
HAL Id: tel-00819413
https://theses.hal.science/tel-00819413

Submitted on 1 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Codes LDPC multi-binaires hybrides et méthodes de
décodage itératif

Lucile Sassatelli

To cite this version:
Lucile Sassatelli. Codes LDPC multi-binaires hybrides et méthodes de décodage itératif. Théorie de
l’information [cs.IT]. Université de Cergy Pontoise, 2008. Français. �NNT : �. �tel-00819413�

https://theses.hal.science/tel-00819413
https://hal.archives-ouvertes.fr

ECOLE DOCTORALE SCIENCES ET INGENIERIEDe l'Université de Cergy-PontoiseTHÈSEPrésentée pour obtenir le grade de do
teur de l'université de Cergy-PontoiseSpé
ialité : Traitement des Images et du Signal
Codes LDPC multi-binaires hybrides etméthodes de dé
odage itératif

parLu
ile SASSATELLILaboratoire ETIS - UMR CNRS 80513 o
tobre 2008Devant le jury
omposé de :M. E. Biglieri, ExaminateurM. J. Blan
-Talon, ExaminateurM. B. Vasi
, ExaminateurM. G. Zémor, ExaminateurM. J. Boutros, RapporteurM. J.-P. Tilli
h, RapporteurM. D. De
ler
q, Dire
teur de thèse

Résumé

Cette thèse porte sur l’analyse et le design de codes de canaldéfinis par des graphes
creux. Le but est de construire des codes ayant de très bonnesperformances sur de larges
plages de rapports signal à bruit lorsqu’ils sont décodés itérativement.

Dans la première partie est introduite une nouvelle classe de codes LDPC, nommés
code LDPC hybrides. L’analyse de cette classe pour des canaux symétriques sans mé-
moire est réalisée, conduisant à l’optimisation des paramètres, pour le canal gaussien à
entrée binaire. Les codes LDPC hybrides résultants ont non seulement de bonnes proprié-
tés de convergence, mais également un plancher d’erreur très bas pour des longueurs de
mot de code inférieures à trois mille bits, concurrençant ainsi les codes LDPC multi-edge.
Les codes LDPC hybrides permettent donc de réaliser un compromis intéressant entre ré-
gion de convergence et plancher d’erreur avec des techniques de codage non-binaires.

La seconde partie de la thèse a été consacrée à étudier quel pourrait être l’apport de
méthodes d’apprentissage artificiel pour le design de bons codes et de bons décodeurs
itératifs, pour des petites tailles de mot de code. Nous avons d’abord cherché comment
construire un code en enlevant des branches du graphe de Tanner d’un code mère, selon
un algorithme d’apprentissage, dans le but d’optimiser la distance minimale. Nous nous
sommes ensuite penchés sur le design d’un décodeur itératifpar apprentissage artificiel,
dans l’optique d’avoir de meilleurs résultats qu’avec le décodeur BP, qui devient sous-
optimal dès qu’il y a des cycles dans le graphe du code.

Dans la troisième partie de la thèse, nous nous sommes intéressés au décodage quan-
tifié dans le même but que précédemment : trouver des règles dedécodage capables de
décoder des configurations d’erreur difficiles. Nous avons proposé une classe de déco-
deurs utilisant deux bits de quantification pour les messages du décodeur. Nous avons
prouvé des conditions suffisantes pour qu’un code LDPC, avecun poids de colonnes égal
à quatre, et dont le plus petit cycle du graphe est de taille aumoins six, corrige n’importe
quel triplet d’erreurs. Ces conditions montrent que décoder avec cette règle à deux bits
permet d’assurer une capacité de correction de trois erreurs pour des codes de rendements
plus élevés qu’avec une règle de décodage à un bit.

4

5

Abstract

This thesis is dedicated to the analysis and the design of sparse-graph codes for channel
coding. The aim is to construct coding schemes having high performance both in the
waterfall and in the error-floor regions under iterative decoding.

In the first part, a new class of LDPC codes, named hybrid LDPC codes, is introduced.
Their asymptotic analysis for memoryless symmetric channel is performed, and leads to
code parameter optimization for the binary input Gaussian channel. Additionally to a
better waterfall region, the resulting codes have a very lowerror-floor for code rate one-
half and codeword length lower than three thousands bits, thereby competing with multi-
edge type LDPC. Thus, hybrid LDPC codes allow to achieve an interesting trade-off
between good error-floor performance and good waterfall region with non-binary coding
techniques.

In the second part of the thesis, we have tried to determine which kind of machine
learning methods would be useful to design better LDPC codesand better decoders in
the short code length case. We have first investigated how to build the Tanner graph of
a code by removing edges from the Tanner graph of a mother code, using a machine
learning algorithm, in order to optimize the minimum distance. We have also investigated
decoder design by machine learning methods in order to perform better than BP which is
suboptimal as soon as there are cycles in the graph.

In the third part of the thesis, we have moved towards quantized decoding in order
to address the same problem: finding rules to decode difficulterror configurations. We
have proposed a class of two-bit decoders. We have derived sufficient conditions for a
column-weight four code with Tanner graph of girth six to correct any three errors. These
conditions show that decoding with the two-bit rule allows to ensure weight-three error
correction capability for higher rate codes than the decoding with one bit.

Remerciements

Je tiens à remercier les membres de mon jury d’avoir accepté d’évaluer cette thèse,
et notamment Jean-Pierre Tillich et Joseph Boutros d’en avoir été les rapporteurs. Leurs
compétences et leur générosité ont grandement contribué à l’amélioration du manuscript.

J’exprime toute ma gratitude à Bane Vasic, pour le temps qu’il m’a consacré, pour les
échanges scientifiques particulièrement enrichissants, pour les grandes discussions cultu-
relles, pour son soutien et sa sympathie. Je remercie également Shashi Kiran Chilappagari
avec qui j’ai pris un réel plaisir à travailler.

Je remercie très chaleureusement Charly Poulliat, pour noséchanges quotidiens pen-
dant ces trois années, son implication, ses conseils aviséset déterminants dans les mo-
ments de doute.

Un grand merci également à Adrian pour son soutien pendant ces trois années à parta-
ger le même bureau, à Auguste, dont les codes m’ont permis de gagner un temps précieux,
pour sa perpétuelle bonne humeur et son enthousiasme débordant. Merci à Ayman, Sonia,
David, Dimitri, Heykel, Abdel-Nasser pour la bonne ambiance au labo.

Enfin merci à mes parents qui m’ont fait confiance, à mon frère qui m’a toujours
encouragée, et à celui qui a été mon soutien indéfectible pendant ces trois années.

8

Contents

Résumé 3

Abstract 5

Remerciements 7

Introduction 17
Context . 17
Motivation . 18
Outline . 19
Contributions . 21

1 Introduction to binary and non-binary LDPC codes 23
1.1 Linear block error-correcting codes 23
1.2 Definition and parametrization of LDPC codes 25
1.3 General notation . 27
1.4 Decoding of LDPC codes by Belief Propagation algorithm 28
1.5 Analysis of LDPC codes . 32

1.5.1 Additional notation . 32
1.5.2 Channel and message symmetry 33
1.5.3 Density evolution forGF (q) LDPC codes 34
1.5.4 Approximation of message densities by only one scalarparameter 36
1.5.5 The stability condition . 40
1.5.6 Design example ofGF (q) LDPC code ensemble on BIAWGN

channel . 40
1.6 Other design techniques .41

1.6.1 Finite length design of LDPC codes 41
1.6.2 Structured ensembles . 42

1.7 Proof of theorems in Chapter 1 .42

2 Hybrid LDPC Codes 45
2.1 The class of hybrid LDPC codes . 45

2.1.1 General hybrid parity-check equations 45
2.1.2 Hybrid LDPC code ensemble 47
2.1.3 Different sub-classes of hybrid LDPC codes 47

9

10 CONTENTS

2.1.4 Hybrid LDPC codes with linear maps 48
2.1.5 Parametrization of hybrid LDPC ensemble 49
2.1.6 Encoding of hybrid LDPC codes 52
2.1.7 Decoding algorithm for hybrid LDPC codes 52

2.2 Asymptotic analysis of hybrid LDPC code ensembles 54
2.2.1 Symmetry of the messages . 54
2.2.2 Density evolution . 55
2.2.3 Invariance induced by linear maps (LM-invariance) 56
2.2.4 The Stability condition for hybrid LDPC Codes 57
2.2.5 EXIT charts and accuracy of the approximation for hybrid LDPC

codes . 60
2.3 Distributions optimization .. . 65

2.3.1 Context of the optimization . 65
2.3.2 Optimization with multi-dimensional EXIT charts 66
2.3.3 Optimization with mono-dimensional EXIT charts 69

2.4 Finite length optimization .. . 72
2.4.1 Row optimization . 73
2.4.2 Avoiding low weight codewords 73

2.5 Results . 74
2.5.1 Rate one-half codes . 74
2.5.2 Rate one-sixth codes . 77

2.6 Conclusions . 80
2.7 Proofs of theorems in Chapter 2 .81

2.7.1 Symmetry . 83
2.7.2 A useful lemma . 85
2.7.3 LM-invariance . 86
2.7.4 Proof of Theorem 3 . 88
2.7.5 Information content Through Linear Maps 91
2.7.6 Mutual information of a probability vector and its Fourier Transform 92

3 Machine Learning Methods for Code and Decoder Design 95
3.1 Previous works . 95

3.1.1 Information-theoretic models of artificial neural networks 95
3.1.2 Learning methods and error-correcting codes 96

3.2 Machine Learning Methods for Code Design 96
3.2.1 Problem . 96
3.2.2 Neural networks and codes Tanner graphs 97
3.2.3 Cost function for pruning . 100
3.2.4 Pruning methods . 100

3.3 Machine Learning Methods for Decoder Design 102
3.3.1 Decoding is a classification problem 102
3.3.2 Modelization of BP decoding 104
3.3.3 Cost function . 104
3.3.4 Solving the minimization problem106

CONTENTS 11

3.3.5 Estimating the mutual information 107
3.3.6 Some other methods . 109

3.4 Conclusion . 112

4 Two-Bit Message Passing Decoders for LDPC Codes Over the Binary Sym-
metric Channel 115
4.1 Introduction . 115
4.2 The class of two-bit decoders .. 117
4.3 Guaranteed weight-three error correction 119

4.3.1 Sufficient condition for correction of three errors 119
4.4 Asymptotic analysis . 128

4.4.1 Density evolution . 128
4.4.2 Thresholds of quantized decoders129

4.5 Numerical results . 131
4.6 Conclusion . 131

Conclusions and Perspectives 133
Conclusions . 133
Perspectives . 134

List of Tables

1.1 Thresholds ofGF (q) LDPC code ensembles with constant check degree
dc and code rate one half, optimized with EXIT charts on the BIAWGN
channel. The maximum variable degree allowed in the optimization pro-
cedure isdvmax

= 30. Thresholds are given in term of the SNREb

N0
in dB,

and are obtained using the Gaussian approximation. 41

2.1 DistributionΠ(i, j, k, l) of a hybrid LDPC code ensemble with code rate
one-half and threshold0.1864 dB under Gaussian approximation. The
marginalsΠ̃(i, k) and Π̃(j, l) correspond to the proportions of variable
nodes of type(i, k) and check nodes of type(j, l), respectively. When a
proportion is forced to zero by the sorting constraint,× is put in the box. . 68

2.2 Nodewise distributions of the hybrid LDPC codes used forthe finite
length simulations. 74

2.3 Nodewise distribution of the rate1
6

and 1
12

hybrid LDPC codes 78

4.1 Examples of message update for a column-weight-four code, whenC =
2, S = 2 andW = 1. 119

4.2 Decision rule for the two-bit decoder defined by(C, S, W) = (2, 2, 1). . . 121
4.3 Update rule for the two-bit decoder defined by(C, S, W) = (2, 2, 1). . . . 122
4.4 Thresholds of different decoders for column-weight-four codes with row

degreeρ. 130

13

List of figures

1.1 Parity-check matrix of a non-binary LDPC code and its bipartite graph. . 26
1.2 Representation of a ensemble of irregular LDPC codes. 28
1.3 Variable node update . 30
1.4 Check node update . 31
1.5 EXIT curves of(2, 4) GF (2), GF (8) andGF (256) regular codes. The

SNR is0.7dB. 42

2.1 Factor graph of parity-check of an hybrid LDPC code. 46
2.2 Message transform through linear map. 48
2.3 Parametrization of a hybrid LDPC code ensemble 51
2.4 QuantitiesΩ for hybrid and non-hybrid LDPC codes in terms of maxi-

mum symbol orderqmax. These figures show that a hybrid LDPC code
can be stable when a non-binary code is not. 59

2.5 FER versusEb

No
: code rate one-half.K = 1024 information bits except for

the multi-edge type LDPC code for whichK = 1280 information bits.
No finite length optimization has been applied.Niter = 500 except for
quasi-cyclic LDPC code (from [1]) for whichNiter = 50. 76

2.6 FER versusEb

No
(in dB): code rate one-half.Nbit = 2048 coded bits except

for the multi-edge type LDPC code for whichNbit = 2560 coded bits.
Niter = 500 decoding iterations are performed. 77

2.7 Comparison of hybrid LDPC code with Turbo Hadamard codes(TH)
taken from [2] and Zigzag Hadamard (ZH) codes taken from [3],for an
information block length ofKbit ≃ 200. Niter = 30 for Turbo Hadamard
codes, andNiter = 200 for the hybrid LDPC codes. 79

2.8 Comparison of hybrid LDPC code with punctured Turbo Hadamard (PTH)
taken from [4] and other powerful codes, for code rate1/6. The PTH code
hasKbit = 999 information bits, and the other codes haveKbit = 1024
information bits.Niter = 50 for the PTH code, andNiter = 200 for the
other codes. 80

3.1 General definition of a formal neuron 97
3.2 An artificial neuron which computes the weighted sum of the inputs, and

the apply the activation functionf . 98
3.3 A polynomial neuron. 98

15

16 LIST OF FIGURES

3.4 A factor graph and its corresponding neural network. Each neuron cor-
responds to an edge of the factor graph, hence there are2.Nedge.Niter

neurons in the network. 99
3.5 Voronoi diagram (or Dirichlet tessellation): the partitioning of a plane

with n points into convex polygons such that each polygon contains ex-
actly one generating point and every point in a given polygonis closer to
its generating point than to any other. 103

3.6 Evolution of the mutual information of variable to checkmessages along
iteration of BP decoding of various codes. Transmission on AWGN chan-
nel with Eb

No
= 2dB. The upper hashed dotted curve corresponds to the

EXIT function of a cycle-free (3,6) LDPC code. The steps correspond to
BP decoding of various finite-length (3,6) LDPC codes. 105

3.7 Flow chart of the optimization procedure using a geneticalgorithm to find
the best weights minimizing the cost function, for each iteration.Niter is
the number of decoding iterations for which we look for the correcting
weights. 108

4.1 All possible subgraphs subtended by three erroneous variable nodes. . . . 121
4.2 Errors configuration for Case 2. .. . 121
4.3 Errors configuration for Case 4. .. . 124
4.4 Errors configuration for Case 5. .. . 127
4.5 FER versus the crossover probabilityα for regular column-weight-four

MacKay code. The code rate is0.89 and the code length isn = 1998. . . 131

Introduction

Context

In 1948, Claude Shannon published a paper [5] in which he laiddown the foundations of
information theory. Shannon’s original work on information theory was in direct response
to the need to design communication systems that are both efficient and reliable. Reliable
means that no loss of information occurs during transmission. In particular, information
theory addresses both the limitations and the possibilities of reliable transmission of in-
formation over a communication channel. The noisy channel coding theorem asserts both
that reliable communication at any rate beyond the channel capacity is impossible, and
that reliable communication at all rates up to channel capacity is possible.

The central problem of communication theory is to constructan encoding and a de-
coding system to communicate reliably over a noisy channel.

During the 1990s, remarkable progress was made towards the Shannon limit, using
codes that are defined in terms of sparse random graphs, and which are decoded by a
simple probability-based message-passing algorithm. In asparse-graph code, the nodes
in the graph represent the transmitted bits and the constraints they satisfy. Hence, there
are two kinds of nodes in the graph, which is therefore calledbipartite graph. For a linear
code which encodesK information bits into a codeword ofN bits, the rate isR = K

N
and

the number of constraints is of orderM = N − K. Any linear code can be described by
a graph, but what makes a sparse-graph code special is that each constraint involves only
a small number of variables in the graph. The edges of the graph define a permutation,
and that is why a sparse-graph code is said to rely on a random permutation. These codes
are very interesting because they can be decoded by a local message-passing algorithm
on the graph, and, while this algorithm is not a perfect maximum likelihood decoder, the
empirical results are record-breaking.

We can mention two ensembles of sparse-graph codes which have excellent error-
correction capability: Low-Density Parity-Check (LDPC) codes, and Turbo Codes. The
class of LDPC codes was first proposed in [6] in 1963, and rediscovered thirty years
later [7, 8, 9, 10, 11], after the invention of Turbo Codes [12]. This thesis investigates
channel coding schemes based on LDPC codes. LDPC codes are decoded through the
iterative local message-passing algorithm based on theBelief Propagation(BP) principle
[13]. These codes have been shown to exhibit very good performance under iterative BP
decoding over a wide range of communication channels, approaching channel capacity

17

18 Introduction

with moderate decoding complexity.
Asymptotically in the codeword length, LDPC codes exhibit athreshold phenomenon.

In other words, if the noise level is smaller than a certain decoding threshold (which de-
pends on the bipartite graph properties) then it is possibleto achieve an arbitrarily small
bit error probability under iterative decoding, as the codeword length tends to infinity. On
the contrary, for noise level larger than the threshold, thebit error probability is always
larger than a positive constant, for any codeword length [10, 11]. On the Binary-input
Additive White Gaussian Noise (BIAWGN) channel, this threshold value is defined in
terms of Signal-to-Noise Ratio (SNR), on the Binary Symmetric Channel (BSC) in terms
of error probability, on the Binary Erasure Channel (BEC) interms of erasure probabil-
ity. There are two main tools for asymptotic analysis of LDPCcodes, i.e. for evaluating
the decoding threshold associated to a given degree distribution: density evolution [10]
and EXtrinsic Information Transfer (EXIT) charts [14]. Oneof the features that makes
LDPC codes very attractive is the possibility to design, forseveral transmission chan-
nels, the degree distribution of the bipartite graph which provides a decoding threshold
extremely close to the channel capacity [15]. For given coderate and node degrees, the
threshold optimization is usually performed by means of numerical optimization tools,
like differential evolution [16]. In the particular case ofthe BEC, where the transmitted
bits are either correctly received or lost independently with some erasure probability, it
was also shown that it is possible to design sequences of degree distributions, known as
capacity-achieving sequences [17], whose threshold converges to the channel capacity.

Motivation

While the asymptotic design and analysis of LDPC codes is mostly understood, the design
of finite length LDPC codes still remains an open question.

Indeed, the local message-passing algorithm, which is the BP decoder for LDPC
codes, corresponds to the exact computation ofa posterioriprobabilities of variable val-
ues only if the graph is cycle-free, i.e., when the probability messages going into a node
along the decoding iterations can be assumed independent. In that case, the BP decoder
is exactly the Maximum-Likelihood (ML) decoder because it finds the global maximum
of the ML criterion. This assumption is made for asymptotic study, when the codeword
length is assumed to be infinite. In the finite length case, cycles appear in the graph [18].
In that case, the BP decoder does not compute anymore thea posterioriprobabilities
of variable values, thereby turning into suboptimal in the sense it does not correspond
anymore to ML decoding. However, the BP decoding of LDPC codeis based on this as-
sumption thanks to the property of the graph of the code, which is sparse by definition of
this class of codes. Many works [19, 20] have characterized the phenomenon which arises
when BP decoder is used on loopy graphs, and which points out the difference between
ML decoding and BP decoding. ML decoding is always able to findthe codeword closest
to the observation (even though it makes errors because thisclosest codeword is not the
one which has been sent), whereas BP decoder may converge to fixed points which are
not codewords. These points are usually calledpseudo-codewords, and it has been shown

Outline 19

[19] that they are of first importance in the loss of performance of BP decoding, com-
pared to ML decoding, and particularly in theerror floor region. When the LDPC code
is decoded by message passing algorithms, the frame error rate (FER) curve of has two
regions: as the channel parameter decreases, the slope of the FER curve first increases,
and then sharply decreases. This region of low slope for small channel parameter is called
theerror floor region.

Moreover, finite length LDPC codes with a degree distribution associated to a decod-
ing threshold close to capacity, though characterized by very good waterfall performance,
usually exhibit a bad error floor performance, due to poor minimum distance [21, 22]. In-
deed, the capacity-approaching sequences of LDPC codes have a large fraction of degree
two variable nodes [17, 10], which gives rise to low-weight codewords. Such codewords
correspond to cycles in the subgraph of the Tanner graph which contain only degree two
variable nodes.

To construct code ensembles with iterative decoding performance close to channel ca-
pacity and having a low error-floor, one needs to choose the random permutations, which
make LDPC codes pseudo-random codes, in a structured way to avoid short cycles. The
code ensembles with a structured choice of permutations arecalled structured. Hence,
the design of finite length LDPC codes mostly relies on findingthe best trade-off between
the waterfall and error-floor regions, by carefully constructing the bipartite graph of the
code. One of the most popular technique to design the graph, i.e., the permutations, of
a code, is the Progressive-Edge-Growth (PEG) construction[23]. Code ensembles that
have been studied in order to well perform in the finite-length case are those based on
finite geometries [8] and on circulant permutation matrices[24]. More particularly, some
structured code ensembles have been under the scope of many studies these last years:
Irregular Repeat-Accumulate (IRA) codes [25], protograph-based LDPC codes [26] and
multi-edge type LDPC [27]. These techniques, or their combinations, lead to codes with
good code properties in terms, for instance, of girth of the bipartite graph and possibility
to perform the encoding procedure efficiently.

The attempt to improve the trade-off between waterfall performance and error floor
has recently inspired the study of more powerful, and somewhat more complex, coding
schemes. This is the case of non-binary LDPC codes, Generalized LDPC (GLDPC) codes
[28], Doubly-Generalized LDPC (D-GLDPC) codes [29] or Tail-biting LDPC (TLDPC)
codes [30]. Non-binary LDPC codes have been introduced by Davey in [31]. The main
interest of non-binary LDPC codes actually lies in the decoder: good non-binary LDPC
codes have much sparser factor graphs (or Tanner graphs) than binary LDPC codes [32],
and the BP decoder is closer to optimal decoding since the small cycles can be avoided
with a proper graph construction, as proposed in [33].

Outline

This thesis encompasses three distinct chapters, in which three different methods are in-
vestigated with the same aim: designing new coding schemes in order to improve the

20 Introduction

trade-off between waterfall performance and error floor.

The first chapter is dedicated to introduce the useful notions about binary and non-
binary LDPC codes, as well as the existing tools for their analysis.

In the second chapter, we introduce and study a new class of LDPC codes that we call
multi-binary hybrid LDPC codes. The class of hybrid LDPC codes is a generalization of
existing classes of LDPC codes, both binary and non-binary.For hybrid LDPC codes, we
allow the connectivity profile to be irregular and the ordersof the symbols in the code-
word to be heterogeneous. The asymptotic analysis of this class of codes is performed
with a given detailed representation to derive stability condition and EXIT charts anal-
ysis. The study is performed on the BIAWGN channel, whereas studies of generalized
LDPC codes usually consider the BEC [30, 29] where the one parameter approximation
of message densities is straightforward, unlike for the BIAWGN channel. Thus, for the
EXIT chart analysis, we have tried to provide an as complete as possible analysis of the
accuracy of the projection of message densities on only one scalar parameter. Distri-
butions are optimized and some thresholds computed. We showhow the finite length
optimization method of [34] can be adapted and applied to getvery low error floor. We fi-
nally present experimental results for code rate one half, as well as for code rate one sixth.

The third chapter reviews the investigation done on the initial topic of this thesis: how
some machine learning methods might be applied to the bipartite graph of a code for finite
length optimization purpose? The final goal was to use hybridLDPC codes as a tool for
building codes with good finite length properties by means ofa learning algorithm to be
determined.

First, we are interested in code design. We look for a way to build the Tanner graph of
a code by means of a supervised learning process applied to the graph of a mother code in
order to decide which edges should be pruned away in order to lower the sub-optimality
of the BP decoder.

Then, we move towards decoder design for a given LDPC code. Weinvestigate how
to modify the BP decoder by adapting it to the graph of a given code, in order to lower
its sensibility to graph cycles. For this purpose, the BP decoder has been considered as a
classifier with room for improvement.

The fourth chapter also aims at finding good decoders well performing on finite length
LDPC codes, but with good asymptotic behavior too. In this chapter, we switch from
continuous BP decoding to quantized decoding. The idea is still to find a decoding rule
adapted to topologies hard to decode, like trapping sets [35]. To do so, a class of two-bit
message passing decoders is proposed for the binary symmetric channel. The thresh-
olds for various decoders in this class are derived using density evolution. For a specific
decoder, the sufficient conditions for a column-weight-four LDPC code to correct all pat-
terns up to three errors are derived. A code satisfying the conditions is constructed and
numerical assessment of the code performance is provided via simulation results.

Contributions 21

Contributions

In the present thesis, we proposed the following contributions:

• A new class of non-binary LDPC codes, named hybrid LDPC codes, is studied.

◦ The asymptotic analysis is presented: the property of Linear-Application in-
variance is exhibited for the code ensemble, leading to a stability condition
and an EXIT charts analysis for AWGN channels. Two kinds of EXIT charts
of hybrid LDPC codes are studied: multi-dimensional and mono-dimensional
EXIT charts.

◦ Study of the condition allows to conclude that there exist many cases where
any fixed point of density evolution for hybrid LDPC codes canbe stable at
lower SNR than for non-binary codes.

◦ For the EXIT chart analysis, a detailed analysis of the accuracy of the approx-
imation of message densities by one scalar parameter is provided.

◦ Distribution optimization are performed to get finite-length codes with very
low connection degrees and better waterfall region than protograph or multi-
edge type LDPC codes.

◦ A cycle cancellation technique is applied to hybrid LDPC codes, which are
well fitted to such a technique, thanks to their specific structure.

◦ The resulting codes appear to have, additionally to a betterwaterfall region,
a very low error-floor for code rate one-half and codeword length lower than
three thousands bits, thereby competing with multi-edge type LDPC. Thus,
hybrid LDPC codes allow to achieve an interesting trade-offbetween good
error-floor performance and good waterfall region with non-binary coding
techniques.

• An investigation on how machine learning methods could be used for finite length
optimization of LDPC coding schemes has been led:

◦ It has been shown that no learning algorithm can be used to build a code from
pruning the Tanner graph of a mother code, when the aim is simultaneously to
have a high minimum distance and to exploit the value of the messages during
the iterative decoding.

◦ Decoder design, with machine learning methods, has been investigated. The
decoding has been defined as a classification problem to whicha better de-
coder than BP may be found, in order to handle message statistical depen-
dencies. The neural network corresponding to the BP decoding has been ex-
pressed. To determine optimal synaptic weights to perform better than BP on
a finite length code, we proposed a cost function based on the difference be-
tween an estimated mutual information and the EXIT chart. The reason why
this approach fails has been detailed.

22 Introduction

◦ Several classification methods have been studied to see whether they might
advantageously substitute the BP decoder. The fundamentalreason why this is
not possible is exhibited: those methods are non-parametric machine learning
algorithms where the elements to be classified, must be highly non-uniformly
distributed. However, the channel coding problem corresponds to the opposite
case.

• A class of two-bit message passing decoders for decoding column-weight-four
LDPC codes over the binary symmetric channel is proposed andanalyzed.

◦ Thresholds are derived for various decoders in this class.

◦ We consider a specific decoder in this class, and prove sufficient conditions
for a code with Tanner graph of girth six to correct three errors.

◦ A code satisfying the conditions is constructed and numerical assessment of
the code performance is provided via simulation results.

Chapter 1

Introduction to binary and non-binary
LDPC codes

This chapter introduces the binary and non-binary LDPC codes. The general channel cod-
ing problem is shortly explained, notations and definitionsare given, and a non-extensive
review of analysis tools necessary for the following is done.

1.1 Linear block error-correcting codes

A linear block code is a linear map which associates toK information symbols,N coded
symbols, by addingN − K redundancy symbols in order to lower the error probability
when the transmission occurs over a noisy channel.

The linear map is described byG in the reminder, and the codewords set is denoted by
C and called the code. The bold notationG is used to denote the matrix associated with
the linear mapG. When the code is defined overGF (2), the codeword set corresponds to
the image of{0, 1}K by the linear map, and it is denoted byC:

G : {0, 1}K → C ⊆ {0, 1}N

To shorten the notations, we write:C = Im(G). This means that for any codeword
c ∈ {0, 1}N of sizeN ×1, there exists one unique information vectorv ∈ {0, 1}K of size
K × 1 such thatc = Gv, where the size ofG is N × K. Thus, a linear block code is
determined byG, which is called the generator matrix, but it can be also determined by
H of size(N −K)×N , which is called the parity-check matrix. Indeed,H is the matrix
of the linear map whose image is the kernel of the applicationG. Hence, the following
property allows us to determine whether a vector in{0, 1}N belongs to the codeC:

∀c ∈ C, H · c = 0

which is also equivalent to

∀v ∈ {0, 1}K, HG · v = 0

23

24 Chapitre 1 : Introduction to binary and non-binary LDPC codes

Consider a transmission over a noisy channel. LetX be the input random vector and
let Y be the output random vector. We assume thatY depends onX via a conditional
probability density functionPX|Y(x|y). Given a received vectory = (y0, . . . , yN−1),
the most likely transmitted codeword is the one that maximizesPX|Y(x|y) [36]. If the
channel is memoryless and each of the codewords are equally likely, then this reduces
to the codewordx = (x0, . . . , xN−1) which maximizesPY|X(y|x). This is known as
maximum likelihood (ML) estimate of the transmitted codeword and is written as follows
[36]:

x̂ = arg max
x∈C

PY|X(y|x)

where the maximization is done over the input alphabet of thechannel.

Now we discuss the correction capability of a linear block code. The correction ability
of a code is determined by its minimum distancedmin, which is the smallest Hamming
distance between two codewords [37]. From an algebraic perspective, the received vector
is the sent codeword with some components corrupted. The error correction, i.e. the
decoding process, consists in finding the nearest codeword to the received vector. All the
vectors in{0, 1}N whose nearest codeword isx are such that, for alli ∈ 1, . . . , N , if the
ith bit of the vector is different from theith bit of the codewordx, then the Hamming

distance betweenx and the vector must be lower thandloc
min(i)

2
, with dloc

min(i) being the local
minimum distance of biti in the code, as defined in [38]. The local minimum distance
on theith digit corresponds to the minimum Hamming distance between two codewords
whose theith digits are different [38]. Hence, the maximum number of errors that a code
can detect isdmin − 1, whatever the location of the errors in the codeword. Similarly,
if the error correction is achieved according to the ML principle, the maximum number
of errors that the code is able to correct is⌊dmin

2
⌋. The maximum number of correctable

errors is hence⌊dmin−1
2

⌋, whatever the location of the errors in the codeword.
ML decoding corresponds to solve the nearest neighbor problem. Looking for the

nearest neighbor in a high-dimensional space is an algorithmic problem which does not
have a better solution than an exhaustive search when the space elements are not sorted.
Thus, the decoding process can be very complex (O(2K)) [37]. This is brute force ap-
proach is reasonable only for short length codes. Faster sub-optimal solutions have been
developed. The first one is applied to block codes like BCH [39] and Reed-Solomon codes
[40]. In these approaches, the code is built with thea priori knowledge of the minimum
distance, and built so as the nearest neighbor search can be performed in reduced sub-
spaces. The second coding scheme which allows to have good minimum distance with
acceptable decoding speed is based on convolutional codes.Encoding is done thanks to
linear feedback shift registers fed by information bits. This technique generates a setC of
codewords sorted according to the correlation between the bits of the codeword. Viterbi
algorithm [41] takes advantage of this construction by modeling the encoder as a finite
state machine whose transitions between possible states are considered as a Markov chain
and form a convolutional trellis, or state graph. Each path in this state graph corresponds
to a codeword, and looking for the most likely codeword results in finding the path which
minimizes the distance with the received vector. The complexity is linear in the informa-

1.2 Definition and parametrization of LDPC codes 25

tion length (O(K)) [41].
An important breakthrough has been performed in 1993 by Berrou et al. [12] who

invented the Turbo Codes, which have been the first codes to exhibit simulation results
close to the channel capacity. This coding scheme uses two different component codes
in parallel, originally being convolutional codes. The result of decoding of one code is
fed asa priori to the other code in an iterative way. In the sequel, we explain how the
decoding complexity is dramatically reduced in the specificcase of LDPC codes.

1.2 Definition and parametrization of LDPC codes

LDPC codes are low density linear block codes, introduced byGallager [6] in 1963, and
soon after their non-binary counterparts by Davey [31]. A binary LDPC code is defined
on the finite Galois field of order2, GF (2), while a non-binary LDPC code is defined
on the Galois field of orderq, GF (q). We consider in this work only field characteristics
which are power of two:q = 2p. An LDPC code is represented by its sparse parity-check
matrix H of size(N − K) × N . As previously, the codeword length is denoted byN
and the number of information symbols byK. The number of redundancy symbols is
M = N − K, and the code rate is given byR = K/N ≥ 1 − M/N , with equality ifH
is full-rank (i.e., its row rank is equal toM). The structure of the parity-check matrix can
be regular or not. A code is regular (resp. irregular) if the number of non zero elements
in every rows and in every columns ofH is (resp. is not) constant. In the reminder of this
section,LDPC codesis used when the distinction between binary and non-binary LDPC
codes is not relevant. The field order in which the code lies will be specified otherwise.

Definition 1 [6] A regular LDPC code with its two parameters(dv, dc) is defined by a
matrix with exactlydv anddc ones per column and row, respectively.

The code rate isR = K/N ≥ 1 − dv/dc, with equality if H is full-rank. Those two
parameters(dv, dc) define aensembleof regular codes. A ensemble of LDPC codes de-
fined by(dv, dc), is made of all the possible parity-check matrices with these connection
parameters. One code among this ensemble is given by a particular realization of the
parity-check matrix. In the non-binary case, the non-zero values of the parity-check ma-
trices are chosen uniformly at random inGF (q)\{0}.

In a similar way, an LDPC code can be represented by a bipartite graph, called factor
graph [42], or Tanner graph [43], made of two kinds of nodes: variable nodes representing
bits of a codeword, and check nodes associated to parity-check functions. Those two kinds
of vertices are linked with each other by edges indicating towhich parity-check equation
variable nodes participate. For binary LDPC, the non-zero values of the parity-check
matrix H belong toGF (2)\0, i.e., they can be equal only to1. For non-binary LDPC
codes, the non-zero values of the parity-check matrixH belong toGF (q)\0. The element
of H on rowi columnj is denotedhij . Thejth variable node and theith check node are
connected ifhij 6= 0. For instance, ifxj denotes the variable nodej symbol value, theith

26 Chapitre 1 : Introduction to binary and non-binary LDPC codes

parity-check equation is fulfilled if

N−1
∑

j=0

hijxj = 0 (1.1)

where additions and multiplications are performed overGF (q). The degree of connection
of a variable node (the same for a check node) is the number of edges linked to this node.
A node is said “i connected” or “of degreei” if it is connected toi edges. Figure (1.1)
sums up these notions.

V

H=

0 V V V V1 2 3 V4 5

Variable nodes

Check nodes

h00

0

0

h20

h01 h02 0 0

h11 0 h13

0

0

h25

h35h340h320

0 0 h23 0

h14

Figure 1.1 : Parity-check matrix of a non-binary LDPC code and its bipartite graph.

A code is irregular if it is not regular. The usual parametrization of irregular LDPC
codes is done by means of polynomials [10], sometimes referred to as edgewise parametriza-
tion:

• Polynomial associated to variable nodes:

λ(x) =

dvmax
∑

i=2

λix
i−1

whereλi is the proportion of edges of the graph connected to degreei variable
nodes, anddvmax

is the maximum degree of a variable node.

• Polynomial associated to check nodes:

ρ(x) =

dcmax
∑

j=2

ρjx
j−1

whereρj is the proportion of edges of the graph connected to degreej check nodes,
anddcmax

is the maximum degree of a check node.

1.3 General notation 27

When the parity-check matrix of the code, whose graph parameters areλ(x) andρ(x), is
full rank, then those two quantities are related to the code rate by:

R = 1 −
∑dcmax

j=2 ρj/j
∑dvmax

i=2 λi/i
(1.2)

There is also a dual parametrization of the previous one, referred to as nodewise parametriza-
tion [10]:

• Polynomial associated to data nodes:

λ̃(x) =

dvmax
∑

i=2

λ̃ix
i−1

whereλ̃i is the proportion of degreei variable nodes.

• Polynomial associated to check nodes:

ρ̃(x) =

dcmax
∑

j=2

ρ̃jx
j−1

whereρ̃j is the proportion of degreej check nodes.

