N
N

N

HAL

open science

A constraint-based approach to modelling spatial
semantics of vitual environments
Thanh-Hai Trinh

» To cite this version:

Thanh-Hai Trinh. A constraint-based approach to modelling spatial semantics of vitual environments.
Other [cs.OH]. Université de Bretagne occidentale - Brest, 2012. English. NNT: 2012BRES0028 .

tel-00817685

HAL Id: tel-00817685
https://theses.hal.science/tel-00817685
Submitted on 25 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00817685
https://hal.archives-ouvertes.fr

université de bretagne
occidentale

THESE / UNIVERSITE DE BRETAGNE OCCIDENTALE
sous le sceau de I'Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L'UNIVERSITE EUROPEENNE DE BRETAGNE

Mention : Informatique
Ecole Doctorale SICMA

A Constraint-based Approach
to Modelling Spatial Semantics
of Virtual Environments

présentée par

Thanh-Hai Trinh

Préparée au Centre Européen
de Réalité Virtuelle

Thése soutenue le 05 avril 2012
devant le jury composé de :

Guillaume MOREAU
Professeur, Ecole Centrale de Nantes / rapporteur

Christophe CLARAMUNT
Professeur, Ecole Navale / rapporteur

Philippe MATHIEU
Professeur, Université Lille 1 / examinateur

Pierre DE LOOR
Professeur, ENI de Brest / examinateur

Pierre CHEVAILLIER
Maitre de conférences, ENI de Brest / examinateur

Ronan QUERREC
Maitre de conférences, ENI de Brest / examinateur

A Constraint-based Approach
to Modelling Spatial Semantics
of Virtual Environments

Thanh-Hai Trinh
{trinh@enib.fr}

Abstract

Within Virtual Reality Environments (VREs), spatial relationships among ob-
jects convey fundamental knowledge about the environment, namely direction
(“left”, “right”, “front of”), distance (“near”, “far”), topology (“inside”, “disjoint”),
and projection (“between”, “surrounded by”). Modelling spatial relationships is
critical in a variety of applications of VRESs, such as human learning environ-
ments, virtual museums, or navigation-aids systems. However, spatial relation-

ships have been considered as abstract information and thus, difficult to specify.

Addressing this issue, this thesis proposes an approach to model spatial
relationships among virtual objects in VREs. First, we formalise a formal model
of spatial relationships dedicated to VREs. Second, we provide a language and
a framework to specify spatial relationships at a conceptual level. Finally, we
apply our model to specify spatial relations in two real applications: Virtual
Physics Laboratory — a VRE for learning physics, and BrestCoz — a cultural
heritage application for visiting Brest harbour in the 18th century. We claim
that the proposed language is a relevant basis to specify spatial constraints
related to activities of agents and users within VREs.

Keywords: spatial constraints, spatial languages, semantic virtual environ-
ments.

il

Table of Contents

Abstract

Table of Contents

List of Figures

List of Tables

Introduction

1

S Ot = W N

Problem Statement o000
1.1 Semantic Modelling of Virtual Environments
1.2 Spatial Semantics and Its Complexity
Aim and Objectives
Approach Overview
Contributions
Thesis Scope

Thesis Structure

I Related Work & Context

1 Semantic Modelling of Virtual Environments

1.1

Semantic Modelling of Virtual Environments
1.1.1 Overview of Related Approaches
1.1.2 Domain-dependent Semantic Modelling
1.1.3 Content-oriented Semantic Modelling
1.1.4 System-oriented Semantic Modelling
1.1.5 Semantic Modelling With a Conceptual Modelling Phase .

1.1.6 Discussion

1.2 The MASCARET Approach

iii

iii

vii

xiii

0 00 ~1 U R N e

11

iv TABLE OF CONTENTS

1.2.1 Presentation 31

1.2.2 Development Process 32

1.2.3 Model-based Architecture 35

1.2.4 Current Limitations for Specifying Spatial Constraints . . 39

1.3 Summary 40

2 Spatial Models 43

2.1 Taxonomy of Semantic Spatial Constraints 43

2.1.1 Metric vs. Non-metric Constraints 43

2.1.2 Quantitative vs. Qualitative Constraints 44

2.1.3 Static vs. Transition Constraints 44

2.1.4 A Fine-grained Classification of Constraints 45

2.1.5 Discussion 47

2.2 Spatial Models 47

221 Topology 47

2.2.2 Projection 49

2.2.3 Directiono 49

2.24 Distanceo 52

2.3 Conceptualising Spatial Constraints 53

2.3.1 Object-oriented Approaches 53

2.3.2 Spatial Languages 54

2.3.3 Geometrical Constraint-based Virtual Environments . . . 56

2.34 Discussion 58

2.4 Summary 58

IT Contributions 61
3 An Integrated Model of Spatial Constraints For Virtual Envi-

ronments 63

3.1 Examples of Spatial Constraints In a Simple Virtual Environment 63

3.2 The Notion of Spatial Entity 68
3.3 Modelling Frames of Reference 72
3.4 Modelling Topological Constraints 74
3.5 Modelling Projective Constraints 82

3.5.1 Ternary Projective Constraints 83

3.5.2 Quaternary Projective Constraints 89
3.6 Modelling Directional Constraints 93

3.6.1 Direction From a First-person Perspective 93

TABLE OF CONTENTS %

3.6.2 Direction From a Third-person Perspective 96

3.7 Modelling Distance Constraints 97
3.8 Summary 101

4 A Language for Specifying Spatial Semantics 105
4.1 Positioningo 105
4.1.1 Architecture 105

4.1.2 Fitting into the Overall Development Process 106

4.2 The VRX-OCL Language 108
4.2.1 Presentation oL 108

4.2.2 Extended Spatial Syntax 111

4.2.3 Meta-model of Spatial Constraints 113

4.3 Topological Operators 120
4.4 Projective Operators 122
4.4.1 Ternary Projective Relations in Orthographic View 122

4.4.2 Ternary Projective Relations in Immersive View 123

4.4.3 Quaternary Projective Relations 128

4.5 Directional Operators 133
4.5.1 Direction From a First-person Perspective 133

4.5.2 Direction From a Third-person Perspective 133

4.6 Distance Operators 136
4.7 Summary ..o oL e 137
IIT Applications 139
5 Applications 141
5.1 Virtual Physics Laboratory 141
5.1.1 Presentation. Lo 141

5.1.2 The Conceptual Model 144

5.1.3 Specifying User Constraints Using VRX-OCL 146

5.2 BRESTCOZ 150
5.2.1 Presentation. oo 151

5.2.2 The Conceptual Model 153

5.2.3 Modelling Human Activities Using Spatial Constraints . . 155
5.3 Summary 158

vi TABLE OF CONTENTS

Conclusion 161
1 Summary of Contributions 161
2 Limitations and Future Work 163
A Publications 167
B VRX-OCL Grammar 169

References 175

List of Figures

1.1

1.2
1.3
1.4

1.5
1.6

1.7
1.8

1.9

1.10

1.11
1.12

1.13
1.14

1.15

1.16

Decomposition of a urban environments into environmental enti-
ties providing both geometrical information and semantic notions.

A semantic model for constructing digital heritages..
Basic and common semantics of virtual environments.

A semantic model of a 3D scene obtained by coupling ontology
with graphics content. L.

XML-based semantic model of virtual environments.

Semantic virtual environments based on Core Ontology and Do-
main Specific Ontologies.

IMlustration of an information-rich virtual environment.

Based on the concept of semantic entity and semantic reflec-
tion, SCIVE links different representations (i.e., from left to right:
graphical, physical, and knowledge representation) of a VE and
provides uniform access to the application’s entities.

Overview of the design process according to the VR-WISE ap-
proach (from left to right): specification, mapping, and genera-
tion step.

Example of a VE modelled using MASCARET: the graphical mod-
elling view of the environment.

The graphical designer constructs the 3D scene using a 3D modeller.

The multi-layer architecture of MASCARET (w.r.t MOF frame-
work) for the semantic modelling of VEs.

Conceptual modelling of a desk using MASCARET.

Conceptual modelling (partial) of the sliding behaviour of the
drawer using MASCARET.

Example of an instantiation of an entity. Left: its graphical rep-
resentation. Right: the value of some of the properties of that
object, as defined into the conceptual model and the 3D model. .

Conceptual view of the metamodel dedicated to the modelling of
the concepts of the domain in MASCARET.

vii

18
19
20

21
23

23
25

26

27

33
34

36

37

38

39

viii

LIST OF FIGURES

1.17 Conceptual view of the metamodel dedicated to the modelling of

2.1
2.2
2.3
24

2.5

2.6

2.7

2.8

2.9

2.10
2.11

2.12
2.13

3.1

3.2

3.3

3.4

the behaviour of the entities in MASCARET. 40
Cockceroft’s taxonomy of static spatial constraints. 45
Summary of pure spatial constraints in 3D environments. 47
Eight basic topological relations in 2D. 48

Example of the “meet” relation and the corresponding matrix in
the 9-intersection model.o 48

5 projective relations among three points and regions are defined

in the 5-intersection model. 49
Direction among three points (a point A and a vector B_C’) in 2D
space: 15 relations are defined in the double cross model. 50

Cardinal directions between two points in 2D space: (a) cone-
based model; (b) projection-based model; (c) projection-based
model with neutral zone. 50

In the TCD model, 27 relations are defined around a reference

object approximated by its axis-aligned bounding box. o1
The Borrmann’s model deals with direction between complex ob-
jects in 3D by projecting them into 2D planes 51
Ilustration of absolute distance and relative distance.. 53
[lustration of object-oriented approaches for conceptualising spa-
tial relationships. Spatial entities are mapped to classes. Spatial
relations are represented by associations between classes. 53
Design of a simple house using geometrical constraints. 56
Maintaining geometrical constraints in VEs using scene graphs. . 57

A simple virtual environment illustrating a room. The labels
were added to indicate the sides (i.e., front, left, and above) of
the desk. This simple virtual environment is used to illustrate
spatial constraints. oo 64

A closer view to the blue rectangular table of the room. In this
case, an example of spatial relationships is that “the sphere is
disjoint with the cone, and both of them are on (meeting) the
table”. 65

A different view to the room that is centred on the viewpoint of
the desk. Using the desk as a reference frame, the following ex-
ample of direction from a third-person perspective can be stated:
“From the viewpoint of the desk, the rectangular blue table is on
the left of the rounded red table”. 67

A user is manipulating objects in the room using a device (i.e., a
wiimote). The goal is to satisfy a spatial configuration, such as
“the user must put the cone on the dice”. 68

LIST OF FIGURES ix
3.5 The conceptual definition (in the form of a UML class diagram)
of spatial entity. oL 69
3.6 Illustration of the model of spatial entity. The unique name of the
chair and the table are respectively “redChair” and “blueTable”.
They are displayed with their bounding boxes. The referential
point of the chair is its point of sitting. The referential point of
the table is the centre of its top surface. The chair has an intrinsic
direction. L 71
3.7 Taxonomy of different FoR in VEs. 74
3.8 Illustration of the eight basic topological relations in 2D according
to the RCC-8 and 9-intersection models. 75
3.9 Example of a broad boundary region. 75
3.10 Example of a spatial entity without and with thick boundary. . . 76
3.11 Mlustration in 2D of 17 topological relations between thick bound-
ary objects. 79
3.12 27 topological relations that are excluded between thick boundary
objects with identical thickness. 80
3.13 The transitions between 17 possible topological configurations be-
tween TBO. 81
3.14 The principle of projective constraints. Spatial entities are sim-
plified as points. 82
3.15 A top-view of the room. In this figure, an example of spatial re-
lationships is that “from the top-view of the room, the triangular
green table is on the left side of the rounded red table and the
rectangular blue table”. 83
3.16 Ternary projective relations in an orthographic view. 85
3.17 Ternary projective relations in an immersive view. 88
3.18 The area “between” the rounded red table and the rectangular
blue table. 89
3.19 Projective relations between four objects. 90
3.20 The area “above” of the three tables in the room. 92
3.21 The proposed model of direction. 94
3.22 Example of direction from a third-person view: “From the view-
point of the desk (D), the rectangular blue table (B) must be on
the left of the rounded red table (A)” 96
3.23 The proposed model of distance based on the bounding box of a
spatial entity. oo 98
3.24 The proposed model of distance based on the referential point of
aspatial entity. oo 99
3.25 The area front of and 1.5 meters from the desk. 100
3.26 Example of relative distance. 102

LIST OF FIGURES

4.1
4.2

4.3

4.4

4.5

4.6
4.7
4.8

4.9

4.10
4.11
4.12

4.12

4.12

4.12

4.13

4.13

4.14
4.15
4.15

5.1
5.2

5.3

Positioning the VRX-OCL approach into the MASCARET approach 106

Conceptual modelling of virtual environment. Top: graphical rep-
resentation of a room. Bottom: conceptual model of the room.
Here, a MASCARET class diagram is used to represent the struc-
ture of the room, without any specification of spatial constraints. 107
Adding the specification of constraints into the conceptual model,
by means of textual expressions in the VRX-OCL language. . . . 108
Adaptation at the instantiating phase. Top: a desk in the ap-
plication. Bottom: the instantiation of the desk with additional
information used for computing spatial constraints. 109
Position of VRX-OcCL’s meta-model within UML, OCL, and MAs-
CARET’s meta-model., 114

Class diagram representing the meta-model of SpatialEntity. . . . 115
Class diagram representing the meta-model of VRXOCLConstraint 116
Class diagram representing the link between VRXOCLConstraint

and Behavior. 117
Class diagram representing the link between VRXOCLConstraint
and StateMachine. 118
Class diagram representing the meta-model of SemanticArea. . . 119
Semantic areas related to topological constraints. 121
Semantic areas related to ternary projective constraints under
orthographic views. Lo oo 124
Semantic areas related to ternary projective constraints under
orthographic views. oL 125
Semantic areas related to ternary projective constraints under
orthographic views. oo 126
Semantic areas related to ternary projective constraints under
orthographic views. oo 127
Semantic areas related to ternary projective constraints under
IMMErsive VIEWS. o vt 129
Semantic areas related to ternary projective constraints under
Immersive VIEWS. 130
Semantic areas related to quaternary projective constraints. . . . 132
Semantic areas related to directional constraints. 134
Semantic areas related to directional constraints. 135
Schema for measuring the speed of light in air. 142

The real setup to perform the exercise of measuring the speed of
light (here, through the tube of water). 142

The work surface in the VPLab, a VE to perform the exercise of
measuring the speed of light. 143

LIST OF FIGURES xi

0.4

2.5

5.6

5.7

0.8

5.9

5.10

5.11

5.12
5.13

5.14
0.15

5.16
0.17
5.18

A user manipulates objects using an haptic device in a desktop

mode. . ..o 143
Schema for measuring the speed of light in several materials, such
as (a) resin, (b) water. 144
The simplified class diagram representing the work surface of the
VPLab. 145
The class diagram representing the concept of light, speed of light,
light path, and material in VPLab. 145
Procedure of measuring the speed of light in a material, repre-
sented in the form of an activity diagram. 147

The effect Slow motion is simulated based on spatial constraints.
The space between virtual photons is smaller in resin than in air. 149

Visualisation of the cube of resin without (top figure) and with
(bottom figure) its thick boundary. 151
Visualisation of the acceptance sub-spaces between the transmit-
ter lens and the mirror in the VPLab. 152
A view in the BRESTCOZ application. 153
A partial simplified class diagram representing domain concepts
such as ships, anchors, and their relations in BREsTCoZ. 154
Instantiation of a ship in BRESTCOZ. 154
A virtual guide is integrated into BRESTCOZ providing explana-
tions to the visitors. 155
Example of an activity in the BRESTCOZ application. 156
Activity diagram representing a human activity in BRESTCOZ. . 157
A view in BRESTCOZ application (labels were added to the figure

for illustrating the directional relation between the anchor and the
ship). .« . o 159

Visualising spatial constraints in BRESTCOZ. Top: the area “on
the left and 20 meters” from the ship. Bottom: the area “behind
and 20 meters” from the ship. 160

xii

LIST OF FIGURES

List of Tables

1.1
1.2
1.3

2.1

Summary of related approaches for the semantic modelling of VEs. 17
Summary of related work regarding the modelling of spatial entities. 30

Summary of related work regarding the modelling of spatial rela-
tionships.o 31

Examples of a classification of spatial constraints. 45

xiii

Xiv

LIST OF TABLES

Introduction

This thesis investigates spatial semantics of Virtual Environments (VEs). Spatial
semantics are generally expressed by spatial relationships among entities (Zlatev,
2007). Within a VE, spatial relationships convey fundamental spatial knowledge
about the environment, including direction, distance, or topology. Modelling
spatial relationships is critical in a variety of applications of VEs, such as human
learning environments, virtual museums, or navigation-aids systems.

We propose an approach to model spatial semantics of VEs based on semantic
modelling (Latoschik and Blach, 2008). We formalise a semantic model of spatial
relationships dedicated to VEs, and provide a language and a framework to
specify spatial relationships at a conceptual level.

In this introductory chapter, Section 1 provides a brief introduction to se-
mantic modelling and spatial semantics that motivate the thesis. We focus at
analysing the complexity and issues related to the modelling of spatial seman-
tics of VEs. The research aim and objectives are set out in Section 2. We give
an overview of our approach in Section 3 and describe our main contributions
in Section 4. The scope of this research is presented in Section 5. Section 6
summarises the overall structure of the thesis.

1 Problem Statement

1.1 Semantic Modelling of Virtual Environments

Semantic modelling implies the process to closely capture the meaning of user’s
data and provide a concise, high-level description of this information. A semantic
model should offer a simple, natural, implementation-independent, flexible, and
non-redundant specification of information (Rishe, 1992). Semantic modelling
has been studied and successfully applied in several scientific domains, such as
databases (Bouzeghoub and Métais, 1991), multimedia databases (Al-Khatib
et al., 1999), Geographical Information Systems (Egenhofer, 2002), and World
Wide Web (Lee et al., 2001).

Semantic modelling is specially relevant for VEs. The introduction of a
semantic model into a VE can be justified from several perspectives.

e Promoting intelligent VEs. A semantic model is becoming essential for an
important class of VEs that response to users’ interactions in an intelligent
manner. Intelligence of a VE implies its abilities to exhibit human-like be-

2 Introduction

haviours, and to assist users to solve specific problems, rather than relying
entirely on users’ knowledge and skills (Aylett and Luck, 2000). For exam-
ple, in a VE for training, the learner can receive educational assistances
to achieve a pedagogical goal. Similarly, in a virtual tour, a virtual agent
explains information about exhibited objects to visitors. These intelligent
behaviours intensively require a semantic model that provides information
about virtual objects, such as their types, their structures, their states,
their relationships with others, and the operations that one can apply on
them. Based on a semantic model, it is possible to incorporate Artificial
Intelligent methods into VEs, such as to explain causal behaviours, to
carry out path planning, or to perform high-level reasoning (Aylett and
Cavazza, 2001).

e Increasing the reusability and adaptability of VEs. A VE is often tailored
for a particular requirement. Traditionally, the construction of a VE con-
sists in building its graphical model. A graphical model describes how a
VE is structured in terms of geometric primitives and scene graph using
standard formats such as VRML (Virtual Reality Modeling Language)
or X3D (eXtensible 3D). Consequently, VEs are defined at a low level
and platform-dependent. In contrast, a semantic model increases the sep-
aration of conceptual and physical representations of a VE. A semantic
model of a VE can be used for many purposes, such as for interactions,
animations, and visualisations (Gutierrez, 2005).

However, the semantic modelling of VEs has to cope with a number of dif-
ficulties. Currently, there exists no standard (not even a de facto standard) for
the semantic modelling of VEs. No common language for semantic modelling
has been proposed. Existing work attempts either to add semantic annotations
to existing VEs, or to build VEs based on a pre-existent semantic level (e.g.,
using Geographical Information Systems to build urban VEs). There exists a
few work that introduces semantics into the design phase of VEs (Ibanez and
Delgado-Mata, 2011). In this case, semantic modelling is mainly grounded on
abstraction mechanisms that introduce further representation and implementa-
tion issues. Indeed, the semantic modelling of VEs still lacks both a conceptual
and technical base (Latoschik and Blach, 2008).

Because of the above critical observations, the semantic modelling of VEs
is challenging. The construction of semantic VEs is an interesting problem and
largely an open research area.

1.2 Spatial Semantics and Its Complexity

VEs are spatial in nature. As a consequence, spatial semantics is of central
importance for the semantic representation of VEs.

Spatial semantics is expressed by spatial expressions that specify the location
or change of location of an entity in terms of its relationship to a second entity

1. Problem Statement 3

in space (Zlatev, 2007). According to Hernandez (1994), spatial expressions can
be generally formalised using a quadruplet as follows:

< primary_obj, rel, ref obj, ref frame >

In this generic formalisation, primary obj is a primary object, correspond-
ing to a target object. ref object is a reference object, corresponding to an
already located object or a landmark. rel represents a spatial relationship be-
tween the primary object and the reference object. The relationship is given
with respect to ref frame — a frame of reference that defines the context of
the relationship. In this thesis, we shall investigate spatial semantics strictly
under this definition.

