (normalized with respect to the injected value) resulting from

a numerical pore scale simulation discussed in the following chapters (de Anna et al. in preparation).

1.3 Mixing-limited reactions

The reactive activity in porous media refers to a large number of aqueous species that react

among themselves (e.g. denitrification), with the solid matrix (e.g. solid dissolution) and

with gaseous phases (e.g. gas dissolution) through different kinds of reactions (Pinder and

Celia [2006]), undergoing different kind of kinetics (e.g. Connors [1990]). Reactions character-

ized by slow kinetics compared with mixing kinetics can be well described by rate equations

(e.g. Neufeld and Hernandez-Garcia [2010]; Horsthemke et al. [2010]). Reactive processes involv-

ing multiple chemical species represent a very complex and challenging problem that can be

analyzed using advanced numerical codes (e.g. Saaltink [2004]; Majdalani and Ackerer [2011];
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Fahs et al. [2010]; Ackerer [2010]). For mixing-limited reactions in groundwater, a simplified

procedure to solve reactive transport in terms of conservative components was proposed by

De Simoni et al. [2005]. Here we consider reactions in porous media whose local kinetics are

fast enough to be limited by mixing processes.

Anomalous mixing is found to induce reaction kinetics that is different from the ones pre-

dicted by Fickian mixing (e.g. Tel et al. [2005]; Gramling et al. [2002]). As discussed in the

previous paragraph, a Fickian description of transport significantly over predicts the degree

of mixing between chemicals in porous media (Dentz et al. [2011]) and, moreover, the full

probability density function of solute concentration is needed, in theory, to model mixing

(e.g. Bellin et al. [2011]; Oates [2007]). Also for reactive systems the probability density func-

tion of chemical concentration turns out to be far from a Gaussian shape (e.g. de Anna et al.

[2011, 2010]; Di Patti et al. [2010]): a full distribution of p(C) is thus needed in order to extract

information about the underlying dynamics. Effective upscaled models that take into account

the local heterogeneity of porous media in reactive transport systems include effective reaction

rate coefficients (e.g. Tartakovsky et al. [2008b]), Continuous Time Random Walk (e.g. Edery

et al. [2010]), fractional Advection Diffusion equation (e.g. Bolster et al. [2010, 2012]) and ef-

fective Langevin models (e.g. Tartakovsky [2010]). All these models assume some knowledge

about the local properties of the medium, e.g. probability distribution of particle jumps, spa-

tial correlation of velocity field or some other required upscaled physical fitting parameter.

Their validity for quantifying mixing is still debated (Dentz et al. [2011]). This is one of the key

questions addressed in this thesis.

Laboratory experiments

Presently, relatively few experiments aimed to the quantification of mixing and reactions in

porous media have been carried out, although they could represent a direct measurement of

the impact of incomplete mixing on reaction rates. In order to resolve the whole concentra-

tion field, laboratory experiments involving transparent quasi 2d chambers are needed (e.g.

Konz et al. [2009]). To observe and quantitatively measure the reaction product concentration

field between two chemicals mixed while transported, a technique used in the past is the

colorimetry described in Zinn et al. [2004]; Oates and Harvey [2006]; Oates [2007]. At the inter-

face between two chemicals transported through a thin chamber (40 × 20 × 0.64) cm packed

with glass beads of different sizes, reactions take place. Figure 1.7 shows the concentration
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Figure 1.7: Concentration field of the reaction product from the laboratory experiment performed by

Oates and Harvey [2006]

field of the reaction product obtained with the conversion, through appropriate calibration,

of images taken with a CCD camera by Zinn et al. [2004] and Oates and Harvey [2006]. Due

to the ratio between the size of the system and the grain size, the spatial resolution of this

experiment does not resolve the pore scale concentration distribution. In figure 1.8 is showne
f
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reaction and analysis method presented in this paper
will be instrumental in understandingmixing in porous

Figure 1.8: The projection over the main flow direction of the reaction product concentration field of the

experiment from Oates and Harvey [2006] (green line) and the solution of the Darcy scale advection-

dispersion equation (red line). Different curves represent different times.
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the projection along the main flow direction, for different times, of the measured local con-

centration field of the reaction product versus the analog quantity derived from a Darcy scale

Fickian model. The curves do not superpose due to the incomplete mixing at pore scale. The

proposed macroscopic model, which assumes well mixed conditions at the pore scale, fails

in predicting the mass production by reactions (see Figure 1.8). A laboratory experiment to

quantify pore scale mixing and reactions represents a challenging subject of investigation that

we address in this thesis.

Anomalous kinetics scaling

We define mean field behavior as the expected temporal scaling of reaction system in homoge-

neous media. We will refer to different temporal evolution, with respect to the mean field, as

anomalous behaviors. As discussed previously, anomalous kinetics of reaction products arises

from anomalous mixing. To understand and consistently describe the impact of incomplete

mixing on reaction rates, we focus on the analysis of temporal scaling behavior. The study

over several orders of magnitude, with respect to some characteristic time, of the temporal

evolution of the mass transformed by reactions, can provide informations about the under-

lying physical mechanism of reactive transport (Tel et al. [2005]; Neufeld and Hernandez-Garcia

[2010]; Horsthemke et al. [2010]).

For the simple case of a mixing limited reaction between two initially well mixed chemi-

cals where transport mechanisms are represented only by diffusion, segregation of reactants

take place due to fluctuations in initial spatial distribution of concentrations as discussed by

Ovchinnikov and Zeldovich [1978]; Toussaint and Wilczek [1983]; Kang and Redner [1985]; Monson

and Kopelman [2004]; Benson and Meerschaert [2008]. The observed scaling for the reactants de-

crease for early times and it is well predicted by completely mixed thermodynamics models

until reactions deplete most of reactants concentrations. When in the system there are zones

where only one reactant is present, locally reactions stop until diffusion mixes reactants again.

The observed reactants concentrations decrease slow down from the well mixed prediction t−1

to scale as t−
d
4 , where d is the dimensionality of the system (see Figure 1.9). This scaling law

can be fully derived from upscaled models only if the basic processes are well understood

and consistently formalized. At the same time, the knowledge of such scaling law provides

an important way to properly upscale the pore scale physics of the system.

The case of reactive front, i.e. a reactant A that invades a medium initially saturated by another

reactant B (e.g. see Figure 1.6) is of primary interest since the heterogeneity determines the
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t-
1

t -1/4

Figure 1.9: Red dots represent the temporal evolution over several orders of magnitude (scaling law) of

a reactant undergoing an irreversible bimolecular reaction in a well mixed one dimensional domain, in

presence of initial spatial fluctuations. For the unidimensional case, the anomalous scaling t−
1
4 deviates

from the mean field t−1.

front geometry. If the transport is due to homogeneous advection, Gramling et al. [2002] show

that the mass produced by reactions scales in time as
√

σ ∝
√

t, where σ2 represent the spatial

variance of a plume. How the reactants produce mass in the case of heterogeneous advection

is an open and challenging question which is addressed in chapters 4 and 5.

Relationship between anomalous dispersion and kinetics

In porous media the degree of mixing of reactants is given by the interplay between the

spreading of the solutes due to the transport process associated to the heterogeneous local

velocity field and the molecular diffusion. A local description of such a systems is provided

by conservation laws, but their associated equations result, in general, impossible to be ana-

lytically solved at large scale. The connection between small and larger scales can be provided

by scaling laws using upscaling techniques. Classical upscaled models (e.g. macrodisperion)

for transport in porous media tend to overestimate the reaction rates since they assume com-
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plete mixing at a scale large compared to the pore sizes. As a consequence, scaling laws for

temporal behavior of spreading display anomalous behavior compared to the predictions of

this upscaled models. The impact of this effect on mixing has primary importance in reactive

systems. The derivation of upscaled models for mixing limited reactions in porous media is

addressed throughout this thesis.

1.4 Organization of the thesis

To understand and characterize the basic mechanisms behind the complex coupling of mixing

and reactions, we focus on the simple case where only two chemicals A and B are involved in

a mixing limited reaction. The whole thesis work was carried out with the aim to understand,

explain and, thus, predict the scaling laws observed.

To try to give answers to this general problem (i.e. determination of upscaled models for

mixing limited reactions in porous media), we proceeded in steps decoupling the individual

processes that constitute mixing in order to study their impact on reaction kinetics.

We start studying only diffusion and reactions: we consider the anomalous reaction kinetics

related to the segregation of chemicals in the simple d = 1 dimensional diffusion limited re-

action A + B → C. We investigate the relationship between the scaling of the produced mass

by this reaction and the probability distribution function (pdf) of the species concentrations.

In particular, we derive a relationship between the evolution of the concentration pdf from a

Gaussian to non-Gaussian shape and the transition from the expected behavior associated to

the well mixed case to anomalous reaction kinetics. This analysis leads us to a new view of

the problem, thanks to which we have determined a model to predict the evolution of tem-

poral scaling of the system kinetics. This work was made in collaboration with Marco Dentz,

research professor at the Department of Geosciences Institute of Environmental Assessment

and Water Research of Barcelona (Spain), Diogo Bolster, Assistant Professor at the University

of Notre Dame (Indiana, USA), Alexander Tartakovsky, scientist at Pacific Northwest National

Laboratory (Washington state, USA) and Dave Benson, Associate Professor of Hydrogeology

Department of Geology and Geological Engineering, Colorado School of Mines (Colorado,

USA).

As a following step we study the scaling of advective spreading in absence of diffusion and
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reactions in heterogeneous porous media. We propose a general framework for upscaling

dispersion. A key challenge of the upscaling procedure is to relate the temporal evolution of

spreading to the small scale velocity field properties quantified by the Lagrangian velocity dis-

tribution and correlation. The resulting effective transport model is a correlated Continuous

Time Random Walk allowing us to well represent the dispersion temporal scaling that has a

dramatic impact on reaction kinetics, as discussed in the next chapter. This work was made in

collaboration with Marco Dentz, research professor at the Department of Geosciences Institute

of Environmental Assessment and Water Research of Barcelona (Spain), Diogo Bolster, Assis-

tant Professor at the University of Notre Dame (Indiana, USA) and Alexander Tartakovsky,

scientist at Pacific Northwest National Laboratory (Washington state, USA).

Adding diffusion and reactions, we investigate the effective kinetics of the reaction front for

the mixing limited bimolecular reaction A + B → C. We observe that the anomalous behavior

of the system kinetics is characterized by two time regimes in which the total product mass

evolves faster than the classical prediction obtained with classical Darcy scale description.

This anomalous kinetics appears to be consistently related to the incomplete mixing at the

pore scale. In particular we derive a direct relationship between the anomalous dispersion

and the observed kinetics. This work was made in collaboration with Marco Dentz, research

professor at the Department of Geosciences Institute of Environmental Assessment and Water

Research of Barcelona (Spain) and Alexander Tartakovsky, scientist at Pacific Northwest Na-

tional Laboratory (Washington state, USA).

The last step consists in a laboratory experiment where we reproduce the conditions pre-

viously numerically simulated. We propose a new technique to measure the local reaction

kinetics in a porous medium via a chemiluminescence reaction. This work was made in col-

laboration with Yves Meheust, assistant Professor at the University of Rennes 1 (France), Herve

Tabuteau researcher at the National Council of Research, Rennes (France), Joaquin Jimenez-

Martinez, Post-doc position at CNRS - University of Rennes 1 (France), Regis Turuban, Master

student at University of Rennes 1 (France), Jean-Jacques kermarrec, engineer at Geosciences

Rennes and Pascal Rolland, engineer at Geosciences Rennes.
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Chapter 2

Diffusion-limited reactions

To understand and quantify the basic mechanisms behind the coupling of mixing and re-

actions, we begin with a simple example. We consider the irreversible bimolecular reaction

A + B → C (Connors [1990]). Then mixing processes responsible for the displacement of these

chemicals are reduced to the Fickian diffusion. Although simple, this system can lead to

anomalous kinetics when considering spatial fluctuations of reactants concentrations. Thus, it

provides an interesting framework to understand basic mechanisms underlying anomalous ki-

netics. Specifically we focus on the deviation of concentration fluctuations pdf from Gaussian

distribution.

The work presented in this chapter was made in collaboration with Marco Dentz, research

professor at the Department of Geosciences Institute of Environmental Assessment and Water

Research of Barcelona (Spain), Diogo Bolster, Assistant Professor at the University of Notre

Dame (Indiana, USA), Alexander Tartakovsky, scientist at Pacific Northwest National Labora-

tory (Washington state, USA) and Dave Benson, Associate Professor of Hydrogeology Depart-

ment of Geology and Geological Engineering, Colorado School of Mines (Colorado, USA).

2.1 The mean field limit

Classically reactive diffusion systems are described in terms of continuous concentration field

(e.g. Neufeld and Hernandez-Garcia [2010]) as follows:

∂φi(x, t))

∂t
− D

∂2φi(x, t)

∂x2 = −kφA(x, t)φB(x, t), (2.1)

with D the diffusion coefficient and k the reaction constant. The validity of such continuous

description relies on the assumption of an infinite number of particles constituting the system.

17
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In this framework the concentration φ of a thermodynamic system is called mean field (e.g.

van Kampen [2007]). If the spatial distribution is perfectly homogeneous the concentration

gradients are zero. Thus, for both species in a closed reactor, φi(x, t = 0) = ci, for i = A, B

and eq. (2.1) reduces to the rate equation (Neufeld and Hernandez-Garcia [2010])

dφi(t)

dt
= −kφA(t)φB(t). (2.2)

The solution for such an equation is φA(t) = φB(t) = ci
cikt+1 . At long times, the species

concentrations decrease as t−1. In the presence of spatial heterogeneities (which can lead to

incomplete mixing on a local scale) the real concentration can deviate from the mean field

limit (e.g. Ovchinnikov and Zeldovich [1978]; Kang and Redner [1985]).

2.2 PDF description of the spatial islands segregation of reactants

In natural systems, the number of constituents is finite. Therefore, natural stochastic devia-

tions from the thermodynamic limit arise and the species concentrations are subject to random

fluctuations (e.g. van Kampen [2007]; Gardiner [2004]). In the mean field description reactions

never stop, because neither species A nor species B can completely deplete. However, in

a finite system size system somewhere A or B can be depleted. Due to the creation such a

zones, or islands of non reactive particles, the system is no longer well-mixed, diffusion effects

start to play an important role and will dominate the kinetics of the system. This segregation

of chemicals is also called Ovchinnikov-Zeldovich (OZ) segregation after its first observation

by Ovchinnikov and Zeldovich [1978]. In this anomalous regime, the behavior of the species

concentrations change to the t−1/4 scaling theoretically observed by Ovchinnikov and Zeldovich

[1978]; Toussaint and Wilczek [1983]; Kang and Redner [1985] and experimentally measured by

Monson and Kopelman [2004]. Furthermore, the breakdown of the mean field description has

been studied for variety of reaction diffusion systems using Lattice Gas Automata approaches

(e.g. Boon et al. [1996]).

To study this mixing limited reaction system from a different perspective, we focus on the

concentration PDF of the chemical species A and B. The PDF encodes the full statistical

information of the species concentrations about the mean field limit. Thus, it quantifies the

incomplete mixing non predicted by the mean field description.

We employ a stochastic approach based on population dynamics (e.g. McKane and Newman

[2005]; Bernstein [2005]; de Anna et al. [2010]; Dauxois et al. [2009]; Baras and Mansour [1996])

which can be used for deriving the governing equation for the concentration pdf.
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Stochastic Markov processes and the Master Equation

In general, a stochastic process ξ is an object whose future evolution is not predictable without

uncertainty, or is predictable in terms of the probability of its future states. In other words

ξ is defined by a set, or ensemble, of possible values that it can assume and a probability

distribution p(ξ = x, t) on this ensemble (e.g. Feller [1966]). The knowledge of the full

probability distribution of a stochastic process provides a complete description of its evolution.

A class of stochastic processes for which a governing equation for p(x, t) is derivable include

Markov processes (e.g. van Kampen [2007]; Gardiner [2004]).

We define a Markovian process a stochastic process with the property that for any set of

successive time steps t1 < t2 < . . . < tn < . . ., the state of the system (or the p(x, t) that

describe it) at step n depends only on the previous step n − 1 and not on all its history. This

implies that the full process can be described in terms of two functions: the initial distribution

p0 and the transition probability per unit time for the system to jump from the state x′ at step

n − 1 to the state x at the step n. From the definition of Markov process is possible to show

that the evolution of the p is subjected to the equation

∂p(x, t)

∂t
=

∫ [
r(x|x′)p(x′, t)− r(x′|x)p(x, t)

]
dx′ (2.3)

where r(x|x′) represent the transition probability per unit time that the system jump from

the state x′ to the state x. This equation is known as the Master Equation of the system

and plays a crucial role in the description of many natural systems (e.g. van Kampen [2007];

Gardiner [2004]). The Master Equation describes the evolution of the probability distribution

of a stochastic Markov process. This kind of process have primary importance because for

them a governing equation is well defined.

A population dynamics model for reaction-diffusion

We adopt here the population dynamics approach as proposed by Lugo and McKane [2008].

The one-dimensional spatial domain is a string discretized into Ω cells of length h, containing

reactive particles. Concentrations within each cell is assumed to be well mixed. For the well

mixed condition to hold, the characteristic diffusion time over h is required to be less than

the characteristic reaction time. This implies, tD = h2

2D ≪ tk = 1
φ0k with φ0 is a characteristic

species concentration. We impose periodic boundary conditions at the domain boundaries.

The system is considered to be of finite size, thus in each cell is defined a maximum occupation

number N representing the maximum number of particles that can lie in a single cell. N is
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assumed to be the same for each cell. The definition of N implies the definition of the empty

spaces E, whose number in each cell is given by the difference between N and the total amount

of particle that at a given time are present in that cell: nE = N − ∑i ni (i indicate the species

of real particles).

E

A

B A

C

diffusion reaction

empty space solute particle

Figure 2.1: A schematic view of a the numerical model adopted for the one dimensional system. The

space is discretized in cells filled with solute particles (colored circles). The cells have a finite volume,

thus only a finite number N of particles can lie within each cell. The finite size N define the empty

spaces (void circles). Diffusion is represented by the exchange of position between particles and empty

spaces, reactions can take place only between particle that lie in the same cell.

Only particles that are in the same cell can react following the mass action law. Considering

this empty spaces, or holes, as virtual particles, diffusion processes are modeled as the ex-

change of position between a real particle in a cell and a hole in a nearest neighbor cell (see

Figure 2.2). This can be thought as a chemical reaction between a particle in one cell and an

empty space in a neighboring cell. Thus, diffusion can be modeled with the mass action law:

the diffusion rate of the i-th species will be proportional to the product of concentration of ith

species and the concentration of holes.

Due to its finite size, the concentrations are to be stochastic variables described in terms of

the probability density function for concentrations c (e.g. de Anna et al. [2010]). Only a single

event can occur per step of the reaction-diffusion process. To each possible event (chemical

and physical transitions of any of the particles) a waiting time is associated, which is exponen-

tially distributed (e.g. Gillespie [1976, 1977]). The event with the shortest waiting time occurs

during a step. The exponential waiting time distribution reflects the fact that the system is

locally (within a cell) well mixed and thus a Markov system. Hence, the time series of con-

centrations in each cell is a Markov process. As discussed at the beginning of the chapter to

each Markov process is associated a Master Equation that governs the evolution of the sys-



tem. The transition probabilities per unit time r(x|x′) = r(c|c′) are defined for each possible

transition (a chemical reaction or an exchange of position) by the mass action law. The well

known Gillespie algorithm (Gillespie [1976]) provides a numerical solution to solve this Master

Equation.

To solve the derived Master Equation we use an approximated analytical method: the van-

Kampen system size expansion proposed by van Kampen [2007]. Such a method represent a

Taylor expansion with respect to small fluctuations about the defined mean field. We derive

at the first order a set of differential equations for the behavior of the mean field of the

system, recovering equations (2.2). Expanding the RDME up to the second order, we derive a

Fokker-Plank equation for concentration fluctuations that quantifies the evolution of the joint

concentration pdf. We study the evolution of the concentration pdf from a Gaussian to non-

Gaussian shape due to the impact of mass transfer limitations on the reaction system. The

analytical results are complemented by numerical simulations of the reaction-diffusion system

based on the Gillespie algorithm (Gillespie [1976]).

time 1 time 2 time 3

concentration pdf

spatial concentration distribution

Figure 2.2: Numerical simulations of the diffusion limited reaction in one dimension for three consec-

utive times. On the top the concentration pdf p(C): its average (red dashed line) deviate from the mean

field limit (black line). On the bottom the spatial distribution of the reactant concentrations (A in red

and B in blue). As soon as the islands of segregated reactants arise, the pdf deviate from the Gaussian

shape.

This results have been published in the following manuscript on the Journal of Chemical Physics

on 2011.
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We investigate anomalous reaction kinetics related to segregation in the one-dimensional reaction-

diffusion system A + B → C. It is well known that spatial fluctuations in the species concentrations

cause a breakdown of the mean-field behavior at low concentration values. The scaling of the average

concentration with time changes from the mean-field t−1 to the anomalous t−1/4 behavior. Using a

stochastic modeling approach, the reaction-diffusion system can be fully characterized by the multi-

point probability distribution function (PDF) of the species concentrations. Its evolution is governed

by a Fokker-Planck equation with moving boundaries, which are determined by the positivity of the

species concentrations. The concentration PDF is in general non-Gaussian. As long as the concen-

tration fluctuations are small compared to the mean, the PDF can be approximated by a Gaussian

distribution. This behavior breaks down in the fluctuation dominated regime, for which anomalous

reaction kinetics are observed. We show that the transition from mean field to anomalous reaction ki-

netics is intimately linked to the evolution of the concentration PDF from a Gaussian to non-Gaussian

shape. This establishes a direct relationship between anomalous reaction kinetics, incomplete mix-

ing and the non-Gaussian nature of the concentration PDF. © 2011 American Institute of Physics.

[doi:10.1063/1.3655895]

I. INTRODUCTION

Reaction kinetics in heterogeneous reaction-diffusion

systems are in general different from the ones observed in

well-mixed reactors. Spatial fluctuations in species concen-

trations in conjunction with diffusion and chemical reactions

can have a dramatic impact on the global reaction kinetics.1–8

Mass transfer limitations can lead to reduced reactivity of the

reaction system and slow down the global reaction kinetics.9

The systematic quantification of the dynamics leading to this

behavior is of scientific1–3, 10–12 as well of practical interest

for all applications that involve chemical reactions in hetero-

geneous environments. In natural systems the spatial distri-

bution of reactant concentrations is in general heterogeneous

due to fluctuations of the host media that can be represented

by porous media,9, 13–15 living cells,16, 17 and turbulent and

chaotic flows,18, 19 for example. We focus here on the bimolec-

ular irreversible reaction,

A + B → C, (1)

between species A and B which diffuse in one-dimensional

space. The host medium is assumed to be homogeneous and

transport is limited to molecular diffusion. The classical ap-

proach to describe such a reaction-diffusion system is by the

combination of mass transfer for each species concentration

a)Electronic mail: pietro.deanna@univ-rennes1.fr.

φi(x, t) (i = A, B) and a reaction term such that

∂φi(x, t))

∂t
− D

∂2φi(x, t)

∂x2
= −kφA(x, t)φB(x, t), (2)

with D is the diffusion coefficient and k is the reaction rate

constant. This description is valid in the mean-field limit of an

infinite system size, that is, for an infinite number of particles

of A and B. For a uniform initial distribution of both species

in a closed reactor, φi(x, t = 0) = ci, (2) reduces to the rate

equation,

dφi(t)

dt
= −kφA(t)φB(t). (3)

At long times, the species concentrations decrease as t−1.

This behavior can be observed if (i) both species are well-

mixed and (ii) the number of particles is infinite. In the pres-

ence of spatial heterogeneities (which can lead to incom-

plete mixing on a local scale) and for finite numbers of par-

ticles of A and B, this behavior can change. In natural sys-

tems, the number of constituents is finite. Therefore, stochas-

tic deviations from the thermodynamic limit arise and the

species concentrations are subject to random fluctuations.20

The thermodynamic limit effectively prevents the formation

of zones where only one reactant is present, and where reac-

tions stop, because neither species A nor species B can com-

pletely deplete. Due to the creation of such a zones, or is-

lands of non-reactive particles, the system is no longer well-

mixed and diffusion effects start to play an important role and

will dominate the kinetics of the system. While diffusion at-

tenuates initial concentration contrasts, chemical reaction can

0021-9606/2011/135(17)/174104/9/$30.00 © 2011 American Institute of Physics135, 174104-1
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amplify them by depleting the species concentrations wher-

ever they are in contact. This leads to segregation, the forma-

tion of islands of the respective species. In this regime, the be-

havior of the species concentrations shows the characteristic

t−1/4 scaling.1–3 Kang and Redner3 used a scaling approach

to characterize the anomalous evolution of the species con-

centrations caused by mass transfer limitations in conjunction

with reaction. An analogous scaling has been shown to occur

in super-diffusive Levy-flight reaction system.12, 21, 22 In this

case, the mean concentration scales asymptotically as t−1/2γ ,

where 1 < γ < 2 characterizes the Levy-enhanced diffusion

operator. Furthermore, the breakdown of the mean-field de-

scription has been studied for variety of reaction diffusion

systems using lattice gas automata approaches.11

In this paper, we study this fluctuation phenomenon from

a different perspective. We focus on the description of the

reaction diffusion system in terms of the joint concentra-

tion PDF of the chemical species and study its evolution as

the reaction behavior changes from the mean field to the

anomalous scaling. The concentration PDF encodes the full

statistical information of the fluctuations of the species con-

centrations about the mean-field limit. Thus, it quantifies the

uncertainty of the concentration values predicted by the mean

field. At the same time, it allows for the systematic quantifica-

tion of the impact of concentration fluctuations on the average

behavior.

We employ a stochastic approach based on population

dynamics,23, 24, 27–29 which can be used for deriving the mas-

ter equation for the concentration pdf. This framework has

been used for the analysis of complex systems that show spon-

taneous deviations from the average behavior such as pro-

teins and molecules in living cells27, 28, 30 and predator-prey

systems.23, 31, 32 The system state is fully characterized by the

joint PDF of the species concentrations at any point in space

and time. Its evolution is governed by a reaction-diffusion

master equation (RDME).29, 30, 33–35 Using the van Kampen

system size expansion, we derive at the first order a set of

differential equations for the behavior of the system in the

mean-field limit. Expanding the RDME up to the second or-

der, we derive a Fokker-Plank equation for concentration fluc-

tuations that quantifies the evolution of the joint concentra-

tion PDF through advective and diffusive probability fluxes in

the multi-dimensional space of the concentration fluctuations.

When the concentration fluctuations are small compared to

the average, the PDF can be approximated by a multi-variate

Gaussian distribution. This approximation, however, breaks

down in the regime in which fluctuations dominate, that is,

when the reaction kinetics show anomalous scaling. We study

the evolution of the concentration PDF from a Gaussian to

non-Gaussian shape due to the impact of mass transfer limi-

tations on the reaction system. The analytical results are com-

plemented by numerical simulations of the reaction-diffusion

system based on the Gillespie algorithm.34–37

II. REACTION-DIFFUSION MASTER EQUATION
AND CONCENTRATION PDF

We adopt here the population dynamics approach as pro-

posed by Lugo and McKane.32 The one-dimensional spatial

domain is discretized into � cells of length h, each of which

is assumed to be well-mixed.24 For the well mixed condition

to hold, the characteristic diffusion time over h is required to

be less than the characteristic reaction time,24 this means, τD

= h2/(2D) ≤ τ k = 1/(φ0k) with φ0 is a characteristic species

concentration. Notice that more precise criteria can be defined

depending on the chemical reaction under consideration.25, 26

We impose periodic boundary conditions at the domain

boundaries. In the adopted model, only particles that are in

the same cell can react, and diffusion is modeled as a reaction

between a particle in one cell and an empty space in a neigh-

boring cell. Considering empty spaces, or holes, as virtual

particles, diffusion processes are modeled as the exchange be-

tween a real particle in a cell and a hole in a nearest neighbor

cell.32

The maximum occupation number of a cell N is equal

to the sum of particles and holes. The number of particles of

species s in cell j is denoted by ns(j), the number of holes,

or empty spaces by nE(j). The local concentration of species

s is defined as ρs(j) = ns(j)/N. It denotes the probability to

find a particle of species s in cell j. The system size is given

by �N, that is, the maximum number of chemical species that

can be in the system. Only a single event can occur per step of

the reaction-diffusion process. To each possible event (chem-

ical and physical transitions of any of the particles) a waiting

time is associated, which is exponentially distributed.36, 37 The

event with the shortest waiting time occurs during a step. The

exponential waiting time distribution reflects the fact that

the system is locally (within a cell) well mixed and thus a

Markov system.

The evolution of the reaction-diffusion system is stochas-

tic. The system state at a given time t is characterized by the

random vector,

ρ(t) = [ρA(1, t), ρB (1, t), ρC(1, t), . . . , ρA(�, t), ρB (�, t),

× ρC(�, t)]T , (4)

of species concentrations in each cell. The superscript T

denotes the transpose. The process ρ(t) is by definition a

Markov process. Its realizations are characterized by series of

reaction and diffusion waiting times and initial distributions

of species concentrations. The joint concentration PDF is ob-

tained by sampling concentration values in each cell from this

process,

P (ρ, t) = lim
R→∞

1

R

R
∑

r=1

NδNρ,Nρ(r)(t) ≡ δN [ρ − ρ(t)], (5)

in which R is the number of realizations, ρ(r)(t) denotes the

concentration vector in realization r. The Kronecker delta

δNρ,Nρ(t) is 1 if ρ = ρ(t) and 0 otherwise. The distribution

δN [ρ − ρ(t)] = NδNρ,Nρ(t) converges to the Dirac delta in the

thermodynamic limit of N → ∞. The overbar denotes the

ensemble average. Note that we use the same letter for the

stochastic process ρ(t) and the associated sampling vector

ρ = [ρA(1), . . . , ρ(�)]T . The probability distribution func-

tion P (ρ, t) denotes the joint probability of the particle num-

bers of all species in all cells and thus encodes the full sta-

tistical information about the reaction-diffusion system. The
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probability that the concentrations of all reacting species in

all cells is in [ρ, ρ + dρ] is given by P (ρ, t)dρ.

The evolution of the joint concentration PDF P (ρ, t) can

be described by the reaction-diffusion master equation,34, 35

∂P (ρ, t)

∂t
=

∑

j

[ǫ+
A (j )ǫ+

B (j )ǫ−
C (j ) − 1]TAB(j )P (ρ, t)

+
∑

s[jj ′]

[ǫ+
s (j )ǫ−

s (j ′) − 1]Ts(j |j ′)P (ρ, t). (6)

The step operators are defined through their action on P (ρ, t)

as

ǫ±
s (j )P [ρA(1), . . . , ρs(j ), . . . , ρC(�), t]

= P [ρA(1), . . . , ρs(j ) ± N−1, . . . , ρC(ω), t]. (7)

The notation
∑

j indicates summation over all cells j and
∑

s[jj ′] denotes summation over all species s and over all near-

est neighbor pairs j and j′.

Following Refs. 27 and 32, we determine the transition

probabilities per unit time from the mass action law, according

to which the probability per time of a transition is proportional

to the product of the concentrations of the two species that are

involved in the chemical reaction or in the position exchange.

The probability per time for a transition due to a reaction event

in cell j, TAB(j), is given by

TAB(j ) = NkρA(j )ρB(j ). (8)

The rate constant k is assumed to be the same in all cells.

The transition probability Ts(j|j′) for diffusion of a reactant

particle of species s from cell j to the nearest neighbor cell j′

is given by

Ts(j |j ′) =
NDs

2h2
ρs(j )

[

1 −
∑

m

ρm(j ′)

]

. (9)

The proportionality constant Ds (s = A, B, C) is assumed to

be the same in all cells, but can vary between species. The

system dynamics are fully defined by these transition prob-

ability rates. Note that the definition of the transition proba-

bility rates used here differs from the one employed in Lugo

and McKane32 by a factor of N�. Using the definition of the

transition rates given there,27, 32 requires rescaling of the rates

a posteriori. For clarity, we did it a priori.

In the following, we will focus on the mean species con-

centrations defined by

ρ(t) = lim
R→∞

1

R

R
∑

r=1

ρ(r)(t) =
∫

dρ ρP (ρ, t). (10)

Furthermore, we will illustrate the evolution of the concen-

tration PDF by studying the PDF of concentration values of

species s averaged over the whole domain, that is,

Ps(ρ, t) =
1

�

�
∑

j=1

δN [ρ − ρs(j, t)]. (11)

The RDME (6) is solved numerically using the Gillespie
algorithm,36, 37 which is modified to account for transitions

between cells27, 32 as outlined above. The numerical simula-

tions are performed in R = 104 realizations of the stochas-
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FIG. 1. Temporal behavior of the mean concentration of the A species. For

early times the system follows the thermodynamic law, but for large times it

deviates from t−1 to scale as t−1/4. The blue solid line represents the slope

t−1 and the black line t−1/4. The red circles corresponds to results measured

in simulations with the adopted model.

tic process. The maximum occupation number per cell is

set to N = 106. The cell length is h = 1. The num-

ber of cells and thus the length of the spatial domain is

� = 103. In each realization, the initial concentrations

ρA(j, t0) and ρB(j, t0) are chosen from independent Gaussian

distributions with mean values ρA(j, t0) = ρB(j, t0) = ρ0

= 10−3 and variances σ 2
ρs

= ρs(j, t0)/N = 10−9 for s = A, B.

The concentration of species C is initially set to zero. The to-

tal number of particles at time t0 is 105. Note that the Gaussian

initial distribution of concentration values could, in principle,

have unphysical negative values. For the setup used here, we

did not record any negative concentrations. The diffusion rate

constant is Ds = 0.5 for all species s = A, B, C and the reac-

tion rate constant is k = D/ρ0 = 5 × 102. As outlined above,

the assumption that the cell is well-mixed requires that the

characteristic diffusion time τD = h2/(2D) is of the order of

or smaller than the characteristic reaction time τ k = 1/(kρ0).