The transitions from one parametrization to another are given by:

λ̃i =
λi/i

∑

k λk/k
, ρ̃j =

ρj/j
∑

k ρk/k

λi =
iλ̃i

∑

k kλ̃k

, ρj =
jρ̃j

∑

k kρ̃k

(1.3)

Thus, a ensemble of irregular LDPC codes is parametrized by(N, λ(x), ρ(x)). The reg-
ular case is a particular case of this parametrization whereλ(x) andρ(x) are monomials.
Figure 1.2 is a graphical representation for this kind of code.

1.3 General notation

Throughout the thesis, vectors are denoted by boldface notations, e.g.x. Random vari-
ables are denoted by upper-case letters, e.g.X and their instantiations in lower-case,
e.g. x. The characterization and the optimization of non-binary LDPC codes are based
on DE equations, assuming that the codes are decoded using iterative BP [31]. An im-
portant difference between non-binary and binary BP decoders is that the former uses
multidimensional vectors as messages, rather than scalar values. There are two possible
representations for the messages: plain-density probability vectors or Log-Density-Ratio

28 Chapitre 1 : Introduction to binary and non-binary LDPC codes

N

Parity check nodes

Variable nodes

Interleaver

Degree of connection

4

2

7

c1c0 c2 c3 c4 c5 c6 c7

λ̃4λ̃7 λ̃2

Figure 1.2 : Representation of a ensemble of irregular LDPC codes.

(LDR) vectors. We denote theq elements of the finite groupGF (q), or the finite field
GF (q), of orderq by (0, α, . . . , αq−1). In the thesis,P (X = x) denotes the probability
that the random variableX takes the valuex.

A q-dimensional probability vector is a vectorx = (x0, . . . , xq−1) of real numbers
such thatxi = P (X = αi) for all i, and

∑q−1
i=0 xi = 1.

Given a probability vectorx, the components of the Logarithmic Density Ratio (LDR)
vector, associated withx, are defined as

wi = log

(

x0

xi

)

, i = 0, . . . , q − 1 . (1.4)

Note that for allx, w0 = 0. We define the LDR-vector representation ofx as theq − 1
dimensional vectorw = (w1, . . . , wq−1). The observation of the channel under LDR
form is a Logarithmic Likelihood Ratio (LLR). For convenience, in the derivation of
the messages properties and the corresponding proofs reported in section 2.7, the value
w0 = 0 is not defined as belonging tow. Given an LDR-vectorw, the components of
the corresponding probability vector (the probability vector from whichw was produced)
can be obtained by

xi =
e−wi

1 +
∑q−1

k=1 e−wk

, i = 0, . . . , q − 1 (1.5)

A probability vector random variable is defined to be a q-dimensional random variable
X = (X0, ..., Xq−1). An LDR-vector random variable is a(q − 1)-dimensional random
variableW = (W1, ..., Wq−1).

1.4 Decoding of LDPC codes by Belief Propagation algo-
rithm

Depending on the transmission context (like channel type and computational power at the
receiver), there are two kinds of decoding algorithms: harddecision algorithms and soft

1.4 Decoding of LDPC codes by Belief Propagation algorithm 29

decoding. The former will be studied in the last chapter, while the latter is the decoding
algorithm that we use, unless the contrary is specified.

A priori probabilities on the value of each symbol of the codeword arefirst computed
thanks to the channel outputs. For non-binary LDPC codes, these probabilities correspond
to the probability that the symbol be equal to{α0, . . . , αq−1}.

Although a maximum likelihood decoding of LDPC codes is possible [6], the com-
plexity increases too much as soon as enough long binary codes are considered, and it is
reasonable to expect that the complexity will not be lower for high order fields. That is
why [6] then [43] proposed a sub-optimum decoding algorithm, finally revised by [44]
and [42] for the case of factor graphs. This algorithm is known as Sum-Product [42] or
BP [13] algorithm, and it spreads along edges messages forwarding probabilities or LDR.
To each edge, two messages are associated, one for each direction. The principle of BP is
Bayes rule applied locally and iteratively to estimatea posterioriprobabilities (APP) of
each codeword symbol. It has been shown that over a cycle-free graph (tree case), local
factorization of Bayes rules leads to exact computation of APP of variable nodes because
messages going into a node are independent from each other. However, in [18], it has been
shown that the linear codes which have a cycle free Tanner graph have either a minimum
distance lower or equal to 2 when the code rateR is greater than one half, or a minimum
distance upper-bounded by2

R
otherwise. It is therefore impossible to consider such codes

because the minimum distance that cannot grow with the codeword length, which is a
desirable property. Hence, any finite length LDPC code has a cycle Tanner graph, then
messages going into a node are not independent. Thus, APP arenot computed exactly,
and the algorithm is not optimal anymore in the sense it does not correspond anymore
to ML decoding. However, the BP decoding of LDPC code is basedon the cycle-free
assumption thanks to the property of the graph of the code, which is sparse by definition
of this class of codes.

Decoding principles apply similarly onGF (q) codes, forq > 2, as forGF (2) codes.
This section describes only the non-binary case. Since non-binary codeword symbols
are considered as random variables inGF (q), messages on the edges of the graph are
q sized vectors. BP algorithm intends to compute the APP of each codeword symbol.
For instance, for the symbol corresponding to variable nodevi, the algorithm handles
conditional probability vectorpi = (P (vi = α0|yi, Si), . . . , P (vi = αq−1|yi, Si)), where
P (vi = α0|yi, Si) is the probability that the sent codeword symboli is equal toα0, given
that the channel output for theith symbol isyi and givenSi the event that all parity-check
equations connected to variable nodevi are fulfilled. The computation ofpi depends on
the structure of the code factor graph through eventsSi for all i. If input messagesyi are
independent, the probabilities on the graph are computed exactly up tog

4
iterations, ifg is

the length of the shortest cycle in the graph, also called thegirth of the graph.

To describe the BP decoding,{l(t)piv
}i∈{1,...,dv} denotes the set of messages getting in

a degreedv variable nodev at thetth iteration, and{r (t)
vpi}i∈{1,...,dv} the set of messages

going out of this variable node. Indexpv denotes the direction of message propagation
(permutation node→ variable node),vp denotes the opposite direction. Messages get-
ting in (resp. out) a parity-check nodec are similarly denoted by{r (t)

pic}i∈{1,...,dc} (resp.

30 Chapitre 1 : Introduction to binary and non-binary LDPC codes

{l(t)cpi
}i∈{1,...,dc}).

The decoding algorithm is composed of six stages:

• Initialization: All messagesr (0) going out of variable nodes to check nodes are ini-
tialized witha priori information computed at channel output{pchi

[a]}i={0,...,N−1},
with

pchi
[a] = P (yi|ci = αa), αa ∈ GF (q). (1.6)

• Variable node update: The variable nodev sends to check nodec the probability
for the symbol corresponding tov to be equal toαa ∈ GF (q) (Fig.1.3). Messages
going out of variable nodes are updated thanks to equation(1.7)

r(t+1)
vpc

[a] = µvcpchv
[a]

dv
∏

j=1,j 6=c

l(t)pjv[a] (1.7)

wherec ∈ {1, . . . , dv} andµvc is a normalization factor such that
∑q−1

a=0 rP
vpc

[a] = 1.

p

rl p v
1

P
vp

3

ch

v

y

Channel output

Variable node

Permutation node

d

Check nodes

v

P

Figure 1.3 : Variable node update

• Permutation nodes update: This stage is a consequence of the parity equation
(1.1). Indeed, the permutation function node on each edge corresponds to the mul-
tiplication of the non-zero value with the symbol value. Since these two values
belong toGF (q), this multiplication actually corresponds to a cyclic permutation
of the vector messages.

rpc[hij × αk] = rvp[αk] k = {0, . . . , q − 1} (1.8)

For message going from check nodes to variable nodes (lcp → lpv), the inverse
transform is achieved thanks to the inverse symbolh−1

ij permutation.

1.4 Decoding of LDPC codes by Belief Propagation algorithm 31

• Check nodes update:Each check node processes its incoming vectorsr (t) and
sends out updated messagesl(t) to all its neighbors (figure 1.4). The check node
sends, to its neighboring variable nodes, the probability that the parity-check equa-
tion is fulfilled, given its incoming messages. Equation (1.10) is the update of the
componenta of the output vectorl(t)cpv .

lPcpv
[a] =

∑

α1,...,αv−1,αv+1,...,αdc :
Ldc

i=1,i6=v
αi=αa

dc
∏

j=1,j 6=v

r(t)
pjc[αj] (1.9)

where the
⊕

operator explicits that the addition is performed overGF (q). Else-
where in the document, this operation is noted by common+, the addition is per-
formed overGF (q) if elements ofGF (q) are summed up. One can also express
l
(t)
cpv directly in terms ofr(t+1)

vpc

lPcpv
[a] =

∑

α1,...,αv−1,αv+1,...,αdc ,
Ldc

i=1,i6=v
(gi×αi)=αa

dc
∏

j=1,j 6=v

r(t)
vjpj

[αj] (1.10)

Figure 1.4 depicts equation(1.10): elementl
(t)
cp3[a] update consists in computing the

sum of all productsr(t)
p1c[a1] · r(t)

p2c[a2] satisfying the conditiona1 × a2 × a = 0 with
a1, a2, a ∈ {0, . . . , q − 1}.

lr
P

1
p c

P

3
cp

Variable nodes

Permutation nodes

d

Check node

c

Figure 1.4 : Check node update

• Stopping criterion: Equation (1.11) corresponds to the decision rule on symbols
values:

l̂n = max
αa

Pch[a]
dv
∏

j=1

V P
pjv[a] (1.11)

32 Chapitre 1 : Introduction to binary and non-binary LDPC codes

Updates ofr(t) andl(t) messages is done iteratively untilH l̂ = 0 (the decoder has
converged to a codeword) or until the maximum number of iterations is reached
(the decoder did not succeed in converging to a codeword).

Let us briefly mention available reduced-complexity techniques for decodingGF (q)
LDPC codes. The BP decoder implemented as above described has complexityO(q2). As
introduced in an early paper of Richardson and Urbanke [11],the check node update can
be performed using Fourier transforms translating the convolutional product, as soon as a
group structure exists. Many works have then been done on this topic, like [45] that has
shown that with Fourier transform decoding, the complexityscales asO(q log2(q)). Other
low-complexity non-binary decoders, which have been presented recently in the literature
[46, 47], implement approximated versions of the BP decoder.

1.5 Analysis of LDPC codes

This section first sets up the transmission context and explains why the error probability
of non-binary LDPC codes can be assumed to be independent of the codeword sent. Then
it is shown how the performance ofGF (q) LDPC code ensembles can be predicted by
analyzing the densities of messages along iterative decoding. As this non-binary density
evolution analysis is computationally intensive, only an approximation of message densi-
ties is given. By using a Gaussian approximation, one can design good irregularities for
GF (q) LDPC codes thanks to EXIT charts. Finally, the stability condition for non-binary
LDPC codes is given, which ensures that the error probability is able to be arbitrary small,
provided it has already dropped below some threshold. All the results presented in this
section can be found in the literature [48], but note that they can be slightly modified
because, unlike in [48], the considered channels are symmetric.

1.5.1 Additional notation

We give the definition of+g operation, as introduced in [48]. Given a probability vector
x and an elementg ∈ GF (q), x+g is defined by

x+g = (xg, x1+g, . . . , x(q−1)+g)

where addition is performed overGF (q).
x⋆ is defined as the set

x⋆ = x,x1, . . . ,x(q−1)

Moreover,n(x) is defined as the number of elementsg ∈ GF (q) satisfyingx+g = x.
Similarly,x×g is defined by [48]:

x×g = (x0, xg, . . . , x(q−1)×g)

where multiplication× is performed overGF (q).
The LDR vectors corresponding tox andx+g are denoted byw andw+g, respectively.

1.5 Analysis of LDPC codes 33

Due to Definition 1.4 of the components of a LDR vector, theith component ofw+g is
w+g

i which is defined by

w+g
i = wg+i − wg, ∀i = 0 . . . q − 1

Unlike w+g, w×g is defined in the same way asx×g:

w×g
i = wg×i, ∀i = 0 . . . q − 1

1.5.2 Channel and message symmetry

Only symmetric channels are considered in this work. Extension to arbitrary channel can
be done by a coset approach, as detailed in [48]. In this section, we introduce classical
results leading to asymptotic analysis, but we prove them inthe specific case of the defi-
nition of channel symmetry we consider. These proofs are new, since the thorough study
presented by Bennatan and Burshtein in [48] is done in the case of a coset approach.
The definitions of symmetric probability vector and LDR vector are given hereafter.

Definition 2 [48] A probability vector random variableY is symmetric if for any proba-
bility vectory, the following expression holds:

P (Y = y|Y ∈ y⋆) = y0 · n(y) (1.12)

wherey⋆ andn(y) are as defined in Section 1.5.1.

Lemma 1 [48] Let W be an LDR vector random variable. The random variableY =
LDR−1(W) is symmetric if and only ifW satisfies

P (W = w) = ewiP (W = w+i) (1.13)

for all LDR vectorsw.

We refer the reader to the original article [48] for the proofof the equivalence between
these two definitions.

The definition of channel symmetry we consider is the one of Liet al. [49].

Definition 3 A channel is symmetric if and only if the density of the observation in prob-
ability form satisfies:

P (Y = y|x = i) = P (Y = y+i|x = 0)

Let us now prove that the channel symmetry implies that the error probability at any
iteration of BP decoding of aGF (q) code, is independent of the codeword that has been
sent.

Lemma 2 LetP (t)
e (x) denote the conditional error probability after thet-th BP decoding

iteration of aGF (q) LDPC code, assuming that codewordx was sent. If the channel is
symmetric, thenP (t)

e (x) is independent ofx.

34 Chapitre 1 : Introduction to binary and non-binary LDPC codes

The proof of this lemma is provided in Section 1.7. This property allows to assume that
the all-zero codeword has been transmitted, for the reminder of the asymptotic analysis
of GF (q) code ensemble performance.
Let us provide two additional properties that are usual for asymptotic analysis of LDPC
codes,

Lemma 3 If the channel is symmetric, then, under the all-zero codeword assumption, the
initial message densityP0 in LDR form is symmetric:

P0(w) = ewiP0(w
+i)

The proof of this lemma is provided in Section 1.7. Furthermore, the following lemma is
used in [48], and the proof is a direct extension of the proof of Lemma 1 in [11].

Lemma 4 If the bipartite graph is cycle-free, then, under the all-zero codeword assump-
tion, all the messages on the graph at any iteration, are symmetric.

1.5.3 Density evolution forGF (q) LDPC codes

This subsection presents density evolution forGF (q) LDPC codes. The precise compu-
tation of theGF (q) LDPC version of the algorithm is generally not possible in practice.
The algorithm is however valuable as a reference for analysis purposes. The density
evolution forGF (q) LDPC codes is defined in Section 1.5.3, and the application ofthe
concentration theorem of [11] is then given.

Since the density evolution analysis for non-binary LDPC codes is an extension of the
binary case, we refer the reader to [11] and [10] for a complete and rigorous development
of the density evolution for binary LDPC codes.

In [11] and [10], a general method that allows to predict asymptotic performance of
binary LDPC codes is presented. The authors proved a so-called concentration theorem
according to which decoding performance over any random graph converges, as the code
length tends to infinity, to the performance when the graph iscycle-free. Thus, relevant
evaluation of performance of binary LDPC codes is possible in the limit case of infinite
codeword lengths. The proposed density-evolution method consists in following the evo-
lution of probability densities of messages, spreading over the whole graph, when using
belief propagation algorithm for decoding. Messages are assumed to be independent and
identically distributed (iid).

Analogously to the binary case, density evolution forGF (q) LDPC codes tracks
the distributions of messages produced in belief-propagation, averaged over all possi-
ble neighborhood graphs on which they are based. The random space is comprised of
random channel transitions, the random selection of the code from a(λ, ρ) GF (q) LDPC
ensemble (see section 1.2) and the random selection of an edge from the graph. The ran-
dom space does not include the transmitted codeword, which is assumed to be fixed at
the all-zero codeword (following the discussion of section1.5.2). We denote byR(0) any
initial message across an edge, byRt a variable to check message at iterationt, and by
Lt a check to variable message at iterationt. The neighborhood graph associated withRt

1.5 Analysis of LDPC codes 35

andLt is always assumed to be tree-like, and the case that it is not so is neglected. These
notations are used when discussing plain-likelihood representation of density-evolution.
When using LDR-vector representation, we letR′(0), R′

t andL′
t denote the LLR-vector

representations ofR(0), Rt andLt. To simplify the notations, it is assumed that all random
variables are discrete and thus track their probability-functions rather than their densities.
The following discussion focuses on the plain-likelihood representation. The translation
to LDR representation is straightforward.

• The initial message. The probability function ofR(0) is computed in the following
manner:

P (R(0) = x) =
∑

y∈Y :r(0)(y)=x

P (Y = y)

where Y is a random variable denoting the channel output,Y is the channel output
alphabet and the components ofr(0)(y) are defined by equation (1.6), replacingyi

with y.

• Check to variable node messages. Lt is obtained from equation (1.10). The
variable-to-check messages in equation (1.10) are replaced by independent random
variables, distributed asRt−1. Similarly, the labels in equation (1.10) are also re-
placed by independent random variables uniformly distributed inGF (q)\{0}. For-
mally, letdc be the maximal check node degree. Then for eachdj = 2, . . . , dc we
first define,

P (L
(dj)
t = x) =

∑

r(1),...,r(dj−1)∈P,
g1,...,gdj

∈GF (q):

l(r(1),...,r(dj−1),g1,...,gdj
)=x

dj
∏

n=1

P (Gn = gn) ·
dj−1
∏

n=1

P (Rt−1 = r(n))

(1.14)
whereP is the set of all probability vectors, and the components of
l(r(1), . . . , r(dj−1)g1, . . . , gdj

) are defined as in equation (1.10).Gn is a random
variable corresponding to thenth label, and thusP (Gn = g) = 1

q−1
for all g.

P (Rt−1 = r(n)) is obtained recursively from the previous iteration of belief propa-
gation. The probability function ofLt is now obtained by

P (Lt = x) =

c
∑

j=1

ρjP (L
(dj)
t = x) (1.15)

• Variable to check node messages. The probability function ofR0 is equal to that
of R(0). For t > 0, Rt is is obtained from equation (1.7). The check-to-variable
messages and initial messages in equation (1.7) are replaced by independent random
variables, distributed asLt andR(0) respectively. Formally, letdv be the maximal
variable node degree. Then for eachdi = 2, . . . , dv we first define,

P (R(di)
(t)

= x) =
∑

r(0),l(1),...,l(di−1)∈P:
r(r(0),l(1),...,l(di−1))=x

P (R(0) = r(0))

di−1
∏

n=1

P (Lt = l(n))

36 Chapitre 1 : Introduction to binary and non-binary LDPC codes

where the components ofr(r(0), l(1), ..., l(di−1)) are defined as in equation (1.7).
P (R(0) = r(0)) andP (Lt = l(n)) are obtained recursively from the previous itera-
tions of belief propagation. The probability function ofRt is now obtained by

P (Rt = x) =
v
∑

i=1

λiP (R
(di)
t = x) (1.16)

Theoretically, the above algorithm is sufficient to computethe desired densities. If one
consider that the all-zero codeword has been sent, which is relevant in the context pre-
sented in section 1.5.2, it is easy to compute the probability of doing an error when ap-
plying decision rule (1.11) to a probability vector, e.g.Rt.

As aforementioned, Richardson and Urbanke in [11] proved a concentration theorem
that states that as the block lengthN approaches infinity, the bit error rate at iterationt
converges to a similarly defined probability of error. It hasbeen shown in [48] that the
concentration theorem can be applied to frame error rate ofGF (q) LDPC code ensem-
bles. In this way, the performance of correction of aGF (q) LDPC ensemble, as defined
in Section 1.2, can be exactly predicted. However, in practice, a major problem is the fact
that the quantities of memory required to store the probability density of aq-dimensional
message grows exponentially withq. That is why it is important to look for a computa-
tionally easier way to follow the message densities in orderto be able to predict the code
ensemble performance.

As mentioned in [48], ifP t
e = Pe(Rt) is a sequence of error probabilities produced

by density evolution, thenP t
e is a non-increasing function oft. The demonstration is

similar to the proof of theorem 7 in [10]. This non-increasing property ensures that the
sequence corresponding to density evolution by iterating between equation (1.15) and
equation (1.16) converges to a fixed point. Implementing thedensity evolution allows to
check whether not this fixed point corresponds to the zero error probability, which means
that the decoding in the infinite codeword length case has been successful. That is why
GF (q) LDPC codes, like binary LDPC codes, are said to have athreshold behavior.

In the sequel, it is explained why such an implementation is not possible forGF (q)
LDPC codes, unlike their binary counterparts. The proposedmethod from the literature
aims at approximating the densities, thereby simplifying the recursion and making possi-
ble the study of its convergence. This method is presented inthe next section.

1.5.4 Approximation of message densities by only one scalarparam-
eter

Analogously to the binary case, a Gaussian approximation ofthe message densities is
used to be able to practically track these densities and predict error probabilities ofGF (q)
LDPC code ensembles. To reduce the densities to only one scalar parameter, things are
a little more elaborated than in the binary case since messages are no more scalars but
q-sized probability vectors, which entails that the densities are multi-variate densities.

1.5 Analysis of LDPC codes 37

Permutation-invariance

Permutation-invariance is a key property ofGF (q) LDPC codes that allows the approxi-
mation of their densities using one-dimensional functionals, thus greatly simplifying their
analysis. It is only briefly described here, since more details can be found in [48]. The
definition is based on the cyclic permutation of the elementsof a probability vector mes-
sage, when passing through the permutation nodes describedin Section 1.4.

Definition 4 [48] A probability vector random variableX is said to be permutation-
invariant if for any fixedg ∈ GF (q)\{0}, the random variableX×g is distributed identi-
cally withX.

This definition also holds for LDR vectors. It is shown in [48]that a message resulting
from a random permutation is necessarily permutation-invariant. That isX×g is neces-
sarily permutation-invariant whenX is a random LDR or a probability vector andg is
picked up uniformly at random inGF (q)\{0}. Hence, this is the case for all messages on
the graph of a givenGF (q) LDPC code ensemble, whose non-zero values are chosen uni-
formly in GF (q)\{0}, except initial messagesR(0) and messages going out of variable
nodes. Moreover, all the components of a permutation-invariant vector are identically
distributed (lemma 8 in [48]). Combined with the symmetry and the Gaussian approxi-
mation, it allows the projection of message densities ofGF (q) LDPC code ensembles on
only one parameter.

Gaussian approximation

For binary LDPC codes, Chung et al. [50] observed that the variable-to-check message
densities well approximated by Gaussian random variables.Furthermore, the symmetry
of Gaussian messages in binary LDPC decoding implies that the meanm and variance
σ2 of the random variable are related byσ2 = 2m. Thus, the distribution of a symmetric
Gaussian random variable may be described by a single parameter: m. This property was
also observed by ten Brink et al. [14] and is essential to their development of EXIT charts.
In the context of non-binary LDPC codes, Li et al. [49] obtained a description of theq−1
dimensional messages, under a Gaussian assumption, byq − 1 parameters.

The following theorem explains how the mean vector and the covariance matrix of a
symmetric LDR vector can be related to each other:

Theorem 1 [48] Let W be an LDR-vector random variable, Gaussian distributed with a
meanm and covariance matrixΣ. If Σ is non-singular andW is symmetric, then

Σi,j = mi + mj − mi⊕j , ∀(i, j) ∈ [1, q − 1]2

If the LDR vectorW distributed asN (m,Σ) is additionally permutation-invariant, then
all its components are identically distributed. Then the mean vector can be expressed as
m ·1q−1 where1q−1 is the all one vector of sizeq− 1. A Gaussian distributed, symmetric
and permutation-invariant random variable is thus completely described by a single scalar
parameterm.

38 Chapitre 1 : Introduction to binary and non-binary LDPC codes

EXIT charts for GF (q) LDPC codes

Let us consider the binary input AWGN channel. This paragraph presents the tool for
optimization of the irregularity ofGF (q) LDPC code ensemble thanks to EXIT charts.

First, let us discuss the accuracy of the Gaussian approximation of the channel output
in symbolwise LLR form forGF (q) LDPC code ensembles. The channel outputs are
noisy observations of bits, from which we obtain bitwise LLR, all identically distributed
asN (2

σ2 ,
4
σ2) [50]. Let s be the vector gathering the LLRsb1, . . . , bpk

of bits of which a
symbol inG(qk) is made:s = (b1, . . . , bpk

)T . Each component of an input LLR random
vectorl of size(qk − 1) is then a linear combination of these bitwise LLRs:

l = Bqk
· s (1.17)

whereBqk
is the matrix of sizeqk × log2(qk) in which theith row is the binary map of

the ith element ofG(qk). The distribution of initial messages is hence a mixture of one-
dimensional Gaussian curves, but are not Gaussian distributed vectors. Indeed, it is easy
to see that the covariance matrix of vectorl is not invertible.

Formally, EXIT charts track the mutual informationI(C;W) between the transmit-
ted code symbolC at a variable node and the messageW transmitted across an edge
emanating from it.

Definition 5 [48] The mutual information between a symmetric LDR-vectormessageW
of sizeq − 1 and the codeword sent, under the all-zero codeword assumption, is defined
by:

I(C;W) = 1 − E logq

(

1 +

q−1
∑

i=1

e−Wi|C = 0

)

The equivalent definition for the probability vectorX = LDR−1(W) of sizeq is

I(C;X) = 1 − E logq

(

∑q−1
i=0 Xi

X0
|C = 0

)

. (1.18)

In the following, the shortcut “mutual information of a LDR vector” is used instead of
“mutual information between a LDR vector and the codeword sent”. If this information
is zero, then the message is independent of the transmitted code symbol and thus the
probability of error isq−1

q
. As the information approaches1, the probability of error

approaches zero. Note that we assume that the base of the log function in the mutual
information isq, so as0 ≤ I(C;W) ≤ 1. I(C;W) is taken to represent the distribution
of the messageW. That is, unlike density evolution, where the entire distribution of the
messageW at each iteration is recorded, with EXIT charts,I(C;W) is assumed to be
a faithful surrogate. In other words, since the densities are assumed to be dependent on
only one scalar parameter, instead of tracking the mean of one component, one tracks the
information content of the message. It is shown in [48] that,under the cycle free graph
assumption:

I(C;W) = 1 − EW

(

logq(1 +

q−1
∑

i=1

e−wi)|C = 0

)

1.5 Analysis of LDPC codes 39

The evolution of the mutual information of messages throughthe different steps of de-
coding is now given. We use dummy notationsxin andxout for the mutual information
evolution equations at each decoding step for ease of understanding. Then all steps are
gathered into a single EXIT equation.

• Let v denote a probability vector, andf(v) the corresponding Fourier Transform
(FT) vector (see [49, 45] for use of multi-dimensional FFT onmessages). The
mutual information of the check node input is computed thanks to the following
relation:

xf(v) = 1 − xv

The demonstration of this relation is easy with direct calculus, provided in section
2.7.6.

Thus, for the mutual information evolution through a check node with connection
degreej, we have:

xout = 1 − Jc((j − 1)J−1
c (1 − xin, q), q)

with

Jc(m, q) = 1 − Ev

(

logq(1 +

q−1
∑

i=1

e−vi)

)

, (1.19)

with v ∼ N (m1q−1,Σ)

• The mutual information of a variable node output is expressed thanks to theJv(·, ·)
function applied toσ2 and to the sum of means, since symbol node update is the
summation of LDRs. Here,xin is the IC of truncation operator output. The ICxout

of the output of a symbol node with connection degreei, is given by:

xout = Jv(σ
2, (i − 1)J−1

c (xin, q)1q−1, q) .

Finally, we get equation (1.20) that expresses the extrinsic transfer function of the non-
binary BP decoder used on a BIAWGN channel from iteration numbert to iteration num-
ber t + 1. The information content of any check node incoming vector message at the
(t + 1)th iteration is denoted byx(t)

vc .
The optimization method to find the best connectivity profilefor aGF (q) code is then

the same as for binary LDPC codes.

x(t+1)
vc =

∑

i

λiJv

(

σ2,msc + (i − 1)Jc
−1

(

1 −
∑

j

ρjJc

(

(j − 1)Jc
−1(1 − x(t)

vc)
)

)

1q−1

)

(1.20)

40 Chapitre 1 : Introduction to binary and non-binary LDPC codes

1.5.5 The stability condition

Also obtained in [48], the stability condition, introducedin [10], is a necessary and suf-
ficient condition for the error probability to converge to zero, provided it has already
dropped below some value. This condition must be satisfied bythe SNR corresponding
to the threshold of the code ensemble. Therefore, ensuring this condition, when imple-
menting an approximation of the exact density evolution, helps to have a more accurate
approximation of the exact threshold.

Given a ensemble ofGF (q) LDPC codes defined by(λ, ρ), the following ensemble
parameter is defined:

Ω =
∑

j

ρj(j − 1) (1.21)

For a given memoryless symmetric output channel with transition probabilitiesp(y|x),
the following channel parameter is also defined:

∆ =
1

q − 1

q−1
∑

i=1

∫

√

p(y|i)p(y|0)dy (1.22)

Theorem 2 [48] Consider a givenGF (q) LDPC ensemble parametrized by(λ, ρ). Let
P t

e = Pe(Rt) denotes the average error probability at iterationt under density evolution.

• If Ω ≥ 1
∆

, then there exists a positive constantξ = ξ(λ, ρ, P0) such thatP t
e > ξ for

all iterationst.

• If Ω < 1
∆

, then there exists a positive constantξ = ξ(λ, ρ, P0) such that ifP t
e < ξ

at some iterationt, thenP t
e approaches zero ast approaches infinity.

1.5.6 Design example ofGF (q) LDPC code ensemble on BIAWGN
channel

Optimization is performed for the BIAWGN channel. The goal of the optimization with
EXIT charts is to find a good ensemble ofGF (q) LDPC codes with the lowest con-
vergence threshold, under a Gaussian approximation. This means that we look for the
parameters(λ(x), ρ(x)) of the ensemble ofGF (q) LDPC codes with lowest convergence
threshold.

Let us denote the code rateR, and the target code rateRtarget. The optimization
procedure [10, 50] consists in finding(λ(x), ρ(x)) which fulfills the following constraints
at the lowest SNR:

Code rate constraint: R = Rtarget (see equation (1.2))

Proportion constraint:
∑

i

λi = 1 and
∑

j

ρj = 1

Successful decoding condition:x(t+1)
vc > x(t)

vc (see equation (1.20))

Stability constraint: Ω∆ < 1 (see equations (1.21) and (1.22))

1.6 Other design techniques 41

dc = 4 dc = 5 dc = 6 dc = 7 dc = 8

q = 4 2.56 0.95 0.66 0.52 0.48
q = 64 0.76 0.53 0.51 0.58 0.90
q = 256 0.65 0.54 0.59 0.79 1.27

Table 1.1 : Thresholds ofGF (q) LDPC code ensembles with constant check degreedc and
code rate one half, optimized with EXIT charts on the BIAWGN channel. The maximum
variable degree allowed in the optimization procedure isdvmax = 30. Thresholds are given
in term of the SNREb

N0
in dB, and are obtained using the Gaussian approximation.

We briefly illustrate what can be the results of such an optimization, and how it allows to
find again known results from the literature.

Table 1.1 gathers some thresholds obtained by optimizationof the irregularities for
various field order and check degrees. These thresholds are hence computed by EXIT
charts, with a Gaussian approximation. The code rate is one-half. Since degree-1 vari-
able nodes are not allowed in the optimization process, the code ensemble withdc = 4
is regular withdv = 2. In this case, we observe that the threshold is better for higher or-
der field. This observation ca, be identified to the followingclaim of Hu and Eleftheriou
in [33]. They consideredGF (q) random ensembles defined by the probabilityp that an
element of the parity-check matrix be non-zero. Whenp is very low, the binary random
ensemble defined byp is far away from the Shannon equiprobable random ensemble. In
this case, they illustrated that the Hamming weight distribution of theGF (q) random en-
semble tends to the binomial distribution asq increases. As an additional example, EXIT
curves of regular (2,4) codes inGF (2), GF (8) andGF (256) are plotted on figure 1.5,
confirming results of the first column of Table 1.1: the curve of GF (256) is the only one
for which the tunnel is open.

1.6 Other design techniques

1.6.1 Finite length design of LDPC codes

We do not detail the design techniques relative to finite length design of LDPC codes,
but just mention some works on that. First, the PEG construction has been proposed in
[23] to build the graph of codes, given the irregularities. This technique has recently
been improved [51]. For non-binary LDPC codes, additionally to the PEG construction,
Poulliat et al. [34] expressed a criterion and developed a technique for cancelling cycles
of GF (q) LDPC codes by an appropriate choice of the non-zero values.

42 Chapitre 1 : Introduction to binary and non-binary LDPC codes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
in

x
out

EXIT curves in three Galois fields

x
out

=x
in

GF(2)
GF(8)
GF(256)

Figure 1.5 : EXIT curves of(2, 4) GF (2), GF (8) andGF (256) regular codes. The SNR
is 0.7dB.

1.6.2 Structured ensembles

As pointed out in the introduction, a very efficient way to design code ensembles with
iterative decoding performance close to capacity and low error-floor, is to choose the per-
mutations in a structured way. Indeed, the aforementioned representation of LDPC codes
defines only the connection degrees of variable and check nodes, but any variable node can
be connected to any check node. A structured code ensemble has a representation which
defines to which type of check nodes each type of variable nodecan be connected. LDPC
codes with a detailed representation have been introduced in [52]. Some structured code
ensembles have been under the scope of many studies these last years: irregular repeat-
accumulate (IRA) codes [25], protograph-based LDPC codes [26] and multi-edge type
LDPC [27]. The design of good D-GLDPC codes have been addressed for the BEC in
[29]. These techniques lead to codes with good code properties in terms, for instance, of
girth of the bipartite graph and possibility to perform the encoding procedure efficiently.
For a comprehensive survey of the design of those kinds of LDPC codes, we refer the
reader to [53].

1.7 Proof of theorems in Chapter 1

Lemma 3.LetP (l)
e (x) denote the conditional error probability after thel-th BP decoding

iteration of aGF (q) LDPC code, assuming that codewordx was sent. If the channel is
symmetric, thenP (l)

e (x) is independent ofx.

Proof: The proof has the same structure as the proof of Lemma 1 in [11]. Thus, we
do not detail it, but instead refer the reader to [11] and rather only give the key elements.

1.7 Proof of theorems in Chapter 1 43

The notations are the same as in [11].

• Check node symmetry: For any sequence(b1, . . . , bdc−1) in GF (q), we have

Ψ(l)
c (m+b1

1 , . . . ,m
+bdc−1

dc−1) = Ψ(l)
c (m1, . . . ,mdc−1)

+b1+···+bdc−1

• Variable node symmetry: We also have, for anyb ∈ GF (q):

Ψ(l)
v (m+b

0 ,m+b
1 , . . . ,m+b

dv−1) = Ψ(l)
v (m1, . . . ,mdc−1)

+b

With same notation as in [11], we definey = z+x, wherex is a vector of sizeq, denoting
an arbitrary codeword overGF (q). y andz are sets of vectors, and each elementyt

corresponds toyt = z+xt
t .

Still with same notations as in [11], we easily prove that:

m
(0)
ij (y) = m

(0)
ij (z)+xi; .

We also prove that, sincex is a codeword, then
∑

k:∃e=(vk,cj)
xk = 0. Hence, as in [11],

we conclude that

m
(l+1)
ji (y) = m

(l+1)
ji (z)+xi

thanks to the check node symmetry, and

m
(l+1)
ij (y) = m

(l+1)
ij (z)+xi

thanks to the variable node symmetry.

�

Lemma 3.If the channel is symmetric, then, under the all-zero codeword assumption,
the initial message densityP0 in LDR form is symmetric:

P0(W = w) = ewiP0(W = w+i)

Proof: Let us definey by y = LDR−1(w). If we call xnoisy the noisy observation
of the sent symbol value, by following the notation of [10], we havew = L(xnoisy).

Hence, theith component ofy is yi = P (xnoisy ∈ L−1(w)|x = i), andwi = log
(

y0

yi

)

=

log
(

P (xnoisy∈L−1(w)|x=0)

P (xnoisy∈L−1(w)|x=i)

)

also.

Given the symmetry of the channel, let us prove thatP0(W = w) satisfies equation

44 Chapitre 1 : Introduction to binary and non-binary LDPC codes

(1.13):

ewiP0(W = w+i) = ewiP (W = w+i|x = 0)

=
P (xnoisy ∈ L−1(w)|x = 0)

P (xnoisy ∈ L−1(w)|x = i)
P (Y = y+i|x = 0)

=
P (xnoisy ∈ L−1(w)|x = 0)

P (xnoisy ∈ L−1(w)|x = i)
P (Y = y|x = i)

=
P (xnoisy ∈ L−1(w)|x = 0)

P (xnoisy ∈ L−1(w)|x = i)
P (W = w|x = i)

=
P (xnoisy ∈ L−1(w)|x = 0)

P (xnoisy ∈ L−1(w)|x = i)
P (xnoisy ∈ L−1(w)|x = i)

= P (xnoisy ∈ L−1(w)|x = 0)

= P (W = w|x = 0)

= P0(W = w)

�

Chapter 2

Hybrid LDPC Codes

In this chapter, we introduce and study a new class of LDPC codes, namedhybrid LDPC
codes. The class of hybrid LDPC codes is a generalization of existing classes of LDPC
codes, like non-binary or GLDPC codes. For hybrid LDPC codes, we allow the connec-
tivity profile of the factor graph to be irregular, but also weallow the codeword symbols to
be defined over different order sets. By adapting the work of [48], we show in particular
that the class of hybrid LDPC codes can be asymptotically characterized and optimized
using density evolution (DE) framework. All the proofs are gathered at the end of the
chapter.