The main motivations to introduce spatial semantics into VEs are as follows.

e First, spatial relationships convey many semantics about an environment.
A spatial semantic model allows to specify spatial relationships such as
“inside”, “between”, “near”, “far”, “left”, “right”, or “in front of”. This spatial
knowledge is critical in many applications of VEs, range from VEs for
training, virtual tours, to navigation-aids systems. Furthermore, spatial
relationships are used in everyday communication and human activities.
An explicit representation of spatial relationships in VEs can be exploited
(e.g., by virtual agents) to produce human-like behaviours, or to assist
users in many tasks, such as searching an item, or localising an object in

space.

e Second, previous research in spatial cognition (Waller et al., 2000), spa-
tial navigation (Darken and Peterson, 2001), and the transfer of spatial
knowledge from a virtual to a real environment (Durlach et al., 2000) has
made evidence that spatial relationships constitute a human cognitive (or
mental) representation of an environment. The cognitive model is the
highest stage of development of an individual’s cognitive representation of
space (Waller et al., 1998). This provides a more flexible and abstract
representation of the environment than other initial ones, for instance
landmark-based description. The transition from an initial to a cogni-
tive representation of an environment is, before all, the most important
issue of research in VEs.

Nevertheless, spatial relationships are inherently complex. The prominent
questions in modelling spatial semantics of VEs can be stated as follows.

e Spatial relations are manifold.
To express spatial relations, there exists a variety of spatial prepositions.
Spatial prepositions can be gathered into groups. Each group of spatial
prepositions corresponds to a specific aspect of space. For instance, a
spatial relation can be related to direction (“the chair is in front of the
table”), distance (“the chair is located 1 meter from the table”), or topology
(“the drawer is inside the table”).

Introduction

Spatial relations are qualitative.

In daily communication and human activities, spatial relations are often
given in an imprecise and incomplete manner. One gets used to saying that
“the table is on the left of the window”, instead of “the table is 90 degrees
from the view of the window”. That is to say, spatial relationships are
described in a qualitative way.

Within VEs, spatial relations are multi-dimensional and ambiguous.

In 2D spaces, spatial entities are points or regions that are often repre-
sented using a vector-based approach. Whereas, in 3D spaces, spatial rela-
tions exist among 3D entities that are built upon 3D complex shapes. The
multidimensionality of 3D spaces significantly increases the complexity of
spatial semantics. Another difficulty is that spatial relations can contain
ambiguities. A VE is a mixed community of virtual agents and users. Dif-
ferent points of view of agents or users can yield different observations to
a spatial relation.

Within VEs, spatial relations are abstract.

Some of existing work attempted to enrich VEs with spatial annotations
(Bowman et al., 2003; Kleinermann et al., 2008). However, spatial rela-
tionships are still classified as abstract information and thus, difficult to
specify. To indicate spatial relations, the existing approaches merely use
multimedia landmarks such as texts, videos, images, or Web links. For
example, a left-arrow associated with a text is used to indicate a “left”
relationship. To the best of our knowledge, no previous work has dealt
with a semantic model of spatial relationships for VEs.

2 Aim and Objectives

From the problem statement, the aim of this thesis is to investigate the modelling
of spatial relationships among virtual objects of VEs.

To carry out our investigation, we set out the following research objectives:

to identify and model spatial concepts (e.g., spatial object and reference
frame) needed for the specification of spatial relationships in VEs

to identify the main families of spatial relationships and to propose an
appropriate model for describing them in VEs

to develop a modelling language that enables a high-level, consistent, and
unambiguous specification of spatial relationships in VEs

to develop algorithms for computing spatial relationships in VEs

to develop methods for visualising, and thus materialising, abstract spatial
relationships in VEs

to utilise the model of spatial relationships to specify spatial activities of
virtual agents and users in VEs

3. Approach Overview 5

3 Approach Overview

This thesis proposes an approach to model spatial relationships among virtual
objects in VEs. We particularly focus on modelling, computing, and visualising
spatial relationships. The original characteristics of our approach are as follows:

e Constraint-based: In our model, spatial relationships are represented in
terms of spatial constraints'. The motivation is that a human often de-
picts spatial relations among objects in the form of constraints (Renz and
Nebel, 2007). Spatial constraints can be unary (“the length of the table
must not exceed 2 metres”), binary (“the cube must be on the table”),
ternary (“the chair must be placed between the table and the window”),
or n-ary in general. A constraint-based representation of spatial relations
has several obvious advantages. On the one hand, being represented by
spatial constraints, spatial relations can be used in more various contexts.
For example, spatial relations can be used as system invariants (“the chair
is always between the table and the window”). Otherwise, spatial rela-
tions can be used as a goal or a checking condition for a user’s interaction
(“the user must put the cube on the table”). In the other words, spatial
constraints can be used as pre- and post-conditions of the user’s actions.
The satisfaction or violation of spatial constraints allow to enable/disable
the user’s actions. On the other hand, a constraint-based approach facili-
tates high-level manipulations with spatial knowledge, such as constraint
queries, or constraint-based reasoning.

e Model-based: We follow a model-based approach as defined in (OMG,
2011), i.e., models are used to direct the understanding and conceptualis-
ing of spatial entities as well as spatial constraints among them. This is
done by extending an existing model-based approach, named MASCARET,
for semantic modelling of VEs (Chevaillier et al., 2011). In MASCARET,
the Unified Modeling Language (UML) serves as the common language to
model VEs. MASCARET offers three levels of modelling: the meta level,
the conceptual level, and the instance level. VEs are first designed at the
conceptual level, and then are instantiated and executed at the instance
level. The MASCARET’s meta-model is dedicated to VEs and allows to
introspect the conceptual model and the instance model at runtime. In
our approach, we intervene in MASCARET both at the conceptual and
meta levels. First, we enrich the meta-level with a meta-model of spatial
constraints. We then formalise a spatial language, named VRX-OCL, to
express, and query, spatial constraints at the conceptual level. The lan-
guage is defined as a Virtual Reality eXtension of the Object Constraint
Language that comes along with UML to express constraints in UML-based
conceptual models (OMG, 2006).

The sequential steps in our approach are the following.

'For this reason, in our model, the terms “spatial relations” and “spatial constraints’ are
used indistinctly.

6 Introduction

Formalising The Concepts of Spatial Entity and Frame of Reference
in VEs

Previously, spatial expressions were formalised as a quadruplet involving
a primary entity, a reference entity, a relationship, and a frame of reference.
Consequently, prior to defining spatial relationships, it is necessary to represent
the concepts of spatial entity and frame of reference. As highlighted in (Casati
and Varzi, 1997), every model of spatial representation and reasoning must be
combined with a manner for defining spatial entities and frames of reference.

We thus propose a conceptual model of spatial entity and frame of reference.
Our model of spatial entities is an abstract representation of scene’s entities,
with additional information to define spatial constraints. Our model of frame
of reference allows to clarify the contexts in which spatial constraints will be
evaluated. We model different types of frame of reference that can be implicit
or explicit, egocentric (i.e., first-person perspective) or allocentric (i.e., third-
person perspective).

Elaborating a Formal Model of Spatial Relationships Among Spatial
Entities

Based on the conceptual definitions of spatial entity and frame of reference,
we elaborate a formal model of spatial relationships. By surveying existing spa-
tial models, we classify and identify the four main families of spatial constraints,
namely topological, projective, directional, and distance constraints. Topologi-
cal constraints and projective constraints cover the non-metric aspects of VEs
(i.e., topology and projection). Meanwhile, directional constraints and distance
constraints cover the metric aspects of VEs (i.e., direction and distance).

To cope with the complexity of spatial semantics, our approach is mainly
based on a qualitative description of spatial constraints (Cohn and Renz, 2008).
An important motivation for such a qualitative description is that it has been
shown to be closer to human mental model of space. As a result, our model is
able to take into account the natural imprecision and incompleteness of spatial
knowledge.

Formalising an Architecture and a Constraint Language for Concep-
tualising and Querying Spatial Constraints

Based on our formal model of spatial constraints, we propose VRX-OCL
as a formal language to conceptualise spatial constraints. VRX-OCL is both a
constraint and query language. That is, VRX-OCL can be used both to specify
and query spatial constraints in a conceptual model of a VE. In our context,
we use the MASCARET framework to design the conceptual model of a VE, and
then use VRX-OCL to specify spatial constraints within the conceptual model.

We design the VRX-OCL language at two levels: the conceptual level and
the meta level. At the conceptual level, VRX-OCL specifies spatial constraints
in terms of spatial expressions. VRX-OCL explicitly defines spatial concepts

4. Contributions 7

involved in spatial expressions, such as primary entity, reference entity, and
frame of reference. Spatial relationships are defined in VRX-OCL by means
of spatial operators. VRX-OCL expressions can be used as invariants, guard
conditions for state transitions, or pre-/post-conditions of actions within the
conceptual model. Otherwise, VRX-OCL spatial expressions can be used to
query spatial relationships between elements in the conceptual model. At the
meta level, VRX-OCL comes with a meta-model that explains how the concepts
of spatial entity, frame of reference, and spatial constraint are formalised.

Applying the Proposed Constraint Language to Specify Activities of
Agents and Users

As the overall goal of a semantic model is to facilitate the design of intelli-
gent VEs, we apply our semantic model of spatial constraints to specify spatial
activities of agents and users in VEs. We illustrate our model with two real ap-
plications. In Virtual Physics Laboratory (VPLab), a VE for learning physics,
spatial constraints are used to describe invariants of learners’ interactions, or to
indicate a goal that the learners must achieve. In BRESTCOZ, a cultural heritage
application, we use spatial constraints to simulate human-like activities of vir-
tual agents. The satisfaction of spatial constraints decides whether an activity
can be activated, or it has been already accomplished or not.

4 Contributions

The research presented in this thesis makes several contributions to the field
of semantic modelling of VEs. The major advantages, which make this work
significant, are the following:

e An integrated model of spatial constraints among spatial entities.
We propose an integrated model that covers the main spatial aspects of
space, including topology, projection, distance, and direction. The model
is formal and generic. Spatial constraints are specified based on the con-
ceptual definition of spatial entity and frame of reference that is indepen-
dent from any graphical and conceptual framework.

e A computational model for spatial constraints.
We provide a unified computational model for spatial constraints. The
computational model is expressed in the form of algorithms for calculating
spatial constraints. Spatial constraints are evaluated based on basic spatial
information about spatial entities and thus the computational model can
be easily extended to other application domains.

e An architecture and language for conceptualising spatial constraints.
The conceptualising of spatial constraints is carried out using a model-
based architecture. At the meta level, we formalise a meta-model that
abstracts the spatial concepts (e.g., spatial entities, frames of reference,
and spatial constraints). At the conceptual level, we propose the VRX-
OcL language as a constraint and query language of spatial constraints.

8 Introduction

The language can be used 1) to be integrated into a semantic modelling
framework for conceptualising spatial constraints independent of graphi-
cal representations of VEs; 2) to query spatial constraints among virtual
objects; and 3) to specify activities of agents and users of VEs. Overall,
VRX-OcL allows to express a shared understanding about spatial knowl-
edge among agents and users. The representation of spatial knowledge is
thus unambiguous and consistent.

e A meta-model and architecture for visualising spatial constraints.
In our approach, spatial constraints are no more abstract. Instead, they
can be visualised. The visualisation of spatial constraints, termed as se-
mantic areas, is specified at the conceptual level.

5 Thesis Scope

This thesis is concerned with semantic modelling of VEs in general, and with
spatial semantics in particular. However, semantic modelling is an emerging
research interest in the field. Neither a unified modelling method nor a uni-
fied semantic model of VEs has been proposed. Instead, each semantic model
deals with a specific aspect of VEs. As stated in (Tutenel et al., 2008), a se-
mantic model can enrich a virtual world in many ways, for example by visual
semantics (color, size, shape), physical semantics (weight, mass, temperature),
or behavioural semantics (services that virtual objects can provide).

The research conducted in this thesis is limited to spatial semantics of VEs.
More precisely, we study spatial semantics in terms of spatial relationships
among virtual objects within VEs. Nevertheless, spatial semantics will not be
studied isolatedly but in relations to other semantics of VEs.

6 Thesis Structure

The remainder of this thesis is organised in three parts.

Part I aims to review related work and present the context of our work.
It includes two chapters. Chapter 1 reviews related approaches in the field
of semantic modelling of VEs, and then describes the MASCARET approach
that is used as the context of our work. Chapter 2 discusses related work of
spatial semantics. It presents the relevant models and approaches for conceptual
modelling of spatial relationships. The work presented in this part has been
published in (Chevaillier et al., 2011).

Part II details our main contributions. It includes two chapters. Chapter 3
presents our integrated model of spatial constraints for VEs. Chapter 4 presents
the VRX-OcCL language for specifying spatial constraints in VEs. A detailed
description of the architecture, syntax, and meta-model of the language is given.
The work presented in this part has been published in (Trinh et al., 2010a,b,
2011).

Part III describes the applications of our model. In includes a single Chap-
ter 5. We illustrate how the proposed model is applied in two real applications,

6. Thesis Structure 9

VPLab — a VE for learning physics, and BRESTCO0Z — an application for cultural
heritage preservation. The work presented in this part has been published in
(Trinh et al., 2008, 2009; Barange et al., 2011).

In Conclusion, we summarise our approach, and give suggestions for future
work.

Appendix A includes a list of published papers concerning the VRX-OCL
approach.

Appendix B contains the grammar of the VRX-OCL language.

10

Introduction

Part 1

Related Work & Context

11

Chapter 1

Semantic Modelling of Virtual
Environments

The purpose of this chapter is twofold. First, it presents the different motivations
that have driven the development of semantic modelling for VEs. Second, it
describes the context of our work. The conceptual model of spatial semantics
we propose in this thesis has been implemented in the context of MASCARET,
which is both a framework and a methodology for the semantic modelling of
VEs.

This chapter is structured as follows. Section 1.1 reviews prior work in the
field of semantic modelling of VEs. The relevant techniques, methodologies,
and frameworks for the semantic modelling of VEs are presented. Section 1.2
gives an overview of the MASCARET framework, with a specific enlightenment
on the underlying concepts we anchored our model on. Section 1.3 summarises
the chapter.

1.1 Semantic Modelling of Virtual Environments

Drawing a model implies that its designer adopts a specific point of view, a cen-
tral concept in the model-driven approach (OMG, 2011). Along the development
process of the system, different models are produced, sequentially or in parallel.
It ensues that existing models differ from each other by their point of view, their
level of abstraction, and the semantics they convey, although they share some
basic concepts. Basically, semantic modelling aims to reduce the gap between
different representations of subject matters that experts, designers, engineers,
and end-users can have on the system (here the virtual environment). The single
concepts all these actors actually share are those of the specific domain of the
application, not those related to technical aspects.

For instance, a common sense representation of a room is that it is composed
of a floor, a ceiling, walls, at least one door, and optionally windows. Inside the
room, there may be some pieces of furniture, such as tables and chairs. All these
objects have properties such as colour, size, and style. It could be a common

13

14 1. Semantic Modelling of Virtual Environments

rule that one should seat on chairs, not on tables, and windows can be opened to
refresh the air of the room. All the stakeholders involved in the design phase can
also agree on what should be the configuration of the room, by defining some
relationships among the elements of the room, e.g., “the table stands in front
of the window” and “the sofa is between the table and the bookcase”. Different
combinations can be tested or changed at runtime.

Modelling languages, such as VRML! or X3D?, allow to define the geome-
tries of the objects that belong to the scene. However, they do not aim to support
domain specific concepts (here common sense about architecture and domestic
habits). In 3D modelling, geometries are defined using primitive shapes and
operators. They are then organised along scene graphs. These hierarchical data
structures are merely defined to support the rendering and for optimisation
purposes. 3D models and scene graphs are computational-dependent models.
The way objects and scenes are described does not necessarily make sense for
end-users.

The point of view of semantic modelling is that, both designers and end-users
conceptualise VEs rather than directly build its geometrical and computational
representations. Semantic modelling is expected to offer a richer and more ex-
pressive representation of VEs. Consequently, it led to an increasing scientific
interest to propose relevant formalisms and frameworks for supporting this se-
mantic representation.

1.1.1 Overview of Related Approaches

Initial Approaches

Semantic modelling techniques are rooted in information systems, namely
databases, Geographical Information Systems, and world wide web. Data rep-
resentation is a crucial issue for these systems. Traditional approaches merely
focus on techniques that promote efficient storage and data retrieval. In contrast,
semantic modelling aims to make data meaningful and consequently machine-
processable. The semantic web is a good example of what semantic modelling
can provide. By inserting machine-readable metadata, it allows the meaningless
information stored on web pages to be processed by algorithms and searched
based on their content.

The current development of VEs shares many issues with the information
systems mentioned above. To reduce the gap between the user’s representation
and the low-level geometrical implementation of VEs, there is a strong need for
more conceptual and abstract representations of VEs. The semantic modelling
of VEs pursues the same objective for Virtual Reality (VR) contents but requires
specific knowledge modelling languages.

As noticed by (Ibanez and Delgado-Mata, 2011), each research group has de-

Virtual Reality Modeling Language, http://www.w3.org/MarkUp/VRML/
2eXtensible 3D, http://www.web3d.org/x3d/

1.1. Semantic Modelling of Virtual Environments 15

veloped its own methodology and framework to design semantic VEs, and there
is no standard for semantic modelling of VEs. These authors have identified
three main approaches for the semantic modelling of VEs.

e Designing the VE along with the semantic model. The metadata are added
in the model as the objects are created. This technique has been used
either for content-oriented and system-oriented approaches.

e Building the VE based on a pre-existent semantic level. The main idea
of this technique is to get benefits from an existing semantic model. For
instance, one can use an existing Geographical Information System to build
virtual urban environments.

e Adding semantic annotations to the pre-existent VE. The semantic anno-
tations can be multimedia resources, such as texts, images, sounds, and
Web links. In this case, the added information makes sense only for the
user, but is not semantically interpreted by the system.

Domain-dependent vs. Domain-independent Semantic Models

Several semantic models of VEs proposed in the literature are specifically
dedicated to a specific application domain, such as urban environments (Donikian,
1997; Farenc et al., 1999) and digital heritages (Liu et al., 2006). The advantage
of this approach is that all the features of the modelling language are meaningful
for the designer and thus sound more concrete. The main disadvantage is that
these semantic models are platform-dependent and difficult to extend.

Content-oriented vs. System-oriented Semantic Modelling

Current approaches on semantic modelling can be classified into two main
categories, corresponding to the kind of semantics they specifically address:
content-oriented semantics or system-oriented semantics.

Content-oriented semantic modelling aims to define an explicit representation
of the scene content. It is often done by mapping graphical contents to their
conceptual representation, typically using ontologies (Kalogerakis et al., 2006).
It provides a representation of the VE which makes sense for the users. The
semantics is mostly about types, properties, structures, and relationships of the
scene’s entities. The approach is very close to the semantic web. Content-
oriented semantic models are thus platform-independent models.

Typically, a VR application implies the coupling between graphical contents
and execution systems (i.e., the underlying VR platforms). An execution system
is composed of different components, e.g., for rendering, physics, and interaction.
System-oriented semantic modelling aims to provide the information related to
the components of the application. The main goal is to support the coupling
between these different components and to keep them independent from each
other. The semantic modelling is here motivated by issues regarding system

16 1. Semantic Modelling of Virtual Environments

engineering. This is the approach that Latoschik and Frohlich (2007) followed
with SCIVE which uses the concept of reflection to access the properties of the
entities of the application at runtime.

With vs. Without a Conceptual Modelling Phase

Semantic modelling does not exclude other traditional modelling methods
for system engineering. Moreover, semantic modelling can be used mutually
with them, particularly with conceptual modelling. Developing of VEs has been
highlighted as a specialised, time-consuming, and expensive process. By intro-
ducing a conceptual modelling phase into the development process of VEs, many
obstacles preventing a quick spread of this type of applications could be avoided
(De Troyer et al., 2007).

According to (Vanacken et al., 2007), semantic information should be intro-
duced during the conceptual modelling phase of VEs. As we have seen previ-
ously, one of the main semantic modelling techniques is to add semantic anno-
tations to existing VEs. This is a time-consuming and tedious task. Moreover,
this makes semantic annotations tied to the underlying systems of VEs. Because
the conceptual model of the VE is system independent, the introduction of se-
mantics into the conceptual model consequently allows to decouple the semantic
layer and the system dependent layer.

Existing Approaches for the Semantic Modelling of Virtual Environ-
ments

Based on the above critical remarks, to summarise related approaches on
semantic modelling of VEs, we classify them using the following criteria.

C1. Genericity: Is the proposed semantic model generic or application depen-
dent?

C2. Content-oriented semantics: Does the semantic model convey knowledge
about the entities of the simulated world?

C3. System-oriented semantics: Does the semantic model convey information
about the components of the application that support the simulation of
the virtual environment?

C4. Conceptual modelling: Does the semantic model result from a conceptual
modelling phase?

Table 1.1 includes a list of approaches to developing semantic VEs that are
relevant to our approach. The first column (Approach) includes names and
references of the approaches. For each approach, a check mark (v') at one of
the four columns from C1 to C4 implies that one of the main interests of this
approach is related to the criterion identified by the column. These approaches
will be discussed in the following sections, according to the defined criteria.