Figure 1 illustrates the behavior of the spatial average of the

mean concentration of species A, ‖ρ(t)A‖ defined as

‖ρ(t)A‖ =
1

�

�
∑

j=1

[

1

R

R
∑

r=1

ρ
(r)
A (j, t)

]

. (12)

At early times, the mean-field behavior t−1 is observed, as ex-

pected for the solution of a diffusive-reactive system under

well-mixed conditions.3 For larger times, when ‖ρ(t)A‖ is of

the order of the fluctuations, the spatial average of the mean

concentration scales as t−1/4, as observed by.1–3 The crossover

time can be obtained by equating the mean field behavior

1/(kρ0t) and the anomalous
√

ρ0(Dt)−1/4 behavior derived by

Ref. 3. Using k = D/ρ0 as indicated above, one obtains for the

crossover time tc the scaling tc ∝ ρ
−2/3

0 . When one of the two

reactants is locally consumed, the reaction stops until diffu-

sion mixes the reactants again and allow for further reactions

to take place. Figure 2 shows the evolution of the concentra-

tion PDF with time. For small times, the concentration PDF
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FIG. 2. Spatial distribution of particles in a single realization, (a), (c), and (e), and the ensemble probability density function PA(ρ, t) of concentration of species

A averaged over the domain, see Eq. (11), (b), (d) and (f) at three times: t1 = 0, t2 = 55.7, and t3 = 178.7 in arbitrary time units. On the right, the dashed vertical

black line represents the mean field φA(t), and the red dashed vertical line represents the mean ‖ρ(t)A‖ of the distribution PA(ρ, t). For PA(ρ, t) symmetric, the

two values coincide. When PA(ρ, t) starts to become skewed the ensemble average of the concentration becomes larger than the mean-field value. The blue and

red solid lines in (a), (c), and (e) correspond to the number of A and B particles, respectively. The top, middle, and bottom rows correspond to the times t1, t2,

and t3, respectively. The late times t2 and t3 correspond to the situation where islands are formed.

maintains the Gaussian shape of the initial distribution. As the

mean concentration decreases and changes its scaling to the

anomalous t−1/4 behavior, the PDF becomes asymmetric. This

change towards an asymmetric shape is due to the emerging

segregation regime described in the literature.1–3 On physical

grounds concentration must be positive. Thus, as the mean

concentration decreases, negative deviations are more limited

than positive fluctuations.

To quantify the evolution of this PDF, and subsequently

the first moment of the fluctuation distribution as well as the

mean concentration, we apply the van Kampen system size

expansion20, 38 to the RDME (6).

III. VAN KAMPEN EXPANSION AND FOKKER-PLANK
EQUATION WITH MOVING BOUNDARIES

The RDME (6) encodes both deterministic dynamics and

fluctuations due to the intrinsic stochasticity of the system.

In order to systematically analyze these two phenomena we

proceed as proposed by van Kampen.20, 38 We decompose the

system state ρs(j, t) into its mean field φs(j, t) and stochastic

fluctuations ξ s(j, t),

ρs(j, t) = φs(j, t) +
ξs(j, t)√

N
. (13)

The deterministic mean-field concentration φs(j, t) is obtained

in the thermodynamic limit of infinite system size, φs(j, t)

= limN → ∞ρs(j, t). The ensemble average over the fluctua-

tions ξs(j, t)/
√

N goes to zero in the limit of infinite system

size N. In the following we focus on the PDF of the fluc-

tuations ξ (t), which is defined by 
(ξ , t) = δξ ,ξ (t). In terms

of the concentration PDF P (ρ, t), it is obtained by variable

transform as


(ξ , t) = N−1/2P [φs(j, t) + N−1/2ξs(j, t)]. (14)

The evolution equation for 
(ξ , t) is obtained from a van

Kampen expansion of the RDME (6). In Appendix A

we obtain, at first order, the classical reaction-diffusion

equations (A8) for the mean field and the following Fokker-
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Planck equation for the fluctuations, at second order

∂
(ξ , t)

∂t
= −∇ξ · [A(t) · ξ 
(ξ , τ )]

+∇ξ · [B(t) · ∇ξ 
(ξ , τ )]. (15)

Matrices A(t) and B(t) are defined in Appendix A.

For changing system size N, numerical simulations show

that the deviation from the t−1 law is an effect of order of

N−1/2. This implies that higher order terms in the van Kam-

pen expansion are not needed to describe this phenomenon.

Notice that this is different for well-mixed chemical systems

in which higher order terms of the van Kampen expansion are

generally needed.8, 39 Thus, for incompletely mixed systems

for which diffusion is the limiting factor, anomalous kinetics

effects may arise already as a second-order effect.

The solution of Eq. (15) with natural boundary conditions

is a multi-variate Gaussian distribution. However, the concen-

tration ρs(j ) = φs(j ) + ξs(j )/
√

N is positive; thus the sup-

port of ξ is bounded. This implies that the fluctuations ξ s(j)

are within the subdomains

�sj = {ξs(j )| −
√

Nφs(j ) ≤ ξs(j ) ≤
√

N [1 − φs(j )]},

(16)

in which � =
∏

sj �sj is the full domain of the fluctuations,

see Appendix C. Here, we focus on dilute systems charac-

terized by small particle numbers, for which the anomalous

scaling of reaction kinetics arises. Therefore, the upper bound

of Eq. (15) is never reached and the lower bound is shown

here to be responsible for anomalous kinetics. The domain

of fluctuations ξ is a hypercube and each component ξ s(j) is

confined within a segment whose size varies over time. Thus,

the fluctuation PDF 
(ξ , t) evolves according to the Fokker-

Plank equation (15) with moving boundaries.39 Fluctuations

about the mean field can be characterized by the moments,

�n
i=1ξsi

(ji) =
∫

�

dξ �n
i=1ξsi

(ji)
(ξ , t). (17)

An evolution equation for the first moment is obtained using

Eqs. (15) and (17). In Appendix B, we derive

dξ s(j )

dt
= (A · ξ )s + Ss(j, t). (18)

We identify the volume term (A · ξ )s and the surface term Ss(j,

t), which is defined by

Ss(j, t) =
∫

∂�

dns(j ) · [A(t) · ξ 
(ξ , τ )]

+∇ξ · [B(t) · ∇ξ 
(ξ , τ )]ξs(j ), (19)

where ∂� denotes the surface of the domain � and dns(j ) is

the vector normal to the boundary surface. Physically, ∂� rep-

resents all possible states of the system given that at least one

island is created, i.e., somewhere in the system at least one of

the two species is absent and the chemical reaction stops lo-

cally. Note that for natural boundary conditions the surface

terms are zero. As shown in Sec. II, at early times, when

boundary effects play no role (i.e., no islands have formed),


(ξ , t) can be approximated by a Gaussian with zero mean.

With increasing time, the fluctuation PDF is growing more

and more skewed because the left boundary is approaching

zero, see Eq. (16). Also note that the mean fluctuation is non-

zero, see Figure 2, and the system behavior deviates from the

mean field.

We now consider the mean concentration ‖ρs‖
= 1

�

∑

j ρs(j, t), averaged over the spatial domain,

‖ρs(t)‖ = ‖φs(t)‖ +
‖ξs(t)‖√

N
. (20)

At late times, ‖φs(t)‖ decreases as t−1. Therefore, the scal-

ing behavior ‖ρs(t)‖ ∝ t−1/4 is governed by the mean fluc-

tuation ‖ξ s(t)‖. The scaling behavior of the latter can be ob-

tained from the spatial average of Eq. (18). As outlined in

Appendix A, to leading order, the space average of the vol-

ume term is zero. Thus, we obtain

d‖ξ s‖
dt

= ‖Ss(t)‖. (21)

The surface term ‖Ss(t)‖ controls the behavior of the mean

fluctuation. Note that the surface of the fluctuation domain,

∂�, corresponds to all possible fluctuation values when at

least one island is formed, that is, when at least one species

disappears locally. Mathematically this means that at least one

of the lower subdomain boundaries, see Eq. (16), is reached,

that is, ξs(j ) = −
√

Nφs(j ).

In order to identify the scaling behavior of ‖ξ s(t)‖, we

need to determine the surface term ‖Ss(t)‖. The leading order

contribution to ‖Ss(t)‖ is given by

‖Ss(t)‖=
1

�

∑

j

∑

s ′j ′

∫

∂�sj ′

ξs(j )Ds ′h2ξs ′ (j ′)
(ξ , t)d(∂�sj ′),

(22)

see Appendix A. Note that Eq. (22) represents a closure prob-

lem because the right side depends on the local values of

ξ s(j). Here, we close the equation by evaluating the surface

term numerically. We find that ‖Ss(t)‖ scales as t−5/4, see

Figure 3. Direct integration of Eq. (21) shows that the mean

fluctuation ‖ξ s(t)‖ scales as t−1/4, which explains the scaling

of the average concentration as t−1/4, see Eq. (20).

FIG. 3. The temporal behavior of the leading surface integral in Eq. (22)

that describes the fluctuations. As expected it scales as t−5/4. The red dots

correspond to the numerical evaluation of this term with the adopted model.

The magenta dashed line depicts a power law of t−5/4.
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IV. SUMMARY AND CONCLUSIONS

We study anomalous reaction kinetics that arise from the

segregation of reactants in diffusion reaction systems. In the

diffusion limited regime, islands containing a single reactant

are created by self organization of the system. We adopt a

stochastic approach based on the population dynamics and

a numerical method based on a suitably modified Gillespie

algorithm to study these dynamics. It is found that the break-

down of the mean field behavior and the transition to anoma-

lous reaction scaling is related to the transition of the concen-

tration PDF from a Gaussian to non-Gaussian shape.

At large time, the behavior of the reaction-diffusion sys-

tem is dominated by the concentration fluctuations, whose im-

pact on the reaction behavior can be quantified by its first mo-

ment, which, for finite system size, is different from zero. We

apply the van Kampen system size expansion to the RDME.

The first order of the expansion provides equations for the

mean field. The second order provides a Fokker-Plank equa-

tion with moving boundaries for the PDF of the concentra-

tion fluctuations. The fluctuation domain is bounded because

the concentration has non-negative values by definition. The

lower limit is given in terms of the mean-field concentration,

which decreases to zero as t−1. At large mean concentrations,

the lower boundary is negligible and the fluctuation PDF is

close to a Gaussian with zero mean. As the mean-field con-

centration goes to zero, the fluctuation PDF deviates signif-

icantly from the Gaussian shape. In this regime, the mean

concentration is dominated by the mean fluctuation, which is

completely determined by the surface terms, Eq. (22), at the

lower concentration boundary. These terms reflect the forma-

tion of islands. This result establishes a link between anoma-

lous reaction kinetics and non-Gaussian concentration PDF.
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APPENDIX A: THE VAN KAMPEN EXPANSION

Using relation (14) in Eq. (6), we obtain the following

governing equation for 
(ξ , t):

∂
(ξ , t)

∂t
−

√
N

dφ

dt
· ∇ξ
(ξ , t)

=
∑

j

[ǫ+
A (j )ǫ+

B (j )ǫ−
C (j ) − 1)TAB(j )
(ξ , t)

+
∑

s[jj ′]

(ǫ+
s (j )ǫ−

s (j ′) − 1)Ts(j |j ′)
(ξ , t). (A1)

For large N, the step operator (7) can be expanded in powers

of N−1/2 and expressed in differential form as20, 38

ǫ±
s (j )
[ξA(1), . . . , ξs(j ), . . . ξC(�), t]

=

[

1 +
∞

∑

k=1

(±1)k

k!
N−k/2 ∂k

∂ξs(j )k

]


(ξ , t). (A2)

Inserting Eqs. (13) and (A2) into the right side of Eq. (A1)

yields an expansion of the RDME in powers of N−1/2 . It has

to be noticed that the transition probabilities are proportional

to N.

The governing equations for the mean field φs(j, t) can

be obtained from the leading order term of the van Kampen

expansion. Expanding the right side of Eq. (A1) up to order√
N , we obtain in leading order

dφ

dt
· ∇ξ
(ξ , t) = (r + D) · ∇ξ
(ξ , t), (A3)

where the vector r is defined by

rs(j, t) = −kφA(j, t)φB(j, t), rC(j, t) = kφA(j, t)φB(j, t)

(A4)

for s = A, B. The vector D is given by

Ds(j, t) = Ds

{

�φs(j, t)

[

1 −
∑

m

φm(j, t)

]

+φs(j, t)
∑

m

�φm(j, t)

}

, (A5)

in which we defined the discrete Laplacian �φs(j, t)

= h−2
∑

[j ′|j ][φs(j
′, t) − φs(j, t)];

∑

[j ′|j ] denotes the sum

over the nearest neighbors of j. Thus, we obtain for the mean

field φs(j, t),

dφs(j )

dt
= Ds

{

�φs(j, t)

[

1 −
∑

m

φm(j, t)

]

+φs(j, t)
∑

m

�φm(j, t)

}

− kφA(j, t)φB(j, t),

(A6)

dφC(j )

dt
= DC

{

�φC(j, t)

[

1 −
∑

m

φm(j, t)

]

+φC(j, t)
∑

m

�φm(j, t)

}

+ kφA(j, t)φB(j, t),

(A7)

for s = A, B. In the spatial continuum limit for an obser-

vation scale L ≫ h and for dilute solutions, φs(j) ≪ 1,

Eqs. (A6) and (A7) reduce to

∂φs(x, t)

∂t
= Ds�φA(x, t) − kφA(x, t)φB(x, t),

∂φC(x, t)

∂t
= DC�φC(x, t) − kφA(x, t)φB(x, t). (A8)
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We identified here φs(j, t) = φs(x, t). If the system is not dilute,

Eqs. (A6) and (A7) do not reduce to the classical reaction-

diffusion equations as discussed in Ref. 40.

The governing equation for the fluctuation PDF, 
(ξ , t)

is obtained from the contributions to Eq. (A1) of the order

one. Thus, we obtain

∂
(ξ , t)

∂t
= (G1 + R1 + G2 + R2)
(ξ , t). (A9)

The Ri (i = 1, 2) refers to terms that originate in the reactive

transitions and are given by

R1 =
∑

j

{

−
[

∂

∂ξC(j )
−

∂

∂ξA(j )
−

∂

∂ξB(j )

]

× k[ξA(j )φB(j ) + ξB(j )φA(j )]

}

, (A10)

R2 =
∑

j

[

∂

∂ξC(j )
−

∂

∂ξA(j )
−

∂

∂ξB(j )

]2

kφA(j )φB(j ).

(A11)

The terms Gi (i = 1, 2) are due to the diffusion transitions.

They read as

G1 =−Ds

∑

js

∂

∂ξs(j )

[

�ξs(j ) + ξs(j )
∑

m

�φm(j ) − �φs(j )

×
∑

m

ξm(j ) + φs(j )
∑

m

�ξm(j ) − �ξs(j )
∑

m

φm(j )

]

,

(A12)

G2 =
Ds

4

∑

s

∑

s[jj ′]

{

φs(j )

[

1 −
∑

m

φm(j ′)

]

+φs(j
′)

[

1 −
∑

m

φm(j )

]}

×
[

∂2

∂ξs(j )2
+

∂2

∂ξs(j ′)2
− 2

∂2

∂ξs(j )∂ξs(j ′)

]

. (A13)

From the analytical expressions obtained for R1, R2, G1, and

G2, it is possible to express the sums as scalar product be-

tween the matrix A(t) and B(t) and the vector ξ of all the

fluctuations. Doing this we can express Eq. (A9) as

∂
(ξ , t)

∂t
= −∇ξ · [A(t) · ξ 
(ξ , t)]

+∇ξ · [B(t) · ∇ξ 
(ξ , t)]. (A14)

The latter is a linear multi-variate Fokker-Planck equation,

where A(t) and B(t) are 3� × 3� matrices that we can write

as a � × � block matrices

A =

⎡

⎢

⎢

⎢

⎢

⎣

A0(1) C1(2) 0 . . . C1(�)

C1(1) A0(2) C1(3) . . . 0

. . . . . . . . . . . . . . .

C1(1) 0 0 . . . A0(�)

⎤

⎥

⎥

⎥

⎥

⎦

with blocks

A0(j ) =

⎡

⎢

⎣

aAA(j ) aAB(j ) aAC(j )

aBA(j ) aBB(j ) aBC(j )

aCA(j ) aCB(j ) aCC(j )

⎤

⎥

⎦

C1(j ′) =

⎡

⎢

⎣

cAA(j ′) cAB(j ′) cAC(j ′)

cBA(j ′) cBB(j ′) cBC(j ′)

cCA(j ′) cCB(j ′) cCC(j ′)

⎤

⎥

⎦

, (A15)

in which

aAA(j ) = −kφB(j ) + DAh2(2 −
∑

m

�φm(j ) − �φA(j )

+ 2φA(j ) − 2
∑

m

φm(j )), (A16)

aAB(j ) = −kφA(j ) + DAh2(�φA(j ) + 2φA(j )), (A17)

aAC(j ) = DAh2(�φA(j ) + 2φA(j )), (A18)

aBA(j ) = −kφB(j ) + DBh2(�φB(j ) + 2φB(j )), (A19)

aBB (j ) = −kφA(j ) + DBh2(2 −
∑

m

�φm(j ) − �φB(j )

+ 2φB (j ) − 2
∑

m

φm(j )), (A20)

aBC(j ) = DBh2(�φB(j ) + 2φB(j )), (A21)

aCA(j ) = kφB(j ) + DCh2(�φC(j ) + 2φC(j )), (A22)

aCB(j ) = −kφA(j ) + DCh2(�φC(j ) + 2φC(j )), (A23)
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aCC(j ) = DCh2

(

2 −
∑

m

�φm(j ) − �φC(j )

+ 2φC(j ) − 2
∑

m

φm(j )

)

, (A24)

css(j
′) = −Dsh

2(1 + φs(j
′) −

∑

m

φm(j ′)), (A25)

csr (j ′) = −Dsh
2φs(j

′), (A26)

and

B =

⎡

⎢

⎢

⎢

⎢

⎣

B0(1) D1(2) 0 . . . D1(�)

D1(1) B0(2) D1(3) . . . 0

. . . . . . . . . . . . . . .

D1(1) 0 0 . . . B0(�)

⎤

⎥

⎥

⎥

⎥

⎦

with blocks

B0(j ) =

⎡

⎢

⎣

bAA(j ) bAB(j ) bAC(j )

bBA(j ) bBB(j ) bBC(j )

bCA(j ) bCB(j ) bCC(j )

⎤

⎥

⎦

D1(j ) =

⎡

⎢

⎣

dAA(j ) 0 0

0 dBB(j ) 0

0 0 dCC(j )

⎤

⎥

⎦

, (A27)

where

bAA(j ) = kφA(j )φB(j ) −
Ds

2

(

φA(j )

(

1 −
∑

m

φm(j ′)

)

+φA(j ′)

(

1 −
∑

m

φm(j )

))

, (A28)

bAB(j ) = kφA(j )φB(j ), (A29)

bAC(j ) = −kφA(j )φB(j ), (A30)

bBA(j ) = kφA(j )φB(j ), (A31)

bBB(j ) = kφA(j )φB(j ) −
Ds

2

(

φB(j )

(

1 −
∑

m

φm(j ′)

)

+φB(j ′)

(

1 −
∑

m

φm(j )

))

, (A32)

bBC(j ) = −kφA(j )φB(j ), (A33)

bCA(j ) = −kφA(j )φB(j ), (A34)

bCB(j ) = −kφA(j )φB(j ), (A35)

bCC(j ) = kφA(j )φB(j ) −
Ds

2

(

φC(j )

(

1 −
∑

m

φm(j ′)

)

+φs(j
′)

(

1 −
∑

m

φm(j )

))

, (A36)

dss(j ) = −Dsφs(j )

(

1 −
∑

m

φm(j ′)

)

. (A37)

At large times we disregard contributions to matrices A

and B that are of the order of t−1, that is, the terms that are

proportional to the mean field φsj(t) and powers thereof. In

this approximation, the matrix B is zero and the only non-

zero components of matrix A are

aAA(j ) = 2DAh2, (A38)

aBB(j ) = 2DBh2, (A39)

aCC(j ) = 2DCh2, (A40)

css(j ) = −Dsh
2. (A41)

Thus, matrix A reduces to the discrete Laplacian operator. In-

serting this approximation into Eq. (18) and summing over j,

the volume term on the right side is zero. Furthermore, insert-

ing the approximations for A and B into Eq. (19) and sum-

mation over j directly gives Eq. (22).

APPENDIX B: FIRST MOMENT
OF THE FLUCTUATIONS

To calculate the first moment of the sj-th component of

the fluctuations, we multiply the Fokker-Planck equation by

ξ s(j). Integrating over the fluctuations domain �, we obtain

∫

�

ξs(j )
∂
(ξ , t)

∂t
dξ = −

∫

�

ξs(j )(∇ξ · [A · ξ
(ξ , t)]

+∇ξ [B · ∇ξ
(ξ , t)])dξ . (B1)
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We integrate this expression by parts, obtaining volume and

surface terms. Using the Divergence theorem, we can evalu-

ate the integrals of divergence over a domain as integrals of

the argument of the divergence over the surface of the do-

main. Considering that the system is dilute, we assume that


(ξ , t) = 0 at the upper boundary (for ξ →
√

N (1 − φ)) and

we obtain,

dξs

dt
= (A · ξ )s +

∑

s ′j ′

∫

∂�

[ξs(j )As ′j ′s ′j ′ξs ′(j ′)
(ξ , t)] · dn

+
1

2

∑

s ′j ′

∫

∂�

[ξs(j )B · ∇s ′j ′
(ξ , t)] · dn

−
1

2

∑

s ′j ′

∑

s ′′j ′′

∫

�

esj · (BT · ∇s ′′j ′′ )
(ξ , t)dξ

−
∑

s ′j ′

∫

∂�

ξs(j )∂tξs ′ (j ′)∂t
(ξ , t)es ′j ′ · dn, (B2)

where ∂� is the surface of the domain �, dn is the vector or-

thogonal to the surface ∂�, and es is a vector with all compo-

nents equal to zero except the sj-th component which is equal

to one. This quantity derives from the integration of the term

∇s. For compactness of notation in the previous expression,

we denoted fs(j) = fs, fs ′ (j ′) = fs ′ , and fs ′′ (j ′′) = fs ′′ .

APPENDIX C: THE FOKKER-PLANK EQUATION IN
THE NON-REACTIVE ISLANDS REGIME

The number of reactants is a positively defined quan-

tity. Therefore the support of ξ is bounded, because ρs(j )

= φs(j ) + ξs(j )/
√

N is bounded between 0 and N. This

implies that the fluctuations ξ s(j) are bounded in the

subdomains

�s(j ) = {ξs(j )| −
√

Nφs(j ) ≤ ξs(j ) ≤
√

N [1 − φs(j )]},

(C1)

with � =
∏

sj �sj . As such the domain of fluctuations ξ is a

hypercube and each component of ξ s(j) is confined within a

segment whose size varies over time. In Appendix A, we de-

rived the Fokker-Planck equation for the evolution of 
(ξ , t).

We specify zero flux of 
(ξ , t) at the boundaries of the 3�-

dimensional domain �. For an infinite fluctuation domain

� and natural boundary conditions for 
(ξ , t), the solution

of Eq. (15) is a multi-variate Gaussian distribution.20, 41 In

this approximation, the solution is fully characterized by its

first and second moments. The boundary terms in Eq. (B2)

are zero. The average fluctuations ξ s(j ) decrease exponen-

tially with time. As long as the natural boundary conditions

are a valid approximation, the average behavior of the whole

system will not be affected by fluctuations. For situations in

which the mean field is not very large compared with the size

of fluctuations, the approximation of infinite fluctuation do-

main is no longer reasonable and boundary effects arise.
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2.3 An analytical solution for the islands segregation

In the same physical framework we now investigate the described OZ segregation from an-

other viewpoint. We use the method of moment equations (e.g. Neuman [1993]; Neuman and

Tartakovsky [2009]) to solve analytically the anomalous kinetics that deviates from the mean

field t−1 to t−
d
4 behavior. We consider the well known reaction diffusion equations (e.g. Neufeld

and Hernandez-Garcia [2010]):

∂φi(x, t))

∂t
− D

∂2φi(x, t)

∂x2 = −kφA(x, t)φB(x, t), (2.4)

and we treat the concentrations as random variables:

φA(x, t) = φA(x, t) + φA(x, t)′ and φB(x, t) = φB(x, t) + φB(x, t)′ (2.5)

where the overbar designates an ensemble average and the prime denotes zero-mean fluctu-

ations about the average. The full solution of this equation is the pdf for distribution of A

and B. Here, we are mainly interested in the average behavior of the concentrations and we

focus on the leading moments of the distributions. We derive equations for both, the mean

concentration that satisfy an ordinary differential equation:

∂φA(x, t)

∂t
= −kφA(x, t) φB(x, t)− kφA(x, t)′φB(x, t)′ (2.6)

and the variance φA(x, t)′φB(x, t)′. We close the system neglecting third order moments. The

previous equation is a Riccati differential equation whose solution is given in terms of the

Bessel functions of the first and second kind. We define the characteristic transition time t∗

when this anomalous kinetics arises. In this analytical framework we derive analytical expres-

sions for t∗. All physical and mathematical derivation of the analytical solution are summa-

rized in the following manuscript that has been published on Water Resources Research on 2011.

An analogous scaling has been shown to occur when the transport mechanisms are described

by super-diffusive Levy-Flight (e.g. Zumofen et al. [1996]; Leyvraz and Redner [1992]). In this

case, the mean concentration scales asymptotically as t−
1

2γ where 1 < γ < 2 characterizes

the Levy-enhanced diffusion operator. Also for this case we derive an analytical full time

expression for the mean concentration and for the characteristic transition time when the

anomalous kinetics arises (see paper in Appendix).
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[1] The effect of spatial concentration fluctuations on the reaction of two solutes, A þ B*
C, is considered. In the absence of fluctuations, the concentration of solutes decays as Adet ¼
Bdet � t�1. Contrary to this, experimental and numerical studies suggest that concentrations
decay significantly slower. Existing theory suggests a t�d/4 scaling in the asymptotic regime
(d is the dimensionality of the problem). Here we study the effect of fluctuations using the
classical diffusion-reaction equation with random initial conditions. Initial concentrations
of the reactants are treated as correlated random fields. We use the method of moment
equations to solve the resulting stochastic diffusion-reaction equation and obtain a solution for
the average concentrations that deviates from �t�1 to�t�d/4 behavior at characteristic
transition time t�. We also derive analytical expressions for t� as a function of Damköhler
number and the coefficient of variation of the initial concentration.

Citation: Tartakovsky, A. M., P. de Anna, T. Le Borgne, A. Balter, and D. Bolster (2012), Effect of spatial concentration fluctuations

on effective kinetics in diffusion-reaction systems, Water Resour. Res., 48, W02526, doi:10.1029/2011WR010720.

1. Introduction

[2] Incomplete mixing of solutes and spatial fluctuations
in concentration fields have been identified as a major
cause of failure of deterministic effective models, such as
deterministic diffusion-reaction equations, to accurately
simulating mixing-controlled reactions. Spatial fluctuations
in the concentration of the reactive species can be caused
by the thermal fluctuations of molecules [Ovchinnikov and
Zeldovich, 1978; Toussaint and Wilczek, 1983], turbulent
flows [Hill, 1976] or highly nonuniform laminar flows
(e.g., flow in porous media) [Tartakovsky et al., 2008,
2009; Raje and Kapoor, 2000; Luo et al., 2008; Bolster
et al., 2011; Le Borgne et al., 2011].
[3] In the case of porous media, the fluctuations cause

the classical advection-dispersion-reaction (ADR) equa-
tions with constant transport coefficients to overestimate
the extent of the mixing controlled reactions [Battiato and
Tartakovsky, 2011; Battiato et al., 2009; Tartakovsky
et al., 2009; Le Borgne et al., 2010]. Similar problems
occur in a purely diffusive systems where thermal fluctua-
tions of molecules lead to incomplete mixing [Ovchinnikov
and Zeldovich, 1978; Toussaint and Wilczek, 1983]. In
order to tackle the discrepancies with traditional homoge-
nous (ADE) equations, a variety of novel models have
emerged. These include stochastic Langevin approaches
[Tartakovsky et al., 2008; Tartakovsky, 2010], perturbation

models [Luo et al., 2008], and adaptations of a variety of
popular nonlocal models such as continuous time random
walks [Edery et al., 2009, 2010], fractional ADEs [Bolster
et al., 2010], multirate mass transfer [Donado et al., 2009;
Willmann et al., 2010], memory effect models [Dentz et al.,
2011] and models with time-dependent rate coefficients
[Sanchez-Vila et al., 2010]. However, many of these
approaches involve effective parameters, which cannot be
computed a priori from the physical properties of the sys-
tem and have to be found through model calibration with
experimental data.
[4] In this work, we use the moment equation approach

[e.g., D. M. Tartakovsky et al., 2002, 2003; A. M. Tartakovsky
et al., 2003, 2004a, 2004b] to quantify the effect of incom-
plete mixing in diffusion-reaction systems. We focus on a
nonlinear reaction involving diffusion of two species, A
and B, that react with each other kinetically as A þ B! C.
We assume that A and B have the same initial concentra-
tion and are macroscopically well mixed before the onset
of the reaction. In the absence of spatial fluctuations (i.e., a
fully mixed system at all times), a well known analytical
solution exists and the average concentrations decay as
Adet ¼ Bdet � t�1.
[5] Recent numerical studies by Benson and Meer-

schaert [2008] and de Anna et al. [2011] suggest that while
this analytical solution may be valid at early times, at late
times a different slower scaling emerges. These observa-
tions are in line with previous observations from the
physics community [Hill, 1976; Toussaint and Wilczek,
1983; Kang and Redner, 1985] and a variety of theoretical
models [Ovchinnikov and Zeldovich, 1978; Toussaint and
Wilczek, 1983; Kang and Redner, 1985]. The latter are
based on late time asymptotic arguments, and suggest a late
asymptotic decay of the concentrations that is proportional
to t�d=4, where d is the spatial dimensionality of the prob-
lem. These models established that, for sufficiently fast
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reactions, initial fluctuations in the concentrations cause seg-
regation of the reactants into separate islands of A and B,
(i.e., parts of the domain occupied dominantly by species A
or B). In this situation, reactions are limited by how quickly
diffusion of particles can cause mixing of A and B across
the boundaries of the islands. Thus, the mixing of species is
limited and the temporal decay of the concentrations slows
down. This anomalous scaling of diffusion-limited reactions,
related to segregation of reactants into islands, was experi-
mentally observed byMonson and Kopelman [2004].
[6] These past theoretical works have focused primarily

on the establishment of the late asymptotic behavior of the
concentrations. Also, in the previous studies the initial fluc-
tuations of each species were assumed to be uncorrelated
(fluctuations with zero correlation length). The standard
deviation of the fluctuations was implicitly assumed to be
equal to the square root of the initial number of the reactive
particles. In a number of important applications (e.g., tur-
bulent mixing and transport in porous media), the initial
fluctuations in concentrations may have nonzero correlation
lengths. For example, if the reactive solutions are rapidly
brought in contact by nonuniform advection (and allowed
to diffuse and react), then the initial correlation length of
the concentration fluctuations will depend on the statistics
of the velocity field, and can in principle be as large as the
size of the domain. The standard deviation of the concen-
trations in these applications represents the degree of mix-
ing, and can also be arbitrarily large.
[7] To study the effect of fluctuations, we employ a diffu-

sion-reaction equation with random initial conditions. In the
past, diffusion-reaction type equations have been used to study
the effect of random concentration fluctuations on scales rang-
ing from the molecular scale [Ovchinnikov and Zeldovich,
1978] to the field scale [Sanchez-Vila et al., 2008], though
advection is usually also considered in the latter case. Here the
initial concentrations of the reactants are treated as correlated
random fields with spatially constant and equal statistical
means and variances. The random initial conditions render the
diffusion-reaction equation stochastic. We use the moment
equation approach to derive deterministic equations for the
mean and variance of the concentrations. The solution for the
mean concentrations shows that the average concentration
deviates from � t�1 to � t�d=4 behavior at a characteristic
transition time t�, which depends on the Damköhler number,
Da. We obtain analytical expressions for t� as a function of
Da. The solutions are used to study the effect of initial average
concentration, variance, correlation length, cross correlation,
and the size of the domain on the Aþ B* C reaction.