2.1 The class of hybrid LDPC codes

2.1.1 General hybrid parity-check equations

Classically, non-binary LDPC codes are described thanks tothe local constraints given by
parity-check equations involving some of the codeword symbolsci. If a code is linear over
a finite fieldGF (q), the parity equation corresponding to theith row of the parity-check
matrixH, is

∑

j

hijcj = 0 in GF (q) (2.1)

The fieldGF (2p) can be represented using the vector space
(

Z

2Z

)p
in a natural way. Mul-

tiplications inGF (2p) can be represented as matrix multiplications, after choosing a suit-
able representation. The set of matrices representing fieldelements then forms a field of
invertible matrices. Thus, interpreting variables as elements of

(

Z

2Z

)p
and using matrix

multiplication to form linear constraints can be used to model LDPC overGF (2p).
We aim at generalizing the definition of the parity-check equation by allowing more

general operations than multiplications byhij ∈ GF (q), and moreover, by considering
parity-checks where codeword symbols can belong to different finite sets:ck ∈ G(q1).
G(q1) is a finite set of orderq1 = 2p1 with a group structure. Indeed, we will only consider
groups of the typeG(q1) =

((

Z

2Z

)p1
, +
)

with p1 = log2(q1). Such a group corresponds

45

46 Chapitre 2 : Hybrid LDPC Codes

to an ensemble ofp1-sized vectors whose elements lie inZ

2Z
. This is the reason why we

adopt the fully denomination of these codes as beingmulti-binary hybrid LDPC codes. In
the remainder, we use a shortcut and refer to them ashybrid LDPC codes.

Let q1 andq2, such thatq1 < q2, denote the group orders of a column and of a row of
H, respectively. They will be similarly called variable and check order. LetG(q1) denote
the group of variablej andG(q2) the group of parity-checki. The non-zero elements of
the parity-check matrix are applications which have to map avalue in the column group
(variable node group), to a value in the row group (check nodegroup, see figure 2.1). This
is achieved thanks to functions namedhij such that

hij : G(q1) → G(q2)

cj → hij(cj)

Hence, an hybrid parity-check equation is given by

∑

j

hij(cj) = 0 in G(q2) (2.2)

We notice that, on equation (2.1) as well as on equation (2.2), the additive group
structure defines the local constraints of the code. Moreover, as mentioned in [11], and
deeply studied in, e.g., [45], the additive group structurepossesses a Fourier transform,
whose importance for the decoding is pointed out in section 2.1.7.

Since the mapping functionshij can be of any type, the class of hybrid LDPC codes
is very general and includes classical non-binary and binary codes.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

2 4 8

8
8

8

c3 ∈ G(q3)

q1 ≤ q2 ≤ q3

parity-check inG(q3)

hi1(c1) + hi2(c2) + hi3(c3) = 0, hij(cj) ∈ G(q3)

defines a component code in the groupG = G(q1) × G(q2) × G(q3)

hi1(c1) hi2(c2) hi3(c3)

c1 ∈ G(q1) c2 ∈ G(q2)

Figure 2.1 : Factor graph of parity-check of an hybrid LDPC code.

2.1 The class of hybrid LDPC codes 47

2.1.2 Hybrid LDPC code ensemble

By definition of G(qk), to each element ofG(qk) corresponds a binary map ofpk bits.
Let us call the minimum order of codeword symbolsqmin, and the maximum order of
codeword symbolsqmax. The class of hybrid LDPC codes is defined on the product group
(

Z

2Z

)pmin × . . . ×
(

Z

2Z

)pmax. Let us notice that this type of LDPC codes built on product
groups has already been proposed in the literature [54][55], but no optimization of the
code structure has been proposed and its application was restricted to the mapping of the
codeword symbols to different modulation orders.

2.1.3 Different sub-classes of hybrid LDPC codes

Among the huge set of hybrid LDPC codes, we can distinguish asmany classes as differ-
ent types of non-zero elements of the parity-check matrixH. Such a non-zero element is
an application, that we denote byA, which maps theq1 symbols ofG(q1) into a subset of
q1 symbols that belongs toG(q2). It can be of any type. Let us consider the case where
these applications are linear, i.e., represented by a matrix, with dimensionsp2 × p1. In
that way,A actually connects the binary map vector of a symbol inG(q1) to the binary
map vector of a symbol inG(q2). At this stage, it is quite straightforward to establish
a connection between hybrid LDPC codes and doubly-generalized LDPC (D-GLDPC)
codes, thoroughly studied in [29, 56]. Indeed, the linear map A can be seen as part of the
generalized check and generalized variable. The code corresponding to the generalized
variablev would have a number of information bitsK = p1 and lengthN =

∑

l pl, where
the sum is done over the groups of all the checks connected tov. The code of the gener-
alized checkc would have a number of redundancy bitsM = p2 and lengthN =

∑

k pk,
where the sum is done over the groups of all the variables connected toc. However, it
is important to note that, if the idea is the same, hybrid LDPCcodes are not exactly D-
GLDPC codes because of the decoder. Indeed, with D-GLDPC codes, one considers that
the generalized codes are at variable and check nodes sides,whereas with hybrid LDPC,
we consider that the previous generalized codes for each node are split on each incoming
edge. As detailed in section 2.3 on optimization, this difference allows us to affect differ-
ent connection degrees on the nodes depending on their grouporder, i.e., depending onK
for variables and onM for checks. In other words, we will be able to optimize the length
of the codes, given the dimension. We distinguish differentsub-classes of hybrid LDPC
codes whose non-zero elements are linear maps:

(i) Applications that are not of rankp1. This includes the case where the group order
of a column can be higher than the group order of the row. From aD-GLDPC
perspective, this allows to have generalized variables whose codes haveK > N ,
that is to say the number of incoming bits is projected to a smaller one. This could
be thought as puncturing, and, as a consequence, we get back the result that the rate
of the graph can be lower than the actual code rate. This case is out of the scope of
this thesis.

(ii) Applications that are of rankp1. They are named full-rank applications, and corre-

48 Chapitre 2 : Hybrid LDPC Codes

spond to matrices of sizep2 × p1 with necessarilyp1 ≤ p2. Such an application is
depicted on figure 2.2. We consider only these types of hybridLDPC codes in this
work, and details are given in the following section. This would correspond to a
classical D-GLDPC code, where the rate of the graph is higherthan the actual code
rate, that is all generalized variables have necessarily codes withN > K. Indeed,
no puncturing is done on bits.

2.1.4 Hybrid LDPC codes with linear maps

In this work, we consider only hybrid LDPC codes with the features described above, and
whose non-zero elements are linear full-rank applicationsof rank equal tolog2(q1) if the
corresponding column is inG(q1).

A−1

α′
0

α′
1

α′
2

α′
3

α′
4

α′
5

α′
6

α′
7

α0

α1

α2

α3

G(q1) G(q2)

G(q1) = {α0, α1, α2, α3}

G(q2) = {α′
0, α′

1, α′
2, α′

3, α′
4, α′

5, α′
6, α′

7}

A

Figure 2.2 : Message transform through linear map.

In the sequel, we denote byq1 andq2 the group orders of given variable node and check
node, respectively. With the assumption of section 2.1.2, we haveq1 ≤ q2. When looking
at the factor graph of a hybrid LDPC code (see figure 2.1), we note that an edge of the
graph carries two kinds of message probability vectors: messages of sizeq1 and messages
of size q2. The function node corresponding to the linear mapA (calledhij on figure
2.1) is meant to make the components of the two types of message probability vectors
correspond to each other. The transform of the probability vector is denotedextension
from G(q1) to G(q2) when passing throughA from variable node to check node, and the
transform fromG(q2) to G(q1) is denoted truncation from check node to variable node.
We now give precise definitions of extension and truncation.

Let A be an element of the set of linear maps fromG(q1) to G(q2) which are full-
rank. Im(A) denotes the image ofA (that is injective since dim(Im(A))=rank(A)=p1).

2.1 The class of hybrid LDPC codes 49

The notations are the ones of figure 2.2.

A : G(q1) → G(q2)

αi → α′
j = A(αi)

Definition 6 The extensiony of the probability vectorx byA is denoted byy = x×A and
defined by, for allj = 0, . . . , q2 − 1,

if α′
j /∈ Im(A), yj = 0

if α′
j ∈ Im(A), yj = xi with i such thatα′

j = A(αi)

AlthoughA is not bijective, we defineA−1 the pseudo-inverse ofA, by

A−1 : Im(A) → G(q2)

α′
j → αi with i such thatα′

j = A(αi)

Definition 7 The truncationx of the probability vectory by A−1 is denoted byx =
y×A−1

and defined by, for alli = 0, . . . , q1 − 1,

xi = yj with j such thatα′
j = A(αi)

In the sequel, we use a shortcut by calling the extension a linear mapA, and by calling
truncation its pseudo-inverseA−1. Indeed, extension or truncation are generated by a lin-
ear mapA and do not apply to group elements (i.e. symbol values), but on probability
vectors. Additionally, we denote byEk,l the set ofextensionsfrom G(qk) to G(ql), and
by Tk,l the set oftruncations fromG(ql) to G(qk).

2.1.5 Parametrization of hybrid LDPC ensemble

Classical LDPC codes are usually parametrized by two polynomials(λ(x), ρ(x)), whose
each coefficientλi (resp. ρj) describes the proportions of edges connected to a variable
node of degreei (resp. to a check node of degreej) [10]. Kasai et al. [52] introduced a de-
tailed representation of LDPC codes, described by two-dimensional coefficientsΠ(i, j),
which are the proportion of edges connected to a variable node of degreei and also to a
check node of degreej. Another important detailed and more general representation of
LDPC codes is the multi-edge type [27], which we discuss at the end of this section.

In our case, an edge of the Tanner graph of an hybrid LDPC code has four parameters
(i, qk, j, ql). An edge with these parameters is connected to a variable node in G(qk) of
degreei, and is connected to a check node inG(ql) of degreej. We decide to extend the
notation adopted by Kasai et al. in [52], and we denote byΠ(i, j, k, l) the proportion of
edges connected to a variable node of degreei in G(qk) and to a check node of degreej
in G(ql) (see figure 2.3).

Hence,Π(i, j, k, l) is a joint probability which can be decomposed in several ways
thanks to Bayes rule. For example, we have :

Π(i, j, k, l) = Π(i, j)Π(k, l|i, j)

50 Chapitre 2 : Hybrid LDPC Codes

whereΠ(i, j) corresponds exactly to the definition adopted by Kasai, andΠ(k, l|i, j)
describes the way the different group orders are allocated to degreei variable nodes and
degreej check nodes.

A ensemble of hybrid LDPC codes is parametrized byΠ and made of all the possible
hybrid parity-check matrices whose parameters are those ofthe ensemble. The linear map
of the parity-check matrices are chosen uniformly at random. Such a ensemble will be
also called aΠ hybrid LDPC code ensemble.

We denote byδi,j the Kronecker symbol (δi,j = 1 if i = j, δi,j = 0 otherwise). Here
are some examples of specific parametrization of interest:

• When the code is on a single group (or field)G(q) with uniform repartition of edges
between the different degrees of connection, the four-dimensional representation
reduces to:Π(i) = λi andΠ(j) = ρj whenΠ(k, l|i, j) = δqk,qδql,q. This is the
description of irregular non-binary LDPC codes analyzed in[48].

• When the LDPC code is inGF (2) and the repartition of edges between the dif-
ferent degrees of connection is non-uniform, the code is described byΠ(i, j) and
Π(k, l|i, j) = δqk,2δql,2. This corresponds to the detailed representation of irregular
LDPC codes [52].

• When the hybrid LDPC codes has the check connection profile independent of the
other parameters, and the connection profile of variable node depends on the pro-
portion of each group order, the four-parameters representation reduces to:

Π(i, j, k, l) = Π(i, k, l)Π(j)

= Π(i, k)Π(l|i, k)Π(j)

= Π(i|k)Π(j)Π(k)Π(l|k)

• When the hybrid LDPC code has regular(dv, dc) connection profile:

Π(i, j, k, l) = Π(j)Π(i, k|l)Π(l)

= δ(i, dv)δ(j, dc)Π(k|l)Π(l)

In the reminder, for more readable notations, we will writeΠ(i, j, k) to denote the marginal
distribution overl. The same with any other combinations ofi, j, k, l, we will always use
the same lettersi, j, k, l to identify the parameters and the considered marginals.

Thus the very rich parametrization of hybrid LDPC codes, with four parameters, high-
lights the generality of this class of codes, which includesclassical irregular binary and
non-binary LPDC codes, and which allows more degrees of freedom. In particular, com-
pared to D-GLDPC for example, we will be able to optimize the length of the generalized
codes given their dimensionsK or M , which are the group order characteristics. How-
ever, this representation is not as general as the one of multi-edge type LDPC codes [27]
because, e.g., it cannot distinguish a check node connectedto only one degree-1 variable,
thereby preventing the use of degree one variable nodes in such described hybrid LDPC

2.1 The class of hybrid LDPC codes 51

Channel value

edge parameters:
(i, j, qk, ql)

Def: π(i, j, k, l) ∈ [0, 1]:

proportion of edges that link a data
node of degreei in G(qk)

and a check node of degreej in G(ql)

Degreej check node inG(ql)

Degreei symbol node inG(qk)

Figure 2.3 : Parametrization of a hybrid LDPC code ensemble

code ensembles.

We also define node wise proportions:Π̃(i, k) andΠ̃(j, l) are the proportions of vari-
able nodes of degreei in G(qk) and check nodes of degreej in G(ql), respectively. The
connections between edgewise and node wise proportions arethe following:

Π̃(i, k) =

P

j,l Π(i,j,k,l)

i
∑

i,k

P

j,l Π(i,j,k,l)

i

Π̃(j, l) =

P

i,k Π(i,j,k,l)

j
∑

j,l

P

i,k Π(i,j,k,l)

j

(2.3)

The design code rate (i.e., the code rate when the parity-check matrix is full-rank) corre-
sponding to the distributionΠ is expressed by:

R = 1 −
∑

l

(

∑

j

P

i,k Π(i,j,k,l)

j

)

log2(ql)

∑

k

(

∑

i

P

j,l Π(i,j,k,l)

i

)

log2(qk)

We define thegraph rateas the rate of the binary code whose Tanner graph has parameters
Π(i, j). It is interesting to express the graph rateRg in terms ofΠ, to compare it to the
code rate of the hybrid code:

Rg = 1 −
∑

j

P

i Π(i,j)

j
∑

i

P

j Π(i,j)

i

For the linear maps we consider, variable nodes are always ingroup of order lower
than or equal to the group order of the check nodes to which they are connected. Hence
the graph rate will be always higher than the code rate.

52 Chapitre 2 : Hybrid LDPC Codes

2.1.6 Encoding of hybrid LDPC codes

To encode hybrid LDPC codes whose non-zero elements are aforementioned full-rank
linear maps, we consider upper-triangular parity-check matrices which are full-rank, i.e.,
without all-zero rows. The redundancy symbols are computedrecursively, starting from
the redundancy symbol depending only on information symbols. The images by the lin-
ear maps of the symbols involved in the parity-check equation but the redundancy symbol
being computed, are summed up. the summation is performed inthe group of the redun-
dancy symbol, i.e., the group of the coresponding row. The redundancy symbol is set to
the inverse of this sum by the linear map connected to it. Thislinear map is bijective from
G(ql) to G(ql), if G(ql) is the group the redundancy symbol belongs to. Hence, informa-
tion symbols satisfy that any assignment of values to them isvalid, and the redundancy
symbols are computed from them.

2.1.7 Decoding algorithm for hybrid LDPC codes

To describe the BP decoding, letl
(t)
cv denote the probability-vector message going into

variable nodev from checkc at thetth iteration, andr(t)
vc the probability-vector message

going out of variable nodev to check nodec at thetth iteration. The connection degrees
of v andc are denoted bydv anddc, respectively. LetAvc denote the linear map on the
edge connecting variable nodev to check nodec. Theath component ofl(t)cv is denoted
by l

(t)
cv (a). The same holds forr(t)

vc (a). Let x be the sent codeword andN the number
of codeword symbols. We recall that we simplify the notationas follows: for any group
G(q), for all a ∈ [0, q − 1], the elementαa is now denoted bya. Also, sinceA is a linear
map, the matrix of the map is also denoted byA. Hence, for all linear mapA from G(q1)
to G(q2), A(αi) = αj with αi ∈ G(q1) andαj ∈ G(q2), is translated intoAi = j with
i ∈ [0, . . . , q1 − 1] andj ∈ [0, . . . , q2 − 1].

• Initialization: Letxi ∈ G(qi) be theith sent symbol andyi be the corresponding
channel output, fori = 0 . . . N − 1. For each check nodec connected to thevth

variable nodev, and for anya ∈ [0, . . . , qk − 1]:

r(0)
vc (a) = r(0)

v (a) = P (Yv = yv|Xv = a) ;

l(0)vc (a) = 1 .

• Variable node update: Consider a check nodec and a variable nodev. Let{c1, . . . , cdv−1}
be the set of all check nodes connected tov, exceptc. For alla ∈ G(qv)

r(t+1)
vc (a) = µvcr

(0)
v (a)

dv−1
∏

n=1

l(t)cnv(a) (2.4)

whereµvc is a normalization factor such that
∑qv−1

a=0 r
(t+1)
vc (a) = 1.

2.1 The class of hybrid LDPC codes 53

• Check node update: Consider a check nodec and a variable nodev. Let{v1, . . . , vdc−1}
be the set of all variable nodes connected toc, exceptv. Let G be the Cartesian prod-
uct group of the groups of the variable nodes in{v1, . . . , vdc−1}. For alla ∈ G(qv)

l(t)cv (a) = µcv

∑

(b1,...,bdc−1)∈G:
Ldc−1

i=1 Avicbi=Avca

dc−1
∏

n=1

r(t)
vnc(bn) (2.5)

whereµcv is a normalization factor, and the
⊕

operator highlights that the addition
is performed overG(qc), the group of the row corresponding toc, as defined in
Section 2.1.4.

• Stopping criterion: Consider a variable nodev. Let {c1, . . . , cdv
} be the set of all

check nodes connected tov. Equation (2.6) corresponds to the decision rule on
symbols values, at iterationt:

x̂(t)
v = arg max

a
r(0)
v (a)

dv
∏

n=1

l(t)cnv(a) . (2.6)

Variable and check node updates are performed iteratively until the decoder has
converged to a codeword, or until the maximum number of iterations is reached.

It is possible to have an efficient Belief propagation decoder for hybrid LDPC codes.
As mentioned in [11][45], the additive group structure possesses a Fourier transform, so
that efficient computation of the convolution can be done in the Fourier domain. One
decoding iteration of BP algorithm for hybrid LDPC codes, inthe probability domain
with a flooding schedule, is composed of:

• Step 1Variable node updatein G(qj) : pointwise product of incoming messages

• Step 2Message extensionG(qj) → G(qi) (see definition 6)

• Step 3Parity-Check update in G(qi) in the Fourier domain

◦ FFT of sizeqi

◦ Pointwise product of FFT vectors

◦ IFFT of sizeqi

• Step 4Message truncationfrom G(qi) → G(qj) (see definition 7)

Although we do not focus on low-complexity decoders, it is important to note that hybrid
LDPC codes are compliant with reduced complexity non-binary decoders which have
been presented recently in the literature [46, 47]. In particular, [46] introduces simplified
decoding ofGF (q) LDPC codes and shows that they can compete with binary LDPC
codes even in terms of decoding complexity.

54 Chapitre 2 : Hybrid LDPC Codes

2.2 Asymptotic analysis of hybrid LDPC code ensembles

In this section, we describe the density evolution analysisfor hybrid LDPC codes. Density
evolution is a method for analyzing iterative decoding of code ensembles. In this section,
we first prove that, on a binary input symmetric channel (BISC), we can assume that the
all-zero codeword is transmitted because the hybrid decoder preserves the symmetry of
messages, which entails that the probability of error is independent of the transmitted
codeword.

We express the density evolution for hybrid LDPC codes, and mention the existence of
fixed points, which can be used to determine whether or not thedecoding of a given hybrid
LDPC code ensemble is successful for a given SNR, in the infinite codeword length case.
Thus, convergence thresholds of hybrid LDPC codes are similarly defined as for binary
LDPC codes [10]. However, as forGF (q) LDPC codes, the implementation of density
evolution of hybrid LDPC codes is too computationally intensive, and an approximation
is needed.

Thus, we derive a stability condition, as well as the EXIT functions of hybrid LDPC
decoder under Gaussian approximation, with the goal of finding good parameters for hav-
ing good convergence threshold. We restrict ourselves to binary input symmetric chan-
nels, but all the demonstrations can be extended to non-symmetric channels by using, e.g.,
a coset approach [48].

2.2.1 Symmetry of the messages

The definitions and properties induced by channel symmetry have been developed in sec-
tion 1.5.2. All the lemmas carry unchanged over the hybrid LDPC ensemble.

Lemma 5 LetP (t)
e (x) denote the conditional error probability after thetth BP decoding

iteration of a hybrid LDPC code, assuming that codewordx was sent. If the channel is
symmetric, thenP (t)

e (x) is independent ofx.

The proof of this lemma is provided in Section 2.7. For Lemma 4, we add the two follow-
ing lemmas to the proof.

Lemma 6 If W is a symmetric LDR random vector, then its extensionW×A, by any
linear extensionA with full rank, remains symmetric. The truncation ofW by the inverse
of A, denoted byW×A−1

, is also symmetric.

Proof of lemma 6 is given in section 2.7. The specificity of hybrid LDPC codes lies in
function nodes on edges. Thus, when hybrid LDPC codes are decoded with BP, both data
pass and check pass steps are the same as classical non-binary codes decoding steps. Since
these steps preserve symmetry [10], lemma 6 ensures that thehybrid decoder preserves
the symmetry property if the input messages from the channelare symmetric.

2.2 Asymptotic analysis of hybrid LDPC code ensembles 55

2.2.2 Density evolution

Analogously to the binary or non-binary cases, density evolution for hybrid LDPC codes
tracks the distributions of messages produced by the BP algorithm, averaged over all
possible neighborhood graphs on which they are based. The random space is comprised
of random channel transitions, the random selection of the code from a hybrid LDPC
ensemble parametrized byΠ, and the random selection of an edge from the graph. The
random space does not include the transmitted codeword, which is assumed to be set to
the all-zero codeword (following Lemma 2). We denote byR(k)(0) the initial message
across an edge connected to a variable inG(qk), by R(i,k)(t) the message going out of a
variable node of degreei in G(qk) at iterationt. The message going out of a check node
of degreej in G(ql) at iterationt is denoted byL(j,l)(t). We denote byxl andxk any two
probability vectors of sizeql andqk, respectively.

Let us denote byPq the set of all probability vectors of sizeq. Letrqk
(r(0), l(1), ..., l(i−1))

denote the message map of a variable node of degreei in G(qk), as defined in equation
(2.4): the input arguments arei probability vectors of sizeqk. Let lql

(r(1), ..., r(j−1)) de-
note the message map of a check node of degreej in G(ql): the input arguments arej − 1
probability vectors of sizeql.
P (L(j,l)(t) = xl) =

∑

r(1),...,r(j−1)∈Pql
:

lql
(r(1),...,r(j−1))=xl

j−1
∏

n=1

∑

i,k

Π(i, k|j, l)
∑

A∈Ek,l:

(r(n)×A−1×A

)=r(n)

P (A)P (R(i,k)(t) = r
(n)×A−1

) ; (2.7)

P (R(i,k)(t) = xk) =

∑

r(0),l(1),...,l(i−1)∈Pqk
:

rqk
(r(0),l(1),...,l(i−1))=xk

P (R(k)(0) = r
(0))

i−1
∏

n=1

∑

j,l

Π(j, l|i, k)
∑

A∈Ek,l

P (A)
∑

r∈Pql
:

r×A−1
=l(n)

P (L(j,l)(t) = r) .

(2.8)

Richardson and Urbanke [11] proved aconcentration theoremthat states that, as the
block lengthN tends to infinity, the bit error rate at iterationt, of any graph of a given
code ensemble, converges to the probability of error on a cycle-free graph in the same
ensemble. The convergence is in probability, exponentially in N . As explained in [48]
for classical non-binary LDPC codes, replacing bit- with symbol- error rate, this theorem
carries over hybrid LDPC density-evolution unchanged.

Moreover, one can prove that the error-probability is a non-increasing function of
the decoding iterations, in a similar way to the proof of Theorem 7 in [10]. This non-
increasing property ensures that the sequence corresponding to density evolution, by it-
erating between equations (2.7) and (2.8), converges to a fixed point. Implementing the
density evolution allows to check whether or not this fixed point corresponds to the zero
error probability, which means that the decoding in the infinite codeword length case has
been successful. Furthermore, Richardson and Urbanke proved in [11] the monotonicity

56 Chapitre 2 : Hybrid LDPC Codes

of error probability in terms of the channel parameter for physically degraded channels.
Thus hybrid LDPC codes, like binary or non-binary LDPC codes, exhibit a threshold
phenomenon.

Like for GF (q) LDPC codes, implementing the density evolution for hybrid LDPC
codes is too computationally intensive. Thus, in the sequel, we present a useful property
of hybrid LDPC code ensembles, which allows to derive both a stability condition and
an EXIT chart analysis for the purpose of approximating the exact density evolution for
hybrid LDPC code ensembles.

2.2.3 Invariance induced by linear maps (LM-invariance)

Now we introduce a property that is specific to the hybrid LDPCcode ensembles. Ben-
natan et al. in [48] used permutation-invariance to derive astability condition for non-
binary LDPC codes, and to approximate the densities of graphmessages using one-
dimensional functionals, for extrinsic information transfer (EXIT) charts analysis. The
difference between non-binary and hybrid LDPC codes lies inthe non-zeros elements
of the parity-check matrix. Indeed, they do not correspond anymore to cyclic permuta-
tions, but toextensionsor truncationswhich are linear maps (according to definitions 6
and 7). Our goal in this section is to prove that linear map-invariance (shortened by LM-
invariance) of messages is induced by choosing uniformly the extensions. In particular,
LM-invariance allows to characterize message densities with only one scalar parameter.

Until the end of the current section, we work with probability domain random vectors,
but all the definitions and proofs also apply to LDR random vectors.

Definition 8 A random vectorY of sizeql is LM-invariant if and only if for allk and
(A−1, B−1) ∈ Tk,l × Tk,l, the random vectorsY×A−1

and Y×B−1
are identically dis-

tributed.

Lemma 7 If a random vectorY of sizeql is LM-invariant, then all its components are
identically distributed.

Proof of lemma 7 is given in section 2.7.3.

Definition 9 LetX be a random vector of sizeqk, we define the random-extension of size
ql of X, denotedX̃, as the random vectorX×A, whereA is uniformly chosen inEk,l and
independent ofX.

Lemma 8 A random vectorY of sizeql is LM-invariant if and only if there existqk and
a random vectorX of sizeqk such thatY = X̃.

Proof of lemma 8 is given in section 2.7.3.
Thanks to lemma 6, the messages going into check nodes are LM-invariant in the

ensemble of hybrid LDPC codes with uniformly chosenextensions. Moreover, random-
truncations, at check node output, ensures LM-invariance of messages going into variable
node (except the one from the channel).

2.2 Asymptotic analysis of hybrid LDPC code ensembles 57

2.2.4 The Stability condition for hybrid LDPC Codes

The stability condition, introduced in [10], is a necessaryand sufficient condition for the
error probability to converge to zero, provided it has already dropped below some value.
This condition must be satisfied by the SNR corresponding to the threshold of the code
ensemble. Therefore, ensuring this condition, when implementing an approximation of
the exact density evolution, helps to have a more accurate approximation of the exact
threshold.

In this paragraph, we generalize the stability condition tohybrid LDPC codes. Let
p(y|x) be the transition probabilities of the memoryless output symmetric channel and
c(k) be defined by

c(k) =
1

qk − 1

qk−1
∑

i=1

∫

√

p(y|i)p(y|0)dy

Let x be a positive real-valued vector of size the number of different group orders. Let us
define theg function by:

g(k, c(k), Π,x) = c(k)Π(i = 2|k)
∑

j,l

Π(j, l|i, k)(j − 1)
∑

k′

Π(k′|j, l)qk′ − 1

ql − 1
xk′

For more readable notations, we also define the vector outputfunctionG(x) by:

G(x) = {g(k, c(k), Π,x)}k

which means that thepth component ofG(x) is Gp(x) = g(p, c(p), Π,x). Let P
(k)t

e =

Pe(R
(k)
t) be the error probability when deciding the value of a symbol inG(qk) at iteration

t. The global error probability of decision isP t
e =

∑

k

Π(k)P
(k)t

e . Let us denote the

convolution by⊗. Thenx⊗n corresponds to the convolution of vectorx by itselfn times.

Theorem 3 Consider a given hybrid LDPC code ensemble parametrized byΠ(i, j, k, l).
If there exists a vectorx with all positive components, such that, for allk,
lim

n→∞
g(k, c(k), Π,G⊗n(x)) = 0, then there existt0 and ǫ such that, ifP t0

e < ǫ, thenP t
e

converges to zero ast tends to infinity.

Proof of theorem 3 is given in section 2.7.4.
This theorem only gives a sufficient condition for stabilityof the code ensemble.

However, it may be possible to prove that this condition is also necessary by consider-
ing the actual transmission channel as a degraded version ofan erasurizedchannel, as
done in [48]. Indeed, all the necessary conditions to have such a proof, like, e.g., the
cyclic-symmetry of a symmetric channel, the binary symmetry of LM-invariant symmet-
ric messages or the equality between the random extended-truncated sum of messages
and the sum of extended-truncated messages can be easily shown. To do such a proof,
one must be careful to the fact that a node observes identically distributed messages, but
different kinds of nodes do not observe identically distributed messages. By lake of time,

58 Chapitre 2 : Hybrid LDPC Codes

we have not completed this proof of necessity, and hence do not present the mentioned
intermediate results. Although the necessity of stabilitycondition has not been proved, it
is sufficient for comparing to stability condition of classical binary and non-binary LDPC
codes.

We first note that, for a usual non-binaryGF (q) LDPC code, the hybrid stability
condition reduces to non-hybrid stability condition, given by [48], because

lim
n→∞

g(k, c(k), Π,G⊗n(x)) = 0

is equivalent in this case to

ρ′(1)λ′(0)
1

qk − 1

qk−1
∑

i=1

∫

√

p(y|i)p(y|0)dy < 1

When the transmission channel is BIAWGN, we have
∫

√

p(y|i)p(y|0)dy = exp(− 1

2σ2
ni)

Let ∆nb be defined by

1

qk − 1

qk−1
∑

i=1

exp(− 1

2σ2
ni)

with ni, the number of ones in the binary map ofαi ∈ G(q). Under this form, we can
prove that∆ tends to zero asq goes to infinity on BIAWGN channel. This means that
any fixed point of density evolution is stable asq tends to infinity for non-binary LDPC
codes. This shows, in particular, that non-binary cycle-codes, that is with constant symbol
degreedv = 2, are stable ifq tends to infinity, and can be used to design efficient coding
schemes ifq is large enough [33, 57].

As an illustration, we compare the stability conditions forhybrid LDPC codes with all
variable nodes inG(q) and all check nodes inG(qmax) and for non-binary LDPC codes
defined on the highest order fieldGF (qmax). For hybrid codes of this kind, we have:

lim
n→∞

g(k, c(k), Π,G⊗n(x)) = 0

is equivalent to
(

1

q − 1

q−1
∑

i=1

exp(− 1

2σ2
ni)

)(

Π(i = 2)
∑

j

Π(j)(j − 1)
q − 1

qmax − 1

)

< 1

An advantage of hybrid LDPC codes over non-binary codes is that a hybrid LDPC
code, with same maximum order group, can be stable at lower SNR.

On figure 2.4, we consider rate one-half non-binary LDPC codes on GF (q), with
q = 2 . . . 256, and rateR = 0.5 hybrid LDPC codes of typeG(q) − G(qmax), with all

2.2 Asymptotic analysis of hybrid LDPC code ensembles 59

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

q
max

Ω

Evolution of Ω

GF(q

max
) LDPC code

hybrid LDPC code GF(2)−GF(q
max

)

hybrid LDPC code GF(32)−GF(q
max

)

Figure 2.4 : QuantitiesΩ for hybrid and non-hybrid LDPC codes in terms of maximum
symbol orderqmax. These figures show that a hybrid LDPC code can be stable when a
non-binary code is not.

variable nodes inG(q) and check nodes inG(qmax). We assume regular Tanner graphs for
all codes, with connection degree of variable nodesdv = 2. Thus, the connection degree
dc of check nodes of non-binary LDPC codes is4 for anyqmax = 2 . . . 256, while the one
of hybrid LDPC codes varies with the graph rate:

dc =
dv log2(qmax)

1 − R

1

log2(q)

We consider BIAWGN channel whose noise parameter varianceσ2 is set to0.97. We de-
note byΩnb andΩhyb the quantities of non-binary LDPC codes and hybrid LDPC codes,
respectively, which must be strictly lower than one for stability. We observe, on figure
2.4, thatΩhyb ≤ Ωnb . Hence, with the mentioned assumptions on chosen parameters
values, a fixed point of density evolution is stable at lower SNR for hybrid LDPC codes
than for classicalGF (qmax) codes. It should be noted that the considered hybrid LDPC
code ensemble corresponds to basic generalized LDPC codes [28]. Indeed, this is the
only case where the general stability condition of theorem 3can be simply expressed to

be plotted. This resultΩhyb ≤ Ωnb is due to the fact that
q−1
∑

i=1

exp(− 1
2σ2 ni) is monotoni-

cally increasing withq. We compare the terms in bothΩhyb andΩnb. In the hybrid case,
q−1
∑

i=1

exp(− 1
2σ2 ni) with q < qmax, while in the non-binary case it is

qmax−1
∑

i=1

exp(− 1
2σ2 ni).

However in the hybrid casedc > 4 (the graph rate is higher than the code rate). Since
we obtainedΩhyb ≤ Ωnb for bothq = 2 andq = 32, it can be conjectured that this result

60 Chapitre 2 : Hybrid LDPC Codes

holds for more elaborated hybrid LDPC codes, whose variablenodes belong to different
group orders. However, we have not performed such a study. Note that the property ac-
cording to which any fixed point of density evolution is stable asq tends to infinity for
non-binary LDPC codes, also applies to hybrid LDPC codes of the above kind by inclu-
sion. Those results indicate that there exist some cases where the optimization procedure
to find good hybrid LDPC codes might be more efficient than for finding good non-binary
LDPC codes, since the stability condition is less stringent.

2.2.5 EXIT charts and accuracy of the approximation for hybrid
LDPC codes

Our goal is to find a method to measure the decoding threshold of a hybrid LDPC code
ensemble with parametersΠ, in such a way that it can be used in an optimization pro-
cedure, where the threshold will be used as the cost function. The decoding threshold is
determined by tracking the densities of messages on an infinite cycle-free graph along the
decoding iterations. For hybrid LDPC codes, the algorithm presented in section 2.2.2 is
theoretically sufficient to compute the desired densities.However, in practice, a major
problem is the fact that the quantities of memory required tostore the probability density
of a q-dimensional message grows exponentially withq. Exact density evolution is there-
fore too computationally intensive and we are going to look for a feasible and not too
bad approximation of densities to track them. In [29], the authors analysed D-GLDPC on
the BEC, which allowed to track only one parameter, the extrinsic information, instead of
complete message densities. They used combinatorial calculus to express this extrinsic
information.

We present the analysis for the BIAWGN channel. With binary LDPC codes, Chung et
al. [50] observed that the variable-to-check messages are well approximated by Gaussian
random variables, in particular when the variable node degree is high enough. The ap-
proximation is much less accurate for messages going out of check nodes. Furthermore,
the symmetry of the messages in binary LDPC decoding impliesthat the meanm and
varianceσ2 of the random variable are related byσ2 = 2m. Thus, a symmetric Gaussian
random variable may be described by a single parameter. Thisproperty was also observed
by ten Brink et al. [14] and was essential to their development of EXIT charts for Turbo
Codes. In the context of non-binary LDPC codes, Li et al. [49]obtained a description of
q − 1-dimensional Gaussian distributed messages byq − 1 parameters. Bennatan et al. in
[48] used symmetry and permutation-invariance to reduce the number of parameters from
q − 1 to one. This enabled the generalization of EXIT charts toGF (q) LDPC codes. For
hybrid LDPC codes, the Gaussian assumption for messages on the graph is not as straight
forward as for classical binary or non-binary LDPC codes. This section discusses the
accuracy of the Gaussian approximation for hybrid LDPC codes, and how we can handle
it.

