
HAL Id: tel-00819414
https://theses.hal.science/tel-00819414

Submitted on 1 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmes itératifs à faible complexité pour le codage
de canal et le compressed sensing

Ludovic Danjean

To cite this version:
Ludovic Danjean. Algorithmes itératifs à faible complexité pour le codage de canal et le compressed
sensing. Théorie de l’information [cs.IT]. Université de Cergy Pontoise, 2012. Français. �NNT : �.
�tel-00819414�

https://theses.hal.science/tel-00819414
https://hal.archives-ouvertes.fr


Ph.D. THESIS
presented to

Université de Cergy-Pontoise
École Doctorale Sciences et Ingénierie

to obtain the title of

Doctor of Science of the University of Cergy-Pontoise
Specialty: Sciences and Technologies of Information and Communication

Defended by

Ludovic DANJEAN

Low-Complexity Iterative Algorithms for
Channel Coding and Compressed Sensing

prepared at
Équipes Traitement de l’Information et Systèmes (ETIS) - UMR 8051

ENSEA - Université de Cergy-Pontoise - CNRS

and
Signal Processing and Coding Lab

Department of Electrical and Computer Engineering - University of Arizona

defense date: November 29, 2012

Jury:

President: Prof. Pierre Duhamel LSS - SUPELEC, France
Reviewer: Assoc. Prof. Alexandre Graell Chalmers University, Sweden
Reviewer: Prof. Charly Poulliat INP - ENSEEIHT, France
Examinator: Dr. Vincent Gripon Télécom Bretagne, France
Advisor: Prof. David Declercq ETIS/ENSEA-UCP-CNRS, France
Advisor: Prof. Bane Vasic University of Arizona, USA





Résumé
L’utilisation d’algorithmes itératifs est aujourd’hui largement répandue dans tous les
domaines du traitement du signal et des communications numériques. Dans les sys-
tèmes de communications modernes, les algorithmes itératifs sont utilisés dans le dé-
codage des codes “low-density parity-check“ (LDPC), qui sont une classe de codes
correcteurs d’erreurs utilisés pour leurs performances exceptionnelles en terme de taux
d’erreur. Dans un domaine plus récent qu’est le “compressed sensing“, les algorithmes
itératifs sont utilisés comme méthode de reconstruction afin de recouvrer un signal
”sparse“ à partir d’un ensemble d’équations linéaires, appelées observations. Cette
thèse traite principalement du développement d’algorithmes itératifs à faible complex-
ité pour les deux domaines mentionnés précédemment, à savoir le design d’algorithmes
de décodage à faible complexité pour les codes LDPC, et le développement et l’analyse
d’un algorithme de reconstruction à faible complexité, appelé ”Interval-Passing Algo-
rithm (IPA)”, dans le cadre du “compressed sensing“.

Dans la première partie de cette thèse, nous traitons le cas des algorithmes de dé-
codage des codes LDPC. Il est maintenu bien connu que les codes LDPC présentent
un phénomène dit de ”plancher d’erreur“ en raison des échecs de décodage des algo-
rithmes de décodage traditionnels du types propagation de croyances, et ce en dépit de
leurs excellentes performances de décodage. Récemment, une nouvelle classe de dé-
codeurs à faible complexité, appelés ”finite alphabet iterative decoders (FAIDs)” ayant
de meilleures performances dans la zone de plancher d’erreur, a été proposée. Dans
ce manuscrit nous nous concentrons sur le problème de la sélection de bons décodeurs
FAID pour le cas de codes LDPC ayant un poids colonne de 3 et le cas du canal binaire
symétrique. Les méthodes traditionnelles pour la sélection des décodeurs s’appuient
sur des techniques asymptotiques telles que l’évolution de densité, mais qui ne garantit
en rien de bonnes performances sur un code de longueur finie surtout dans la région
de plancher d’erreur. C’est pourquoi nous proposons ici une méthode de sélection qui
se base sur la connaissance des topologies néfastes au décodage pouvant être présentes
dans un code en utilisant le concept de “trapping sets bruités”. Des résultats de simu-
lation sur différents codes montrent que les décodeurs FAID sélectionnés grâce à cette
méthode présentent de meilleures performances dans la zone de plancher d’erreur com-
paré au décodeur à propagation de croyances.

Dans un second temps, nous traitons le sujet des algorithmes de reconstruction
itératifs pour le compressed sensing. Des algorithmes itératifs ont été proposés pour ce
domaine afin de réduire la complexité induite de la reconstruction par “linear program-

3



ming”. Dans cette thèse nous avons modifié et analysé un algorithme de reconstruc-
tion à faible complexité dénommé IPA utilisant les matrices creuses comme matrices
de mesures. Parallèlement aux travaux réalisés dans la littérature dans la théorie du
codage, nous analysons les échecs de reconstruction de l’IPA et établissons le lien en-
tre les “stopping sets” de la représentation binaire des matrices de mesure creuses. Les
performances de l’IPA en font un bon compromis entre la complexité de la reconstruc-
tion sous contrainte de minimisation de la norme ℓ1 et le très simple algorithme dit de
vérification.
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Abstract
Iterative algorithms are now widely used in all areas of signal processing and digital
communications. In modern communication systems, iterative algorithms are used for
decoding low-density parity-check (LDPC) codes, a popular class of error-correction
codes that are now widely used for their exceptional error-rate performance. In a more
recent field known as compressed sensing, iterative algorithms are used as a method of
reconstruction to recover a sparse signal from a linear set of measurements. This thesis
primarily deals with the development of low-complexity iterative algorithms for the
two aforementioned fields, namely, the design of low-complexity decoding algorithms
for LDPC codes, and the development and analysis of a low complexity reconstruction
algorithm called Interval-Passing Algorithm (IPA) for compressed sensing.

In the first part of this thesis, we address the area of decoding algorithms for LDPC
codes. It is well-known that LDPC codes suffer from the error floor phenomenon in
spite of their exceptional performance, where traditional iterative decoders based on
the belief propagation (BP) fail for certain low-noise configurations. Recently, a novel
class of decoders called ”finite alphabet iterative decoders (FAIDs)” were proposed
that are capable of surpassing BP in the error floor at much lower complexity. In this
work, we focus on the problem of selection of particularly good FAIDs for column-
weight-three codes over the Binary Symmetric channel (BSC). Traditional methods
for decoder selection use asymptotic techniques such as the density evolution method,
which does not guarantee a good performance on finite-length codes especially in the
error floor region. Instead, we propose a methodology for selection that relies on the
knowledge of potentially harmful topologies that could be present in a code, using
the concept of noisy trapping set. Numerical results are provided to show that FAIDs
selected based on our methodology outperform BP in the error floor on several codes.

In the second part of this thesis, we address the area of iterative reconstruction
algorithms for compressed sensing. Iterative algorithms have been proposed for com-
pressed sensing in order to tackle the complexity of the LP reconstruction method.
In this work, we modify and analyze a low complexity reconstruction algorithm called
the IPA which uses sparse matrices as measurement matrices. Similar to what has been
done for decoding algorithms in the area of coding theory, we analyze the failures of
the IPA and link them to the stopping sets of the binary representation of the sparse
measurement matrices used. The performance of the IPA makes it a good trade-off
between the complex ℓ1-minimization reconstruction and the very simple verification
decoding.
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General Introduction

Context and Motivation

Iterative algorithms are nowadays widely used in all areas of signal processing be-
cause either they perform at a low complexity, or they provide fast processing on large
scale problems, without any significant loss in performance. In most cases iterative
methods are even able to provide excellent performance, which explains why iterative
algorithms can be found from the first algorithms solving linear system of equations
to the most advanced algorithms in signal processing systems that primarily deal with
the recovery of a signal that was transmitted, stored, or corrupted somehow.

The aim of this dissertation is to design and analyze low-complexity iterative algo-
rithms for two domains of the signal processing, namely the channel coding, and the
more recent field of compressed sensing. In the first half of the dissertation we seek
to design low-complexity finite precision iterative decoders. In the second step we ad-
dress the design and analysis of low-complexity iterative reconstruction algorithms in
compressed sensing.

Design of low-complexity finite precision iterative decoders

Since their rediscovery, low-density parity-check (LDPC) codes [1] have been used in-
tensively in channel coding, including in some standards such as the second generation
of Digital Video Broadcasting by Satellite, and in the standards of wireless networking
like Wifi and Wimax. In spite of their excellent performance under iterative decoding,
LDPC codes exhibit an abrupt degradation in the slope of the error rate performance
in the high signal-to-noise ratio (SNR) known as the error floor region [44]. The error
floor problem have attracted significant interest with emphasis on designing codes and
low-complexity decoders to lower error floors in domain where error floor is a major
concern for systems like in storage devices where very low error rates are expected.

Recently a new class of low-complexity finite precision iterative decoders, called
finite alphabet iterative decoders (FAIDs), was proposed for LDPC codes over the
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Binary Symmetric channel (BSC), where the messages can take a finite number of
levels [67]. These new decoders exhibit better performance in the error floor region
compared to traditional iterative decoders using a very low complexity as only a small
number of bits (as small as 3) are required for the message representation. The update
functions used at the variable nodes can be easily described by maps which are chosen
with the goal of increasing the error correction capability of the code.

Although it has been proven that FAIDs have excellent performance in the error
floor, the problem of identifying particularly good FAIDs for a given code is not triv-
ial. This is due to the enormous number of FAIDs that can be designed for a particular
number of precision bits. In this dissertation we address the problem of selection
of good FAIDs for column-weight-three codes on the BSC using two different ap-
proaches. The first approach relies on the structure of a code we want to select a FAID
for, and the second approach aims at selecting a set of potential good FAIDs without
being code specific.

Finally, we also attempt to extend the design of FAIDs on column-weight-four
codes, as these types of codes are present in many practical applications as in storage
systems where error floor is a critical issue, and where FAIDs can find their industrial
interest.

Design of low-complexity iterative reconstruction algorithms

In compressed sensing, reconstructing a sparse signal from a small set of measurements
via compressed sensing [79] has attracted significant attention in the last few years. A
k-sparse signal x ∈ R

n, i.e. a signal x with at most k non-zero values, is observed
indirectly through a shorter measurement vector y ∈ R

m and obtained from the linear
equations y = Ax where A is an m×n measurement matrix, with m ≪ n. The task of
compressed sensing is to recover x from y. The first approach to solve the compressed
sensing problem is to find a signal x with the smallest ℓ0-norm given y = Ax. The
ℓ0-norm minimization of compressed sensing is known to be NP-hard. Instead, the
ℓ1-norm minimization solution based on linear programming (LP) was introduced to
reconstruct x. The LP technique for the compressed sensing problem, called Basis
Pursuit [86, 78], has a remarkable performance, but its high complexity and running
time makes it impractical in some applications which require fast reconstruction, or
when the dimension of a measurement matrix is large.

To tackle the issue of complexity, message-passing algorithms for compressed
sensing have been proposed, originating from channel coding mainly based on belief
propagation [99], or iterative thresholding [92].

Recently low-complexity message-passing algorithm was proposed [103], which
we refer to as Interval-Passing Algorithm (IPA). This algorithm performs at a very low
complexity with very promising reconstruction performance compared to the original
and complex Basis Pursuit and another very simple algorithm, known as verification
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General Introduction

decoding. However, it was introduced primarily for sparse binary measurement matri-
ces.

The goal of this dissertation is to modify the IPA for non-negative real-valued mea-
surement matrices, and analyze its reconstruction possibilities.

Contributions and organization of the dissertation

The main contributions of this dissertation are summarized as follows.

• We introduce FAIDs and propose selection methods for column-weight-three
LDPC codes using two approaches, and we design FAIDs for column-weight-
four LDPC codes:

– The first method of selection of FAIDs for column-weight-three codes uses
large attractors of iterative decoders, which are the codewords of LDPC
codes. We describe this method on the Tanner code where we extracted all
the minimum codewords of weight 20, and identified three distinct topolo-
gies of codewords. After explaining the limitations of current techniques
which analyze harmful structures, we detail the selection method of good
FAIDs by simulating error-patterns of weight 5 and 6 on the three types of
minimal codewords.

– In the second approach, the main contribution relies on the methodology to
select a group of potential good decoders in the error floor on any column-
weight-three code. To process this methodology, new concepts are intro-
duced such as the concepts of noisy trapping sets and noisy critical numbers
for the analysis of harmful structures, and the concept of decoder domi-
nation to perform the selection of the decoders. Simulation results show
indeed that selected FAIDs have excellent performance in the error floor
region on a variety of codes.

– We also provide the first results on the design of FAIDs for column-weight-
four LDPC codes using a heuristic-based method on a given high-rate code.
We provide a simple procedure to extract some harmful structures responsi-
ble for the error floor in this particular code, and then design a FAID which
has a better error correction capability on the extracted harmful topologies.
Numerical results are provided to validate the efficacy of our method show-
ing that the designed 3-bit and 4-bit precisions FAID can outperform BP
(floating-point) as well as offset min-sum in the error floor.
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• We present and analyze the IPA for compressed sensing:

– We modify the original IPA in order to deal with non-negative real-valued
sparse measurement matrix, and show that this low-complexity reconstruc-
tion algorithm is providing a good complexity/performance trade-off be-
tween the complex reconstruction of the linear programming methods, and
the very simple verification algorithm.

– We analyze the reconstruction possibilities of the IPA, by establishing a
link between the reconstruction failures of the IPA and the stopping sets
of the binary representation of the measurement matrix. Simulation results
on codes for which the stopping sets distribution is known, confirm the
influence of such structures on the IPA performance.

From the two main topics of the thesis, this manuscript is divided into two parts:
chapters 1 and 2 are related to channel coding and low-complexity iterative decoders,
and chapters 3 and 4 are related to compressed sensing and low-complexity iterative
reconstruction algorithms. The outline of the dissertation is detailed as follows.

In chapter 1, we provide a detailed overview regarding channel coding, introducing
the notations and the necessary background on iterative decoders and the error floor
phenomenon.

In the chapter 2 we introduce the FAIDs, both approaches to select good FAID for
column-weight-three codes in the error floor region, as well as the first study on FAID
for column-weight-four codes.

Chapter 3 reviews recent work on compressed sensing with a description of the
problem setting, the traditional approach using linear programming techniques, and
the suggested iterative reconstruction methods.

In the chapter 4 we present the modified version of the IPA, and provide a complete
analysis of the reconstruction possibilities of the IPA.
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2. V. Ravanmehr, L. Danjean, B. Vasic, D. Declercq, "Interval-Passing Algorithm
for Non-Negative Measurement Matrices: Performance and Reconstruction Anal-
ysis," IEEE J. on Emerging and Selected Topics in Circuits and Systems (ac-
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Chapter1
Introduction on Channel Coding

EVER since its inception in the 1950’s, error-correcting codes have played an
indispensable role in ensuring high reliability and low power consumption in
wireless/wired data transmissions as well as in data storage, and have now

become ubiquitous in all modern communication and data storage systems. An error-
correction code essentially consists of an encoder and a decoder; information that is to
be transmitted is encoded by adding redundancy in a specific manner at the transmitter
and decoding is performed at the receiver to correct some or all of the errors contained
in the received noisy data. In particular, a specific class of error-correcting codes called
low-density parity-check codes (LDPC) [1] has not only revolutionized the communi-
cations and storage industry, but also sparked a widespread research interest over the
past two decades, leading to the so-called field of modern coding theory.

Since the first goal of this dissertation is centrally themed around LDPC codes,
we begin this chapter by providing a brief overview of the historical background of
error-correcting codes especially related to LDPC codes, and provide the necessary
preliminaries required for understanding this contribution of this dissertation in this
field.

1.1 Historical background

The origin of error-correcting codes dates back to the work of Hamming during his
time at Bell Labs in the late 1940’s. At that time, Hamming got motivated to develop
error-correcting codes when he became increasingly frustrated with relay computers
he was working with, which would halt any submitted jobs containing errors. He
eventually designed the first type of error-correcting linear block codes, now known
as Hamming codes, which could correct a single error, and later published his work in
1950 [2]. This led to the development of other important early codes such as the triple
error-correcting Golay code [3] and the Reed-Muller (RM) codes [4, 5].
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Meanwhile, Shannon, who happened to be a colleague of Hamming at Bell Labs,
published his landmark paper [6] in 1948 that led to the birth of the field of infor-
mation theory. The paper essentially laid down the fundamental limits of error-free
transmission by introducing the notion of channel capacity. Shannon pointed out that
every channel has an associated capacity, and he proved using random coding argu-
ments that for transmission rates less than the channel capacity, there exists a code
that can achieve arbitrarily low error-rates asymptotically with the length of the code.
However, Shannon did not provide any insights into the explicit design of capacity-
achieving codes, and thus, the quest for the search of such codes began.

In the ensuing years, much of the research was dedicated towards the design of
linear block codes that had good error-correcting capabilities and good minimum dis-
tance. Initial code designs were for hard-decision channels and relied heavily on al-
gebraic structure based on finite-field algebra. Codes such as the Bose-Chaudhuri-
Hocquenghem (BCH) codes [7, 8] and the Reed-Solomon (RS) codes [9] became
widely used especially in magnetic recoding applications such as magnetic tape sys-
tems. The codes were decoded by an efficient algorithm developed by Berlekamp and
Massey [10]. However, algebraic-based codes were still far from achieving the limits
of Shannon’s capacity in their asymptotic performance, and they lacked the random-
like properties originally envisioned by Shannon.

Concurrently, another class of codes called convolutional codes were developed by
Elias [11], which had a more probabilistic approach to channel coding. Interpreted
as discrete-time finite-state systems, these codes had an underlying special structure
known as the trellis which enabled linear-time encoding and inherently allowed for the
capability to use practical soft-decision decoding algorithms. One of the most impor-
tant decoding algorithms for these codes was developed by Viterbi, famously known
as the Viterbi algorithm [12], which optimally estimated the most likely sequence of
transmitted bits. This proved to be a major attraction for these codes, and they were ca-
pable of providing substantial coding gains even though their asymptotic performance
was still far from Shannon’s capacity. Another algorithm that was developed in the
same probabilistic spirit was the BCJR algorithm by Bahl, Cocke, Jelinek, and Ra-
viv [13] which estimated the a posteriori probability of each transmitted bit. At the
time, the BCJR algorithm was considered to be purely of theoretical interest as it was
regarded too complex for practical implementations. However, the BCJR algorithm
along with the class of convolutional codes turned out to be the most crucial steps for
paving the way towards the development of capacity-achieving codes.

The breakthrough in the search for capacity-achieving codes was finally reached
in 1993 by Berrou, Glavieux, and Thitimajshima with their discovery of turbo codes

[14]. A key feature of these codes was the use of iterative decoding, which involved
using the BCJR algorithm to iteratively exchange soft information between two con-
volutional codes concatenated in parallel. This proved to be pivotal for achieving
near-Shannon-limit performance with reasonable decoding complexity. Subsequently,
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the class of low-density parity-check (LDPC) codes, originally invented by Gallager
in early 1960’s but remained forgotten for nearly thirty years, was rediscovered by
MacKay [15] who showed that these codes were also capable of capacity-achieving
performance. This led to a renaissance in the field of modern coding theory with
LDPC codes becoming one of the most active topics of research.

LDPC codes are essentially linear-block codes whose parity-check matrices have
a sparse number of non-zero entries. These codes are conveniently represented as
bipartite graphs known as the Tanner graphs [16], and the decoding algorithm operates
on the Tanner graph of the code. The decoding algorithms used for LDPC codes are
based on a central iterative algorithm known as the belief propagation (BP). The BP is a
message-passing algorithm that involves propagating probabilistic messages along the
edges of the graph in order to estimate the a posteriori probabilities of the codeword
bits thereby lending itself to low complexity implementations. The notion of using
graph-based decoding was eventually extended to other codes such as Turbo codes
through the significant contributions of Tanner [16] and much later Wiberg [17]. Under
BP decoding, LDPC codes are able to achieve an unprecedentedly good error-rate
performance which has made them the overwhelming choice among existing codes for
both present and emerging technologies in digital communications and data storage.

Within the past decade, with LDPC codes steadily gaining popularity, there has
been an outburst of research related to the design of capacity-achieving LDPC codes
as well as in the development and analysis of decoding algorithms. Richardson and
Urbanke proposed the key technique of density evolution [19] for determining the de-
coding threshold of a given LDPC code under BP decoding, which is a threshold of
noise below which the bit error probability tends to zero asymptotically with the length
of the code. Using density evolution, Richardson, Shokrollahi and Urbanke optimized
capacity-achieving irregular code ensembles for the best (highest) decoding thresholds
that were very close to the Shannon limit. The technique was also subsequently used
in the design of reduced-complexity BP decoders by Chen et al. [20] and Fossorier
[21]et al., and quantized BP decoders by Lee and Thorpe [22]. Another important
asymptotic technique that was proposed for analyzing decoding algorithms simpler
than BP (such as bit flipping) was the use of expander arguments and expander codes
proposed by Sipser and Speilman [23]. Burshtein and Miller [24] applied expander
arguments to message-passing to show that they could correct a linear fraction of er-
rors. For finite-length analysis of codes, a novel approach to decoding called linear
programming (LP) decoding was proposed by Feldman et al. [25], where the decoding
problem is transformed to an LP formulation.

The problem of constructing codes with desirable structural properties and good
minimum distance while maintaining their capacity-achieving ability also gained sig-
nificant attention, with many applications facing stringent constraints in terms of stor-
age requirements and implementation complexity. A particularly broad class of codes
called quasi-cyclic codes generated great appeal to the industry, where the parity-check
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matrices of these codes consist of blocks of circulants enabling much more efficient
encoding and decoding implementations. Some of the notable works on quasi-cyclic
codes include the codes proposed by Fossorier [26], the Protograph codes developed
by Thorpe [27] and Divsalar et al. [28], the algebraic-based quasi-cyclic codes pro-
posed by Lan et al. [29], finite geometry codes by Kou et al. [30], and combinatorially
constructed codes by Vasic et al. [31]. Another class of codes that recently gained
limelight are LDPC convolutional codes [32, 33], which are the convolutional counter-
parts to the conventional linear block code version of LDPC codes, and were recently
shown by Lentmaier et al. to be capable of having BP thresholds nearly matching the
MAP thresholds [34].