2. Problem Formulation

[8] Our goal is to study the effect of random fluctuations
in concentration fields on chemical reactions. Specifically,
we study an irreversible reaction between two species, A
and B, that is described by a diffusion-reaction equation:

@Iðx; tÞ
@t

¼ D�Iðx; tÞ � kAðx; tÞBðx; tÞ; x 2 � I ¼ A;B;

(1)

where A and B are the concentrations of species A and B, D
is the diffusion coefficient, k is the rate coefficient of the

irreversible reaction, and � ¼ r2 is the Laplace operator.
We consider two special cases: (1) diffusion in an infinite
d-dimensional domain � (d ¼ 1; 2; 3) and (2) diffusion in a
finite one-dimensional domain � ¼ ð0; LÞ subject to peri-
odic boundary conditions.
[9] We treat the concentrations as random variables :

Aðx; tÞ ¼ Aðx; tÞ þ A0ðx; tÞ Bðx; tÞ ¼ Bðx; tÞ þ B0ðx; tÞ; (2)

where the overbar designates an ensemble average and the
prime denotes zero-mean fluctuations about the average.
We assume equal initial ensemble averaged concentrations
of A and B:

Aðx; 0Þ ¼ Bðx; 0Þ ¼ C0: (3)

Unlike previous work [Ovchinnikov and Zeldovich, 1978;
Toussaint and Wilczek, 1983], we assume the initial fluctu-
ations, A0ðx; 0Þ and B0ðx; 0Þ, to be spatially correlated fields.
This allows us to study the effect of spatial correlation of
the concentrations on the chemical reaction. In the follow-
ing we study this system for several initial autocovariance
functions. Specifically, we consider initial exponential and
delta autocovariance functions. The exponential autocovar-
iance function has a form:

A0ðx; 0ÞA0ðy; 0Þ ¼ B0ðx; 0ÞB0ðy; 0Þ ¼ �2e�
jx�yj
l ; (4)

where �2 is the initial variance of the concentrations (� is the
initial standard deviation of fluctuations) and l is the initial
correlation length. Assuming that the initial fluctuations of A
and B are caused by the same physical processes, we pre-
scribe the same variances and correlation for both reactants.
[10] When the correlation length is small relative to the

size of the domain, one can replace the exponential autoco-
variance function with the delta autocovariance function:

A0ðx; 0ÞA0ðy; 0Þ ¼ B0ðx; 0ÞB0ðy; 0Þ ¼ �2ld�ðx� yÞ: (5)

[11] In a well-mixed purely diffusive system (in the ab-
sence of reactions), the fluctuations in the concentrations
are caused by thermal fluctuations of particles. In this case,
the fluctuations have a correlation length, l, of the order of
the particle diameter, and under most circumstances the
delta autocovariance function will provide an accurate rep-
resentation of the spatial correlation of the fluctuations. In
other nonreactive, but hydrologically related stochastic
model studies the delta correlation has been shown to give
asymptotically similar results as short-range correlation
functions such as exponential and Gaussian [e.g., Neu-
weiler et al., 2003]. We show in section 4.2.2 that the delta
function approximation can be used only to predict the
mean and variance of the concentrations for times larger
than tD=8�, where tD is the diffusion time:

tD ¼ l
2

D
: (6)

In the absence of reaction, tD is the time it takes for a
region of size l to become well mixed by diffusion. For
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smaller times, the delta function approximation leads to
unphysical behavior of the ensemble average and/or var-
iance of the concentrations.
[12] Initial large-scale concentration fluctuations can be

caused by poor mechanical mixing of two solutes due to
fluctuations in advective velocities that brought two solutes
in contact. In this case, the correlation length depends on
the degree of mixing and can be of the same order (or
smaller) as the domain size. Under such conditions, we
chose the exponential autocovariance function (4) to
describe initial correlation of the fluctuations of A and B,
but one could also consider other correlation functions.
[13] To complete the problem formulation, we specify a

cross-covariance function A0ðx; 0ÞB0ðy; 0Þ at time t ¼ 0. We
consider two types of cross correlations: anticorrelation
and no cross correlation. The initial anticorrelation assumes
that in a volume with a large concentration of one reactant
(relative to the average value of the concentration) the con-
centration of another reactant is small. The anticorrelation
is described by a cross-covariance function:

A0ðx; 0ÞB0ðy; 0Þ ¼ ��2e�
jx�yj
l (7)

if both concentrations, A and B, have the initial exponential
correlation and

A0ðx; 0ÞB0ðy; 0Þ ¼ ��2ld�ðx� yÞ (8)

if A and B are initially � correlated.
[14] For completeness, we also consider a case where the

initial cross covariance is zero,

A0ðx; 0ÞB0ðy; 0Þ ¼ 0: (9)

[15] Kang and Redner [1985] previously justified the emerg-
ing scaling law t�

d
4 with the formation of islands of segregated

solutes. The initial anticorrelation is a necessary but not a suffi-
cient condition for the existence of the islands and the initial
condition (7) or (8) does not imply presence of islands at t¼ 0.
Furthermore, the following analysis shows that after the onset
of the reaction, the scaling changes from t�1 to t�

d
4 regardless

of the initial cross correlation, but the transition time from one
scaling law to another depends on variance, correlation length
and the form of cross-covariance function.
[16] The random initial concentrations render the diffu-

sion-reaction equation (1) stochastic. The full solution of
this equation is the probability density functions for distri-
bution of A and B. In this work, we are mainly interested in
the average behavior of the concentrations and we focus on
the leading moments of the distributions namely the mean
(ensemble averaged) concentrations and the concentration
variances (a measure of uncertainty). The differential equa-
tions for the leading moments are obtained using the
method of moment equations [D. M. Tartakovsky et al.,
2003]. The details of the derivation of the moment equa-
tions are given in Appendix A.
[17] The average concentrations A and B satisfy an ordi-

nary differential equation:

@I

@t
¼ �kAB� kA0B0 ; I ¼ A;B; (10)

where A0ðx; tÞB0ðx; tÞ ¼ B0ðx; tÞA0ðx; tÞ. In equation (10), A
and B satisfy the same initial condition (equation (3)), and
hence,

AðtÞ ¼ BðtÞ: (11)

[18] Now let us define f ðx; y; tÞ ¼ A0ðx; tÞB0ðy; tÞ �
A0ðx; tÞA0ðy; tÞ and gðx; y; tÞ ¼ A0ðx; tÞB0ðy; tÞ þ A0ðx; tÞ
A0ðy; tÞ. The governing equations for these functions are
(Appendix A)

@f ðx; y; tÞ
@t

¼ 2D�f ðx; y; tÞ (12)

@gðx; y; tÞ
@t

¼ 2D�gðx; y; tÞ � 4kAðx; tÞgðx; y; tÞ; (13)

where y 2 �.
[19] It is important to note that in the derivations of (13)

we disregard the third moment. Once we have solved for f
and g, the autocovariance and cross covariance can be cal-

culated as 2A0ðx; tÞA0ðy; tÞ ¼ gðx; y; tÞ � f ðx; y; tÞ and

2A0ðx; tÞB0ðy; tÞ ¼ gðx; y; tÞ þ f ðx; y; tÞ.
[20] The autocovariances A0ðx; tÞA0ðy; tÞ and B0ðx; tÞ

B0ðy; tÞ (A0ðx; tÞA0ðy; tÞ ¼ B0ðx; tÞB0ðy; tÞ) satisfy either ini-
tial conditions (4) or (5) and the cross covariance

A0ðx; tÞB0ðy; tÞ satisfies initial conditions (7), (8) or (9)
depending on the type of initial autocorrelation and cross
correlation of the fluctuations. These initial conditions
define initial conditions for f and g.
[21] The boundary conditions for the autocovariance

and cross covariance defined on the infinite d-dimensional
domain � are

gðx; y; tÞ ¼ 0; xi ¼ 61; i ¼ 1; . . . ; d; (14)

f ðx; y; tÞ ¼ 0; xi ¼ 61; i ¼ 1; . . . ; d; (15)

respectively, where x ¼ ðx1; x2; x3ÞT and y ¼ ðy1; y2; y3ÞT .
These boundary conditions specify that the autocovariance
and cross covariance are zero far away from the point y.
Furthermore, without loss of generality, we set yi ¼ 0
(i ¼ 1; . . . ; d).
[22] In the case of the one-dimensional periodic finite

size domain ð0; LÞ, the domain can always be centered
around the point y (i.e., y in the one-dimensional version of
(12) and (13) can be set to y ¼ y� ¼ L=2). For the consid-
ered initial conditions, only homogeneous Neumann
boundary conditions for equations (12) and (13) can satisfy
the periodic conditions. Then the appropriate boundary
conditions for equations (12) and (13) are

@f ðx; y; tÞ
@x

¼ 0; x ¼ 0; L; (16)

@gðx; y; tÞ
@x

¼ 0; x ¼ 0; L; (17)

respectively.
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3. Solution of the Deterministic Diffusion-
Reaction Equation

[23] If the initial fluctuations are absent or very small
and can be disregarded, then the diffusion-reaction equa-
tion reduces to a deterministic equation:

@Idet
@t

¼ �kI2det; Idet ¼ Adet;Bdet; (18)

where the subscript det stands for the deterministic concen-
trations (with zero initial fluctuations). The solution of
this equation, subject to the initial conditions Adetð0Þ ¼
Bdetð0Þ ¼ A0, is

AdetðtÞ ¼ BdetðtÞ ¼
A0

A0kt þ 1
: (19)

4. Moment Equations for Initially
Anti-Cross-Correlated A and B

[24] For initially anticorrelated A and B, the auto-
covariance and cross-covariance functions satisfy the initial
condition

A0ðx; 0ÞA0ðy; 0Þ ¼ �A0ðx; 0ÞB0ðy; 0Þ ¼ �2�ðx� yÞ; (20)

where �ðx� yÞ is the exponential or delta correlation func-
tion. For this initial condition, we can solve the moment

equations (12) and (13) by recognizing that A0ðx; tÞ
A0ðy; tÞ ¼ �A0ðx; tÞB0ðy; tÞ, f ¼ 2A0ðx; tÞB0ðy; tÞ and g � 0.
Then equation (12) can be reduced to

@A0ðx; tÞB0ðy; tÞ
@t

¼ 2D�A0ðx; tÞB0ðy; tÞ; (21)

subject to initial condition (20). The boundary conditions
for the infinite d-dimensional domain are given by equation
(15). For the one-dimensional domain, equation (21) is sub-
ject to the homogeneous boundary conditions that can be
obtained from equations (16) and (17). Note that equation
(12) for f is exact, and therefore, the system of the moment
equations (10) and (21) is also exact.

4.1. Solution of the Moment Equations for Finite
One-Dimensional Domain

[25] In a one-dimensional domain, the one-dimensional
version of the diffusion equation for the cross covariances
satisfies the homogeneous Neumann boundary conditions
(17) and the initial condition (7). The solution can be
found using the method of separation of variables and is
given by

A0ðx; tÞB0ðy�; tÞ ¼ c0 þ
X

1

n¼1
cnðy�Þe�2D

n2�2

L2
t
cos

n�x

L

� �

; (22)

where y� ¼ L=2,

c0 ¼ � 2l�
2

L
1� e�L

2l

h i

; (23)

cn ¼ � 2l�
2

L
2cos

n�

2

� �

� e�L
2l � e�L

2lcos ðn�Þ þ n�l
L
e�

L
2lsin ðn�Þ

� �

� 1þ n
2�2l2

L2

� ��1
:

(24)
[26] The variance of the concentrations A and B is

A0A0ðtÞ ¼ B0B0ðtÞ ¼ �A0ðy�; tÞB0ðy�; tÞ; (25)

and the mean concentrations AðtÞ and BðtÞ (AðtÞ ¼ BðtÞ)
satisfy the nonlinear ordinary differential equation:

@I

@t
¼ �kI2 � kA0ðy�; tÞB0ðy�; tÞ; I ¼ A;B: (26)

[27] In general, this equation should be solved numeri-
cally. For very large domains and/or early times
(Dt=L2 � 1), the series in equation (22) converges slowly,
but the solution for this case can be simplified by solving
the diffusion-reaction equation in the infinite domain
(L! 1 limit).

4.2. Solution in the Lfi ‘ Limit

[28] In a system with observation time much smaller

than L
2

D
, we can assume that the domain � is infinite. Then

equation (21), subject to boundary condition (15) and initial

cross covariance A0ðx; 0ÞB0ðy�; 0Þ, has a solution [Carslaw
and Jaeger, 1972]:

A0ðx; tÞB0ðy�; tÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p

Z

�

exp �ðx� zÞ2
8Dt

" #

A0ðx; 0ÞB0ðy�; 0Þdz:

(27)

4.2.1. Initial Exponential Correlation of Fluctuations
[29] In a one-dimensional domain, the cross covariance

(27), subject to the initial condition (7), is given by

A0ðx;tÞB0ðy�;tÞ¼� �2
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p

Z 1

�1
exp �ðx�zÞ2

8Dt

" #

�exp �jz�y�j
l

� �

dz:

(28)

[30] The variance and covariance of the concentrations
can be found by setting x¼y� in equation (28) such that

A0ðy�;tÞA0ðy�;tÞ ¼B0ðy�;tÞB0ðy�;tÞ ¼�A0ðy�;tÞB0ðy�;tÞ

¼�2exp 2Dt
l2

� �

erf

ffiffiffiffiffiffiffiffi

2Dt
p

l

� �

�1
� �

:
(29)

This is a function of time only, and not of space. Expanding
this solution in a Taylor series and gathering low-order
terms yields a simplified form for the cross variance (and
the variances of the concentrations):

A0ðy�;tÞB0ðy�;tÞ ¼A0B0ðtÞ¼

��2 1� 8D

�l2

� �

1

2
t

1

2

0

B

@

1

C

A
; t� tD

2

��2 l2

2�D

� �

1

2
t
�
1

2; t	 tD

2
:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(30)
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4.2.2. Initially Delta-Correlated Fluctuations
[31] For initially delta function correlated A and B, the

cross covariance in the d-dimensional domain takes the
form

A0ðx;tÞB0ðy�;tÞ ¼� �2ld

ð8�DtÞd=2
Z

�

exp �ðx�zÞ �ðx�zÞ
8Dt

� �

�ðz�y�Þdz

¼� �2ld

ð8�DtÞd=2
exp �ðx�y�Þ �ðx�y�Þ

8Dt

� �

:

(31)

Setting x¼y�, we obtain an expression for the variance and
covariance of the concentrations:

A0ðtÞA0ðtÞ ¼�A0ðtÞB0ðtÞ ¼ �2ld

ð8�DtÞd=2
: (32)

[32] The solution for the variance of A, equation (32), is
obtained by approximating the exponential autocorrelation
function with a delta autocorrelation function. This approx-
imation is not valid for small times. For example, at time
t ¼ 0 the variance of the concentration should be equal to
�2, but equation (32) results in an infinite variance. Also,
the averaged concentration, obtained from equations (10)
and (32), increases for times smaller than

t<
tD

8�
; (33)

which is unphysical for the reaction system considered
here. To rectify the situation with equation (32), we neglect
time smaller than t¼ tD=8�, essentially assuming that no,
or negligible, reaction occurs until then. At time t¼ tD=8�
the variance of A, given by equation (32), is equal to the

initial variance, A0A0ðtDÞ¼�2, and for time t> tD the aver-
age concentration decreases with time, as should be the
case for the irreversible reaction studied here. We shift
time by introducing a new variable, �¼ t� tD=8�, and
rewrite equation (10) as

@~A

@�
¼�k~A

2

þk �2ld

ð8�DÞd=2
ð�þ tD

8�
Þ�d=2; � >0; (34)

subject to the initial condition

~A ð�¼0Þ¼ A0; (35)

where ~Að�Þ¼Aðtþ tD=8�Þ. The solution of equation (34)
can be found analytically as

~A ð�Þ ¼

�
ffiffiffiffiffiffiffiffiffi

�ak
p

ð� þ tD
8�Þ

1�d
4ðc1Jb1ðwÞ � c1Jb2ðwÞ � 2J�b1 ðwÞÞ � c1Jb3ðwÞ
2kð� þ tD

8�Þðc1Jb3ðwÞ þ J�b3 ðwÞÞ
;

(36)

where c1 is given by the initial condition (35), JaðzÞ is a
Bessel function of the first kind, and

a ¼ �2ld

ð8�DÞd2
; w ¼ 4

ffiffiffiffiffiffiffiffiffi

�ak
p

4� d � þ tD

8�

� �1�d
4

; b1 ¼
2� d
4� d ;

b2 ¼
6� d
4� d ;

(37)

b3 ¼ � 2

4� d :
(38)

Setting d ¼ 1 in equation (32) recovers the scaling behavior
of the one-dimensional covariance with initial exponential
correlation, equation (30), for t > tD=2. This means that for
times greater than t > tD=2, the average concentration for-
gets the initial correlation of the fluctuations and the initial
� correlated can be taken as a good approximation. For
time smaller than t0, the solution can be obtained using the
covariance function (30).
[33] Defining a new variable, r ¼ jx� yj, we rewrite

equation (31) as A0A0ðr; tÞ ¼ � �2ld

ð8�DtÞd=2 exp ½�
r2

8Dt

: The cor-

relation length of the fluctuations can be defined as

�ð�Þ ¼
Z 1

0

A0A0ðr; �Þ
A0A0ð0; �Þ

dr ¼
Z 1

0

exp � r2

8D � þ tD
8�

	 


 !

dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�D � þ tD

8�

� �

r

:

(39)

[34] The correlation length is a measure of the average size
of a subdomain where one of the two reactants is absent. For

time � 	 tD
8�, � grows as ðD�Þ

1
2. In this regime, the concentra-

tion field is composed of segregated ‘‘islands’’ of A and B
[Kang and Redner, 1985]. Then �ðtÞ becomes a statistical
measure of the size of these islands, and according to equation

(39) the size grows with time as t
1
2. A similar scaling law for

the size of the islands was phenomenologically postulated,
but not explicitly derived, by Kang and Redner [1985].

5. Moment Equations for A and B With Initially
Zero Cross Correlation

[35] Here we consider a case when A and B are initially
uncorrelated, A0ðx; 0ÞB0ðy; 0Þ ¼ 0. We obtain a solution for
the mean and variance of the concentrations in a one-dimen-
sional infinite domain. For conciseness, here we consider a
solution for the delta function correlation. The solution for
the exponential correlation function can be obtained in a
similar way. Using the delta function approximation of the
exponential autocovariance function for A and B, equations
for the mean and variance of the concentration have the
form (Appendix B)

A0B0ðtÞ ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p e

�4k

Z t

0

Aðt0Þdt0
� 1

2

6

4

3

7

5
; t > 0; (40)

@A

@t
¼ �kA2 � k �2l

2
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p e

�4k

Z t

0

Aðt0Þdt0
� 1

2

6

4

3

7

5
; t > 0; (41)
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A0A0ðtÞ ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p e

�4k

Z t

0

Aðt0Þdt0
þ 1

2

6

4

3

7

5
; t > 0; (42)

subject to the initial condition Aðt ¼ 0Þ ¼ A0:
[36] As in the case of initially anticorrelated A and B,

using the � correlation approximation of the exponential
correlation function leads to an unphysical behavior such
as infinite variance of the concentrations, A0A0ðtÞ, at time
zero. To make use of the � correlation approximation, we
assume that the reaction does not occur until t ¼ tD=8� and
equations (40)–(42) can be rewritten using a new variable,
� ¼ t � tD, as

A0B0ð�Þ ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�Dð� þ tD=8�Þ
p e

�4k

Z �

0

Að� 0Þd� 0
� 1

2

6

4

3

7

5
; � > 0;

(43)

@A

@�
¼�kA2�k �2l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�Dð�þ tD=8�Þ
p e

�4k

Z �

0

Að� 0Þd� 0
�1

2

6

4

3

7

5
; � >0;

(44)

A0A0ð�Þ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�Dð�þ tD=8�Þ
p e

�4k

Z t

0

Að� 0Þd� 0
þ1

2

6

4

3

7

5
; � >0;

(45)

subject to the initial condition Að�¼0Þ¼A0.

[37] The covariance of A is given by equation (B16).
The correlation length is given by

�ð�Þ ¼
Z 1

0

A0A0ðr; �Þ
A0A0ð0; �Þ

dr ¼
Z 1

0

exp ð� r2

8Dð� þ tD=8�Þ
Þdr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Dð� þ tD=8�Þ
p

;

(46)

which at late times scales as �
1
2. This is the same scaling

behavior as we saw earlier for the correlation length for
fluctuations with initial anticorrelation (equation (39)). The
comparison of equations (39) and (46) shows that the corre-
lation length of A (and B) for initially anticorrelated A and
B grows with the same rate as the correlation length for ini-
tially uncorrelated A and B.

6. Results: Impact of Concentration Fluctuations
on Effective Kinetics

6.1. Infinite Domain

[38] For the anticorrelated case, Figures 1 and 2 show
the averaged concentration and the standard deviation of
the concentration for two different Damköhler numbers,

Da ¼ tD
tk
¼ A0kl

2

2D
, defined as the ratio between the character-

istic diffusion and reaction times, tD ¼ l2

2D
and tk ¼ 1

A0k
. In

Figure 3 we compare the anticorrelated case with the zero
cross-correlated case. In Figures 1–3, at early times when
variance and covariance of the concentrations are relatively

small, A and B follow the deterministic solution (19). At

later times, when A and B become comparable to
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

,

Figure 1. Average concentration (red dotted line) versus time in a one-dimensional infinite domain.
The blue dot is the concentration at the diffusion time tD ¼ l2

2D
, and the black dot is the concentration at

the transition time given by equation (50). The black dashed line is
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

, the magenta dashed line
shows t�1 scaling, and the green line shows t�1=4 scaling. The parameters are l ¼ 0:1, D ¼ 10�6,
�2 ¼ 10�5, and k ¼ 10, which correspond to Da > C�0.
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the average concentration deviates from the deterministic

solution. Note that the term A0B0 is negative for all the ini-
tial conditions considered (equations (29), (32) and (43)).

Therefore, �A0B0 is a source term while �A2 is a sink term
for equation (10), and the system dynamically balances at

I �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

(I ¼ A;B). Since A0B0 � t�d=2 (equations
(30), (32) and (43)), the average concentration switches its

behavior from t�1 to t�d=4. The coefficient of variation,

CvðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0A0ðtÞ
q

AðtÞ
; (47)

increases with time and asymptotically approaches unity.

For the early times, A
2 	 A0A0 ¼ �A0B0 and the term

kA0B0 in equation (26) can be ignored. Thus, A behaves like

the deterministic concentration, Adet ¼ A0
A0 ktþ1

. As time

increases, so does the covariance term �kA0B0 relative to
the reaction term kA

2
, and this slows the decay of A.

[39] Figure 3 compares the mean and the standard devia-
tion of the concentrations for different initial cross correla-
tions of fluctuations of A and B. The solutions are obtained
for one-dimensional infinite domains for initially anticorre-
lated (equation (8)) and uncorrelated (equation (9)) fluctua-
tions. In both cases, the initial autocovariance function (5)
is assumed. Figure 3 shows that the variance of the concen-
tration A (and B) is larger for initially anti-cross-correlated
fluctuations than for initially uncorrelated fluctuations for

all times greater than zero. The same is true for the average
concentrations. Also, average concentrations for initially
anti-cross-correlated fluctuations transition earlier to the
t�1=4 behavior than the average concentrations with ini-
tially uncorrelated fluctuations.

6.2. Finite Domain

[40] Figures 4–6 show the average one-dimensional con-
centration AðtÞ versus time for various parameters obtained
from the numerical integration of equation (26). Figure 4
depicts A versus t for various domain sizes L. The azure
line shows the deterministic solution (19) without the fluc-
tuations. This solution decreases to zero as t�1 after
t > ðA0kÞ�1. As for the infinite domain, the average con-
centration first follows the deterministic solution (scales as
t�1), but later the scaling of the average concentration
changes to t�1=4 and finally asymptotically approaches c0.
Thus, the fluctuations slow the rate of decrease in the con-
centration. As the domain size L increases, the solution rap-
idly approaches the solution for the infinite domain.
[41] As a result of the reaction, the average concentration

decreases from its initial value to an asymptotic value c0
(equation (23)) that depends on the initial variance of the
concentration, the correlation length, and the size of the do-
main. This means that, on average, not all of A and B react.
This is because owing to initial random fluctuations in con-
centrations A and B, in a domain of finite size in each par-
ticular realization, the initial total mass of A is not exactly
equal to the initial total mass of B. This shows that the ran-
dom concentration field in a finite domain has not attained

Figure 2. Average concentration (red dotted line) versus time in a one-dimensional infinite domain.

The blue dot is the concentration at the diffusion time tD ¼ l2

2D
, and the black dot is the concentration at

the transition time given by equation (50). The black dashed line is
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

, the magenta dashed line

shows t�1 scaling, and the green line shows t�1=4 scaling. The parameters are l ¼ 0:1, D ¼ 10�2,
�2 ¼ 10�5, and k ¼ 10, which correspond to 1 < Da < C�0.
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ergodic conditions and the spatial average of the concentra-
tion in each particular realization is not equal to its ensem-
ble average. Problems associated with ergodicity are
common in the application of stochastic models to water
resources. The system becomes ergodic as the domain size
approaches infinity. The standard deviation of the concen-
trations decreases from its initial value to the constant c0.
The asymptotic value c0 goes to zero with decreasing l/L
and decreasing initial variance of the fluctuations.
[42] Figure 5 displays A versus t for various correlation

lengths l. The solution for the average concentration with
initial correlation length l ¼ 0 is equivalent to the solution
for deterministic concentration (blue line). For l > 0, the
average concentration follows the deterministic solution
(decreases as t�1) at early times, but later the average con-
centration decays as t�1=4 and eventually approaches the
asymptotic value c0.
[43] Figure 6 shows A versus t for different �2. In the

limit �2 ¼ 0, the system is a deterministic homogeneous
mixture and the solution for A is given by Adet (blue line).
For �2 > 0, A follows Adet (decreases as t

�1) at the early
time, and later A decays as t�1=4 and eventually approaches
the asymptotic value c0.

[44] It is evident from Figures 4–6 that disregarding fluc-
tuations leads to an overestimation of the extent of the reac-
tion and an underestimation of the averaged concentration.
The error increases with increasing �2 and l and decreasing
L. Such quantitative results play an important role in deter-
mining reaction rates in real systems such as porous media
or turbulent streams where mixing is often incomplete and
segregation of reactants into islands is commonplace. The
analysis in this work is presented to provide an analytical
foundation for extensions to such cases.

7. Characteristic Transition Time t*

[45] In a purely diffusive system, the variance of the
fluctuations, �2, is usually small, regardless of the origin of
the fluctuations. Therefore, the initial coefficient of varia-
tion, Cv0, should be a small number:

0 < Cv0 ¼
�

A0
< 1: (48)

[46] We demonstrated above that in the diffusion-reac-
tion system, equation (1), for any nonzero Cv0 ¼ Cvð0Þ at
late times CvðtÞ approaches unity. The asymptotic increase
of the coefficient of variation from an arbitrarily small
value to unity is the primary cause of different early and
late time scalings of the average concentrations.
[47] Here we derive estimates for the characteristic tran-

sition time t� after which the scaling behavior of the aver-
age concentrations change to t�d=4. We obtain the estimates
of t� for diffusion and reaction in infinite d-dimensional
domains for fluctuations with different initial autocorrela-
tion and cross correlation.

7.1. Infinite One-Dimensional Domain: Initially
Anticorrelated Fluctuations With Exponential
Autocovariance Function

[48] For early times, Cv � 1; therefore, the average con-
centrations are well described by the solution for the deter-
ministic concentration Adet. The solution will deviate from
Adet at time t

�, when the term A0B0 is comparable to �A2.
[49] The characteristic time t� can be found as the solu-

tion of an algebraic equation:

Adetðt�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0ðt�Þ
q

: (49)

The solution of this equation depends on the Damköhler

number, Da ¼ A0kl
2

D
. For times greater than the characteris-

tic chemical time tk ¼ 1
A0k
, the deterministic solution

decreases as Adet � ðktÞ�1.
[50] We consider t� for different Damköhler numbers :

(1) Da > C�1
v0 , fast reaction and tk < tD (Figure 1); (2)

1 < Da < C�1
v0 , medium reaction and tk < tD (Figure 2);

and (3) Da < 1, slow reaction and tk > tD.

7.1.1. Case 1: Da > C�1
v0

[51] The curves for AdetðtÞ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0ðtÞ
q

intersect at
time t� such that: tk � t� � tD. Within this interval,

AdetðtÞ � 1
kt
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

� �, and the solution of equation
(49) is

t� ¼ 1

k�
¼ tkC�1

v0 : (50)

Figure 3. Average concentration and the standard devia-
tion of the concentration for initial fluctuations with zero
cross correlation and anti–cross correlation in an infinite
one-dimensional domain. Red open triangles depict the av-
erage concentration for initially uncorrelated fluctuations.
Open green circles denote the average concentration for
initially anticorrelated fluctuations. The red line is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0ðtÞ
q

for initially uncorrelated fluctuations. Red solid

triangles depict

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0A0ðtÞ
q

for initially uncorrelated fluctua-

tions. The green line is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0ðtÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0A0ðtÞ
q

for initially

anticorrelated fluctuations. The black line is Adet. The val-

ues of the parameters are l ¼ 0:00015, D ¼ 0:1, �2 ¼ 0:5,
k ¼ 107, and Da ¼ 2:25.
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Figure 4. Average concentration in the finite one-dimensional domain versus time as a function of the
domain of size L : red line, L ¼ 0:5; green line, L ¼ 1; yellow line, L ¼ 2; magenta line, L ¼ 4. For all
curves, l ¼ 0:001, D ¼ 0:01, �2 ¼ 0:5, and k ¼ 1000. The azure line is the Adet solution. The black line
represents the law t�

1
4.

Figure 5. Average concentration in the finite one-dimensional domain versus time as a function of the

correlation length l : red line, l ¼ 10�3 ; green line, l ¼ 10�4 ; yellow line, l ¼ 10�5 ; magenta line,
l ¼ 10�6 ; azure line, l ¼ 10�7 ; blue line, l ¼ 0. For all curves, L ¼ 1, D ¼ 0:01, �2 ¼ 0:5, and
k ¼ 1000. The black line represents the law t�14.
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7.1.2. Case 2: C�1
v0 > Da > 1

[52] The two curves, Adet and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

, cross at time

t� > tD. For t > tD, AdetðtÞ � 1
kt
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

� �ð l2
2�DÞ

1
4t�

1
4,

and the solution of equation (49) is

t� ¼ tk
�

DaC4v0

 !1
3

: (51)

[53] Figures 1 and 2 show the exact solutions for

Da > C�1
v0 and C

�1
v0 > Da > 1, respectively. Figures 1 and

2 demonstrate that t�, calculated from equations (50) or
(51) (depending on the magnitude of Da), accurately pre-
dicts deviation of the average concentration from

AdetðtÞ � t�1 to � t�1=4 behavior.

7.1.3. Case 3: D < 1
[54] In this case, tk > tD. To estimate t

�, we can use the

same approximations for Adet and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

as in case 2.
Then t� is given by equation (51). The characteristic transi-
tion time increases with decreasing Damköhler number
(and the reaction rate k). Consequently, for very small Da
the average concentrations will not be affected by the spa-
tial fluctuations and will be well described by the solution
AdetðtÞ.

7.2. Infinite d-Dimensional Domain: Initially
Anticorrelated Fluctuations With d Autocovariance
Function

[55] Next we consider an approximate solution for an
infinite n-dimensional domain with initial delta-autocorre-
lated and anti-cross-correlated fluctuations. The two curves,

Adet and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

, cross at time t� > tk . For t > tk ,

AdetðtÞ � 1
kt
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

¼ � l2

8�D

h id
4

t�
d
4, and the solution of

equation (49) is

t� ¼ t
4
4�d
k t

d
d�4
D C

4
d�4
v0 ð4�Þ

d
4�d : (52)

[56] For time t > t�, the average concentrations are given
by

AðtÞ ¼ BðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0ðtÞB0ðtÞ
q

¼ A0Cv0

ð8�Þd=4
t
d
4

Dt
�d
4: (53)

[57] This asymptotic scaling of the average concentra-

tions with time, t�d=4 agrees with the asymptotic scaling
results of Toussaint and Wilczek [1983], Kang and Redner
[1985], and Benson and Meerschaert [2008].

7.3. Infinite One-Dimensional Domain With Zero
Cross Correlation

[58] Finally, to study the effect of the initial cross corre-
lation between fluctuations of A and B we consider an ap-
proximate solution for an infinite one-dimensional domain
with delta-autocorrelated and zero-cross-correlation fluctu-

ations. The two curves, Adet and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

, cross at time

t� > tk . For t > tk , AdetðtÞ � 1
kt

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�A0B0
p

�
ffiffiffiffiffiffiffi

0:5
p

� l2

8�D

h i1
4

t�
1
4, and the solution of equation (49) is

t� ¼ t
4
3

k t
�1
3

D C
�4
3

v0 ð8�Þ
1
3: (54)

[59] Comparing equation (54) and the one-dimensional
version of equation (52) shows that the characteristic

Figure 6. Average concentration versus time in the finite domain of size L : red line, �2 ¼ 5� 10�2 ;
green line, �2 ¼ 5� 10�3 ; yellow line, �2 ¼ 5� 10�4 ; magenta line, �2 ¼ 5� 10�5 ; azure line,
�2 ¼ 5� 10�6. For all curves, L ¼ 1, D ¼ 5� 10�6, l ¼ 0:001, and k ¼ 1000. The blue curve is the Adet
solution, and the black line represents the scaling t�

1
4.
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transition time t� for initially uncorrelated fluctuations is
21=3 times greater than the transition time for the initially
anti-cross-correlated concentrations.

