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Abstract

The continuous downscaling in microelectronics imposes increasing demands on
the plasma processes and traditional ways for process optimization reach their
limits. New strategies are needed and innovations in the field of plasma processes
are being developed: e. g. the use of pulsed plasmas.
In this thesis, a pulsed HBr/O2 etch plasma is studied. Various in-situ diagnostics
are used to characterize pulsed plasmas in an industrial 12" etch reactor. The
silicon etching is investigated by XPS and electron microscopy.
We show that the plasma dissociation and temperature are reduced if the plasma
is pulsed at low duty cycles. The Br radical flux with respect to the on-time of
the plasma is increased and the influence of the O radical is decreased, leading to
enhanced time compensated silicon etch rates, a higher selectivity towards SiO2

and a more homogeneous etching. The pattern profiles can be controlled via the
sidewall passivation layer formation that is closely linked to the duty cycle.

Keywords: microelectronics, pulsed plasma, plasma etching, silicon etching, plasma
diagnostics

Résumé

Du fait de la réduction des dimensions en microélectronique, les procédés de
gravure par plasmas ne peuvent plus satisfaire aux exigences de l’industrie. De
nouvelles stratégies sont en cours de développement.
Ce travail consiste en l’étude de plasmas pulsés de HBr/O2 comme une alterna-
tive pour la gravure du silicium. Divers diagnostics dans un réacteur industriel
300 mm sont utilisés pour caractériser le plasma tandis que la gravure du silicium
est étudiée par XPS et par microscopie électronique.
Lorsque le plasma est pulsé à faible rapport cyclique, sa température et sa dissoci-
ation sont fortement réduits. Le flux de Br radicalaire par rapport à la période ON
du plasma augmente tandis que l’influence du radical O diminue, ce qui conduit
à une amélioration de la sélectivité par rapport au SiO2 et à une gravure plus ho-
mogène. Les profils des structures gravées peuvent être contrôlés par la formation
de la couche de passivation sur les flancs dépendant également du rapport cyclique.

mots-clés : microélectronique, plasma pulsé, gravure à base de plasma, gravure
de silicium, diagnostic du plasma
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1. Introduction

Since the invention of silicon based transistors in the 1950s, tremendous progress
has been made in terms of miniaturization, cost, speed, power consumption and
versatility concerning large scale integrated circuits (LSIC). By subsequent etching
and deposition of patterns, the microelectronic devices like transistors and the
interconnecting lines are produced on a semiconductor substrate like silicon. The
main steps are sketched in Fig. 1.1.

Figure 1.1.: Sketch of the main microelectronics fabrication steps: deposition,
lithography and plasma etching. A repeated sequence of these processes can be
used to fabricate complicated patterns on the silicon substrate, e. g. for transistors
or interconnecting lines.

In the beginning of the microelectronic revolution, the miniaturized structures of
the integrated circuits (ICs) were produced by selective chemical "wet" etching.
By decreasing continuously the dimensions of the IC components, the isotropic
wet etch processes reached their limits in terms of profile control. Since then,
"dry" plasma etch processes are the only viable technological solution to address
the critical dimension control in the micro- and nanometer range. Figure 1.2
illustrates the differences between wet and dry etching.
A plasma consists of charged (ions and electrons) and neutral (atoms, molecules)
species, which have different roles in the etch mechanism. Anisotropic etching
can be achieved by the acceleration of ions from the plasma onto a target, where
the bombarding ions physically sputter atoms from the surface due to collision
cascades in the etch layer. Often, this process lacks a good selectivity between
materials and exhibits slow etch rates. In contrast, isotropic, but selective etching
is induced by the radicals from the plasma that can spontaneously etch atoms
from the target surface if the appropriate feedgas is used. This mechanism is very
similar to the wet etch. By combining both effects synergistically, the ion assisted
chemical etching can lead to highly selective, anisotropic etching [1], with etch

3



4 1. Introduction

Figure 1.2.: Sketch of an isotropic wet etch process and an anisotropic dry etch
process.

rates several times higher than the sum of both mechanisms alone.
In etch reactors, the plasma is electrically generated in low pressure chambers. A
potential difference is created in the gas, which accelerates electrons that dissoci-
ate and ionize the gas molecules. The secondary electrons are accelerated in turn
and increase the dissociation and ionization rate.
The first plasma reactors that were used had a barrel shape. The electric poten-
tial to accelerate the electrons was either induced by an inductive coupling, or
by a capacitive coupling. The inductive coupling was realized by an electric coil
placed around the barrel while for the capacitive coupling, the chamber wall and
an additional electrode in the interior of the barrel act as a capacitor. In both
cases, an alternating current (AC) generator, often at a "radio" frequency (RF) of
13.56 MHz, supplied the necessary plasma power.
At first, several wafers were etched at the same time in one reactor, but single-
wafer reactors started to show superior performances, so that most of the later
developed reactors adopted the single-wafer design.
In a next step, planar plate capacitively coupled plasma (CCP) reactors were in-
troduced. The wafer holder acts as the RF power electrode while the chamber
wall is the grounded counter electrode. An increase in the power results in an
increase in ion flux as well as in ion energy. Although this device is still used for
the etching of dielectrical layers during which a high ion energy is advantageous,
in many processes only a low ion energy can be tolerated. At the same time,
a high ion flux is desirable to increase the etch rate. Therefore, hybrid reactors
were developed that produce high density plasmas (HDP) with a strongly reduced
ion energy that can be controlled almost independently of the ion flux. In this
design, a capacitive wafer holder is combined with a high (ion) density source, as,
e. g., an inductively coupled plasma (ICP) source, an electron cyclotron resonance
(ECR) plasma source, or a helicon wave plasma (HWP) source. In the modern
ICP reactors a planar coil couples the RF power through a dielectric window into
the plasma. The ECR and HWP reactors are powered by microwaves, often at
2.45 GHz, which are also transmitted via antennae through dielectric windows.
The continuous downscaling of the LSICs imposes increasing demands on the
plasma processes in terms of etch homogeneity, profile tolerance, surface damage,
etch materials, throughput and reproducibility. Especially the plasma induced
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damage (PID) becomes difficult to control since the tolerance range for deforma-
tions and surface alterations decreases continuously. A short list of some of the
most important types of PID (see Fig. 1.3) is given in the following:

1. Bowing - The broad lateral etch into the sidewalls of pattern structures is
called bowing. It can be caused by spontaneous lateral etch due to radicals if
the sidewall is not sufficiently passivated, or by a differential charging effect.
The latter is caused by the almost isotropic electron velocity distribution
that leads to a preferential charging of the sidewalls of the (dielectric) mask.
Moreover, while the collection angle for electrons is reduced at the trench
bottom, the anisotropic ions easily reach it. Thus, the different fluxes can
lead to a positive charge on the trench bottom and a negative charge on the
mask sidewalls. Further ions can then be deflected electrostatically towards
the sidewalls [2–5].

2. Notching - The localized lateral etch at the bottom of a trench where the
next layer starts is called notching. The differential charging is also thought
to be one possible cause [4, 5].

3. Micro trenching - Often, the etch rate close to the sidewalls of patterns is
increased, leading to small trenches. This feature is called micro trenching
and is thought to be caused mainly by the reflection of ions on the sidewalls
[6–9]. Also differential charging effects [8, 10,11] might play a role.

4. Surface damage - Energetic ions, radicals and photons can damage the
surface structure of materials [12–20], leading to defects, dopant deactivation,
destruction of bonds, formation of dangling bonds and oxidation [21–26].

Currently, the traditional ways for process optimization to meet the increasing
demands reach their limits. New strategies to overcome these limiting factors are
needed and innovative approaches are being developed.
One approach is the development of advanced plasma etch devices. Recently,
several different plasma reactor layouts were proposed that target the increase of
ion densities and the control of the ion flux [27–30], or the reduction of plasma
induced damage, e. g. due to high energy ions or UV photons [31–39]. In the
following, a short overview of some of the proposed designs is given.

Advanced CCP Reactor

The modification of the traditional parallel plate CCP reactor offers new possibili-
ties to improve the etching. High frequencies, e. g. 60 MHz, mainly control the gas
dissociation and the ion density while low frequencies, e. g. 2 MHz, rather control
the ion energy. Therefore, double or triple frequency CCP reactor were intro-
duced [27–29] to combine the advantages of a CCP with an increased ion density
and flux. Such tools are already used for several years now in the microelectronics
fabrication. Improvements are continuously proposed, e. g. a superimposed direct
current (DC) high voltage [30] that can additionally increase the ion density due
to a strongly enhanced production and acceleration of secondary electrons.
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Figure 1.3.: Examples of plasma induced damage on the pattern profile, the sur-
face and buried layers.

Diffusion Plasma

One approach to reduce plasma induced damage and to increase the etch homo-
geneity across the wafer is the use of diffusion plasma reactors. Goto et al. [31–33]
report the development of a 200 mm high density diffusion plasma chamber, in
which the plasma is excited by microwaves via a radial line slot antenna (RLSA).
The ion flux and energy can be controlled individually by an additional RF bias
power on the wafer holder. The authors report a very reduced electron temper-
ature of approximately 1 eV that allows to reduce the minimal ion energy to a
few eV. For certain process steps, diffusion tools are already used in the industry.
However, in the last years their range of applications was strongly extended.
Another way to produce a homogeneous diffusion plasma above the wafer is the
use of a broad planar electron beam sheath that ionizes the gas very efficiently
above the wafer [34–36]. Up until now, only research reactors exist of this type.

Neutral Beam Etching

A solution to address UV induced damage in the surface and/or to reduce charging
effects might be neutral beam etching (NBE). Samukawa et al. [37–40] presented an
etch chamber in which ions are produced via an ICP and subsequently accelerated
and neutralized by a grid. This way the UV is partially blocked and an energetic,
anisotropic flux of mainly radicals reaches the wafer that is positioned behind the
grid. The downside for certain processes is the much reduced particle flux and,
hence, the slow etch rate. Only experimental prototypes of these reactors exist.
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Pulsed ICP

Last but not least, pulsed ICP reactors are also thought to minimize plasma in-
duced damage. Several authors reported reduced damage due to charging ef-
fects [41–46], reduced surface damage [47, 48], reduced ion energies [42, 49, 50],
reduced UV damage [16,51], increased plasma uniformity [52,53] and an increased
selectivity [50,54]. In such reactors, the RF for plasma generation and the optional
additional RF for ion acceleration are pulsed in various modes: synchronously at
various frequencies with adjustable phase lags and duty cycles or independently,
e. g. with one generator in continuous wave (CW) mode. The advantage of pulsed
plasmas is the possible implementation into existing, commercially available hard-
ware. Pulsed plasma processes are already used for several years in the industry.
However, it is not fully understood how pulsing affects in detail the processes.

This Ph.D. thesis focuses on the potential of pulsed plasma etching to meet the
increasing demands on the plasma processes. In the following, a short review on
the differences between CW and pulsed plasmas, as well as on HBr/O2 etching is
given. Then, the outline of this work is presented.

1.1. Difference Between CW and Pulsed Plasma

In order to understand the fundamental differences between a pulsed and a CW
plasma, the most important parameters of a CW plasma are summarized in the
following, before they are compared to the pulsed case. More details on the basics
of plasma physics can be found in the literature [55,56]

1.1.1. Basics of an Inductively Coupled Plasma

A summary of some important plasma parameters that are explained in the fol-
lowing is given in Tab. 1.1.

Basics

A plasma is a partially or fully ionized gas that is composed of electrons, ions
and neutral species. As mentioned above, to generate plasmas in microelectronics
applications, an externally imposed potential accelerates the few present electrons
that in turn start to dissociate and ionize the gas molecules. Secondary electrons
are produced and also accelerated until a balance between production and loss
rates is reached. This process leads to the same amount of positive and negative
charges in the plasma and hence, the plasma is macroscopically neutral. Any arti-
ficially introduced charge (e. g. from fluctuations) will attract and deflect charged
species from the plasma, so that the potential from the parasitic charge is strongly
reduced on a characteristic length scale λD, called the Debye length (see Tab. 1.1).
The response to a parasitic charge is different between ions and electrons due to
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the strong discrepancy in mobilities. Considering a negative parasitic charge, a
positive ion approaches the charge, but its inertia pulls the ion further than the
equilibrium position. The resulting oscillation frequency is called plasma frequency
ωp (see Tab. 1.1). The ability to respond to imposed potentials can thus be de-
scribed by a characteristic time scale τ = 2π/ωp. Often, RF voltages at 13.56 MHz
or higher are used for the plasma production since they accelerate electrons but
leave the ions rather unaffected due to the discrepancy in ωp. This leads to hot
electrons (∼ 3 eV) while the ion temperature is close to the neutral gas tempera-
ture (< 0.1 eV). The corresponding thermal velocities vth differ, therefore, by more
than three orders of magnitude.
Charged and neutral species from the plasma can traverse the interface (sheath)
between plasma and a surface. At the instance when the plasma is generated, the
electrons reach the wall faster than the ions due to their high velocity. This leads
to a negative charge (floating potential) of the surface while the remaining ions in
the plasma bulk produce a small positive space charge (plasma potential). Never-
theless, the relative differences between ion and electron density in the plasma is
small and the plasma itself can still be considered as neutral. The voltage drop Vs

across the sheath increases, repulsing the electrons from the wall and attracting
the ions, until a balance between ion and electron flux is reached. The sheath itself
is depleted of electrons and a positive space charge is imposed by the drifting ions.
In an ICP the electromagnetic energy is coupled into the plasma via large coils
that are positioned, e. g., on top of a dielectric window. The current in the coils
generates a magnetic field that, in turn, induces a strong circular electric field in
the reactor. Since the accelerated electrons are captured by this field geometry,
the electron and ion density can become quite high (∼ 1010−11cm−3). By adjusting
the impedance of the coils correctly with a matching network, the power cou-
pling into the plasma becomes very efficient. In many etch process reactors, an
additional RF voltage is coupled capacitively to the wafer holder on the bottom
while the plasma itself holds as the counter electrode. The electrons follow the
imposed potential instantaneously as if it was a constant voltage while the ions
only respond to the average potential. This leads to the following situation: when
the potential becomes more positive, electrons can effectively reach the electrode.
During most of the time the electron flux would therefore be increased while the
ion current would not change. Since the electrode is electrically blocked for direct
currents by a capacitor, the charge is accumulated until a new balance between ion
and electron flux is reached at a "self-bias" potential below the floating potential.
Hence, the ions are accelerated by the increased sheath voltage drop and impinge
with higher kinetic energy on the wafer. The RF voltage is used to control the ion
energy for etch processes.
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Table 1.1.: Standard plasma parameters and typical values for an ICP.

Parameter Definition Typical Value (ICP)

Ion- and electron
density

ni, ne ne,i ≈ 1010−11 cm−3

Electron temperature Te[eV] = kB

e
Te[K] Te ≈ 3 eV = 66240 K

Plasma frequency ωp,(e,i) =
√

q2
e,i

ne,i

ǫ0me,i

ωp,e ≈ 1 GHz
ωp,i ≈ 3 MHz

Debye length λD(e,i) =
√

ǫ0kBT(e,i)

e2n(e,i)
λDe ≈ 100 µm

Mean thermal
velocity

vth =
√

8kBT(e,i)

πm(e,i)

vth,(i,n) ≈ 500 m/s
vth,e ≈ 106 m/s

Bohm velocity vB =
√

kBTe

mi
vB ≈ 2500 m/s

Floating sheath
potential drop

Vs = kBTe

2e

(

1 + ln
(

mi

2πme

))

Vs ≈ 15 V

Child law sheath
(e Vs ≫ kB Te)

s =
√

2
3

λD

(

2 e Vs

kB Te

) s ≈ 1 mm
(for Vs = 100V)

kB : Boltzmann constant
e : elementary charge
q : charge of the species

ǫ0 : permittivity of free space
s : sheath width

Since the ICP source power generates a high ion density, it is almost unchanged
by the relatively small contribution from the RF bias power if the latter is small
compared to the first [57]. Hence, ion flux and ion energy are independently
controllable. However, it was reported recently that in some conditions the RF
bias can have a significant influence on the electron and ion density, as well as on
the electron temperature [58–62].
In case of an applied RF bias voltage, the sheath potential drop can be in the
order of several 100 V. A widely used model of such a sheath, called the Child law
sheath, can be used to determine the sheath thickness, which is often in the order
of some mm (see Tab. 1.1).

Chemical Reactions

The chemical reactions in a plasma reactor are governed (amongst others) by the
nature of the gases, the dissociation products, the degree of dissociation (plasma
power) and the nature of the reactor walls (sticking coefficients). In a continu-
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Figure 1.4.: Sketch of a two body exchange collision and a three body recombi-
nation reaction.

ous plasma, an equilibrium exists between ionization, dissociation, recombination,
pumping, and gas inflow. The main dissociation occurs in the region close to the
dielectric window, where the induced fields are the strongest.
Two main chemical reactions exist in the gas phase, illustrated in Fig. 1.4, that
are of interest in the following: a two body exchange reaction during which two
colliding species produce two different species and a three body recombination re-
action during which two species recombine by transferring the excessive energy to
a third species. In low pressure plasmas, the three body reaction is very improb-
able because of the very low density. In this case, recombination processes occur
mainly on the reactor walls, where an adsorbed species reacts with an incoming
species. The probability of such a reaction strongly depends on the nature of the
species and of the reactor wall [63–70].

1.1.2. Plasma Pulsing

In contrast to CW ICPs, the RF voltage in pulsed mode is switched on and off peri-
odically with a frequency far below the RF (< 100 kHz), modifying the overall char-
acteristics of plasma etch processes. By varying frequency and duty cycle, the ion
and radical flux can be changed, the etch rate varied, the etch selectivity between
materials increased and the etch profile control augmented [45,46,49,50,71,72].
In order to understand the fundamental differences between CW and pulsed plas-
mas, it is helpful to review the characteristic time scales of production and loss
processes of the different plasma species.

Characteristic Time Constants

The creation of radicals, ions and electrons is based on electron impact on molecules.
Considering a Maxwellian energy distribution of the electrons for Te = 3 eV, it is
more likely to dissociate a molecule (threshold energy ∼ 5 eV) than to ionize it
(threshold energy > 10 eV). A typical characteristic time for the production of
these species is 0.1-1 ms with a faster creation of radicals than ions.
The loss of particles is caused by pumping, or by reactions in the gas phase and
on boundary walls. The residence time τpump of the species in the chamber due to
pumping is typically in the range of several 100 ms (at 20 mTorr, 200 sccm) and
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can be estimated from the gas inflow Q (in mol/s), the reactor volume VR, pressure
pR and temperature Tg:

τpump =
1
Q

· pR VR

kB Tg

. (1.1)

However, this does not include the dependence on the nature of the species, which
can change the residence time considerably. Nevertheless, the order of the time
scale remains valid in comparison to the other loss mechanisms.
The characteristic loss time of radicals caused by diffusion and sticking to the wall
can be estimated with respect to the sticking coefficient β by using the approxi-
mation from Chantry [73]:

τwall ≈ Λ2
0

D
+

VR

AR

· 2(2 − β)
vthβ

, (1.2)

where D is the diffusion constant, VR/AR the ratio of the reactor volume to its sur-
face and Λ0 an approximation of an effective reactor length that can be calculated
for a cylindrical geometry (with height hR and radius rR) by

1
Λ2

0

=
(

π

hR

)2

+
(2.405

rR

)2

. (1.3)

The resulting characteristic loss time is typically in the order of 1-10 ms.
If the right precursors are available in the plasma, two body reactions in the gas
phase can be extremely fast, almost at the collision frequency of the gas molecules
(∼ 100 kHz). Characteristic time scales of ∼ 100 µs have been reported [74].
The ion loss during the plasma discharge is governed by ambipolar diffusion. Since
the electron temperature is quite high, the ions are lost significantly faster com-
pared to the radicals. When the plasma is switched off, the electrons cool down
quickly due to inelastic collisions (high collision frequency) and to the loss of fast
electrons to the wall (if energy is greater than the sheath potential drop). This
occurs on time scales of several µs due to the high velocity. Consequently, the
ambipolar diffusion is decelerated and the ion and electron loss rates decrease.
The characteristic timescales for particle production and loss are summarized in
Tab. 1.2 (next page).
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Table 1.2.: Approximated time scales for particle generation and loss for a pressure
of 20 mTorr.

Species Process Cause Time scale [ms]

all loss pumping > 100
radicals production electron impact 0.1-1

loss diffusion and sticking (wall) 1-10
loss 2-body reaction (gas phase) 0.1

ions production electron impact 0.1-1
loss ambipolar diffusion 0.1 (high Te)
loss ambipolar diffusion 0.4 (low Te)

electrons production electron impact 1
loss fast electrons traverse sheath 0.01 (high Te)
loss ambipolar diffusion 0.4 (low Te)

Figure 1.5.: Sketch of the expected evolution of characteristic properties during a
pulse period: electron and ion density, electron temperature and plasma potential.

Pulsed ICP (Source Only)

In a pulsed ICP, several aspects change compared to a CW discharge. In Fig. 1.5
the expected evolution of charge densities, electron temperature and the plasma
potential are sketched for one pulse period.
In the beginning of the on-time TON of the plasma, the remaining electrons from the
previous pulse absorb the total power (few electrons but high electron temperature
Te) and start to ionize the gas molecules, leading to an increased electron and ion
density (ni, ne) and a decreased Te. Depending on the process parameters, this
can lead to a strong overshoot of Te at the beginning of the pulse. The plasma
potential follows the evolution of Te, considering Tab. 1.1. If TON is long enough,
a steady state is reached after a certain time, similar to CW mode. When the
plasma is switched off, the electrons quickly cool down and the ions and electrons
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Figure 1.6.: (a) Time-averaged and (b) time-resolved IEDFs of a pulsed argon
plasma at 5 mTorr and 800 W source power (no bias power).

are lost mainly by ambipolar diffusion towards the plasma boundary walls until
the plasma power is switched on again.
The radicals, which are produced by dissociation during the on-time, are lost
continuously due to recombination or adsorption at the walls. If the characteristic
loss and production rates are slow compared to the pulse frequency, the particle
densities do not change significantly during one pulse period.
An example of the ion energy distribution function (IEDF) in an Ar plasma is
presented in Fig. 1.6. The time-averaged measurements show that the amount of
high energy ions from the on-time of the plasma is dependent on the duty cycle
while the contribution from the low energy ions from the off-time remains constant.
The time-resolved IEDFs show the fast shift in ion energy and the slight energy
overshoot at the beginning of the on-time. The change in ion energy is linked to
the fast change of electron temperature (see Tab. 1.1).

Additional Synchronous RF Bias Pulsing

In the following discussion a synchronous pulsing of the source and an additional
bias voltage is assumed. When the bias power is switched on, the ion and electron
density is quite low. The characteristic time to establish a constant self-bias voltage
depends on the capacitor that couples the RF to the wafer holder, the ion flux,
the electron flux, and the electron temperature. The (small) capacity is unknown
and the other parameters change strongly in the first instants after the start of the
pulse. Therefore, it is difficult to give a reliable prediction on the self-bias evolution
for this period. If, after this period, the ion energy is high (several 100 eV), the
energy deposition due to additional ionization from the RF bias is small, and the
power coupling losses are insignificant, the RF bias power Pbias is approximately
proportional to the ion flux Γi and the ion energy Ei [55]:
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Pbias ∝ Γi · Ei. (1.4)

Considering a high frequency where the ion density does not reach the steady state
value of the CW case, the ion flux is lower compared to the CW case, leading to
a higher ion energy if the RF power is held constant.
After the plasma is switched off, the strong self-bias voltage prevents electrons
from reaching the wafer and only ions arrive, which neutralize the accumulated
charge. The self-bias increases towards the floating potential, reducing the sheath
voltage drop. Depending on the capacity and the ion flux that decreases during
this period, the sheath voltage could be reduced very fast. Consequently, the
average ion flux has two main contributions: the rising ion flux with high ion
energy from the on-time of the pulse and the decreasing ion flux with low energy
from the off-time.

1.2. A Sample Process - HBr/O2 Etching of Silicon

The influence of plasma pulsing on an etch process is studied in an HBr/O2 plasma
for silicon etch applications. Such a process is used, e. g., for shallow trench isola-
tion (STI) applications, where the etched trenches are filled with a dielectric and
act as an electrical isolation between neighboring transistors. Another application
for such a chemistry is the etching of transistor gate structures. An illustration of
both applications is presented in Fig. 1.7.
Many authors have investigated the etch mechanisms of HBr/O2 plasmas for sil-
icon and SiO2 [22, 26, 65, 75–81]. The fundamental mechanisms for Si and SiO2

etching are summarized in the following, considering a very small percentage of
oxygen in the feedgas.

Silicon Etching

Bromine, hydrogen, and, to a minor extend, also oxygen containing ions hit the
silicon surface, dissociate, destroy bonds, and form an amorphous layer, also called
reactive etch layer (REL), with incorporated H, Br, and some O atoms. Depending
on the ion energy, the amorphous layer can vary in thickness. Since H atoms
are considerably smaller than the other particles, they might penetrate deeper
into the silicon layer. Si atoms can desorb due to a collisional impact or if they
are incorporated into volatile species, like SiBr4. It is also known that hydrogen
containing molecules, like SiH2Br2, are even more volatile [81]. Less volatile species
can also desorb due to physical sputtering. However, the silicon etching is not
spontaneous and an ion threshold energy of ∼ 10 eV is needed [81], which allows to
etch anisotropically. Since the Si-O bond is stronger than the Si-Br bond [78] and
oxygen containing molecules are less volatile, the desorption rate can be decreased
if oxygen atoms bind silicon to the layer. On the other hand, Br and H radicals
from the gas phase additionally adsorb on the surface of the amorphous layer
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Figure 1.7.: Sketch of the applications for an HBr/O2 silicon etch process. The
transistor gate (polycristalline silicon) and the isolation trenches (bulk silicon) are
often etched in this kind of chemistry.

and strongly increase the formation of volatile Si molecules. While the role of Br
radicals is fairly understood, the role of hydrogen in the etching remains vague.

Silicon Oxide Etching

In contrast to the silicon etching, the SiO2 is etched very slowly. Since the for-
mation of Si-O bonds is thermodynamically favored compared to Si-Br bonds, no
chemical enhanced etching mechanism exists. Oxygen atoms are preferentially
sputtered from the surface [79,82], leaving free spaces for Br to form Si-Br bonds
and, subsequently, volatile molecules. However, since oxygen atoms from the gas
phase can replace Br spontaneously [65,75,79], this mechanism seems to be rather
inefficient. Only at the surface, where a lot of bromine is adsorbed, the sputtering
of an oxygen can lead to the formation of a volatile silicon etch product. If SiO2

is used as an etch mask for silicon, silicon containing species with a high sticking
coefficient, like SiBr, can be deposited on the surface. While this has only lit-
tle effect on the silicon etch, these products can bind strongly on dangling bonds
of the SiO2 surface, decreasing the effective etch rate [65]. Oxygen from the gas
phase can further harden this deposited layer. Therefore, an increased oxygen flow
and/or an increase of depositing species can slow down the SiO2 etch rate.

Comparison - Si vs. SiO2 Etching

The silicon etch is strongly enhanced by a large surface coverage of Br radicals and
the activation energy is rather low. In contrast, the SiO2 etching needs quite a lot
of energy, even if the surface is fully covered with Br radicals [83]. Therefore, it is
likely that in real process conditions, the etch rate for silicon is limited by the Br
radical flux while the SiO2 etch rate is limited by the ion energy and the ion flux.
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1.3. Outline

In the framework of this Ph.D. thesis, the impact of synchronous pulsing on silicon
etching in an HBr/O2 plasma is studied. The work is focused on the fundamental
differences between a continuous and a pulsed plasma, and on the role of the pulse
parameters (duty cycle and frequency).
At first, in Chap. 2, the industrial etch tool is described and the used diagnos-
tic systems are introduced: mass spectrometry, UV absorption spectrometry, a
capacitive ion flux probe (IFP), a retarding field analyzer (RFA), X-ray photo-
electron spectrometry (XPS), ellipsometry and scanning secondary electron mi-
croscopy (SEM). For each diagnostic system, the basic principles of operation are
given. In addition, we present a newly developed angle resolved XPS technique to
investigate the sidewall passivation layer (SPL), formed at the pattern sidewalls
during etching. It allows to obtain profiles of the SPL in terms of thickness and
chemical composition.
Then, in Chap. 3, the HBr/O2 process plasma is investigated without applied bias
power (no silicon etching, clean reactor). This allows to understand the general
influence of the pulse parameters on radical and ion fluxes and their composition.
Chapter 4 deals with the impact on the plasma and on the plasma-surface in-
teraction during silicon etching with applied bias power. The species fluxes and
their compositions are very different since a large amount of silicon containing etch
products are present in the gas phase and the reactor walls are coated differently.
The presented results serve as the basis for the analysis of the actual impact of
plasma pulsing on the pattern etching, presented in Chap. 5. Etch rates of blan-
ket wafers are presented to show the impact on the different mechanisms of the
etching for various materials. Then, the impact of pulsing on the etched patterns
is presented and the observed evolution with the pulse parameters is explained.
In Chap. 6, all results are discussed and the impact of synchronous pulsing on sil-
icon etching is elaborated. In addition, the general potential of pulsed plasmas is
presented and an outlook on future experiments is given.
Finally, a conclusion is given in Chap. 7.



2. Diagnostic Systems and
Experimental Setup

All experiments are carried out in a plasma reactor suited for 300 mm wafers. In
addition, several diagnostic techniques are used to study the impact of pulsing
on the plasma and on the plasma-surface interaction. In the following, the basic
concepts of each diagnostic tool are discussed and the hardware is described.

2.1. Plasma Reactor and Reference Process

Figure 2.1.: Sketch of the plasma reactor.

The etch reactor in which the experiments were carried out is a commercially avail-
able 300 mm AdvantEdge™ decoupled plasma source (DPS) from Applied Mate-
rials, Inc. [84]. The plasma chamber, made of anodized aluminum, is part of an
Applied Materials Centura platform. The reactor has an inner diameter of 500 mm
and a height above the wafer holder of 172 mm. The inductively coupled plasma
(ICP) is sustained via two antenna coils situated on top of the reactor, which are

17
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connected to each other by a variable capacitance in order to improve the plasma
homogeneity across the processed wafers. An RF power supply (13.56 MHz) is
connected via an impedance matching network to the coils, which in turn trans-
mit the energy through a dielectric alumina window to the plasma. The thermally
regulated wafer holder, also called "chuck", is capacitively coupled to a second RF
power supply ("bias"), including an additional impedance matching system. The
RF voltage at the chuck is used to produce a self-bias voltage at the wafer in order
to change the energy of the impinging ions.
Both power supplies are further modified with the Pulsync™ system to allow in-
dividual pulsing of the source and the bias RF voltages at frequencies between
several Hz and 10 kHz and duty cycles between 10 and 90 %. It is also possible to
pulse synchronously at the same frequency with an adjustable phase delay and an
individual duty cycle. This Ph.D. thesis is focused on synchronized pulsing with
the same duty cycle, phase and frequency for source and bias.
The reactor is extensively modified to allow several in-situ diagnostic systems.
The chamber ports are used for real-time ellipsometry, absorption spectroscopy,
ion flux measurements, ion energy analysis, and mass spectroscopy. In addition,
an angle resolved X-ray photoelectron spectroscopy system is connected to the
vacuum transfer platform for quasi in-situ analysis of the wafer surface directly
after processing.
The reference silicon etch process of this work uses a gas flow of 200 sccm HBr
and 5 sccm O2 at a constant pressure of 20 mTorr. The source and bias powers are
set to 750 W and 200 W, respectively. During the etch process, the wafer and the
reactor wall temperatures are held constant at 55 and 60◦ C, respectively.

2.2. Mass Spectrometry

Mass spectrometry is a powerful diagnostic technique, which allows in principle to

1. sample neutral species/radicals from the plasma,
2. sample positive and negative ions from the plasma,
3. study the ionization cross section of a neutral species, and
4. study the ion energy distribution function for an ionic species.