LDPC codes have already found their way into various standards such as the DVB-
S2 (Digital Video Broadcasting), IEEE 802.3an (Ethernet), and are also being consid-
ered for the IEEE 802.16e (Wimax) and IEEE 802.11n (Wifi) standards. However, in
spite of their excellent error-rate performance under BP decoding and their obvious
advantages, they still have a major weakness that manifests itself in the form of an
error floor. The error floor is an abrupt degradation in the performance of the code
in the high signal-to-noise (SNR) region. This problem mainly arises due to the sub-
optimality of BP decoding on finite-length codes with loopy graphs, especially when
codes are designed to be asymptotically close to Shannon’s limit. It could prove to be
a major disadvantage particularly for applications requiring very low target error-rates
such as storage devices. Therefore, the error floor problem has been widely regarded
as one of the most important problems in coding theory and has attracted significant
research interest over the past few years. Addressing the error floor problem is one of
the main goals of this dissertation along with taking into account the effects of finite-
precision for decoder realizations.

1.2 LDPC codes: fundamentals and notations

In this section, we will provide the necessary preliminaries related to LDPC codes
starting from the basics of linear block codes to the general concept of message-passing
and graph-based decoding. Along the way, we will introduce the required notations
that will be used throughout this dissertation.

1.2.1 Linear block codes

An (N,K) binary linear block code C [35] is a K-dimensional subspace of GF(2)N ,
which is the vector space over the field GF(2) consisting of all possible binary N -
tuples. Thus, the code C contains 2k N -tuples or codewords. Given a message vector
of k information bits, this vector is mapped to one of the codewords of length N in
the code C. The code C is said to have a code rate of R = K/N , which represents the
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amount of redundancy added by the code.
The support of a codeword x = (x1, x2, . . . , xN), denoted by supp(x), is the set

of all positions i such that xi 6= 0. The hamming weight (or simply weight) of x de-
noted w(x), is the cardinality of supp(x). The hamming distance (or simply distance)
between any two codewords is the number of positions for which they differ in value.
The minimum distance of a code C, denoted by dmin is the smallest possible distance
between any pair of codewords in C. A codeword vector that has zero in all its positions
is referred to as the all-zero codeword. Since a linear block must include the all-zero
codeword, the minimum distance is simply the weight of the nonzero codeword that
has the smallest weight.

The process of mapping a message vector of k information bits to a codeword
of length N in the code C is known as encoding. Encoding is carried out through a
K ×N generator matrix G of the code C, whose rows correspond to the basis vectors
of C, i.e., the linearly independent codewords. Given a message vector of k bits, say,
u = (u1, u2, . . . , uk), a codeword x ∈ C can obtained by performing x = uG.

A linear block code is also characterized by its parity-check matrix H, which is an
M × N matrix whose rows span the null space of G, i.e., GHT = 0. Consequently,
every codeword x is orthogonal to the rows of H so that xHT = 0. Given a vector
x′ ∈ GF(2)N , the parity-check matrix can be used to verify whether x′ is a codeword
belonging to C or not. Therefore, each row of H is referred to as a parity-check con-

straint and there are M such parity-check constraints. The value of M is related to the
code parameters by M ≥ (N−K), where the equality holds if H is a full-rank matrix.

Once a given message u is encoded to a codeword x, it is then transmitted over
a noisy channel and is received as r = (r1, r2, . . . , rN). Decoding is then performed
to estimate the transmitted codeword x based on the received vector r. The optimal
decision rule used for determining the estimate x̂ is the maximum a posteriori (MAP)
decoding rule, which essentially chooses a codeword x ∈ C that maximizes the a
posteriori probability Pr(x|r) (the probability that the transmitted codeword is x given
that r was received). More precisely,

x̂ = arg max
x∈C

Pr(x|r).

We shall assume that all codewords are equally likely to be transmitted. Under
this assumption, the MAP decoding problem reduces to the maximum likelihood (ML)
decoding problem which determines the codeword that maximizes the Pr(r|x). If r ∈
GF(2)N , then the ML decoding problem is equivalent to finding the nearest neighbor
of r in the vector space GF(2)N that is a codeword in C. Therefore the code’s error-
correcting capability is linked to its minimum distance dmin as the code is guaranteed
to correct ⌊(dmin−1)/2⌋ errors. In general, ML decoding on a linear-block code is NP-
hard as it requires a brute-force search of all codewords in the vector space GF(2)N .
Hence, sub-optimal decoding algorithms that enable efficient implementations are used
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in practice.

1.2.2 Channel assumptions

Let us assume that a codeword x = (x1, x2, . . . , xN) ∈ C is transmitted over a noisy
channel and is received as a vector r. If the channel is memoryless, then the probability
Pr(r|x) can be expressed as

Pr(r|x) =
N
∏

i=1

Pr(ri|xi).

This implies that the effect of the channel on every bit in the transmitted codeword
is independent from one another. Hence, during decoding, it suffices to decide the
value for each xi independently based on maximizing Pr(ri|xi). This probability is
also referred to as a likelihood.

For soft-decoding algorithms, the received vector r is mapped to a vector of prob-
abilities or log-likelihood ratios before serving as input to the decoder. Let y =
(y1, y2, . . . , yN) denote the vector that is input to a given decoder. We shall refer to
the values yi in vector y as channel values, to signify the fact they are determined
based on the values received from the channel. If y is a vector of log-likelihoods, then
the log-likehood ratio (LLR) corresponding to a bit position i is given by

yi = log

(

Pr(ri|xi = 0)

Pr(ri|xi = 1)

)

.

Examples of memoryless channels include the Binary Symmetric channel (BSC),
the Binary erasure channel (BEC), and the Additive White Gaussian channel (AWGNC).
Examples of channels with memory include partial-response channels and other chan-
nels in magnetic recording that cause inter-symbol interference (ISI).

For this dissertation, we shall only focus on the BSC. The BSC is a binary-input
binary-output memoryless channel and therefore the received vector r is also binary N-
tuple. The channel flips a bit in the transmitted codeword with a cross-over probability

of α. Fig. 1.1 shows an illustration of the BSC. A transmitted bit 0 is received as 0
with probability 1− α and as a 1 with probability α.

For the BSC, given a cross-over probability α,the LLR is determined from r as
follows

yi =







log
(

1−α
α

)

if ri = 0

log
(

α
1−α

)

if ri = 1

Note that by the definition above, yi being positive implies that the corresponding
codeword bit is more likely to be a zero, and yi being negative implies the negative
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0

1

0

1

Figure 1.1: Illustration of the Binary Symmetric channel

corresponding codeword bit is more likely to be a one.

1.2.3 Tanner graph representation

LDPC codes are linear block codes that have sparse parity-check matrices. Any (N,K)
linear block code C can be represented by a bipartite graph G, also known as the Tanner
graph, which consists of two sets of nodes: the set of variable nodes V = {v1, · · · , vN}
and the set of check nodes C = {c1, · · · , cM}. Given the parity-check matrix H of a
code C, the Tanner graph is obtained by assigning a variable node corresponding to
each codeword bit and a check node corresponding to each parity-check constraint,
and then connecting variable nodes to certain check nodes based on the parity-check
matrix. An edge connection between a particular variable node and a particular check
node is made if the codeword bit associated with the variable node participates in the
parity-check constraint associated with the check node. This is illustrated with the help
of an example.

Example 1.1. Consider the parity-check matrix of an (8, 4) extended Hamming code

with dmin = 4, which is given by

H =









1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
1 1 1 1 1 1 1 1









In order to generate the Tanner graph, first observe that the graph must contain 8

variable nodes corresponding to the 8 columns, and 4 check nodes corresponding to

the 4 parity-check constraints. Therefore V = {v1, v2, v3, v4, v5, v6, v7, v8} and C =
{c1, c2, c3, c4}. By convention, # is used to depict a variable node, and 2 is used to

depict a check node in the Tanner graph. Now looking at the first column in H, there

is a 1 in the first row and in the fourth row. Therefore, v1 is connected to check nodes
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c1 and c4. Similarly, all other variable nodes are connected to the appropriate check

nodes. Fig. 1.2 shows the resulting Tanner graph of the code.

Figure 1.2: Tanner graph of the (8, 4) extended Hamming code

The check nodes (variable nodes respectively) connected to a variable node (check
node respectively) are referred to as its neighbors. The set of neighbors of a node vi is
denoted as N (vi), and the set of neighbors of node cj is denoted by N (cj). The degree
of a node is the number of its neighbors. Let x = (x1, x2, . . . , xN) be a vector such
that xi denotes the value of the codeword bit associated with the variable node vi. We
shall refer to this value as the bit value of node vi. x is a codeword if and only if for
each check node, the modulo two sum of the bit values of its neighbors is zero.

An LDPC code is to be regular, if in its corresponding Tanner graph G, all variable
nodes have the same degree dv, and all check nodes have the same degree dc. A code
is said to be a column-weight-dv (or dv-left-regular) code if all variable nodes have the
same degree dv, which is also referred to as left degree. A code is said to be irregular

if there are variable nodes as well as check nodes that have different degrees. The (8,4)
extended Hamming code provided above is an example of an irregular code.

The girth of the Tanner graph g is length of the shortest cycle present in the Tanner
graph of the code. A cycle of length g is referred to as a g-cycle. For this dissertation,
we will be mostly concerned with column-weight-three LDPC codes. Henceforth, for
convenience, Tanner graphs shall be simply referred to as graphs.

1.2.4 Message-passing decoders

Message-passing (MP) decoders are a class of iterative decoders that operate on the
graph of the code. The a posteriori probability of a codeword bit associated to each
variable node in the graph is calculated by exchanging messages iteratively between
the set of variable nodes and the set of check nodes along the edges of the graph. A
major attraction with MP decoders is that all the computations are carried out locally
at each node, and therefore an efficient decoder implementation can be realized.

Recall that y = (y1, y2, . . . , yN) is the input to the MP decoder. Let Y denote
the alphabet of all possible channel values. Let M denote the alphabet of all possible
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values that the messages can assume. Let m(k)(vi, cj) denote the message passed by
a variable node vi ∈ V to its neighboring check node cj ∈ C in the kth iteration and
m(k)(cj, vi) denote the vice versa. Let m(k)(N (vi), vi) denote the set of all incoming
messages to variable node vi and m(k)(N (vi)\cj, vi) denote the set of all incoming
messages to variable node vi except from check node cj . Let m(k)(N (cj)\vi, cj) and
m(k)(N (cj)\vi, cj) be defined similarly.

Any MP decoder requires two update functions: Φv used for update at the variable
nodes, and Φc used for check nodes. Both update functions are symmetric functions
on the incoming messages, i.e., they remain unchanged by any permutation of its mes-
sages. Thus without abuse of notation, if the arguments of a function are written as a
set, we imply that the order of these arguments is insignificant.

We now describe the MP decoding process. Initially, all the messages are set to
zero, i.e., m(0)(N (vi), vi) = 0 ∀vi ∈ V and m(0)(N (cj), cj) = 0 ∀cj ∈ C. Then for
every iteration k > 0, messages are propagated in the following manner:

m(k)(vi, cj) = Φv

(

yi,m
(k−1)(N (cj)\vi, cj)

)

m(k)(cj, vi) = Φc

(

m(k)(N (cj)\vi, cj)
)

An important feature of MP decoding that can be noted from the above is that dur-
ing the update of messages at a particular node, the outgoing message from the node on
an edge is determined as a function of all local messages incoming from its neighbors
excluding the message incoming on that particular edge. We refer to such messages as
extrinsic incoming messages. By doing so, the node is to an extent treating all its in-
coming messages as independent messages. This is the subtle difference between MP
decoding and iterative bit-flipping decoding algorithms. Fig. 1.3 and 1.4 describes the
update of the messages at a degree-three variable node and check node, respectively.

c1

c2 c3

v1

m1 Φv(yi,m2,m3)

m2

Φv(yi,m1,m3)

m3

Φv(yi,m1,m2)

Figure 1.3: Update of the messages at a variable node.
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v1

v2 v3

c1

m1 Φc(m2,m3)

m2

Φc(m1,m3)

m3

Φc(m1,m2)

Figure 1.4: Update of the messages at a check node.

At the end of each iteration, a symmetric decision function Ψ, is used to decide
the bit value of each node vi ∈ V based on its incoming messages. Let x̂(k) =

(x̂
(k)
1 , x̂

(k)
2 , . . . , x̂

(k)
N ) denote the vector of bit values decided at the end of the kth it-

eration. The bit value x̂
(k)
i of each node vi is determined by

x̂
(k)
i = Ψ

(

yi,m
k(N (vi), vi)

)

.

The estimate x̂(k) is then verified to check whether it is a codeword or not. This
is easily done by passing the decided bit values along the edges and verifying whether
every check node is satisfied or not. A check node is satisfied if the modulo 2 sum of
all the bit values of its neighbors is zero. If all check nodes are satisfied, then x̂(k) is a
codeword and the decoding is terminated.

In conventional MP decoders, the decision function is either a simple majority rule
(if messages are binary), or simply the sign of the sum of its arguments (if messages
are log-likelihoods). More precisely, for a node vi with degree dv

Ψ(yi,m
k(N (vi), vi)) =







1 if
(

yi +
∑

m(k)(N (vi), vi)
)

> 0
0 if

(

yi +
∑

m(k)(N (vi), vi)
)

< 0
sgn(yi) otherwise

where the sgn function outputs a 0 if the sign of the argument is positive, and a 1 if it
is negative.

The algorithm runs until either x̂(k) is a codeword, or until the maximum number
of iterations is reached, whichever occurs first. We say that the decoder has converged

if x̂(k) is a codeword for some k, else we say that the decoder has failed. A success

is declared if the decoder converges to the right codeword, and a miss-correction is
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declared if the decoder converges to a wrong codeword.

Note that during our general description of MP decoding, we inherently assumed
that the scheduling used is a flooding scheduling, which involves updating all variable
nodes simultaneously update followed by a simultaneous update of all check nodes.
In contrast, a serial or layered scheduling could also be carried out for [36]. Discus-
sions regarding scheduling are beyond the scope of this dissertation, and throughout
we shall implicitly assume that the flooding scheduling is used for any MP decoder
being described.

MP decoders can be broadly classified into two classes: hard decoding algorithms
(where the messages assume binary values) such as the Gallager A and the Gallager B
algorithms [1], and soft decoding algorithms (where the messages assume real values)
which are conventionally based on the BP algorithm such as the sum-product algorithm
and the min-sum algorithm [20]. We now discuss the BP algorithm in greater detail.

1.2.5 Belief propagation: Sum-Product and other

low-complexity variants

All conventional MP algorithms used for decoding LDPC codes are based on the BP
algorithm [37]. The BP has its roots in the broad class of Bayesian inference problems
[38], and it is used to compute marginals of functions on a graphical model. Although
exact inference in Bayesian belief networks is hard in general and inference using BP
is exact only on loop-free graphs (trees), it provides surprisingly close approximations
to exact marginals on loopy graphs.

The problem of decoding on the graph of the code is also a Bayesian inference
problem, and therefore the BP algorithm is well-suited for this purpose. As a decod-
ing algorithm for LDPC codes, the BP propagates probabilistic messages along the
edges of the Tanner graph in an iterative fashion. BP can be implemented in two do-
mains, namely the probabilistic domain where the messages are probabilities, and the
LLR domain where messages are LLRs. We shall describe the BP algorithm in the
LLR, domain which is more commonly used due to it being less sensitive to numerical
precision issues. The BP algorithm is also known as the Sum-Product algorithm.

In the LLR domain, the messages and channel values are real-valued LLRs, i.e.,
M = R and Y = R. The function Φv : R × R

dv−1 → R is the update function used
at a variable node of degree dv, and Φc : R

dc−1 → R is the update rule used at a check
node with degree dc.

Let m1,m2, . . . ,ml−1 denote the l− 1 extrinsic incoming messages of a node with
degree l, which are used in the calculation of the outgoing message. The update rules
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for the BP algorithm are given as follows:

Φv(yi,m1, . . . ,mdv−1) = yi +
dv−1
∑

j=1

mj (1.1)

Φc(m1, . . . ,mdc−1) = 2 tanh−1

(

dc−1
∏

j=1

tanh
(mj

2

)

)

. (1.2)

When the magnitudes of the messages reach a large value, the check node update
function of the BP algorithm can be approximated to:

Φc(m1, . . . ,mdc−1) =

(

dc−1
∏

j=1

sgn(mj)

)

min
j∈{1,...,dc−1}

(|mj|) (1.3)

where sgn denotes the standard sign function. The check node update function defined
in Eq. (2.1) along with variable node update function defined in Eq. (1.1) together
constitute the min-sum decoder. Thus, the min-sum is an approximation of BP decod-
ing.

Clearly the min-sum decoder is much lower in complexity than the BP algorithm
due to its simplified check node operation. However, the performance loss arising from
using min-sum instead of BP is quite large. Hence, many low-complexity variants have
been proposed which attempt to reduce this gap in performance. All of the variants
proposed typically deal with simplifying the check node update function while keeping
the variable node update function intact, as defined in Eq. (1.1).

One important low-complexity variant of BP that requires mentioning is the offset

min-sum decoder proposed by Chen et al. [20]. For this algorithm, an offset factor γ is
introduced into the check node update function. This offset factor serves to reduce the
overstimate of the outgoing message produced by a check node using the rule in Eq.
(2.1), especially when the magnitudes of the incoming messages are small. Therefore,
the offset factor is also often referred to as a correction factor. The modified check
node update function is as follows:

Φc(m1, . . . ,mdc−1) =

(

dc−1
∏

j=1

sgn(mj)

)

max

(

min
j∈{1,...,dc−1}

(|mj|)− γ, 0

)

. (1.4)

The offset factor γ could be fixed or could be varied as a function of the SNR. Also
the value for γ can be chosen using the density evolution technique for maximizing the
decoding threshold as done in [20], or by a brute-force simulation on a given code that
checks different values of γ and selects the one giving the best performance.
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1.3 Error floor problem

For any typical finite-length LDPC code, the error-rate performance curve plotted as a
function of SNR under iterative decoding, consists of two distinct regions: the waterfall
region, and the error floor region. In the waterfall region (which is the low SNR region),
the error-rate drops significantly with increase in SNR making the curve look like a
waterfall. On the other hand, in the error floor region (which is the high SNR region),
the decrease in the error-rate dramatically slows down and the curve tends to flatten
out turning into an error floor. Fig. 1.5 illustrates the two regions on a typical FER
performance curve of an LDPC code plotted as a function of the cross-over probability
α of the BSC.

 

Projected 
performance 
without error 

floor 

Error floor 

waterfall 

Figure 1.5: Typical performance of BP decoding on an LDPC code over the BSC

The error floor problem arises due to the suboptimality of BP decoding on loopy
graphs. It can be troublesome for applications requiring very low target error-rates, and
especially when high-rate codes are employed, which have relatively dense graphs. Al-
though asymptotic techniques such as density evolution provide an accurate prediction
of the FER performance in the early waterfall region, the point at which the error floor
starts as well as its slope are greatly dependent on the particular structure of a code,
and hence cannot be predicted by density evolution. Therefore, finite-length analysis
techniques are required for the study of error floors. Besides, for codes with moderate
to large lengths, the ability to predict error floors becomes even more critical as the
error floor may be unreachable by Monte-Carlo simulations.

1.3.1 Prior work on error floor estimation

The first crucial observation on error floors was made by MacKay and Postol [39],
who found that the minimum distance of an LDPC code did not necessarily play a
dominant role in the error floor of a code. In their investigations with a Margulis
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construction of an LDPC code for the AWGNC, they observed that it showed a high
error floor in spite of its good minimum distance, and they attributed it to the presence
of near-codewords in the graph. Another notion proposed in the spirit of finite-length
analysis was the notion of pseudocodewords originally introduced by Wiberg [17], and
later further developed by Frey et al. [40] and Forney et al. [41]. Pseudocodewords are
essentially outputs of the decoder that are not necessarily codewords and stem from the
different possible binary configurations of the computation tree. These works further
motivated investigations into finite-length analysis of codes under iterative decoding
with attempts to characterize the error floors for different channels.

For the BEC, the error floor could be well-characterized through the work of Di et

al. [42], who introduced the notion of stopping sets which are purely combinatorial
objects. Later Orlitsky et al. [43] provided asymptotic results on the stopping set
distribution for different code ensembles.

However, a huge stride towards the understanding of the error floor problem in
a general setting, was made through the pioneering work of Richardson [44], who
showed that the problem is at least partially combinatorial in nature. Richardson in-
troduced the notion of trapping sets, which are certain problematic loopy structures
present in the graph of the code that cause the decoder to fail for certain low-noise
configurations, and are a function of both the code and the decoding algorithm in op-
eration. Using this notion, he proposed a semi-analytical method for estimating the
error-rates of BP decoding on the AWGNC in the error floor by identifying the dom-
inant trapping sets. Another approach based on statistical physics was also proposed
for the AWGNC by Stepanov et al. [45] through the notion of instantons, which are
certain low-noise configurations that swayed the decoding trajectory away from the
correct codeword. Later, Chilappagari et al. [46] in line with Richardson’s work, pre-
sented results on the error floor estimation for the BSC under Gallager B decoding.
Another notion called absorbing sets, was proposed by Dolecek et al. [47], which
are a special type of trapping sets that are purely combinatorial and stable under the
bit-flipping algorithm, and this notion enabled them to perform a detailed analysis on
array-based LDPC codes.

Many other works also subsequently emerged that further developed on the notion
of pseudocodewords. Vontobel and Koetter introduced the concept of graph covers

to explain failures of iterative decoding [49], and showed that pseudocodewords aris-
ing from graph covers are identical to pseudocodewords of the linear programming
(LP) decoding [25] which constituted the vertices of the fundamental polytope. Later,
Kelly and Sridhara [50] used graph covers to derive bounds on the minimum pseu-
docodeword weight in terms of girth and the minimum left-degree of the graph. The
pseudocodeword analysis was also extended to the class LDPC-convolutional codes by
Smarandache et al. [51]. However, pseudocodewords are purely topological in nature
and do not take a particular decoding algorithm into account. Therefore, the notion of
trapping sets is required for studying failures of a particular iterative decoder.
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It is evident from previous discussions that the main utility behind the notion of
trapping sets is in enabling the error floor estimation of a given code under a particular
decoding algorithm. If the relevant topological structures corresponding to different
trapping sets could be identified a priori and enumerated on the graph of a given code
without the need for simulation, a reasonable estimate of the error floor could be ob-
tained provided that each trapping set’s contribution towards the error floor is known
or determined.