8. Conclusions

[60] In the absence of fluctuations, the concentration of
solutes during chemical reaction Aþ B� > C decays as
Adet ¼ Bdet � t�1. Contrary to this, experimental and nu-
merical studies suggest that concentrations decay signifi-
cantly slower. Existing theory suggests a t�d=4 scaling in
the asymptotic regime (d is the dimensionality of the prob-
lem). We have studied the effect of spatial concentration
fluctuations in this nonlinear irreversible reaction using the
classical diffusion-reaction equation with random initial
conditions, where the initial concentrations of the reactants
were treated as correlated random fields. We used the
moment equation approach to derive equations for the
mean and variance of the concentrations and for the charac-
teristic transition time t�, a time when scaling of the con-
centration with time changes to t�d=4. The moment
equations were used to study the effect of the initial auto-
correlation and cross correlation of the concentrations on
the leading moments of the concentrations. When fluctua-
tions are driven by thermal noise, the initial statistics of the
concentration fluctuations can be found from statistical
mechanics [Ovchinnikov and Zeldovich, 1978]. If fluctua-
tions are caused by the fluctuations in the advective veloc-
ities that mixed two solutes (our analysis is for the case
when the flow ceased after fluids were mixed), then the ini-
tial statistics of the fluctuations can be found from the
moment equation method or polynomial chaos solution of
the stochastic advection-dispersion equations [Morales-
Casique et al., 2006; Jarman and Tartakovsky, 2011; Lin
and Tartakovsky, 2009, 2010; Lin et al., 2010].
[61] We first considered a case of initially anticorrelated

A and B. For d-dimensional (d ¼ 1, 2, 3) infinite domain
and delta-autocorrelated initial concentrations, we obtained
analytical solutions for the mean and variance of the con-
centrations. At late times, the average concentrations scale

as t�d=4, which agrees with the classical results of Toussaint
and Wilczek [1983] and numerical observations [Benson
and Meerschaert, 2008; de Anna et al., 2011]. For infinite
domains, we obtained analytical expressions for t� as func-
tion of Da. The characteristic transition time t� increases
with increasing reaction time, tk ¼ 1

kA0
and decreasing diffu-

sion time and the initial coefficient of variation, Cv0.
[62] For equations defined on a one-dimensional finite do-

main, we obtain an analytical solution for the variance of
concentrations. The variance decreases asymptotically from
the prescribed value to c20, where the constant c0 is propor-
tional to initial variance of the concentrations �2 and the ra-
tio of the initial correlation length of the concentration l to
the size of the domain L. We also obtain a one-dimensional
solution for the average concentrations via numerical inte-
gration of the corresponding ordinary differential equation.
This solution shows that the scaling behavior of the average
concentrations changes from � t�1 to � t�1=4 at t� that
increases with increasing L and decreasing l and �2.
[63] Our analytical results support earlier explanations

of the change in the scaling behavior of the average

concentrations from Adet ¼ Bdet � t�1, that attributed it to
the presence of islands of segregated A and B. Our solu-
tions for various parameters indicate that the transition in
the scaling behavior occurs at t� when (1) A and B are anti-
correlated and (2) the cross covariance A0B0 is equal to the

square mean concentration A
2
(or B

2
). Hence, we conclude

that these are the conditions describing the formation of the
islands of A and B (i.e., parts of the domain occupied domi-
nantly by species A or B).
[64] The comparison of different initial cross correla-

tions of A and B shows that, for initially uncorrelated fluc-

tuations, t� is 21=3 times greater than the transition time for
the initially anti-cross-correlated concentrations. On the
other hand, the correlation length of the concentrations

growth as ðDtÞ12 regardless of the initial cross correlation.
The increasing autocorrelation of the concentrations A and
B and negative (anti) cross correlation between A and B
indicate that A and B segregate into separate islands. The
size of the islands is statistically related to the correlation
length of the concentrations and our solution suggests that

the islands grow as ðDtÞ12. A similar scaling law for the size
of the islands was phenomenologically postulated in [Kang
and Redner, 1985].
[65] For very small Da, our results show that the chemi-

cal reaction is slow and that diffusion has enough time to
mix the system, destroying all the islands of segregated A
and B.
[66] We illustrate that fluctuations in concentration have

an important role on reactive transport and disregarding the
fluctuations can lead to erroneous results. Even though our
solutions are derived for the diffusion-reaction equation,
they can also be applied to the advection-dispersion-reac-
tion (ADR) equations (@I=@t þ u � rI ¼ Dr2I � kAB, I ¼
AB) with a uniform advection velocity field (u ¼ const)
and a constant dispersion coefficient D. This is because the
ADR equation can be reduced to a diffusion-reaction equa-
tion with an anisotropic diffusion coefficient via the Gali-
lean transformation [e.g., Farlow, 1982]. We should note
that while there are convincing experimental and numerical
findings that our analysis accurately describes the behavior
of purely diffusive-reactive systems, we are not aware of
any experimental results or direct pore-scale simulations
that confirm transition to t�d=4 scaling for advection-disper-
sion-reaction systems. Furthermore, the ADR equation
accounts only for the first and second moments of a pore-
scale velocity distribution (the first moment gives the
Darcy scale advective velocity, and the second moment
contributes to the dispersion coefficient). Hence, the ADR
equation may not be a good model for a multicomponent
reactive transport in porous media, because pore-scale ve-
locity affects mixing-controlled reactions in many different
ways. For example, variations in pore-scale velocity may
prevent or delay segregation of reactants. On the other
hand, there is much evidence showing that the determinis-
tic advection-diffusion-reaction equation, which disregards
the effect of the concentration fluctuations, overestimates
the effective rate of mixing controlled reactions. Further
investigations are needed to understand the effect of con-
centration and pore-scale velocity fluctuations on multi-
component reactive transport in porous media.
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Appendix A: Moment Equations

[67] Substituting equation (2) into the diffusion equation
yields

@ðI þ I 0Þ
@t

¼ D�ðI þ I 0Þ � kðAþ A0ÞðBþ B0Þ; I ¼ A;B:

(A1)

[68] Taking ensemble average yields

@I

@t
¼ D�I � kAB� kA0B0 ; I ¼ A;B; (A2)

where all the variables are functions of x and t
[69] Subtracting equation (A2) from equation (A1) gives

a diffusion-reaction equation for fluctuations:

@I 0

@t
¼ D�I 0 � kAB0 � kBA0 � kA0B0 þ kA0B0 ; I ¼ A;B:

(A3)

[70] To obtain the equations for the variance

A0ðx; tÞA0ðx; tÞ and covariance A0ðx; tÞB0ðx; tÞ, we write
equations for A0 � B0 and A0 þ B0 :

@ðA0 � B0Þ
@t

¼ D�ðA0 � B0Þ; (A4)

and

@ðA0 þ B0Þ
@t

¼ D�ðA0 þ B0Þ � 2kAB0 � 2kBA0 � 2kA0B0 þ 2kA0B0 :

(A5)

[71] We first obtain an equation for f ðx; y; tÞ ¼
A0ðx; tÞB0ðy; tÞ � A0ðx; tÞA0ðy; tÞ. To do so, we multiply
equation (A4) with A0ðy; tÞ :

A0ðy; tÞ@ðA
0ðx; tÞ�B0ðx; tÞÞ

@t
¼D�ðA0ðx; tÞA0ðy; tÞ�B0ðx; tÞA0ðy; tÞÞ:

(A6)

[72] Next, we multiply equation (A4) with B0ðy; tÞ :

B0ðy; tÞ@ðA
0ðx; tÞ�B0ðx; tÞÞ

@t
¼D�ðA0ðx; tÞB0ðy; tÞ�B0ðx; tÞB0ðy; tÞÞ:

(A7)

[73] Summing the last two equations, taking ensemble aver-
age, and recognizing that for considered boundary conditions,

AðtÞ¼BðtÞ (A8)

A0ðx; tÞA0ðy; tÞ ¼B0ðx; tÞB0ðy; tÞ; (A9)

we obtain the equation for f :

@f ðx;y; tÞ
@t

¼ 2D�f ðx;y; tÞ: (A10)

[74] In a similar manner, we obtain an equation for

gðx;y; tÞ¼A0ðx; tÞB0ðy; tÞ þ A0ðx; tÞA0ðy; tÞ :
@gðx;y; tÞ

@t
¼ 2D�gðx;y; tÞ�4kAðx; tÞgðx;y; tÞ: (A11)

[75] It is important to notice that in the derivations of

equation (A11) we disregarded the third moment A0B0B0 .
This approximation is only valid for �=A0< 1.

Appendix B: Moment Equations for
Uncorrelated A and B

[76] Here we solve the moment equations in one-dimen-
sional infinite domain for A and B with zero cross correla-
tion. Fluctuations of A and B satisfy the initial conditions
(5) and (9). We first solve for

f ðx; y; tÞ ¼ A0ðx; tÞB0ðy; tÞ � A0ðx; tÞA0ðy; tÞ; (B1)

which satisfies

@f ðx; y; tÞ
@t

¼ 2D�xf ðx; y; tÞ; x; y 2 ð0; LÞ: (B2)

[77] This equation is subject to the initial condition

f ðx; y; 0Þ ¼ ��2l�ðx� yÞ (B3)

and the homogeneous Dirichlet boundary condition at
x ¼ 61. The solution of this equation is [Carslaw and
Jaeger, 1972]

f ðx; y�; tÞ ¼ � �2l

ð8�DtÞ1=2
exp �ðx� y�Þ2

8Dt

" #

(B4)

f ðtÞ ¼ �2l

ð8�DtÞ1=2
: (B5)

[78] Next, we solve for g ¼ A0ðx; tÞA0ðy; tÞ þ
A0ðx; tÞB0ðy; tÞ that satisfies

@gðx; y�; tÞ
@t

¼ 2D�xðx; y�; tÞ � 4kAðtÞgðx; y�; tÞ: (B6)

[79] The Fourier transform of g is

ĝð Þ ¼
Z þ1

�1
gðxÞe�2�ix dx: (B7)

[80] Multiplying both parts of the equation with e�2�ix 

and integrating over x yields

@ĝð ; y�; tÞ
@t

¼ �2D 2ĝð ; y�; tÞ � 4kAðtÞĝð ; y�; tÞ; (B8)

subject to the initial condition

ĝð ; y�; 0Þ ¼ �2le�2�iy
� : (B9)
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[81] The solution of this equation is

ĝð ; y�; tÞ ¼ �2le�2�iy
� e

�2D 2 t�4k

Z t

0

Aðt0Þdt0 (B10)

[82] The inverse Fourier transform is

gðx; y�; tÞ ¼ �2l

Z þ1

�1
e�2�iy

� e
�2D 2t�4k

Z t

0

Aðt0Þdt0
e2�ix d ;

(B11)

or

gðx; y�; tÞ ¼ �2l
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p exp �ðx� y�Þ2

8Dt
� 4k

Z t

0

Aðt0Þdt0
" #

; (B12)

gðy�; y�; tÞ ¼ �2l
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p e

�4k

Z t

0

Aðt0Þdt0
:

(B13)

[83] The covariance is found as

A0B0ðtÞ¼1
2
ðf ðy�;y�;tÞþgðy�;y�;tÞÞ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p e

�4k

Z t

0

Aðt0Þdt0
�1

2

6

4

3

7

5
:

(B14)

[84] Substituting this into the equation for the average
concentration yields

@A

@t
¼�kA2�k �2l

2
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p e

�4k

Z t

0

Aðt0Þdt0
�1

2

6

4

3

7

5
: (B15)

[85] The autocovariance of A is

A0ðx; tÞA0ðy�; tÞ ¼ 1
2

�2l
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p exp ð�4k

Z t

0

Aðt0Þdt0Þ þ 1
� �

� exp �ðx� y�Þ2
8Dt

 !

;

(B16)

and the variance of the concentration is equal to

A0A0ðtÞ¼A0ðy�;tÞA0ðy�;tÞ ¼ �2l

2
ffiffiffiffiffiffiffiffiffiffi

8�Dt
p e

�4k

Z t

0

Aðt0Þdt0
þ1

2

6

4

3

7

5
:

(B17)
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Chapter 3

Spreading due to advective processes

In this chapter we focus on the advective component of mixing. Due to the complex spatio-

temporal organization of flow fields in heterogeneous media, advective processes are often

described in a stochastic framework (e.g. Dentz et al. [2011]; Tel et al. [2005]). In a Lagrangian

framework, the velocity of the particles that constitute the fluid system fluctuate in space

and time. Here we analyze pore scale numerical simulations for the flow in a heteroge-

neous porous medium, observing anomalous dispersion of an advected plume of fluid La-

grangian particles (that do not diffuse). We relate this observation to the spatial correlation

of Lagrangian velocities at the pore scale and we derive an effective upscale model based

on Continuous Time random Walk of particles that move due to random velocities that are

stochastically distributed and spatially correlated.

The work presented in this chapter was made in collaboration with Marco Dentz, research pro-

fessor at the Department of Geosciences Institute of Environmental Assessment of Barcelona

(Spain), Diogo Bolster, Assistant Professor at the University of Notre Dame (Indiana, USA)

and Alexander Tartakovsky, scientist at Pacific Northwest National Laboratory (Washington

state, USA).

3.1 Anomalous dispersion from pore scale flow heterogeneity

We consider the two dimensional heterogeneous porous medium studied by Tartakovsky et al.

[2008b], see Figure 3.1. The porous medium is considered fully saturated. To simulate the

fluid flow at the pore scale we adopt the smoothed particle hydrodynamics (SPH) approach

described in Tartakovsky et al. [2008b]. In this SPH model, the fluid is discretized in Np particles

47
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that flow through the pores with velocities given by the solution of the Navier-Stokes equation

dv

dt
= −∇p

ρ
+

µ

ρ
∇ · (∇v +∇v

T) + b (3.1)

for a given set of physical parameters (density ρ, viscosity µ, the body forces b and local

pressure p). We will refer to this Lagrangian particle as SPH particles. The porous medium

is composed of circular grains of average size d = 10 with mean porosity φ = 0.42. The

boundary conditions for flux are periodic on all sides. In this numerical method SPH particles,

representing elementary fluid volumes, are advected with the flow that is solution of equation

(3.1). Advective Lagrangian trajectories are thus given by the trajectories of the SPH particles.

The resulting stationary velocity field shows the existence of a braided network of preferential

flow paths in channels as well as low velocity, or stagnation, zones (see Figure 3.1a).

Figure 3.1: a) the modulus |v| of the flow velocity rescaled by the modulus of the spatially averaged

flow velocity v. The Reynolds number value is Re = 4. Coordinates are normalized with d, the average

grain diameter. The trajectory of a Lagrangian particle (red dots) is superposed on the amplitude of the

velocity field. For the same particle we display: b) the time series of its velocity and c) the time series of

its accelerations (both projected along the longitudinal direction).

The pore scale velocity field, shown in Figure 3.1a, is characterized by high velocity channels

and stagnation zones. An example of particle trajectory superposed on the amplitude of the
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velocity field is displayed in Figure 3.1a. The particle slows down as it travels close to stagna-

tion zones and accelerates when entering the high velocity channels. Examples of Lagrangian

longitudinal velocity vx and acceleration ax series along the trajectory are plotted as a func-

tion of travel time in Figure 3.1b and 3.1c respectively. A first qualitative observation is that

Lagrangian accelerations cannot be represented as a white noise. At each time increment ∆t

the force driving the motion of a Lagrangian particle is not independent from the force that

acted during the previous ∆t. Lagrangian accelerations are characterized by periods of high

variability, corresponding to the high velocity channels, and periods of low variability and,

thus, of high correlation with low velocity, corresponding to the stagnation zones. The non

Gaussian nature of Lagrangian velocity distribution is shown in Figure 3.2.
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Figure 3.2: The probability distribution of the pore scale Lagrangian velocities (blue line) compared

with a Gaussian (red dashed line) distribution centered at the mean Lagrangian velocity value.

Longitudinal dispersion and its anomalous scaling

In the SPH pore scale Lagrangian framework, the fluid in motion is represented by in an

ensemble of Np particles that follow the stream lines of the local velocity field. The dispersion

of this advected fluid particles can be characterized in terms of the longitudinal width σ of

their spatial distribution, defined as:

σ(t)2 =
Np

∑
i

(
xi(t)− xi(0)− x(t)

)2
(3.2)

where xi(t) is the position (projected along the main flow direction) of the i-th particle at time

t and x(t) is the average of xi(t)− xi(0) over all the Np particles constituting the fluid. Please
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note that the considered particles move along streamlines of the velocity field and diffusion is

not taken into account here.

Figure 3.3 show the temporal scaling of the width σ of the simulated flow’s longitudinal

spreading. It displays anomalous scaling with respect to Fickian dispersion characterized by

linear temporal scaling, σ2 ∝ t
1
2 . In the simulated case the Lagrangian fluid particles display

superdiffusive behavior characterized by an evolution of σ that is faster than the Fickian case.

This can be expected by the qualitative observation of the existence of stagnation zones where

particles get trapped and become long time correlated.

time rescaled τ = t/t
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Figure 3.3: The temporal scaling of the square root of the longitudinal variance of fluid particles

simulated via SPH technique. For early time σ is almost ballistic, for late time slows down, but is still

faster than the classical Fickian behavior t
1
2

Upscaled models

As discussed in the introduction of this thesis, due to the large degree of freedom and our

ignorance about boundary and initial conditions, for complex flows a statistical description

is necessary (e.g. Dentz et al. [2011]). In a Lagrangian framework the particles velocities

time series can be assumed to be stochastic processes characterized by certain distributions.

As discussed below, depending on the nature of the stochastic process and its correlations,

different upscaled picture can be represented.
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Random walk and Fickian dispersion

The dynamical picture of classical Fickian models considers the Lagrangian velocities time

series to be non autocorrelated. The stochasticity of the advective process is described by a

Gaussian white noise about an average behavior (e.g. Bouchaud [1990]; Delay et al. [2005]).

This picture corresponds to the well known Brownian motion for each Lagrangian particle

that constitute the fluid. A typical Brownian walk of a single particle, is schematically dis-

played on a two-dimensional lattice in Figure 3.4. At each discrete time step tn = tn−1 + ∆t,

σ = Dt2

Figure 3.4: On the left, a schematic view of a 2d Brownian motion On the right, a cloud of particles

that are moved advected by stochastic velocities. The velocities time series are Brownian walkers about

the mean velocity. The spreading of this ensemble of particles is characterized by σ2 ∝ Dt

that increases with constant time increment ∆t, a Lagrangian particle is assumed to jump and

change position to xn = xn−1 + ξ. Here ξ = v
∆t is the spatial increment given by the stochastic

velocity v. This latter quantity is assumed to be a white noise and, hence, a Markov process.

The state of the system can be described by the probability density function p(x, t) of positions

of the particles. As discussed in the previous chapter, the evolution of the state of a Markov

process depends only on the state that the process had at the previous time step. The transi-

tions between states are quantified by the rate of transitions r(x|x′). This quantity represents

the conditional probability that from the position x′ at time t′ a walker move to the position x

at successive time t = t′ + ∆t. The stochastic process is governed by the corresponding Master

Equation

∂p(x, t)

∂t
=

∫ [
r(x|x′)p(x′, t)− r(x′|x)p(x, t)

]
dx′ (3.3)
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representing a gain-loss equation for the probabilities of the states (e.g. van Kampen [2007]).

The first term is the gain due to the transitions between states x′ to state x, while the second

is the loss due to transitions from the state x to any other state x′. Solving this equation,

it is demonstrated that the longitudinal dispersion of such an ensemble of random walkers

evolves as σ2 ∝ t (e.g. Bouchaud [1990]), providing a good description for Fickian dispersion.

The Continuous Time Random Walk (CTRW) for anomalous dispersion

Anomalous dispersion, characterized by non linear growth of σ2 (as for the flow in the con-

sidered heterogeneous porous medium), cannot be modeled in terms of Brownian motion.

A possible dynamical description of such an anomalous behavior is CTRW (e.g. Montroll

and Weiss [1965]; Berkowitz et al. [2006]). In order to introduce the CTRW, let’s consider a

one dimensional system. If the classical random walk is based on the idea that for constant

time steps ∆t the particle position evolves with continuous jumps of size ξ stochastically dis-

tributed, the CTRW model is based on the idea that also the time increments τ, elapsing

between two successive jumps, are variable, continuous and stochastic. Thus after n steps (or

jumps) the position and the time of a particle test will be

xn = xn−1 + ξ (3.4)

tn = tn−1 + τ.

We here consider the simple case where the spatial increment ξ = ∆x is constant. The suc-

cessive temporal increments, or waiting times, are related to the spatial series of stochastic

velocities as τ = ∆x
v . In other words, at each spatial increment ∆x the particles change veloc-

ity and generate a new effective waiting time τ. If the stochastic system defined by (3.4) is

Markovian in space, it can be described by

R(x, t) = ∑
x′

∫ t

0
dt′ψ(x − x′, t − t′)R(x′, t′) (3.5)

where where R(x, t) is the probability per time for a walker to arrive at position x at time t

and ψ(x, τ) is the probability per unit time for a displacement x with a waiting time τ. The

function ψ determines the nature of the transport, as it has been discussed by Berkowitz et al.

[2006]. Equation (3.5) describes a semi-Markovian process, or a process that is Markovian in

space but not in time. In other words the position difference of particles at fixed time incre-

ments depends on the history of the travel of the particle, while the waiting times distribution

over fixed spatial increments depends only on the previous position. It has been demonstrated
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that for a spatial Markov process a Master Equation for the stochastic process x, described by

R(x, t), exists.

Please note the importance of the Markovian property in space of the random walkers de-

fined by (3.4). If over a fixed spatial increment ∆x the transition rate ψ(x, t) at the position x

depends only on the previous position x − ∆x the governing equation of CTRW is shown to

be equivalent to a Generalized Master Equation (e.g. Berkowitz et al. [2006]). If this condition

does not hold no Master Equation is defined for the considered ensemble of walkers.

The spreading of CTRW particles, characterized by a σ2, depends on the particular conditional

probability density ψ(x − x′, t − t′) (e.g. Berkowitz et al. [2006]) and can well describe and

represent observed anomalous dispersion. However, the relationship between its parameters,

in particular the space time jump probability ψ, and the flow velocity field properties is a key

open question (e.g. Le Borgne et al. [2008b]), which we address in the following for pore sale

dispersion.

Spatial Markov property

The key property for the CTRW dynamical description to hold is the Markovian property of

spatial velocity series, across a given spatial increment ∆x. To test this property we consider

the conditional probability density r(vn|vn−1)∆x along the Lagrangian trajectories. This quan-

tity represents the probability that the next velocity will be vn = ∆x
τn

after n spatial increments

∆x , given that it was vn−1 = ∆x
τn−1

after n − 1 spatial increments. τn is the waiting time associ-

ated to the nth jump. We numerically compute this conditional probability density from SPH

pore scale simulations over consecutive spatial increments ∆x along the Lagrangian particle

trajectories. To do so we define an equispaced grid over the porous medium and we evaluate

the particle velocities transitions over the grid (see Figure 3.5).

From the definition of Markovian process,

r(vn|vn−q)∆x = r(vn|vn−1)
q
∆x ∀q integer (3.6)

Thus, for a Markov process the conditional probability density evaluated after q steps ∆x has

to be equal to the q-th power of r evaluated after a single jump (e.g. Le Borgne et al. [2008c,a];

Kang et al. [2011]). This reflects the fact that the state of a Markovian process is defined by

the initial distribution and the transition probability between successive states and does not
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Figure 3.5: On the top the considered pore scale velocity field where the trajectory of a Lagrangian

particle has been superposed (red dots). On the bottom, to the same image has been superposed an

equispaced grid. In the spatial framework here proposed we evaluate the particles velocities on the

defined grid.

depends on the history of the spatial series of positions.

We demonstrate that this relationship is not verified for small ∆x. Increasing the value of the

spatial increment we show that the spatial series of velocities become a Markov process. If

the size ∆x is very large, in the conditional probability density will be mixed all the informa-

tion about stagnation zones and channels. The resulting distribution of velocities for large ∆x

turns out to be a white noise and the upscaled picture will be equivalent to the one associated

to the classical Random Walk.

Thus, there exist a minimum spatial increment ∆x for which the Markov property holds. This

minimum ∆xm allows deriving a consistent CTRW model, which maintains information about

the pore scale organization of the flow. We show that the minimum ∆x for which equation (3.1)

is satisfied, results to be ∆xm = 0.25d, where d is the average size of a grain that corresponds

also to the average stagnation zones size (see Figure 3.1). Figure 3.6 shows the conditional
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Figure 3.6: On the left, the matrix representing r(vn|vn−1)∆x for a spatial increment ∆x = 0.25d.

These probabilities are defined over 100 classes. On the right, the superposition of the transition prob-

abilities evaluated for a jump 5∆x (in red) and the 5-th power of the transition probabilities evaluated

after a single ∆x (in black) for the 64-th initial velocity class.

probability r(vn|vn−1)∆xm
associated to ∆xm and the good agreement between r(vn|vn−1)∆xm

and r(vn|vn−1)
5
∆xm

.

We now consider an ensemble of random walkers that move following (3.4) where r(τn|τn−1)∆xm

is derived from pore scale analysis over a fixed spatial lattice with lattice spacing ∆xm = 0.25d.

We compute the longitudinal particles distribution σ defined as in equation (3.1). Figure 3.7

Figure 3.7: Comparison of the prediction of the correlated CTRW model (red dashed line with dots)

with the numerical pore scale simulations (black line).
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shows the good agreement between the scaling of dispersion σ predicted by the correlated

CTRW model and the pore scale observation. This means that the size of the spatial incre-

ment ∆xm is big enough to ensure the Markov properties of the waiting times, but is small

enough to capture, within r(vn|vn−1)∆xm
, the complex flow organization from which arises

the anomalous behavior of dispersion. Please note that no fitting parameters are used to

determine the waiting time distribution (or the Lagrangian velocities), since we relate the con-

ditional probability r(vn|vn−1)∆xm
to the local pore scale Lagrangian velocities evaluated from

SPH simulations.

This work has been published (Le Borgne et al. [2011b]) to validate, on a realistic case of an het-

erogeneous medium, the framework of correlated CTRW proposed for a more simple periodic

porous medium.

3.2 Intermittency-like behavior of Lagrangian velocities in porous

media

As shown at the beginning of this chapter, the Lagrangian velocities in porous medium exhibit

an intermittent behavior between high and variable versus low and correlated velocities (see

Figure 3.1). This behavior reflects the complex organization of the pore scale flow in channels

and stagnation zones. We shown that this correlated velocities are responsible for non Fickian

dispersion. Thus, the classical upscaled descriptions of flows in porous media based on pore

scale well mixed conditions (e.g. Dentz et al. [2011]) breaks down when the observation scales

(temporal and spatial) are fine enough to appreciate the non homogenized conditions of the

pore scale. Fickian dispersion models are based on the assumption that Lagrangian accelera-

tions are represented as a white noise. At each time increment the force driving the motion of

a Lagrangian particle is independent from the force that acted during the previous temporal

increment. This leads to an effective description in terms of a Langevin type equation with

white noise. A similar breakdown of classical models emerges in turbulent flows, that exhibit

intermittency.

Turbulent flows are characterized by high Reynold number and are locally governed by

Navier-Stokes equation. Due to the uncertainty of the uniqueness of the solution of such

an equation and of boundary conditions, turbulence cannot be described as a deterministic

chaos phenomenon. Given the huge number of degree of freedom of turbulent systems, a

statistical approach is necessary. An upscaled description of turbulence is provided by the
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statistical picture of Kolmogorov (e.g. Pope [2000]). From a dynamical point of view, this de-

scription is equivalent to the motion of particles subjected to a Langevin type equation where

the added white noise represent a stochastic force the move the particles. The choice for the

stochastic term of white noise, implies uncorrelation of successive particle accelerations. The

Kolmogorov upscaled description can fail when the underlying hypothesis are not satisfied,

as in the case of intermittency (e.g. Pope [2000]; Mordant et al. [2002]).

Figure 3.8: On the left the velocity increments distribution observed by Mordant et al. [2002] for

severtal time lags, normalized to the standard deviation and displayed with vertical shift for clarity.

Increasing the time lag the distributions tend from a heavy tailed to a Gaussian shape.

In a Lagrangian framework, Mordant et al. [2002] propose to model the anomalous behavior

of turbulent flows (and thus the breakdown of the upscaled Kolmogorov theory) related to

intermittency in terms of correlation of successive particle accelerations. In particular Mordant

et al. [2002] studied experimentally the Lagrangian velocities of particles advected in a von

Karaman flow. They observe non Gaussian distribution of velocity increments ∆vτ = v(t +

τ) − v(t) for time lag τ (see Figure 3.8). Such a distributions tends to a Gaussian shape if

the time lag increase (recovering the upscaled Kolmogorov picture). They quantified this

observations by the autocorrelation coefficient χ of accelerations that appear to be long range

correlated when considering its absolute value (see Figure 3.8). The correlation coefficient χ

is defined as

χ =
< [a(t + τ)− a][a(t)− a] >

σ2
a

(3.7)

where a and σ2
a are the average and the variance of the Lagrangian accelerations a; angu-

lar brakets represents ensemble averages. To define an upscaled model, Mordant et al. [2002]



adopt a Multifractal Random Walk model that take into account Lagrangian correlations.

For the considered porous medium we follow a similar approach quantifying the correlation

coefficient χ of accelerations and the velocities increments distribution p(∆vτ). The resulting

picture is similar to the one of intermittency of turbulent flows. However, the origin of inter-

mittency is different. In porous media this phenomenon arises from the existence channels of

high and variable velocities and stagnation zones, where particle and move very slowly with

very correlated velocities. To give a dynamical interpretation of such behavior, we propose

the correlated CTRW model described in previous paragraphs to reproduce the intermittent-

like behavior observed in porous medium flow. The model predicts correctly the intermittent

property of Lagrangian velocities. It hence provides a link between CTRW and intermittency,

suggesting a new dynamical picture of intermittency.

This results has been formalized in the manuscript, reported below, that is in preparation.
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From numerical simulations of pore scale flow in porous media, we demonstrate the existence of
an intermittent-like behavior of Lagrangian velocities similar to observations in turbulent flows.
This phenomenon, characterized by non Gaussian pdfs of Lagrangian velocity increments and long
range correlation of Lagrangian accelerations, is at the origin at the breakdown of the classical
upscaled models. For transport in porous media this is manifested by anomalous scaling of the
temporal evolution of the characteristic dispersion length, called anomalous dispersion. Long range
correlation is related to the existence of stagnation zones and localized high velocity channels. While
for turbulence, intermittency of Lagrangian velocities can be represented by Multifractal Random
Walk, for porous media we show that the dynamical picture is different and that this process is well
captured by a correlated Continuous Time Random Walk.

The breakdown of Fickian models of dispersion in porous
media has been recognized as a key issue upscaling dis-
persion, mixing and reaction processes ([3, 7, 15]). Dif-
ferent formalisms have been proposed to represent this
process including Continuous Time Random Walk (e.g.,
[2, 12, 13]), non equilibrium statistical mechanics (e.g.
[4, 5]) and fractional advection dispersion (e.g., [11]). Al-
though successful at representing important character-
istics of anomalous transport, these models have often
failed in relating their parameters to the local velocity
field properties (e.g. [15]).
The Fickian transport representation can be described by
a Langevin type equation with white noise representing a
random force driving the motion ([16]). Thus, the main
underlying assumption is the decorrelation of successive
Lagrangian accelerations. One of the central elements
for upscaling anomalous dispersion is the representation
of the dynamics of long range temporal correlation of
Lagrangian velocities. The existence of correlation is re-
lated to incomplete mixing at pore scale (e.g. [10]). Here
we investigate the correlation properties of Lagrangian
velocities and accelerations starting from pore scale high
resolution numerical simulations. We relate explicitly the
long range correlation of local velocities as quantified by
intermittent-like properties to the upscaled CTRW dis-
persion formalism. This phenomenon is similar to the
breakdown of the upscaled picture of Kolmogorov for
turbulent flows, although the dynamics of the velocity
correlation are fundamentally different (e.g. [14]).

∗E-mail: pietro.deanna@univ-rennes1.fr

We consider a two dimensional porous medium com-
posed by circular grains with mean porosity φ = 0.42.
The average velocity of v ∼ 10−2 results from applica-
tion of a hydraulic head gradient from left to right. The
boundary conditions for flux are periodic on all sides. We
use Smoothed Particles Hydrodynamics (SPH) to solve
numerically the flow [17]. SPH is a Lagrangian particle

Figure 1. a) The amplitude of the pore scale velocity field nor-
malized by the average Lagrangian velocity. The trajectory
of a Lagrangian particle is shown with red dots at equidistant
time increments ∆t. b) The time series of the Lagrangian ve-
locity for the particle displayed on the top. c) The time series
of the Lagrangian accelerations.
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method where particles representing elementary fluid vol-
umes are advected with the flow: advective Lagrangian
trajectories are thus given by the trajectories of the SPH
particles. Figure 1a shows the simulated pore scale ve-
locity field. It is characterized by high velocity channels
and low velocity regions. The spreading size that charac-
terize the advective spreading in the pore volume, can be
measured by of the longitudinal width σx of the particles

distribution σx(t)
2 =

∑Np

i (xi(t) − xi(0) − x(t))2 where
xi(t) is the position (projected along the main flow direc-
tion) of the i-th particle at time t and x(t) is the average
of xi(t) − xi(0) over the Np particles constituting the
fluid. In this heterogeneous medium the temporal evo-
lution of spreading size σx shows anomalous dispersion
when compared to the predictions of the Fickian disper-
sion, σx 6= t

1

2 [6] (see Figure 2).
An example of Lagrangian trajectory is displayed in Fig-
ure 1a. The particle slows down as it travels close to
stagnation zones and accelerates when entering the high
velocity channels. Examples of Lagrangian longitudinal
velocity vx and acceleration ax series along the trajectory
are plotted as a function of travel time in Figure 1b and
1c respectively. A first qualitative observation is that La-
grangian accelerations cannot be represented as a white
noise. At each time increment ∆t the force driving the
motion of a Lagrangian particle is not independent from
the force that acted during the previous ∆t.
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Figure 2. The temporal behavior of the longitudinal displace-
ment variance of Lagrangian particles. In this log-log plot is

clear the non Fickian nature (characterized by t
1

2 scaling) of
advective spreading.

We distinguish two regimes in the motion of Lagrangian
particles: one characterized by low variability and the
other by strong fluctuations in the velocity and acceler-
ation signals. The first regime corresponds to low veloc-
ities in stagnation zones. In these stagnation zones, the
Lagrangian longitudinal velocities and accelerations are
small and strongly autocorrelated. The second regime
corresponds to high velocities in flow channels. Thus, the
Lagrangian velocities and acceleration time series display

qualitatively an intermittent-like behavior.
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Figure 3. Probability distributions of normalized Lagrangian
longitudinal velocity increments vx/σ(τ). The curves are
shifted for clarity, σ(τ) is the variance of velocity increments
for each lag time τ = 1, 2, 5, 7, 9.

To quantify the correlation and intermittent-like behav-
ior of Lagrangian particles, we define the Lagrangian ve-
locity increment of the ith particle, associated to the time
lag τ , as

∆τvi = vi(t+ τ)− vi(t) (1)

The probability density function of Lagrangian velocity
increments normalized with respect to the square root
of increments variance P (∆τv/σ(∆τv)) is plotted in Fig-
ure 3 for different different time lags τ . For small lag
time τ , the distribution of Lagrangian velocity incre-
ments is characterized by exponential tails and a sharp
peak close to zero acceleration due to the stagnation
zones where particles are almost at rest. As the lag time
increases, the slopes of the exponential tails increase and
the sharpness of the peak decreases, approaching a Gaus-
sian distribution. A Gaussian distribution of velocity in-
crements would be equivalent to dynamics described by
a Langevin type equation with a white noise represent-
ing a stochastic force, whose characteristic dispersion is
Fickian [18]. Here the Gaussian shape of the distribution
of Lagrangian velocity increments is not reached, even
for very large time lags. This is consistent with the fact
that during the observation time, or the duration of the
simulation, the dispersion size σx never follows a Fickian
scaling (see Figure 2).
These results are similar to turbulent flow observations of
[14]. In the context of turbulent flow the Lagrangian ve-
locity increment distributions show heavy tails and evolve
towards a Gaussian distribution at large lag times. The
normalized correlation function of a stochastic signal r
as

χ =
< [r(t+ τ)− r][r(t)− r] >

σ2
r

(2)
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Figure 4. The normalized autocorrelation function χ of La-
grangian particles accelerations ax (blue curve) and absolute
values of acclerations |ax| (red curve) as function of normal-
ized time lags τ ′. We defined τ ′ = τ

tadv
, where tadv is the

average time needed for a Lagrangian particle to cross the
whole medium.

where r and σ2
r are the average and the variance of

the process r; angular brakets represents ensemble
averages. Figure 4 displays χ for the longitudinal
Lagrangian accelerations ax and for its amplitude |ax|,
for the studied flow. The correlation of the longitudinal
Lagrangian acceleration decreases rapidly with lag
time. We observe a slight anticorrelation at early
times, which is possibly due to the rapid fluctuations
of acceleration in high velocity channels, as illustrated
in Figure 1c. The correlation of the absolute value of
the longitudinal Lagrangian acceleration |ax| is slowly
decaying, as obtained by [14] for turbulent flow. While
[14] observed an exponential decay, here we obtain a
power law decay C|a| ∝ t−1 (see inset of Figure 4).
Thus, the amplitude of accelerations in porous media
appear to be more correlated than in turbulent flows.
From this analysis, we conclude that transport in porous
media share several intermittent-like anomalous scaling
properties with transport in turbulent flow. Although
the origin of velocity fluctuations in both types of flow
are fundamentally different. The existence of such
anomalous scaling properties in porous media is related
mainly to the low velocity regions.

