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Résumeé

Cette these porte sur I'analyse et le design de codes de aéinais par des graphes
creux. Le but est de construire des codes ayant de trés bparfesmances sur de larges
plages de rapports signal a bruit lorsqu’ils sont décodatitzement.

Dans la premiére partie est introduite une nouvelle classeodes LDPC, nommés
code LDPC hybrides. L'analyse de cette classe pour des kaymétriques sans me-
moire est réalisée, conduisant a I'optimisation des pat@sepour le canal gaussien a
entrée binaire. Les codes LDPC hybrides résultants ontedement de bonnes proprié-
tés de convergence, mais également un plancher d’erreupdsepour des longueurs de
mot de code inférieures a trois mille bits, concurrencamgides codes LDPC multi-edge.
Les codes LDPC hybrides permettent donc de réaliser un @ymsintéressant entre ré-
gion de convergence et plancher d’erreur avec des tectsydpieodage non-binaires.

La seconde partie de la thése a été consacrée a étudier quedipétre I'apport de
méthodes d’apprentissage artificiel pour le design de bodescet de bons décodeurs
itératifs, pour des petites tailles de mot de code. Nous saadtabord cherché comment
construire un code en enlevant des branches du graphe derTdon code mere, selon
un algorithme d’apprentissage, dans le but d’optimiselidtadce minimale. Nous nous
sommes ensuite penchés sur le design d’'un décodeur itfgaatdpprentissage artificiel,
dans l'optique d’avoir de meilleurs résultats qu'avec leatieur BP, qui devient sous-
optimal dés qu'il y a des cycles dans le graphe du code.

Dans la troisieme partie de la these, nous nous sommesssésrau décodage quan-
tifie dans le méme but que précédemment : trouver des regldéabelage capables de
décoder des configurations d’erreur difficiles. Nous avap@sé une classe de déco-
deurs utilisant deux bits de quantification pour les messagedécodeur. Nous avons
prouvé des conditions suffisantes pour qu’un code LDPC, angmids de colonnes égal
a quatre, et dont le plus petit cycle du graphe est de taille@ias six, corrige n’'importe
quel triplet d’erreurs. Ces conditions montrent que décagdlec cette regle a deux bits
permet d’assurer une capacité de correction de trois erpmur des codes de rendements
plus élevés qu’avec une régle de décodage a un bit.






Abstract

This thesis is dedicated to the analysis and the design e$egmaph codes for channel
coding. The aim is to construct coding schemes having higfopeance both in the
waterfall and in the error-floor regions under iterativeating.

In the first part, a new class of LDPC codes, named hybrid LD&W&s, is introduced.
Their asymptotic analysis for memoryless symmetric chhisngerformed, and leads to
code parameter optimization for the binary input Gausstzamnel. Additionally to a
better waterfall region, the resulting codes have a verydawr-floor for code rate one-
half and codeword length lower than three thousands bigselly competing with multi-
edge type LDPC. Thus, hybrid LDPC codes allow to achieve #&gresting trade-off
between good error-floor performance and good waterfaibregith non-binary coding
techniques.

In the second part of the thesis, we have tried to determiriehaind of machine
learning methods would be useful to design better LDPC camelsbetter decoders in
the short code length case. We have first investigated howitd the Tanner graph of
a code by removing edges from the Tanner graph of a mother, emiley a machine
learning algorithm, in order to optimize the minimum distanWe have also investigated
decoder design by machine learning methods in order to pefbetter than BP which is
suboptimal as soon as there are cycles in the graph.

In the third part of the thesis, we have moved towards queadtdecoding in order
to address the same problem: finding rules to decode diffectdr configurations. We
have proposed a class of two-bit decoders. We have derivédiant conditions for a
column-weight four code with Tanner graph of girth six toreat any three errors. These
conditions show that decoding with the two-bit rule allowsehsure weight-three error
correction capability for higher rate codes than the daagdiith one bit.
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Introduction

Context

In 1948, Claude Shannon published a paper [5] in which hedavah the foundations of
information theory. Shannon'’s original work on informatiteory was in direct response
to the need to design communication systems that are botieeffand reliable. Reliable
means that no loss of information occurs during transmisdglio particular, information
theory addresses both the limitations and the possilsildfereliable transmission of in-
formation over a communication channel. The noisy chanoding theorem asserts both
that reliable communication at any rate beyond the charaq@haty is impossible, and
that reliable communication at all rates up to channel aapecpossible.

The central problem of communication theory is to constaurcencoding and a de-
coding system to communicate reliably over a noisy channel.

During the 1990s, remarkable progress was made towardshidnensn limit, using
codes that are defined in terms of sparse random graphs, ant ade decoded by a
simple probability-based message-passing algorithm. dpaase-graph code, the nodes
in the graph represent the transmitted bits and the contgrdiey satisfy. Hence, there
are two kinds of nodes in the graph, which is therefore cdlipdrtite graph. For a linear
code which encodek&” information bits into a codeword oY bits, the rate iR = % and
the number of constraints is of ord&f = N — K. Any linear code can be described by
a graph, but what makes a sparse-graph code special is that@astraint involves only
a small number of variables in the graph. The edges of thengilafine a permutation,
and that is why a sparse-graph code is said to rely on a randamupation. These codes
are very interesting because they can be decoded by a losalge-passing algorithm
on the graph, and, while this algorithm is not a perfect maxmiikelihood decoder, the
empirical results are record-breaking.

We can mention two ensembles of sparse-graph codes whiehexaellent error-
correction capability: Low-Density Parity-Check (LDPQ)des, and Turbo Codes. The
class of LDPC codes was first proposed in [6] in 1963, and ced&red thirty years
later [7, 8, 9, 10, 11], after the invention of Turbo Codes][1Phis thesis investigates
channel coding schemes based on LDPC codes. LDPC codescadedethrough the
iterative local message-passing algorithm based oB#fief Propagatior(BP) principle
[13]. These codes have been shown to exhibit very good pedioce under iterative BP
decoding over a wide range of communication channels, agpiog channel capacity
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18 Introduction

with moderate decoding complexity.

Asymptotically in the codeword length, LDPC codes exhilthr@shold phenomenon.
In other words, if the noise level is smaller than a certaicodiéng threshold (which de-
pends on the bipartite graph properties) then it is possibéehieve an arbitrarily small
bit error probability under iterative decoding, as the awolel length tends to infinity. On
the contrary, for noise level larger than the threshold,iherror probability is always
larger than a positive constant, for any codeword length 119. On the Binary-input
Additive White Gaussian Noise (BIAWGN) channel, this threlsl value is defined in
terms of Signal-to-Noise Ratio (SNR), on the Binary Symmsebhannel (BSC) in terms
of error probability, on the Binary Erasure Channel (BEC)}amms of erasure probabil-
ity. There are two main tools for asymptotic analysis of LD&4dles, i.e. for evaluating
the decoding threshold associated to a given degree distiib density evolution [10]
and EXtrinsic Information Transfer (EXIT) charts [14]. Oonéthe features that makes
LDPC codes very attractive is the possibility to design, $everal transmission chan-
nels, the degree distribution of the bipartite graph whiobvles a decoding threshold
extremely close to the channel capacity [15]. For given aade and node degrees, the
threshold optimization is usually performed by means of etdoal optimization tools,
like differential evolution [16]. In the particular case thie BEC, where the transmitted
bits are either correctly received or lost independentlhveome erasure probability, it
was also shown that it is possible to design sequences oéeeligtributions, known as
capacity-achieving sequences [17], whose threshold cgeséo the channel capacity.

Motivation

While the asymptotic design and analysis of LDPC codes iglgnosderstood, the design
of finite length LDPC codes still remains an open question.

Indeed, the local message-passing algorithm, which is thed8coder for LDPC
codes, corresponds to the exact computation pbsterioriprobabilities of variable val-
ues only if the graph is cycle-free, i.e., when the probgbiiessages going into a node
along the decoding iterations can be assumed independhetitatl case, the BP decoder
is exactly the Maximum-Likelihood (ML) decoder becausents the global maximum
of the ML criterion. This assumption is made for asymptotigly, when the codeword
length is assumed to be infinite. In the finite length casdgesyappear in the graph [18].
In that case, the BP decoder does not compute anymora pusteriori probabilities
of variable values, thereby turning into suboptimal in tkeese it does not correspond
anymore to ML decoding. However, the BP decoding of LDPC dedmsed on this as-
sumption thanks to the property of the graph of the code, wisisparse by definition of
this class of codes. Many works [19, 20] have characterizegghenomenon which arises
when BP decoder is used on loopy graphs, and which pointheudifference between
ML decoding and BP decoding. ML decoding is always able totivedcodeword closest
to the observation (even though it makes errors becauseltdssst codeword is not the
one which has been sent), whereas BP decoder may convergedmbints which are
not codewords. These points are usually calsdudo-codewordand it has been shown



Outline

[19] that they are of first importance in the loss of perforegof BP decoding, com-
pared to ML decoding, and particularly in tleeror floor region. When the LDPC code
is decoded by message passing algorithms, the frame eteoff&R) curve of has two
regions: as the channel parameter decreases, the slope BER curve first increases,
and then sharply decreases. This region of low slope forlamahnel parameter is called
theerror floor region.

Moreover, finite length LDPC codes with a degree distribuissociated to a decod-
ing threshold close to capacity, though characterized by geod waterfall performance,
usually exhibit a bad error floor performance, due to poormim distance [21, 22]. In-
deed, the capacity-approaching sequences of LDPC codesHaxge fraction of degree
two variable nodes [17, 10], which gives rise to low-weigbtlewords. Such codewords
correspond to cycles in the subgraph of the Tanner graphhwdantain only degree two
variable nodes.

To construct code ensembles with iterative decoding pedorce close to channel ca-
pacity and having a low error-floor, one needs to choose tidora permutations, which
make LDPC codes pseudo-random codes, in a structured wawpitb short cycles. The
code ensembles with a structured choice of permutationsaied structured. Hence,
the design of finite length LDPC codes mostly relies on findivgbest trade-off between
the waterfall and error-floor regions, by carefully consting the bipartite graph of the
code. One of the most popular technique to design the graphthe permutations, of
a code, is the Progressive-Edge-Growth (PEG) construg2i®jy Code ensembles that
have been studied in order to well perform in the finite-lancsise are those based on
finite geometries [8] and on circulant permutation matri@dd. More particularly, some
structured code ensembles have been under the scope of mdigsshese last years:
Irregular Repeat-Accumulate (IRA) codes [25], protogriyaised LDPC codes [26] and
multi-edge type LDPC [27]. These techniques, or their corations, lead to codes with
good code properties in terms, for instance, of girth of tipatite graph and possibility
to perform the encoding procedure efficiently.

The attempt to improve the trade-off between waterfall ganance and error floor
has recently inspired the study of more powerful, and sona¢wiore complex, coding
schemes. This is the case of non-binary LDPC codes, GereddlDPC (GLDPC) codes
[28], Doubly-Generalized LDPC (D-GLDPC) codes [29] or Taiting LDPC (TLDPC)
codes [30]. Non-binary LDPC codes have been introduced lweye [31]. The main
interest of non-binary LDPC codes actually lies in the decodood non-binary LDPC
codes have much sparser factor graphs (or Tanner grapimshitiery LDPC codes [32],
and the BP decoder is closer to optimal decoding since thd sytdes can be avoided
with a proper graph construction, as proposed in [33].

Outline

This thesis encompasses three distinct chapters, in whielk different methods are in-
vestigated with the same aim: designing new coding schemesder to improve the
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20 Introduction

trade-off between waterfall performance and error floor.

The first chapter is dedicated to introduce the useful netafmout binary and non-
binary LDPC codes, as well as the existing tools for theitysis.

In the second chapter, we introduce and study a new classBCLéddes that we call
multi-binary hybrid LDPC codesThe class of hybrid LDPC codes is a generalization of
existing classes of LDPC codes, both binary and non-birkayhybrid LDPC codes, we
allow the connectivity profile to be irregular and the ordefshe symbols in the code-
word to be heterogeneous. The asymptotic analysis of thssaf codes is performed
with a given detailed representation to derive stabilitpadibon and EXIT charts anal-
ysis. The study is performed on the BIAWGN channel, wher¢adiss of generalized
LDPC codes usually consider the BEC [30, 29] where the onampeier approximation
of message densities is straightforward, unlike for theVBN channel. Thus, for the
EXIT chart analysis, we have tried to provide an as completeassible analysis of the
accuracy of the projection of message densities on only oarrsparameter. Distri-
butions are optimized and some thresholds computed. We kbawthe finite length
optimization method of [34] can be adapted and applied tegstlow error floor. We fi-
nally present experimental results for code rate one haikall as for code rate one sixth.

The third chapter reviews the investigation done on théairipic of this thesis: how
some machine learning methods might be applied to the iggraph of a code for finite
length optimization purpose? The final goal was to use hyllbiBC codes as a tool for
building codes with good finite length properties by meana tgfarning algorithm to be
determined.

First, we are interested in code design. We look for a way tid ke Tanner graph of
a code by means of a supervised learning process applied gwdph of a mother code in
order to decide which edges should be pruned away in ordexterlthe sub-optimality
of the BP decoder.

Then, we move towards decoder design for a given LDPC codeinVéstigate how
to modify the BP decoder by adapting it to the graph of a givasheg in order to lower
its sensibility to graph cycles. For this purpose, the BRodec has been considered as a
classifier with room for improvement.

The fourth chapter also aims at finding good decoders wdibpaing on finite length
LDPC codes, but with good asymptotic behavior too. In thiapthr, we switch from
continuous BP decoding to quantized decoding. The ideallisostind a decoding rule
adapted to topologies hard to decode, like trapping sels J&bdo so, a class of two-bit
message passing decoders is proposed for the binary symmmiegannel. The thresh-
olds for various decoders in this class are derived usingitieavolution. For a specific
decoder, the sufficient conditions for a column-weightrfloDPC code to correct all pat-
terns up to three errors are derived. A code satisfying timglitons is constructed and
numerical assessment of the code performance is providesimulation results.



Contributions

Contributions

In the present thesis, we proposed the following contrdmsi

e A new class of non-binary LDPC codes, named hybrid LDPC cadestudied.

o

The asymptotic analysis is presented: the property of lchAggplication in-

variance is exhibited for the code ensemble, leading to l@lgyacondition

and an EXIT charts analysis for AWGN channels. Two kinds ot Egharts
of hybrid LDPC codes are studied: multi-dimensional and aadimensional
EXIT charts.

Study of the condition allows to conclude that there exishyneases where
any fixed point of density evolution for hybrid LDPC codes ¢anstable at
lower SNR than for non-binary codes.

For the EXIT chart analysis, a detailed analysis of the amuof the approx-
imation of message densities by one scalar parameter iglpchv

Distribution optimization are performed to get finite-léngodes with very
low connection degrees and better waterfall region thatograph or multi-
edge type LDPC codes.

A cycle cancellation technique is applied to hybrid LDPC esdwhich are
well fitted to such a technique, thanks to their specific stmec

The resulting codes appear to have, additionally to a bet¢erfall region,
a very low error-floor for code rate one-half and codewordjteriower than
three thousands bits, thereby competing with multi-edge tyDPC. Thus,
hybrid LDPC codes allow to achieve an interesting tradebetiveen good
error-floor performance and good waterfall region with roomary coding
techniques.

e An investigation on how machine learning methods could el disr finite length
optimization of LDPC coding schemes has been led:

o

It has been shown that no learning algorithm can be used I &gibde from

pruning the Tanner graph of a mother code, when the aim islgEimaously to

have a high minimum distance and to exploit the value of thesages during
the iterative decoding.

Decoder design, with machine learning methods, has beestigated. The
decoding has been defined as a classification problem to vehitter de-
coder than BP may be found, in order to handle message &iatidepen-
dencies. The neural network corresponding to the BP degddis been ex-
pressed. To determine optimal synaptic weights to perfcettebthan BP on
a finite length code, we proposed a cost function based oniffiegethce be-
tween an estimated mutual information and the EXIT chare fi@dason why
this approach fails has been detailed.
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Introduction

o Several classification methods have been studied to sederhibiey might
advantageously substitute the BP decoder. The fundanreatn why this is
not possible is exhibited: those methods are non-paracmatichine learning
algorithms where the elements to be classified, must beyhigiti-uniformly
distributed. However, the channel coding problem corradpdo the opposite
case.

e A class of two-bit message passing decoders for decodingroelweight-four
LDPC codes over the binary symmetric channel is proposecaalyzed.
o Thresholds are derived for various decoders in this class.

o We consider a specific decoder in this class, and prove srficonditions
for a code with Tanner graph of girth six to correct three lero

o A code satisfying the conditions is constructed and nurakassessment of
the code performance is provided via simulation results.



Chapter 1

Introduction to binary and non-binary
LDPC codes

This chapter introduces the binary and non-binary LDPC sodlke general channel cod-
ing problem is shortly explained, notations and definitiaresgiven, and a non-extensive
review of analysis tools necessary for the following is done

1.1 Linear block error-correcting codes

A linear block code is a linear map which associate& tmformation symbols)N coded
symbols, by addingV — K redundancy symbols in order to lower the error probability
when the transmission occurs over a noisy channel.

The linear map is described l6yin the reminder, and the codewords set is denoted by
C and called the code. The bold notatiGnis used to denote the matrix associated with
the linear mag~>. When the code is defined ov&#'(2), the codeword set corresponds to
the image of{ 0, 1} by the linear map, and it is denoted By

G: {01} —cc{o, 1}V

To shorten the notations, we writ€: = I'm(G). This means that for any codeword
c € {0,1}" of size N x 1, there exists one unique information vectoe {0, 1}* of size
K x 1 such thatc = Gv, where the size o& is N x K. Thus, a linear block code is
determined byG, which is called the generator matrix, but it can be alsordateed by
H of size(N — K) x N, which is called the parity-check matrix. Indedd s the matrix
of the linear map whose image is the kernel of the applicatiorHence, the following
property allows us to determine whether a vectof(inl }*¥ belongs to the codé:

Vceel, H-c=0
which is also equivalent to
vv e {0,1}*, HG-v=0

23
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Consider a transmission over a noisy channel. Xdie the input random vector and
let Y be the output random vector. We assume tiatepends orX via a conditional
probability density functiorPx vy (x|y). Given a received vectoy = (yo,...,yn—1),
the most likely transmitted codeword is the one that max@sRxy (x|y) [36]. If the
channel is memoryless and each of the codewords are eqikally, lthen this reduces
to the codewordck = (o, ...,xy—1) Which maximizesPy x(y[x). This is known as
maximum likelihood (ML) estimate of the transmitted codegvand is written as follows
[36]:

% = arg max Pyjx(y[x)
pdS
where the maximization is done over the input alphabet othannel.

Now we discuss the correction capability of a linear blocteeoT he correction ability
of a code is determined by its minimum distanteg,,, which is the smallest Hamming
distance between two codewords [37]. From an algebraippetise, the received vector
is the sent codeword with some components corrupted. Tloe eorrection, i.e. the
decoding process, consists in finding the nearest codewdhetreceived vector. All the
vectors in{0, 1}V whose nearest codewordsisare such that, forall € 1,..., N, if the
i" bit of the vector is different from thé" bit of the codewordk, then the Hamming

distance betweex and the vector must be lower thﬁlﬁ%ﬁ, with d' (i) being the local
minimum distance of bit in the code, as defined in [38]. The local minimum distance
on thei'" digit corresponds to the minimum Hamming distance betweencodewords
whose the'" digits are different [38]. Hence, the maximum number of esthat a code
can detect isl,,;, — 1, whatever the location of the errors in the codeword. Siryila

if the error correction is achieved according to the ML pipte, the maximum number
of errors that the code is able to correci[i@gﬂj. The maximum number of correctable
errors is henc@%j, whatever the location of the errors in the codeword.

ML decoding corresponds to solve the nearest neighbor @noblLooking for the
nearest neighbor in a high-dimensional space is an algoigtproblem which does not
have a better solution than an exhaustive search when tiee sfEments are not sorted.
Thus, the decoding process can be very compi@ge()) [37]. This is brute force ap-
proach is reasonable only for short length codes. Fasteoptiimal solutions have been
developed. The first one is applied to block codes like BCH §B@ Reed-Solomon codes
[40]. In these approaches, the code is built withdhgriori knowledge of the minimum
distance, and built so as the nearest neighbor search caerfeenped in reduced sub-
spaces. The second coding scheme which allows to have goochum distance with
acceptable decoding speed is based on convolutional c&she®ding is done thanks to
linear feedback shift registers fed by information bitsisTiechnique generates a gebf
codewords sorted according to the correlation betweenite@bthe codeword. Viterbi
algorithm [41] takes advantage of this construction by niodethe encoder as a finite
state machine whose transitions between possible statesasidered as a Markov chain
and form a convolutional trellis, or state graph. Each pattis state graph corresponds
to a codeword, and looking for the most likely codeword ressl finding the path which
minimizes the distance with the received vector. The coriyiés linear in the informa-
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tion length O(K)) [41].

An important breakthrough has been performed in 1993 bydseet al. [12] who
invented the Turbo Codes, which have been the first codeshibiesimulation results
close to the channel capacity. This coding scheme uses fievedtit component codes
in parallel, originally being convolutional codes. Theuk®f decoding of one code is
fed asa priori to the other code in an iterative way. In the sequel, we ergiaiw the
decoding complexity is dramatically reduced in the spec#ise of LDPC codes.

1.2 Definition and parametrization of LDPC codes

LDPC codes are low density linear block codes, introduce@®alager [6] in 1963, and
soon after their non-binary counterparts by Davey [31]. Adoy LDPC code is defined
on the finite Galois field of ordez, GF'(2), while a non-binary LDPC code is defined
on the Galois field of ordey, GF(q). We consider in this work only field characteristics
which are power of twog = 2P. An LDPC code is represented by its sparse parity-check
matrix H of size (N — K) x N. As previously, the codeword length is denoted ¥y
and the number of information symbols By. The number of redundancy symbols is
M = N — K, and the code rate is given iy = K/N > 1 — M /N, with equality if H

is full-rank (i.e., its row rank is equal td/). The structure of the parity-check matrix can
be regular or not. A code is regular (resp. irregular) if thenber of non zero elements
in every rows and in every columns HF is (resp. is not) constant. In the reminder of this
section,LDPC codess used when the distinction between binary and non-bin&iyC
codes is not relevant. The field order in which the code lidsb&ispecified otherwise.

Definition 1 [6] A regular LDPC code with its two paramete(d,, d.) is defined by a
matrix with exactlyl, andd. ones per column and row, respectively.

The code rate i = K/N > 1 — d,/d., with equality if H is full-rank. Those two
parametersd,, d.) define aensemblef regular codes. A ensemble of LDPC codes de-
fined by(d,, d.), is made of all the possible parity-check matrices with éhesnnection
parameters. One code among this ensemble is given by aysartrealization of the
parity-check matrix. In the non-binary case, the non-zeloes of the parity-check ma-
trices are chosen uniformly at randomGi¥'(¢)\{0}.

In a similar way, an LDPC code can be represented by a bipaptitph, called factor
graph [42], or Tanner graph [43], made of two kinds of nodesiable nodes representing
bits of a codeword, and check nodes associated to paritgké¢hactions. Those two kinds
of vertices are linked with each other by edges indicatinghech parity-check equation
variable nodes participate. For binary LDPC, the non-zexloias of the parity-check
matrix H belong toGF'(2)\0, i.e., they can be equal only to For non-binary LDPC
codes, the non-zero values of the parity-check madrixelong toG F'(¢)\0. The element
of H on rowi columnj is denotedh;;. The j* variable node and th&" check node are
connected if.;; # 0. For instance, ifr; denotes the variable nogesymbol value, the"
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parity-check equation is fulfilled if
N—-1
j=0

where additions and multiplications are performed @véi(q). The degree of connection
of a variable node (the same for a check node) is the numbelgafsdinked to this node.
A node is said # connected” or “of degreé if it is connected to; edges. Figure (1.1)
sums up these notions.

i hoo ho1 hoz2 0 0 0 ]

0 hi1 0 his hi4 0
H= h2o 0 0 hasz 0 has
0 0 haa 0 h3q h3s

Check nodes

Figure 1.1 : Parity-check matrix of a non-binary LDPC codd #s bipartite graph.

A code is irregular if it is not regular. The usual paramettian of irregular LDPC
codes is done by means of polynomials [10], sometimes exfé¢oras edgewise parametriza-
tion:

e Polynomial associated to variable nodes:

dﬂmam

Az) = Z N1
i=2

where )\; is the proportion of edges of the graph connected to degreiable
nodes, and is the maximum degree of a variable node.

VUmaz
e Polynomial associated to check nodes:

dea:E

pla) =Y pua’™!
j=2

wherep; is the proportion of edges of the graph connected to degeceeck nodes,
andd is the maximum degree of a check node.

Cmax
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When the parity-check matrix of the code, whose graph paenare)\(z) andp(z), is
full rank, then those two quantities are related to the catie boy:

dcmam . y
R=1- 7%:;” ij//z (1.2)
i=2 {

There is also a dual parametrization of the previous onetnexd to as nodewise parametriza-
tion [10]:

e Polynomial associated to data nodes:

d’”mam
5\(:15) = Z Nt
1=2
where); is the proportion of degreevariable nodes.

e Polynomial associated to check nodes:

dcmam

plx) = > pa’!
=2

wherep; is the proportion of degregcheck nodes.

The transitions from one parametrization to another arergby:

5o i/t 5, = pilJ
b w/k 7 T Y eon/k
A P
SIS T 2

(1.3)

Thus, a ensemble of irregular LDPC codes is parametrized\by (z), p(x)). The reg-
ular case is a particular case of this parametrization whergandp(x) are monomials.
Figure 1.2 is a graphical representation for this kind ofecod

1.3 General notation

Throughout the thesis, vectors are denoted by boldfacdionsae.g.x. Random vari-
ables are denoted by upper-case letters, &gand their instantiations in lower-case,
e.g. z. The characterization and the optimization of non-binaDPIC codes are based
on DE equations, assuming that the codes are decoded usiagwe BP [31]. An im-
portant difference between non-binary and binary BP desosethat the former uses
multidimensional vectors as messages, rather than scllags: There are two possible
representations for the messages: plain-density protyabeictors or Log-Density-Ratio
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Degree of connection

7

i

Srl K %a

R2RRRRAR =

‘ Interleaver

W v V Parity check node

Figure 1.2 : Representation of a ensemble of irregular LD8{es.

(LDR) vectors. We denote the elements of the finite grou@'F'(¢), or the finite field
GF(q), of orderg by (0, c, ..., a4—1). In the thesisP(X = z) denotes the probability
that the random variabl& takes the value.

A g-dimensional probability vector is a vecter = (xo,...,z,_1) Of real numbers
such thatr; = P(X = ;) forall i, and3> ") @; = 1.

Given a probability vectax, the components of the Logarithmic Density Ratio (LDR)
vector, associated witk, are defined as

wi:10g<@),i20,...,q—1. (1.4)
Note that for allx, wy, = 0. We define the LDR-vector representationxods theg — 1
dimensional vectow = (wl,...,w,—1). The observation of the channel under LDR
form is a Logarithmic Likelihood Ratio (LLR). For convenies in the derivation of
the messages properties and the corresponding proofdedporsection 2.7, the value
wo = 0 is not defined as belonging t8. Given an LDR-vectos, the components of
the corresponding probability vector (the probabilityteedrom whichw was produced)
can be obtained by
e w;g

1430 emwe’
A probability vector random variable is defined to be a g-disienal random variable
X = (Xo, ..., X4—1). An LDR-vector random variable is @ — 1)-dimensional random
variableW = (W, ..., W,_,).

i=0,...,q—1 (1.5)

X

1.4 Decoding of LDPC codes by Belief Propagation algo-
rithm

Depending on the transmission context (like channel typlecamputational power at the
receiver), there are two kinds of decoding algorithms: tBrdsion algorithms and soft
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decoding. The former will be studied in the last chapter,levtiie latter is the decoding
algorithm that we use, unless the contrary is specified.

A priori probabilities on the value of each symbol of the codewordiesecomputed
thanks to the channel outputs. For non-binary LDPC codesegthrobabilities correspond
to the probability that the symbol be equakiey, . . ., a,_1 }.

Although a maximum likelihood decoding of LDPC codes is plass[6], the com-
plexity increases too much as soon as enough long binarys@rdeconsidered, and it is
reasonable to expect that the complexity will not be lowerhigh order fields. That is
why [6] then [43] proposed a sub-optimum decoding algoritfimally revised by [44]
and [42] for the case of factor graphs. This algorithm is kn@s Sum-Product [42] or
BP [13] algorithm, and it spreads along edges messagesrdinggprobabilities or LDR.
To each edge, two messages are associated, one for eactodirébe principle of BP is
Bayes rule applied locally and iteratively to estimatposterioriprobabilities (APP) of
each codeword symbol. It has been shown that over a cyaeghaph (tree case), local
factorization of Bayes rules leads to exact computationfPAf variable nodes because
messages going into a node are independent from each othweewdr, in [18], it has been
shown that the linear codes which have a cycle free Tannehdrave either a minimum
distance lower or equal to 2 when the code ratis greater than one half, or a minimum
distance upper-bounded Byotherwise. Itis therefore impossible to consider such sode
because the minimum distance that cannot grow with the coaklength, which is a
desirable property. Hence, any finite length LDPC code hagke danner graph, then
messages going into a node are not independent. Thus, ARP®tcemputed exactly,
and the algorithm is not optimal anymore in the sense it de¢sorrespond anymore
to ML decoding. However, the BP decoding of LDPC code is basethe cycle-free
assumption thanks to the property of the graph of the codehat sparse by definition
of this class of codes.

Decoding principles apply similarly off F'(¢) codes, forg > 2, as forGF(2) codes.
This section describes only the non-binary case. Sincebimary codeword symbols
are considered as random variablesif'(¢), messages on the edges of the graph are
q sized vectors. BP algorithm intends to compute the APP of eadeword symbol.
For instance, for the symbol corresponding to variable ngdé¢he algorithm handles
conditional probability vectop; = (P(v; = aolyi, Si), ..., P(vi = ag-1lyi, S;)), where
P(v; = aoly;, S;) is the probability that the sent codeword symbi equal tooy, given
that the channel output for th#® symbol isy; and givenS; the event that all parity-check
equations connected to variable nadeare fulfilled. The computation gb; depends on
the structure of the code factor graph through evéntsr all :. If input messages; are
independent, the probabilities on the graph are computactigiup tof iterations, ifg is
the length of the shortest cycle in the graph, also calledjittle of the graph.