1.1. Semantic Modelling of Virtual Environments 17

Approach Cl1|C2|C3|C4
Informed VEs (Farenc et al., 1999) v

Semantic digital heritages (Liu et al., 2006) v

Basic semantic level (Ibanez and Delgado-Mata, 2006) | v/ | v/
OntologyX3D (Kalogerakis et al., 2006) v |V

Core and Specific Ontologies (Grimaldo et al., 2006b) | v | v
XML-based ontology (Gutierrez, 2005) v |V

VR-WISE (De Troyer et al., 2007) v |V v
NiMMiT (Vanacken et al., 2007) v |V v
Information-rich VEs (Bowman et al., 2003) v v
SCIVE (Latoschik and Frohlich, 2007) v v
Semantic class library (Tutenel et al., 2009) v v

Table 1.1: Summary of related approaches for the semantic modelling of VEs.

1.1.2 Domain-dependent Semantic Modelling
Semantic Urban Environments

To provide the necessary information for the behavioural simulation of virtual
humans, notably navigation tasks in urban environments, Farenc et al. (1999)
proposed a solution based on the concept of Informed Virtual Environments.
With VUEMS, Donikian (1997) followed a similar approach. The Informed VE
is described as the hierarchical decomposition of the urban scene into environ-
mental entities (e.g., streets, sidewalks, or buildings), providing both geomet-
rical information and semantic concepts (¢f. Figure 1.1). For each entity, the
database contains information about its name, type, and location in the scene.
Each entity may have some entry or exit points. Entities may have links to
other entities, such as ascendant and descendant entities. For example, descen-
dant entities of a junction may be a building, a traffic zone, or a non traffic
zone.

To interact with environment entities in Informed VEs, environment entities
are built upon Smart Objects (Kallmann and Thalmann, 1999). A smart object
is associated with predefined possible behaviours. It is possible to help users
in how to interact with it. For example, a lift in a building represented as a
smart objects is able to show users where to activate the button for descending
or raising.

Semantic Digital Heritages

Virtual cultural heritage applications share many common points with virtual
urban environments. Besides the realistic 3D graphics modelling of ancient ar-
chitecture, semantic information is needed to provide useful explanations during
the user’s visit, or to design a virtual guide as an artificial partner for the user.

18 1. Semantic Modelling of Virtual Environments

Mo traffic o
Sidewalk Routezone Traffic zone zone Building

Figure 1.1: Decomposition of a urban environments into environmental enti-
ties providing both geometrical information and semantic notions, proposed in
(Farenc et al., 1999).

Liu et al. (2006) proposed a semantic approach for designing digital her-
itages. Figure 1.2 shows the hierarchical model of the city components. In this
case, the semantic modelling phase precedes the traditional graphical modelling
process. This enables users to transform their modelling plans into the semantic
description.

At the implementation level, semantic elements (e.g., city, streets, districts,
or houses) are constructed based on graphical basic units. Graphical units and
semantic elements can be combined to build higher level semantics elements. For
instance, a combination rule is “a house consists of its base, several gates, one
roof, more than four walls, and several windows”. Furthermore, the topology of
the semantic element can be used to define an architectural style. For example,
a vernacular house includes a central yard, a shop wall, gate-window wall, two
conjunct walls, a small north house, and a small south house. By using semantic
modelling, it is then possible to control the generation of ancient architecture
with different styles. In addition, information about style or topology of ancient
architecture is explicit.

1.1. Semantic Modelling of Virtual Environments 19

Figure 1.2: A semantic model for constructing digital heritages, proposed in
(Liu et al., 2006).

1.1.3 Content-oriented Semantic Modelling

While well motivated by the benefits of a semantic description of VEs, it has
been seen previously that the earlier approaches are still based on specialised
techniques for specific applications. Therefore, the proposed semantic models
are different each from other, and are application-dependent. To overcome this
issue, researchers have been interested in defining more generic semantic models
of VEs. First, they focus on identifying the basic and common semantics that
can be shared among a variety of VEs. Second, they attempt to define a high-
level, abstract, and domain-independent representation of 3D scene contents.

Basic and Common Semantics

Ibanez and Delgado-Mata (2006) defined a basic and common level for the se-
mantic representation of the content of VEs. Their model relies on ten concepts:
object type, navigation network, object identifier, location, orientation, width,
height, depth, spatial containment relations, and minimal paths. The main ad-
vantage of this model is that only the first two elements must be manually
annotated. The other eight elements can be calculated. From the perspective
of spatial relationships, the first eight elements are related to a particular ob-
ject, whereas the other two elements are related to spatial relationships between
objects.

Object type refers to the type of an object according to a particular ontol-
ogy. Each object is associated with a reachable three-dimensional point, called
accessible node. A set of accessible nodes composes a navigation network in the
VE.

Every object is uniquely identified by an object identifier. Width, height, and

20 1. Semantic Modelling of Virtual Environments

location width depth height

Figure 1.3: Basic and common semantics of virtual environments proposed in
(Ibanez and Delgado-Mata, 2006). Here, the description of a chair is enriched
by semantic information such as location, width, depth, and height.

depth are computed based on the bounding box of the object. Location of an
object is defined as its centroid (cf. Figure 1.3). Orientation is directly extracted
from the geometric model of a VE. Similarly, a spatial containment relations
(i.e., an object contains another object) is calculated from the geometric model.
Because in geometric models given in the form of VRML and X3D formats, each
node represents an object, and the organisation of nodes is hierarchical. Thus,
spatial containments can be easily obtained. Finally, minimal paths represent a
shortest path between two arbitrary accessible nodes.

Coupling Virtual Environments with Ontologies

We present here three types of ontological models that provide more complex
and abstract descriptions than allowed by the approach presented above.

ONTOLOGYX3D

Kalogerakis et al. (2006) proposed to couple ontologies with graphical con-
tents represented by the VRML or X3D standard formats. The graphical con-
tents are mapped onto the ontology, called OntologyX3D, represented by the
Ontology Web Language® (OwL). To build the OntologyX3D, the X3D nodes

*http://www.w3.org/TR/owl-ref/

1.1. Semantic Modelling of Virtual Environments 21

representing graphical concepts are mapped into OWL classes (c¢f. Figure 1.4).
Every OWL class in the OntologyX3D is the abstraction of a graphical resource.
It holds information related to geometry and appearance of objects, scene navi-
gation, lights, environmental effects, sound, interpolators (for linear animation),
sensors, events, humanoid animation, and geography.

Shapa
otherinterfaces 1 String
hashiutiTexture | Instance | hdultiTaxture
hasimageTexture | Instance | ImageTexture
hasProtolnstance | Instance | Protolnstance §
roperties | Instance | FillProperties

—i_s__-_:;—; -) k'“:.-_—-_ —
—_—— % Er———— :
ki isg— isa / isa | isa = I53 ——__isa
- - S -
4 Bevwation Grid Line Sat e
3 heighttd | String vertexCount [String Cone
colorPerErtex | Boolean has Calor [Instance [Calor height | Float
coll | Boolean hazCoordinateDouble [Instance [Coordinate Double bottom Radiuz | Float
LT kSpacing | Float hasGecCoordinate | Instance | GeoCoordinate botton | Boclean
xDimension | Integer has Coordinate | Instance | Coordinate side | Boolean
isa
GeoBewation Grid

set¥Geale | Fleat
heighthiGeo [String
geolGrdOrigin | String

ySeale [Float

setHeight | String

Figure 1.4: A semantic model of a 3D scene obtained by coupling ontology with
graphics content, proposed in (Kalogerakis et al., 2006).

Coupling the scene with an ontology offers several important advantages.
On the one hand, a semantic description of interrelationships among graphical
resources is obtained. Examples of semantic relations are “isPartOf”, “general-
izationOf”, “hasFunction”, or “hasBehaviour”. On the other hand, the ontology
enables agents to perform automated reasoning on the graphics content. For
example, OntologyX3D is combined with a rule based inference engine based on
the Semantic Web Rule Language* (SWRL). Therefore, it is possible to answer
to queries for content. For instance, to answer to the query “what is the func-
tionality of this component?”, the system first makes the corresponding between
the clicked object in the scene and the mapped class in the OntologyX3D, then
searches for the “hasFunction” relations of this class.

The SEVEN platform

Following the same principle of coupling graphical contents with ontologies,
the SEVEN platform is proposed to design semantic VEs (Otto, 2005a,b). The
authors noticed that existing VEs sometimes have the same functionalities (e.g.,
for visiting museums), but they are not interoperable. For example, a guide

“http://www.w3.org/Submission/SWRL/

22 1. Semantic Modelling of Virtual Environments

agent of a museum can not exploit another environment in the same domain.
The main goal thus is to develop a semantic model of VEs that contains common
and abstract concepts of VEs.

Alternative to OntologyX3D, the SEVEN platform uses the Resource De-
scription Framework® (RDF) to describe types, properties, and relationships of
elements of VEs. By coupling the scene with a RDF graph, this allows a uni-
form access to entities of heterogeneous environments. Furthermore, as RDF
graphs are machine processable, agents can work in different RDF graphs in a
transparent manner.

XML-based Ontology

A generic XML-based semantic model for representing VEs is proposed in
(Gutierrez et al., 2005). The semantic model is built around the concept of
Digital Item that corresponds to each entity in the VE, for example virtual
characters or objects (c¢f. Figure 1.5). The organisation of digital item is re-
cursive, i.e., a digital item can contain other digital items. A digital item has
different geometrical representations defined in Geometric Descriptor that spec-
ifies the type of Shape associated with the digital item. A Controller defines
how the digital item behaves, e.g. by autonomous animations or based on user
input from a device. At last, a digital item is described by Semantic Descriptor
that provides human and machine readable information about a particular digi-
tal item. Semantic descriptors are extracted from the MPEG-7 standard in the
form of XML descriptors (Manjunath et al., 2002).

The main advantage of this semantic model is to increase the scalability,
reusability, and interoperability of VEs. The semantic model of the VE can
be used for many purposes, such as animation, interaction, and visualisation
(Gutierrez, 2005). For instance, to animate virtual characters both in a hand-
held device and a large screen with different resolutions, a digital item is asso-
ciated with two graphical representations with different levels of detail. Based
on the semantic descriptor of the digital item, it is possible to choose the cor-
rect geometry and interface to present the digital item according to the output
device.

Core Ontology vs. Domain Specific Ontologies

Ontologies have been used in the previous approaches as a relevant formalism to
provide a conceptual representation of scene contents. The main idea has been
a direct mapping between graphical contents and ontologies. The concepts in
the ontology must be the exact copy of the specific graphical resources. This
led to several inconveniences. First, onotologies can not represent entities with
no graphical representation in VEs. Second, it is not possible to share common
properties among a family of graphical resources. For instance, movable objects
have some properties in common in compared to non-movable objects.

http://www.w3.org/TR/rdf-primer/

1.1. Semantic Modelling of Virtual Environments 23

Sceng

)
114

0.

Semantic Descriptor

0-
- 0.1y

Controller 1.7 1.1 Digital Item Seometric Descriptor

011
/ > To
L

S Shape

Figure 1.5: XML-based semantic model of virtual environments, proposed in
(Gutierrez et al., 2005).

=
-
4
o
2
.

3D Intelligent Virtual Environment
>
Object

Semantic Layer

SVE Core Ontology [l Interaction:
Sense / Act

3D Engine

Instantiation

Production Visualization

Domain Specific Ontologies

Figure 1.6: Semantic virtual environments based on Core Ontology and Domain
Specific Ontologies, proposed in (Grimaldo et al., 2006a).

Grimaldo et al. (2006a) proposed a different ontology-based approach for
semantic VEs. The main refinement relies on the use of two types of ontology:
Core Ontology and Domain Specific Ontologies (cf. Figure 1.6).

The Core Ontology defines abstract concepts, as well as their properties and
relationships between them. Abstract concepts are generic and independent
to application domains. There is a taxonomy of abstract concepts based on
specific terms in the field of VEs. For instance, abstract concepts are divided

24 1. Semantic Modelling of Virtual Environments

into agents or objects. Objects are thereafter categorised into movable/non-
movable objects, or graphical /non-graphical objects. Each abstract concept is
associated with a list of properties. The properties of an abstract concept can be
quantitative (e.g., location, height) or qualitative (e.g., empty, full). Relations
between abstract concepts are organised in a hierarchical order. That is, an
abstract concept may be the container of other ones. With regard to movable

3070

objects, there are three possible additional relations: “in”, “on” and “pickedBy”.

A Domain Specific Ontology defines concrete concepts of a particular domain.
The domain-specific concepts are extended from abstract concepts predefined in
the Core Ontology. A domain specific concept inherits properties and relations
from its abstract concept. Thus, a Domain Specific Ontology represents knowl-
edge about a domain.

1.1.4 System-oriented Semantic Modelling

The precedent section has discussed the main techniques used for content-
oriented semantic modelling. Such semantic models provide an ontological de-
scription of the entities of the scene: identifiers, types, structures, attributes of
entities, and relationships between them.

System-oriented semantic modelling adopts a different point of view. It is
more oriented towards the modelling of the dynamics of the simulation. Se-
mantic models convey information needed by the different modules of the VR
application (namely different engines, e.g. for the rendering, the physics, or the
interaction) to support the execution of the simulation. System-oriented mod-
elling deals with concepts related to the implementation and takes advantage
from mechanisms provided by object-oriented programming, like introspection.

Information-rich Virtual Environments

In (Bowman et al., 2003), semantics is considered as abstract information, i.e.,
information that is not directly perceptible by the user. For example, the visual
appearance or surface texture of a table is directly perceptible, while meaningful
information such as date and place of manufacture of the table is not. Therefore,
semantic VEs should be augmented by abstract information. Such augmented
VEs are called Information-rich Virtual Environments (IRVEs).

IVREs are built upon a central concept, called semantic objects, which en-
capsulate abstract information, such as text, numbers, images, audio, video, or
hyperlinked resources (cf. Figure 1.7). At the implementation level, semantic
objects are defined as reusable scenegraph nodes. More precisely, abstract infor-
mation is described using VRML and X3D PROTOTYPE nodes. Thereafter,
runtime accesses to semantic objects are obtained by means of APIs (Appli-
cation Program Interfaces). In the case of VRML, APIs are EAIs (External
Authoring Interfaces), and in the case of X3D, they are SAIs (Scene Access
Interfaces).

Despite the concept of semantic objects accessible by APIs is helpful, the in-

1.1. Semantic Modelling of Virtual Environments 25

ga—
. Em ﬂ']ETn%
o alas el

lemlded to Jock like
yeobark, They arets

for protection of the trees.

Hotw1 nﬂg ﬁfﬁ'm .
of Trees ™

Figure 1.7: Hlustration of an information-rich virtual environment, proposed in
(Bowman et al., 2003).

tegration of domain knowledge into semantic objects using special scene graph
nodes remains a difficult task. Moreover, research in IVREs is mainly focused
at techniques for design and display of abstract information (Polys and Bow-
man, 2004). The questions are related to display location (i.e., where to display
abstract information in a VE) or level of detail of abstract information, not to
how to facilitate the conceptualisation of IVREs.

Multi-layered Semantic Reflection

A different line of research of system-oriented semantic modelling is based on
the concept of semantic reflection. Inspired from object-oriented programming
paradigms, reflection implies the abilities to access to the entities of the appli-
cation during runtime. Thus, reflection provides information about the services
provided by the entity and its current state (i.e., attributes and relations to other
entities). Entities with semantic reflection abilities are called semantic entities.

Tutenel et al. (2009) introduced the Semantic Class Library to design seman-
tic VEs, notably 3D games. After creating a 3D model, the designer associates
the elements of the 3D model to existing classes in the library. Otherwise, the
designer can create a new class with the desired properties. Beyond the 3D
representations of objects within the game world, the Semantic Class Library
provides additional semantics to the objects, such as physical attributes (e.g.,
the mass or material), functional information (e.g., how one can interact with
an object).

ScCIVE (Simulation Core for Intelligent Virtual Environments) is a framework
using semantic reflection to design semantic VEs (Latoschik and Frohlich, 2007).
The architecture of SCIVE is based on semantic net — a network of semantic

26 1. Semantic Modelling of Virtual Environments

supports(tablel,pipel)
supports(tablel,aggragtel)

ID: 21

Noun: connectable(pipe2)
mass: 2.3 thing | [ox
friction: 0.2 object

active?: true
pos/orient: m1

Ee
rniturg Jex
\

inst—of

mass: 34
friction: 0.67
active?: true
pos/orient: m3
velocity: (3,2,0)

pipeNinst—of
ex ipel

Figure 1.8: Based on the concept of semantic entity and semantic reflection,
ScIVE links different representations (i.e., from left to right: graphical, physi-
cal, and knowledge representation) of a VE and provides uniform access to the
application’s entities (Latoschik and Schilling, 2003).

entities providing a common representation to VEs. As a VE is an integra-
tion of different representations (i.e., graphical database, physical database, and
knowledge base), SCIVE provides a common representation layer of them (cf.
Figure 1.8). This common representation layer is based on FESN (Functionally
Extendable Semantic Network) (Latoschik and Schilling, 2003)(Heumer et al.,
2005). In FESN, information about simulative entities, attributes, and relations
is explicitly described using a XML-based representation. At the implementation
level, semantic entities are programmed in C++. They allow the introspection
of their attributes and services. As a consequence, information about entities
stored in the semantic net can be synchronised at the execution time.

A VR application that allows users to perform assembly tasks of complex
objects in 3D is a good example illustrating the concept of semantic reflection.
Fach virtual object has three separated representation: graphical representa-
tion, physical representation (e.g., mass, position, orientation), and knowledge
representation (e.g., the object can be assembled to what objects?). SCIVE as
well as the Semantic Class Library enable a unified knowledge layer of these
three representations.

1.1.5 Semantic Modelling of Virtual Environments With a Con-
ceptual Modelling Phase

Conceptualising Static Scenes and Behaviours

VR-WISE (Virtual Reality With Intuitive Specifications Enabled) is an ontology-
based approach for the design of semantic virtual reality applications (Kleiner-
mann et al., 2005). The main idea is to introduce a conceptual phase into the

1.1. Semantic Modelling of Virtual Environments 27

design process of VEs. Thus, the development process in VR-WISE consists of
three sequential steps, namely the specification step, the mapping step, and the
generation step (cf. Figure 1.9).

- . . e - -
/ . " World Spectication| "\ // L — [— J X
Virtual Reality CP _W_ Lm
-~ Goncepiual Modeling |+
uses ey DﬂCBpﬂJaLMIHE%/‘ | Conceptual
ity it s wing | Mappings
Lt TP M .
-uw ':lwm tm#mw
o = = * o

Figure 1.9: Overview of the design process according to the VR-WISE approach
(from left to right): specification, mapping, and generation step (Kleinermann
et al., 2005).

The specification step allows to specify the VE at a conceptual level, using
domain knowledge, and without taking into account any implementation details.
The specification is done at two levels: the concept level and the instance level.
At the concept level, domain concepts are mapped into the concepts of the
ontology, so called domain ontology. It is possible to describe the properties
as well as the relationships between concepts. Behaviours of concepts such
as “move”, “turn” or “roll” can also be specified. The invocation of objects’
behaviours is based on events (time events, user events, or object events) (Pellens
et al., 2005). At the instance level, the instances represent the objects that will
populate the VE, as specified by the domain ontology.

In the second step, the mapping from the conceptual level to the geometric
primitives is specified. The purpose of this mapping is to specify how concepts
of the domain should be represented in the virtual world. Similarly to the spec-
ification step, the mapping is defined at two levels. The domain mapping links
the concepts of the ontology to VR implementation primitives. For example, a
bin is represented by a cylinder. Although several instances may be instantiated
from the same concept, in some cases, they may require different representa-
tions. Therefore, the world mapping allows defining mappings for instances to
VR implementation primitives. In this way, the default mapping, specified in
the domain mapping, can be overwritten.

Finally, the generation step will produce the source code for the VE defined
in the specification step, using the mappings defined in the second step. There
are two generated source files. The first file contains the 3D scene structure with
its objects in VRML format. The second file contains the semantic information
generated in the MPEG-7 format.

Conceptualising Interactions

NiMMiT (Notation for MultiModal interaction Techniques) is an alternative ap-
proach for designing semantic VEs with focus on semantics interactions (Vanacken

28 1. Semantic Modelling of Virtual Environments

et al., 2008). The approach considers two main steps: conceptualising the static
scene, and conceptualising the interactions.

At the conceptual phase, the approach in NIMMIiT is partially similar to the
VR-WISE and Grimaldo et al.’s approach (cf. Section 1.1.3). NIMMIiT uses an
ontology to map domain concepts to those of the ontology. The ontology allows
to specify properties of objects related to interactions, such as selectable/non-
selectable objects, or movable/non-movable objects.

Thereafter, the conceptualisation of the interactions in NiMMiT is done using
a diagram-based notation intended to describe multimodal interactions between
the user and the computer (Vanacken et al., 2007). An interaction primitive is
described as a task, such as “select an object” or “move an object”. A set of
interactions is represented by a task chain. The interaction starts in the start-
state, and ends with the end-state. An event is based upon the user’s input that
can be multimodal, such as speech utterances, gestures, pointing device events,
or button clicks. A labelis used to store values exchanged during the interaction.
Finally, when the task chain has been completely executed, a state transition
moves the state-diagram into the next state.