2.2 Asymptotic analysis of hybrid LDPC code ensembles 61

Projection of message densities on one scalar parameter

Our goal is to determine, for a given code ensemble parametrized byΠ and a given SNR,
when the decoding will be successful. Let us recall definition 5:
The mutual information between a symmetric LDR vector messageW and the codeword
sent, under the all-zero codeword assumption, is defined by:

I(C;W) = 1 − E

(

1 +

q−1
∑

i=1

e−Wi|C = 0

)

The expectation is performed with respect to the density ofW.
We denote byx(t)

APP the average mutual information between a posteriori probability
vectors and the channel input, computed at each variable node of the hybrid graph at
iterationt. In the reminder of this part, we will shorten this expression by “the mutual
information of a vector message”. We state that the decodingis successful if and only if:

lim
t→∞

x
(t)
APP = 1 (2.9)

In order to determine for which hybrid LDPC code ensemble defined byΠ, equation (2.9)
is satisfied at a given SNR, we have to track the message densities to evaluatex(t)

APP at
each iterationt. Since tracking multi-variate densities of vector messages is prohibitive,
we now present the approach we adopt to consider that these densities are determined by
only one scalar parameter, that we are therefore going to track.

First, let us discuss the accuracy of the Gaussian approximation of the channel output
in symbolwise LLR form for hybrid LDPC code ensembles. The channel outputs are
noisy observations of bits, from which we obtain bitwise LLR, all identically distributed
asN (2

σ2 ,
4
σ2) [50]. Let s be the vector gathering the LLRsb1, . . . , bpk

of bits of which a
symbol inG(qk) is made:s = (b1, . . . , bpk

)T . Each component of an input LLR random
vectorl of size(qk − 1) is then a linear combination of these bitwise LLRs:

l = Bqk
· s

whereBqk
is the matrix of sizeqk × log2(qk) in which theith row is the binary map

of the ith element ofG(qk). The distribution of initial messages is hence a mixture of
one-dimensional Gaussian curves, but is not Gaussian. Indeed, it is easy to see that the
covariance matrix of vectorl is not invertible.

Secondly, let us introduce a slight extension of Theorem 6 in[48].

Theorem 4 Let W be an LDR random vector, Gaussian distributed with meanm and
covariance matrixΣ. Assume that the probability density functionf(w of W exists and
that Σ is nonsingular. ThenW is both symmetric and LM-invariant if and only if there
exitsσ > 0 such that:

m =











σ2/2
σ2/2

...
σ2/2











, Σ =









σ2 σ2/2
σ2

. . .
σ2/2 σ2









62 Chapitre 2 : Hybrid LDPC Codes

The proof of Theorem 4 is the same as the proof of Theorem 6 in [48], because the
permutation-invariance property [48] is used only throughthe fact that the components
of a vector satisfying this property are identically distributed. This fact is ensured by a
LM-invariant vector thanks to Lemma 7.

Thirdly, Lemma 7 ensures that, if a vector is LM-invariant, then its components are
identically distributed. Hence, if we assume that a messageis Gaussian distributed, sym-
metric and LM-invariant, its density depends on only one-scalar parameter. Let us now
discuss the relevance of approximating the message densities of a hybrid LDPC code en-
semble by Gaussian random vectors. Letr(t)(x) be the density of a LDR message going
out of a variable node inG(qk) after being extended by an extension chosen uniformly at
random inEk,k. Any component of such vector has densityr(t)(x). Messages going out
of variable nodes are extended when passing through the linear extension function nodes.
As described in Section 2.1.4, the extension turns, e.g., aq1-sized probability vector into
a q2-sized vector, withq2 ≥ q1. This means thatq2 − q1 of the resulting extended LDR
message components are infinite, because these components of the corresponding prob-
ability vector are zero. Hence, the density of each component, of an extended message,
is a mixture including a Dirac∆∞. Since this LDR vector is the random extension of
the variable node output message, it is LM-invariant. From Lemma 7, each component is
identically distributed.

Property 1 The probability density function of any component of an LDR message after
extension at iterationt, is expressed as

d(t)(x) = βr(t)(x) + (1 − β)∆∞

where the weightβ is independent oft.

Proof: At any decoding iteration,r(t)(x) cannot have a∆∞ component because there
exists no set of linear maps connected to the neighboring check nodes ofv, such that there
exists forbidden elements inG(qk) to which the symbol value associated tov cannot be
equal. This is due to the fact that each check node (or the associated redundancy symbol)
is in a group of order higher or equal to the group orders of itsneighboring variable nodes.
Hence,β is independent of the decoding iterations (it depends only on the groups of the
codeword symbols).

�

It is therefore easy to show that any normalized moment, of order greater than 1, of
the vector density (expectation of the product of a different number of its components) is
equal to the same moment of the vector densityr(t)(x). Thus, if we assume that the vector
densityr(t)(x), i.e., at variable node output, is dependent on only one scalar parameter,
so is the whole density of the extended vector message. In other words, the density of
vector message of a hybrid LDPC code cannot be approximated by a Gaussian density,
due to the∆∞ component in the density, but is dependent on only one parameter if we
assume that the densityr(t)(x) is Gaussian. The same property holds for messages before
truncation, if we assume that messages going into variable nodes are Gaussian distributed.

2.2 Asymptotic analysis of hybrid LDPC code ensembles 63

Since the messages going into variable nodes are symmetric and LM-invariant, their sum
done during the variable node update, is symmetric and LM-invariant by Lemma 18 in
[48] and Lemma 11 (see Section 2.7). Hence, the one-scalar parameter approximation for
hybrid LDPC codes is not less accurate than forGF (q) LDPC codes [48].

The parameter, defining the message densities, we choose to track is the mutual infor-
mation between a message and the codeword sent.

Since the connection between mutual information and the mean of a symmetric Gaus-
sian distributed variable is easily obtained by interpolating simulation points, we consider
means of Gaussian distributed vectors with same mutual information as the message vec-
tors. That is we consider a projection of the message densities on Gaussian densities,
based on Property 1 which ensures that densities of messagesgoing out of or into check
nodes are dependent on the same parameters as densities of messages going into or out
of variable nodes. There are two models of messages handled by the hybrid decoder, and
hence we define two functions to express the mutual information:

• Messages going out of variable nodes are not LM-invariant, and their mutual in-
formation is expressed thanks to a function calledJv(σ

2,m, qk) in terms of the
BIAWGN channel varianceσ2, a mean vectorm andqk, the group order of the
variable node. The meanm is the mean of a Gaussian distributed vector.

• For a hybrid LDPC code ensemble with uniformly chosen linearmaps, messages
going into and out of check nodes are LM-invariant. IfG(ql) denotes the group
of the check node, the mutual information of messages is expressed by a function
Jc(m, ql). m is the mean of a Gaussian random variable (any component of a Gaus-
sian distributed vector with same mutual information as thegraph message).

Let us now detail the evolution of mutual information of messages through BP decod-
ing.

• The mutual information of a variable node output is expressed thanks to theJv(·, ·, ·)
function applied to sum of means, since variable node updateis the summation of
LDRs. Here,xin is the mutual information of truncation operator output, and 1qk

is
the all-one vector of sizeqk. The mutual informationxout of the output of a variable
node inG(qk) with connection degreei, is given by:

xout = Jv(σ
2, (i − 1)J−1

c (xin, qk)1qk−1, qk) .

• The mutual information of extended message fromG(qk) to G(ql) does not depend
on which linear extension is used, but only on the group orders. Letxin andxout

denote the mutual information of extension input and output, respectively. It follows
from Definition 5

(1 − xout) log2(ql) = (1 − xin) log2(qk) .

• To express the mutual information of truncated message fromG(ql) to G(qk), we
use the LM-invariance property of input and output of the truncation operator. Let

64 Chapitre 2 : Hybrid LDPC Codes

xin andxout denote the mutual information of truncation input and output, respec-
tively.

xout = Jc(J
−1
c (xin, ql), qk)

• Let v denote a probability vector, andf(v) the corresponding Fourier transform
(FT) vector. Letxv be the mutual information of a probability vectorv, andxf(v)

denote the function given in equation (1.18) applied to the vectorf(v).

Lemma 9 The connection betweenxv andxf(v) is

xf(v) = 1 − xv .

The proof is provided in Section 2.7. Through a check node inG(ql) with connec-
tion degreej, the mutual information transform from the FT perspective is equiva-
lent to the one given by the reciprocal channel approximation [58]:

xout = 1 − Jc((j − 1)J−1
c (1 − xin, ql), ql) .

The reciprocal channel approximation used for hybrid LDPC codes is not looser
than when it is used with non-binary LDPC codes, since the message densities
are considered as, or projected on, Gaussian densities in both cases. However, by
computer experiment, the approximation is looser than for binary LDPC codes in
the first decoding iterations when the check node degree is very low (j = 3 or 4).

We obtain the whole extrinsic transfer function of one iteration of the hybrid LDPC de-
coder (equation (2.12)). The mutual information of a message going out of a check node

of degreej in G(ql) at thetth iteration and before truncation is denoted byx
(j,l)(t)

cv . The

same after truncation to becomeqk sized is denotedx(j,l)(t)

cv,k . Analogously, the mutual in-
formation of a message going out of a variable node of degreei in G(qk) at thetth iteration

and before extension is denoted byx
(i,k)(t)

vc . The same after extension to becomeql-sized

is denotedx(i,k)(t)

vc,l .

x
(i,k)(t)

vc,l = 1 − log2(qk)

log2(ql)

(

1 − x(i,k)(t)

vc

)

(2.10)

x(j,l)(t)

cv = 1 − Jc

(

(j − 1)J−1
c (1 −

∑

i,k

Π(i, k|j, l)x(i,k)(t)

vc,l , ql), ql

)

(2.11)

x
(j,l)(t)

cv,k = Jc

(

J−1
c (x(j,l)(t)

cv , ql), qk

)

x(i,k)(t+1)

vc = Jv

(

σ2, (i − 1)J−1
c (
∑

j,l

Π(j, l|i, k)x
(j,l)(t)

cv,k , qk), qk

)

(2.12)

We also define the a posteriori (or cumulative) mutual information for each kind of vari-
able node at thetth iteration by

y(i,k)(t) = Jv

(

σ2, i · J−1
c (
∑

j,l

Π(j, l|i, k)x
(j,l)(t)

cv,k , qk), qk

)

. (2.13)

2.3 Distributions optimization 65

For any(i, k), y(i,k)(t) is the quantity that must tend to 1 whent tends to infinity, for
successful decoding. In the remainder, we refer to this mutual information evolution
equation by using the notationF (.) such that:

{x(i,k)(t+1)

vc }i,k = F ({x(i,k)(t)

vc }i,k, Π(i, j, k, l), σ2) .

2.3 Distributions optimization

Let us recall that the condition we consider for successful decoding is

lim
t→∞

x
(t)
APP = 1

With classical unstructured LDPC codes,x
(t+1)
APP can be expressed as a recursion in terms

of x
(t)
APP . Hence, condition 2.9 is equivalent tox(t+1)

APP > x
(t)
APP ∀t ≥ 0. With hybrid

LDPC codes, we cannot write such a recursion because all nodes do not receive identi-
cally distributed messages. Thus, the usual conditionx

(t+1)
APP > x

(t)
APP is not the condition

for successful decoding of hybrid LDPC code ensembles. We present two solutions to
overcome this impediment to use classical EXIT charts. The first solution is to usemulti-
dimensional EXIT charts, following the idea of [53], though in a slightly different way.
This method allows to handle all the degrees of freedom of thedetailed representation
for optimization of the code profile. The second solution consists in assuming parameters
(j, l) of check nodes independent of parameter(i, k) of variable nodes. This will be done
by assuming constant group orderql for all check nodes, and degree of connection inde-
pendent of the properties of the variable nodes to which theyare connected. This method
turns the optimization into a linear programming problem, hence much more quickly
solved by computer than hill-climbing methods.

2.3.1 Context of the optimization

Optimization is performed for the BIAWGN channel. The goal of the optimization with
EXIT charts is to find a good ensemble of hybrid LDPC codes withthe lowest conver-
gence threshold for a target code rate, under a Gaussian approximation. That means that
we look for the parametersΠ(i, j, k, l) of the ensemble of hybrid LDPC codes with low-
est convergence threshold. We decide not to explore group orders higher thanqmax =
256, pmax = 8, nor connection degrees higher thandvmax

anddcmax
, thus we look for

(i, j, k, l) ∈ [2, dvmax
] × [2, dcmax

] × [1, 8] × [1, 8]. Let us denote the code rateR, and the
target code rateRtarget. The optimization procedure consists in findingΠ(i, j, k, l) which

66 Chapitre 2 : Hybrid LDPC Codes

fulfills the following constraints at the lowest SNR:

Code rate constraint: R = Rtarget

Proportion constraint:
∑

i,j,k,l

Π(i, j, k, l) = 1

Sorting constraint: Π(i, j, k, l) = 0, ∀(i, j, k, l) such thatqk > ql (2.14)

Successful decoding condition: lim
t→∞

y(i,k)(t) = 1, ∀(i, k) (2.15)

with {x(i,k)(t+1)

vc }(i,k) = F ({x(i,k)(t)

vc }(i,k), Π(i, j, k, l), σ2)

The threshold is the objective function. We do not include the stability condition in the
optimization constraints because it is not easy to check it in the general case. However, as
explained in section 2.2.4, we can assume it as non stringentfor the optimization process.
Let us recall the expression of the code rate, which is going to be used in the remainder:

R = 1 −
∑

l

(

∑

j

P

i,k Π(i,j,k,l)

j

)

log2(ql)

∑

k

(

∑

i

P

j,l Π(i,j,k,l)

i

)

log2(qk)
(2.16)

2.3.2 Optimization with multi-dimensional EXIT charts

The detailed representationΠ(i, j, k, l) turns hybrid LDPC code ensembles into structured
code ensembles, which are characterized by sub-interleavers. In that case, the successful
decoding conditionlim

t→∞
x

(t)
APP = 1 is equivalent tolim

t→∞
y(i,k)(t) = 1 for all (i, k). The

multi-dimensional EXIT algorithm can be presented as follows for hybrid LDPC codes:

1) Initialisation: t=0. Setx(j,l)(0)

cv = 0 for all (j, l).

2) Computex(i,k)(t)

vc for all (i, k) with equation (2.12).

3) Computex(j,l)(t)

cv for all (j, l) with equation (2.11).

4) Computey(i,k)(t) for all (i, k) with equation (2.13).

5) If y(i,k)(t) = 1 up to the desired precision for all(i, k) then stop; otherwiset = t+1
and go to step 2.

This algorithm converges only when the selected SNR is abovethe threshold. Thus, the
threshold is the lowest value of SNR for which ally(i,k)(t) converge to 1.

Letting the detailed representationΠ(i, j, k, l) fully general allows to have check
nodes in different order groups. Indeed, allowing check nodes in different order groups
has been inspired by the results obtained in [29] for D-GLDPCoptimized on the BEC.
In that article, the authors show that better thresholds anderror-floors can be achieved by
introducing only a small fraction of generalized codes at check and variable sides among
classical single parity-check and repetition codes. In that case, the successful decod-
ing condition constraint 2.15 cannot be expressed linearlyin terms ofΠ(i, j, k, l). That is

2.3 Distributions optimization 67

why we cannot use any linear programming tool for optimization, we need a hill-climbing
method. As usually with LDPC codes optimization, we use the differential evolution algo-
rithm [16]. The optimization problem has been expressed in the previous section. Several
problems arise when optimizing hybrid LDPC codes with differential evolution:

• The parameter space. When there is no additional constraint onΠ different of those
above mentioned, the number of parameters, which are joint proportions, to be de-
termined by the optimization method isD = qmax(qmax+1)

2
dvmax

dcmax
. To get an idea

on how many parameters DE algorithm is able to handle, the authors automatically
limit the number of parameters to35 in their code available from [16]. This limit
is quickly reached in the case of optimization of hybrid LDPCcodes, leading to
an equivalent high number of population vectors and hence very slow convergence
of DE. Therefore we have to make a heuristic reduction of the parameter space by,
e.g., allowing only very small connection degrees for variable nodes (dvmax

= 5 to
10), only two different check degrees and two different group orders.

• The initialization problem. In spite of the reduction of the dimension of the pa-
rameter space, this space remains too big to allow to randomly initialize the pop-
ulation vectors, otherwise too few of them fulfill the code rate. That is why we
need another method to well initialize the population vectors. We show that the
initialization problem of finding vectors of proportions which correspond to code
ensembles with target code rateR (see equation (2.16)) can be expressed by a con-
vex combination problem [59]. This can be seen when one picksat random the
marginal proportionsΠ(j, l) for all (j, l), and looks for the conditional probabilities
Π(i, k|j, l) satisfying the code rate. To solve this problem, the solution we have
used is the simplex method [60] with random cost function, which is used when the
cost function and the problem constraints are linear in terms of the parameters to be
optimized. However, the solutions found by the simplex algorithm always satisfy
with equality some of the inequality constraints because the cost function is linear,
therefore the solution to the maximization or minimizationof the cost function is
on facets of the constraint polytope which is a convex hull. This implies that a non-
negligible part of proportion vector components will be setto zero or one by the
brute simplex method. Thus, to use simplex for initialization of of the vector popu-
lation of DE to non-trivial very bad components, we need to empirically adapt the
lower and upper bounds of the vector components from[0, 1] to, e.g.,[0.03, 0.95].

• Interpolations. Another difficulty in using DE to optimize hybrid LDPC distribu-
tions is the computation time entailed byJv(,̇·, ·) andJc(·, ·) functions. Indeed, the
Jv(·, ·, ·) andJc(·, ·) functions are evaluated by Monte-Carlo simulations offline,
and then interpolated. For a given group orderql, Jc is the function of only one
parameter, which is the mean of any component of the LM-invariant vectors going
into or out of the check node, and hence we use a mono-dimensional polynomial
interpolation to get a functional approximation. For a given group orderqk, Jv is
the function of three parameters, and hence we use a 2-dimensional spline surface
to interpolateJv. Since these functions are used in the multi-dimensional EXIT

68 Chapitre 2 : Hybrid LDPC Codes

(i, qk) (2, 64) (2, 128) (2, 256) (3, 64) (3, 128) (3, 256) (4, 64) (4, 128) (4, 256) Π̃(j, l)
(j, ql)

(5, 64) 0.0073 × × 0 × × 0 × × 0.0086
(5, 128) 0 0.0089 × 0 0 × 0.0080 0.0175 × 0.0405
(5, 256) 0.0003 0.0290 0.0001 0.0226 0 0 0 0.0001 0 0.0614
(6, 64) 0.0087 × × 0.0470 × × 0.0554 × × 0.1091
(6, 128) 0.0367 0.0003 × 0.0521 0.0063 × 0.0218 0.0931 × 0.2065
(6, 256) 0.4248 0.0197 0.0043 0.0851 0.0021 0.0101 0.0042 0.0151 0.0193 0.5739

Π̃(i, k) 0.5916 0.0717 0.0055 0.1707 0.0069 0.0083 0.0554 0.0779 0.0120

Table 2.1 : DistributionΠ(i, j, k, l) of a hybrid LDPC code ensemble with code rate one-
half and threshold0.1864 dB under Gaussian approximation. The marginalsΠ̃(i, k) and
Π̃(j, l) correspond to the proportions of variable nodes of type(i, k) and check nodes of
type(j, l), respectively. When a proportion is forced to zero by the sorting constraint,× is
put in the box.

charts, the computation time for the cost function, i.e., for the threshold, is much
higher than in the binary case too.

Result of the optimization

It results from the optimization with DE that distributionswith best thresholds are not
obtained for a majority of binary variable and check nodes. It is worthy to recall that only
small connection degrees are allowed for check nodes (5 or 6). Also, as mentioned in sec-
tion 2.1.5, the detailed representation adopted in this work is less general than the multi-
edge type representation [27]. Indeed, it is possible to consider proportions of different
(i, k) type punctured symbols, but it is not possible to assume degree one variable nodes
because we cannot describe check nodes with exactly one edgeto such a variable. This
is the reason why we logically do not get back the code distributions of multi-edge type
LDPC codes [27], i.e., binary LDPC codes with low connectiondegrees and thresholds
close to capacity. Instead, we obtain distributionsΠ with very low connection degrees (2
to 4) and very good thresholds under the above discussed Gaussianapproximation, when
only high order groups (G(16) to G(256)) are allowed. This is in agreement with the
results of [33].

An example of such a resulting distribution is given in table2.1. Firstly, we see from
this table that the optimization procedure puts a maximum ofpowerful component codes
(or "generalized codes", see section 2.1.3), i.e. variablenodes in the smallest order group
(G(64)) connected to check nodes in the highest order group (G(256)). Secondly, the
variable nodes in a high order group tend to correspond to poor component codes, and
hence, higher connection degrees are affected to this type of variable nodes in order to
have a code length high enough to balance the highK, which is in turnslog2(qk). This
interpretation can also be made in terms of code doping [1, 61].

Graph construction

We now discuss the graph construction of such a hybrid LDPC code: how to build a graph
satisfying the detailed representation, i.e., where all check nodes cannot be connected to

2.3 Distributions optimization 69

any variable nodes.
The first solution is to modify the PEG algorithm to take into account the structure

specificity of such a hybrid LDPC ensemble where the global permutation is made of
various sub-interleavers. However, we did not have enough time to do this.

Another way is to build the graph thanks to the protograph method [53], in the same
way as multi-edge type LDPC codes are built. However, building the protograph of a
hybrid LDPC code fulfilling the detailed representation resulting from the optimization,
without additional restrictions on the detailed parametrization, can be quickly arduous.
We did not have enough time to investigate this method.

Moreover, since the best thresholds resulting from DE have been observed for high
order groups, this has been a hint to assume that we will not have an important loss in
the achievable thresholds when restricting the detailed representation in these conditions.
This restriction consists in considering all check nodes inthe same group and with con-
nection degrees independent of the variable nodes they are connected. This allows to
switch from a non-linear optimization to a linear optimization, which is the topic of the
following section.

Finally, it is worthy to note that all the presented tools, i.e. decoders and EXIT charts,
may be used for optimization of hybrid protograph based LDPCcodes by using equation
presented in [53] with functionsJv(·, ·, ·) andJc(·, ·), or hybrid multi-edge LDPC codes
provided that the tools are adapted to the multi-edge type representation. However, some
problems would have to be solved for the definition of such a code ensemble, e.g. can the
linear maps be randomly chosen on each edge of the code graph resulting from lifting, or
do they have to be the same as the one defining the protograph ?

2.3.3 Optimization with mono-dimensional EXIT charts

In this part, we consider the optimization of hybrid LDPC code ensembles with all check
nodes in the same groupG(ql) and with connection degrees independent of the variable
nodes to which they are connected. We present how general equations (2.12) turns into
mono-dimensional EXIT charts, and how this allows the use oflinear programming for
optimization. Letx(t)

e denote the averaged mutual information of extended messages. It

is expressed in terms of the mutual informationx
(i,k)(t)

vc of messages going out of variable
nodes of degreei in G(qk), by simplification of equation (2.10):

x(t)
e = 1 − 1

log2(ql)

∑

i,k

Π(i, k) log2(qk)(1 − x(i,k)(t)

vc) .

From equation (2.10), we can see that, for any(i, k, l):

lim
t→∞

x
(i,k)(t)

vc,l = 1 ⇔ lim
t→∞

x(i,k)(t)

vc = 1

and then the successful decoding condition (2.15) reduces to

lim
t→∞

x(t)
e = 1 .

70 Chapitre 2 : Hybrid LDPC Codes

By simplifying equation (2.12),x(t+1)
e can be expressed by a recursion in terms ofx

(t)
e as:

x
(j,l)
cv,k

(t)
= Jc

(

J−1
c

(

1 − Jc

(

(j − 1)J−1
c (1 − x(t)

e , ql), ql

)

, ql

)

, qk

)

;

x(t+1)
e =

∑

i,k

Π(i, k)



1 − log(qk)

log(ql)



1 − Jv



σ2, (i − 1)J−1
c (
∑

j

Π(j|i, k)x
(j,l)
cv,k

(t)
, qk)1qk−1, qk











 .

(2.17)

Thus, the condition for successful decoding of hybrid LDPC codes in that specific case
is

∀t ≥ 0, x(t+1)
e > x(t)

e (2.18)

In that case, the optimization procedure aims at finding distribution Π(i, k|j, l) for
givenΠ(j, l). We see on equation (2.17) thatx

(t+1)
e depends linearly onΠ(i, k), turning

the optimization problem into a linear programming problem. We may jointly optimize th
whole distributionΠ(i, k), but we rather prefer to present in the next sections two different
methods. In each case, one of the two sets of parameters,Π(i) or Π(k), is seta priori.

Set group-order profile, open connexion profile

The first way to optimizeΠ(i, k) is to set the different group orders, and then find the
best connection profile of variable nodes for each group. Starting from Π(i, j, k, l), the
decomposition we use is the following:

Π(i, j, k, l) = Π(i, k, l)Π(j)

= Π(i, k)Π(l|i, k)Π(j)

= Π(i|k)Π(k)Π(l|k)Π(j)

Actually, we do not set the proportion of edges inG(qk) exactly, but the proportion of
variable nodes inG(qk). We put the redundancy (check nodes and corresponding variable
nodes) in the highest order groupG(qred) = G(qmax), corresponding to a proportionαred

of variable nodes, and the information variable nodes in twolower order groupsG(qinfo1)
andG(qinfo2), corresponding to proportionsαinfo1 andαinfo2.

Hence, the proportion which is optimized isΠ(i|k). This means that, for each group
orderk of variable node, we look for the best connection profile for these variable nodes
in G(qk). Thus, we optimize as many connection profiles as the number of different
group orders of variable nodes. This is performed in a singleoptimization procedure by
concatenatingΠ(i|k), ∀(i, k) in a single vector. In this way, this vector of profiles will
hence contain:

First profile: ∀i = 2 . . . dvmax
, Π(i, red) (2.19)

Second profile: ∀i = 2 . . . dvmax
, Π(i, info1)

Third profile: ∀i = 2 . . . dvmax
, Π(i, info2)

Equation (2.17) reduces to:

x(t+1)
e = F (x(t)

e , Π(i, k), σ2) (2.20)

x(t+1)
e =

∑

k=red,info1,info2

∑

i

Π(i, k)



1 − log(qk)

log(qred)



1 − Jv



σ2, (i − 1)J−1
c (
∑

j

Π(j)x
(j,red)
cv,k

(t)
, qk)1qk−1, qk













2.3 Distributions optimization 71

Due to the fact that we a priori set the group orders of variable nodes necessarily
equal or lower than check nodes group orders they are connected, the rate of the hybrid
bipartite graph, whose nodes are in different order groups,is higher than the code rate
(i.e., the actual rate of the transmission). Setting the proportion of variable nodes in
G(qk) for all k also sets the rate of the graph, which becomes the target graph rate in
the optimization procedure. From the target code rateRtarget, we can compute the target
graph rate, denoted byRgraph by:

Rgraph =

Rtarget
∑

k=info1,info2

αk log2(qk)

Rtarget
∑

k=info1,info2

αk log2(qk)
+

1 − Rtarget

αred log2(qred)

(2.21)

The result of the optimization is finally the set of the three profilesΠ(i, k), ∀(i, k) ∈
[1, dvmax

] × [red,info1,info2], for which the following constraints are fulfilled at lowest
SNR:

Proportion constraint: ∀i = 2 . . . dvmax ,
∑

i

Π(i, red) + Π(i, info1) + Π(i, info2) = 1

Code rate constraint: ∀k = red,info1,info2,
∑

i

Π(i, k)

i
=

αk

1 − Rgraph

∑

j

Π(j)

j

Sorting constraint: Π(i, j, k, l) = 0, ∀(i, j, k, l) such thatqk > ql (2.22)

Successful decoding condition:x(t+1)
e = F (x(t)

e ,Π(i, k), σ2) > x(t)
e

Set connexion profile, open group-order profile

Another way to optimize hybrid LDPC ensembles is to set the connection profile and op-
timize the group orders of variable nodes. As in the previoussection, we set the check
node parameters (group orderG(qred) and connection profile), independently of the vari-
able nodes parameters. This time, the decomposition ofΠ(i, j, k, l) is:

Π(i, j, k, l) = Π(i, k|l)Π(j)Π(l)

Similarly to equation (2.19), we aim at optimizing several group order profiles, as many as
the number of different variable node connection degrees. In a finite length performance
purpose, we start from an ultra-sparse Tanner graph with a regular connection profile (e.g.
(dv = 2, dc = 3)). Hence the previous decomposition falls into:

Π(i, j, k, l) = δ(i, dv)δ(j, dc)Π(k)δ(l, red)

Since the group order profile of the redundancy is set, the result of the optimization will
be the group order profiles of information variable nodes. Wedenote byI the indexes of

72 Chapitre 2 : Hybrid LDPC Codes

the group order of information symbols. In other words, any information symbols is in
G(qk) with k ∈ I. Equation (2.17) reduces to:

x(t+1)
e = F (x(t)

e , Π(k), σ2) (2.23)

x(t+1)
e =

∑

k=red,I

Π(k)



1 − log(qk)

log(qred)



1 − Jv



σ2, (dv − 1)J−1
c (

∑

j=dc

Π(j)x
(j,red)
cv,k

(t)
, qk)1qk−1, qk













The graph rateRgraph is determined by1 − dv

dc
, and the code rateR is hence:

R =

Rgraph

∑

k∈I

Π(k) log2(qk)

Rgraph

∑

k∈I

Π(k) log2(qk) + (1 − Rgraph) log2(qred)
(2.24)

Rtarget still denotes the target code rate, and the result of the optimization is hence the
profileΠ(k), ∀k ∈ I, for which the following constraints are fulfilled at lowestSNR:

Proportion constraint:
∑

k

Π(k) = 1

∀k > red, Π(k) = 0

Π(red) >= 1 − Rgraph

Code rate constraint: R = Rtarget (see equation (2.24))

Opened EXIT chart: x(t+1)
e = F

(

x(t)
e , Π(k), σ2

)

> x(t)
vc (see equation (2.23))

Thresholds of distributions optimized in that ways are presented in section 2.5.1.

2.4 Finite length optimization

This section presents an extension of optimization methodsthat has been described in [34]
for finite length non-binary LDPC codes with constant variable degreedv = 2. We ad-
dress the problem of the selection and the matching of the parity-check matrixH nonzero
clusters. In this section, we assume that the connectivity profile and group order profile of
the graph have been optimized, with constant variable degreedv = 2. With the knowledge
of the graph connectivity, we run a PEG algorithm [23] in order to build a graph with a
high girth.

The method is based on the binary image representation ofH and of its components,
i.e. the non-zero clusters of the hybrid code in our case (cf.section 2.1). First, the
optimization of the rows ofH is addressed to ensure good waterfall properties. Then,
by taking into account the algebraic properties of closed topologies in the Tanner graph,
such as cycles or their combinations, an iterative method isused to increase the minimum
distance of the binary image of the code by avoiding low weight codewords.

2.4 Finite length optimization 73

2.4.1 Row optimization

Based on the matrix representation of each nonzero entry, wegive thereafter the equiva-
lent vector representation of the parity-check equations associated with the rows ofH.

Letx = [x0 . . . xN−1] be a codeword inG = G(qmin)×. . .×G(qmax), and letpj be the
number of bits representing the binary map of symbolxj ∈ G(2pj), j = 0, . . .N − 1. For
theith parity equation ofH in the groupG(2pi), we have the following vector equation:

∑

j:Hij 6=0

Hijxj = 0 (2.25)

whereHij is thepi × pj binary matrix representation of the non-zero cluster,xj is the
vector representation (binary map) of the symbolxj . The all zero component vector is
noted0.

Considering thei-th parity-check equation as a single component code, we define
Hi = [Hij0 . . .Hijm

. . .Hijdc−1
] as its equivalent binary parity check matrix, with{jm :

m = 0 . . . dc − 1} the indexes of the nonzero elements of thei-th parity-check equation.
The size ofHi is pi × (pij0 + . . . + pijdc−1

), with pi and pijk
the extension orders of

the groups of the check node and thek-th connected variable node, respectively. Let
Xi = [xj0 . . .xjdc−1

]t be the binary representation of the symbols of the codewordx

involved in theith parity-check equation. When using the binary representation, thei-th
parity-check equation ofH (2.25), can be written equivalently asHiXi

t = 0t.
We definedmin(i) as the minimum distance of the binary code associated withHi.

As described in [34], adc-tuple of dc linear maps is chosen in order to maximize the
minimum distancedmin(i) of the code corresponding to theith row ofH, i = 0, . . . , M −
1. For hybrid LDPC codes, we adopt the same strategy, and choose forHi a binary linear
component code with the highest minimum distance achievable with the dimensions of
Hi. For example, letHi be obtained from adc = 3 check node with the three symbols
belonging toG(28) × G(28) × G(22), Hi has size(8 × 18) and the highest possible
minimum distance isdmin(i) = 5 [62]. For hybrid LDPC codes, even if the connection
degree is constant for all check nodes, the dimensions of thecomponent codeHi could
differ and depend on the symbols orders which appear inXi.

2.4.2 Avoiding low weight codewords

We now address the problem of designing codes with good minimum distance. It has been
shown in [34] that the error floor of non-binary LDPC codes based on ultra-sparse (dv =
2) graph is not uniquely due to pseudo-codewords, but also to low weight codewords.
Here we consider hybrid LDPC codes with constant variable degreedv = 2. We adopt
for hybrid LDPC codes the same strategy that has been introduced in [34], which aims at
avoiding the low weight codewords which are contained in thesmallest cycles. In order
to do so, we first extract and store the cycles of the Tanner graph with length belonging to
{g, . . . , g + gap}, whereg is the girth andgap is a small integer such that the number of
cycles with sizeg + gap is manageable.

74 Chapitre 2 : Hybrid LDPC Codes

As in the previous section, we consider the binary images of cycles as component
codes. LetHck be the binary image of thek-th stored cycle. Since we consider(2, dc)
codes, if some columns ofHck are linearly dependent, so will be the columns ofH (see
[34] for more details). This means that a codeword of a cycle is also a codeword of the
whole code. The proposed approach is hence to avoid low weight codewords by properly
choosing the nonzero clusters implied in the cycles, so thatno codeword of low-weight
is contained in the cycles. This is achieved by ensuring thatthe binary matricesHck

corresponding to the cycles have full column rank. The iterative procedure that we use in
this optimization step is essentially the same as the one depicted in [34]. In each step of
the iterative procedure, we change the values of a limited number of non-zero clusters in
order to maximize the number of cycle component codesHck which are full rank. Thus,
the matrix of a cycle should be full rank to cancel the cycle. Contrarily to classical non-
binary LDPC codes for which the matrix of a cycle is squared, the matrix of a cycle of a
hybrid LDPC code is rectangular, with more rows than columns. This means that we will
have more degrees of freedom to cancel the cycles in hybrid LDPC codes. Hybrid LDPC
codes are therefore well-suited to this kind of finite lengthoptimization procedure.

2.5 Results

2.5.1 Rate one-half codes

Optimized distributions: thresholds and finite length performance

Table 2.2 : Nodewise distributions of the hybrid LDPC codes used for the finite length
simulations.

Hybrid LDPC code 1 Hybrid LDPC code 2

Π̃(i = 2, qk = 32) 0.3950

Π̃(i = 2, qk = 64) 0.4933 0.2050

Π̃(i = 2, qk = 256) 0.4195 0.4000

Π̃(i = 6, qk = 64) 0.0772

Π̃(i = 6, qk = 256) 0.0100

Π̃(j = 5, ql = 256) 0.5450 1

Π̃(j = 6, ql = 256) 0.4550
(

Eb

No

)⋆

(dB) 0.675 0.550

Based on the optimization methods presented in section 2.3.3, we first present some
code distributions and corresponding thresholds for code rate one-half, as given in ta-
ble 2.2. For all the presented results, the channel is the BIAWGN channel with BPSK

modulation. Thresholds are computed by Monte-Carlo simulations. In table 2.2,
(

Eb

No

)⋆

denotes the decoding convergence thresholds of the distributions in each column. The

2.5 Results 75

hybrid LDPC code number 1 is obtained by the method presentedin section 2.3.3, when
setting the check node connection profile, all check nodes are in G(256), putting all the
redundancy variable nodes inG(256) and information variables inG(64). The connection
profiles for these two groups are then optimized withdvmax

= 10. As already observed
in section 2.3.2, variable nodes in the highest order group are affected with as much high
connection degrees as possible, to balance the poor generalized component code. The
hybrid LDPC code number 2 is obtained by the method presentedin section 2.3.3, when
setting the graph connections to be regular with constant variable degreedv = 2 and con-
stant check degreedc = 5. Although these thresholds are not better than the one of a
regular(dv = 2, dc = 4) GF (256) LDPC code, which is0.5 dB [63], we can exhibit hy-
brid LDPC distributions with better thresholds than the oneof a regular(dv = 2, dc = 4)
GF (256) LDPC code, by allowing higher connection degrees. However,our purpose is
to point out the good finite length performance of hybrid LDPCcodes, and that is why
we have focused on low connection degrees. For such low degrees, we are going to
see that hybrid LDPC codes have very good finite length performances, but they do not
approach the capacity as close as multi-edge type LDPC codesdo. This is due to the
adopted detailed representationΠ which cannot handle degree one variable nodes. How-
ever, it would be an interesting perspective to switch from the detailed representation to a
multi-edge type representation for LDPC codes. This will certainly enable to get capacity-
approaching distributions with low connection degrees. Indeed, it has been shown in [30]
that introducing degree-1 variable nodes in non-binary LDPC codes makes the decoding
threshold getting closer to the theoretical limit. Modifying the representation of hybrid
LDPC code ensemble is therefore very interesting for futurework. We only present in
table 2.2 the thresholds of the distributions which are usedfor the following finite length
simulations.