7777

.....

going out of this variable node. Index denotes the direction of message propagation
(permutation node— variable node)pp denotes the opposite direction. Messages get-
ting in (resp. out) a parity-check nodeare similarly denoted b){rg)c}ie{l ,,,,, a4} (resp.
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The decoding algorithm is composed of six stages:

e Initialization: All messages®) going out of variable nodes to check nodes are ini-

with
Pen;[a] = P(yilei = aa), a. € GF(q). (1.6)
e Variable node update: The variable node sends to check nodethe probability

for the symbol corresponding toto be equal tav, € GF(q) (Fig.1.3). Messages
going out of variable nodes are updated thanks to equation(1

dU
rz(Jtptl) [CL] = MocPehy, [CL] H l;g?v [CL] (17)

j=1j#c

wherec € {1,...,d,} andu,. is a normalization factor such th Z;é r@c la] = 1.

Channel output

Permutation node

= m

Check nodes
Figure 1.3 : Variable node update

e Permutation nodes update: This stage is a consequence of the parity equation
(1.1). Indeed, the permutation function node on each edgesymonds to the mul-
tiplication of the non-zero value with the symbol value. &irthese two values
belong toGF'(q), this multiplication actually corresponds to a cyclic petation
of the vector messages.

Tpelhij X ag] = ryplag]  k={0,...,q—1} (1.8)

For message going from check nodes to variable noldgs—# [,,), the inverse
transform is achieved thanks to the inverse synﬁz@élpermutation.
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e Check nodes update: Each check node processes its incoming veatttsand
sends out updated messad€sto all its neighbors (figure 1.4). The check node
sends, to its neighboring variable nodes, the probabhiy the parity-check equa-
tion is fulfilled, given its incoming messages. Equatiori().is the update of the
component; of the output vectotﬁt)v.

de
14 la] = > T eyl (1.9)

QL yeeny Ay —1,0p4-15--4y adc5j:1,j;£z)
de i
@i:l,i;ﬁv QAi=0a

where thed operator explicits that the addition is performed o@dr(q). Else-
where in the document, this operation is noted by commopthe addition is per-
formed overGF(q) if elements ofGF'(q) are summed up. One can also express

1) directly in terms ofe{5""

Gula= ) [T+l (1.10)

QY ey Ay —1,0p 41500y O‘dcvj::[’j;éy
de (giXai)=c
i=1,izv \Ji X Qi) =Qa

Figure 1.4 depicts equation(1.10): eleméﬁt[a] update consists in computing the
sum of all products;.[a,] - r{J.[a,] satisfying the conditiom; x as x a = 0 with

a,as,a €40,...,q— 1}.

Variable nodes

Permutation node

Check node
Figure 1.4 : Check node update

e Stopping criterion: Equation (1.11) corresponds to the decision rule on symbols

values:
dv

I, = max Py [a] [ [V, la] (1.11)

J=1
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Updates of() and1®) messages is done iteratively urtil = 0 (the decoder has
converged to a codeword) or until the maximum number of itena is reached
(the decoder did not succeed in converging to a codeword).

Let us briefly mention available reduced-complexity teqiieis for decoding-F'(q)
LDPC codes. The BP decoder implemented as above describedimplexityO(¢?). As
introduced in an early paper of Richardson and Urbanke [ib&]check node update can
be performed using Fourier transforms translating the clutonal product, as soon as a
group structure exists. Many works have then been done endpic, like [45] that has
shown that with Fourier transform decoding, the complesigles a®)(qlog,(q)). Other
low-complexity non-binary decoders, which have been prieskrecently in the literature
[46, 47], implement approximated versions of the BP decoder

1.5 Analysis of LDPC codes

This section first sets up the transmission context and mglahy the error probability
of non-binary LDPC codes can be assumed to be independdre obtleword sent. Then
it is shown how the performance 6fF'(¢) LDPC code ensembles can be predicted by
analyzing the densities of messages along iterative degodis this non-binary density
evolution analysis is computationally intensive, only ap@ximation of message densi-
ties is given. By using a Gaussian approximation, one caigua@®od irregularities for
G'F(q) LDPC codes thanks to EXIT charts. Finally, the stability dition for non-binary
LDPC codes is given, which ensures that the error probglislable to be arbitrary small,
provided it has already dropped below some threshold. Allr#sults presented in this
section can be found in the literature [48], but note thay tt@n be slightly modified
because, unlike in [48], the considered channels are synunet

1.5.1 Additional notation

We give the definition oft-¢ operation, as introduced in [48]. Given a probability vecto
x and an element € GF(q), x is defined by

+9
X' = (Tg, Ti4g,- - T(g—1)+g)

where addition is performed ové&rF'(q).
x* is defined as the set

X" =x,x,...,x@V

Moreover,n(x) is defined as the number of elements GF(q) satisfyingx™ = x.
Similarly, x*¢ is defined by [48]:

X9 = (20,2, ..., T(g—1)xg)

where multiplicationx is performed ove& F(q).
The LDR vectors corresponding toandx ™ are denoted by andw™9, respectively.
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Due to Definition 1.4 of the components of a LDR vector, tfiecomponent ofw 9 is
w;™? which is defined by

Wl =wy —w,, Yi=0..q—1

(2

Unlike w9, w9 is defined in the same way as7:

W =wywi, Vi=0...q—1

2

1.5.2 Channel and message symmetry

Only symmetric channels are considered in this work. Extent® arbitrary channel can
be done by a coset approach, as detailed in [48]. In thissectre introduce classical
results leading to asymptotic analysis, but we prove thetherspecific case of the defi-
nition of channel symmetry we consider. These proofs are siewe the thorough study
presented by Bennatan and Burshtein in [48] is done in thee @ba coset approach.
The definitions of symmetric probability vector and LDR \@care given hereafter.

Definition 2 [48] A probability vector random variabl&” is symmetric if for any proba-
bility vectory, the following expression holds:

PY =yl[Y €y*) =yo-n(y) (1.12)
wherey* andn(y) are as defined in Section 1.5.1.

Lemma 1 [48] Let W be an LDR vector random variable. The random variakle=
LDR™'(W) is symmetric if and only iW satisfies

P(W =w) =¢e“"P(W=w") (1.13)
for all LDR vectorsw.

We refer the reader to the original article [48] for the probthe equivalence between
these two definitions.
The definition of channel symmetry we consider is the one @tlal. [49].

Definition 3 A channel is symmetric if and only if the density of the olest@ya in prob-
ability form satisfies:

PY =ylz=i)=P(Y =y"'lz =0)

Let us now prove that the channel symmetry implies that ther @robability at any
iteration of BP decoding of & F(q) code, is independent of the codeword that has been
sent.

Lemma 2 Let P (x) denote the conditional error probability after ttie¢h BP decoding
iteration of aGF'(¢) LDPC code, assuming that codewatdvas sent. If the channel is
symmetric, ther” (x) is independent aof.
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The proof of this lemma is provided in Section 1.7. This propallows to assume that
the all-zero codeword has been transmitted, for the remiafithe asymptotic analysis
of GF'(q) code ensemble performance.

Let us provide two additional properties that are usual &ymaptotic analysis of LDPC
codes,

Lemma 3 If the channel is symmetric, then, under the all-zero codéwssumption, the
initial message densiti, in LDR form is symmetric:

Py(w) = ¥ Py(w™?)

The proof of this lemma is provided in Section 1.7. Furthemnthe following lemma is
used in [48], and the proof is a direct extension of the prddfemma 1 in [11].

Lemma 4 If the bipartite graph is cycle-free, then, under the alieeeodeword assump-
tion, all the messages on the graph at any iteration, are sgmnm

1.5.3 Density evolution forGF'(q) LDPC codes

This subsection presents density evolution@r(q) LDPC codes. The precise compu-
tation of theGF'(¢q) LDPC version of the algorithm is generally not possible iagtice.
The algorithm is however valuable as a reference for amalysiposes. The density
evolution forGF(q) LDPC codes is defined in Section 1.5.3, and the applicatiadheof
concentration theorem of [11] is then given.

Since the density evolution analysis for non-binary LDP@edis an extension of the
binary case, we refer the reader to [11] and [10] for a core@etd rigorous development
of the density evolution for binary LDPC codes.

In [11] and [10], a general method that allows to predict gstotic performance of
binary LDPC codes is presented. The authors proved a sedoadincentration theorem
according to which decoding performance over any randomlgecanverges, as the code
length tends to infinity, to the performance when the grapty@de-free. Thus, relevant
evaluation of performance of binary LDPC codes is possiblié limit case of infinite
codeword lengths. The proposed density-evolution metbodists in following the evo-
lution of probability densities of messages, spreading twe whole graph, when using
belief propagation algorithm for decoding. Messages asaraed to be independent and
identically distributed (iid).

Analogously to the binary case, density evolution f'(¢) LDPC codes tracks
the distributions of messages produced in belief-propagagveraged over all possi-
ble neighborhood graphs on which they are based. The rangaoess comprised of
random channel transitions, the random selection of the &wdn a(\, p) GF(¢) LDPC
ensemble (see section 1.2) and the random selection of anfefy the graph. The ran-
dom space does not include the transmitted codeword, whialssumed to be fixed at
the all-zero codeword (following the discussion of sectidh.2). We denote bR(*) any
initial message across an edge,Rya variable to check message at iteratipand by
L; a check to variable message at iteratioithe neighborhood graph associated viath
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andL; is always assumed to be tree-like, and the case that it isonsetreeglected. These
notations are used when discussing plain-likelihood =gmation of density-evolution.
When using LDR-vector representation, we Rt?, R, andL, denote the LLR-vector
representations &), R, andL,. To simplify the notations, itis assumed that all random
variables are discrete and thus track their probabilitycfions rather than their densities.
The following discussion focuses on the plain-likelihoegnesentation. The translation
to LDR representation is straightforward.

e The initial message The probability function oR ) is computed in the following
manner:

yeYr(®(y)=x
where Y is a random variable denoting the channel oufgus, the channel output
alphabet and the componentsr§? () are defined by equation (1.6), replacing
with .

e Check to variable node messagesL; is obtained from equation (1.10). The
variable-to-check messages in equation (1.10) are replacendependent random
variables, distributed aR;_;. Similarly, the labels in equation (1.10) are also re-
placed by independent random variables uniformly distebdunG F'(¢)\{0}. For-

mally, letd, be the maximal check node degree. Then for efck 2, ..., d. we
first define,
d; dj—1
P(Lgdj) — x) — Z H P(Gn — gn) . H P(Rt—l _ I.(n))
rW (= Dep, n=1 n=1

91,-94; €GF(q):
d;-1)

G1yeees gd]-):X

.....

(1.14)
where?P is the set of all probability vectors, and the components of
I(r®, ... rl%=Dg, ... gq) are defined as in equation (1.10}7, is a random
variable corresponding to the label, and thusP(G,, = g) = _Z; for all g.
P(R,_; = r™) is obtained recursively from the previous iteration of ekfiropa-
gation. The probability function di; is now obtained by

P =x) = 3 o P = x) (1.15)

e Variable to check node messaged he probability function oR, is equal to that
of RO, Fort > 0, R, is is obtained from equation (1.7). The check-to-variable
messages and initial messages in equation (1.7) are refgcedependent random
variables, distributed ak, andR® respectively. Formally, lef, be the maximal

variable node degree. Then for eath= 2, ..., d, we first define,
d;—1
PR = x) = Z P(R© = r©) H P(L; = 1)
r@ 1) 1 di—Dep: n=1

r(r@ 10 10di—Dy=x

7777
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where the components afr©® 1V . 141 are defined as in equation (1.7).
PR = r©®)andP(L,; = 1) are obtained recursively from the previous itera-
tions of belief propagation. The probability functionf is now obtained by

PR, =x) = Z MPR™ = x) (1.16)

Theoretically, the above algorithm is sufficient to compilte desired densities. If one
consider that the all-zero codeword has been sent, whiaklagant in the context pre-
sented in section 1.5.2, it is easy to compute the probglefidoing an error when ap-
plying decision rule (1.11) to a probability vector, eR),.

As aforementioned, Richardson and Urbanke in [11] provedngentration theorem
that states that as the block lengthapproaches infinity, the bit error rate at iteration
converges to a similarly defined probability of error. It Heeen shown in [48] that the
concentration theorem can be applied to frame error raté/ofq) LDPC code ensem-
bles. In this way, the performance of correction af&'(¢q) LDPC ensemble, as defined
in Section 1.2, can be exactly predicted. However, in pcact major problem is the fact
that the quantities of memory required to store the proligliensity of ag-dimensional
message grows exponentially wigh That is why it is important to look for a computa-
tionally easier way to follow the message densities in otddre able to predict the code
ensemble performance.

As mentioned in [48], ifP! = P.(R,) is a sequence of error probabilities produced
by density evolution, the®! is a non-increasing function @¢f The demonstration is
similar to the proof of theorem 7 in [10]. This non-increasjproperty ensures that the
sequence corresponding to density evolution by iteratiegvéen equation (1.15) and
equation (1.16) converges to a fixed point. Implementingiesity evolution allows to
check whether not this fixed point corresponds to the zeay erobability, which means
that the decoding in the infinite codeword length case has beecessful. That is why
GF(q) LDPC codes, like binary LDPC codes, are said to hatle@shold behaviar

In the sequel, it is explained why such an implementatioroispossible forG F(q)
LDPC codes, unlike their binary counterparts. The propasethod from the literature
aims at approximating the densities, thereby simplifylmgitecursion and making possi-
ble the study of its convergence. This method is presentdteinext section.

1.5.4 Approximation of message densities by only one scalparam-
eter

Analogously to the binary case, a Gaussian approximatiaheinessage densities is
used to be able to practically track these densities andgbrestor probabilities of7 F'(q)
LDPC code ensembles. To reduce the densities to only onarqmaiameter, things are
a little more elaborated than in the binary case since messaig no more scalars but
g-Sized probability vectors, which entails that the deesiare multi-variate densities.
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Permutation-invariance

Permutation-invariance is a key property®f'(¢) LDPC codes that allows the approxi-
mation of their densities using one-dimensional functisfthus greatly simplifying their
analysis. It is only briefly described here, since more tketain be found in [48]. The
definition is based on the cyclic permutation of the elemehtsprobability vector mes-
sage, when passing through the permutation nodes desarniSedtion 1.4.

Definition 4 [48] A probability vector random variabl&X is said to be permutation-
invariant if for any fixedy € GF(¢)\{0}, the random variabl&*¢ is distributed identi-
cally with X.

This definition also holds for LDR vectors. It is shown in [48hat a message resulting
from a random permutation is necessarily permutationriamd That isX*9 is neces-
sarily permutation-invariant wheK is a random LDR or a probability vector amndis
picked up uniformly at random i&'F'(¢)\{0}. Hence, this is the case for all messages on
the graph of a giveti’ /'(¢) LDPC code ensemble, whose non-zero values are chosen uni-
formly in GF(q)\{0}, except initial messageR”) and messages going out of variable
nodes. Moreover, all the components of a permutation-laméivector are identically
distributed (lemma 8 in [48]). Combined with the symmetrglahe Gaussian approxi-
mation, it allows the projection of message densitie§ 6% ¢) LDPC code ensembles on
only one parameter.

Gaussian approximation

For binary LDPC codes, Chung et al. [50] observed that thelbla-to-check message
densities well approximated by Gaussian random varialflaghermore, the symmetry
of Gaussian messages in binary LDPC decoding implies tleamisanmn and variance
o2 of the random variable are related &% = 2m. Thus, the distribution of a symmetric
Gaussian random variable may be described by a single pseame This property was
also observed by ten Brink et al. [14] and is essential ta theielopment of EXIT charts.
In the context of non-binary LDPC codes, Li et al. [49] ob&ira description of the— 1
dimensional messages, under a Gaussian assumptign; Byparameters.

The following theorem explains how the mean vector and tivarcance matrix of a
symmetric LDR vector can be related to each other:

Theorem 1 [48] Let W be an LDR-vector random variable, Gaussian distributedhait
meanm and covariance matrix.. If X is non-singular andW is symmetric, then

EiJ =m; + my — Migy, V(Z,j> S [Lq - 1]2

If the LDR vectorW distributed asV(m, X) is additionally permutation-invariant, then
all its components are identically distributed. Then themeector can be expressed as
m- 1,1 wherel,_, is the all one vector of sizg— 1. A Gaussian distributed, symmetric
and permutation-invariant random variable is thus conepletescribed by a single scalar
parametermn.
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EXIT charts for GF(q) LDPC codes

Let us consider the binary input AWGN channel. This paragrnamesents the tool for
optimization of the irregularity of7 F'(¢) LDPC code ensemble thanks to EXIT charts.
First, let us discuss the accuracy of the Gaussian approximaf the channel output
in symbolwise LLR form forGF'(q) LDPC code ensembles. The channel outputs are
noisy observations of bits, from which we obtain bitwise LL&R identically distributed
asN(f—Q, 0%) [50]. Lets be the vector gathering the LLRs, ..., b,, of bits of which a
symbol inG(qx) is made:s = (b1, ...,b,,)". Each component of an input LLR random
vectorl of size(g, — 1) is then a linear combination of these bitwise LLRs:

1= B, -s (1.17)

whereB,, is the matrix of sizey, x log,(gx) in which thei’" row is the binary map of
the '™ element ofGG(g;.). The distribution of initial messages is hence a mixturergf-o
dimensional Gaussian curves, but are not Gaussian digdwectors. Indeed, it is easy
to see that the covariance matrix of vedt@ not invertible.

Formally, EXIT charts track the mutual informatiditC’; W) between the transmit-
ted code symbol' at a variable node and the messadetransmitted across an edge
emanating from it.

Definition 5 [48] The mutual information between a symmetric LDR-veatessagdV
of sizeq — 1 and the codeword sent, under the all-zero codeword assomps defined

by:

q—1
I(C; W) =1~-Elog, <1+Ze_wi C= O)

i=1

The equivalent definition for the probability vec®r= LD R~ (W) of sizeq is

1 x.
I(C;X) =1~—Elog, (%\O:Q : (1.18)
0
In the following, the shortcut “mutual information of a LDRestor” is used instead of
“mutual information between a LDR vector and the codewordt”sdf this information
is zero, then the message is independent of the transmitigel £ymbol and thus the
probability of error is’=2. As the information approaches the probability of error
approaches zero. Note that we assume that the base of tharlogoh in the mutual
information isq, so ad) < I(C; W) < 1. I(C; W) is taken to represent the distribution
of the messag®V. That is, unlike density evolution, where the entire digition of the
messagéV at each iteration is recorded, with EXIT charf$(’; W) is assumed to be
a faithful surrogate. In other words, since the densitiesaassumed to be dependent on
only one scalar parameter, instead of tracking the meanetomponent, one tracks the
information content of the message. It is shown in [48] thater the cycle free graph
assumption:

q—1
I(C;W)=1-Ew (logq(l + Ze‘wi) C= 0)
i=1
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The evolution of the mutual information of messages throtghdifferent steps of de-
coding is now given. We use dummy notations andz,,, for the mutual information

evolution equations at each decoding step for ease of uadeiag. Then all steps are
gathered into a single EXIT equation.

e Let v denote a probability vector, anf{v) the corresponding Fourier Transform
(FT) vector (see [49, 45] for use of multi-dimensional FFT rmessages). The
mutual information of the check node input is computed tisatakthe following
relation:

[L’f(v) =1- Ty

The demonstration of this relation is easy with direct clalspprovided in section
2.7.6.

Thus, for the mutual information evolution through a cheokle with connection
degreej, we have:

Tout = 1 - JC((] - 1)J;1(1 - wln;Q)aQ)

with

Jo(m,q) = 1—-E, <logq(1 + ie”ﬁ) , (1.19)

withv ~ N (m1,.,, %)

e The mutual information of a variable node output is expréskanks to the/, (-, -)
function applied tar? and to the sum of means, since symbol node update is the
summation of LDRs. Here;;, is the IC of truncation operator output. The 1G,,;
of the output of a symbol node with connection degras given by:

Lout = JU(JQa (7/ - 1)J(;1(xin7Q)1qflaQ) .

Finally, we get equation (1.20) that expresses the extritmansfer function of the non-
binary BP decoder used on a BIAWGN channel from iteration Ipeimto iteration num-
bert 4+ 1. The information content of any check node incoming vectessage at the
(t + 1)™ iteration is denoted by

The optimization method to find the best connectivity prdfilea G F'(¢) code is then
the same as for binary LDPC codes.

t“ Z)\J ( ymg. + (i —1)J, <1—ij (j—1)J (1_@(;?))) 1q—1>

(1.20)
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1.5.5 The stability condition

Also obtained in [48], the stability condition, introduced[10], is a necessary and suf-
ficient condition for the error probability to converge tor@eprovided it has already
dropped below some value. This condition must be satisfieth&®ySNR corresponding
to the threshold of the code ensemble. Therefore, ensunisgondition, when imple-
menting an approximation of the exact density evolutiotp$& have a more accurate
approximation of the exact threshold.

Given a ensemble affF'(¢) LDPC codes defined b, p), the following ensemble
parameter is defined:

Q= ij(j —1) (1.21)

For a given memoryless symmetric output channel with tteomsiprobabilitiesp(y|z),
the following channel parameter is also defined:

A= 3 [ Valuleluldy (1.2

Theorem 2 [48] Consider a givenGF(q) LDPC ensemble parametrized by, p). Let
P! = P.(R;) denotes the average error probability at iterationnder density evolution.

o IfQ > i, then there exists a positive constgnt (), p, Py) such thatP! > ¢ for
all iterationst.

e If Q < £, then there exists a positive constant £(\, p, Fy) such that ifP! < ¢
at some iteratiort, then P! approaches zero asapproaches infinity.

1.5.6 Design example o€ F'(q) LDPC code ensemble on BIAWGN
channel

Optimization is performed for the BIAWGN channel. The gofthe optimization with
EXIT charts is to find a good ensemble 6f'(¢q) LDPC codes with the lowest con-
vergence threshold, under a Gaussian approximation. Teamthat we look for the
parametergA(x), p(x)) of the ensemble of F'(¢) LDPC codes with lowest convergence
threshold.

Let us denote the code rafe, and the target code rat,, ... The optimization
procedure [10, 50] consists in finditig(x), p(z)) which fulfills the following constraints
at the lowest SNR:

Code rate constraint: R = R4t (S€€ €QqUation (1.2))
Proportion constraint: Z X\ = 1and Z pi=1

Successful decoding condition: x(t“ > x(t (see equation (1.20))
Stability constraint: QA < 1 (see equations (1.21) and (1.22))
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| |d.=4]d.=5]d.=6]|d.=7]|d. =8|
qg=4 2.56 0.95 0.66 0.52 0.48
q=064 0.76 0.53 0.51 0.58 0.90
qg=256| 0.65 0.54 0.59 0.79 1.27

Table 1.1 : Thresholds @ F'(¢) LDPC code ensembles with constant check dedresnd
code rate one half, optimized with EXIT charts on the BIAWGMNwnel. The maximum
variable degree allowed in the optimization procedur,js,, = 30. Thresholds are given
in term of the SNR% in dB, and are obtained using the Gaussian approximation.

We briefly illustrate what can be the results of such an oatatnon, and how it allows to
find again known results from the literature.

Table 1.1 gathers some thresholds obtained by optimizatidghe irregularities for
various field order and check degrees. These thresholdseae ltcomputed by EXIT
charts, with a Gaussian approximation. The code rate ishaife-Since degree-1 vari-
able nodes are not allowed in the optimization process, dde ensemble witd, = 4
is regular withd,, = 2. In this case, we observe that the threshold is better fdrdnigr-
der field. This observation ca, be identified to the followatgm of Hu and Eleftheriou
in [33]. They considered:F'(q) random ensembles defined by the probabijlithat an
element of the parity-check matrix be non-zero. Whas very low, the binary random
ensemble defined hyis far away from the Shannon equiprobable random ensemble. |
this case, they illustrated that the Hamming weight distidn of theG F'(¢) random en-
semble tends to the binomial distributiongamcreases. As an additional example, EXIT
curves of regular (2,4) codes ®F(2), GF(8) andGF(256) are plotted on figure 1.5,
confirming results of the first column of Table 1.1: the cur&/d’(256) is the only one
for which the tunnel is open.

1.6 Other design techniques

1.6.1 Finite length design of LDPC codes

We do not detail the design techniques relative to finite tertesign of LDPC codes,
but just mention some works on that. First, the PEG constmudtas been proposed in
[23] to build the graph of codes, given the irregularitieshisTtechnique has recently
been improved [51]. For non-binary LDPC codes, additigntithe PEG construction,
Poulliat et al. [34] expressed a criterion and developedhrigue for cancelling cycles
of GF(q) LDPC codes by an appropriate choice of the non-zero values.
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EXIT curves in three Galois fields
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Figure 1.5 : EXIT curves of2,4) GF(2), GF(8) andGF'(256) regular codes. The SNR
is0.7dB.

1.6.2 Structured ensembles

As pointed out in the introduction, a very efficient way to idaescode ensembles with
iterative decoding performance close to capacity and lear€loor, is to choose the per-
mutations in a structured way. Indeed, the aforementioepresentation of LDPC codes
defines only the connection degrees of variable and cheaksnbdt any variable node can
be connected to any check node. A structured code ensentbkerearesentation which
defines to which type of check nodes each type of variable oadd®e connected. LDPC
codes with a detailed representation have been introducig®]. Some structured code
ensembles have been under the scope of many studies thiegedess irregular repeat-
accumulate (IRA) codes [25], protograph-based LDPC codékd4nd multi-edge type
LDPC [27]. The design of good D-GLDPC codes have been adehlefss the BEC in
[29]. These techniques lead to codes with good code pregartiterms, for instance, of
girth of the bipartite graph and possibility to perform threeeding procedure efficiently.
For a comprehensive survey of the design of those kinds of@.b&des, we refer the
reader to [53].

1.7 Proof of theorems in Chapter 1

Lemma 3.Let Pe(l)(x) denote the conditional error probability after tlieéh BP decoding
iteration of aGF'(q) LDPC code, assuming that codewoatdvas sent. If the channel is

symmetric, thetP\” (x) is independent of.

Proof: The proof has the same structure as the proof of Lemma 1 in [Ius, we
do not detall it, but instead refer the reader to [11] andeatmly give the key elements.
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The notations are the same as in [11].

e Check node symmetry: For any sequefige. .., b, 1) in GF(q), we have

l +b1 Fbae—1\ _ gyl +b1+--Abg,
\I/p(ml R )—\Ifg)(ml,...,mdc,l) 1 de—1

e Variable node symmetry: We also have, for any GF'(q):

\I/gl)(marb, m’ . m;rvb_l) = \Iff)l)(ml, R S R

With same notation as in [11], we defige= z™*, wherex is a vector of sizg, denoting
an arbitrary codeword overF'(¢). y andz are sets of vectors, and each elemegnt
corresponds tg, = z, .

Still with same notations as in [11], we easily prove that:

i) (y) = mi (2) 7.

j ij

We also prove that, sinceis a codeword, thed_, o,
we conclude that

xr = 0. Hence, as in [11],

iC5)

l l z;
mg-fl)(Y) = m§i+1)(z)+
thanks to the check node symmetry, and

D) (y) = m{ET ()t

1’1’1”

thanks to the variable node symmetry.

O

Lemma 3.If the channel is symmetric, then, under the all-zero codéwssumption,
the initial message densify}, in LDR form is symmetric:

Py(W =w) = e Py(W =w"")

Proof: Let us definey by y = LDR™(w). If we call z,,, the noisy observation
of the sent symbol value, by following the notation of [10]e Wmavew = L(z,,)-
Hence, the™ component ofy is y; = P(2. € L1 (W)|z = i), andw; = log (%) -

P(xnoisye L1 (w)|2=0)
log (P(xnoisZ/GL_l(w)‘x:i)> alSO.

Given the symmetry of the channel, let us prove thetW = w) satisfies equation
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(1.13):

eV Py(W = w™)
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Pl il = PY Y =0

P e Y e =

P < T g v

P el e = L 00 =

O o~

P(Zpsey € L1 (W)|2 =
P(W =w|z =0)
Py(W =w)



Chapter 2
Hybrid LDPC Codes

In this chapter, we introduce and study a new class of LDP@sgathmedhybrid LDPC
codes The class of hybrid LDPC codes is a generalization of exgstiasses of LDPC
codes, like non-binary or GLDPC codes. For hybrid LDPC codesallow the connec-
tivity profile of the factor graph to be irregular, but also alw the codeword symbols to
be defined over different order sets. By adapting the worlkd8f,[we show in particular
that the class of hybrid LDPC codes can be asymptoticallyacharized and optimized
using density evolution (DE) framework. All the proofs aratliered at the end of the
chapter.

2.1 The class of hybrid LDPC codes

2.1.1 General hybrid parity-check equations

Classically, non-binary LDPC codes are described thanksettocal constraints given by
parity-check equations involving some of the codeword syls\y. If a code is linear over

a finite field G F'(¢), the parity equation corresponding to #erow of the parity-check

matrix H, is

> hije; =0 inGF(q) (2.1)

The fieldG F(2r) can be represented using the vector sggge” in a natural way. Mul-
tiplications inG F'(2P) can be represented as matrix multiplications, after cimgpaisuit-
able representation. The set of matrices representingdietdents then forms a field of
invertible matrices. Thus, interpreting variables as elets of (Z)” and using matrix
multiplication to form linear constraints can be used to BladPC overG F(27).

We aim at generalizing the definition of the parity-checkaon by allowing more
general operations than multiplications by € GF(q), and moreover, by considering
parity-checks where codeword symbols can belong to diftefiaite sets:c, € G(q1).
G(q1) is afinite set of ordeg; = 2P* with a group structure. Indeed, we will only consider
groups of the type?(q1) = ((£)" ., +) with p; = log,(¢:). Such a group corresponds
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to an ensemble gf;-sized vectors whose elements Iieﬁl This is the reason why we
adopt the fully denomination of these codes as bawgi-binary hybrid LDPC codedn
the remainder, we use a shortcut and refer to thehybsd LDPC codes

Let ¢; andgs, such that;, < ¢, denote the group orders of a column and of a row of
H, respectively. They will be similarly called variable arfteck order. LetG(¢;) denote
the group of variablg andG(q,) the group of parity-check The non-zero elements of
the parity-check matrix are applications which have to maplae in the column group
(variable node group), to a value in the row group (check rgvdap, see figure 2.1). This
is achieved thanks to functions namiggl such that

hij - G(q) - G(q2)
cj — hij(cy)

Hence, an hybrid parity-check equation is given by

D> hijles) =0 in Glan) (2.2)

J

We notice that, on equation (2.1) as well as on equation ,(22) additive group
structure defines the local constraints of the code. Momre@gementioned in [11], and
deeply studied in, e.g., [45], the additive group strucfuwesesses a Fourier transform,
whose importance for the decoding is pointed out in sectitrv2

Since the mapping functiorig; can be of any type, the class of hybrid LDPC codes
is very general and includes classical non-binary and pioades.