Although it was shown by McGregor and Milenkovic [53] that performing an ex-
haustive search of all trapping sets in the graph of a given code is NP-hard, several
good practical approaches have been proposed. Milenkovic et al. [54] examined the
asymptotic trapping set distributions for both regular and irregular LDPC code ensem-
bles. Cole et al. [55] proposed a method to estimate the error floor based on importance
sampling, which is similar to Richardson’s approach in [44]. Wang et al. proposed an
efficient algorithm to exhaustively enumerate both trapping sets and stopping sets for
codes with relatively short to moderate block lengths (N ≈ 500). Abu-Surra et al. [56]
proposed an efficient improved impulse method that could enumerate trapping sets by
augmenting the Tanner graph with auxiliary variable nodes, and treating the problem
as if it were searching for low-weight codewords. Although the method does not guar-
antee enumeration of all trapping sets, it is reasonably reliable and is applicable to
any arbitrary graph. A method that uses the branch-and-bound approach to enumerate
stopping sets in a given code was proposed by Rosnes and Ytrehus [57]. Karimi and
Bannihasemi [58] recently proposed an algorithm which could efficiently enumerate
the dominant trapping sets present in any arbitrary graph by recursively expanding the
cycles present in the graph. More recently, Zhang and Siegel [59] proposed an effi-
cient technique that expanded on the branch-and-bound approach by transforming the
bounding step to an LP formulation, and which allowed a complete enumeration of
trapping sets up to a certain size with reasonable computation time.

In spite of the fact that all the above works are useful for enumerating trapping
sets in a given graph which aid in estimating the error floor, none of them directly
address the issue of how to utilize the knowledge of trapping sets for constructing
better codes or improving the decoding algorithms. For instance, it is highly non-
trivial to determine which particular subgraphs (that correspond to certain trapping
sets) should be avoided during the construction of codes in order to improve the error
floor performance. Vasić et al. [60] proposed the trapping set onotology, which is a
hierarchy of trapping sets that exploits the topological relations, and can be utilized
for code construction or decoder design. We shall use this in our dissertation in the
decoder design.

For the remainder of this section, we shall elaborate on some of the relevant notions
used to characterize decoder failures, and describe the trapping set ontology.
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1.3.2 Characterization of failures of iterative decoders

We begin by defining the notion of trapping sets and their related terminologies as
originally provided by Richardson in [44]. Note that for purpose of exposition, we
shall assume that the all-zero codeword was transmitted. This is a valid assumption as
the MP decoders considered and the channel (BSC) are symmetric [19]. Recall that y
is the decoder input, and x̂(k) is the estimate on the codeword bits after k iterations.
Let I denote the maximum number of iterations allowed for decoding.

Definition 1.1. A variable node vi is said to be eventually correct if there exists a

positive integer l such that for all l ≤ k ≤ I , x̂
(k)
i = 0

Definition 1.2. For a decoder input y, a trapping set T(y) is a non-empty set of vari-

able nodes that are not eventually corrected by the decoder.

The above definition is quite general as it includes all possible decoder failures
such as stable fixed points as well as failures resulting from the oscillatory behavior of
the decoder output among different states constituting a basin of attraction. Note that
if T(y) = ∅, then the decoding is successful on input y.

A trapping set (TS) T(y) is said to be an (a, b) TS, if it has a variable nodes, and
b odd-degree check nodes in the subgraph induced by T(y). For convenience, we
shall use the notation T (a, b) to denote the topological structure associated with an
(a, b) TS, which is simply a graph consisting of a variable nodes and b odd-degree
check nodes. Note that two trapping sets can share the same parameters (a, b) but have
different underlying topologies.

If the degree of a check node is at most two in the graph, then the TS is said to be
an elementary TS. It has been observed by many researchers that the dominant trap-
ping sets in the error floor are typically elementary trapping sets [44, 52]. Therefore,
we shall place more focus on elementary trapping sets during our discussions. Fig.
1.6 shows an example of a subgraph corresponding to an elementary (5, 3) TS. Note
that � is used to denote an odd-degree check node, and will be used throughout this
dissertation for any future graphical illustrations.

Note that non-zero codewords (under the all-zero codeword assumption) are (a, 0)
trapping sets whose corresponding graphs have only even-degree check nodes. These
are precisely the only trapping sets under ML decoding. However, for any sub-optimal
iterative decoder, there will be other (a, b) TSs.

Stopping sets [42] are a sub-class of trapping sets that were introduced to charac-
terize failures on the BEC. Note that for the BEC, a transmitted bit is either received
correctly or is erased. Let S denote a subset of variable nodes and let N (S) denote the
set of neighbors {N (vi) : ∀vi ∈ S}. The definition is given below.

Definition 1.3. A stopping set is a subset of variable nodes S in the graph G, such that

every neighbor in N (S) is connected to subset S at least twice.
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Figure 1.6: Subgraph corresponding to a (5, 3) TS

The above definition implies that stopping sets are (a, b) TSs whose corresponding
graphs do not contain any degree-one check node. For the BEC, iterative decoding fails
if all a variable nodes of an (a, b) stopping set are erased, regardless of its neighborhood
in the original graph G and the number of iterations allowed. Therefore, stopping sets
can be treated as purely combinatorial objects, and the error floor can be completely
characterized for the BEC under iterative decoding. Fig. 1.7 shows an example of an
(8, 2) stopping set whose corresponding graph contains two degree-3 check nodes.

Figure 1.7: Subgraph corresponding to a (8, 2) stopping set

An absorbing set [47] is a special type of (a, b) TS that is stable under the bit-
flipping decoding. For a given subset S of variable nodes, let E(S) (resp. O(S))
denote the set of neighboring checks of S that are even-degree (resp. odd-degree).

Definition 1.4. An absorbing set is a subset of variable nodes S in the graph G, such

that each variable node in S has strictly greater neighbors in E(S) than in O(S). In

addition, if all remaining variable nodes in V \ S also have strictly greater neighbors

in E(S) than in O(S), then it is said to be a fully absorbing set.

Another closely related type of trapping set is a fixed set that was introduced by
Chilappagari and Vasić [48] to characterize failures of Gallager A/B decoding on the
BSC. It is defined as follows.

Definition 1.5. For a received vector r from the BSC and decoder input y, a trapping

set T(y) is said to be a fixed set, if T(y) = supp(y).
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The necessary and sufficient conditions for a set of variable nodes to form a fixed
set for the Gallager A/B algorithm is provided through the following theorem [48].

Theorem 1.1. Let C be an LDPC code with dv-left-regular graph G. Let T be a subset

of a variable nodes with induced subgraph T . Let the checks in T be partitioned into

two disjoint subsets; O consisting of checks with odd degree and E consisting of checks

with even degree. Then T is a fixed set for the Gallager A/B algorithm iff : (a) Every

variable node in I has at least ⌈dv
2
⌉ neighbors in E and (b) No ⌊dv

2
⌋ of O share a

neighbor outside I.

Note that the definition of absorbing set satisfies the above theorem and therefore
is always a fixed set; however the opposite is not necessarily true. For column-weight-
three codes though, they are the same. For this dissertation, we shall mainly utilize
the notion of trapping sets to characterize decoder failures.The notion of fixed set will
be used only mainly for discussing the trapping set ontology which will be introduced
shortly.

Given an (a, b) TS, it is also important to determine a measure of relative harmful-

ness of the TS which is based on its underlying topological structure. Again for the
BSC under the Gallager B decoding, Chilappagari and Vasic [46] introduced the notion
of critical number as a measure of harmfulness. Given the subgraph corresponding to
a TS is T (a, b), let yT denote the vector of channel values received by the variable
nodes in T (a, b). Let T(yT ) denote the set of nodes that failed to converge to the right
values.

Definition 1.6. The critical number nc of a trapping set whose subgraph is T (a, b),
is the minimum number of errors introduced in the subgraph T (a, b) that causes the

Gallager-B decoder. More precisely,

nc = min
T(yT ) 6=∅

|supp(yT )|.

Note that the dominant trapping sets are the subgraphs with the least critical num-
ber. Although this notion is limited to Gallager-B decoding, later on, we will generalize
this notion to include other decoding algorithms as well.

Henceforth, for convenience, whenever we refer to a TS, we shall implicitly refer
to its underlying topological structure, which is a subgraph induced by the variable
nodes belonging to the TS.

1.3.3 Trapping set ontology

The trapping set ontology (TSO) [60] is a database of trapping sets that is organized as
a hierarchy based on their topological relations. This topological relationship between
trapping sets is specified in the form of a parent-child relationship. A trapping set T1
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is said to be a parent of a trapping set T2 if T2 contains T1, and T2 is then considered
to be a child of T1. The main objective for using the TSO is to make the identification
of relevant trapping sets independent of a given code, as well as to serve as a guide
for code construction or decoder design in addition to enabling efficient enumeration
techniques.

The development of TSO was primarily motivated by the work of Chilappagari
et al. in [61], who observed that the trapping sets found for various iterative decoders
over different channels are closely related. For instance on a given code, many trapping
sets found for the BP decoding over the AWGN were either the same as the trapping
sets of Gallager B over BSC, or bigger subgraphs containing them. This implies that
there exists a topological interrelation among trapping sets and in a broader sense, a
topological interrelation among error patterns that cause decoding failures for various
algorithms on different channels. Relying on this fact, the TSO is generated based on
the notion of fixed sets for Gallager B, with the purpose of capturing these topological
relations in order to provide a hierarchy.

Since the necessary and sufficient conditions for a fixed set of Gallager B are clearly
defined through Theorem 1.1, this notion is used to generate the TSO. Also it is well-
known that, in general, trapping sets are subgraphs formed by cycles or union of cycles
[44]. Therefore, assuming that any code considered has at least girth g and left degree
dv, the TSO is generated as follows. Starting with a g-cycle, variable nodes of dv
degree are added to the g-cycle in all possible ways thereby expanding the g-cycle to a
chosen maximum size, while enforcing the constraint that the resulting subgraph after
each addition of a variable node, is elementary and satisfies Theorem 1.1. Once all
different expanded subgraphs are generated, a hierarchy is then established based on
their parent-child relationship. The procedure is then repeated starting with a (g + 2)-
cycle, and so on.

Note that although the methodology is restricted by using Theorem 1.1 for fixed
sets, it can be easily generalized for generating other types of subgraphs, provided
that the constraints or desired properties of the subgraph are clearly specified. More-
over, as previously pointed out, since failures of other iterative decoders over channels
other than BSC are also topologically linked to failures of Gallager B decoding on the
BSC, we regard the subgraphs in the TSO as a good starting point for consideration in
decoder design or code construction.
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Chapter2
Finite Alphabet Iterative Decoders:
Selection and Design

THE goal of this chapter is to introduce the new class of finite precision iterative
decoders on the BSC, which we refer to as Finite Alphabet Iterative Decoders

(FAIDs), and which are able to surpass the BP in the error floor region at a very
low-complexity. We then propose two selection methods based on two approaches for
column-weight-three codes. The first approach is code dependent, and deals with the
FAID selection on minimal codewords of a given code which are seen as larger at-
tractors than the sole trapping sets. The second approach provides a methodology to
select candidate FAIDs that are potentially good in the error floor without considering
any specific code. This approach relies on the introduction of three essential concepts,
namely the noisy critical numbers, the noisy trapping sets, and the decoder domina-
tion. Finally, this chapter addresses also the design of FAID for column-weight-four
codes, providing good performing 3-bit FAID derived from the extraction of harmful
structures on the given code.

2.1 Preliminaries

Let G denote the Tanner graph of an (N,K) binary LDPC code C of rate R = K/N ,
which consists of the set of variable nodes V = {v1, · · · , vN} and the set of check
nodes C = {c1, · · · , cM}. The degree of a node in G is the number of its neighbors in
G. A code C is said to have a regular column-weight dv if all variable nodes in V have
the same degree dv. The set of neighbors of a node vi is denoted as N (vi), and the set
of neighbors of node cj is denoted by N (cj). The girth of G is the length of shortest
cycle present in G.

Let x = (x1, x2, . . . , xN) denote a codeword of C that is transmitted over the BSC,
where xi denotes the value of the bit associated with variable node vi, and let the vector
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received from the BSC be r = {r1, r2, . . . , rN}. Let e = (e1, e2, . . . , eN) denote the
error pattern introduced by the BSC such that r = x ⊕ e, and ⊕ is the modulo-two
sum. The support of an error vector e = (e1, e2, . . . , eN), denoted by supp(e), is
defined as the set of all positions i such that ei 6= 0. Let y = (y1, y2, . . . , yN) be the
input to the decoder, where each yi is calculated based on the received value ri. We
shall also refer to the values yi as channel values. During the analysis of decoders, we
shall assume that the all-zero codeword was transmitted. This is a valid assumption
since the decoders we consider are symmetric [19].

We remind that a trapping set (TS) denoted by T(y) (as originally defined in [44])
is a non-empty set of variable nodes that are not eventually corrected for a given de-
coder input y. If T(y) is empty, then the decoding is successful. Note that T(y) will
depend on the number of decoding iterations. A common notation used to denote a
TS is (a, b), where a = |T(y)|, and b is the number of odd-degree check nodes in the
subgraph induced by T(y).

Let T (a, b) denote the topology associated with a (a, b) TS, which is a graph con-
sisting of a variable nodes and b odd-degree check nodes. This standard notation is
however not sufficient to describe in details the topologies which are the supports of
the TS’s. In particular, there could be several different topologies which have the same
values a and b. To circumvent this problem, we extend the notation of TS by adding
to the first two parameters, an additional topological information which allows to dis-
tinguish between different structures with the same a and b. We propose the following
notation:

T (a, b) nc3 − nc4 − nc5 − nc6 − nc7 − nc8

where nck represents the number of cycles containing k variable nodes. For example
the Fig. 2.1 shows the two different topologies for a (6, 4) TS (considering girth-eight,
and TS for column-weight-three codes) which differs only in the cycles contained in
these two structures. In this figure,  denotes a variable node, 2 denotes a degree-two
check node and � denotes a degree-one check node.

A TS is said to be elementary if T contains only degree-one or/and degree-two
check nodes. Throughout this chapter, we restrict our focus to elementary TS’s, since
they are known to be dominant in the error floor [44, 46]. Also, whenever we refer to
a TS, we will implicitly refer to its topological structure T .

2.2 Finite alphabet iterative decoders

We now introduce a new type of finite precision decoders which we refer to as FAIDs
[63, 64]. An Ns-level FAID denoted by D is defined as a 4-tuple given by D =
(M,Y ,Φv,Φc). The finite alphabet M defined as
M = {−Ls, . . . ,−L2,−L1, 0, L1, L2, . . . , Ls}, where Li ∈ R

+ and Li > Lj for any
i > j, consists of Ns = 2s + 1 levels for which the message values are confined to.
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(a) T (6, 4) 0− 2− 0− 1− 0− 0− 0− 0. (b) T (6, 4) 0− 1− 2− 0− 0− 0− 0− 0.

Figure 2.1: The two different structures for a (6, 4) TS.

The sign of a message x ∈ M can be interpreted as the estimate of the bit associated
with the variable node for which x is being passed to or from (positive for zero and
negative for one), and the magnitude |x| as a measure of how reliable this value is.

The set Y denotes the set of all possible channel values. For FAIDs over the BSC,
Y is defined as Y = {±C}, where C ∈ R

+, and the value yi ∈ Y for node vi is
determined by yi = (−1)riC, i.e., we use the mapping 0 → C and 1 → −C. Note
that for the BP and min-sum algorithms (where the messages are log-likelihoods), the
decoder input y is a real-valued vector (Y = R). Let m1, · · · ,ml−1 denote the extrinsic
incoming messages to a node with degree l.

2.2.1 Definitions of the update functions Φv and Φc

The function Φc : Mdc−1 → M used for update at a check node with degree dc is
defined as

Φc(m1, . . . ,mdc−1) =

(

dc−1
∏

j=1

sgn(mj)

)

min
j∈{1,...,dc−1}

(|mj|). (2.1)

Note that this is the same function used in the min-sum decoder, and hence the novelty
in the proposed decoders lies in the definition of the variable node update function Φv.

The function Φv : Y ×Mdv−1 → M is the update function used at a variable node
with degree dv, and is defined in closed form as

Φv(yi,m1,m2, · · · ,mdv−1) = Q

(

dv−1
∑

j=1

mj + ωi · yi

)

(2.2)

where the function Q(.) is defined below based on a threshold set T = {Ti : 1 ≤ i ≤
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s+ 1} with Ti ∈ R
+ and Ti > Tj if i > j, and Ts+1 = ∞.

Q(x) =

{

sgn(x)Li, if Ti ≤ |x| < Ti+1

0, otherwise

The weight ωi is computed using a symmetric function Ω : Mdv−1 → {0, 1}.
Based on this definition, the function Φv can be classified as a linear-threshold (LT)
function or a non-linear-threshold (NLT) function. If Ω = 1 (or constant), i.e., if the
value of ωi is always 1 (or constant) for all possible inputs of Ω, then Φv is an LT
function and a FAID with such a Φv is classified as an LT FAID. Else, Φv is an NLT
function and a FAID with such a Φv is an NLT FAID.

Note that for an LT FAID, Φv takes a linear combination of its arguments and
then applies the function Q to determine its output. Therefore, Φv will always out-
put the same value for any possible set of incoming messages for a given yi, if their
sum remains the same. For example, for a node with dv = 3, Φv(−C,m1,m2) =
Φv(−C,m3,m4) when m1 +m2 = m3 +m4. This is also a typical property present in
existing quantized decoders such as quantized BP and min-sum.

On the other hand, for an NLT FAID, Φv takes a non-linear combination of its argu-
ments (due to Ω) before applying the function Q on the result. Therefore, Φv can output
different values even for distinct sets of incoming messages that have the same sum.
For instance, consider a map Φv for a node with dv = 3 such that Φv(−C,−L3, L3) =
0 and Φv(−C,−L2, L2) = −L1. In this case, the two distinct sets of incoming mes-
sages are {−L3, L3} and {−L2, L2}, and the sums are zero for both the sets. However,
Φv still gives different outputs for each of the sets namely, 0 and −L1 respectively.
Hence these decoders are different from existing quantized message-passing decoders.
Note that the function Φv satisfies the following two properties.

Definition 2.1 (Symmetry property). A FAID is a symmetric decoder if its update func-

tion Φv satisfies Φv(yi,m1, ...,mdv−1) = −Φv(−yi,−m1, ...,−mdv−1).

Definition 2.2 (Lexicographic ordering). A FAID is said to be lexicographically or-

dered if Φv satisfies Φv(−C,m1, . . . ,mdv−1) ≥ Φv(−C,m′
1, . . . ,m

′
dv−1) ∀mi ≥ m′

i,

i ∈ {1, . . . , dv − 1}.

The property of lexicographic ordering ensures that for a given channel value, the
output is always non-decreasing with increase in the values of incoming messages.
For instance, a map Φv where Φv(−C, L1, L2) = L2 and Φv(−C, L2, L2) = L1 is
forbidden, since Φv(−C, L2, L2) ≥ Φv(−C, L1, L2). This is a typical property also
present in existing message-passing decoders.

The decision rule used in FAIDs at the end of each iteration, to determine the bit
value corresponding to each node vi, is simply the sign of the sum of all incoming
messages plus the channel value yi (positive implies zero and negative implies one).
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It is evident from the definition that Φv can be uniquely described either by assign-
ing real values to the elements of M, T and Y , and defining Ω, or by providing a
set of constraints which the assigned values can take. As examples, we provide the
closed-form description of Φv for a 5-level NLT FAID and a 7-level LT FAID defined
for column-weight-three codes.

Example 2.1 (5-level NLT FAID). The constraints on the values assigned to elements

of M and T that describe this map are: C = L1, L2 = 3L1, T1 = L1, T2 = L2, and

the function Ω is given by ωi = Ω(m1,m2) = 1 −
(

sgn(m1) ⊕ sgn(m2)
)

· δ(|m1| +
|m2| − 2L2).

Example 2.2 (7-level LT FAID). The constraints on the values assigned to elements

of M and T that describe this map are: L1 < C < 2L1, L2 = 2L1, L3 = 2L2 + C,

and T1 = L1, T2 = L2, and T3 = L3 − C, where Ω = 1 since it is an LT function.

Note in Ex. 2.1, sgn(x) = 1 if x < 0, and sgn(x) = 0 otherwise. Also note
that although the rule defined in Ex. 2.2 appears to be similar to a quantized min-sum
decoder, the messages in this decoder are not quantized probabilities or log-likelihoods.

2.2.2 Describing the maps of Φv as arrays

Let us alternatively define M to be M = {M1,M2, · · · ,MNs
} where M1 = −Ls,

M2 = −Ls−1,· · · , Ms = −L1, Ms+1 = 0, Ms+2 = L2,· · · , MNs
= Ls. Then, Φv

can be defined using dv−1-dimensional arrays or look-up tables (LUTs) rather than as
closed-form functions, which enables simple implementations and also may be more
convenient for decoder selection.

For column-weight-three codes, the map specifying Φv is a simple two-dimensional
array defined by [li,j]1≤i≤Ns,1≤j≤Ns

, where li,j ∈ M, such that Φv(−C,Mi,Mj) = li,j
for any Mi,Mj ∈ M. The values for Φv(C,Mi,Mj) can be deduced from the symme-
try of Φv. Table 2.1 shows an example of a Φv defined as an array for a 7-level FAID
when yi = −C, that have been identified as a NLT FAID.

Fig. 2.2 shows the error-rate performances of the 5-level NLT and 7-level LT FAIDs
defined in the two examples, and the 7-level NLT FAID defined by the Table 2.1, along
with the floating-point BP and min-sum decoders on the well-known (155, 64) Tanner
code. All decoders were run for a maximum of 100 iterations. From the plot, we see
that all the FAIDs significantly outperform the floating-point BP and min-sum on the
code. We will provide in the sequel of this chapter the methodology used to identify
good FAIDs. We also provide in the Table 2.2 and 2.3 the arrays corresponding to the
Example 2.1 and 2.2, respectively.
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2 Finite Alphabet Iterative Decoders: Selection and Design

Table 2.1: LUT for Φv of a 7-level FAID with yi = −C (NLT FAID).

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 −L1

−L2 −L3 −L3 −L3 −L3 −L2 −L1 +L1

−L1 −L3 −L3 −L2 −L2 −L1 −L1 +L1

0 −L3 −L3 −L2 −L1 0 0 +L1

+L1 −L3 −L2 −L1 0 0 +L1 +L2

+L2 −L3 −L1 −L1 0 +L1 +L1 +L3

+L3 −L1 +L1 +L1 +L1 +L2 +L3 +L3
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Figure 2.2: Performance comparisons between the floating-point decoders: BP and
min-sum , and the 3-bit precision decoders: 5-level NLT, 7-level LT, and 7-level NLT
FAIDs on the (155, 64) Tanner code.