Figure 2.5 represents some frame error rate (FER) curves fordifferent codes, all with
K = 1024 information bits and code rate one-half. Figure 2.5 shows the performance
curves of hybrid LDPC codes number 1 and 2 compared with Quasi-cyclic Tanner codes
from [1], irregular LDPC codes from [10], aGF (256) LDPC code, a protograph based
LDPC code from [26] and a multi-edge type LDPC code from [27] with code length
N = 2560 bits (K = 1280 information bits). This code has been specially design for low
error-floor. The graphs of the binary, non-binary and hybridLDPC codes have been built
with the random PEG algorithm described in [51].

We see that the hybrid LDPC code number 1 has performance veryclose to the pro-
tograph based LDPC code, while the hybrid LDPC code number 2 has better waterfall
performance than the protograph based LDPC code but higher error floor. Also, the hy-
brid LDPC code number 2 has a worse waterfall region than a regular (dv = 2, dc = 4)
GF (256) LDPC code, but a better error floor. These two observations are clues to investi-
gate a finite length optimization of the hybrid LDPC code, in order to refine the structure
of the graph to achieve better error floor performance.

76 Chapitre 2 : Hybrid LDPC Codes

1 1.5 2 2.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No

F
ra

m
e

E
rr

or
 R

at
e

Quasi−cyclic LDPC code

Binary LDPC code

Hybrid LDPC n°1

Protograph based LDPC code

Multi−edge type LDPC N=2560

Hybrid LDPC n°2

GF(256) LDPC code

Figure 2.5 : FER versusEb

No
: code rate one-half.K = 1024 information bits except for

the multi-edge type LDPC code for whichK = 1280 information bits. No finite length
optimization has been applied.Niter = 500 except for quasi-cyclic LDPC code (from [1])
for whichNiter = 50.

Finite length optimized codes

The finite length optimization described in section 2.4 is applied to the hybrid LDPC code
number 2, which has constant variable degreedv = 2.

Figure 2.6 represents frame error rate (FER) curves for different codes with code rate
one-half. The finite length optimization described in section 2.4 is applied to the hybrid
LDPC code number 2, which has constant variable degreedv = 2. The performance
curves of hybrid LDPC codes 1 and 2 are compared with a protograph-based LDPC code
from [26], and a multi-edge type (MET) LDPC code from [27]. This code has been
specifically designed for low error-floor. All codes haveNbit = 2048 coded bits, except
the MET LDPC code which hasNbit = 2560 coded bits. The graphs of hybrid LDPC
codes have been built with the random PEG algorithm described in [51]. We see that the
hybrid LDPC code 1 has performance very close to the protograph-based LDPC code.
The hybrid LDPC code 2 has slightly better waterfall and slightly higher error-floor than
the MET LDPC code, which is longer. Hybrid LDPC codes are therefore capable of
exhibiting performance equivalent to MET LDPC codes, whichare, to the best of our
knowledge, among the most interesting structured codes. Itis worthy to note that, unlike
MET and protograph-based LDPC codes, the presented hybrid LDPC codes are non-
structured codes.

2.5 Results 77

1 1.5 2 2.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No

F
ra

m
e

E
rr

or
 R

at
e

Hybrid LDPC 2
Multi−edge type LDPC N=2560
Protograph based LDPC code
Hybrid LDPC 1

Figure 2.6 : FER versusEb

No
(in dB): code rate one-half.Nbit = 2048 coded bits except for

the multi-edge type LDPC code for whichNbit = 2560 coded bits.Niter = 500 decoding
iterations are performed.

Hence, hybrid LDPC codes can be a means to worsen the waterfall region of regu-
lar codes in the highest order field, in order to even lower theerror-floor. They can be
competitors for the best known codes for finite length performance.

2.5.2 Rate one-sixth codes

For communication systems operating in the low signal-to-noise ratio (SNR) regime (e.g.,
code-spread communication systems and power-limited sensor networks), low-rate cod-
ing schemes play a critical role. One important applicationof low-rate codes is in wide
band data communications using code-division multiple-access (CDMA) systems [64],
where they are used to replace the spreading code in traditional direct-sequence spread
spectrum systems.

Although LDPC codes or Repeat-Accumulate (RA) codes can exhibit capacity-approaching
performance for various code rates when the ensemble profiles are optimized [10], in the
low-rate region, both RA and LDPC codes suffer from performance loss and extremely
slow convergence using iterative decoding. To our knowledge, the most competitive codes
at this time are Turbo-Hadamard (TH) [2] and various versions of Zigzag-Hadamard (ZH)
codes [3]. All references of various low rate coding schemescan be found in [2][3][65].
We intend to illustrate the interest of hybrid LDPC codes forlow-rate application requir-

78 Chapitre 2 : Hybrid LDPC Codes

ing short block length (from 200 to 1000 information bits).

The considered channel is still the BIAWGN channel. We compare the performance
of our proposed hybrid LDPC codes with existing good codes related in [2][3]. Kbit is the
number of information bits.

For a code rateR = 1
6
, a regular graph(dv = 2, dc = 3) is considered, and the

proportion of group orders has been optimized with EXIT charts techniques defined in
section 2.3.3. With the order of the check nodes being set toG(qmax) = G(256), the code
resulting from the optimization has three different group ordersG(256) − G(16) − G(8)
(table 2.3).

Table 2.3 : Nodewise distribution of the rate1
6 and 1

12 hybrid LDPC codes

Hybrid codeR = 1/6 Hybrid codeR = 1/12

Π̃(i = 2, qk = 2) 0.184

Π̃(i = 2, qk = 4) 0.150

Π̃(i = 2, qk = 8) 0.227

Π̃(i = 2, qk = 16) 0.106

Π̃(i = 2, qk = 256) 0.667 0.667

Π̃(j = 3, ql = 256) 1 1
(

Eb

No

)⋆

(dB) −0.41 −0.59

Capacity (dB) −1.08 −1.33

On figure 2.7, forKbit ≃ 200, the hybrid LDPC code of code rate1/6 outperforms
with 0.3 dB gain the ZH code of code rate1/6. Additionally, our hybrid code has no
observed error floor up to a BER=10−7. When comparing the computer simulation of
the hybrid LDPC code with the union bound of ZH code, we observe that the BER of the
hybrid LDPC code has gain of about one decade atEb/N0 = 2dB. Since union bounds are
tight upper bounds on BER performances [2] for Turbo-Hadamard codes, we can predict
from the figure that the error floors of our two simulated codeswill be lower than the error
floors of Turbo-Hadamard codes with random interleaver. Indeed, the minimum distance
of our hybrid LDPC code has been estimated thanks to the impulse method [66] and is
upper bounded bydmin = 80, which is by far superior to the minimum distance that can
be achieved with TH or ZH codes.

The hybrid LDPC code of code rateR = 1/12 = 0.083 has poorer performance in
the waterfall region than TH and ZH codes with comparable rates, but has much lower
error floor when comparing the computer simulations to the union bound of the code rate
0.077 TH code. Indeed, its minimum distance is upper boundedby dmin = 125. Hence,
although thisR = 0.083 code suffers from 0.1 to 0.2 dB loss compared with the rate 0.077
TH code, the good error floor properties highlight the interest of hybrid LDPC codes for
lower rates. As aforementioned, we can expect that introducing degree-1 variable nodes
in hybrid LDPC code will allow to get thresholds closer to thecapacity for very low code

2.5 Results 79

−1 −0.5 0 0.5 1 1.5 2 2.5 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 in dB

B
it

E
rr

or
 R

at
e

Turbo−Hadamard R=1/5 K
bit

=200

ZigZag−Hadamard R=1/6 K
bit

=200

Union bound ZigZag−Hadamard R=1/6 K
bit

=200

Hybrid LDPC R=1/6 K
bit

=192

Hybrid LDPC R=1/12 K
bit

=200

ZigZag−Hadamard R=0.067 K
bit

=200

Turbo−Hadamard R=0.077 K
bit

=200

Union bound Turbo−Hadamard R=0.077 K
bit

=200

Figure 2.7 : Comparison of hybrid LDPC code with Turbo Hadamard codes (TH) taken
from [2] and Zigzag Hadamard (ZH) codes taken from [3], for aninformation block length
of Kbit ≃ 200. Niter = 30 for Turbo Hadamard codes, andNiter = 200 for the hybrid
LDPC codes.

rate (less than1
10

). Indeed, this seems to be important to have good thresholdswith low
rates [27].

In Figure 2.8, the FER comparison is drawn for code rate1/6 andKbit ≃ 1000 in-
formation bits. The quasi-cyclic LDPC code is designed to have low error-floor [1]. The
hybrid LDPC code is better that the quasi-cyclic LDPC and PTHcodes, both in the water-
fall and in the error-floor regions. The hybrid LDPC code has poorer waterfall region than
the MET LDPC code [67], but better error-floor. Hence, for rate1/6 too, the performance
of hybrid LDPC codes are equivalent to the one of MET LDPC codes, by allowing to
reach comparable trade-off between waterfall and error-floor performance.

Remark: Let us mention that hybrid LDPC codes, with injective linear maps as non-
zero elements, are well-fitted to low code rates thanks to their structure. Indeed, like all
other kinds of codes with generalized constraint nodes (Turbo Hadamard code [2], LDPC
Hadamard codes [68], GLDPC [28], D-GLDPC [29], or Tail-biting LDPC [30]), they are
well-fitted to low code rates because the graph rate is higherthan the code rate. This can
help the iterative decoding: when the code rate is very low, decoding on a higher rate
graph can lead to better performance.

It is worthy to note that the better performance of hybrid LDPC codes over codes based

80 Chapitre 2 : Hybrid LDPC Codes

−1 −0.5 0 0.5 1 1.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

F
ra

m
e

E
rr

or
 R

at
e

MET LDPC code

Hybrid LDPC

quasi−cyclic GF(2) code

THC (1,6/7)
8
 M=3 R=1/6

Figure 2.8 : Comparison of hybrid LDPC code with punctured Turbo Hadamard (PTH)
taken from [4] and other powerful codes, for code rate1/6. The PTH code hasKbit = 999
information bits, and the other codes haveKbit = 1024 information bits.Niter = 50 for
the PTH code, andNiter = 200 for the other codes.

on Hadamard codes are obtained with no complexity increase.Indeed, the complexity of
these codes is dominated by the complexity of the fast Hadamard transform, which is
O(r ·2r) [2], wherer is the order of the Hadamard code. The complexity of hybrid LDPC
codes is dominated by the fast Fourier transform at check nodesO(q log(q)), whereq is
the maximum group order. The complexity of Hadamard type codes and hybrid LDPC
codes is therefore equivalent. However, contrary to TH codes, one should note that hybrid
LDPC codes are suitable for decoding with reduced complexity and no loss, as described
in [46].

2.6 Conclusions

In this work, asymptotic analysis of a new class of non-binary LDPC codes, named hybrid
LDPC codes, has been carried out. Specific properties of considered hybrid LDPC code
ensembles, like the Linear-Map invariance, have been studied to be able to derive both
stability condition and EXIT charts. The stability condition of such hybrid LDPC ensem-
bles shows interesting advantages over non-binary codes. Study of the condition allows to
conclude that there exist many cases where any fixed point of density evolution for hybrid
LDPC codes can be stable at lower SNR than for non-binary codes. The EXIT charts

2.7 Proofs of theorems in Chapter 2 81

analysis is performed on the BIAWGN channel, whereas studies of generalized LDPC
codes usually consider the BEC [30, 29]. In order to optimizethe distributions of hy-
brid LDPC ensembles, we have investigated how to project themessage densities on only
one scalar parameter using a Gaussian approximation. The accuracy of such an approx-
imation has been studied, and used to lead to two kinds of EXITcharts of hybrid LDPC
codes: multi-dimensional and mono-dimensional EXIT charts. Distribution optimization
allows to get finite length codes with very low connection degrees and better waterfall
region than protograph or multi-edge type LDPC codes. Moreover, hybrid LDPC codes
are well fitted for the cycle cancellation presented in [34],thanks to the specific structure
of the linear maps. The resulting codes appear to have, additionally to a better waterfall
region, a very low error-floor for code rate one-half and codeword length lower than three
thousands bits, thereby competing with multi-edge type LDPC. Thus, hybrid LDPC codes
allow to achieve an interesting trade-off between good error-floor performance and good
waterfall region with non-binary codes techniques.

We have also shown that hybrid LDPC codes can be very good candidates for efficient
low rate coding schemes. For code rate one sixth, they compare very well to existing
Turbo Hadamard or Zigzag Hadamard codes. In particular, hybrid LDPC codes exhibit
very good minimum distances and error floor properties.

As future work, it would be of first interest to allow degree one variable nodes in the
representation of hybrid LDPC codes, by, e.g., adopting a multi-edge type representation
[27]. As shown in [30], this would allow to have better decoding thresholds, in particular
for low rate codes.
This would give rise to the study and optimization, with the same tools, of non-binary pro-
tograph based or multi-edge type LDPC codes. However, the extension may be theoreti-
cally not completely straightforward as the non-zero values have to be carefully handled
to define the code ensemble.

On the other hand, it would be interesting to study hybrid LDPC codes on other chan-
nels. Let us mention that we made some experiments on an AWGN channel with16-
QAM modulation. We restricted the connection profile to be regular, in order to not bias
the results by the absence of special allocation on differently protected symbols. Only
two group orders where allowed to avoid correlation betweenchannel LLRs:G(16) and
G(256). The optimization of fractions of variable nodes in these two different orders have
been done. The results where slightly degraded compared to a(2, 4) GF (256) LDPC
codes. A study of these codes on the BEC would be also interesting, according to what
has been done for D-GLDPC codes on the BEC [56].

2.7 Proofs of theorems in Chapter 2

Lemma 5 Let P (t)
e (x) denote the conditional error probability after thetth BP decoding

iteration of aGF (q) LDPC code, assuming that codewordx was sent. If the channel is
symmetric, thenP (t)

e (x) is independent ofx.

82 Chapitre 2 : Hybrid LDPC Codes

Proof: The proof has the same structure as the proof of Lemma 1 in [11]. The nota-
tions are the same as in [11] and Section 2.1.7.
Let Ψ(t)

v (m0,m1, . . . ,mdv−1) denote the message map of any variable node at iterationt,
according to equation (2.4). The size of argument messages is implicitly the one of the
group of the variable node. LetΨ(t)

c (m1, . . . ,mdc−1) be the message map of any check
node. The sizes of argument messages are implicitly the one of the group of each variable
node connected to the check node, according to equation (2.5).

• Check node symmetry: LetG be the Cartesian product group defined in Section
2.1.7. For any sequence(b1, . . . , bdc−1) in G such that

⊕dc−1
i=1 Avicbi ∈ Im(Avc),

we have (see equation (2.5))

Ψ(t)
c (m+b1

1 , . . . ,m
+bdc−1

dc−1) = Ψ(t)
c (m1, . . . ,mdc−1)

+A−1
vc (

Ldc−1
i=1 Avicbi)

• Variable node symmetry: We also have, for anyb ∈ GF (qv):

Ψ(t)
v (m+b

0 ,m+b
1 , . . . ,m+b

dv−1) = Ψ(t)
v (m1, . . . ,mdc−1)

+b

Let Zi denote the random variable being the channel output in probability form, condi-
tionally to the transmission of the zero symbol. EachZi for anyi = 1 . . . N has same size
as the group of the corresponding codeword symbol. Any memoryless symmetric channel
can be modeled as

Yi = Z+xi

i

wherexi is the ith component ofx which is a vector of size N, denoting an arbitrary
codeword of the hybrid LDPC code. The channel output in probability form Yi results
from the transmission ofx.

Let v denote an arbitrary variable node and letc denote one of its neighboring check
nodes. For any observation in probability formw, let m(t)

vc (w) denote the message sent
from v to c in iteration t assumingw was received. The quantityw is hence a set of
channel output vectors in probability formwi, for all i = 1 . . .N . The same definition
holds form(t)

cv (w) from c to v. From the variable node symmetry att = 0 we have
m

(0)
vc (y) = m

(0)
vc (z)+xv . Assuming now that in iterationt we havem(t)

vc (y) = m
(t)
vc (z)+xv .

Sincex is a codeword, we have
⊕dc

i=1 Avicxi = 0, and hence
⊕dc−1

i=1 Avicxi = Avcxv.
From the check node symmetry condition we conclude that

m(t+1)
cv (y) = m(t+1)

cv (z)+xv .

Moreover, from the variable node symmetry condition, it follows that in iterationt + 1
the message sent fromv to c is

m(t+1)
vc (y) = m(t+1)

vc (z)+xv .

Thus, all messages to and from variable nodev wheny is received are permutations
by xv of the corresponding message whenz is received. Hence, both decoders commit
exactly the same number of errors, which proves the lemma.

�

2.7 Proofs of theorems in Chapter 2 83

2.7.1 Symmetry

Lemma 6. If W is a symmetric LDR random vector, then its extensionW×A, for any
linear mapA selected fromE1,2, is also symmetric. The truncation ofW by the inverse
of A, denoted byW×A−1

, is also symmetric.

Proof: We first prove that anyq2-sized extension of aq1-sized symmetric random
vector remains symmetric. We want to show that

∀b ∈ [0, q2 − 1], P (W×A = w) = ewbP (W×A = w+b) (2.26)

Caseb /∈ Im(A):

• In the case whenwb 6= −∞:
We have to show that

e−wbP (W×A = w) = P (W×A = w+b)

If wb 6= ∞, thenP (W×A = w) = 0. If wb = ∞, thene−wb = 0. Thus, we have to
show that

∀b /∈ Im(A), P (W×A = w+b) = 0 (2.27)

This is equivalent to show that∃i /∈ Im(A) such thatw+b
i 6= ∞. We havew+b

i =
wb+i−wb. It is sufficient to choosei = b, thenw+b

b = −wb. Sincew+b
b = −wb 6= ∞

by hypothesis,P (W×A = w+b) = 0.

• In the casewb = −∞, to prove that equation (2.26) is fulfilled we have to prove
thatP (W×A = w) = 0, which is straight forward becauseb /∈ Im(A), and hence
P (W×A = w) 6= 0 ⇒ wb = ∞. By taking the contraposition, we end on the
wanted result.

Hence we have proved equation (2.26) in the case whereb /∈ Im(A).
Caseb ∈ Im(A):
We have

P (W×A = w) = P (W = w×A−1

)Πi/∈Im(A)δwi,∞

Sinceb belongs toIm(A), we denote bya the element in[0, q1 − 1] such thatb = Aa.
The input messageW is symmetric, hence we have

P (W = w×A−1

) = ewAaP (W = (w×A−1

)+a)

∀i ∈ [0, q1 − 1], (w×A−1

)+a
i = w×A−1

i+a − w×A−1

a

= wA(i+a) − wAa

= w+Aa
Ai

= (w+Aa)×A−1

i

84 Chapitre 2 : Hybrid LDPC Codes

Thus
P (W×A = w) = ewAaP (W = (w+Aa)×A−1

)Πi/∈Im(A)δwi,∞ (2.28)

But we note that:

P (W×A = w+Aa) = P (W = (w+Aa)×A−1

)Πj /∈Im(A)δw+Aa
j ,∞ (2.29)

• We first examine the casewAa = ∞:

P (W×A = w+Aa) 6= 0 ⇒ ∀i /∈ Im(A), w+Aa
i = ∞

But, if y = LDR−1(w), w+Aa
i = log

(

yAa

yAa+i

)

, and sinceyAa = 0 becausewAa =

∞, we cannot havew+Aa
i = ∞, ∀i /∈ Im(A). Hence we havewAa = ∞ ⇒

P (W×A = w+Aa) = 0. This proof by contradiction ensures that equation (2.26) is
fulfilled whenwAa = ∞.

• Then we examine the casewAa = −∞:

P (W×A = w) 6= 0 ⇒ ∀i /∈ Im(A), wi = ∞

But wAa = log
(

y0

yAa

)

= −∞ implies thaty0 = 0. Hence we cannot have

wi = log
(

y0

yi

)

for all i ∈ [0, q2 − 1]. Hence we havewAa = −∞ ⇒ P (W×A =

w) = 0. This proof by contradiction ensures that equation (2.26) is fulfilled when
wAa = −∞.

• Finally we examine the casewAa /∈ {−∞,∞}:
In this case, for allj ∈ [0, q2 − 1], δw+Aa

j ,∞ = δwAa+j−wAa,∞ = δwAa+j,∞. For

all i ∈ [0, q2 − 1], if i /∈ Im(A), then∃j /∈ Im(A): i = Aa + j. Therefore
{i ∈ [0, q2 − 1]s.t.i /∈ Im(A)} = {j ∈ [0, q2 − 1]s.t.Aa + j /∈ Im(A)}. We finally
obtain:

Πj /∈Im(A)δw+Aa
j ,∞ = Πi/∈Im(A)δwi,∞

The above equality allows to insert equation (2.29) into equation (2.28). We can
now conclude that, whenwAa /∈ {−∞,∞}, equation (2.26) is satisfied.

This completes the proof of the first part of lemma 6.

We now prove that any truncation of a symmetric random vectorremains symmetric.
We have to prove that

∀a ∈ [0, q1 − 1], P (W×A−1

= w) = ewaP (W×A−1

= w+a) (2.30)

2.7 Proofs of theorems in Chapter 2 85

Let call b = Aa.

P (W×A−1

= w) =
∑

x:x0=w0,xA1=w1,...,xA(q1−1)=wq1−1

P (W = x)

=
∑

x:x0=w0,xA1=w1,...,xA(q1−1)=wq1−1

exbP (W = x+b)

=
∑

x:x0=w0,xA1=w1,...,xA(q1−1)=wq1−1

e−waP (W = x+b)

= e−wa

∑

x:x0=w0,xA1=w1,...,xA(q1−1)=wq1−1

P (W = x+b)

= e−waP (W×A−1

= w+a)

(2.31)

The last step is obtained by noting that:

∀i ∈ Im(A), x+Aa
i = xAa+i − xAa = wa+A−1i − wa = (w+b)×A−1

i

We have obtained equation (2.30).

�

Please note that, in the sequel of this chapter, for all the proofs, we simplify the
notations as follows: For all groupG(q), for all i ∈ [0, q − 1], the elementαi is now
denoted byi. Also, sinceA is a linear map, the matrix of the application is also denoted
by A. Hence, for all linear mapA from G(q1) to G(q2), A(αi) = αj with αi ∈ G(q1) and
αj ∈ G(q2), is translated byAi = j.

2.7.2 A useful lemma

Lemma 10 Ek,l denotes the set of extensions fromG(qk) to G(ql). For givenk andl,

∀(i, j) ∈ [1, qk − 1] × [1, ql − 1],
Card(A ∈ Ek,l : A−1j = i)

Card(Ek,l)
=

1

ql − 1

Proof: pk andpl denotelog2(qk) andlog2(ql), respectively.
Without any constraint to build a linear extension A fromG(qk) to G(ql), except the one
of full-rank, we have2pl − 2n−1 choices for thenth row, n = 1, . . . , pl.
For giveni andj, with the constraint thatAi = j, we have2pl−bi + 2⌊

bi
2
⌋ − 2n−1 choices

for thenth row,n = 1, . . . , pl, wherebi is the number of bits equal to1 in the binary map
of αi. Thus, the number ofA such thatAi = j is dependent only oni. Let say

Card(A ∈ Ek,l : A−1j = i) = βi

we have
ql−1
∑

j=1

Card(A ∈ Ek,l : Ai = j) = Card(Ek,l)

86 Chapitre 2 : Hybrid LDPC Codes

Therefore

∀(i, j) ∈ [1, qk − 1] × [1, ql − 1],
Card(A ∈ Ek,l : Ai = j)

Card(Ek,l)
=

1

ql − 1

2.7.3 LM-invariance

Lemma 7. If a probability-vector random variableY of sizeq2 is LM-invariant, then
for all (i, j) ∈ [0, q2 − 1] × [0, q2 − 1], the random variablesYi andYj are identically
distributed.

Proof: For any(q1, q2), q1 < q2, T1,2 denotes the set of all truncations fromG(q2) to
G(q1). We assumeY LM-invariant. A−1 andB−1 denote two truncations independently
arbitrary chosen inT1,2. For anyl andk in [0, q2 − 1], we can choose extension A such
that l ∈ Im(A) and A−1l is denoted byi. Also, we choose B such thatBi = k. Y

LM-invariant implies

∀(i, A−1, B−1) ∈ [0, q1 − 1] × T1,2 × T1,2, P (Y ×A−1

i = x) = P (Y ×B−1

i = x)

This is equivalent to
P (YAi = x) = P (YBi = x)

and hence

P (Yl = x) = P (Yk = x), ∀(l, k) ∈ [0, q2 − 1] × [0, q2 − 1]

�

Lemma 8. A probability-vector random variableY of sizeq2 is LM-invariant if and
only if there existq1 and a probability-vector random variableX of sizeq1 such that
Y = X̃.

Proof: Let us first assumeY = X̃ and prove thatY is LM-invariant. This means that
we want to prove that for any(B, C) ∈ E1,2 × E1,2, Y ×B−1

andY ×C−1
are identically

distributed.
By hypothesisY = X×A, with A uniformly chosen inE1,2. We define the matrixαA of
sizeq2 × q1. This matrix is such thatY = αAX and is defined by

∀j = 0 . . . q1 − 1, ∀i = 0 . . . q2 − 1, αA(i, j) = 1 if i=Aj

= 0 otherwise

Thus, vectorY truncated by any linear mapB is expressed by:

Y×B−1

= αT
BαAX

The same holds for linear mapC:

Y×C−1

= αT
CαAX

2.7 Proofs of theorems in Chapter 2 87

αT
BαA andαT

CαA correspond to a selection ofq1 rows ofαA. Thus, showing thatY×B−1

andY×C−1
are identically distributed is equivalent to show that bothmatricesαT

BαA and
αT

CαA are identically distributed, for anyB andC in E1,2 and forA uniformly chosen in
E1,2. The number of elements ofX, whose indexes are inIm(A) and which are selected
by αT

B, is equal to the cardinality ofIm(A) ∩ Im(B). The same holds forC.
EA(f(A, B)) denotes the expectation of the functionf applied to random variablesA and
B, over all the realizations ofA.
Let us first show that

EA (Card(Im(B) ∩ Im(A))) = EA (Card(Im(C) ∩ Im(A))) , ∀(B, C) ∈ E1,2×E1,2, A ∼ UE1,2

(2.32)

EA (Card(Im(B) ∩ Im(A))) =
1

Card(E1,2)

∑

A∈E1,2

Card(Im(B) ∩ Im(A))

=
1

Card(E1,2)

q1
∑

r=1

r · Card (A ∈ E1,2 : Card(Im(B) ∩ Im(A)) = r)

=
1

Card(E1,2)

q1
∑

r=1

r ·
(

q1

r

)

∑

i1 6=···6=ir
∈G(q1)

Card (A ∈ E1,2 : Ai1 = j1, . . . , Air = jr)

wherej1 . . . jr are subsets ofIm(B).
In the same way as for lemma 10, we can show thatCard (A ∈ E1,2 : Ai1 = j1, . . . , Air = jr)
is independent ofj1 . . . jr. Hence we conclude on equality (2.32).
Let us now consider a given subsetj1 . . . jr of sizer, taken from the image of any linear
map inE1,2 (hence withr ≤ q1), and a given subseti1 . . . ir of G(q1) of sizer. In the
same way as lemma 10, we can prove thatCard (A ∈ E1,2 : Ai1 = j1, . . . , Air = jr) is
independent ofj1 . . . jr.
The first part of the proof ensures each row, of both matricesαT

BαA andαT
CαA, to have the

same probability to contain a1 (they have at most one1). The second part of the proof en-
sures that, givenr rows ofαA of indexesj1, . . . , jr, the combination of locations of ones
in the matrixαT

BαA is independent of which rowsj1, . . . , jr of αA have been selected by
αT

B. Hence, this combination is independent ofαT
B.

For any(B, C) ∈ E1,2×E1,2, for A uniformly distributed inE1,2, both matricesαT
BαA

andαT
CαA are therefore identically distributed. SinceY×B−1

= αT
BαAX andY×C−1

=
αT

CαAX, Y×B−1
andY×C−1

are identically distributed for any(B, C) ∈ E1,2 ×E1,2, that
means thatY is LM-invariant.

Let us now assumeY LM-invariant, and defineX by X = Y×A−1
with A uniformly

chosen inE1,2 and independent ofY. We have to show thatX is independent ofA.

P (X = x|A) = P (Y×A−1

= x|A)

We can write, thanks to definition 8, for allB arbitrary selected fromE1,2 independently
on A,

P (Y×A−1

= x|A) = P (Y×B−1

= x|A) = P (Y×B−1

= x)

88 Chapitre 2 : Hybrid LDPC Codes

We finally obtain

P (X = x|A) = P (Y×B−1

= x)

= P (Y×A−1

= x)

= P (X = x)

This completes the proof.

�

Lemma 11 The product of two LM-invariant random probability-vectors is LM-invariant.

Proof: Let U andV be two LM-invariant random LDR-vectors of sizeq2. Let A and
B be any two linear maps fromG(q1) to G(q2). SinceU is LM-invariant,U×A−1

and
U×B−1

are identically distributed, by definition of LM-invariance. The same holds for
V. U×A−1

V×A−1
andU×B−1

V×B−1
are therefore identically distributed. Moreover, it

is clear thatU×A−1
V×A−1

= UV×A−1

, for any A. Hence,UV×A−1

andUV×B−1

is
LM-invariant. This completes the proof.

�

2.7.4 Proof of Theorem 3

X(k) denotes a probability-vector random variable of sizeqk. Thejth component of the
random truncation ofX(k) is denoted by rt

X
(k)
j

. Thejth component of the random extension

of X(k) is denoted by re

X
(k)
j

. The jth component of the random extension followed by a

random truncation ofX(k) is denoted byrt+re

X
(k)
j

.

We define the operatorDa by:

Da(X
(l)) =

1

ql − 1

ql−1
∑

j=1

E







√

√

√

√

X
(l)
j

X
(l)
0







The following equalities are hence deduced from the previous definitions:

E





√

√

√

√

re

X
(k)
j

re

X
(k)
0



 =
∑

l

Π(l|k)
1

ql − 1

qk−1
∑

i=1

E





√

√

√

√

X
(k)
i

X
(k)
0





E





√

√

√

√

rt

X
(l)
i

rt

X
(l)
0



 =
1

ql − 1

ql−1
∑

j=1

E







√

√

√

√

X
(l)
j

X
(l)
0







= Da(X
(l))

E





√

√

√

√

rt+re

X
(k)
i

rt+re

X
(k)
0



 =
∑

l

Π(l|k)
1

ql − 1

qk−1
∑

i=1

E





√

√

√

√

X
(k)
i

X
(k)
0





2.7 Proofs of theorems in Chapter 2 89

To shorten the notations we can omit the index of iterationt. Moreover, in the remain-
der of this proof, we choose to use simpler notations although not fully rigorous:R(j,l)

denotes a message going into a check node of degreej in G(ql) while R(i,k) denotes a
message going out of a variable of degreei in G(qk). However, there is not ambiguity in
the following thanks to the unique use of indexesi, j, k, l and we always precise of which
nature is a message.
Thenth component of a message coming from a variable of degreei in G(qk) is denoted
by R

(i,k)
n . The nth component of the initial message going into a variable inG(qk) is

denoted byR(0)(k)

n . Thenth component of a message going into a degreei variable in
G(qk) is denoted byL(i,k)

n . The data pass, through a variable node of degreen in G(qk),
is translated by

R(i,k)
n = R(0)(k)

n

i−1
∏

p=1

L(i,k)
n

Let R
(k)
t denote the average message going out of a variable node inG(qk). By noting

that the messagesL(i,k) are i.i.d. when(i, k) is set, we have:

Da(R
(k)
t) =

∑

i

Π(i|k)
1

qk − 1

qk
∑

n=1

E





√

√

√

√

R
(0)(k)

n

∏i−1
p=1 L

(i,k)
n

R
(0)(k)

0

∏i−1
p=1 L

(i,k)
0





=
∑

i

Π(i|k)
1

qk − 1

qk
∑

n=1

E





√

√

√

√

R
(0)(k)

n

R
(0)(k)

0



E





√

√

√

√

L
(i,k)
n

L
(i,k)
0





i−1

=
∑

i

Π(i|k)
1

qk − 1

qk
∑

n=1

E





√

√

√

√

R
(0)(k)

n

R
(0)(k)

0



Da(L
(i,k))

The last step is obtained thanks to the LM-invariance ofL(i,k). Finally we get:

Da(R
(k)
t) = Da(R

(0)(k)

)
∑

i

Π(i|k)Da(L
(i,k)) (2.33)

Moreover, if we consider two LM-invariant vectorsL(k) andL(l), whereL(k) is the random
truncation ofL(l) , it is clear thatDa(L

(k)) = Da(L
(l)). Hence:

Da(L
(i,k)) =

∑

j,l

Π(j, l|i, k)Da(L
(j,l)) (2.34)

whereL(j,l) is the message going out of a check node of degreej in G(ql).
Let us recall the result of equation (68) in [48]:

1 − D(Lt) ≥
∑

d

ρd (1 − D(Rt))
d−1 + O

(

D(Rt)
2
)

90 Chapitre 2 : Hybrid LDPC Codes

We can apply this result, since our definition ofDa corresponds to the definition the
authors gave toD. We obtain

1 − Da(L
(j,l)) ≥ (1 − Da(R

(j,l)))j−1 + O(Da(R
(j,l))2) (2.35)

whereR(j,l) is a message going into a check node of degreej in G(ql). It is straightfor-
ward from definition ofDa(·) to get:

Da(R
(j,l)) =

∑

i′,k′

Π(i′, k′|j, l)qk′ − 1

ql − 1
Da(R

(i′,k′)) (2.36)

By gathering equations (2.33), (2.34), (2.35) and (2.36), we obtain:

Da(R
(k)
t) ≤ Da(R(0)(k)

)
X

i

Π(i|k)

2

4

X

j,l

Π(j, l|i, k)

0

@1 −
X

i′,k′

Π(i′, k′|j, l)

„

qk′ − 1

ql − 1
Da(R(i′,k′))

«j−1

+ O(Da(R(i′,k′))2)

1

A

3

5

i−1

(2.37)
which is also:

Da(R
(k)
t) ≤ Da(R(0)(k)

)
X

i

Π(i|k)

2

4

X

j,l

Π(j, l|i, k)

0

@1 −
X

i′,k′

Π(i′, k′|j, l)
qk′ − 1

ql − 1
Da(R(i′,k′))

1

A

j−13

5

i−1

+O(Da(Rt−1)2)

(2.38)

whereDa(Rt−1) =
∑

k Da(R
(k)
t−1). By power series in the neighborhood of zero, we

finally get:

Da(R
(k)
t) ≤ Da(R(0)(k)

)Π(i = 2|k)
∑

j,l

Π(j, l|i, k)(j−1)
∑

k′

Π(k′|j, l)qk′ − 1

ql − 1
Da(R

(k′)
t−1)+O(Da(Rt−1)

2)

(2.39)

Let c(k) = Da(R
(0)(k)

) andp(y|x) the transition probabilities of the memoryless output
symmetric channel. We recall that we assume that the all-zeros codeword has been sent.
Then

c(k) = Da(R
(0)(k)

)

=
1

qk − 1

qk−1
∑

i=1

E

(
√

p(y|i)
p(y|0)

)

=
1

qk − 1

qk−1
∑

i=1

∫

√

p(y|i)
p(y|0)

p(y|0)dy

=
1

qk − 1

qk−1
∑

i=1

∫

√

p(y|i)p(y|0)dy

We introduce hereafter some notations, for ease of reading:
Let x be a positive real-valued vector of size the number of different group orders. Let us
define theg function by:

g(k, c(k), Π,x) = c(k)Π(i = 2|k)
∑

j,l

Π(j, l|i, k)(j − 1)
∑

k′

Π(k′|j, l)qk′ − 1

ql − 1
xk′

2.7 Proofs of theorems in Chapter 2 91

For more readable notations, we also define the vector outputfunctionG(x) by:

G(x) = {g(k, c(k), Π,x)}k

which means that thepth component ofG(x) is Gp(x) = g(p, c(p), Π,x). Let us denote
the convolution by⊗. Thenx⊗n corresponds to the convolution of vectorx by itself n
times. With these notations, we can write, for alln > 0:

Da(R
(k)
t+n) ≤ g(k, c(k), Π,G⊗(n−1)({Da(R

(k′)
t)}k′)) + O(Da(Rt)

2)

Let P
(k)t

e = Pe(R
(k)
t) be the error probability when deciding the value of a symbol in

G(qk) at iterationt. The global error probability of decision isP t
e =

∑

k Π(k)P
(k)t

e . Let
us recall lemma (34) in [48]:

1

q2
k

Da(X
(k))2 ≤ Pe(X

(k)) ≤ (qk − 1)Da(X
(k)) (2.40)

Let us consider a givenk. If there exists a vectorx such thatlim
n→∞

g(k, c(k), Π,G⊗(n−1)(x)) =

0, then there existα andn > 0 such that if∀k, Da(R
(k)
t0) < α, then

Da(R
(k)
t0+n) < Kk′Da(R

(k′)
t0), ∀k′ (2.41)

where, for allk′, Kk′ is a positive constant smaller than1. If we considerP t0
e < ξ such

that∀k, P
(k)t0

e < (qkα)2, then equation (2.40) ensures that∀k, Da(R
(k)
t0) ≤

√
P

(k)t
e

qk
< α.