©

parity-check inG(g3)

hii(c1) + hia(c2) + hiz(cz) = 0, hij(cj) € G(g3)

defines a component code in the grakip= G(q1) X G(g2) x G(g3)
Figure 2.1 : Factor graph of parity-check of an hybrid LDP@e0
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2.1.2 Hybrid LDPC code ensemble

By definition of G(gx), to each element afi(¢;) corresponds a binary map pf bits.

Let us call the minimum order of codeword symbg}s,,, and the maximum order of
codeword symbols,,.... The class of hybrid LDPC codes is defined on the product group
(Z)"™" x ... x (£)"™. Letus notice that this type of LDPC codes built on product
groups has already been proposed in the literature [54]f@%]no optimization of the
code structure has been proposed and its application wasted to the mapping of the

codeword symbols to different modulation orders.

2.1.3 Different sub-classes of hybrid LDPC codes

Among the huge set of hybrid LDPC codes, we can distinguisha®sy classes as differ-
ent types of non-zero elements of the parity-check mafrixSuch a non-zero element is
an application, that we denote bl which maps the; symbols ofGG(¢;) into a subset of
¢; symbols that belongs t6'(¢»). It can be of any type. Let us consider the case where
these applications are linear, i.e., represented by axnatith dimensiong, x p;. In
that way, A actually connects the binary map vector of a symbalriig,) to the binary
map vector of a symbol id7(¢2). At this stage, it is quite straightforward to establish
a connection between hybrid LDPC codes and doubly-gezethliDPC (D-GLDPC)
codes, thoroughly studied in [29, 56]. Indeed, the lineap tia@an be seen as part of the
generalized check and generalized variable. The codespmneling to the generalized
variablev would have a number of information bifs = p, and lengthV = >, p;, where
the sum is done over the groups of all the checks connectedTbe code of the gener-
alized check: would have a number of redundancy bits= p, and lengthV = >, py,
where the sum is done over the groups of all the variablesemad toc. However, it
is important to note that, if the idea is the same, hybrid LD#f®@es are not exactly D-
GLDPC codes because of the decoder. Indeed, with D-GLDPEs;ashe considers that
the generalized codes are at variable and check nodes widessas with hybrid LDPC,
we consider that the previous generalized codes for each an@dsplit on each incoming
edge. As detailed in section 2.3 on optimization, this défee allows us to affect differ-
ent connection degrees on the nodes depending on their grdap i.e., depending ol
for variables and o/ for checks. In other words, we will be able to optimize theglgn
of the codes, given the dimension. We distinguish diffesert-classes of hybrid LDPC
codes whose non-zero elements are linear maps:

(1) Applications that are not of rank . This includes the case where the group order
of a column can be higher than the group order of the row. Frdr@LDPC
perspective, this allows to have generalized variablesseloodes hav&™ > NV,
that is to say the number of incoming bits is projected to allemane. This could
be thought as puncturing, and, as a consequence, we getteadstlt that the rate
of the graph can be lower than the actual code rate. This sasé df the scope of
this thesis.

(7i) Applications that are of rank;. They are named full-rank applications, and corre-
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spond to matrices of size x p; with necessarily; < p,. Such an application is
depicted on figure 2.2. We consider only these types of hylidiC codes in this
work, and details are given in the following section. Thisulebcorrespond to a
classical D-GLDPC code, where the rate of the graph is hitftaar the actual code
rate, that is all generalized variables have necessardgswithN > K. Indeed,
no puncturing is done on bits.

2.1.4 Hybrid LDPC codes with linear maps

In this work, we consider only hybrid LDPC codes with the teas described above, and
whose non-zero elements are linear full-rank applicatafank equal tdog, (g, ) if the
corresponding column is i (¢ ).

G(q1) = {a0, 01, 2,03}

G(q2) = {01670/1,0/270/370(:1,O(%,O(%,O/v?}

A

G(q1) TN G(q2)

ag e ——» o a6

a; @ ————= @ qf

&3 .\. aB

A71
Figure 2.2 : Message transform through linear map.

In the sequel, we denote hyandq, the group orders of given variable node and check
node, respectively. With the assumption of section 2.1&havey; < ¢;. When looking
at the factor graph of a hybrid LDPC code (see figure 2.1), we tiat an edge of the
graph carries two kinds of message probability vectors:sagss of sizg; and messages
of sizeq,. The function node corresponding to the linear m#ycalled /,; on figure
2.1) is meant to make the components of the two types of megsadpability vectors
correspond to each other. The transform of the probabibistar is denote@xtension
from G(q:1) to G(¢2) when passing through from variable node to check node, and the
transform fromG(q2) to G(q;) is denoted truncation from check node to variable node.
We now give precise definitions of extension and truncation.

Let A be an element of the set of linear maps fr6ify, ) to G(¢2») which are full-
rank. Im(4) denotes the image ot (that is injective since dim(Im(A))=rank(A)s).



2.1 The class of hybrid LDPC codes 49

The notations are the ones of figure 2.2.

A Gl@) — Glg)

a — o= Alw)

Definition 6 The extensioy of the probability vectox by A is denoted by = x*4 and
defined by, forall =0,...,¢ — 1,

¢ Im(A), y;=0
€ Im(4), y; = z; withi such thate; = A(«;)

Although A is not bijective, we definel ! the pseudo-inverse of, by

At Im(A) — G(g)

o — o; with i such that, = A(ay)

Definition 7 The truncationx of the probability vectory by A~! is denoted by =
y*4™" and defined by, forall = 0,..., ¢ — 1,

Ty =Y, W|th] such thatOé; = A(Oél)

In the sequel, we use a shortcut by calling the extensionealimapA, and by calling
truncation its pseudo-inverste!. Indeed, extension or truncation are generated by a lin-
ear mapA and do not apply to group elements (i.e. symbol values), bysrobability
vectors. Additionally, we denote bi; ; the set ofextensiondrom G(qg;,) to G(¢;), and

by T}, the set oftruncatiors fromG(gq;) to G(qx).

2.1.5 Parametrization of hybrid LDPC ensemble

Classical LDPC codes are usually parametrized by two palyais (\(z), p(x)), whose
each coefficiend; (resp. p;) describes the proportions of edges connected to a variable
node of degreé(resp. to a check node of degr@d10]. Kasai et al. [52] introduced a de-
tailed representation of LDPC codes, described by two-dsimmal coefficientsl(z, 5),
which are the proportion of edges connected to a variable nbdegree and also to a
check node of degreg Another important detailed and more general represemtaii
LDPC codes is the multi-edge type [27], which we discusseatitid of this section.

In our case, an edge of the Tanner graph of an hybrid LDPC caslédur parameters
(i, qr, j,q)- An edge with these parameters is connected to a variable ina@l(q;) of
degree, and is connected to a check nodefy;) of degreej. We decide to extend the
notation adopted by Kasai et al. in [52], and we denotélby j, k, () the proportion of
edges connected to a variable node of degiiee+(q;) and to a check node of degrge
in G(q,) (see figure 2.3).

Hence,I1(s, j, k, ) is a joint probability which can be decomposed in severalsvay
thanks to Bayes rule. For example, we have :
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whereTl(i, j) corresponds exactly to the definition adopted by Kasai, (¥ (|, 7)
describes the way the different group orders are allocatelg@gree variable nodes and
degreej check nodes.

A ensemble of hybrid LDPC codes is parametrizedbgnd made of all the possible
hybrid parity-check matrices whose parameters are thade@nsemble. The linear map
of the parity-check matrices are chosen uniformly at rand@uch a ensemble will be
also called dI hybrid LDPC code ensemble.

We denote by, ; the Kronecker symbob(; = 1 if : = j, §;; = 0 otherwise). Here
are some examples of specific parametrization of interest:

e When the code is on a single group (or field);) with uniform repartition of edges
between the different degrees of connection, the four-dsiemal representation
reduces toll(i) = \; andIl(j) = p; whenll(k,l|i, j) = 04, 40,4 This is the
description of irregular non-binary LDPC codes analyze[8j.

e When the LDPC code is it"F'(2) and the repartition of edges between the dif-
ferent degrees of connection is non-uniform, the code isrdeed byIl(7, j) and
(K, 13, 5) = 04,204,.2. This corresponds to the detailed representation of iteegu
LDPC codes [52].

e When the hybrid LDPC codes has the check connection profiependent of the
other parameters, and the connection profile of variable rsbends on the pro-
portion of each group order, the four-parameters repraientreduces to:

(i, 5, k, 1) = T(i, k
= TI(i, k)II(]]
— T R)TIG)TI(R)TI( )

e When the hybrid LDPC code has reguidy, d.) connection profile:

(i, 5,k 1) = TG, kD)
= (i, dy)0(j, de)TT(E|DTI(])

In the reminder, for more readable notations, we will wriig, j, k) to denote the marginal
distribution overl. The same with any other combinationsiof, £, [, we will always use
the same letters j, k, [ to identify the parameters and the considered marginals.
Thus the very rich parametrization of hybrid LDPC codeshvaur parameters, high-
lights the generality of this class of codes, which includiessical irregular binary and
non-binary LPDC codes, and which allows more degrees oflnee In particular, com-
pared to D-GLDPC for example, we will be able to optimize #egth of the generalized
codes given their dimensiors or M, which are the group order characteristics. How-
ever, this representation is not as general as the one ofeugé type LDPC codes [27]
because, e.g., it cannot distinguish a check node connextedy one degree-1 variable,
thereby preventing the use of degree one variable nodesimdascribed hybrid LDPC
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Channel value

Degree: symbol node inG(qy, )

Def: (i, 3, k,1) € [0,1]:

proportion of edges that link a data
node of degree in G(qx)

and a check node of degrgén G(q;)

edge parameters:
(4,3, qr» a1)

Degreej check node inG(q;)
Figure 2.3 : Parametrization of a hybrid LDPC code ensemble

code ensembles.

We also define node wise proportio${i, k) andIl(j, 1) are the proportions of vari-
able nodes of degreein GG(g;) and check nodes of degrgen G(q;), respectively. The
connections between edgewise and node wise proportiornisefellowing:

k) = v e
6D = e
Jil J

(2.3)

The design code rate (i.e., the code rate when the paritykaiatrix is full-rank) corre-
sponding to the distribution is expressed by:

Zi H(Zv '7k:7l)
. > (Zj e j - )10g2(91)
N Z H(Zv '7k:7l)
S (2 ZEEE) logy (ar)

We define thgraph rateas the rate of the binary code whose Tanner graph has paramete
I1(4, ). Itis interesting to express the graph rdtgin terms ofll, to compare it to the
code rate of the hybrid code:

TI(3,5
T, Lil16)
> 216

R,=1

7 2

For the linear maps we consider, variable nodes are alwagsoup of order lower
than or equal to the group order of the check nodes to whichale connected. Hence
the graph rate will be always higher than the code rate.
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2.1.6 Encoding of hybrid LDPC codes

To encode hybrid LDPC codes whose non-zero elements arenaémtioned full-rank
linear maps, we consider upper-triangular parity-checkices which are full-rank, i.e.,
without all-zero rows. The redundancy symbols are compreedrsively, starting from
the redundancy symbol depending only on information sysibdhe images by the lin-
ear maps of the symbols involved in the parity-check equodiidg the redundancy symbol
being computed, are summed up. the summation is performbe igroup of the redun-
dancy symbol, i.e., the group of the coresponding row. Themdancy symbol is set to
the inverse of this sum by the linear map connected to it. liegr map is bijective from
G(q) to G(q), if G(q) is the group the redundancy symbol belongs to. Hence, irdorm
tion symbols satisfy that any assignment of values to thewalig, and the redundancy
symbols are computed from them.

2.1.7 Decoding algorithm for hybrid LDPC codes

To describe the BP decoding, K denote the probability-vector message going into
variable nodes from checke at thet!” iteration, andr'” the probability-vector message
going out of variable node to check node at thet'” iteration. The connection degrees
of v andc are denoted byl, andd.., respectively. Let4,. denote the linear map on the
edge connecting variable nodeo check node. Thea!* component ol is denoted
by lﬁf}(a). The same holds for!! (a). Letx be the sent codeword andl the number
of codeword symbols. We recall that we simplify the notat@sfollows: for any group
G(q), foralla € [0,q — 1], the elementy, is now denoted by. Also, sinceA is a linear
map, the matrix of the map is also denotedAyHence, for all linear mapl from G(q¢;)

t0 G(q2), A(ay) = a; with a; € G(q1) anda; € G(gq), is translated intodi = j with
i€l0,...,q1 —1]andj € [0,...,q — 1].

e Initialization: Letz; € G(q;) be thei’® sent symbol ang; be the corresponding
channel output, foif = 0...N — 1. For each check nodeconnected to the'”
variable nodey, and for anyz € [0, ..., g, — 1]:

(0)(a) = r£0)(a) = P(Y, = y| X, = a) ;

[ (a)=1.

¢ Variable node update: Consider a check noded a variable node Let{c,...,c4, 1}
be the set of all check nodes connected,texceptc. For alla € G(g,)

dy—1

Tz()f;rl)( MUCT H lcnv (24)

wherey.,,. is a normalization factor such that” ' (a) = 1.
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e Check node update: Consider a check noaled a variable node Let{v,..., v, 1}
be the set of all variable nodes connected &xcept. Let G be the Cartesian prod-
uct group of the groups of the variable nodegin, . .., v, }. Foralla € G(g,)

de—1

ORI SR | £5A(Y o
(b1,....bq,—1)€G: n=1
@dc_l Ay, cbi=Ayca

i=1

wherey., is @ normalization factor, and ti§) operator highlights that the addition
is performed overl:(q.), the group of the row corresponding ¢pas defined in
Section 2.1.4.

e Stopping criterion: Consider a variable nodeLet {cy, ..., ¢4, } be the set of all
check nodes connected to Equation (2.6) corresponds to the decision rule on
symbols values, at iteratian

dy
i = argmaxr(”(a) H 19 (a) . (2.6)
n=1

Variable and check node updates are performed iterativety thhe decoder has
converged to a codeword, or until the maximum number ofti@na is reached.

It is possible to have an efficient Belief propagation decddehybrid LDPC codes.
As mentioned in [11][45], the additive group structure @sses a Fourier transform, so
that efficient computation of the convolution can be donehim Fourier domain. One
decoding iteration of BP algorithm for hybrid LDPC codes,tle probability domain
with a flooding schedule, is composed of:

e Step 1Variable node updatein G(qg;) : pointwise product of incoming messages
e Step 2Message extensiol(¢;) — G(¢;) (see definition 6)
e Step 3Parity-Check update in G(g;) in the Fourier domain

o FFT of sizey;
o Pointwise product of FFT vectors
o IFFT of sizeg;

e Step 4Message truncationfrom G(¢;) — G(g;) (see definition 7)

Although we do not focus on low-complexity decoders, it iportant to note that hybrid
LDPC codes are compliant with reduced complexity non-lyirdecoders which have
been presented recently in the literature [46, 47]. In paldr, [46] introduces simplified
decoding ofGF'(¢q) LDPC codes and shows that they can compete with binary LDPC
codes even in terms of decoding complexity.

53
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2.2 Asymptotic analysis of hybrid LDPC code ensembles

In this section, we describe the density evolution anafpsieybrid LDPC codes. Density
evolution is a method for analyzing iterative decoding ade@nsembles. In this section,
we first prove that, on a binary input symmetric channel (BIS@ can assume that the
all-zero codeword is transmitted because the hybrid dego@serves the symmetry of
messages, which entails that the probability of error igpmhdent of the transmitted
codeword.

We express the density evolution for hybrid LDPC codes, aedtian the existence of
fixed points, which can be used to determine whether or nat¢beding of a given hybrid
LDPC code ensemble is successful for a given SNR, in the iafcadeword length case.
Thus, convergence thresholds of hybrid LDPC codes areaipitiefined as for binary
LDPC codes [10]. However, as fa¥F'(¢q) LDPC codes, the implementation of density
evolution of hybrid LDPC codes is too computationally irdee, and an approximation
IS needed.

Thus, we derive a stability condition, as well as the EXITdtons of hybrid LDPC
decoder under Gaussian approximation, with the goal ofrilndood parameters for hav-
ing good convergence threshold. We restrict ourselvesrtarpiinput symmetric chan-
nels, but all the demonstrations can be extended to non-ggmwuhannels by using, e.g.,
a coset approach [48].

2.2.1 Symmetry of the messages

The definitions and properties induced by channel symmeivg been developed in sec-
tion 1.5.2. All the lemmas carry unchanged over the hybridPDensemble.

Lemma5 Let P (x) denote the conditional error probability after thi& BP decoding
iteration of a hybrid LDPC code, assuming that codewsrdias sent. If the channel is
symmetric, theP” (x) is independent af.

The proof of this lemma is provided in Section 2.7. For Lemmad add the two follow-
ing lemmas to the proof.

Lemma 6 If W is a symmetric LDR random vector, then its extensWit4, by any
linear extensiord with full rank, remains symmetric. The truncation\df by the inverse
of 4, denoted byW *4™" | is also symmetric.

Proof of lemma 6 is given in section 2.7. The specificity of gl DPC codes lies in
function nodes on edges. Thus, when hybrid LDPC codes awslddavith BP, both data
pass and check pass steps are the same as classical ngnebohes decoding steps. Since
these steps preserve symmetry [10], lemma 6 ensures thhaylinel decoder preserves
the symmetry property if the input messages from the chaameetymmetric.
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2.2.2 Density evolution

Analogously to the binary or non-binary cases, densitywah for hybrid LDPC codes
tracks the distributions of messages produced by the BRitlgg averaged over all
possible neighborhood graphs on which they are based. Tidemaspace is comprised
of random channel transitions, the random selection of tddedrom a hybrid LDPC
ensemble parametrized bj, and the random selection of an edge from the graph. The
random space does not include the transmitted codewora@hwhiassumed to be set to
the all-zero codeword (following Lemma 2). We denoteRS}“)( " the initial message
across an edge connected to a variablé'ip,), by R P the message going out of a
variable node of degreein G(q;.) at iterationt. The message going out of a check node
of degreej in G(¢;) at iterationt is denoted b)LW)“). We denote byk; andx; any two
probability vectors of sizg, andgy, respectively.

Let us denote bfP, the set of all probability vectors of size Letr,, (r(?, 1), . 16-1)
denote the message map of a variable node of degreé/(q;), as defined in equation
(2.4): the input arguments ateprobability vectors of size,. Letl, (r™, ..., rU~Y) de-
note the message map of a check node of degieé&/(¢,): the input arguments are—1
probability vectors of size;.

PLODY =x;) =

j—1 1
> 11> 1, k5. 0) 3 P(A)PRERNY =y (2.7)

r r(j_l)Equ: n=1 1,k AEE’“X:
Iy (r @), xU=D)=x, (r<n>”‘71X )=r(")

3 PR® = HZH Gollik) S Pa) S PEUYY =x).

NORTCON. 1(%1)67;%: n=1 jl A€FEy, rePy,:

re, 16-1)2x, XA~ _y(m)

.....

(2.8)

Richardson and Urbanke [11] proved@ancentration theorerthat states that, as the
block lengthN tends to infinity, the bit error rate at iterationof any graph of a given
code ensemble, converges to the probability of error on &dyee graph in the same
ensemble. The convergence is in probability, exponewtiallV. As explained in [48]
for classical non-binary LDPC codes, replacing bit- witm®pl- error rate, this theorem
carries over hybrid LDPC density-evolution unchanged.

Moreover, one can prove that the error-probability is a mameasing function of
the decoding iterations, in a similar way to the proof of Tiemo 7 in [10]. This non-
increasing property ensures that the sequence corresgptaldensity evolution, by it-
erating between equations (2.7) and (2.8), converges ted print. Implementing the
density evolution allows to check whether or not this fixethpoorresponds to the zero
error probability, which means that the decoding in the itéinodeword length case has
been successful. Furthermore, Richardson and Urbankegioj11] the monotonicity
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of error probability in terms of the channel parameter foygbally degraded channels.
Thus hybrid LDPC codes, like binary or non-binary LDPC cqdeshibit a threshold
phenomenon.

Like for GF(¢q) LDPC codes, implementing the density evolution for hybridRC
codes is too computationally intensive. Thus, in the sequelpresent a useful property
of hybrid LDPC code ensembles, which allows to derive botkaaikty condition and
an EXIT chart analysis for the purpose of approximating tkeecedensity evolution for
hybrid LDPC code ensembles.

2.2.3 Invariance induced by linear maps (LM-invariance)

Now we introduce a property that is specific to the hybrid LDédde ensembles. Ben-
natan et al. in [48] used permutation-invariance to derigtadility condition for non-
binary LDPC codes, and to approximate the densities of graphsages using one-
dimensional functionals, for extrinsic information tréers(EXIT) charts analysis. The
difference between non-binary and hybrid LDPC codes liehénon-zeros elements
of the parity-check matrix. Indeed, they do not correspamgh@ore to cyclic permuta-
tions, but toextension®r truncationswhich are linear maps (according to definitions 6
and 7). Our goal in this section is to prove that linear majadirance (shortened by LM-
invariance) of messages is induced by choosing uniforngyetttensions In particular,
LM-invariance allows to characterize message densitids ovily one scalar parameter.

Until the end of the current section, we work with probajitibmain random vectors,
but all the definitions and proofs also apply to LDR randontees

Definition 8 A random vectorY of sizeq; is LM-invariant if and only if for allk and
(A"1, BY) € Ty, x Ty, the random vectord >4~ and Y*Z™" are identically dis-
tributed.

Lemma 7 If a random vectorY of sizeq, is LM-invariant, then all its components are
identically distributed.

Proof of lemma 7 is given in section 2.7.3.

Definition 9 LetX be a random vector of sizg, we define the random-extension of size
q of X, denotedX, as the random vectaX >4, whereA is uniformly chosen iy, ; and
independent oX.

Lemma 8 A random vectoiY' of sizeg, is LM-invariant if and only if there exisf, and
a random vectoiX of sizeg, such thaty = X.

Proof of lemma 8 is given in section 2.7.3.

Thanks to lemma 6, the messages going into check nodes areMaviant in the
ensemble of hybrid LDPC codes with uniformly chosttensions Moreover, random-
truncations at check node output, ensures LM-invariance of messageg oo variable
node (except the one from the channel).
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2.2.4 The Stability condition for hybrid LDPC Codes

The stability condition, introduced in [10], is a necessany sufficient condition for the
error probability to converge to zero, provided it has alsedropped below some value.
This condition must be satisfied by the SNR correspondingeatreshold of the code
ensemble. Therefore, ensuring this condition, when implging an approximation of
the exact density evolution, helps to have a more accurgisgimnation of the exact
threshold.

In this paragraph, we generalize the stability conditiomybrid LDPC codes. Let
p(y|z) be the transition probabilities of the memoryless outpumsietric channel and
c®) be defined by

qr

= 3 [ VaTeoy

Let x be a positive real-valued vector of size the number of difiegroup orders. Let us
define they function by:

Tt

=1
gk, &, TL x) = €T = 21k) Y 11010, k) (G — 1) Y TR, z>qq"f 1
- [
7l k!

For more readable notations, we also define the vector ofitpation G(x) by:
G(x) = {g(k, ™, 1L x) }

which means that thg" component ofG(x) is G,(x) = g(p,c® 1I,x). Let P =
Pe(REk)) be the error probability when deciding the value of a symbdl (g, ) at iteration
t. The global error probability of decision B’ = ZH(/{;)Pe(k)t. Let us denote the

k
convolution by®. Thenx®" corresponds to the convolution of vectoby itselfn times.

Theorem 3 Consider a given hybrid LDPC code ensemble parametrizdd(byy, &, ).
If there exists a vectax with all positive components, such that, for A/l
lim g(k,c® 1, G®"(x)) = 0, then there exist, and ¢ such that, ifP® < ¢, then P!

converges to zero agends to infinity.

Proof of theorem 3 is given in section 2.7.4.

This theorem only gives a sufficient condition for stabildf the code ensemble.
However, it may be possible to prove that this condition soalecessary by consider-
ing the actual transmission channel as a degraded versian @fasurizedchannel, as
done in [48]. Indeed, all the necessary conditions to haeé suproof, like, e.g., the
cyclic-symmetry of a symmetric channel, the binary symmnefrLM-invariant symmet-
ric messages or the equality between the random extendedated sum of messages
and the sum of extended-truncated messages can be easilg.sfio do such a proof,
one must be careful to the fact that a node observes iddgtdiatributed messages, but
different kinds of nodes do not observe identically disttddl messages. By lake of time,
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we have not completed this proof of necessity, and hence tiprasent the mentioned
intermediate results. Although the necessity of stabddgdition has not been proved, it
is sufficient for comparing to stability condition of clasal binary and non-binary LDPC
codes.

We first note that, for a usual non-bina@yF'(¢) LDPC code, the hybrid stability
condition reduces to non-hybrid stability condition, givey [48], because
lim g(k,c® 11, G®"(x)) = 0

n—~o0

is equivalent in this case to

1 qr—1 '
PONO) - 3 [ VolulplyloNdy < 1
=1
When the transmission channel is BIAWGN, we have

/ vV pWli)p(y|0)dy = exp(— !

202 i

)

Let A, be defined by

1= 1
1 ; exp(—T‘Qni)
with n;, the number of ones in the binary map@f € G(q). Under this form, we can
prove thatA tends to zero ag goes to infinity on BIAWGN channel. This means that
any fixed point of density evolution is stable @gends to infinity for non-binary LDPC
codes. This shows, in particular, that non-binary cycldesp that is with constant symbol
degreel, = 2, are stable if; tends to infinity, and can be used to design efficient coding
schemes if; is large enough [33, 57].

As an illustration, we compare the stability conditionstigbrid LDPC codes with all
variable nodes irf7(¢) and all check nodes i&(g,,..) and for non-binary LDPC codes
defined on the highest order fielélF'(¢,....). For hybrid codes of this kind, we have:

lim g(k,c® 11, G®"(x)) = 0

n—oo

IS equivalent to

(@l—L1 ;exp(—g%zm)) <H(i =2) ; G-, __1 1) -

qmaz

An advantage of hybrid LDPC codes over non-binary codesasdmybrid LDPC
code, with same maximum order group, can be stable at low&. SN

On figure 2.4, we consider rate one-half non-binary LDPC saaleGF'(q), with
g = 2...256, and rateR = 0.5 hybrid LDPC codes of typé&/(q) — G(¢maz), With all
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Evolution of Q
1.8 T

—e— GF(q,,,) LDPC code
—a— hybrid LDPC code GF(2)-GF(q, )

16

—a— hybrid LDPC code GF(32)-GF(q, )

0 50 100 150 200 250 300

Figure 2.4 : Quantitie$2 for hybrid and non-hybrid LDPC codes in terms of maximum
symbol orderg,..... These figures show that a hybrid LDPC code can be stable when a
non-binary code is not.

variable nodes ii7(¢) and check nodes i@(¢,...). We assume regular Tanner graphs for
all codes, with connection degree of variable nodes- 2. Thus, the connection degree
d. of check nodes of non-binary LDPC coded i®r anyq,,.. = 2. .. 256, while the one

of hybrid LDPC codes varies with the graph rate:

dv logQ (Qmam) 1
1-R log,(q)

We consider BIAWGN channel whose noise parameter variahégset to0.97. We de-
note by(,, and(,,, the quantities of non-binary LDPC codes and hybrid LDPC spde
respectively, which must be strictly lower than one for gigb We observe, on figure
2.4, thatQ,,, < €, . Hence, with the mentioned assumptions on chosen paraneter
values, a fixed point of density evolution is stable at lowdRSor hybrid LDPC codes
than for classicalz F'(¢,....) codes. It should be noted that the considered hybrid LDPC
code ensemble corresponds to basic generalized LDPC c@8psiphdeed, this is the
only case where the general stability condition of theoremn's be simply expressed to

d, =

be plotted. This resuk,,, < €2, is due to the fact thaE exp(— 5 an) IS monotoni-

caIIy increasing with;. We compare the terms in bomyb andan In the hybrid case,
QmaT_l

Z exp(— 0_2 n;) With ¢ < gmaz, While in the non-binary case it ISZ exp(—53 Long).

However in the hybrid casé. > 4 (the graph rate is higher than the code rate). Since

we obtained?,,,, < 2, for bothg = 2 andq = 32, it can be conjectured that this result

59
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holds for more elaborated hybrid LDPC codes, whose variabtkes belong to different
group orders. However, we have not performed such a studte that the property ac-
cording to which any fixed point of density evolution is s&hblsg tends to infinity for
non-binary LDPC codes, also applies to hybrid LDPC codes@fbove kind by inclu-
sion. Those results indicate that there exist some case®wieoptimization procedure
to find good hybrid LDPC codes might be more efficient than fadifig good non-binary
LDPC codes, since the stability condition is less stringent

2.2.5 EXIT charts and accuracy of the approximation for hybrid
LDPC codes

Our goal is to find a method to measure the decoding thresh@dgbrid LDPC code
ensemble with parametel§, in such a way that it can be used in an optimization pro-
cedure, where the threshold will be used as the cost funclibe decoding threshold is
determined by tracking the densities of messages on antenéycle-free graph along the
decoding iterations. For hybrid LDPC codes, the algorithespnted in section 2.2.2 is
theoretically sufficient to compute the desired densitidswever, in practice, a major
problem is the fact that the quantities of memory requirestéoe the probability density
of ag-dimensional message grows exponentially witlExact density evolution is there-
fore too computationally intensive and we are going to lookd feasible and not too
bad approximation of densities to track them. In [29], théhats analysed D-GLDPC on
the BEC, which allowed to track only one parameter, the egitiinformation, instead of
complete message densities. They used combinatoriallealtm express this extrinsic
information.