To upscale the longitudinal flow properties discussed, in-
cluding correlation of Lagrangian velocities, we use a
stochastic method where Lagrangian particles are moved
randomly in a one dimensional system representing the
longitudinal direction. The considered Lagrangian ve-
locities times series do not represent a Markov process,
due to the strong correlation in the stagnation zones. A
possible generalization of the Random Walk to a semi-
Markovian process, Markovian in space but not in time,

accounting for memory in particle transitions, is Contin-
uous Time Random Walk. The basic motion of CTRW
for N particles is defined as:

xn+1
i = xn

i +∆x

tn+1
i = tni +

∆x

vni
(3)

where i = 1, . . . , N denotes the particle, n the step, x
the position, t the time and v the velocity. In this La-
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Figure 5. The matrix representing r(vn|vn−1)∆x for a spatial
increment ∆x = 0.25d. These probabilities are defined over
100 classes.

grangian framework, the Continuous Time RandomWalk
is completely defined by the initial velocities distribution
and transition probability r(vx|v′x) representing the con-
ditional probability that at a given spatial step the ve-
locity is vx given that at the previous step the velocity
was v′x [1].
Most CTRW formulations assume uncorrelated succes-
sive jump times [12], hence r(vx|v′x) = p(vx) regardless
of the previous v′x. This assumption is true when the
jump size is larger than the velocity correlation length.
However in order to relate the temporal increments to
the local velocity τ = ∆x/vx, the spatial increment
should be small enough so that the pore scale flow
dynamics is not lost by averaging. To relate the
CTRW parameters to the local velocity distribution one
minimize the spatial increment while maintaining the
Markov property that allows writing a CTRW model.
The minimum ∆x was shown to be equal to ∆xm = d/4
for the studied porous medium [6], where d is the
average grain size. We evaluate from the pore scale
simulations this transitions r(vx|v′x)∆xm

associated to
the spatial increment ∆xm. Figure 5 shows the matrix
representing the evaluated r(vx|v′x)∆xm

: each column
of the matrix represent the pdf for the next velocity
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vx given that the previous one was v′x. To different
initial velocities v′x different distribution of vx are
associated. Following [8, 9], we take a series of velocities
{vni }Mn=0 for the random walkers in agreement with
this transitions r(vx|v′x)∆xm

: {vni }Mn=0 form a Markov
chain, where M is the considered number of steps for
the CTRW simulation. The resulting Continuous Time
Random Walk model is characterized by correlated
waiting times. Correlated CTRW simulations are done
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Figure 6. Probability distributions of normalized Lagrangian
longitudinal velocity increments vx/σ(τ) for the CTRWmodel
adopted. The curves are shifted for clarity, σ(τ) is the vari-
ance of velocity increments for each lag time τ = 1, 2, 5, 7, 9.

for 105 particles. The resulting trajectories are given
at equidistant positions for a given spatial increment
∆x. To compare the velocities increments distribution
and autocorrelation of acceleration to the analogous
results of the pore scale simulation analysis, we convert
the results of simulations from a discretized space to a
discretized constant time ∆t framework. Figure 6 shows
the probability distribution of the velocity increments for
CTRW simulations for different time lags τ . For small
time lags the distribution is characterized by heavy tails.
Increasing τ the distribution approaches a Gaussian.
This is in good agreement with the observation of the
pore scale longitudinal Lagrangian velocities. We then
calculated the correlation function as defined in equation
(2) of the Lagrangian accelerations and their absolute
value, for the CTRW simulations. Figure 7 shows the

good agreement between the model and the pore scale
simulations observations. Furthermore the correlated
CTRW provides good predictions for the anomalous
scaling of the spreading size [6](see Figure 2)

Following a similar analysis, we show that a key property
of complex pore scale flows in porous media are the long
time correlations of Lagrangian velocities, associated to
the low velocity stagnation zones. As for turbulence, this
correlations represent the breakdown of upscaled classical
models that assumes pore scale well mixed conditions and
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Figure 7. Comparison between pore scale observations (solid
lines) and the upscaled CTRW model (dots). In blue is rep-
resented the normalized autocorrelation function χ of La-
grangian particles accelerations ax and in red the absolute
values of these acclerations |ax| as function of normalized time
lags τ ′.

no correlations. As an alternative description, we use
a CTRW model, accounting for the correlation between
velocities, that captures the essential features of such a
complex pore scale flow. The resulting picture is similar
to the one of intermittency of turbulent flows, although
the origin of intermittency is different. It hence provides
a link between CTRW and intermittency, suggesting a
new dynamical picture of intermittency.
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Chapter 4

Mixing limited reactions in porous

media

We now consider the porous medium and the flow analyzed in the previous chapter, adding

diffusion and reactions. We investigate the case for which mass transfer is a limiting processes

for the chemical reactions. So, we investigate the effective kinetics of the mixing limited

reactions that take place at front between two reactive solute A and B that undergo to the

irreversible bimolecular reaction A + B → C.

The work presented in this chapter was made in collaboration with Marco Dentz, research pro-

fessor at the Department of Geosciences Institute of Environmental Assessment of Barcelona

(Spain) and Alexander Tartakovsky, scientist at Pacific Northwest National Laboratory (Wash-

ington state, USA)

4.1 Kinetics scaling of a reaction front

We consider the two dimensional porous medium of Figure 4.3 initially saturated of a solute

B. A continuous injection of another solute A is produced in the system. The two solute

react when in contact in the portion of the pores volume where A and B are mixed by the

combination of advection and diffusion (as shown in Figure 4.1). The heterogeneous advec-

tion stretches the concentration field of both A and B, while diffusion locally mixes the two

solute. While the two reactant are mixed a bimolecular reaction A + B → C take place. The

reaction is assumed to be fast enough to be limited by mixing processes. In other words the

characteristic reaction time defined for a bimolecular reaction tk = 1
k , where k is the reaction

rate (Connors [1990]), is assumed to be much smaller then the characteristic transport time tT.

65
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Figure 4.1: A schematic view of the configuration of the mixing limited reaction considered. A solute

A is continuously injected in a medium saturated by another chemical B. Where the two are mixed

reactions take place.

This is quantified by the Damkohler number Da = tT
tk

(Dentz et al. [2011]), that in our case is

assumed to be much larger then 1. To simulate the fluid flow at the pore scale we adopt the

Figure 4.2: A schematic view of the numerical simulation method. Void circles represent SPH particles

that are advected in the porous medium following the flow stream lines. Molecular diffusion is modeled

as the exchange of mass between particles, carrying mass. Reactions can take place only between

chemicals that are inside the same particle and their kinetics is modeled with mass action law.

Smoothed Particle Hydrodynamics (SPH) approach as described in Tartakovsky et al. [2008a].

As introduced in the previous chapter, in this SPH model the fluid is discretized in Np par-

ticles that flow through the pores with velocities given by the solution of the Navier-Stokes

equation for a given set of physical parameters (density ρ, viscosity µ, the body forces b and

local pressure p). The porous medium is composed of circular grains of average size d = 10
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with mean porosity φ = 0.42. The boundary conditions for flux are periodic on all sides. In

the adopted numerical method particles carry the mass of the solutes A and B. Molecular

diffusion is modeled as the exchange of mass between these particles. We consider that the

volume represented by each particle is well mixed. In other words, each particle has a size

that represents the homogenization scale ξ defined by Le Borgne et al. [2011a]. Since solutes

in each particle are well mixed, reactions kinetics within particles follow the mass action law.

No reactions can take place between solutes that are not in the same particle. A schematic

view of such a numerical method is shown in Figure 4.3 Advective Lagrangian trajectories are

thus given by the trajectories of the SPH particles. The validation of this numerical method is

discussed by Tartakovsky and Meakin [2005]; Tartakovsky [2010]. To provide a further validation

of the method we run simulations for different particles size (or different spatial resolution)

but same physical parameters, obtaining the same results. For the same pore scale flow (with

Figure 4.3: Three consecutive snapshot of the concentration field of the reaction product C at the front

between the injected solute A and the solute already present in the system B. Coordinates are normalized

with d, the average grain diameter. Concentration is normalized with respect to the constant injected

concentration of A. The Peclet number is 105

average value v), we performed several simulations for different values of the diffusion coef-

ficient D in order to study the impact of different mixing configurations on reaction kinetics.



We thus define the Peclet number of the system Pe = tD
τa

= λv
D as the ratio between charac-

teristic diffusion time scale over characteristic advection time scale over the length λ = 10

representing the average pore space. Here we focus on the temporal scaling of the mass MC

produced by reactions at the front between A and B, defined as

MC(t) =
∫

V
cC(x, y, t)dxdy (4.1)

where V represent the volume of the 2d porous medium. Fickian dispersion models that

assume complete mixing at the pore scale predict a scaling MC(t) ∝ (Ddispt)
1
2 , where Ddisp

represent the effective dispersion coefficient (e.g. Gramling et al. [2002]). From pore scale

simulations the resulting upscaled picture is quite far from the one derived in the framework

of Fickian dispersion. The time evolution of MC(t) follows two regimes as shown in Figure

4.4. At early times the total mass of C grows faster then the classical Fickian case t1/2. At

late times the reaction rate slows down, but is still faster than the classical t1/2 behavior. A

key observation in this late time regime is that the total mass does not depend the Peclet

number. We propose a simple physical model that explains both regime and the transition

time between them, providing a global upscaled framework for this mixing limited reaction.

The results have been summarized in the following manuscript in preparation.

Figure 4.4: The temporal scaling of the cumulative mass MC produced by reactions. Different colors

represents different Pe numbers: blue Pe = 10−2, red Pe = 3 · 10−3 green Pe = 10−3 magenta

Pe = 3 · 10−4 and black Pe = 10−5.
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Anomalous Reaction Kinetics of reactive front in Porous Media

Pietro de Anna∗ and Tanguy Le Borgne
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Marco Dentz
Spanish National Research Council (IDAEA-CSIC), Barcelona, Spain

Alexander Tartakovsky
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We investigate the effective kinetics of a reaction front for mixing limited bimolecular reaction
A+B → C in a porous medium. While Fickian diffusion predicts a scaling of the cumulative mass
produced as MC ∝ t1/2, we observe two time regimes in which the total product mass evolves faster
then t1/2. At early times the invading solute is organized in fingers of high velocity. Reactions
take place only at the fingers boundaries whose surface grows linearly in time. We show that this
configuration leads to a mass scaling MC ∝ t2. When diffusion mixes reactants and destroy these
finger structures, the effective reaction rate slows down and we relate it to the longitudinal advective
spreading providing MC ∝ σx. The transition time between these two regimes is characterized by
the diffusion time over the transverse fingers cross section.

Reactive transport phenomena are ubiquitous in nat-
ural systems, medical and industrial applications. Their
dynamics derive from the interaction of microscopic mass
transfer and reaction processes [9, 21]. The understand-
ing of observed reaction behavior requires the quantifica-
tion of these microscale processes and their impact on the
large scale reaction and transport behavior. This task is
challenging because the probability of reactive species to
meet and react depends on the complex flow organiza-
tion [14, 23, 26]. In general, reactions take place when
reagents are close enough to chemically interact. Due
to mixing processes two or more given substances, origi-
nally segregated into different volumes of space, tend to
occupy the same volume allowing the reactions to take
place [19]. Reactive transport systems can be divided
into two main categories. In the chemically dominated
systems the transport phenomena are efficient enough to
mix the reagents before the chemical reactions can signif-
icantly reduce their concentration. In the mixing domi-
nated systems reactions are fast enough to be limited by
transport of reactants [4–6, 10–14, 16, 18, 26].

In this Letter we focus on the mixing limited reac-
tive transport system A + B → C on the pore-scale,
and its effective behavior on the mesoscale. To this
end we consider the invasion of the dissolved chemical
A into a domain in which only the dissolved chemical
B is present, illustrated in Figure 2. When viscous ef-
fects are absent, mixing processes in porous media are
controlled by the combination of heterogeneous advec-
tion and diffusion [4, 7, 10, 12, 20]. The former acts to
spread the reactants in the local direction of the flow.
Diffusion, on the other hand tends to homogenize the
spatial distribution of chemicals. In the framework of

∗E-mail: pietro.deanna@univ-rennes1.fr

classical dispersion theory, at the mesoscale, these two
phenomena are lumped into a single dispersion coefficient
[10, 12, 22]. This approach is valid if the microscale can
be assumed to be well mixed. This means, for situations,
in which the diffusion time over the characteristic micro-
scopic length scales is much smaller than the mesoscopic
mass transfer scales. Furthermore, the validity of the
classical mesoscale advection-diffusion reaction equation
requires the typical reaction time scale to be much larger
than the microscopic diffusion scale. The conditions un-
der which such mesoscopic models provide an adequate
average description of pore scale transport and reaction
processes are discussed in detail in Battiato et al. [1]. In
many situations these conditions for the microscale mass
transfer and reaction processes are not met, one observes
anomalous transport and reaction behaviors. Thus, mass
transfer cannot be described by Fickian diffusion and
transport is in general non-Markovian. Such behaviors
have been observed for a range of disordered and fractal
systems [2], and in the presence of stochastic fluctua-
tions [5, 15].
We consider the d = 2 dimensional heterogeneous

porous medium, presented in Figure 2. The medium
is composed of circular grains of different sizes and av-
erage diameter d = 10 with mean porosity φ = 0.42.
The pore volume is initially fully saturated with a so-
lution containing the chemical species, B with concen-
tration cB(x = 0, y, t = 0) = c0. At time t = 0 a
solution with dissolved chemical A with concentration
cA(x = 0, y, t = 0) = c0 is injected through the left
boundary of the porous domain. The pore-scale steady-
state fluid flow is driven by a body force acting in the
positive x-direction, as illustrated in Figure 1. The fluid
motion is subjected to periodic boundary conditions for
velocity and pressure at the external boundaries in the
x- and y-directions. At the initial time t = 0, the in-
terface between the two chemicals is a line (interrupted
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by the grains of the porous medium) located at x = 0
transverse to the main flow direction (x axis). As time
increases the two chemicals are mixed by heterogeneous
advection and diffusion, and reactions take place where
both A and B coexist. Due to advective-diffusive mass
transfer, the mixing zone is stretched and increases in
width. The chemical C is produced in this mixing zone
and then transported by advection and diffusion in the
pore space.

To simulate reactive transport at the pore scale we
adopt the smoothed particle hydrodynamics (SPH) ap-
proach described in [3, 20]. In this SPH model, fluid is
discretized with Np particles that flow through the pores
with velocities given by the solution of the Navier-Stokes
equation

dv

dt
= −∇p

ρ
+

µ

ρ
∇ · (∇v +∇v

T ) + b (1)

for a given set of physical parameters (density ρ, viscos-
ity µ, the body forces b...), see Figure 1 a. Each particle

y/
d

x/d

Figure 1. The modulus |v| of the flow velocity scaled by the
modulus of the spatially averaged flow velocity denoted by
v. The Reynolds number value is Re = 4. Coordinates are
normalized with d, the average grain diameter.

carries a certain amount of mass and thus of concentra-
tion. The concentration of solute within each particle is
given by the total mass of solute in the particle divided by
the total mass carried by the particle. Molecular diffusion
is modeled as the exchange of mass, or concentration, of
solute between particles. Each particle represents a vol-
ume that is assumed to be well mixed. Therefore we do
not describe any process that takes place at length scales
smaller than the particles size, which is taken here equal
to d/40. The resulting stationary velocity field shows the
existence of a braided network of preferential flow paths
in channels as well as low velocity or stagnation zones,
see Figure 2. The evolution of the species concentrations
is described by the advection-diffusion reaction equations

∂ci
∂t

= −v · ∇ci +∇ · (D∇ci) + ri, (2)

where i = A,B,C, D is the diffusion coefficient, which is
assumed to be the same for all chemicals, and ri is the
local reaction rate. We assume that reactions take place
only inside the fluid particles. Due to the well mixed as-
sumption in each particle, reactions can be described via
the mass action law and a reaction constant k. For the re-
action A+B → C, in a fluid particle placed at point (x, y)

xd/

y d/
y
d/

y
d/

a.

b.

c.

Figure 2. Dimensionless concentration of the reaction prod-
uct C. The panels a., b. and c. show results of pore scale
simulations respectively related to the case Pe = 5, Pe = 50
and Pe = 5000, at time t = 9τa.

at time t the reaction rate is ri = −kcAcB for i = A,B
and rC = kcAcB . The numerical details of the SPH
model and its validation are given in Refs. [3, 20]. At the
mesoscale, reactive transport of averaged concentrations
ci is classically described by the advection-dispersion re-
action equation [25]

φ
ci
∂t

+ q
∂ci
∂x

− (D +D∗)∇2ci = r∗i , (3)

with i = A,B,C, D∗ the hydrodynamic dispersion coef-
ficient, and the reaction rates r∗i = −kcAcB for i = A,B
and r∗C = kcAcB . The constant Darcy velocity satis-
fies the Darcy equation q = −K∂h/∂x with K hydraulic
conductivity and h hydraulic head [8, 12, 20]. In this
framework the total mass of C, defined as the integral of
cC(x, t) over the fluid volume V is [12]

MC(t) =

∫

V

cCdV = c0

√
4(D +D∗)t

π
= c0

√
2σ2

π
(4)

where σ2 = 2(D +D∗)t is the characteristic variance of
the displacement of a Fickian transported conservative
solute. σ is the characteristic spreading length [17].
The pore scale simulations display significant deviations
with respect to the expected classical result (4). We
performed 5 simulations for 5 different values of the
diffusion coefficient D: 10−2, 3 · 10−3, 10−3, 3 · 10−4

and 10−5. The Peclet number is defined as Pe = vλ
2D

where v = 10−2 is the average velocity and λ = 10 the
average pore size. We vary the Peclet number between
5 and 5000, by varying the diffusion coefficient. The
characteristic advection time over the average pore size
is τa = λ/v. A snapshot of concentration field in the
porous medium for different value of the Peclet number
is shown in Figure 2. The time evolution of MC(t)
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t2

t0.65

Figure 3. Time evolution of the total mass MC(t). At early
time MC ∝ Dt2, at late times MC(t) ∝ t0.65 ad does not
depend on diffusion coefficient D. Different colors correspond
to different values of D: blue squares corresponds to D =
10−2, red cross to D = 3 · 10−3, green starts to D = 10−3,
magenta diamond to D = 3 · 10−4 and black circles to D =
10−5.

follows two regimes as shown in Figure 3. At early times
the total mass of C grows much faster then the classical
Fickian case t1/2. At late times the reaction rate slows
down, but is still faster than the classical t1/2 behavior.
A key observation in this late time regime is that the
total mass does not depend on local diffusion D, in this
framework.

Invasion regime - For early times the incoming chem-
ical A is organized in fingers that invade the pores oc-
cupied by B, (Figure 4). Since the velocity field is sta-
tionary, the size of the fingers, and thus the interface be-
tween chemicals, grows linearly with time. We consider
the characteristic diffusion time over the average finger

cross-section size h = 2 defined as tD = h2

2D . For t ≪ tD,
diffusion is not efficient enough to mix the chemical over
the fingers cross-sections h and thus reactions take place
at finger surfaces, which are stretched in the direction of
the local velocity field (Figure 4). After volume averag-

y/
d

x/d x/d

ξ

Figure 4. Magnification around the fingers structures: image
of the invasion regime at time t = 1.26τa related to the case
Pe = 5000. On the right the incoming reactant A organized
in fingers. On the left C produced at the finger surfaces.

ing of (2) for i = C and considering that the chemical C
is not injected in the system, the transport terms (both

advection and diffusion) vanish and the variation of total
mass of C produced is

dMC(t)

dt
=

∫
kcAcBdV. (5)

For i = A we obtain
∫

dcA
dt

dV =

∫
(D∇2cA − kcAcB)dV (6)

where we used the total derivative for cA,
dcA
dt = ∂cA

∂t +
v · ∇cA. In this early time regime the portion of the
system where reactants are mixed by diffusion is small.
Thus, the variation of the mass of A due to reaction is
negligible compared to the variation of the mass of A
due to the continuous injection. Therefore,

∫
∂cA
∂t dV ∼

−
∫
v · ∇cAdV . Hence, the total amount of mass that

react and disappear can be approximated as

dMC(t)

dt
=

∫
kcAcBdV ∼

∫
D∇2cAdV = D

∫

Σ

∇cAdΣ

(7)

where we used the Gauss theorem to derive the last equal-
ity, Σ is the finger boundaries. Equation (7) quantifies
the fact that the rate of reaction equals the diffusive flux
across the fingers surface. When A or B crosses the in-
terface Σ by diffusion, it is converted into C.
Defining ξ as the characteristic width of the finger bound-
aries Σ, the gradient of cA across Σ can be approximated

as ∇cA ∼ c0A−0
ξ . This approximation relies on the fact

that the concentration inside the fingers is almost con-
stant and equal to the injected concentration c0A, while it
is almost zero outside (see Figure 4). Assuming that ξ is
constant due to the competition between shear, diffusion
and reactions the mass of C is

dMC(t)

dt
∼ D

c0A
ξ

∫

Σ

dΣ ∝ DΣ(t) (8)

Given that the finger boundaries grows linearly in time,
equation 8 implies that the mass of produced C scales
as MC(t) ∝ Dt2. This correspond to the fast evolution
observed in simulations, Figure 3. Note that this is
equivalent to state that locally at the fingers boundaries,
where reactions take place, the production of C is
constant.

This observation validates the assumption of a constant
characteristic size of the fingers boundaries ξ, inde-
pendent on diffusion. This is in contrast with results
obtained in turbulent flow, for which the Batchelor
scale, representing the local equilibrium between shear
and diffusion, scales as D

1

2 (e.g. [24]). A possible
explanation for this constant width ξ is that it is
physically determined by geometry of the solid matrix of
the porous medium. The no-slip boundary conditions at
the grains walls create stagnation zones. Furthermore,
the flow organization around the grains creates a stream
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line division down stream of the grains. As illustrated
in Figure 4 the reaction production in the first regime
is localized in these stagnation zones and streamline
divisions which form the contours of the fingers.

Dispersion regime - For times t ≥ tD the fingers struc-
tures are destroyed by diffusion. The scaling of the total
mass of C produced slows down from the previous regime
(Figure 3), but is still faster than the prediction of equa-
tion (4), t1/2, and the total mass does not depend on lo-
cal diffusion D. In classical upscaled models [10, 12, 22]
reactants are considered to be well mixed in each cross-
section transverse to the main flow. At pore scale this
condition is not full-filled as shown in Figure 2 and 4.
To describe the anomalous kinetics in this second regime
we seek to relate the reactive production to the mixing
properties as quantified by the probability density func-
tion of conservative components (as defined below). We
consider the local probability density p(c̃C , x, y, t) that
at location (x, y), at time t the concentration of C is c̃C .
We can thus express MC as

MC(t) =

∫

V

dV cC =

∫ c0

0

dc̃C c̃Cφ(c̃C , t) (9)

where we introduced the total probability density
φ(c̃C , t) =

∫
V
dV p(c̃C , x, y, t) and the tilde over the local

concentration cC indicate the associated ensemble vari-
able. We define the conservative species R = A+ C and
S = B+C whose concentrations cR and cS are subjected
only to diffusion and advection, due to the linearity of the
transport processes considered in equation (2). For the
mixing limited reactions considered here, the coexistence
of the chemicals A and B is very short: when mixed
A and B react before transport processes can act. As
pointed out by [12], locally the concentration of C can
be written as cC = min[cR, cS ] and the total mass MC(t)
can be expressed as:

MC(t) =

∫ c0
2

0

dc̃Rc̃Rφ(c̃R, t) +

∫ c0

c0
2

dc̃R(c0 − c̃R)φ(c̃R, t)

(10)

Note that min[cR, cS ] is cR when cR < c0
2 and is cS =

c0 − cR if cR > c0
2 . We hence relate the cumulative mass

of produced C to the concentration of the conservative
species R and S. The total probability density φ(c̃R, t)
can be written as the sum of tree terms

φ(c̃R, t) =

∫

Vmix

dV p(c̃R, x, y, t) +

∫

V0

dV δ(c̃R)

+

∫

V1

dV δ(c̃R − c0) (11)

The domain of integration Vmix is the portion of the
system where the conservative component are mixed
and thus their concentration are different from 0 or c0.
V0 and Vc0 are defined as the portion of the system
where cR have concentration 0 and c0 respectively. Since

in equation (11) the values 0 and c0 for c̃R give no
contribution, we focus on the integral over Vmix. The
production of C is fully determined by the conservative
species in the mixing volume Vmix.

In order to simplify the first term of equation (11), we
define a new reference system (x′, y′) with the compo-
nents oriented, respectively, parallel and transverse to
the local direction of flow. We thus discretize the vol-
ume Vmix in NΩ slices Ωi locally parallel to the direction
x′. In each slice the concentration of the conservative
species cR along the local x′ direction goes from c0 to 0.
We assume that this dependence scales as a function of

x′

w(y′,t) , where w(y
′, t) is the size of the i-th slice in the x′

direction. Thus
∫
Vmix

dV p(c̃R, x, y, t) can be rewritten as

φ(c̃R, t) =

∫

L(t)

dy′w(y′, t)

∫
dx̃p(c̃R, x̃) = L(t)w(t)f(c̃R)

(12)

where x̃ = x′

w(y′,t) is an ensemble variable varying be-

tween 0 and 1 and f is a function that is independent
on time and space. Inserting equation 12 in equation 10,
provides the relationship between the mass of produced
C and the geometrical characteristics of the mixing vol-
ume, as quantified by the average width w and L, which
represents the length of the line that joins all the centers
of the slices Ωi.
The geometrical characteristic of the mixing zone, L and
w are related to the spreading properties of the porous
medium. Advective spreading can be quantified by the
variance of the fluid particles displacement

σ2
x(t) =

∑

i

∫

V

dV
(
xi(t)− xi(0)− x(t)

)2

(13)

where xi(t) − xi(0) represent the longitudinal displace-
ment of the i-th particle that constitute a fluid plume,
x(t) its average position and the sum is done over all
the Np SPH particles. As illustrated in Figure 2, the
length of the line that joins the local center of masses, L,
decreases when increasing the diffusion coefficient. For
large diffusion coefficient the local center of mass posi-
tion depends on the averaging of a large number of fluid
particles. therefore the variability of the local center of
mass positions decreases when increasing diffusion. On
the other hand the local width w increases when increas-
ing diffusion.

We thus make the conjecture that L(t) ∝ σx(t)
w(t) . For

an heterogeneous porous medium this conjecture can be
supported by the following intuitive arguments. The cen-
ter of each slice depends on the position of all the fluid
particles in a disk of radius proportional to its size, w.
The size of each disk is large enough to contain stagna-
tion zones and channels. Thus, it is much larger than the
characteristic velocity field correlation length and hence
within it the statistics of all the fluid particles is well
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represented. Assuming that each disk includes N inde-
pendent fluid particles, with N growing with the disk
volume w2, the variance of the center of mass position
can be approximated as σ2

χ ∼ σ2
x/N = σ2

x/w
2. Hence the

length L can be estimated as L =
√

σ2
χ ∼ σx/w. This

simple conjecture implies that the mixing volume scales
as Lw ∼ σx.
Thus, using this relationship in equations (10) and (12),
the time evolution of MC is found to be independent of
diffusion and controlled only by the longitudinal advec-
tive dispersion MC(t) ∝ σx. A direct measure of σx from
the analysis of the Np Lagrangian SPH particles confirm
this result (see Figure3).
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Figure 5. The rescaled mass of produced C in a log− log scale
versus the rescaled time τ . Colors are defined as in previous
figures.

To provide a global picture of the evolution of the con-
sidered mixing limited system, we rescale the time with
respect to the characteristic transition time tD and the
cumulative mass MC(t) with respect to σx(tD). Figure 5
shows the rescaled mass versus the rescaled time τ = t

tD
for all the simulated cases. The 5 curves collapse on each
other, confirming the observations for the two regimes
and the transition between them.
The analyzed high resolution pore scale simulations
display anomalous transport and reaction behavior
compared with classical Fickian models that assume
complete mixing at the pore scale. Thus, incomplete
mixing is found to have a dramatic impact on reaction
kinetics. The results provide a link between anomalous
kinetics and anomalous transport. Specifically we relate
purely advective processes to the kinetics scaling.
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[11] L. Gálfi and Z. Rácz. Properties of the reaction front
in an A+BC type reaction-diffusion process. Physical
Review A, 38(6):3151–3154, September 1988.

[12] Carolyn M. Gramling, Charles F. Harvey, and Lucy C.
Meigs. Reactive Transport in Porous Media: A Compar-
ison of Model Prediction with Laboratory Visualization.
Environmental Science & Technology, 36(11):2508–2514,



6

June 2002.
[13] S. Havlin, M. Araujo, H. Larralde, A. Shehter, and H.E.

Stanley. Anomalous kinetics in A + B C with initially-
separated reactants. Chaos, Solitons & Fractals, 6:157–
169, January 1995.

[14] Werner Horsthemke, Sergei Fedotov, and Vicenc Mendez.
Reaction-Transport Systems. Springer Series in Synerget-
ics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1st
edition, 2010.

[15] K. Kang and S. Redner. Fluctuation-dominated kinet-
ics in diffusion-controlled reactions. Physical Review A,
32(1):435, 1985.

[16] Vivek Kapoor, Lynn W. Gelhar, and Fernando Miralles-
Wilhelm. Bimolecular second-order reactions in spa-
tially varying flows: Segregation induced scale-dependent
transformation rates. Water Resources Research,
33(4):527, 1997.

[17] Tanguy Le Borgne, Marco Dentz, and Jesus Carrera.
Lagrangian Statistical Model for Transport in Highly
Heterogeneous Velocity Fields. Physical Review Letters,
101(9):1–4, August 2008.

[18] Jian Luo, Marco Dentz, Jesus Carrera, and Peter Kitani-
dis. Effective reaction parameters for mixing controlled
reactions in heterogeneous media. Water Resources Re-
search, 44(2):1–12, February 2008.

[19] J.M. Ottino. The kinematics of mixing: stretching,
chaos, and transport. Cambridge University Press, 1989.

[20] Alexandre Tartakovsky. Langevin model for reactive
transport in porous media. Physical Review E, 82(2):1–
11, August 2010.

[21] Alexandre Tartakovsky, Daniel Tartakovsky, and Paul
Meakin. Stochastic Langevin Model for Flow and Trans-
port in Porous Media. Physical Review Letters, 101(4):1–
4, July 2008.

[22] A.M. Tartakovsky, G.D. Tartakovsky, and T.D. Scheibe.
Effects of incomplete mixing on multicomponent reactive
transport. Advances in Water Resources, 32(11):1674–
1679, November 2009.

[23] T Tel, A Demoura, C Grebogi, and G Karolyi. Chemical
and biological activity in open flows: A dynamical system
approach. Physics Reports, 413(2-3):91–196, July 2005.

[24] E Villermaux and J Duplat. Coarse Grained Scale of
Turbulent Mixtures. 144506(October):4–7, 2006.

[25] S. Whitaker. The Method of Volume Averaging. Kluwer
Academic Publishers, 1999.

[26] Z. Neufeld and E. Hernandez-Garcia. Chemical and Bi-
ological Processes in Fluid Flows: A dynamical System
Approach. Imperial College Press, 2010.



76 CHAPTER 4. MIXING LIMITED REACTIONS IN POROUS MEDIA

4.2 Islands dynamics interpretation for the dispersion regime

For the considered mixing limited reaction, due to the pore scale incomplete mixing, we ob-

serve two time regimes in which the total product mass evolves faster then the classical pre-

diction t
1
2 obtained with a Fickian dispersion description (e.g. Gramling et al. [2002]). For early

times the invading solute is organized in fingers and the cumulative mass of the produced C

scales as Dt2, see Figure 4.4. For late times the longitudinal spreading of the solute controls

the anomalous scaling MC ∝ σ. Here we propose another interpretation for this second regime

that is consistent with the one already discussed and that involves dispersion transverse to

the main flow direction. It also provides a link with the (OZ) segregation problem discussed

in the second chapter of this thesis.

When for t > tD the fingers structures of the invading chemical are destroyed by diffusive

mixing, the scaling of the total mass of produced C slows down from the previous regime, but

is still faster than the prediction of Fickian models t1/2 (e.g. Gramling et al. [2002]; Edery et al.