The main advantage is that the semantic model produced in the conceptual
modelling phase can be used to enrich the interaction modelling phase. For
instance, during a selection task, some objects should be selectable, but others
not. Likewise, the moving task is only applied to several objects (e.g., tables
and chairs of a room), but not all of them (e.g., walls and windows of the room).
Thanks to the semantic description, the interactions are restricted to possible
objects. Also, the conceptual modelling phase allows to specify interactions in
a system-independent manner.

1.1.6 Discussion

We have analysed relevant approaches for the semantic modelling of VEs. The
main existing techniques, frameworks, and methodologies in the literature for
semantic modelling of VEs have been reviewed. In this section, we discuss the
limitations of these approaches. As our ultimate focus is related to spatial se-
mantics of VEs, we reformulate the main principles of the existing solutions from
two different modelling perspectives: spatial entities and spatial relationships.

Limitations of the Related Approaches

For readability, Table 1.1 has previously summarised related approaches accord-
ing to four criteria. These criteria can be revised as follows: 1) genericity (i.e.,
the semantic model should be domain-independent); 2) content-oriented seman-
tic modelling (i.e., the semantic model supports access to attributes, relation-
ships, and states of the scene’s entities); 3) system-oriented semantic modelling
(i.e., the semantic model provides access to the application’s entities at runtime);
and 4) the semantic model results from an explicit conceptual modelling phase.
No previous approach presented so far satisfied all these criteria.

1.1. Semantic Modelling of Virtual Environments 29

With regard to the genericity of the semantic models, both Informed VEs
and semantic digital heritage models are limited to specific application areas
(e.g., urban environments and cultural heritage).

Content-oriented semantic models (e.g., OntologyX3D, the SeVen platform,
or XML-based ontology) are mainly obtained by coupling the scene content with
ontologies. However, the coupling is carried out in an ad-hoc manner and in
a manual way, because domain’s and ontology’s concepts are directly mapped
onto low-level geometrical primitives.

Semantic models resulting from a conceptual modelling phase (e.g., VR-
WIsE and NiMMiT approach) overcome the manual mapping by using an ex-
plicit conceptual model. The conceptual model of a VE is commonly built upon
graphical editors or diagram-based notations. Thus, it allows to introduce se-
mantic information during the conceptual modelling. Nevertheless, a strong
limitation of this approach is that the conceptual model only reflects a static
view of the virtual world. Changes in objects’ attributes and relationships are
not updated at runtime upto the conceptual model.

System-oriented semantic models are mainly based on APIs or the concept
of reflection. These paradigms enable meta-accesses to the application’s entities
during runtime. Thus, every update related to the scene content is observed.

From our point of view, ideally, the semantic modelling of VEs should com-
bine both content-oriented and system-oriented modelling. Moreover, it should
be based on generic metamodels representing abstract concepts of VEs, like the
Core Ontology in Grimaldo et al.’s approach. It should provide a platform in-
dependent point of view on the VR application, built-up during the conceptual
modelling phase of the development process. Based on these properties, spa-
tial knowledge can be introduced into the semantic model of the VE and thus
will extend the expressiveness of existing models. That way, spatial knowledge
enriches the description of the content of the VE and, thanks to its formal rep-
resentation, can also be used to specify constraints about the behaviour of the
simulation.

On the Modelling of Spatial Entities

Most of the approaches presented previously have been built upon a partial
conceptualisation of spatial entities within VEs. These approaches are sum-
marised in Table 1.2. The common point is that the conceptual representation
should be separated from the graphical representation of spatial entities. The
reason is that, in VEs, some spatial entities may be associated with graphical
resources, but this is not always true. The conceptual representation of spatial
entities should contain not only information about their visual appearance, but
also domain specific attributes and behaviours. It has also been observed that
the common and basic semantic level constitutes a sound basis about spatial
entities, such as location, orientation, width, height, and depth. Moreover, it is
necessary to be able to update the evolution of spatial entities over the time, and
to give access to their predefined services during runtime. Semantic reflection is

30

1. Semantic Modelling of Virtual Environments

a relevant mechanism to achieve this goal.

Thalmann, 1999)

Approach Description
Smart objects | Smart objects are virtual objects associated with a set
(Kallmann and | of pre-programmed possible interactions with the user.

Semantic objects
(Polys and Bow-
man, 2004)

Semantic objects are reusable scenegraph nodes encap-
sulating abstract information in the form of text, images,
audio, video, or hyperlinked resources.

Semantic entities
(Latoschik and
Frohlich, 2007)

Semantic entities are C++- objects providing semantic re-
flection about their capabilities (attributes and services).

Digital items
(Gutierrez et al.,

2005)

Digital items are virtual objects associated with semantic
descriptors. A semantic descriptor decides the graphical
representation of a digital item and defines the way to
control it.

Ontology’s
cepts (Kaloger-
akis et al., 20006)
(Grimaldo et al.,

con-

Virtual objects are mapped into concepts of an ontol-
ogy. Concepts may hold attributes and relations with
other concepts. Ontology’s concepts have common basic
semantic defined in (Ibanez and Delgado-Mata, 2006),

2006b) (Klein- | such as object type, object identifier, location, orienta-
ermann et al., | tion, width, height, or depth.
2005)

Table 1.2: Summary of related work regarding the modelling of spatial entities.

On the Modelling of Spatial Relationships

With a specific attention to semantic spatial constraints, we have summarised in
Table 1.3 the related approaches that partially deal with the modelling of spatial
relationships between objects within VEs. Evidence is that no previous work
has dealt with the explicit modelling of semantic spatial relationships for VEs.
Instead, these approaches merely specify relationships between spatial entities
extracted from scene graphs. That might be “whole-part” relations, or special
ones such as “in”, “on”, and “pickedBy”. Whereas, semantic spatial relationships

relating to direction, distance, or topology of the 3D space were not handled.

1.2 The MASCARET Approach

The previous section reviewed related approaches for the semantic modelling
of VEs. This section focuses on a methodology and framework for semantic
modelling of VEs named MASCARET, in which the work presented in this thesis
takes place. In Part I, we will propose a model of spatial semantics of VEs that
is generic and independent to the framework used for developing VEs. Then,
we will show how our model of spatial semantics has been deployed into the
MASCARET framework.

1.2. The MASCARET Approach 31

Approach Description

Ontology-based By mapping the scene content to an ontology like in
approaches (Kalogerakis et al., 2006)(Otto, 2005b), it is possible to
define relationships between concepts, such as “isPartOf”
or “isGeneralisationOf”.

Grimaldo et al. | There are three further possible relations that can
(Grimaldo et al., | be defined between movable objects: “in”, “on”, and
2006b) “pickedBy”.

VR-WISE (Klein- | During the conceptual modelling of the static scene of a
ermann et al., | VE, it is possible to specify relative positions (e.g., left,
2005) right, front, back, above, and under) to place an object
with respect to another object in an ontology. However,
these relations are not updated when some changes occur
in the environment during the execution.

Table 1.3: Summary of related work regarding the modelling of spatial relation-
ships.

The remainder of this section is structured as follows. Section 1.2.1 gives an
overview of the approach. Section 1.2.2 describes how to develop an application
using MASCARET. Section 1.2.3 presents the architecture of the MASCARET
framework. Finally, Section 1.2.4 summarises the approach and discusses the
limitations, regarding the modelling of spatial knowledge.

1.2.1 Presentation

MASCARET stands for MultiAgent System for Collaborative, Adaptive & Realistic
Environments for Training. Initially, it was dedicated to the development of VR
environments for human learning (Querrec, 2002; Chevaillier, 2006; Querrec,
2010). However, it has also been successfully applied for developing other types
of VR applications, such as agent-based simulations (Septseault, 2007; Marion
et al., 2007) or cultural heritage applications (Barange et al., 2011). The main
goals of the MASCARET project are twofold:

1. to develop semantic-rich VEs in which knowledge about the environment
is explicit to both users and agents,

2. to provide a methodology for designing and implementing such semantic-
rich collaborative VEs.

To reach these goals, MASCARET is grounded on two original propositions:

e P1: to use the Unified Modeling Language (UML) as a generic language
for specifying the different aspects of collaborative VEs (e.g., structure,
behaviours, interactions, activities of users and agents),

e P2: to use a model-based process for developing and implementing VEs.

32 1. Semantic Modelling of Virtual Environments

Proposition P1 is related to the use of UML as a common language for the
semantic modelling of VEs. As discussed in Section 1.1, a variety of languages
have been used for the semantic modelling of VEs. They can be divided into
two categories. The first category is related to the definition of a new Domain
Specific Language (DsL), dedicated to a specific family of VEs. This is the case
of domain-dependent semantic modelling approaches. DSLs are mainly special-
isations of markup languages (e.g., XML or DTD) that allow to specify concepts
of a specific domain, such as urban environments or cultural heritage environ-
ments. The second category is concerned with the use of ontology languages
(e.g., OWL or RDF). Ontology languages allow to model domain concepts that
compose the static view of the VE. However, they have strong limitations in the
modelling of the dynamics of the VE (e.g., interactions or behaviours). Often,
textual scripting languages are integrated with ontology languages to enable the
description of the dynamics of the VE. As stated in (Chevaillier et al., 2011),
UML allows to overcome these difficulties. First, UML offers the ability to model
both the static (or structural) view and the dynamical (or behavioural) view of
the VE. Second, UML is an extensible modelling language. Extensions of UML
are define using profile. Profiles allow to extend and/or specialise the semantics
of UML, or existing profiles, for a specific domain of application. MASCARET is
based on two UML profiles, specifically adapted to the modelling of collaborative
VEs, namely VEHA and HAVE (Chevaillier et al., 2009).

Proposition P2 is concerned with the use of a model-driven approach for
developing VEs. Thanks to its grounding on UML, the methodological ap-
proach in MASCARET follows the main principles of the MDA/MDE (Model-
Driven Architecture/Model-Driven Engineering) framework, as envisioned by
the Object Management Group (OMG, 2011). From this perspective, one of the
interesting properties, that MASCARET shares with UML, is that it combines
both graphical notations and textual formal expressions thanks to the Object
Constraints Language (OcL), part of UML (OMG, 2006). The process to specify
and develop the VE using MASCARET is detailed in the next section.

1.2.2 Development Process

Using MASCARET, the development process involves three roles: domain ex-
perts, graphical designers, and software engineers. The development process
consists in three main phases: the domain modelling phase, the instantiation
phase, and the implementation and execution phase (Querrec, 2010).

Domain Modelling Phase

First, the domain expert defines the conceptual model of the domain rep-
resented in the VE in the form of UML-MASCARET diagrams. This step can
be completed using any UML modeller which supports modelling extensions as
defined by UML profiles (it is the case for most of the commercial modellers). As
we will see later on, the domain expert has to describe the structure of the VE
using VEHA models. The behavioural models of the VE are based on state ma-

1.2. The MASCARET Approach 33

Figure 1.10: Example of a VE modelled using MASCARET: the graphical mod-
elling view of the environment.

chines and activity charts. Thanks to HAVE, human activities can be specified
using UML collaboration and activities diagrams. This domain model is then
exported as an XMI® file. Here, the conceptual model of the VE is abstract. It
is independent to any VR platform, 3D modelling formats, and programming
languages.

However, it is important to notice the essential differences between MAS-
CARET and other semantic modelling approaches. First, unlike approaches such
as VR-WISE or ontology-based approaches, MASCARET does not aim to auto-
matically generate the VE (i.e., in the form of VRML or X3D code). Instead,
the domain model is used to conceptualise the environment and represent knowl-
edge about the collaborative VE. For instance, Figure 1.13 and 1.14 illustrate
the conceptual model partly corresponding to the VE graphically showed in
Figure 1.10.

Instantiation Phase

Second, 3D designers have to design geometrical objects using a classical 3D
modeller, see Figure 1.11. MASCARET provides plugins for several 3D modellers
(e.g., 3DS Max and Blender) to refer to the conceptual model (the XMI file).
These plugins allow the designer to add semantics to geometrical objects which
are defined as instances of the conceptual model. Therefore, different VEs can
be built, based on the same conceptual model. Those environments are then

SXML Metadata Interchange, http://www.omg.org/spec/XMI/

34 1. Semantic Modelling of Virtual Environments

VISUALISER CLASSES |
|[__weorrxm J| | visTerLes osseTs |

| [58] Ao = [view &) PECHHEHIa) [2)

Figure 1.11: The graphical designer constructs the 3D scene using a 3D mod-
eller.

exported into a file referencing (1) the conceptual model (XM file) (2) the links
with the files containing the graphical models, and (3) the instances of the
conceptual model.

Implementation & Execution Phase

MASCARET comes with packages for its implementation on various VR plaforms,
namely AR&Vi (Harrouet et al., 2006) and OGRE’. One of the novelties in MAS-
CARET is that both the conceptual model and the model of the environment are
loaded in the application. MASCARET defines a computational semantics for
these two models. The models are interpreted by the MASCARET virtual ma-
chine and their execution on the VR platform is tractable. Therefore, it is
possible to access the model at any time. Even if users’ interactions or the in-
ternal dynamics of the environment lead to some changes in the environment
(e.g., instantiation of new entities, or new role assignment for an agent), the
consistency between the conceptual model and the graphical representation is
de facto ensured. Besides, agents can make decision based on the execution of
the model.

To conclude, MASCARET allows domain experts, graphical designers, and
software engineers to work together sharing their knowledge on a same model.
The architecture of MASCARET is detailed in the next section.

"http:/ /www.ogre3d.org/

1.2. The MASCARET Approach 35

1.2.3 Model-based Architecture

The architecture of MASCARET conforms to the modelling architecture defined
within the MetaObject Facility (MoF) framework (MOF, 2011). Therefore,
MASCARET complies with the basic principles of the MDA /MDE approach. Fig-
ure 1.12 shows the multi-layer architecture of MASCARET, with respect to the
Mor framework. For the sake of clarity, we briefly present in the following
respectively the M1, MO, and M2 layer of MASCARET.

Meta-Object Facility MASCARET
UML extension
MASCARET
M2 K UML meta-model ¥ . meta-model
<<model of>> :/ \\<<instance of>>
\ i
\ /
\ /
M1 § UML user model , Conceptual model
, AL
/ \
/ \
<<model of>>1 \’<<instance of>>
\
/
MO N User object , Virtual Environment
¥y y

Figure 1.12: The multi-layer architecture of MASCARET (w.r.t MOF framework)
for the semantic modelling of VEs.

The M1 Layer: The Conceptual Level

The M1 layer corresponds to the conceptual model of the VE. In MASCARET,
the conceptual model is specified using VEHA and HAVE, two profiles defined to
extend and specialise UML for the modelling of VEs (see Section 1.2.3). MAs-
CARET does not come with additional types of diagrams. Thus, standard UML
diagrams are used to draw the different modelling views, namely the environ-
ment as experienced by virtual and real humans, and the collaborative activities
both virtual and real humans are supposed to perform within the environment.
Main diagrams are:

e domain concepts and the structure of environment: class diagrams
e behaviours of entities: statecharts
e activities of users and agents: activity charts

e organisational structures: collaboration diagrams.

36 1. Semantic Modelling of Virtual Environments

Regarding the scope of this thesis, we were merely interested in the modelling
of structure and behaviours of the environment. For more information about
how interactions, organisation, and collaboration are modelled in M ASCARET,
we refer the readers to (Querrec et al., 2004; Buche et al., 2004; Querrec et al.,
2011).

Concepts of the Domain and Structure of the Virtual Environment

<<EntityClass>> <<EntityClass>>

Chair 4[> Furniture

<<composition>> 1 |<<EntityClass>>
| Tabletop
<<EntityClass>>
Table <<EntityClass>>
0.1 Tableware
<<EntityClass>>
1 table Leg
<<composition>> | height: Length <<Entity.CIass>>
1. Container
<<EntityClass>> <<EntityClass>> Zﬁ
Desk Drawer —
slideln()
slideOut()
1 desk

1.*

<<composition>>

Figure 1.13: Conceptual modelling of a desk using MASCARET, from (Chevail-
lier et al., 2011). The vocabulary used is based on the WordNet lexical database.

The structure of the VE is represented using the VEHA meta-model in the
form of class diagrams. In Figure 1.10, the environment is composed of differ-
ent pieces of furniture (Desk and Chair), and other objects. Using MASCARET,
these concepts, and how they are structured, are partly represented by the class
diagram illustrated in Figure 1.13. Conceptual relationships between domain
concepts are represented by stereotyped UML associations. Besides, Chair and
Table are kind of Furniture, which is an abstract concept with no graphical rep-
resentation. A table is composed of one TableTop, one or more Leg. It may have
one or more Tableware. A Desk is a kind of Table. In addition to the prede-
fined structure of the table, the desk has one or more Drawer. According to this
model, the only two possible operations that one can performed on the drawer
are slideln() and slideOut().

Behaviours of the Entities

1.2. The MASCARET Approach 37

Some of the entities compounding the environment may have behaviours.
MASCARET supports the modelling of reactive behaviours. That is, the be-
haviour of an entity results from the interactions with other entities, user’s
interactions on the entity, or the internal activity of that entity. MASCARET
reuses the behavioural model of UML. Behaviours are modelled by means of
statecharts which are based on the concepts of state, transition, and event. Con-
trary to UML, in MASCARET, state machines are explicitly associated to classes.
When an event occurs, it may trigger the reaction of some entities. The corre-
sponding signal is broadcasted to all the state machines of the entities sensitive
to this type of event. The reception of the event may result in the firing of some
transitions, with respect to the currently active states of the entities. When a
transition is fired, the entity enters into another states. Otherwise, a reaction
may be the execution of an operation, or a so-called opaque behaviour, i.e., a
specific piece of code for which no semantic representation is given.

(Drawer::slidingBehavior A

Closed

PullEve [inside(table)]
PushEvent

(Slidingout ¥y~ [Slidingin)
(do:slidingOut J\) do:slidingln)
PullEvent
PullEvent PushEvent]
[inState(Stoppdd)]
g J/

Figure 1.14: Conceptual modelling (partial) of the sliding behaviour of the
drawer using MASCARET, from (Chevaillier et al., 2011).

Figure 1.14 illustrates the behavior of the drawer. The state machine specifies
the sliding behaviour of the drawer (refer to the Drawer class from Figure 1.13).
The drawer has here four possible states: Closed, Opened, SlidingOn and SlidingOut.
The drawer is sensitive to interactions that trigger Pull or Push signals. The
internal dynamics of the drawer can lead to state changes, depending on its
position (inside(table)) or when entering into a state (inState(Stopped)). For the
sake of simplicity, the state machine that governs the activation of these states
is not represented here.

The MO Layer: The Instance Level

Once the conceptual model of the environment is defined, the MO layer describes
one of the possible instantiations of the conceptual model. Each instantiation
corresponds to a specific VE. Several VEs can be instantiated from the same

38 1. Semantic Modelling of Virtual Environments

conceptual model. Every instance model represents a concrete description of the
entities and the structure of the VE. Figure 1.15 illustrates the instantiation of
a chair — an instance of the Chair class. Furthermore, it is possible to define the
initial conditions for the state machine representing the behaviour of an entity.
Also, it is possible to instantiate a specific organisation for users and agents, as
well as their ongoing activities.

(1)<Entity class="Chair" name="cyanChair">

(2) <Shape

url="VRMLS/Chairs/cyanChair.wrl"/>
(3) <Position

x="-1"y="2" z="0"/>

(4) <Rotation

roll="0" pitch="0" yaw="-0.785398163"/>|
(5)</Entity>

Figure 1.15: Example of an instantiation of an entity. Left: its graphical
representation. Right: the value of some of the properties of that object, as
defined into the conceptual model and the 3D model.

The M2 Layer: The Meta Level

Finally, the M2 layer corresponds to the meta-model of MASCARET. The meta-
model itself is a model that defines the properties of the modelling elements that
can be used to define the M1 model. For instance, concepts such as type, compo-
sition, state, behaviour, or operations are defined as classes (a.k.a. meta-classes)
which holds their own properties (a.k.a. meta-attributes). In other words, the
meta-model allows the reification and the introspection of the conceptual model.
With respect to the MOF framework, this meta-model is defined using a subset
of the UML meta-model.

MASCARET is based on two complementary meta-models, namely VEHA
and HAVE (Chevaillier et al., 2009). VEHA (a model for Virtual Environments
supporting Human Activities) provides semantics about the structure and the
dynamics of the VE, as it can be experienced by both natural and artificial
agents during their activities. Whereas HAVE (a model of the Human Activities
within Virtual Environments) provides the conceptual view of the collaborative
activities the agents are supposed to perform within the virtual environment.
In the following paragraphs, we briefly describe the elements of these meta-
models the most closely related to the implementation of the conceptual spatial
models we propose in the thesis. For a more detailed description about these
meta-models, we refer the readers to (Chevaillier et al., 2009; Querrec et al.,
2011).