In this work, a modified EQP 500 mass spectrometer from Hiden Analytical is
used (Fig. 2.2). It is equipped with a beam chopper and two differential pumping
stages. The entrance orifice is in plane with the reactor sidewall, at a height of
approximately 5 cm above the wafer holder. The basic theory of mass spectrometry
is given based on the design of this tool.
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Figure 2.2.: Sketch of the Hiden Analytical EQP 500 mass spectrometer
(www.hidenanalytical.com).

2.2.1. Basics

Two diagnostic modes of the mass spectrometer (MS) are used, the so-called resid-
ual gas analysis (RGA) mode for the analysis of neutral species and the so-called
secondary ion mass spectrometry (SIMS) mode for ion analysis. In RGA mode,
neutral species diffuse into an ionization chamber in the spectrometer. The en-
trance hole of the spectrometer is biased positively to prevent ions from the plasma
to reach the interior. The neutrals are then ionized by a mono-energetic electron
beam, which is thermally generated by a wolfram filament and accelerated to a
tunable energy. The created ions are in turn accelerated to a known kinetic energy
towards the end of the MS. In SIMS mode, the potential of the entrance hole is
tuned negatively to attract the plasma ions and to tune the obtained signal to a
maximum. Obviously, a further ionization is not necessary and the ions can be
analyzed directly.
The next stage of the MS is a 45◦ sector field electrostatic energy analyzer, which
consists of two parallel electrostatic plates that form a curve of 45◦. By applying a
potential difference between the plates, a linear homogeneous electric field is pro-
duced that deflects the ion trajectory. With the electric field E , the length of the
sector field l and the ion charge q, the ion pass energy for such an energy analyzer
is

Ekin,pass =
1
2

qE l. (2.1)

All ions that have the required energy are deflected into the exit slit, indepen-
dent from their mass. The mono-energetic ions are subsequently focused into a
quadrupole mass analyzer, sketched in Fig. 2.3.
A quadrupole analyzer consists of four usually circular rods that are placed par-
allel to each other. Opposing rods are connected electrically. An RF voltage is
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Figure 2.3.: Sketch of a quadrupole mass analyzer.

applied together with opposing potential offsets to each pair of connected rods
(±[VDC + VRF cos(ωt)]). Hence, the trajectory of passing ions is periodically de-
flected, so that only ions with a specific charge to mass ratio q/m can pass for a
given voltage ratio VDC/VRF . Other ions have instable trajectories, are strongly
deflected, collide with the rods, and are neutralized.
The final stage of the MS is a photo multiplier (PM), which detects the ions that
pass the energy and mass filters. When an ion hits the photosensitive first elec-
trode of the PM one or more secondary electrons are produced. These electrons
are accelerated to a dynode where they produce in turn secondary electrons. By
adding several dynodes, or in a continuous-dynode design, the electrons that are
detected at the last electrode (anode) produce a signal that is large enough to
detect even single ions.
However, the resulting signal is only accurate if the ion trajectory is collision-free.
Thus, the pressure needs to be low enough to assure a long mean free path for the
ions (< 10−3 mTorr). On their way through the MS the ions are repeatedly focused
by different electrostatic lenses. A good tune of the applied potentials is essential
to maximize the final signal to noise ratio. Still, the optimal tune can shift slightly
from experiment to experiment, e. g. due to different plasma conditions or different
background pressures. Moreover, this tune is also dependent on the energy and
mass of the ion that is analyzed. Therefore, the parameters need to be re-tuned
for each plasma species and before each experiment.

2.2.2. Analysis of Neutral Species

Removing the Background Signal

In RGA mode, the neutrals of the plasma need to be ionized in the MS. A priori,
at this point we cannot distinguish between species that come directly from the
plasma and neutrals that remain in the ionization chamber as a background signal.
One technique that allows to remove the background signal is modulated beam
mass spectrometry (MBMS). In such a setup, a chopper is installed between the
entrance hole of the mass spectrometer [85–87] and a second orifice that seper-
ates the plasma from the chopper. The hereby created chamber is differentially
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(a)

(b)

Figure 2.4.: Sketch of the mass spectrometer entrance and the tuning fork chopper.

pumped by a turbomolecular pump to reduce the background density and, thus,
also the background signal. For a sufficient reduction of the background signal, a
double or even triple differential pumping system is necessary [85].
A schematic overview of the spectrometer entrance used in this work is shown in
Fig. 2.4. The neutrals pass through the first orifice of diameter ∅ = 0.7 mm and
reach the first stage of differential pumping. The entrance hole to the spectrom-
eter (∅ = 1.5 mm) is covered by a tuning fork resonant chopper, which allows in
principle to reduce the dimension of the first stage to a minimum to increase the
signal to background ratio. In our case, the distance between the two orifices was
set to 5 cm in order to place the first entrance hole in plane to the reactor wall.
Often, the background signal is assumed to be constant during the chopper pe-
riod [85, 86]. However, Cunge et al. [88] showed that this is not always the case
since part of the background can originate from the beam itself. Therefore, it is
necessary to measure the time resolved intensity variation of the signal for one
chopping period (in our case 100 ms). In the original setup, this can be done by
a boxcar that averages the signal at one point of the period until the signal to
noise ratio is sufficient and then moves to the next point (in time) of the pulse
period. A more efficient way of measurement is the use of a multi-channel (1000)
pulse counter [89] that measures all points of the chopper period in parallel. A
comparison between both techniques with the same acquisition time is shown in
Fig. 2.5.
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Figure 2.5.: Comparison between detector signals: boxcar vs. multi-channel pulse
counter.

Appearance Mass Spectrometry

In a mass spectrometer, it is often possible to produce the same ion from different
parent molecules, e. g. by dissociative ionization, giving rise to a false measurement.
Usually, the lowest threshold energy to form an ion A+ is found for direct ionization
of A. Considering that A+ can also be formed by dissociative ionization, e. g. of A2

with a slightly higher threshold energy, a differentiation between the two processes
can be achieved by setting the electron beam energy for ionization to the adequate
threshold energy [86,90–93].
In the standard HBr/O2 process without bias, the only (main) species that can
be produced by dissociative ionization are the radicals Br, O and OH (H cannot
be detected by our MS, see below). In the experiments, O or OH radicals were
not detected, probably due to the high dilution of O2 in HBr gas (1:40) and a
possibly high sticking coefficient, which increases the loss rate on the reactor walls
(see Sec. 3.1.1). The signal of the Br radical on the other hand is just detectable.
The threshold energy for direct and dissociative ionization of Br is obtained by
scanning the electron beam energy for ionization in an HBr gas and in an HBr
plasma. In the first case, Br radicals are only produced by dissociative ionization
in the spectrometer. In the second condition, some Br radicals are created in the
plasma and can be ionized directly. Both measurements are shown in Fig. 2.6.
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Figure 2.6.: Dissociative ionization (Plasma OFF) and combined dissocia-
tive/direct ionization (Plasma ON) of Br from an HBr plasma/gas.

The grey hatched area indicates the energy window where the Br flux is large
enough to be detected and where the dissociative ionization of HBr molecules is
still low. Based on this graph, an ionization energy of 13.2 eV is used for all mea-
surements of the Br radical. Although there is already a small contribution from
dissociative ionization at this point, it is more important to obtain a strong signal
in order to increase the signal to noise ratio. Moreover, assuming that the contri-
bution from the dissociation of HBr is approximately proportional to the measured
HBr density, the so-produced Br is estimated and subsequently subtracted from
the measured Br signal.

Measurement Procedure

The basic measurement procedure in RGA mode for a series of plasma conditions
is the following. Before each series of experiments, a reference measurement is
acquired, e. g. for Ar gas at 10 mTorr, in order to account for any shift between
experiments. It consists of a MS tune to Ar, a measurement of the ionization cross
section, and a measurement of the Ar atom. This allows to normalize slightly
different experimental conditions. Then, the spectrometer parameters need to
be re-tuned to the species of interest, which is subsequently measured using the
neutral beam chopper in all plasma conditions, if necessary, at threshold ionization
energy. In a next step, the MS is tuned to another species.
For entire mass spectra the chopper is not used. Instead, a background spectrum
is acquired separately in order to remove the signals from residual species. This
technique gives rise to several sources of error:

1. The background from the real process does not necessarily have the same
intensities (or at least intensity ratios) as the residual measurement.

2. The MS is tuned to only one species (e. g. Ar) instead of an individual tune
for each species.
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3. The ionization cross sections differ between molecules. Therefore, the same
intensity could indicate different species densities.

4. Direct ionization and dissociative ionization cannot be distinguished (ioniza-
tion energy 70 eV).

5. The mass dependent transmission function (see below) is unknown, but it
remains approximately constant for changing plasma conditions.

6. The measured intensities depend on the plasma temperature (see below).

Consequently, the signals of different species in one spectrum cannot be com-
pared. However, the intensity of one species can still be compared between differ-
ent plasma conditions, provided that this species can only be produced by direct
ionization and changes in temperature are taken into account. Despite all these
disadvantages, entire mass spectra can still give a rough overview on the species
in the plasma.

2.2.3. Analysis of Ions

In contrast to the RGA mode, the ions can be studied without the use of a chopper
since no background exists. However, the measurement of the ion flux is rather
complicated since the plasma ions can have a very different ion energy distribu-
tion function (IEDF) compared to the mono-energetic IEDF in the RGA case.
Moreover, depending on the ion energy that is used for the MS calibration, the
obtained IEDF can change strongly [94]. Finally, it would also be possible that
different species have different IEDFs, but in the studied conditions all analyzed
species showed only insignificant differences between their IEDFs.
A great disadvantage of such a measurement is that the resulting IEDFs do not
necessarily represent the real energies of the ions that hit the chamber wall: the
reference potential is different since the reactor wall is floating while the MS is
connected to the laboratory ground. Hence, the measured IEDFs should be used
very carefully.
Nevertheless, the approximate composition of the total ion flux can still be ob-
tained by taking the integral from each species’ IEDF.

Measurement Procedure

In SIMS mode, the basic measurement procedure for a series of plasma conditions
consists of three steps. At first, the spectrometer is tuned to an ion of intermediate
mass, including tune of the pass energy to find the maximum of the IEDF and
to increase the signal. Experiments carried out to investigate the influence of
the choice of the ion species used for the tune, showed no observable impact on
subsequent measurements. In a next step, an Ar reference plasma is analyzed
to account for spectrometer shifts between measurement sessions, similar to the
analysis of neutrals. Finally, the IEDF of each ion in each plasma condition is
measured. The total flux can be deduced via integration from the acquired IEDFs.
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Figure 2.7.: (a) Transmission function obtained from SF6 cracking pattern and
(b) direct comparison of measured and theoretical cracking pattern.

Since the transmission function of the orifice for ions is approximately constant
with the mass (see Sec. 2.2.4), we can compare the ion fluxes of the different species
directly.

2.2.4. Mass Spectrometer Transmission Function

The transmission of neutrals and ions from the plasma to the detection device in
the mass spectrometer depends mainly on the species mass, but in SIMS mode also
on the ion energy [94]. The mass dependence is due to the transmission function
(TF) of the quadrupole mass filter and the mass dependence on the production of
secondary electrons on the detector. The entrance orifice of an MS can also alter
the detected signal.

Mass Analyzer and Detector Device

One way to determine the TF of the mass analyzer and the ion detector is the use
of the cracking pattern of a large molecule, e. g. SF6.
Following this approach, the signal intensity for each species in the cracking pattern
of SF6 was measured and divided by the corresponding cross section for electron
impact ionization [95,96], shown in Fig. 2.7 a. For many MS systems, the combined
TF of the quadrupole mass analyzer and the detector device is approximately
proportional to the inverse of the mass (m−1) [93, 97, 98]. However, the measured
transmission function does not follow this dependence. Instead, the relative TF
varies around a mean value. As Fig. 2.7 b shows, the greatest differences are found
for molecules with a low signal strength and hence, also a low signal to noise ratio.
Thus, it might be possible that the actual TF is approximately constant, at least
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up to a mass of 127 amu. Since the MS is equipped with an improved quadrupole
mass analyzer (length of 9 cm instead of 6 cm) that is supposed to have a strongly
reduced mass dependence, a constant transmission function might indeed be close
to reality.
Unfortunately, the used MS has a very much reduced transmission for ions with
masses of 1 and 2 amu. The RF frequency of the quadrupole mass analyzer is
optimized for a large range of mass values up to 500 amu, but the drawback is
the insensitivity for very low masses. Hence, it is not possible to investigate H
or H+ with the current system. Furthermore, the strong attenuation and the
very low signal to noise ratio at low masses (see below) also prevent an accurate
measurement of H2, although its signal is detectable. Consequently, hydrogen
species are not investigated by mass spectrometry in the framework of this thesis.

Orifice

The transmission function of the orifice for the analysis of neutrals can be approx-
imated theoretically [85, 99]. The transmission for a diffusing gas in a molecular
regime is altered due to a different gas conductance of the orifice, which is propor-
tional to (T/m)1/2 [85, 100]. Since in our setup two orifices are placed in series,
the temperature and mass dependence are even stronger.
For MBMS, the modulated beam of neutral species can be assumed to be collision-
free. In this case, the conductance of the orifice plays only a role in the composition
of the background. Since the background is removed by the modulated chopper,
the transmission factor for the neutrals is in this case constant with the mass and
temperature. However, Singh et al. [85] showed that both parameters influence
the beam-to-background signal ratio: in case of a two stage differential pumping
system, the ratio is proportional to m/

√
T . Consequently, it is rather difficult to

accurately measure light species like H2. Still, the measured densities of the species
in the beam are directly proportional to the densities in the plasma, as explained
by Benedikt et al. [101].
If the chopper is not used, e. g. in case of an entire mass spectrum, the mass and
temperature dependence has to be taken into account.
Also the ions that traverse the orifice are affected, namely by collisions with neu-
tral species and by the deflection due to the changes in potential lines induced by
the orifice geometry. The attenuation of the MS signal in low pressure conditions
caused by collisions can be calculated to be less than 0.5 % [102,103]. The impact
of the distorted equipotential lines was investigated by several authors [103, 104]
and is usually found to be small for ion energies larger than 5 eV [104,105], which
is usually given in standard plasma processes. In addition, the mass dependency
of the attenuation of the signal is rather weak (∝ m1/4). Since both the overall
attenuation and its mass dependence are small, these effects are neglected and the
ion transmission will be assumed to be constant for different masses.
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Determination of the Absolute Neutral Density

Two possibilities exist to approximate the absolute neutral density from the mea-
sured neutral flux. Either the transmission factor can be calculated by estimating
several MS parameters, or it can be found experimentally [86, 101, 106]. One way
to measure the total TF for neutrals is the use of a mixture of noble gases (He,
Ne, Ar,...) of known composition ratios [106]. From the ratio of the noble gases
and the appropriate ionization cross sections, the spectrometer signal can be cal-
ibrated up to m/q = 131 amu/e (if Xe is part of the mixture) assuming that the
TF depends only on the mass and the ionization cross sections.
Alternatively, the conversion factor for a neutral species can be found by calibrat-
ing the signal with a reference measurement [85, 86, 93] of a gas of known density
with similar molecular mass as the species of interest (e. g. Br and HBr). If the
ionization cross section of the gas molecule and the species of interest is known,
an estimate of the absolute density in the plasma can be obtained [86], assuming
the absence of other sources of ionization (e. g. by using the adequate threshold
energy).

2.3. (V)UV Absorption

Absorption spectroscopy can be used to measure line integrated densities of ab-
sorbing species in liquids, gases or plasmas. Incoming photons are absorbed with a
certain probability by atoms and molecules, which change in turn their rotational,
vibrational or Rydberg states. The absorption of the incident light is characterized
by the Beer-Lambert law

IT

I0

= eσ l n, (2.2)

where the ratio of the intensities of the incident light I0 and the transmitted light
IT is expressed in terms of the absorption cross section of a single molecule/atom
σ, the path length l in the medium and the atomic density of the absorbing species
n. In this study, we use ultra violet (UV) and vacuum ultra violet (VUV) light to
investigate the species densities in reactive etch plasmas. UV light is usually asso-
ciated with wavelengths between 200 and 400 nm while the VUV region goes down
to approximately 100 nm. In this region of wavelengths many different species can
be studied, including, but not limited to Cl2, SiCl, SiCl2, SiBr, CF, CF2 (UV) and
HBr, BrCl, Br2, SiCl4, BCl3, SF6, O2 (VUV).
The main difference between the experimental setups for UV and VUV absorption
spectroscopy, described in the following, is linked to the absorption of VUV light
by the ambient air.
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(a) (b)

Figure 2.8.: Sketch of the UV absorption setup for (a) time-resolved and (b)
time-averaged measurments.

2.3.1. Setup of UV Absorption Experiments

In contrast to mass spectrometry, absorption spectrometry can be used to measure
the densities in the bulk of the plasma, just below the plasma generation coils.
In the past, xenon or deuterium light sources were often used to generate UV light.
Recently, Cunge et al. [107] started to use light emitting diodes (LED) instead. The
advantage of such a light source is its increased stability of the emitted intensity,
increasing the signal-to-noise ratio of one to two orders of magnitude. In general,
even species that have a very small absorption cross section can be studied. In the
present case, the LED technique is used to study SiBr in an HBr/O2 etch plasma.
Kogelschatz et al. [108] examined the absorption structure of SiBr between 270
and 310 nm and report a strong absorption line at 292 nm that we target with
a temperature controlled LED from THORLABS, whose Gaussian-like intensity
distribution is centered at 290 nm with a full width at half maximum of 12 nm.
The LED emits the light isotropically at an angle of 120◦. A lens with a focal
length of 9 mm creates a parallel beamthat passes into the plasma reactor through
a MgF2 window. After the transit of the reactor, behind a second window, the
beam is focused into an optical fiber by a lens with a focal length of 50 mm. The
fiber is connected to a monochromator and the resulting signal is measured by
a photo multiplier. The Acton series monochromator is fabricated by Princeton
Instruments and has a diffraction grating of 1200 grooves/mm with a focal length of
20 cm. A pre-amplifier converts the measured current into a voltage and increases
its signal by a factor of 105 VA−1.
Depending on the information we want to obtain, two different setups can be
realized, shown in Fig. 2.8.
In the first setup (a), which allows to follow the time-resolved density variation in
pulsed plasmas, the signal from the amplifier is directly connected to an acquisition
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card from National Instruments. The acquisition process has to be synchronized
with the plasma pulses in order to allow an averaging of the signal for a high signal-
to-noise ratio. Therefore, the outgoing TTL signal from the plasma power supply
is measured with a second National Instruments card and synchronized with the
absorption measurement in a LabView program. Five different measurements of
the pulse period are needed to obtain the absorption of the target species:

1. lamp without plasma (incident signal, Il,1),
2. plasma and lamp on (measured absorbed signal, Ipl),
3. plasma without lamp (plasma emission, Ip),
4. lamp without plasma (Il,2) and
5. both plasma and lamp off (background, Ib).

The density of the studied species can then be calculated by

n =
1

σ l
· ln

(

Ipl − Ip

(Il,1 + Il,2)/2 − Ib

)

. (2.3)

The measurements of the lamp intensity in the beginning and at the end account
for possible lamp intensity drifts due to deposition on the windows. Such an
increase of absorption by the reactor windows can be observed during HBr/O2

etching of silicon.
The second setup (b) is used to obtain time-averaged data. The output of the am-
plified PM signal is connected to a lock-in amplifier that controls the LED intensity
by a built-in wave generator. The signals from the wave generator and the PM
measurement are multiplied and integrated over a specified time. All components
of the PM signal that have a different frequency compared to the wave genera-
tor are attenuated to zero. Thus, the contribution from the background and the
plasma emission are directly removed. In consequence, only three measurements
have to be carried out (Il,1,Ipl and Il,2) to determine the averaged species density.
For its calculation Eq. 2.3 can be used with Ip = Ib = 0.

2.3.2. Setup of VUV Absorption Experiments

In principle, the VUV absorption technique is similar to UV absorption, but
gives access to additional absorbing species (see Fig. 2.9). Especially close-shell
molecules are usually not detectable in the UV region. However, several compo-
nents of the hardware setup have to be changed. First of all, the total path of
the VUV light has to be under vacuum; otherwise the ambient air would absorb
the photons immediately. Furthermore, no adequate LEDs exist that could be
used for VUV light emission, so that a less stable 75 W high pressure deuterium
lamp (X2D2, Hamamatsu) is used. It emits a continuous light spectrum between
115 and 400 nm with a high VUV intensity in the range of 115-200 nm, shown in
Fig. 2.9 b. The light is collimated by a parabolic mirror, passes through the reactor
via MgF2 windows and is thereafter focused by a second parabolic mirror into the
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Figure 2.9.: (a) Sketch of VUV-absorption setup and (b) VUV spectrum of D2

lamp.

entrance slit of a VUV spectrometer (Jobin Yvon H20-UVL, HORIBA). The latter
is equipped with a diffraction grating of 1200 grooves/mm and has a focal length
of 20 cm. A PM converts the optical signal into a current, which is afterwards
amplified by a factor of 106 VA−1 and recorded by a PC via an acquisition card
from National Instruments. Figure 2.10 shows the absorption spectrum of an HBr
gas and plasma.
The three major absorption lines of HBr at 138, 143 and 150 nm correspond to
the 4pπ → 5sσ transition in the two Rydberg states C1Π (138 and 143 nm) and
b3Π (150 nm) [109]. The continuous absorption between 155 and 200 nm is due
to the transition of the 4pσ orbital to the antibonding 4pσ∗ orbital (into the
dissociative a3Π and A1Π states). The broad absorption peak at around 150-
160 nm in the plasma spectrum can be attributed to Br2, which cannot be seen
in HBr gas [88, 110]. Even for low densities of HBr, the absorption lines are
saturated [88] and thus, it is difficult to deduce the absolute HBr density from
their intensities. One possibility, described by Cunge et al. [88], is the use of
experimentally obtained reference spectra of HBr gas at different pressures. By
fitting the appropriate reference spectrum to the obtained plasma spectrum, the
absolute density of HBr can be found. After subtraction of the HBr contribution
to the spectrum, the same procedure can be used to obtain the density of Br2

molecules in case of the plasma.
However, several problems of this technique have to be addressed. One of these
is linked to the tubes in the reactor wall with a length of several cm in which
the MgF2 windows are inserted. HBr and Br2 can recombine more easily in these
tubes due to the increased surface area and the absence of dissociation processes.
The magnitude of the contribution to the line integrated density is difficult to
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Figure 2.10.: VUV absorption spectra from (a) an HBr gas and (b) an HBr
plasma

determine, but it could have a considerable impact. Moreover, the non-linearity of
the peak intensity with a change of density can lead to a misinterpretation of the
spectrum. Even a small change in peak intensity (in the margin of error) could
lead to a significant change in density.
Finally, compared to reference HBr gas spectra, we observe different peak intensity
ratios in the spectra from the plasma. This could be linked to different populations
of the energetic states, temperature changes or small changes in the hardware
setup. In general, the resulting error becomes rather large, allowing in our case
only qualitative information on the HBr and Br2 density.

2.4. Ion Flux Probe

The ion flux is a crucial parameter for etching processes. In this study a planar
probe, developed by Braithwaite et al. [111], was used to measure directly the ion
flux onto its surface. In principle, it is also possible to gain information on the
electron flux and energy distribution function, once the ion flux is known [112].
The probe itself consists of a large area (1 cm2) planar single-sided disk, which is
positioned in plane to the plasma reactor wall just above the wafer, at the same
position as the mass spectrometer. A guard ring with the same surface is placed
around the probe to avoid edge effects of the sheath (see Fig. 2.11).
A pulsed RF source is coupled to the probe and the guard ring via capacitors. For
a measurement, the capacitively coupled probe surface is charged by the electron
and ion flux to a negative potential Vbias compared to the natural floating potential
Vfl. This effect is equivalent to the self-bias effect of the powered electrode in a
CCP. After the RF voltage is turned off, the accumulated charge on the plasma
side of the capacitor remains. If Vbias is sufficiently negative with respect to the
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(a) (b)

Figure 2.11.: Sketch of the ion flux probe with (a) traditional and (b) newly
developed direct current measurement system.

plasma potential (several 10 V), the electron flux Γe will be negligible compared to
the ion flux Γi on the probe surface. In this case, the probe potential will increase
proportionally to the ion flux. When the potential difference between probe and
plasma is small enough, the electron flux becomes important and finally Vbias

approaches Vfl. During the discharge of the blocking capacitor Cb, the change in
potential is essentially described by

dVbias

dt
=

eA ([Γi − Γe(Vbias)]
Cb

, (2.4)

where e is the elementary charge and A is the probe surface. In order to avoid
sheath edge-effects on the probe, the guard ring has to follow the same potential
discharge as the probe itself. Hence, the blocking capacitor of the guard ring needs
to be chosen accordingly.
The ion flux can be measured in two different ways. The "traditional" way is to
record the capacitor voltage with an oscilloscope, as shown in Fig. 2.11 a. The
measured voltage corresponds to the combination of the potential drop over the
blocking capacitor and the low impedance of the RF generator. By removing
the calculated leak current from the RF generator and by neglecting the electron
flux, we can obtain the ion flux using Eq. 2.4. A disadvantage of this method is
the need to differentiate the measured data to obtain the flux from the voltage
measurement, leading to a considerably increased noise. A way to improve the
signal to noise ratio is the direct current measurement proposed by Booth et al.
[112] and presented in Fig. 2.11 b. In between the blocking capacitor and the RF
generator, two head-to-tail diodes are placed with a resistor in parallel. During
the bias generation, the RF high voltage can pass through the two diodes without
significant loss. When the RF voltage is switched off, the potential drop over the
resistor, which is directly proportional to the current, is very small compared to
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Figure 2.12.: (a) Voltage measurement with an oscilloscope for an HBr plasma at
20 mTorr and 750 W source (blocking capacitor of 10 nF). (b) Comparison between
current calculation from oscilloscope data and direct current measurement.

the diode threshold voltage. It is measured with a high resolution analog-digital
converter from National Instruments with a maximum voltage input of 10 V. An
example of an ion flux measurement with both methods is shown in Fig. 2.12 for
an HBr plasma at 20 mTorr and 750 W source power.
In some conditions, the plasma can deposit a dielectric layer on the probe surface,
introducing an additional capacitance CL. If the effective total capacitance Ceff ,
given by

Ceff =
CLCb

CL + Cb

, (2.5)

is large compared to the sheath capacitance between probe and plasma, the current
measurement is still correct [111,112].
However, if the probe potential VP (observed by the oscilloscope) is different from
the real probe surface potential VS, given by

VS = VP
CL + Cb

CL

, (2.6)

we cannot control the bias voltage at the probe surface, which is crucial to repel
the plasma electrons. To get a valid measurement of the probe surface voltage,
we need to ensure that CL ≫ Cb. Considering a 100 nm thick layer of SiO2 on
a planar probe with a surface of 1 cm2, we can calculate a needed capacitance of
Cb ≪ 35 nF. At the same time, Cb should be as large as possible to reduce the
influence of parasitic capacitances of cables and electronic components and to slow
the bias discharge for longer measurements.
This technique can easily be used to study pulsed plasma discharges. In this case,
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(a)

(b)

Figure 2.13.: (a) Example of an
RFA with four grids (from [113])
and (b) a photo of the used
probe with anodized aluminum
cover.

the time during which the self-bias discharge is linear needs to be at least as long
as one entire period of the plasma RF pulse. Hence, an appropriate compromise
for the blocking capacitor needs to be made. Also, in order to average over several
pulse cycles, the biasing of the probe needs to be synchronized with the plasma
pulses.

2.5. Retarding Field Analyzer

An alternative diagnostic tool to measure the ion flux, but in addition also the
ion energy distribution function, is a retarding field analyzer (RFA). In this thesis
several prototypes of the commercially available SEMION probe from Impedans
Ltd. were used [113, 114]. In Fig. 2.13 a scheme of such a four grid analyzer is
shown.
The first grid G1 is a floating grid to simulate the potential of the floating wall
or the wafer. If the RFA is positioned on a biased wafer, the self-bias potential is
transmitted via the metallic frame to G1. The second grid G2, called the discrim-
inator grid, is biased with a potential ramp to discriminate the ion energy. The
third grid G3 functions as a suppression grid to repel electrons from the plasma
and to prevent secondary electrons from the ion bombardment of the collector to
escape. The fourth grid (or plate) C is the collector. The current from the incom-
ing ion flux is measured at each step of the potential ramp.
All grids are connected via high impedance low-pass filters to an external power
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supply, which is controlled through a USB connection by a PC. The floating po-
tential of G1 is measured externally with an oscilloscope. All grids follow the RF
component of the plasma power supply and the changes during the pulse periods
of this time scale, but only G1 follows also the averaged DC bias/floating potential
of the substrate. The non-floating grids G2,G3 and C are set with respect to the
external ground while the incoming ions arrive on a surface with floating potential
(G1). Hence, the floating voltage needs to be subtracted from the discriminator
voltage values to obtain the ion energy with respect to the floating surface. Under
these conditions, the measured current-voltage (I-V) data from C (collector cur-
rent) and G2 (varied discriminator voltage) represents the total flux of ions and
can be differentiated to obtain the IEDF.
In a first version, the SEMION probe was capable to measure the averaged and
time-resolved IEDF of pulsed discharges only without bias power applied to the
wafer and probe. In a second version, the filter system was changed and it was
possible to measure averaged IEDFs with bias. However, the plasma pulsing dis-
turbed strongly the measurements in this setup and only CW conditions could be
analyzed. In a third, further improved setup, it was possible to obtain averaged
IEDFs of pulsed plasmas with self-bias. A drawback during the third measurement
session was a short circuit between the first two grids (G1, G2). After different
tests and after consulting Impedans Ltd., the final setup was chosen as follows:

1. G1 - floating (short circuit with G2)
2. G2 - floating (short circuit with G1)
3. G3 - discriminator potential ramp
4. C - negative collector potential (less than minimal discriminator voltage).

The collector potential needs to be less or equal to the minimal discriminator volt-
age of G3 in order to collect all ions that pass G3. This setup suppresses plasma
electrons, but does not prevent secondary electrons from escaping the collector, ap-
pearing as incoming ions in the measured current. Therefore, the absolute current
measurement might be slightly altered while the IEDF should not be influenced
significantly [114].
For all experiments presented later, the RFA is placed in the center of a silicon
wafer. For the first two measurement sessions, a thin ceramic shield (few mm) with
0.8 mm holes for ion collection was used to prevent the metallic body from etch-
ing. In the third session, the aluminum body itself was anodized (same material
as reactor walls) and thereby converted to a dielectric shield. Only measurements
with the same setup are compared since the transmission function might change
between different hardware designs.
An example of the measured I-V curve and the resulting IEDF are shown in
Fig. 2.14. In some cases, the I-V measurement is very noisy, so that no infor-
mation can be obtained from the derivative (IEDF). In this case the I-V curve
can be fitted with a combination of several logistic (Boltzmann) functions and, if
necessary, with an additional linear term accounting for the escaping secondary
electrons in order to obtain a smooth IEDF.
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Figure 2.14.: (a) Measured I-V curve of the RFA with fit. (b) Direct derivative
(IEDF) of raw data and derivative of fit.

2.6. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is a very powerful diagnostic method for
surface analysis since it is able to probe the first few nm of a sample for a chemical
analysis.

2.6.1. Basic Concept

XPS is based on the photoelectron effect, sketched in Fig. 2.15 a. An energetic
(X-ray) photon transfers its energy to a core electron, which in turn leaves the
shell with a certain kinetic energy. The binding energy EB of the electron in the
sample can be obtained by measuring the kinetic energy Ekin:

EB = hν − Ekin − Wspec − φ, (2.7)

where hν is the known photon energy, φ is the sample surface potential, and Wspec is
the spectrometer work function. The latter corresponds to the potential difference
between the Fermi-level (equal for sample and spectrometer) and the free vacuum
level of the spectrometer [115]. In some cases, e. g. for dielectric materials, the loss
of electrons can lead to a positive sample surface potential φ, which inhibits the
electrons from escaping, so that the resulting binding energy is increased. Figure
2.15 b shows the corresponding band diagram.
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(a) (b)

Figure 2.15.: Sketch of the photoelectron effect and the spectrometer work func-
tion.