As previously explained, in this case, there exitsn > 0 such that inequation (2.41) is
fulfilled. By induction, for allt > t0, there existsn > 0 such that

Da(R
(k)
t+n) < Kk′Da(R

(k′)
t), ∀k′

We have∀(k, t), Da(R
(k)
t) ≥ 0, therefore the sequence{Da(R

(k)
t)}∞t=t0

converges to zero

for all k. Finally, equation (2.40) ensures that, for allk, P
(k)t

e converges to zero ast tends
to infinity. Thus,P t

e , the global error probability, averaged on all symbol sizes, converges
to zero ast tends to infinity.
This proves the sufficiency of the stability condition.

2.7.5 Information content Through Linear Maps

Lemma 12 Let xin denote the mutual information of a LDR-messagev going out of a
G(q1) variable node, andxout the mutual information of a LDR-messagew going into
a G(q2) check node.xin and xout are the input and output of the extension. They are
connected through the following expression, which is independent of the linear extension:

(1 − xin) log2(q1) = (1 − xout) log2(q2) (2.42)

92 Chapitre 2 : Hybrid LDPC Codes

Proof: By hypothesisw = v×A. We define the matricesαA andβA of size(q2 − 1)×
(q1 − 1) and(q2 − 1) × 1, respectively. These matrices are such thatw = αAv + βA.
There are defined by

∀j = 1 . . . q1 − 1, ∀i = 1 . . . q2 − 1, αA(i, j) = 1 if i=Aj

= 0 otherwise

∀i = 1 . . . q2 − 1, βA(i) = 0 if i ∈ Im(A)

= C otherwise

whereC is a strictly positive very big constant, representing infinity. The Jacobi matrix
at pointu of the linear map applied to LDR-vectors is henceJA(u) = αA. We then have

(1 − xout) log2(q2) = EW

(

log2

(

1 +

q2−1
∑

i=1

e−wi

))

=

∫

. . .

∫

log2

(

1 +

q2−1
∑

i=1

e−wi

)

P (W = w)dw1 . . . dwq2−1

But we know that

∀j = 1 . . . q2 − 1, Wj = Vi if ∃i : j = Ai

= 0 if j /∈ Im(A) (2.43)

Hence

(1 − xout) log2(q2)

=

∫

. . .

∫

log2

(

1 +

q1−1
∑

i=1

e−wi

)

P (WA1 = w1, . . . , WA(q1−1) = wq1−1)dw1 . . . dwq1−1

=

∫

. . .

∫

log2

(

1 +

q1−1
∑

i=1

e−vi

)

P (V1 = v1, . . . , Vq1−1 = vq1−1)dv1 . . . dvq1−1

= (1 − xin) log2(q1)

�

2.7.6 Mutual information of a probability vector and its Fourier Trans-
form

Let p be a probability vector of sizeq, associated to a symbol inGF (q), andf its Discrete
Fourier Transform of sizeq too. pj andfi are thek-th and thei-th components ofp and
f , respectively.f is defined by:

fi =

q−1
∑

k=0

pk(−1)i·k, ∀i ∈ GF (q)

2.7 Proofs of theorems in Chapter 2 93

i · k is the scalar product between the binary representations ofboth elementsi andk.
The mutual informationI of a symmetric probability vectorp, under the all-zero code-
word assumption, is defined by

xp = 1 − Ep

(

logq(1 +

q−1
∑

i=1

fi

f0
)

)

As in the binary case, we want to prove that

xp = 1 − xf

wherexf is defined by[xf = 1 − Ep

(

logq(1 +
∑q−1

i=1
fi

f0
)
)

Proof:
We want to prove that

xp = 1 − xf

that says

Ef

(

logq(1 +

q−1
∑

i=1

fi

f0
)

)

= 1 − Ep

(

logq(1 +

q−1
∑

i=1

pi

p0
)

)

Ef

(

logq(1 +

q−1
∑

i=1

fi

f0
)

)

= Ep

(

1 − logq(
1

p0
)

)

Ef

(

logq(1 +

q−1
∑

i=1

fi

f0
)

)

= Ep

(

logq(qp0)
)

f0 = 1 implies

Ef

(

logq(

q−1
∑

i=0

fi)

)

= Ep

(

logq(qp0)
)

(2.44)

Since
q−1
∑

i=0

fi =
q−1
∑

i=0

q−1
∑

k=0

pj(−1)i·k, it finally remains to prove that

q−1
∑

i=0

q−1
∑

k=1

pj(−1)i·k = 0

q−1
∑

k=1

pj

q−1
∑

i=0

(−1)i·k = 0 (2.45)

which is ensured by

q−1
∑

i=0

(−1)i·k = 0, ∀k = {1 . . . q − 1}

We are going to demonstrate this last expression.

Let say thatk hasm bits equal to1 in its binary representation.

94 Chapitre 2 : Hybrid LDPC Codes

• m is even: i · k is

even q
2m

m/2
∑

l=0

(

m
2l

)

times (2.46)

odd q
2m

m/2−1
∑

l=0

(

m
2l+1

)

times (2.47)

• m is odd: i · k is

even q
2m

m−1
2
∑

l=0

(

m
2l

)

times (2.48)

odd q
2m

m−1
2
∑

l=0

(

m
2l+1

)

times (2.49)

We complete the proof by showing that equations (2.46) and (2.47) are equal, so are (2.48)
and (2.49):

(1 − 1)m =

m
∑

k=0

(

m

k

)

=

⌊m/2⌋
∑

l=0

(

m

2l

)

−
⌊m/2−1⌋
∑

l=0

(

m

2l + 1

)

= 0

Hence
⌊m/2⌋
∑

l=0

(

m

2l

)

=

⌊m/2−1⌋
∑

l=0

(

m

2l + 1

)

�

Chapter 3

Machine Learning Methods for Code
and Decoder Design

The initial subject of the thesis was to investigate how machine learning methods might
be used for optimizing finite-length codes, i.e., for lowering the sub-optimality of BP
decoding by breaking cycles. The starting idea was to build the Tanner graph of a code,
by means of a supervised learning process applied to the graph of a mother code, in order
to decide which edges should be pruned away.

The first section presents works from the literature, focusing on the relations between
machine learning and coding.

The second section details our studies done around this idea, among which the mod-
eling of the BP decoding process by a neural network, and why such an approach has
not been successful. The final goal was to consider hybrid LDPC codes as a tool to build
codes with good finite-length properties. This was planned to be achieved by learning
how to assemble hybrid nodes in order to lower the sub-optimality of the BP decoder on
finite-length codes. We explain why we could not succeed in defining a valid framework
for this purpose.

The third section investigates how to modify the BP decoder in order to lower its
sensibility to graph cycles, by adapting it to the graph of a given code. For this purpose,
the BP decoder has been considered as a classifier with room for improvement.

All the codes considered in this chapter are binary LDPC codes.

3.1 Previous works

3.1.1 Information-theoretic models of artificial neural networks

Early after Claude Shannon wrote the foundations of information theory, a paper by At-
tneave [69] introduced the idea that information theory mayoffer an explanation for per-
ceptual processing. In Simon Haykin book [70], a thorough description of information-
theoretic models that lead to self-organization is detailed. We can cite this book (chapter
10, page 506):“A model that deserves special mention is the maximum mutualinforma-
tion principle due to Linsker [71]. This principle states that the synaptic connections of

95

96 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

a multilayer neural network develop in such a way as to maximize the amount of infor-
mation that is preserved when signals are transformed at each processing stage of the
network, subject to certain constraints.”
Based on this analysis, we are going to describe the decodingof LDPC codes as a process
that can be code adaptive, and see where the mutual information should be maximized on
the artificial neural network to model the decoding process.

3.1.2 Learning methods and error-correcting codes

Some articles have presented the link between neural network methods and error-correcting
code approaches. In 1989, Bruck et al. [72] presented one of the most significant works in
this field: "Neural Networks, Error-Correcting Codes, and Polynomials over the Binaryn-
Cube". The authors state that the Maximum-Likelihood (ML) decoding of a linear block
error-correcting code, is equivalent to finding the min-cutof a specific graph. Hence,
based on their work on the relation between the maximizationof n-cubic polynomials
and error-correcting codes, the author proposed to use decoding techniques to find the
maximum of these polynomials.

In 1992, Tseng et al. [73] focused on decoding Hamming codes of type (2n − 1, 2n −
1 − n) and extended Hamming codes of type(2n, 2n − 1 − n) with a single-layer or a
double-layer perceptron, of low complexity, whose discriminating functions were poly-
nomials of high degrees.

3.2 Machine Learning Methods for Code Design

3.2.1 Problem

The aim is to modify the Tanner graph structure of a mother code in order to build a new
code with a good minimum distance. What we consider as “good”will be detailed in the
following. We have decided to remove some edges from the graph of the mother code
to obtain the new code. However, we generally cannot increase the minimum distance of
codes by lowering the density. Indeed, it has been shown in [17] that all the sequences of
LDPC codes reaching the capacity of the erasure channel havea large fraction of degree
two variable nodes which gives rise to low-weight codewords. Such codewords corre-
spond to cycles, in the subgraph of the Tanner graph, which contain only degree two
variable nodes. Thus, the problem we chose to address is: howto prune away edges in
the Tanner graph of a mother code in order to obtain a less dense code, with a minimum
distance higher than a code of same density, known for holding a good minimum distance.

For this purpose, we consider the impulse method presented in [66] to compute the
minimum distance of LDPC codes. The basic principle of this method is to feed the BP
decoder with impulses (an impulse being an all-zero vector except for one or very few
components set to one), then the smallest weight codeword isdecided by a list decoder.

3.2 Machine Learning Methods for Code Design 97

In order to decide which edges of the mother code should be pruned away to lower the
least the minimum distance, the idea is to formalize a certain analogy that may be found
between the graph of a code and an artificial neural network (ANN). The ANN definition
is presented further. In that case, the addressed problem ofpruning edges appears to be
not a common artificial learning problem. Indeed, applying alearning process to an ANN
basically means that the structure, i.e., the connections between neurons, are already de-
termined, and what is learnt is the weight of each connection. When the learning process
is said "supervised", the desired output of each neuron, on the output layer, is known for
each input prototype from a training set.

Our problem is rather different since it consists in finding the structure of the network:
what should be the connections between neurons. However, the structure of the network
is usually decided in anad hocway or with simple heuristic rules [74]. Indeed, except
an exhaustive search, none method is known to determine the optimal architecture for a
given problem. A suboptimal solution consists in using constructive algorithms starting
from a minimal architecture then adding neurons and connections progressively during
the learning process [74]. Another solution considers an inverse technique: starting from
a fully interconnected structure, they remove neurons or connexions which seem non-
essential. We are going to focus on the latter methods.

3.2.2 Neural networks and codes Tanner graphs

Definition

Definition 10 A formal neuron is basically a processor which applies a simple operation
to its inputs, and which can be connected to other identical processors in order to form a
network.

Such a neuron is depicted on figure 3.1, and defined in [75].

h f g

A = f(h({xi}i=1...4, {wi}i=1...4))

x3

w1

x1

x2 w2

w3

w4

x4

y

xi: neuron inputs

A: neuron activation

y: neuron output

wi: synaptic weights

h: input function

f : activation (or transfert) function

g: output function

y = g(A) (= A most often)

Figure 3.1 : General definition of a formal neuron

98 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

The(h, f, g) combination defines the type of the neuron.

Summator Neuron The most common definition of a formal neuron corresponds to
the particular case where the input functionh is a dot product between the input and the
weights.

g

w1

w3

w4

x1

x2

x3

x4

y

y = f(
∑4

i=1 wixi)

w2

h: dot product

f : any kind of non-linear function

(echelon, sigmoid, Gaussian, ...)

defining the type of neuron

g: identity function

h f

Figure 3.2 : An artificial neuron which computes the weightedsum of the inputs, and the
apply the activation functionf .

Polynomial Neuron Such a kind of neuron [75] is depicted on figure 3.3.

g

w1

w3

w4

x1

x2

x3

x4

y

w2

h: polynomial

f : any kind of non-linear function

(echelon, sigmoid, Gaussian, ...)

g: identity function

E.g., for an order-2 neuron:y = f(
∑

i,k wiwkxixk)

h f

Figure 3.3 : A polynomial neuron.

Modelization of the decoder

Since the goal is to build a Tanner graph on which the BP decoder is as less suboptimal
as possible, we translate the decoding on the Tanner graph ofthe code as the process of
an Artificial Neural Network (ANN). Let a message from variable nodev to check nodec
at iterationt be described by a2-dimensional probability vectorx(t)

vc = (x
(t)
vc (0), x

(t)
vc (1))T ,

wherex
(t)
vc (0) andx

(t)
vc (1) correspond to the conditional probabilities for the variable node

v to be equal to 0 or 1, respectively. The Logarithmic Density Ratio (LDR) m
(t)
vc , associ-

ated withx(t)
vc , is defined asm(t)

vc = log
(

x
(t)
vc (0)

x
(t)
vc (1)

)

. The same holds for a messagep
(t)
cv from

3.2 Machine Learning Methods for Code Design 99

check nodec to variable nodev. The Logarithmic Likelihood Ratio (LLR) correspond-
ing to the observation of thenth bit is denoted byLLR(n). V(v) denotes the first level
neighborhood of variable nodev, i.e., all the check nodes which are connected tov by a
single edge. The same holds forV(c) of check nodec. The BP equations corresponding
to update these messages can then be expressed by

m(t)
vc = LLR(v) +

∑

d∈V(v)\c

p
(t−1)
dv (3.1)

tanh(
p

(t)
cv

2
) =

∏

u∈V(c)\v

tanh(
m

(t)
uc

2
) (3.2)

As seen in the previous section, many inputs correspond to each neuron, but only one
output does. Hence, the ANN, modeling the BP decoding, is made of summator and
polynomial neurons and corresponds to unfold the decoding iterations. However, one
pattern of the network, corresponding to one iteration, is not a copy of the factor graph.
This is illustrated on figure 3.4.

Corresponding neural network

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

Factor−graph

���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Input layer Output layer

As many patterns as iterations

One pattern = One decoding iteration

w
(0)

w
(1)

w
(2Niter−1)

Figure 3.4 : A factor graph and its corresponding neural network. Each neuron corresponds
to an edge of the factor graph, hence there are2.Nedge.Niter neurons in the network.

In this network, the number of layers is double the number of decoding iterations,
and the number of nodes on each layer is equal to the number of edges in the Tanner

100 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

graph. Hence, removing an edge from the Tanner graph of the code will correspond to
removing the corresponding neuron in all the layers. Following the convention of figure
3.4, a neuron which processes a message going out of a variable node is called circle
neuron, while a neuron which processes a message going out ofa check node is called
square neuron. The message going out of a variablev towards a checkc is computed by
the corresponding circle summator neuron:

m(t)
vc = LLR(v) +

∑

d∈V(v)\c

w
(2t+1)
dv p

(t−1)
dv (3.3)

wherew
(2t+1)
dv is the weight of the messagep(t−1)

dv in the calculation ofm(t)
vc .

Analogously, the message going out of a checkc towards a variablev is computed by
the corresponding square polynomial neuron:

tanh

(

p
(t)
cv

2

)

=
∏

u∈V(c)\v

w(2t)
uc tanh

(

m
(t)
uc

2

)

(3.4)

wherew
(2t)
uc is the weight of the messagem(t)

uc in the calculation ofp(t)
cv .

In the particular case, where all the weights are equal to 1, the neural network is the
BP decoder. We see how weights could be used to modify the BP decoder by adding
degrees of freedom. This will be discussed in the section 3.3.

3.2.3 Cost function for pruning

In the following, we use identically the term cost function and the term error. If the
global cost function for pruning edges is the minimum distance of the code with Tanner
graph corresponding to the ANN, this criterion is a global criterion. However, we need to
differentiate the Tanner graph edges, between each other, in order to choose which ones
should be removed. Therefore, it is necessary to decide which are the desired outputs on
each output layer neuron. In our case, this means that we needto decide what should be
the value of each message going out of check nodes in the last iteration.

Making this choice has been the first critical issue for this approach. In a completely
heuristic way, we chose to penalize edges connected to variable nodes whose value, in
the smallest weight codewords, is zero. This means that at each input prototype, all the
weights of the ANN corresponding to the same edge of the Tanner graph are updated in
the same way: they are lowered when the variable value is zeroin the smallest weight
codewords, increased otherwise.

3.2.4 Pruning methods

In the aforementioned heuristic framework for pruning, twogeneral pruning methods
arise.

The first approach is to consider the sum of the weights of connections to each neu-
ron, then prune away the neuron with the smallest sum. The methods based on such an

3.2 Machine Learning Methods for Code Design 101

approach are known asmagnitude based methods[76], because they eliminate weights
that have the smallest magnitude. However, as mentioned in [77], this simple plausible
idea unfortunately often leads to the elimination of wrong weights, as small weights may
be necessary for low error. The second solution is to apply the Optimal Brain Surgeon
(OBS) [77], which is far better than the magnitude based methods. OBS is based on the
functional Taylor series of the network errorE with respect to weights [77]:

δE =
∂E

∂w

T

· δw +
1

2
δwT · H · δw + O(||δw||3) (3.5)

Here is the OBS procedure:

1) Train a “reasonably large” network (i.e., adapt its weightsstored in the vectorw)
towards a minimal errorE of the network.

2) Compute (iteratively) the inverse of the Hessian matrixH−1. H actually corre-
sponds to the second order derivative of the network error related to the weights.

3) Find the indexq of the weightwq giving the smallest “saliency”Lq. The saliency
is the increase of the network error from removing the corresponding edge. We get
the following expression forLq:

Lq =
1

2

w2
q

[H−1]qq

If this candidate error increase is much smaller thanE, thenqth weight should be
deleted, and we proceed to step4. Otherwise go to step5.

4) Use theq of step3 in order to update all the weights with the following formula:

δw = − wq

[H−1]qq

cq

with cq theqth column ofH−1. Go back to step2.

5) No more edge can be pruned without large increase inE. It may be necessary to
retrain the network.

This algorithm is valid only when the first (linear) term of equation 3.5 vanishes, as well
as the third and all higher order terms. OBS assumes that the third and all higher order
terms can be neglected [77]. No more explanation of this assumption is given in [77]. For
the first term to vanish, the network must have been trained toa local minimum in error.

In order to apply this algorithm, it is necessary to define theerror of the network,
thus, to determine the desired outputs of this network. We recall that an output neuron
of the network corresponds to an edge of the Tanner graph. Theimpulse method allows
to find low-weight codewords. Defining the desired outputs ofthe network is therefore
equivalent to define the quality of an edge of the Tanner graphin terms of the output of

102 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

the impulse method. This means that we must decide what should be the value of the
messages after a given number of iterations.

Our heuristic was to penalize edges connected to variable nodes whose value, in the
smallest weight codewords, is zero in order to optimize the minimum distance of the code.
However, this this tends to modify the Tanner graph and to turn it into a new code, whose
minimum distance may have no relation with the minimum distance we were trying to
optimize at first.

To see how finding a new Tanner graph by pruning a mother code isnot fitted to be
solved by pruning an artificial neural network, we can express in another way the above
problem of the choice of the cost function: Modeling the belief propagation decoder by
an artificial neural network, as done in figure 3.4, leads to consider the BP decoder as a
classifier which, to a given noisy observation of a codeword,associates the most likely
sent codeword. However, the above pruning approach aims at finding a Tanner graph.
This does not consist in finding a good classifier for a given problem, as neural networks
are meant to do, but in finding classes (the codewords) on which the classifier depends.
Thus, due to the difficulty (impossibility?) to find the relation between minimum distances
of the mother code and its pruned version, we could not find a relevant cost function in
such a framework. Instead, we decided to focus on a better posed problem and to propose
a relevant approach.

3.3 Machine Learning Methods for Decoder Design

In this section, we switch to another problem than code design. We consider a given code
which sets the classes, and we are going to look for the best classifier to classify inputs in
the right classes. The classifier is the decoder. The approach is detailed below.

3.3.1 Decoding is a classification problem

As aforementioned, the decoding problem can be seen as a classification problem, where,
for each noisy observation received from the channel, one wants to find the correspond-
ing sent codeword. If we assume a linear code of lengthN with K information bits and
M = N −K redundancy bits, decoding consists in finding to which classthe observation
belongs, among2K classes corresponding to all possible codewords, in the vector space
of dimensionK. Hence, a class corresponds to a codeword and is made of all the noisy
variants of this codeword such that, for alli ∈ 1, . . . , N , if the ith bit of the observation
is different from theith bit of the codeword, then the Hamming distance between the

codeword and the observation must be lower thandloc
min(i)

2
, with dloc

min(i) being the local
minimum distance of biti in the code, as defined in [38]. In other words, the class of a
given codewordc corresponds to the set of all points closer toc than to any other code-
word. A class is therefore the interior of a convex polytope (in some cases unbounded)
called the Dirichlet domain or Voronoi cell forc. The set of such polytopes tessellates
the whole space, and corresponds to the Voronoi tessellation of all codewords (i.e., to the

3.3 Machine Learning Methods for Decoder Design 103

Figure 3.5 : Voronoi diagram (or Dirichlet tessellation): the partitioning of a plane with n
points into convex polygons such that each polygon containsexactly one generating point
and every point in a given polygon is closer to its generatingpoint than to any other.

code). Hence, we know theoretically the optimal classifier,which corresponds to imple-
ment aK-dimensional Voronoi partition of the Euclidean spaceGF (2)N with codewords
as cell centroids, as sketched on figure 3.5. However, implementing this partitioning is
intractable in practice for long codes, and corresponds exactly to implement maximum-
likelihood (ML) decoding. That is why this classification problem is usually solved with
a BP decoder, which actually only implements an approximation of the Voronoi tessel-
lation frontiers, i.e., of ML decoding. Many previous works[19, 20] have characterized
the phenomenon which arises when BP decoder is used on loopy graphs, and which em-
phasizes the difference between ML decoding and BP decoding. ML decoding is always
able to find the codeword closest to the observation (even though it makes errors be-
cause this closest codeword is not the one which has been sent), whereas BP decoding
may converge to fixed points which are not codewords. These points are usually called
pseudo-codewords, and it has been shown [19] that they are offirst importance in the loss
of performance of BP decoding compared to maximum-likelihood decoding.

To try to improve the BP decoding, we focus on pseudo-codewords, but indirectly. In-
deed, we make the assumption that pseudo-codewords are the indicators that the frontiers
of the classifier implemented by the BP decoder are not the frontiers of ML decoding.
Hence, we are going to try to find a correction to BP decoding byconsidering it as a
classifier.

104 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

3.3.2 Modelization of BP decoding

The classifier we decide to consider corresponds to a specificcase of networks made of
neurons defined in definition 10. BP decoding is modeled by an ANN in the same way as
in section 3.2.2 (see figure 3.4). The operations processed by circle neurons and squared
neurons are respectively:

m(t)
vc = LLR(v) +

∑

d∈V(v)\c

w
(2t+1)
dv p

(t−1)
dv (3.6)

tanh

(

p
(t)
cv

2

)

=





∏

u∈V(c)\v

sign(m(t)
uc)



 ·
∏

u∈V(c)\v

(

tanh

(

|m(t)
uc |
2

))w
(2t)
uc

(3.7)

In the particular case where all the weights are equal to 1, such a neural network is exactly
the BP decoder. The weights are additional degrees of freedom that we intend to set in
order to adapt the BP decoding rules to a given Tanner graph and thus lower its sub-
optimality. We propose a modification of the BP decoder basedon these weights. From
now on, we call this BP decoder with added-weights:weighted-BP.

We have hence defined how the correction weights are going to modify the BP de-
coder: they are coefficients for the variable node update andexponent to the absolute
value of the hyperbolic tangent for check node update. Theseweights are meant to turn
the BP classifier into a classifier which matches the topologies of the graph of a given
code, in order to better approach ML classifier. The problem now is to choose those cor-
rection weights. First of all, since our goal is to make decoding a success, we must define
a cost function to measure the quality of the decoding. Determining those weights, which
corresponds to solve a learning problem, will hence be addressed thanks to supervised
learning.

3.3.3 Cost function

We now present the problem of the choice of the cost function that we have to minimize.
Our problem is to make the weighted-BP decoder less sensitive to correlation of the mes-
sages on the factor graph of the code. We want thus to find the optimal weights for a
given LDPC codeC, i.e. for a given parity-check matrixH, which provide a weighted-BP
decoder as close as possible to ML decoding. We hence have to look for a cost function
that codes the loss of performance of the weighted-BP decoder applied to the given LDPC
codeC, compared to the ML decoder. This means that we want to measure the loss of
performance of weighted-BP applied toC compared to classical BP decoding applied on
a cycle-free LDPC code with irregularity profile identical toC. The key idea is to measure
the mutual information between the input of the channel and messages of weighted-BP
decoding ofC at each iteration, and to compare it to the mutual information we would
have if the graph was cycle-free.

In the sequel, we shorten the expression "mutual information between the input of the
channel and messages" by "mutual information of messages".

3.3 Machine Learning Methods for Decoder Design 105

The evolution of mutual information of BP decoder applied ona cycle-free graph has
been extensively studied by TenBrink in [14], who calls thisevolution EXtrinsic Informa-
tion Transfer (EXIT) charts. Figure 3.6 depicts how the evolution of mutual information
of messages, along the decoding iterations, can be seen as coding for the loss of optimality
of BP decoder in the non free-cycle case. Indeed, we observe that the mutual information
of messages is able to reach a higher value, when decoding the(3,6) MacKay LDPC code
of lengthN = 504, than for lengthN = 96. For the latter, BP decoding gets stuck earlier.
This is explained by the specific topologies of the factor graphs of the two codes: the
length 504 code has girth 8 whereas the length 96 code has girth 6 (the girth is the size of
the smallest cycle in the graph). The shortest graph is, hence, worst conditioned to run BP
decoding than the longest one, since the messages will be more dependent and since bad
topologies (like shorter stopping or trapping sets [35]) will be more likely to appear. Thus,

0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

x
vc

(t)

x vc
(t

+
1)

Mutual information of variable to check messages
 of several (3,6) LDPC codes for E

b
/N

0
=2dB

x
vc

(t+1)=x
vc

(t)

(3,6) LDPC N=∞

(3,6) MacKay code N=96

(3,6) MacKay code N=504

Figure 3.6 : Evolution of the mutual information of variableto check messages along iter-

ation of BP decoding of various codes. Transmission on AWGN channel withEb

No
= 2dB.

The upper hashed dotted curve corresponds to the EXIT function of a cycle-free (3,6) LDPC
code. The steps correspond to BP decoding of various finite-length (3,6) LDPC codes.

when optimizing the weights of the weighted-BP decoder for agiven codeC, the aim will
be to minimize the difference between the EXIT function of the cycle-free case and the
actual mutual information of the messages, when decoding a given finite-length codeC.
We assume transmission on additive white Gaussian noise (AWGN) channel. At a given

106 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

iterationt, we denote byx(F)
vc (t) the mutual information of messages going out of vari-

able nodes when decoding a code of the ensembleF , made of all the possible cycle-free
(infinitely long) codes, with same irregularity parametersasC. The mutual information
of messages going out of variable nodes, averaged over all the edges of the codeC with
parity-check matrixH at iterationt, is denoted byy(C)

vc (t). Hence,y(C)
vc (t) depends onC

and on the weights of the weighted-BP decoder. The cost function at iterationt is:

f
(C,t)
cost = x(F)

vc (t) − y(C)
vc (t) (3.8)

Thus, the optimization problem results in looking for the weights, stored inw(C)
opt, that

minimize the cost function, for each iterationt:

w
(C,t)
opt = arg min

w

(

x(F)
vc (t) − y(C)

vc (t)
)

(3.9)

Indeed, we will solve the optimization problem for each iteration, by assuming that the
correction of staget will depend only on previous iterations.

Let us point out is that the mutual information of a message, on a given edge, at a
given iteration, quantifies the “quality” of this edge, i.e., how much this edge is involved
in bad topologies (as cycles or combination of cycles). Experiments showed the difference
between mutual information of messages on edges involved invery short cycles, and the
mutual information of messages on other edges. This is consistent with the fact that errors
are more likely to happen on variable nodes involved in such topologies.

The next section deals with the way to handle this optimization problem.

3.3.4 Solving the minimization problem

Backpropagation of the error gradient

To solve the minimization problem, one may think to considerthe neural network which
would process the mutual information. Indeed, we have seen in the section 1 of this
chapter that, with binary LDPC codes, at both check or variable node sides, the mutual
information of outgoing messages can be expressed as a sum offunctions of the mutual
information of incoming messages, using theJ(.) function, provided that the message
independence assumption is fulfilled (see equation 1.20). This expression of mutual in-
formation, with sums, allows to consider the ANN of the type of figure 3.4, made of
only summator neurons. This ANN would compute the mutual information of messages
in the cycle-free case. Then, this ANN would be a multi-layerperceptron [70], and it
would be possible to apply the well-known backpropagation of the error gradient algo-
rithm [78] in order to find the weights leading to the minimization of the cost function.
For this supervised learning method, the cost function would be the one of equation 3.8,
and the expected value for each output neuron would be the mutual information given
by the EXIT curve of the cycle-free code ensemble. Since eachneuron corresponds to
an edge of the Tanner graph, the output, compared to the expected value, would be the
mutual information measured on this edge by empirical mean,when decoding the codeC.

3.3 Machine Learning Methods for Decoder Design 107

The neural network equations would then be used to adapt the weights, thereby consid-
ering that the mutual information has been obtained by the sum equations with theJ(.)
function.

We can see the paradox of this method: The error minimizationby back propagating
the error gradient is performed based on the neural network equations which assume the
absence of cycle whereas the actual output is the mutual information of messages on the
cycle graph ofC, and thus cannot respect the hypothesis. This is problematic since we
want the weights to balance the message dependencies. This is the reason why we cannot
use such a supervised learning approach for error minimization.

Genetic Algorithm to solve the optimization problem

The cost function defined in equation 3.8, we choose to minimize, has no analytical ex-
pression. Therefore, we are going to choose an optimizationalgorithm which does not
require analytical expression of the cost function. We havedecided to use a genetic algo-
rithm [74]. The flow of the optimization procedure is depicted on figure 3.7. An allele of
the population vectors is made of weights for thetth iteration: weightsw(2t) to balance
messages going out of variable nodes and weightsw(2t+1) to balance messages going out
of check nodes. The size of the vectors handled by the geneticalgorithm is

D =
∑

i

(dv(i) − 1) ∗ dv(i) +
∑

j

(dc(j) − 1) ∗ dc(j)

wheredv(i) anddc(j) are the connection degrees of theith variable node andjth check
node, respectively.

In practice, we have implemented the genetic algorithm, thanks to the C library PGA-
pack Parallel Genetic Algorithm Library provided at [79]. We have tried to find weights
for the MacKay (3,6) code with code lengthN = 96 at various SNRs. For a population
size of200 vectors,Nc = 10000 andNiter = 10, the algorithm takes about a week on a
last generation CPU.

3.3.5 Estimating the mutual information

To implement the above approach, we have to evaluate the mutual information averaged
over all the edges of the graph, at a given iteration. To do so,we use a mean estimator for
the expectation of definition 5. We set the SNR, and then send agiven number, sayNc, of
noisy codewords. Then we evaluate the mutual information as:

1 − 1

Nc

Nc
∑

n=1

log2

(

1 + e−w(t,n)
)

(3.10)

wherew(t,n) is any message of the chosen kind (from check-to-variable orvariable-to-
check) of the graph at thetth iteration when thenth observation is received. This has to
be done to evaluate the cost function for each population vector. For good convergence

108 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

no

yes

initialization of alleles of the genetic algorithm

bestw(2t) andw(2t+1) found

f
(C,t)
cost = x

(F)
vc (t) − y

(C)
vc (t)

run genetic algorithm with cost function

t = t + 1

t < Niter

weights initialiazed to 1

iterationt = 0

Figure 3.7 : Flow chart of the optimization procedure using agenetic algorithm to find
the best weights minimizing the cost function, for each iteration. Niter is the number of
decoding iterations for which we look for the correcting weights.

3.3 Machine Learning Methods for Decoder Design 109

of the genetic algorithm to the global minimum of the cost function, the size of the popu-
lation must be as high as possible. In practice, to limit the computation time, it is widely
accepted that the population size must be at least many hundreds [74]. When the mutual
information is close to 1, it turns to be very difficult to get an accurate estimation of the
actual mutual information of the messages of the codeC, thanks to equation 3.10. Indeed,
the closer to 1 is the mutual information, the rarer are the observations which give rise
to decoding errors. Since the numberNc of decodings, for one set of weights, has to be
limited for computational time reasons, an accurate estimation of the mutual information
becomes almost impossible. This problem is related to the error-floor estimation, about
which works exist [35]. However, in our case, the method would require an error-floor
estimation for each decoder, corresponding to each population vector. This is the pro-
hibitive drawback of the method that made all our tries unsuccessful.Moreover, such a
correction of the BP algorithm would be very interesting in the error-floor region, but the
above mentioned prohibitive drawback is, more than ever, present in this region.

Finally, it is interesting to note that all these decoders inspired from neural network
models do not preserve the symmetry of messages. Indeed, it is easy to check that if a
random variableX (standing for a LDR message) is symmetric in the sense of definition 1
in [10] (which is just the binary instance of definition 1.13), then the the random variable
Y = αX, for anyα in R, is not symmetric anymore.

3.3.6 Some other methods

With the goal of investigating how artificial learning methods could contribute to the
design of efficient coding systems, we have tried to see how other kinds of learning ap-
proaches could be applied to channel coding.

Min-cut max-flow analysis

Our purpose is to detect bad topologies in the Tanner graph ofa code, bad topologies being
sets of edges which make the decoding to get stuck. Still using the mutual information of
messages on a given edge as a quality descriptor of this edge,one may think to consider
the iteration when the mutual information on each edge remains stable or periodic but
does not converge anymore to 1.

At this point, the idea would be to consider the mutual information as a quantity of
liquid which has to increase until being maximum in a water pipe network. Let us consider
a water pipe network. For each pipe, the theoretical maximumthroughput of liquid inside
is called the capacity. The current throughput is called theflow. If the capacity of each
pipe is known, then the Ford-Fulkerson algorithm [80] allows to find the maximal flow,
shorten as max-flow, between a source at the beginning of the network and a sink at the
end. It also allows to detect the minimum cut, that says the set of pipes which limit the
flow. The minimum cut is shorten as min-cut. For the pipes defining the min-cut, the flow
in each pipe is equal its capacity.

Then the idea was to consider the mutual information of messages on each edge, when

110 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

the decoding stops converging, as the capacity of a corresponding pipe in a pipe network
to be determined. By running the Ford-Fulkerson algorithm on this network, the goal was
to associate the pipes of the min-cut to edges of the Tanner graph involved in limiting
topologies (cycles or combination of cycles) for the decoding. We could not complete
this investigation because we did not succeed in finding a relevant modeling of the pipe
network matching the Tanner graph.

ICA

In this part, we try to see whether sub-optimality of BP decoding could be lowered by
applying an independent component analysis to the graph messages.

The primary objective for a neural system with multiple inputs and outputs is to be
self-organizing, designed for a specific task (e.g. modeling, extraction of statistically
salient features, or signal separation). Haykin ([70], page 520) showed that these require-
ments can be satisfied by choosing the mutual information between certain variables of
the system as the objective function to be optimized. This optimization is equivalent to
adjust the free parameters (i.e., synaptic weights) of the system so as to optimize the mu-
tual information. Depending on the application of interest, different scenarios can arise
in practice. One of them consists in minimizing the statistical dependence between the
components of the output vectorY. This problem corresponds to theblind source sep-
aration problemand can be solved applying a learning algorithm for Independent Com-
ponent Analysis (ICA) [81]. The objective of this learning algorithm is to minimize the
Kullback-Leibler divergence between the probability density function ofY and the facto-
rial distribution ofYi, for i = 1..m, if m is the size of the output vectorY. The goal of the
algorithm is to find the weight matrixW which must be as close as possible to the inverse
mixing matrixA with which the signals to be recovered are supposed to be mixed. Such
a minimization may be implemented using the method of gradient descent.

We have tried to see whether sub-optimality of BP decoding could be lowered by
applying this learning algorithm for ICA of the graph messages at each iteration. We did
not succeed in decoding any noisy codeword with ICA output messages.

This way might be an interesting way to follow, but we would emit some reserve for
this method: the graph messages are necessarily dependent because of the underlying
structure of the finite-length code. Hence, trying to force the messages to be independent,
instead of taking into account their statistical dependence, might bias the decoding.

Still with finding a better classifier than the BP algorithm asthe objective, we present
the two last methods we have investigated in the following section.

Classifiers from the learning literature for decoding LDPC codes ?