We present the analysis for the BIAWGN channel. With binadPIC codes, Chung et
al. [50] observed that the variable-to-check messages @ltapproximated by Gaussian
random variables, in particular when the variable node e=gg high enough. The ap-
proximation is much less accurate for messages going outesfkcnodes. Furthermore,
the symmetry of the messages in binary LDPC decoding imftiasthe meann and
variances? of the random variable are related &% = 2m. Thus, a symmetric Gaussian
random variable may be described by a single parameterpfdyperty was also observed
by ten Brink et al. [14] and was essential to their developmo@EXIT charts for Turbo
Codes. In the context of non-binary LDPC codes, Li et al. [@i8ained a description of
q — 1-dimensional Gaussian distributed messageg-byl parameters. Bennatan et al. in
[48] used symmetry and permutation-invariance to redueatimber of parameters from
g — 1 to one. This enabled the generalization of EXIT chart§'fo(q) LDPC codes. For
hybrid LDPC codes, the Gaussian assumption for messagée gnaph is not as straight
forward as for classical binary or non-binary LDPC codes.is™ection discusses the
accuracy of the Gaussian approximation for hybrid LDPC spdad how we can handle
it.
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Projection of message densities on one scalar parameter

Our goal is to determine, for a given code ensemble paramedtbyll and a given SNR,
when the decoding will be successful. Let us recall definigo

The mutual information between a symmetric LDR vector mgs3¥& and the codeword
sent, under the all-zero codeword assumption, is defined by:

q—1
I(C;W)=1—E <1+Ze—Wi C = 0)
=1

The expectation is performed with respect to the densityof

We denote byzS)PP the average mutual information between a posteriori priibab
vectors and the channel input, computed at each variable nbthe hybrid graph at
iterationt. In the reminder of this part, we will shorten this expressny “the mutual
information of a vector message”. We state that the decadiagccessful if and only if:

lim :L’(Z)PP =1 (2.9)

t—o00

In order to determine for which hybrid LDPC code ensemblengefibyll, equation (2.9)
is satisfied at a given SNR, we have to track the message itd:sm;itevaluate:fﬂgp at
each iteratiort. Since tracking multi-variate densities of vector messaggrohibitive,
we now present the approach we adopt to consider that theséids are determined by
only one scalar parameter, that we are therefore goingdk.tra

First, let us discuss the accuracy of the Gaussian appraximaf the channel output
in symbolwise LLR form for hybrid LDPC code ensembles. Tharahel outputs are
noisy observations of bits, from which we obtain bitwise LLaR identically distributed

asN (2%, %) [50]. Lets be the vector gathering the LLRs, . . ., b, of bits of which a

symbol inG(qy) is made:s = (b1, ...,b,,)". Each component of an input LLR random
vectorl of size(g, — 1) is then a linear combination of these bitwise LLRs:
1=DB, -s

where B,, is the matrix of sizey, x log,(g;) in which thei®” row is the binary map
of the i’* element ofG(q;). The distribution of initial messages is hence a mixture of
one-dimensional Gaussian curves, but is not Gaussianedhdleis easy to see that the
covariance matrix of vectdris not invertible.

Secondly, let us introduce a slight extension of Theorem[88h

Theorem 4 Let W be an LDR random vector, Gaussian distributed with maaland
covariance matrix®. Assume that the probability density functipfw of W exists and
that 3 is nonsingular. TheW is both symmetric and LM-invariant if and only if there
exitso > 0 such that:
/2 o? a?/2
o?/2 o2
m = :

)2 02/2 o?
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The proof of Theorem 4 is the same as the proof of Theorem 68h ecause the
permutation-invariance property [48] is used only throdigh fact that the components
of a vector satisfying this property are identically distiied. This fact is ensured by a
LM-invariant vector thanks to Lemma 7.

Thirdly, Lemma 7 ensures that, if a vector is LM-invariatigm its components are
identically distributed. Hence, if we assume that a messa@aussian distributed, sym-
metric and LM-invariant, its density depends on only onalacparameter. Let us now
discuss the relevance of approximating the message densfta hybrid LDPC code en-
semble by Gaussian random vectors. t@€tx) be the density of a LDR message going
out of a variable node it¥(q;) after being extended by an extension chosen uniformly at
random inEy .. Any component of such vector has densit(x). Messages going out
of variable nodes are extended when passing through the lextension function nodes.
As described in Section 2.1.4, the extension turns, e g-s&ed probability vector into
a go-sized vector, withy; > ¢;. This means thaj, — ¢; of the resulting extended LDR
message components are infinite, because these compohémscorresponding prob-
ability vector are zero. Hence, the density of each comppréran extended message,
is a mixture including a Dirad\.,. Since this LDR vector is the random extension of
the variable node output message, it is LM-invariant. Fra@mina 7, each component is
identically distributed.

Property 1 The probability density function of any component of an LD#gsage after
extension at iteration, is expressed as

dD(z) = Br9z) + (1 - B)As
where the weigh# is independent of.

Proof: At any decoding iteration;® (z) cannot have a\,, component because there
exists no set of linear maps connected to the neighboringkamedes oy, such that there
exists forbidden elements i@(g;) to which the symbol value associatedit@annot be
equal. This is due to the fact that each check node (or theiassd redundancy symbol)
is in a group of order higher or equal to the group orders afeighboring variable nodes.
Hence,S is independent of the decoding iterations (it depends onlthe groups of the
codeword symbols).

O

It is therefore easy to show that any normalized moment, déwogreater than 1, of

the vector density (expectation of the product of a differemmber of its components) is
equal to the same moment of the vector densityx). Thus, if we assume that the vector
densityr® (x), i.e., at variable node output, is dependent on only oneasgarameter,

so is the whole density of the extended vector message. bt atbrds, the density of
vector message of a hybrid LDPC code cannot be approximgted®aussian density,
due to theA,, component in the density, but is dependent on only one paeanieve
assume that the densit{) (x) is Gaussian. The same property holds for messages before
truncation, if we assume that messages going into variafglesyare Gaussian distributed.
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Since the messages going into variable nodes are symmedricM-invariant, their sum
done during the variable node update, is symmetric and Lriant by Lemma 18 in
[48] and Lemma 11 (see Section 2.7). Hence, the one-scatamgger approximation for
hybrid LDPC codes is not less accurate than@dt(q) LDPC codes [48].

The parameter, defining the message densities, we choosekod the mutual infor-
mation between a message and the codeword sent.

Since the connection between mutual information and thexraea symmetric Gaus-
sian distributed variable is easily obtained by intergofasimulation points, we consider
means of Gaussian distributed vectors with same mutualnrgton as the message vec-
tors. That is we consider a projection of the message dessith Gaussian densities,
based on Property 1 which ensures that densities of mesgaggsout of or into check
nodes are dependent on the same parameters as densitiessaige® going into or out
of variable nodes. There are two models of messages hanylkbe hybrid decoder, and
hence we define two functions to express the mutual infoonati

e Messages going out of variable nodes are not LM-invariamd, their mutual in-
formation is expressed thanks to a function calle@s? m, ¢;) in terms of the
BIAWGN channel variance?, a mean vectom and g, the group order of the
variable node. The mean is the mean of a Gaussian distributed vector.

e For a hybrid LDPC code ensemble with uniformly chosen lineaps, messages
going into and out of check nodes are LM-invariant.Glfg;) denotes the group
of the check node, the mutual information of messages isesgpd by a function
J.(m, q). mis the mean of a Gaussian random variable (any component afis-G
sian distributed vector with same mutual information asgtagh message).

Let us now detail the evolution of mutual information of megss through BP decod-
ing.

e The mutual information of a variable node output is exprés¢isanks to the/, (-, -, -)
function applied to sum of means, since variable node ugdate summation of
LDRs. Herez;, is the mutual information of truncation operator output ap is
the all-one vector of sizg.. The mutual information,,,; of the output of a variable
node inG(qx) with connection degreg is given by:

Lout = Jv(027 (Z - 1)1];1(-1'1717 Qk:)]-qkfla Qk) .

e The mutual information of extended message fiG(y;.) to G(¢;) does not depend
on which linear extension is used, but only on the group atdeetz;, andz,,,
denote the mutual information of extension input and oyt@sipectively. It follows
from Definition 5

(1 = Zour) logy (@) = (1 — x45) logy(qr) -

e To express the mutual information of truncated message &oq) to G(gx), we
use the LM-invariance property of input and output of thetation operator. Let
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x;, andzx,,; denote the mutual information of truncation input and otitpespec-
tively.
Lout = Jc(ng(xina q1)7 Qk)

e Let v denote a probability vector, anfl{v) the corresponding Fourier transform
(FT) vector. Letr, be the mutual information of a probability vectoy andx ()
denote the function given in equation (1.18) applied to thetar f(v).

Lemma 9 The connection between andz () is
Tfv) = 1-— Ty -

The proof is provided in Section 2.7. Through a check nod&(ig) with connec-
tion degreej, the mutual information transform from the FT perspects/equiva-
lent to the one given by the reciprocal channel approximd6a]:

Lout = 1 - Jc((] - 1)Jc_1(1 - xinan)?Ql) .

The reciprocal channel approximation used for hybrid LDR@des is not looser
than when it is used with non-binary LDPC codes, since thesags densities
are considered as, or projected on, Gaussian densitieghrchses. However, by
computer experiment, the approximation is looser than iieaty LDPC codes in
the first decoding iterations when the check node degreeydow (; = 3 or 4).

We obtain the whole extrinsic transfer function of one iteraof the hybrid LDPC de-
coder (equation (2.12)). The mutual information of a mesgggng out of a check node
of degreej in G(q;) at thet'” iteration and before truncation is denotedalﬁil”(t). The
same after truncation to becomgesized is denoted U, ” . Analogously, the mutual in-
formation of a message going out of a variable node of deigre€(q;) at thet'” iteration
and before extension 5 denotedin(jzk)(t). The same after extension to becognsized
is denoted: ")

ve,l

x(i’?(t) - 1 log, (qk) (1 B I(z‘,k)@))
o logy (q1) v

21y (t . _ (t)
200 = 1, ((y—l)Jﬁu—Z 11(i, k|j, 1) ,ql>,ql> (2.11)

ik

(2.10)

wg)’,lk = ']C (ng (-Tg)’l)(t) ’ q1)7 Qk>

@GP = Jv< ZH Gy 11, k)" ). g ) (2.12)

We also define the a posteriori (or cumulatlve) mutual infation for each kind of vari-
able node at th¢" iteration by

y(i,k’)(t) =J, <0— ZH ]’l|z k g,lk anz) ) . (213)
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For any (i, k), y(i’k)(t) is the quantity that must tend to 1 whertends to infinity, for
successful decoding. In the remainder, we refer to this atutdormation evolution
equation by using the notatidr(.) such that:

(2GR, = F({aEP™ Y0 TG, 5.k, 1), 07)

2.3 Distributions optimization
Let us recall that the condition we consider for successfabding is

lim :L’fi)PP =1

t—o00

Wlth classmal unstructured LDPC codeé,ﬁpp can be expressed as a recursion in terms

of xAPP. Hence, condition 2.9 is equivalent ﬁrﬂ}) > prp vt > 0. With hybrid
LDPC codes, we cannot write such a recursion because aIIsmlnjeot receive identi-
cally distributed messages. Thus, the usual condntlb,gﬂ > prp is not the condition
for successful decoding of hybrid LDPC code ensembles. \Wegnmt two solutions to
overcome this impediment to use classical EXIT charts. Tisedolution is to usenulti-
dimensional EXIT chartdollowing the idea of [53], though in a slightly differentay.
This method allows to handle all the degrees of freedom ofdtailed representation
for optimization of the code profile. The second solutionsists in assuming parameters
(7,1) of check nodes independent of parameiek) of variable nodes. This will be done
by assuming constant group ordgifor all check nodes, and degree of connection inde-
pendent of the properties of the variable nodes to which #ineyxonnected. This method
turns the optimization into a linear programming probleranée much more quickly
solved by computer than hill-climbing methods.

2.3.1 Context of the optimization

Optimization is performed for the BIAWGN channel. The goatlee optimization with
EXIT charts is to find a good ensemble of hybrid LDPC codes withlowest conver-
gence threshold for a target code rate, under a Gaussiaoxapgtion. That means that
we look for the parameteis(i, 7, k, [) of the ensemble of hybrid LDPC codes with low-
est convergence threshold. We decide not to explore gradgr®higher thaw,,.. =
256, pmae = 8, NOr connection degrees higher thay . andd., ., thus we look for

(1,7,k, 1) € [2,d,,,,.] X [2,d.,..] x[1,8] x[1,8]. Let us denote the code rak& and the
target code raté;,, ... The optimization procedure consists in findifi¢, j, &, /) which
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fulfills the following constraints at the lowest SNR:

Code rate constraint: R = Rigrget
Proportion constraint: Z 11, j, k1) =
1,9,k,l
Sorting constraint: (s, 5,k,1) =0, ¥(i,7,k 1) suchthay, >¢q (2.14)
Successful decoding condition:lim y(i”f)(t) =1, V(i k) (2.15)
with { (&.k) t+1)} ({l’lk(t)}(zk (Z j,k,l),JQ)

The threshold is the objective function. We do not include ¢hability condition in the
optimization constraints because it is not easy to checkifieé general case. However, as
explained in section 2.2.4, we can assume it as non stririgethte optimization process.
Let us recall the expression of the code rate, which is garigetused in the remainder:

5 (5, Z ) ogy(a)
R=1- o (2.16)
>k <Z = i _> log,(gk)

2.3.2 Optimization with multi-dimensional EXIT charts

The detailed representatidhii, , k£, [) turns hybrid LDPC code ensembles into structured
code ensembles, which are characterized by sub-interkeavethat case, the successful

decoding condltlonhm xﬂgp = 1 is equivalent tohm y@ERY — 1 for all (i, k). The
multi-dimensional EXIT algorithm can be presented as fefidor hybrid LDPC codes:

1) Initialisation: t=0. Set:%""" = 0 for all (j, 1).

2) Computex(”“ for all (4, k) with equation (2.12).
3) Computerg;l)m for all (j,1) with equation (2.11).
4) Computey )" for all (4, k) with equation (2.13).

5) If 4@ =1 up to the desired precision for 4l k) then stop; otherwise= ¢ + 1
and go to step 2.

This algorithm converges only when the selected SNR is atwvéhreshold. Thus, the
threshold is the lowest value of SNR for which git")"* converge to 1.

Letting the detailed representatidi(, j, k,[) fully general allows to have check
nodes in different order groups. Indeed, allowing checkesad different order groups
has been inspired by the results obtained in [29] for D-GLEPGmMized on the BEC.
In that article, the authors show that better thresholdsearat-floors can be achieved by
introducing only a small fraction of generalized codes &oshand variable sides among
classical single parity-check and repetition codes. In dase, the successful decod-
ing condition constraint 2.15 cannot be expressed lineatigrms ofl1(i, j, k, ). Thatis
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why we cannot use any linear programming tool for optim@ative need a hill-climbing
method. As usually with LDPC codes optimization, we use ifferéntial evolution algo-
rithm [16]. The optimization problem has been expresseberprevious section. Several
problems arise when optimizing hybrid LDPC codes with défeial evolution:

e The parameter spacé@/hen there is no additional constraintdrdifferent of those
above mentioned, the number of parameters, which are jodpigptions, to be de-
termined by the optimization method/is = demmd To getanidea
on how many parameters DE algorithm is able to handle, tHeasiutomatically
limit the number of parameters 8% in their code available from [16]. This limit
is quickly reached in the case of optimization of hybrid LDP&les, leading to
an equivalent high number of population vectors and hengeslew convergence
of DE. Therefore we have to make a heuristic reduction of drameter space by,
e.g., allowing only very small connection degrees for J@ganodesd,, . = 510
10), only two different check degrees and two different grougeos.

Cmax *

e The initialization problem In spite of the reduction of the dimension of the pa-
rameter space, this space remains too big to allow to randomtialize the pop-
ulation vectors, otherwise too few of them fulfill the cod¢éeraThat is why we
need another method to well initialize the population vextdMe show that the
initialization problem of finding vectors of proportions wwh correspond to code
ensembles with target code rdtgsee equation (2.16)) can be expressed by a con-
vex combination problem [59]. This can be seen when one @mtkandom the
marginal proportion$l(j, ) for all (4,1), and looks for the conditional probabilities
I1(7, k|4, 1) satisfying the code rate. To solve this problem, the satuti@ have
used is the simplex method [60] with random cost functiongcwis used when the
cost function and the problem constraints are linear in $eshthe parameters to be
optimized. However, the solutions found by the simplex athm always satisfy
with equality some of the inequality constraints becausectist function is linear,
therefore the solution to the maximization or minimizatwfrthe cost function is
on facets of the constraint polytope which is a convex hutisTmplies that a non-
negligible part of proportion vector components will be setzero or one by the
brute simplex method. Thus, to use simplex for initialiaatof of the vector popu-
lation of DE to non-trivial very bad components, we need t@iitally adapt the
lower and upper bounds of the vector components fi@m| to, e.g.,[0.03, 0.95].

¢ Interpolations Another difficulty in using DE to optimize hybrid LDPC digiu-
tions is the computation time entailed W@y(;-, -) and.J.(-, -) functions. Indeed, the
Jy(+,+,+) and J.(-,-) functions are evaluated by Monte-Carlo simulations offline
and then interpolated. For a given group orger/. is the function of only one
parameter, which is the mean of any component of the LM-iamavectors going
into or out of the check node, and hence we use a mono-dinr&igolynomial
interpolation to get a functional approximation. For a giggoup order, J, is
the function of three parameters, and hence we use a 2-dion@hspline surface
to interpolateJ,. Since these functions are used in the multi-dimensiondTEX
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(4, qr) (2,64) | (2,128) | (2,256) | (3,64) | (3,128) | (3,256) | (4,64) | (4,128) | (4,256) I1(5,1)
XD

(5,64) 0.0073 X X 0 X X 0 X X 0.0086
(5,128) 0 0.0089 X 0 0 X 0.0080 | 0.0175 X 0.0405
(5,256) || 0.0003 | 0.0290 0.0001 | 0.0226 0 0 0 0.0001 0 0.0614
(6,64) 0.0087 X X 0.0470 X X 0.0554 X X 0.1091
(6,128) || 0.0367 | 0.0003 X 0.0521 | 0.0063 X 0.0218 | 0.0931 X 0.2065
(6,256) || 0.4248 | 0.0197 0.0043 | 0.0851 | 0.0021 0.0101 | 0.0042 | 0.0151 0.0193 0.5739

[ (G, k) [ 05916 | 0.0717 | 0.0055 [ 0.1707 | 0.0069 | 0.0083 [ 0.0554 | 0.0779 | 0.0120 ]| |

Table 2.1 : DistributioI(s, j, k, 1) of a hybrid LDPC code ensemble with code rate one-
half and threshold).1864 dB under Gaussian approximation. The margira(s, ) and
I1(4,1) correspond to the proportions of variable nodes of tfip&) and check nodes of
type (j,1), respectively. When a proportion is forced to zero by théirsgiconstraint,x is

put in the box.

charts, the computation time for the cost function, i.ex,the threshold, is much
higher than in the binary case too.

Result of the optimization

It results from the optimization with DE that distributiomsth best thresholds are not
obtained for a majority of binary variable and check nodess. worthy to recall that only
small connection degrees are allowed for check nodes (5 #&1€), as mentioned in sec-
tion 2.1.5, the detailed representation adopted in thikwsoless general than the multi-
edge type representation [27]. Indeed, it is possible taicen proportions of different
(1, k) type punctured symbols, but it is not possible to assumeegegne variable nodes
because we cannot describe check nodes with exactly one@dgeh a variable. This
is the reason why we logically do not get back the code digiiohs of multi-edge type
LDPC codes [27], i.e., binary LDPC codes with low connectilyrees and thresholds
close to capacity. Instead, we obtain distributibh&ith very low connection degree$ (
to 4) and very good thresholds under the above discussed Gaaggiesximation, when
only high order groups({(16) to G(256)) are allowed. This is in agreement with the
results of [33].

An example of such a resulting distribution is given in tablg. Firstly, we see from
this table that the optimization procedure puts a maximugogferful component codes
(or "generalized codes", see section 2.1.3), i.e. variabties in the smallest order group
(G(64)) connected to check nodes in the highest order grét256)). Secondly, the
variable nodes in a high order group tend to correspond to pemponent codes, and
hence, higher connection degrees are affected to this tiypariable nodes in order to
have a code length high enough to balance the highvhich is in turnslog,(q;). This
interpretation can also be made in terms of code doping [[L, 61

Graph construction

We now discuss the graph construction of such a hybrid LDR{&cbow to build a graph
satisfying the detailed representation, i.e., where aktkmodes cannot be connected to
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any variable nodes.

The first solution is to modify the PEG algorithm to take intzeunt the structure
specificity of such a hybrid LDPC ensemble where the globampéation is made of
various sub-interleavers. However, we did not have enougto do this.

Another way is to build the graph thanks to the protographio@{53], in the same
way as multi-edge type LDPC codes are built. However, bogdhe protograph of a
hybrid LDPC code fulfilling the detailed representationuléag from the optimization,
without additional restrictions on the detailed paranzetion, can be quickly arduous.
We did not have enough time to investigate this method.

Moreover, since the best thresholds resulting from DE haentobserved for high
order groups, this has been a hint to assume that we will negt Ba important loss in
the achievable thresholds when restricting the detailpebsentation in these conditions.
This restriction consists in considering all check nodetheasame group and with con-
nection degrees independent of the variable nodes theyoamgected. This allows to
switch from a non-linear optimization to a linear optiminat, which is the topic of the
following section.

Finally, it is worthy to note that all the presented tools, decoders and EXIT charts,
may be used for optimization of hybrid protograph based L2B@es by using equation
presented in [53] with functions, (-, -,-) and.J.(-,-), or hybrid multi-edge LDPC codes
provided that the tools are adapted to the multi-edge typesentation. However, some
problems would have to be solved for the definition of suchde@nsemble, e.g. can the
linear maps be randomly chosen on each edge of the code grsykimg from lifting, or
do they have to be the same as the one defining the protograph ?

2.3.3 Optimization with mono-dimensional EXIT charts

In this part, we consider the optimization of hybrid LDPC eahsembles with all check
nodes in the same group(q;) and with connection degrees independent of the variable
nodes to which they are connected. We present how generatieqsi (2.12) turns into
mono-dimensional EXIT charts, and how this allows the usknefr programming for
optimization. Letz" denote the averaged mutual information of extended messéige

is expressed in terms of the mutual informatizcihk)m of messages going out of variable
nodes of degregein G(q;), by simplification of equation (2.10):

20 =

e

1 ) i k) ()
— T1(3, k) logy(qi) (1 — 2B |
IOgQ(Ql) ZZ}; ( ) 2( k)( )

From equation (2.10), we can see that, for &hy:, [):

tlim x&ﬁ)(t) =1 tlim x&,kﬂ” =1
and then the successful decoding condition (2.15) reduaces t

lim z® =1 .

e
t—o00
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By simplifying equation (2.12);{"" can be expressed by a recursion in terms!6fas:

200 = (17 (- (G0 - a0 a) ) )

wS“)=§:HUJﬂ(1 lq“%)(1—JUQﬁmi—nJCHEZHUMkm$Q®¢Mﬂ%h%>))
J

ik - loQ(Ql)
(2.17)

Thus, the condition for successful decoding of hybrid LDR@es in that specific case
IS

vt >0, zt) > gl (2.18)

In that case, the optimization procedure aims at findingidistion I1(s, k|7, 1) for
givenII(j,1). We see on equation (2.17) thett ™ depends linearly ol (i, k), turning
the optimization problem into a linear programming probl&kie may jointly optimize th
whole distributiorl1(z, k), but we rather prefer to present in the next sections tweafft
methods. In each case, one of the two sets of paramétensor I1(k), is seta priori.

Set group-order profile, open connexion profile

The first way to optimizdlI(:, k) is to set the different group orders, and then find the
best connection profile of variable nodes for each grouprtiBtafrom I1(z, j, k, 1), the
decomposition we use is the following:

(i, 5,k 1) = TI(i,k,OI(5)
= TI(4, k)IL(1]d, k)IL(H)
= TI(i|k)TT(K)TI(|K)TI(;)

Actually, we do not set the proportion of edges(tfg,) exactly, but the proportion of
variable nodes ii(q; ). We put the redundancy (check nodes and correspondinglearia
nodes) in the highest order grotfig..) = G(¢maz), CcOrresponding to a proportion,,

of variable nodes, and the information variable nodes inltwer order group$+(gio:)
andG(gnez), corresponding to proportions,,, and ;.

Hence, the proportion which is optimizedli§:| k). This means that, for each group
orderk of variable node, we look for the best connection profile fase variable nodes
in G(gx). Thus, we optimize as many connection profiles as the numbdifferent
group orders of variable nodes. This is performed in a singtenization procedure by
concatenatingl(i|k), V(i, k) in a single vector. In this way, this vector of profiles will
hence contain:

First profile:  Vi=2...d,,.., TI(%,red) (2.19)
Second profile: Vi=2...d,,,., TI(i,ino1)
Third profile:  Vi=2...d,,.., TI(i, 0

Equation (2.17) reduces to:
2 = P (i, k), 0?) (2.20)

s =y Y (k) (1 Joglar) (1—% (&(i—lm1<Zﬂ<j>x£2:f2">“’,qk>1qk_17qk>))

k=red,infol,info2 i l0g(grea) j



2.3 Distributions optimization

Due to the fact that we a priori set the group orders of vagialddes necessarily
equal or lower than check nodes group orders they are cathetbie rate of the hybrid
bipartite graph, whose nodes are in different order groigpkigher than the code rate
(i.e., the actual rate of the transmission). Setting the@ribon of variable nodes in
G(qx) for all k also sets the rate of the graph, which becomes the target gad in
the optimization procedure. From the target code falg,.;, we can compute the target
graph rate, denoted by, ., by:

Rtarget
> anlog,(qk)
k=infol,info2
Rgraph - Rtarget 1 — Rtarget (221)

Z Qg 1Og2 (Qk) Wreg 10g2 (Qred)

k=infol,info2

The result of the optimization is finally the set of the threefiesI1(i, k), V(i, k) €
[1,d,,..] x [red,infol,info2, for which the following constraints are fulfilled at lowest
SNR:

Proportion constraint: Vi=2...dy,.,, > T(iwed)+TI(i,mor) + II(i, me2) = 1

7

Code rate constraint: Vk = red,infol,info2 Z G, k) Z )
J

graph

J
Sorting constraint: I1(s, j,k, 1) =0, V(i,j, k:, [) such thaiy, > ¢ (2.22)
Successful decoding condition: 2" = F(z® 11(i, k), 0?) > 2

Set connexion profile, open group-order profile

Another way to optimize hybrid LDPC ensembles is to set theneation profile and op-
timize the group orders of variable nodes. As in the prevgrion, we set the check
node parameters (group ordé(q,.q) and connection profile), independently of the vari-
able nodes parameters. This time, the decompositiéhofj, &, 1) is:

(i, j, k1) = II(i, k|)II(j)II(1)

Similarly to equation (2.19), we aim at optimizing sevenaup order profiles, as many as
the number of different variable node connection degrees. finite length performance

purpose, we start from an ultra-sparse Tanner graph withudaeconnection profile (e.g.

(d, = 2,d. = 3)). Hence the previous decomposition falls into:

(i, 5.k, 1) = 6(i,d,)d(j, d.)TI(k)5(l, red)

Since the group order profile of the redundancy is set, thdtretthe optimization will
be the group order profiles of information variable nodes.défeote byZ the indexes of
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the group order of information symbols. In other words, amgimation symbols is in
G(qx) with & € Z. Equation (2.17) reduces to:

2T = Pl 1(k),0%) (2.23)
log(qr) _ o (ired)®

(t+1)  — k) (11— 2289 (7| o2 (dy — 1)J 7! I1(j)zmed 1 .

x v | O, Gy c Ty s Yk . — 1 Yk

= (1 e T

The graph rate?,,,,, is determined by — ‘;— and the code rat® is hence:

Rgraph Z H 10g2 Qk

R= ez (2.24)
gTaPh Z H 10g2 qk‘ (1 - Rgraph) 10g2 (QTed)
kel

Ryqrger Still denotes the target code rate, and the result of thenipdtion is hence the
profileI1(k), Vk € Z, for which the following constraints are fulfilled at lowe3NR:

Proportion constraint: » "TI(k) = 1

k
Vk >red, I(k)=0
[I(red) >=1— Ryrapn
Code rate constraint: R = Ryqq¢  (S€€ €quation (2.24))
Opened EXIT chart: 20"V = F (21, 11(k), 0*) > 2!} (see equation (2.23))

Thresholds of distributions optimized in that ways are enésd in section 2.5.1.

2.4 Finite length optimization

This section presents an extension of optimization mettiais$as been described in [34]
for finite length non-binary LDPC codes with constant vaeatbegreel, = 2. We ad-
dress the problem of the selection and the matching of theypareck matrixH nonzero
clusters. In this section, we assume that the connectivitiji@ and group order profile of
the graph have been optimized, with constant variable @egre- 2. With the knowledge
of the graph connectivity, we run a PEG algorithm [23] in ortebuild a graph with a
high girth.

The method is based on the binary image representatibharid of its components,
i.e. the non-zero clusters of the hybrid code in our case ¢efction 2.1). First, the
optimization of the rows oH is addressed to ensure good waterfall properties. Then,
by taking into account the algebraic properties of clos@mkagies in the Tanner graph,
such as cycles or their combinations, an iterative methadasl to increase the minimum
distance of the binary image of the code by avoiding low weggldewords.
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2.4.1 Row optimization

Based on the matrix representation of each nonzero entrgjweehereafter the equiva-
lent vector representation of the parity-check equati@sseated with the rows daf .
Letx = [x¢...2n_1] be acodeword i = G(¢min) X - . . X G(Gmaz ), and letp; be the
number of bits representing the binary map of symbot G(277), j =0,...N — 1. For
the ™" parity equation offf in the groupG(27:), we have the following vector equation:

> Hyx;=0 (2.25)
J:H;;7#0

where H;; is thep, x p; binary matrix representation of the non-zero clusigris the
vector representation (binary map) of the symbgpl The all zero component vector is
notedo.