Table 2.2: LUT for Φv of a 5-level FAID with yi = −C (NLT FAID).

m1/m2 −L2 −L1 0 +L1 +L2

−L2 −L2 −L2 −L2 −L2 0
−L1 −L2 −L2 −L1 −L1 +L1

0 −L2 −L1 −L1 0 +L1

+L1 −L2 −L1 0 +L1 +L2

+L2 0 +L1 +L1 +L2 +L2
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Table 2.3: LUT for Φv of a 7-level FAID with yi = −C (LT FAID).

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 0
−L2 −L3 −L3 −L3 −L2 −L2 −L1 L1

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L2 −L2 −L1 0 L1 L2

L1 −L3 −L2 −L1 0 0 L1 L2

L2 −L3 −L1 0 L1 L1 L2 L3

L3 0 L1 L2 L2 L2 L3 L3

Note that a particular choice of [li,j]1≤i≤Ns,1≤j≤Ns
gives rise to a particular Φv, and

the choice must ensure that both properties of Φv are satisfied. A natural question that
arises at this point is how many FAIDs exist for a given Ns. This can be easily enu-
merated by establishing a connection between FAIDs and symmetric plane partitions.

2.2.3 Symmetric plane partition representation of Φv

A symmetric plane partition π is an array of nonnegative integers (πi,j)i≥1,j≥1 such
that πi,j ≥ πi+1,j , πi,j ≥ πi,j+1 ∀i, j ≥ 1, and πi,j = πj,i. If πi,j = 0 ∀i > r, ∀j > s,
and πi,j ≤ t ∀i, j, then the plane partition is said to be contained in a box with side
lengths (r, s, t). The value πi,j is represented as a box of height πi,j positioned at (i, j)
coordinate on a horizontal plane.

Due to the imposition of the lexicographic ordering and symmetry of Φv, there
exists a bijection between the array [li,j]1≤i≤Ns,1≤j≤Ns

and a symmetric plane partition
contained in a (Ns×Ns×Ns−1) box, where each πi,j is determined based on li,j . Fig.
2.3 shows the visualization of a plane partition corresponding to Φv of the 7-level FAID
defined in Table 2.1. Kuperberg in [65] gave an elegant formula for the enumeration of
symmetric plane partitions contained in a box, and we can directly utilize this for the
enumeration of Ns-level FAIDs as well.

Theorem 2.1 (Number of Ns-level FAID). The total number KA(Ns) of symmetric

lexicographically ordered Ns-level FAIDs is given by

KA(Ns) =
H2(3Ns)H1(Ns)H2(Ns − 1)

H2(2Ns + 1)H1(2Ns − 1)

where Hk(n) = (n−k)! (n−2k)! (n−3k)! . . . is the staggered hyperfactorial function.

Proof. The proof of the theorem follows from the bijection between the map Φv of a
FAID and a symmetric boxed plane partition.
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The total number of FAIDs for Ns = 5 and Ns = 7 levels are 28,314 and 530,803,988
respectively. However for Ns = 7, we have identified only 6,392,620 FAIDs with a
practical interest, the discarded ones having a very poor density evolution threshold.
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Figure 2.3: A visualization of the plane partition as stacked boxes for the 7-level FAID
whose Φv is described in Table 2.1.

2.3 Selection of finite alphabet iterative decoders

It is evident from the previous section that identifying particularly good FAIDs from
the set of all possible FAIDs is highly non-trivial since the number of such FAIDs is
very large. As a first attempt of selection, one can think to rely on the computation of
the density evolution (DE) to determine the decoding threshold (α∗) of each FAIDs.
In Fig. 2.4 we present the performance comparison on the Tanner code between the
floating-point BP, the 5-level FAID (Table 2.1), the 7-level FAID (Table 2.3), and the
5-level and 7-level FAIDs which have the best DE thresholds among all their peers.
It is clearly evident that these last ones are not the best decoders, in fact they are
presenting a pretty high error-floor. The DE threshold have been computed on the
class of (dv = 3,dc = 5) LDPC codes, class which includes the Tanner code. The
thresholds of the different FAIDs are given as follows: 5-level FAID of the Table 2.1:
α∗ = 0.09781, 7-level FAID of Table 2.3: α∗ = 0.010155, best threshold 5-level FAID:
α∗ = 0.10319 and best threshold 7-level FAID: α∗ = 0.010349. We can then conclude,
that the selection of FAIDs only based on the DE threshold is not efficient, hence the
need of other techniques, presented in the sequel of this section.
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Figure 2.4: Performance comparisons between the floating-point BP, the 5-level FAID
from the Table 2.1, the 7-level FAID from the Table 2.3, and 5-level and 7-level FAID
exhibiting the best DE thresholds α∗.

We now describe a general approach that can be used to identify a subset of can-
didate Ns-level FAIDs, one or several of which are potentially good for any column-
weight-three code. Our main aim behind this approach is to restrict the choice of
FAIDs to a possibly small subset containing good candidates. Given a particular code,
it would then be feasible to identify the best performing FAID from this subset by using
brute-force simulation or emulation or some other technique on the code. Moreover,
since the performance of a FAID on a given code depends on its structure, the goal
of identifying several candidate FAIDs is more realistic than identifying a single good
FAID, and allows for devising a selection method that is not code-specific. Another
important objective of our approach is to ensure that any FAID belonging to this subset
is capable of surpassing BP in the error floor not just on a single code but on several
codes.

The approach we use relies on the knowledge of potentially harmful subgraphs
that could be TS’s for traditional iterative decoders when present in a given code. The
candidate FAIDs are chosen by analyzing their behavior on each of these subgraphs
with errors introduced in them. We will first introduce some important notions that
form the basis of our approach, then we present a first approach of selection based
on Monte-Carlo simulations on TS’s of large sizes, and then present the proposed
methodology for FAID selection for column-weight-three codes.
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2 Finite Alphabet Iterative Decoders: Selection and Design

2.3.1 Critical number and isolation assumption

The notion of critical number associated with a TS of type T (a, b) was originally
introduced for Gallager-A/B algorithms on the BSC [66]. It is computed by analyzing
the Gallager-A/B decoding on errors contained in the topology T that is present in a
code, assuming that all nodes outside the topology are initially correct. It provides a
measure of how harmful a TS is, and hence, this notion is not only useful for predicting
the error floor performance [46] but also for determining the harmful subgraphs that
should be avoided in the code designs.

In order to be able to extend the notion of critical number for FAIDs, we introduce
the notion of isolation assumption [67] which is used to analyze the decoder on a
potential T (a, b) TS. Under this assumption, the neighborhood of the TS is such that
the messages flowing into the TS from its neighborhood are not in any way influenced
by the messages flowing out of the TS. Therefore, the messages flowing into the TS
can be computed while completely disregarding the neighborhood [67, Theorem 1].
We now precisely define this notion.

Let T k
i (G) denote the computation tree corresponding to an iterative decoder on

G enumerated for k iterations with node vi ∈ V as its root. A node w ∈ T k
i (G) is a

descendant of a node u ∈ T k
i (G) if there exists a path starting from node w to root vi

that traverses through node u.

Definition 2.3 (Isolation assumption). Let H be a subgraph of G induced by P ⊆ V
with check node set W ⊆ C. The computation tree T k

i (G) with the root vi ∈ P is said

to be isolated if for any node u /∈ P ∪W in T k
i (G), u does not have any descendant

belonging to P ∪ W . If T k
i (G) is isolated ∀vi ∈ P , then H is said to satisfy the

isolation assumption in G for k iterations.

The critical number can now be defined in the framework of FAIDs.

Definition 2.4. The critical number of a FAID denoted by D on a subgraph H is the

smallest number of errors introduced in H for which D fails on H under the isolation

assumption.

Remark: We set the critical number to ∞ if D corrects all possible error patterns on H .
The critical number can now be used as possible parameter for decoder selection

where a decoder is chosen to maximize the critical number on a given TS or set of TS’s.
In principle, one could consider a database of potential TS’s that are generated either
through analytical or empirical evaluations of traditional decoders such as BP and min-
sum on several different codes, and then select a FAID based on its critical numbers on
all these TS’s. The critical number is then supposed to be more representative than the
TS itself to measure its impact in the error floor region. For example, a (7, 3) TS with
critical number 4 will have a larger contribution to the error floor than a (5, 3) TS with
critical number 5.
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However, the isolation assumption of a TS typically does not hold in an actual code
for more than few iterations and hence the critical number may not reflect the true
error-correction capability of the FAID on a code containing the TS. This is especially
true for TS’s of small sizes. Therefore, unless a very large database of TS’s is con-
sidered or unless TS’s with large sizes are considered such that isolation assumption
holds for many more iterations , the strategy will remain ineffective. This motivates
the need for a new notion that considers to an extent the influence of the neighborhood.

Before presenting the main tool that will be useful in general in the selection of
good FAIDs, the next section provides a first approach based on TS’s with large sizes
in order to detect good FAID based on Monte Carlo simulations on a given code.
These large attractors are taken to be the codewords of the given codes. We present
the developed methodology throughout the example of the Tanner code, but it can be
applied to any code, provided the distribution of the codewords is known.

2.3.2 Investigation of the (155,64,20) Tanner code

As preliminaries, we briefly review the construction and the details regarding the Tan-
ner code, before presenting in the next few sections a first methodology to identify
good FAIDs on this particular code. The choice of this code is not random as its short
length allows a deep analysis of the failures of iterative decoding.

The Tanner code has been constructed in [68] and recall in [69, 70]. We expose
here the principle of the construction of the (155,64,20) Tanner code, with the code
length N = 155, and the number of information bits K = 64.

The parity-check matrix of the Tanner code is made of dv×dc block of permutation
matrices. Each permutation matrix is an m×m matrix obtained by circularly shifting
the identity matrix of size m. For the code we are using the parameters are m = 31,
dv = 3 and dc = 5. We denote here Ip the matrix obtained by circularly shifting the
identity matrix p times. The LDPC matrix obtained is given by :

H[155,64,20] =





I1 I2 I4 I8 I16
I5 I10 I20 I9 I16
I25 I19 I7 I14 I28





(93×155)

We refer to [68] for a complete explanation on the permutation indices of the parity-
check matrix. The girth of the Tanner graph associated with the matrix is 8, and the
resulting code has a minimal distance dmin = 20.

2.3.2.1 Trapping sets distributions

We now detail the topologies of the Tanner code which are supposed to be dominant in
the error floor region of the frame error rate curves, namely the smallest structures in
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terms of number of bits involved in it. Using expansion of the neighboring tree from
each variable node, it is quite easy to derive an algorithm which detects and counts
the small closed topologies, and therefore TS’s, in a graph. Different algorithms have
been suggested to detect TS’s [56, 71]. We have reported on Table 2.4 the distribution
of TS’s up to a = 7 bits which are present in the Tanner Code. Two examples of these
TS’s are drawn on Fig. 2.5(a) and Fig. 2.5(b).

The (5, 3) TS is the corner point of the weakness of iterative decoders on the Tanner
code. This very small TS makes several iterative decoders fail when the bits in error
are located on the 5 bits which compose the TS.

(a) The (5, 3) TS. (b) A (7, 3) TS.

Figure 2.5: Two different structures of TS present in the Tanner code

Table 2.4: Trapping Set spectrum of the Tanner Code.

(155,64,20) Tanner code
T (5, 3) 0− 3− 0− 0− 0− 0 → 155

T (6, 4) 0− 1− 2− 0− 0− 0 → 930

T (7, 3) 0− 3− 2− 0− 2− 0 → 930

T (7, 5) 0− 1− 1− 0− 1− 0 → 11160

T (7, 5) 0− 1− 0− 2− 0− 0 → 2790

2.3.2.2 Minimal codeword structures

The knowledge of the dominant TS’s could be sufficient to predict the behavior of
usual decoders in the error floor region [46, 44]. However, as demonstrated in the next
section, when the iterative decoder is more general, which is the case of the FAID
decoders, looking at the TS alone is not sufficient. The natural and obvious thing to
do is then to look at bigger structures which are also attractor points of the decoders.
Instead of considering larger and larger TS, we propose to study the behavior of the
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decoders on the closed structures which form the codewords of the Tanner code. The
main reason is that the multiplicity of TS with constant b > 1 becomes rapidly cum-
bersome with increasing a. Looking at error events located inside a codeword should
give a lot of information about iterative decoding convergence points, although a TS is
not necessarily nested in a codeword.

The Hamming distance spectrum of the Tanner code is given on Table 2.5. This
spectrum has been obtained with the impulse algorithm presented in [72]. We will
focus on the minimum codewords of weight dmin = 20 for the sake of simplicity of
the analysis. Note that these minimal codewords are actually (20, 0) TS’s.

By analysis of the topologies of these codewords, we have identified that there are
only 3 types of structures for the minimal codewords, which we will denote Type-I,
Type-II and Type-III. This means that each and every codeword of weight 20 belongs
to one of the automorphism group of the subgraph induced by one of the 3 types of
codewords. This is especially interesting since we can restrict the study of the decoders
on 3 subgraphs instead of 1023 subgraphs. Another observation is that only 2 out of the
3 types contain the minimal TS, i.e. the (5, 3) TS. We have drawn on the Fig. 2.6(a),
2.6(b) and 2.6(c) the structure of Type-I, Type-II and Type-III codewords, respectively.
We emphasized the (5, 3) TS on the Fig. 2.6(a) and 2.6(b).

Table 2.5: Codeword distribution of the Tanner Code.

(155,64,20) Tanner code
weight 20 → 1023

weight 22 → 6200

weight 24 → 43865

weight 26 → 259918

2.3.2.3 Limitations of predicting decoder behavior based on minimal trapping

sets

We have computed and indicated on the Table 2.8 the critical numbers of 4 different
FAIDs, and for all TS’s present in the Tanner code up to 8 bits. The 4 FAIDs considered
are the NLT 5-level FAID of the Table 2.2 denoted Φ

(1)
v , the 5-level FAIDs of the Table

2.6 and 2.7 denoted Φ
(2)
v and Φ

(3)
v , respectively, and the LT 7-level FAID of the Table

2.3, denoted Φ
(4)
v .

Without big surprise, the (8, 2) TS (displayed later in this chapter in the Fig. 2.9(b))
is the most difficult TS to cope with for all decoders. Note that all 4 FAIDs have infinite
critical number on the 2 smallest TS’s, namely the (5, 3) TS and the (6, 4) TS, which
seems to indicate that it is possible to derive quantized decoders, even with very few
quantization bits, which are not trapped by the TS’s of usual decoders (Gallager-B,
Min-sum).
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(5,3) TS

(a) Type-I

(5,3) TS

(b) Type-II
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(c) Type-III

Figure 2.6: Topological structures of the minimal codewords of the Tanner code

Table 2.6: LUT for Φv of a 5-level FAID with yi = −C – Φ
(2)
v .

m1\m2 −L2 −L1 0 +L1 +L2

−L2 −L2 −L2 −L2 −L2 0
−L1 −L2 −L2 −L1 −L1 +L1

0 −L2 −L1 −L1 0 +L2

+L1 −L2 −L1 0 +L1 +L2

+L2 0 +L1 +L2 +L2 +L2

Table 2.7: LUT for Φv of a 5-level FAID with yi = −C – Φ
(3)
v .

m1\m2 −L2 −L1 0 +L1 +L2

−L2 −L2 −L2 −L2 −L2 0
−L1 −L2 −L1 −L1 −L1 +L2

0 −L2 −L1 −L1 0 +L2

+L1 −L2 −L1 0 +L2 +L2

+L2 0 +L2 +L2 +L2 +L2
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Table 2.8: Critical numbers on the TS’s of the Tanner code for the selected decoding
rules. The DE threshold of each rule is also shown.

Trapping Set Label rule Φ
(1)
v rule Φ

(2)
v rule Φ

(3)
v rule Φ

(4)
v

(5, 3) 0− 3− 0− 0− 0− 0 ∞ ∞ ∞ ∞
(6, 4) 0− 1− 2− 0− 0− 0 ∞ ∞ ∞ ∞
(7, 3) 0− 3− 2− 0− 2− 0 7 ∞ ∞ 6
(7, 5) 0− 1− 1− 0− 1− 0 ∞ ∞ ∞ ∞
(7, 5) 0− 1− 0− 2− 0− 0 ∞ ∞ ∞ ∞
(8, 2) 0− 3− 4− 2− 4− 2 6 5 5 6
(8, 4) 0− 3− 0− 2− 0− 2 ∞ ∞ ∞ 6
(8, 4) 0− 1− 3− 1− 1− 1 ∞ ∞ ∞ 7
(8, 4) 0− 1− 2− 2− 2− 0 ∞ ∞ ∞ 7
(8, 6) 0− 1− 0− 1− 0− 1 ∞ ∞ ∞ ∞
(8, 6) 0− 1− 0− 0− 2− 0 ∞ ∞ ∞ ∞

Decoding threshold α∗ 0.09781 0.09778 0.09777 0.10155

These critical numbers are however not predictive at all when the isolation assump-
tion is not fulfilled. We have verified some error correction properties with extensive
Monte Carlo simulations on the whole Tanner code. It turns out that although the rule
Φ

(3)
v has the exact same statistics as rule Φ(2)

v and even better statistics than rule Φ(1)
v in

terms of critical numbers, rule Φ
(3)
v fails on 110 five-error patterns when we simulate

the rule on the whole Tanner code, while rule Φ
(1)
v and rule Φ

(2)
v correct all five-errors

patterns in less than 100 iterations. Another contradiction is that the critical number for
rule Φ

(2)
v on (8, 2) TS is 5, which means that there are five-error patterns such that de-

coder Φ(2)
v fails in an isolated way, but the rule Φ(2)

v successfully corrects the five errors
when the (8, 2) TS is simulated in the whole Tanner code. As we can see, contradic-
tions in the analysis of the isolated critical numbers are in both positive and negative
directions, which makes it difficult to make use in the goal of choosing a good decoder
for a particular code.

In Fig. 2.7, we compared the frame error rate (FER) performance of the FAID rules
Φ

(1)
v and Φ

(3)
v on the Tanner code. All curves have been plotted with a maximum of

100 iterations, and at least 300 frame errors have been recorded for each simulation
points. The difference between the two rules is not large, although the curves start
to split apart in the error floor region due to the fact that Φ(1)

v corrects all five-error
patterns while Φ

(1)
v does not. As a catastrophic counter-example of using only isolated

critical numbers for designing FAID rules, we have also plotted the performance of a
FAID rule which have all its critical numbers equal to +∞ (labeled as ‘Bad Rule’ in
the figure). The DE for this rule is only α∗ = 0.07778, and then is a lot worse than the
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thresholds of the FAIDs considered.
Of course, brute force simulations on the whole code would give the desired order-

ing between rules, but at the price of a too large computational burden. The problem of
finding the best decoding rules for a specific code cannot be solved with the knowledge
of critical numbers alone, and remains an open issue. In the following, we propose a
first approach to partially solve this issue which is still based on Monte Carlo simula-
tions, but on larger structures than the smallest TS.
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Figure 2.7: Performance comparisons of different FAIDs on the Tanner Code

2.3.2.4 Selection of FAIDs by Monte-Carlo simulations on larger structures

We propose to make the selection of FAIDs with respect to the ordering between FAID
rules, by simulations of ne-errors patterns on the subgraphs induced by the minimal
codewords of weight 20. Although we do not claim that simulation results on these
subgraphs are strictly predictive, looking at the codeword structures makes sense with
respect to the isolation assumption described in the preceding section. As a matter of
fact, a codeword is a particular (a, 0) TS, and then is connected to the rest of the graph
only by edges which have already even degree inside the TS. More importantly, there
is no edge which connects the codeword to the rest of the graph, and which outputs
from a variable node. From our observations on TS’s, the isolation assumption is more
often ‘broken’ when the external paths go through a variable node than when they go
only through check nodes of the TS. It seems that codewords are almost isolated, at
least during a number of iterations more important than other types of TS.

43



2 Finite Alphabet Iterative Decoders: Selection and Design

We have simulated all 5-errors patterns and all 6-errors patterns on the 3 types of
codewords, for a large number of FAIDs. We report on Table 2.9 the results for the
5-level decoders of Tables 2.2, 2.6 and 2.7. The numbers in the table indicate the
number of error patterns which are not corrected by the decoders, and in the case all
error events are corrected, we indicate in brackets the maximum number of iterations
needed to correct all events.

Table 2.9: Low-weight error event correction on the codewords.

5-errors patterns 6-errors patterns

Φ
(1)
v Φ

(2)
v Φ

(3)
v Φ

(1)
v Φ

(2)
v Φ

(3)
v

type-I 3 2 > 10 172 138 > 500

type-II 0(7) 0(8) 0(9) 0(16) 0(21) > 21

type-III 0(4) 0(4) 0(4) 0(4) 0(4) 0(5)

As a first observation, we can see that the 3 types of codewords have completely
different behaviors. Type-I codewords seem to be the most problematic ones, and
Type-III codewords the easiest to decode. Remember that Type-III codewords do not
contain (5, 3) TS, which could explain why they have the best behaviors with iter-
ative decoding. This is a very interesting differentiation of codewords which have
although the same Hamming weight, and therefore cannot be differentiated with Max-
imum Likelihood Decoding.

In terms of ordering of the different rules, those statistics are in better accordance
with the simulations on the whole Tanner code than the critical numbers of Table 2.8. It
is readily seen on these statistics that rule Φ

(3)
v is worse than rules Φ(1)

v and Φ
(2)
v . Since

we verified that rule Φ
(3)
v does not correct all five-error patterns on the Tanner code

while Φ(1)
v and Φ

(2)
v do, we can see that the ordering of rules made with simulations on

the codewords is somewhat more predictive than the isolated critical numbers. A more
important result is that we performed those statistics for all possible 5-level decoders
(we remind that there are 28,314 possible FAIDs with Ns = 5), and rules Φ(1)

v and Φ
(2)
v

have the best overall statistics of all decoders. Since this approach of simulating error
patterns on codewords appears to be predictive, we conjecture that we have found the
best 5-level decoders for the (155,64,20) Tanner code, that is decoders Φ

(1)
v and Φ

(2)
v

for which the FER curves are very close. As we already reported in Fig. 2.2 where we
remind that the Φ(1)

v is the 5-level NLT FAID, and Φ
(4)
v being the 7-level LT FAID, both

FAIDs Φ(1)
v and Φ

(4)
v beat the BP decoder in the error floor region, as expected with our

conjectures from the minimal codewords in the Tanner code.
To conclude this preliminary part on the selection we should note that the selection

of good FAIDs on the Tanner code was a possible task to do due to its short length,
and then its easiness to compute the contained TS, the minimal codewords,... For
longer codes, this methodology might appear as not tractable as the exhaustive search
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of minimal codewords might not be doable. Indeed, for the Tanner code we are able
to list all codewords of minimal weight, but it seems way more difficult for other
codes, hence we need another tool to select FAIDs that rely only on the knowledge of
dominant TS’s. This other tool needs the definition of other concepts presented in the
next section.