Chemical Shift and Spin Orbital Splitting

Since each element has different binding energies for its orbitals, the elements
that contribute to the photoelectron emission can easily be identified from an
XPS spectrum (Fig. 2.16 a). Each region of the spectrum that shows characteristic
peaks can then be scanned with high resolution, as shown in Fig. 2.16 b for silicon.
The separation of the signal of one element into multiple peaks has two reasons.
First, the signal from most of the atomic orbitals is separated into two peaks, due
to the two different electron spins (spin orbital splitting). For a given orbital and
element, the area ratio (1:2, 2:3, 3:4, ...) and the energy difference between the
two peaks are nearly unaffected by the atomic environment. The binding energy,
on the other hand, is very well affected by the neighboring atoms. If the valence
electron charge is reduced (oxidized element), the binding energy for the remaining
electrons increases. In the same manner, an increase of the valence electron charge
leads to a decrease in binding energy. This effect is called chemical shift and allows
to separate signals coming from different compounds in the sample, e. g. Si and
SiO2.

Analysis of a Single Overlayer

Although the X-ray photons penetrate quite deeply into the surface, the produced
photoelectrons can be easily scattered and reabsorbed by the sample material. If
the photoelectron intensity of a thin layer is emitted in a depth d of the sample
at a take-off angle θ with respect to the surface normal, the measured intensity is
attenuated according to the Beer-Lambert law to

dI = k Γ n σ γ e(−d/λ cos(θ)) dz, (2.8)

where λ is an effective attenuation length, Γ is the X-ray photon flux, n is the
atomic density, σ is the photoionization cross section (Scofield factor [116]), and γ is
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Figure 2.16.: (a) Overview spectrum to show identification of elements. (b)
Spectrum of a thin layer of SiO2 on the silicon bulk to show the chemical shift and
the spin orbital splitting.

the efficiency to generate photoelectrons without energy loss due to, e. g., plasmon
excitation [115, 117]. k includes all spectrometer factors like the transmission
function and the electron detection efficiency. Consequently, the total measured
intensity I0 for a homogeneous material is

I0 = k Γ n σ γ λ cos(θ). (2.9)

Considering a thin homogeneous overlayer O of thickness d on a substrate S, both
containing the same element, as it is the case, e. g., for SiO2 on Si, we obtain by
integrating Eq. 2.8 and assuming λO ≈ λL

IL = IL,0 ·
(

1 − exp

(

−d

λL cos(θ)

))

and (2.10)

IS = IS,0 · exp

(

−d

λL cos(θ)

)

. (2.11)

When both intensities of the chemically shifted peaks are known, the thickness of
the overlayer can be determined by

d = λL cos(θ) ln
[

1 +
IL

IS

· 1
R0

]

, (2.12)

where R0 = IL,0/IS,0. Several authors have provided equations to calculate the at-
tenuation length, depending on the density, stoichiometry, and electronic bandgap
[117–119]. The most popular set of equations, also used throughout this work,
is the one from Tanuma, Powell and Penn, called TPP-2M [118, 120]. R0 can be
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determined experimentally or estimated as shown, e. g., by Seah and Spencer [121].

2.6.2. Instrumentation

All the XPS measurements were carried out in a customized Thermo Fisher Sci-
entific Theta 300 spectrometer, which is connected under vacuum to the wafer
transfer system of the etch chamber, allowing to analyze 300 mm wafers quasi in-
situ [122]. The system is equipped with a high resolution monochromatic Al Kα
source at 1486.7 eV. In this system, the size of the analyzed area of the sample
is determined by the X-ray spot, set to 400 µm, and not by the detector. The
detector can analyze emission angles in parallel between 20◦ and 76◦ with respect
to the wafer surface normal. For most measurements, this acceptance angle was
divided into 8 equal detection angles, ranging from 23.5◦ to 72.5◦, each with an
acceptance angle of ±3.5◦. The spectra were recorded with a detector pass energy
of 60 eV and with a step size of 0.1 eV. In addition, the spectrometer is equipped
with an electron beam system for charge neutralization.

2.6.3. Sidewall Passivation Layer Analysis Technique

One of the most important factors that influence the profile of etched structures
is the formation of the sidewall passivation layer (SPL) that protects the struc-
tures from lateral etching [123–125]. A balance between continuous deposition and
etching produces a specific etch slope [125, 126]. Hence, the control of the SPL is
essential. Unfortunately, it is rather difficult to analyze SPLs in terms of thickness
and chemical composition without air exposure in order to better understand their
formation.
The chemical composition of the SPL is often studied by XPS [123, 126–133]. A
homogeneous pattern of lines and trenches is perpendicularly analyzed by an XPS
system, so that the signals from the trench bottom and the bottom part of the
sidewalls are shadowed by adjacent lines. The signal from the mask can be iden-
tified thanks to a technique of differential charging: an electron flood gun charges
dielectric materials and shifts their peak positions (binding energies) in the XPS
spectra [134].
As explained above, it is also possible to estimate the thickness of a thin overlayer
on a substrate from XPS measurements using Eq. 2.12 [117–120, 135]. Following
this approach, Pargon et al. [136] compared the XPS signal of a blanket resist
layer to the signal of a resist pattern and calculated therewith the signal from the
sidewall by subtraction. This way, they could estimate the average SPL thickness,
but no profile of the SPL was obtained.
During this thesis a non-invasive angle resolved XPS (ARXPS) technique was de-
veloped that provides simultaneously profiles of the SPL thickness and profiles of
the chemical composition [137]. The quasi in-situ analysis allows to investigate
the passivation layer directly after the etch process without exposure to air (which
would possibly alter the results).



40 2. Diagnostic Systems and Experimental Setup

Figure 2.17.: Sketch of the XPS technique to analyze the sidewall passivation
layer.

Technique

In order to study the chemical composition and the thickness of the SPL, several
conditions have to be fulfilled.
First of all, it is necessary to collect as much signal as possible originating from
the sidewalls in order to reduce the signal to noise ratio. For this purpose, a
pattern consisting of lines and trenches with equal widths is very convenient. This
pattern should be larger than the X-ray spot size from the ARXPS system and
needs to be positioned in such a way that the plane of detection of the ARXPS
system is perpendicular to the orientation of the trenches. Thus, the average
XPS signal originates both from the mask and the pattern sidewalls (Fig. 2.17).
Each detection angle θ corresponds to a different observed area of the SPL while
the signal from the rest of the SPL and from the trench bottom never reach the
detector since they are obstructed by adjacent lines. For large detection angles,
all photoelectrons from the SPL are blocked and the measured signal originates
only from the mask. Therefore, the number of data points for the SPL is reduced,
especially for thinner trenches. The detection angle defines the maximal aspect
ratio that can be analyzed. The aspect ratio is the ratio of the probed trench
depth (including the mask) over its width. It is a more convenient parameter for
the study of trenches with different widths than the probed depth.
In a second step, the SPL signal has to be isolated from the mask signal. This can
easily be done if the pattern stack consists of a dielectric mask (e. g. SiO2) on top of
a conducting bulk material (e. g. trenches in bulk silicon). In this case, it is possible
to charge the dielectric mask separately from the trench walls, resulting in a shift of
the binding energies in the mask material. Consequently, the peak positions from
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the mask signal in the XPS spectra are also shifted [134]. The differential charging
is carried out by applying an electron beam dedicated to neutralize accumulated
charges on dielectric surfaces. Depending on the electron beam energy, the mask
can be charged either negatively due to an accumulation of electrons (low energy
beam) or positively due to the loss of secondary electrons (high energy beam).
A positive mask charge shifts the XPS peaks to higher binding energies and vice
versa [138].
The extracted signal gives information on the average chemical composition of the
SPL of the measured area along the trench sidewall. The average SPL thickness
is calculated with Eq. 2.12.
Using the average thickness and chemical composition, it is possible to obtain the
signal intensities from each part P of the sidewall using the angle resolution of the
XPS system (see Fig. 2.17). P is defined as the area that is observed additionally
going from a rather flat detection angle (θ1) to a steeper angle (θ2). However, the
signal intensities of the observed sidewall areas (A1 and A2) at different angles
cannot be subtracted directly to obtain the signal from P due to their dependence
on the detection angle [117]. Thus, it is necessary to calculate the theoretical
signal from area A1 at the detection angle θ2. Taking this into account, we can
estimate the substrate and overlayer signal intensities of part P of the SPL:

Iθ2
OL,p = Iθ2

OL,A2
− Iθ1

OL,A1
· 1 − exp [−d1/λ cos(β2)]

1 − exp [−d1/λ cos(β1)]
(2.13)

and

Iθ2
S,p = Iθ2

S,A2
− Iθ1

S,A1
· exp [−d1/λ cos(β2)]

exp [−d1/λ cos(β1)]
, (2.14)

where the emission angle βi is defined with respect to the surface normal, so that
βi = 90◦ − θi (assuming a vertical trench sidewall). From the obtained signal
intensities the chemical composition and the thickness can be calculated for each
part P of the sidewall, resulting in a profile along the sidewalls.

Assumptions and Possible Errors

Although this technique proves to be quite accurate, as shown in the next section,
we still need to keep in mind the assumptions that are made to determine the SPL
thickness and the possible errors that they imply.

1. We need to assume that the XPS measurement procedure itself results in
reliable data. Seah [139] evaluated uncertainties in thickness measurements
using XPS for ultrathin SiO2 on Si and reported an uncertainty of 0.4 nm
over the range 2.5 < d < 7.8 nm only due to the analysis procedure and
hardware. However, since the data is always obtained in the same system,
the relative change between different samples should be unaffected.
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2. Furthermore, we assume the presence of vertical sidewalls. In our case the
sidewall slope is changing by not more than 3◦ (from the vertical case) be-
tween trench top and bottom. Nevertheless, this leads to an error in the
thickness estimation of between 2 and 14 %, depending on the detection an-
gle (see Eq. 2.12).

3. Also, we use a simple bilayer model in which the overlayer is treated as a
homogeneous material. Since the formation of the passivation layer is a con-
tinuous process in a rather stable environment, this assumption might be
quite accurate, but due to a lack of information on the SPL, we can neither
validate it at this point, nor estimate an error.

4. The attenuation length λ is calculated using the stoichiometry of the XPS
measurement as well as the density and the bandgap data from SiO2, due to
the lack of information on the bromine rich silicon oxide passivation layer.
For the same reason, R0 is determined experimentally for SiO2. Seah and
Spencer [121] discuss in detail the errors in the determination of a thin SiO2

overlayer thickness that are related to theoretical and experimental values of
R0 and λ. They cite a variation of R0 between 0.67 and 0.87 for previously
published experimental values. In addition, they determine themselves R0

experimentally and theoretical and find values of 0.88 and 0.53, respectively.
Regarding the attenuation length λ, they report an agreement between the
theoretical and experimental values within an error of 10 %. Other studies
state a root mean square deviation of the estimated values from experimen-
tally obtained attenuation lengths in a range between 1 and 20 % [120,135],
depending on the probed materials and the used material properties. More-
over, the experimental results presented later indicate that the chemical com-
position changes slightly with the aspect ratio (but not significantly with the
trench width), reducing additionally the confidence in R0 and λ.

Considering all the above, we estimate the corresponding uncertainties by very
conservative values, namely by R0 = 0.778 ± 0.30 and λ = 3.367 ± 0.7 nm. These
values lead to an uncertainty of the thickness of 21-28 % (depending on the ratio of
IOL/IS) and 20 %, respectively. It should be mentioned that an error in λ results
only in a constant offset for all sets of data points and, thus, the relative behavior
should remain unaffected.
The resulting probable total error is calculated to 29-40 % by using the Gaussian
error propagation.

Limitations

The presence of both a dielectric mask and a conducting sidewall is necessary
to charge the mask differentially in order to distinguish between the two signals.
For large detection angles (small angle with respect to the sidewall surface), the



2.6. X-ray Photoelectron Spectroscopy 43

112 110 108 106 104 102 100 98

100

150

200

250

300

 

 
Shifted XPS Signal from Si (100 nm Trench)

Shifted SiO2 peaks
from mask

SiOxBr

SiOxBry

SiOBry

SiBrx
S

ig
na

l [
ct

s 
/ s

] 

Binding Energy [eV]

Si Bulk

All peaks are Si(2p3/2),
Si(2p1/2) contribution
already subtracted

Figure 2.18.: XPS signal from Si: the signal from the oxide mask is shifted to the
left towards higher binding energies due to the secondary electrons produced from
an electron beam with an energy of 300 eV.

photoelectron refraction will increasingly disturb the XPS measurement [117,140],
so that the maximal analyzable aspect ratio is approximately 3. Also, for SPL
thicknesses larger than ∼ 10 nm, the signal originating from the substrate is too
small to estimate the thickness. Furthermore, it is necessary to have access to
the relevant hardware, namely the quasi in-situ XPS system and adequate pattern
structures. Finally, the time of acquisition for one pattern is quite high and ranges
in the order of two hours, depending on the targeted signal to noise ratio. Despite
these limitations, this technique is a powerful method to analyze the SPL.

Experimental Validation

The sidewall passivation layer formed during the plasma etching of silicon trenches
in an HBr/O2 chemistry is studied using the presented technique. Each ana-
lyzed pattern consists of lines and approximately 300 nm deep trenches with equal
widths. The lines are patterned by electron beam lithography and form areas of
1 mm x 1 mm. The X-ray spot size was set to 400 µm, which is small compared
to the size of the pattern area and the acceptance spot size of the detector (for
all angles). The electron beam energy is set to 300 eV to charge the dielectric
mask, a single layer of 50 nm silicon oxide, positively due to the loss of secondary
electrons. This results in a shift of the peaks of the thin oxide mask of around
4 − 6 eV towards higher binding energies, as shown in Fig. 2.18 for the Si signal.
In this figure, the Si(2p1/2) contribution of each designated double peak was sub-
tracted beforehand to simplify the identification of the peaks. After identifying
the shifted contribution of the mask, it can be removed, so that only the signal
from the sidewalls remains.
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Figure 2.19.: Results from the sidewall passivation layer analysis. Comparison
between XPS and SEM for patterns from pulsed (1 kHz and 10 % duty cycle) and
CW etching.

Performance of the Technique

In order to verify the results from the ARXPS analysis, we used scanning secondary
electron microscopy (SEM) to measure the SPL from cross sections of the trenches.
By removing the SPL in a short bath in hydrofluoric acid (HF), the thickness can
be obtained from measurements before and after HF application [141,142].
In Fig. 2.19, the SEM and XPS thickness profiles for various trench dimensions
from CW and pulsed (at 1 kHz and 10 % duty cycle) experiments are shown. The
profiles will be discussed in Chap. 5.5. Here, we focus exclusively on the compari-
son between the XPS and SEM technique.
The performance of the SEM technique is limited since the resolution of the SEM
used in this study is not better than 3 nm. Moreover, only a very limited part
of the pattern can be observed with a cross section. This makes the measure-
ment only a random sample and the real average for the whole pattern remains
unknown. Still, the SEM images can give us an estimation of the absolute SPL
thickness and its evolution with changing aspect ratio.
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In Fig. 2.19 b the results from the SEM analysis are shown for comparison. Al-
though the SPL thickness for a specific aspect ratio seems to depend also on the
trench width, we do not observe any definite trend (e. g. thinner SPL thickness in
thinner trenches). Thus, we attribute this variation to the large error in the SEM
analysis technique. Nevertheless, the absolute values of the SPL thickness and the
thickness profile are in very good agreement, validating the parameters used to
calculate the attenuation length and R0.
The results for the thickness measurements by XPS and SEM for a pulsed condition
at 1 kHz and 10 % duty cycle are presented in Fig. 2.19 c and d for comparison.
The XPS analysis indicates an SPL thickness of less than 2 nm for most of the
probed area that is inside the resolution limit of the SEM. This could explain the
offset to slightly larger values for the SEM measurements. Still, both results are
in good agreement, considering the large error for the SEM data. For a conclud-
ing evaluation of the XPS results, a comparison to a more accurate technique like
TEM would be necessary.

2.7. Spectroscopic Ellipsometry

Basic Concept

The basic principle of ellipsometric measurements is the change of phase, polariza-
tion and intensity of linearly polarized light after reflection on a flat surface. Part
of the incoming electromagnetic wave at angle Φi is transmitted into the surface
at angle Φt, part of it is reflected at angle Φr = Φi. A sketch of this process is
shown in Fig. 2.20. The electromagnetic field ~Ei of the incoming wave can be split
into one field parallel to the surface ( ~Ep,i) and one perpendicular to the surface
( ~Es,i). The modification of the two components after reflection can be described
by the complex reflection coefficients

rp =
Ep,r

Ep,i

= |rp| exp(i δp) and rs =
Es,r

Es,i

= |rs| exp(i δs). (2.15)

The phase δ indicates the delay introduced by the reflection and the absolute
value |r| signifies the change of the amplitude. Hence, the relative change ρ of the
amplitudes is

ρ =
rp

rs

= tan(Ψ) exp(i ∆), (2.16)

where ∆ = δp − δs is the phase difference between both components. The mea-
surement of the relative change of electromagnetic properties and not of absolute
values makes ellipsometry a very robust, precise and reproducible technique that
can be used, e. g., to determine layer thicknesses with up to Ångstrom resolution.
By measuring Ψ and ∆ the refractive index n = nr + ik of a large homogeneous
sample or of an overlayer with known thickness can be determined. Vice versa, the
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Figure 2.20.: Sketch of a refraction process.

thickness of a homogeneous overlayer on an opaque substrate can be determined
if the optical properties of the material are known.
Some ellipsometers allow to measure Ψ and ∆ at various wavelengths (spectro-
scopic ellipsometer) and/or at different angles. In this case it is possible to deter-
mine thicknesses and/or dielectrical properties of multi-layer systems. However,
these values cannot be calculated straight forward from the measurement, but have
to be fitted with a model.
The very first ellipsometers consisted of a light source, a polarizer, a compensator
(e. g. a quarter wave plate) and a second polarizer (called analyzer). The electro-
magnetic radiation from the light source is linearly polarized, reflected from the
surface where it becomes elliptically polarized and analyzed by the second polar-
izer. The compensator is used to introduce a known elliptic polarization before
the reflection in order to achieve a linear polarization after reflection. When both
compensator and analyzer are set correctly the light is totally blocked. For this
reason this technique is called a nulling ellipsometry.
A more sophisticated technique is the phase modulated ellipsometry, illustrated
in Fig. 2.21. Instead of a compensator, a birefringent modulator is used to intro-
duce a periodic sinusoidal phase difference between the parallel and perpendicular
component of the electromagnetic wave. The modulator is composed of a material
that becomes birefringent under stress (e. g. amorphous silica) and of piezoelec-
tric transducers with a resonance frequency of 50 kHz that apply the stress. The
current collected by the photomultipliers can be analyzed using a lock-in amplifier
to extract the modulated signals that carry the information of the ellipsometric
parameters.

Instrumentation

In this study, two commercially available ellipsometers were used. One is the
UVISEL phase modulated spectroscopic ellipsometer from HORIBA Jobin Yvon,
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Figure 2.21.: Sketch of a phase modulated Ellipsometer (UVISEL).

which is directly mounted on the plasma chamber to allow in-situ measurements
of layer thicknesses on the 300 mm wafers. The light source consists of a 75 W Xe
lamp. The polarizer and analyzer are glan type devices with an extinction coef-
ficient of 10−5 and an angular precision of 0.01 ◦ at a fixed angle. The detection
system consists of 32 photomultipliers, allowing a parallel data acquisition for dif-
ferent wavelengths for time-resolved measurements at a frequency of about 2 Hz.
The spectral resolution of the ellipsometer in the range between 190 and 880 nm
is gained by a monochromator grid placed in front of the detector.
The second measurement system is a S300-Ultra from Rudolph Technologies, Inc.
It is a small spot, simultaneous multi-angle, laser based, multi-wavelength ellip-
someter. Four lasers at wavelengths of 458, 633, 780 and 905 nm are focused on
a spot of approximately 10 µm size. The angle range for the measurement is of
30 ◦. The robotic wafer holder allows for a variable amount of measurement points
across the wafer in order to obtain information, e. g. on the homogeneity of the
measured layers.

2.8. Scanning Electron Microscopy

A commercially available JSM-7500F field emission scanning secondary electron
microscope (SEM) from JEOL Ltd. is used to obtain cross section images of
the etched microstructures. In theory, the maximal resolution is 1.4 nm at an
acceleration voltage of 1 kV, but in praxis, the resolution is more likely to be
around 3 nm.





3. HBr/O2 Plasma Without Bias

Pulsing has been proven to be a promising approach to overcome certain limitations
in current CW plasma processes [16,41–50,52–54]. However, the transient nature
of such plasmas adds to their complexity. The more information is gained on pulsed
plasmas, the easier it is to explain the impact on plasma etching and to identify
potential applications. In this chapter we focus on the impact of plasma pulsing on
the gas phase in an HBr/O2 plasma without applied bias potential. Several means
of diagnostic like mass spectrometry, VUV absorption spectrometry and the use
of an ion flux probe help to gain insight into the basic differences compared to
a CW process. The measurements are carried out in a clean plasma chamber in
contrast to the real etch process, presented in Chap. 4, where etch products are
re-deposited on the chamber walls. The different reactor condition might give rise
to changes in recombination rates and sticking coefficients [63–70], which in turn
influence the plasma composition and the species fluxes.

3.1. Neutrals

3.1.1. Mass Spectrometry

Mass spectrometry, explained in detail in Sec. 2.2, is a powerful tool to obtain a
variety of information on ions and neutrals in a plasma. The focus of the experi-
ments lies on the dependence on the duty cycle, the frequency and on the oxygen
flow.
For all MS experiments it is necessary to reduce the pressure from 20 mTorr (nom-
inal pressure of the plasma etch process) to 10 mTorr in order to ensure a low
working pressure in the spectrometer. Nonetheless, the qualitative results are
assumed to be similar to the conditions at 20 mTorr.
Figure 3.1 shows mass spectra from an HBr/O2 plasma without bias. No signal is
observed beyond 200 amu/e. The spectra are obtained by subtraction of a back-
ground spectrum, explained in Sec. 2.2. The peaks for HF, HCl and CO2 do not
originate from the plasma and hence, we consider them to be part of the back-
ground. The neutral species from the plasma that are observed are H2, OH0-2, O2,
Br, HBr and Br2. As discussed in Sec. 2.2.4 the signal to background intensity for
molecular beam mass spectrometry can be very low for light species. This was
also verified experimentally for H2O and O: in both cases the change in intensity
between open and closed chopper was too small to acquire a reliable measurement.
Therefore, only O2, Br, HBr and Br2 are studied in the following.

49
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Figure 3.1.: Mass spectrum of HBr/O2 (200 sccm/5 sccm, 10 mTorr, 750 W source
power) with subtracted residual signal for (a) CW and (b) 1 kHz, 10 % duty cycle.

Table 3.1.: Cross sections used for the calibration of absolute densities.

Species Electron Energy [eV] Cross Section [Å2] Source

Br 13.2 0.11 Ali and Kim [143]
HBr 16.1 1.28 Ali and Kim [143]
Br2 29.1 5.9 Ali and Kim [143]

SiCl4 29.1 12.2 Kothari et al. [144]

By using reference gases with similar masses and assuming an exclusively mass de-
pendent transmission function, we can estimate the absolute density in the reactor
as described in Sec. 2.2. The O2 and HBr neutral flux can be calibrated directly
by using the same gases. The Br and Br2 fluxes are calibrated by using HBr and
SiCl4 gas, respectively. For the two latter neutral species, it is necessary to know
the ionization cross section from the species of interest and the reference gas. The
used cross sections and electron energies for the calibration are shown in Tab. 3.1.

Impact of Pulsing

In the following, the densities of HBr, Br, Br2, and O2 are studied with respect to
the applied duty cycles and frequencies in an HBr/O2 plasma at 10 mTorr with a
gas flow of 200 and 5 sccm, respectively. During the time of the measurements, an
SiO2 wafer was placed on the chuck for protection. Since the HBr/O2 chemistry is
known to leave SiO2 rather unaffected for low ion energies [75,76], we can assume
that the results will reflect mainly the properties of the bulk plasma without etch
products. In Fig. 3.2 the obtained density of HBr is shown.
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Figure 3.2.: Mass spectrometry measurement of HBr for (a) different frequencies
and (b) different duty cycles in an HBr/O2 plasma (200 sccm/5 sccm, 10 mTorr,
750 W source power).

A duty cycle of 0 and 100 % represent the gas only (no plasma) and the CW
plasma condition, respectively. With lower duty cycle, the amount of the HBr
density rises by ∼ 100 % (from CW to 10% duty cycle). However, it increases only
slightly until a duty cycle of approximately 35 % is reached; only at 20 and 10 %
a significant increase is observed. The evolution with the duty cycles depends on
several factors.

1. A decrease in the duty cycle leads to a reduced gas temperature compared
to a CW process since the average source power is reduced. At a constant
pressure, this results already in a higher gas density without considering any
other changes in the plasma.

2. The reactor wall surfaces might be covered by different molecules, changing
the sticking coefficients of the plasma species and leading to different recom-
bination coefficients [63–70]. This affects the chemical composition of the
plasma and in turn also the ion flux.

3. During the plasma off-time the dissociation becomes negligible compared
to the on-time and recombination processes are dominant. From a time
averaged view, this results in a reduced dissociation at lower duty cycles,
which would increase the density of HBr.

In contrast to the duty cycle, the frequency has almost no influence on the density.
The only exception to this rule can be found by going to very high frequencies at
a duty cycle of 20 % and it is observed for all neutral species that we studied. The
character of the change is similar to a decrease in duty cycle at a given frequency.
This effect will be discussed in Sec. 5.4.
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Figure 3.3.: Mass spectrometry measurement of O2 for (a) different frequencies
and (b) different duty cycles in an HBr/O2 plasma (200 sccm/5 sccm, 10 mTorr,
750 W source power).

Similar to the MS experiments close to the reactor wall, VUV absorption spec-
trometry (see Sec. 2.3) in the bulk plasma proves a similar dependence of the HBr
density on the duty cycle.
The density of O2, presented in Fig. 3.3, follows the same trend: it is independent
of the frequency (with the same exception as for HBr) and at low duty cycle,
the density is higher than under CW conditions. The only remarkable difference
with respect to HBr is the continuous increase from CW to pulsing conditions. As
explained above, the exact evolution with the duty cycle is linked to several factors
at the same time, complicating the explanation of the small differences between
O2 and HBr.
Figure 3.4 shows the Br density with respect to the duty cycle. As opposed to
HBr and O2, the Br radical is produced by dissociation of a parent molecule in
the bulk plasma and follows an different trend compared to HBr and O2. With
decreasing duty cycle, the amount of Br remains constant, only at a duty cycle of
10 % it starts to change significantly. In the absence of a plasma no Br is produced.
Again, the density is independent of the frequency with the same exception as for
the previous species.
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Figure 3.4.: Mass spectrometry measurement of Br for (a) different frequencies
and (b) different duty cycles in an HBr/O2 plasma (200 sccm/5 sccm, 10 mTorr,
750 W source power).

The density measurements of Br2, presented in Fig. 3.5, show very similar results,
which is not surprising since the Br2 molecules are produced by recombination of
Br radicals. If the production of Br by dissociation of HBr is strongly reduced,
significantly fewer radicals are available to form Br2. One should also note that
the Br density is ten times smaller than the Br2 density, indicating an effective
recombination of Br.
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Figure 3.5.: Mass spectrometry measurement of Br2 for (a) different frequencies
and (b) different duty cycles in an HBr/O2 plasma (200 sccm/5 sccm, 10 mTorr,
750 W source power).
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Figure 3.6.: Sum of all measured neutral species densities (a) in absolute (esti-
mated) and (b) relative units.

Figure 3.6 shows the combined estimated density of all measured neutral species
in absolute and relative units. The neutral flux, from which the plasma density is
estimated, is largely dominated by HBr. Only Br2 also contributes significantly to
the total flux. However, due to the very low signal to background ratio for species
with low masses and the low transmission of very light species, Hx or OHx could
not be measured and are missing in this graph. It is possible that these species
contribute also considerably to the total neutral flux.
With lower duty cycle, the total flux increases. One possible explanation is the
reduced contribution of H and H2 (not measured) at lower duty cycles due to a re-
duced dissociation of HBr. Also, the probable change in gas temperature certainly
plays a major role in the evolution of the total density. Cunge et al. [145] mea-
sured the mean gas temperature via laser absorption in an HBr plasma for various
powers and pressures and report the decrease of the plasma temperature due to
a power reduction. A decrease in the duty cycle of a pulsed plasma reduces the
averaged power and consequently also the temperature. For similar CW conditions
but in a smaller reactor (10 mTorr, 750 W), the data from Cunge et al. suggest a
mean gas temperature of approximately 750 K and a gas temperature close to the
walls of 550 K. If we consider the temperature difference as the only reason for the
change in neutral flux, we can calculate the corresponding gas temperature in CW
mode based on the density change at a constant pressure. By taking into account
only the measured species a temperature of 825 K can be estimated. Assuming
that an equivalent amount of H and H2 exists in the plasma compared to Br and
Br2, respectively, the resulting CW gas temperature can be calculated to 650 K,
which seems more reasonable.
In summary, one of the main reasons for the increase of the total neutral flux (and
density) with lower duty cycle is the change in temperature. However, realistic
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temperatures are only estimated if we assume a significant amount of not mea-
sured neutrals like H and H2.
The composition of the neutral flux indicates that with lower duty cycle HBr and
O2 become less dissociated and the relative amounts of Br and Br2 decrease.

Impact of Oxygen Flux

All the results presented above were acquired in the same plasma chemistry, only
the frequency and the duty cycle were varied. In Fig. 3.7 the dependence of the
neutral flux density on the injected oxygen flux is presented. A difference in
the chemical composition of the plasma is expected to change the plasma-wall
interaction, leading to modified sticking coefficients of radicals on the chamber
walls and, therefore, also to changed recombination rates.
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Figure 3.7.: Dependence on the oxygen flow of the densities of (a) HBr, (b) O2,
(c) Br and (d) Br2.
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While the measured oxygen density is overall strongly reduced, its evolution
with the duty cycle does not change significantly. The HBr and Br densities on
the other hand seem to be independent of the oxygen flux. The only species that
might show a small change in the density evolution is Br2. If only little or no O2 is
used, the Br2 density increases at first by going to lower duty cycles. After a duty
cycle of 35 % is reached, the density starts to decrease strongly. Cunge et al. [109]
observed a similar behavior of HBr and Br2 from absorption studies by decreasing
the plasma source power from 1000 to 0 W. By reducing the duty cycle, the time
averaged power input is likewise reduced. In both cases the averaged dissociation
rate is reduced while the recombination rate is likely to remain unchanged. Since
the densities of HBr, Br and Br2 are governed by a complex balance of dissociation
and recombination rates,

HBr ⇋ Br ⇋ Br2, (3.1)

and the influence of the changed chemistry on the recombination rates at the
reactor walls is difficult to estimate, an explanation of the observed change cannot
be given.
However, the ratio of the densities of Br2 and Br is approximately ten, regardless
of the injected oxygen flux. Therefore, Br seems to be effectively recombined in
all cases and the additional oxygen does not seem to influence significantly this
process.

Discussion on the Oxygen Radical

Unfortunately, the signal of the oxygen radical was under our detection limit and
we cannot assume that O behaves in the same way as Br. Depending on the
nature of the reactor wall surfaces, the sticking coefficient and the recombination
rate might be very different. For the case without applied bias power, we have
observed an unchanged recombination of Br to Br2, regardless of the amount of
injected oxygen. This leads to the conclusion that in the present case the oxygen
radical plays only a minor role. More interesting is the case of silicon etching
with applied bias power in an HBr/O2 chemistry, during which the reactor
walls are covered by a layer of Si, H, Br and O, similar to the formation of a
sidewall passivation layer in pattern etching [126]. It is known that oxygen radicals
can further oxidize this layer to produce in the extreme case SiO2 like layers.
During this process, oxygen radicals are consumed, while Br and H radicals are
reintroduced in the gas phase. Considering such a deposited layer on the surface,
we can assume that a large portion of the oxygen radicals from the gas phase
will be captured by the surfaces. In contrast, the Br radicals will still have a
considerable density. Therefore, compared to Br, the oxygen radical density might
be reduced faster with decreasing duty cycle.
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Note on Hydrogen

Almost no information could be obtained on hydrogen species by mass spectrome-
try experiments. Nevertheless, with a decreased dissociation of HBr, e. g. at lower
duty cycles, less hydrogen is certainly available to participate in chemical reactions
or in the etching.