Considering the-th parity-check equation as a single component code, waalefi
H; = [Hij, ... Hy,, ... Hy, ] as its equivalent binary parity check matrix, wigh,, :
m=0...d.— 1} the indexes of the nonzero elements of thk parity-check equation.
The size ofH; is p; x (pij, + ... + pijdc_l), with p;, andp;;, the extension orders of
the groups of the check node and theh connected variable node, respectively. Let
X; = [xj,...%j,,_,]" be the binary representation of the symbols of the codeword
involved in thei* parity-check equation. When using the binary represamtathei-th
parity-check equation dfl (2.25), can be written equivalently &X;" = 0.

We defined,,;, (i) as the minimum distance of the binary code associated Hjth
As described in [34], al.-tuple of d. linear maps is chosen in order to maximize the
minimum distancé,,,;,, (i) of the code corresponding to tifé row of H,i = 0,..., M —

1. For hybrid LDPC codes, we adopt the same strategy, and elooH; a binary linear
component code with the highest minimum distance achievaiih the dimensions of
H;. For example, leH; be obtained from @. = 3 check node with the three symbols
belonging toG(2%) x G(2%) x G(2?), H; has size(8 x 18) and the highest possible
minimum distance i€,,;,(i) = 5 [62]. For hybrid LDPC codes, even if the connection
degree is constant for all check nodes, the dimensions afdhgonent cod&l; could
differ and depend on the symbols orders which appeat;in

2.4.2 Avoiding low weight codewords

We now address the problem of designing codes with good naimigistance. It has been
shown in [34] that the error floor of non-binary LDPC codesdabhsn ultra-sparsel{ =

2) graph is not uniquely due to pseudo-codewords, but alsovioweight codewords.
Here we consider hybrid LDPC codes with constant variabfgebe!, = 2. We adopt
for hybrid LDPC codes the same strategy that has been inteatin [34], which aims at
avoiding the low weight codewords which are contained ingimallest cycles. In order
to do so, we first extract and store the cycles of the Tann@hgréth length belonging to
{g,...,9+ gap}, whereg is the girth andjap is a small integer such that the number of
cycles with sizegy + gap iIs manageable.
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As in the previous section, we consider the binary imagesyolles as component
codes. LefHcy be the binary image of the-th stored cycle. Since we conside, d..)
codes, if some columns dlc, are linearly dependent, so will be the columndb{see
[34] for more details). This means that a codeword of a cyxl@so a codeword of the
whole code. The proposed approach is hence to avoid low Wweiglewords by properly
choosing the nonzero clusters implied in the cycles, sontbatodeword of low-weight
is contained in the cycles. This is achieved by ensuring ttiatbinary matricedcy,
corresponding to the cycles have full column rank. The iteegrocedure that we use in
this optimization step is essentially the same as the onietéepgn [34]. In each step of
the iterative procedure, we change the values of a limitedb@r of non-zero clusters in
order to maximize the number of cycle component cddeg which are full rank. Thus,
the matrix of a cycle should be full rank to cancel the cyclenttarily to classical non-
binary LDPC codes for which the matrix of a cycle is squarbkd,rmatrix of a cycle of a
hybrid LDPC code is rectangular, with more rows than coluniités means that we will
have more degrees of freedom to cancel the cycles in hybried Bodes. Hybrid LDPC
codes are therefore well-suited to this kind of finite lengptimization procedure.

2.5 Results

2.5.1 Rate one-half codes

Optimized distributions: thresholds and finite length performance

Table 2.2 : Nodewise distributions of the hybrid LDPC codssdufor the finite length
simulations.

| | Hybrid LDPC code 1] Hybrid LDPC code 2

(i =2, q, = 32) 0.3950
(i = 2, q, = 64) 0.4933 0.2050
(i = 2, g = 256) 0.4195 0.4000
T(i = 6, q, = 64) 0.0772
T1(i = 6, g, = 256) 0.0100
T(j = 5,q = 256) 0.5450 1
T(j = 6,q = 256) 0.4550

(%) (dB) 0.675 0.550

Based on the optimization methods presented in sectioB,2:\& first present some
code distributions and corresponding thresholds for catle one-half, as given in ta-
ble 2.2. For all the presented results, the channel is th&\&A channel with BPSK

modulation. Thresholds are computed by Monte-Carlo sitraria. In table 2.2(5—‘;)*
denotes the decoding convergence thresholds of the distris in each column. The
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hybrid LDPC code number 1 is obtained by the method presentsektion 2.3.3, when
setting the check node connection profile, all check nodesnat(256), putting all the
redundancy variable nodes@(256) and information variables i&'(64). The connection
profiles for these two groups are then optimized with), . = 10. As already observed
in section 2.3.2, variable nodes in the highest order groeatiected with as much high
connection degrees as possible, to balance the poor geedrabmponent code. The
hybrid LDPC code number 2 is obtained by the method presentsection 2.3.3, when
setting the graph connections to be regular with constardble degreel, = 2 and con-
stant check degreé¢. = 5. Although these thresholds are not better than the one of a
regular(d, = 2,d. = 4) GF(256) LDPC code, which i9.5 dB [63], we can exhibit hy-
brid LDPC distributions with better thresholds than the oha regular(d, = 2,d. = 4)
GF(256) LDPC code, by allowing higher connection degrees. Howewar purpose is

to point out the good finite length performance of hybrid LD&&gles, and that is why
we have focused on low connection degrees. For such low eggvee are going to
see that hybrid LDPC codes have very good finite length pedorces, but they do not
approach the capacity as close as multi-edge type LDPC atmle§ his is due to the
adopted detailed representatidrwhich cannot handle degree one variable nodes. How-
ever, it would be an interesting perspective to switch framdetailed representation to a
multi-edge type representation for LDPC codes. This wittaialy enable to get capacity-
approaching distributions with low connection degreedebd, it has been shown in [30]
that introducing degree-1 variable nodes in non-binary Cl@@des makes the decoding
threshold getting closer to the theoretical limit. Modifgithe representation of hybrid
LDPC code ensembile is therefore very interesting for fuuoek. We only present in
table 2.2 the thresholds of the distributions which are dsethe following finite length
simulations.

Figure 2.5 represents some frame error rate (FER) curvesfferent codes, all with
K = 1024 information bits and code rate one-half. Figure 2.5 showesp#rformance
curves of hybrid LDPC codes number 1 and 2 compared with Quyadic Tanner codes
from [1], irregular LDPC codes from [10], &F'(256) LDPC code, a protograph based
LDPC code from [26] and a multi-edge type LDPC code from [27thweode length
N = 2560 bits (K = 1280 information bits). This code has been specially designdar |
error-floor. The graphs of the binary, non-binary and hyhiddPC codes have been built
with the random PEG algorithm described in [51].

We see that the hybrid LDPC code number 1 has performanceciesyg to the pro-
tograph based LDPC code, while the hybrid LDPC code numbeas2bletter waterfall
performance than the protograph based LDPC code but higierfor. Also, the hy-
brid LDPC code number 2 has a worse waterfall region than @aegiv = 2, dc = 4)
GF(256) LDPC code, but a better error floor. These two observatianslaes to investi-
gate a finite length optimization of the hybrid LDPC code, iidey to refine the structure
of the graph to achieve better error floor performance.
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Figure 2.5 : FER versuy% code rate one-halfKX = 1024 information bits except for
the multi-edge type LDPC code for whidd = 1280 information bits. No finite length
optimization has been applied;;,., = 500 except for quasi-cyclic LDPC code (from [1])
for which N, = 50.

Finite length optimized codes

The finite length optimization described in section 2.4 iglegal to the hybrid LDPC code
number 2, which has constant variable degige- 2.

Figure 2.6 represents frame error rate (FER) curves foerdifft codes with code rate
one-half. The finite length optimization described in sact.4 is applied to the hybrid
LDPC code number 2, which has constant variable dedyee 2. The performance
curves of hybrid LDPC codes 1 and 2 are compared with a prapdgbased LDPC code
from [26], and a multi-edge type (MET) LDPC code from [27]. i§ltode has been
specifically designed for low error-floor. All codes ha¥g; = 2048 coded bits, except
the MET LDPC code which had/,; = 2560 coded bits. The graphs of hybrid LDPC
codes have been built with the random PEG algorithm destiibf51]. We see that the
hybrid LDPC code 1 has performance very close to the proptgbesed LDPC code.
The hybrid LDPC code 2 has slightly better waterfall andhlighigher error-floor than
the MET LDPC code, which is longer. Hybrid LDPC codes are ¢fee capable of
exhibiting performance equivalent to MET LDPC codes, whaeh, to the best of our
knowledge, among the most interesting structured codéswiorthy to note that, unlike
MET and protograph-based LDPC codes, the presented hylRICLcodes are non-
structured codes.
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Figure 2.6 : FER versu% (in dB): code rate one-halfV,;; = 2048 coded bits except for
the multi-edge type LDPC code for whidk,;; = 2560 coded bits.V;.,, = 500 decoding
iterations are performed.

Hence, hybrid LDPC codes can be a means to worsen the watedgan of regu-
lar codes in the highest order field, in order to even lowerettier-floor. They can be
competitors for the best known codes for finite length pentamce.

2.5.2 Rate one-sixth codes

For communication systems operating in the low signalds@ratio (SNR) regime (e.qg.,
code-spread communication systems and power-limitecoser@tworks), low-rate cod-
ing schemes play a critical role. One important applicatbfow-rate codes is in wide
band data communications using code-division multipleeas (CDMA) systems [64],
where they are used to replace the spreading code in traglittbrect-sequence spread
spectrum systems.

Although LDPC codes or Repeat-Accumulate (RA) codes caib&éxdapacity-approaching
performance for various code rates when the ensemble grafiékeoptimized [10], in the
low-rate region, both RA and LDPC codes suffer from perfanogaloss and extremely
slow convergence using iterative decoding. To our knowdetlte most competitive codes
at this time are Turbo-Hadamard (TH) [2] and various versioiiZigzag-Hadamard (ZH)
codes [3]. All references of various low rate coding scheo@sbe found in [2][3][65].
We intend to illustrate the interest of hybrid LDPC codeslfov-rate application requir-
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ing short block length (from 200 to 1000 information bits).

The considered channel is still the BIAWGN channel. We complae performance
of our proposed hybrid LDPC codes with existing good codkded in [2][3]. K, is the
number of information bits.

For a code rate? = % a regular graphiid, = 2,d. = 3) is considered, and the
proportion of group orders has been optimized with EXIT th&echniques defined in
section 2.3.3. With the order of the check nodes being s6t#9...) = G(256), the code
resulting from the optimization has three different grougessG (256) — G(16) — G(8)
(table 2.3).

Table 2.3 : Nodewise distribution of the rgteand - hybrid LDPC codes

| | Hybrid codeR = 1/6 | Hybrid codeR = 1/12 |

(i =2, g0 = 2) 0.184
(i =2, q0 = 4) 0.150
(i =2, g0 = 8) 0.227
(i = 2, qy = 16) 0.106
(i = 2, g = 256) 0.667 0.667
II(j = 3,q = 256) 1 1
(%) (dB) —0.41 ~0.59
Capacity (dB) —1.08 —1.33

On figure 2.7, forK,; ~ 200, the hybrid LDPC code of code ratg6 outperforms
with 0.3 dB gain the ZH code of code rat¢6. Additionally, our hybrid code has no
observed error floor up to a BER& . When comparing the computer simulation of
the hybrid LDPC code with the union bound of ZH code, we obsdénat the BER of the
hybrid LDPC code has gain of about one decadg,#fV, = 2dB. Since union bounds are
tight upper bounds on BER performances [2] for Turbo-Haddmades, we can predict
from the figure that the error floors of our two simulated cod#ie lower than the error
floors of Turbo-Hadamard codes with random interleavereéut] the minimum distance
of our hybrid LDPC code has been estimated thanks to the sepukthod [66] and is
upper bounded by,,.;, = 80, which is by far superior to the minimum distance that can
be achieved with TH or ZH codes.

The hybrid LDPC code of code rafe = 1/12 = 0.083 has poorer performance in
the waterfall region than TH and ZH codes with comparables;abut has much lower
error floor when comparing the computer simulations to therubound of the code rate
0.077 TH code. Indeed, its minimum distance is upper boumbget],;, = 125. Hence,
although thisk = 0.083 code suffers from 0.1 to 0.2 dB loss compared with the raté/.0
TH code, the good error floor properties highlight the indeg hybrid LDPC codes for
lower rates. As aforementioned, we can expect that intriodutegree-1 variable nodes
in hybrid LDPC code will allow to get thresholds closer to ttapacity for very low code
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Figure 2.7 : Comparison of hybrid LDPC code with Turbo Hadainzodes (TH) taken
from [2] and Zigzag Hadamard (ZH) codes taken from [3], foirdormation block length
of Kp;; ~ 200. Njer = 30 for Turbo Hadamard codes, anid,., = 200 for the hybrid

LDPC codes.

rate (less thaq%). Indeed, this seems to be important to have good threskotddow
rates [27].

In Figure 2.8, the FER comparison is drawn for code figi@and K;;; ~ 1000 in-
formation bits. The quasi-cyclic LDPC code is designed teedaw error-floor [1]. The
hybrid LDPC code is better that the quasi-cyclic LDPC and RoHes, both in the water-
fall and in the error-floor regions. The hybrid LDPC code hasrer waterfall region than
the MET LDPC code [67], but better error-floor. Hence, foergft6 too, the performance
of hybrid LDPC codes are equivalent to the one of MET LDPC esodby allowing to
reach comparable trade-off between waterfall and error-fierformance.

Remark Let us mention that hybrid LDPC codes, with injective lineaaps as non-
zero elements, are well-fitted to low code rates thanks tio sieicture. Indeed, like all
other kinds of codes with generalized constraint nodes@ ttadamard code [2], LDPC
Hadamard codes [68], GLDPC [28], D-GLDPC [29], or Tail-bdiLDPC [30]), they are
well-fitted to low code rates because the graph rate is higjiaer the code rate. This can
help the iterative decoding: when the code rate is very l@goding on a higher rate
graph can lead to better performance.

Itis worthy to note that the better performance of hybrid KIDéddes over codes based
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Figure 2.8 : Comparison of hybrid LDPC code with puncturedbduHadamard (PTH)
taken from [4] and other powerful codes, for code rgté. The PTH code ha&;; = 999
information bits, and the other codes ha¥g; = 1024 information bits. N, = 50 for
the PTH code, an@V;;.,, = 200 for the other codes.

on Hadamard codes are obtained with no complexity incrdadeed, the complexity of
these codes is dominated by the complexity of the fast Hadhmnansform, which is
O(r-2") [2], wherer is the order of the Hadamard code. The complexity of hybridPCD
codes is dominated by the fast Fourier transform at checkes0d; log(¢)), wheregq is
the maximum group order. The complexity of Hadamard typeesaahd hybrid LDPC
codes is therefore equivalent. However, contrary to TH spdee should note that hybrid
LDPC codes are suitable for decoding with reduced complexit no loss, as described
in [46].

2.6 Conclusions

In this work, asymptotic analysis of a new class of non-binddPC codes, named hybrid
LDPC codes, has been carried out. Specific properties ofdenesl hybrid LDPC code
ensembles, like the Linear-Map invariance, have beenediui be able to derive both
stability condition and EXIT charts. The stability conditiof such hybrid LDPC ensem-
bles shows interesting advantages over non-binary codady 8f the condition allows to
conclude that there exist many cases where any fixed poirgrsity evolution for hybrid

LDPC codes can be stable at lower SNR than for non-binaryscod@e EXIT charts
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analysis is performed on the BIAWGN channel, whereas ssudiggeneralized LDPC
codes usually consider the BEC [30, 29]. In order to optintiee distributions of hy-
brid LDPC ensembles, we have investigated how to projeatitesage densities on only
one scalar parameter using a Gaussian approximation. Toeaay of such an approx-
imation has been studied, and used to lead to two kinds of EEX&Fts of hybrid LDPC
codes: multi-dimensional and mono-dimensional EXIT chatistribution optimization
allows to get finite length codes with very low connection réeg and better waterfall
region than protograph or multi-edge type LDPC codes. Megedybrid LDPC codes
are well fitted for the cycle cancellation presented in [8d&nks to the specific structure
of the linear maps. The resulting codes appear to have,iaddlity to a better waterfall
region, a very low error-floor for code rate one-half and eealel length lower than three
thousands bits, thereby competing with multi-edge type CDPhus, hybrid LDPC codes
allow to achieve an interesting trade-off between goodrdftoor performance and good
waterfall region with non-binary codes techniques.

We have also shown that hybrid LDPC codes can be very gooddzted for efficient
low rate coding schemes. For code rate one sixth, they camgay well to existing
Turbo Hadamard or Zigzag Hadamard codes. In particularithyfbPC codes exhibit
very good minimum distances and error floor properties.

As future work, it would be of first interest to allow degreesorariable nodes in the

representation of hybrid LDPC codes, by, e.g., adopting li+adge type representation
[27]. As shown in [30], this would allow to have better deguglthresholds, in particular
for low rate codes.
This would give rise to the study and optimization, with taene tools, of non-binary pro-
tograph based or multi-edge type LDPC codes. However, ttemsion may be theoreti-
cally not completely straightforward as the non-zero valoave to be carefully handled
to define the code ensemble.

On the other hand, it would be interesting to study hybrid Df®des on other chan-
nels. Let us mention that we made some experiments on an AW@Nnel with16-
QAM modulation. We restricted the connection profile to bgutar, in order to not bias
the results by the absence of special allocation on diftgrgmotected symbols. Only
two group orders where allowed to avoid correlation betwaeannel LLRs:G(16) and
(G(256). The optimization of fractions of variable nodes in these different orders have
been done. The results where slightly degraded compared2oia GF'(256) LDPC
codes. A study of these codes on the BEC would be also integestccording to what
has been done for D-GLDPC codes on the BEC [56].

2.7 Proofs of theorems in Chapter 2

Lemma 5 Let " (x) denote the conditional error probability after ti& BP decoding
iteration of aGF'(q) LDPC code, assuming that codewatdvas sent. If the channel is

symmetric, the\” (x) is independent a.
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Proof: The proof has the same structure as the proof of Lemma 1 in Tk nota-
tions are the same as in [11] and Section 2.1.7.
Let kIa(f)(mo, m;, ..., my, 1) denote the message map of any variable node at itergtion
according to equation (2.4). The size of argument message®licitly the one of the
group of the variable node. L@tﬁt)(ml, ...,my 1) be the message map of any check
node. The sizes of argument messages are implicitly thefathe group of each variable
node connected to the check node, according to equatiohn (2.5

e Check node symmetry: Lé&¥ be the Cartesian product group defined in Section
2.1.7. For any sequend®;, ..., b, _;) in G such that®’ ' A,..b; € Im(A,.),
we have (see equation (2.5))

t +b1 +bg.—1\ t +AGL de—1 Au.obi
\Ilg)(ml ey Mg g )_‘Ijg)(mlwuamdc—l) @iy Avichi)

e Variable node symmetry: We also have, for ény GF'(q,):

O (mt’ m?, .., m:l;bfl) =W (my,... ,my_,)

+b
Let Z, denote the random variable being the channel output in pibtysform, condi-
tionally to the transmission of the zero symbol. E&glior any: = 1... N has same size
as the group of the corresponding codeword symbol. Any meiess symmetric channel
can be modeled as

Y, =Z™

wherez; is the i’ component ofk which is a vector of size N, denoting an arbitrary
codeword of the hybrid LDPC code. The channel output in podita form Y; results
from the transmission of.

Let v denote an arbitrary variable node anddetenote one of its neighboring check
nodes. For any observation in probability foxm let m.” (w) denote the message sent
from v to ¢ in iterationt assumingw was received. The quantity is hence a set of
channel output vectors in probability form;,, for all: = 1... N. The same definition
holds form) (w) from ¢ to v. From the variable node symmetry iat= 0 we have
m{Y (y) = m{” (z)***. Assuming now that in iterationwe havem! (y) = m{ (z)+".
Sincex is a codeword, we hav@!, A,.z; = 0, and hence®" ' A,..t; = Az,
From the check node symmetry condition we conclude that

m{,"V(y) = m{{!V(z) " .

Moreover, from the variable node symmetry condition, itdals that in iteratiort + 1
the message sent fronto c is

mgtc+1)(Y) _ m1()t0+1)(z)+:cv ]

Thus, all messages to and from variable nodeheny is received are permutations
by x, of the corresponding message whers received. Hence, both decoders commit
exactly the same number of errors, which proves the lemma.

O
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2.7.1 Symmetry

Lemma 6. If W is a symmetric LDR random vector, then its extend¥eri4, for any
linear mapA selected fron¥, ,, is also symmetric. The truncation W by the inverse
of 4, denoted byW ="' is also symmetric.

Proof: We first prove that anyjy-sized extension of g;-sized symmetric random
vector remains symmetric. We want to show that

Vb€ [0,q, — 1], P(W*A = w) = e P(W*4 = w?) (2.26)

Caseb ¢ Im(A):

¢ In the case wheny, # —oc:
We have to show that

e P(W*A = w) = P(W*4 = w?)

If w, # oo, thenP(W>*4 = w) = 0. If w;, = oo, thene=*» = 0. Thus, we have to

show that
Vb ¢ Im(A), P(W** =w') =0 (2.27)

This is equivalent to show thati ¢ Im(A) such thatw,”* # co. We havew;” =
wyy;—wy. Itis sufficient to choose= b, thenw,” = —w,. Sincew;” = —w, #
by hypothesisP(W*4 = w*?) = 0.

e In the casav, = —oo, to prove that equation (2.26) is fulfilled we have to prove
that P(W*4 = w) = 0, which is straight forward becauset I'm(A), and hence
P(W*A = w) # 0 = w, = co. By taking the contraposition, we end on the
wanted result.

Hence we have proved equation (2.26) in the case wherém/(A).
Caseb € Im(A):
We have

1

P(W*h =w) = P(W =w" )ILim 0000

Sinceb belongs to/m(A), we denote by: the element if0, ¢; — 1] such thath = Aa.
The input messag® is symmetric, hence we have

P(W = w*4) = ¢"4a P(W = (w*47)te)

. xA " I\N+a __ xA~1 xA~1
Vi e [07 a1 — 1]7 (W )z = Wip, — W,
= WA(ita) — WAa
_ +Aa
= Wy,

+Aa> ‘><A—1

(2

:(w



84 Chapitre 2 : Hybrid LDPC Codes

Thus
P(WXA _ W) — 6wA“P(W — (W+Aa)XA_1)Hi¢Im(A)5wi7OO (228)

But we note that:

P(W*4 = wtie) = p(W = (w+Aa)XA*)Hjélm(A)aw;Aam (2.29)
e We first examine the case,, = oo:

P(WXA = w9 £ 0 = Vi ¢ Im(A), w4 = oo

2

But, ify = LDR ' (w), w;LA“ = log <L) and sinceay,, = 0 becausev,, =

YAa+i
oo, we cannot haves;* = oo, Vi ¢ Im(A). Hence we havev,, = oo =
P(W>*4 = wt4a) = (. This proof by contradiction ensures that equation (2.86) i
fulfilled whenw,, = oc.

e Then we examine the cagse, = —oo:

P(W** =w) £0=Vi¢ Im(A), w; =00

But w4, log (;’%) = —oo implies thaty, = 0. Hence we cannot have

w; = log <Z—0> forall i € [0, ¢, — 1]. Hence we havevy, = —co0 = P(W*4 =

w) = 0. This proof by contradiction ensures that equation (2.26)lfilled when
WAHaq = —OQ.

e Finally we examine the casey, ¢ {—o0, o0}:
In this case, for allj € [0,¢2 — 1], 0,440 0 = Ouwpey;—wasco = Owagyjo0r FOI
alli € [0,go— 1], if i & Im(A), then3j ¢ Im(A): i = Aa + j. Therefore
{i€[0,qa—1]s.tii ¢ Im(A)} ={j € [0,¢qo — 1]s.t. Aa+j ¢ Im(A)}. We finally
obtain:

Hjéé'm(A)éwa“,oo = Iig1ma) Owi o0

The above equality allows to insert equation (2.29) intoagigm (2.28). We can
now conclude that, whem,, ¢ {—o0, oo}, equation (2.26) is satisfied.

This completes the proof of the first part of lemma 6.

We now prove that any truncation of a symmetric random vaetiorains symmetric.
We have to prove that

Vael0,q —1], P(W ' =w)=¢e"P(W'" =wt) (2.30)
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Let callb = Aa.
P(WA =w) = Z P(W =x)
XITO=W0,LA1=W1,..., TA(qy—1)=Wqy—1
- )3 PW = x)

XITO=WO0,TALI=WI 55T A(qq —1) =Wqy —1

e e P(W =xT?)

I
(]

XIZO=WO,TALI=W1 55T A(gqq —1) =Wqy —1

= W > P(W = x*)

XiTO=W0,TA1=W1,--sTA(qq —1) =Wqy —1

= e p(WHAT = wt)

(2.31)
The last step is obtained by noting that:
Vi e Im(A), x;rAa = TAati — TAa = WaqA-1; — Wa = (w+b)z‘XA71
We have obtained equation (2.30).
0

Please note that, in the sequel of this chapter, for all the mofs, we simplify the
notations as follows: For all groupG(q), for all i € [0,q — 1], the elementy; is now
denoted byi. Also, sinceA is a linear map, the matrix of the application is also denoted
by A. Hence, for all linear map! from G(¢;) to G(¢2), A(a;) = a; with o; € G(q;) and
a; € G(q2), is translated byli = j.

2.7.2 A useful lemma
Lemma 10 Ej; denotes the set of extensions froity; ) to G(g;). For givenk andl,

Card(A c Ek,l : Ailj = Z) B 1

V(i,j) € [, q — 1] x [1,q — 1], Card(Ey,) g1

Proof: p, andp, denotelog,(gx) andlog,(q;), respectively.
Without any constraint to build a linear extension A frang,) to G(g;), except the one
of full-rank, we have2” — 2"~! choices for thex'" row,n = 1,...,p,.
For giveni and;j, with the constraint thatli = j, we have2r—% + 2131 — 271 choices
for then™ row,n = 1,. .., p;, whereb; is the number of bits equal tbin the binary map
of ;. Thus, the number ofl such thatd: = j is dependent only on Let say

CardA € By, : A7j=1i) =

we have
q—1

Z Card A € By, : Ai = j) = Card Ey,)

J=1
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Therefore

- CardAe By, : Ai = 1
Vi) €l g =1 > [La =1l . Carc(%kz) . Tg—1

2.7.3 LM-invariance

Lemma 7. If a probability-vector random variabl&” of sizeq, is LM-invariant, then
for all (i,7) € [0,¢q2 — 1] x [0,¢2 — 1], the random variable$; andY; are identically
distributed.

Proof: For any(qi, ¢2), ;1 < ¢2, T1 2 denotes the set of all truncations fraig,) to
G(q1). We assum& LM-invariant. A~! and B~! denote two truncations independently
arbitrary chosen iff ,. For anyl andk in [0, ¢, — 1], we can choose extension A such
that! € Im(A) and A~/ is denoted byi. Also, we choose B such thdi = k. Y
LM-invariant implies

Vi, A7V BT €[0,q1 — 1] X Thp X Tha, PV = 2) = P(YP = 1)

This is equivalent to

and hence
P(Yl:x):P(Yk:x)a v(l>k)€[O>QQ_1]X[O>QQ_1]
O

Lemma 8. A probability-vector random variabl® of sizeg, is LM-invariant if and
only if there exist;; and a probability-vector random variablX of sizeq; such that
Y =X.

Proof: Let us first assum®& = X and prove thal is LM-invariant. This means that
we want to prove that for anyB, C) € Ey5 x Eyo, Y*F ' andY > are identically
distributed.

By hypothesisy = X*4, with A uniformly chosen inZ, ,. We define the matrix, of
sizegs x ¢;. This matrix is such tha¥ = a4 X and is defined by

Vi=0...0 —1,Vi=0...qa — 1, aali,j) = 1 Iifi=A]
= (0 otherwise

Thus, vectorY truncated by any linear map is expressed by:
Y5 = aLa,X
The same holds for linear map

-1
YO =ala,X
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oo, andaLay correspond to a selection gf rows ofa,. Thus, showing thay =5~
andY ¢ are identically distributed is equivalent to show that bothtricesaLa 4 and
alaa are identically distributed, for an andC' in E; , and for A uniformly chosen in
E, 5. The number of elements &, whose indexes are ihm(A) and which are selected
by oL, is equal to the cardinality afm(A) N I'm(B). The same holds faf'.

E4(f(A, B)) denotes the expectation of the functipapplied to random variable$ and
B, over all the realizations od.

Let us first show that

E4 (Card(Im(B) NIm(A))) = Eq (Card(Im(C)NIm(A))), V(B,C) € EiyxE 3, A~Ug,
(2.32)

EA (Card(Im(B) N Im(A))) = m Z Card(Im(B)NIm(A))
2) A€E

q1

S Zr -Card(A € E15: Card(Im(B) N Im(A)) =)

Card(E12) —
1 q1 ql
= G 2 Card(A € Evy: Aiy = ju, ..., Aiy = j,
Card(El,Q) Tz;r <’I”> Zl;él ar ( € L2 11 Ji, , AL i )

€G(q1)

wherej; ... j, are subsets afm(B).

In the same way as for lemma 10, we can showdthatd (A € E, 5 : Aiy = jy,..., Ai, = j,)
is independent of; . .. j.. Hence we conclude on equality (2.32).

Let us now consider a given subget . . j,. of sizer, taken from the image of any linear
map in £, » (hence withr < ¢), and a given subsét . .. i, of G(q;) of sizer. In the
same way as lemma 10, we can prove tiatd (A € Ey 5 : Aiy = ji, ..., Ai, = j,) IS
independent of; . . . j,.

The first part of the proof ensures each row, of both matriges, anda/ a4, to have the
same probability to containia(they have at most ong. The second part of the proof en-
sures that, given rows ofa 4 of indexesjy, ..., j,, the combination of locations of ones
in the matrixa5a 4 is independent of which rows, . . ., j,. of a4 have been selected by
ak. Hence, this combination is independentgf.

Forany(B, C) € E) 2 x Ey 5, for Auniformly distributed inF », both matricest; a4
andaLo, are therefore identically distributed. Sind&?™" = a%a,X andY*¢ ' =
ala, X, Y*B andY > are identically distributed for any3, C') € E,  x E 5, that
means thal is LM-invariant.

Let us now assum¥ LM-invariant, and definé& by X = Y>*4™" with A uniformly
chosen ink; » and independent 6f . We have to show thaX is independent ofl.