2.3.3 Noisy trapping sets and noisy critical numbers

Let us consider a harmful topology T (a, b) that has been identified as a potential TS
on a given code. We introduce the notion of initialization vector which allows us
to partially capture the influence of its arbitrary (unknown) neighborhood during the
analysis of a FAID on the T .

Definition 2.5. An initialization vector on a TS T (a, b) is defined as a vector Θ =
(θ1, ..., θb) where θi ∈ M, such that during the message-passing of a FAID on T , the

message passed by the ith degree-one check node in any iteration is θi. The TS T (a, b)
is said to be initialized by such a vector and is referred to as a noisy trapping set.

A FAID can now be analyzed by introducing errors into the variable nodes of the TS
T (a, b) and passing messages iteratively on the edges of T under a given initialization
vector. Note that the initialization vector on a TS is carried out only through the degree-
one check nodes, and also that the initialization vector Θ is not iteration-dependent.

As a first example, Fig. 2.8 depicts how a FAID is analyzed for a three-error pattern
on a T (6, 2) initialized by a vector Θ = (θ1, θ2). A  denotes a variable node initially
wrong (v1, v2, and v4) and a # denotes a node initially correct (v3, v5, and v6). A 2
denotes a degree-two check node and a � denotes a degree-one check node. Initially
all the messages passed by all nodes except the degree-one check nodes are set to
zero. Then the messages are iteratively updated using the maps Φv and Φc by treating
the topology T as if it were the Tanner graph of a code but with the exception that a
degree-one check node sends θ1 (or θ2) to its neighbors in all iterations of the message-
passing. The message update on a single edge from a variable node is shown in the
figure for each of the nodes v1, v2, v3 , and v5 (v4 and v6 are similar to v2 and v3
respectively). Note that the messages m1,m2, . . . ,m6 denote the extrinsic incoming
messages to these nodes.

Let NI denote the maximum number of iterations allowed for message-passing un-
der a particular FAID on TS T (a, b). We examine whether an error pattern is corrected
by the FAID within NI iterations under a given initialization vector on the TS T (a, b).

As a second example Fig. 2.9(a) illustrates the initialization of a T (5, 3) with a
static initialization vector Θ on the odd-degree check nodes. In order to demonstrate
how the initialization can mimic the influence of the neighborhood, consider the Fig.
2.9(b) where a T (8, 2) is formed by adding three extra variable nodes to T (5, 3). The
initialization vector of the T (5, 3) indicates the 3 possible messages that could enter
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2 Finite Alphabet Iterative Decoders: Selection and Design

Figure 2.8: An example of a noisy T (6, 2) initialized by a vector Θ.

T (5, 3) due to the influence of its neighborhood defined by T (8, 2). Tables 2.10(a)
and 2.10(b) show the observations of the evolution of messages θ1, θ2, and θ3 for the
first 10 decoding iterations when the 5-level FAID of Table 2.2 was employed on the
Tanner code. Table 2.10(a) corresponds to the case where all 5 errors are introduced
on a T (5, 3) contained in T (8, 2). Table 2.10(b) corresponds to the case of adding
an extra 6th error in the neighborhood of T (5, 3). From the Tables, we can see that
not only does the isolation assumption not hold as messages do not remain +L2 after
iteration 3, but at certain iterations even messages such as 0 and −L1 begin to enter the
T (5, 3) due to the neighborhood.

θ2

θ3

θ1

(a)

θ3

θ2

θ1

(b)

Figure 2.9: (a) Initialization of a T (5, 3). (b) T (5, 3) + 3 variable nodes = T (8, 2).
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Table 2.10: Evolution of the messages entering a T (5, 3)

(a) Case 1

Iter. θ
(l)
1 θ

(l)
2 θ

(l)
3

1 +L1 +L1 +L1

2 +L2 +L2 +L2

3 +L2 +L2 +L2

4 +L1 +L1 +L1

5 0 0 0
6 +L1 +L1 +L1

7 0 0 0
8 +L1 +L1 +L1

9 +L1 +L1 +L1

10 +L1 +L1 +L1

(b) Case 2

Iter. θ
(l)
c1 θ

(l)
c2 θ

(l)
c3

1 +L1 +L1 +L1

2 +L2 +L2 +L1

3 +L2 +L1 +L2

4 +L2 −L1 +L1

5 0 +L1 0
6 +L2 0 +L2

7 +L2 +L1 +L1

8 +L1 0 +L1

9 +L1 +L1 +L1

10 +L1 0 −L1

Although we see that dynamic initialization vectors can accurately predict the de-
coder behavior, we restrict ourselves to using static initialization vectors in order to
ensure computational feasibility in the analysis.

Our main intuition for defining the notion of noisy trapping sets is as follows. Let
us consider a code whose graph G contains a subgraph H that is isomorphic to the
topology T (a, b). Assume that a particular FAID is being used for decoding an error
pattern where some (or all) of the variable nodes in H are initially in error and the
nodes outside H are initially correct. During each iteration of decoding, different pos-
sible messages belonging to M will be passed into the nodes of H from outside of H
depending on its neighborhood. The initialization vector can be considered as a pos-
sible snapshot of the messages entering H through its check nodes in some arbitrary
iteration, and different initializations represent the different possible influences that the
neighborhood of H can have. Therefore, analyzing the FAID under different initializa-
tions on a given T can provide a good indication of its error correction capability on a
code whose graph contains H .

Although the initialization vector should ideally be iteration-dependent and include
all messages passed to all check nodes of T (a, b) from outside of T (a, b), this would
make analyzing a FAID on T (a, b) computationally intractable. Therefore we only
include constant values that are passed to degree-one check nodes into the initialization
vector. We now define the notion of noisy critical number which is an extension of the
notion of critical number for FAIDs.

Definition 2.6. The noisy critical number of a FAID D under an initialization vector

Θ on a TS T (a, b) is the smallest number of errors introduced in T (a, b) for which D
fails on T (a, b).
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By determining the noisy critical number under every possible initialization vector
Θ ∈ Mb on the TS T (a, b), a vector of noisy critical numbers, referred to as noisy crit-

ical number vector (NCNV), can be obtained for a particular FAID. Let NΘ denote the
number of all possible initialization vectors, i.e., NΘ = |Mb|. The NCNV of a FAID
denoted by D on a given TS T (a, b) is given by ND(T (a, b), NI) = (ζ1, ζ2, . . . , ζNΘ

),
where ζi is the noisy critical number determined under a initialization vector Θi ∈ Mb

on TS T (a, b) with NI being the maximum number of decoding iterations. The NCNV
can now be used as a parameter for decoder selection.

2.3.4 Choice of trapping sets for decoder selection

Since our approach for identifying good FAIDs relies on determining the NCNVs of
FAIDs on different TS’s, the first step in the decoder selection is to carefully select
the harmful topologies that should be considered for the analysis. The selected TS’s
should be topologies that are known to exist in practical high-rate codes with dense
graphs and are regarded as relatively harmful for existing iterative decoders. Also the
TS’s used should have notable differences in their topological structures, so that the
candidate FAIDs identified from the analysis are more likely to be good on several
codes rather than just on a single code.

We use the trapping set ontology (TSO) [60] to determine which harmful topolo-
gies to consider. The TSO is a systematic hierarchy of trapping sets that is based on
their topological relations, and it is specified in the form of a parent-child relationship
between the TS’s. A trapping set T1 is said to be a parent of a TS T2 if T2 contains
T1. For the decoder selection, the TS’s are chosen such that they do not have many
common parents, and that most of the parents (graphs of smaller size) in the TSO are
considered. For simplicity, we ensure that all the TS’s selected have the same value of
b, so that the NCNVs determined from different TS’s all have the same dimension.

2.3.5 Decoder domination

Having selected the harmful topologies, the next step in the decoder selection is to
determine and be able to compare the NCNVs of different FAIDs on all the selected
TS’s. We introduce the notion of decoder domination in order to compare the NCNVs
of different FAIDs.

Let the set of chosen TS’s for the analysis of FAIDs be denoted by
Λ = {T1, T2, . . . , TNΛ

} with cardinality NΛ. Let F = {D1, . . . ,DNF
} denote the set

of Ns-level FAIDs considered for possible decoder selection with cardinality NF . Let
NDk

(Tj, NI) denote the NCNV of a FAID Dk ∈ F determined on a TS Tj ∈ Λ, and
let N

(i)
Dk

(Tj, NI) denote the ith component of the NCNV, i.e., N
(i)

Dk
(Tj, NI) = ζi.
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A FAID Dk is said to dominate a FAID Dl for a given initialization vector Θi, if

N
(i)

Dk
(Tj, NI) ≥ N

(i)
Dl

(Tj, NI) ∀j ∈ {1, 2, . . . , NΛ} (2.3)

In other words, Dk dominates Dl under a given initialization vector Θi if the noisy
critical number of Dk is not less than the noisy critical number of Dl on all the TS’s in
Λ.

The number of initialization vectors under which Dk dominates Dl is denoted by
ñ(Dk,Dl) and is given by

ñ(Dk,Dl) =

NΘ
∑

i=1

NΛ
∏

j=1

1

(

N
(i)

Dk
(Tj, NI) ≥ N

(i)
Dl

(Tj, NI)
)

(2.4)

where 1 is the indicator function that outputs a one when the condition in its argument
is true and zero otherwise.

If ñ(Dk,Dl) ≥ ñ(Dl,Dk), then Dk is said to dominate Dl with domination strength

ñ(Dk,Dl)−ñ(Dl,Dk). For simplicity we shall use the symbol� to denote domination,
i.e., (Dk �Di) = 1 implies that Dk dominates Di.

2.3.6 Methodology for selection: a general approach

For a given value of Ns, a methodology for identifying good Ns-level FAIDs can now
be devised based on the notions of decoder domination and the NCNVs. We remind
the reader that the main goal of our approach is to be able to identify a small subset of
candidate Ns-level FAIDs, where each candidate FAID is potentially good on several
codes. Let this small subset of selected FAIDs be denoted by Fc. Ideally, if a candidate
FAID could be selected solely based on how it dominates all the other FAIDs in F , then
one could possibly obtain an ordering of the FAIDs in F in terms of their dominance
and conclude which ones are more likely to be good on a given code containing one
or more of the TS’s in Λ. Unfortunately, we have found that such an ordering does not
exist since there can be many FAIDs that dominate a particularly good FAID (known
a priori to be good) and yet perform poorly on certain codes.

Therefore, without going into the details, we shall describe a general approach for
selection that utilizes pre-determined small sets of good FAIDs and bad FAIDs denoted
by Fg and Fb respectively. The set Fg consists of Ns-level FAIDs that are known a
priori to have good error floor performance on several codes of different rates and
possibly containing different TS’s. The set Fb consists of Ns-level FAIDs that were
found to perform well on one particular code but perform poorly on other codes. We
regard FAIDs in Fb to be bad since our goal is to identify FAIDs that are capable of
surpassing BP on several codes.

We then evaluate whether a particular FAID Dk ∈ F dominates or is dominated
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by the FAIDs in the sets Fg and Fb. By using the sets Fg and Fb to compare with, we
are inherently trying to select FAIDs whose NCNVs have characteristics similar to the
NCNVs of FAIDs in Fg but dissimilar to the NCNVs of the FAIDs in Fb. Therefore,
we define a cost function, Cñ, that is based on domination strengths, and whose value
determines whether the FAID Dk should be accepted for inclusion into Fc. We have
observed that it is crucial for a candidate FAID to dominate most (or all) FAIDs in
Fg and also not be dominated by most (or all) FAIDs in Fb for it to be considered
potentially good. This is reflected in the cost function Cñ defined below.

Cñ(Dk) =
∑

∀ Di∈Fg , (Dk�Di)=1

(

ñ(Dk,Di)− ñ(Di,Dk)
)

+
∑

∀ Dj∈Fb, (Dk�Dj)=1

(

ñ(Dk,Dj)− ñ(Dj,Dk)
)

−
∑

∀ Di∈Fg , (Di�Dk)=1

(

ñ(Di,Dk)− ñ(Dk,Di)
)

−
∑

∀ Dj∈Fb, (Dj�Dk)=1

(

ñ(Dj,Dk)− ñ(Dk,Dj)
)

(2.5)

The value of the cost function Cñ is compared to a threshold τ . If Cñ(Dk) ≥ τ ,
then the FAID Dk is selected as a candidate to be included in Fc, else it is rejected. The
cardinality of Fc depends on τ since a smaller τ accepts more FAIDs and a larger τ
accepts less FAIDs. The choice of NI also plays a role and should generally be chosen
to be small (5 to 10 iterations).

Note that the approach we have presented in this chapter is slightly different from
the one proposed in [73]. In [73], the selection algorithm assumes it has no a priori
knowledge on the sets Fg and Fb, and then tries to progressively build the sets before
using them to identify good candidate FAIDs. By instead utilizing pre-determined sets
of Fg and Fb in our approach, we have found that the selection procedure is greatly
improved and we were able to obtain much better sets of candidate FAIDs Fc (in
terms of their error floor performance). Note however that the approach of [73] is still
applicable to the selection method presented here as it could still be used as an initial
step for determining the sets Fg and Fb.

Using our methodology, we were able to derive a set of good candidate 7-level
FAIDs (which are 3-bit precision decoders) for column-weight-three codes. On a va-
riety of codes of different rates and lengths, particularly good 7-level FAIDs chosen
from Fc all outperformed the BP (floating-point) in the error floor. Moreover, the loss
in the waterfall compared to BP was found to be very reasonable. The numerical results
to support this statement are provided in the next section. Another interesting remark
related to our selection procedure that we have found is that, although the DE thresh-
old values were not at all used as parameters in the selection of FAIDs, the candidate
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FAIDs that we obtained in set Fc were all found to have fairly good DE thresholds.

2.4 Numerical results

Earlier in Section 2.2, we demonstrated the capability of 5-level and 7-level FAIDs
to outperform BP in the error floor on the (155, 64) Tanner code. We now provide
additional numerical results on the BSC to further illustrate the efficacy of FAIDs on
column-weight-three codes of higher practical interest and validate our approach for
decoder selection. The three codes used for the simulations were chosen to cover a
broad variety of LDPC codes in terms of rate, length, and structure. They are: 1)
an R = 0.751 (2388, 1793) structured code based on latin squares, 2) an R = 0.5
(504, 252) code, and 3) an R = 0.833 (5184, 4322) quasi-cyclic code.

The (2388, 1793) structured code with girth-8 was designed using the method of
Nguyen et. al [62], which is based on latin squares and avoids certain harmful TS’s
in the code design. The R = 0.5 (504, 252) code with girth-8 was designed using
the progressive edge-growth (PEG) method of [74] while ensuring that it contains no
(5, 3) TS (see [60] for the topology). The (5184, 4322) quasi-cyclic code is a high-rate
girth-8 code with a minimum distance of 12.

Figures 2.10, 2.12, and 2.11 show the frame error-rate (FER) performance compar-
isons versus the cross-over probability α between the particularly good 7-level (3-bit
precision) FAIDs we identified and the BP (floating-point). Table 2.1 defines the FAID
used on the (2388, 1793) and the (5184, 4322) codes, while Table 2.3 defines the FAID
used on the (504, 252) PEG-based code. Note that both are 7-level NLT FAIDs and all
decoders were run for a maximum of 100 iterations.

In all three codes, the 7-level FAIDs begin to surpass the BP at an FER≃ 10−5.
Also notice the difference in the better slopes of the error floor for the 7-level FAIDs
which can be attributed to their improved error correction capability. For instance, all
FAIDs used on the (155, 64) Tanner code in Fig. 2.2 guarantee a correction of 5 errors,
whereas BP fails to correct several 5-error patterns. It must also be noted that the good
7-level FAIDs identified using our approach outperformed BP on several other tested
codes as well. Therefore, the methodology is applicable to any column-weight-three
code and provides to an extent “universally” good FAIDs, as they are all capable of
surpassing BP on not just few but several codes.

2.5 First results on column-weight-four LDPC codes

To conclude this chapter, we provide a practical section in order to identify harm-
ful structures, and design FAIDs for a given column-weight-four code. This section
does not contain any theoretical work, but just relies on experiments, observations and
intuition leading nevertheless to promising results.
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Figure 2.10: Performance comparisons between the BP (floating-point), the 7-level
FAID defined by Table 2.1 on the (2388, 1793) structured code.
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Figure 2.11: Performance comparisons between the BP (floating-point) and the 7-level
FAID defined by Table 2.3 on the (502, 252) quasi-cyclic code.
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Figure 2.12: Performance comparisons between the BP (floating-point) and the 7-level
FAID defined by Table 2.1 on the (5184, 4322) quasi-cyclic code.

All the work performed previously considered column-weight-three girth-eight
LDPC codes where the work on the harmful structures responsible for the error floor
phenomenon of classical decoders was known. However for practical implementa-
tion (notably in storage systems), we need to address the case of a high-rate column-
weight-four girth-six LDPC codes. In this section we propose a practical case of study
of designing a FAID for such a given code on the BSC. The code we take as a practical
test code is quasi-cyclic (QC) and has three different properties compared to the pre-
vious codes mentioned in this dissertation, which is column-weight four, girth-six and
high-rate. The size of the code is N = 4995 and the rate is R = 0.9.

The FAIDs aim at improving the performance of an LDPC code in the error floor
region. For column-weight-four and girth-six LDPC codes, the low-weight error pat-
terns are not really known. Considering the length and the rate of the code, the ex-
haustive extraction of these structures cannot be done quickly and efficiently with the
known algorithms. We choose another approach which consists in computing the per-
formance of the BP/min-sum decoders on the BSC until the mid-SNR region, and then
from the error patterns obtained, we derive some low-weight error patterns that are
responsible for the error floor on the high SNR region. Due to the QC property of the
code, the knowledge of a particular harmful attractor provides multiple ones. Finally
the designed FAID should be able to correct some of the extracted structures, or at least
improve the number of bits that can be corrected on them. Finding the minimum TS’s
of a given code is not an obvious issue, especially when this code is a high-rate code
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with a high minimum distance. The existing algorithms suggest to focus on the Tan-
ner graph and to derive some attractors with cycle enumerators in order to predict the
error floor. Here we just want to identify some of the smallest TS’s in order to design
decoders with better performance on these TS’s compared with the classical decoders
(min-sum/BP).

On the QC-LDPC code of length 4995, it is not possible (in a reasonable simulation
time) to obtain error patterns of weight less than 15. We simulate the performance of
both min-sum and BP decoders on the BSC starting at a fixed α. We then collect the
error patterns with a maximum weight of 40. The idea is next to claim that if a binary
vector is an error event, it is because the bits initially in error in the Tanner graph are
located in the neighborhood of an attractor from which he cannot escape. With this ob-
vious statement we develop an iterative method to identify those attractors. From the
error patterns collected, we run again the simulations on the BSC, recording for each
bit the frequency of decision in error for each of them during the decoding (basically
during 100 iterations maximum). From this records we can extract the indices of the
variable nodes often decided in error (practically we use a threshold on the percentage
of iterations spent by a variable decided in error). We then run again the decoding
with this new vector as an input vector and we keep recording the indices of the vari-
able nodes decided in error by eventually increasing the percentage. Once the method
converges to a fix point, we obtain one attractor (with a low-weight) derived from the
original error event.

Remark: This procedure does not necessarily converge to a TS, as it can also con-
verge eventually to the original codeword sent: in this case no attractor is found. We
want also to precise that we are not claiming that using this method, each error-pattern
will output a low-weight harmful topology, but if this error pattern is “close enough”
to an harmful structure, this procedure should capture the effect of it.

In the following we propose the formalization of the method, and then two exam-
ples are explained to show the extraction of two TS’s containing 8 bits.

2.5.1 Scheme of the proposed algorithm

We consider a decoder D on the BSC with a transition probability α on a LDPC code
of length N .

1. Simulate the frame error rate at α = α0 in the mid-SNR region.

2. Take an error pattern E0 of weight w0 (which is not already an attractor, ie.
which evolves during the decoding).

3. Initialize i = 0, and the threshold percentage τ=50%

4. Simulate again Ei at αi+1 =
wi

N
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5. If Ei is still an error pattern :

(a) Record the frequency f (i) = {f (i)
1 , f

(i)
2 , ..., f

(i)
N } of bits {b1, ...bN} decided

in error during the decoding

(b) Ei+1 = {bk|f
(i)
k ≥ τ}(k=1...N)

(c) i = i+ 1 Redo step 4. until Ei+1 = Ei

The idea of the algorithm is the following one : if a bit is decided in error more than
half of the decoding time in error, it means that it is involved in some attractors that
make the decoding fail. We point out that the selection of the original error event is
very important. We need to select an error event that evolves during the decoding,
which means that the decided output vector changes from one iteration to another.

A weakness of this algorithm concerns the time of convergence in the decoding.
With a high length code, some vectors can be error events in 100 iterations, but they
can be corrected in 150 iterations. We want here to select "real" error events, for
which the decoder is trapped in an attractor no matter the number of iterations done.
Practically the threshold percentage is iteration dependent. We obtained the best results
with a low starting percentage (around τ=20%) and finishing at a very high percentage
(around τ=90%).

To illustrate this algorithm we propose two examples. The first one with a constant
percentage and the second one with an adaptive one.