[2010]; Tartakovsky et al. [2009]) and the total mass does not depend on local diffusion D (or

on the Peclet number for the given flow). In classical Fickian models, reactants are considered

to be well mixed in each cross-section transverse to the main flow. The mass produced by

reactions is proportional to the longitudinal width of the plume of C (measured by Fickian

dispersion) and the concentration of the reaction product cC at the center of the plume is

constant (e.g. Gramling et al. [2002]). Figure 4.5 shows the projection along the x axis of cC for

different values of D at time t = 9τa, where τa = λ
v is the characteristic advection time over

the average pore size λ = 10. Contrary to the well mixed models, large diffusion coefficients

lead to smaller longitudinal plume size as quantified by the spatial concentration variance,

σC =
∫
(x − x)2cC(x, y, t)dxdy (4.2)

where x is the position of the center of mass (Figure 4.5 and 4.6). This phenomenon is con-

sistent with the fact that diffusion tends to reduce the correlation of Lagrangian velocities by

allowing particles to jump from one strem line to another with the consequent reducing of

spreading. This complex dependency has been studied and discussed by, for example, Bijeljic

et al. [2011]. Another effect of increasing diffusion is to increase the peak of reactive plume

(see Figrue 4.5). These two effect balance each other and the area under the curves in Figure

4.5, representing the total mass of C, does not depend on D. This key observation implies that

the behavior of this reactive system is different of that assumed by classical models where

well mixed conditions at each position x is postulated.
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not yet in the
dispersion regime

x/d

c 
(x

,t)
C

Figure 4.5: a, the projection of the dimensionless concentration of C along the main flow direction (x)

at time t = 9τa; b. the total mass of C; c. the scaling of the size of the plume σC. Blue, red, green,

magenta and black curve represent data for Peclet values of: blue Pe = 10−2, red Pe = 3 · 10−3 green

Pe = 10−3 magenta Pe = 3 · 10−4 and black Pe = 10−5., respectively.

t1
/2

time

Figure 4.6: Different lines represent the temporal scaling of the longitudinal variance of reaction

product concentration for different Peclet values: blue Pe = 10−2, red Pe = 3 · 10−3 green Pe = 10−3

magenta Pe = 3 · 10−4 and black Pe = 10−5.

the mass of C can be rescaled with respect to σC(t) and the peak value Cp(t) =
∫

cC(x =

peak, y, t)dy:

MC(t) = σC(t)Cp(t)I(t) (4.3)

where I(t) =
∫

x
cC(x,y,t)

σC(t)Cp(t)
dxdy. In the dispersion regime, I results to be constant and does

not depends on the Peclet number (as shown in inset of Figure 4.5), showing that σC(t) and
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Cp(t) are the only control parameters for MC(t). Thus the projection of the longitudinal cC

distribution is shape invariant. The degree of mixing at a longitudinal position x can be quan-

time y/d

A
p

co
nc
en

tr
at
io
na. b.

Figure 4.7: a, the time scaling of Ap decreasing as t−
1
4 . b, the cross section of the concentration field

at peak position in the direction transverse to the main flow: in blue is represented A in red B.

tified by analyzing the spatial distribution of A and B in a cross section transverse to the main

flow (Figure4.7b). A and B are found to be organized in segregated islands. We compare

their dynamics to the 1D diffusion limited reactive system studied by in the second chapter

of this thesis. The spatial segregation of reactants (see Figure 4.7b) is progressively reduced

by transverse diffusion. The resulting reactions tend to increase the mass of C produced at

the center of the reactive plume. Under this analogy we can expect the production of mass

at the peak to follow the anomalous scaling discussed in the second chapter of the thesis. In

this framework the mass of A at the center, Ap(t) =
∫

cA(x = peak, y, t)dy should scale as t−
1
4 .

Figure 4.7a shows that the pore scale simulation results are compatible with this description.

By mass conservation the increase of Cp(t) can be predicted by adding the total mass of C

produced until time tD at the center, when the islands dynamics start, to the variation of A at

the peak: Cp(t) = Cp(tD) + Ap(tD)− Ap(t).

This second interpretation for the dispersion regime observed in this mixing limited reac-

tion provides a connection between reactive diffusive systems and more complex advection

diffusion reactive systems. In particular, the dynamics t−
d
4 of the the diffusion-limited seg-

regation problem results to control the anomalous scaling of this incomplete mixed reactive

system. Moreover this result shows the importance of transverse dispersion of solutes while

transported in heterogeneous porous media.



4.3. THE 3D CASE 79

4.3 The 3d case

A reactive front simulation similar to the one described previously in this chapter has been

performed in a 3d flow, for three values of the Peclet number. As for the 2d case we observe

anomalous scaling of kinetics if compared with classical Fickian models. The invading chemi-

cal A is organized in fingers and the mass of C produced at the front scales in time as t2. This

results to be true for times smaller than the characteristic diffusion time tD over the fingers

boundaries. For t > tD, the produced mass of C change tis scaling and slow down. In Figure

4.8 are displayed the simulations results for the cumulative mass of C versus the rescaled time

τ = t
tD

. MC scales as τ < 1. This 3d results are consistent with the physical model proposed

for the 2d case.
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Figure 4.8: Scaling of the cumulative mass of C in 3d pore scale simulation versus time rescaled with

respect to the characteristic diffusion time over the average transverse finger cross section. Different

colors represent different Peclet number: magenta Pe = 500, green Pe = 50 and blue Pe = 5.
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Chapter 5

Experimental set up for 2d reactive

transport

5.1 Introduction

Numerical simulations provide the opportunity to study and investigate physical systems

under certain assumptions (e.g. well mixed condition over the scale of the spatial resolu-

tion). Experiments are a direct measure of natural phenomena that are not subject to any

assumption. On one hand they allow a direct observation of new phenomena, on the other

they provide a general reference to test the validity of a theory. Measuring the impact of

incomplete mixing on global reaction kinetics represent a challenging goal. Thus, there exist

relatively few experiments in the framework of reactive transport in porous media laboratory

experiments for which both pore scale mixing and reaction rates are quantified (e.g. Gramling

et al. [2002]). Here we present a new laboratory experiment that allow for high spatial resolu-

tion quantification of pore scale incomplete mixing, concentration pdf and reaction rate in a

porous medium.

We study the case of the reactive front studied numerically in the previous chapter of the thesis

(i.e. a reactant A that invades a medium initially saturated by another reactant B) represented

in Figure 5.1. This case is of primary interest since the heterogeneity of the porous medium

determines the front geometry. The physical system discussed in the previous chapter is a 2d

porous medium within which a flow, solution of Navier-Stokes equations, transport the two

reactants A and B. To experimentally reproduce the same system as in the simulations, the

main issues to solve are: i) the design of a 2d porous medium, across which a flow is imposed,

81
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Figure 5.1: The invading chemical analyzed in the previous chapter: three snapshot for three consecu-

tive times from pore scale numerical simulations.

such that we can observe pore scale mixing; ii) the observation and quantification of chemical

reactions simultaneous to the transport of reactants at the pore scale.

The work presented in this chapter was made in collaboration with Yves Meheust, assistant

Professor at the University of Rennes 1 (France), Herve Tabuteau researcher at the National

Council of Research, Rennes (France), Joaquin Jimenez-Martinez, Post-doc position at CNRS -

University of Rennes 1 (France) and Regis Turuban, Master student at University of Rennes 1

(France).

Homogenization scale for chemical reactions

Real chemical reactions are the ensemble of processes that transform chemical species in other

chemical species due to their local interactions. The mass action law states that the elementary

reaction rate is proportional to the product of the reactant concentrations each one elevated to

the power of the corresponding stoichiometric coefficient. As discussed in previous chapters,

behind the mass action law there is a strong hypothesis: the involved chemicals are in dy-

namical equilibrium and are assumed to be well mixed (e.g. Connors [1990]). Thus, studying

the impact of incomplete mixing on chemical kinetics at pore scale implies the definition of

an homogenization scale ξ where chemicals can be assumed to be well mixed. For the case

of the numerical method Smoothed Particles Hydrodynamics (SPH) adopted in the previous

chapter, the homogenization scale is represented by the size of each SPH particle. This implies

that the numerical method cannot resolve the system at scales smaller than the particle size.

In other words, it is assumed that over the smaller observation time scale all the processes

that occur at scale smaller than the particle size are assumed to be homogenized and well
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represented by the concentration of chemicals in each particle. The choice of the size for that

homogenization scale has thus a crucial impact on the results of the simulations. For a given

time discretization τ, the homogenization scale is usually taken to be the characteristic diffu-

sion length over duration τ, ξ = 2Dτ (e.g. Tartakovsky [2010]). In such a way it is assumed

that diffusion processes mix all quantities over the length ξ during τ.

An experimental verification of this hypothesis is alway needed in order to provide correct

models and predictions. This is a first motivation to do a laboratory experiment in the frame-

work of this thesis that focuses on modeling reactive transport phenomena.

The dimensionality of the considered system

Transport and reactive processes in natural media occur in d = 3 dimension. Thus, in prin-

ciple, to reproduce them three dimensional experiments are necessary. Optical visualization

techniques are often used in experimental fluid mechanics (e.g. Duplat et al. [2010b]). In flow

studies addressing natural objects (fractured or porous rocks), direct optical visualization is

difficult to attain as the media are usually opaque to visible light. Even if the solid objects in

the experimental setup happens to be transparent to light, the existence of complex bound-

aries between the fluid and the surrounding solid phase leads to distortion of the images

through light refraction at interfaces, unless the solid and fluid are nearly perfectly matched

in optical index. This is in particularly true for porous media, due to the many optical inter-

faces present in the system. The matched fluid allows tracking of individual particles inside

the porous medium. Moreover, if we are interested in concentration fields the experimental

set up become more complicated. A laser sheet can be used to visualize just a layer of the

whole medium (see Figure 5.2). The following images processing allows the reconstruction

of the 3d concentration field. Here we are interested in reproducing a 2d porous medium

obtain a 2d concentration pdf. The simple two dimensional case can provides informations

about the basic mechanisms that govern also more complex three dimensional systems. Thus

we will reproduce experimentally the same geometric configuration of the simulated porous

medium and we will impose within it a flow in the same physical conditions. After having

initially saturated the system with a reactant B, we will inject in the medium another chemical

A so that we will be able to observe chemical reaction at the front (see Figure 5.1). Such a

system can be studied with relatively high resolution digital camera that takes images of the

2d concentration field.
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Figure 5.2: 2d image of a 3d turbulent flow: measurements of a fluorescent field done by shining a

plane with an argon laser sheet through the water tank in a plane containing the axis of the mean flow.

Image taken from Duplat et al. [2010b].

As an additional motivation, nowadays technologies allow us to measure such a local concen-

trations at spatial resolutions of the same order or even higher than that of numerical sim-

ulations. This implies the possibility to upscale local (mesoscopic) quantities to macroscopic

scale.

Temporal scaling for anomalous kinetics

In the presence of certain symmetries a spatial system can be described in terms of its projec-

tion along one direction, and then be modeled as one dimensional (e.g. Gramling et al. [2002]).

The mixing limited reactions at the front between two solutes, one displacing the other, has a

preferred direction, parallel to the main flow. At the Darcy scale the projection of the averaged

concentrations is classically written as a unidimensional mass transport and reaction equation

φ
ci

∂t
+ q

∂ci

∂x
− (D + D∗)∇2ci = r∗i , (5.1)

where i = A, B, C, D∗ is the hydrodynamic dispersion coefficient, and the reaction rates are

r∗i = −kcAcB for i = A, B and r∗C = kcAcB. The constant Darcy velocity satisfies the Darcy

equation q = −K∂h/∂x, K being hydraulic conductivity and h the hydraulic head Gramling

et al. [2002]; Tartakovsky [2010]; Dentz et al. [2010] and φ the porosity of the medium (e.g. Bear

[1988]). In this framework the mass produced by reactions scales in time as t
1
2 (e.g. Gramling



5.1. INTRODUCTION 85

et al. [2002]). As already discussed in the previous chapters, incomplete mixing at the pore

scale implies an anomalous behavior of the reaction rates with respect to this classical results.

The scaling of the produced mass by reactions in the case of pore scale advection is an open

question which has not been investigated so far for porous media and represents one of the

main goal of the present work.

The need for improved visualization and quantification of reactions

Previous experimental methods for obtaining 2d concentration fields and reaction rates have

relied on colorimetry methods. To visualize and quantify chemical reactions in a transparent

porous medium Oates and Harvey [2006] propose a chemical reaction between two (almost)

transparent chemicals whose reaction product is colored. The chemical reaction is

CuSo4(aq) + Na2EDTA2− → CuEDTA2− + 2Na+ + SO2+
4 (5.2)

The reactants CuSo4(aq) and Na2EDTA2− are respectively light blue and transparent, while

the product of the reaction CuEDTA2− is dark blue. Considering a 2d transparent porous

medium it is possible to take images and visualize the concentration field of the produced

colored chemical. In practice what can be measured is the change in the amount of transmitted

light by the the colored solution in the porous medium. This quantity can be related to the

concentration the solution in the fluid by the relationship described by the Beer-Lambert law

(e.g. Oates and Harvey [2006]; Oates [2007]). This law fixes the functional relationship between

the transmitted light intensity I which has passed through the concentration C in a chamber

of thickness a as

log10
I

I0
∝ −aC (5.3)

where I0 is the intensity of the incident light. Thus to convert the light intensity value, obtained

from the images of the chamber, to concentrations, we can use an empirically determined

calibration curve between known concentrations and their observed light intensity needs to

be used (e.g. Gramling et al. [2002]).

The non linear relationship between transmitted light intensity and concentration field is one

of disadvantage of this method. The smaller is the variation in concentration we want to

measure, the smaller is the variation in transmitted light and the less it will be observable.

Thus, to measure small concentration gradients, that is of primary interest in incomplete
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mixed systems, a linear relationship between the light intensity (or other measured quantities)

and concentrations would be preferable. Another goal of this thesis is to propose a new

efficient method to visualize and quantify local reaction rate at high spatial resolution.

5.2 A pore scale experiment based on chemiluminescence

Here, we propose a new experimental set up to visualize and quantify chemical reaction rate

with pore scale resolution in a 2d transparent porous medium. The main ingredients for such

an experiment are:

• a (quasi) 2d porous medium P

• a (quasi) 2d flow q in P that will transport the reactants

• a chemiluminescence (optically detectable) chemical reaction

• a camera to take pictures of pore scale concentration fields

With an injection system a pressure gradient ∇p is imposed at the extremities of the porous

medium P. The produced flow carries two reactants whose reaction at the front is optically

visible. The digital camera takes picture with an imposed time interval ∆t. A chemilumines-

cence reaction between the reactants produces light and is optically detectable. As discussed

in more details in the following, we choose a chemical reaction that produces photons pro-

portionally to the amount of reactions that has taken place.

A quasi-Hele-Shaw cell

To produce a (quasi) 2d flow q in a porous medium P we consider a transparent chamber, or

cell, made by two glass plates whose separation distance is a. We fill the chamber with cylin-

ders representing the grains of a real porous medium. The size and the spatial distribution of

these cylinders is the same as in the numerical simulations described in the previous chapter.

The cell is closed on two sides and a pressure gradient between the open sides is imposed,

causing a flow between the two apertures of the cell. Such a flow is used in several domains

where low Reynolds number are needed, e.g. microfluidic flows Tabeling [2005]. When the

thickness a is much smaller then the average size of obstacles in the cell, the chamber is know

as Hele-Shaw cell (e.g. Tabeling [2005]). The basic principle beyond the Hele-Shaw cell lies

in the fact that the size a of the gap between the plates is small compared to the size L of
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the obstacles between the plate. Consequently, the gap a controls the velocity profile in the

direction perpendicular to the mean cell plane, and the local Stokes equations that govern the

fluid dynamics results in the mean flow velocity across the cell thickness to be controlled by a

Darcy equation.

For our purpose, we want to prevent the flow from being controlled by the thickness of the

considered chamber (like in the case of the Hele-Shaw cell) and by a Darcy equation. Thus,

we consider a Hele-Shaw cell whose thickness a is small compared to the overall horizontal

dimensions of the cell, but not small with respect to the typical size of the obstacles in the

chamber, L. The flow in a parallelepipedic channel where one of the transverse length is much

smaller than the other one exhibits a velocity profile along the former smaller dimension that

is parabolic, while the velocity profile along the latter larger dimension is that of a plug flow:

almost uniform, with two narrow boundary layers at the walls (see Figure 5.3). In the standard

Hele-Shaw setup the smallest section is the cell thickness, but in the case of our setup it is the

horizontal distance between neighboring grains of the porous medium. Consequently the

horizontal velocity field v (under stationary conditions) is governed by

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + µ∇2v,

v ∼ v(x, y), (5.4)

v · ẑ ∼ 0

where ρ is the fluid density, p the pressure, µ is the (constant) dynamic viscosity.

With this quasi Hele-Shaw cell, due to the vertical flat velocity profile (except in the boundary

layers), there is no vertical shearing inside the cell. So all shear occurs in the horizontal plane,

which leads to a two-dimensional Navier-Stokes flow.

The porous medium

In the quasi Hele-Shaw cell we use the same pore geometry as the one used for the numerical

simulations analyzed in the previous chapter. To resolve the flow and the reactions at the pore

scale in the adopted porous medium with a digital camera and a standard optic (macro-lens),

we build a quasi-Hele-Shaw cell of size (100× 100× 1) mm. The grains of the porous medium

have a size L between 1 mm and 7 mm, thus the thickness a = 1 mm of the chamber is not

much smaller than L and the setup satisfies the conditions presented in the paragraph titled A
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Figure 5.3: A schematic picture of the velocity profile inside the Hele-Shaw cell in the vertical direction

z for two extreme cases. Case 1, a/L ≪ 1, the profile is parabolic in z; case 2, the ratio a/L is not a

small quantity and over the vertical the velocity field has the same value almost everywhere.

Figure 5.4: The geometry of the adopted porous medium.

quasi-Hele-Shaw cell, at least partly. We define the Reynolds number that characterize the ratio

between inertial and viscous forces as

Re =
vL

ν
=

qL

Σν
(5.5)

where v is the average velocity over the length scale L, ν = µ
ρ is the kinematic viscosity and

q = vΣ is the flow across the surface Σ. To produce results that could be comparable with

the numerical simulations analyzed in previous chapters, we will work in the same Reynolds
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number regime. The Reynolds number of the numerical simulations was chosen to be Re = 4.

Lithography process

To build our cell, we use a lithographic technique. We adopt the technique described in

Harrison et al. [2004], where between two glass plates a layer of UV-sensible glue is disposed.

A mask with the negative image of the porous medium, shown in Figure 5.4, is printed at the

high resolution of 128000 dots per inch (DPI) on a transparent film. The grains are represented

by void circles and pores by black zones. This film is disposed on the top of the two glass

plates, the space between which is filled with a UV sensible glue (Norland 81). Irradiating the

glue in between the glass plates for a given time with a collimated UV light source we produce

photopolymerization in the zones where the UV light can pass, as shown in Figure 5.5. As a

glass plates

special glue

UV - light source

printed mask (negative)

Figure 5.5: A schematic view of the polymerization process.

result we will obtain a series of cylinders between the glass plates made by a hard polymer.

The used glue, Norland Optical adhesive 81, is sensitive to the entire range of long wave length

from 320 to 400 nm, with a peak sensitivity around 365 nm. The cure time is dependent

on light intensity and the thickness of the glue (in our case the distance between the glass

plate). After this UV exposure phase, we clean the medium from the non polymerized glue

that lies in the pores volume. This procedure is done using a combination of air pressure

and a mixture of Ethanol and Acetone. The UV light source is a LED (ThorLabs M365L2)

that emits UV at 365 nm. The used LED driver allows a variable power emission between

0 and 1 mW. Placing the UV source at a distance of 20 cm from the target we measured an

homogeneous power per unit surface of 0.5 mW/cm2 over an area of 10 cm2. In order to

obtain cylinder with sharp boundaries, we have to optimize the UV-light exposure time. In
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Figure 5.6: A photo of the porous medium. The chamber’s size is (100 × 100 × 1)mm.

fact with underexposure the cleaning process will destroy totally or partially the solid grains.

An overexposure will produce grains with a conic shape due to the diffusion of photons in

the glue at the interface between the black and void zones in the mask. After several tests we

optimized the exposure time τexp for a cell of thickness a = 1 mm exposed to a dose of 0.5

mW/cm2, obtaining τexp = 135 s (see Figure 5.6).

Once the grains are produced in between the glass plate, two opposite sides of the chamber

are sealed using the same glue. The other two opposite sides will constitute the inlet and the

outlet of the set up for the injection and the evacuation of the reactants.

The injection system

In order to produce the same flow as the one simulated through the SPH technique, we want

to impose a homogeneous pressure at the opposite open sides of the chamber. To do this

we build a suitable injection system using the following procedure. We superpose two glass

plates with a isosceles triangle shape whose base b = 10 cm has the same size of the width of

the chamber and a height u. The thickness of the glass plate is d = 4 mm. The gap between

the glass plates is the same as the thickness of the chamber. We make a hole in one glass

plate in the opposite corner of its basis. We seal this triangular structure against the open

side of the chamber. We then close the other two border of this injection structure. We then

produce another triangular structure similar to the previous one. This second structure is
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Figure 5.7: On the top a schematic view of the injection system, on the bototm a photo of the real

injection system and flow cell.

made by the superposition of three isosceles triangular glass plate with the same base as the

chamber width and an height u. The external triangle glass plate has a thickness d = 4 mm,

the intermediate one has a thickness of 1 mm. The 2 gaps between the glass plates are both

equal to 0.5 mm. We make a hole on the external glass plate in the opposite corner of its

basis. A scheme of the injection system is shown in Figure 5.7. The height u of the triangles

is chosen in order to have a flow at the entrance of the porous medium as homogeneous as

possible. Figures 5.8 and 5.9 show the results of numerical simulations of the Navier-Stokes

equations, with finite elements method, in the triangular injection structures with the same

geometric properties already described and for two values of the height of the triangles: u = 5

cm and u = 10 cm. The velocity field profile obtained from numerical simulations suggest

that 10 cm is a reasonable choice because the fluctuation of the flow about the average value

are less then 10%.

We connect the two holes on the same injection structure to the reservoir of the reactant A and
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Figure 5.8: Numerical simulation with finite element method for the flow in the injection system.

On the top is shown the profile of the velocity field in the vertical cross section, where the triangular

structure meet the porous medium. On the bottom the velocity profile in the line that cuts the cross

section surface at mid-height. The gap between the glass plate is set to be 0.5 mm and the height is set

to u = 5 cm

B, respectively. The other structure is connected to a pump. By suction, we pump from one

side of the chamber, injecting the reactants from the other side. A couple of faucet placed at

the connection between the injection structure and the chemical reservoirs allows us to choose

which chemical to inject. The pump is a cylindrical syringe whose piston is displaced by an

electrical motor with constant rate. Knowing the diameter of the syringe, we can set the rate

of the motor according to the flow that we want to impose. We can produce flow at volumetric

flow rates ranging from 3 · 10−2 mm3/s up to 50 mm3/s.

The chemical reaction

We chose a chemical reaction that follows the bimolecular irreversible kinetics A + B → C + ν

where C is some reaction product and ν is a photon. In this way the amount of light produced,

and observed, will be proportional to the number of chemical reactions that have occurred.

We use the very fast peroxyoxalate chemiluminescence described in Jonsson and Irgum [1999],

where the best combination of reaction speed and intensity of the emitted light is discussed.

We use bis(2.4.6-trichlorophenyl)oxalate (TCPO) under the catalytic influence of 1.8-diazabicyclo-
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Figure 5.9: Numerical simulation with finite element method for the flow in the injection system.

On the top is shown the profile of the velocity field in the vertical cross section, where the triangular

structure meet the porous medium. On the bottom the velocity profile in the line that cuts the cross

section surface at mid-height. The gap between the glass plate is set to be 0.5 mm and the height is set

to u = 10 cm

[5.4.0]-undec-7-ene (DBU) and 1.2.4-Triazole in a solution of Acetonitrile that when combined

with the fluorescent dye 3-aminofluoranthene (3 − AFA) and hydrogen peroxide (H2O2), will

start a chemiluminescent reaction to glow a fluorescent color. From a kinetics point of view

the limiting chemical species are the TCPO and the H2O2, therefore, in order to reproduce the

kinetics A + B → C we will use the same molar concentration of TCPO and H2O2. Following

Jonsson and Irgum [1999], we prepare two solutions. We will refer to A as a mixture of a molar

concentration of 0.5mM of DBU, 5mM of Triazole, 50nM of 3 − AFA and 1mM of H2O2. We

will refer to B as a solution of 1mM of TCPO. The solvent the same for both solutions, is the

Acetonitrile. We define the tk as the characteristic time for the reaction to reduce the emitted

light by a factor 10 in a well mixed volume. As discussed in Jonsson and Irgum [1999] for the

chemicals chosen and the adopted molar concentrations, tk is around 2s. This implies that if

the transport and mixing processes over the length scale of an observable pixel are larger than

tk we can use this chemical to reproduce a mixing limited reaction.

The diffusion coefficient of the limiting chemical species TCPO and H2O2 are supposed to be

the same.

The chosen solvent is Acetonitrile that is a very strong solvent. This constrains us to using, for
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the injection system, materials that are not attacked by this solvent (glass and aluminum). We

also tested the polymerized glue that constitutes the solid grains to be resistant to Acetonitrile.

The test is positive for exposure time of the glue to Acetonitrile smaller then 24 hr; after this

time the glue start to dissolve significantly in the solvent. The Acetonitrile at 25 Celsius

degree has dynamic viscosity µ = 3.4 · 10−4 Kg/(m·s), a density ρ = 0.787 Kg/m3 and thus a

kinematic viscosity ν = 0.45 · 10−8 m2/s.

The data acquisition chain

To measure the local reaction rate, the objective is to detect the intensity of the light produced

by reactions in a dark room. This has been done with a digital camera that is remote controlled

by a computer. We used a complementary metal-oxide-semiconductor (S − CMOS) based

digital camera (Hamamatsu Orca-Flash 2.8). The S − CMOS technology is highly performing

to detect very low light emissions, this implies that to obtain a clear figure of the emitted

light we do not need a large exposure time τ. A constraint of this measurement is that the

exposure time τ have to be smaller than the characteristic mixing time scale. The camera

has a spatial resolution of 1400 × 1900 pixels, with a pixel depth of 12 − bit. The used optics

allows us to image the visible porous medium. Thus, each pixel corresponds to a length

hp = L
pixels = 100mm

1400pixels = 0.07 mm/pixel. This pixel size represents the spatial resolution. The

characteristic diffusion time over hp is defined to be tD =
h2

p

2D ∼ 3s, where we assumed that

the diffusion coefficient of the chemicals is of the order D ∼ 10−9m2/s. Since our observation

time scale is larger than the characteristic time of the chemistry tk, with this experimental

set-up we can resolve spatially the porous medium at a scale at which we can assume the

reactants to be well mixed by diffusion.

The main control parameters of the S − CMOS camera are the exposure time, and the frame

rate, or the number of picture taken per unit time. The γ value associated with the taking of

images is set to 0, in order to have a linear relationship between produced and detected light.

Each image is a matrix A whose elements aij represent the intensity of the light detected at

the pixel location ij. Each pixel has a value 0 < aij < 2bit − 1 = 4095 for the 12 − bit camera

that we use.

Experimental procedure

We place on an optical table the described injection system and the chamber. The quasi-Hele-

Shaw cell lies in the horizontal plane to avoid gravitational effects on the flow. The camera is
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placed on top of the porous medium at a distance of about 30 cm. We focus the optics onto

the cell median horizontal plane, which is located at half the thickness of the porous medium.

With a syringe pump, by suction, we saturate the injection system and the porous medium

Figure 5.10: Four images, at four consecutive times, of the porous medium while a conservative tracer

is invading the pores volume. The color scale is normalized with respect to maximum value measured,

on the pixel depth: 255 (over 255 corresponding to the 8bit of the camera). The imposed flow is

q = 70mL/hr. The axis scales are in mm.

with the chemical B. Then we start to inject the solution of A. As discussed in the previous

chapter, the observed incoming reactant is organized in fingers inside the pores volume, see

Figure 5.10. These fingers have an average transverse size hT = 1 mm (that represent the

smallest pore size that limits the thickness of invading fingers). For time smaller than the

characteristic diffusion time over hT, the reactants mix only at the finger interfaces. This

corresponds to the invading regime discussed in the previous chapter. Thus the reactions will

take place, and so the light will be emitted, at these fingers boundaries.

In practice the two solutions can mix before they are injected in the porous medium within the

junction between the injection system and the chamber. This effect disturbs the observation

and measurement. If we inject a mixture of the two chemicals the reactions will take place

mainly inside the finger structures instead of on the finger’s boundaries. To reduce this effect

we reduce as much as we can the volume of the junction where A and B can mix while being

injected. Furthermore, as soon as we can detect some light produced at the injection line of

the porous medium, we stop the pumping for one minute. During this time the reactions

will deplete completely the concentration of A and B in this junction zone. Thus we can

start the injection and observe the reaction taking place mainly at the finger’s boundaries

(see Figures 5.12, 5.13 and 5.14). We tested 5 imposed flow rates with the syringe pump:
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Figure 5.11: A photo of the experimental set up. The camera takes pictures of the porous medium

displaced between the injection system from the top. The latter is connected on one side to two reservoir

where the chemicals are stored, on the other to the syringe pump. The optical table on which the

experiment is displaced is within a dark room. An homogeneous source of light is here displaced under

the porous medium in order to observe the injection of a conservative tracer. For the reactive experiment

the light is removed and the experiment is run in the dark.

q = 70, 50, 40, 30, 20 mL/hr. We define the Reynolds number over a length 1 mm (smallest

pore size) as Re = q L
Σν , where the surface of injection Σ = 100× 1 mm2. For the imposed flow

rates, we obtain a range of Reynolds number between 5.5 (corresponding to the lower flow

rate) and 19.5 (corresponding to the fastest flow rate).

The exposure time τ of the camera should be the shortest possible in order to observe the dy-

namics of the fluid motion. However, it is necessary to consider that the exposure time of the

camera fixes the number of photon, or the number of reactions, that we measure within one

picture. Thus, if τ is too short the resulting picture will be very dark because not enough pho-

tons, produced during τ, will have reached the camera’s sensor. In other words the camera’s

pixel depth (the amount of information that each pixel can provide) will be filled partially
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Figure 5.12: Two sets of four images, at four consecutive times, of the porous medium while the

reactions are taking place. The axis scales are in mm. The color scale is normalized with respect to

maximum value measured, on the pixel depth (over 4095 corresponding to the 12 bits of the camera):

100 for the case q = 70 mL/hr (on the top) and 60 for the case q = 50 mL/hr (on the bottom).

by the more intense detected light. On the other side, for a large τ the camera’s pixel depth

will be filled by the more intense detected light, but will not provide information about the

dynamics of the fluid motion in the cell. In fact during τ the camera will integrate all the

dynamical information while the fluid is moving. Thus, in practice we set up τ as the time

that the dynamics takes to move the fluid over the size of one pixel. This quantity depends

on the imposed flow rate: the larger the flow rate is, the smaller τ has to be. For a flow rate

q = 70 mL/hr the optimized exposure time results to be τ = 1 s, for a flow rate q = 20 mL/hr

the optimized exposure time results to be τ = 3 s, providing pixel values between 0 and 100

in the first case, between 0 and 60 for the other cases (see Figures 5.12 and 5.13). Figure 5.16

shows the detail of the spatial fingers structure of the reactions: chemical reactions take place

only at the invading reactant finger’s boundaries. This correspond to the zone of the system

where the reactants are mixed.
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Figure 5.13: Two sets of four images, at four consecutive times, of the porous medium while the

reactions are taking place. The axis scales are in mm. The color scale is normalized with respect to

maximum value measured, on the pixel depth 60 (over 4095 corresponding to the 12 bits of the camera).

The top images are associated to q = 40 mL/hr, the lower to q = 30 mL/hr.

Figure 5.14: Four images, at four consecutive times, of the porous medium while reactions are taking

place. The axis scales are in mm. The color scale is normalized with respect to maximum value

measured, on the pixel depth: 60 for the case q = 20 mL/hr (over 4095 corresponding to the 12bit of

the camera).
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5.3 Results

We have taken images at regular time interval ∆t; for a set of N pictures, we define the time

as a vector of N component ti = i · ∆t. The total amount of light detected by the p−th

picture at time tp represents the total amount of reactions, or C produced, in the time interval

[tp, tp + τexp]. This quantity is given by the sum over all the pixels Ip = ∑ij aij of the image p.

We integrate Ip in time, obtaining a measure for the cumulative mass of produced C from the

cu
m

ul
at

iv
e 

lig
ht

 e
m

itt
ed

time (ms)

t2

Figure 5.15: Scaling of the cumulative mass of produced C measured as a function of time.

injection to time t as

MC(tp) ∝

p

∑
k=1

Ik =
p

∑
k=1

∑
ij

(aij)k (5.6)

Figure 5.15 shows the scaling of the the cumulative mass of produced C for flow rate q = 70

ml/hr. Its temporal scaling is MC(t) ∝ t2. This scaling is in good agreement with the pore

scale numerical simulations and the upscaled model proposed in the previous chapter for the

first regime.

This quadratic scaling in time is related to the finger organization of the incoming reactant in

the porous medium (see Figure 5.16). As discussed in the previous chapter, when diffusion

homogenizes the reactants concentrations over the average transverse finger cross section hT ∼
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1 mm, these structures are destroyed. This happens after a characteristic diffusion time tD =

h2
T

2D ∼ 500 s, where we estimate the diffusion coefficient to about D ∼ 10−9 m2/s. The kinetics

is thus expected to change its scaling and slow down. To observe this second regime and

the associated transition the experiment must have a duration larger (at least one order of

magnitude) than tD. The longer experiment we performed, for a flow of q = 20 ml/min, had

a duration of 110 s preventing us from observing the second regime. For all the performed

experiments the invading reactant is organized in fingers, on the surface of which reactions

take place (see Figure 5.16) and the mass production is characterized by a quadratic scaling. To

observe the destruction of the fingers structures and the consequent second regime, we should

use very low flow rates q. This is not possible with the actual experimental set up because

the local amount of chemical reactions depends on the flow rate: the lower it is, the slower

the fingers growth will be, the less reactions take place and the less light is detected by the

camera. To do this a possible development of this experiment is the use of a photomultiplier

to measure amount of photons that are not detectable by the camera. Another option is the

decrease of tD using a porous medium with smaller pore volume and smaller average fingers

cross section of size hT.

Figure 5.16: Detail of the spatial organization of the chemical reactions at the pore scale. They take

place where the reactants mix, at the fingers boundaries.