3.1.2. Summary of Results - Neutrals

Using mass spectrometry, an HBr/O2 plasma without applied bias power was
studied by carrying out density measurements for the neutrals HBr, Br, Br2 and
O2. Hx, O and OHx could not be measured. Among the measured species, HBr
dominates by far and only Br2 contributes also in a significant amount. With
lower duty cycle, the total density increases, which is mainly attributed to the
decrease in gas temperature in pulsed plasmas. A comparison with temperature
measurements via laser absorption [145] indicates that other, not measured neutral
species, e. g. H2, also contribute in a significant amount to the total density.
Furthermore, the results show a decreased dissociation of the source molecules HBr
and O2 with lower duty cycle due to the lower time averaged plasma power and the
reduced periods where dissociation occurs (on-time of each pulse). The Br density
remains rather constant for high duty cycles and starts to drop at around 20 %.
The density of the O radical, which was below our detection limit, might decrease
faster with the duty cycle than the Br density; at least in real etch conditions. The
Br2 density evolves in a similar manner as Br, but is ten times higher regardless
of the injected O2 flux. This indicates that almost all Br is recombined and that
the recombination is unaffected by the amount of available oxygen radicals in the
range of the experimental conditions.
In contrast to the duty cycle, the frequency has little impact on the densities.
Only at a low duty cycle (20 %) at a very high frequency (& 5 kHz) an impact is
observable, which is comparable in all cases to a further decrease in the duty cycle.
This effect will be discussed in Sec. 5.4.
A reduced oxygen flux has not shown a significant influence on the density of HBr
and Br, only Br2 shows some minor differences, which remain difficult to explain.

3.2. Ions

3.2.1. Mass Spectrometry

Mass spectra of ions for an HBr and an HBr/O2 CW plasma without bias are
presented in Fig. 3.8. Both graphs show the same four peaks: H3O+, H0−2Br+,
H0−1Br2

+ and Br+
3 . Hx

+ cannot be detected by the quadrupole analyzer and it is
not excluded that a significant amount of protons is present.
The large amount of hydrogen rich species indicates that proton attachment plays
a major role. Cunge et al. [63] observed a similar significance of proton attachment
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Figure 3.8.: Ion mass spectra in CW mode for an (a) HBr and (b) HBr/O2

plasma (200 sccm/5 sccm, 10 mTorr, 750 W source power).

in an HBr/Cl2/O2 with respect to the production of H2Cl+ ions. They expect the
reaction to have a very large cross section due to the high polarizability of HCl
molecules. Possibly, the cross section for proton attachment might likewise be very
high for the case of HBr or H2O.
The only major difference between both spectra seems to be the intensity of H3O+,
which is two orders of magnitude higher if oxygen is added. The reason why H3O+

is detected even in the absence of oxygen in the plasma is probably linked to
oxygen and H2O residuals in the chamber and to the presence of the SiO2 wafer.
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Figure 3.9.: Total IEDF for all measured ions in an (a) HBr and (b) HBr/O2

plasma (200 sccm/5 sccm, 10 mTorr, 750 W source power).
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Figure 3.10.: Total ion flux ((a),(c)) and ion flux composition ((b),(d)) for HBr
and HBr/O2, respectively (200 sccm/5 sccm, 10 mTorr, 750 W source power).

In order to compare the ion fluxes for different process parameters, it is necessary
to measure the IEDF from each species separately for each condition. From there,
the total IEDF can be summed up, shown in Fig 3.9 with respect to the duty cycle.
Both conditions show a very similar behavior. By reducing the duty cycle, the peak
intensity decreases because ions are only produced during the decreasing on-time,
while they are lost permanently, leading to a reduced time averaged ion density.
As discussed in Sec. 2.2, the confidence in the energy value of the peak position is
very limited and consequently, the shift in energy will not be discussed.
In Fig. 3.10 the ion flux for each species is shown in a stack diagram (left column)
together with the corresponding flux composition in percent (right column) for a
pure HBr and for the HBr/O2 process. For both plasmas, the composition and its
evolution are very similar. With almost the same absolute values, Br2

+ is the main
component in the ion flux in both cases, although HBr is by far the major neutral
species. The only difference between both processes is the significant additional
H3O+ ion flux in the HBr/O2 case.
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Table 3.2.: Ionization EI and bond energies EB for various plasma species.

Species EI [eV] Source EB [eV] Source

HBr 11.7 NIST [148] 3.7 Smolin et al. [149]
Br 11.8 NIST [148] – –

Br2 10.5 NIST [148] 2.0 Ebbing and Gammon [150]
H2 15.4 NIST [148] 4.5 Ebbing and Gammon [150]
H 13.6 NIST [148] – –

O2 12.1 NIST [148] 5.1 Itikawa et al. [151]
O 13.6 NIST [148] – –

H3O 4.3 NIST [148]* 0.2-0.3 Poterya et al. [152]

* for D3O

In general, the charge from ionization will eventually be transferred to the species
with the lowest ionization energies by direct ionization, charge transfer or other
ion-neutral reactions [63, 81, 146]. Also, since the plasma electron energy distri-
bution has its maximum at a rather low energy (∼ 3-5 eV), more electrons are
available to ionize a molecule with lower ionization threshold. The ionization and
bond energies of the most important plasma species are listed in Tab. 3.2.
In the absence of oxygen, the species with the lowest ionization energy is Br2.
In addition, Br2 has also a larger ionization cross section than HBr or Br [143].
Hence, it is understandable that most of the ion flux consist of Br2

+.
If oxygen is added, we observe a significant contribution of H3O+ ions, although
the oxygen inflow is very small compared to HBr and H3O has a ten times smaller
ionization cross section than Br2 [147]. However, it has by far the lowest ionization
energy, close to the maximum of the electron energy distribution function. There-
fore, the large number of electrons that contribute to the ionization outweighs the
small cross section. Hence, even a small amount of neutral HxO could result in a
significant H3O+ ion flux.
By reducing the duty cycle, the total ion flux decreases due to the lower ionization
rate. At the same time, the fraction of Br2

+ ions increases, while the percentage
of all other ions in the flux composition decreases. This could be linked to the
reduced dissociation of HBr, Br2 and O2, the augmented off-time during which
only recombination dominates and the increased time to transfer the charges to
the ion with lowest ionization energy. The reduction of the percentage of H3O+ is
probably due to the reduced dissociation of O2 and HBr.

Summary

Mass spectrometry measurements have been carried out to study the ion compo-
sition of the HBr/O2 plasma and its dependence on the oxygen flow. The only
ions that are detectable are H3O+, BrH0-2

+, Br2H0,1
+ and Br3

+. The major contri-
bution originates from Br2

+ and H3O+, although HBr represents by far the most
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common neutral molecule in the plasma. The large amount of Br2
+ can be at-

tributed to its low ionization energy and high ionization cross section compared
to other Br containing species. When oxygen is added, H3O+ contributes signifi-
cantly to the ion flux, although its ionization cross section is very small. This fact
is outweighed by the large number of electrons that have energies above the low
ionization threshold energy.
By reducing the duty cycle, the total ion flux decreases and the percentage of Br2

+

in the ion flux increases.

3.2.2. Ion Flux Probe

The ion flux is an important parameter in etch processes, which influences, e. g.,
the etch rate strongly. With mass spectrometry it is difficult to obtain the correct
ion flux, as explained in Sec. 2.2. Instead, we use a capacitive ion flux probe, which
is mounted to the reactor sidewall just above the wafer (see Sec. 2.4) at the same
position as the mass spectrometer.

Influence of the Reactor Surface on the Ion Flux

Since the IFP is unaffected by a thin deposited layer on its surface, it is well suited
to investigate the influence of different wall surfaces on the ion flux. During etch
conditions, a layer consisting of Si, Br, O, and H is deposited on the reactor wall.
Before each etch process the reactor is coated ("seasoned") with a layer of SiO2,
which is described in detail in Sec. 5.1. In order to investigate if the nature of
the reactor walls affect the ion flux, the latter was measured for a CW HBr and
HBr/O2 plasma at 20 mTorr and 750 W source power in seasoned (SiO2 layer) and
clean conditions. The cleaning is done by an SF6/O2 plasma. Figure 3.11 shows
the obtained ion fluxes in clean and seasoned chamber wall conditions.
The differences in the ion flux are significant between chamber conditions. More-
over, the behavior of both chemistries is opposite. While for clean conditions
the ion flux in the HBr/O2 plasma is larger than the one in the HBr plasma,
the opposite is observable for seasoned conditions. The measurements for the ion
flux in clean conditions is supported by the mass spectrometry measurements in
Sec. 3.2.1. Since a change in the nature of the reactor walls can modify the plasma
composition in terms of neutrals, it is not surprising that this will affect also the
ion flux.
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Figure 3.11.: Influence of the nature of the reactor walls on the ion flux in an HBr
and an HBr/O2 CW plasma (200 sccm/5 sccm, 20 mTorr, 750 W source power).
The seasoning consists of a thin layer of SiO2 on the walls in contrast to a "clean"
chamber in which deposited layers have been removed by an SF6/O2 plasma.
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Figure 3.12.: Ion flux from capacitive probe (IFP) measurements in pulsed (a)
HBr and (b) HBr/O2 plasmas (200 sccm/5 sccm, 20 mTorr, 750 W source power)
at a frequency of 1 kHz.

Ion Flux in Pulsed Plasmas

In Fig. 3.12 the measured ion flux in an HBr and an HBr/O2 plasma at 20 mTorr
and 750 W source power is shown for different duty cycles at a frequency of 1 kHz.
When the source power is switched on, the ion flux increases continuously until
the power is switched off. Compared to the constant flux in a CW plasma, the
ion flux in the HBr pulsed plasma never reaches a steady state. In the afterglow,
the flux decreases at a rather slow rate, similar to the increase before. While the
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Table 3.3.: Measured (rounded) ion fluxes in HBr and HBr/O2 plasmas
(200 sccm/5 sccm, 20 mTorr, 750 W source power) at 1 kHz.

HBr Mean Flux Mean Flux Flux On-Time Flux On-Time
Duty Cycle µA/cm−2 % CW % Mean Flux % Mean CW Flux

100 137 100 100 100
75 84 61 79 48
50 32 24 54 13
35 14 10 41 4.2
20 6 4.1 28 1.1
10 3 2.0 18 0.4

HBr/O2 Mean Flux Mean Flux Flux On-Time Flux On-Time
Duty Cycle µA/cm−2 % CW % Mean Flux % Mean CW Flux

100 107 100 100 100
75 45 42 76 32
50 22 20 54 11
35 13 13 40 5.0
20 5 4.6 29 1.3
10 4 3.3 16 0.5

decrease of the ion flux is very similar for both plasmas, the evolution during the
on-time is quite different. In the pure HBr plasma the ion flux rises strongly at
first and then slows down. In contrast, the ion flux in the HBr/O2 plasma starts
out with a slow increase that accelerates later during the on-time of the pulse.
The differences might be due to the additional H3O+ in the ion composition of the
HBr/O2 plasma.
Both plasmas show an almost instantaneous jump of the ion flux when the power
is switched on or off. This behavior is not fully understood. However, a possible
explanation might be linked to a fast change of the electron temperature at the
beginning and the end of each pulse since the positive ion flux in an electronegative
plasma is essentially described by ni · vB = ni ·

√

kBTe(1 + αs)/mi(1 + αsη, where
αs = ni,−/ne is the ratio of negative ions to electrons and η = Te/Ti,− is the ratio of
negative ion temperature to electron temperature [55]. The slow evolution during
the on-time is attributed to a change in ion density.
Another explication for the observed jumps might be the photoeffect. During the
on-time, UV photons can remove electrons from the surface, which are measured
like incoming ions. However, this effect is thought to be of minor importance.
The mean values for the ion fluxes are given in Tab. 3.3. They follow similar trends
in both plasma conditions:

1. The mean flux decreases more than proportional with the duty cycle.
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2. The percentage of the flux from only the on-time of the plasma (high energy
ions) decreases also, almost proportional with the duty cycle.

The second point is very important since it means that in a pulsed HBr/O2 plasma,
the relative amount of high energy ions can be drastically reduced compared to
the ion flux with very low energy. This might be a way to reduce surface damage
from energetic ions (see Chap. 1).
By combining both observations, we can also state that in pulsed conditions, the
ion flux from only the on-time of the plasma decreases by more than the square
of the duty cycle compared to CW mode. This can be understood considering a
simple model in which the ion flux evolves linearily during the pulse period. In this
case, the mean ion flux from the on-time is the same as from the off-time. Hence,
the relative amount of the ion flux from the on-time with respect to the total flux
is equal to the duty cycle. Since the time of production (on-time) is reduced (=
duty cycle), the average ion flux is also reduced (almost) linearily, leading to the
observed roughly quadratic dependence on the duty cycle.

Summary

Depending on the nature of the reactor wall and the gas composition of the plasma,
the ion flux varies strongly. This is certainly liked to the changed reaction coeffi-
cients on the chamber walls that affect significantly the plasma composition.
The evolution of the ion flux during one pulse depends also on the plasma chem-
istry: while it rises strongly at first and then slows down in a pure HBr plasma,
the opposite is observed for the HBr/O2 plasma. The jump at the beginning and
the end of each pulse is attributed to the fast change of the electron temperature.
By reducing the duty cycle, the average ion flux and the percentage of the ion
flux that originates from the on-time of the plasma decrease approximately lin-
early. Hence, the average ion flux from only the on-time of the plasma decreases
by roughly the square of the duty cycle.
The reduction of the relative contribution of high energy ions to the total flux
might be useful to reduce damages from energetic ions.

3.2.3. Summary of Results - Ions

Mass spectrometry measurements have been carried out to study the ion flux
composition of the HBr/O2 plasma and its dependence on the oxygen flow. The
only ions that are detectable are H3O+, BrH0-2

+, Br2H0,1
+ and Br3

+, among which
Br2

+ and H3O+ are dominating, although HBr represents by far the most common
neutral molecule in the plasma. The large amount of Br2

+ can be attributed
to its low ionization energy and high ionization cross section compared to other
Br containing species. When oxygen is added, H3O+ contributes significantly
to the ion flux, although its ionization cross section is very small. This fact is
outweighed by the large number of electrons that have energies above the low
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ionization threshold energy.
A decrease of the duty cycle leads to an increased percentage of Br2

+ in the ion
flux and to a drop of the average total ion flux. Moreover, the average ion flux
from only the on-time of the plasma decreases even by roughly the square of the
duty cycle, indicating that the amount of energetic ions per on-time of the plasma
can be decreased in pulsed plasmas. This offers a way to reduce plasma induced
damage due to high energy ions.
Finally, the nature of the reactor wall does not only have an influence on the
composition of the neutral species in the plasma, but also on the ion flux and its
evolution during a pulse.

3.3. General Summary

Mass spectrometry and ion flux measurements were carried out to study an HBr/O2

plasma without applied bias.
The neutral densities of HBr, Br, Br2 and O2 were measured. H2 also seems to
be largely present, but the signal to background ratio was too small for a valid
measurement, similar as for OHx species. HBr dominates all other species, only
Br2 contributes also in a significant amount to the neutral plasma composition.
With lower duty cycle, the total density increases, which is mainly attributed
to the decrease in gas temperature in pulsed plasmas, but also other, not mea-
sured species might play a role. In general, the degree of dissociation of the source
molecules HBr and O2 decreases due to the lower time-averaged plasma power and
the reduced time for dissociation during a pulse. While the Br density remains
nevertheless rather constant for high duty cycles (& 20 %) the density of the O
radical, which was below our detection limit, might decrease faster, at least in real
etch conditions. The Br2 density evolves in a similar manner as Br. In contrast to
the duty cycle, the frequency has little impact on the neutral densities.
The only detectable ions are H3O+, BrH0-2

+, Br2H0,1
+ and Br3

+. Although HBr
represents by far the most common neutral molecule in the plasma, Br2

+ and
H3O+ dominate the ion flux, probably due to their low ionization energy and to
the high ionization cross section of Br2

+.
The percentage of Br2

+ in the ion flux increases with lower duty cycle while the
average total flux decreases. The average ion flux from only the on-time of the
plasma decreases even by roughly the square of the duty cycle. Since the amount
of energetic ions per on-time can thereby be decreased, plasma pulsing offers a
possibility to reduce plasma induced damage.
Finally, the nature of the reactor wall does not only have an influence on the
composition of the neutral species in the plasma, but also on the ion flux and its
evolution during a pulse.





4. HBr/O2 Plasma With Bias -
Silicon Etching

In the previous chapter, the plasma pulsing was investigated without applied bias
power. If the bias power is applied, the HBr/O2 plasma changes significantly: the
silicon species that are etched during the process become part of the gas phase
and contribute considerably to the composition of neutrals and ions in the plasma.
At the same time, the reactor walls are coated by a layer of previously etched
and re-deposited material that can also change the plasma composition. In the
following chapter this case is studied by various means of diagnostic for the gas
phase and the etched surface.
Unfortunately, the experimental time for diagnostics is more limited compared to
the plasma without bias due to the following:

1. On a blanket wafer, the etch process starts to form micro-masking after a
certain amount of time, which absorbs effectively visible light ("black sili-
con"). In the extreme case, the wafer cannot be detected by the light sensors
of the mainframe and the latter has to be opened to remove the wafer.

2. The micro-masking also partly protects the silicon from etching, reducing
the amount of etched silicon in the plasma and changing thereby the plasma
composition.

3. After one wafer is used to the maximum, a time intensive cleaning and sea-
soning process has to be carried out in order to prepare the next experiment.

4.1. Neutrals

4.1.1. Mass Spectrometry

Since the experimental time is limited, only qualitative studies were carried out
concerning the neutral composition, opposed to the ion analysis that can be carried
out faster.
For a qualitative study, mass spectra from the CW and a pulsed condition (1 kHz,
10 % duty cycle) are acquired, starting at 4 amu (since we cannot measure hydrogen
species accurately). Again, a background spectrum needs to be acquired in order
to remove the signals from residual species since the chopper is not used. By
adjusting the residual spectrum by a constant factor (0.2 and 0.66 for CW and
pulsing, respectively) the contribution from the background is mostly subtracted.
The resulting spectra are shown in Fig. 4.1.
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Figure 4.1.: Mass Spectra from CW and pulsed (1 kHz, 10 % duty cycle) sili-
con etching (200 sccm/5 sccm, 10 mTorr, 750 W source power, 200 W bias power).
Background is subtracted.

In addition to the peaks observed in the case without bias (Br, HBr, Br2, O, O2),
several species are detected that correspond to etch products (Si, SiBrx). We also
notice peaks in the background that correspond to a contamination of (H)F at
20 amu and (H)Cl at 35-38 amu.
Adequate reference gases are not available to calibrate the MS signals for all
species. Therefore, we can only compare the signal of one species that cannot
be produced by dissociative ionization between different process conditions (see
Sec. 2.2). The intensity change of the different species are presented in Fig. 4.2,
normalized to the highest peak (HBr in the pulsed plasma).
Following the considerations above, the only species that we use for comparison
are H2O, O2, HBr, Br2 and SiBr4. For the pulsed process, the amount of HBr is
increased, while the peak intensities of H2O, Br2 and SiBr4 are decreased. This
can be explained by the decreased dissociation of the parent molecules HBr and
O2 in the pulsed plasma and by a decreased plasma temperature (see Sec. 3.1.1).
Another reason is the reduced time-averaged Si etch rate. In an HBr/O2 plasma
almost no spontaneous etching of silicon occurs so that the lower averaged ion flux
induces also a lower etch rate. In turn, this leads probably to a reduced overall
presence of Si species (like SiBr4) in the plasma.
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Figure 4.2.: Silicon etching with applied bias: CW vs. pulsed mode (1 kHz, 10 %
duty cycle).

Summary

In comparison to the case without bias power the spectrum of detected species
is enlarged by etch by-products like atomic Si or molecular SiBrx that contribute
considerably to the composition of neutral species in the plasma. The differences
in the mass spectra of CW and pulsed etching can be explained by the reduced
dissociation and etch rate in a pulsed plasma.

4.1.2. UV Absorption of SiBr

In contrast to the other neutral etch products detected by MS, SiBr has a well
known and good absorbance in the UV region. At the same time, its density is pos-
sibly the lowest. The time-resolved and time-averaged evolution of the absorption
of SiBr during pulsing at different frequencies is shown in Fig. 4.3.
The absorption is proportional to the density, but due to the lack of the adequate
cross section, we can only speak of relative density. For low frequencies the density
varies strongly between the plasma on-time and off-time. For higher frequencies
the modulation becomes less distinct since the pulse frequencies probably approach
the characteristic time constants for loss and formation of SiBr. Above around
1 kHz the variation is small enough to use the time-averaged values for comparison
between different plasma processes. As seen in Fig. 4.3 b, the absorption of SiBr is
constant with changing frequencies in the margin of error. By decreasing the duty
cycle we can observe a decrease in the absorption starting at around 50 %, which
is probably linked to the reduced average etch rate and the greater availability of
Br to form more volatile molecules.
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Figure 4.3.: (a) Time-resolved SiBr absorption measurements for different fre-
quencies at a duty cycle of 20% and (b) time-averaged absorption for different duty
cycles at various frequencies above 1 kHz (HBr/O2, 200 sccm/5 sccm, 20 mTorr,
750 W source power, 200 W bias power).

4.1.3. Summary - Neutrals

Mass spectrometry experiments were carried out to study the neutral composition
of an etch plasma with applied bias power. In contrast to the case without bias
power, etch products like atomic silicon or molecular SiBrx contribute considerably
to the composition of neutral species in the plasma. For a reduced duty cycle, more
HBr is found, but less other molecules, which can be explained by a reduced degree
of dissociation and a reduced time-averaged etch rate. SiBr, one of the detected
etch products, was additionally studied by UV absorption in the bulk plasma.
For frequencies above approximately 1 kHz the modulation in the density during a
pulse becomes small enough to compare time-averaged values. While the averaged
SiBr density is independent of the frequency, it is reduced with a decreasing duty
cycle, starting at around 35 to 50 %.

4.2. Ions

4.2.1. Mass Spectrometry

Compared to the case without bias power, additional silicon containing ion species
are detected in the real etch conditions. A mass spectra of the ion composition is
presented in Fig. 4.4.
A great variety of atomic and molecular ions is detected, many of whom are very
large, e. g., Si2Br5O+. Compared to the ion spectrum without bias power no Br3

+

is detected any more. Unfortunately, the mass scan is limited to 500 amu/e and
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Figure 4.4.: Ion mass spectra in CW mode for an HBr/O2 plasma
(200 sccm/5 sccm, 10 mTorr, 750 W source power, 200 W bias power).

we cannot exclude the existence of even heavier ions. Also, as for the case without
bias, protons might be present in a significant number but cannot be detected by
the spectrometer. Since the IEDF from each species has to be acquired in order to
gain information on the ion flux and since the experimental time is limited, only
the strongest peaks in the spectrum are studied, here indicated in red. The other
peaks (grey) are neglected.
A drawback in the experiments was a distortion of the spectrometer signal by the
applied bias power near a duty cycle of 50 % (at 1 kHz). The farther away the pulse
parameters are set from this duty cycle, the smaller the distortion gets. However,
even at a duty cycle of 75 % we cannot exclude a small influence. Thus, the
interpretation of the measurement at 1 kHz 75 % should be handled with caution.
In Fig. 4.5 the ion flux for each species is shown in a stack diagram (left column)
together with the corresponding flux composition in percent (right column).
Compared to the plasma without bias, the ion flux is now dominated by etch
products, especially SiBr, and the contribution of Br2 is reduced to an almost
negligible value. The largest contribution to the total flux from species without
incorporated Si comes from BrH0−2. In contrast to the clean reactor walls during
unbiased conditions the reactor is now coated with a mixed layer of Si, Br, O and H
that might change the recombination rate considerably for various species like Br
and Br2, as explained in Sec. 3.2.2, leading to the observed significant contribution
to the ion flux. Moreover, large silicon containing etch products that leave the
wafer can easily be ionized and dissociated due to the low energy thresholds for
these processes, contributing also to the observed presence of Si containing species.
For lower duty cycles, the total ion flux decreases and the relative composition
changes. The decrease of the total ion flux is linked to the increased off-time
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Figure 4.5.: (a) Total ion flux and (b) relative ion flux composition for HBr/O2

(200 sccm/5 sccm, 10 mTorr, 750 W source power, 200 W bias power).

(only ion loss) and the decreased on-time (production of ions) of the plasma. The
percentage of all ionized etch products decrease with a lower duty cycle, while
the relative BrHx and Br2 signals increase. The overall reduction of Si species
in the plasma is probably linked to the lower averaged etch rate. Especially the
contribution of atomic Si is reduced to a very small percentage at low duty cycles,
indicating that most of the etched silicon is incorporated in larger and more volatile
molecules.

Summary

Compared to a plasma without bias, the composition of the ion flux in the etch
conditions shows many additional ions that include at least one Si atom. Br3

+,
on the other hand, is not detected any more and the percentage of Br2

+ is almost
negligible. The main contribution of the total ion flux comes from Si+, SiBr+,
SiBr3

+ and BrH0−2
+. Large silicon containing etch products that leave the wafer

can easily be ionized and dissociated due to the low energy thresholds for these
processes, leading to the observed significant contribution to the ion flux. In
addition, the nature of the reactor walls change compared to no-bias conditions,
influencing the recombination rates and, hence, also the reaction balance between
all species.
A decrease in the duty cycle leads to a drop of the total ion flux, which is in good
agreement with the ion flux probe measurements in Sec. 3.2.2. At the same time
the percentage of BrH0−2

+ increases. One should also note that almost no Si+ can
be detected at a very low duty cycle. This might indicate that almost all silicon is
incorporated in larger, more volatile molecules probably due to a better chemical
reactivity of pulsed discharges. Finally, the lower etch rate of the Si wafer reduces
the overall silicon presence in the plasma.
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Figure 4.6.: IEDFs from CW mode of (a) an HBr and (b) an HBr/O2 plasma
(200 sccm/5 sccm, 20 mTorr, 750 W source power, 200 W bias power).

4.2.2. Ion Energy and Flux Probes

The mass spectrometry results indicate a large difference in the composition of
the ion flux due to the additional etch products if the bias power is applied.
The retarding field analyzer and the capacitively coupled ion flux probe can give
accurate information on the IEDF/ion flux on the wafer and on the sidewall close
to the wafer.

CW Plasma

In Fig. 4.6 the IEDFs for an HBr/O2 and HBr plasma are shown at different bias
power in CW mode. When no bias is applied, the IEDF consists of a single peak at
rather low energy (plasma potential minus floating potential). In biased conditions
the distribution changes to a bimodal (HBr) or double-bimodal (HBr/O2) function
that originates from the oscillating RF sheath above the electrode [153, 154]. For
the HBr/O2 plasma, two bimodal functions overlap each other. Each one can
be attributed to a major ion with a different mass, where the heavier species is
also observed in the plasma without oxygen. Several authors have investigated the
dependence of the width ∆E of the bimodal IEDF [155–157] and find an analytical
expression that is in good agreement with experimental results:

∆E =
8eṼs

3s̄ω

(

2eV̄s

m

)1/2

, (4.1)

where Vs(t) = V̄s + Ṽs sin(ωt) is the (assumed) sinusoidal sheath voltage, s̄ the
(assumed) constant sheath width and m the ion mass. Although this equation
is based on several approximations, it is found to be accurate enough to roughly
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mass resolve the IEDF [158–160].

Discussion on Major Ion Species

In a simple approximation, it is possible to estimate the absolute masses of both
major ions. Following Eq. 4.1, we assume a sheath width of 1 cm (high RF bias
power) and a mean sheath voltage V̄s equivalent to the mean ion energy. At one
point during the RF period the sheath voltage breaks almost down, so that the
electrons can reach the electrode and neutralize the accumulated ion flux. Hence,
we approximate the amplitude of the RF sheath voltage by the magnitude of the
mean sheath voltage (Ṽs ≈ V̄s). The calculated masses are approximately 3 and
80 amu. Since the error in this approximation is quite large, the result needs to be
treated with caution.
A more reliable information is the mass ratio, which can be calculated without
usage of the unknown plasma parameters. From the different widths of the pre-
sented double-bimodal distribution, an average mass ratio of 27 can be calculated
for the two ion species.
Mass spectrometry measurements from Sec. 3.2.1 indicate a large variety of ion
species, dominated by SiBrH0−2

+. The lightest measured ion is H3O+, but pos-
sibly H+ also might be present, which could not be detected. Four arguments
support the assumption that the additional peak in the HBr/O2 plasma could be
attributed to H+.

1. The calculated mass that corresponds to the broad peak is below 6 amu, even
if the parameters of the calculations are extensively changed. No ions with
masses smaller than 16 amu were detected and hence we have to assume that
undetectable protons are the origin of the additional bimodal distribution
function.

2. The mass spectrometry measurement shows only a very insignificant contri-
bution of H3O+ to the total ion flux.

3. If H3O+ actually was the light ion species, the bimodal peak of the heavy
species would correspond to a mass of ∼ 500 amu, assuming the calculated
mass ratio is correct. In the case without oxygen, no contribution of ions
with a lower mass are observed in the IEDF. This scenario seems improbable
since we also expect lighter silicon species to contribute to the ion flux in an
HBr etch plasma.

4. Finally, if H+ is considered to be the dominating light ion species, the second
major ion peak can be attributed to SiHx

+. This is strongly supported by
the mass spectrometry data, showing that Si+ is the lightest detected ion
with a significant contribution.

Summarized, we assume that by adding oxygen to the HBr etch plasma, a large
part of the ion flux onto the wafer originates from protons, which cannot be de-
tected by the mass spectrometer.
This implicates that in an HBr/O2 plasma one of the major ions that contributes
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Figure 4.7.: Total ion flux for different bias powers in CW mode at 20 mTorr and
750 W source power (HBr flow at 200 sccm, O2 flow at 5 sccm). (a) RFA and (b)
IFP data.

to the silicon etching is H+. By reducing the duty cycle, less HBr is dissociated
and the contribution from the protons might be reduced. Since hydrogen might
penetrate deeply into the surface due to its low mass, a reduction of the duty cycle
might help to decrease the plasma induced damage on surfaces.
In the above discussion, we assumed an equal magnitude and composition of the
ion flux on the wafer and the chamber wall. However, the conditions on the wafer
(high voltage sheath, highly energetic ions and secondary electrons) are quite dif-
ferent compared to the reactor wall (low voltage sheath), which could give rise to
a modified ion flux. Consequently, other light species, e. g. H2

+, might cause the
broad bimodal distribution if they contribute only to the ion flux on the wafer.
Still, the last of the arguments that supports the H+ hypothesis still holds and we
will assume this case in the following.