P(X =x|A) = P(Y**" = x|A)

We can write, thanks to definition 8, for all arbitrary selected fronk; , independently
on A,
PY*4 =x|A) = P(Y*P ' =x|A) = P(Y*P =x)
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We finally obtain
PX=x|A) = P(Y** =x)

This completes the proof.
O

Lemma 11 The product of two LM-invariant random probability-vecias LM-invariant.

Proof: Let U andV be two LM-invariant random LDR-vectors of size. Let A and

B be any two linear maps fror(¢;) to G(g,). SinceU is LM-invariant, U*4™" and
U*B™" are identically distributed, by definition of LM-invariaac The same holds for
V. UAT VAT and U*B ' V*B™ are therefore identically distributed. Moreover, it
is clear thatU>4~'v*4™" = UV*4' for any A. Hence,UV**" andUV*? " is
LM-invariant. This completes the proof.

O

2.7.4 Proof of Theorem 3

X (*) denotes a probability-vector random variable of sjzeThe j** component of the
random truncation aX® is denoted by)%. The;** component of the random extension
J

of X*) is denoted by}%. The j** component of the random extension followed by a

J
random truncation oK *) is denoted by}tﬁ.
We define the operatdp, by:

1 q—1 X(l)
D (X)) = SR\
@ —1 x\

J=1

The following equalities are hence deduced from the prevawrfinitions:

1 qr—1 X-(k)
E = T1(1|% E :
2T 2B\
1 a—1 X(l)
s = B
@=L X
= D,(XD)
1 qr—1 Xz(k)
E = ) (k) ZE G
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To shorten the notations we can omit the index of iteratioMoreover, in the remain-
der of this proof, we choose to use simpler notations althaug fully rigorous: RU-)
denotes a message going into a check node of degire& (¢;) while R(*) denotes a
message going out of a variable of degiée G(¢;). However, there is not ambiguity in
the following thanks to the unique use of indexes k, [ and we always precise of which
nature is a message.

Then'™ component of a message coming from a variable of degireé/(q;) is denoted
by R Thenth component of the initial message going into a variabl&-im;) is
denoted byR&O)(k). Then'* component of a message going into a degreariable in

G(qx) is denoted byL"*). The data pass, through a variable node of degreeG (g ),
is translated by
i—1

RU:K) — R(O)(k) H Lg’k)

n n
p=1

Let Rﬁ"”) denote the average message going out of a variable no@égjr. By noting
that the messagds™*) are i.i.d. when(i, k) is set, we have:

® 1 & O T L
D,R®) = S 1(ilk E || —sm e
(R = 2 M7 2 B\ Gy

2

qk (0)
= ) II(ilk) L Y E \R” o
7 n=1

o — 1 =

Qo — 1 =

1 qk
= ) TI(ilk) Y E \ W
7 n=1
The last step is obtained thanks to the LM-invarianck®f). Finally we get:

Da(R{") = D (RO™) S " T1(i[k) Dy (LEP) (2.33)

Moreover, if we consider two LM-invariant vectas®) andL "), whereL(*) is the random
truncation ofL.") , it is clear thatD,(L*) = D,(L®"). Hence:

Do(LM) = "TI(j, 1]i, k) Dy (LUY) (2.34)
4,

whereL (") is the message going out of a check node of degiae(q;).
Let us recall the result of equation (68) in [48]:

1-D(L) =) pa(l- DR +0 (DR,
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We can apply this result, since our definition bf, corresponds to the definition the
authors gave td. We obtain

— D,(LUYY > (1 — D, (RUD))I=L 4 O(D,(RUD)?) (2.35)

whereRUY) is a message going into a check node of degrieeG(q;). It is straightfor-
ward from definition ofD,(-) to get:

D,(ROD) = "TI(i — 11 D, (R*)) (2.36)
/ k/

By gathering equations (2.33), (2.34), (2.35) and (2.3@) pbtain:

- i—1
Da®P) < D,RO™) ST IR | SO IG, Ui, k) (1 - Z (i’ k|5, 1) ( D Rk >)> B 4 O(Da(RUF)2)
i - (2.37)
which is also:
] 1 i1
Da(RM) < D®RO™) ST 1(ilk) | 31, Ui, k) (1 -S>, K504 D (R F >)> ] +0(Da(R¢-1)?)
' - o (2.38)

where D, (R,_1) = 3=, D.(R®,). By power series in the neighborhood of zero, we
finally get:

(k) . . . . 3 q ! — 1 ’
Da(Ri™) < Da(ROIIG = 20k) TG Ui k) (G=1) DT, D)7 Da(RiED+O(Da(Re1)?)

(2.39)
Let ¢®) = D,(R©™) andp(y|z) the transition probabilities of the memoryless output
symmetric channel. We recall that we assume that the aiszevdeword has been sent.
Then

® = D,(ROY)
1 = p(yli)
= E
qr— 1 Z ( p(y[0)
— p(yli)
f— 0
qr — 1 Z / y|0 (410)

- Ly [ Velipiulojdy

o =13

We introduce hereafter some notations, for ease of reading:
Letx be a positive real-valued vector of size the number of défiégroup orders. Let us
define they function by:

=1
g(k,c® 11, x) = ¢OTI(i = 2|k) Zﬂj,lhk j—lZH qk —
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For more readable notations, we also define the vector ofitpation G(x) by:

G(x) = {g(k, ™, 1L x) }

which means that thg" component oG (x) is G, (x) = g(p, ¢, II,x). Let us denote
the convolution by®. Thenx®" corresponds to the convolution of vectoiby itselfn
times. With these notations, we can write, forat 0:

Da(Ri5,) < gk, e, TL GV ({DL(R) ) + O(Da(Ry)?)

Let Pe(k)t = PE(ng)) be the error probability when deciding the value of a symbol i

G(qx) at iterationt. The global error probability of decision B = >, TI(k ) . Let
us recall lemma (34) in [48]:

L Du(X®)? < PX®) < (g — 1)Du(X®) (2.40)

4qy

Let us consider a giveh If there exists a vectot such thatlim g(k, c®, 1T, G¥"~Y(x)) =
0, then there exist andn > 0 such that ifvk, Da(Rﬁf)) < «, then

D.(RF,) < KpDo(RED), Wi/ (2.41)

0

where, for allt’, K} is a positive constant smaller than If we considerPEtO < £such

thatVk, P""° < (qze)?, then equation (2.40) ensures thiat D, ( ) < 7%:@ < a.
As previously explained, in this case, there exits> 0 such that inequation (2.41) is
fulfilled. By induction, for allt > ¢, there exists > 0 such that

Du(R{},) < K Do(R{™), I

We havev(k, t), Da(Rﬁk)) > 0, therefore the sequené@a(Rﬁk))}gﬁtO converges to zero

for all k. Finally, equation (2.40) ensures that, foriallp” converges to zero agends
to infinity. Thus,P?, the global error probability, averaged on all symbol sizesiverges
to zero ag tends to infinity.

This proves the sufficiency of the stability condition.

2.7.5 Information content Through Linear Maps

Lemma 12 Let z;, denote the mutual information of a LDR-messaggoing out of a
G(q,) variable node, and:,,; the mutual information of a LDR-messagegoing into

a G(¢2) check node.z;, and z,,; are the input and output of the extension. They are
connected through the following expression, which is iedejent of the linear extension:

(1 = i) loga(q1) = (1 — Zour) logs(q2) (2.42)
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Proof: By hypothesisy = v*4. We define the matrices, and3, of size(¢g — 1) x
(g1 — 1) and(g2 — 1) x 1, respectively. These matrices are such that a,v + [a.
There are defined by

Vi=1l..q—1Vi=1...qo0—1, au(i,j) = 1 ifi=A]
= (0 otherwise
Vi=1...qo0—1, fa(i) = 0 ifiecIm(A)
= ( otherwise

where(' is a strictly positive very big constant, representing ityinThe Jacobi matrix
at pointu of the linear map applied to LDR-vectors is hentgu) = o4. We then have

(1 = zoue) logy(qa) = Ew <log2 (1 + Z_ @Wi>>

i=1

g2—1
= / : ./log2 <1 + Z ewz) P(W = w)dw; ...dwg,
i=1

But we know that

= 0if j ¢ Im(A) (2.43)

Hence

(1 = Zour) l0gs(q2)

q1—1
= / - / 10g2 (1 + Z ewi> P(WAl =Wi,..., WA(q1—1) = wa,l)dwl L dwa,l

q—1
log, (1 + Z e“) PVi=wv,..., V1 =04-1)dvy ... dvg

= (1 —wn)logy(q1)
U

2.7.6 Mutual information of a probability vector and its Fourier Trans-
form

Let p be a probability vector of siz¢ associated to a symbol (#F'(¢), andf its Discrete
Fourier Transform of size too. p; and f; are thek-th and thei-th components op and
f, respectivelyf is defined by:

fi=> pe(=1)"*,  Vie GF(q)
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i - k is the scalar product between the binary representatiobstbfelements andk.
The mutual information of a symmetric probability vectgs, under the all-zero code-
word assumption, is defined by

q_l f
-E, <logq(1 + Z f_:)>>
i=1
As in the binary case, we want to prove that

Tp=1—1o¢

wherez; is defined byjzy = 1 — E, <10gq(1 +y! %)) Proof:
We want to prove that
Tp=1—1o¢

that says
- /i — p
Eg logq(l + Z =) = 1-— <logq Z — )
i1 Jo — Po
qfl f 1
Ef { log, (1+ ) = =  E,(1-log,(—
f gq( Zz:; fO) p( gq(po))
q— f
Er (log,(1+ ) f—l) = E,p (log,(gpo))
fo=1 implies
qg—1
E¢ <logq(z J 2)) = Ep (log,(gqpo)) (2.44)
=0
q—1 qg—1qg—1 )
Sinced” fi = > > p;(—1)"*, it finally remains to prove that
=0 =0 k=0
q—1 g—1
pj(_l)l.k =0
=0 k=1
q—1 qg—1
p; Y (D" =0 (2.45)
k=1 =0
which is ensured by
q—1
(-1)"* =0, Vk={l...q—1}
=0

We are going to demonstrate this last expression.

Let say that: hasm bits equal tol in its binary representation.
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e miseveni-kis

m/2

even L3 (7))  times (2.46)
=0
m/2—1

odd L 12 (y7,) times (2.47)
=0

e misoddi-kis

mTfl

even L 12 (7)  times (2.48)
=0

odd % ZZ () times (2.49)
=0

We complete the proof by showing that equations (2.46) ad¥j2re equal, so are (2.48)
and (2.49):

(1-1)"= i (ZL) - Lmz/éj <727;) B Wg” (25? 1) =0

=0

Hence



Chapter 3

Machine Learning Methods for Code
and Decoder Design

The initial subject of the thesis was to investigate how nreekearning methods might
be used for optimizing finite-length codes, i.e., for lowegrithe sub-optimality of BP
decoding by breaking cycles. The starting idea was to bhagdTanner graph of a code,
by means of a supervised learning process applied to thé gfaomother code, in order
to decide which edges should be pruned away.

The first section presents works from the literature, faogisin the relations between
machine learning and coding.

The second section details our studies done around thisadeang which the mod-
eling of the BP decoding process by a neural network, and wii &n approach has
not been successful. The final goal was to consider hybrid@.Détes as a tool to build
codes with good finite-length properties. This was planmete achieved by learning
how to assemble hybrid nodes in order to lower the sub-opityraf the BP decoder on
finite-length codes. We explain why we could not succeed fimiohg a valid framework
for this purpose.

The third section investigates how to modify the BP decodeorder to lower its
sensibility to graph cycles, by adapting it to the graph ofveig code. For this purpose,
the BP decoder has been considered as a classifier with racamgoovement.

All the codes considered in this chapter are binary LDPC sode

3.1 Previous works

3.1.1 Information-theoretic models of artificial neural neworks

Early after Claude Shannon wrote the foundations of infdionetheory, a paper by At-
tneave [69] introduced the idea that information theory rotgr an explanation for per-
ceptual processing. In Simon Haykin book [70], a thorougécdgtion of information-
theoretic models that lead to self-organization is dedail&e can cite this book (chapter
10, page 506)‘A model that deserves special mention is the maximum mutt@ima-
tion principle due to Linsker [71]. This principle statesatitthe synaptic connections of

95
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a multilayer neural network develop in such a way as to mazentihe amount of infor-
mation that is preserved when signals are transformed ah gmocessing stage of the
network, subject to certain constraints.”

Based on this analysis, we are going to describe the decodirigPC codes as a process
that can be code adaptive, and see where the mutual infamstould be maximized on
the artificial neural network to model the decoding process.

3.1.2 Learning methods and error-correcting codes

Some articles have presented the link between neural netmathods and error-correcting
code approaches. In 1989, Bruck et al. [72] presented oteeahbst significant works in
this field: "Neural Networks, Error-Correcting Codes, atiyfomials over the Binary-
Cube". The authors state that the Maximum-Likelihood (MeFadding of a linear block
error-correcting code, is equivalent to finding the min-atia specific graph. Hence,
based on their work on the relation between the maximizatfon-cubic polynomials
and error-correcting codes, the author proposed to usedaertechniques to find the
maximum of these polynomials.

In 1992, Tseng et al. [73] focused on decoding Hamming cotiggpe (2" — 1, 2" —
1 — n) and extended Hamming codes of ty(@ 2" — 1 — n) with a single-layer or a
double-layer perceptron, of low complexity, whose disaniating functions were poly-
nomials of high degrees.

3.2 Machine Learning Methods for Code Design

3.2.1 Problem

The aim is to modify the Tanner graph structure of a motheednarder to build a new
code with a good minimum distance. What we consider as “gaoliibe detailed in the
following. We have decided to remove some edges from thehgophe mother code
to obtain the new code. However, we generally cannot inerdasminimum distance of
codes by lowering the density. Indeed, it has been shown/ijtfht all the sequences of
LDPC codes reaching the capacity of the erasure channelehiarge fraction of degree
two variable nodes which gives rise to low-weight codewor8sich codewords corre-
spond to cycles, in the subgraph of the Tanner graph, whiclago only degree two
variable nodes. Thus, the problem we chose to address istdpwne away edges in
the Tanner graph of a mother code in order to obtain a lessedmge, with a minimum
distance higher than a code of same density, known for hgllgood minimum distance.

For this purpose, we consider the impulse method presentfb] to compute the
minimum distance of LDPC codes. The basic principle of thethod is to feed the BP
decoder with impulses (an impulse being an all-zero vectoejet for one or very few
components set to one), then the smallest weight codewaletised by a list decoder.
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In order to decide which edges of the mother code should beepraway to lower the
least the minimum distance, the idea is to formalize a aedaalogy that may be found
between the graph of a code and an artificial neural netwokdN)A The ANN definition
is presented further. In that case, the addressed problgmuoing edges appears to be
not a common artificial learning problem. Indeed, applyihgaaning process to an ANN
basically means that the structure, i.e., the connectiehsden neurons, are already de-
termined, and what is learnt is the weight of each connectidinen the learning process
is said "supervised", the desired output of each neuromhewatput layer, is known for
each input prototype from a training set.

Our problem is rather different since it consists in finding structure of the network:
what should be the connections between neurons. Howeeestriicture of the network
is usually decided in aad hocway or with simple heuristic rules [74]. Indeed, except
an exhaustive search, none method is known to determineptiraa architecture for a
given problem. A suboptimal solution consists in using ¢tatdive algorithms starting
from a minimal architecture then adding neurons and cororeprogressively during
the learning process [74]. Another solution considers garse technique: starting from
a fully interconnected structure, they remove neurons onegions which seem non-
essential. We are going to focus on the latter methods.

3.2.2 Neural networks and codes Tanner graphs
Definition

Definition 10 A formal neuron is basically a processor which applies a sengperation
to its inputs, and which can be connected to other identicat¢g@ssors in order to form a
network.

Such a neuron is depicted on figure 3.1, and defined in [75].

x;. heuron inputs
1 A: neuron activation
= y: neuron output
T2 wo
d f p Yy w;: synaptic weights
T3 s h: input function

. f: activation (or transfert) function

T4 g output function

A= f(h({wi}i=1..4, {wi}i=1..4))
y = g(A) (= A most often)

Figure 3.1 : General definition of a formal neuron
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The(h, f, g) combination defines the type of the neuron.

Summator Neuron The most common definition of a formal neuron corresponds to
the particular case where the input functioms a dot product between the input and the
weights.

h: dot product

1
w1 f: any kind of non-linear function

(echelon, sigmoid, Gaussian, ...)

w2
dp y defining the type of neuron

I3 w3 . . .
g. identity function

€2

y= f(Z?zl w;T;)

Figure 3.2 : An artificial neuron which computes the weigtgeach of the inputs, and the
apply the activation functiorf.

Tq

Polynomial Neuron Such a kind of neuron [75] is depicted on figure 3.3.

h: polynomial
1
w1 f: any kind of non-linear function

(echelon, sigmoid, Gaussian, ...)

w2
diDa
g identity function

€r3 w3

T2

wy

T4

E.g., for an order-2 neurow: = f(3_, , wiwgz;zy)

Figure 3.3 : A polynomial neuron.

Modelization of the decoder

Since the goal is to build a Tanner graph on which the BP dedsdes less suboptimal
as possible, we translate the decoding on the Tanner grajble abde as the process of
an Artificial Neural Network (ANN). Let a message from vat@&hodev to check node

at iterations be described by 2-dimensional probability vector!? = (2% (0), (1)),
wherez!) (0) andz!? (1) correspond to the conditional probabilities for the valéatode

v to be equal to O or 1, respectively. The Logarithmic DensigyiR(LDR) m), associ-

. . . (t)
ated withx'?, is defined asny = log (‘”(TE?;) The same holds for a messagé from
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check node: to variable node. The Logarithmic Likelihood Ratio (LLR) correspond-
ing to the observation of the'” bit is denoted byl LR(n). V(v) denotes the first level
neighborhood of variable node i.e., all the check nodes which are connected hy a
single edge. The same holds (c) of check node.. The BP equations corresponding
to update these messages can then be expressed by

m{) = LLR(v) + Y p4 " (3.1)
deV(v)\e

(t) (t)

tanh(p;“ )= 11 tanh(mzuc) (3.2)
ueV(c)\v

As seen in the previous section, many inputs corresponddio eauron, but only one
output does. Hence, the ANN, modeling the BP decoding, isendddsummator and
polynomial neurons and corresponds to unfold the decodergtions. However, one
pattern of the network, corresponding to one iterationosancopy of the factor graph.
This is illustrated on figure 3.4.

Factor—graph

Input layer Output layer
| |

One pattern = One decoding iteration
\

As many patterns as iterations
Figure 3.4 : A factor graph and its corresponding neural agéiwEach neuron corresponds
to an edge of the factor graph, hence there2al& ;.. Vi, Neurons in the network.

In this network, the number of layers is double the numberesfoding iterations,
and the number of nodes on each layer is equal to the numbetgesan the Tanner
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graph. Hence, removing an edge from the Tanner graph of ttie widl correspond to
removing the corresponding neuron in all the layers. Fdhovwihe convention of figure
3.4, a neuron which processes a message going out of a wariatle is called circle
neuron, while a neuron which processes a message going eutlwck node is called
square neuron. The message going out of a variabd&vards a check is computed by
the corresponding circle summator neuron:

= LLR(v) + Z wéitﬂ)pg)_l) (3.3)
deV(v)\e
Wherew(2t+ ' is the weight of the messa@gv_l) in the calculation ofn.".

Analogously, the message going out of a chetbwards a variable is computed by
the corresponding square polynomial neuron:

(t) (t)

DPco ot Maye
tanh || 2D tanh 3.4
an ( ) w, =’ tan ( 5 ) (3.4)

ueV(c)\v

wherew? is the weight of the messa@ez(fc) in the calculation ofog?

In the particular case, where all the weights are equal thelpeural network is the
BP decoder. We see how weights could be used to modify the BBdde by adding
degrees of freedom. This will be discussed in the section 3.3

3.2.3 Cost function for pruning

In the following, we use identically the term cost functiondathe term error. If the
global cost function for pruning edges is the minimum distaaf the code with Tanner
graph corresponding to the ANN, this criterion is a globé&kcion. However, we need to
differentiate the Tanner graph edges, between each othergder to choose which ones
should be removed. Therefore, it is necessary to decidehvare the desired outputs on
each output layer neuron. In our case, this means that wetoekgtide what should be
the value of each message going out of check nodes in thedestion.

Making this choice has been the first critical issue for tipgraach. In a completely
heuristic way, we chose to penalize edges connected toblam@des whose value, in
the smallest weight codewords, is zero. This means thatcht ieput prototype, all the
weights of the ANN corresponding to the same edge of the Tagmagh are updated in
the same way: they are lowered when the variable value isimefte smallest weight
codewords, increased otherwise.

3.2.4 Pruning methods

In the aforementioned heuristic framework for pruning, tgeneral pruning methods
arise.

The first approach is to consider the sum of the weights of ections to each neu-
ron, then prune away the neuron with the smallest sum. Thhodstbased on such an
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approach are known asagnitude based methofi&], because they eliminate weights
that have the smallest magnitude. However, as mentionedrij this simple plausible
idea unfortunately often leads to the elimination of wrorgjgits, as small weights may
be necessary for low error. The second solution is to ap@yGptimal Brain Surgeon
(OBS) [77], which is far better than the magnitude based outhOBS is based on the
functional Taylor series of the network errbrwith respect to weights [77]:

T
op =28 vt Low” Hdw + O|[ow]l?) (3.5)

T ow
Here is the OBS procedure:

1) Train a “reasonably large” network (i.e., adapt its weigdttsred in the vectow)
towards a minimal errofs of the network.

2) Compute (iteratively) the inverse of the Hessian matiix'. H actually corre-
sponds to the second order derivative of the network ertate® to the weights.

3) Find the index; of the weightw, giving the smallest “saliencyL,. The saliency
is the increase of the network error from removing the c@oesing edge. We get
the following expression fof

wQ

1
L, —-—¢
! 2 [Hg,

If this candidate error increase is much smaller thanheng'” weight should be
deleted, and we proceed to steOtherwise go to step.

4) Use theg of step3 in order to update all the weights with the following formula

Wq
[H g !

with ¢, the¢™ column of H~!. Go back to step.

5) No more edge can be pruned without large increasg.irt may be necessary to
retrain the network.

This algorithm is valid only when the first (linear) term oftedion 3.5 vanishes, as well
as the third and all higher order terms. OBS assumes thahitteand all higher order

terms can be neglected [77]. No more explanation of thismapsion is given in [77]. For

the first term to vanish, the network must have been train@dacal minimum in error.

In order to apply this algorithm, it is necessary to define éh@r of the network,
thus, to determine the desired outputs of this network. Walk¢hat an output neuron
of the network corresponds to an edge of the Tanner graphinipigse method allows
to find low-weight codewords. Defining the desired outputshef network is therefore
equivalent to define the quality of an edge of the Tanner gnapérms of the output of
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the impulse method. This means that we must decide what é¢h@uthe value of the
messages after a given number of iterations.

Our heuristic was to penalize edges connected to varialleswwhose value, in the
smallest weight codewords, is zero in order to optimize tiremum distance of the code.
However, this this tends to modify the Tanner graph and to ituinto a new code, whose
minimum distance may have no relation with the minimum diseawe were trying to
optimize at first.

To see how finding a new Tanner graph by pruning a mother codetitted to be
solved by pruning an artificial neural network, we can expiasanother way the above
problem of the choice of the cost function: Modeling the &igiropagation decoder by
an artificial neural network, as done in figure 3.4, leads twser the BP decoder as a
classifier which, to a given noisy observation of a codewassociates the most likely
sent codeword. However, the above pruning approach aimadih@ a Tanner graph.
This does not consist in finding a good classifier for a givebfam, as neural networks
are meant to do, but in finding classes (the codewords) onhthe classifier depends.
Thus, due to the difficulty (impossibility?) to find the retat between minimum distances
of the mother code and its pruned version, we could not findewaiat cost function in
such a framework. Instead, we decided to focus on a bettedgo®blem and to propose
a relevant approach.

3.3 Machine Learning Methods for Decoder Design

In this section, we switch to another problem than code dedNg consider a given code
which sets the classes, and we are going to look for the beesditier to classify inputs in
the right classes. The classifier is the decoder. The appisaetailed below.

3.3.1 Decoding is a classification problem

As aforementioned, the decoding problem can be seen ass#icktson problem, where,

for each noisy observation received from the channel, ormesata find the correspond-
ing sent codeword. If we assume a linear code of ledgtith K information bits and

M = N — K redundancy bits, decoding consists in finding to which dlas®bservation
belongs, among’ classes corresponding to all possible codewords, in thevepace

of dimensionK. Hence, a class corresponds to a codeword and is made oéalbiby
variants of this codeword such that, for al€ 1,..., N, if the i*" bit of the observation

is different from thei*” bit of the codeword, then the Hamming distance between the

codeword and the observation must be lower tﬁéalg@ with d¢ (i) being the local
minimum distance of bit in the code, as defined in [38]. In other words, the class of a
given codeword: corresponds to the set of all points closectthan to any other code-
word. A class is therefore the interior of a convex polytoipespme cases unbounded)
called the Dirichlet domain or Voronoi cell far. The set of such polytopes tessellates

the whole space, and corresponds to the Voronoi tessellatiall codewords (i.e., to the
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Figure 3.5 : Voronoi diagram (or Dirichlet tessellationhetpartitioning of a plane with n
points into convex polygons such that each polygon congiastly one generating point
and every point in a given polygon is closer to its generapioimt than to any other.

code). Hence, we know theoretically the optimal classifidnch corresponds to imple-
ment ak -dimensional Voronoi partition of the Euclidean spa¢g(2)" with codewords

as cell centroids, as sketched on figure 3.5. However, imghdimg this partitioning is

intractable in practice for long codes, and correspondstixi implement maximum-

likelihood (ML) decoding. That is why this classificationoptem is usually solved with
a BP decoder, which actually only implements an approxiomatif the Voronoi tessel-
lation frontiers, i.e., of ML decoding. Many previous wofd®, 20] have characterized
the phenomenon which arises when BP decoder is used on loaplgy and which em-
phasizes the difference between ML decoding and BP decoMhglecoding is always

able to find the codeword closest to the observation (eveugtindt makes errors be-
cause this closest codeword is not the one which has bee); aémreas BP decoding
may converge to fixed points which are not codewords. Thesgsare usually called
pseudo-codewords, and it has been shown [19] that they &irstamportance in the loss
of performance of BP decoding compared to maximum-likelthdecoding.

To try to improve the BP decoding, we focus on pseudo-codasydaut indirectly. In-
deed, we make the assumption that pseudo-codewords areltbators that the frontiers
of the classifier implemented by the BP decoder are not theiéns of ML decoding.
Hence, we are going to try to find a correction to BP decodingdnysidering it as a
classifier.

103
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3.3.2 Modelization of BP decoding

The classifier we decide to consider corresponds to a speasie of networks made of
neurons defined in definition 10. BP decoding is modeled by N & the same way as
in section 3.2.2 (see figure 3.4). The operations processeidie neurons and squared
neurons are respectively:

m{) = LLR(v)+ Z w((iitﬂ)pff;l) (3.6)
deV(v)\c
(20)
pg)) () |m1(fc) e
tanh 5 = H sign(my?) | - H tanh 5 (3.7)
ueV(c)\v ueV(c)\v

In the particular case where all the weights are equal toch auneural network is exactly
the BP decoder. The weights are additional degrees of fred¢dat we intend to set in
order to adapt the BP decoding rules to a given Tanner graghhars lower its sub-
optimality. We propose a modification of the BP decoder basethese weights. From
now on, we call this BP decoder with added-weighisighted-BP

We have hence defined how the correction weights are goingothfynthe BP de-
coder: they are coefficients for the variable node updateexponent to the absolute
value of the hyperbolic tangent for check node update. Thesghts are meant to turn
the BP classifier into a classifier which matches the tope®oif the graph of a given
code, in order to better approach ML classifier. The problem i$ to choose those cor-
rection weights. First of all, since our goal is to make deegé success, we must define
a cost function to measure the quality of the decoding. Da@teng those weights, which
corresponds to solve a learning problem, will hence be addckthanks to supervised
learning.

3.3.3 Cost function

We now present the problem of the choice of the cost funchiahwe have to minimize.
Our problem is to make the weighted-BP decoder less seasitivorrelation of the mes-
sages on the factor graph of the code. We want thus to find themapweights for a
given LDPC codé, i.e. for a given parity-check matrid, which provide a weighted-BP
decoder as close as possible to ML decoding. We hence hagekddr a cost function
that codes the loss of performance of the weighted-BP deeggidied to the given LDPC
codeC, compared to the ML decoder. This means that we want to meakarloss of
performance of weighted-BP applied@daompared to classical BP decoding applied on
a cycle-free LDPC code with irregularity profile identicald. The key idea is to measure
the mutual information between the input of the channel aedsages of weighted-BP
decoding ofC at each iteration, and to compare it to the mutual infornmati@ would
have if the graph was cycle-free.

In the sequel, we shorten the expression "mutual informdieiween the input of the
channel and messages" by "mutual information of messages".
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The evolution of mutual information of BP decoder appliedaaeycle-free graph has
been extensively studied by TenBrink in [14], who calls #wslution EXtrinsic Informa-
tion Transfer (EXIT) charts. Figure 3.6 depicts how the atioh of mutual information
of messages, along the decoding iterations, can be seediag éor the loss of optimality
of BP decoder in the non free-cycle case. Indeed, we obseavéte mutual information
of messages is able to reach a higher value, when decodii(g,&)éMacKay LDPC code
of length/V = 504, than for lengthV = 96. For the latter, BP decoding gets stuck earlier.
This is explained by the specific topologies of the factoppsaof the two codes: the
length 504 code has girth 8 whereas the length 96 code hasditthe girth is the size of
the smallest cycle in the graph). The shortest graph is,dyewarst conditioned to run BP
decoding than the longest one, since the messages will be dependent and since bad
topologies (like shorter stopping or trapping sets [35]) ne@ more likely to appear. Thus,

Mutual information of variable to check messages
of several (3,6) LDPC codes for Eb/NO:ZdB
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Figure 3.6 : Evolution of the mutual information of variatttecheck messages along iter-
ation of BP decoding of various codes. Transmission on AWGahael with<> Ly — 2dB.
The upper hashed dotted curve corresponds to the EXIT fumofia cycle- free (3 6) LDPC
code. The steps correspond to BP decoding of various fiantgth (3,6) LDPC codes.

when optimizing the weights of the weighted-BP decoder fgivan code’, the aim will
be to minimize the difference between the EXIT function of ttycle-free case and the
actual mutual information of the messages, when decodingea dinite-length codé€.
We assume transmission on additive white Gaussian noisé&sdyMhannel. At a given
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iterationt, we denote byzﬁf) (t) the mutual information of messages going out of vari-
able nodes when decoding a code of the ensethblmade of all the possible cycle-free
(infinitely long) codes, with same irregularity parametas€’. The mutual information
of messages going out of variable nodes, averaged overeadidbes of the code with
parity-check matrixt at iterationt, is denoted by’ (t). Hencey' (t) depends o
and on the weights of the weighted-BP decoder. The costiumat iteratior is:

FO0 = 2 — y O 1) (3.8)

Thus, the optimization problem results in looking for theigies, stored |nw(()iz that
minimize the cost function, for each iteration

wiot = argmin (2 (1) — y O (1)) (3.9)

Indeed, we will solve the optimization problem for eachateyn, by assuming that the
correction of stage will depend only on previous iterations.