Chapter 6

Conclusions and perspectives

The prediction of dispersion, mixing and reactive transport in heterogeneous flows is a chal-

lenging issue in the context of flow through porous media as the probability of reactive species

to meet and react depends on the complex flow organization. Such a physical systems are

described at small scale in terms of conservation laws that lead to well known governing

equations (e.g. Navier-Stokes for flow, advection-diffusion-reaction equation for mass). On

one hand the solution of such equations over the full domain is, in general, not known due

to the mathematical difficulties (e.g. non linearity) and our ignorance on initial and boundary

conditions for real systems. Typical observation scales are much larger than the small scale at

which the governing equation are defined. Taking into account both of these critical aspects,

simple, effective description consistent with respect to small scale are needed in order to pro-

vide solvable models at the desired observation scale. Several upscaling techniques have been

discussed in the introduction. In this thesis we propose to investigate the multiscale nature

of mixing limited reaction in porous media studying how the system behavior changes as the

observation scale changes. We investigate the system behavior over a large range (temporal,

spatial,...) of domains, in order to provide informations about how smaller scales can impact

on larger ones.

Among the wide range of possible reactive systems that exist in porous media, we decided to

study the mixing limited reactions where reactions are fast enough in depleting chemicals to

be limited by mass transfer and mixing processes. In general mixing processes are complex

and given by the coupling of different mass transport phenomena: the ones considered in this

thesis are advection and diffusion. The concept of mixing is in general different from the one

of spreading and thus, for transport in heterogeneous media, the two processes need to be

101
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separated.

Diffusion limited reactions

To understand and characterize the basic mechanisms behind the coupling of mixing and

reactions, we consider first a simple case. We reduce mixing to Fickian diffusion (no advection

is considered). The chemistry considered is the irreversible bimolecular reaction between two

chemicals A and B: A + B → C. We consider that the governing processes (diffusion and

chemical reactions) are stochastic and thus also the reactants concentrations are stochastic and

defined by probability distributions. If the initial spatial distribution of reactants is perfectly

homogeneous cA(x, 0) = cB(x, 0) = c0 the diffusion plays no role and average concentrations

of reactants scales following cA = cB ∝ t−1, as predicted by mass action law, here called

the mean field description. In presence of heterogeneous fluctuations in initial conditions a

deviation from the mass action law prediction is observed. When the average concentrations

are almost depleted by reactions, reactants become spatially distributed in islands of A and

islands of B that need to be diffusively displaced to meet and react, their scaling changes from

t−1 to t−1/4. This effect is the so-called Ovchinnikov-Zeldovich (OZ) segregation. We relate

and quantify this anomalous kinetics to transition from a Gaussian to non-Gaussian shape

of the concentrations pdf. The analytical results are complemented by numerical simulations

based on the Gillespie algorithm. This results have been published on the Journal of Chemical

Physics on 2011.

For the OZ segregation problem a full analytical solution has not been proposed in the past.

The asymptotic behavior of concentration of reactants is predicted without knowing in de-

tail the transition time between the mean field t−1 and the anomalous kinetics t−1/4. We

address this open question using the method of moment equations. We solved analytically

the anomalous kinetics associated to the OZ segregation, providing a solution for all times,

characterizing, hence, the transition time between the expected kinetics and its breakdown as

a function of the Damkohler number. This results have been published on Water Resources Re-

search on 2011. Within the same mathematical framework we then found an analytical solution

for the OZ segregation when the diffusive mixing is not Fickian, but enhanced and described

by Levy flights. This results have been published on Advances in Water Resources on 2012.

Diffusion limited reaction is the simplest system for studying anomalous kinetics. However,

as has been shown in chapter 4, anomalous kinetics in more complex heterogeneous porous

media can be understood in terms of diffusion limited systems.
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Advective spreading in heterogeneous porous media

In order to relate the pore scale flow heterogeneity to advective spreading and subsequently

to anomalous kinetics, we analyzed the Lagrangian velocity increments distribution and the

associated accelerations correlation. We have shown the existence of long range temporal

correlation of Lagrangian accelerations, which are at the root of the breakdown of classical

Fickian dispersion models. Thus, similarly to turbulent media, flow through porous media

displays strong intermittent properties. The advective dispersion in such a velocity field turns

out to be non Fickian. Classical Random Walk models are associated to a dynamical descrip-

tion of Lagrangian particles in terms of a Langevin type equation characterized by a white

noise. These models assume uncorrelation between Lagrangian accelerations and, hence, can-

not represent our observations. We propose an extension of CTRW that takes into account

correlations. We relate the parameters of the CTRW model to the observed Lagrangian ac-

celeration correlation. In practice we evaluate from pore scale simulations the conditional

probability r(v|v′)∆x of the Lagrangian velocities to change from v to v′ across a fixed spatial

increment ∆x. With this transition probabilities we define a correlated CTRW model to up-

scale the anomalous behavior observed. We show the good agreement between the scaling of

longitudinal dispersion σx predicted by the proposed correlated CTRW model and the pore

scale observation. This results has been published on Water Resource Research on 2011. The

defined correlated CTRW, is also able to reproduce and predict the observed intermittent-like

behavior of Lagrangian velocities (manuscript in preparation).

Anomalous kinetics of reactive front

In order to investigate the impact of heterogeneous advection on effective reactions, we con-

sider the reactive front between two chemicals continuously injected, one displacing the other,

in a 2d porous medium. The two solute react when in contact in the portion of the pores

volume where they are mixed by the combination of heterogeneous advection and diffusion.

While the two reactant are mixed a bimolecular reaction A + B → C take place. Upscaled

Fickian dispersion models assume complete mixing at the pore scale and predict a scaling

MC(t) ∝ (Ddispt)
1
2 , where Ddisp represent the effective dispersion coefficient. The upscaled

picture resulting from our pore scale simulations is quite far from the Fickian case. We ob-

serve two time regimes in which the total product mass evolves faster then t1/2. At early

times the invading solute is organized in fingers of high velocity. Reactions take place only at
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the fingers boundaries whose surface grows linearly in time. We show that this configuration

leads to a mass scaling MC ∝ t2. When diffusion mixes reactants and destroy these finger

structures, the effective reaction rate slows down and we relate it to the longitudinal advective

spreading providing MC ∝ σx. The transition time between these two regimes is characterized

by the diffusion time over the transverse fingers cross section. This result is confirmed by 3d

simulations. The proposed simple physical model explains both regimes and the transition

time between them, providing a global upscaled framework for this mixing limited reaction.

The behavior of the second regime, together with the upscaling analysis for σx presented

in the third chapter, provides a consistent relationship between the local flow heterogeneity,

anomalous dispersion and anomalous kinetics. Furthermore, we show that the kinetics of

the peak of the longitudinal distribution of reaction product evolves in agreement with the

OZ anomalous kinetics discussed in the second chapter, providing a link between reactive

transport in complex advection and in diffusion limited systems.

A new experimental method for high precision quantification of reactive transport

In the framework of reactive transport in porous media laboratory experiments to measure

the impact of incomplete mixing on global reaction kinetics represent a challenging goal.

Thus, there exist relatively few experiments. We propose a new experimental set up based on

chemiluminescence reactions that allows for high resolution quantification of the pore scale

concentration pdf and reaction rate. Through a lithography technique we build a transparent

quasi 2d (very thin) chamber filled with cylinders, representing soil grains, with the same

geometry of the medium simulated in chapter 4. With a SCMOS camera we image the medium

and measure the local reaction kinetics through a chemiluminescence reaction: each reaction

produce a photon. Anomalous kinetics of the reactive front is observed and is very consistent

with our theoretical predictions. While previous experiments provide indirect quantification

of the produced mass by reactions (e.g. through the Beer-Lambert law), this method provides

high precision measurements of the reaction rate and the pore scale concentration field.

Some perspectives

Mixing-driven reactions are determined by the geometry of the mixing interfaces whose dy-

namics derive from the interaction of microscopic mass transfer and reaction processes. The

theoretical framework here presented for upscaling mixing limited reactions taking place at

pore scale can be extended to different applications. As discussed, mixing limited reactions
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in porous media are crucial in several scientific and industrial applications such as CO2 se-

questration, remediation, that are governed by complex chemical reactions. Reactive trans-

port phenomena when coupled with growth of biofilms has important implications in aquifer

storage and recovery, biobarriers, microbial enhanced oil recovery, CO2 sequestration, seismic

wave propagation, and in-situ bioremediation. Possible developments of this work include ac-

counting for different mixing processes, such as viscous mixing, and more complex reactions

that involve biological processes.

The proposed laboratory experiment is promising because it allows for imaging and, hence,

measuring, the pore scale organization of flow, transported concentrations pdf and reactions.

The characterization of the local velocity field in a chamber via particle tracking is currently

developed (Master Thesis of Regis Turuban). Another interesting application of the proposed

technique is the study of dispersion associated to unsaturated conditions, where numerical

simulations are very limited in predicting the system behavior (current postdoctoral project

of Joaquin Jimenez-Martinez).

The proposed chemiluminescence reaction technique could also be applied to 3d experiments.

The same kind of set up could be used to inject the reactant A in a parallelepipedic chamber

filled with transparent beads. Using index matching the whole system will be translucent and

the light produced by reactions inside the medium can can be transmitted and detected with

similar imaging techniques.

An interesting application of the chemiluminescence reaction is in non reactive experiments

where the emitted light can be used as a tracer. If one of the two reactants, e.g. B, has a very

large concentration with respect to the other, cA ≪ cB the kinetics of the reaction, following

the mass action law, will be proportional to the concentration of the chemical with the lower

concentration
dcA

dt
= −kcAcB ∼ −k′cA cB is almost contant k′ = kcB

For a suitable choice of the chemical mixture for A and B, the resulting reaction constant k

can be small and the kinetics very slow. This implies that the reaction cannot significantly

modify the reactants concentrations for times smaller than the duration T of the experiment

(tk =
cA(0)

k ≫ T). We could thus prepare a well mixed solution of A and B whose emitted light

will be proportional to the concentration cA. If the experiment have a duration T smaller than

the characteristic chemical time tk = 1/k, the variations in A concentrations can be associated

only to transport mechanisms.
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A common barrier to accurately predicting the fate of reactive contaminants is accurately describing the

role of incomplete mixing. In this paper we develop a stochastic analytical framework for an irreversible

kinetic bimolecular reaction in a system with anomalous transport, governed by the fractional advection–

dispersion equation (fADE). The classical well-mixed (thermodynamic) solution dictates that the concen-

tration of reactants after an initial transient decreases proportional to t�1. As the system becomes less and

less well-mixed, the rate of reaction decreases relative to the thermodynamic solution, at late times scal-

ing with t�1/(2a) instead of t�1, where 1 < a 6 2 is the fractional order of the dispersion term in the fADE.

The time at which this transition takes place is derived, giving an indication of the range of validity of the

classical (well-mixed) equation. We verify these analytic results using particle-based simulations of ran-

dom walks and reactions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Anomalous transport, or transport that does not follow Fick’s

Law of dispersive behavior, is common in a variety of hydrological

and geophysical systems with heterogeneous velocity fields and

typically arises due to nonlocal effects. Fields of interest where such

anomalous behavior occurs include solute transport in surface [22]

and subsurface water systems [33], turbulent environmental flows

[12], sediment transport in rivers [8] and mechanical transport of

soil constituents [19].

The classical 2nd-order advection–dispersion equation often

cannot adequately model anomalous transport and a variety of

mathematical models capable of doing so have emerged. Nonlocal

effects can arise for a variety of reasons [11,32,13], but in short the

concentration at some point should account for contributions from

a variety of distances and/or the prior concentration history. Exam-

ples of the derivation of nonlocal methods in a variety of hydrolog-

ical transport applications include delayed diffusion [15], projector

formalisms [11], moment equations [32], multi-rate mass transfer

[24], continuous time random walks [3] and fractional ADEs [40].

In this work we focus on the space-fractional ADE that is the con-

tinuum equation governing Lévy motion, which has been called

ubiquitous [45]. The appeal lies in the fact that the model is suffi-

ciently complex to display relevant dynamics while sufficiently

simple to allow analytically tractable results that provide great in-

sight into the influence of spatial nonlocality.

To date, the bulk of transport studies have focused on conserva-

tive transport.Many constituents of interest in hydrological systems

do not behave conservatively, and their reactive character should be

included, although predicting reactive transport in porous media

can be quite challenging (see the recent review article by Dentz

et al. [14]). Classical transport and reaction equations based on the

assumption of perfectmixing fail to properly predict reactionswith-

in systems ranging from laboratory-scale in homogeneous material

[36,23] to large-scale heterogeneous systems [29,47]. The devia-

tions from classical reaction predictions can arise due to incomplete

mixing [43,42], whichmust be accounted for in the correct upscaled

model. For example, one might assume in an ad hoc manner that a

kinetic reaction term is the result of upscaling the incomplete mix-

ing process and arrive at accurate predictions of laboratory experi-

ments (e.g. as done by [38] with the experiments of [23]).

Systems that can display anomalous transport for conservative

constituents often display anomalous mixing characteristics (e.g.,

[37,9,46,5,28,27,4,10]). In some instances anomalous mixing can

persist even when spreading of a conservative plume appears to

be Fickian [28]. Such anomalous mixing in turn is expected to sig-

nificantly impact chemical reactions where mixing is the mecha-

nism that brings reactants together. The impact of anomalous

transport on reactive systems of hydrological interest has to date

received some attention (e.g., [6,16,17,47,29]). However, given

the diverse nature of chemical reactions (e.g., instantaneous vs.

kinetic, equilibrium, reversible vs. irreversible) a one-size-fits-all
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approach does not apply and interesting and important features

arise depending on the specific type of reaction.

In this work we focus on irreversible kinetic reactions of the

type A + B? C. This is the simplest reactive system in which segre-

gation or poor mixing of the species can lead to suppressed reac-

tions. Therefore, the mechanics of transport and mixing bear

directly on the ultimate reaction speed. For this system there is a

competition between the rate of reaction between particles and

the ability for A and B to mix by dispersive mechanisms. In a sys-

tem that is continually well-mixed (say, as in a stirred beaker),

the thermodynamic law follows

dCA

dt
¼ dCB

dt
¼ �kCACB; ð1Þ

where Ci is the concentration of constituent i, and k [LdM�1T�1] is the

reaction rate coefficient. An especially interesting case is when the

initial concentrations CA0 and CB0 are equal, then the solution to

(1) is CA = CB = CA0(1 + CA0kt)
�1. It is important to note that these con-

centrations denote the ensemble average of a well-mixed process

[20]. In a natural system that begins in an initially well-mixed state,

the initial rate of reaction follows the thermodynamic law (1). The

role of dispersive mechanisms in such a system is negligible (see

[2,14]). However, as fluctuations of A or B become large with respect

to the mean, isolated islands of A and B can form within which little

or no reaction can occur, thus decreasing the rate at which the mean

amount of A and B are consumed. This behavior was hypothesized

and observed numerically for Fickian dispersion [35,26,44]. Using

asymptotic arguments these authors showed that the rate of con-

sumption of A and B changes from the initial thermodynamic value

(which goes like t�1 after a brief initial time) to a rate that goes like

t�d/4, where d is the number of dimensions under consideration. It

has subsequently been observed by other authors (e.g. [30,2,1]). This

functional form of deviation from the thermodynamic law is valid

for Fickian dispersion, but the deviation may be expected to be dif-

ferent in systems that do not display Fickian behavior.

Rather than rely on purely asymptotic arguments, we analyti-

cally derive solutions for the full time scaling of reaction rates

associated with Lévy motion (including, as a subset, Brownian mo-

tion governed by Fick’s Law). We do so using a stochastic model

and the method of moments (e.g., [41,18]) and verify our results

numerically with a particle-based reaction-dispersion model.

2. Model

Consider a system where two components A and B are distrib-

uted in space and can react chemically and irreversibly with one

another. For simplicity we consider one-dimensional transport

and reaction. The components are transported superdiffusively

and are governed by the spatial fractional dispersion equation, so

that

@Ci

@t
¼ Dp

@aCi

@xa
þ Dq

@aCi

@ð�xÞa � kCACB; i ¼ A; B; ð2Þ

where D [LaT�1] is the dispersion coefficient, 1 6 a 6 2 is the frac-

tional derivative exponent, and p and q are the weights of forward

or backward dispersion, where p + q = 1 and 0 < p < 1 (for symmetric

dispersion p = q = 0.5). Mixing processes are given by both advective

and dispersive mechanism. As a first step in understanding the im-

pact of mixing on the global reaction rate, here we consider the case

where the mixing processes are given only by fractional dispersion,

neglecting the advective contribution. Note that the case of a con-

stant advection term would cause a constant shift in time, but not

affect mixing or reactions due to the principle of Gallillean invari-

ance (i.e. the shift in the location of the center of mass is only af-

fected by advection, while the rate of spreading of the plume

around its center of mass, which influences mixing, is affected only

by dispersion). In order to characterize the role incomplete mixing

on the global chemical reaction rate, we focus on the dispersion-

limited reaction case.

We begin by assuming that A and B are initially distributed in a

uniformly random manner in a one-dimensional domain. This ran-

domness persists, and we may decompose the random concentra-

tions as Ciðx; tÞ ¼ Ciðx; tÞ þ C0
iðx; tÞ; i ¼ A;B. The overbar refers to the

ensemble average and the prime to fluctuations about this. We

consider the initial average conditions:

CAðx;0Þ ¼ CBðx;0Þ � CA0 ð3Þ

in an infinite domain with natural boundary conditions. Using (2)

and the previous decomposition of concentration, the governing

equations for the thermodynamic limit and the fluctuations from

it can be written as

@Ci

@t
¼ �kCACB � kC 0

AC
0
B ð4Þ

and

@C 0
i

@t
¼ Dp

@aC 0
i

@xa
þ Dq

@aC0
i

@ð�xÞa � kCAC
0
B � kC

0
ACB � kC

0
AC

0
B þ kC 0

AC
0
B; ð5Þ

where we used the fact that C0
i ¼ 0. We are interested in the evolu-

tion of Ci, that depends on the evolution of the correlation structure

of the local fluctuations. If both chemicals are initially distributed in

the system through the same physical mechanism, it is reasonable

to assume that the fluctuating components have initial identical

correlation structure:

C 0
Aðx;0ÞC

0
Aðy;0Þ ¼ C0

Bðx;0ÞC
0
Bðy;0Þ ¼ Rðx; yÞ: ð6Þ

Both A and B have similar initial correlation structures because the

initial perturbations will arise due to small scale stochastic fluctua-

tions (due to subscale noise/diffusion), which are expected to be

similar for A and B as defined here.

A deviation from the thermodynamic law occurs when isolated

patches of A and B emerge [44]. We select an initial condition for

the fluctuation concentrations that reflects the emergence of such

islands by taking A0 and B0 as initially anticorrelated such that

C 0
Aðx;0ÞC

0
Bðy; 0Þ ¼ �Rðx; yÞ: ð7Þ

This is physically justifiable because in regions where there is an

abundance of A relative to B, reactions will take place and result

in a further depletion of B relative to the mean and excess of A rel-

ative to the mean. Similarly areas of excess B correspond to de-

pleted A, thus giving rise to anti-correlation.

We can now write the equation for the covariance f ðx; y; tÞ ¼
C0
Aðx; tÞC

0
Bðy; tÞ as (see Appendix A)

@f ðx; y; tÞ
@t

¼ 2D p
@af ðx; y; tÞ

@xa
þ q

@af ðx; y; tÞ
@ð�xÞa

� �

ð8Þ

subject to initial condition f(x, y, t = 0) = �R(x, y). The solution to (8)

with natural boundary conditions on an infinite domain can be

found with the Green’s function, i.e.

f ðx; y; tÞ ¼
Z 1

�1
�Rðn; yÞGðx; n; tÞdn; ð9Þ

where

Gðx; n; tÞ ¼ 1

2p

Z 1

�1
e2D½pðikÞ

aþqð�ikÞa �teikðx�nÞdk: ð10Þ

Because the initial correlation structure acts over a short range, we

do not expect the specific initial correlation structure to play a ma-

jor role. For simplicity we consider the limiting case of a delta cor-

related initial condition for f, i.e.
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f ðx; y; t ¼ 0Þ ¼ �Rðx; yÞ ¼ �r2ldðx� yÞ; ð11Þ

where r2 is the variance and l the correlation length. This can be

thought of as an approximation of an exponential or Gaussian cor-

relation and it is straightforward to show that after some initial

transient the solution for the delta correlation displays the same

behavior (see Appendix B). In other studies it has been shown to

give asymptotically similar results as short range correlation func-

tions [34,7]. We are ultimately interested in the limit y? x and

with the delta initial condition the solution for f(x, y, t) is

f ðx; y ! x; tÞ ¼ �r2l

2p

Z 1

�1
e2D½pðikÞ

aþqð�ikÞa �tdk

¼ �r2l

2p
t�1=a

Z 1

�1
e2D½pðimÞaþqð�imÞa �dm ¼ �vt�1=a; ð12Þ

where v ¼ r2 l
2p

R1
�1 e2D½pðimÞaþqð�imÞa �dm is a constant. Interestingly, the

time scaling for f only depends on a, the fractional dispersion coef-

ficient. Substituting (12) into (4) our equation for the mean concen-

tration of A or B becomes

@Ci

@t
¼ �kCi

2 þ kvt�1=a: ð13Þ

Strictly speaking, aswritten, Eq. (13) is not valid fromtime t = 0asone

has singular and nonphysical behavior associated with the term

kvt�1/a. This problem is circumventedbyaccepting that this equation

is only strictly valid after some initial ‘‘setting’’ time t0 and defining

the initial condition at this time such that CAðt ¼ t0Þ ¼ CA0. It is equiv-

alent to having an initial transient periodduringwhich the initial cor-

relation and anticorrelation structure forms. We find that the

solutions are insensitive to this small time [41].

3. Solution – discussion and implications

Wewill nowwork in nondimensional space. We nondimension-

alize concentrations by the initial CA0 and time by kCA0 so that (13)

can be written as

@Ci

@t
¼ �Ci

2 þ v�t�1=a CAðt ¼ t0Þ ¼ 1; ð14Þ

where

v� ¼ vk
1
aðCA0Þ

1
a�2 ð15Þ

v⁄and a are now the only dimensionless numbers that play a role in

this system. Note that the right side of (14) has a sink and a source

term. At early time the well-mixed (first) term dominates, but at

late time the well-mixed sink is balanced by the ‘‘source’’ that ac-

counts for imperfect mixing.

3.1. Well mixed system (thermodynamic limit)

A well mixed system can be represented by v⁄ = 0. This is equiv-

alent to the classical thermodynamic limit equations where the

fluctuations in concentrations are zero, i.e.

@Ci

@t
¼ �Ci

2 CAðt ¼ t0Þ ¼ 1: ð16Þ

The solution to this equation is well known and given by

CAðtÞ ¼
1

1þ ðt � t0Þ
: ð17Þ

In particular it is worth noting that at large times the concentration

of A scales inversely with time, i.e. CAðtÞ � t�1.

3.2. Incomplete mixing

We now look at the full solution of Eq. (14) accounting for the

source terms that quantifies incomplete mixing. Eq. (14) is a Riccati

equation and has solution

CiðtÞ ¼
ffiffiffiffiffi

v�p

t
1
2a

I� a�1
2a�1

ðzÞ � jK a�1
2a�1

ðzÞ
� �

I a
2a�1

ðzÞ þ jK a
2a�1

ðzÞ
� � ; z ¼ 2a

ffiffiffiffiffi

v�p

2a� 1
t
2a�1
2a ; t P t0;

ð18Þ

where the I and K are modified Bessel functions of the first and sec-

ond kind and j is a constant that depends on the initial condition

and is given by

j ¼
I� a�1

2a�1
ðz0Þ � v��1

2 t
1
2a
0 I a

2a�1
ðz0Þ

� �

K a�1
2a�1

ðz0Þ þ v��1
2 t

1
2a
0 K a

2a�1
ðz0Þ

� � ; z0 ¼ 2a
ffiffiffiffiffi

v�p

2a� 1
t
2a�1
2a

0 : ð19Þ

3.3. Early time

At first glance the analytical solution in (18) may not appear to

give much insight. However, early and late time expansions of this

solution clarify the situation significantly. To leading order, at early

time the solution in (18) is given by

CAðtÞ ¼
1

1þ ðt � t0Þ
; ð20Þ

which is identical to the well-mixed thermodynamic solution

(Fig. 1) and shows consistency of the solution with an assumption

of early conditions that are sufficiently mixed for the thermody-

namic rate to dominate. If this thermodynamic solution held at all

times one would expect a late time scaling that goes like inverse

time, i.e., t�1.

3.4. Late time

At late time, the fraction in parentheses in Eq. (18) containing

the Bessel functions converges to unity, and the leading order

behavior becomes

CAðtÞ �
ffiffiffiffiffi

v�
p

t�1=ð2aÞ: ð21Þ

Unlike the thermodynamic solution, which scales as t�1, the solu-

tion of (18) decreases at a slower rate of t�1/(2a) (Fig. 1). For the Fic-

kian case of a = 2 this results in a late time scaling of t�1/4, in

agreement with previous predictions and observations (e.g.

[35,26,44,2,1]).

3.5. Cross-over time

In the above discussion we talk about early and late times with-

out clearly defining these. On physical grounds we define early

times as times when the thermodynamic law still holds and late

times as times when the anomalous kinetics emerge. The cross-

over time that delineates early and late times can be found by bal-

ancing both terms on the right hand side of (14); i.e., it is when the

terms that reflect well-mixed conditions and imperfectly mixed

conditions become comparable in size. Thus we can define a

dimensionless cross-over time s such that 1
s2 ¼ v�s�1=a. Solving

for s we obtain

s ¼ v� a
1�2a: ð22Þ

When t > s, anomalous kinetics are expected and at early time,

when t < s, behavior consistent with the thermodynamic law is

observed. The larger the value of v⁄, the earlier the onset of
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anomalous kinetics. Recall that v⁄ is a dimensionless number that

reflects how noisy the initial concentration field is, as well as the

competition between diffusion and reaction time scales. For illus-

tration let us consider the Fickian case of a = 2. Here

v� ¼
ffiffiffiffiffiffiffi

1

8p

r

r2

C2
A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kl
2
CA0

D

s

; ð23Þ

which is closely related to the (dimensionless) dispersive Damkoh-

ler number Da = sD/sR = kl2CA0/D (e.g. [39]). The Damkohler number

is a ratio of the time scale of diffusion sD = l2/D to the time scale of

reaction sR = 1/kCA0, thereby quantifying how quickly reactions oc-

cur relative to dispersion. Our dimensionless v⁄ is proportional to

Da2, with the constant of proportionality including a term r2

C2
A0

that

reflects the amplitude of initial ‘‘noise’’ in the distribution of A

and B. An increase in Da means that reactions are faster relative

to the rate of diffusion and the system has a quicker onset of incom-

plete mixing; i.e., A and B are consumed quickly relative to how

quickly diffusion can bring them together. The additional term ac-

counts for the smoothness in the initial condition, which directly af-

fects that time of the onset of separate A and B islands and

incomplete mixing.

4. Numerical simulations

To verify the theoretical results, we simulated random walks

and particle/particle reactions using the method of [2] modified

for Lévy motion. The details of the algorithm are given in [2] and

the modified version is briefly outlined here. Time is discretized

into steps of identical duration Dt. Each particle jumps a random

distance in the domain of attraction (DOA) of an a-stable law (i.e.

by the generalized central limit theorem they additively converge

to an a-stable distribution [21]) so that the random walk approxi-

mates Lévy motion. We also must rapidly calculate the probability

density of the sum of two random walks to estimate the probabil-

ity that two particles will be co-located and potentially react.

Therefore, we require jumps for which random values are easy to

generate and the density function is also easy to calculate (effec-

tively ruling out a-stable random variables themselves).

Due to the power-law tails, the shifted Pareto distribution

P(jXj > x) = sa(x + s)�a [25] is in the domain of attraction of the a-
stable laws (by the generalized central limit theorem); therefore,

a sum of random jumps drawn from this distribution will converge

to Lévy motion. This is analogous to summing variables from a uni-

form distribution to simulate a Brownian motion by invoking the

classical central limit theorem. However, relative to the corre-

sponding a-stable density, the shifted Pareto density is too peaked

at the origin and nearby particles are too likely to react. Instead we

choose symmetric jumps X from a ‘‘chopped’’ Pareto (see for exam-

ple Fig. 2) distribution following

PðjXj < xÞ ¼ mx if x < ðð1þ aÞcÞ1=a;
1� cx�a otherwise:

(

ð24Þ

The constants c and m dictate the size of the jumps. Both c and m

are functions of Dt and D. Each jump should be DOA a-stable with

scale (DDt)1/a, so that by (7.19)–(7.21) in [31], c = DDt/

(C(1 � a)cos(pa/2)). The slope m and cutoff ((1 + a)c)1/a are chosen

to ensure a mono-modal density by making the small x uniform

cumulative distribution tangent to the power law with prefactor

c. The form we chose for this jump density is one that most closely

approximates an a-stable variable, while still being computation-

ally efficient. For aP 2, the jumps are in the domain of attraction

of a Gaussian and simpler traditional methods can be used. The sep-

arate probability density, denoted v(s), that two particles will be co-

located in any time interval given initial separation s is the convo-

lution of two a-stable densities with each other. This is also a-sta-
ble. We use the chopped Pareto to calculate the density that

approximates the a-stable law with scale (2DDt)1/a.

An initial number N0 of both A and B particles are (uniformly)

randomly placed in a 1 � D domain of size X. Note that we do

not impose the initial conditions in equations (6) and (7) as done

in the theory. Rather, we allow the randomness to naturally evolve

from the uniform initial condition at t = 0. This evolution reflects

the initial ’setting time’ discussed in Section 2. The reactions are
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Fig. 1. Plots of the analytical solution (18) for a variety of values of a: 1.1, 1.5, and 2.0. Note that in all cases the solution pulls away from the well-mixed thermodynamic limit

(black solid line) and at late times scales like t�1/(2a). Each solution uses a value of v⁄ = 0.005.
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simulated by calculating the probability density of particle co-loca-

tion (v(s)) by Lévy dispersion. This probability is multiplied by the

thermodynamic probability of reaction given the co-location. Each

particle represents a total mass XCA0=N0, so the probability of reac-

tion [2] is kDtðXCA0=N0ÞvðsÞ. This probability for each A and B par-

ticle pair is compared to a new Uniform(0,1) random variable until

a reaction takes place or pairs are exhausted. The particles then dif-

fuse by random walks and react again ad nauseum.

In all of the Lagrangian simulations, the reaction rate follows the

well-mixed solution until the late time scaling sets in. In agreement

with our theoretical development, the late time solution scales with

t�1/(2a) (Fig. 3). Each simulation used representative values for aque-

ous environments: domain size X = 200 cm; CA0 ¼ CB0 ¼ 0:001 and

k = 1.0, where the latter two constants use consistent concentration

units. The dispersion coefficients were varied to get ample separa-

tion of data points for visual clarity: For a = 1.1, 1.5, and 2.0,

D = 5 � 10�6, 2.5 � 10�6, and 1 � 10�6 cma/s, respectively. The ini-

tial number of both A and B particles was 20,000; each simulation

was run 40 times and the ensemble average concentrations were

calculated. Even single realizations display the anomalous behavior

clearly and 40 were chosen to smooth any existing noise. Doubling

the number of realizations does not appear to change the solution

and so 40 realizations are deemed sufficient.

At the latest time in the numerical simulations, another

(approximately exponential) scaling arises that is not predicted

by our analytical development. This deviation from the theoretical
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prediction can be attributed to the finite size of the computational

domain and the fact that the theoretical development is for an infi-

nite medium. While one might expect that the boundaries would

increase reaction rates at all times because of the very large (in-

ter-island) distances that the particles may take at any time, it is

the average size of the islands that dictates the late-time transition

back to well-mixed rates (Fig. 3). A simple argument shows that

the islands grow at a Lévy diffusive rate of (Dt)1/a, so that the

fringes of the largest island may feel the boundary at time t = (X/

K)a/D, where K is some empirical constant that describes the dis-

tance out along an island where the reactions are taking place.

We find that a value of K = 8 is a reasonable guide to the onset of

boundary effects (Fig. 3). To demonstrate that this is truly a bound-

ary effect and test this approximation, we ran the simulations for

Fickian dispersion and reaction as shown in Fig. 4. In this case

the ratio of the initial number of particles to the domain size is

fixed at N0/X = 40 so that the average particle spacing is the same

for any domain size. The domain size is doubled successively,

which increases by a factor of four the time at which the bound-

aries are felt by the reaction (Fig. 4).

5. Conclusions

The role of incomplete mixing greatly complicates the accurate

predictions of effective chemical reaction rates. Not only is the

overall rate different from the well-mixed case, but the functional

form is different, pointing to the insufficiency of the classical (ther-

modynamic) rate equation. We showed, for a simple set of cases,

how the correct ensemble concentration evolution equation can

be derived using stochastic analytic methods. In particular, as

incomplete mixing effects dominate, the rate of decay of chemical

species changes from t�1 to t�1/(2a), which for the Fickian case of

a = 2 is consistent with previous observations [2,1]. Enhanced dis-

persion leads to faster decay than the Fickian counterpart, but the

system is still slowed and dispersion-limited relative to the well-

mixed system.

The mechanics of the underlying dispersion and mixing process

is directly incorporated into the ensemble governing equation

through the action of the fractional dispersion Green function on

the initial degree of imperfect mixing in the system. This analysis

leads to a dimensionless number that marks the transition from

good mixing and the classical governing equation to poor mixing

and the equation with a new term. Analytic arguments also show

the time at which the domain boundaries destroy the poor mixing

by limiting the size of the islands that are enriched in one or the

other reactant.

The work here focuses purely on the role of fractional dispersion

on incomplete mixing and reactions. However, the methodologies

(both analytic and numerical) developed here are quite general and

should allow for the analyses of more complicated and realistic

geometries and mixing mechanisms. Incorporating the small scale

mixing limitations imposed by heterogeneous velocity fields and

local dispersion within larger scale reaction predictions is of signif-

icant practical interest to the water resources community as a

whole.
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Appendix A. Covariance equation

Multiplying (5) for i = A by C0
BðyÞ and discarding terms of higher

than second order in fluctuations we obtain

C 0
BðyÞ

@C0
AðxÞ
@t

¼ D p
@aC 0

AðxÞC
0
BðyÞ

@xa
þ q

@aC0
AðxÞC

0
BðyÞ

@ð�xÞa
� �

� kCAðxÞC 0
BðxÞC

0
BðyÞ � kCAðxÞC 0

AðxÞC
0
BðyÞ: ðA:1Þ

Similarly multiplying (5) for i = B by C0
AðyÞ and discarding terms of

higher than second order in fluctuations we obtain

C 0
AðyÞ

@C0
BðxÞ
@t

¼ D p
@aCBðxÞC 0

AðyÞ
@xa

þ q
@aC0

BðxÞC
0
AðyÞ

@ð�xÞa
� �

� kCBðxÞC 0
AðxÞC

0
AðyÞ � kCBðxÞC0

BðxÞC
0
AðyÞ: ðA:2Þ
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Taking the ensemble average of (A.1) and (A.2) and recognizing that

by stationarity C0
BðyÞC

0
AðxÞ ¼ C0

AðyÞC
0
BðxÞ, we sum the equations and

obtain the following equation for the covariance

C 0
BðyÞ

@C 0
AðxÞ
@t

þ C 0
AðyÞ

@C 0
BðxÞ
@t

¼ 2D p
@aC 0

AðxÞC
0
BðyÞ

@xa
þ q

@aC 0
AðxÞC

0
BðyÞ

@ð�xÞa

 !