Domain-Specific Concepts and Structure of the Virtual Environment

1.2. The MASCARET Approach 39

Figure 1.16 is a conceptual view of part of the MASCARET’s meta-model
representing domain concepts. The EntityClass is a meta-class, derived from the
Class class of UML’s meta-model. It represents a family of domain concepts. In
turn, a particular domain concept is called an Entity. An entity is an instance
of the EntityClass meta-class, derived from the InstanceSpecification class of UML’s
meta-model.

Entity Class Topoiogical Spacifcalion

Class = Gesineln Specifoation [
position : BasedD

2 orientation : BasedD
1
1
1
1
1
1

7

shape Shape Specification

InstanceSpecification |=_|— Entity

1.¢ hady : BodyShapeSpecification

—_

owninglnstance

1 Foint Path
oint

referentialPoint

’ slot v

value Value Specification

Slot

Figure 1.16: Conceptual view of the metamodel dedicated to the modelling of
the concepts of the domain in MASCARET, from (Chevaillier et al., 2009).

Dedicated to the domain of VEs, MASCARET’s meta-models have several
important extensions compared to UML’s meta-model. A domain concept (i.e.,
an Entity in MASCARET) has additional topological and geometrical properties.
An entity can have one or more ShapeSpecification, they are graphical represen-
tations of an entity in a VE. An entity is located in a VE by a referential point
(represented by the Point class).

Behaviour of the Entities

Figure 1.17 presents a part of the MASCARET’s meta-model representing
the behaviours of entities in VEs. Entities may have Operation. They can be
associated with StateMachine. Each type of behavioural models are defined as a
specialisation of the Behavior class.

1.2.4 Current Limitations for Specifying Spatial Constraints

In the previous sections, we have seen how MASCARET specialises the UML
metamodel. Different UML-MASCARET diagrams have been used to model the
VE. The class models represent the structure of the VE. An entity in the VE can
be associated with behavioural models (i.e., state machines). The activities of
human and artificial agents are defined using UML-like collaboration and activity
diagrams.

40 1. Semantic Modelling of Virtual Environments

Ciassifer =] Class
0.1 owner ZF\
Context precondition
Bepavior | 0.1 o]
ownedBehavior context postcondition | Constraing
BobavioraFestye [FPECITICAtion method | 0.1
% 0.1
Operation StateMachine OpanueBehavior Activity

Figure 1.17: Conceptual view of the metamodel dedicated to the modelling of
the behaviour of the entities in MASCARET, from (Chevaillier et al., 2009).

However, there exists many semantics that UML-based models are unable
to convey by themselves. For example, considering the Desk model illustrated
in Figure 1.13, a common understanding about the ontological model of the
desk is that “the height of a table is greater than the length of all of its legs”.
Similar semantic expressions can be found in the description of the structure of
VEs, for instance the cardinality constraints (e.g., “a table should have at least
three legs”). With regard to operational semantics, operations in VEs are often
conditional, i.e., an operation can only be executed according to a precondition
and is considered as completed when the post-condition will become true. For
example, the operation SlidingOut of a drawer is terminated when there is no
motion on the drawer: the post-condition of the operation is that the drawer
is in the Stopped state. At last, spatial constraints among virtual objects, that
are very important for the semantic description of the VE, can not be specified
(e.g., “the table is on the floor” or “initially, the drawer is inside the table”).

To overcome the limitations of graphical modelling, it is necessary to inte-
grate more formal and logical information into the UML-based conceptual models
of MASCARET. In this thesis, we propose a straightforward solution which con-
sists in extending the UML Object Constraint Language (OCL) into VRX-OCL,
which stands for Virtual Reality eXtension of OCL.

1.3 Summary

In this chapter, we have presented the relevant approaches for the semantic
modelling of VEs. Thereafter, we have described the MASCARET framework
that forms the implementation context for our work on the modelling spatial
semantics of VEs.

Regarding existing techniques for semantic modelling of VEs, we have been
interested in two main questions: how to model spatial entities, and how to

1.8. Summary 41

model semantic relationships between them in VEs. An important conclusion
is that, while most of the current approaches have raised to basic conceptual
representation of spatial entities, none of them has dealt with a semantic model
of spatial relationships between spatial entities within VEs.

MASCARET proposes a metamodel-based architecture for specifying and mod-
elling VEs. It allows to build platform-independent semantic models, using an
explicit phase of conceptual modelling. However, the main limitation of the
current version of MASCARET is that it still lacks a semantic model for spatial
relationships dedicated to VEs.

42

1. Semantic Modelling of Virtual Environments

Chapter 2

Spatial Models

The previous chapter presented the related work in the domain of semantic
modelling of VEs. The main conclusion is that there still lacks a model of
spatial semantics of VEs. In this chapter, we focus on spatial models. We
discuss the related approaches in the literature that are feasible for modelling
spatial constraints between spatial entities in VEs.

This chapter is structured as follows. Section 2.1 places spatial constraints
in different taxonomies, according to their inherent spatial characteristics, such
as metric/nonmetric, quantitative/qualitative, or static/dynamic. Section 2.2
describes the relevant theoretical models to formalise spatial constraints. Sec-
tion 2.3 discusses different solutions for conceptualising spatial constraints. The
emphasis will be on high-level spatial languages and frameworks. Section 2.4
summarises the chapter.

2.1 Taxonomy of Semantic Spatial Constraints

To integrate semantic spatial constraints into VEs, it is necessary to identify
the main families of spatial relationships existing in the real world and their
inherent spatial characteristics. In this section, we carry out our review of the
main taxonomies of constraints, in particular spatial constraints.

2.1.1 Metric vs. Non-metric Constraints

Spatial constraints are an important subject of study in research about spatial
cognition. In (Waller et al., 2000), to study the place learning in humans, the au-
thors categorised spatial relationships into two families: metric and non-metric
spatial relationships. The main aim is to study the correlation and interrela-
tionship between these two families of spatial constraints.

Metric relationships are based on distance and angular information. These
relationships include the relative distances from the viewing locations and the
object, as well as the angles formed by them.

Non-metric relationships are related to topological relationships (e.g., adja-

43

44 2. Spatial Models

cency) and projective relationships (e.g., betweeness, leftside/rightside, or clock-
wise/counterclockwise).

One of the main conclusions obtained from this study is that spatial cognition
(in this case, the memorisation of place in humans within a computer-generated
environment) is affected not only by metric but also nonmetric relationships
present during the learning process.

2.1.2 Quantitative vs. Qualitative Constraints

Spatial constraint can be quantitative (e.g., “45 degrees” or “5 meters”) or qual-
itative (e.g., “front of” or “inside”). Nevertheless, research in the field of quali-
tative spatial representation and reasoning (QSR) aims to represent, and then
reason about, spatial aspects of the world in a qualitative manner. An impor-
tant motivation for such a QSR approach is that it is considered to be closer
to how humans represent and reason about commonsense knowledge. Another
motivation is that it is possible to deal with incomplete knowledge (Cohn and
Renz, 2008). The most important aspects of space are qualitatively represented
as the following:

e direction (“left”, “above”)

e distance (“far”‘near”)

e topology (“touch”, “inside”)
e size (“large”, “tiny”)
e shape (“oval”, “convex”)

It is obvious that the expression of spatial aspects is purely symbolic and
qualitative. The above spatial aspects are not independent. For example, the
size of an object is dependent to the distance from which it is observed. Also,
different points of view (i.e., directions) may yield different observations to the
shape of an object.

2.1.3 Static vs. Transition Constraints

One of the first attempts that aims to put forward a taxonomy of spatial con-
straints was in (Cockeroft, 1997, 2004). The initial point of view was that, con-
straints should be divided into static constraints and transition (or dynamic)
constraints. Static constraints must be satisfied at every single state of the en-
vironment (e.g., a salary cannot be negative). Meanwhile, transitional /dynamic
constraints are applied when the environment changes from the current state to
another state (e.g., on updating a salary, its amount should not decrease).

With regard to static spatial constraints, the author proposed a classifica-
tion based on the distinction between topological, semantic, and user rules (cf.
Figure 2.1). Topological constraints are concerned with geometrical properties

2.1. Tazonomy of Semantic Spatial Constraints 45

Spatial constraints

[

Topological Semantic | |User-defined

Figure 2.1: Cockeroft’s taxonomy of static spatial constraints.

and spatial relations of spatial objects (e.g., all polygons must close). Seman-
tic constraints are concerned with the meaning of geographical features (e.g., a
road can not run through a lake). User-defined constraints are more esoteric
in nature and not necessarily based on semantics (e.g., a nuclear power station
must be located by a distance from residential areas).

Finally, a taxonomy based on two dimensions was presented. The first axis
makes the distinction between static and transitional constraints. The second
one classifies constraints in terms of topological/semantic/user-defined. This
results in six combinations: topological static, topological transition, semantic
static, semantic transition, user static, and user transition. Table 2.1 illustrates
some examples for each type of spatial constraints.

1 | Static semantic The height of a mountain may not be negative.
Static topological All polygons must close.
3 | Static user All streets wider than seven metres must be clas-

sified as highways.

4 | Transition semantic The height of a mountain may not decrease.

5 | Transition topological | If a new line or lines are added making a new
polygon the polygon and line tables must be up-
dated to reflect this.
6 | Transition user Road of any type may not be extended into body
of water of any type.

Table 2.1: Examples of a classification of spatial constraints, according to (Cock-
croft, 1997).

2.1.4 A Fine-grained Classification of Constraints

In (Louwsma et al., 2006), the authors recognised the relevance of a two-dimensional
taxonomy that allows the distinction between the static versus transitional as-
pect of constraints, as presented in Cockcroft’s approach. However, as the spatial
constraints classification proposed by Cockcroft was quite generic, the authors
additionally refined the second axis of Cockcroft’s taxonomy by proposing dif-
ferent criteria for the classification of constraints. These criteria were:

1. The number of objects/classes/instances involved in constraints. A con-
straint can be related to:

46 2. Spatial Models

e a single instance (restrictions on attributes and relationships between
attribute values of a single instance)

e two instances of the same class (binary relationship)
e multiple instances of the same class (aggregate)
e two instances of two different classes (binary relationship)
e multiple instances of different classes (aggregate)
2. The type of properties/relationships of the objects involved. They could
be:
e spatial features: direction, topology, distance.

e temporal features (e.g., adjacent in time like “bushes may only be
located after trees have been positioned”)

e thematic: semantics not related to spatial or temporal relationships
(e.g., “a parcel must always be owned by at least one person”).

e complex: a combination of the above properties (e.g., quantity or
aggregate constraints like “maximum of 10 planting objects in a spec-
ified area in the centre of the park”).

3. The dimension of constraint:

e temporal dimension - 1D
e spatial dimension - 2D /3D
e spatiotemporal dimension - 4D

e thematic measurement scale
4. The manner of expression:

e a constraint “must never” occur

e a constraint must “always’occur
5. The nature of the constraint (physically impossible or domain dependent).

e theorem-based or physically impossible (e.g., “a tree cannot float in
the air”)

e design-based (e.g., “bush should be south of tree”)

This novel taxonomy of constraints obviously includes the definition of pre-
vious constraint types as defined in Cockeroft’s taxonomy (i.e., topological, se-
mantic, and user-defined). Furthermore, this taxonomy deals with not only
spatial constraints but also constraints in general (e.g., temporal constraints or
cardinality constraints).

2.2. Spatial Models 47

2.1.5 Discussion

We have reviewed a variety of taxonomies of constraints in general, with a spe-
cial focus on spatial constraints. KEvidence is that a qualitative approach is
very well suited for representing and reasoning about spatial semantics in VEs.
The qualitative representation of spatial semantics appears to be closer to how
human perceives and communicates about spatial knowledge. Among the pre-
sented constraints taxonomies, the proposal of (Louwsma et al., 2006) is the
most recent, relevant, and complete one. This taxonomy is generic and covers
the previous classifications of constraints. Main aspects of space (e.g., topology,
distance, and direction) are included. These main aspects can be further divided
into metric and non-metric constraints.

Static spatial
constraints

Non-metric Metric

Topological Projective Directional Distance

Figure 2.2: Summary of pure spatial constraints in 3D environments.

Based on the above critical remarks, Figure 2.2 outlines our perspective for a
taxonomy of spatial constraints that should be represented in 3D environments.
It is hierarchical and purely spatial. Other requirements related to representa-
tion issues of spatial constraints (e.g., the number of objects/classes/instances
involved, or the manner of expression) should be treated during the design of
spatial modelling languages.

In the next section, we will give a closer look at each type of spatial con-
straints. Existing models for topological, projective, directional, and distance
relations will be presented respectively.

2.2 Spatial Models

2.2.1 Topology

Topology is a fundamental aspect of space. Topological relations are preserved
under topological transformations like rotation, scaling, or translation. The two
main approaches for modelling topological relations are the Region Connection

Calculus (RCC) by Randell, Cui, and Cohn (Randell et al., 1992) and the 9-
intersection model proposed by (Egenhofer, 1991).

Based on different levels of connectedness between two regions, the RCC
model distinguishes a set of eight base relations, including the following rela-
tions: DC (disconnected), EC (externally connected), PO (partially overlap), TPP
(tangential proper part), TPP~! (tangential proper part inverse), NTPP (non-

48 2. Spatial Models

tangential proper part), NTPP ! (non-tangential proper part inverse), and EQ
(equal). These relations, noted as RCC-8, are considered as the smallest set
allowing topological distinctions, as illustrated in Figure 2.3.

3 8 @ 6

DC(z, v) EC(z,v) TPP(z,y) TPP (z,y)

80 66

PO(z,y) EQ(z,y) NTPP(z,y) NTPP '(z,y)

Figure 2.3: Eight basic topological relations in 2D, proposed in (Randell et al.,
1992).

Alternatively, to model topological relations, (Egenhofer, 1991) proposes to
use a 3 X 3 matrix corresponding to the nine possible intersections between the
interior (°), exterior (7), and boundary (9) of regions, so called 9-intersection
model. When dealing with 2D spatial regions, Egenhofer’s model produces the
same set of topological relations as in RCC-8. These relations are named as “dis-
joint”, “meet”, “overlap”, “inside”, “coveredBy”, “contains”, “covers”, and “equal”.
Figure 2.4 illustrates the “meet” relation and the corresponding matrix in the

9-intersection model.

A°0A A~
B /0 0 1
oB| 0 1 1
B~\1 1 1

Figure 2.4: Example of the “meet” relation and the corresponding matrix in the
9-intersection model, proposed in (Egenhofer, 1991).

More recently, in (Zlatanova, 2000; Zlatanova et al., 2004), the authors used
the 9-intersection model to investigate the number of topological relationships
among four types of objects: points, lines, surfaces, and bodies in 3D. Overall,
69 possible relationships between them was identified. In particular, there exists
8 possible topological relations between two bodies in 3D.

2.2. Spatial Models 49

2.2.2 Projection

Projective relations remain invariant under projective transformations. An ex-
ample of projective invariants is the collinearity. That is, three collinear points
A, B, C remain collinear after a projection. Based on the concept of collinearity,
the 5-intersection model allows to distinguish five possible relations of a point
A with respect to the two given points B and C in 2D (Clementini and Billen,

2006). Figure 2.5a shows the five relations, i.e., “before”, “after”, “between”,
“leftside”, and “rightside”.

leftside
bef‘_’f e between aﬂ% Before(B,C) el After(B,C)
A B C
rightside
(0]

(a)

Figure 2.5: 5 projective relations among three points and regions are defined in
the S-intersection model (Clementini and Billen, 2006).

The point-based projective model thereafter was extended to regions and
volumetric objects in 3D space (Billen and Clementini, 2006). The concept of
collinearity between points is applied to regions. Figure 2.5b shows the five
possible projective relations among three regions.

2.2.3 Direction

While topological and projective relations are pure non-metric and qualitative,
directional and distance relations represent the metric aspects of space. However,
research in direction modelling has converged on a qualitative representation of
direction. That is, direction is described using qualitative prepositions such
as “left of” instead of numerical terms such as “90 degrees”. A rationale for
a qualitative approach is that it is often used in daily communication about
direction. It is also considered to be closer to the human mental representation of
direction. Currently, directional models differ from each others by the dimension
of space (i.e., 2D or 3D space). This leads to a further distinction between
existing directional models based on how entities are represented in space. Most
approaches merely consider 2D space, where entities are simplified as points or
regions. Whereas, there exists very few models dealing with volumetric entities
in 3D space. For each directional model below, we first describe the model in
2D and then discuss its extensions in 3D where appropriate.

The double cross model considered direction among three points in 2D, in-
cluding a primary point and two reference points forming a vector (Freksa, 1992).

50 2. Spatial Models

O O O

Figure 2.6: Direction among three points (a point A and a vector B_C’) in 2D
space: 15 relations are defined in the double cross model (Freksa, 1992)

Based on the two lines orthogonal with the vector, 15 relative positions of the
primary point with regard to the vector could be distinguished (see Figure 2.6).
Compared to projective relations, the double cross model can be considered as
a more fine-grained representation of the 5-intersection model presented in the
previous section. The 15 basic directional relations in the double cross model
cover the 5 basic projective relations among points. In (Pacheco et al., 2002),
an extension of the double cross model was introduced that distinguishes 75
relations among three arbitrary points in 3D.

N NW | N NE
NW NE B
o (@]
B
w .A E W OA E
Neutral zon€
SW SE
s SW| s | SE

(b) (c)

Figure 2.7: Cardinal directions between two points in 2D space (Frank, 1992):
(a) cone-based model; (b) projection-based model; (¢) projection-based model
with neutral zone.

Alternatively, the cardinal direction model defined direction between two
points: a primary point B and a reference point A in 2D (Frank, 1992). The
model assumes the existence of a reference system, such as the intrinsic orienta-
tion of the reference object (e.g., “front”, “back”) or magnetic poles (e.g., “north”,
“south”). Such a reference system divides the space around the reference point

2.2. Spatial Models 51

S NW(a) N(@) “NE"(a) ~
W) 0@ S E@)
S~ S%(a) SE"(a)

-k Z SN (a) ~ N"a) ~NE(a)

alv==d=

2/ S Wa) ~ Oa) ~Ea)
. L5Ma)~ Ma) SEMa)
LA | y SNWa) N@ NEMG) ~
A / Wa) ~ 0%a) ~ E'(a)
sWa) . S"a) SE"a)
s > X

Figure 2.8: In the TCD model (Chen et al., 2007), 27 relations are defined
around a reference object approximated by its axis-aligned bounding box.

A

‘max

ol |

\L% ZL; N \@T'\

X

B

min

Figure 2.9: The model in (Borrmann and Rank, 2009) deals with direction
between complex objects in 3D by projecting them into 2D planes.

A into 8 cone-shaped areas (see Figure 2.7a) or 4 partitions using a projection-
based approach (see Figure 2.7b). Moreover, a neutral zone (i.e., an area around
the reference object where no direction is defined) can be added to divide the
2D space into 9 areas (see Figure 2.7c). Later on, the author compared the
three representations and showed that the projection-based representation with
neutral zone was better than other ones in terms of spatial reasoning (Frank,
1996).

At a fine-grained level, the direction-relation matrix (Goyal and Egenhofer,
2001) dealt with direction between regions in 2D. Similar to the projection-based
approach with neutral zone, this model approximates the reference object by
its minimum bounding rectangle and thus 9 regions around it could be defined.
Thereafter, the model uses a 3 x 3 matrix that allows to calculate the intersection
of the primary region with the 9 regions. An algorithm in linear time for 2D
vector-based regions is introduced in (Skiadopoulos et al., 2005).

With regard to 3D space, (Chen et al., 2007) extended the cardinal direction

52 2. Spatial Models

model to 3D space, called TCD (Three-dimensional Cardinal Direction) model.
The reference object is approximated by its axis-aligned minimum bounding box
that partitions the 3D space around it into 27 directional relations according to
3 layers (upper, medium, and below) (see Figure 2.8). Because the TCD model
did not take into account shapes of objects (e.g., concave and convex objects are
treated in a same way using their bounding boxes), this may lead to wrong results
in some situations. Some approaches tried to model directional relations among
complex objects (such as stairs) by projecting them into 2D planes (Borrmann
and Rank, 2009), as in Figure 2.9, or by calculating the intersection between
cubic matrix (Chen and Schneider, 2010). However, these approaches have a big
computational issue because they require to partition objects and the 3D space
into cubic cells.

Orthogonal to the previous approaches, (Liu et al., 2005) considered the ICD
(Internal Cardinal Direction) model. It is a special case in which the primary
object is inside the reference object. Such a ICD model allows a distinction of
directional relationships such as “Paris is in the north of France" and “England
is to the north of France".

To summarise, the complexity of directional models is directly proportional
with the multi-dimensionality of space. No directional model developed so far
has efficiently dealt with direction among complex objects in 3D that remains
an open research question. Instead, approximation structures such as bounding
boxes or points are often used to simplify the specification of direction between
objects.

2.2.4 Distance

Together with direction, distance is another important metric aspect of space.
There are two main approaches to model distance relations: absolute distance
and relative distance (Hazarika, 2005). In the first case, absolute distance be-
tween two spatial entities is directly computed based on their position. Examples
of absolute distance are “A is 10 meters from B” or “A is close to B”. In the sec-
ond case, relative distance between two spatial entities is obtained by compared
to the distance to a third entity. An example of a relative distance is “A is closer
to B than to C”.