Let us point out is that the mutual information of a messagea @iven edge, at a
given iteration, quantifies the “quality” of this edge, j.eow much this edge is involved
in bad topologies (as cycles or combination of cycles). Expents showed the difference
between mutual information of messages on edges involvedrinshort cycles, and the
mutual information of messages on other edges. This is stamiwith the fact that errors
are more likely to happen on variable nodes involved in sapblbgies.

The next section deals with the way to handle this optimazagiroblem.

3.3.4 Solving the minimization problem
Backpropagation of the error gradient

To solve the minimization problem, one may think to consitkerneural network which
would process the mutual information. Indeed, we have sedhd section 1 of this
chapter that, with binary LDPC codes, at both check or végiabde sides, the mutual
information of outgoing messages can be expressed as a siumctibns of the mutual
information of incoming messages, using the) function, provided that the message
independence assumption is fulfilled (see equation 1.20is @xpression of mutual in-
formation, with sums, allows to consider the ANN of the tydefigure 3.4, made of
only summator neurons. This ANN would compute the mutualrimiation of messages
in the cycle-free case. Then, this ANN would be a multi-lagerceptron [70], and it
would be possible to apply the well-known backpropagatibthe error gradient algo-
rithm [78] in order to find the weights leading to the minintipa of the cost function.
For this supervised learning method, the cost function didel the one of equation 3.8,
and the expected value for each output neuron would be theanutformation given
by the EXIT curve of the cycle-free code ensemble. Since eacinon corresponds to
an edge of the Tanner graph, the output, compared to the texpealue, would be the
mutual information measured on this edge by empirical me&en decoding the code
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The neural network equations would then be used to adapt ¢irghtg, thereby consid-
ering that the mutual information has been obtained by the sguations with the/(.)
function.

We can see the paradox of this method: The error minimizdtyolback propagating
the error gradient is performed based on the neural netwgpr&ateons which assume the
absence of cycle whereas the actual output is the mutuahmafitcon of messages on the
cycle graph ofC, and thus cannot respect the hypothesis. This is problersizite we
want the weights to balance the message dependenciessTinsreason why we cannot
use such a supervised learning approach for error miniroizat

Genetic Algorithm to solve the optimization problem

The cost function defined in equation 3.8, we choose to mgeptias no analytical ex-
pression. Therefore, we are going to choose an optimizatigorithm which does not
require analytical expression of the cost function. We da@ded to use a genetic algo-
rithm [74]. The flow of the optimization procedure is dep&tan figure 3.7. An allele of
the population vectors is made of weights for tHeiteration: weightsw(?) to balance
messages going out of variable nodes and weights ™) to balance messages going out
of check nodes. The size of the vectors handled by the gesdgbcithm is

D= Z Z de(j)

whered, (i) andd,(j) are the connection degrees of tffevariable node ang® check
node, respectively.

In practice, we have implemented the genetic algorithnrmkbkao the C library PGA-
pack Parallel Genetic Algorithm Library provided at [79].eWave tried to find weights
for the MacKay (3,6) code with code length = 96 at various SNRs. For a population
size of200 vectors,N. = 10000 and N, = 10, the algorithm takes about a week on a
last generation CPU.

3.3.5 Estimating the mutual information

To implement the above approach, we have to evaluate theafmntarmation averaged
over all the edges of the graph, at a given iteration. To deveajse a mean estimator for
the expectation of definition 5. We set the SNR, and then sgigka number, say., of
noisy codewords. Then we evaluate the mutual information as

N,
1 ()
-5 ;1: log, (1 te ) (3.10)

wherew®™ is any message of the chosen kind (from check-to-variableagable-to-
check) of the graph at thé" iteration when the:'* observation is received. This has to
be done to evaluate the cost function for each populatiotoveEor good convergence
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iterationt = 0
weights initialiazed to 1

initialization of alleles of the genetic algorithm

run genetic algorithm with cost function
C, F C
fooid = 282 (1) = i (1)

cost

bestw(?) andw(?*+1) found

t=1t+1

yes

t < j\kter

no

Figure 3.7 : Flow chart of the optimization procedure usingeaetic algorithm to find
the best weights minimizing the cost function, for eachaitien. N;., is the number of
decoding iterations for which we look for the correcting gres.
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of the genetic algorithm to the global minimum of the costdtion, the size of the popu-
lation must be as high as possible. In practice, to limit ti@gutation time, it is widely
accepted that the population size must be at least many éds\{if4]. When the mutual
information is close to 1, it turns to be very difficult to get accurate estimation of the
actual mutual information of the messages of the @hdbanks to equation 3.10. Indeed,
the closer to 1 is the mutual information, the rarer are th&eolations which give rise
to decoding errors. Since the numbér of decodings, for one set of weights, has to be
limited for computational time reasons, an accurate estim®f the mutual information
becomes almost impossible. This problem is related to ttee-8oor estimation, about
which works exist [35]. However, in our case, the method daglquire an error-floor
estimation for each decoder, corresponding to each populaéector. This is the pro-
hibitive drawback of the method that made all our tries unsasful.Moreover, such a
correction of the BP algorithm would be very interestinghe error-floor region, but the
above mentioned prohibitive drawback is, more than evesent in this region.

Finally, it is interesting to note that all these decoderspired from neural network
models do not preserve the symmetry of messages. Indeasdedisy to check that if a
random variableX (standing for a LDR message) is symmetric in the sense ofitiefirl
in [10] (which is just the binary instance of definition 1.18)en the the random variable
Y = aX, foranya in R, is not symmetric anymore.

3.3.6 Some other methods

With the goal of investigating how artificial learning metisocould contribute to the
design of efficient coding systems, we have tried to see hberdinds of learning ap-
proaches could be applied to channel coding.

Min-cut max-flow analysis

Our purpose is to detect bad topologies in the Tanner graplecadle, bad topologies being
sets of edges which make the decoding to get stuck. Stilpuktie mutual information of

messages on a given edge as a quality descriptor of this edgemnay think to consider
the iteration when the mutual information on each edge resnsiable or periodic but
does not converge anymore to 1.

At this point, the idea would be to consider the mutual infation as a quantity of
liquid which has to increase until being maximum in a wateepietwork. Let us consider
a water pipe network. For each pipe, the theoretical maxirtiwmoughput of liquid inside
is called the capacity. The current throughput is calledflihe. If the capacity of each
pipe is known, then the Ford-Fulkerson algorithm [80] abow find the maximal flow,
shorten as max-flow, between a source at the beginning ofettveork and a sink at the
end. It also allows to detect the minimum cut, that says thefsgipes which limit the
flow. The minimum cut is shorten as min-cut. For the pipes dgjithe min-cut, the flow
in each pipe is equal its capacity.

Then the idea was to consider the mutual information of ngessan each edge, when
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the decoding stops converging, as the capacity of a comespg pipe in a pipe network
to be determined. By running the Ford-Fulkerson algorittmthes network, the goal was
to associate the pipes of the min-cut to edges of the Tanghgnvolved in limiting
topologies (cycles or combination of cycles) for the dengdiWe could not complete
this investigation because we did not succeed in findingevaat modeling of the pipe
network matching the Tanner graph.

ICA

In this part, we try to see whether sub-optimality of BP deegdtould be lowered by
applying an independent component analysis to the grapbages.

The primary objective for a neural system with multiple itgpand outputs is to be
self-organizing, designed for a specific task (e.g. modelaxtraction of statistically
salient features, or signal separation). Haykin ([70],g%880) showed that these require-
ments can be satisfied by choosing the mutual informatiowdsst certain variables of
the system as the objective function to be optimized. Thigyapation is equivalent to
adjust the free parameters (i.e., synaptic weights) ofyetes so as to optimize the mu-
tual information. Depending on the application of interesfferent scenarios can arise
in practice. One of them consists in minimizing the statatdependence between the
components of the output vectdf. This problem corresponds to théind source sep-
aration problemand can be solved applying a learning algorithm for Indepah@om-
ponent Analysis (ICA) [81]. The objective of this learninig@aithm is to minimize the
Kullback-Leibler divergence between the probability dgnsinction of Y and the facto-
rial distribution ofY;, fori = 1..m, if mis the size of the output vectdf. The goal of the
algorithmis to find the weight matri¥v which must be as close as possible to the inverse
mixing matrix A with which the signals to be recovered are supposed to bedngech
a minimization may be implemented using the method of gradiescent.

We have tried to see whether sub-optimality of BP decodingdcbe lowered by
applying this learning algorithm for ICA of the graph messagt each iteration. We did
not succeed in decoding any noisy codeword with ICA outpugsages.

This way might be an interesting way to follow, but we wouldiesome reserve for
this method: the graph messages are necessarily deperetzntse of the underlying
structure of the finite-length code. Hence, trying to foloe thessages to be independent,
instead of taking into account their statistical dependenught bias the decoding.

Still with finding a better classifier than the BP algorithntlas objective, we present
the two last methods we have investigated in the followirggise.

Classifiers from the learning literature for decoding LDPC codes ?

The last but one method we have focused on is the SupportMéetchine (SVM) [82].

SVM originally aims at separating two classes. SVM dendtestiethod which consists,
for a given set of examples belonging to both classes, inrfqthe frontier such that the
distance between the frontier and all learning vectors isimized. Here is the reason
why we have considered to use a SVM to find the codeword, ieecldss, associated to
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the input noisy observation of the codeword. Since SVM ma@sithe distance between
the frontier and the elements of both classes, presenteéalgdilve learning process, the
higher is the number of training patterns, the closer thetieo is to VVoronoi, thereby get-
ting closer to ML decoding. However, the generalization wmrenthan two classes does
not allow to handle the decoding of an LDPC code because afdhmlexity, as well as
the fact that it is impossible to learn all frontiers betwesry two codewords.

Finally, we looked at methods fdt-nearest neighbors research, or approxiniate
nearest neighbors. These methods are spacial access s)attlgohg on a random par-
tition of space. Among them, we can mention the k-dimengiteas (kd-trees), R-trees
[83] or, a much more efficient and recent method, the locadisea hashing (LSH) [84].
These method are very studied for the problem of multimeldissification, when a new
entry has to be associated with the nearest element of a database. This means that
each element of the database can be considered as a class.aWibes element is pre-
sented, the research consists in finding its nearest naighlioe database, i.e., the class
to which this new element belongs. Thus, we consider thesbads as candidates to
substitute to the BP decoder seen as a classifier.

The first reason why these methods cannot be applied to LDE@]dwey is that they
work well only when the distribution of the set of databasmi®is far from uniform, i.e.,
when the set is “lumpy”. Indeed, since these methods relyrandom partition of space,
we can intuitively understand that they will be efficient wlsmme parts of the space are
almost empty, while other are almost full, thereby allowfagoured search directions.

In particular, in [85] and [86], authors introduced the ogpiooffractal dimensiorof a
set of points to quantify the deviation from the uniformifgttibution. Let theembedding
dimensiorbe defined as [87]: a set has embedding dimensibm is the smallest integer
for which it can be embedded inf®™ without intersecting itself. Thus, the embedding
dimension of a plane i3, the embedding dimension of a spher8.is

Authors showed in [85, 86] that these spacial access mefloodegarest neighbors
search are efficient only when the fractal dimension is moefel that the embedding
dimension. When both dimensions are equal, the methodstdeark anymore as soon
as the dimension is higher thaf or 12. As previously said, by definition, the embedding
dimension of aD-dimensional vector space 3. In [Observation 1, [85]], it is shown
that euclidean volumeB-dimensional space have fractal dimension equd) td'he set
of codewords of any lineafK, N) code is a vector space of dimensiih The fractal
dimension is hence equal to the embedding dimension, baihl g/ . In other words,
the code space is dense, there is a codeword in each dirediience, these methods
cannot be applied to LDPC decoding.

Another reason why these methods cannot be used in our cts ithey face the
problem of dimensionality in the case of LDPC decoding. Tprnsblem is also well-
known as the “curse of dimensionality” in large scale dasalsaclassification domain.
Indeed, these methods are non-parametric, which mearttéyado not take into account
the structure of the data, i.e., any underlying model. Thay cely on the non-uniform
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distribution of the data in their space, as previously exjgld. Hence, the higher is the
number of classes, the harder is the classification. Inipgdhe best known methods
are able to handle databases with a number of classes lesf)fhavhich has nothing to
see with the channel decoding problem where the number sde$ai.e. of codewords, is
at leas” with K > 100.

A channel code gives the model of the data, and decoding bynBReoTanner graph
of the code corresponds to take into account the underlyiodetof the data, which are
hence completely structured. Thus, we were not able to seeantribution that these
methods might bring to enhance the decoding of LDPC codes.

On the other way around we can cite the work of Broder et al {@&) improved
the classification of webpages by modeling with a graph tltetying structure of these
webpages given by the hyperlinks between each other. Applyibelief propagation on
this graph improved the classification. Following theseagjeone could think to try to
exploit the underlying structure of any multimedia datahdy e.g., modeling it through
a factor graph, and then use the BP algorithm for efficierssifecation. It is obvious that
the main problem in that case is to extract a model from a melfia database, before
any try of using this model.

Other works which are representative of what can be doneyuantor graphs and
belief propagation are [89, 90]. In these works, a factophgrdamework is used to
enforce some priori spatio-temporal constraints for image or video classificatThis
means that data are assumed to follow a model: e.g., the shways in the top part of
the scene. This kind of relation is translated by the chedes®f the factor graph, then
belief propagation is used for the classification, the imageideo query corresponding
to the channel observation from a coding point of view.

Thus, at the end of this part of the thesis, it appeared tlesetimay be much more
ways to use iterative coding and decoding expertise to irgsolving some classification
problems currently solved by various machine learning rdtigms, rather than paths on
the other direction. This kind of investigation may be varieresting, but it is out of the
scope of this thesis.

3.4 Conclusion

This work corresponds to the initial subject of the thesise Ndve tried to determine
which kind of machine learning methods would be useful tagiebetter LDPC codes
and decoders in the short code length case.

We have first investigated how to build the Tanner graph ofdedwy pruning away
edges from the Tanner graph of a mother code, based on a rmdelming algorithm.
We showed that no relevant cost function can be found to b&wsad by any learning
algorithm. Hence, no pruning method could be applied. Weslginted out that this
pruning problem was not a classification problem, and thatig this approach failed.

In the second part, we have investigated decoder design bginglearning methods
in order to perform better than BP which is suboptimal as sa®here are cycles in
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the graph. We have considered the decoding of a given codelassafication problem
to which a better decoder than BP may be found, in order toleandssage statistical
dependencies. The chosen cost function based on the détetgetween an estimated
mutual information and the EXIT chart appeared to be imfnss$o evaluate for value of
mutual information close to one.

Finally, we have investigated several classification mgso see whether they might
substitute the BP decoder. We gave the fundamental reasgrthighis not possible:
those methods are non-parametric machine learning aigosifor databases where the
elements must be highly non-uniformly distributed.

Hence, we were not able identify any contribution that maeHearning methods
might bring to LDPC code or decoder design.

However, this work gave some insights on how channel codiethads can help
classification in high-dimensional massive databasey@s &s some structure or model
can be assumed for the database.
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Chapter 4

Two-Bit Message Passing Decoders for
LDPC Codes Over the Binary
Symmetric Channel

A class of two-bit message passing decoders for decodingroelveight-four LDPC
codes over the binary symmetric channel is proposed. Theslhbids for various de-
coders in this class are derived using density evolutiom.gearanteed error correction
capability, a decoder with provably relaxed requiremeptsgared to Gallager type al-
gorithms is found.

4.1 Introduction

The performance of various hard decision algorithms forodew low-density parity-
check (LDPC) codes on the binary symmetric channel (BSQ),bleen studied in great
detail. The BSC is a simple yet useful channel model usechsitely in areas where
decoding speed is a major factor. For this channel modela@al [6] proposed two
binary message passing algorithms, namely Gallager A afldgea B algorithms. A
code of lengthn is said to bgn, v, p) regular if all the columns and all the rows of the
parity-check matrix of the code have exactlandp non-zero values, respectively.
Gallager showed [6] that there exist, v, p), p > v > 3 regular LDPC codes, with
column weighty and row weightp, for which the bit error probability approaches zero
when we operate below the threshold (precise definition vgllgiven in Section 4.4).
Richardson and Urbanke [11] analyzed ensembles of codes vadous message pass-
ing algorithms. They also describéénsity evolutiona deterministic algorithm to com-
pute thresholds. Bazzi et al. [91] determined exact thiestor the Gallager A algorithm
and outlined methods to analytically determine thresholdshore complex decoders.
Zyablov and Pinsker [92] were the first to analyze LDPC codedeu parallel bit flip-
ping algorithm, and showed that almost all codes in the segerisemble withy > 5 can
correct a linear fraction of errors. Sipser and Spielmar) g&&3ablished similar results
using expander graph based arguments. Burshtein and J@#¢considered expansion
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arguments to show that message passing algorithms areagable of correcting a linear
fraction of errors.

We also consider hard decision decoding of a fixed LDPC codin@BSC. When
the LDPC code is decoded by message passing algorithmsatine ferror rate (FER)
curve of has two regions: as the crossover probahilijecreases, the slope of the FER
curve first increases, and then sharply decreases. Thareflow slope for smalk is
called the error floor region. The problem of correcting adirember of errors assumes
significance in the error floor region, where the slope of thenk error rate (FER) curve
is determined by the weight of the smallest error patterrotnectable by the decoder
[95].

For iterative decoding over the binary erasure channel (BE(S known that avoiding
stopping sets [96] up to sizein the Tanner graph [43] of the code guarantees recovery
from ¢ or less erasures. A similar result for decoding over the BS€lill unknown. The
problem of guaranteed error correction capability is knoovoe difficult and in this work,
we present a first step toward such result by finding threm-eorrection capability of
column-weight-four codes.

Column-weight-four codes are of special importance bexaunsler a fixed rate con-
straint (which implies some fixed ratio of the left and riglegdees), the performance of
regular LDPC codes under iterative decoding typically iayass when he right and left
degrees decrease. Burshtein [97] showed that regular edtles = 4, like codes with
~ > 5, are capable of correcting a fraction of errors under bipfhig algorithm. These
results are perhaps the best (up to a constant factor) onkagnfor in the asymptotic
sense. The proofs are, however, not constructive and thenangts cannot be applied
for codes of practical length. Chilappagari et al. [98] hasven that for a given column
weight, the number of variable nodes having expansion redudy the bit flipping algo-
rithm grows exponentially with the girth of the Tanner gragflthe code. However, since
girth grows only logarithmically with the code length, ctmustion of high rate codes,
with lengths in the order of couple of thousands, even witthgight is difficult.

Generally, increasing the number of correctable errorsbeaachieved by two meth-
ods: (a) by increasing the strength and complexity of a degpodlgorithm or/and (b)
by carefully designing the code, i.e., by avoiding certaamnhful configurations in the
Tanner graph. Powerful decoding algorithms such as belefggation, can correct error
patterns which are uncorrectable by simpler binary mespagsing algorithms like the
Gallager A/B algorithm. However, the analysis of such decsds complicated due to
the statistical dependence of messages in finite graphssoltd@pends on implementa-
tion issues such as the numerical precision of message&dHager B decoder, avoiding
certain structures (known as trapping sets [35]) in the @&agraph has shown to guaran-
tee the correction of three errors in column-weight-threges [99], and this work is an
extension of this result.

In this chapter, we apply a combination of the above methodsotumn-weight-
four codes. Specifically we make the following contribusor{fa) We propose a class
of message-passing decoders whose messages are rerésetv® bits. We refer to
these decoders as to two-bit decoders.(b) For a specifibitnecoder, we derive suffi-
cient conditions for a code with Tanner graph of girth sixéorect three errors.
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The idea of using message alphabets with more than two vedudse BSC was first
proposed by Richardson and Urbanke in [11]. They proposeecacdgr with erasures
in the message alphabet. The messages in such a decoderdmmeethree possible
values. They showed that such decoders exhibit threshlusgls to the belief propagation
algorithm. The class of two-bit decoders that we proposegesreeralization of their idea,
since we consider four possible values for the decoder rgessa

Since the main focus of the chapter is to establish suffi@entitions for correction
of three errors, we do not optimize the decoders, but instbadse a specific decoder.
Also, for the sake of simplicity we only consider universatdders, i.e., decoders which
do not depend on the channel parameter

The rest of the chapter is organized as follows. In Sectionélestablish the notation
and define a general class of two-bit decoders. For a speedibit decoder, the sufficient
conditions for correction of three errors are derived int®edll. In Section IV, we derive
thresholds for various decoders. Simulation results ini@ed illustrate that, on a given
code, lower frame error rates (FER) can be achieved by a tindeboder compared to
FER achieved by Gallager B algorithm.

4.2 The class of two-bit decoders

The Tanner graph of a code, whose parity-check madrias sizen x n, is a bipartite
graph with a set of, variable nodes and a set of check nodes. Each variable node
corresponds to a column of the parity-check matrix, and ehelck node corresponds to
a row. An edge connects a variable node to a check node if tliespmnding element
in the parity-check matrix is non-zero. A Tanner graph isldai be~-left regular if
all variable nodes have degree p-right regular if all check nodes have degreeand
(n,7, p) regular if there aren variable nodes, all variable nodes have degremnd all
check nodes have degrge

Gallager type algorithms for decoding over the BSC run fteedy. Let r be a binary
n-tuple input to the decoder. In the first half of each itenati@ach variable node sends a
message to its neighboring check nodes. The outgoing meagagg an edge depends on
all the incoming messages except the one coming on that edbeassibly the received
value. At the end of each iteration, a decision on the valweach bit is made in terms of
all the messages going into the corresponding variable.node

Let w;(v, c) be the message that a variable naedsends to its neighboring check
nodec in the first half of the;™ iteration. Analogouslyiv;(c,v) denotes the message
that a check node sends to its neighboring variable nodén the second half of th¢/"
iteration. Additionally, we definev;(v, :) as the set of all messages from a variabte
all its neighboring checks at the beginning of tfieiteration. We definev;(v,: \c) as
the set of all messages that a variable nogends at the beginning of th#& iteration to
all its neighboring checks exceptThe setsr;(c, :) andw,(c, : \v) are similarly defined.

Remark:In the case of general two-bit decoders, a number of rulep@ssible for
update. However, we consider only rules which are symme@&woiglean functions that
have a simple algebraic expression. We consider symmetiadeBn functions whose
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value depends only on the weight in the argument vector, ngiasitions of zeros and
ones. Symmetric Boolean functions are natural choice fguleg codes. For irregular
codes, asymmetric Boolean functions may lead to improvedakrs, but this problem is
out of the scope of this work.

These symmetric rules can be seen as follows. The messageftan kinds: strong
and weak. One of the two bits of a message going into a varnadale corresponds to the
value of this variable node this message votes for, from antadecoding point of view.
The other bit determines the kind of the message. A strongageshas a higher number
of votes than a weak message. At the variable node, the vbies@mning messages,
except the one being computed, are summed up. The value vétlable the outgoing
message will carry is determined by the value getting thedsgnumber of votes, while
the strength of the outgoing message is determined by thnbauof votes.

In order to algebraically define the decoder, the messadbdt is denoted by/ =
{=S,-W, W, S} with S > W, where the symbols§ andV correspond to “strong” and
“weak”, respectively. Although other equivalent desaaps of the two-bit decoders are
possible, we choose to describe them by introducing diftegeantization levels to the
messages. The decoder is then defined by the specific setrifzaien levels.

The channel received value alphabet is denotefHby, C'}. For any variable node,
R, is defined as?, = (—1)™C. Itis important to note that, in this work, the channel am-
plitude C' is not a quantized likelihood [10], since the BSC outputik $0, 1}, mapped
to {—C, C}. All symbolsS, W andC' are assumed to be integers. It should be also noted
that this representation is as general as representingageafphabet by11, 01, 00, 10}
and channel output alphabet by, 1}.

For the sake of clarity, we also define the quantiti€s, :) andt;(v, ¢), j > 0:

ti(v,0) =Y Wi \e,v) + R,
and
ti(v,) =Y Wi_1(:,0) + R, (4.1)

Decoder:The message update and decision rules are expressed asfollo
The messages;(c, v) are defined as:

e { S IIsign(w;(: \v,c)), if Yu; # v, |w;(vi,¢)| =S

W -] sign(w;(: \v,c)), otherwise

The messages; (v, c) are defined as:

o If j =0,w;(v,c) =W -sign(R,).

o If j >0,
W - sign(tj(v,c)), if0<|tj(v,c)] <S5

wj(v,c) = ¢ S - sign(tj(v,c)), if |tj(v,c)] > S

W - sign(Ry), if tj(v,c) =0
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Table 4.1 : Examples of message update for a column-weaglit-dode, wherC' = 2,
S=2andW =1.

# incoming—S messages| 2 1
# incoming—W messageg O 1
# incoming’ messages|| 1 | O
# incomingS messages || O 1
-C| C
-S|W

R,

w;(v,c)

1
0
1
1
—C
-W

W Qoo

Decision: After the j* iteration, the decision rule consists in setting the valfithe
variablev to the sign oft; (v, :).

Table 4.1 gives an example of message update for a colunghwiur code, when
C =2, 5=2andW = 1. The message;(v,c) goes out of variable node, and is
computed in terms of the three messages goinguritom the neighboring check nodes
different ofc.

The above update and decision rules define the consideresiafi#wvo-bit decoders.
A particular decoder in this class is determined by the&ef5, 1). In the next section,
we focus on the two-bit decoder with', S, W) = (2,2, 1), and provide the conditions on
the Tanner graph of the code to correct three errors. As sio®action IV, this decoder
has better thresholds than one-bit decoders for various kads.

4.3 Guaranteed weight-three error correction

In this section, we first find sufficient conditions on the dray a code to ensure that
the code can correct up to three errors in the codeword, wieeddcoding is performed
with the two-bit decoder withiC, S, W) = (2,2,1). As justified in the Introduction, we
consider only left-regular codes with column weight four.

4.3.1 Sufficient condition for correction of three errors

As mentioned in the Introduction, the higher the code raie nore difficult the problem
of correcting a fixed number of errors. This is the reason whyve interested in finding
only sufficient conditions that are as weak as possible israi@be satisfied for high rate
codes. That is why we have selected the two-bit decoder define”, S, W) = (2,2, 1).
This decoder has better thresholds than one-bit decodeesthfesholds for various code
rates are discussed in Section IV.

For this two-bit decoder, we show that the conditions to gntae weight-three error
correction, are weaker than when Gallager B decoder is uski. means that two-bit
decoders permit codes of higher rates than those permitedd>bit decoders. We note
that the problem of establishing correspondence betwedmrede and absence of a given
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topological structure in the Tanner graph is generallydiffiand is beyond scope of this
work.

Let us first give some additional definitions and notations. d&fine a path of length
d as a set ofl connexe edges.

Definition 11 The neighborhood of order one of a nodeas denoted by\V;(n) and is
composed of all the nodes such that there exists an edgedietivese nodes and By
extension,(n) denotes the neighborhood of ordéiof noden, which is composed of
all the nodes such that there exists a path of lengtetween these nodes and

WhenT is a set of nodes, saf = U;n;, then the orded neighborhood of" is NV, (T) =
UNa(n;). Letwo}, v andvl the variable nodes on which the errors occur. ét=
{vi, v}, vitandC! = N;(V1). For more easily readable notations, we detét6/ )\ V!
by V2 and A\ (V?)\C! by C2. Also we say that a variable is of tygg|q) when it hag
connections td’! andq connection td’2. The union of ordetl neighborhoods of all the
(p|q) type variable nodes is denoted A% (p|q).

Now we state the main theorem.

Theorem 5 [Irregular expansion theorem] Leg be the Tanner graph of a column-
weight-four LDPC code with no 4-cycles, satisfying thediwlhg expansion conditions:
each variable subset of size 4 has at least 11 neighbors, eaetof size 5 at least 13
neighbors and each one of size 8 at least 16 neighbors. Treendtie can correct up
to three errors in the codeword, provided the two-bit decpdeth C' = 2, S = 2 and
W =1, is used.

For lighter notations, each expansion condition accortiinghich each variable subset
of size: has at leasf neighbors, will be denoted by “-~ j expansion condition”.

Proof:
Remark The proof can be followed more easily by looking at Tablésahd 4.3. Table
4.2 draws the decision rule in terms of the numbers of message —W, W and S
going into a variable, when this variable node is decoded @s<$p. 1) and when the
channel observationis 1 (resp. 0). Table 4.3 draws upd&erterms of the numbers of
messages-S, —W, W and S going into the variable node leading to different values
of the message; (v, ¢) going out ofv, when the received valueis. We consider all the
subgraphs subtended by three erroneous variable nodesapla@nd prove that, in each
case, the errors are corrected. The possible subgraphsmve &1 Figure 4.1. As shown,
five cases arise. In the reminder, we assume that the allepel@vord has been sent.

Case 1 Consider the error configuration shown in Figure 4.1(a)this case, vari-
ables 1, 2 and 3 send incorreet’ messages to their neighbors. They recéivenes-
sages from all their neighboring check nodes, they are fibverelecoded correctly. Error
occurs only if there exists a variable node with correct ikamkvalue that receives four
—W messages from its neighboring check nodes (see Table 4@yeWr, since vari-
ables 1, 2 and 3 are the only variables that send incorrecdages in the first iteration,
it is impossible to encounter such a variable node withombducing a 4-cycle. Hence,
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Table 4.2 : Decision rule for the two-bit decoder defined ®yS, W) = (2,2,1).