Discussion on Ion Flux and Energy

Figure 4.7 shows the total ion flux with respect to the bias power for the HBr and
HBr/O2 plasma, obtained from the IEDFs from Fig. 4.6 and from IFP measure-
ments. For all data points from the RFA the ion flux of the pure HBr plasma is
lower than the flux in the HBr/O2 plasma. The opposite is the case for the IFP
measurements where the HBr/O2 plasma produces a lower flux. The differences
are probably linked to the different positions of the probes: while the IFP probe is
situated in plane with the reactor sidewall, the RFA probe lies on a dummy silicon
wafer. Moreover, the RFA data indicates that H+ contributes significantly to the
total ion flux in the HBr/O2 plasma, but not in a pure HBr plasma. The difference
in the ion fluxes could be explained if we assumed a local production of protons
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close to the wafer in the oxygen containing plasma. In this case, the ion flux in the
HBr/O2 plasma would be increased by the additional protons above the wafer, but
not close to the chamber wall. A possible mechanism might be proton detachment
due to high energy secondary electrons that are produced by ion bombardment on
the wafer and in turn accelerated by the strong sheath potential drop. In order to
explain the absence of H+ in a pure HBr plasma, we have to assume that certain
species in the HBr/O2 plasma that do not exist in the pure HBr plasma, e. g. HxO,
are susceptible to this kind of proton production.
Another possibility to explain the observations might be linked to the changed
reactor wall conditions. During silicon etching in an HBr/O2 plasma, an oxygen
rich Si-Br layer is formed on the chamber walls, which might prevent H radicals
to recombine. The increased amount of H radicals might be ionized locally above
the wafer. However, atomic hydrogen has a very high ionization energy and a very
low electron impact ionization cross section and therefore, this hypothesis seems
to be improbable. Since the only evidence of the H+ presence comes from the RFA
measurement in the HBr/O2 CW plasma, this observation should be validated by
other experiments.
The evolution of the ion flux from the IFP data shows differences depending on the
used plasma chemistry. From theoretical considerations, the ion flux should not
change much with different bias conditions since the plasma density is expected to
be controlled mainly by the ICP source power, which remains constant. Only for
the case without bias, where the silicon is not etched and the plasma composition
changes significantly due to the absence of etch products, a slight difference would
be expected.
For the HBr case, the ion flux decreases slightly with higher bias power at first
and starts to increase gradually afterwards. In the HBr/O2 case, the flux is con-
stantly increasing. For higher bias powers, both fluxes approach each other. The
differences between both chemistries are attributed to the different composition of
the plasma, as explained above.
The ion flux from the RFA data is very low without applied bias, increases drasti-
cally when it is switched on, and increases only slightly thereafter. The abnormal
value of the ion flux at 0 W bias power is not expected in an ICP and might be
linked to the ceramic shield that prevents the metallic body from being sputtered.
Since it is dielectric, it might be charged differently compared to the wafer and the
RFA body itself. For low ion energies, this difference might be sufficient to deflect
ions and to reduce thereby the number of ions that reach the detector. Another
possible reason might be linked to the very thin plasma sheath in the case without
bias. If the sheath is thin enough, the plasma might be able to extend to some
degree into the holes of the dielectric shield [161]. Since the ion trajectory runs
perpendicular to the sheath, the distortion in the proximity of the holes could make
some ions hit the ceramic hole sidewalls instead of entering into the RFA. Hence,
the ion flux at 0 W bias might be underestimated for the RFA measurements.
Comparing the RFA data for both plasma conditions, two features can be ob-
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Figure 4.8.: RFA measurements of the mean ion energy in CW mode at 20 mTorr
and 750 W source power (HBr flow at 200 sccm, O2 flow at 5 sccm).

served: the total ion flux is increased when oxygen is added and at the same time,
the mean ion energy is decreased. Both parameters are correlated via the bias
power. In a rough approximation, the bias power is proportional to the product
of the ion flux Γi and the sheath voltage V̄s (≈ ion energy Ei) [55] if collisional
losses (e. g. ionization) are neglected. In other words, the applied bias power is
mainly consumed by accelerating the ions. In this case, the product of the ion flux
and ion energy is proportional to the bias power (see Eq. 1.4). If the ion density
and, consequently, also the ion flux increase, the mean ion energy decreases for a
constant bias power. In the case of added oxygen, the total ion flux is increased,
considering the RFA measurements. Therefore, the mean ion energy of the IEDF
decreases. In both plasmas the ion flux is almost constant with changing bias
power. Hence, an increase in bias power leads to the linear increase in mean ion
energy, as observed in Fig. 4.8.
Since the voltages applied to the RFA are limited to a maximum of 400 V, the
IEDF for the process plasma with 200 W bias power could not be measured. How-
ever, based on the linear approximation of the ion energy we can estimate for this
case a mean energy of approximately 500 and 750 eV for the HBr/O2 and the HBr
plasma, respectively.

Pulsed Plasma

As we have seen in Sec. 3.2.2 for the case without bias, the ion flux decreases with
lower duty cycle since the average ion production rate in the plasma is reduced.
This evolution is unchanged if bias power is applied. During the on-time of the
plasma, the instantaneous bias power is the same as for CW, only the ion flux
will be significantly lower, leading to a very much increased ion energy compared
to CW mode (considering Eq. 1.4). Figure 4.9 a shows the time-averaged IEDF
for a pulsed HBr plasma at different duty cycles, as well as the corresponding ion
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Figure 4.9.: (a) IEDFs of a pulsed HBr plasma (200 sccm, 10 mTorr, 1200 W source
power, 60 W bias power) at 1 kHz with bias. (b) Total ion flux, high energy ion
flux (HEIF) and mean energy of the latter.

flux. The plasma conditions are very much altered compared to the standard etch
process (20 mTorr, 750 W source power, 200 W bias power) in order to obtain a
signal that is strong enough to be analyzed (10 mTorr, 1200 W source power, 60 W
bias power). Also, a different dielectric shield for the RFA was used (Al2O3 instead
of ceramic).
In CW mode only a single peak is visible. We do not observe a bimodal distribution
in this case, probably due to the changed plasma conditions and possibly also to
the different analyzer that was used. If the plasma is pulsed a low energy (LE)
peak from the afterglow appears in addition to the high energy (HE) peak from the
active source and bias power. For the low energy peak, we would expect an energy
of just a few eV, corresponding to a vanishing sheath voltage. The rather high
measured energy and its slight evolution might be linked to the poor measurement
accuracy for the RFA floating potential that is used to calibrate the IEDF. This
increases the possible error to several tens of eV. Also, for low energy ions, charge
effects that falsify the IEDF measurement might play a role, as explained above
in this section. Therefore, the energy from the LE peak will not be discussed.
However, the measured ion flux of both peaks and the very large energy shift for
the HE peak are assumed to be correct.
For decreasing duty cycles, the high energy peak shifts to very large values since
the ion flux decreases. The ratio between high and low energy flux is decreasing
until the high energy flux becomes almost insignificant, shown in Fig. 4.9 b. This
is in good agreement with the time-resolved measurement of the ion flux in no-bias
conditions in Sec. 3.2.2 and might open the possibility to reduce surface damage
due to high energy electrons.
With increasing frequency the IEDF also changes, but only slightly. Unfortunately,
the ion current measurement data is very noisy for high frequencies and hence it is
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Figure 4.10.: Total ion flux for pulsed HBr plasma conditions (200 sccm, 10 mTorr,
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difficult to derive a meaningful IEDF from it. However, it is quite straightforward
to extract the total ion flux. Figure 4.10 shows the total ion flux for several duty
cycles and frequencies.
For all duty cycles, the ion flux decreases if the frequency is increased, comparable
to a further reduction of the duty cycle. The relative reduction of the ion flux
becomes stronger for lower duty cycle. Whether the reduced ion flux also induces a
higher ion energy, could not be determined. The mass spectrometry measurements
in Sec. 3.1.1 show a similar behavior of the neutral density evolution, where for
high frequencies is equivalent to a further reduction of the duty cycle. In addition,
the MS data shows that the influence of the frequency becomes more important
at very low duty cycles. The general impact of the frequency will be discussed in
Sec. 5.4.

Summary

The ion energy distribution and the ion flux were studied in CW and pulsed modes
with applied bias (200 W). The results indicate mean ion energies of approximately
500 and 750 eV in etch process conditions for the HBr/O2 and the HBr plasma,
respectively. In a pure HBr plasma the ion energy distribution shows the charac-
teristic bimodal function originating from the oscillating RF potential of the wafer.
In an HBr/O2 plasma it becomes a double bimodal function, which indicates an
additional major ion species with a lighter mass. It seems probable that the ad-
ditional ion is H+. The next lightest ion that governs the maximum width of the
IEDF in a pure HBr plasma might be SiHx

+.
The ion flux increases slightly with higher bias power. This behavior is only
changed close to the case without bias due to the absence of etch products that
alter the plasma composition and chemistry or due to charge effects at the probe.
Directly on the wafer, the ion flux from an HBr/O2 plasma is higher than in the
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pure HBr chemistry. The opposite is observed with the IFP at the reactor sidewall.
It is not fully understood where the difference comes from. One hypothesis is an
additional production of the light ion observed with the RFA (H+) close to the
wafer from oxygen containing species due to energetic secondary electrons.
For pulsed mode the IEDF shows a high and a low energy peak, which correspond
to the ions from the on- and the off-time of the plasma, respectively. If the duty
cycle is reduced, the total ion flux, measured by the RFA on the wafer, decreases
linearly and the high energy peak shifts to even higher energies. The relative con-
tribution from the high energy peak to the total ion flux is also reduced with the
duty cycle. These results are in good agreement with the IFP measurements in
unbiased conditions in Sec. 3.2.2.
Similar to a decrease in duty cycle also an increase in frequency, especially for low
duty cycles, results in a further reduction of the total ion flux.

4.2.3. Summary - Ions

Compared to a plasma without bias, the composition of the ion flux shows many
additional ions that incorporate at least one Si atom. Br3

+, on the other hand, is
not detected any more and also the percentage of Br2

+ is close to being negligible.
The main contribution of the total ion flux comes from Si+, SiBr+, SiBr3

+ and
BrH0−2

+. Large silicon containing etch products that leave the wafer can easily
be ionized and dissociated due to the low energy thresholds for these processes,
leading to the observed significant contribution to the ion flux. In addition, the
nature of the reactor walls changes compared to no-bias conditions, influencing the
recombination rates and, hence, also the reaction balance between all species. The
double bimodal IEDF in the HBr/O2 plasma, measured with an RFA, suggests
also a significant amount of H+, which cannot be detected by mass spectrometry.
In a pure HBr plasma, no H+ can be observed. The reason for the (dis-)appearance
of H+ remains unclear.
In CW mode, the ion flux is almost independent from the bias power. It is only
reduced for the case without bias where the absence of etch products change the
whole plasma chemistry. While the total ion flux at the reactor sidewall is larger
in a pure HBr plasma (IFP) compared to an HBr/O2 plasma, the opposite is the
case close to the wafer (RFA). One hypothesis to explain this phenomenon could
be the additional production of H+ from oxygen containing species close to the
wafer due to energetic secondary electrons.
By extrapolating the RFA data, mean ion energies of approximately 500 eV in the
HBr/O2 and 750 eV in the HBr plasma can be estimated for the CW etch process
with 200 W bias power.
For pulsed mode, the IEDF shows a high and a low energy peak, which correspond
to the ions from the on- and the off-time of the plasma, respectively. If the duty
cycle is reduced, the total ion flux decreases almost linearly and the high energy
peak shifts to even higher energies. In addition, the relative contribution from the
high energy ions to the total ion flux is reduced, which is in good agreement with
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the IFP measurements in unbiased conditions in Sec. 3.2.2.
With lower duty cycle, the relative contribution of BrH0−2

+ to the total ion flux
increases. One should also note that almost no Si+ can be detected at a very low
duty cycle. This might indicate that almost all silicon is incorporated in larger
molecules probably due to a better chemical reactivity of pulsed discharges. In
addition, the lower averaged etch rate of Si reduces the overall presence of silicon
containing species in the plasma.
Although the change in frequency did not affect the UV absorption of SiBr, the ion
flux does shows a slight dependency on this parameter: an increase in frequency
(>1 kHz), especially for low duty cycles, results in a reduction of the total ion flux,
similar to a further slight decrease in duty cycle.

4.3. Reactive Etch Layer

The interaction of the plasma process with the wafer is analyzed via X-ray pho-
toelectron spectroscopy. The immediate impact of the plasma etching can be
observed in the reactive etch layer (REL) that is formed on the silicon surface due
to ion enhanced etching reactions of the modified silicon surface. Depending on the
ion energies, the disturbed layer can have thicknesses up to several nm [80,162,163].
It is heterogeneous with a continuous change in chemical composition. Hence, it is
not possible to calculate an accurate layer thickness based on XPS data, as shown
in Sec. 2.6. Still, information on the relative thickness can be obtained from the
measured percentage of the bulk material: the greater the amount of undisturbed
bulk silicon, the thinner should the reactive etch layer be. Figure 4.11 shows the
chemical composition of the XPS signal at an angle of 46.25◦ ±3.75◦ from the REL
for various pulse conditions.
The contribution of the bulk silicon increases significantly for duty cycles lower
than approximately 50 % at a constant frequency, indicating a decrease of the REL
thickness. Only insignificant differences are observable with increasing frequency
at a constant low duty cycle of 20 %. It is difficult to give significant tendencies
for the rest of the elements in the chemical composition since the percentages and
their variations are too small.
Mass spectrometry and ion flux data indicate that the ratio between neutral and
ion flux is largely increased for low duty cycles. During the on-time, high en-
ergy ions hit the surface where they break molecular bonds (amorphization) and
chemically sputter atoms and molecules. The ion flux from the on-time decreases
strongly with lower duty cycle compared to the total averaged flux, but the ion
energy increases at the same time. The bromine that is available on the surface
combines with silicon to form volatile species, which can desorb into the gas phase.
If more bromine is available, more silicon atoms can be removed by this process.
The thickness of the REL can be described by a balance between additional de-
struction of Si-Si bonds and the removal of available Si via Br radicals. It should
also be noted that for a thick REL less ions reach the remaining bulk lattice and
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Figure 4.11.: (a) Chemical composition of the XPS signal (at 46.25◦) from the
reactive etch layer for different duty cycles (at 1 kHz) and (b) frequencies (at 20 %
duty cycle). Standard plasma etch conditions (200 sccm HBr/5 sccm O2, 20 mTorr,
750 W source power, 200 W bias power).

introduce additional Si to the REL. This leads to two scenarios:

1. An increase in ion energy (or to some point also in ion flux) would increase
the REL thickness since the penetration depth and the amorphization would
increase.

2. An increase in the ratio of neutral to ion flux at constant ion energy would
reduce the REL thickness: The removal rate is increased, reducing the REL
thickness. A thinner REL can be traversed by ions more easily, increasing
the amorphization rate until a new balance between both processes is found.

In the presented case, the neutral to ion flux ratio increases with lower duty cycle,
leading to a more efficient Si removal. Although the ions from the on-time have
higher energies than in CW mode, the relative contribution of the high energy ion
flux to the total ion flux decreases. At low duty cycle, the bulk of the ion flux
is composed of ions with low energies (plasma off-time). Together, the mean ion
energy is reduced and consequently, the REL thickness decreases.

Summary

The reactive etch layer that is formed on the surface of the bulk material during
etching was studied by XPS. With lower duty cycle the REL thickness decreases
due to an increased availability of radicals and a decreased mean ion energy. The
frequency does not have a significant influence on the REL thickness.
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4.4. General Summary

Mass spectrometry, UV-absorption, ion flux and XPS measurements were carried
out to study the impact of pulsed plasma etching on the gas phase and the plasma-
surface interaction.
The spectrum of neutrals detected by mass spectrometry is enlarged by etch prod-
ucts compared to the case without bias power. For a reduced duty cycle, more
HBr is found, but less other molecules, which can be explained by a reduced de-
gree of dissociation and a reduced etch rate. For frequencies above approximately
1 kHz the modulation in the neutral density during a pulse becomes small enough
to compare time-averaged values as shown for the case of SiBr.
Compared to a plasma without bias, the composition of the ion flux, dominated
by Si+, SiBr+, SiBr3

+ and BrH0−2
+, shows many additional ions that incorporate

silicon. Br3
+, on the other hand, is not detected any more and also the percentage

of Br2
+ is almost negligible. Large silicon containing etch products that leave the

wafer can easily be ionized and dissociated due to the low energy thresholds for
these processes, leading to the observed significant contribution to the ion flux. In
addition, the nature of the reactor walls changes compared to no-bias conditions,
influencing the recombination rates and, hence, also the reaction balance between
all species. The double bimodal IEDF in the HBr/O2 plasma, measured with an
RFA, suggests a significant amount of H+, which cannot be detected by mass spec-
trometry. In a pure HBr plasma no H+ can be observed. At low duty cycles the
relative contribution of BrH0−2

+ to the total ion flux increases. Also, almost no
Si+ can be detected any more, indicating that almost all silicon is incorporated in
larger molecules probably due to a better chemical reactivity of pulsed discharges.
In addition, the lower averaged etch rate of Si reduces the overall presence of sili-
con containing species in the plasma.
By extrapolating the RFA data, mean ion energies of approximately 500 and 750 eV
in the HBr/O2 and the HBr plasma can be estimated for the CW etch process with
200 W bias power.
For pulsed mode the IEDF shows a high and a low energy peak, which correspond
to the ions from the on- and the off-time of the plasma, respectively. Similar to the
case without bias, the total ion flux decreases linearly with the duty cycle and the
high energy peak shifts to higher energies. Since at the same time the contribution
of the high energy ions to the total flux is strongly reduced, the mean ion energy
is also decreased at low duty cycles.
An increase in frequency (>1 kHz), especially for low duty cycles, results in a re-
duction of the total ion flux, similar to a further slight decrease in duty cycle.
The relative increase of the Br radical flux and the decrease of the mean energy
of the ions at lower duty cycle lead to a decrease of the REL thickness on the
silicon wafer surface (measured by XPS) for low duty cycles. The frequency does
not have a significant influence on the REL thickness.





5. Pulsed Plasma Silicon Etching

In Chap. 3 and 4 the impact on the gas phase and the plasma-surface interaction
from pulsing an HBr/O2 etch plasma was studied by multiple diagnostic systems.
The results give already large insight in the fundamental differences between CW
and pulsed mode. In this chapter, the etching of silicon patterns by pulsed plas-
mas will be discussed. At first, the reactor conditioning prior to all experiments
is presented. Then, experiments on blanket wafers are studied, followed by a dis-
cussion on the profile etching with two different masks. The observed features are
compared to the CW mode and will be explained based on the results from the
previous chapters.

5.1. Reactor Seasoning

The condition of the reactor walls can have a strong influence on the plasma process
and the etch result since it may change the sticking and recombination coefficients
of the plasma species [66,68,69]. Such a difference can lead to a significant change
in the plasma chemistry and the ion flux (see Chap. 3 and 4) which in turn in-
fluences the etching. Therefore, before the etch experiments were performed, a
cleaning and seasoning procedure was carried out to set the reactor into a well
defined condition. At first, an SF6/O2 plasma without bias is generated to etch
silicon oxide layers or similar materials that remain from previous processes from
the alumina reactor walls. Subsequently, a two step seasoning process deposits a
SiO2 layer on the clean reactor walls. The first step consists of a SiCl4/O2 plasma
process which deposits chlorine rich SiOCl on the walls. A further oxidation in a
pure O2 plasma produces SiO2(Cl) layers with a very low percentage of chlorine.
During both steps, a Si or SiO2 wafer is placed on the wafer holder for protection.
It is important that some of the deposited layer remains until the end of the final
etch step of the pattern etching. In order to verify this requirement, the wafer
with the deposited layer was exposed to all etch process steps without bias power
to simulate the evolution of the wall surface after a standard seasoning procedure.
The steps consist of consecutive etching of SiO2, amorphous Carbon, and SiN lay-
ers, as well as the final silicon bulk etching. Although the plasma process without
bias is quite different compared to the real process, in the latter the etch products
are often re-deposited on the reactor walls, increasing the deposited layer even
more. Hence, without bias power we can obtain a lower limit of the remaining pro-
tective layer. Between each etch step, ellipsometric measurements were acquired
to follow the evolution of the layer on the wafer. In Fig. 5.1 the measurement for a
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Figure 5.1.: Reactor wall seasoning layer thickness on a sample wafer for all process
steps without bias power.

standard etch process is shown. From the initial thickness after seasoning of 60 nm
50 % still remain after the final etch process. Not surprisingly, the layer is mostly
consumed during the SiO2 and Si3N4 etching.

5.2. Etch Rates and Selectivities between Materials

Blanket wafer studies were carried out in order to study etch rates and etch selectiv-
ities between silicon and the different etch mask materials. An ex-situ multi-point
automatic ellipsometer is available to give accurate measurements of the amount
of etched material. It also gives an estimate of the homogeneity of the etch process
across the wafer since it measures between 9 and 49 points across the wafer. The
homogeneity of the etch rate is indicated in the graphs in terms of the standard
deviation σ from the mean value (in %).
By reducing the duty cycle, the process etch rate will be decreased since both
the radical and ion flux are reduced. In order to compare etch rates and etched
patterns, two concepts can be used. The first one is to compare etch processes
with the same amount of total plasma on-time, here called time compensation
(TC). Compared to the process time in CW mode tCW , the pulsed process time
tp is extended proportionally with the duty cycle dc to tp = tCW /dc. This way
the instantaneous and the total used plasma power remain the same compared
to the CW case. The second concept is called power compensation (PC). In this
case the source power is increased according to the duty cycle to achieve the same
average power input as in CW mode in order to compensate the reduced ion and
radical fluxes. Similar to the TC concept, the power in pulsed conditions is there-
fore Pp = PCW /dc. This leaves the process time constant, but the plasma itself
is changed quite strongly between different pulse conditions. Even if the ion flux
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Figure 5.2.: Power compensated etch rates of polycrystalline silicon from blanket
wafer experiments (PCW = 500 W).

was increased linearly with the source power, the change in ion density would also
influence the sheath dynamics close to the target wafer, leading to a decrease in
the ion energy [55, 62]. Also, a higher source power increases the degree of dis-
sociation, the plasma temperature and the relative mixture of plasma species. In
summary, PC changes several parameters at the same time, so that it is difficult
to explain differences in the process. A further compensation of the bias power
(not tested here) would lead to an increase in the ion energy.
Figure 5.2 shows the PC etch rate for polycrystalline silicon (pSi) for various duty
cycles and the averaged relative standard deviation for all 25 measurement points.
Clearly, the etch rate cannot be sustained by compensating just the source power.
Nevertheless, an increase in source power could be potentially used to reduce the
process time for future pulsed plasma processes.
With lower duty cycle the homogeneity of the etching is improved, which will be
discussed in the next section.
In the following, only TC etch rates (TCER) will be discussed.

5.2.1. Silicon Etching

Etch Regime

Silicon is thought to be etched by physical/chemical sputtering and by the forma-
tion of volatile SiBrxHy species, triggered by energetic ions that supply the needed
activation energy and destroy Si-Si bonds [76, 81]. Hence, the silicon etching can
be limited by either the radical flux and surface coverage (Br, H), or the ion flux
and energy. Figure 5.3 shows the etch rate in CW mode for different bias powers.
Each bias power corresponds to a mean ion energy, obtained from the ion energy
and flux measurements in Sec. 4.2.2.
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Figure 5.3.: Etch rate of poly-silicon in a CW process with various bias powers
(from blanket wafer experiments).

The ion flux, as seen in Fig. 4.7, hardly evolves. Even if the ion energy is cut in half
(at a constant ion flux), the etch rate decreases only by 11 %. This suggests that
in the etch conditions at 200 W bias, more energy is available than radicals to form
volatile products: the silicon etching is rather radical limited. This assumption is
supported by experiments from Vitale et al. [81] who investigated the temperature
dependent etch rate of silicon in an HBr plasma and found that for higher tem-
perature (lower sticking coefficient) the etch rate decreases. The authors give two
possible explanations. Either the coverage of radicals on the surface is reduced or
the ratio between H and Br radicals on the surface is changed. Both explanations
also indicate a radical limited etch regime.

TCER Evolution with the Duty Cycle

The TCER of polycrystalline silicon is shown in Fig. 5.4 a for various duty cycles,
including the relative standard deviation σ for 25 measurement points across the
wafer. Figure 5.4 b shows the evolution of the time compensated and normalized
Br radical flux from the mass spectrometry measurements (without bias power)
in Sec. 3.1.1. Although the plasma conditions were not the same, the evolution
of the flux is assumed to be similar, regardless of the applied bias power and the
reactor wall conditions.
The TCER of pSi increases with lower duty cycles up to 60 %. Since in our condi-
tions the etching seems to be radical limited, this is probably linked to an increase
of the availability of radicals on the Si surface. Assuming that during the off-time
of the plasma radicals can accumulate on the surface, the surface coverage with
radicals is increased with respect to the on-time of the plasma. Its evolution re-
sembles the increase in TCER of Si.
The homogeneity of the etching follows the same trend. The relative standard
deviation decreases with lower duty cycle, indicating a more homogeneous etch-
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Figure 5.4.: (a) TCER of poly-silicon from blanket wafer experiments for various
duty cycles and (b) time compensated normalized Br radical flux.

ing. An explanation might also be linked to the increased off-time between the
plasma pulses where radicals accumulate on the surface. If the surface coverage
of Br becomes more saturated and therefore homogeneous, a similar amount of
silicon can be etched everywhere on the wafer, even if the ion flux is distributed
inhomogeneously, as long as the etching remains radical limited.

TCER Evolution with the Frequency

Figure 5.5 shows the TCER of pSi for various frequencies and the relative standard
deviation σ from the mean value of all 25 measurements points across the wafer.
With increasing frequency the etch rate also increases. Moreover, the lower the
duty cycle is, the more pronounced is the gain. At the same time no significant
impact on σ is observed. The same evolution will be shown for actual pattern
etching, where possible reasons will be discussed.

5.2.2. SiO2 Etching

While the silicon etching was found to be radical limited, the etching of SiO2 in a
HBr/O2 plasma depends almost exclusively on the ions since the main etch mecha-
nism is physical sputtering [75,76]. Figure 5.6 shows the dependence of the TCER
of SiO2 on the duty cycle and the resulting selectivity towards pSi.
In comparison with Si, the TCER of SiO2 is already very low in CW mode. By
reducing the duty cycle, it first increases slightly and is then significantly reduced.
Consequently, the selectivity increases drastically with lower duty cycles up to
around 800. The opposite trends in the etch rate can be attributed to the impor-
tant differences in the etch mechanisms of silicon (radical limited) and SiO2 (ion
driven) in an HBr/O2 plasma.
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Figure 5.5.: (a) TCER of poly-silicon from blanket wafer experiments for various
frequencies and (b) the corresponding relative standard deviation across the wafer
from the mean value.
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Figure 5.6.: Etch rate and selectivity of SiO2 (mask material) with respect to pSi
from blanket wafer experiments.

The evolution in the SiO2 TCER can be understood by modeling the evolution
of the time compensated sputter yield. The results from the ion flux and energy
measurements in Sec. 3.2.2 for an HBr plasma indicate that most of the ions have a
low energy which might not be sufficient to etch SiO2 in a significant amount [75].
The flux of highly energetic ions decreases more than proportional compared to
the duty cycle, but at the same time its mean energy increases significantly. The
sputter (etch) yield is directly proportional to the number of incoming ions, but
depends only on the square root of the ion energy [164–168]. Assuming that only
the high energy component of the flux contributes to the sputtering of SiO2 and the
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Figure 5.7.: Approximated sputter yield evolution compared to CW (100 %) based
on the change of high energy ion flux and its mean energy. The data is taken from
the RFA measurements at 10 mTorr, 1200 W source power and 60 W bias power.

threshold energy is negligible (ET h ≪ E), we can calculate the change in TCER
at a specific duty cycle dc based on the data from Sec. 4.2.2 for the ion flux Γ and
energy E via

TCERp

ERCW

=
1
dc

· Γp

ΓCW

√

Ep

ECW

. (5.1)

The resulting evolution is shown in Fig. 5.7 with ERCW = 100 %.
The approximated evolution of the sputter yield agrees very nicely with the ob-
served TCER for the SiO2 etching in Fig. 5.6 a although the plasma conditions are
very different (RFA measurements at 10 mTorr, 1200 W source power and 60 W
bias power). This shows that for our experiments the impact of high energy ions
and their ability to induce damage can be reduced if the duty cycle is decreased.

5.2.3. Amorphous Carbon Etching

Amorphous carbon (αC), the second mask material used in the pattern etching, is
not only etched by physical sputtering, but also by ion assisted chemical etching,
mainly with the help of H and O radicals. It is not exactly clear if O or O2 is the
more important species for the ion assisted chemical etching of αC [169]. However,
in a purely chemical sense, oxygen radicals are reported to be more reactive than
O2 and hydrogen atoms [170].
In Fig. 5.8 the TCER of αC is shown, including the standard deviation for a nine
measurement points across the wafer. The deduced selectivities towards pSi for
the CW mode and pulsing at 1 kHz 20 % are also presented.
In pulsed condition the TCER is slightly increased. In contrast to the silicon
etching, the pulsing reduces the homogeneity of the etching. Since the TCER
of silicon is strongly increased, the resulting selectivity between both materials is
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Figure 5.8.: Etch rate and selectivity of amorphous carbon (mask material) with
respect to poly-silicon from blanket wafer experiments. The relative standard
deviation across the wafer is indicated in red.

also improved. In comparison to the etching of Si and SiO2, the observed features
are more difficult to explain. On the one hand the contribution of the physical
sputtering is reduced, but on the other hand the time to accumulate O (and H)
on the surface is increased. Therefore, the dependence of the etch rate on the
duty cycle is thought to be in between the evolution of Si and SiO2. Since the
TCER increases we suppose that the increase of the chemical component is more
important than the decrease of the physical component.

5.2.4. Summary - Etch Rates

Blanket wafers of different materials were etched to study the evolution of the etch
rate and selectivity with respect to changing pulse conditions.
As the power compensated experiments have shown, the use of pulsed plasmas is
not equal to a simple reduction of the average plasma power.
A decrease in duty cycle leads to opposite evolutions of the TCER of Si and SiO2.
The results for silicon etching indicate a radical limited etch regime. An increase
in the ratio of radical flux to ion flux leads to a net increase of the availability of
radicals during the etching, which explains in turn the increase in silicon TCER
for lower duty cycles. Both the silicon TCER and the time compensated Br radical
flux follow a similar evolution. In addition, the homogeneity of the etch rate across
the wafer is improved for decreasing duty cycle.
The etching of SiO2 is mainly initiated by physical sputtering. It increases slightly
for a duty cycle of 75 % and decreases afterwards. As a result, the selectivity
between Si and SiO2 is strongly enhanced. An approximation of the sputtering
yield based on measurements from Sec. 4.2.2 is in very good agreement with the
observed behavior.
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Figure 5.9.: Sketch of the etch steps and corresponding SEM images of a 120 nm
line-equal-space pattern.

The TCER of αC is also slightly increased, probably for the same reason as for
silicon (increased O and H radical availability). This gain is lower than for silicon,
leading to an overall increase in selectivity between both materials.

5.3. Si Etching with a Carbon Mask

5.3.1. Reference Process in CW Mode

Following the approach of the process for shallow trench isolation etching, provided
by Applied Materials Inc., we started out by studying silicon bulk etching with a
hard mask of amorphous carbon (αC). In Fig. 5.9 the used stack and SEM images
after each etch step are shown to illustrate the process flow. In order to etch the
silicon bulk, several preliminary etch steps need to be carried out to open the hard
mask. An overview of all process steps is given in Tab. 5.1.
In order to study the impact of plasma pulsing on the etch process, a reference
etch profile in a continuous wave (CW) process needs to be obtained. In Fig. 5.10
the etch result from the initial process (HBr/O2/CF4) is shown.
The most obvious observation is the formation of a thick passivation layer that
depends on the neutral species collection angle (aspect ratio). While dense profiles
are rather straight, the etch slope becomes far from vertical for isolated lines.
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Table 5.1.: Plasma etch processes for Si etching with a carbon mask.

Material Layer Gases Pressure Source Bias End-
[nm] [sccm] [mTorr] [W] [W] point

SiO2 30 200 Ar/80 CF4/50 CHF3 7 200 250 O/R*
αC 300 80 HBr/36 O2/80 Ar 4 350 120 O/R*
SiN 80 100 CF4 4 1200 100 O/R*

Si (bulk) 200 HBr/8 O2/12 CF4 20 750 200 timed
200 HBr/5 O2 20 750 200 timed

* optical emission spectrometry / reflectometry

Figure 5.10.: Pattern etched using the CW recipe from Applied Materials, Inc.
(HBr/O2/CF4).