As we can see through the examples, absolute distance can be represented
quantitatively or qualitatively. A quantitative representation of absolute dis-
tance can be obtained by a simple computation when spatial entities are sim-
plified as points (e.g., their centroid). Meanwhile, a qualitative representation
of absolute distance relations is commonly obtained by dividing the space into
several regions of different sizes. In (Hernandez et al., 1995), absolute distance is
organised based on different levels of granularity, for example: a level with three

distinctions (“close”, “medium”, and “far”), four distinctions (“very close”, “close”,

7 7

“far”, and “very far”), or five distinctions (“very close”, “close”, “commensurate”,
“far”, and “very far”), as showed in Figure 2.10a.

In contrast to absolute distance, relative distance is purely qualitative. There

2.8. Conceptualising Spatial Constraints 53

commensurate .
reference distance

close A@® oC

o 1 th ~
A @closer than B

equidistant
Ao eB
A Py further than

B

(a) (b)

Figure 2.10: Hlustration of absolute distance and relative distance.

are only three ternary qualitative relations: “closer than”, “equidistant”, or “fur-

ther than”, as illustrated in Figure 2.10b.

2.3 Conceptualising Spatial Constraints

As discussed in Section 1.1.6, existing approaches for semantic modelling of VEs
have paid a less attention to spatial semantics. Current semantic models of VEs
have focused on a high level representation of spatial entities. Nevertheless, spa-
tial relationships between spatial entities have not been taken into account. This
section investigates relevant approaches for conceptualising spatial relationships.

2.3.1 Object-oriented Approaches

Object-oriented approaches offer a natural way to conceptualise spatial relation-
ships. In conceptual and object-oriented schemas, the definition of “class” (or
“concept”) naturally corresponds to the definition of spatial entities. Moreover,
in a class diagram, it is possible to specify links between classes, such as com-
position or aggregation. As a consequence, the links between classes can be
benefited to convey spatial relationships.

disjoint .
J River

Building

Figure 2.11: Illustration of object-oriented approaches for conceptualising spa-
tial relationships. Spatial entities are mapped to classes. Spatial relations are
represented by associations between classes.

GEOOOA is an object-oriented approach providing a conceptual framework
to specify spatial relationships among geographical entities (Kosters et al., 1997).

54 2. Spatial Models

Geographical entities (like streets, buildings, or rivers) are mapped into corre-
sponding classes. GEOOQOA only considers “whole-part” topological relation-
ships among geographical entities, for example “contains”, “part of”, or “disjoint”.
These relations are conveyed by associations between classes. Figure 2.11 illus-

trates the representation of a spatial relation between two geographical entities.

Following the same object-oriented approach, MADS (Modeling of Appli-
cation Data with Spatio-temporal features) is a framework to design spatio-
temporal conceptual model (Parent et al., 1999). In MADS, spatio-temporal
conceptual modes can be drawn using a graphical editor. Associations between
classes are used not only to represent spatial relationships but also temporal
relationships using Allen’s temporal intervals (Allen, 1983). MADS provides
a richer expression of spatial relationships. For example, cardinality of spatial
relations can be described (e.g., “a park contains at least two trees”).

In (Ber and Napoli, 2002), an object-based knowledge representation sys-
tem, named Y3, is proposed for representing and classifying spatial structures.
In Y3, there exists predefined association classes allowing a complete represen-
tation of topological relations defined in the RCC-8 model (see Section 2.2.1).
That is, topological relations between objects are considered as instances of an
association class, such as DC (disconnected), EC (externally connected), or TPP
(tangential proper part) classes. Further, it is also possible to specify various

Y4

quantifier such as “all”, “none”, “at least”, or “at most” in topological relations.

Despite object-oriented paradigms provide a relevant way to represent spatial
entities, the description of spatial relations by means of associations between
classes however raises many issues. On the one hand, this type of representation
may lead class diagrams to be overwhelming by associations. On the other hand,
as pointed out in (Pinet et al., 2004), class diagrams are not sufficient to express
spatial relations depending on a particular condition. For instance, Figure 2.11
implies that all the buildings must be disjoint with all the rivers. Particular
spatial relations depending on the attributes of a building and a river have not
been taken into account.

2.3.2 Spatial Languages

Another approach to conceptualise spatial relationships is to use spatial lan-
guages. In the object-oriented approaches, the definition of spatial relations was
done by means of conceptual links between classes that led to a static view of
spatial relations. Spatial languages provide a more flexible way for the specifica-
tion of spatial relationships in conceptual schemas. Typically, spatial languages
are strongly inspired from natural languages. Spatial languages can be logical
languages, visual languages, or hybrid languages (i.e., a combination of natural,
visual, and logical languages) (Salehi et al., 2007).

SQL-based Approaches

One of the first developed spatial languages is related to the use and ex-

2.8. Conceptualising Spatial Constraints 55

tension of the Structured Query Language (SQL) to define spatial relations in
a conceptual schema. Spatial-SQL (Egenhofer, 1994) is an example of such an
extension. In Spatial-SQL, users can enter standard SQL queries to retrieve
non-spatial data. As a spatial language, Spatial-SQL is incorporated with spa-
tial operations to query topological relationships between geometrical objects.
Moreover, it is possible to specify how to display spatial query results (e.g., the
context, content, and visual properties of the graphical presentation of spatial
queries). Inspired from Spatial-SQL, (Borrmann and Rank, 2009) extended this
language to cover directional relationships.

OCL-based Approaches

An important family of spatial languages is concerned with the Object Con-
straint Language (OcL) (Warmer and Kleppe, 2003). OCL is an integral part of
the Unified Modeling Language (UML) which is the standard language for mod-
elling conceptual schemas. OCL is used to express constraints and expressions on
any elements in the conceptual schemas represented in the form of UML models.
It is both a constraint and a query language: an OCL expression returns a value
or an object within the system, but the evaluation of expressions does not change
the state of the system. The main advantage of OCL relies on its formal foun-
dation and its expressiveness. OCL is able to cover various types of constraints
related to attributes, operations, state transitions, or pre/post-conditions of a
UML model.

Beyond the use of OCL to maintain constraints in the conceptual schemas,
numerous researches have been conducted in extending this language to cover
other complex constraint types. First, different propositions have been made
to extend OcCL for dealing with temporal constraints, see (Soden and Eich-
ler, 2009) for a recent description. This makes OCL possible to cover the dy-
namic aspect of constraints over the time. Second, recent work has recognised
OcL as the most relevant and pertinent approach to cover complex spatial con-
straints (Casanova et al., 2000). Several spatial extensions of OCL have been
proposed. Similar to object-oriented approaches, Spatial OCL (Pinet et al.,
2007) first aims at using UML for modelling spatial data, and then using OCL
for specifying spatial constraint in Geographical Information Systems. Spatial
OCL is limited to topological constraints. It provides eight topological op-
erations: overlaps, contains, isInside, areAdjacent, covers, isCovered,
areDisjoint, and areEqual. These operations correspond to Egenhofer’s 9-
intersection topological model presented in Section 2.2.1. Similarly, GeoOCL
(Werder, 2009) extended the traditional concept of UML class to geometrical
class. A geometrical class is a UML class with an additional geometry attribute.
Based on the concept of geometrical class, topological constraints between them
can be specified using GeoOCL.

56 2. Spatial Models

2.3.3 Geometrical Constraint-based Virtual Environments

From the point of view of applications, modelling spatial constraints among 3D
objects has been addressed in several domains of application of VEs, notably in
Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM).
In these domains, VEs are often used for assessing the conceptual design of
mechanical systems.

However, it is important to note that spatial constraints in these VEs are
purely geometrical constraints. The main goal of geometrical constraints-based
VEs is to facilitate the accurate positioning of assembly objects in run-time, and
the detection and maintenance of constraint consistencies during 3D manipula-
tions. In these VEs, geometrical constraints are mainly modelled by means of
scene graphs (Wang et al., 2003).

Figure 2.12: Design of a simple house using geometrical constraints, proposed
in (Fernando et al., 1999).

(Fernando et al., 1999) proposed an architecture for geometrical constraint-
based VEs. This approach first defines a set of possible assembly relationships
between two objects. An assembly relationship depicts information such as the
contact between the two objects (e.g., a surface, a plane, a line, or a point), or
the possible motion permitted for the two objects (e.g., rotation or translation).
Then, the assembly objects are loaded into VEs and represented by a scene
graph. The user is free to grab and manipulate objects in the 3D space. When
the objects collide, the contacting surfaces are identified through the scene graph.
Based on information of the contacting surfaces and the colliding objects, it is
possible to identify the geometrical constraints to be satisfied. Finally, only
the valid motions on the assembly objects are allowed, without breaking the
existing constraints. Figure 2.12 illustrates the design of a simple house using

2.8. Conceptualising Spatial Constraints 57

geometrical constraints.

Small table Large Table
Phone Plant Chair Lamp Computer Binder
\ J

Figure 2.13: Maintaining geometrical constraints in VEs using scene graphs,
proposed in (Stuerzlinger and Smith, 2002).

Geometrical constraints have been used to facilitate the manipulation of
objects in Augmented Reality, and the interaction with objects in Virtual Re-
ality applications (Smith and Stuerzlinger, 2001; Stuerzlinger and Smith, 2002;
Smith and Willans, 2006). In these applications, similarly to Fernando et al.’s
approach, geometrical constraints are conceptualised by means of scene graphs,
see Figure 2.13. Virtual objects in the scene are associated with predefined
constraint areas. A constraint area is defined as a convex polygon, and an orien-
tation vector. A constraint area of an object can be an “offer area”, or a “binding
area’. An offer area identifies locations on an object where other objects are al-
lowed to contact. For instance, an offer area of a table is its top surface where
the user can place objects on. In contrast, a binding area depicts locations on an
object where this object can constrain to an offer area. For example, a binding
area of a chair should be below its base, therefore the chair could be placed on
the offer area of the floor of a room. When a binding area constrains itself to
an offer area, the binding area has been “satisfied”. Based on this mechanism, it
allows a more realistic control while interacting with virtual objects. For exam-
ple, when a chair has been constrained to a floor, the interaction with the chair
is restricted such that the binding areas of the chair always remain in contact
with the floor.

In the above approaches, geometrical constraints are useful to control direct

58 2. Spatial Models

manipulations of objects in 3D spaces. However, they can not specify mean-
ingful spatial constraints between virtual objects. For example, in Figure 2.13,
geometrical constraints allow to describe that “the small table and the large
table can be moved on the floor”. Whereas, it is impossible to specify that “the
small table is behind and on the left of the large table”.

2.3.4 Discussion

We have reviewed the relevant approaches for specifying spatial relationships
at a conceptual level. The emphasis has been on high level and formal spatial
languages and frameworks. It has been observed that object-oriented paradigms
provide a relevant basis for the spatial conceptualisation. In a conceptual
schema, the definition of concepts (or classes) naturally meets the definition of
spatial entities. Most of the approaches aimed to model spatial relationships in
a conceptual schema by means of associations between concepts. Nevertheless,
the main bottleneck of these object-oriented approaches is that they are unable
to express conditional and dynamic spatial relationships between concepts.

To address this obstacle, spatial languages have been introduced into con-
ceptual schemas. The syntax of spatial languages is often designed to be as
close as possible to the natural language. Their semantics commonly ground
on a logic formalism. In addition, spatial languages facilitate the expression of
spatial relationships by means of graphical editors, so called visual languages.
Therefore, spatial languages provide a more formal and flexible way to express
spatial relationships in a conceptual model. For instance, the Structured Query
Language (SQL) has been used and extended to model integrity constraints in
spatial data models. Similarly, the Object Constraint Language (OCL) has been
defined as an integral part of the conceptual models built upon the standardised
modelling language UML. However, existing extensions accounting for spatial
constraints are still very limited.

Finally, several approaches for the design of VEs based on geometrical con-
straints have been discussed. In these VEs, geometrical constraints are used to
support an accurate manipulation of virtual objects during a virtual assembly,
or to provide a more realistic interaction with virtual objects. Nevertheless,
geometrical constraints are essentially different from the definition of semantic
spatial constraints as being interested in our work. Geometrical constraints re-
main a low level description that is not expressive enough for human and agents
understanding and reasoning.

2.4 Summary

In this chapter, we have respectively described i) taxonomies, ii) theoretical
models, and iii) conceptual solutions that are relevant for representing spatial
constraints among entities in VEs.

We have studied spatial constraints within different dimensions, based on
spatial characteristics (i.e., metric vs. non-metric, quantitative vs. qualitative,

2.4. Summary 59

and static vs. dynamic). The main conclusion is that topological, projective,
directional, and distance constraints stand for the most fundamental spatial
aspects constituting a human mental description of space as well as enabling a
high-level spatial reasoning for humans and agents.

Thereafter, the four main types of spatial constraints have been investigated.
The main remark is that a qualitative approach has been proven as a pertinent
approach for representing spatial constraints.

Finally, the related solutions for conceptualising spatial constraints, that
are susceptible to be applied in VEs, have been discussed. The object-oriented
paradigm appears to be a relevant basis for conceptual modelling of VEs. Fur-
thermore, a conceptual schema could be integrated with a spatial language to
provide a flexible management of spatial constraints in a conceptual level.

60

2. Spatial Models

Part 11

Contributions

61

Chapter 3

An Integrated Model of Spatial
Constraints For Virtual
Environments

In this chapter, we propose an integrated model of spatial constraints dedicated
to VEs. First, we model the concepts of spatial entity and frame of reference.
Then, we respectively tackle the four main families of spatial constraints, they
are topological, projective, distance, and directional constraints. The integrated
model serves as a theoretical and computational basis for our language and
framework for conceptualising spatial semantics that are described in Chapter 4.

This chapter is organised as follows. Section 3.1 presents a simple but real-
istic VE, both to provide the examples of spatial constraints, and to illustrate
our model later on. Section 3.2 and Section 3.3 respectively describe how spa-
tial entities and frames of reference are represented in our model. Our model
of nonmetric spatial constraints (i.e., topological and projective constraints) is
respectively presented in Section 3.4 and Section 3.5. Next, our approach to
modelling metric spatial constraints (i.e., directional and distance constraints)
is respectively detailed in Section 3.6 and Section 3.7. Finally, Section 3.8 sum-
marises and discusses our model.

3.1 Examples of Spatial Constraints In a Simple Vir-
tual Environment

Figure 3.1 illustrates a simple but realistic VE. This VE represents a room. The
room is composed of a floor, a ceiling, and several walls. In the room, there
are one desk and three tables: a green triangular one, a red rounded one, and
a blue rectangular one. There exists an important difference between a desk
and a table. That is, the orientation of the desk is fully defined. One can state
which are the front, left, and above sides of the desk. For the table, only the
above side can be defined. In the room, there are also three chairs: a red one, a
black one, and a yellow one. There are also other objects, such as a dice, a blue

63

64 3. An Integrated Model of Spatial Constraints For Virtual Environments

Figure 3.1: A simple virtual environment illustrating a room. The labels were
added to indicate the sides (i.e., front, left, and above) of the desk. This simple
virtual environment is used to illustrate spatial constraints.

box, a green cone, or a red sphere. Figure 3.2 shows a closer look to the blue
rectangular table and some other object such as the sphere and the cone.

A variety of spatial constraints can be defined in this simple VE. Constraint 1
exemplifies a spatial relationship between the sphere and the blue rectangular
table.

Constraint 1. The sphere must be on (meeting) the blue rectangular table.

Similarly, the following constraint can be described.

Constraint 2. The cone is disjoint with the sphere, and both of them are on
the table.

Constraint 3. In the room, every table must be disjoint with other tables, and
all of the tables must be on the floor.

In the above examples, spatial constraints such as “meet” or “disjoint” are
based on the connectedness among spatial entities. As we will see later in Sec-
tion 3.4, these spatial constraints are called topological constraints because they
are preserved under topological transformations like translation, scaling, or ro-
tation of spatial entities.

From an other perspective, Constraint 1, Constraint 2, and Constraint 3 are
examples of binary spatial constraints. A binary spatial constraint aims to locate

3.1. Examples of Spatial Constraints In a Simple Virtual Environment 65

Figure 3.2: A closer view to the blue rectangular table of the room presented in
Figure 3.1. In this case, an example of spatial relationships is that “the sphere
is disjoint with the cone, and both of them are on (meeting) the table”.

an entity, called primary entity, within a spatial relationship to another entity,
called reference entity. Alternatively, spatial relationships can be established
among three, four, or many spatial entities. In these cases, more than one entity
is used as reference entities. Accordingly, spatial constraints can be ternary,
quaternary, or n-ary constraints. Constraint 4 is an example of ternary spatial
constraints.

Constraint 4. In the room, the black chair must be between the red rounded
table and the blue rectangular table.

In this example, both the red rounded table and the blue rectangular table
play the role of reference entities that allow to define the relative position of a
primary entity — the black chair.

Similarly, Constraint 5 exemplifies a quaternary constraint. Here, all of the
three tables are used as reference entities.

Constraint 5. In the room, the red chair must be coplanar and surrounded
by the three tables: the triangular green table, the rounded red table, and the

66 3. An Integrated Model of Spatial Constraints For Virtual Environments

rectangular blue table.

Constraint 4 and Constraint 5 aim to define spatial relationships such as
“between”, “surrounded”, or “coplanar”. The “between” relationship is based on
the collinearity (i.e., alignment) among spatial entities. Meanwhile, the “sur-
rounded” and “coplanar” relationships rely on the coplanarity among spatial
entities. As we will see later in Section 3.5, these relationships are examples of

projective constraints that are preserved under projective transformations.

In the room, an important difference between the desk and the other tables
is that the desk has an intrinsic direction. The intrinsic direction allows to
distinguish the left /right side, the front/behind side, or the above/below side of
the desk. As we will see later in Section 3.6, the intrinsic direction of the desk
can be modelled by the three vectors frgnt, le}t, and above. Based on these
three vectors, other sides of the desk can be inferred. The following examples
show spatial constraints found in the room based on the intrinsic direction of
the desk.

Constraint 6. In the room, the rounded red table must be in front of the desk.

Constraint 7. In the room, the triangular green table must be on the left of the
desk.

Constraint 8. In the room, the rectangular blue table must be in front and

on the left of the desk.

Constraint 6, Constraint 7, and Constraint 8 are examples of another family
of spatial constraints, called directional constraints. Here, direction is given
from a first-person perspective (also called ego-centric direction). Alternatively,
directional constraints can also be observed from a third-person perspective (also
called allo-/exo-centric direction). Figure 3.3 gives a different view to the room
that is centred on the viewpoint of the desk. Using the desk as the point of view,
the following examples illustrate direction from a third-person perspective.

Constraint 9. From the viewpoint of the desk, the rectangular blue table must
be on the left of the rounded red table.

Constraint 10. From the viewpoint of the desk, the triangular green table must
be behind of the rectangular blue table.

Constraint 9 and Constraint 10 are binary, but they are viewed from a third-
person perspective. In these cases, direction between a primary entity and a
reference entity is only based on the intrinsic direction of the viewer (i.e., the
desk). Meanwhile, the intrinsic directions of the primary entity and the reference
entity (i.e., the other tables) have no impact on the description of direction.

Beside directional constraints, distance constraints provide a further impor-
tant metric description of spaces. Our model of distance will be described in
Section 3.7. Constraint 11 exemplifies a constraint about distances between
spatial entities in the room.

3.1. Examples of Spatial Constraints In a Simple Virtual Environment 67

Figure 3.3: A different view to the room that is centred on the viewpoint of the
desk. Using the desk as a reference frame, the following example of direction
from a third-person perspective can be stated: “From the viewpoint of the desk,
the rectangular blue table is on the left of the rounded red table”.

Constraint 11. In the room, the red rounded table is located closer than 1 meter
from the desk.

Up to now, every spatial expression described above merely illustrates a spe-
cific type of spatial constraints. Nevertheless, it is possible to combine different
types of spatial constraints in a single spatial expression. Constraint 12 pro-
vides a combination of topological and projective constraints. Constraint 13
illustrates a combination of topological, directional, and distance constraint.

Constraint 12. In the room, the black chair must be on the floor, between the
red rounded table and the blue rectangular table.

Constraint 13. In the room, the red rounded table must be on the floor, in front of
and closer than 1 meter to the desk.

In the following sections of this chapter, we will show how each family of
spatial constraints is represented in our model. Such a representation of spatial
constraints is very useful in many contexts. For example, Figure 3.4 illustrates
a scenario in which a user must realise a spatial task. That is, “the user must
put the cone on the dice”. Here, spatial constraints are very important. The
satisfaction of spatial constraints allow to know whether the user’s interaction

68 3. An Integrated Model of Spatial Constraints For Virtual Environments

Figure 3.4: A user is manipulating objects in the room using a device (i.e., a
wiimote). The goal is to satisfy a spatial configuration, such as “the user must
put the cone on the dice”.

is already accomplished or not. A more detailed description of the applications
of spatial constraints in VEs will be given in Chapter 5.

3.2 The Notion of Spatial Entity

To model spatial relationships, it is primordial to model spatial entities. Our in-
tention here is to identify the essential information of every spatial entity that is

3.2. The Notion of Spatial Entity 69

required to model spatial relationships between them. This information should
be generic and independent of any geometrical and conceptual representation
of spatial entities, such as scene graphs or spatial ontologies. Therefore, spa-
tial entities are studied as separated entities. Conceptual links between spatial
entities (such as structural, logical, compositional, or whole-part links) are not
discussed.