H#F-S|#-W | #W | #5

mess. | mess. | mess.| mess.

o
o
o
W~

Received value 1
Decoded as 0

Received value (
Decoded as 1

B W W WNONDN RO, OOOOOOO
O OO NP HF WNROORFRRFRFEFHOOOO
OO OO R OO OFONRF O WNRF
O OO R OO HOOOINWFNWORFNOW

Dosdbosdbo @udba sdbs

(a) Case 1 (b) Case 2
1 2 3 1 2 3
(c) Case 3 (d) Case 4

1 2 3
(e) Case 5

Figure 4.1 : All possible subgraphs subtended by three eausvariable nodes.

1 1 1
Uy V2 V3

VN

T T 1T 1 1 T 1 1 1 1 1
€1 G2 C3 €4 C5 Cg C7 Cg Cg Cig C11

Figure 4.2 : Errors configuration for Case 2.



122Chapitre 4 : Two-Bit Message Passing Decoders for LDPC COdesthe Binary Symmetric Channel

Table 4.3 : Update rule for the two-bit decoder defined®yS, W) = (2,2, 1).

H-S|H#-W |#W | #S

mess. mess. | mess.| mess.
Ty =1 0 0 2 1
w;(v,e) =W 0 0 3 0
0 1 0 2
Ty = 0 0 0 3
w;(v,c) =8 0 0 1 2
7y =0 2 1 0 0
w;(v,¢) = =8 3 0 0 0
0 3 0 0
7y =0 1 2 0 0
wj(v,¢) = —-W 2 0 1 0
0 2 0 1
0 2 1 0
0 3 0 0
1 0 2 0
1 1 0 1
ry =1 1 1 1 0
w;(v,¢) = =98 1 2 0 0
2 0 0 1
2 0 1 0
2 1 0 0
3 0 0 0
0 1 1 1
ry =1 0 1 2 0
w;(v,c) = —-W 1 0 0 2
1 0 1 1
0 2 1 0
7y =0 1 1 0 1
w;(v,e) =W 1 1 1 0
2 0 0 1
0 0 0 3
0 0 1 2
0 0 2 1
0 0 3 0
7y =0 0 1 0 2
wj(v,c) =8 0 1 1 1
0 1 2 0
0 2 0 1
1 0 0 2
1 0 1 1
1 0 2 0

this configuration converges to the correct codeword at tiakeoé the first iteration.

Case 2 Consider the error configuration shown in Figure 4.1(b) Bigaire 4.2.
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At the end of the first iteration, we have:

1(6}1,1}) = W, ve {’U%»v%}
wile,v) = —W, veV? cecl\d
wi(c,v) = W, otherwise

In the first half of the second iteration, according to Tahl® o —S messages can be
sent by variables neither i\ V! because ne-S message propagate in the first iteration,
nor variables if/! because they all receive at least thfEemessages:

wy(v,¢) = W, we{vl,vi}, ceCl\c
wav,cy) = W, ve {v],0}
wy(vi,c) = W, ceCt
wy(v,c) = —W, veNy(3]1), ceC?
wa(v,e) = W, veN(22), ceC?
wa(v,e) = W, veN(3[1), cec?

wo(v,¢) = S, otherwise

In the second half of the second iteration, the messagesg goirof certain check nodes
depend on the connection degree of these check nodes. Howaeo not want that
the proof be dependent on the degree of connection of chetdsnalence, we consider
in the following the “worst” case, that is the configuratioheve each message has the
smallest possible value. In that case, the messages alerggiges in the second half of
the second iteration are such that:

Waolc,v) = W, veVinNy({v},va}), ceCl\cl
wa(cy,:) = W

Wolc,: \v) = =W, veMNB3|1), ceC*nNi(3[1)
Walc,v) = W, veV? ce{eg,ch e clgl
Wale,:) = W, ceC'nN(3]1)
Walc,:) = W, ceC*nN(2]2)
wa(c,v) = S, otherwise

At the end of the second iteration, allc V! receive all correct messagég or S.
According to Table 4.2, all variables iri' are hence corrected at the end of the second
iteration. For variables ifY2, since no—S messages propagate in the second half of the
second iteration, we see on Table 4.2 that variablé&irwhich are not received in error,
are decoded as 1 if and only if they receive feul’ messages. The following lemma
prove that this is not possible.

Lemma 13 No variable node receives four incorree’” messages at the end of second
iteration.

Proof: Let v be such a variable. Then the four neighboring checks wiust belong to
{ci,cd, el ek el ety U (C?* N N;(3]1)). Note that only two neighbors af can belong to
{ci,cd, ek ek cl, et} without introducing a 4-cycle. This implies that there andychree
cases:

123
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e v has two neighboring checks, sayandc3, in C? N N;(3]1). Letv? andv? be
the (3|1) type variables connected t§ andc3. It results that the set of variables
{vi, v, v? v3 v} is connected to only1 checks, which contradicts the-513 ex-
pansion condition. This case is hence not possible.

e v has one neighbor ific}, c3, c3, ¢k, c§, ¢4} and three neighbors i A (3]1), say
c2, c3andci. Letv?, v2 andv? be the(3]1) type variables connected ¢, ¢ andc:.
It results that the set of variablés{, vi, v?, v2, v} is connected to only2 checks,
which contradicts the-5:13 expansion condition. This case is hence not possible.

e v has four neighbors €2 N A (3|1), sayc?, c3, ¢ andc). Letwv?, vZ, v2 and
v? be the(3|1) type variables connected t§, c3, ci andcl. It results that the
set of variableqv1, vy, v3, v?, v3, v3, v3, v} is connected to only5 checks, which
contradicts the 8-16 expansion condition. This case is hence not possible.

Hence, the decoder converges at the end of the secondaterati

Case 3 Consider the error configuration shown in Figure 4.1(cxhmfirst iteration,
the variables 1, 2 and 3 send incorredl’ messages to their neighboring checks. At the
end of the first iteration, they receive correct messages &ibtheir neighboring checks.
There is no variable that receives four incorrect messaagges (vill cause a four-cycle).
Hence, the decoder successfully corrects the three errors.

Case 4 Consider the error configuration shown in Figure 4.1(d) Biggire 4.3. In

1 1 1
vy Vo 1}3

T 1 .1 1 1 T 1 1 1 1
€1 €G3 C3 €4 C5 Cg C7 Cg Cg Cpo

Figure 4.3 : Errors configuration for Case 4.

the second half of the first iteration we have:

Wie:\VY) = -W , ceC\{chd}
wilev) = W | veVlice{c,ct}
wi(c,v) = W , otherwise

Let us analyse the second iteration. For any V\V! andc € C*, wy(v, ¢) can never
be —S because ne-S messages propagate in the first iteration. So, foramyV\V?
andc € C', wy(v,c) = =W if and only if w, (: \¢,v) = —W, which implies that must
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have four connections 6. This is not possible as it would cause a 4-cycle. Hence:

wy(vy,c) = —8 , ce{cl,ct}
wo(vi,cl) = —W
wy(vy,07) = W
wa(vi,:\ey) = W
wa(vy,: \ez) = W
wy(v,¢) = W veNy(3|1), ceC*NNi(3)1)
wy(v,cq) = W
wy(vs,c1) = W
wa(v,e) = W veNy(22), ceC?nN(22)
wa(v,e) = W veNo(3|1), ceC'nN(3]1)
wo(c,v) = S , otherwise

’LU3(’U%,:) = W
w?)(v%v:\clll) = -W ) ’LU3(’U%,C}1):W

wg(’l)?l),i\c%) = -W 5 ’LU3(’U?1),C%):W

Lemma 14 All variables inV'! are corrected at the end of the third iteration because, for
anyv € VY ws(:,v) = WorS.

Proof: The proof is by contradiction. Let assume that there exstariable inV\ V!,
sayw, such that there existse C' andws(v,c) = —W or ws(v,c¢) = —S. Since itis
impossible that twe-S messages go intg as it would cause a 4-cycle; (v, ¢) = —W
or ws(v,c) = —S implies thatv receives from its neighbors different ofthree — 1V
messages, or oneS and two—WV (see Table 4.3).

e If v receives three-1W: As proved previously, cannot have four neighbors .
Hence, must be connected t§ € C? such thatw,(c?,v) = —W. With the above
described values of the messages in the second half of tbacéeration, we see
thatc? must be connected to(&|1) type variable in’?, let sayz?. Let notice that
there cannot be more than of®1) type variable ini’?, otherwise five variables
would be connected to only twelve checks. Two cases arise:

o If v has at least two neighbors @ N A (3|1), there are at least tw(|1)
type variables iri’2, which has been proved to be impossible.

o If v has exactly one neighbor 6> N A;(3]1), there would exist twd3|1)
type variables in/?: v andz?. This case is not possible for the same reason
as above.

o If v receives two-1W messages and oneS message:
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o If vis of type(3|1), the neighboring check af in C* must be connected to
another(3|1) type variable, let say?. It results that the sdtv], vi, v}, v, 2%}
has only eleven neighboring checks, which contradicts thd3 expansion
condition. This case is hence not possible.

o If v is of type(2|2), both neighboring checks efin C? must be connected
each to anothef3|2) type variables, let say? andz2. It results that the set
{vi, v, v} v 22 22} has only twelve neighboring checks, which contradicts
the 5-13 expansion condition. This case is hence not possible.

Hence, sinceaus(cl, v1), ws(cy, vs), ws(ct, vy) andws(ch, v3) are equal tdV or S,
v1, vy andv] are corrected at the end of the third iteration.

Lemma 15 No variable inV’\ V! can propagate-1 at the beginning of the third itera-
tion, except variables of typ@|1).

Proof: Consider a variable which has at most two connections@. For this variable
v to propagate-1V at the beginning of the third iteration, two cases arise:

e If v is of type(2|2), v must have at least one connectiontbn N;(3]1). Let the
(3|1) type variable be?, then the sefv], v, v3, v, v} is connected to only twelve
checks. This case is hence not possible.

e If v hasg connections outsidé’, with ¢ > 2, there must exist—1 variables of type
(3]1) connected to thosg— 1 checks ofv. It results that it would be necessary that
at least variables of typd3|1) exist, which is not possible as previously proved.

|
Lemma 16 Any variable inV\ V! is correctly decoded at the end of the third iteration.

Remark That is to say that any variable in\V'! is decoded to its received value since
it is not received in error by hypothesiBroof: According to Table 4.3, no message
propagates in the third iteration since all variable® frreceive at least thrd@” messages
at the end of the second iteration, and variable® iV! cannot receive more than one
—S message. In that case, to be decoded as a one, a bit whosedeadue is zero has to
receive only—IW messages according to the decision rule (see Table 4.2)isSTHoa any

v € V\V!, vis wrongly decoded if and only if5(:,v) = —W. Nowv € V\V'! can have
more than two neighboring checks{n}, ci, ¢}, ci, ¢d, ¢1, }, otherwise it would introduce
a 4-cycle. Lemma 15 implies that a variablelinV'! is wrongly decoded if it has at least
two connections t@'? N A (3]1), which implies that there exist tw@|1) type variables.
This is not possible as previously proved. This completegptioof of the Lemma.
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1 1 1

T 1 .1 1 1 T 1 1 1
€1 €G3 C3 €4 C5 Cg C7 Cg Cg

Figure 4.4 : Errors configuration for Case 5.

Thus, the decoder converges to the valid codeword at thefahe third iteration.

Case 5 Consider the error configuration shown in Figure 4.1(a)feigdre 4.4.
Neither(3]1) nor (4|0) type variable can exist if'? because it would contradict tHe—
11 expansion condition. Any type2|2) variables cannot share a checkiif as it would
result in a set of five variables connected to only twelve kbe@t the end of the first
iteration, we have:

Wi(e,v) = —W, ceC\{c,ci,cr},veV?
@1(677)) = _W/? S {6%70}176%}77) € Vl
wi(c,v) = W, otherwise

At the end of the second iteration, we have in the worst case,i$ in the case where
each message has the smallest possible value:

Wa(c,v) = -8, ce€CN\{c,ci,cit}l,veV?
Wa(c,v) = W, cef{cl, ci,cd},vev?
Wa(e,:) = W, ceC*nN(22)

wy(c,v) = S, otherwise

Also, at the end of the third iteration:

E3(C,’U) = =5, ce€ Cl\{C%,C}l,C%},U eVv?
E3(C,’U) = W, ce {C%vczlbc%}ﬂ} ev!
ws(c,v) = S, otherwise

At the end of the third iteration, all variables it are corrected because they receive
two S and twoll” messages, and all variableslin V! are well decoded to the received
value since they receive at most tw@ messages from checksdrt, and neither-S nor
—WW messages from checks @ (see Table 4.2). Hence, the decoder converges to the
valid codeword at most at the end of the third iteration. TQaspletes the Proof.

Note that similar conditions for a column-weight-four LDIEGde of girth six to cor-
rect any weight-three error pattern, when it is decoded Wistlager B algorithm, has
been found by Krishnan [100]. The conditions are that eactabke subset of size 4 has
at least 11 neighbors, each one of size 5 at least 13 neigldamis one of size 6 at least



128Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CoOdlesthe Binary Symmetric Channel

15 neighbors and each one of size 7 at least 17 neighborse Theslitions are stronger
than the ones of Theorem 5. Besides, the higher is the rateeafdde, the more diffi-
cult it is for the Tanner graph of the code to satisfy the espamconditions, since the
variable nodes tend to be less and less connected when teeaedncreases. Hence,
the weaker expansion conditions obtained for the two-tibder make possible the con-
struction of higher rate codes, with weight-three errorection capability, than with the
one-bit Gallager B decoder.

4.4 Asymptotic analysis

This section intends to illustrate the interest of two-l@tdders over one-bit decoders,
in terms of decoding thresholds. In particular, we show thattwo-bit decoder, for
which expansion conditions for weight three error cor@ttias been derived, has better
thresholds than one-bit decoders, for various code rates.

4.4.1 Density evolution

P{W; =X} = > K, P{R=r} [] P{W,o1=Y}"VP{W, = -5}42)
re{-C,C}n(W),n(S),n(—=W): YeM\{-S}
f(Tr)y=X
P{W;=X} = K, [[ Pw=y}""p{w;=-59 (4.3)
n(W),n(S),n(—W): YeM\{-5S}

g(n(=9S),n(—=W)n(W))=X

Asymptotically in the codeword length, LDPC codes exhiliftii@eshold phenomenon
[10]. In other words, forx smaller than a certain threshold, it is possible to achieve a
arbitrarily small bit error probability under iterative dmling, as the codeword length
tends to infinity. On the contrary, for noise level largerrthiae threshold, the bit error
probability is always larger than a positive constant, foy eodeword length [10, 11].

In [11] and [10], Richardson and Urbanke presented a gemee#thod for predict-
ing asymptotic performance of binary LDPC codes. They pioxeso-called concen-
tration theorem [11] according to which decoding perforoenver any random graph
converges, as the code length tends to infinity, to the padoce when the graph is
cycle-free. Thus, relevant evaluation of performance néby LDPC codes is possible in
the limit case of infinite codeword lengths. The proposedsdg+evolution method con-
sists in following the evolution of probability densities messages along the decoding
iterations. The messages in each direction are assumedriddygendent and identically
distributed.

For the class of two-bit decoders, we derive thresholdsiftardnt values of” andsS.
The code is assumed to be regular with column weigémd row degree. The numbers
of W, S and —1W messages are denoted h{#'), n(S) andn(—W), respectively. In
the sets of equations (4.2) and (4.8)W) € [0,....d], n(S) € [0,...,d — n(W)],
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n(=W) el0,...,d —n(W)—n(S)], whered is eithery or p, depending on the context.
The number of-S messages(—S) is henced — 1 — n(W) — n(S) — n(—=W), with

d = ~ or p depending on the context. Since the messages of the gragagimdirection,
are assumed to be independent and identically distribitd(resp. ;) denote the
random variables distributed as (v, ¢) (resp.w;(c,v)) for any pair(v, ¢) of connected
variable and check nodeX denotes an element éf. Also, R € {—C, C'} denotes the
random variable which corresponds to the initial value eflitit. The density evolution
equations are given by the sets of equations (4.2) and (g@xe:

T = > nY)Y
= () (i)
-1 —1—n(W —1-n(W)-n
B = (o) (s )C S )
The two functionsf andg are defined as follows:

7> - M
W sign(T), if0<|T|<S

fr,r)y = S - sign(T), if |7 > S
W - sign(r), if7=0

g: N> — M

g(n1>n27n3) =
W, if ng 4+ n2 > 0,n2 +n1 =0 mod (2)
S, if ng 4+ n2 = 0,n2 +n1 =0 mod (2)

—W, if ng+ng >0,n2+n; =1mod (2)

L =S, ifng+mny=0,n2+n; =1mod (2)

4.4.2 Thresholds of quantized decoders

Table 4.4 encompasses thresholds for various code panmsmaatédecoding rules. Thresh-
olds are given in probability of crossover on the BSC. Algon E is presented in [11].
For the two-bit decoders, the set (C,S,W) is given. Whenhheshold is belows.001, x
is putin the box. The code rate is definedlby -.

We have computed thresholds for various two-bit decodeableT4.4 shows that the
specific two-bit decoder with parametérs, S, W) = (2, 2, 1), has better thresholds than
one-bit decoders Gallager A and B algorithms.
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Table 4.4 : Thresholds of different decoders for columnghefour codes with row degree

p.
p | Rate Gallager A Gallager B| Algorithm E
8 0.5 0.0474 0.0516 0.0583
16 | 0.75 0.0175 0.0175 0.0240
32 | 0.875 0.00585 0.00585 0.00935
p | Rate (1,1,1) (1,2,1) (1,3,1) (1,4,2)
8 0.5 0.0467 0.0509 0.0552 0.0552
16 | 0.75 0.0175 0.0165 0.0175 0.0175
32 | 0.875 0.00585 0.00562 0.00486 0.00486
p | Rate (2,1,1) (2,2,1) (2,3,1) (2,4,1)
8 0.5 0.0467 0.0567 0.0532 0.0552
16 | 0.75 0.0175 0.0177 0.0168 0.0175
32 | 0.875 0.00585 0.00587 0.00568 0.00486
p | Rate (3,1,2) 3,2,1) (3,3,1) (3,4,1)
8 0.5 X 0.0467 0.0657 0.0620
16 | 0.75 X 0.0218 0.0222 0.0203
32 | 0.875 X 0.00921 0.00755 0.00691
p | Rate 4,1,1) 4,2,1) 4,3,1) 4,4,1)
8 0.5 X X 0.0486 0.0657
16 | 0.75 X X 0.0227 0.0222
32 | 0.875 X X 0.00871 0.00755
p | Rate | Dynamic two-bit

decoder with
S=2andW =1

8 0.5 0.0638
16 | 0.75 0.0249
32 | 0.875 0.00953

However, this decoder has not the best threshold among théitwdecoders. Indeed,
we tried to achieve a trade-off between good thresholds ahtbo strong conditions for
three error correction. Nevertheless, the method of aisafplied in the proof of the
previous section is general, and can be applied to a varfetgaders to obtain similar
results.

Remark: Algorithm E and the presented dynamic two-bit decoder atdpea the
other ones, especially for code rateéi.e., p = 16) and (i.e., p = 32). Algorithm E,
described in [11], is the aforementioned decoder with eessin the message alphabet.
At each iteration, the weight affected to the channel olzdem (equivalent t@’ in the
two-bit decoder) is optimized [11]. The dynamic two-bit dder is based on the same
idea: forS = 2 andW = 1, C is chosen at each iteration. The better thresholds of
the presented dynamic two-bit decoder over Algorithm Edatés that it is interesting to
consider decoding on a higher number of bits, even if the mblasbservation is still one
bit, to get better thresholds.
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4.5 Numerical results

We have formally proved the capability of weight-three ercorrection of an LDPC
code satisfying conditions of Theorem 5 and decoded withtweebit decoder with
(C,S,WW) = (2,2,1). To compare this two-bit decoder with another one-bit decod
namely Gallager B, we have plotted FER in Figure 4.5. We dwmrsa MacKay code,
with column weight four, 1998 variable nodes and 999 chealteso The code rate is
0.89. This code has been decoded with Gallager B and the abovbitwlecoder. Figure
4.5 shows that the two-bit decoder has lower FER than GalBgkecoder. In particular,
we observe better waterfall performance using the twodxbder, and about 1dB gainin
the error-floor.

[ —e— Gallager B ]
107 —e— Two—bit decoder with (C,S,W)=(2,2,1) .

FER

10

Figure 4.5 : FER versus the crossover probabitityfor regular column-weight-four
MacKay code. The code rate(is89 and the code length is = 1998.

4.6 Conclusion

In this chapter, we proposed a class of two-bit decoders. &\/e focused on a specific
two-bit decoder for which we have derived sufficient cormhs for a code with Tanner
graph of girth six to correct any three errors. These comastiare weaker than the con-
ditions for a code to correct three errors when it is decoded @allager B algorithm,

which uses only one bit. Hence, two-bit decoder may allowsuee weight-three error
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correction capability for higher rate codes than one-bitagar type decoding. We have
computed thresholds for various two-bit decoders, and sitbat the decoder for which
the previous conditions has been derived has better tHdsstian one-bit decoders, like
Gallager A and B. Finally, we have compared the frame errt@ parformance of the
two-bit decoder and Gallager B algorithm for decoding a soieweight-four code with
high rate. The two-bit decoder performs better than Gatl&geoth in the waterfall and
in the error-floor region. This illustrates that it is intstiag to use two bits rather than
one bit for decoding.
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Conclusions

In this thesis, we have first proposed a new class of non¥iaPC codes, named hy-
brid LDPC codes. The asymptotic analysis of this new clas$kan carried out. Specific
properties of considered hybrid LDPC code ensembles, likd_tnear-Map invariance,
have been expressed to be able to derive both stability tondind EXIT charts. The
stability condition of such hybrid LDPC ensembles showeresting advantages over
non-binary codes. The EXIT charts analysis is performecherBIAWGN channel. In
order to optimize the distributions of hybrid LDPC ensersbige have investigated how
to project the message densities on only one scalar pamaosatg a Gaussian approx-
imation. The accuracy of such an approximation has beenestudnd has led to two
kinds of EXIT charts for hybrid LDPC codes: multi-dimensa@and mono-dimensional
EXIT charts. The distribution optimization allows to getifenlength codes with very low
connection degrees and better waterfall region than praptgor multi-edge type LDPC
codes. Moreover, hybrid LDPC codes are well fitted for thdeegancellation presented
in [34], thanks to their specific structure. Additionally aobetter waterfall region, the
resulting codes have a very low error-floor for code rate loaé-and codeword length
lower than three thousands bits, thereby competing withtiradge type LDPC. Thus,
hybrid LDPC codes allow to achieve an interesting tradebeffveen good error-floor
performance and good waterfall region with non-binary sagehniques.

We have also shown that hybrid LDPC codes can be very gooddated for ef-
ficient low rate coding schemes. For code rate one sixth, tosypare very well to
existing Turbo Hadamard or Zigzag Hadamard codes. Morecpéatly, hybrid LDPC
codes exhibit very good minimum distances and error floop@rites.

In the second part of the thesis, we have tried to determinehnltind of machine
learning methods would be useful to design better LDPC cadd$etter decoders in the
short code length case.

We have first investigated how to build the Tanner graph ofdedwy pruning away
edges from the Tanner graph of a mother code, using a madaaneihng algorithm, in
order to optimize the minimum distance. We showed that revegit cost function can be
found for this problem. Hence, no pruning method could bdiagpWe have pointed out
that this pruning problem was not a classification problemd, that is why this approach
failed.

133
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We have then investigated decoder design by machine Ilgamathods in order to
perform better than BP which is suboptimal as soon as thereyales in the graph. We
have considered the decoding of a given code as a classfigatbblem to which a better
decoder than BP may be found, in order to handle messagstisttdependencies. The
chosen cost function based, on the difference between smatstl mutual information
and the EXIT chart, appeared to be impossible to evaluateatae of mutual information
close to one.

Finally, we have investigated several classification mgs$tio see whether they might
substitute the BP decoder. We gave the fundamental reasgrthighis not possible:
those methods are non-parametric machine learning digesibased on the assumption
that the elements to be classified, must be highly non-unifodistributed, which is the
opposite case of the channel coding problem.

Hence, we were not able to identify any contribution that Iniae learning methods
might bring to LDPC code or decoder design.

The third part still aims at finding good decoders for finitagéh LDPC codes, but
with also good asymptotic behavior. We have switched fromtinooous BP decoding to
guantized decoding. The idea is still to find a decoding rdl@pged to hard-to-decode
topologies. We have first proposed a class of two-bit desoded computed thresholds
for various decoders in this class. Based on those threshe&have focused on a specific
two-bit rule. We have derived sufficient conditions for a eadth Tanner graph of girth
six to correct any three errors. These conditions are lesgent than the conditions for
a code to correct three errors when it is decoded with GallBgdgorithm, which relies
on only one bit. Hence, decoding with the two-bit rule alldwgnsure weight-three error
correction capability for higher rate codes than the daewpavith one bit, like Gallager
B decoding. Finally, we have compared the frame error rat®opeance of the two-
bits rule and Gallager B algorithm to decode a given codefyatg the conditions for
weight-three error correction with both decoders. The bite-rule decoding performs
up to three decades better than Gallager B on the same cedebyhindicating that the
highest weight error corrigible by the two-bits rule is héghhan that of Gallager B. This
illustrates how it is interesting to use two bits rather tbae bit for decoding.

Perspectives

As perspectives, it would be of first interest to allow degoee variable nodes in the
representation of hybrid LDPC codes, by, e.g., adopting li+edge type representation
[27]. As shown in [30], this would allow to have better deanglthresholds, particularly
for low rate codes.

This would give rise to the study and the optimization, whlk same tools, of non-
binary protograph-based LDPC codes or multi-edge type LBB@=s. However, the
extension may be theoretically not fully straightforwasttlae non-zero values have to be
carefully handled to define the code ensemble.

On the other hand, it would be interesting to study hybrid KDfddes on other chan-
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nels. Let us mention that we made some experiments on an AW@GNne! with16-
QAM modulation. We restricted the connection profile to bgutar, in order to not bias
the results by the absence of specific allocation on unggpatitected symbols. Only
two group orders where allowed to avoid correlation betwaannel LLRs:G(16) and
(G(256). The optimization of fractions of variable nodes in these different orders have
been done. The results where slightly degraded compared2oia GF'(256) LDPC
codes. A study of these codes on the BEC would be also integestccording to what
has been done for D-GLDPC codes on the BEC [56], as well afie cates higher than
one-half.

The investigations on connections between machine leguadgorithms and BP de-
coding of LDPC codes, viewed as a classification probleme gamme insights on how
channel coding methods can help classification in high-dsimmal massive databases, as
soon as some structure or model can be assumed for eleméetslassified [89, 90, 88].

In terms of quantized decoding rules as defined in the lastgiahe thesis, many
directions are possible. First, still for column-weightifeodes, it would be interesting to
see what is the minimum weight of an incorrigible error paitd he following extension
would be to lead the same study to determine which two-b#& nduld have the best
properties in terms of decoding threshold as well as caoeatapability, for column-
weight three codes. Finally, an aim could be to extend thefseto-bit decoding rules
to similarly defined sets of rules with any given number ogpdnd finding a general
condition for correction capability in terms of the numbégaantization bits.
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Résumé : Codes LDPC multi-binaires hybrides et méthodes deétodage itératif

Cette thése porte sur I'analyse et le design de codes de défivails par des graphes creux. Le
but est de construire des codes ayant de tres bonnes penf@ssur de larges plages de rapports
signal a bruit lorsqu’ils sont décodés itérativement.

Dans la premiére partie est introduite une nouvelle clagseodles LDPC, nommés code
LDPC hybrides. L'analyse de cette classe pour des canaugtggunes sans mémoire est réalisée,
conduisant a l'optimisation des parametres, pour le caaasgien a entrée binaire. Les codes
LDPC hybrides résultants ont non seulement de bonnes ptéprile convergence, mais égale-
ment un plancher d’erreur trés bas pour des longueurs de encodk inférieures a trois mille
bits, concurrencant ainsi les codes LDPC multi-edge. Lees@DPC hybrides permettent donc
de réaliser un compromis intéressant entre région de agenee et plancher d'erreur avec des
techniques de codage non-binaires.

La seconde partie de la thése a été consacrée a étudier quelipétre I'apport de méthodes
d’apprentissage atrtificiel pour le design de bons codes dtods décodeurs itératifs, pour de

petites tailles de mot de code.

Dans la troisieme partie de la thése, nous avons proposeélasse e décodeurs utilisant
deux bits de quantification pour les messages du décodewss &lmns prouvé des conditions
suffisantes pour qu’un code LDPC, avec un poids de colonresaéguatre, et dont le plus petit
cycle du graphe est de taille au moins six, corrige n'impqttel triplet d’erreurs. Ces conditions
montrent que décoder avec cette reégle a deux bits permetudéasune capacité de correction de
trois erreurs pour des codes de rendements plus élevésquiae regle de décodage a un bit.

Mots clefs : théorie de I'information - codage correcteur d’erreur -e®tlDPC - évolution de
densité - apprentissage artificiel - décodage quantifié

Abstract : Multi-binary hybrid LDPC codes and iterative dec oding methods

This thesis is dedicated to the analysis and the design e$esggmaph codes for channel coding.
The aim is to construct coding schemes having high perfocm#ioth in the waterfall and in the
error-floor regions under iterative decoding.

In the first part, a new class of LDPC codes, named hybrid LD&Wes, is introduced. Their
asymptotic analysis for memoryless symmetric channelrf®peed, and leads to code parameter
optimization for the binary input Gaussian channel. Addiélly to a better waterfall region, the
resulting codes have a very low error-floor for code rate lo&léand codeword length lower than
three thousands bits, thereby competing with multi-edge tyDPC. Thus, hybrid LDPC codes
allow to achieve an interesting trade-off between goodrdloor performance and good waterfall
region with non-binary coding techniques.

In the second part of the thesis, we have tried to determiriehakind of machine learning
methods would be useful to design LDPC codes and decodelp&rédrming in the short code

length case.

In the third part of the thesis, we have proposed a class chitvdecoders. We have derived
sufficient conditions for a column-weight four code with Tan graph of girth six to correct any
three errors. These conditions show that decoding withwieekit rule allows to ensure weight-
three error correction capability for higher rate codesttiee decoding with one bit.

Keywords : information theory - error correcting codes - LDPC codesndity evolution - machine
learning - quantized decoding