Figure 5.11.: Dependence of the pattern etching on the oxygen flow in CW mode.

To reduce the complexity of the chemistry, CF4 is removed from the process.
Subsequently, the process was re-developed in order to give comparable results.
The easiest way to do so is to vary the oxygen flow and to study its impact on
the etching. In Fig. 5.11 etched profiles (CW mode) are shown for different flows
of O2 at a constant flow of HBr. The passivation layer is removed by exposure to
an HF bath (1 %) in order to make the differences in etching more visible.
By reducing the oxygen flow, the etching becomes more vertical. This is due to
a decreased formation of the sidewall passivation layer (SPL) that is formed by
non-volatile etch products, e. g., Si, C, N, O, Br. Oxygen plays a major role to
form, harden and to protect this layer from subsequent re-etch [75, 124, 126, 127].
Without external oxygen flow, the only oxygen sources are the SiO2 covered reactor
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walls and possible contaminations in the wafer layers. This seems to be insufficient
to protect the sidewalls from lateral etching as manifested by the slight bow in the
trenches. A more detailed study on the sidewall passivation layer will be given at
the end of this chapter.
Another important feature is the decreased consumption of the carbon hard mask
with lower oxygen flow. This supports the assumption made for the blanket wafer
experiments that the oxygen flow is a key parameter for the ion assisted chemical
etching of carbon in our conditions.
Based on these results, an intermediate gas flow of 5 sccm is used for the future
CW reference etch process.

5.3.2. Impact of Plasma Pulsing on the Etched Profiles

The pulsed plasma etching is studied based on the exact same process conditions.
The only difference is the synchronous pulsing of both RF generators (source and
bias) and the changes in the automatic matching network. To facilitate the com-
parison between profiles from different pulse conditions, the concept of time com-
pensation is used. For the CW mode the etch time was set to 64 seconds, the
pulsed experiments were timed accordingly (e. g. 320 seconds for a duty cycle of
20 %).
Figure 5.12 shows profiles from pulsed plasma etching at a frequency of 1 kHz and
various duty cycles. Obviously, the duty cycle has a large influence on the pattern
etching. Each feature will be discussed individually in the following.

Etch Rate

By reducing the duty cycle, the time compensated etch rate (TCER) is increased,
similar to the observation on blanket wafers. Again, this can be explained by the
increased availability of radicals on the surface.

Faceting and Consumption of Hard Mask

In general, with lower duty cycle, the carbon hard mask is less faceted, especially at
20 %. The decrease in the faceting leads to a lower carbon mask consumption and
could be linked to the reduced physical sputtering at low duty cycles. The slightly
increased TCER of αC in the blanket wafer experiments cannot be observed and is
probably outweighed by the change in faceting. Also, compared to blanket wafer
etching, silicon containing etch products can be re-deposited on the mask, which
reduces its etch rate.
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Figure 5.12.: Dependence of the etched patterns on the duty cycle.



5.3. Si Etching with a Carbon Mask 97

Slope of the Etched Profile

By decreasing the duty cycle, the etch slope of the profiles becomes more and more
vertical. This is certainly due to a reduced formation of the sidewall passivation
layer that is observed on the etched isolated lines. The SPL is built up by non-
volatile Si species that adsorb on the sidewalls and combine with additional oxygen
to form stable SiO2 like layers [124,126,127,171]. For a low duty cycle, less oxygen
radicals are available to combine on the sidewall surface. Moreover, the increased
availability of etch radicals might lead to more volatile etch products that have a
lower sticking coefficient, so that the formation of the SPL is reduced. In addition,
these etch products are less re-dissociated and thus, also less re-deposited in pulsed
plasmas. More details on the formation of the SPL will be given in Sec. 5.5.

Profile Difference Open/Dense Patterns

In CW mode, a large difference between open and dense profiles can be observed.
The larger collection angle for neutral species from the gas phase can increase
the amount of deposited material on open (exposed) sidewalls. By decreasing the
duty cycle, this effect of aspect ratio dependent etching (ARDE) is reduced. At
1 kHz 20 % open and dense profiles become close to being identical. The change in
the formation of the SPL is thought to play a crucial role. Since the SPL thickness
is reduced everywhere, as explained above, the absolute differences between open
and dense pattern structures are also reduced, even if the relative difference might
still be the same. Moreover, during the additional off-time between pulses, the
coverage of oxygen radicals might saturate on the sidewalls of both dense and
isolated structures, leading to a more homogeneous growth of the SPL. More details
on the formation of the SPL are given in Sec. 5.5.

Micro Trenching

Two types of micro trenching can be observed: a very broad micro trenching close
to isolated patterns and a localized one, especially visible in narrow trenches.
The very broad trenching disappears for lower duty cycles and might be linked
to the collection angle for species from the gas phase, which increases with larger
distances to adjacent lines. Since oxygen radicals can oxidize the reactive etch
layer and inhibit thereby the etching of silicon [75,76,78,79] the differences in etch
rate might be attributed to a reduced oxygen radical flux (see end of Sec. 3.1.1) at
lower duty cycles, making the etching more homogeneous.
Another explanation for the broad micro trenching might be a re-deposition from
the gas phase. For low duty cycles the ratio of Br radical to ion flux is increased,
leading to a great availability of Br radicals to form volatile etch products like
SiBr4. Also the reduced average power leads to a lower amount of re-dissociated
molecules that can stick to the surface. Hence, the re-deposition from the gas
phase is reduced for lower duty cycles, possibly leading to the disappearance of
the broad micro trenching.
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The localized micro trenching could be explained by the following: in a purely
geometrical view, more vertical sidewalls, seen at lower duty cycles, lead to a focus
of scattered ions close to the sidewall. In addition, the radical (Br) to ion flux
ratio increases, leading to conditions in which the etching becomes more limited
by the ion flux and energy. In this case, the etch rate might be more susceptible
to a local change in the ion flux (where ions are focused). Finally, charging effects,
which are known to be reduced in pulsed plasmas [41–46], might also play a role
concerning the micro trenching [8, 11]

5.3.3. Summary

The silicon pattern etching in an HBr/O2 plasma can be significantly altered by
using synchronized pulsing of source and bias power. The original process from
Applied Materials Inc. uses CF4 in the reactive gas mixture, which was neglected to
reduce the complexity of the process. A new reference CW process was developed
and the influence of the oxygen flow has been shown: a reduction in the oxygen flow
leads to a modification in the sidewall slope, probably due to a reduced formation
of the sidewall passivation layer. Based on the new CW etch process, the impact
of the duty cycle at a frequency of 1 kHz was investigated. By reducing the duty
cycle, the following profile evolution can be observed and explained:

1. The time compensated etch rate is increased due to an increased availability
of etch radicals.

2. The faceting of the carbon hard mask is reduced. This leads to a reduced
mask consumption, which outweighs the increased TCER of αC that was
observed in the blanket wafer experiments. Also, compared to blanket wafer
etching, silicon containing etch products can be re-deposited on the mask,
further reducing its etch rate.

3. The slope of the etched profile becomes more vertical. Similar to a reduction
of the oxygen flow, the formation of the sidewall passivation layer is reduced
since less oxygen radicals and non-volatile etch products are available.

4. The difference between dense and isolated profiles is reduced. This might also
be linked to a reduced formation of the SPL, but also to a more homogeneous
distribution of neutral species, e. g., O.

5. The broad trenches at high duty cycles (75 %) and in the CW mode might
be linked to the difference in the collection angle for depositing or oxidizing
(etch inhibiting) species from the gas phase. By reducing the duty cycle,
less species are deposited and the broad micro trenching disappears. The
appearance of localized micro trenching in dense patterns, especially at lower
duty cycles (. 20 %), could be explained by a focusing of scattered ions at
vertical sidewalls, observed at low duty cycles, which increases locally the ion
flux. Thus, the etch rate also rises since it is more susceptible to a change of
ion flux due to the great availability of Br radicals. Reduced charging effects
in pulsed processes might also play a role.
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5.4. Si Etching with an Oxide Mask

One inconvenience for a detailed study on the etch process with an αC hard mask
is the large amount of different species that are involved, namely Si, O, N, C, Br
and H. To further simplify the etch chemistry, we changed the stack slightly (SiO2

instead of SiN) and removed the carbon mask with an oxygen strip plasma before
the main silicon etch. Subsequently, the thin layer of oxidized bulk silicon needs to
be removed to expose the underlaying bulk Si to the etch plasma. The remaining
silicon oxide from the last stack layer is used as the new mask. Thus, we are
able to remove most of the nitrogen and carbon from the etch chemistry. At the
same time we re-developed the carbon etch for a better profile control. Figure 5.13
shows the new stack and SEM images after each etch step. The modified process
flow is presented in Tab. 5.2.

Table 5.2.: Plasma etch processes for Si etching with a SiO2 mask.

Material Layer Gases Pressure Source Bias End-
[nm] [sccm] [mTorr] [W] [W] point

SiO2 30 200 Ar/80 CF4/50 CHF3 7 200 250 O/R*
αC 300 80 HBr/34 O2/80 Ar 4 350 100 O/R*

SiO2 80 50 CF4/50 CHF3 4 1200 100 O/R*
rem. αC 50 O2 4 800 10 O/R*
oxid. Si 100 CF4 4 1200 100 3 sec

Si (bulk) 200 HBr/5 O2 20 750 200 timed

* optical emission spectrometry / reflectometry

Figure 5.13.: Sketch of the etch steps and corresponding SEM images of a 120 nm
line-equal-space pattern.
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Figure 5.14.: Dependence of the etched patterns on the oxygen flow in CW mode.

5.4.1. Dependence on the Oxygen Flow

In the same manner as for the carbon mask etching, the impact of the oxygen flux
on the etching of the bulk silicon in CW mode is investigated. The resulting etch
profiles, patterns with dimensions of 120 nm for the lines and spaces, are presented
in Fig. 5.14.
By reducing the oxygen flow, a bow in the sidewalls can be observed, indicating an
increased erosion rate of silicon. This can be explained once more by the decreased
formation of the sidewall passivation layer, which is due to a decreased amount of
oxygen radicals [127].
Another aspect is the increased consumption of the oxide mask for lower oxygen
fluxes. If more oxygen is available, it is more likely that the surface is re-oxidized
and SiO2 bonds are rebuilt before volatile SiBrx species are created.
Last but not least, the different geometry and a lower oxidation of the silicon REL
in combination with the increased ion energy might lead to the emerging micro
trenching.

5.4.2. Dependence on the Duty Cycle

For the modified etch process, the duty cycle is also expected to have a rather
large influence on the profiles. In Fig. 5.15, three different patterns are presented
that were etched at a frequency of 1 kHz and various duty cycles. In addition,
some of the profiles are also shown after an HF bath that removes the remaining
oxide mask and the passivation layer.
In general, the observation is very similar to the case with a carbon hard mask.
With a lower duty cycle the time compensated etch rate is increased, the faceting
and consumption of the mask is reduced (except for 10 %), the etch slope is more
vertical and local micro trenching on the outer trench bottoms starts to appear.

Etch Rate

The increase in time compensated etch rate of silicon is again due to the increased
availability of etch radicals.
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Figure 5.15.: Dependence of the etched patterns on the duty cycle.

Faceting and Consumption of Hard Mask

Compared to the observations for the carbon mask etching, the low consumption
and the reduced mask faceting of the oxide hard mask can be explained more
easily. It is directly linked to the decreased physical sputtering at low duty cycles,
which was discussed in detail for the blanket wafer experiments in the previous
section.
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Slope of the Etched Profile

By decreasing the duty cycle, the etch slope of the profiles becomes more vertical.
Just as for the carbon mask, this is probably due to a reduced formation of the
sidewall passivation layer.

Profile Difference Open/Dense Patterns

The explanation for the reduced difference between open and dense profiles is the
same as for the carbon hard mask.

Micro Trenching

Again, two different types of micro trenching can be observed. For the CW mode
and at 75 % duty cycle a very broad micro trenching is found, which disappears
for decreasing duty cycle until a very localized micro trenching appears at 20 and
10 %. The mechanisms of formation of the two different types of micro trenching
are assumed to be the same as for the etching with the carbon mask.

Only the profiles obtained at 1 kHz 10 % do not fit into the overall evolution. Com-
pared to a duty cycle of 20 % the mask is more consumed and facetted, indicating
an increase in physical sputtering. A similar effect can also be seen by going to
high frequencies, which will be discussed in the following.

5.4.3. Dependence on the Frequency

The plasma diagnostic data indicates an influence of the frequency at low duty
cycles. In Fig. 5.16 the impact of the frequency is shown for etch processes at duty
cycles of 75, 50 and 20 %, up to a frequency of 8 kHz.
The impact of the frequency can clearly be seen on the three series of SEM images.
By increasing the frequency up to a certain limit that is dependent on the duty
cycle, no significant change in the etched profiles is observable. For higher frequen-
cies beyond this limit, the etch rate starts to increase for silicon, but also for the
oxide mask. Moreover, an increased faceting of the hard mask can be observed.
For a lower duty cycle, the limiting frequency decreases. It is possible that the
pulsed etching at 1 kHz 10 % is already in this limit, which could explain the dif-
ferences to the general evolution with respect to a decreasing duty cycle.
If the frequency is increased, the number of transitions per second between on and
off increases and the pulse period could become so small that it approaches the
characteristic time constants for dissociation, recombination and ionization. Since
we have no time resolved information on the transitions at high frequencies, the
analysis remains highly speculative.
The increased etch rates of both Si and SiO2, as well as the faceting indicate
that the physical part of the etching becomes more important. The RFA data
in Sec. 4.2.2 shows a reduced ion flux for increased frequency, with an increased
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Figure 5.16.: Dependence of the etched patterns on the frequency.

effect for low duty cycles. The evolution could be correlated to the observed profile
features. However, since the ion flux decreases, but an increased physical etching
is observed, we have to assume a strongly increased ion energy that more than
compensates the reduced ion flux. One possible explanation for the increased ion
energy might be the overshoot of Te at the beginning of each pulse. For high
frequencies this overshoot happens more often, which might influence the average
ion energy.
Mass spectrometry data shows an increased HBr density and decreased densities
of Br and Br2, indicating a reduced dissociation of the plasma. Probably this indi-
cates also a reduced ionization and hence, a reduced ion density that can explain
the lower ion flux. This would lead to an increased ion energy for a constant bias
power. However, overall this would lead to a reduced physical sputtering.
Moreover, while all diagnostic data show a similarity between the frequency effect
and the decrease of the duty cycle, they affect the pattern etching differently.
For a detailed analysis beyond this discussion the transient character of the plasma
at high frequencies needs to be investigated, especially concerning the bias power
and the impedance matching of the power generators.

5.4.4. Comparison to smaller profiles

In the previously presented experiments, etch results for rather large patterns are
examined. In the following, these results are compared to profiles with smaller
dimensions, down to a trench width of 45 nm. The stack materials and the process
flow are the same as for the oxide mask experiments. However, the thickness of
each layer was reduced in order to be sure that the thinner lines are stable enough
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Figure 5.17.: Etched Si patterns with changing trench dimensions from 45 nm on
the outside to 100 nm in the middle with a step size of 5 nm for CW and pulsed
conditions.

and do not collapse. The stack consists now of

1. 20 nm of silicon oxide (SiO2)(anti-reflective layer)
2. 100 nm of amorphous carbon (αC)
3. 50 nm of silicon oxide (SiO2)
4. bulk silicon

In order to achieve such small structures, it was necessary to use electron beam
lithography. In Fig. 5.17, etched lines and trenches are shown with changing di-
mensions from 45 nm on the outside to 100 nm in the middle for CW and pulsed
conditions. Neighboring trench and line dimensions differ by 5 nm, so that possi-
ble ARDE effects, e. g.etch rates that depend on the aspect ratio ("RIE lag"), can
easily be observed.
The only differences compared to the previous stack and pattern are the extremely
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strong micro trenching and the bowed sidewalls at a duty cycle of 10 %. Even at
20 % the micro trenching and a very light bow are observable. The general trends,
however, are the same as before: with a lower duty cycle the TCER is increased,
the faceting and consumption of the mask is reduced (except for 10 %), micro
trenching appears and the etch slope is changed due to a reduced formation of the
SPL. The discrepancy to the larger patterns might be due to the different mask
coverage and to the different amounts of previously etched layer materials that
could influence the reactor wall coating.
In all cases no RIE lag is observed.

5.4.5. Summary

The profiles etched with a mask of SiO2 showed the same evolution with decreasing
duty cycle as observed for the carbon mask: increased TCER, less faceting and
consumption of the mask, more vertical profiles and less differences between open
and dense patterns. The reduced consumption of the hard mask can be explained
more easily compared to the carbon mask since SiO2 is etched mostly by physical
sputtering. As shown before, the etching becomes more chemical while the physical
sputtering is reduced if the duty cycle is lowered.
Two types of micro trenching can be observed, similar to the etching with the
carbon mask. Broad trenches are observable for high duty cycles (75 %) and the
CW mode, which might be linked to the difference in the collection angle for
depositing species from the gas phase. By reducing the duty cycle, less species
from the gas phase can oxidize the reactive etch layer or can form a deposition,
leading to the disappearance of the broad micro trenching. At low duty cycles
(. 20 %) a localized micro trenching appears during the etch, which could be due
to the increased etch yield per ion (ion limited versus radical limited etching), the
more vertical sidewalls that focus reflected ions on a very small area, and reduced
charging effects.
By studying high frequencies at low duty cycles, an impact of the frequency can
be observed. By increasing the frequency above a certain limit that depends on
the applied duty cycle, the etch rate increases for both the silicon and the oxide
hard mask. This might be linked to an increase in the ion energy. The reason for
this effect remains unclear.
A comparison with profiles of smaller dimension shows the same evolution with
changing duty cycle. However, the etch result at 1 kHz 10 % shows a stronger micro
trenching and a significantly bowed sidewall. The discrepancy is attributed to the
change in the mask layout and coverage, and to the different amounts of previously
etched layer materials that could influence the reactor wall coating.
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5.5. Sidewall Passivation Layer Analysis

One of the most important changes in the profiles that are observed in pulsed
conditions is the profile evolution that can be attributed to a changed sidewall
passivation layer formation. Oehrlein et al. [126] proposed a model of the forma-
tion of the sidewall passivation layer. At first, species from the silicon surface that
are sputtered at off-normal angles reach the pattern sidewalls in the same state
as when they left the etched surface (line-of-sight deposition). Often, these sput-
tered species are non-volatile, e. g. atomic Si or SiBrx, and they should, therefore,
have a high sticking probability. Since the ion bombardment is very limited at the
sidewalls, these species remain adsorbed for a relatively long time. Similar species
could also be deposited from the gas phase after dissociation of volatile etch prod-
ucts. Reactive oxygen species in the plasma interact with the adsorbed molecules
and form oxide rich silicon compounds (formation of SiO2 is thermodynamically
favored). Based on this model, the formation of the SPL can be either limited
by the oxygen flux from the gas phase, or by the deposition of non-volatile silicon
species. The neutral flux from the gas phase is correlated to the aspect ratio of
the pattern (collection angle). The line-of-sight deposition is linked to the sputter
angle distribution and the width of the etch surface (trench bottom).
In order to study quasi in-situ the chemical composition and the thickness of the
SPL, an XPS technique, described in Sec. 2.6.3, was developed in the framework
of this Ph.D. thesis [137]. For this purpose, a special pattern with equal line and
space width is needed. The pattern from the previous section that was realized by
electron beam lithography complies with all necessary requirements.
A quasi in-situ analysis is important since bromine could be exchanged by oxygen
in the SPL if exposed to the atmosphere [65, 75, 79] or to low pressure conditions
where oxygen is present.

5.5.1. Thickness Profiles

The thickness profiles from the SPL analysis are shown in Fig. 5.18 for various
trench dimensions in different pulsed (1 kHz, 10 % duty cycle) conditions. In gen-
eral, the SPL thickness decreases with a larger aspect ratio. It seems only to
depend on the aspect ratio, but neither on the probed trench depth, nor on the
trench width. This also means that it does not (strongly) depend on the exposure
time to the plasma. Based on these results, the thickness profiles are considered
to be independent of the trench dimensions in the margin of error and averaged
profiles are used for comparison between different plasma etch processes.
As explained above, the model given by Oehrlein et al. [126] suggests two mech-
anisms that lead alone or in combination to the formation of the SPL. The flux
from the gas phase (radicals or etch products) and a line-of-sight deposition of
strongly sticking, non-volatile sputtered species.
Hübner [172] developed an analytical model to describe the deposition on the side-
walls by both processes. In Fig. 5.19 the resulting sidewall passivation thicknesses
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Figure 5.18.: Sidewall passivation layer analysis: XPS results for pulsed etching.

are shown for either only gas phase deposition or only line-of-sight deposition
of sputtered etch products. The obtained profiles are very different. For the gas
phase deposition, the aspect ratio is the main factor, but a small dependence on
the trench width is also visible. The wider the trench is, the thinner is the SPL
at a constant aspect ratio since the exposure time to the plasma is reduced in
this case. The direct deposition of sputtered species, on the other hand, depends
strongly on the trench width. In this case, the SPL thickness is increasing for
wider trenches at constant depth since more material is removed from the trench
bottom and deposited on the sidewalls, seen for small aspect ratios. This depo-
sition mechanism is strongly dependent on the exposure time to the plasma and,
therefore, the thickness order of different trench widths inverses by going to higher
aspect ratios (= deeper in the trench for large trench dimensions).
While the model for the line-of-sight deposition is very different to the experi-
mental results, the gas phase deposition model resembles the observed thickness
profiles to some extend. Therefore, we assume that the formation of the SPL in
our conditions is due to a combination of both mechanisms, as it was also pro-
posed by Oehrlein et al. [126]: unsaturated, strongly sticking, silicon containing
etch products adsorb on the sidewalls and are transformed into a protective layer
only if they are oxidized by O radicals from the gas phase.



108 5. Pulsed Plasma Silicon Etching

0 50 100
3

2

1

0

 100 nm Trench
   85 nm Trench
   70 nm Trench
   55 nm Trench
   40 nm Trench

ONLY Gas Phase Depostion

 

 

A
sp

ec
t R

at
io

Layer Thickness [a.u.]

(a)

0 50 100 150
3

2

1

0

 100 nm Trench
   85 nm Trench
   70 nm Trench
   55 nm Trench
   40 nm Trench

ONLY line-of-sight Deposition (Sputtering)

 

 

A
sp

ec
t R

at
io

Layer Thickness [a.u.]

(b)

Figure 5.19.: Passivation layer thicknesses from model calculations [172] for (a)
only gas phase deposition and (b) only line-of-sight re-deposition of sputtered etch
products. Trench dimensions are chosen close to reality (depth of 240 nm, different
trench widths).
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Figure 5.20.: Average thickness of sidewall passivation layer for different duty
cycles and CW mode, with and without O2.

Figure 5.20 shows the average SPL thickness profile for various pulsed conditions
and for the CW mode with two oxygen flows. For a better visualization, the
theoretical error of up to 30 % is not included. With decreasing duty cycle at a
constant frequency of 1 kHz, the overall thickness of the sidewall passivation layer
decreases significantly. The reduced SPL thickness explains the more vertical etch
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profiles and partly the reduced differences between dense and open patterns, as
noted in Sec. 5.3. The decrease of the SPL thickness for small aspect ratios (top
of the trenches) in CW mode is due to strong mask faceting, leaving the top of
the sidewalls less protected by the mask (see Fig. 5.17). Consequently, the top of
the SPL is partly eroded, leading to a thinner layer. A similar profile was also
found by Detter et al. [142]. The SPL for all other profiles decreases continuously
towards larger aspect ratios (also 1 kHz 20 %, within the error).
The reduced thickness of the SPL with lower duty cycles could be linked to either
a lower time compensated flux of highly sticking silicon species, or to a reduced
TC flow of oxygen radicals (or a combination of both). At a lower duty cycle, the
TC flux of Br is increased, so that more Br is available on the surface to form
volatile etch products. Probably, this reduces the amount of non-volatile etch
species in the plasma. In addition, since the overall dissociation in the plasma is
reduced, also less etch products are re-dissociated into non-volatile species that
can be deposited. Therefore, we suppose that the time compensated flux of highly
sticking species will be reduced, even though the TCER is increased.
As explained in Sec. 3.1.1, we expect to see a fast decrease in the O radical density
at reduced duty cycles since the SiBrxHy layer that forms on the reactor walls
could scavenge the radicals from the gas phase. If the production of O is very low,
the reduced flux into the pattern is likely to limit the SPL formation. Moreover,
the thickness profiles from CW without oxygen and from the pulsed experiment
at 1 kHz 10 % are almost identical. This also supports the assumption that oxygen
plays a major role in the formation of the SPL in our conditions [127] and that
the SPL thickness is limited by gas phase oxidation. A similar result was found
for the pattern comparison with different oxygen flows in Sec. 5.3 and 5.4, where
the passivation layer was significantly reduced at lower oxygen fluxes.
The evolution of the flux of highly sticking silicon species and the flow of oxygen
radicals lead to a decrease in the SPL thickness. However, the reduced oxygen flux
probably plays a more important role.

5.5.2. Chemical Composition Profiles

In addition to the SPL thickness, its chemical composition is also analyzed. In
Fig. 5.21 the atomic percentage of oxygen in the SPL is shown with respect to the
aspect ratio for pulsed etching at 1 kHz 10 %. The amount of oxygen is clearly
dependent on the aspect ratio, but the variation is too large to identify any depen-
dence on the trench dimension, similar to the thickness profiles. This is also true
for the other elements present in the SPL, namely silicon and bromine, supporting
the assumed formation mechanism.
For a comparison between etch conditions, the chemical composition for each as-
pect ratio is averaged over the range of different trench dimensions. In Fig. 5.22
the mean chemical composition of the SPL is presented without the contribution
of the bulk silicon versus the probed aspect ratio. In all conditions a decreasing
amount of oxygen and a greater amount of bromine and silicon is observed for an
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Figure 5.21.: Percentage of oxygen in the SPL for various trench CDs and aspect
ratios for pulsed etching at 1 kHz, 10 % duty cycle.

increasing aspect ratio. In CW mode without oxygen and at very low duty cycle,
this feature is especially pronounced. If no oxygen is added to the gas mixture,
oxygen atoms can still be sputtered from the reactor wall (deposited protective
layer) or the oxide mask. Nevertheless, the oxygen density is certainly reduced.
For all aspect ratios and in all conditions, the ratio of Si to Br in the SPL is approx-
imately 1, only at a duty cycle of 50 % this ratio is slightly increased. For pulsing at
1 kHz 10 % and for CW mode without O2 the evolution of the oxygen amount with
the aspect ratio is especially pronounced. While the percentage of oxygen at the
top (small aspect ratio) is comparable to the other conditions, oxygen represents
only 20 % of the chemical composition of the SPL at a high aspect ratio. Probably,
this can be attributed to the strong reduction of the oxygen radical flux for low
duty cycles. It might still be large enough to oxidize the SPL sufficiently at the top
of the trenches where the collection angle is large. Yet, for higher aspect ratios,
the radical flux might become very low, reducing the percentage of incorporated
oxygen strongly. For higher duty cycles the radical flux could be much larger, so
that even at high aspect ratios it furnishes a sufficient amount of oxygen atoms
for the SPL formation.
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5.5.3. Summary

With a non-destructive quasi in-situ XPS technique, the sidewall passivation layer
was studied. The SPL thickness is decreasing with larger aspect ratio. We suppose
that it is formed by a combination of the deposition of highly sticking silicon etch
products and by a subsequent oxidation by oxygen from the gas phase, the latter
playing the limiting role. The strong influence of oxygen is supported by the thin
SPL in a pure HBr plasma. By reducing the duty cycle in the HBr/O2 plasma,
a similar reduction of the SPL thickness is observed. This might be linked to a
reduced availability of oxygen radicals, but also on a reduced flux of non-volatile
Si species due to a greater availability of Br radicals and less re-dissociation of
volatile etch products.
The chemical composition of the SPL also indicates that the formation process
of the SPL is strongly influenced by the amount of oxygen. At a duty cycle of
10 % and in CW mode without oxygen, the relative amount of oxygen is strongly
reduced at high aspect ratios, possibly because of a very much reduced O radical
flux. The Si-Br ratio remains almost constant for all conditions.

5.6. General Summary

Pulsed plasma etching of silicon patterns with different masks were investigated
with respect to changing pulse parameters. The observed features are explained
based on blanket wafer etch rates and the ARXPS quasi in-situ analysis of the
sidewall passivation layer that strongly influences the pattern profile.
The silicon pattern etching in an HBr/O2 plasma can be significantly altered by
using synchronized pulsing of source and bias power. By reducing the duty cycle,
the following profile evolution can be observed and explained:

1. The time compensated etch rate is increased due to a greater availability
of etch radicals. Blanket wafer experiments show opposite evolutions of the
time compensated etch rates of Si and SiO2 at a decreasing duty cycle. The
results for silicon etching indicate a radical limited etch regime: an increase
of the TC radical flux leads to a net increase of radicals available during
the etching, explaining in turn the increase in silicon TCER for lower duty
cycles.

2. The faceting of the carbon mask is reduced, which is probably due to a
decreased physical sputtering. This leads to a reduced mask consumption,
which outweighs the increased TCER of αC that was observed in the blanket
wafer experiments. The lower consumption and faceting of the oxide mask
can be explained more easily since the etching of SiO2 is mostly triggered by
physical sputtering. The TCER increases slightly for a duty cycle of 75 %
and decreases strongly afterwards. As a result, the selectivity between Si
and SiO2 is strongly enhanced. An approximation of the sputtering yield
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based on measurements from Sec. 4.2.2 is in very good agreement with the
observed behavior.

3. The slope of the etched profile becomes more vertical because of a reduced
formation of the SPL. The latter is thought to be controlled by a combination
of the deposition of highly sticking silicon etch products and by a subsequent
oxidation (by oxygen) from the gas phase, where the latter plays the limiting
role. The strong influence of oxygen is supported by the thin SPL observed
in a pure HBr plasma. By reducing the duty cycle in the HBr/O2 plasma,
a similar reduction of the SPL thickness is observed. This might be linked
to a reduced availability of oxygen radicals, but also on a reduced flux of
non-volatile Si species due to a greater availability of Br radicals and to less
re-dissociation of volatile etch products.
The chemical composition of the SPLs indicates that the formation process
of the SPL is indeed strongly influenced by the amount of oxygen. At a duty
cycle of 10 % and in CW mode without oxygen the relative amount of oxygen
is strongly reduced at high aspect ratios, possibly because of a very much
reduced O flux. The Si-Br ratio remains almost constant for all conditions.

4. The difference between dense and isolated profiles is reduced. This might
also be linked to the reduced formation of the SPL, but also to a more
homogeneous distribution of neutral species like, e. g., O.

5. The broad trenches at high duty cycles (75 %) and in the CW mode might
be linked to the difference in the collection angle for depositing or oxidizing
(etch inhibiting) species from the gas phase. By reducing the duty cycle
less species are deposited and the broad micro trenching disappears. The
appearance of localized micro trenching in dense patterns, especially at lower
duty cycles (. 20 %), could be explained by a focusing of scattered ions at
almost vertical sidewalls, which increases locally the ion flux. Thus, the etch
rate also rises since it is more susceptible to a change of ion flux due to the
great availability of Br radicals. Reduced charging effects in pulsed processes
might also play a role.

For high frequencies (several kHz) at low duty cycles (. 20 %) an impact of the
frequency can be observed. By increasing the frequency above a certain limit that
depends on the duty cycle, the etch rate increases for both the silicon and the
oxide hard mask. This indicates that the ion energy might be increased under
these conditions, but the reason for this observation remains unclear.
A comparison with profiles of smaller dimension shows the same evolution with
changing duty cycle. However, the etch result at 1 kHz 10 % shows a stronger micro
trenching and a significantly bowed sidewall. The discrepancy is attributed to the
change in the mask layout and coverage, and to the different amount of etched
layers that might influence the reactor seasoning.