The last but one method we have focused on is the Support Vector Machine (SVM) [82].
SVM originally aims at separating two classes. SVM denotes the method which consists,
for a given set of examples belonging to both classes, in finding the frontier such that the
distance between the frontier and all learning vectors is maximized. Here is the reason
why we have considered to use a SVM to find the codeword, i.e. the class, associated to

3.3 Machine Learning Methods for Decoder Design 111

the input noisy observation of the codeword. Since SVM maximizes the distance between
the frontier and the elements of both classes, presented during the learning process, the
higher is the number of training patterns, the closer the frontier is to Voronoi, thereby get-
ting closer to ML decoding. However, the generalization to more than two classes does
not allow to handle the decoding of an LDPC code because of thecomplexity, as well as
the fact that it is impossible to learn all frontiers betweenany two codewords.

Finally, we looked at methods fork-nearest neighbors research, or approximatek-
nearest neighbors. These methods are spacial access methods, relying on a random par-
tition of space. Among them, we can mention the k-dimensional trees (kd-trees), R-trees
[83] or, a much more efficient and recent method, the local sensitive hashing (LSH) [84].
These method are very studied for the problem of multimedia classification, when a new
entry has to be associated with the nearest element of a givendatabase. This means that
each element of the database can be considered as a class. When a new element is pre-
sented, the research consists in finding its nearest neighbor in the database, i.e., the class
to which this new element belongs. Thus, we consider these methods as candidates to
substitute to the BP decoder seen as a classifier.

The first reason why these methods cannot be applied to LDPC decoding is that they
work well only when the distribution of the set of database points is far from uniform, i.e.,
when the set is “lumpy”. Indeed, since these methods rely on arandom partition of space,
we can intuitively understand that they will be efficient when some parts of the space are
almost empty, while other are almost full, thereby allowingfavoured search directions.

In particular, in [85] and [86], authors introduced the concept offractal dimensionof a
set of points to quantify the deviation from the uniformity distribution. Let theembedding
dimensionbe defined as [87]: a set has embedding dimensionn if n is the smallest integer
for which it can be embedded intoRn without intersecting itself. Thus, the embedding
dimension of a plane is2, the embedding dimension of a sphere is3.

Authors showed in [85, 86] that these spacial access methodsfor nearest neighbors
search are efficient only when the fractal dimension is much lower that the embedding
dimension. When both dimensions are equal, the methods do not work anymore as soon
as the dimension is higher than10 or 12. As previously said, by definition, the embedding
dimension of aD-dimensional vector space isD. In [Observation 1, [85]], it is shown
that euclidean volumesD-dimensional space have fractal dimension equal toD. The set
of codewords of any linear(K, N) code is a vector space of dimensionK. The fractal
dimension is hence equal to the embedding dimension, both equal toK. In other words,
the code space is dense, there is a codeword in each direction. Hence, these methods
cannot be applied to LDPC decoding.

Another reason why these methods cannot be used in our case isthat they face the
problem of dimensionality in the case of LDPC decoding. Thisproblem is also well-
known as the “curse of dimensionality” in large scale databases classification domain.
Indeed, these methods are non-parametric, which means thatthey do not take into account
the structure of the data, i.e., any underlying model. They only rely on the non-uniform

112 Chapitre 3 : Machine Learning Methods for Code and Decoder Design

distribution of the data in their space, as previously explained. Hence, the higher is the
number of classes, the harder is the classification. In practice, the best known methods
are able to handle databases with a number of classes less than 107, which has nothing to
see with the channel decoding problem where the number of classes, i.e. of codewords, is
at least2K with K > 100.

A channel code gives the model of the data, and decoding by BP on the Tanner graph
of the code corresponds to take into account the underlying model of the data, which are
hence completely structured. Thus, we were not able to see any contribution that these
methods might bring to enhance the decoding of LDPC codes.

On the other way around we can cite the work of Broder et al [88]who improved
the classification of webpages by modeling with a graph the underlying structure of these
webpages given by the hyperlinks between each other. Applying a belief propagation on
this graph improved the classification. Following these ideas, one could think to try to
exploit the underlying structure of any multimedia database, by e.g., modeling it through
a factor graph, and then use the BP algorithm for efficient classification. It is obvious that
the main problem in that case is to extract a model from a multimedia database, before
any try of using this model.

Other works which are representative of what can be done using factor graphs and
belief propagation are [89, 90]. In these works, a factor graph framework is used to
enforce somea priori spatio-temporal constraints for image or video classification. This
means that data are assumed to follow a model: e.g., the sky isalways in the top part of
the scene. This kind of relation is translated by the check nodes of the factor graph, then
belief propagation is used for the classification, the imageor video query corresponding
to the channel observation from a coding point of view.

Thus, at the end of this part of the thesis, it appeared that there may be much more
ways to use iterative coding and decoding expertise to improve solving some classification
problems currently solved by various machine learning algorithms, rather than paths on
the other direction. This kind of investigation may be very interesting, but it is out of the
scope of this thesis.

3.4 Conclusion

This work corresponds to the initial subject of the thesis. We have tried to determine
which kind of machine learning methods would be useful to design better LDPC codes
and decoders in the short code length case.

We have first investigated how to build the Tanner graph of a code by pruning away
edges from the Tanner graph of a mother code, based on a machine learning algorithm.
We showed that no relevant cost function can be found to be minimized by any learning
algorithm. Hence, no pruning method could be applied. We have pointed out that this
pruning problem was not a classification problem, and that iswhy this approach failed.

In the second part, we have investigated decoder design by machine learning methods
in order to perform better than BP which is suboptimal as soonas there are cycles in

3.4 Conclusion 113

the graph. We have considered the decoding of a given code as aclassification problem
to which a better decoder than BP may be found, in order to handle message statistical
dependencies. The chosen cost function based on the difference between an estimated
mutual information and the EXIT chart appeared to be impossible to evaluate for value of
mutual information close to one.

Finally, we have investigated several classification methods to see whether they might
substitute the BP decoder. We gave the fundamental reason why this is not possible:
those methods are non-parametric machine learning algorithms for databases where the
elements must be highly non-uniformly distributed.

Hence, we were not able identify any contribution that machine learning methods
might bring to LDPC code or decoder design.

However, this work gave some insights on how channel coding methods can help
classification in high-dimensional massive databases, as soon as some structure or model
can be assumed for the database.

Chapter 4

Two-Bit Message Passing Decoders for
LDPC Codes Over the Binary
Symmetric Channel

A class of two-bit message passing decoders for decoding column-weight-four LDPC
codes over the binary symmetric channel is proposed. The thresholds for various de-
coders in this class are derived using density evolution. For guaranteed error correction
capability, a decoder with provably relaxed requirements compared to Gallager type al-
gorithms is found.

4.1 Introduction

The performance of various hard decision algorithms for decoding low-density parity-
check (LDPC) codes on the binary symmetric channel (BSC), has been studied in great
detail. The BSC is a simple yet useful channel model used extensively in areas where
decoding speed is a major factor. For this channel model, Gallager [6] proposed two
binary message passing algorithms, namely Gallager A and Gallager B algorithms. A
code of lengthn is said to be(n, γ, ρ) regular if all the columns and all the rows of the
parity-check matrix of the code have exactlyγ andρ non-zero values, respectively.

Gallager showed [6] that there exist(n, γ, ρ), ρ > γ ≥ 3 regular LDPC codes, with
column weightγ and row weightρ, for which the bit error probability approaches zero
when we operate below the threshold (precise definition willbe given in Section 4.4).
Richardson and Urbanke [11] analyzed ensembles of codes under various message pass-
ing algorithms. They also describeddensity evolution, a deterministic algorithm to com-
pute thresholds. Bazzi et al. [91] determined exact thresholds for the Gallager A algorithm
and outlined methods to analytically determine thresholdsof more complex decoders.
Zyablov and Pinsker [92] were the first to analyze LDPC codes under parallel bit flip-
ping algorithm, and showed that almost all codes in the regular ensemble withγ ≥ 5 can
correct a linear fraction of errors. Sipser and Spielman [93] established similar results
using expander graph based arguments. Burshtein and Miller[94] considered expansion

115

116Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

arguments to show that message passing algorithms are also capable of correcting a linear
fraction of errors.

We also consider hard decision decoding of a fixed LDPC code onthe BSC. When
the LDPC code is decoded by message passing algorithms, the frame error rate (FER)
curve of has two regions: as the crossover probabilityα decreases, the slope of the FER
curve first increases, and then sharply decreases. This region of low slope for smallα is
called the error floor region. The problem of correcting a fixed number of errors assumes
significance in the error floor region, where the slope of the frame error rate (FER) curve
is determined by the weight of the smallest error pattern uncorrectable by the decoder
[95].

For iterative decoding over the binary erasure channel (BEC), it is known that avoiding
stopping sets [96] up to sizet in the Tanner graph [43] of the code guarantees recovery
from t or less erasures. A similar result for decoding over the BSC is still unknown. The
problem of guaranteed error correction capability is knownto be difficult and in this work,
we present a first step toward such result by finding three-error correction capability of
column-weight-four codes.

Column-weight-four codes are of special importance because under a fixed rate con-
straint (which implies some fixed ratio of the left and right degrees), the performance of
regular LDPC codes under iterative decoding typically improves when he right and left
degrees decrease. Burshtein [97] showed that regular codeswith γ = 4, like codes with
γ ≥ 5, are capable of correcting a fraction of errors under bit flipping algorithm. These
results are perhaps the best (up to a constant factor) one canhope for in the asymptotic
sense. The proofs are, however, not constructive and the arguments cannot be applied
for codes of practical length. Chilappagari et al. [98] has shown that for a given column
weight, the number of variable nodes having expansion required by the bit flipping algo-
rithm grows exponentially with the girth of the Tanner graphof the code. However, since
girth grows only logarithmically with the code length, construction of high rate codes,
with lengths in the order of couple of thousands, even with girth eight is difficult.

Generally, increasing the number of correctable errors canbe achieved by two meth-
ods: (a) by increasing the strength and complexity of a decoding algorithm or/and (b)
by carefully designing the code, i.e., by avoiding certain harmful configurations in the
Tanner graph. Powerful decoding algorithms such as belief propagation, can correct error
patterns which are uncorrectable by simpler binary messagepassing algorithms like the
Gallager A/B algorithm. However, the analysis of such decoders is complicated due to
the statistical dependence of messages in finite graphs. It also depends on implementa-
tion issues such as the numerical precision of messages. ForGallager B decoder, avoiding
certain structures (known as trapping sets [35]) in the Tanner graph has shown to guaran-
tee the correction of three errors in column-weight-three codes [99], and this work is an
extension of this result.

In this chapter, we apply a combination of the above methods to column-weight-
four codes. Specifically we make the following contributions: (a) We propose a class
of message-passing decoders whose messages are represented by two bits. We refer to
these decoders as to two-bit decoders.(b) For a specific two-bit decoder, we derive suffi-
cient conditions for a code with Tanner graph of girth six to correct three errors.

4.2 The class of two-bit decoders 117

The idea of using message alphabets with more than two valuesfor the BSC was first
proposed by Richardson and Urbanke in [11]. They proposed a decoder with erasures
in the message alphabet. The messages in such a decoder have hence three possible
values. They showed that such decoders exhibit thresholds close to the belief propagation
algorithm. The class of two-bit decoders that we propose is ageneralization of their idea,
since we consider four possible values for the decoder messages.

Since the main focus of the chapter is to establish sufficientconditions for correction
of three errors, we do not optimize the decoders, but insteadchoose a specific decoder.
Also, for the sake of simplicity we only consider universal decoders, i.e., decoders which
do not depend on the channel parameterα.

The rest of the chapter is organized as follows. In Section II, we establish the notation
and define a general class of two-bit decoders. For a specific two-bit decoder, the sufficient
conditions for correction of three errors are derived in Section III. In Section IV, we derive
thresholds for various decoders. Simulation results in Section V illustrate that, on a given
code, lower frame error rates (FER) can be achieved by a two-bit decoder compared to
FER achieved by Gallager B algorithm.

4.2 The class of two-bit decoders

The Tanner graph of a code, whose parity-check matrixH has sizem × n, is a bipartite
graph with a set ofn variable nodes and a set ofm check nodes. Each variable node
corresponds to a column of the parity-check matrix, and eachcheck node corresponds to
a row. An edge connects a variable node to a check node if the corresponding element
in the parity-check matrix is non-zero. A Tanner graph is said to beγ-left regular if
all variable nodes have degreeγ, ρ-right regular if all check nodes have degreeρ, and
(n, γ, ρ) regular if there aren variable nodes, all variable nodes have degreeγ and all
check nodes have degreeρ.

Gallager type algorithms for decoding over the BSC run iteratively. Let r be a binary
n-tuple input to the decoder. In the first half of each iteration, each variable node sends a
message to its neighboring check nodes. The outgoing message along an edge depends on
all the incoming messages except the one coming on that edge and possibly the received
value. At the end of each iteration, a decision on the value ofeach bit is made in terms of
all the messages going into the corresponding variable node.

Let wj(v, c) be the message that a variable nodev sends to its neighboring check
nodec in the first half of thejth iteration. Analogously,wj(c, v) denotes the message
that a check nodec sends to its neighboring variable nodev in the second half of thejth

iteration. Additionally, we definewj(v, :) as the set of all messages from a variablev to
all its neighboring checks at the beginning of thejth iteration. We definewj(v, : \c) as
the set of all messages that a variable nodev sends at the beginning of thejth iteration to
all its neighboring checks exceptc. The setswj(c, :) andwj(c, : \v) are similarly defined.

Remark: In the case of general two-bit decoders, a number of rules arepossible for
update. However, we consider only rules which are symmetricBoolean functions that
have a simple algebraic expression. We consider symmetric Boolean functions whose

118Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

value depends only on the weight in the argument vector, not on positions of zeros and
ones. Symmetric Boolean functions are natural choice for regular codes. For irregular
codes, asymmetric Boolean functions may lead to improved decoders, but this problem is
out of the scope of this work.

These symmetric rules can be seen as follows. The messages are of two kinds: strong
and weak. One of the two bits of a message going into a variablenode corresponds to the
value of this variable node this message votes for, from a majority decoding point of view.
The other bit determines the kind of the message. A strong message has a higher number
of votes than a weak message. At the variable node, the votes of incoming messages,
except the one being computed, are summed up. The value of thevariable the outgoing
message will carry is determined by the value getting the highest number of votes, while
the strength of the outgoing message is determined by this number of votes.

In order to algebraically define the decoder, the message alphabet is denoted byM =
{−S,−W, W, S} with S > W , where the symbolsS andW correspond to “strong” and
“weak”, respectively. Although other equivalent descriptions of the two-bit decoders are
possible, we choose to describe them by introducing different quantization levels to the
messages. The decoder is then defined by the specific set of quantization levels.

The channel received value alphabet is denoted by{−C, C}. For any variable nodev,
Rv is defined asRv = (−1)rvC. It is important to note that, in this work, the channel am-
plitudeC is not a quantized likelihood [10], since the BSC output is still {0, 1}, mapped
to {−C, C}. All symbolsS, W andC are assumed to be integers. It should be also noted
that this representation is as general as representing message alphabet by{11, 01, 00, 10}
and channel output alphabet by{0, 1}.

For the sake of clarity, we also define the quantitiestj(v, :) andtj(v, c), j > 0:

tj(v, c) =
∑

wj−1(: \c, v) + Rv

and
tj(v, :) =

∑

wj−1(:, v) + Rv (4.1)

Decoder:The message update and decision rules are expressed as follows.
The messageswj(c, v) are defined as:

wj(c, v) =







S ·∏ sign(wj(: \v, c)), if ∀vi 6= v, |wj(vi, c)| = S

W ·∏ sign(wj(: \v, c)), otherwise

The messageswj(v, c) are defined as:

• If j = 0, wj(v, c) = W · sign(Rv).

• If j > 0,

wj(v, c) =























W · sign(tj(v, c)), if 0 < |tj(v, c)| < S

S · sign(tj(v, c)), if |tj(v, c)| ≥ S

W · sign(Rv), if tj(v, c) = 0

4.3 Guaranteed weight-three error correction 119

Table 4.1 : Examples of message update for a column-weight-four code, whenC = 2,
S = 2 andW = 1.

incoming−S messages 2 1 0 1
incoming−W messages 0 1 2 0
incomingW messages 1 0 0 1
incomingS messages 0 1 1 1

Rv −C C C −C
wj(v, c) −S W S −W

Decision: After the jth iteration, the decision rule consists in setting the value of the
variablev to the sign oftj(v, :).

Table 4.1 gives an example of message update for a column-weight-four code, when
C = 2, S = 2 andW = 1. The messagewj(v, c) goes out of variable nodev, and is
computed in terms of the three messages going intov from the neighboring check nodes
different ofc.

The above update and decision rules define the considered class of two-bit decoders.
A particular decoder in this class is determined by the set(C, S, W). In the next section,
we focus on the two-bit decoder with(C, S, W) = (2, 2, 1), and provide the conditions on
the Tanner graph of the code to correct three errors. As shownin Section IV, this decoder
has better thresholds than one-bit decoders for various code rates.

4.3 Guaranteed weight-three error correction

In this section, we first find sufficient conditions on the graph of a code to ensure that
the code can correct up to three errors in the codeword, when the decoding is performed
with the two-bit decoder with(C, S, W) = (2, 2, 1). As justified in the Introduction, we
consider only left-regular codes with column weight four.

4.3.1 Sufficient condition for correction of three errors

As mentioned in the Introduction, the higher the code rate, the more difficult the problem
of correcting a fixed number of errors. This is the reason why we are interested in finding
only sufficient conditions that are as weak as possible in order to be satisfied for high rate
codes. That is why we have selected the two-bit decoder defined by(C, S, W) = (2, 2, 1).
This decoder has better thresholds than one-bit decoders. The thresholds for various code
rates are discussed in Section IV.

For this two-bit decoder, we show that the conditions to guarantee weight-three error
correction, are weaker than when Gallager B decoder is used.This means that two-bit
decoders permit codes of higher rates than those permitted by one-bit decoders. We note
that the problem of establishing correspondence between code rate and absence of a given

120Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

topological structure in the Tanner graph is generally difficult and is beyond scope of this
work.

Let us first give some additional definitions and notations. We define a path of length
d as a set ofd connexe edges.

Definition 11 The neighborhood of order one of a noden is denoted byN1(n) and is
composed of all the nodes such that there exists an edge between these nodes andn. By
extension,Nd(n) denotes the neighborhood of orderd of noden, which is composed of
all the nodes such that there exists a path of lengthd between these nodes andn.

WhenT is a set of nodes, sayT = ∪ini, then the orderd neighborhood ofT isNd(T) =
∪iNd(ni). Let v1

1, v1
2 andv1

3 the variable nodes on which the errors occur. LetV 1 =
{v1

1, v
1
2, v

1
3} andC1 = N1(V

1). For more easily readable notations, we denoteN2(V
1)\V 1

by V 2 andN1(V
2)\C1 by C2. Also we say that a variable is of type(p|q) when it hasp

connections toV 1 andq connection toV 2. The union of orderd neighborhoods of all the
(p|q) type variable nodes is denoted byNd(p|q).

Now we state the main theorem.

Theorem 5 [Irregular expansion theorem] LetG be the Tanner graph of a column-
weight-four LDPC code with no 4-cycles, satisfying the following expansion conditions:
each variable subset of size 4 has at least 11 neighbors, eachone of size 5 at least 13
neighbors and each one of size 8 at least 16 neighbors. Then the code can correct up
to three errors in the codeword, provided the two-bit decoder, with C = 2, S = 2 and
W = 1, is used.

For lighter notations, each expansion condition accordingto which each variable subset
of sizei has at leastj neighbors, will be denoted by “i → j expansion condition”.

Proof:
Remark: The proof can be followed more easily by looking at Tables 4.2 and 4.3. Table
4.2 draws the decision rule in terms of the numbers of messages −S, −W , W andS
going into a variable, when this variable node is decoded as 0(resp. 1) and when the
channel observation is 1 (resp. 0). Table 4.3 draws update rule in terms of the numbers of
messages−S, −W , W andS going into the variable nodev leading to different values
of the messagewj(v, c) going out ofv, when the received value isrv. We consider all the
subgraphs subtended by three erroneous variable nodes in a graph and prove that, in each
case, the errors are corrected. The possible subgraphs are shown in Figure 4.1. As shown,
five cases arise. In the reminder, we assume that the all-zerocodeword has been sent.

Case 1: Consider the error configuration shown in Figure 4.1(a). Inthis case, vari-
ables 1, 2 and 3 send incorrect−W messages to their neighbors. They receiveW mes-
sages from all their neighboring check nodes, they are therefore decoded correctly. Error
occurs only if there exists a variable node with correct received value that receives four
−W messages from its neighboring check nodes (see Table 4.2). However, since vari-
ables 1, 2 and 3 are the only variables that send incorrect messages in the first iteration,
it is impossible to encounter such a variable node without introducing a 4-cycle. Hence,

4.3 Guaranteed weight-three error correction 121

Table 4.2 : Decision rule for the two-bit decoder defined by(C,S,W) = (2, 2, 1).

−S # −W # W # S
mess. mess. mess. mess.

0 0 0 4
0 0 1 3
0 0 2 2

Received value 1 0 0 3 1
Decoded as 0 0 0 4 0

0 1 0 3
0 1 1 2
0 1 2 1
1 0 0 3
1 0 1 2
0 4 0 0
1 2 1 0
1 3 0 0

Received value 0 2 1 0 1
Decoded as 1 2 1 1 0

2 2 0 0
3 0 0 1
3 0 1 0
3 1 0 0
4 0 0 0

2

(d) Case 4

1 2 3

(c) Case 3

1 2 3

(e) Case 5

1 2 3

(a) Case 1 (b) Case 2

321 31

Figure 4.1 : All possible subgraphs subtended by three erroneous variable nodes.

c1
8

v1
1 v1

2

c1
1 c1

3 c1
5 c1

7c1
2 c1

4 c1
6

v1
3

c1
11c1

10c1
9

Figure 4.2 : Errors configuration for Case 2.

122Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

Table 4.3 : Update rule for the two-bit decoder defined by(C,S,W) = (2, 2, 1).

−S # −W # W # S
mess. mess. mess. mess.

rv = 1 0 0 2 1
wj(v, c) = W 0 0 3 0

0 1 0 2
rv = 1 0 0 0 3

wj(v, c) = S 0 0 1 2
rv = 0 2 1 0 0

wj(v, c) = −S 3 0 0 0
0 3 0 0

rv = 0 1 2 0 0
wj(v, c) = −W 2 0 1 0

0 2 0 1
0 2 1 0
0 3 0 0
1 0 2 0
1 1 0 1

rv = 1 1 1 1 0
wj(v, c) = −S 1 2 0 0

2 0 0 1
2 0 1 0
2 1 0 0
3 0 0 0
0 1 1 1

rv = 1 0 1 2 0
wj(v, c) = −W 1 0 0 2

1 0 1 1
0 2 1 0

rv = 0 1 1 0 1
wj(v, c) = W 1 1 1 0

2 0 0 1
0 0 0 3
0 0 1 2
0 0 2 1
0 0 3 0

rv = 0 0 1 0 2
wj(v, c) = S 0 1 1 1

0 1 2 0
0 2 0 1
1 0 0 2
1 0 1 1
1 0 2 0

this configuration converges to the correct codeword at the end of the first iteration.

Case 2: Consider the error configuration shown in Figure 4.1(b) andFigure 4.2.

4.3 Guaranteed weight-three error correction 123

At the end of the first iteration, we have:

1(c
1
4, v) = −W, v ∈ {v1

1 , v
1
2}

w1(c, v) = −W, v ∈ V 2, c ∈ C1\c1
4

w1(c, v) = W, otherwise

In the first half of the second iteration, according to Table 4.3 no−S messages can be
sent by variables neither inV \V 1 because no−S message propagate in the first iteration,
nor variables inV 1 because they all receive at least threeW messages:

w2(v, c) = −W, v ∈ {v1
1 , v

1
2}, c ∈ C1\c1

4

w2(v, c1
4) = W, v ∈ {v1

1 , v
1
2}

w2(v
1
3 , c) = W, c ∈ C1

w2(v, c) = −W, v ∈ N0(3|1), c ∈ C2

w2(v, c) = W, v ∈ N0(2|2), c ∈ C2

w2(v, c) = W, v ∈ N0(3|1), c ∈ C1

w2(v, c) = S, otherwise

In the second half of the second iteration, the messages going out of certain check nodes
depend on the connection degree of these check nodes. However, we do not want that
the proof be dependent on the degree of connection of check nodes. Hence, we consider
in the following the “worst” case, that is the configuration where each message has the
smallest possible value. In that case, the messages along the edges in the second half of
the second iteration are such that:

w2(c, v) = −W, v ∈ V 2 ∩ N2({v1
1 , v1

2}), c ∈ C1\c1
4

w2(c
1
4, :) = W

w2(c, : \v) = −W, v ∈ N0(3|1), c ∈ C2 ∩ N1(3|1)
w2(c, v) = W, v ∈ V 2, c ∈ {c1

8, c
1
9, c

1
S , c1

−S}
w2(c, :) = W, c ∈ C1 ∩N1(3|1)
w2(c, :) = W, c ∈ C2 ∩N1(2|2)
w2(c, v) = S, otherwise

At the end of the second iteration, allv ∈ V 1 receive all correct messagesW or S.
According to Table 4.2, all variables inV 1 are hence corrected at the end of the second
iteration. For variables inV 2, since no−S messages propagate in the second half of the
second iteration, we see on Table 4.2 that variables inV 2, which are not received in error,
are decoded as 1 if and only if they receive four−W messages. The following lemma
prove that this is not possible.

Lemma 13 No variable node receives four incorrect−W messages at the end of second
iteration.

Proof: Let v be such a variable. Then the four neighboring checks ofv must belong to
{c1

1, c
1
2, c

1
3, c

1
5, c

1
6, c

1
7} ∪ (C2 ∩ N1(3|1)). Note that only two neighbors ofv can belong to

{c1
1, c

1
2, c

1
3, c

1
5, c

1
6, c

1
7} without introducing a 4-cycle. This implies that there are only three

cases:

124Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

• v has two neighboring checks, sayc2
1 andc2

2, in C2 ∩ N1(3|1). Let v2
1 andv2

2 be
the (3|1) type variables connected toc2

1 andc2
2. It results that the set of variables

{v1
1, v

1
2, v

2
1, v

2
2, v} is connected to only11 checks, which contradicts the 5→13 ex-

pansion condition. This case is hence not possible.

• v has one neighbor in{c1
1, c

1
2, c

1
3, c

1
5, c

1
6, c

1
7} and three neighbors inC2∩N1(3|1), say

c2
1, c

2
2 andc2

3. Letv2
1, v2

2 andv2
3 be the(3|1) type variables connected toc2

1, c
2
2 andc1

3.
It results that the set of variables{v1

1, v
1
2, v

2
1, v

2
2, v} is connected to only12 checks,

which contradicts the 5→13 expansion condition. This case is hence not possible.

• v has four neighbors inC2 ∩ N1(3|1), sayc2
1, c2

2, c2
3 and c1

4. Let v2
1, v2

2, v2
3 and

v2
4 be the(3|1) type variables connected toc2

1, c2
2, c1

3 and c1
4. It results that the

set of variables{v1
1, v

1
2, v

1
3, v

2
1, v

2
2, v

2
3, v

2
4, v} is connected to only15 checks, which

contradicts the 8→16 expansion condition. This case is hence not possible.

�

Hence, the decoder converges at the end of the second iteration.

Case 3: Consider the error configuration shown in Figure 4.1(c). Inthe first iteration,
the variables 1, 2 and 3 send incorrect−W messages to their neighboring checks. At the
end of the first iteration, they receive correct messages from all their neighboring checks.
There is no variable that receives four incorrect messages (as it will cause a four-cycle).
Hence, the decoder successfully corrects the three errors.

Case 4: Consider the error configuration shown in Figure 4.1(d) andFigure 4.3. In

c1
10

v1
1 v1

2 v1
3

c1
1 c1

3 c1
5 c1

7 c1
9c1

2 c1
4 c1

6 c1
8

Figure 4.3 : Errors configuration for Case 4.

the second half of the first iteration we have:

w1(c, : \V 1) = −W , c ∈ C1\{c1
4, c

1
7}

w1(c, v) = −W , v ∈ V 1, c ∈ {c1
4, c

1
7}

w1(c, v) = W , otherwise

Let us analyse the second iteration. For anyv ∈ V \V 1 andc ∈ C1, w2(v, c) can never
be−S because no−S messages propagate in the first iteration. So, for anyv ∈ V \V 1

andc ∈ C1, w2(v, c) = −W if and only if w1(: \c, v) = −W , which implies thatv must

4.3 Guaranteed weight-three error correction 125

have four connections toC1. This is not possible as it would cause a 4-cycle. Hence:

w2(v
1
2 , c) = −S , c ∈ {c1

5, c
1
6}

w2(v
1
2 , c

1
4) = −W

w2(v
1
2 , c

1
7) = −W

w2(v
1
1 , : \c1

4) = −W

w2(v
1
3 , : \c1

7) = −W

w2(v, c) = −W v ∈ N0(3|1), c ∈ C2 ∩ N1(3|1)
w2(v

1
1 , c

1
4) = W

w2(v
1
3 , c

1
7) = W

w2(v, c) = W v ∈ N0(2|2), c ∈ C2 ∩N1(2|2)
w2(v, c) = W v ∈ N0(3|1), c ∈ C1 ∩N1(3|1)
w2(c, v) = S , otherwise

In the first half of the third iteration, we have

w3(v
1
2 , :) = W

w3(v
1
1 , : \c1

4) = −W , w3(v
1
1 , c

1
4) = W

w3(v
1
3 , : \c1

7) = −W , w3(v
1
3 , c

1
7) = W

Lemma 14 All variables inV 1 are corrected at the end of the third iteration because, for
anyv ∈ V 1, w3(:, v) = W or S.

Proof: The proof is by contradiction. Let assume that there existsa variable inV \V 1,
sayv, such that there existsc ∈ C1 andw3(v, c) = −W or w3(v, c) = −S. Since it is
impossible that two−S messages go intov, as it would cause a 4-cycle,w3(v, c) = −W
or w3(v, c) = −S implies thatv receives from its neighbors different ofc three−W
messages, or one−S and two−W (see Table 4.3).

• If v receives three−W : As proved previously,v cannot have four neighbors inC1.
Hence,v must be connected toc2

1 ∈ C2 such thatw2(c
2
1, v) = −W . With the above

described values of the messages in the second half of the second iteration, we see
thatc2

1 must be connected to a(3|1) type variable inV 2, let sayx2
1. Let notice that

there cannot be more than one(3|1) type variable inV 2, otherwise five variables
would be connected to only twelve checks. Two cases arise:

◦ If v has at least two neighbors inC2 ∩ N1(3|1), there are at least two(3|1)
type variables inV 2, which has been proved to be impossible.

◦ If v has exactly one neighbor inC2 ∩ N1(3|1), there would exist two(3|1)
type variables inV 2: v andx2

1. This case is not possible for the same reason
as above.

• If v receives two−W messages and one−S message:

126Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

◦ If v is of type(3|1), the neighboring check ofv in C2 must be connected to
another(3|1) type variable, let sayx2

1. It results that the set{v1
1, v

1
2, v

1
3, v, x2

1}
has only eleven neighboring checks, which contradicts the 5→13 expansion
condition. This case is hence not possible.

◦ If v is of type(2|2), both neighboring checks ofv in C2 must be connected
each to another(3|2) type variables, let sayx2

1 andx2
2. It results that the set

{v1
1, v

1
2, v

1
3, v, x2

1, x
2
2} has only twelve neighboring checks, which contradicts

the 5→13 expansion condition. This case is hence not possible.

Hence, sincew3(c
1
4, v

1
1), w3(c

1
4, v

1
2), w3(c

1
7, v

1
2) andw3(c

1
7, v

1
3) are equal toW or S,

v1
1, v

1
2 andv1

3 are corrected at the end of the third iteration.

�

Lemma 15 No variable inV \V 1 can propagate−W at the beginning of the third itera-
tion, except variables of type(3|1).

Proof: Consider a variablev which has at most two connections toC1. For this variable
v to propagate−W at the beginning of the third iteration, two cases arise:

• If v is of type(2|2), v must have at least one connection toC2 ∩ N1(3|1). Let the
(3|1) type variable bev2

1, then the set{v1
1, v

1
2, v

1
3, v

2
1, v} is connected to only twelve

checks. This case is hence not possible.

• If v hasq connections outsideC1, with q > 2, there must existq−1 variables of type
(3|1) connected to thoseq − 1 checks ofv. It results that it would be necessary that
at least2 variables of type(3|1) exist, which is not possible as previously proved.

�

Lemma 16 Any variable inV \V 1 is correctly decoded at the end of the third iteration.

Remark: That is to say that any variable inV \V 1 is decoded to its received value since
it is not received in error by hypothesis.Proof: According to Table 4.3, no message−S
propagates in the third iteration since all variables inV 1 receive at least threeW messages
at the end of the second iteration, and variables inV \V 1 cannot receive more than one
−S message. In that case, to be decoded as a one, a bit whose received value is zero has to
receive only−W messages according to the decision rule (see Table 4.2). That is for any
v ∈ V \V 1, v is wrongly decoded if and only ifw3(:, v) = −W . No v ∈ V \V 1 can have
more than two neighboring checks in{c1

1, c
1
2, c

1
3, c

1
8, c

1
9, c

1
10}, otherwise it would introduce

a 4-cycle. Lemma 15 implies that a variable inV \V 1 is wrongly decoded if it has at least
two connections toC2 ∩N1(3|1), which implies that there exist two(3|1) type variables.
This is not possible as previously proved. This completes the proof of the Lemma.

�

4.3 Guaranteed weight-three error correction 127

c1
8

v1
1 v1

2 v1
3

c1
1 c1

3 c1
5 c1

7 c1
9c1

2 c1
4 c1

6

Figure 4.4 : Errors configuration for Case 5.

Thus, the decoder converges to the valid codeword at the end of the third iteration.

Case 5: Consider the error configuration shown in Figure 4.1(a) andFigure 4.4.
Neither(3|1) nor (4|0) type variable can exist inV 2 because it would contradict the4 →
11 expansion condition. Any type(2|2) variables cannot share a check inC2 as it would
result in a set of five variables connected to only twelve checks. At the end of the first
iteration, we have:

w1(c, v) = −W, c ∈ C1\{c1
1, c

1
4, c

1
7}, v ∈ V 2

w1(c, v) = −W, c ∈ {c1
1, c

1
4, c

1
7}, v ∈ V 1

w1(c, v) = W, otherwise

At the end of the second iteration, we have in the worst case, that is in the case where
each message has the smallest possible value:

w2(c, v) = −S, c ∈ C1\{c1
1, c

1
4, c

1
7}, v ∈ V 2

w2(c, v) = −W, c ∈ {c1
1, c

1
4, c

1
7}, v ∈ V 1

w2(c, :) = W, c ∈ C2 ∩ N1(2|2)
w2(c, v) = S, otherwise

Also, at the end of the third iteration:

w3(c, v) = −S, c ∈ C1\{c1
1, c

1
4, c

1
7}, v ∈ V 2

w3(c, v) = W, c ∈ {c1
1, c

1
4, c

1
7}, v ∈ V 1

w3(c, v) = S, otherwise

At the end of the third iteration, all variables inV 1 are corrected because they receive
two S and twoW messages, and all variables inV \V 1 are well decoded to the received
value since they receive at most two−S messages from checks inC1, and neither−S nor
−W messages from checks inC2 (see Table 4.2). Hence, the decoder converges to the
valid codeword at most at the end of the third iteration. Thiscompletes the Proof.

�

Note that similar conditions for a column-weight-four LDPCcode of girth six to cor-
rect any weight-three error pattern, when it is decoded withGallager B algorithm, has
been found by Krishnan [100]. The conditions are that each variable subset of size 4 has
at least 11 neighbors, each one of size 5 at least 13 neighbors, each one of size 6 at least

128Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

15 neighbors and each one of size 7 at least 17 neighbors. These conditions are stronger
than the ones of Theorem 5. Besides, the higher is the rate of the code, the more diffi-
cult it is for the Tanner graph of the code to satisfy the expansion conditions, since the
variable nodes tend to be less and less connected when the code rate increases. Hence,
the weaker expansion conditions obtained for the two-bit decoder make possible the con-
struction of higher rate codes, with weight-three error correction capability, than with the
one-bit Gallager B decoder.

4.4 Asymptotic analysis

This section intends to illustrate the interest of two-bit decoders over one-bit decoders,
in terms of decoding thresholds. In particular, we show thatthe two-bit decoder, for
which expansion conditions for weight three error correction has been derived, has better
thresholds than one-bit decoders, for various code rates.

4.4.1 Density evolution

P{Wj = X} =
∑

r∈{−C,C},n(W),n(S),n(−W):
f(T,r)=X

KγP{R = r}
∏

Y ∈M\{−S}

P{W j−1 = Y }n(Y)P{W j−1 = −S}n(−S)(4.2)

P{W j = X} =
∑

n(W),n(S),n(−W):
g(n(−S),n(−W),n(W))=X

Kρ

∏

Y ∈M\{−S}

P{Wj = Y }n(Y)P{Wj = −S}n(−S) (4.3)

Asymptotically in the codeword length, LDPC codes exhibit athreshold phenomenon
[10]. In other words, forα smaller than a certain threshold, it is possible to achieve an
arbitrarily small bit error probability under iterative decoding, as the codeword length
tends to infinity. On the contrary, for noise level larger than the threshold, the bit error
probability is always larger than a positive constant, for any codeword length [10, 11].