ModelElement

name: string

SpatialEntity ;
moving_dir: vector3D ReferentialPoint
isOnMotion(): boolean

0.3 Shape
intrinsic path: string 14

direction

"

InternalDirection
BoundingBox

front[0..1] : vector3D
left[0..1] : vector3D
above[0..1]: vector3D

center

Figure 3.5: The conceptual definition (in the form of a UML class diagram) of
spatial entity.

Figure 3.5 illustrates our conceptual definition of spatial entity in the form
of a UML (Unified Modeling Language) class diagram. Within a VE, a spatial
entity can be a spatial object (tangible or not). In this case, a spatial entity cor-
responds to a scene entity but with additional semantics. Otherwise, a spatial
entity can be an artificial agent (e.g., a virtual human), or a user. In our ap-
proach, we abstract spatial entities as a kind of elements in a conceptual model
of VE. A spatial entity is geometrically represented by some shapes. However,
the geometrical representation of a spatial entity is separated from the further
semantic information: name, referential point, bounding box, intrinsic direction,
and moving direction. This added information is needed to specify spatial con-
straints among spatial entities. The elements of our conceptual model of spatial
entity are explained as follows.

e Name: Every spatial entity is identified by a unique name. For exam-
ple, “triangularTable”, “roundedTable”, and “rectangularTable” are respec-
tively the unique names of the three tables in the room. Our motivation
is that, spatial constraints may be given for a family of spatial entities in
a very general manner (e.g., “all of the tables must be on the floor”), or
for specific spatial entities with different types (e.g., “the red sphere must
be on the blue rectangular table”). In the first case, spatial constraints do

70 3. An Integrated Model of Spatial Constraints For Virtual Environments

not mention any spatial entity in particular. However, in the latter case,
it is necessary to identify which spatial entities are actually included in a
spatial constraint. In our model, a unique name is used to allow a uniform
access to a concrete spatial entity involved in a spatial constraint.

e Shape: refers to the geometric structures of a spatial entity. It indicates
the path to 3D file formats like VRML or X3D.

Since the geometrical structures of spatial entities are complex and thus not
relevant to manipulate or calculate, they are often approximated using simpler
structures. For instance, spatial objects in 2D spaces are represented by vector-
based polygons, but to compute spatial relations among them, they are often
simplified as points or minimum bounding rectangles (Papadias and Theodoridis,
1997). In our model, to facilitate the computation of spatial constraints, we
hence use two levels of approximation of spatial entities.

e Referential point: Every spatial entity is associated with one referential
point. A referential point conveys semantics about a spatial entity. In
most cases, a spatial entity is referred as its position in space. The logic
is that, for instance, a chair is considered as “on the left” of a table when
the position of the chair is “on the left” of the table. Otherwise, a refer-
ential point can be an interaction point, or a marker that facilitates the
navigation between spatial entities in VEs. For example, it is possible to
define the referential point of a chair as the point of sitting in the chair,
or the referential point of a door can be defined as its handle. In this
case, a referential point is similar to the concept of hand clues of Smart
objects (Kallmann and Thalmann, 1999) that defines the expected location
in order to perform an interaction with an entity.

e Bounding box: A spatial entity is described by its axis-aligned bounding
box (AABB). The use of AABB at the conceptual level makes spatial enti-
ties easy to compute, cheap to store (only two points are needed for their
representation), and fast to test for intersection. Furthermore, this prim-
itive structure provides a convex approximation that is detailed enough
to deal with spatial constraints. Although algorithms in the rest of this
chapter for computing spatial constraints are detailed using AABB, further
implementations can be similarly derived for other levels of approximation
based on bounding volumes.

Figure 3.6 illustrates some spatial entities in the room enhanced with their
additional semantics. The chair and the table are displayed with their bound-
ing boxes. The referential point of the chair is defined as its point of sitting.
Meanwhile, the referential point of the table is defined as the centre of the top
surface of the table.

With regard to direction and motion of spatial entities, they are represented
in our model as follows:

3.2. The Notion of Spatial Entity 71

Referential point

Unique name: "blueTable"

Unique name: "redChair"

Figure 3.6: Ilustration of the model of spatial entity. The unique name of
the chair and the table are respectively “redChair” and “blueTable”. They are
displayed with their bounding boxes. The referential point of the chair is its point
of sitting. The referential point of the table is the centre of its top surface. The
chair has an intrinsic direction.

e Intrinsic direction: A spatial entity is possibly oriented, such as a desk, a
ship, or a house. Oriented spatial entities have intrinsic directions that
indicate their left/right, front/back, and above/below sides. We repre-
sent such intrinsic information by means of three unit vectors frant, le_ft,
above that respectively define the front, left, and above side of an entity.
Other intrinsic directions of an entity (i.e., “back”, “right”, and “below”)
can be inferred from these unit vectors. In Figure 3.6, the chair is ori-
ented and its intrinsic direction is indicated in the figure. However, there
also exists non-oriented or partially-oriented spatial entities. A sphere is
an example of non-oriented entities. Whereas, a table is an example of
partially-oriented entities, because one can easily identify the vertical axis
(i.e., above/below sides) of a table, but it is difficult to know which are
its front /back or left /right sides. As we have seen earlier in the examples,
only directional constraints need intrinsic directions of spatial entities to

72 3. An Integrated Model of Spatial Constraints For Virtual Environments

express direction among them. Other types of spatial constraints such as
topological, projective, or distance constraints are defined among spatial
entities without intrinsic direction.

e Moving direction: Spatial entities are not necessary still but possibly mov-
ing in 3D space. For example, an agent can walk in the room, a ship can
move on the sea, a virtual human can walk from an initial place to a tar-
get, or a user is free to move in a VE. Here, we are interested in modelling
the motion of spatial entities. A motion of an entity is represented by the
moving _dir attribute that defines the front, left, and above direction of
the motion.

Compared to the prior work, our model provides a more abstract represen-
tation of spatial entity with regard to the related approaches such as smart
objects, semantic objects, or basic semantic level (cf. Table 1.2 on page 30). In
our model, a unique name plays the role of an object identifier, meanwhile a ref-
erential point itself contains the position or navigation point of an object. Based
on the bounding boz, it is possible to extract information about the width, height,
and depth of an object. Most of the elements of our model can be automatically
computed. Our definition of intrinsic direction provides a more user-oriented
semantics of direction of a spatial entity than the geometrical rotation or orien-
tation. Also, the introduction of moving direction enables to model the spatial
dynamics of spatial entities that were neglected in the previous models. Finally,
both the definitions of intrinsic direction and moving direction allow to formalise
the important concept of frame of reference detailed in the following section.

3.3 Modelling Frames of Reference

Most spatial relations must be given with respect to a frame of reference (FoR).
A FoR defines the context in which a spatial relation is given. FoRs are often
referred as different perspectives to spatial relations. That is, a FoR describes
the point of view from which a spatial relation is observed. Different points of
view can yield different results to the same spatial relation. Among the four
families of spatial constraints, topological, projective, and distance constraints
are relatively independent from FoRs. Whereas, directional constraints require
an explicit definition of FoR.

There exists various types of FoRs. A FoR can be absolute or relative. In the
first case, spatial relations are described using absolute landmarks, such as mag-
netic poles (e.g., north, south, west, or east). In the later case, spatial relations
are relative to intrinsic properties of the user’s point of view. More precisely,
relative FoRs can be divided into first-person perspective or third-person per-
spective. As we have seen in Section 3.1, examples of first-person perspective
are Constraint 6, Constraint 7, and Constraint 8. Whereas, Constraint 9 and
Constraint 10 illustrate third-person perspectives.

Previous studies in the field have raised the need to support different FoRs
in VEs. Salamin et al. (2006) showed that, in VEs, users prefer a third-person

3.8. Modelling Frames of Reference 73

perspective in some tasks such as navigation, displacement actions, or inter-
action with moving objects. Whereas, a first-person perspective is preferred
in other tasks, such as manipulating an object with the hands. With regard
to distance, users better evaluate the distances, anticipate and extrapolate the
trajectory of moving objects using a third-person perspective. Later on, the
authors showed that a switching between the two views is also needed (Salamin
et al., 2009). Alternatively, Schafer and Bowman (2004) studied how different
FoRs could be combined in collaborative VEs. Users are embedded into VEs
with two different roles (i.e., director and actor) to perform tasks. A director
can provide instructions based on his perspective (e.g., “in front of me” or “go
to my left”) or the actor’s perspective (e.g., “beside you”). The results showed
that a combination of different FoRs yields a better collaboration in some tasks.
Although the benefits of FoRs in VEs have been recognised, previous studies
merely provide experimental and evaluational models of the impact of FoRs in
VEs. No previous work in the field has dealt with the modelling and computing
aspects of such an important concept.

To overcome this limitation, we propose a model of FoR for VEs. The
model of FoR would clarify the contextual information of spatial constraints.
Spatial constraints are thus unambiguous and consistent. Our intention is to
keep FoRs generic and domain-independent such that FoRs can be specified at
the conceptual level. According to Hernandez (1994), in general, three types of
FoR can be distinguished:

(i) intrinsic — spatial relation is given by inner properties of the reference
entity. A typical example of this kind of FoR is directional constraints
from a first-person perspective. Direction is given based on the intrinsic
direction — an inner property — of the entity.

(ii) extrinsic — spatial relation is imposed by external factors on the reference
entity. An example of extrinsic FoRs is when talking about the direction
of a moving entity. Considering a car that is moving backward, the de-
scription of direction with regard to the car should be based on its motion
direction, not its intrinsic direction.

(iii) deictic — spatial relation is based on a third-person view from which the
reference object is seen.

However, in the context of VEs, spatial constraints are sometimes defined on
reference entities without mentioning any explicit FoR. An example could be “in
the room, the round table is on the left of the square table”, whereas it has been
noted earlier that a table has not an intrinsic direction. We thus propose that a
VE may have an implicit FoR. It can be a spatial entity assumed as the default
viewer. Otherwise, an implicit FoR can be based on common sense landmarks,
such as magnetic poles. Such an implicit FoR is often used in (but not limited
to) indoor spaces. For example, within a room, it is commonly accepted that
the entrance door is the point of view by default to the room. In this case, the
entrance door plays the role of the implicit FoR.

74 3. An Integrated Model of Spatial Constraints For Virtual Environments

| Frame of Reference|

In-door space Large-scale space

Implicit

Explicit

\

Intrinsic

| Extrinsic | | Deictic |

First-person perspective
(Ego-centric)

Third-person perspective
(Allo-centric)

Figure 3.7: Taxonomy of different FoR in VEs.

Figure 3.7 illustrates our model of FoR. Using the concept of spatial entity
presented above, the use of each type of FoR is as follows.

e When a spatial constraint is given with respect to a viewer (e.g., “A sees
that B is on the left of C”), this is the case of deictic FoR . The spatial
constraint is called third-person perspective constraint (also called allo-

/exo-centric constraint).

e Otherwise, when no viewer is given (e.g., “ B is on the left of C”), the spatial
constraint is based on the reference object (entity C in the example), so
called first-person perspective or ego-centric constraints. There are

three possibilities.

- First, if the reference object C is moving (i.e., it is impacted by ex-
ternal factors), the direction of motion (defined by the moving dir
attribute) will be used as a reference system to compute spatial con-
straints. This is the case of extrinsic FoR .

- Second, if the reference object C is not moving and has an intrinsic
direction, this intrinsic direction will be used. This is the case of

intrinsic FoR .

- Finally, if the reference object C is not moving and has not an intrinsic
direction, the implicit FoR defined in the VE will be used.

Obviously, our model allows a unambiguous selection of FoR. In the following
sections, we will show how our model of FoR is applied to specify the context of

spatial constraints when necessary.

3.4 Modelling Topological Constraints

In this section, we aim at modelling topological constraints. Topological con-
straints allow to specify different levels of intersection between two spatial en-
tities. A spatial entity can be completely separated with another one (e.g., “in
the room, all the tables must be disjoint”). Otherwise, an entity can have a
tight intersection with another one (e.g., “the user must put the sphere on the

rectangular table”).

3.4. Modelling Topological Constraints 75

The two well-known models of topological relations are RCC-8 (Randell
et al., 1992) and 9-intersection (Egenhofer and Franzosa, 1991). These mod-
els defined eight possible topological relations between two regions in 2D, they
are named as “disjoint”, “meet”, “overlap”, “coveredBy”, “covers”, “inside”, “con-
tains”, and “equal”. Each relation corresponds to a level of intersection between
two 2D regions, as illustrated in Figure 3.8. The main advantage of topological
relations to VEs is that they are preserved under topological transformations
(i.e., translation, rotation, and scaling). Also, topological relations are indepen-

dent from FoRs.

A A A
B B B A
B
A disjoint B A meet B Aoverlap B A coveredBy B
B A
B A B A B
A

Acovers B Ainside B A contains B Aequal B

Figure 3.8: Illustration of the eight basic topological relations in 2D according
to the RCC-8 and 9-intersection models.

However, applying the RCC-8§ and 9-intersection models to VEs raises many
computational and interaction issues. Both of the two models are based on an
exact computation of the intersections between objects with sharp boundary.
Whereas, in VEs, users manipulate objects using interface devices. As seen
in Figure 3.4, the user was required to use a wiimote to accomplish a spatial
interaction, such as “the user must put the cone on the table”. Such a spatial
interaction is a procedure lacking in precision. That makes the manipulation
"put the sphere on the table” become difficult if objects involved must have
common sharp boundaries.

To overcome the above issues, we decided to approximate topological con-
straints. Our main inspiration was the previous models that attempt to deal
with uncertain (or fuzzy) topological relations in 2D spaces. In these models,
the main assumption was that, 2D regions have not shape boundary but vague
shape, such called broad boundary region. Figure 3.9 provides an example of

Outter boundary

Broad boundary region
(Ileggll)

Inner boundary

Broad boundary

("white”) Inner region

("yolk")

Figure 3.9: Example of a broad boundary region.

76 3. An Integrated Model of Spatial Constraints For Virtual Environments

(a) A spatial entity (e.g., a table).

(b) A spatial entity with its bounding box.

(c) A spatial entity with its thick boundary.

Figure 3.10: Example of a spatial entity without and with thick boundary.

3.4. Modelling Topological Constraints 7

broad boundary regions. Based on the RCC model, the “egg-yolk” model iden-
tified 46 possible topological relations between broad boundary regions (Cohn
and Gotts, 1996). Alternatively, based on the 9-intersection model, the “ap-
proximate topological model” identified 44 topological relations between broad
boundary regions (Clementini and Di Felice, 1997). There exists a difference
with regard to the number of relations between the two models. The reason is
that the “approximate topological model” model simplifies several special rela-
tions of the “egg-yolk” model into a single relation. Later on, the Qualitative
Min-Max (QMM) model proposed in (Bejaoui et al., 2009) enumerated in an
exhaustive manner all of 242 possible topological configurations between broad
boundary regions. The main difference between the QMM model and the two
previous models is related to how a broad boundary region is formalised. In the
“egg-yolk” and “approximate topological model” models, the inner region (the
yolk) is a proper part of the broad boundary region (the egg). Whereas, it is not
the case in the “QMM” model in which the inner region is either a proper part
or a tangential proper part of the broad boundary.

In our model, based on the concept of broad boundary region, we define the
concept of thick boundary objects (TBOs). A TBO is a spatial entity represented
by its AABB whose surfaces have a thickness € > 0. We also suppose that spatial
entities are large enough so that every dimension of their AABBs is larger than
2e. For example, Figure 3.10 illustrates a table whose thick boundary is the
buffer zone inside the object, between the red and the blue parts. Accordingly,
every TBO can be decomposed into three parts: the exterior (the set of points
not contained in AABB), the boundary (the set of points contained in the thick
surfaces), and the interior (the set of points contained in AABB but not in the
thick surfaces). With regard to a TBO A, its exterior, boundary, and interior
are denoted as A™, A%, and A° respectively. Similar to the 9-intersection model,
topological relations between the two TBOs A and B are defined by a 3x3 matrix
representing the nine intersections between their six parts.

A°NB° A°NB° A°N B~
ITpo(A, B) = AN B° A°NB¢ A*NB~ (3.1)
A" NB° A-NB® A NB~

However, until now, the number of uncertain topological relations between
TBOs in 3D spaces has not yet been defined. To do so, we decided to project
TBOs into 2D planes. The reason is that, uncertain topological relations between
2D objects have been identified, as in the “approximate topological” model or
the “egg-yolk” model discussed above. By doing an orthographic projection of
the two TBOs A and B to one of the three planes of the Cartesian coordinate
system, the result is two rectangles with broad boundary Ao, Boin. The broad
boundary rectangles (BBRs) Ao, Bow, are special cases of broad boundary
regions. Their interiors, boundaries, and exteriors are respectively noted as
AQins Aons Ao, and By, Bo,,, Boyy,- Consequently, the intersection matrix

78 3. An Integrated Model of Spatial Constraints For Virtual Environments

between two BBRs is easily defined, called Ippr(A, B).

Al N Boy, Adw, N Bow, Abu N Boy,
Adin NV Bou, Aow, N Bow, Adw N Bow,
Ao, VB Ao NV Bow, Ao N Bouw,

(3.2)

Based on the properties of orthographic projections, there exists an impor-
tant link between BBRs (i.e., projection rectangles) and TBOs (i.e., AABBs).
That is, two projection rectangles enable the reconstruction of a unique AABB.
With regard to topological relations, it is intuitive that, the two AABBs A and
B are “disjoint” if and only if their projection rectangles are also “disjoint” under
two orthographic projections. This leads to the following theorem that identifies
the number of topological relations between two TBOs.

Theorem 1. The number of topological relations between TBOs described by the
Irpo matriz equals the number of topological relations between BBRSs described
by the Iggr matriz.

Proof. Taking an arbitrary point p € A~, we have p € B~ iff p € By, in
two orthographic projections (easily given by the characteristic of orthographic
projection). Thus, A~NB~ # () (sharing a common point) iff A;,, "B, # 0 in
two orthographic projections. If we perform the same operation with the other
elements in the ITpo(A, B) matrix, it is obvious that each I7po(A, B) matrix
corresponds exactly to an Ippr(A, B) matrix. In other words, the number of
topological relations between TBO equals the number of topological relations
between BBR. O

Let us now consider topological relations between BBRs. In the previous
uncertain topological models, the drawback is that the topological relations are
not symmetric, i.e., “A meets B” does not imply “B meets A”. To us, the thickness
€ is identical to every TBO. It is chosen by application designers as a global
parameter depending on the accuracy of interface devices. The symmetry of
the relations is consequently conserved. This condition leads to the following
restrictions with regard to BBRs.

- 13
Ao 0 Bou 7.1 B 1\ Boyy, 70
AOthﬂBOth%w = B%hmBsOh#w
Adu, N By, # 0 ‘ !

A, NBS, =0 } { A5, NBY, =10
Oth Oth N Oth Oth 3.4
A%th N BOth =0 OOth N BSOth =0 (34)

(3.3)

Note that these restrictions are symmetric with Ao, and Bog,. Compared
to 44 uncertain relations in the “approximate topological” model (similarly, the
“egg-yolk” model), these restrictions exclude 27 cases, keeping 17. Figure 3.11
illustrates 17 possible topological relations between TBOs. Figure 3.12 illus-
trates 27 topological relations that are impossible, and thus excluded, between

3.4. Modelling Topological Constraints

79

TBOs with identical thickness. Figure 3.13 shows the transition between the 17
possible topological configurations. We however still keep the same numbering
and the name of relations as defined in the previous models for compatibility
and comparison with the previous work. As the intersection matrix between the
TBO is similar to the BBR, it makes calculating topological relations between

TBO in VEs a trivial task.

disjoint; meet;

inside; contains.

disjoint meet

0 01
1{0 0 1 2
1 11

— oo
—— o
[N

overlap
overlap nearlyOverlap
11 1 01 1
811 1 1 91 1 1 1
1 1 1 1 11
coveredBy
coveredBy nearlyCoveredBy
1 0 0 1 10
27 1 1 0 9111
11 1 111
covers
covers nearlyCovers
11 1 11 1
330 1 1 201 1 1
00 1 01 1
equal

equal nearlyFill

1 00
301 1 10
011

contains

1 11
0 01
00 1

stronglyOverlap ~ boundaryOverlap

110 01 0
2301 1 1 411 1 1
01 1 011

coveredByBoundary
01 0
0111

1 11

coversWithBoundary
01 1
201 1 1
01 1

nearlyFilledBy

110
3610 1 1
0 0 1

Figure 3.11: Hlustration in 2D of 17 topological relations between thick boundary

objects.