6. Discussion on Plasma Pulsing

The impact of plasma pulsing was studied in a model HBr/O2 etch process of silicon
by various means of plasma and surface diagnostics. The plasma itself and the
resulting etch profiles are strongly altered by the pulsing. This chapter summarizes
the effects of plasma pulsing on the studied process and presents characteristics
that we can expect of plasma pulsing in general, including a discussion of the
advantages and downsides of plasma pulsing. Finally, an outlook is given.

6.1. Pulsed HBr/O2 Plasma Etching of Silicon

6.1.1. Impact of Plasma Pulsing on the Gas Phase

The composition of the plasma is strongly dependent on the used gas mixture,
the etched surface and the reactor wall surfaces. The main difference between a
HBr/O2 plasma with bias power and a process without is linked to the etching
of silicon in the first case. During the process with bias many etch products (Si
species) are created that can be found as neutrals or ions in the gas phase. Many of
these species are non-volatile and can be re-deposited on the reactor walls, forming
a thin layer. This changes the sticking and recombination coefficients, possibly
leading to a different balance between radicals and stable molecules, as well as to
different ion fluxes. If conditions with and without bias power are compared, this
needs to be kept in mind.

Neutrals

In case of the HBr/O2 plasma without bias, mainly HBr, Br2, Br and O2 species are
observed. H2 also seems to be largely present, but the signal to background ratio
was too small for a valid measurement, similar as for OHx species. By reducing
the duty cycle the HBr and O2 densities increase while the amount of Br and Br2

remains rather constant at first before their density decreases significantly at very
low duty cycle. This leads to an increase of the time compensated Br radical flux
on the wafer. The most important reason for the increase in the densities of HBr
and O2 might be the change of temperature, but a reduced dissociation also plays
a significant role.
If the bias power is applied to a silicon wafer, several Si containing etch products
appear in the mass spectrum, namely SiBr, SiBr3 and SiBr4. SiBr follows a similar
trend as Br: up to a duty cycle of approximately 50% the density remains constant,
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but decreases significantly thereafter. In average, less Si species are found at lower
duty cycles, which can be attributed to the reduced average process etch rate and
to a formation of larger and more volatile etch products.
Finally, the analysis of pattern etch experiments indicate that for lower duty cycle
the amount of oxygen radicals is reduced.

Ions

If no bias is applied to the process, mainly Br2
+ and H3O+, and to a small amount

also BrH0−2
+ and Br3

+ are observed. For several of the observed ions, proton
attachment seems to play a role.
In the process with bias power, the composition of the ion flux shows many addi-
tional ions that incorporate at least one Si atom. Br3

+, on the other hand, is not
detected any more and also the relative amount of Br2

+ is rather small. The main
contribution of the total ion flux comes from SiBr+, Si+, SiBr3

+ and BrH0−2
+.

Large silicon containing etch products that leave the wafer can easily be ionized
and dissociated due to the low energy thresholds for these processes, leading to
the observed significant contribution to the ion flux. In addition, the nature of
the reactor walls change compared to no-bias conditions, influencing the recombi-
nation rates and, hence, also the reaction balance between all species. With lower
duty cycle, the relative contribution to the total ion flux of silicon-free ions like
BrH0−2

+ increases while the relative amount of silicon containing ions decreases.
One should also note that almost no Si+ can be detected at a very low duty cycle,
indicating that almost all silicon is incorporated in larger molecules. In addition,
the lower averaged etch rate of Si reduces its overall presence in the plasma.
The double bimodal IEDF in the HBr/O2 plasma, measured with an RFA on the
wafer surface, indicates a significant amount of H+, which is not detected at the
reactor walls. This implicates that in an HBr/O2 plasma, one of the major ions
contributing to the silicon etching is H+. By reducing the duty cycle, less HBr
is dissociated and the H+ contribution might be reduced. Since hydrogen might
penetrate deeply into the surface due to its low mass, a reduction of the duty cycle
might help to decrease the plasma induced damage on surfaces. In a pure HBr
plasma, no H+ is observed. The reason for the (dis-)appearance of H+ is probably
linked to the different composition of the plasma and/or to the changed nature of
the reactor walls.
For pulsed mode, the IEDFs shows a high and a low energy peak, which corre-
spond to the ions from the on- and the off-time of the plasma, respectively. If the
duty cycle is reduced the total ion flux decreases linearly and the high energy peak
shifts to even higher energies. At the same time, the relative contribution from
the high energy peak to the total ion flux is strongly reduced, leading to an overall
decreased averaged ion energy.
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6.1.2. Impact of Plasma Pulsing on Silicon Etching

Reactive Etch Layer

With decreasing duty cycle, the REL thickness is reduced, which is linked to the
increased relative radical flux (compared to the ion flux) and the reduced mean
ion energy: Br radicals accumulate on the etch surface, also during the off-time,
and increase thereby the removal rate of amorphous silicon from the REL. The
lower ion energy decreases the amorphization rate of the silicon bulk. The new
balance between both processes leads to a reduced REL thickness. Therefore, by
pulsing the plasma, the surface damage is reduced with a simultaneous increase of
the TCER of silicon.

Etch Rates and Selectivity

The low dependence of the silicon etch rate on the ion energy (bias power) indicates
a rather radical limited etch regime. The higher TC radical flux at a reduced duty
cycle leads to an increase of the Si TCER. On the other hand, the lower sputtering
ability of the ions leads to decrease in SiO2 TCER. As a result, the selectivity
between Si and SiO2 is strongly enhanced. The TCER of αC is slightly increased,
probably for similar reasons as for silicon. Since the Si TCER evolves faster than
the αC TCER, the selectivity is also slightly increased.

Profile Etching

By reducing the duty cycle, the following profile evolution is observed:

1. The time compensated etch rate of silicon is enhanced due to an increased
availability of etch radicals.

2. The faceting of the carbon mask is reduced, which could be attributed to
the reduced physical sputtering. The lower consumption and faceting of the
oxide mask can be explained more easily since SiO2 is etched mostly by
physical sputtering, which is reduced for lower duty cycles.

3. The slope of the etched profile becomes more vertical. Similar to a decrease of
the oxygen flow, the formation of the sidewall passivation layer is minimized,
as explained below.

4. The difference between dense and isolated profiles is smaller. This might also
be linked to a reduced formation of the SPL, but also to a more homogeneous
distribution of neutral species like, e. g., O.

5. The broad trenches at high duty cycles (75 %) and in the CW mode might be
linked to the difference in the collection angle for depositing and oxidizing
species from the gas phase that inhibit the silicon etching. By reducing
the duty cycle less species are deposited and the O radical flux is reduced,
leading to the disappearance of the broad micro trenching. At low duty
cycles (. 20 %) a localized micro trenching appears, which could be due to
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the more vertical sidewalls that focus reflected ions on a very small area
combined with the increased etch yield per ion.

Summarized, the silicon TCER, the selectivity (towards SiO2 and αC) and the
homogeneity are enhanced. Moreover, the pattern profile can be controlled via the
SPL formation by the duty cycle without the drawbacks of an oxygen reduction
in the gas flow.
By increasing the frequency above a certain limit that depends on the duty cycle
the etch rate increases for both the silicon and the oxide hard mask, indicating
that possibly the ion energy is increased under these conditions. The reason for
this observation remains unclear.
A comparison with profiles of smaller dimension shows the same evolution with
changing duty cycle. However, the etch result at 1 kHz and 10 % duty cycle shows
a stronger micro trenching and a significantly bowed sidewall. The discrepancy is
attributed to the change in the mask layout, mask coverage and to the different
amounts of previously etched layer materials that could influence the reactor wall
coating.

Sidewall Passivation Layer

The SPL thickness is probably controlled by a combination of line-of-sight etch
product deposition and gas phase oxidation: non-volatile Si species adsorb on the
sidewalls and are subsequently oxidized by O radicals. Thus, without oxygen in
the gas mixture, the SPL thickness is strongly reduced due to the smaller amount
of oxygen radicals that can fix the deposited species on the sidewalls to build up
the SPL. By decreasing the duty cycle in an HBr/O2 plasma, a similar evolution is
observed. This might as well be linked to a reduced availability of oxygen radicals,
but also on a lower amount of non-volatile Si species. The latter is assumed
since more Br radicals are available during the etching to form volatile species
and less re-dissociation occurs during pulsing at low duty cycles. Surprisingly, the
SPL thickness almost only depends on the aspect ratio in the trenches and not
significantly on the exposure time.
The chemical composition of the SPLs support the assumed formation process. At
a duty cycle of 10 % and in CW mode without O2 the relative amount of oxygen
in the SPL is strongly reduced at high aspect ratios, possibly because of a very
limited O flux.
Similar to the effect of pulsing, the modification of the O2 flow in CW mode
can be used to obtain a thinner SPL. However, in CW mode, this layer does not
efficiently prevent lateral etch. Pulsing on the other hand can be used to obtain
almost vertical profiles in a highly selective process.
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6.1.3. Open Questions to be Investigated

The presented results from the investigation on pulsed HBr/O2 plasma etching of
silicon patterns have shown the impact of plasma pulsing on the gas phase and the
etched surface. Although most of the observed features can be explained, some
open questions remain and could be addressed in future experiments to verify the
proposed hypotheses:

1. What role does hydrogen play in the process and how does it
change with respect to the pulse parameters?
Since the only data on hydrogen is obtained from the RFA measurements, we
cannot give any definite statement on the role of hydrogen in the plasma and
how its density evolves with the pulse parameters. Thus, it seems necessary
to verify the experimental data and to find a way to measure the amount of
hydrogen in the plasma.

2. Is the amount of oxygen radicals in the plasma really reduced with
the duty cycle?
Compared to hydrogen, we have even less direct information on the oxygen
radical. Nevertheless, the presented results for the pattern etching indicate
a decrease of its density for lower duty cycles. This needs to be verified to
confirm the drawn conclusions.

3. How can we explain the influence of the frequency?
The reason for the impact of the pulse frequency on the gas phase and
the pattern etching remains unclear. One problem of the study of high
frequencies and low duty cycles is the increased difficulty of the impedance
matching that might affect the plasma properties.

6.2. General Characteristics of Pulsed Plasmas

Neutrals

By decreasing the duty cycle, the average input power is also reduced. This leads
to a reduction of the gas temperature and subsequently to a rise in the neutral
gas density if the pressure is held constant during the process. Consequently, the
total neutral flux towards the wafer will be increased. A similar effect might be
achievable by increasing the overall pressure or decreasing the source power, but
in these cases, the plasma characteristics will also change significantly.
At the same time, the averaged degree of dissociation is reduced. During the on-
time, the dissociation does not reach a constant value compared to the CW mode
if the frequency is high enough (∼ 1 kHz). During the off-time the dissociation
becomes negligible and only recombination and other loss processes occur. In low
pressure discharges most of the chemical reactions take place on the surface of the
reactor walls. Depending on the recombination rates and the sticking coefficients
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of the species on the surface, as well as on the temperature change of the plasma,
the average concentration of dissociation products can evolve differently compared
to the reduced duty cycle. In the present case, the Br radical density is observed
to remain constant at first for decreasing duty cycles while the oxygen radical
density might possibly decrease faster (in etch conditions) due to a high sticking
coefficient on the reactor walls.
Above a certain frequency of approximately 1 kHz, the modulation in the density
during a pulse becomes rather small for neutral species and average values can be
used to describe the plasma. This does not necessarily hold for ions since their
characteristic loss time is significantly smaller.

Ions

The ionization in a pulsed plasma only occurs during the on-time. Similar to
the dissociation, the ion density in the plasma needs a certain time to obtain a
constant value. During the off-time ions are lost to all the surfaces exposed to the
plasma (mainly the chamber walls). Hence, it is not surprising that the average
ion flux decreases more than proportionally to the duty cycle, as it was also found
for the HBr/O2 plasma. In this particular plasma, the ion flux at a frequency
of 1 kHz does not decrease to zero, even at a duty cycle of 10 %. The relative
contribution of the flux from the on-time to the total flux is also proportional to
the duty cycle. Consequently, the absolute ion flux from the on-time decreases
roughly by the square of the duty cycle.
During the off-time, the sheath between the wafer and the plasma collapses and
following ions have strongly reduced energies. Considering a plasma process with
applied bias power, the kinetic energy from ions during the on-time is increased
for lower duty cycles since the ion flux is reduced (see Eq. 1.4).
Hence, compared to CW mode, the majority of the ions have much lower energies
at reduced duty cycles while the few ions from the on-time have higher energies.
In average, the ion energy is significantly reduced.

Combined Effects

The strong decrease of the ion flux at lower duty cycle, especially of ions with high
energies, reduce the time compensated yield of physical sputtering (see Fig. 5.7).
At the same time, the time compensated radical flux increases (see Fig. 5.4 b).
Together, the character of the plasma etching becomes more chemical and less
physical, at least in the studied range of conditions.

Depending on the used gas chemistry the consequences of pulsing for the plasma
process can be different and have to be analyzed individually.
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6.3. Potential of Plasma Pulsing

6.3.1. Advantages of Pulsed Plasmas

Plasma pulsing offers new ways to improve existent etch processes and opens up
new domains of plasma etching. In comparison to the CW mode, pulsing (in the
analyzed parameter range) introduces several features:

1. Less plasma induced damage
2. Enhanced chemical character of the plasma process
3. Reduced average degree of dissociation
4. Lower plasma (gas) temperature at similar radical densities

Reduced Plasma Induced Damage

Plasma processes always induce surface damage like amorphization due to the
bombardment of ions that have energies equivalent to the floating sheath potential
(& 15 eV). By using pulsed plasmas the mean energy of the ions can be reduced
and less damage is inflicted, especially if no bias power is applied.

Enhanced Chemical Etching

The increased chemical component of the etching offers a possibility to etch highly
selectively between materials that are etched by different mechanisms, as it is the
case, e. g., for Si and SiO2 in the presented process chemistry. Moreover, since the
duty cycle can control the ratio of time compensated radical to ion flux in certain
processes, the change in chemical character can possibly be used to tune, e. g., the
sidewall passivation layer and consequently the pattern profiles.

Reduced Average Degree of Dissociation

Since the dissociation in pulsed plasmas only occurs during the on-time of the
plasma, the average dissociation is reduced in pulsed plasmas, affecting the etching
in various ways. In the here presented case, the reduced dissociation and deposition
can be used to control the pattern etch slope due to their influence on the thick-
ness of the sidewall passivation layer. For other processes in which the selectivity
between materials is achieved by selective deposition of radical molecules [173], a
reduced deposition rate could lead to selectivity loss.

Lower Plasma Temperature

At lower duty cycle, the plasma temperature is reduced. At the same time, we
have found that the average radical density does not change dramatically until a
certain duty cycle is reached. For heat sensitive surfaces that need to be exposed to
radical fluxes, pulsed plasmas could give an advantage, similar to plasma diffusion
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chambers. Thus, plasma pulsing can be used to render a standard etch chamber
to a more polyvalent tool.

6.3.2. Disadvantages of Plasma Pulsing

Several drawbacks have to be weighed against the advantages of pulsed plasmas
for each process of interest. First of all, the average etch rate usually decreases,
although this is not the case for all processes and pulse conditions [50]. Therefore,
plasma pulsing mainly targets damage sensitive processes where the etch rate is
only of minor importance, as it is the case, e. g., in over-etch processes.
One of the existing problems that also needs to be addressed in the future is the
difficulty to achieve a decent matching between the plasma impedance and the
power generator. Since the plasma has a very transient character, the impedance
matching network needs to adapt very fast. Several techniques have been devel-
oped so far, including an automatic sweep of the frequency of the power supply,
but nevertheless the usable duty cycles and frequencies are limited.

6.4. Outlook

This section discusses the application of the presented results in various plasma
processes and gives an outlook on the possibilities to improve plasma pulsing fur-
ther.

Possible Applications of Pulsed Plasmas

Based on the (dis-)advantages of plasma pulsing presented in the previous section,
some processes can be identified where, e. g., plasma induced damage needs to
be minimized. Petit-Etienne et al. [48] have demonstrated how the silicon recess
during gate etching of the transistor pattern can be reduced. "Silicon recess" is
the loss of silicon due to oxidation under a thin oxide etch stop layer. Another
possible application of pulsed plasmas is the damage free etch stop on a graphene
layer, which is of great interest for future graphene electronics.
Pulsed plasmas also offer a way to modify the chemical character of a plasma
process. This could be used to modify the formation of the passivation layer in
critical etch steps or to control precisely the change in pattern dimensions between
etch steps.

Embedded Pulsing

One way to further improve plasma pulsing might be the concept of embedded
pulsing. In this case, the bias power is applied just after the source power in each
pulse. Moreover, just before the source power is switched off, the bias power is
already cut off. The strong ion energy and the low ion flux from the beginning
in synchronous pulsing can be removed. Possibly, this could reduce the mean ion
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energy even more while the ion flux would not change considerably compared to
synchronous pulsing.





7. Conclusion

This Ph.D. thesis is focused on the impact of plasma pulsing on the etching charac-
teristics of silicon. Based on a model HBr/O2 plasma, the evolution of the plasma
properties, the plasma-surface interactions and the impact on the profile of etched
silicon patterns was presented with respect to pulsing at different frequencies and
duty cycles.

The characterization of plasma properties was accomplished by using various diag-
nostic systems, such as mass spectrometry, an ion energy probe, an ion flux probe,
and UV absorption spectroscopy. A complete protocol for reliable mass spec-
trometry measurements of ions and neutrals was developed, including reference
measurements for possible process drifts and a calibration for the mass dependent
transmission function.
The plasma-surface interactions were studied by X-ray photoelectron spectroscopy
(XPS). In addition to the analysis of the reactive etch layer (REL) on the wafer
surface, a new technique was developed, based on angle resolved XPS, to deter-
mine the profile of the sidewall passivation layer (SPL) and its composition on
silicon patterns. Depending on the detection angle, different areas of the sidewall
of patterned structures can be probed. Using two consecutive angles the composi-
tion and thickness of the SPL can be calculated for the additionally probed area.

The thesis is divided into three parts. The first part is focused on the impact
of the pulse parameters on an HBr/O2 plasma without bias power (no material is
etched). Mass spectrometry showed that mainly HBr and, to a small extent, also
Br2 contribute to the total neutral density. Hx and OHx could not be measured.
With lower duty cycle, the total density of neutrals increases, which is mainly at-
tributed to the decrease in gas temperature in pulsed plasmas. Furthermore, the
results indicate a decreased dissociation of the source molecules HBr and O2 with
lower duty cycle due to the lower time-averaged plasma power and the increased
time for recombination. In contrast to the duty cycle, the frequency has little
impact on the densities.
Mass spectrometry analysis of the ions show that the dominant ions are H3O+,
Br2

+, BrH0−2
+, Br2H0,1

+ and Br3
+ when no silicon is etched. The first two ion

species dominate the rest, although neutral HBr represents by far the most com-
mon neutral molecule in the plasma. By reducing the duty cycle, the percentage
of Br2

+ in the ion flux increases while the total ion flux decreases. Moreover, the
average ion flux from only the on-time of the plasma decreases even by approxi-
mately the square of the duty cycle, indicating that the amount of energetic ions
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per on-time can be decreased in pulsed plasmas.

In the second part, the impact of silicon etching on the plasma characteristics
is shown. The spectrum of neutrals detected by mass spectrometry is enlarged
compared to the case without bias power by etch products like atomic silicon or
molecular SiBrx. At a low duty cycle, more HBr is found, but less other molecules,
which can be explained by a reduced degree of dissociation and a lower etch rate.
For frequencies above approximately 1 kHz the modulation of the neutral density
during a pulse becomes small enough to compare time averaged values.
Compared to a plasma without bias, the composition of the ion flux, dominated by
SiBr+, Si+, SiBr3

+ and BrH0−2
+, shows many additional species that incorporate

silicon. Br3
+, on the other hand, is not detected any more and the percentage

of Br2
+ is almost negligible. Furthermore, retarding field analyzer measurements

indicate a great amount of H+ when oxygen is added to a pure HBr plasma. With
lower duty cycle the relative contribution of BrH0−2

+ increases while almost no
Si+ can be detected any more, indicating that almost all silicon is incorporated in
larger molecules. An increase in frequency, especially for low duty cycles, results
in a reduction of the total ion flux, similar to a further (slight) decrease in duty
cycle.
The IEDFs in pulsed mode show a high and a low energy peak, which correspond
to the ions from the on- and the off-time of the plasma, respectively. If the duty
cycle is reduced, the total ion flux decreases linearly, the high energy peak shifts
to higher energies and the relative contribution from the latter to the total ion flux
is reduced. This leads to a decrease of the mean ion energy, possibly reducing ion
induced surface damage.
With lower duty cycle the REL thickness decreases due to an increased availabil-
ity of radicals and a decreased mean ion energy. The frequency does not have a
significant influence on the REL thickness.

The last part of the thesis examines the impact of HBr/O2 plasma pulsing on
silicon pattern etching, which can be significantly altered by using synchronized
pulsing of source and bias power. By reducing the duty cycle, the following profile
evolution can be observed and explained:

1. The radical limited, time compensated etch rate of silicon is enhanced. An
increase of the time compensated radical flux leads to a net increase of rad-
icals available during the etching.

2. The faceting and consumption of the mask is reduced due to a decreased
physical sputtering.

3. The slope of the etched profile becomes more vertical due to a reduced for-
mation of the sidewall passivation layer (SPL). Its formation is controlled by
a combination of the deposition of highly sticking silicon etch products and
by a subsequent oxidation by O radicals from the gas phase, where the latter
plays the limiting role.
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4. The difference between dense and isolated profiles is smaller. This might be
linked to a reduced formation of the SPL, but also to a more homogeneous
distribution of neutral species like, e. g., O.

5. The broad trenches at high duty cycles and in the CW mode decrease. In
contrast, localized micro trenching in dense patterns occurs, especially at
lower duty cycles, which is linked to a localized focusing of reflected ions at
almost vertical sidewalls and to a higher ion sensitivity of the etch rate.

By increasing the frequency above a certain limit that depends on the duty cycle,
the etch rate increases for both the silicon and the oxide hard mask, indicating
that the ion energy is increased under these conditions. However, the reason for
this observation remains unclear.

Based on these results, general conclusions were presented on plasma pulsing:
e. g. the degree of dissociation and the mean ion energy are reduced at low duty
cycles.
Characteristics that offer an application in future processes are the decrease of
plasma induced damage, the enhanced chemical character, the reduced average
degree of dissociation and the lower plasma temperature. Possible applications
are damage sensitive processes like gate etching or the etch stop on graphene.





Conclusion en français

Dans le présent travail, nous avons étudié l’impact des plasmas pulsés sur les
caractéristiques de la gravure du silicium. Le rôle de la fréquence de pulsation
et du rapport cyclique sur l’évolution des propriétés du plasma, les interactions
plasma-surface et l’impact sur le profil des structures gravées dans le silicium ont
été présentés dans le cas d’un plasma model de HBr/O2.

La caractérisation des propriétés du plasma a été réalisée en utilisant divers sys-
tèmes de diagnostic, tels que la spectrométrie de masse, une sonde d’énergie des
ions, une sonde de flux d’ions, et la spectroscopie d’absorption UV. Un proto-
cole complet pour des mesures fiables de spectrométrie de masse pour les ions et
les neutres a été développé, comprenant des mesures de référence pour prendre
en compte les dérives éventuelles des mesures et un processus d’étalonnage pour
l’évaluation de la fonction de transmission qui dépend de la masse des espèces.

Les interactions plasma-surface ont été étudiées par la spectrométrie de photo
électrons des rayons X (XPS). En plus de l’analyse standard de la couche réactive
de la gravure sur la surface du substrat, une nouvelle technique a été développée
sur la base de l’XPS résolu en angle pour déterminer le profil et la composition de
la couche de passivation des flancs (SPL) des structures gravées dans le silicium.
Selon l’angle de détection, différentes parties de la paroi latérale des motifs peuvent
être sondées. En comparant l’analyse à deux angles consécutifs, la composition et
l’épaisseur de la SPL peuvent être calculées pour la partie qui est sondée entre ces
deux angles.

La thèse est divisée en trois parties. La première partie se concentre sur l’impact
des paramètres de modulation sur un plasma de HBr/O2 sans polarisation addi-
tionnelle du substrat (aucun matériau n’est gravé). La spectrométrie de masse
a montré que principalement HBr et, dans une moindre mesure, également Br2

contribuent à la densité totale des neutres. Les espèces Hx et OHx ne peuvent
pas être mesurées avec notre système du fait d’une alimentation du quadrupole
inadaptée ou d’un trop faible rapport signal sur bruit. Avec un rapport cyclique
bas, la densité totale des neutres augmente, ce qui est principalement attribué à
la diminution de la température moyenne du plasma. En outre, les résultats in-
diquent que la dissociation d’HBr et O2 diminue en raison de la puissance moyenne
réduite du plasma et de l’augmentation du temps de recombinaison. Contraire-
ment au rapport cyclique, la fréquence a peu d’impact sur la densité des espèces
neutres. L’analyse par spectrométrie de masse des ions montre que les ions domi-
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nant sont H3O+, Br2
+, BrH0−2

+, Br2H0,1
+ and Br3

+ si le silicium n’est pas gravé.
Les deux premières espèces dominent le reste, bien que HBr soit l’espèce neutre
de loin la plus présente dans le plasma. En réduisant le rapport cyclique, le pour-
centage de Br2

+ dans le flux d’ions augmente tandis que le flux d’ions total baisse.
De plus, le flux d’ions moyen provenant du temps ON diminue comme le carré du
rapport cyclique, ce qui indique que la quantité d’ions énergétiques par temps ON
est fortement réduite dans les plasmas pulsés à faibles rapports cycliques.

Dans la deuxième partie, l’impact de la polarisation du substrat et de la gravure du
silicium sur les caractéristiques du plasma est analysé. Le spectre des neutres dé-
tectés par spectrométrie de masse est fortement élargi lorsque le substrat est gravé.
Les produits de la gravure tels que le silicium atomique ou le SiBrx moléculaire
sont responsables de l’élargissement du spectre. Avec un rapport cyclique faible,
la proportion de HBr augmente, ce qui peut être expliqué par un taux de dissoci-
ation réduit et une vitesse de gravure plus faible. Pour les fréquences supérieures
à environ 1 kHz la modulation de la densité des neutres pendant une période de
pulse devient suffisamment petite pour pouvoir comparer les valeurs moyennes.
La composition du flux d’ions est dominée par SiBr+, Si+, SiBr3

+ et BrH0−2
+

lorsque le silicium est gravé, et de nombreuses autres espèces contenant du sili-
cium sont également présentes sous forme d’ions. L’ion Br3

+, d’autre part, n’est
plus détecté et le pourcentage de Br2

+ est presque négligeable.
En outre, les mesures de l’énergie des ions avec un analyseur électrostatique multi-
grilles indiquent une grande quantité de H+ lorsqu’on ajoute de l’oxygène à un
plasma de HBr. La contribution relative de BrH0−2

+ augmente tandis que les
ions Si+ ne sont presque plus détectés lorsque le rapport cyclique diminue, ce qui
suggère que la quasi-totalité du silicium gravé est incorporée dans des molécules
plus grandes. Une augmentation de la fréquence, en particulier pour des rapports
cycliques faibles, réduit le flux d’ions total, comme le ferait une (légère) diminution
du rapport cyclique.
Les fonctions de distribution de l’énergie des ions (IEDF) en mode pulsé montrent
deux pics à haute et à faible énergie qui correspondent respectivement aux ions
du temps ON et du temps OFF du plasma. Lorsque le rapport cyclique diminue,
le flux d’ions total diminue de façon proportionnelle, le pic de haute énergie se
déplace à des énergies plus élevées et la contribution relative de ce pic au flux total
est réduite. Ceci conduit à une diminution de l’énergie moyenne des ions, ce qui
peut réduire l’endommagement de la surface.
Avec un rapport cyclique faible, l’épaisseur de la couche réactive de la gravure
(REL) diminue en raison d’une disponibilité accrue de radicaux et d’une réduction
de la puissance déposée par les ions (énergie moyenne des ions plus faible). La
fréquence n’a pas une influence significative sur l’épaisseur de la REL.

La dernière partie de la thèse examine l’impact du plasma de HBr/O2 pulsé
sur la gravure des motifs de silicium qui peut être significativement modifiée par
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l’utilisation des plasmas synchronisés (source et polarisation). En réduisant le
rapport cyclique, l’évolution suivante du profil peut être observée et expliquée :

1. La vitesse de gravure du silicium en temps compensé, limitée par la disponi-
bilité des radicaux, augmente. Une augmentation du flux de radicaux en
temps compensé conduit à une augmentation nette de la quantité de radi-
caux disponibles lors de la gravure.

2. Le facettage et la consommation du masque sont réduits, ce qui est dû à une
diminution de la pulvérisation physique.

3. La pente des profils gravés devient plus verticale, ce qui est attribué à une
réduction de l’épaisseur de la couche de passivation sur les flancs. Sa forma-
tion est contrôlée par une combinaison du dépôt des produits de la gravure
de silicium avec une probabilité de collage très élevée et par une oxydation
ultérieure par des radicaux O de la phase gazeuse, ce dernier étant le facteur
limitant.

4. La différence entre les profils denses et isolés est réduite. Ceci est également
attribué à la réduction de l’épaisseur des couches de passivation, mais égale-
ment à une répartition plus homogène des espèces neutres comme l’oxygène
radicalaire.

5. Les micro-tranchées larges aux pieds des motifs, observées aux rapports cy-
cliques élevés et en plasma continu, sont réduites. Par contre, des micro-
tranchées très localisées se forment dans les motifs denses, en particulier à
des rapports cycliques faibles, ce qui est lié à la focalisation localisée des ions
réfléchis sur les flancs verticaux des tranchées, et à une plus forte sensibilité
de la vitesse de gravure aux ions.

En augmentant la fréquence au-dessus d’une certaine limite qui dépend du rap-
port cyclique, la vitesse de gravure augment à la fois pour le silicium et pour le
masque dur d’oxyde, indiquant que l’énergie des ions augmente dans ces condi-
tions. Cependant, la raison de cette observation reste incertaine.

Sur la base de ces résultats, des conclusions générales ont été présentées pour
les plasmas pulsés. Le taux de dissociation et l’énergie moyenne des ions sont
réduits lorsque le plasma est pulsé à faible rapport cyclique. La diminution
de l’endommagement provoqué par le plasma, le caractère chimique accru de la
gravure, le taux de dissociation moyen réduit et la réduction de la température du
plasma rendent les plasmas pulsés intéressant pour les procédés nécessitant une
gravure ayant un très faible impact sur les couches d’arrêt. Ceci peut être le cas
pour la gravure de la grille des transistors ou pour l’arrêt de la gravure sur des
couches très fines comme du graphène.
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A. Résumé en français

La réduction constante de l’échelle des circuits intégrés impose des exigences crois-
santes sur les procédés plasmas en termes d’homogénéité de gravure, de contrôle
dimensionnel des profils, d’endommagement des surfaces des matériaux à graver,
de vitesse de gravure et enfin de reproductibilité. L’endommagement induit en
surface devient notamment difficile à contrôler dans la mesure où les déformations
des profils et les altérations de surface deviennent de moins en moins tolérables.
Actuellement, les méthodes traditionnelles d’optimisation des procédés pour répon-
dre aux exigences croissantes atteignent leurs limites. De nouvelles stratégies pour
surmonter ces facteurs limitant sont nécessaires et des approches innovantes sont
en cours d’élaboration. L’une d’elles est l’utilisation de plasmas pulsés.

Dans le cadre de cette thèse un plasma de HBr/O2 pulsé dédié à la gravure du
silicium est étudié. Nous nous sommes focalisés sur l’impact des paramètres de
modulation, c’est à dire le rapport cyclique et la fréquence, sur les caractéristiques
du plasma, les interactions plasma-surface ainsi que sur les profils des motifs gravés.
Toutes les expériences sont réalisées dans une chambre de plasma à couplage in-
ductif commercialisée par Applied Materials et dédiée à la gravure des substrats
300 mm. Elle a été modifiée pour utiliser plusieurs systèmes de diagnostic in-situ,
et notamment la spectrométrie de masse des ions et des neutres, la spectrométrie
d’absorption UV, une sonde de flux d’ions, une sonde d’énergie des ions, et la
spectrométrie de photoélectrons des rayons X quasi in-situ. Les motifs gravés sont
caractérisés par microscopie électronique à balayage.