In [11] and [10], Richardson and Urbanke presented a generalmethod for predict-
ing asymptotic performance of binary LDPC codes. They proved a so-called concen-
tration theorem [11] according to which decoding performance over any random graph
converges, as the code length tends to infinity, to the performance when the graph is
cycle-free. Thus, relevant evaluation of performance of binary LDPC codes is possible in
the limit case of infinite codeword lengths. The proposed density-evolution method con-
sists in following the evolution of probability densities of messages along the decoding
iterations. The messages in each direction are assumed to beindependent and identically
distributed.

For the class of two-bit decoders, we derive thresholds for different values ofC andS.
The code is assumed to be regular with column weightγ and row degreeρ. The numbers
of W , S and−W messages are denoted byn(W), n(S) andn(−W), respectively. In
the sets of equations (4.2) and (4.3),n(W) ∈ [0, . . . , d], n(S) ∈ [0, . . . , d − n(W)],

4.4 Asymptotic analysis 129

n(−W) ∈ [0, . . . , d − n(W) − n(S)], whered is eitherγ or ρ, depending on the context.
The number of−S messagesn(−S) is henced − 1 − n(W) − n(S) − n(−W), with
d = γ or ρ depending on the context. Since the messages of the graph, ineach direction,
are assumed to be independent and identically distributed,Wj (resp. W j) denote the
random variables distributed aswj(v, c) (resp.wj(c, v)) for any pair(v, c) of connected
variable and check nodes.X denotes an element ofM . Also,R ∈ {−C, C} denotes the
random variable which corresponds to the initial value of the bit. The density evolution
equations are given by the sets of equations (4.2) and (4.3),where:

T =
∑

Y ∈M

n(Y) · Y

Kγ =

(

γ − 1

n(W)

)(

γ − 1 − n(W)

n(S)

)(

γ − 1 − n(W) − n(S)

n(−W)

)

Kρ =

(

ρ − 1

n(W)

)(

ρ − 1 − n(W)

n(S)

)(

ρ − 1 − n(W) − n(S)

n(−W)

)

The two functionsf andg are defined as follows:

f : Z
2 → M

f(T, r) =























W · sign(T), if 0 < |T | < S

S · sign(T), if |T | ≥ S

W · sign(r), if T = 0

g : N
3 → M

g(n1, n2, n3) =







































W, if n3 + n2 > 0, n2 + n1 = 0 mod (2)

S, if n3 + n2 = 0, n2 + n1 = 0 mod (2)

−W, if n3 + n2 > 0, n2 + n1 = 1 mod (2)

−S, if n3 + n2 = 0, n2 + n1 = 1 mod (2)

4.4.2 Thresholds of quantized decoders

Table 4.4 encompasses thresholds for various code parameters and decoding rules. Thresh-
olds are given in probability of crossover on the BSC. Algorithm E is presented in [11].
For the two-bit decoders, the set (C,S,W) is given. When the threshold is below0.001, ×
is put in the box. The code rate is defined by1 − γ

ρ
.

We have computed thresholds for various two-bit decoders. Table 4.4 shows that the
specific two-bit decoder with parameters(C, S, W) = (2, 2, 1), has better thresholds than
one-bit decoders Gallager A and B algorithms.

130Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

Table 4.4 : Thresholds of different decoders for column-weight-four codes with row degree
ρ.

ρ Rate Gallager A Gallager B Algorithm E
8 0.5 0.0474 0.0516 0.0583
16 0.75 0.0175 0.0175 0.0240
32 0.875 0.00585 0.00585 0.00935
ρ Rate (1,1,1) (1,2,1) (1,3,1) (1,4,1)
8 0.5 0.0467 0.0509 0.0552 0.0552
16 0.75 0.0175 0.0165 0.0175 0.0175
32 0.875 0.00585 0.00562 0.00486 0.00486
ρ Rate (2,1,1) (2,2,1) (2,3,1) (2,4,1)
8 0.5 0.0467 0.0567 0.0532 0.0552
16 0.75 0.0175 0.0177 0.0168 0.0175
32 0.875 0.00585 0.00587 0.00568 0.00486
ρ Rate (3,1,1) (3,2,1) (3,3,1) (3,4,1)
8 0.5 × 0.0467 0.0657 0.0620
16 0.75 × 0.0218 0.0222 0.0203
32 0.875 × 0.00921 0.00755 0.00691
ρ Rate (4,1,1) (4,2,1) (4,3,1) (4,4,1)
8 0.5 × × 0.0486 0.0657
16 0.75 × × 0.0227 0.0222
32 0.875 × × 0.00871 0.00755
ρ Rate Dynamic two-bit

decoder with
S = 2 andW = 1

8 0.5 0.0638
16 0.75 0.0249
32 0.875 0.00953

However, this decoder has not the best threshold among the two-bit decoders. Indeed,
we tried to achieve a trade-off between good thresholds and not too strong conditions for
three error correction. Nevertheless, the method of analysis applied in the proof of the
previous section is general, and can be applied to a variety of decoders to obtain similar
results.

Remark: Algorithm E and the presented dynamic two-bit decoder outperform the
other ones, especially for code rates3

4
(i.e., ρ = 16) and 7

8
(i.e., ρ = 32). Algorithm E,

described in [11], is the aforementioned decoder with erasures in the message alphabet.
At each iteration, the weight affected to the channel observation (equivalent toC in the
two-bit decoder) is optimized [11]. The dynamic two-bit decoder is based on the same
idea: forS = 2 andW = 1, C is chosen at each iteration. The better thresholds of
the presented dynamic two-bit decoder over Algorithm E indicates that it is interesting to
consider decoding on a higher number of bits, even if the channel observation is still one
bit, to get better thresholds.

4.5 Numerical results 131

4.5 Numerical results

We have formally proved the capability of weight-three error correction of an LDPC
code satisfying conditions of Theorem 5 and decoded with thetwo-bit decoder with
(C, S, W) = (2, 2, 1). To compare this two-bit decoder with another one-bit decoder,
namely Gallager B, we have plotted FER in Figure 4.5. We consider a MacKay code,
with column weight four, 1998 variable nodes and 999 check nodes. The code rate is
0.89. This code has been decoded with Gallager B and the above two-bit decoder. Figure
4.5 shows that the two-bit decoder has lower FER than Gallager B decoder. In particular,
we observe better waterfall performance using the two-bit decoder, and about 1dB gain in
the error-floor.

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

α

F
E

R

Gallager B
Two−bit decoder with (C,S,W)=(2,2,1)

Figure 4.5 : FER versus the crossover probabilityα for regular column-weight-four
MacKay code. The code rate is0.89 and the code length isn = 1998.

4.6 Conclusion

In this chapter, we proposed a class of two-bit decoders. We have focused on a specific
two-bit decoder for which we have derived sufficient conditions for a code with Tanner
graph of girth six to correct any three errors. These conditions are weaker than the con-
ditions for a code to correct three errors when it is decoded with Gallager B algorithm,
which uses only one bit. Hence, two-bit decoder may allow to ensure weight-three error

132Chapitre 4 : Two-Bit Message Passing Decoders for LDPC CodesOver the Binary Symmetric Channel

correction capability for higher rate codes than one-bit Gallager type decoding. We have
computed thresholds for various two-bit decoders, and shown that the decoder for which
the previous conditions has been derived has better thresholds than one-bit decoders, like
Gallager A and B. Finally, we have compared the frame error rate performance of the
two-bit decoder and Gallager B algorithm for decoding a column-weight-four code with
high rate. The two-bit decoder performs better than Gallager B both in the waterfall and
in the error-floor region. This illustrates that it is interesting to use two bits rather than
one bit for decoding.

Conclusions and Perspectives

Conclusions

In this thesis, we have first proposed a new class of non-binary LDPC codes, named hy-
brid LDPC codes. The asymptotic analysis of this new class has been carried out. Specific
properties of considered hybrid LDPC code ensembles, like the Linear-Map invariance,
have been expressed to be able to derive both stability condition and EXIT charts. The
stability condition of such hybrid LDPC ensembles shows interesting advantages over
non-binary codes. The EXIT charts analysis is performed on the BIAWGN channel. In
order to optimize the distributions of hybrid LDPC ensembles, we have investigated how
to project the message densities on only one scalar parameter using a Gaussian approx-
imation. The accuracy of such an approximation has been studied, and has led to two
kinds of EXIT charts for hybrid LDPC codes: multi-dimensional and mono-dimensional
EXIT charts. The distribution optimization allows to get finite length codes with very low
connection degrees and better waterfall region than protograph or multi-edge type LDPC
codes. Moreover, hybrid LDPC codes are well fitted for the cycle cancellation presented
in [34], thanks to their specific structure. Additionally toa better waterfall region, the
resulting codes have a very low error-floor for code rate one-half and codeword length
lower than three thousands bits, thereby competing with multi-edge type LDPC. Thus,
hybrid LDPC codes allow to achieve an interesting trade-offbetween good error-floor
performance and good waterfall region with non-binary codes techniques.

We have also shown that hybrid LDPC codes can be very good candidates for ef-
ficient low rate coding schemes. For code rate one sixth, theycompare very well to
existing Turbo Hadamard or Zigzag Hadamard codes. More particularly, hybrid LDPC
codes exhibit very good minimum distances and error floor properties.

In the second part of the thesis, we have tried to determine which kind of machine
learning methods would be useful to design better LDPC codesand better decoders in the
short code length case.

We have first investigated how to build the Tanner graph of a code by pruning away
edges from the Tanner graph of a mother code, using a machine learning algorithm, in
order to optimize the minimum distance. We showed that no relevant cost function can be
found for this problem. Hence, no pruning method could be applied. We have pointed out
that this pruning problem was not a classification problem, and that is why this approach
failed.

133

134 Conclusions and Perspectives

We have then investigated decoder design by machine learning methods in order to
perform better than BP which is suboptimal as soon as there are cycles in the graph. We
have considered the decoding of a given code as a classification problem to which a better
decoder than BP may be found, in order to handle message statistical dependencies. The
chosen cost function based, on the difference between an estimated mutual information
and the EXIT chart, appeared to be impossible to evaluate forvalue of mutual information
close to one.

Finally, we have investigated several classification methods to see whether they might
substitute the BP decoder. We gave the fundamental reason why this is not possible:
those methods are non-parametric machine learning algorithms based on the assumption
that the elements to be classified, must be highly non-uniformly distributed, which is the
opposite case of the channel coding problem.

Hence, we were not able to identify any contribution that machine learning methods
might bring to LDPC code or decoder design.

The third part still aims at finding good decoders for finite length LDPC codes, but
with also good asymptotic behavior. We have switched from continuous BP decoding to
quantized decoding. The idea is still to find a decoding rule adapted to hard-to-decode
topologies. We have first proposed a class of two-bit decoders and computed thresholds
for various decoders in this class. Based on those thresholds, we have focused on a specific
two-bit rule. We have derived sufficient conditions for a code with Tanner graph of girth
six to correct any three errors. These conditions are less stringent than the conditions for
a code to correct three errors when it is decoded with Gallager B algorithm, which relies
on only one bit. Hence, decoding with the two-bit rule allowsto ensure weight-three error
correction capability for higher rate codes than the decoding with one bit, like Gallager
B decoding. Finally, we have compared the frame error rate performance of the two-
bits rule and Gallager B algorithm to decode a given code satisfying the conditions for
weight-three error correction with both decoders. The two-bits rule decoding performs
up to three decades better than Gallager B on the same code, thereby indicating that the
highest weight error corrigible by the two-bits rule is higher than that of Gallager B. This
illustrates how it is interesting to use two bits rather thanone bit for decoding.

Perspectives

As perspectives, it would be of first interest to allow degreeone variable nodes in the
representation of hybrid LDPC codes, by, e.g., adopting a multi-edge type representation
[27]. As shown in [30], this would allow to have better decoding thresholds, particularly
for low rate codes.

This would give rise to the study and the optimization, with the same tools, of non-
binary protograph-based LDPC codes or multi-edge type LDPCcodes. However, the
extension may be theoretically not fully straightforward as the non-zero values have to be
carefully handled to define the code ensemble.

On the other hand, it would be interesting to study hybrid LDPC codes on other chan-

Perspectives 135

nels. Let us mention that we made some experiments on an AWGN channel with16-
QAM modulation. We restricted the connection profile to be regular, in order to not bias
the results by the absence of specific allocation on unequally protected symbols. Only
two group orders where allowed to avoid correlation betweenchannel LLRs:G(16) and
G(256). The optimization of fractions of variable nodes in these two different orders have
been done. The results where slightly degraded compared to a(2, 4) GF (256) LDPC
codes. A study of these codes on the BEC would be also interesting, according to what
has been done for D-GLDPC codes on the BEC [56], as well as for code rates higher than
one-half.

The investigations on connections between machine learning algorithms and BP de-
coding of LDPC codes, viewed as a classification problem, gave some insights on how
channel coding methods can help classification in high-dimensional massive databases, as
soon as some structure or model can be assumed for elements tobe classified [89, 90, 88].

In terms of quantized decoding rules as defined in the last part of the thesis, many
directions are possible. First, still for column-weight four codes, it would be interesting to
see what is the minimum weight of an incorrigible error pattern. The following extension
would be to lead the same study to determine which two-bit rule could have the best
properties in terms of decoding threshold as well as correction capability, for column-
weight three codes. Finally, an aim could be to extend the setof two-bit decoding rules
to similarly defined sets of rules with any given number of bits, and finding a general
condition for correction capability in terms of the number of quantization bits.

Bibliography

[1] G. Liva, W. Ryan, and M. Chiani, “Design of quasi-cyclic Tanner codes with low
error floors,” inProceedings of IEEE International Symposium on Turbo Codes,
Munich, Germany, April 2006.

[2] L. Ping, W. Leung, and K. Wu, “Low-rate Turbo-Hadamard codes,” IEEE Trans-
actions on Information Theory, vol. 49, no. 12, pp. 3213–3224, December 2003.

[3] G. Yue, W. Leung, L. Ping, and X. Wang, “Low rate concatenated Zigzag-
Hadamard codes,” inProceedings of International Conference on Communica-
tions, Istanbul, Turkey, June 2006.

[4] N. Shimanuki, B. Kurkoski, K. Yamagichi, and K. Kobayashi, “Improvements and
extensions of low-rate Turbo-Hadamard codes,” inProceedings of ISITA, Seoul,
Korea, October 2006.

[5] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical
Journal, vol. 27, pp. 379–423,623–656, July 1948.

[6] R. Gallager, “Low-density parity-check codes,” PhD dissertation, MIT press, Cam-
bridge, Massachusetts, 1963.

[7] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”
IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, 1999.

[8] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite
geometries: a rediscovery and new results,”IEEE Transactions on Information
Theory, vol. 47, November 2001.

[9] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Improved low-
density parity-check codes using irregular graphs,”IEEE Transactions on Informa-
tion Theory, vol. 47, pp. 585–598, February 2001.

[10] T. Richardson, A. Shokrollahi, and R. Urbanke, “Designof capacity-approaching
irregular LDPC codes,”IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 619–637, February 2001.

[11] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,”IEEE Transactions on Information The-
ory, vol. 47, no. 2, pp. 599–618, February 2001.

137

138 BIBLIOGRAPHY

[12] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
turbo-codes,”IEEE Transactions on Communications, vol. 44, no. 10, pp. 1261–
1271, October 1996.

[13] J. Pearl,Probabilistic reasoning in intelligent systems: networksof plausible infer-
ence. Morgan Kaufmann, 1988.

[14] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
codes,”IEEE Transactions on Communications, vol. 49, no. 10, pp. 1727–1737,
October 2001.

[15] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design
of low-density parity-check codes within 0.0045 db of the shannon limit,” IEEE
Communications Letters, vol. 5, pp. 58–60, February 2001.

[16] K. Price and R. Storn, “Differential evolution - a simple and effi-
cient heuristic for global optimization over continuous spaces,” Journal
on Global Optimization, vol. 11, pp. 341–359, 1997, code available at:
http://www.icsi.berkeley.edu/ storn/code.html.

[17] P. Oswald and M. A. Shokrollahi, “Capacity-achieving sequences for the erasure
channel,”IEEE Transactions on Information Theory, vol. 48, pp. 364–373, De-
cember 2002.

[18] T. Etzion, A. Trachtenberg, and A. Vardy, “Which codes have cycle-free tanner
graphs?”IEEE Transactions on Information Theory, vol. 45, no. 6, pp. 2173–2181,
1999.

[19] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-length
analysis of message-passing iterative decoding of LDPC codes,” ac-
cepted for IEEE Tansactions on Information Theory, 2007, available at:
http://arxiv.org/abs/cs.IT/0512078/.

[20] V. Chernyak, M. Chertkov, M. Stepanov, and B. Vasic, “Error correction on a tree:
An instanton approach,”Physical Review Letters, vol. 93, no. 19, p. 198, November
2004.

[21] M. Chiani and A. Ventura, “Design and performance evaluation of some high-rate
irregular low-density parity-check codes,” inProceedings of IEEE Global Telecom-
munications Conference, San Antonio, USA, November 2001.

[22] C. Di, R. Urbanke, and T. Richardson, “Weight distribution of low-density parity-
check codes,”IEEE Transactions on Information Theory, vol. 52, no. 11, pp. 4839–
4855, November 2006.

[23] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-
growth Tanner graphs,”IEEE Transactions on Information Theory, vol. 51, pp.
386–398, January 2005.

BIBLIOGRAPHY 139

[24] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant
permutation matrices,”IEEE Transactions on Information Theory, vol. 50, pp.
1788–1793, August 2004.

[25] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in
Proceedings of Int. Symp. on Turbo codes and Related Topics, Brest, France,
September 2000.

[26] D. Divsalar, C. Jones, S. Dolinar, and J. Thorpe, “Protograph based LDPC codes
with minimum distance linearly growing with block size,” inProceedings of IEEE
Global Telecommunications Conference, St. Louis, USA, November 2005.

[27] T. Richardson and R. Urbanke, “Multi-edge type LDPC codes,” available online,
April 2004.

[28] J. Boutros, O. Pothier, and G. Zemor, “Generalized low density (Tanner) codes,”
in Proceedings of IEEE Int. Conf. on Communications, Vancouver, Canada, June
1999.

[29] E. Paolini, M. Fossorier, and M. Chiani, “Analysis of doubly-generalized LDPC
codes with random component codes for the binary erasure channel,” in Proceed-
ings of Allerton Conference on Communications, Control andComputing, Monti-
cello, USA, Sept 2006.

[30] I. Andriyanova, “Analysis and design of a certain family of graph-based codes:
TLDPC,” PhD dissertation, Ecole Nationale Supérieure des Télécommunications,
Paris, France, 2006.

[31] M. Davey and D. MacKay, “Low density parity check codes over GF(q),” IEEE
Communications Letters, vol. 2, no. 6, pp. 165–167, June 1998.

[32] M. Davey, “Error-correction using low density parity check codes,” PhD disserta-
tion, University of Cambridge, Cambridge, UK, December 1999.

[33] X.-Y. Hu and E. Eleftheriou, “Binary representation ofcycle Tanner-graph GF(2q)
codes,” inProceedings of IEEE International Conference on Communications,
Paris, France, June 2004, pp. 528–532.

[34] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2,dc)-LDPC codes
over GF(q) using their binary images,”accepted in IEEE Transactions on Commu-
nications, 2008.

[35] T. J. Richardson, “Error floors of LDPC codes,” inProceedings of 41st Annual
Allerton Conf. on Communications, Control and Computing, 2003, pp. 1426–1435.

[36] J. G. Proakis,Digital communications. Fourth edition.MacGraw-Hill, 2001.

[37] F. MacWilliams and N. Sloane,The theory of error-correcting codes. North Hol-
land, 1978.

140 BIBLIOGRAPHY

[38] B. Masnick and J. Wolf, “On Linear Unequal Error Protection Codes,”IEEE Trans.
on Inform. Theory, vol. 3, no.4, pp. 600–607, Oct. 1967.

[39] S. lin and D. J. Costello,Error-control coding. Prentice Hall, 1983.

[40] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM
Journal of Applied Mathematics, vol. 8, pp. 300–304, 1960.

[41] A. J. Viterbi, “Error bounds for convolutional codes and asymtotically optimum
decoding algorithm,”IEEE Transactions on Information Theory, vol. 13, pp. 260–
269, April 1967.

[42] F. Kschischang, B. Frey, and H. A. Loeliger, “Factor graphs and the sum-product
algorithm,”IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519,
February 2001.

[43] R. M. Tanner, “A recursive approach to low complexity codes,”IEEE Transactions
on Information Theory, vol. 27, pp. 533–547, September 1981.

[44] D.J.C.MacKay and R. Neal, “Near shannon limit performance of low-density
parity-check codes,”Electronics Letters, vol. 33, no. 6, pp. 457–458, March 1997.

[45] A. Goupil, M. Colas, G. Gelle, and D. Declercq, “FFT-based BP decoding of gen-
eral LDPC codes over abelian groups,”IEEE Transactions on Communications,
vol. 55, no. 4, pp. 644–649, April 2007.

[46] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low complexity,
low memory EMS algorithm for non-binary LDPC codes,” inProceedings of IEEE
International Conference on Communications, Glasgow, UK, June 2007.

[47] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, andX.-Y. Hu, “Reduced-
complexity decoding of LDPC codes,”IEEE Transactions on Communications,
vol. 53, no. 8, pp. 1288–1299, August 2005.

[48] A. Bennatan and D. Burshtein, “Design and analysis of nonbinary LDPC codes
for arbitrary discrete-memoryless channels,”IEEE Transactions on Information
Theory, vol. 52, no. 2, pp. 549–583, February 2006.

[49] G. Li, I. Fair, and W. Krzymien, “Analysis of nonbinary LDPC codes using Gaus-
sian approximation,” inProceedings of IEEE International Symposium on Infor-
mation Theory, Yokohama, Japan, July 2003.

[50] S. Chung, T. Richardson, and R. Urbanke, “Analysis of sum-product decoding
LDPC codes using a Gaussian approximation,”IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 657–670, February 2001.

[51] A. Venkiah, D. Declercq, and C. Poulliat, “Design of cages with a randomized
progressive edge growth algorithm,”IEEE Communications Letters, vol. 12, no. 4,
pp. 301–303, February 2008.

BIBLIOGRAPHY 141

[52] K. Kasai, T. Shibuya, and K.Sakaniwa, “Detailedly represented irregular LDPC
codes,”IEICE Transactions on Fundamentals, vol. E86-A, no. 10, pp. 2435–2443,
October 2003.

[53] G. Liva, S. Song, L. Lan, Y. Zhang, S. Lin, and W. E. Ryan, “Design of LDPC
codes: a survey and new results,”to appear in Journal on Communication Software
and Systems, 2006, available online.

[54] D. Sridhara and T. Fuja, “Low density parity check codesover groups and rings,”
in Proceedings of IEEE Information Theory Workshop, Bangladore, India, October
2002.

[55] J. Boutros, A. Ghaith, and Y. Yuan-Wu, “Non-binary adaptive LDPC codes for
frequency selective channels: code construction and iterative decoding,” inPro-
ceedings of IEEE Information Theory Workshop, Chengdu, China, October 2006.

[56] E. Paolini, “Iterative decoding methods based on low-density graphs,” PhD disser-
tation, Universita degli studi di Bologna, Bologna, Italia, 2007.

[57] C. Poulliat, M. Fossorier, and D. Declercq, “Design of non binary LDPC codes us-
ing their binary image: algebraic properties,” inProceedings of IEEE International
Symposium on Information Theory, Seattle, USA, July 2006.

[58] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check
codes for modulation and detection,”IEEE Transactions on Communications,
vol. 52, pp. 670–678, April 2004.

[59] A. G. Kolpakov, “The solution of the convex combinationproblem,” Journal on
Computational mathematics and mathematical physics, vol. 32, no. 8, pp. 1183–
1188, 1992.

[60] W. Press, S. Teukolsky, , W. Vetterling, and B. Flannery, Numerical recipes in C.
Second edition. Cambridge University Press, 1992.

[61] S. ten Brink, “Code doping for triggering iterative decoding convergence,” inPro-
ceedings of IEEE International Symposium on Information Theory, Washington
DC, USA, 2001.

[62] A. Brouwer and T. Verhoeff, “An updated table of minimumdistance for binary
linear codes,”IEEE Transactions on Information Theory, vol. 39, no. 2, pp. 662–
677, March 1993.

[63] D. Declercq and M. Fossorier, “Decoding algorithms fornonbinary LDPC codes
over GF(q),”IEEE Transactions on Communications, vol. 55, no. 4, pp. 633–643,
April 2007.

[64] A. Viterbi, “Very low rate convolutional codes for maximum theoretical perfor-
mance of spread-spectrum multiple-access channels,”IEEE Journal on Selected
Areas on Communications, vol. 8, pp. 641–649, May 1990.

142 BIBLIOGRAPHY

[65] M. González-López, F. J. Vázquez-Araújo, L. Castedo, and J. Garcia-Frias, “Lay-
ered LDGM codes: a capacity-approaching structure for arbitrary rates,” inProc.
ISWCS, Trondheim, Norway, September 2007.

[66] X.-Y. Hu and M. Fossorier, “On the computation of the minimum distance of low-
density patity-check codes,” inProceedings of IEEE International Conference on
Communications, Paris, June 2004.

[67] T. Richardson, “in review of this paper,” 2008.

[68] G. Yue, L. Ping, and X. Wang, “Low-rate generalized LDPCcodes with Hadamard
constraints,” inProceedings of IEEE International Symposium on Information The-
ory, Adelaide, Australia, September 2005.

[69] F. Attneave, “Informational aspects of visual perception,” Psychological Review,
vol. 61, pp. 183–193, 1954.

[70] S. Haykin,Neural Networks. A Comprehensive Foundation. Prentice Hall, 2005.

[71] R. Linsker, “An application of the principle of maximuminformation preservation
to linear systems,” inAdvances in Neural Information Processing Systems Confer-
ence, Denver, USA, 1988.

[72] J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials
over the binary n-cube,”IEEE Transactions on Information Theory, vol. 35, no. 5,
pp. 976–987, September 1989.

[73] Y.-H. Tseng and J.-L.Wu, “High-order perceptrons for decoding error-correcting
codes,” inIEEE International Joint Conference on Neural Networks, vol. 3, Balti-
more, USA, June 1992, pp. 24–29.

[74] A. Cornuéjols and L. Miclet,Apprentissage artificiel. Concepts et algorithmes.
Eyrolles, 2002.

[75] L. Personnaz and I. Rivals,Réseaux de neurones formels pour la modélisation, la
commande et la classification, ser. Sciences et Techniques de l’Ingénieur. CNRS,
2003.

[76] J. Hertz, A. Krogh, and R. Palmer,Introduction to the theory of neural computa-
tion. Westview Press, 1991.

[77] B. Hassibi, D. Stork, and G. Wolff, “Optimal brain surgeon and general network
pruningoptimal brain surgeon and general network pruning,” in IEEE International
Conference on Neural Networks, vol. 1, San Francisco, USA, March 1993, pp.
293–299.

[78] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representa-
tions by error backpropagation,”Parallel distributed processing, MIT Press, vol. 1,
pp. 318–362, 1986.

BIBLIOGRAPHY 143

[79] D. Levine, “PGApack: Parallel genetic algorithm library,” in Ar-
gonne National Laboratory, UChicago, USA, 2000, http://www-
fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html.

[80] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian
Journal of Mathematics, vol. 8, pp. 399–404, 1956.

[81] P. Comon, “Independent component analysis: a new concept ?” Elsevier Signal
Processing. Special Issue on Higher Order Statistics, vol. 36, no. 3, pp. 287–314,
April 1994.

[82] N. Cristianini and J. Shawe-Taylor,Support vector machines and other kernel-
based learning methods. Cambridge University Press, 2000.

[83] A. Guttman, “A dynamic index structure for spatial searching,” in ACM SIGMOD
International Conference on Management of Data, 1984, pp. 47–57.

[84] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the
curse of dimensionality,”Proceedings of the 13th annual ACM Symposium on The-
ory of Computing, pp. 604–613, 1998.

[85] C. Faloutsos and I. Kamel, “Beyond uniformity and independence: Analysis of r-
trees using the concept of fractal dimension,” inACM SIGACT-SIGMOD-SIGART
PODS, Minneapolis, USA, May 1994, pp. 4–13.

[86] A. Belussi and C. Faloutsos, “Estimating the selectivity of spatial queries using the
‘correlation’ fractal dimension,” inInternational Conf. on Very Large Data Base,
Zurich, Switzerland, September 1995, pp. 299–310.

[87] S. R. Simanca and S. Sutherland, “Mathematical problemsolving with computers,”
in The University at Stony Brook, ser. Lecture Notes for MAT 331, 2002, available
at: http://www.math.sunysb.edu/ scott/Book331/Fractal_Dimension.html.

[88] A. Broder, R. Krauthgamer, and M. Mitzenmacher, “Improved classification via
connectivity information,” inSymposium on Discrete Algorithms, 2000.

[89] M. Naphade, I. Kozintsev, and T. Huang, “A factor graph framework for semantic
video indexing,”IEEE Transactions on circuits and systems for video technology,
vol. 12, no. 13, pp. 40–52, 2002.

[90] M. Boutell, J. Luo, and C. Brown, “Factor-graphs for region-based whole-scene
classification,” inInternational Workshop on Semantic Learning Applicationsin
Multimedia (in conjunction with CVPR2006), New York, USA, June 2006.

[91] L. Bazzi, T. Richardson, and R. Urbanke, “Exact thresholds nd optimal codes for
the binary-symmetric channel and gallager’s decoding algorithm a,” IEEE Trans-
actions on Information Theory, vol. 50, no. 9, pp. 2010–2021, 2004.

144 BIBLIOGRAPHY

[92] V. Zyablov and M. S. Pinsker, “Estimation of the error-correction complexity for
gallager low-density codes,”Problems of Information Transmission, vol. 11, no. 1,
pp. 18–28, 1976.

[93] M. Sipser and D. Spielman, “Expander codes,”IEEE Transactions on Information
Theory, vol. 42, no. 6, pp. 1710–1722, November 1996.

[94] D. Burshtein and G. Miller, “Expander graph arguments for message passing al-
gorithms,”IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 782–790,
February 2001.

[95] M.Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminating trapping sets in low-
density parity check codes using tanner graph lifting,” inProceedings of IEEE In-
ternational Symposium on Information Theory, Nice, France, June 2007, pp. 2266–
2270.

[96] C. Di, D. Proietti, T. Richardson, E. Teletar, and R. Urbanke, “Finite length anal-
ysis of low-density parity-check codes,”IEEE Tansactions on Information Theory,
vol. 48, pp. 1570–1579, June 2002.

[97] D. Burshtein, “On the error correction of regular LDPC codes using the flipping
algorithm,” inProceedings of IEEE International Symposium on Information The-
ory, Nice, France, June 2007, pp. 226–230.

[98] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin, “On guaranteed
error correction capability of LDPC codes,” inProceedings of IEEE International
Symposium on Information Theory, Toronto, Canada, July 2008.

[99] S. K. Chilappagari, A. R. Krishnan, and B. Vasic, “LDPC codes which can correct
three errors under iterative decoding,” inProceedings of IEEE Information Theory
Workshop, May, 2008.

[100] A. R. Krishnan, S. K. Chilappagari, and B. Vasic, “On error correction capabil-
ity of column-weight-four ldpc codes,”to be submitted to IEEE Transactions on
Information Theory, September 2008.

[101] E. Sharon, A. Ashikhmin, and S. Litsyn, “EXIT functions for the Gaussian chan-
nel,” in Proceedings of 40th Annu. Allerton Conf. Communication, Control, Com-
puters, Allerton, IL, October 2003, pp. 972–981.

[102] C. Poulliat, M. Fossorier, and D. Declercq, “Using binary image of nonbinary
LDPC codes to improve overall performance,” inProceedings of IEEE Interna-
tional Symposium on Turbo Codes, Munich, Germany, April 2006.

[103] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, andP. Urard, “Low complexity
decoding for non-binary LDPC codes in high order fields,”accepted for publication
in IEEE Transactions on Communications, 2008.

[104] L. Sassatelli and D. Declercq, “Non-binary hybrid LDPC codes: Structure, de-
coding and optimization,” inProceedings of IEEE Information Theory Workshop,
Chengdu, China, October 2006.

[105] ——, “Analysis of non-binary hybrid LDPC codes,” inProceedings of IEEE Inter-
national Symposium on Information Theory, Nice, France, June 2007.

[106] L. Sassatelli, W. Henkel, and D. Declercq, “Check irregular LDPC codes for un-
equal error protection under iterative decoding,” inProceedings of IEEE Interna-
tional Symposium on Turbo Codes, Munich, Germany, April 2006.

[107] G. Byers and F. Takawira, “EXIT charts for non-binary LDPC codes,” inProceed-
ings of IEEE International Conference on Communications, Seoul, Corea, May
2005, pp. 652–657.

[108] D. Declercq, M. Colas, and G. Gelle, “Regular GF(2q)-LDPC coded modulations
for higher order QAM-AWGN channels,” inProceedings of ISITA, Parma, Italy,
October 2004.

[109] R. Gallager, “Low-density parity check codes,”IEEE Transactions on Information
Theory, vol. 39, no. 1, pp. 37–45, January 1962.

[110] O. Wintzell, M. Lentmaier, and K. Zigangirov, “Asymptotic analysis of super-
orthogonal turbo codes,”IEEE Transactions on Information Theory, vol. 49, no. 1,
pp. 253–258, January 2003.

[111] K. Li, X. Wang, and A. Ashikhmin, “Exit functions of Hadamard components in
Repeat-Zigzag-Hadamard codes,” inProceedings of IEEE International Sympo-
sium on Information Theory, Nice, France, June 2007.

[112] J. Hamkins and D. Divsalar, “Coupled receiver-decoders for low rate turbo codes,”
in Proceedings of IEEE International Symposium on Information Theory, Yoko-
hama, Japan, June 2003.

[113] H. Jin and R. McEliece, “RA codes achieve awgn channel capacity,” inProceed-
ings of IEEE International Symposium on Applied Algebra andError-Correcting
Codes, Honolulu, HI, November 1999, pp. 14–19.

Résumé : Codes LDPC multi-binaires hybrides et méthodes de décodage itératif

Cette thèse porte sur l’analyse et le design de codes de canaldéfinis par des graphes creux. Le
but est de construire des codes ayant de très bonnes performances sur de larges plages de rapports
signal à bruit lorsqu’ils sont décodés itérativement.

Dans la première partie est introduite une nouvelle classe de codes LDPC, nommés code
LDPC hybrides. L’analyse de cette classe pour des canaux symétriques sans mémoire est réalisée,
conduisant à l’optimisation des paramètres, pour le canal gaussien à entrée binaire. Les codes
LDPC hybrides résultants ont non seulement de bonnes propriétés de convergence, mais égale-
ment un plancher d’erreur très bas pour des longueurs de mot de code inférieures à trois mille
bits, concurrençant ainsi les codes LDPC multi-edge. Les codes LDPC hybrides permettent donc
de réaliser un compromis intéressant entre région de convergence et plancher d’erreur avec des
techniques de codage non-binaires.

La seconde partie de la thèse a été consacrée à étudier quel pourrait être l’apport de méthodes
d’apprentissage artificiel pour le design de bons codes et debons décodeurs itératifs, pour de
petites tailles de mot de code.

Dans la troisième partie de la thèse, nous avons proposé une classe de décodeurs utilisant
deux bits de quantification pour les messages du décodeur. Nous avons prouvé des conditions
suffisantes pour qu’un code LDPC, avec un poids de colonnes égal à quatre, et dont le plus petit
cycle du graphe est de taille au moins six, corrige n’importequel triplet d’erreurs. Ces conditions
montrent que décoder avec cette règle à deux bits permet d’assurer une capacité de correction de
trois erreurs pour des codes de rendements plus élevés qu’avec une règle de décodage à un bit.

Mots clefs : théorie de l’information - codage correcteur d’erreur - codes LDPC - évolution de
densité - apprentissage artificiel - décodage quantifié

Abstract : Multi-binary hybrid LDPC codes and iterative dec oding methods

This thesis is dedicated to the analysis and the design of sparse-graph codes for channel coding.
The aim is to construct coding schemes having high performance both in the waterfall and in the
error-floor regions under iterative decoding.

In the first part, a new class of LDPC codes, named hybrid LDPC codes, is introduced. Their
asymptotic analysis for memoryless symmetric channel is performed, and leads to code parameter
optimization for the binary input Gaussian channel. Additionally to a better waterfall region, the
resulting codes have a very low error-floor for code rate one-half and codeword length lower than
three thousands bits, thereby competing with multi-edge type LDPC. Thus, hybrid LDPC codes
allow to achieve an interesting trade-off between good error-floor performance and good waterfall
region with non-binary coding techniques.

In the second part of the thesis, we have tried to determine which kind of machine learning
methods would be useful to design LDPC codes and decoders well performing in the short code
length case.

In the third part of the thesis, we have proposed a class of two-bit decoders. We have derived
sufficient conditions for a column-weight four code with Tanner graph of girth six to correct any
three errors. These conditions show that decoding with the two-bit rule allows to ensure weight-
three error correction capability for higher rate codes than the decoding with one bit.

Keywords : information theory - error correcting codes - LDPC codes - density evolution - machine
learning - quantized decoding