2.5.2 Examples of the extraction of a minimal trapping set

2.5.2.1 Example 1 : Fix percentage - τ=50%

This first example shows that from an error event of weight 18, we derive a TS whose
induced subgraph contains 8 variable nodes while keeping the threshold at 50%. The
method starts with the original error event of weight 18 decoded with the BP decoder.
At the end of the 100 decoding iterations we keep the bits decided in error more than
50% of the decoding time - there are 9 with an average number of iterations decided in
error of 79. We feed these bits to the decoder as a new error event, and we record the
bits decided in error more than 50% of the time. At the third iteration our algorithm has
converged, the 8 bits decided more than 50% of the time in error are the same as the
ones in error at the input of the decoder with an average number of iteration decided in
error of 97. The induced subgraph of the corresponding bits is a TS. In three iterations
of this procedure we obtained the TS shown in Fig 2.13. Moreover we checked that
when the 8 bits of this TS are initially in error, the decoding fails.
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Figure 2.13: Extracted TS from Example 1 – denoted (8,4,2) TS.

2.5.2.2 Example 2 : Adaptative percentage - 30% ≤ τ ≤ 70%

This second example starts from an error event obtained of weight 16. The algorithm
is slightly modified because the values of the percentage evolve with the iterations.
Indeed we start with τ=30% to end up to τ=70%. We have to consider dynamic τ
because we witnessed that the error event is quite far from the bad attractor we want
to reach. By starting with a lower τ , we can "follow" better the evolution of the errors,
and get closer to bad attractors.

During the first four iterations we then keep τ=30%. Once the output error event
is the same as the input one, we increase τ to 55% and then to 70% until we obtain a
low-weight error pattern, in this case with 8 bits. The evolution of the procedure for
this example is summarized in the Table 2.11. The obtained TS is depicted in the Fig.
2.5.2.2. It is pretty easy to see that the absence of two odd-degree check nodes on one
variable node, leads to a highly harmful structure, indeed the BP cannot correct all the
6-error event in it.

Table 2.11: Steps of the algorithm - Example 2
Iteration Threshold τ Error event

weight
Number of bits with an error

decision frequency ≥ τ

Average number of iterations for the
bits with an error decision frequency

≥ τ

1 30% 16 9 56
2 30% 9 10 58
3 30% 10 11 77
4 30% 11 11 85
5 55% 11 9 92
6 70% 9 8 94
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Figure 2.14: Extracted TS from Example 2 – denoted (8,6,0) TS

2.5.2.3 Structures extracted

Similarly to the two previous examples, we extracted the topological structures for the
BP and/or the min-sum decoder. We used the two decoders, as we witnessed that some
error events for the BP decoder were not harmful when the min-sum decoder was used.
We extracted a small database of structures for which the classical decoders fail for 8,
7, 6 and even 5 errors. We present in the Table 2.12 the number of bits that a given
decoder can correct on the whole code using the new notation we propose to denote
TS for column-weight-four code:

Definition 2.1. Let T(y) be a TS. This TS is denoted (a, b, c) TS, where a = |T(y)|,
whose induced subgraph has b variable nodes connected to one odd-degree parity-

check node, and c variable nodes connected to two odd-degree parity-check nodes.

Remark : For the column-weight-three LDPC code, the former notation still stands
with a (a, b, 0) TS.

The Fig. 2.15(a) presents one of the most harmful structures that we found in the
QC-LDPC code, hence 5 errors cannot be corrected for the BP decoder. The Fig.
2.15(b) presents another structure on which the BP cannot correct more than 6 errors.

2.5.2.4 Proposed decoder on the BSC

We now present the decoders that have been designed for this particular QC high-rate
code. The update function at the check nodes is still taken to be the update rule of the
min-sum decoder presented in the beginning of the chapter in Eq. (2.1).

On the variable node we can still define a FAID map Φv as for the column-weight-
three LDPC code with an array. With dv = 4 this array for yi = −C for a 5-level FAID
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(a) (6,2,2) TS (b) (8,6,1)2 TS

Figure 2.15: Two harmful TS’s extracted from the given code.

is now a look-up table given by :

m1 m2 m3 Φv(−C,m1,m2,m3)

−L2 −L2 −L2 −L2

−L2 −L2 −L2 −L1

...
...

...
...

+L2 +L2 +L2 +L2

where m1, m2, and m3 are the incoming messages.
For Ns = 7 levels, this array contains 84 rows, which means we need 84 outputs

to design our rule, for Ns = 15, this value increases to 680. The number of possible
decoders is then very high as soon as we increase Ns. We can certainly not generate all
the possible decoders, and then we choose the best one by looking at its characteristics.
We then propose to design a FAID using a non-linear equation at the variable nodes,
and afterwards we derive the corresponding look-up table.

We propose here the basis of the decoder used on the BSC. The update rule for the
designed FAID with m1,m2,m3 as incoming messages, is given by

Φv(−C,m1,m2,m3) = sign(S)×

⌊

max

(

(

√

|S| − ρoff

)

,
Ns − 1

2

)

+ 0.5

⌋

(2.6)

where :































S = s1m
2
1 + s2m

2
2 + s3m

2
3 + sCC

2

si = sign(mi)
⌊.⌋ : Floor function
|.| : Abs function
C ∈ R

ρoff ∈ [0, 1]
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2.6 Conclusion

This decoder is a multi-level decoder, as the output of the variable node will belong
to the alphabet due to the saturation value at Ns−1

2
and the floor function. Note that we

assign integer value to the alphabet level, such that M̃ = {−Ns−1
2

, ..., 0, ...,+Ns−1
2

}.
The idea of the decoder is to compute a quadratic sum taking into account the signs of
the messages, and then flatten out the results with the square root. We add the offset
parameter ρoff to be able to design more decoders, and to improve its performance.
The different value for C is providing different FAIDs, we select the FAIDs with the
highest DE threshold as potential candidates, and then simulate them on the given
code.

The 3-bit decoder presented in the next section (on 7 levels) has the parameters
|C| = 2.5, ρoff = 0.2. The 4-bit decoder presented in the next section (on 15 levels)
has the parameters |C| = 3.5, ρoff = 0.5. These two decoders are the best FAIDs
we were able to design, although it is likely that better FAIDs for column-weight-four
code can certainly be designed.

2.5.2.5 Performance of the decoder

The performance curves are shown in Fig. 2.16. We can observe the improvement in
the performance with our decoder especially with 15-level FAID (performing on 4 bits
of precision). Indeed this error rate curve of the designed FAID is stuck to the one of
the min-sum decoder and slightly better in the beginning of the error floor. In order to
illustrate the improvement of the performance of the designed FAIDs in the error floor,
we compare their error correction capability on the structures extracted in the previous
section with the min-sum and BP decoder. These results are summarized in the Table
2.12. We can see that the designed finite precision decoders correct at least the same
number of errors, and even more in some cases. The TS of the Fig. 2.15(a) is actually
a TS only for the min-sum and BP decoders, as the designed FAIDs can correct the 6
bits inside.

2.6 Conclusion

In this chapter we have introduced a new class of low-complexity iterative decoders,
the FAIDs. After a complete description of their structures we have shown their out-
standing performance in the error floor region, as we have shown that FAIDs on 7-level,
hence using 3-bit of precision, were able to surpass the traditional BP decoding. Given
the high number of possible FAIDs which can be designed, we tackle the issue of the
selection of FAIDs. At first we studied deeply the famous Tanner code to show that
based on the minimal codeword we could select the best 5-level and 7-level FAIDs
on this particular code. For more complicated codes, where the codewords cannot be
listed easily, we propose a methodology based on the concept of noisy critical number
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Table 2.12: Maximum Number of correctable bits per FAID and per TS
Maximum Number of bits correctable

Trapping sets Min-sum BP 3-bit FAID 4-bit FAID

TS(6,2,2) 5 5 6 6

TS(6,4,1)1 5 5 6 6

TS(6,4,1)2 5 5 5 5
TS(7,2,2) 6 6 6 6
TS(7,4,2) 6 6 6 6
TS(8,4,2) 7 6 7 7

TS(8,6,0) 6 6 6 6
TS(8,6,1)1 7 7 7 7
TS(8,6,1)2 6 6 7 7

TS(9,2,3) 7 7 7 7
TS(9,6,2)1 8 8 8 8
TS(9,6,2)2 8 7 8 8

TS(10,4,2) 7 7 8 8

10−2

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Cross−over probability (α)

F
ra

m
e 

er
ro

r 
ra

te
 (

F
E

R
)

 

 

BP (floating point)

Offset Min−Sum (floating point)

7−level FAID

15−level FAID

Figure 2.16: Performance comparisons between the floating point decoders: BP and
offset min-sum, and the 7-level and 15-level FAIDs design for the given column-
weight-four code.

and decoder domination to extract the best FAIDs on column-weight-three codes. We
also provided an embryo of methodology for a girth-six column-weight-four LDPC
code where harmful structures are not completely known. Based on the observations
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2.6 Conclusion

of the min-sum and BP decoder during the decoding process, we were able to ex-
tract some harmful structures of the given code. We then designed finite precision
FAIDs whose error correction capabilities were better than the min-sum and/or BP.
The simulation results confirmed that a FAID using 3-bit can also surpass the BP for a
column-weight-four LDPC codes.

The next work implies to find an efficient and systematic methodology to de-
sign FAIDs for column-weight-four codes possibly by deriving them from the iden-
tified good FAIDs for column-weight-three codes, although it is now obvious that
good FAIDs for column-weight-three codes will engender good FAIDs for column-
weight-four codes. The next step is obviously to tackle the more common channel, the
AWGNC, in which the issue of the quantization of the channel will be the core of the
analysis.
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Chapter3
Compressed Sensing: Introduction and
Reconstruction Methods

IN this chapter we present a descriptive review of the work done in the last few years
in the emerging field of compressed sensing, also called compressive sensing. We
remind the original problem setting, and the main relevant reconstruction methods

proposed in the last few years.
For the sake of clarity of the manuscript, we only refer to algorithms that we found

worth mentioning among the large amount of methods in the literature regarding com-
pressed sensing.1

3.1 Introduction

The Compressed Sensing (CS) problem as it has been suggested by Candès, Romberg
and Tao [77, 78] and Donoho [79] aims at detecting a compressed or compressible sig-
nal with many less measurements than the Nyquist-Shannon sampling theorem would
suggest. In the case of an analogous signal, the sampling theorem demonstrates that
the number of samples that needed to be taken to recover completely the original sig-
nal needs to be at least twice its bandwidth. However in the case of a sparse signal
(potentially in a certain basis), the Compressed Sensing provides a different approach
which reduces drastically the number of samples that need to be acquired and then
stored for a signal. This property of reducing the number of samples taken in a sparse
signal explains the massive interest around this recent field of the signal processing.
The applications of the Compressed Sensing are numerous, as the assumption of spar-

1An important database of papers on the compressed sensing topic can be found in the Digital Signal
Processing group website at Rice University [75] and some up-to-date articles and papers as well as
some interesting discussions in [76].

63



3 Compressed Sensing: Introduction and Reconstruction Methods

sity can make sense in many topics of the signal processing. To name a few, let us
remind that the wavelet decomposition [80] generally provides a sparse approximation
of a given image. We remind a well known decomposition on the Fig. 3.1. It is pretty
clear that the majority of the coefficients of this image have a small absolute value
and can be considered as sparse, or pseudo-sparse if we consider that the sparsity is
defined by the number of non-zero coefficients. Other domains of the signal process-
ing are concerned by compressed sensing, like the radar [81], imaging [82], the digital
communications [83] or even the biomedical [84] as long as a sparse representation of
a signal exists in some basis. Applications of compressed sensing can also be found
in genetics, as it is stated in [85], in the case we want to study n genes doing some
analysis on m patients. Commonly only a few genes will be active for each patient,
hence the sparsity. Many other examples can be found in the literature. We continue
this chapter by introducing rigorously the compressed sensing setting.

Figure 3.1: Wavelet decomposition of Lena image

3.2 Problem setting and original solver methods

The original Compressed Sensing problem is to recover a high-dimensional vector
from a lower dimension set of linear equations. We then consider a signal s ∈ R

N ,
and we suppose that a certain basis Ψ provides a K-sparse representation of s such
that s = Ψx with ‖x‖0 = K. This vector s is not measured directly, but instead M
projections of s are taken where M < N . The projection vector is denoted y such that

y = Φs (3.1)
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with y a M × 1 column vector and Φ ∈ R
M×N being the measurement matrix, also

called the sampling matrix. Since M < N the recovery of the signal x from y is in
general not possible; however the assumption of a sparse signal makes the reconstruc-
tion possible and practical.

As the sparse representation of s in the basis Ψ is x, the recovery of s from y can
be formulated as the ℓ0-norm minimization problem on x:

x̃ = argmin‖x‖0 s.t. y = Φs = ΦΨx. (3.2)

Figure 3.2: Traditional vision of the compressed sensing

This problem is often depicted as the Fig. 3.2 where Ψ is the basis matrix provid-
ing a sparse approximation of s, and Φ being the measurement matrix. In other words
we look for the sparsest vector x such that y = ΦΨs. This problem can be also viewed
as finding a K-term approximation to y from the columns of the basis ΦΨ, which is
called the holographic basis because of the complex pattern in which it encodes the
sparse signal coefficients [79]. This problem is sometimes called recovery via combi-

natorial optimization and is known to be NP-hard as the decoder needs to perform a
combinatorial enumeration of all the

(

N

K

)

possible sparse subspaces. Hence it cannot
be used for practical applications.

Practically, a much easier problem yields an equivalent solution by solving for the
ℓ1-sparsest coefficients x that agree with the measurements y. This reconstruction is
known as the ℓ1-norm minimization, or the recovery via convex optimization

x̃ = argmin‖x‖1 s.t. y = Φs = ΦΨx. (3.3)

This optimization is more tractable and can be solved by a linear programming tech-
nique called Basis Pursuit (BasP) [86]. The complexity of this technique is polynomial
in N , more precisely O(N3).

In the sequel we will only consider the reconstruction of the sparse vector x from
the observation vector y with the measurement matrix A such that we are trying to
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solve
y = Ax. (3.4)

In other words we either assume the basis Ψ being taken as the identity matrix and
A = Φ, and hence our signal is sparse in the basis of the study, or that ΦΨ = A.
This little modification in the problem will simplify the notations for the rest of the
manuscript.

In [78] it has been shown that the ℓ1-norm minimization technique performs the
exact reconstruction of the vector x for a sufficient sparsity and a properly chosen
measurement matrix A. The conditions on the measurement matrix were expressed in
terms of the Restricted Isometry Property (RIP).
We say that Φ has RIP of order K if for every K-sparse vector v, and for constant
0 ≤ ǫ ≤ 1

(1− ǫ) ‖vK‖
2
2 ≤ ‖AKvK‖

2
2 ≤ (1 + ǫ) ‖vK‖

2
2 (3.5)

where vK is the mutilated vector v constituted of the K non-zero elements of v, and
AK corresponding to the matrix formed by the extracted columns of A which corre-
sponds to the K indices of the non-zero elements of v. In other words the RIP indicates
that the matrix A does not distort too much the ℓ2-norm of any K-sparse vector.

The RIP gives the following interesting property: for a K-sparse vector x we can
take the number of measurements M on the order of K log (N/K). It is also important
to notice that the RIP provides an insurance of the output of the BasP to be the same
output as the ℓ0 minimization, however it can be different from the original vector x.

3.3 Iterative reconstruction methods

3.3.1 Introduction

Soon after the seminal works of Candès, Tao, Romberg and Donoho, many studies
have been led in order to tackle the complexity of the ℓ1-minimization reconstruction
technique. The main goal was to propose a variation of the LP solver providing good
reconstruction performance with a lower complexity. Among all the proposed meth-
ods, we cite here some famous greedy algorithms like the Matching Pursuit [87], the
Orthogonal Matching Pursuit (OMP)[88, 89], or Stagewise OMP [90]. The main idea
of these greedy algorithms consists in the iterative approximation of the coefficients of
the sparse signal to recover. They are known to be very fast and easy to implement, and
guarantee the performance to be close to the original ℓ1-minimization. Many other al-
gorithms exist in the literature, the chapter 8 of [91] presents an overview of the greedy
algorithms used in compressed sensing.
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Other methods for recovering sparse signal from an undetermined system of equa-
tions have been suggested equivalently to the message-passing decoder in channel cod-
ing. The first work mentioning this type of reconstruction methods is in [92]. In this
chapter we give an overview of the iterative reconstruction methods starting by ex-
ploring the link between message-passing algorithms in compressed sensing and in
channel coding. Then we present the current knowledge in the use of LDPC matri-
ces as measurement matrix. Finally we explore some of the iterative reconstruction
methods.

3.3.2 Motivation for message-passing reconstruction methods

The success of sparse codes in channel coding such as the Low-Density Parity-Check
(LDPC) codes [1, 15] has strongly suggested that the use of sparse compressed matri-
ces needed to be explored in the compressed sensing case.

As we already mentioned, in a communication system, a codeword x containing
N bits is transmitted through a noisy channel. The noise added by the channel to the
original information can be modeled as an error vector e added to the codeword x.
In the case of the binary symmetric channel (BSC) this error vector is binary, in the
case of an AWGNC, the samples of e are drawn for a Gaussian distribution. The output
vector is defined as y = x+e, and the addition is proceeded accordingly to the channel
(binary addition for the BSC, real addition for the AWGNC). Although this has been
already presented, let us briefly remind that an LDPC code is defined by its parity-
check matrix H of size M × N with N > M . The particularity of H is its sparsity,
as the number of non-zero elements in H decreases in 1/N . The sparsity of H and
then its equivalent bipartite Tanner graph [16] plays a key role in the decoding process.
Indeed the decoding will be simplified by running a low-complexity message-passing
algorithm (such as the belief propagation, or the FAID presented in the chapter 1) to
decode y and then recover x.

One possible link between compressed sensing and LDPC codes stands in the prop-
erty of H. Indeed we remind that, from the construction of x we have Hx = 0. If
we consider a sparse noisy vector e, the output of the channel can be transformed in
ỹ = Hy = H(x+ e) = He. Then H can be viewed as a measurement matrix, and by
applying the reconstruction method of the compressed sensing, we can recover e and
then x.
In the following we consider H as equivalently a parity-check matrix, or a measure-
ment matrix.

3.3.3 LDPC measurement matrices

The relation between the theory of LDPC codes and compressed sensing was explored
in the work of Dimakis and Vontobel [93], who studied the relation between two linear
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programs: the BasP of compressed sensing which can be restated as a Linear Program
(LP) and the so-called LP-decoder [94] of a related LDPC code. (The LP decoder is a
sub-optimal decoder whose performance is governed by the parity-check matrix used
to define the LP constraints.) It was shown in [93] that a binary matrix H which is
a good parity-check matrix for LP decoding of the corresponding LDPC code is also
a good measurement matrix for BasP in the respective compressed sensing problem
over a binary alphabet. The contraposition gives that “bad“ measurement matrices in
compressed sensing will have “bad“ performance results in the channel coding side.
Besides it is shown that the basis pursuit using the matrices constructed by Gallager
[1] form the best known sparse measurement matrices that maximize the recovery of
sparse signals using these sparse measurement matrices. We already mentioned that
a sufficient condition to certify that a given measurement matrix is "good" is that this
matrix follows the RIP. However the RIP is an incomplete characterization of the LP
relaxation of "good" measurement matrices [95]. A necessary and sufficient condi-

tion for a measurement matrix to be "good" requires that the matrix H respects the
nullspace condition. The attribute "good" means here that the ℓ0-minimization and the
ℓ1-minimization (BasP) outputs the same estimate x̂. Dimakis et al. [96] presented a
necessary and sufficient condition for a good measurement matrix for k-sparse signals.
While Restricted Isometry Property (RIP) provides a sufficient condition for a good
measurement matrix for compressed sensing, Null Space Property (NSP) which is de-
fined below, provides the necessary and sufficient condition for a good compressed
sensing measurement matrix. Let V be the set of columns of a measurement matrix H

and the null-space NSpace(H) = {ω ∈ R
n : Hω = 0}. The measurement matrix H

has the Null Space Property (NSP) if for k ∈ Z≥0, c ∈ R≥0 and I ′ = V \I .

c‖ ωI ‖1 ≤ ‖ ωI′ ‖1 ∀ ω ∈ NSpace(H), ∀I ⊆ V, |I| ≤ k

Before giving the main result representing the connection between channel coding
and compressed sensing, a summary of LP decoding and some related definitions are
explained.

Let C be a binary linear code and let H be a parity-check matrix of C with the set
of columns V and the set of rows C. For every j ∈ C, let hj be the jth row of H and
let

NullC(j) = {x ∈ {0, 1}n|
∑

i∈V
hji.xi = 0 mod 2}.

Then, the fundamental polytope P of H is defined as P (H) =
⋂

j∈C conv(NullC(j)),
where conv(NullC(j)) is the convex hull of NullC(j). The conic hull of H is called
fundamental cone and is denoted by K(H). Hence,

K(H) = conic(P (H)) =
⋂

j∈C
conic(NullC(j)).
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The LP decoding [94] tries to solve the following optimization problem.

minimize
n
∑

i=1

λi.fi s.t. f ∈ P (H)

where λi = logPr(yi|0)
Pr(yi|1) and y = (y1, y2, ..., yn) is the received word. In analyzing the

performance of LP decoder, it is assumed that the all-zero codeword is transmitted. So,
the LP decoder will succeed on decoding when the all-zero codeword has the lowest
value on the cost function

∑n

i=1 λi.fi compared to the all non-zero vectors in K(H).
With these preliminaries, the fundamental connection between channel coding and
compressed sensing is provided as follows.

Let H be a zero-one measurement matrix, then

ω ∈ NSpace(H) ⇒ |ω| ∈ K(H).

This result was also extended to a measurement matrix H with entries in C such
that |Hij| ∈ {0, 1} for all (i, j) ∈ V × C (Lemma 12 [96]). Also, based on definitions
of pseudo-weight on BSC, BEC and AWGNC, they provided some results for perfor-
mance guarantee of compressed sensing LP-decoder. The minimum binary symmetric
channel (BSC) pseudo-weight wBSC,min

p (H) is defined in the Definition 9 of [93], and
brings the following theorems:

Theorem 3.1. If H is a parity-check matrix of a LDPC code C and wBSC,min
p (H) > 2K

then linear programming decoding will successfully decode any output from the BSC

with at most K errors.

Theorem 3.2. If H is a 0-1 measurement matrix that satisfies wBSC,min
p (H) > 2K

and x is K-sparse then BasP and the ℓ0-minimization will output the same estimate x̂

given y = Hx.

Moreover, using expander graphs, they obtained threshold results (strong and weak
bounds [96]) for compressed sensing LP-decoder and provided a discussion on con-
struction of good measurement matrices with large girth.