Le résumé suivant de la thèse présente les effets de pulser un plasma sur le procédé
étudié et présente les caractéristiques générales d’un plasma pulsé. En outre, les
avantages et désavantages de pulser les plasmas de gravure sont discutés. Finale-
ment, quelques perspectives pour les procédés pulsés sont données.
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A.1. La gravure du silicium en plasma de HBr/O2

pulsé

A.1.1. Impact de pulser le plasma sur la phase gazeuse

La composition du plasma dépend fortement du mélange des gaz, du matériau
gravé et des parois du réacteur. La différence majeure entre un plasma de HBr/O2

avec et sans polarisation additionnelle du substrat est la gravure du silicium dans
le premier cas. Dans cette situation, beaucoup de produits de gravure à base de
silicium sont créés et sont détectés dans la phase gazeuse sous forme d’espèces
neutres ou ionisées. Un grand nombre d’entre elles sont peu volatiles et peuvent
être redéposées sur les parois du réacteur en formant une couche fine. Ceci peut
changer les coefficients de collage et de recombinaison des espèces, ce qui conduit
à une modification de l’équilibre entre les radicaux et les molécules, ainsi qu’à une
modification du flux d’ions. Il faut donc garder ces changement en tête lorsqu’on
compare des conditions avec et sans polarisation additionnelle du substrat.

Neutres

Dans le cas d’un plasma de HBr/O2 sans polarisation du substrat, on observe prin-
cipalement les espèces HBr, Br2, Br et O2 par spectrométrie de masse (Fig. A.1).
Le dihydrogène (H2) semble fortement présent mais le rapport signal sur bruit
est trop faible pour obtenir des mesures valides. Ceci est également vrai pour
les espèces OHx. En réduisant le rapport cyclique, les densités de HBr et d’O2

augmentent alors que la quantité de Br et de Br2 reste plutôt constante pour des
rapports cycliques supérieurs à 20 % et diminue très significativement pour des
rapports cycliques plus faibles. La variation de la densité de HBr et O2 est prin-
cipalement expliquée par une diminution de la température du plasma. La plus
faible dissociation lorsque le plasma est pulsé, particulièrement à des rapports cy-
cliques faibles, participe également à l’augmentation de la densité de HBr et O2.

Lorsque le substrat est polarisé, plusieurs produits de gravure contenant du sili-
cium apparaissent dans le spectre de masse, notamment SiBr, SiBr3 et SiBr4. La
molécule SiBr suit une évolution similaire à celle de Br : pour un rapport cyclique
supérieur à environ 35-50 %, la densité reste constante, alors qu’elle baisse forte-
ment pour des rapports cycliques plus faibles. En général, plus le rapport cyclique
est faible, moins on observe d’espèces contenant du silicium, ce qui est attribué à
une réduction de la vitesse de gravure moyenne.

En outre, l’analyse des expériences de la gravure des motifs indique une quan-
tité réduite de l’oxygène radicalaire à des rapports cycliques faibles.
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Figure A.1.: Ensemble des densités de toutes les espèces neutres mesurés (a) à
une échelle absolue et (b) une échelle relative.

Ions

Le flux d’ions en plasma HBr/O2 sans polarisation du substrat est principalement
constitué de Br2

+ et de H3O+, et dans une moindre mesure de BrH0−2
+ et de

Br3
+ (Fig. A.2). L’attachement des protons semble jouer un rôle important dans

la formation de plusieurs des espèces observées.
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Figure A.2.: (a) Flux total d’ions d’un plasma HBr/O2 sans polarisation du sub-
strat et (b) sa composition relative.
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Lorsque le substrat est polarisé, le plasma contient beaucoup d’ions additionnels
contenant au moins un atome de silicium. En revanche, Br3

+ n’est plus détecté.
La contribution majoritaire au flux d’ions vient de SiBr+, Si+, SiBr3

+ et BrH0−2
+

(Fig. A.3). Contrairement à un plasma sans polarisation du substrat, le pourcent-
age de Br2

+ est faible. Ceci peut être expliqué par des conditions de parois du
réacteur différentes qui influencent la composition globale du plasma. Avec un
rapport cyclique plus faible, la contribution relative de BrH0−2

+ au flux d’ions
augmente. En même temps Si+ n’est presque plus détecté à des rapports cycliques
très faibles. Ceci semble indiquer que le silicium est principalement incorporé dans
des molécules plus larges. De plus, la diminution de la vitesse de gravure moyenne
du silicium à faible rapport cyclique réduit également sa présence globale dans le
plasma.
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Figure A.3.: (a) Flux total d’ions d’un plasma HBr/O2 AVEC polarisation du
substrat et (b) sa composition relative.

La fonction de distribution de l’énergie d’ions (IEDF) dans le plasma de HBr/O2,
mesurée par un analyseur électrostatique multi-grille (RFA) situé sur le substrat de
silicium et montré en Fig. A.4, présente un double caractère bi-modal. Ceci indique
qu’un flux significatif de H+ arrive sur le substrat, ce qui n’est pas détecté proche
des paroirs du réacteur en spectrométrie de masse. Par conséquent, une des espèces
ionisées majoritaires dans le plasma HBr/O2 qui contribue à la gravure du silicium
est le proton H+. En réduisant le rapport cyclique, moins de HBr est dissocié et la
contribution de H+ pourrait donc être réduite. En raison de sa masse très faible,
l’ion hydrogène peut pénétrer profondément dans la surface gravée et endommager
profondément le matériau. Une réduction du rapport cyclique pourrait alors aider
à diminuer l’endommage de la surface en réduisant le flux de protons. Dans un
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plasma de HBr pur, H+ n’est pas observé. Cette différence est probablement liée à
la composition différente du plasma et/ou à la différence de conditions des parois
du réacteur.
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Figure A.4.: La fonction de distribution de l’énergie d’ions (IEDF) (a) d’un plasma
de HBr/O2 et (b) d’un plasma de HBr en continu AVEC polarisation.

Dans le mode pulsé les IEDFs montrent un pic de haute et de basse énergie, qui
correspondent respectivement aux ions des temps ON et OFF de la période de
pulsation du plasma (Fig. A.5). Lorsque le rapport cyclique est réduit, le flux
ionique total diminue proportionnellement au rapport cyclique et le pic de haute
énergie se déplace vers les énergies plus élevées. La contribution relative des ions
de la période ON au flux total est fortement réduite lorsque le rapport cyclique
diminue, ce qui conduit à une énergie moyenne des ions plus faible.
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Figure A.5.: (a) L’IEDFs d’un plasma pulsé de HBr/O2 à 1 kHz AVEC polarisa-
tion. (b) Flux total d’ions, flux d’ions de haute énergie et énergie moyenne des
ions de haute énergie.

A.1.2. Impact de pulser sur la gravure du silicium

Couche réactive à la surface du matériau gravée

Avec un rapport cyclique faible, l’épaisseur de la couche réactive à la surface du
matériau gravé (REL) diminue, ce qui est montré en Fig. A.6. Ceci est lié au flux
de radicaux élevé en temps compensé (c’est-à-dire par rapport au temps ON du
plasma) et à une énergie déposée par les ions plus faible. Les radicaux de Br
s’accumulent sur la surface gravée pendant le temps ON, mais également pendant
le temps OFF de la période de pulsation du plasma. Ainsi le taux de gravure
chimique du silicium amorphe de la REL augmente. La diminution de l’énergie
déposée par les ions implique un taux d’amorphisation du silicium plus faible. Le
nouvel équilibre entre les deux processus conduit à une réduction de l’épaisseur
de la REL, ce qui correspond à une surface moins endommagée. Pour la même
raison, la vitesse de gravure en temps compensé peut augmenter lorsque le plasma
est pulsé à de faibles rapports cycliques.
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Figure A.6.: (a) Composition chimique du signal d’XPS (à 46.25◦) de la couche
réactive à la surface du matériau gravée pour des rapports cycliques (à 1 kHz) et
(b) des fréquences (à un rapport cyclique de 20 %) variés. Un signal relatif plus
élevée du silicium indique une couche réactive plus fine.

Vitesse de gravure et sélectivité

La dépendance faible de la vitesse de gravure du silicium avec l’énergie des ions
(liée à la puissance de la polarisation du substrat) indique un régime de gravure
limitée par la disponibilité des radicaux. Le plus grand flux de radicaux (par
rapport au temps de la période ON du plasma) à des rapports cycliques réduits
implique une augmentation de la vitesse de gravure du silicium en temps compensé,
ce qui est montré en Fig. A.7. En revanche, la diminution du flux d’ions à forte
énergie conduit à une diminution de la vitesse de gravure du SiO2 en temps com-
pensé (Fig. A.8). La gravure du carbone amorphe en temps compensé augmente
légèrement, probablement pour la même raison que pour le silicium (disponibilité
de radicaux accrue). Puisque la gravure de silicium évolue plus rapidement que
celle du carbone amorphe, la sélectivité augmente légèrement.
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Figure A.7.: (a) Vitesse de la gravure en temps compensé de poly-silicium pour
des rapports cycliques variés. (b) Flux de Br radicalaire en temps compensé.
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Figure A.8.: (a) Vitesse de la gravure en temps compensé de SiO2 (matériau du
masque) pour des rapports cycliques variés. (b) L’évolution approximée de la
pulverisation par rapport à un plasma continu (100 %). Ce calcul est basé sur le
flux d’ions de haute énergie et son énergie moyenne.
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Gravure des motifs

Lorsque des motifs de silicium sont gravés en utilisant un plasma pulsé (Fig. A.9),
nous avons les évolutions suivantes lorsque le rapport cyclique diminue :

Figure A.9.: Gravure des motifs en silicium dans un plasma pulsé de HBr/O2.

1. La vitesse de gravure de silicium en temps compensé augmente, ce qui est
dû à une plus grande disponibilité des radicaux nécessaires pour la gravure.

2. Le facettage du masque en carbone amorphe diminue, ce qui est en contradic-
tion avec les mesures de la gravure des substrats sans motifs. La différence
peut être liée à la couverture réduit de carbone amorphe sur le substrat
avec de motifs et en conséquence à une modification de la chimie du plasma.
La réduction de la consommation et du facettage du masque en SiO2 peut
s’expliquer plus facilement car la gravure du SiO2 nécessite une forte assis-
tance ionique qui est réduite à faible rapport cyclique.

3. La pente des motifs gravés devient plus verticale. Comme la densité d’oxygène
dans le réacteur diminue à faible rapport cyclique, des couches de passiva-
tion plus fines se forment sur les flancs des motifs. Ceci sera expliqué plus
en détail dans la suite.

4. La différence entre les profiles denses et isolés est minimisée. Ceci peut
s’expliquer par des couches de passivation plus fines, mais également par
une meilleure répartition des espèces neutres telles que l’oxygène radicalaire
lorsque le plasma est pulsé.

5. Les micro-tranchées larges localisées près des pieds des motifs, observées en
plasma continu et en plasma pulsé à fort rapport cyclique, pourraient être
liées à la différence de flux d’espèces ralentissant la gravure en fonction de la
distance du pied. En s’éloignant du pied de la structure, l’angle de collection
des espèces du plasma augmente. Par conséquent, si des espèces ralentissant
la gravure proviennent de la phase gazeuse du plasma, la vitesse de gravure
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diminue lorsqu’on s’éloigne du pied des motifs, ce qui forme de larges micro-
tranchées près des motifs. En réduisant le rapport cyclique, moins d’espèces
sont déposées et ces larges miro-tranchées disparaissent. Lorsque le rapport
cyclique est très faible (<20 %) des micro-tranchées localisées apparaissent,
ce qui peut être lié aux flancs des motifs plus verticaux qui focalisent les ions
réfléchis très localement au pied des motifs, ce qui crée une micro-tranchée
localisée au pied du motif. De plus, la vitesse de gravure est plus sensible
au flux d’ions lorsque le plasma est pulsé à faible rapport cyclique (gravure
de plus en plus limitée par les ions), ce qui favorise la formation de micro-
tranchées dans les zones ou le flux d’ions est focalisé.

En résumant, la vitesse de gravure en temps compensé, la sélectivité par rapport au
SiO2 et l’homogénéité de la gravure sont améliorées lorsque le plasma est pulsé. De
plus, le profil des motifs gravés peut être contrôlé par le rapport cyclique en mod-
ifiant la formation de la SPL sans les désavantages d’une baisse du flux d’oxygène
en mode continue.

En augmentant la fréquence au-dessus d’une certaine limite qui dépend du rap-
port cyclique, la vitesse de gravure augmente à la fois pour le silicium et pour
le masque dur d’oxyde, indiquant que l’énergie des ions augmente probablement
dans ces conditions. Cependant, la raison de cette observation reste incertaine.

Une comparaison avec des motifs de plus petites dimensions montre la même
évolution avec le rapport cyclique. Cependant, les résultats de la gravure à
1 kHz 10 % montrent des micro-tranchées très importantes et des flancs significa-
tivement courbés. La différence peut être attribuée au changement de masque.
En effet, l’épaisseur des couches nécessaires pour ouvrir le masque de gravure est
réduite, ce qui conduit à une évolution différente des couches formées sur les parois
des réacteurs pendant les procédés nécessaires à l’ouverture du masque. De plus,
les plaques avec des motifs de silicium présentent un taux d’ouverture plus faible
(rapport entre la surface du silicium à graver et la surface total de la plaque) que
les plaques avec des motifs plus larges, ce qui change également la composition du
plasma de gravure.



A.1. La gravure du silicium en plasma de HBr/O2 pulsé 145

Couche de passivation sur les flancs

L’épaisseur de la SPL, montrée en Fig. A.10, est probablement contrôlée par une
combinaison de la déposition des produits non-volatiles de la gravure à base de sili-
cium en ligne de mire et de l’oxydation de ces produits par les radicaux d’oxygène
provenant de la phase gazeuse. Ces espèces déposées sur les flancs peuvent alors
désorber spontanément ou être re-gravées par le brome radicalaire provenant du
plasma. Si au contraire, elles sont oxydées par l’oxygène radicalaire provenant
du plasma, elles se fixent sur les flancs et forment une couche de passivation em-
pêchant la gravure latérale des motifs.

En l’absence d’oxygène dans le mélange de gaz, l’épaisseur de la SPL diminue
fortement, ce qui est probablement lié à la diminution de la quantité de radicaux
d’oxygène qui peuvent fixer les espèces peu volatiles déposées sur les flancs pour
former la SPL.

En réduisant le rapport cyclique une évolution similaire peut être observée. Ceci
peut s’expliquer par une diminution de la quantité de radicaux d’oxygène disponibles
pour l’oxydation, mais également par une réduction de la quantité d’espèces peu-
volatiles à base de silicium qui se déposent sur les flancs. En effet, plus de radicaux
de brome sont disponibles pendant la gravure lorsque le plasma est pulsé à faible
rapport cyclique, ce qui permet de former des produits de gravure plus volatils.
De plus, la dissociation des produits volatils de gravure dans le plasma est réduite,
ce qui limite fortement la formation d’espèces de faible volatilité dans le plasma
susceptibles de coller sur les flancs. Nous avons remarqué que l’épaisseur de la
couche de passivation sur les flancs dépend uniquement du rapport d’aspect dans
les motifs et pas du temps d’exposition au plasma.
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Figure A.10.: Epaisseur moyenne de la couche de passivation sur les flancs des
motifs gravés dans un plasma pulsé de HBr/O2 avec des rapports cycliques variés
et en mode continue avec et sans O2.

La composition chimique des couches de passivation montre un rapport constant
entre Si et Br avec une fraction varié de l’oxygène (Fig A.11), ce qui indique que
le processus de formation de la SPL reste comparable dans toutes les conditions.
Lorsque le plasma est pulsé avec un rapport cyclique de 10 %, ou lorsque le plasma
opère en mode continue sans flux d’oxygène, la quantité relative de l’oxygène dans
la SPL est fortement réduite pour des rapports d’aspects très importants, ce qui
est attribué à un flux de radicaux d’oxygène trop faible. Dans ce dernier cas,
les motifs présentent des flancs courbés, du fait d’une couche de passivation trop
fine pour empêcher la gravure latérale. On peut donc noter que la modification
du flux d’O2 en mode continue peut être utilisée pour obtenir une SPL avec une
épaisseur plus fine. Néanmoins, le procédé est très sensible au flux d’oxygène,
et cette solution conduirait à des risques en termes de stabilité du procédé, et
probablement à une uniformité de gravure moins bonne. De plus, nous avons vu
qu’en plasma continu avec une quantité d’oxygène intermédiaire, nous ne pouvions
pas empêcher la gravure latérale avec des couches de passivation trop fine, du fait
de la forte densité de radicaux très réactifs dans le plasma, et du fait de la déflection
des ions par les charges différentielles sur le masque, qui conduit à une pulvérisation
de cette fine couche de passivation et à une gravure latérale en plasma continu. En
plasma pulsé, la densité de radicaux réactifs est fortement réduite, et les charges
différentielles sont neutralisées pendant le temps OFF du pulse, ce qui permet
d’obtenir des flancs pratiquement verticaux avec des couches de passivation très
fines.
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Figure A.11.: Composition chimique moyenne de la couche de passivation sur les
flancs des profils pour des rapports cycliques différents.



148 A. Résumé en français

A.1.3. Questions ouvertes

Les résultats présentés précédemment concernent l’étude de la gravure des motifs
de silicium à base de plasma de HBr/O2 pulsés. Ils ont montré l’impact de la
modulation du plasma sur la phase gazeuse et sur la surface du matériau gravé.
Bien que la plupart des observations puisse être expliquée, quelques questions
restent ouvertes et pourraient être étudiées dans des expériences futures afin de
vérifier les hypothèses proposées :

1. Quel rôle joue l’hydrogène dans le procédé et comment se comporte-
il par rapport aux paramètres de la modulation ?
L’hydrogène est une espèce particulièrement difficile à analyser car elle n’est
pas détectée par XPS, et car notre spectromètre de masse n’est pas adapté
pour sa détection. Au cours de nos expériences, nous avons observé par RFA
que lorsque le plasma contient de l’O2, le flux d’ions sur la plaque augmente
fortement et contient des ions H+. Les mesures de flux d’ions sur les parois
ne montrent pas cette augmentation du flux d’ions avec l’ajout d’oxygène, ce
qui semble contradictoire. Même si certains mécanismes comme le détache-
ment d’un proton en entrant dans la gaine suite à la collision avec un électron
secondaire pourraient expliquer ce phénomène, une étude plus poussée est
nécessaire pour comprendre ce mécanisme. Le rôle de l’hydrogène sur la
gravure reste donc aujourd’hui très spéculatif et une technique de mesure de
l’hydrogène serait intéressante.

2. Est-ce que la quantité d’oxygène radicalaire diminue vraiment avec
le rapport cyclique ?
Les expériences réalisées pendant cette thèse concordent à indiquer que la
densité d’oxygène radicalaire diminue avec le rapport cyclique. Cependant,
la diminution de la densité d’oxygène radicalaire n’a pas été directement
observée. Il serait donc intéressant de confirmer cette hypothèse par une
mesure directe de la densité d’oxygène, par exemple en utilisant la spectro-
scopie d’absorption dans le V-UV.

3. Comment pouvons-nous expliquer l’influence de la fréquence ?
La caractérisation du plasma, comme l’étude des motifs gravés, montre qu’à
forte fréquence, à un rapport cyclique critique (qui dépend de la fréquence),
le plasma évolue avec la fréquence. Pour des rapports cycliques plus forts
(>20 %) ou à faible fréquence (<quelques kHz), la fréquence de pulsation
n’a pas d’impact significatif. L’origine de cette évolution reste floue. La
difficulté d’accorder le plasma à forte fréquence et faible rapport cyclique
rend l’étude difficile, et peut également être à l’origine de cette évolution si
les évolutions observées proviennent plus d’un problème d’accord du plasma
que d’une évolution du plasma.
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A.2. Caractéristiques générales des plasma pulsés

Les observations réalisées dans le cadre d’un plasma de HBr/O2 pulsé pour la
gravure du silicium peuvent être partiellement généralisées pour d’autres types de
plasmas, et pour d’autres matériaux à graver.

Neutres

En diminuant le rapport cyclique, la puissance moyenne injectée dans le réacteur
est réduite. Ceci conduit à une réduction de la température du gaz et, par con-
séquent, à une augmentation de la densité totale des neutres si la pression reste
constant pendant le processus. Ainsi, le flux total des espèces neutres vers le
substrat gravé va également augmenter. Un effet similaire pourrait être atteint
par une augmentation de la pression totale ou par une réduction de la puissance
injectée dans le plasma. Cependant, les propriétés du plasma seraient également
significativement modifiées.

Le taux de dissociation moyen est également réduit lorsque le rapport cyclique
diminue. Pendant le temps ON du plasma, la dissociation n’atteint pas une valeur
constante (en comparant au mode continue) si la fréquence est assez élevée (∼ 1
kHz). Pendant le temps OFF du plasma, la dissociation devient négligeable et
seulement la recombinaison et d’autres mécanismes de perte se déroulent. Dans
les plasmas à basse pression, la plupart des réactions chimiques ont lieu sur la
surface des parois du réacteur. L’évolution de la concentration moyenne des pro-
duits de dissociation avec le rapport cyclique dépend du taux de dissociation et
de recombinaison et des coefficients de collage de l’espèce sur la surface, ainsi que
du changement de température du plasma. Par exemple, dans le cas d’un plasma
de HBr/O2, la densité du radical Br reste constante pour des rapports cycliques
supérieurs à 50 %, mais chute brutalement pour des rapports cycliques inférieurs
à 20 %. Au contraire, la densité du radical O semble diminuer plus rapidement,
ce qui est dû à un coefficient de collage très élevé de l’oxygène radicalaire sur les
parois du réacteur.

Au dessus d’une fréquence d’environ 1 kHz, la modulation de la densité pendant
la période de pulsation devient assez faible pour les espèces neutres et des valeurs
moyennes peuvent être utilisées pour caractériser le plasma.
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Ions

L’ionisation dans un plasma pulsé se déroule uniquement pendant le tempts ON du
plasma. De même que pour la dissociation des espèces neutres, la densité des ions
dans le plasma a besoin d’un certain temps pour atteindre une valeur constante.
Pendant le temps OFF les ions sont perdus rapidement sur les surfaces (plaque
à graver et parois du réacteur). Par conséquent, il n’est pas surprenant que le
flux d’ions moyen diminue plus que proportionnellement avec le rapport cyclique,
comme observé dans le plasma HBr/O2. Dans ce cas particulier, à une fréquence
de pulsation de 1 kHz, le flux d’ions ne diminue pas à zéro, même pour un rapport
cyclique de 10 %. La contribution relative des ions de la période ON du plasma au
flux d’ions total est également environ proportionnelle au rapport cyclique. Par
conséquent, le flux moyen des ions provenant du temps ON diminue plus qu’au
carré du rapport cyclique.

Pendant la période OFF, la gaine entre le substrat et le plasma s’effondre et
les ions qui arrivent sur le substrat ont des énergies fortement réduites. Pour un
plasma pulsé de façon synchronisée, pour une puissance de polarisation donnée, la
diminution du flux d’ions en plasma pulsé conduit à une augmentation de l’énergie
des ions pendant le temps ON. Au contraire, l’énergie des ions provenant du temps
OFF du plasma est très faible (inférieure au potentiel plasma d’un plasma con-
tinu). Pour cette raison, lorsque le plasma est pulsé avec un rapport cyclique
faible, la majorité des ions ont des énergies beaucoup plus faible que celle obtenue
en plasma continue, alors que peu d’ions (de la période ON) ont des énergies plus
élevées. En moyenne, l’énergie des ions est donc significativement réduite.

Effets combinés

La forte diminution du flux d’ions avec le rapport cyclique, notamment des ions à
forte énergie, réduit considérablement le rendement de pulvérisation physique en
temps compensé. En parallèle, le flux des radicaux en temps compensé augmente.
La combinaison des deux effets conduit à une gravure plus chimique lorsque le
plasma est pulsé, et à une réduction de la composante physique de la gravure.

Les tendances présentées ci-dessus sont des tendances générales qui donnent des
indications sur l’évolution de la densité des neutres et sur l’évolution du flux
d’ions avec le rapport cyclique lorsque le plasma est pulsé. Cependant, ces évo-
lutions dépendent fortement du mélange de gaz utilisé et du matériau gravé, et
chaque procédé doit être analysé de façon individuelle et approfondie pour con-
naitre l’évolution exacte du flux d’ions et de la densité des espèces neutres lorsqu’il
est pulsé.
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A.3. Applications potentielles des plasmas pulsés

A.3.1. Avantages des plasmas pulsés

L’utilisation des plasmas pulsés offre des nouveaux paramètres de contrôle pour
améliorer les procédés de gravure existant et pour rendre accessible de nouveaux
régimes de la gravure. En comparaison avec le mode continue, pulser un plasma
présente plusieurs avantages :

1. Moins d’endommagement par le plasma du fait de la réduction du flux d’ions
de forte énergie.

2. Une caractère chimique du procédé de gravure plasma plus important
3. Une réduction du taux de dissociation moyen
4. Une réduction de la température du plasma

Endommagement réduit par le plasma

L’utilisation d’ions énergétiques pendant la gravure par plasma provoque toujours
l’endommagement de la surface du matériau gravé. L’extrême surface est amor-
phisée, et mélangée avec les espèces du plasma neutres et avec les ions du plasma
qui peuvent s’implanter à la surface. L’énergie des ions dans un plasma en mode
continu est au minimum égale au potentiel plasma (>15 eV). En utilisant des plas-
mas pulsés, l’énergie moyenne des ions peut être réduite à une valeur inférieure
au potentiel plasma d’un plasma continu, ce qui réduit l’endommagement de la
surface des matériaux exposés au plasma.

Gravure chimique plus importante

Lorsque le plasma est pulsé à une fréquence de l’ordre du kHz, le flux de radicaux
sur la surface est presque constant. Par conséquent, le flux de radicaux pendant
le temps OFF du plasma peut participer à la gravure, et augmenter le caractère
chimique de la gravure. Même si la densité de radicaux diminue lorsque le plasma
est pulsé, la contribution du temps OFF peut compenser cette diminution de la
densité et augmenter le flux de radicaux vers la surface en temps compensé (flux
de radicaux divisé par le rapport cyclique). Lorsque deux matériaux présentent
des mécanismes de gravure différents, comme c’est le cas pour silicium et SiO2

dans un plasma HBr/O2, l’augmentation du caractère chimique de la gravure par
plasma peut conduire à une très forte augmentation de la sélectivité.
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Réduction du taux de dissociation

La dissociation du plasma a lieu pendant le temps ON du plasma, alors que la
perte des radicaux (recombinaisons, collage, pompage) a lieu pendant toute la
période de pulsation. Par conséquent, le taux de dissociation moyen est réduit
dans les plasmas pulsés. Ceci peut avoir différents effets sur la gravure. Dans
le cas présent, la réduction de la dissociation diminue le flux d’oxygène vers la
surface, et diminue le flux d’espèces peu volatiles à base de silicium. Le dépôt
des couches de passivation qui contrôle la pente de gravure des motifs est donc
fortement réduit, ce qui réduit l’épaisseur de la couche de passivation sur les flancs
et conduit à des profils plus verticaux et plus homogènes. Pour d’autres procédés,
pour lesquels la sélectivité de gravure entre deux matériaux est atteinte par la
déposition sélective des molécules radicalaires [173], un taux de déposition réduit
peut conduire au contraire à une perte de la sélectivité.

Réduction de la température du plasma

L’absence de puissance injectée dans le plasma pendant le temps OFF réduit la
température du gaz. Cette réduction de la température, à pression constante,
conduit à une augmentation de la densité des espèces neutres. Dans le cas d’un
plasma de HBr/O2, nous avons montré que la densité moyenne des radicaux ne
change pas considérablement tant que le rapport cyclique est supérieur à 50 %.
Pour des surfaces qui sont sensibles à la température et qui doivent être exposées à
un flux de radicaux, les plasmas pulsés peuvent être utilisés à la place des réacteurs
plasmas de diffusion. Ainsi, l’utilisation des plasmas pulsés peut permettre de
rendre un réacteur plasma standard plus polyvalent.
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A.3.2. Désavantages des plasmas pulsés

Naturellement, les plasmas pulsés n’ont pas que des avantages. Pour chaque
procédé plasma, plusieurs inconvénients doivent être considérés en regard des avan-
tages. Tout d’abord, la vitesse de gravure moyenne diminue généralement. Ceci
n’est cependant pas automatique, puisque plusieurs études ont reporté une aug-
mentation de la vitesse de gravure en pulsant le plasma. [50]. La pulsation des
plasmas cible plutôt des procédés qui sont sensible à l’endommagement et dans
lesquels la vitesse de gravure est d’une importance mineure, comme c’est le cas
pour les étapes de "sur-gravure" qui sont utilisées pour finir la gravure de la grille
des transistors en s’arrêtant sur l’oxyde de grille.

Un autre problème qui doit être adressé dans le futur est la difficulté d’obtenir une
bonne adaptation d’impédance du générateur de puissance avec celle du plasma.
Puisque le plasma a un caractère très transitoire, le réseau de la boite d’accord
de l’impédance doit s’adapter très rapidement, ce qui est impossible du fait de
l’utilisation de pièces mobiles. Pour résoudre ce problème, plusieurs techniques
sont déjà développées, y compris un changement automatique de la fréquence du
générateur de puissance. Néanmoins, les rapports cycliques et les fréquences de
pulsation utilisables restent limités.
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A.4. Perspectives

Etant donnés les avantages et inconvénients de la pulsation des plasmas présentés
dans la partie précédente, quelques procédés de gravure susceptibles de bénéficier
des plasmas pulsés peuvent être identifiés.

Petit-Etienne et al. [48] ont démontré comment le "silicon recess" peut être ré-
duit pendant la gravure de la grille d’un transistor. Le "silicon recess" est la
consommation de silicium par oxydation sous l’oxyde de grille pendant la fin de la
gravure de la grille du transistor. La diminution du flux d’ions énergétiques, et la
modification de la composition du flux d’ion (ions plus moléculaires et plus lourds
et donc plus lents pour une même énergie) conduisent à une plus faible pénétration
des espèces sous l’oxyde de grille, et donc à une plus faible oxydation du silicium
sous l’oxyde.

Une autre application possible des plasmas pulsés est l’arrêt sans endommagement
de la gravure sur une couche de graphène, ce qui pourrait être d’un fort intérêt
pour l’électronique du futur à base de graphène. Ceci n’a pas encore été testé,
mais des études en plasma de chlore sur silicium ont montré que l’amorphisation
de l’extrême surface du silicium était très fortement réduite en pulsant le plasma à
faible rapport cyclique. Une vitesse de gravure permettant un contrôle atomique
(0.2 nm/min) a ainsi pu être obtenu [174].

Le meilleur contrôle des couches de passivation en plasma pulsé offre également
une application potentielle pour les étapes de gravure critiques nécessitant un con-
trôle dimensionnel parfait. C’est notamment le cas pour la gravure des grilles de
transistor, du canal des transistors dans le cas de transistors 3D (fin FET), ou
encore pour la gravure des espaceurs utilisés pour contrôler le dopage ou dans les
stratégies de double patterning.

Même si l’utilisation de plasmas synchronisés pulsés présente de nombreux in-
térêts et applications, une nouvelle stratégie de pulsation appelée "embedded puls-
ing" semble très prometteuse. Le concept est de pulser la source du plasma et
la polarisation du substrat avec un rapport cyclique différent. Ainsi, il est pos-
sible de démarrer le plasma, puis la polarisation quelques dizaines ou centaines
de microsecondes après que le plasma ait démarré. Ceci réduit les risques de pics
d’énergie des ions. Ce type de plasma pourrait alors être utilisé pour réduire encore
plus le risque d’endommagement des surfaces exposées aux plasmas de gravure.
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