� 2kCAðxÞC0
AðxÞC

0
AðyÞ � 2kCAðxÞC 0

AðxÞC
0
BðyÞ; ðA:3Þ

which can be rewritten as

@C 0
AðxÞC

0
BðyÞ

@t
¼ 2D p

@aC 0
AðxÞC

0
BðyÞ

@xa
þ q

@aC0
AðxÞC

0
BðyÞ

@ð�xÞa

 !

� 2kCAðxÞC 0
AðxÞC

0
AðyÞ � 2kCAðxÞC0

AðxÞC
0
BðyÞ: ðA:4Þ

Similarly, an equation for C0
AðxÞC

0
AðyÞ is given by

@C 0
AðxÞC

0
AðyÞ

@t
¼ 2D p

@aC 0
AðxÞC

0
AðyÞ

@xa
þ q

@aC0
AðxÞC

0
AðyÞ

@ð�xÞa

 !

� 2kCAðxÞC 0
BðxÞC

0
AðyÞ � 2kCBðxÞC0

AðxÞC
0
AðyÞ: ðA:5Þ

Subtracting Eq. (A.5) from Eq. (A.4) gives:

@½C0
Aðx;tÞC

0
Bðy;tÞ�C0

Aðx;tÞC
0
Aðy;tÞ�

@t

¼2D p
@a C0

AðxÞC
0
BðyÞ�C0

AðxÞC
0
AðyÞ

� �

@xa
þq

@a C0
AðxÞC

0
BðyÞ�C0

AðxÞC
0
AðyÞ

� �

@ð�xÞa

0

@

1

A:

ðA:6Þ

As laid out in the main body of the text the initial conditions for

these are

C 0
Aðx;0ÞC

0
Aðy; 0Þ ¼ �C 0

Aðx;0ÞC
0
Bðy;0Þ ¼ Rðx; yÞ: ðA:7Þ

Therefore, from moment Eqs. (A.4) and (A.5) it follows that

C 0
Aðx; y; tÞC

0
Bðx; y; tÞ ¼ �C 0

Aðx; y; tÞC
0
Aðx; y; tÞ ðA:8Þ

and with this is mind, we can rewrite the 1-D Eq. (A.6)

@½C 0
Aðx; tÞC

0
Bðy; tÞ�

@t
¼ 2D p

@a C 0
AðxÞC

0
BðyÞ

� �

@xa
þ q

@a C 0
AðxÞC

0
BðyÞ

� �

@ð�xÞa

0

@

1

A:

ðA:9Þ

Appendix B. Alternative initial correlation structures

In this appendix we demonstrate that another short range cor-

relation structure, namely the exponential, give the same long time

behavior as the delta correlation, thus justifying its selection. Spec-

ify now:

f ðx; y; t ¼ 0Þ ¼ Rðx; yÞ ¼ �r2e�
jx�yj

l : ðB:1Þ

Substituting into (9) for the limit of y? x

f ðx; y ! x; tÞ ¼ �r2

p

Z 1

�1

l

k
2
l
2 þ 1

e2D½pðikÞ
a �þqð�ikÞa �tdk

¼ �r2

p

Z 1

�1

lt
1
a

m2l
2 þ t

2
a

e2D½pðimÞa �þqð�imÞa �dm: ðB:2Þ

If we take the limit of long time (t?1)

f ðx; y ! x; tÞ � �t�1=a r
2l

2

Z 1

�1
e2D½pðimÞa �þqð�imÞa �dm ðB:3Þ

which is the same scaling that arises for the delta initial correlation

for all times. Similar results can be shown for other short range cor-

relation structures such a Gaussian one.
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Effective pore-scale dispersion upscaling with a correlated

continuous time random walk approach
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[1] We investigate the upscaling of dispersion from a pore-scale analysis of Lagrangian
velocities. A key challenge in the upscaling procedure is to relate the temporal evolution of
spreading to the pore-scale velocity field properties. We test the hypothesis that one can
represent Lagrangian velocities at the pore scale as a Markov process in space. The
resulting effective transport model is a continuous time random walk (CTRW)
characterized by a correlated random time increment, here denoted as correlated CTRW.
We consider a simplified sinusoidal wavy channel model as well as a more complex
heterogeneous pore space. For both systems, the predictions of the correlated CTRW model,
with parameters defined from the velocity field properties (both distribution and
correlation), are found to be in good agreement with results from direct pore-scale
simulations over preasymptotic and asymptotic times. In this framework, the nontrivial
dependence of dispersion on the pore boundary fluctuations is shown to be related to the
competition between distribution and correlation effects. In particular, explicit inclusion of
spatial velocity correlation in the effective CTRW model is found to be important to
represent incomplete mixing in the pore throats.

Citation: Le Borgne, T., D. Bolster, M. Dentz, P. de Anna, and A. Tartakovsky (2011), Effective pore-scale dispersion upscaling with

a correlated continuous time random walk approach, Water Resour. Res., 47, W12538, doi:10.1029/2011WR010457.

1. Introduction

[2] The ability to upscale dispersion is an important step
in predicting solute transport through porous media. This
topic has received continuous attention since the pioneer-
ing work of Taylor, who studied dispersion in a tube [Tay-
lor, 1953]. Taylor showed that this system, at late times,
once transverse diffusion has allowed the plume to sample
all the velocities in the tube cross section, can be character-
ized by an effective one-dimensional advection-dispersion
equation with an enhanced dispersion coefficient. This
enhanced dispersion coefficient can be quantified by the sec-
ond centered moment of the concentration distribution [Aris,
1956]. The Taylor dispersion coefficient reflects the interac-
tion between spreading driven by the heterogeneous velocity
field and diffusion that attenuates the resulting concentration
contrasts.

[3] Since this seminal study there has been a large
amount of work dedicated to quantifying dispersion in more
complex flow fields. A variety of methodologies, including
the method of local moments [Brenner, 1980; Brenner and

Adler, 1982; Frankel and Brenner, 1989; Edwards and
Brenner, 1993], volume averaging [Bear, 1972; Plumb and
Whitaker, 1988; Valdes-Parada et al., 2009; Wood, 2009],
and the method of multiple scales [Auriault and Adler,
1995; Lunati et al., 2002; Attinger et al., 2001], have
emerged. The main goal of these methods is to develop an
effective asymptotic dispersion coefficient that quantifies
spreading and mixing in an upscaled effective equation and
in many cases they have been successful [Edwards et al.,
1991; Porter et al., 2010].

[4] Macrodispersion approaches describe asymptotic
heterogeneity-induced transport, which can be cast in an
advection-dispersion equation for the macroscale solute
concentration. Such Fickian models are characterized typi-
cally by a diffusive growth of the plume size. In many
applications, however, such an asymptotic regime is often
not reached on realistic space and time scales. In fact, there
is a large amount of data from field [Rehfeldt et al., 1992;
Gelhar et al., 1992; Sidle et al., 1998; Le Borgne and
Gouze, 2008] and laboratory experiments [Silliman and
Simpson, 1987; Silliman et al., 1987; Moroni et al., 2007;
Levy and Berkowitz, 2003] that suggests that the Fickian
behavior is often not observed. Theoretical predictions in
heterogeneous velocity fields anticipated this [Matheron
and de Marsily, 1980; Deng et al., 1993; Deng and Cush-
man, 1995; Dentz et al., 2000; Berkowitz et al., 2006;
Bijeljic and Blunt, 2006; Nicolaides et al., 2010; Wood,
2009]. This behavior can be traced back to incomplete mix-
ing on the macroscopic support scale [Le Borgne et al.,
2011; Dentz et al., 2011].

[5] Thus, for the realistic modeling of transport in heter-
ogeneous porous media, it is necessary to predict transport
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during this preasymptotic regime [e.g., Gill and Sankarasu-
bramanian, 1970; Latini and Bernoff, 2001; Bijeljic and
Blunt, 2006] and in particular capture the anomalous non-
Fickian behavior. Several nonlocal models have emerged
to model this behavior in porous media, including moment
equation approaches [Neuman, 1993; Morales-Casique
et al., 2006], projector formalisms [Cushman and Ginn,
1993, 1994], multirate mass transfer [Haggerty and Gore-
lick, 1995; Carrera et al., 1998; Cherblanc et al., 2007;
Chastanet and Wood, 2008], fractional advection-disper-
sion equations [Benson et al., 2000, 2001; Cushman and
Ginn, 2000], continuous time random walks [Berkowitz
and Scher, 1995; Berkowitz et al., 2006; Bijeljic and Blunt,
2006] and continuous Markovian stochastic processes in
time [Meyer and Tchelepi, 2010]. A review of these models
is provided by Neuman and Tartakovsky [2009]. One of the
main challenges within nonlocal modeling approaches is
how to relate microscale properties (e.g., velocity statistics)
to the effective macroscale models.

[6] In this paper we will focus on the continuous time
random walk (CTRW) approach. A popular approach for
defining CTRW model parameters is breakthrough curves
fitting [e.g., Berkowitz and Scher, 2010]. While useful in
practice, the limitation of this approach is that it is difficult
in general to relate the derived effective parameters to the
velocity field properties. Some analytical approaches con-
sidering simplified forms of heterogeneity have been devel-
oped that upscale exactly to a CTRW [Dentz and Castro,
2009; Dentz et al., 2009; Dentz and Bolster, 2011]. In par-
ticular, the importance of spatial velocity correlation and
its impact on anomalous transport is explicitly illustrated in
the simplified model of Dentz and Bolster [2011]. A differ-
ent approach that is not restricted to simplified types of het-
erogeneity was developed by Le Borgne et al. [2008a,
2008b]. By using the spatial Markov property of Lagran-
gian velocities, one can define a correlated CTRW model,
whose parameters are defined from the velocity field distri-
bution and spatial correlation properties. Thus, the upscaled
CTRW model is obtained without fitting its parameters to
the dispersion data; instead they are estimated from the
Lagrangian velocity field analysis. Velocity distribution
and spatial correlation are known two govern dispersion
heterogeneous media [Bouchaud and Georges, 1990]. Sol-
ute dispersion is enhanced when the width of the velocity
distribution is increased. It is also enhanced when the spa-
tial correlation of the velocity field is stronger. In other
words, when each solute particle tends to keep similar
velocities for a long time, the ensemble of particles is more
dispersed. The correlated CTRW approach quantifies sepa-
rately distribution and correlation effects. We will show in
the following that this is critical to understand and quantify
pore-scale dispersion as velocity distribution and spatial
correlation can have antagonist effects, hence competing
for governing the global dispersion.

[7] Here we invoke a CTRW approach characterized by
correlated successive particle velocities (termed correlated
CTRW in the following) to study dispersion in a pore-scale
context. To this end, we first consider a simplified periodic
representation of a pore introduced by Dykaar and Kitani-
dis [1996] (Figure 1) and then a more complex two-dimen-
sional heterogeneous porous medium [Tartakovsky and
Neuman, 2008]. Because of its simplicity, the sinusoidal

channel model can provide much insight to the understand-
ing of basic mechanisms that occur at the pore scale. The
conclusions derived from the analysis of this system can
also be used to understand and quantify the role of bound-
ary fluctuations, which is relevant for example for transport
at the fracture scale [Drazer et al., 2004; Drazer and
Koplick, 2002]. Additionally this model is appealing,
because, while quite simple, it displays some interesting and
perhaps unexpected features. For example, Bolster et al.
[2009] showed that increasing the fluctuation of the pore
wall does not necessarily result in an increase in asymptotic
dispersion, a result that may be counterintuitive on the basis
of other predictions [e.g., Gelhar, 1993; Prude’Homme and
Hoagland, 1999; Tartakovsky and Xiu, 2006] that suggest
that as the fluctuations increase, so too should dispersion.
Some experimental evidence [Drazer et al., 2004; Drazer
and Koplick, 2002] and heuristic mathematical arguments
[Rosencrans, 1997] support this prediction of a reduction in
asymptotic dispersion. The reduction cannot be explained by
a classical Taylor-Aris type approach (see Bolster et al.
[2009] for details).

[8] In this work, we argue and illustrate that the corre-
lated CTRW model provides a solid framework that can be
used to physically interpret and understand such observa-
tions. Additionally we illustrate that it is capable of accu-
rately predicting the evolution of observed preasymptotic
non-Fickian dispersion. In section 2, we describe the peri-
odic pore representation for which we seek to upscale dis-
persion. In section 3, we introduce the correlated CTRW
model and compute the transition time distribution and the
probability transition matrix that parametrize it. In section
4, we compare the prediction of this upscaled model to the
results obtained from the fully resolved pore-scale simula-
tions. In section 5, we demonstrate the applicability of this
upscaling approach to a more complex heterogeneous po-
rous medium.

2. Sinusoidal Channel Model

[9] We consider flow in a two-dimensional channel that
is symmetric about the central axis at y ¼ 0. The bounda-
ries of the channel fluctuate periodically in the horizontal
direction as

hðxÞ ¼ h þ h0sin 2�
x

L

� �

; (1)

where h is the average channel height. The aspect ratio is
defined by

� ¼
2h

L
: (2)

The ratio between the amplitude of the aperture fluctuations
h0 and the mean aperture, called the fluctuation ratio, is
denoted by

a ¼
h0

2h
: (3)

The flow at low Reynolds numbers within such a sinusoidal

channel, whose boundary changes slowly (i.e., � ¼ h
L
< 1)

was studied and derived analytically using a perturbation
method in � by Kitanidis and Dykaar [1997]. In order to
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illustrate the different types of flow that can arise within
such a geometry, two sets of streamlines calculated using
this method are shown in Figure 1. A feature of this model
is that recirculation zones appear for aspect and fluctuation
ratios close to 0.4 [Bolster et al., 2009].

[10] We simulate transport in this flow field using a parti-
cle tracking approach. The Peclet number Pe, which char-
acterizes the ratio between the advective and diffusive time
scales, is defined by

Pe ¼
2hu

D
; (4)

where D is the diffusion coefficient and u is the mean ve-
locity. In the following simulations, we set the parameter
values as Pe ¼ 103, u ¼ 1, and h ¼ 1=2. Figure 2 shows an
example of particle trajectories in a flow field characterized
by a ¼ 0:4 and � ¼ 0:4. Particles travel fast at the center of
the pore and move slowly close to the pore wall where they
can be trapped in recirculation zones. They jump from one
streamline to another by diffusion. The resulting longitudi-
nal dispersion can be characterized in terms of the longitu-
dinal width � of the solute distribution cðx; tÞ

�2ðtÞ ¼

Z

dxx2cðx; tÞ �

Z

dxxcðx; tÞ

� �2

: (5)

Specifically, asymptotic longitudinal dispersion is quanti-
fied in terms of the effective dispersion coefficient

De ¼
1

2
lim
t!1

d�2ðtÞ

dt
: (6)

[11] The dependence of the asymptotic coefficient on the
aspect and fluctuation ratios, obtained by Bolster et al. [2009],
is displayed in Figure 3. When the aspect ratio � is small, the
increase of the fluctuation ratio a leads to a decrease of the as-
ymptotic dispersion coefficient. On the other hand, when the
aspect ratio � is large, the increase of the fluctuation ratio a
leads to an increase of the asymptotic dispersion coefficient.
We demonstrate in the following that this nontrivial behavior
can be understood qualitatively by the competition between
distribution effects and correlation effects and can be quanti-
fied formally through a correlated CTRW model.

3. Correlated CTRWModel

[12] We seek to represent the longitudinal dispersion
process in the wavy channel model as a one-dimensional
random walk with distributed spatial and temporal incre-
ments (CTRW). The series of successive longitudinal parti-
cle positions fxðnÞg1n¼0 and travel times ftðnÞg1n¼0 are

xðnþ1Þ ¼ xðnÞ þ�xðnÞ (7)

Figure 1. (a) A schematic of the pore we are considering and (b) random walk simulations for Pe ¼ 103 after a time of
50� (where � is the mean travel time of one pore). In Figure 1b, the top plot corresponds to a ¼ 0, and the bottom plot cor-
responds to a ¼ 0:4 and � ¼ 0:4.
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tðnþ1Þ ¼ tðnÞ þ�tðnÞ; (8)

where f�xðnÞg1n¼0 and f�tðnÞg1n¼0 are the successive spatial
and temporal increments. In many CTRW models, the suc-

cessive temporal increments �tðnÞ are taken as independent
random variables. Thus, the dispersion dynamics depend
entirely on the increment distributions [Berkowitz and
Scher, 2010; Dentz and Bolster, 2011]. Figure 2 suggests
that, in the absence of complete mixing at pore throats,
there can be a significant correlation between successive
particle travel times. Particles moving quickly at the pore
center have a high probability to remain in a high-velocity
zone in the next pore. Similarly, particles have a significant
probability to be successively trapped in successive pores
when they travel close to the pore walls.

[13] Transit times are related to Lagrangian velocities by

f�tðnÞ ¼ �x=vðnÞg1n¼0, where vðnÞ is the mean particle ve-
locity across the length �x. Diffusive jumps of particles
across streamlines induce a certain velocity decorrelation
such that ultimately the velocity memory is lost when the
particle has traveled over many pores. The process of
velocity decorrelation by diffusion is most efficient at the

pore throat where streamlines converge close to each other.
Figure 4 displays the pore-scale Lagrangian velocity corre-
lation functions as a function of travel time and as a func-
tion of travel distance for the case a ¼ 0:4 and � ¼ 0:4. The
Lagrangian velocities are found to have a short-range cor-
relation in space and a long-range correlation in time. The
latter is related to the low-velocity areas close to the pore
wall and to the recirculation areas, where particles can
remain trapped for a long time.

[14] In order to quantify the correlation between succes-
sive temporal increments, due to incomplete mixing at pore
throats, we represent the series of successive transit times
over one pore length f�tðnÞg1n¼0 as a Markov chain, which
is motivated by the short range spatial correlation of
Lagrangian velocities (Figure 4). Note that this the Markov
property does not mean that the correlation length is
assumed to be equal to one pore size. The corresponding
correlation length depends on the transition probabilities
for successive transit times. Thus, setting the spatial incre-
ment equal to the pore length �xðnÞ ¼ L in (7), the corre-
sponding effective transport model is a correlated CTRW
defined by the probability distribution density pð�tÞ and
the conditional probability density rð�tj�t0Þ, where �t

Figure 2. Examples of particle trajectories over two pores for two particles starting initially close to
the pore wall and at the center of the pore throat, respectively. The pore shape parameters are � ¼ 0:4
and a ¼ 0:4. The detailed streamlines in the upper recirculation zones are shown in red.

Figure 3. Dependence of the asymptotic dispersion coef-
ficient on � and a for Pe ¼ 103, from Bolster et al. [2009].
The dispersion coefficient is normalized by D0, the value
corresponding to a parallel wall channel (� ¼ 0, a ¼ 0).

Figure 4. Comparison of pore-scale Lagrangian velocity
correlation function in time and in space for parameters
a ¼ 0:4 and � ¼ 0:4.

W12538 LE BORGNE ET AL.: EFFECTIVE PORE-SCALE DISPERSION UPSCALING W12538

4 of 10



and �t0 are successive transit times across one pore. To test
the applicability of this model to upscale longitudinal dis-
persion, we numerically compute the transit time distribu-
tions across one pore pð�tÞ and the conditional probability
density rð�tj�t0Þ from transport simulations over two
pores (Figure 2).

[15] The Lagrangian transit time distributions across one
pore pð�tÞ, computed from particle tracking simulations,
are displayed in Figure 5 for different values of the aspect
and fluctuation ratios. They are characterized by a peak at
small times and a tail at large times, with a significant
probability for particles to experience large transit times.
The maximum transit time is defined by an upper cut off.
Both the minimum and maximum times depend on the
pore shape. A special case is a ¼ 0:4 and � ¼ 0:4 for which
recirculation zones exist (Figure 1c). The impact of these
recirculation zones is that the width of the transit time
distribution increases by about 1 order of magnitude com-
pared to cases without recirculation zones. The probability
of large transit times increases because of trapping of
particles in these recirculation zones. At the same time,
the smallest transit time decreases, i.e., the maximum
velocity increases. This is due to an enhanced focusing of
flow lines in the center of the pore (Figure 1c). For the
other cases, the increase of the aspect ratio � tends to
slightly decrease the minimum transit time while increasing
slightly the maximum transit time. The increase of the
fluctuation ratio a does not appear to affect the minimum
transit time, but does increase slightly the maximum transit
time.

[16] We now quantify the conditional probability density
rð�tj�t0Þ from particle tracking simulations over two suc-
cessive pores, where �t0 is the transit time across the first
pore and �t is the transit time across the second pore. This
quantifies the correlation between successive transit time,
illustrated in Figure 2. For this purpose, we discretize the
transit time distribution pð�tÞ into n classes fCig1�i�n�1 of

equal probability of occurrence [Le Borgne et al., 2008b].
We define � ¼ Pð�tÞ as the score corresponding to the
transit time �t, where Pð�tÞ is the cumulative transit time

distribution. We discretize the � domain, which is bounded
between 0 and 1, into n classes of equal width 1=n, defined
by their boundaries �i. The smallest transit time (largest ve-
locity) corresponds to �1 ¼ 0 and the largest transit time
(smallest velocity) to �nþ1 ¼ 1. In this study, we use n ¼
49 classes. The influence of the number of classes on the
prediction of spreading is discussed in section 4. For a
given transit time �t, the corresponding class Ci is deter-
mined as follows: �t 2 Ci if �i � Pð�tÞ < �iþ1. The cor-
responding class boundaries in the temporal increment

space are �ti ¼ P�1ð�iÞ.
[17] The probability for a particle to travel through a

pore in a time �t 2 Ci given that it traveled through the
previous pore in a time �t0 2 Cj is given by,

Tij ¼

Z

�tiþ1

�ti

dt

Z

�tjþ1

�tj

dt0rðtjt0Þ; (9)

The transition matrix T is the discrete form of the condi-
tional probability density rð�tj�t0Þ and describes the tran-
sition probability from class i to class j. The transition
matrix is shown for different pore shapes in Figure 6. The
transition probabilities are largest in the diagonal region
and tend to zero away from the diagonal. The probabilities
on the diagonal, i.e., Tii, are the probabilities for a particle
to remain in the same class Ci, i.e., to keep a similar transit
time over successive pores. The probabilities away from
the diagonal correspond to probabilities for a particle to
change its transit time from one pore to another, which
depends on its diffusion across streamlines.

[18] The correlation of successive times can be measured
by the probability to remain in the original class and by the
width of the banded matrix area around the diagonal, which
reflects the probability for particles to remain in neighbor-
ing transit time classes over successive pores. Notice that
the transition matrix quantifies some complex correlation
properties of the flow field. For instance, the correlation is
systematically stronger for small transit times (i.e., large
velocities) than for large transit times (Figure 6). As shown
in Figure 6, conditional probabilities in the upper left cor-
ner, corresponding to the probabilities for particles to keep
small transit times, are higher than the other conditional
probabilities, e.g., the probability for particles to keep inter-
mediate or large transit times across successive pores.

[19] The comparison of transition matrices in Figure 6
can be used to understand the effect of the pore shape pa-
rameters (equation (2) and Figure 1a) on the transit time
correlation. The effect of increasing the aspect ratio e from
0.1 to 0.4 is to decrease the width of the banded area in the
transition matrix around the diagonal, i.e., to increase the
correlation of the successive transit times, as successive
particle transit times have a high probability to be close to
each other. This can be explained as follows. For a given
mean channel height h, increasing � is equivalent to
decreasing the pore length L. Decreasing L implies decreas-
ing the distance available for particles to diffuse across
streamlines. Thus, for large � the correlation of successive
transit times is strong.

[20] For a given aspect ratio �, the effect of increasing
the fluctuation ratio a from 0.1 to 0.4 is to decrease the

Figure 5. Transit time probability density function p(t)
across one pore corresponding to different values of the
pore shape parameters � and a. The transit time is normal-
ized by the mean transit time over one pore � .
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correlation of successive transit times, as shown by the
increase of the width of the banded area in the transition
matrix which implies that particle have a significant proba-
bility to change transit times over successive pores. This in
turn can be explained by the small width of the pore necks
for large a (Figure 1a) that induces a focusing of flow lines,
thus enhancing mixing between stream lines at the pore
necks. Thus, for large a, the correlation between successive
transit times is weak.

[21] The transit time distributions and correlation matri-
ces can be used to understand the nontrivial dependence of
the asymptotic dispersion coefficient on the pore shape pa-
rameters shown in Figure 3. In general, an increase in the
width of transit time distribution and an increase of the cor-
relation of successive transit times are both expected to
contribute to an increase of the asymptotic dispersion coef-
ficient. These effects are known as distribution- and corre-
lation-induced dispersion [Bouchaud and Georges, 1990;
Dentz and Bolster, 2011]. When changing the fluctuation
ratio a, these two effects evolve in opposite directions, thus
competing for controlling dispersion. An increase of the
fluctuation ratio a produces an increase the transit time var-
iability but a decrease of there correlation over successive
pores. In the absence of recirculation zones (� < 0:4), the
transit time variability depends only slightly on the fluctua-
tion ratio a. Since transit time decorrelation is the dominant
effect in this case, the increase of the fluctuation ratio a
leads to a decrease of the asymptotic dispersion coefficient.
Conversely, for large aspect ratios (� � 0:4), the appear-
ance of recirculation zones leads to a strong dependence of
the transit time distribution on the fluctuation ratio a. This
effect dominates over the effect of transit time decorrela-
tion, which implies that the asymptotic dispersion coeffi-
cient increases with the fluctuation ratio a in this case.

Thus, the dependence of dispersion coefficient on the pore
shape parameters is controlled here by the competition
between distribution and correlation effects.

4. Predictions of the Correlated CTRWModel

[22] The transit time distribution pð�tÞ and the transition
matrix T together with the spatial Markov property define
the correlated CTRW model in (8). Using this effective
description, we can make predictions of the transport
behavior over a large range of temporal and spatial scales.
The equations of motion (8) of a particle are solved numeri-
cally using random walk particle tracking, which allows for
efficient transport simulations. We compare the predictions
of this effective random walk model with the numerical
random walk simulations of transport through the fully
resolved two-dimensional velocity fields (Figure 2) for
a ¼ 0:4 and � ¼ 0:4. To probe the role of correlation we
also compare the transport behavior resulting from the cor-
related CTRW with the predictions of a CTRW model
without correlation, defined by (7) and (8) with the transi-
tion probability given as rð�tj�t0Þ ¼ pð�tÞ. Notice that
the predictions of both models are obtained without fitting
the model parameters to the dispersion data. Instead the
model’s parameters, here pð�tÞ and rð�tj�t0Þ are esti-
mated from the Lagrangian velocity field analysis.

[23] Figure 7 displays the temporal evolution of the sec-
ond centered moment of the particle positions in the direc-
tion of the mean flow �2ðtÞ for the case a ¼ 0:4 and
� ¼ 0:4. The initial preasymptotic regime, where �2ðtÞ
evolves nonlinearly in time, lasts for about 30� , where � is
the mean transit time across one pore. Hence, the Fickian
behavior is reached when the average position of the plume
has traveled over 30 pores. The spatial distribution of

Figure 6. Spatial transition matrices T corresponding to different values of the pore shape parameters �
and a (equation (9)). The horizontal axis represents the initial transit time class and the vertical axis rep-
resents the next transit time class. Small matrix indices correspond to small transit times (large Lagran-
gian velocities), and large matrix indices correspond to large transit times (small Lagrangian velocities).
The color scale represents the transit time transition probabilities along particle paths.
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particle positions, shown in Figure 8, is strongly non-Gaus-
sian during the preasymptotic regime.

[24] The correlated CTRW model is found to provide
very good predictions of the temporal evolution of the sec-
ond centered moment �2ðtÞ at all times and is able to pre-
dict accurately the evolution of the spatial particle position
distributions from non-Gaussian to Gaussian. In particular,
the persistent asymmetry of the spatial distributions, which
is due to trapping in low-velocity and recirculation zones,
is well captured. The uncorrelated CTRW model is found
to underestimate dispersion significantly. The discrepancy
for the second centered moment �2ðtÞ is about 1 order of
magnitude at large times. The uncorrelated CTRW model
used here has the same transit time distribution as the corre-
lated CTRW model but no correlation of successive transit
times. Thus, the comparison of these two models shows the
role of spatial correlations of particle motions, which are
due in this example to incomplete mixing at the pore
throats. Thus, successive transit time correlation, related
for instance the fact that particles traveling close to the
pore walls have a high probability of being successively
trapped in recirculation zones (Figure 2), is found to have
an important impact on dispersion.

[25] The good agreement of the correlated CTRW model
with pore-scale simulations validates the spatial Markov
property of Lagrangian velocities. This property implies that
large-scale dispersion can be predicted from solving transport
in just two characteristic pore sizes. The model parameters
are fully defined from the Lagrangian velocity properties. We
have performed the same comparison for a variety of other
pore shape parameters and found a similar agreement
between effective and pore-scale random walk simulations.
The transition matrices quantify high-order correlation
effects that are not included in classical two-point correla-
tion functions. The high probability region in the left upper
part of the transition matrices (Figure 6) indicate that small
transit times are more correlated than large transit times.
This implies that large velocities at the center of the pore
are more correlated over successive pores than small veloc-
ities. The dependency of correlation on the local velocity
was previously demonstrated by Le Borgne et al. [2007].

[26] In order to probe the minimum number of parame-
ters sufficient to capture this effect, we ran correlated

CTRW simulations with different numbers of transit time
classes (Figure 9). Decreasing the number of classes from
49 to 12 we found only a slight change in the prediction of
spatial variance. However, for a smaller number of classes,
the spatial variance is significantly underestimated. For
instance, the underestimation is about 40 percent when
using only 3 velocity classes. Thus, we estimate that the
minimum number of classes required in this case for cap-
turing the whole range of correlation effects may be around
10. This suggests that, although the transition matrix can be
simplified, it should contain a minimum of information for
representing complex correlation properties such as the de-
pendency of correlation on velocity.

5. Application to a Heterogeneous Porous
Medium

[27] In section 5, we apply the methodology to the more
complex 2-D heterogeneous porous medium studied by
Tartakovsky and Neuman [2008] and Tartakovsky et al.
[2008]. The Navier-Stokes equations for flow in the pore
network are solved using smoothed particle hydrodynamics

Figure 8. Comparison of the prediction of the correlated
CTRW (red lines) and uncorrelated CTRW (blue lines)
with the numerical simulations for the spatial distribution
of longitudinal particle positions (black line with dots).
Notice the overlap of the correlated CTRW model predic-
tions and the full pore-scale simulations.

Figure 7. Comparison of the prediction of the correlated CTRW (red dashed line) and uncorrelated
CTRW (blue dashed line) with the numerical simulations for the second centered spatial moment in the
longitudinal direction �2, with a ¼ 0:4 and � ¼ 0:4 (black dots). The time is normalized by the mean
transit time over one pore � , and the spatial variance is normalized by L2. Notice the overlap of the corre-
lated CTRW model predictions and the full pore-scale simulations.
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(SPH) (Figure 10). The medium is composed of void and
circular grains with mean porosity � ¼ 0:42. The average
velocity of v ¼ 10�2 results from application of a hydraulic
head gradient from top to bottom. The boundary conditions
for flux are periodic on all sides. All details of computa-
tions are given by Tartakovsky and Neuman [2008]. The
resulting velocity field shows the existence of a braided
network of preferential flow paths as well as low-velocity
or stagnation zones.

[28] In order to quantify the dispersion process in this
medium, we apply the methodology to analyze the statistics
of transit times along the SPH particle trajectories. SPH is a
Lagrangian particle method where particles representing el-
ementary fluid volumes are advected with the flow and
exchange mass between them by diffusion. Advective
Lagrangian trajectories are thus given by the trajectories of
the SPH particles. The Lagrangian velocities analyzed
along SPH particles trajectories can change because of ad-
vective heterogeneities but not because of diffusion across
streamlines. Hence, velocity decorrelation occurs solely
because of randomness in the velocity resulting from the
heterogeneous nature of the porous medium.

[29] The transit time distribution and transition matrix
over the mean pore length �x ¼ 2:6 are computed by using
N ¼ 27,620 SPH particles (Figure 11). The comparison
with the sinusoidal pore results shows that the large time
distributions are strikingly similar for the two systems. The
transition matrix (Figure 12) also shares some common fea-
tures with those of the sinusoidal channel. The small transit
times, corresponding to larger velocity channels, are found to
be more correlated than other transit time classes. The large
transit times are also more correlated than intermediate
transit times, showing the existence of repetitive trapping
phenomena. Thus, although the wavy channel model may
appear simplified, it contains several features relevant to

Figure 11. Transit time distribution across the mean pore
size �x ¼ 2:6 for the heterogeneous porous media. It is
compared here to the sinusoidal channel distribution for
a ¼ 0:4 and � ¼ 0:4.

Figure 12. Spatial transition matrix T across the mean
pore size �x ¼ 2:6 for the heterogeneous porous medium.
Small matrix indices correspond to small transit times
(large Lagrangian velocities), and large matrix indices cor-
respond to large transit times (small Lagrangian velocities).
Here the matrix is discretized into 300 classes.

Figure 10. Heterogeneous pore-scale flow field showing
the distribution of v=v (the magnitude of velocity relative to
its spatial average), from Tartakovsky and Neuman [2008].

Figure 9. Prediction of the correlated CTRW model for
the second centered moment with different numbers of ve-
locity classes, n ¼ 3; 6; 12; 24; 49.
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