3.3.4 Message-passing reconstruction methods

To tackle the issue of the complexity of LP solver, and similarly to channel coding,
low-complexity algorithms have been introduced. These algorithms primarily used the
graphical representation of the measurement matrix to exchange information iteratively
to recover the original vector x. As for the Tanner graph of LDPC codes, the columns
of the measurement matrix are associated with the variable nodes corresponding to
the vector x, and the rows of the measurement matrix correspond to the summation
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nodes, also called measurement nodes, or even check nodes to make the bridge with
the graphical representation of an LDPC matrix.

3.3.4.1 Message-passing and approximate message-passing

A first message-passing algorithm was introduced by Donoho et al. in [92] for noise
free measurements. The variables in message-passing algorithms are associated with
edges in the bipartite graph representation of the matrix A. Messages are updated
according to the rules

x
(l+1)
i→a = ηl(

∑

b∈N(i)\a
Ab,iz

(l)
b→i)

z
(l)
a→i = ya −

∑

j∈N(a)\i
Aa,jx

(l)
j→a (3.6)

where a and b are measurement nodes, i and j are variable nodes, ηl is a sequence of
threshold functions (applied componentwise), x(l) ∈ R

n is the current estimate of the
solution x, z(l) ∈ R

n is the current residual and N(v) is the set of neighbor nodes of
the node v in the Tanner graph.

Donoho’s et al. [92] iterative thresholding algorithm, called the approximate message-

passing (AMP) follows from the message-passing algorithm given in (3.6). The au-
thors of [92] argue that the right side of the equation for update of messages x

(l)
i→a in

(3.6) does not depend strongly on the index a (specially if the matrix A is dense in
which case only one out of n terms is excluded). They also argue that the right-hand
side of the equation for updating z

(l)
a→i does not depend strongly on i. If these two

dependencies are neglected, the messages are associated to graph vertices (x to vari-
able nodes and z to summation nodes), and the algorithm has a flavor of a bit flipping
algorithm [97]. In contrast to message-passing which in general has to update nm
messages, the bit flipping algorithms update only n variable nodes and m summation
nodes.

The first algorithm [92] starts from an initial guess x(0) = 0 and z(0) = y, and
iteratively proceeds by calculating

x(l+1) = ηl(A
Tz(l) + x(l))

z(l) = y −Ax(l) +
1

δ
z(l−1)〈η′l−1(A

Tz(l−1) + x(l−1))〉,

where ηl is a sequence of threshold functions (applied componentwise), x(l) ∈ R
n is

the current estimate of the solution x, AT denotes the transpose of A and η′(u) =
∂η(u)/∂u. The bracket 〈〉 operator applied on a vector v = (vi)1≤i≤n gives 〈v〉 =
(1/n)

∑

1≤i≤n vi. The role of the additional term in the update of z(l) is to cancel
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the correlation between the present vector estimates and their past values. A typical
thresholding function η is the soft thresholding given by

η(x;λ) = sgn(x)(|x| − λ)+

where the subscript (u)+ = uI(u ≥ (0)), and I is the indicator function equal to one
when the Boolean expression in his argument is true, and zero otherwise. An algorithm
by Tropp and Wright [98] uses slightly modified update equations

x(l+1) = ηl((1/c)A
Tz(l) + x(l))

z(l) = y −Ax(l),

where the constant c is chosen to help the convergence.

Pham et al. [99] introduced two low-complexity algorithms, list decoding and
multiple-basis belief propagation. The basic idea behind using BP in these algorithms
is to identify the columns of the measurement matrix A that maximizes the correlation
with y. The measurement matrix A is constructed in the following manner. First, an
LDPC code C of length n is considered. Then, all codewords of C are converted to their
Binary Phase Shift Keying (BPSK) images and are normalized by 1√

n
. The normalized

BPSK images of codewords are used as the columns of A. In list-based BP algorithm,
a list of T vectors based on y, a biasing value b and sparsity parameter k is constructed.
A binary parity-check matrix H of C with the row-weight dc is chosen uniformly from
the ensemble of binary matrices of the same size and with the row-weight dc. Running
the BP algorithms gives a list of binary words w1,w2, ...,wT. The repeated words
or those which do not satisfy Hwi = 0 are deleted. The outputs are at most k words
whose (BPSK) images have the largest correlation with y.

In case of a non-binary vector x, they proposed another algorithm, multiple basis
belief propagation (MBBP) which uses more than one parity-check matrix to find the
columns of A with the largest correlation with y. The MBBP algorithm begins with
initializing the sparsity parameter k, the measurement vector y and γ parity-check ma-
trices H1,H2, ...,Hγ . The interference is modeled as a zero-mean Gaussian variable
with the variance σ2 = max(|y|)k−1

k
. Running BP algorithm for the received vector y

and using the parity-check matrix Hi (i = 1, 2, ..., γ) outputs a word wi. The words
wi which do not satisfy Hiwi = 0 are deleted and the codeword whose BPSK image
has the largest correlation with y is set to be output.

Combination of the list decoding with Orthogonal Matching Pursuit (OMP), (Al-

gorithm 2: BP-OMP Algorithm in [99]), has an asymptotic optimal performance with
computational complexity O(kT log n). Also, the simulation results show that both
algorithms, list decoding and MBBP, have good performance for recovery of sparse
signals.

In the rest of this chapter we present 2 low-complexity algorithms, starting with the
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Sparse Matching Pursuit.

3.3.4.2 Sparse matching pursuit

In [100] the authors suggest an algorithm called Sparse Matching Pursuit for com-
pressed sensing with sparse measurement matrices. This algorithm can be described
as a message-passing algorithm in the context of a K sparse signal. We keep here the
scheme y = Ax.
Let us remind that the rows of H, labeled m = 1, . . . ,M , are the check nodes of the
graph representing the values of ym, and the columns of H, labeled n = 1, . . . , N ,
are the variable nodes representing the values of xn. At the lth iteration the message
from a variable node n to a check node m is denoted µ

(l)
n→m, and the message from a

check node m to a variable node n is denoted µ
(l)
m→n. These two messages exist only

on the edges of the Tanner graph, in other words if Am,n = 1. N (n) (resp. N (m)
denotes the neighbors of the variable node n (resp. check node m). The algorithm of
the Sparse Matching Pursuit is given by the Algorithm 1. This algorithm requires a

Algorithm 1: Sparse Matching Pursuit Reconstruction Algorithm

Initialization : µ(0)
m→n = ym

for iteration l = 1, . . . , L do

for n = 1, . . . , N do

for ∀m ∈ N (n) do

µ
(l)
n→m = median

m′∈N (n)\m

(

µ
(l−1)
m′→n

)

;

for m = 1, . . . ,M do

for ∀n ∈ N (m) do

µ(l)
m→n = ym −

∑

n′∈N (m)\n

(

µ
(l)
n′→m

)

;

number of measurement M to be on the order of Klog(N/K). The performances are
the same asymptotically as the BasP.

Finally, we conclude this introductive chapter on compressed sensing by presenting
in detail the most simple algorithm that can be imagined to recover a sparse high-
dimensional vector from a set of linear measurements.
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3.3.4.3 Verification decoding

In order to reconstruct strictly sparse signals, Zhang and Pfister [101] used two de-
coding algorithms, LM1 and LM2, based on verification algorithm. The reconstruc-
tion method is an iterative algorithm in which the messages correspond to the vertices
(variable and check nodes in the factor graph) not to the edges. Hence, the algorithm
can be considered as a bit flipping algorithm as introduced in [97]. The decoder is an-
alyzed using density evolution to find the average fraction of verified messages. Then,
for each decoder and for regular LDPC code ensembles and strictly sparse signals with
kn = ⌊δn⌋, they provided a threshold δ∗ such that for all δ < δ∗, iterative decoding can
recover the original signal with high probability as n → ∞. Using stopping set analy-
sis, they analyzed the performance of regular LDPC codes in the high-rate regime and
found thresholds below than given by density evolution [102]. Then, they generalized
their results to the reconstruction of strictly sparse signals in compressed sensing using
both uniform reconstruction and non-uniform (randomized) reconstruction. For uni-
form reconstruction, stopping set analysis and for non-uniform reconstruction, density
evolution were used to evaluate the performance of these reconstruction compressed
sensing systems. They also showed that randomized reconstruction compressed sens-
ing has linear-time reconstruction for strictly sparse signals.

In this algorithm each variable node can have two states; one unverified state (no
value has yet been estimated), and one verified state (the variable node has been esti-
mated). Note that when a variable has been verified, it cannot be changed anymore.
This algorithm is summarized in the following steps and is described in the Algorithm
2:

• Step 1. Variable nodes which are the neighbors of zero-value check nodes are
verified as 0.

• Step 2. Variable nodes connected to check nodes with degree one (only one edge
connected) are verified as the value of the check node.

• Step 3. A single variable node connected to two check nodes with the same
measurement value is verified to the common value of the check nodes.

• Step 4. Subtract the values of the verified variable nodes from the neighboring
check nodes and then remove all verified variable nodes and edges connected to
them.

Steps 1 to 4 are repeated until reconstruction succeeds or no more progress can
be done. The Fig. 3.3(a) 3.3(a) and 3.3(c) sketch the Steps 1, 2 and 3. Note that
the verification decoding was originally introduced for the q-ary Symmetric Channel
[101] . The justification of Step 3 is based on the observation that, over large alphabets,
the probability that two independent random numbers are equal (or equivalently two

73



3 Compressed Sensing: Introduction and Reconstruction Methods

v1 v2

c1

y(c1) = 0

x̂(v1) = 0 x̂(v2) = 0

(a) Step 1

v1

c1

y(c1)

x̂(v1) = y(c1)

(b) Step 2

v1

c1 c2 c3

y(c1) > y(c2) = y(c3)

x̂(v1) = y(c3)

(c) Step 3

Figure 3.3: Steps of the verification decoding algorithm
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independent measurements) is quite small. This leads to consider that any two common
measured values (during decoding) are generated by the same set of non-zero data.
This observation holds for large alphabets and then for the real numbers too. Note that
in the Algorithm 2, we added one condition to the Step 3 (Fig. 3.3(b)) to avoid that at
one iteration, the value on one check node becomes negative. In the Algorithm 2, L
is the maximum number of iterations for the decoding, [*] denotes the unverified state
and δ is a precision threshold to check the correct recovery of our signal (practically
δ ∼ 10−3).

It is pretty easy to see that for a sparse signal x, and a sparse measurement matrix
A, the first step will decrease the number of edges that need to be considered and
then the complexity will be drastically reduced from one iteration to another. This
very low-complexity reconstruction algorithm will provide a benchmark in terms of
recovery performance, and we will then be able to estimate the performance of the
low-complexity algorithm presented in the next chapter.

Algorithm 2: Verification Decoding
Input : y and A such that y = Ax, L, δ.
Output: x̂ the estimate of x.
l = 0;
x̂ = [∗, . . . , ∗] ;
while E [|x̂− x|2] > δ or l < L do

1 foreach cj such that y(cj) = 0 do

x̂ (N (cj)) = 0;

2 foreach cj such that CheckDegree(cj) = 1 do

x̂ (N (cj)) = y(cj);
y (N (vi)) = y (N (vi))− y(cj) with vi = N (cj);

3 foreach (cj, ck) such that |N (cj) ∩N (ck)| = 1 and y(cj) = y(ck) do

vi = N (cj) ∩N (ck);
if y (N (vi))− y(cj) ≥ 0 then

x̂(vi) = y(cj);
y (N (vi)) = y(N (vi))− y(cj);

4 foreach vi such that x̂(vi) is verified do

A (N (vi), vi) = 0 ;

l = l + 1;
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Chapter4
Interval-Passing Algorithm: Description
and Analysis

AFTER the review done in the previous chapter on the compressed sensing and
the presentation of some reconstruction algorithms we present in this chapter
the low-complexity message-passing algorithm developed for the reconstruc-

tion of sparse signal, called Interval-Passing Algorithm. This algorithm uses sparse
non-negative measurement matrices and has the advantage to perform at a very low
complexity, and its performance is very decent compared to some other complex re-
construction methods.

We first provide a complete description of this algorithm with some simulation
results and then we provide an complete analysis of it. We also present the link be-
tween the reconstruction failures of this algorithm and some particular structures of the
graphical representation of the measurement matrix.

4.1 Interval-passing algorithm

Chandar et al. [103] introduced a simple message passing algorithm for reconstructing
non-negative signals using sparse binary measurement matrices. We modified this al-
gorithm in order to deal with non-negative real-valued measurement matrices and refer
to it as interval-passing algorithm (IPA) [104, 105, 106]. From [103], the complexity
of the algorithm is O(n(log(n

k
))2 log(k)) which is a good trade-off between the poly-

nomial complexity of the LP reconstruction, and the linear complexity of the simple
verification decoding [102] presented in the last chapter.
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4 Interval-Passing Algorithm: Description and Analysis

4.1.1 Description of the algorithm

The IPA is an iterative algorithm, and thus messages are associated with the graph-
ical representation of the measurement matrix to perform the reconstruction. Let
V = {v1, v2, ..., vn} and C = {c1, c2, ..., cm} be respectively the sets of variable nodes
and measurement nodes1 in the graphical representation of the measurement matrix
A = {aj,i} for 1 ≤ j ≤ m and 1 ≤ i ≤ n. The graphical representation of A is actu-
ally the Tanner graph [16] of the binary image2 of A, whose edges are labeled by the
real values corresponding to the non-zero position in A. The graphical representation
of A has the flavor of a non-binary LDPC code Tanner graph [107, 108].

In the IPA, the messages passing through edges are intervals [µ,M ] corresponding
to the lower and upper bounds of the estimation of the connected variable node. At
each iteration l, the message update from the variable vi to the measurement node cj is
given by:

µ(l)
vi→cj

= max
c′j∈N (vi)

(

µ
(l−1)

c′j→vi

)

× aj,i (4.1)

M (l)
vi→cj

= min
c′j∈N (vi)

(

M
(l−1)

c′j→vi

)

× aj,i (4.2)

and the messages from the measurement node cj to the variable node vi are updated
as:

µ(l)
cj→vi

= max



















0,

yj −
∑

v′i∈N (cj)\{vi}
M

(l)

v′i→cj

aj,i



















(4.3)

M (l)
cj→vi

=

yj −
∑

v′i∈N (cj)\{vi}
µ
(l)

v′i→cj

aj,i
(4.4)

where N (vi) (resp. N (cj)) is the set of measurement (resp. variable) nodes which are
the neighbors of vi (resp. cj) in the Tanner graph of A. Updating messages from a
variable (resp. measurement) node to a measurement (resp. variable) node is shown in
Fig. 4.1 and 4.2, respectively.

The IPA is formally given in the Algorithm 3, where L represents the maximum
number of reconstruction iterations. So far we consider the reconstruction in a noise

1Analogous to check nodes in LDPC codes.
2A matrix H = {hj,i} is said to be the binary image of a matrix A = {aj,i} if hj,i = 1 if aj,i 6= 0

and hj,i = 0 if aj,i = 0
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c1

c2 c3

v1

(

µc1→v1

Mc1→v1

)
(

max (µc1→v1 , µc2→v1 , µc3→v1)× a1,1
min (Mc1→v1 ,Mc2→v1 ,Mc3→v1)× a1,1

)

(

µc2→v1

Mc2→v1

) (

µc3→v1

Mc3→v1

)

Figure 4.1: IPA: Updating messages from the variable node v1 to the measurement
node c1.

v1

v2 v3

c1







max

(

0,
y(c1)−(Mv2→c1+Mv3→c1)

a1,1

)

y(c1)−(µv2→c1+µv3→c1)
a1,1







(

µv2→c1

Mv2→c1

) (

µv3→c1

Mv3→c1

)

Figure 4.2: IPA: Updating messages from the measurement node c1 to the variable
node v1.
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Algorithm 3: Interval-Passing Algorithm
Input : y and A such that y = Ax, L.
Output : x̂ the estimate of x.
Initialization: ∀cj ∈ C, ∀vi ∈ N (cj), µ

(0)
cj→vi = 0 and M

(0)
cj→vi = y(cj)/aj,i;

for l = 1 to L do

1 foreach vi ∈ V do

foreach cj ∈ N (vi) do

µ
(l)
vi→cj = max

c′j∈N (vi)
(µ

(l−1)

c′j→vi
)× aj,i;

M
(l)
vi→cj = min

c′j∈N (vi)
(M

(l−1)

c′j→vi
)× aj,i;

2 foreach cj ∈ C do

foreach vi ∈ N (cj) do

µ
(l)
cj→vi =

1
aj,i






y(cj)−

∑

v′

i ∈ N (cj)

v′

i 6= vi

M
(l)

v′i→cj






;

if µ
(l)
cj→vi < 0 then

µ
(l)
cj→vi = 0;

M
(l)
cj→vi =

1
aj,i






y(cj)−

∑

v′

i ∈ N (cj)

v′

i 6= vi

µ
(l)

v′i→cj






;

3 for vi ∈ V do

if (l > 1 & µ
(l)
vi→N (vi)

= M
(l)
N (vi)→vi

) ‖ l = L then

x̂(vi) = µ
(l)
vi→N (vi)

;
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free environment. The reconstruction process stops when the maximum number of
iterations is reached, or the lower bound and the upper bound of the interval from
variable nodes to measurement nodes has converged to a common value for every
variable node. This common value is set as the estimate of each connected variable
node value. When the lower bound and he upper bound did not converge, we arbitrarily
set the estimate value to the lower bound.

4.1.2 Simulation results

4.1.2.1 Performance comparisons

We now compare the IPA performance using the non-negative real valued measurement
matrix with the complex LP reconstruction algorithm, and with simple verification
decoding. We used the LDPC matrix design from an array of permutation matrices
from [62] to design our measurement matrices as quasi-cyclic (QC) LDPC matrices.
We designed a (2, 3)-regular LDPC matrix with m = 159 and n = 265 and then
substituted the non-zero elements in the LDPC matrix by a random number drawn
from the uniform distribution in (0, 1) to obtain the matrix A.

For each sparsity k, at least 75 random k-sparse signals x are generated and 50
reconstruction iterations are performed. The proportion of correct reconstruction re-
sults is summarized in the plot of the Fig. 4.3 for the IPA, the verification decoding
algorithm, and the LP reconstruction. A random k-sparse vector is said to be correctly
recovered if each of its n samples is correctly estimated as close as 10−6. We can see
then that the IPA is a good trade-off between performance and complexity.
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Figure 4.3: Simulation results using the designed measurement matrix A.
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4.1.2.2 Influence of the rate

In this section we present the reconstruction performance of the IPA by using differ-
ent measurement matrices that are still QC-LDPC matrices of lengths 120, 1800 with
column weight dv = 4. We still used the method from [62] to design different mea-
surement matrices. For each length we design 4 measurement matrices which have
different rates, R = 0.2, R = 0.33, R = 0.5, R = 0.67. The results in terms of pro-
portion of correct reconstruction using noise-free measurements for each measurement
matrix are shown in Fig. 4.4. We observe, as expected, that the reconstruction perfor-
mance decreases when the rate of the code increases. Indeed from the channel coding
side, we know that increasing the rate decreases the redundancy present in the code.
From the compressed sensing point of view, increasing the rate of the measurement
matrix leads to obtain less measurements, which means less linear combinations of the
input which intuitively leads to a harder problem to solve. Moreover, the results show
that the measurement matrix of length n = 120 and rate R = 0.67 cannot be a good
candidate to reconstruct data, as in a noise-free environment it cannot even recover a
1-sparse vector.

4.2 Reconstruction analysis

In this section, we study the recovery of the IPA on non-negative real-valued signals.
We present the analysis on binary measurement matrices for the sake of clarity, but the
extension of these results to non-negative real-valued measurement matrices is straight-
forward. First, we give a theorem given in [104] which proves the failure of the IPA
on stopping sets. A stopping set is defined as follows.

Definition 4.1 ([109]). A stopping set T is a subset of the set of variable nodes V such

that all neighbors of T are connected to T at least twice.

The cardinality of a stopping set is called the size of the stopping set.

Theorem 4.1 ([104]). Let Am×n be a binary measurement matrix. The IPA fails on

the recovery of a signal x if the non-zero entries contain a stopping set in A.

Proof. We prove that if all variable nodes in T have non-zero values, the IPA cannot
recover them. In other words, we prove that the bounds of the intervals passing through
the edges of the graphical representation of A never converge, i.e. we show that ∀v ∈

T such that x(v) > 0, then µ
(l)
v→c < x(v) < M

(l)
v→c, ∀l ≥ 0, ∀c ∈ N (v).

Suppose ∀v ∈ T , x(v) > 0, from the definition of a stopping set ∀c ∈ N (v), y(c) >
x(v). Then, at the initialization (l = 0) we have:

µ(0)
c→v = 0 < x(v) < y(c) = M (0)

c→v (4.5)
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Figure 4.4: Reconstruction of noise free measurements with QC-LDPC measurement
matrices of lengths n = 120 and n = 1800 and column weight dv = 4 for different
rates.
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At the first iteration we have:

µ(1)
v→c = max

c∈N (v)

(

µ(0)
c→v

)

= 0 < x(v) (4.6)

M (1)
v→c = min

c∈N (v)

(

M (0)
c→v

)

> x(v) (4.7)

Now consider the update at the measurement node. For the lower bound of the
interval we have:

µ(1)
c→v = max



0, y(c)−
∑

v′∈N (s)\{v}
M

(1)
v′→c



 (4.8)

<



y(c)−
∑

v′∈N (s)\{v}
x(v′)



 (4.9)

= x(v) (4.10)

The last equation stands from the initialization x(v) < y(c) = M
(1)
v→c. Similarly, for

the upper bound at the measurement node we have:

M (1)
c→v = y(c)−

∑

v′∈N (s)\{v}
µ
(1)
v′→c (4.11)

> y(c)−
∑

v′∈N (s)\{v}
x(v′) (4.12)

= x(v) (4.13)

The last equation results from the initialization x(v) > y(c) = µ
(1)
v→c.

Thus we obtain µ
(1)
c→v < x(v) < M

(1)
c→v. For l > 1 the messages from variable

nodes to check nodes are simply the intersection of intervals from the check nodes at
the previous iteration, and then we still have µ

(l)
v→c < x(v) < M

(l)
v→c. The proof is

completed by induction for every l > 0.

Theorem 4.1 also indicates that the IPA fails on reconstruction of a signal x whose
non-zero values form the smallest stopping set in the measurement matrix A. However,
as we explain in the following example, the smallest stopping set is not the smallest
configuration on which the IPA fails.

Example 4.1. Consider a stopping set of size four as given in Fig. 4.5. According to

Theorem 4.1, the IPA cannot recover a signal x with non-zero values on {v1, v2, v3, v4}.

The algorithm also fails on a 2-sparse signal x whose non-zero values are {v1, v3} or

{v2, v4}, which implies that the variable nodes forming one of the smallest stopping
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set are not necessarily the smallest configuration on which the IPA fails. However, the

IPA can recover a 2-sparse signal with non-zero values on {v1, v2} or {v1, v4}.

��
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��

��

�� ��

����

Figure 4.5: A stopping set of size 4.

Example 4.1 shows the main difference between the iterative decoding on the BEC
and the signal recovery of the iterative IPA in compressed sensing. The iterative de-
coder over the BEC fails if and only if the erasures contain a stopping set, while the
IPA fails even if the non-zero values do not involve a stopping set. The following re-
sults identify recoverable signals whose non-zero values are subsets of stopping sets.
First, we show that every zero-value variable node is recoverable by the IPA. In this
paper, we say that a node is zero if its value is equal to zero.

Lemma 4.1. The IPA can recover all zero variable nodes.

Proof. Suppose v is a variable node with value 0 and {c1, c2, ..., cdv} is the set of the
dv measurement neighboring nodes of v with measurement values {α1, α2, ..., αdv}.
At each iteration of the IPA, the message which is sent from cj (j = 1, ..., dv) to v is
either [0, 0] or [0, βj] where 0 < βj ≤ αj . If v receives at least one [0, 0] from one of its
neighbors, the value of v is recovered as 0. If all messages from every cj to v are [0, βj],
the decision rule of the algorithm leads to recover the value of v to the maximum value
of lower bounds of the intervals [0, βj], which is 0.

Since all zero variable nodes are recovered by the IPA, it is enough to study the
recovery of non-zero variable nodes. We note that reconstruction of all zero variable
nodes does not necessarily result that the IPA can be used to estimate the support of
the signal, since it is possible that the IPA fails to recovery of a non-zero variable node
and recovers the value of the non-zero variable node to zero.

Definition 4.2. A set of variable nodes S is called a minimal stopping set, if S forms

a stopping set and it does not contain a smaller stopping set.

It is clear that the smallest stopping set in a measurement matrix A is a minimal
stopping set while a minimal stopping set is not necessarily the smallest stopping set.
The size of the smallest stopping set is called the stopping distance [110] and plays a
significant role in iterative decoding of LDPC codes over the BEC.
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Theorem 4.2. Let Am×n be a binary measurement matrix and VS = {v1, v2, ..., vk}
be a subset of variable nodes forming a minimal stopping set. Let Rn

≥0 be a set of non-

negative real vectors in R
n and x = [x1, x2, ..., xn]

t ∈ R
n
≥0 be a signal with at most

k − 2 non-zero values, i.e. ‖ x ‖0 ≤ k − 2, such that the set of non-zero variables is a

subset of VS . Then, the IPA can recover x if there exists at least one zero measurement

node among the neighbors of VS .

Proof. Let M = {c1, c2, ..., cq}, 1 ≤ q ≤ m be the set of measurement nodes con-
nected to VS . Suppose that c1 is the only zero measurement node. Since VS forms a
stopping set, there exist at least two zero variable nodes, say v1, v2, connecting to c1
and there exist non-zero value measurement nodes connected to v1, v2. Moreover, VS

is a minimal stopping set, so there exists at least one measurement node, c2 ∈ M\{c1}
with only one neighbor in VS\{v1, v2}, namely v3. Otherwise, VS \{v1, v2} will be a
smaller stopping set, which is a contradiction. Suppose c2 has the value α. At the first
iteration, c1 sends [0, 0] to v1 and v2 and v1 and v2 send [0, 0] to their neighbors. Based
on the above explanation, c2 is a neighbor of v1 or v2 or both of them with only one
neighbor in VS \{v1, v2}. At the second iteration, c2 will send [α, α] to the only vari-
able node v3. So, the value of the variable node v3 is recovered to α. Since the value of
this variable node is recovered, we can consider this variable node to have value zero
by subtracting α from the value of all measurement nodes which are the neighbors of
v3. Now, we have three variable nodes v1, v2, v3 whose values have been determined.
Again, with the same discussion, there exists a measurement node c3 ∈ M\{c1, c2}
with only one neighbor in VS\{v1, v2, v3} which can be recovered in the next iteration.
Continuing the same process will recover all variable nodes.

Example 4.2. Fig. 4.6 illustrates the previous theorem considering the recovery of

a signal with 4 non-zero variable nodes in a minimal stopping set of size 6 in which

there exists one zero measurement node c1 and two zero variable nodes v1 and v2. Let

α, β, γ, δ, η be the non-zero values of c2, c3, c4, c5 and c6, respectively. Note that c2
is one the measurement nodes with exactly one neighbor among {v3, v4, v5, v6}. At

initialization, the zero measurement node c1 sends [0, 0] to v1 and v2. And c2 sends

[0, α] to v2 and v3. At the first iteration, v2 sends [0, 0] to c2, which causes c2 to send

[α, α] to v3. Thus, the value of v3 is recovered as α. Another measurement node with

only one neighbor in {v4, v5, v6} is c3. Again this measurement node sends [β, β] to v4
and so the value of v4 is recovered as β. The same process results in the recovery of

all variable nodes.

In Theorem 4.2 we proved that the existence of at least one zero measurement
node is enough to reconstruct a signal x whose non-zero values are a subset of a min-
imal stopping set. As we will show in the following Lemma and Corollary, in regular
measurement matrices we can give an upper bound on the number of variable nodes
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Figure 4.6: Reconstruction of a signal with non-zero elements in a minimal stopping
set of size 6 with the IPA when there exists one zero measurement node. (a) the first
messages sending from measurement nodes to variable nodes, (b) messages from the
measurement nodes to variable nodes in the first iteration (recovery of v3), (c) the
message to v4 in the second iteration (recovery of v4), (d) the message to v5 in the third
iteration (recovery of v5), (e) the message to v6 in the fourth iteration (recovery of v6).
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forming a subset of a minimal stopping set S such that there exists at least one mea-
surement node among the neighbors of S with no connection to this subset of variable
nodes. This result shows that in a minimal stopping set, if the number of non-zero
values is bounded by a fixed number, the IPA can recover the signal x.

Lemma 4.2. Let Am×n be a binary (dv, dc)-regular measurement matrix and let g =
2r be the girth of the Tanner graph corresponding to A. Then, every subset N of

variable nodes such that

|N | <

∑r−1
i=0 (dv − 1)⌈

i
2⌉(dc − 1)⌊

i
2⌋

dv
(4.14)

contains a measurement node which does not have any neighbor in N .

Proof. The proof is obtained by using lower bounds on the number of measurement
nodes given in [111]. According to this bound,

m ≥
r−1
∑

i=0

(dv − 1)⌈
i
2⌉(dc − 1)⌊

i
2⌋. (4.15)

Now, suppose N is a subset of variable nodes. Since the matrix is regular, the max-
imum number of measurement nodes that can be connected to the variable nodes in
N is at most |N |dv. If |N |dv <

∑r−1
i=0 (dv − 1)⌈

i
2⌉(dc − 1)⌊

i
2⌋ which results |N | <

∑r−1
i=0 (dv−1)⌈

i
2⌉(dc−1)⌊

i
2⌋

dv
, there exists at least one measurement node which does not

have any connection to N .

Corollary 4.1. Suppose Am×n is a binary (dv, dc)-regular measurement matrix with

girth g = 2r. Let N be a subset of k variable nodes that forms a minimal stopping set.

If |N | <
∑r−1

i=0 (dv−1)⌈
i
2⌉(dc−1)⌊

i
2⌋

dv
, then the IPA can recover a signal x with non-zero

values in N . In the case that the girth is 6, |N | is bounded by |N | ≤ (dv−1)dc
dv

= (dv−1)k
m

.

If the girth is 8, |N | is bounded by |N | ≤ (dv−1)dc+(dv−1)(dc−1)
dv

.

The following theorem gives a sufficient condition on exact recovery of a signal
whose support is a subset of a minimal stopping set and all neighboring measurement
nodes are non-zero.

Theorem 4.3. Let Am×n be a binary measurement matrix and VS = {v1, v2, ..., vk} be

a subset of variable nodes forming a minimal stopping set. Let x = [x1, x2, ..., xn]
t ∈

R
n
≥0 be a signal with at most k−1 non-zero values, i.e. ‖ x ‖0 ≤ k−1 such that the set

of non-zero variables is a subset of VS . Suppose all measurement nodes have non-zero

values. Then, the IPA can recover x if

1. There exists at least one measurement node cj such that the variable nodes {v1, v2, ..., vp}
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which are connected to cj have non-zero values and do not share a measurement node

other than cj and

2. The measurement nodes {c1, c2, ..., cl} connected to {v1, v2, ..., vp} do not have non-

zero neighboring variable nodes excluding {v1, v2, ..., vp}.

Proof. Suppose {v1, v2, ..., vp} have non-zero values {α1, α2, ..., αp}. Since {c1, c2, ..., cl}
are connected to zero variable nodes except for {v1, v2, ..., vp} and {c1, c2, ..., cl} are
not shared by more than one variable node in {v1, v2, ..., vp}, the value of every mea-
surement node in {c1, c2, ..., cl} lies in {α1, α2, ..., αp}. There exists a measurement
node in {c1, c2, ..., cl} that has only one neighbor in VS\{v1, v2, ..., vp}. Otherwise,
VS\{v1, v2, ..., vp} will be a smaller stopping set. Without loss of generality, suppose
c1 is a measurement node with this property which is connected to v1 with the value α1.
In the first iteration, cj sends

∑p

i=1 αi to its neighbors in {v1, v2, ..., vp} and c1 sends
[0, α1] to its neighbors. In the second iteration, cj sends [α1,

∑p

i=1 αi] to v1 and c1 and
other neighbors of v1 send intervals with the upper bound α1 to v1 which results that
the message [α1, α1] is sent from v1 to its neighbors. Thus, the value of v1 is recovered
as α1 and all measurement nodes which are the neighbors of v1 are satisfied. So, c1
is satisfied and its value can be considered as zero. The recovery of the other vari-
able nodes is followed by Theorem 4.2 which implies that the existence of at least one
zero measurement node is enough to recover all the variable nodes in a configuration
forming a stopping set.

The following example shows how the IPA can recover a vector x under the condi-
tions of the Theorem 4.3.

Example 4.3. Fig. 4.7 depicts the recovery of the three non-zero variable nodes in

{v1, v2, v3} a minimal stopping set of size 5 in which all measurement nodes are non-

zero. First, note that the measurement node c1 and the variable nodes v1, v2, v3 satisfy

the two conditions of Theorem 4.3. Thus, if the non-zero variable nodes v1, v2, v3 have

values α, β, γ, then c1 has value λ = α + β + γ and other measurement nodes c2, c3,
c4, c5 have the values α, β, γ and γ respectively. For simplicity, we just show how the

value of the variable node v3 is recovered. At initialization, c1 sends [0, α+β+γ] to v3
and c5 sends [0, γ] to v3. In the first iteration, c1 receives [0, α] and [0, β] from v1 and

v2, respectively and c5 receives [0,min(α, γ)] from v5. Then, c1 sends [γ, α+ β+ γ] to

v3 and c5 sends [0, γ] or [γ −min(α, γ), γ] = [γ − α, γ] to v3. In the second iteration,

v3 sends [γ, γ] to its neighbors which makes c5 is satisfied and can be considered as

a zero measurement node. Now, there exists a zero measurement node in this minimal

stopping set. Theorem 4.2 results in the recovery of other variable nodes.

Theorems 4.2 and 4.3 give sufficient conditions on the recovery of signals whose
non-zero values form a subset of a minimal stopping set. To show how small stopping
sets affect the performance of the IPA, we provide simulation results of the perfor-
mance of the IPA in the next section.
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Figure 4.7: Reconstruction of a signal with non-zero elements in a support of a stop-
ping set of size 5 with IPA and with no zero measurement node. (a) the first messages
which are sent from check nodes to variable nodes, (b) messages from variable nodes
in the first iteration, (c) messages from check nodes in the second iteration.
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4.3 Numerical results

4.3.1 Preliminaries

In this section we provide simulation results of the reconstruction performance of the
IPA by establishing the link with the analysis done previously related to stopping sets.
From Theorem 4.1, we know that if the support of the signal x is, or contains, a stop-
ping set, the IPA cannot recover it. The stopping sets in the measurement matrix A are
then responsible for most of the failures of the reconstruction via the IPA.

Orlitsky et al. derived a formula to obtain the average distribution E(s) for any
size s of stopping sets for a (dv, dc)-regular LDPC code of size n [43]:

E(s) =

(

n

s

)coef

(

(

(1 + x)dc − xdc

)
dv
dc

n

, xsdv

)

(

ndc
sdv

) (4.16)

where coef (p(x), xi) denotes the coefficient of xi in the polynomial p(x). The average
distribution of stopping sets can theoretically be computed using the previous formula,
however it has to be done by numerical methods due to its large complexity. To be
able to practically find stopping sets, algorithms have been proposed as in [57] and
[112] in the channel coding context. In their recent work, Rosnes et al. [57, 113]
provide the stopping set repartition on various LDPC codes based on their algorithm
to find small stopping sets. In [113] they focused more specifically on the LDPC codes
from the IEEE 802.16e standard [114], referred as the Wimax codes. These codes
are circulant-based LDPC codes, and the IEEE standard provides the design of codes
for 19 different lengths. Also, one model matrix to design codes with rates 1/2, and
5/6 is provided, and two model matrices are provided for codes with rates 2/3 and
3/4 (denoted by A and B). In the sequel we will use the matrix of the IEEE 802.16e
standard as measurement matrix for two different length, n = 768, and n = 2304. We
remind in the Tables 4.1 and 4.2 the stopping set spectrum for each of the six that can
be designed for each length in which we adopted the notation of Rosnes et al. [113].

4.3.2 Simulation results on the Wimax codes

In order to see the influence of stooping set on the performance of the IPA, we have
generated all the codes of length n = 768 and n = 2304 according to the IEEE
standard. We used these six codes for each length as measurement matrices and we
simulate the recovery performance via the IPA. The simulation results are shown in
Fig. 4.8 4.9 where the proportion of correct reconstruction of sparse signals is plotted
versus the sparsity measure k/n. For each sparsity k and for each matrix, 500 k-sparse
signals are generated, and a maximum of 50 iterations of the IPA for the reconstruction
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Table 4.1: Stopping distance smin for the length n = 768 LDPC codes from the
IEEE802.16 standard with different rates R. The number of stopping sets of weight
smin is denoted Nsmin

(from [57] and [113]).

R smin Nsmin
Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4

1/2 14 32 32 0 32 32
2/3 A 8 64 0 0 160 160
2/3 B 12 64 128 384 1120 3352
3/4 A 9 32 128 576 2192 9696
3/4 B 4 16 0 0 32 216
5/6 6 96 672 5376 36512 280128

Table 4.2: Stopping distance smin for the length n = 2304 LDPC codes from the
IEEE802.16 standard with different rates R. The number of stopping sets of weight
smin is denoted Nsmin

(from [57] and [113]).

R smin Nsmin
Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4

1/2 28 96 96 288 288 624
2/3 A 15 96 0 96 480 768
2/3 B 15 96 0 0 0 0
3/4 A 12 48 0 0 0 0
3/4 B 12 16 96 0 672 1824
5/6 9 192 288 1920 8616 43584
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are done.
These results emphasize the connection between the stopping set distribution and

the performance of the IPA from the theorems of the previous section. For instance, it
is clear when comparing the numbers of Table 4.1 and the plot of Fig. 4.8, or between
Table 4.2 and the Fig. 4.9 that the stopping set distribution is responsible for most
of the failures of the IPA. For example in the case of n = 768, at a constant rate
(e.g. 2/3), the measurement matrix with higher stopping distance has a slightly better
performance. However, we can see that even if the matrix A with rate 3/4 has a better
stopping distance than the rate 5/6 matrix, it performs better. This observation comes
from the stopping set distribution as matrix A with rate 3/4 has only 16 stopping sets
of weight 4, and the next ones have weight 7 (and there are a few of them) whereas for
the rate 5/6, the number of stopping sets of weight 6 or 7 are very numerous. Then,
although the stopping set distribution gives an insight of the performance of the IPA
on a given measurement matrix, it is not obvious to foresee this performance because
it depends on the stopping distance and on the number of stopping sets of each weight.
These observations hold for the case of n = 2304.
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Figure 4.8: IPA performance on the IEEE 802.16e LDPC codes of length n = 768 for
the different available rates.

4.4 Conclusion and discussion

In this chapter we have introduced the IPA, a low-complexity iterative reconstruction
algorithm for compressed sensing in which sparse non-negative matrices are consid-
ered as measurement matrices. We showed that the IPA has good reconstruction results
in a noise free case. We also demonstrated that there exists a close link between the
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Figure 4.9: IPA performance on the IEEE 802.16e LDPC codes of length n = 2304
for the different available rates.

failures of the IPA and some topological structures of its equivalent graphical repre-
sentation, known as stopping sets in the case of LDPC decoding.

The major perspective for this work is to adapt the IPA in a noisy case. However
this adaptation raises some questions. Indeed the IPA dealing primarily with non-
negative measurements, the noise added could flip the sign of some measurements.
The decision will also be an issue, as the intervals are likely not to converge to a single
value. However the first experiments tend to show that IPA can recover at least the
support of the sparse signal.

For instance we took a 10-sparse vector x of length n = 265 with non-zero values
between 0 and 255 (as in a grayscale image). We then use a sparse binary matrix A

of size m× n with m = 159 (this measurement matrix is designed, as in the previous
sections, as arrays of permutation matrices). We then measure x via A, but with ad-
dition of a Gaussian noise, such that y = Ax + z, where z is drawn for the Gaussian
distribution with variance σ2. The SNR being defined here as Eb/N0 = 1/2σ2. Fig.
4.10 depicts the first results concerning the reconstruction of IPA in a noisy setting
where we applied a noise of 2dB on the measurements. This figure shows in x-axis the
indices of the sparse signal, and in y-axis its original value (denoted with a ×), as well
as the interval which is computed for each location of the signal. Moreover, we intro-
duced some prior information in the setting, as we assume to know, while performing
the reconstruction, the minimum value for the non-zero values in x, this removes the
false alarms. We then notice that although the approximation of the intervals is not
quite accurate, it is pretty promising as it allows to detect, at least, the support of the
original vector x. It is our belief, that under certain conditions on the signals (more
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prior knowledge, particular structure of the original vector...) the adaptation of the IPA
to noisy measurements is possible. This will lead to make it more practical for certain
applications, as in the image processing using wavelets decomposition.
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Figure 4.10: First results on the IPA reconstruction in a noisy case.
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The presence of iterative algorithms in many digital systems demonstrates their ex-
traordinary efficiency in systems used to communicate, entertain and even work. With
the increasing number of users of digital technologies, the need in fast and large-scale
iterative methods will definitely keep growing.

In digital communications, traditional decoders, such as belief propagation (BP)
used for the decoding of low-density parity-check (LDPC) codes present an abrupt
degradation of the error-rate performance at a high signal-to-noise ratio. Recently
a class of finite precision iterative decoders, called finite alphabet iterative decoders
(FAIDs) was proposed to improve the performance in this particular region using a
very low complexity. In addition, it has been shown that FAIDs can surpass BP using
only 3 bits of precision on column-weight-three codes, and we even present in this
dissertation a 3-bit and 4-bit FAID surpassing the BP in the error floor region for a
column-weight-four code. As the number of possible FAIDs is very large for a given
number of precision bits, we have proposed two methodologies to select potential good
FAIDs for column-weight-three codes. The first one relying on the particular knowl-
edge of a code, specifically the knowledge of its minimal codewords, and the second
one is more general and aims at selecting good FAID for any column-weight-three
code based on the analysis of potential harmful structures in a code.

The work done in this thesis on this topic leads to different perspectives. The
complete extension on FAIDs for column-weight-four codes is crucial for the practical
applications, and can be addressed by two different ways. The first one is to extend
the work done for column-weight-three codes, which is, to know better the harmful
topologies for this type of codes and possibly design a trapping set ontology, and from
there design FAIDs able to surpass BP in the error floor. However this technique will
be limited by the number of potential FAIDs that can be designed, necessarily more nu-
merous than in column-weight-three. The second approach can rely on the derivation
of FAIDs for column-weight-four codes from a combination of FAIDs for column-
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weight-three codes. This would definitely lead to a design at a lower complexity, but
the combination of FAIDs for column-weight-three codes is not trivial to realize, while
ensuring a good error correction capability. Nevertheless we know thanks to this work
that FAIDs for column-weight-four codes are able to surpass BP in the error floor.

The second perspective of this work concerns the modification of the channel. We
have considered the Binary Symmetric channel, but designing good FAIDs on Additive
White Gaussian Noise channel (AWGNC) is a challenge, as the values of the channels
are not binary anymore. The major issue for this will certainly be the quantization of
the real values received from the channel to a discrete alphabet. Adapting FAIDs on
AWGNC using column-weight-four codes will definitely promote the FAIDs as serious
candidate decoders in the storage industry for hard-drive, or flash memories systems.

In the second part of the dissertation we have shown the potential of iterative al-
gorithms in compressed sensing, an emerging field in signal processing, in which the
sampling of a signal can be done below the Nyquist sampling rate if the signal is
sparse in a certain basis. We presented in this dissertation a modified version of a low-
complexity iterative reconstruction algorithm called Interval-Passing algorithm (IPA)
whose reconstruction performance is a good trade-off between other low-complexity
methods and complex reconstruction algorithms. This algorithm uses non-negative
measurement matrices, and the analysis of the failures of the IPA establishes a link be-
tween the failures of iterative decoder on the Binary Erasure channel and the graphical
representation of the measurement matrix.

Further work in this topic includes the analysis of the reconstruction possibilities
of the IPA under noisy measurements which will help to design measurement matrices
to improve the performance. Another related perspective for this work relies on the
computation of the mutual information between the original signal and its measure-
ments, and find a connexion between the maximization of this mutual information and
the failures of the IPA with the goal of designing measurement matrices maximizing
the reconstruction performance.
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