Some further remarks can be made regarding the TBO. For simplicity, we
have defined above the thick surfaces as a buffer zone inside a spatial object.
They however may be outside, or both inside/outside the object. In particular,
as spatial entities are often large, it seems relevant to suppose that the interior is
always bigger than the thickness . This restriction eliminates all the configura-

3. An Integrated Model of Spatial Constraints For Virtual Environments

80

o O~

S

— O O

~——

N
<t
P /o~
oo - O~
: 1 o — o O
— H H o~ O
: : —— O — o o
o O~ [o —= O
] <
s} [*e} [ae) <t

— —
P

S o~ o O A
—

o~ O — - O
S —

— O — - o
=R R ~ S~——
~

— Ne}
r~ el (o]
e — — e
—
O — o o~ S~ - o o~
—
—— o — = S — — o
S — -
o — O o — O — — O o — O
S — -
S~—— S—— ~——— S~
S~——
0 © o I~
o — — (o] —

Figure 3.12: 27 topological relations that are excluded between thick boundary

objects with identical thickness.

3.4. Modelling Topological Constraints 81

disjoint

nearlyOverlap

/

coveredByBoundary overlap coversWithBoundary

v boundaryOverlap Y

nearlyCoveredBy nearlyCovers

stronglyOverlap

i

coveredBy nearlyFill nearlyFilledBy covers

| T i

inside equal contains

Figure 3.13: The transitions between 17 possible topological configurations be-
tween TBO.

82 3. An Integrated Model of Spatial Constraints For Virtual Environments

tions between two TBOs A and B in which A° is inside B* (relations numbered
14, 10, and 12), keeping 14 relations.

To sum up, there are 17 possible binary topological constraints between a
primary spatial entity and a reference spatial entity, taking into account their
thick boundaries. In Figure 3.11, we gather them in 8 basic groups, correspond-
ing to the original RCC and 9-intersection models:“disjoint”, “meet”, “overlap”,
“inside”, “coveredBy”, “contains”, “covers”, “equal”’. For each group, there are
several possible spatial configurations. As we will see later, every group of topo-

logical constraints corresponds to a topological operator in our spatial language.

3.5 Modelling Projective Constraints

In this section, we aim at modelling projective constraints. We are mainly
inspired by projective invariants introduced by Billen and Clementini (Billen
and Clementini, 2006; Clementini and Billen, 2006) that are based on the two
main concepts: collinearity and coplanarity.

o
above
leftsideO
CO Ce.
“ after
outside
B o i O
; surrounded...- @
£ B
between ®
A
o A
before o o
rightside below
(a) Ternary projective constraints based (b) Quaternary projective constraints
on the concept of collinearity. based on the concept of coplanarity.

Figure 3.14: The principle of projective constraints, according to (Billen and
Clementini, 2006). Spatial entities are simplified as points.

e Collinearity: Initially, projective constraints are formalised based on the
collinearity among three points that is preserved under any projection.
That is, the three collinear points in a 3D space remain collinear after
a projective transformation. Based on the concept of collinearity, it is
possible to specify spatial relationships such as “between”, “leftside”, or
“rightside”, as illustrated in Figure 3.14a. In this case, projective con-
straints are ternary, because there needs three spatial entities to formalise
a relationship. Our model of ternary projective constraints is presented in
Section 3.5.1.

e Coplanarity: Furthermore, projective constraints can be formalised based
on the concept of coplanarity among four points. Given the three points

3.5. Modelling Projective Constraints 83

YORNA4

that form a plane, a fourth point can be “coplanar”, “above”, or “below”
with regard to the plane, as showed in Figure 3.14b. In this case, projective
constraints are quaternary. Section 3.5.2 describes our model of quaternary
projective constraints.

3.5.1 Ternary Projective Constraints

To facilitate the presentation of ternary projective constraints, we observe them
under two modes: projective views and immersive views.

e Projective views: Figure 3.15 provides a top-view of the room that results
from an orthographic projection of the 3D scene to a plane. Given a VE,
there are three projective views that can be obtained by projective trans-
formations. They are top-view, bottom-view, and side-view. Projective
views are a natural way to observe projective constraints. They are spe-
cially useful to give to the user a global view of the environment (e.g, a
navigation map of a large-scale environment). Constraint 14 depicts an
example of ternary projective constraints observed from the top-view of
the VE.

Constraint 14. From the top-view of the room, the triangular green table

Figure 3.15: A top-view of the room. In this figure, an example of spatial
relationships is that “from the top-view of the room, the triangular green table
is on the left side of the rounded red table and the rectangular blue table”.

84 3. An Integrated Model of Spatial Constraints For Virtual Environments

must be on the left side of the rounded red table and the rectangular blue
table.

e [mmersive views: Otherwise, Constraint 4 depicted earlier another exam-
ple of ternary projective constraints. That is, “in the room, the black chair
must be between the rounded red table and the rectangular blue table”.
This spatial constraint is called ternary projective constraint, but does not
result from a projection. We term these constraints as ternary projective
constraints under immersive views, to differentiate from ternary projective
constraints under orthographic views.

Orthographic View Mode

Under an orthographic view, spatial entities are 2D regions, not 3D bodies.
To specify spatial constraints under orthographic views, we propose to refine
and integrate into VEs the 5-intersection model whose aim is to describe the
collinearity among 2D objects (Clementini and Billen, 2006). In our model,
spatial entities are defined either as referential points or bounding boxes. Ac-
cordingly, our goal is to specify spatial constraints at the two level of details.

e In the case that spatial entities are simplified as their referential points,
ternary projective constraints are described based on the concept of collinear-
ity among three points, as seen in Figure 3.14a.

e Otherwise, given three spatial objects represented by their bounding boxes,
an orthographic view (i.e., top view, front view, or side view) of a 3D scene
results in three rectangles respectively noted as Aoy, (primary object), and
Botn, Cown (reference objects). In the case that the reference objects are
disjoint, based on the 5-intersection model, the relative position of Ao
to Boy, and Coyp, is described thanks to the intersections between the
external tangent lines (see Figure 3.16a) and the internal tangent lines
(see Figure 3.16b) which constitute five areas (see Figure 3.16c). The
central area is called betweenOnPlane corresponding to the convex hull of
Boyn, and Coyp,. Based on this area, four other areas are defined that allow
one to decide whether the primary object is left/right of or before/after
the reference objects.

Nevertheless, it is important to note that there may exist ambiguities in
ternary projective constraints under orthographic views. That is, different or-
thographic views may yield different observations of a concrete relation. In Con-
straint 14, the relative position of the triangular green table to the rounded red
table and the rectangular blue table is inverted (i.e., rightside instead of leftside)
under the opposite view (the bottom-view in this case). To disambiguate ternary
orthographic projective constraints, we propose that such spatial relationships
must be formalised in the context of a frame of reference. In our model, frames
of reference are different viewpoints (i.e., front view, top view, and side view).

3.5. Modelling Projective Constraints 85

In1
Ex1 COth COth
Botn Botn
iExZ i In2
(a) External tangent lines. (b) Internal tangent lines.
In1 leftsideOnPlane afterOnPlane
p Ex1 Cotn
k
betweenOnPlane
m
t
Bowm Ex2
beforeOnPlane S .)
rightsideOnPlane

In2

(c) Five acceptance areas.

Figure 3.16: Ternary projective relations in an orthographic view.

Let us now consider the computation of ternary projective constraints. The
previous algorithms for computing ternary projective relations between regions
did not allow to lift ambiguities occurred under different orthographic views.
Moreover, since the results of the orthographic projection of AABB are rectan-
gles instead of regions, we decided to build a customised algorithm, which is also
used later to compute ternary projective relations in an immersive view. The
main steps of our method is illustrated in Algorithm 1.

Algorithm 1: Computing a ternary projective constraint under an ortho-
graphic view.
1. Find the internal tangent lines (noted as Inl, In2) and the external
tangent lines (noted as Fxl, Ex2) of Boy, and Coy,.
2. Divide the projection plane into five acceptance areas.
3. Based on the position of the observer, decide whether Apy, (or one of
its semantic points) intersects with a particular area from the viewpoint
of the observer.

Algorithm 1 is intuitively and geometrically explained as follows.

e The Step 1 is carried out based on an observation that the external tangent
lines connect two vertices of Boy, and Coyp such that all the remaining
vertices are in the same half-plane. The internal tangent lines are those
that connect two vertices of Boy, and Cpoy, such that all the remaining
vertices Boy, and Coyp, are in different half-planes.

e In Step 2, it is essential to define the convex hull of By, and Coy,. We

86

3. An Integrated Model of Spatial Constraints For Virtual Environments

denote p, q, s, t as the intersection points between the external tangent
lines Fxl, Fx2 and the internal tangent lines Inl, In2; k and m are the
intersection points of the external tangent lines with Boy, and Coyp. 1t is
obvious that the convex hull of Bos, and Coyy, is the union of Bog,, Corn,
and the quadrangle made by k, ¢, m, s.

e In Step 3, it is needed to compute whether Aoy, intersects with one of the
five acceptance areas. This leads to the problem to decide whether a point
of Ao, belongs to a specific acceptance area. Not lost generality, suppose
that the situation in Figure 3.16 is obtained from a top view projection.
In this case, our algorithms for computing the five relations “between”,
“leftside”, “rightside”, “before”, and “after” are respectively detailed in Al-
gorithm 2, Algorithm 3, Algorithm 4, Algorithm 5, and Algorithm 6.

Algorithm 2: Point v belongs to the area betweenOnPlane if one of the
following conditions holds:

(i) v is contained in By, or Cop.
(ii) v is contained in the quadrangle made by k, ¢, m, s.

Algorithm 3: Point v belongs to the area leftsideOnPlane if all the
following conditions hold:

(i) v does not belong to the arca betweenOnPlane. This test is carried
out thanks to Algorithm 2.

(ii) v and s are in different half-planes divided by In1.

(iii) v and ¢ are in different half-planes divided by In2.

(iv) v and s (resp. t) are in different half-planes divided by Ex1.

Algorithm 4: Point v belongs to the area rightsideOnPlane if all the
following conditions hold:

(i) v does not belong to the area betweenOnPlane. This test is carried
out thanks to Algorithm 2.

(ii) v and ¢ are in different half-planes divided by Inl.

(iii) v and p are in different half-planes divided by In2.

(iv) v and ¢ (resp. p) are in different half-planes divided by Ez2.

Algorithm 5: Point v belongs to the area beforeOnPlane if all the fol-
lowing conditions hold:

(i) v does not belong to the area betweenOnPlane. This test is carried
out thanks to Algorithm 2.

(ii) v and ¢ are in different half-planes divided by Inl.

(iii) v and ¢ are in different half-planes divided by In2.

3.5. Modelling Projective Constraints 87

Algorithm 6: Point v belongs to the area afterOnPlane if all the following
conditions hold:
(i) v does not belong to the area betweenOnPlane. This test is carried
out thanks to Algorithm 2.
(ii) v and s are in different half-planes divided by Inl.
(iii) v and p are in different half-planes divided by In2.

The above algorithms were given from a top-view. To overcome ambiguities,
in the case that the observer yields a bottom-view of the environment, the results
of Algorithm 3 and Algorithm 4 are inverted. That is, the point v that belongs
to the area leftsideOnPlane from a top-view is in the rightsideOnPlane area
from a bottom-view, and vice versa. This enables a unambiguous distinction of
ternary projective relations observed under orthographic views. Our algorithms
are in constant time, compared to that mentioned in (Clementini and Billen,
2006) which runs in O(nlog n) where n is the number of vectors to represent 2D
regions.

Immersive View Mode

In an immersive view, spatial entities are 3D shapes, not 2D regions. To rep-
resent ternary projective constraints between 3D shapes, we are based on the
projective model between 3D bodies proposed in (Billen and Clementini, 2006).
Given two disjoint reference objects B and C, the localisation of the primary
object A can be retrieved from the intersections between the external tangent
planes (see Figure 3.17a) and the internal tangent planes (see Figure 3.17b).

However, the initial Billen and Clementini’s model remains very formal. The
number of tangent planes are undefined. In our context, the use of bound-
ing boxes as convex approximations of spatial entities allows us to argue that
there are exactly four external tangent planes and four internal tangent planes
of reference objects. Based on the intersections between the tangent planes,
there are four acceptance sub-spaces, they are “between”, “before”, “after”, and
“aside”. Figure 3.17c¢ shows the four acceptance sub-spaces. In an immersive
view, ternary projective constraints share three common relationships with those
under an orthographic view, they are “between”, “before”, and “after”. However,
it is impossible to identify whether the primary entity is leftside/rightside of the
two reference entities.

Let us now detail our method to compute ternary projective relations in 3D
spaces that is presently lacking in the previous models. The most interesting
aspect is that the method is based on the reconstruction of the 3D view from
orthographic views, as previously described in Theorem 1. For instance, one
can note that the primary object A is “between” the reference objects B and
C in an immersive view if and only if the image rectangles of A are between
the corresponding ones of B and C' in two orthographic projections. It leads
to the following algorithm for calculating ternary projective relations between

88 3. An Integrated Model of Spatial Constraints For Virtual Environments

R R s
{ | F
e | |
/ \ [/
| C
— P o~
B — B 1
VA &
(a) Two of four external tangent planes. (b) Two of four internal tangent planes.
aside
4 ~
o /1 after
“ between c
before B C

(c¢) Four sub-spaces made up from the tangent
planes.

Figure 3.17: Ternary projective relations in an immersive view.

volumetric objects.

Algorithm 7: The primary object A is between the reference objects B
and C if one of the following conditions holds:
(i) Ao is betweenOnPlane By, and Coyy, in the two planes XY and XZ.
(ii) Aoy is betweenOnPlane Boy, and Coyy in the two planes XY and
YZ.
(iii) Ao is betweenOnPlane Bog, and Coyy in the two planes YZ and
X7Z.

This algorithm is similarly expanded to other sub-spaces. Overall, the al-
gorithms to compute ternary projective constraints in immersive views are in
constant time, because they reuse the previous algorithms to compute ternary
projective constraints in orthographic views that were also in constant time.

It is also important to note that, all our algorithms in this chapter to com-

pute spatial constraints will be used in our framework for conceptualising and
visualising abstract spatial constraints. A detailed description of the framework

3.5. Modelling Projective Constraints 89

will be given in the next chapter. For instance, based on our model of ternary
projective constraints in an immersive view, it is possible to compute and visu-
alise semantic areas formed by three spatial entities in 3D spaces. Figure 3.18
shows the area “between” of the rounded red table and the rectangular blue
table. One can see that the black chair is “between” the rounded red table and
the rectangular blue table. Constraint 4 is thus satisfied.

Figure 3.18: The area “between” the rounded red table and the rectangular blue
table.

3.5.2 Quaternary Projective Constraints

While ternary projective relations are based on the collinearity between three
spatial entities, quaternary projective relations deal with the coplanarity among
four spatial entities.

In the case that spatial entities are considered as their referential points,
the relative position of a fourth point can be defined with regard to the three
given reference points, as illustrated in Figure 3.14b. Based on the concept of
coplanarity among three points, the possible relationships are “above”, “below”,
“inside” (or “sourrounded”), and “outside”.

Furthermore, the concept of coplanarity was extended to volumetric objects
in a 3D space (Billen and Clementini, 2006). However, no method has been
given that allows to compute quaternary projective constraints. Consequently,
to specify and compute quaternary projective constraints in VEs, we propose

90 3. An Integrated Model of Spatial Constraints For Virtual Environments

g e
o T p et "
.................. |
it .. r
L.t . ..'r
R C -
C P
-------------- D B t
B ‘”t . JURRRE Y u
BT P TR .
Ex2.. S
(a) Two external tangent planes. (b) One (of six) internal tangent planes.
In1. n2
o above®
-, " In3
R Ex1
inside e
outside C
D
B - t :
I = ZI— .
s In5
In4.,.,-' below In6

(¢) Four sub-spaces made up from tangent
planes.

Figure 3.19: Projective relations between four objects.

a specialised quaternary projective model, taking into account our conceptual
definition of spatial entities described previously.

Similar to ternary projective constraints, quaternary projective constraints
are geometrically formalised by means of tangent planes. Given three disjoint
reference objects B, C, and D, the intersections between the external tangent
planes (see Figure 3.19a) and the internal tangent planes (see Figure 3.19b)
result in four sub-spaces named above, below, inside, outside (see Figure 3.19c,
in which full bounding boxes are not showed).

Let us now consider the method to compute quaternary projection relations.

3.5.

Modelling Projective Constraints 91

Algorithm 8 illustrates the main steps of our method.

Al

gorithm 8: Computing a quaternary projective constraint.

1. Find the internal external tangent planes of B, C, and D.

2. Compute the intersections among tangent planes and divide the 3D
space into the four acceptance sub-spaces above, below, inside, outside.
3. Decide whether A (or one of its semantic points) intersects with a
particular sub-space.

Every step of Algorithm 8 is explained in the following.

In Step 1, the main requirement consists of finding internal and external
tangent planes. In the context of AABB, we argue that there are two
external tangent planes (noted as Ex1 and Ez2) and six internal tangent
planes (respectively noted as Inl,..,In6). Figures 3.19a and 3.19b intu-
itively show that the external tangent planes connect three vertices from
the reference objects such that all the remaining vertices are on the same
half-space. In contrast, the internal tangent planes connect three vertices
from the reference objects but gather two objects in a same half-space
whereas the last one is in another half-space.

In Step 2, in addition to the intersections of tangent planes, it is needed to
define the convex hull of the three reference objects. Let p, ¢, r and s, ¢, u
be the vertices that respectively make up the two external tangent planes
FExl and Fx2, Figure 3.19¢ shows that the convex hull is built from the
union of B, C, D, Fxzl, Fx2, and three planes, termed as complementary
tangent planes. Informally, an example of a complementary tangent plane
is the one made up from p, ¢, s, and ¢ that connects vertices from two
of three reference objects such that all remaining vertices are in the same
half-space.

In Step 3, let us now consider the algorithm to test whether the primary
entity A intersects with one of the four sub-spaces. This leads to the
problem of deciding whether a point belongs to a specific sub-space. Our
the methods for checking the “above” and “below” relations are detailed
respectively in Algorithm 9 and Algorithm 10.

Algorithm 9: Point v is above the reference objects B, C, and D if all of
the following conditions hold:

i

(
(
(
(
(

i) v is not inside the convex hull of three reference objects.

ii) v and s, u, t are in different half-spaces divided by Fz1.

iii) v and s (respectively ¢, u) are in different half-spaces made by Inl
respectively In2, In3).

iv) v and p (respectively ¢,) are in different half-spaces made by In4
respectively In5, In6).

92 3. An Integrated Model of Spatial Constraints For Virtual Environments

Algorithm 10: Point v is above the reference objects B, C, and D if all
of the following conditions hold:

(i) v is not inside the convex hull of three reference objects.

(ii) v and p, ¢, r are in different half-spaces divided by Ez2.

(iii) v and p (respectively g, r) are in different half-spaces made by In4
(respectively Inb, In6).

(iv) v and s (respectively ¢, u) are in different half-spaces made by Inl
(respectively In2, In3).

The integration of quaternary projective constraints into VEs allows one to
express and query semantic constraints related to the coplanarity of a quadru-
plet of objects. An example of quaternary projective relations was given in
Constraint 5, that is “in the room, is the red chair coplanar with the three ta-
bles? If yes, is the red chair surrounded by the three tables?”. Here, there are
three reference entities that are needed to localise a primary entity. Later on,
using our model of quaternary projective constraints, it is possible to visualise
abstract spatial constraints in VEs. For instance, Figure 3.20 illustrates the
visualisation of the area “above” of the three tables in the room.

Figure 3.20: The area “above” of the three tables in the room.

3.6. Modelling Directional Constraints 93

3.6 Modelling Directional Constraints

Directional constraints are strongly dependent on FoRs. According to our model
of FoR, we model directional constraints using the two main types of FoR: first-
person perspective and third-person perspective.

3.6.1 Direction From a First-person Perspective

In this case, direction is based on a reference object, so called object-based or
ego-centric direction. According to our model of FoR, to compute directional
constraints, there are three possibilities:

1. If the reference object is moving, the motion direction of the reference
object is used.

2. If the reference object is still, the intrinsic direction of the reference object
is used.

3. Otherwise, if the reference object has not an intrinsic direction, the implicit
direction of the environment is used.

In our model, the motion direction, the intrinsic direction, and the implicit
direction of the environment have the same representation (i.e., using the three
vector frant, le_ft, abgve). Consequently, not lost generality, we assume that
the reference object is still. Thus, directional constraints are computed based
on the intrinsic direction of the reference object.

Based on our concept of spatial entity, Figure 3.21 illustrates our model of
direction. The model is formalised based on the two levels of representation of
spatial entities: bounding box and referential point.

Bounding Box-based Direction

In the case that the reference entity is approximated by its bounding box,
we define 27 directional relations divided into 3 layers (above, medium, and
below). For each layer, the 9 possible directional relations are “front”, “front
left”, “front right”, “left”, “right”, “behind”, “behind left”, “behind right”, and
“neutral”, as illustrated in Figure 3.21a. These relations have equivalent terms
in geographical direction: “north”, “north west”, “north east”, etc. Our model
of object-based direction shares several ideas with the previous models such
as the 2D cardinal direction (Frank, 1992) or the Three-dimensional Cardinal
Direction (Chen et al., 2007). Nevertheless, based on our conceptual definition of
spatial entities and frames of reference, this allows a more formal representation
of object-based direction. Given (Zmin, Ymin, 2min) and (Tmaz, Ymaz, Zmaz) a8
two extreme points of the bounding box, a formal definition of the 9 directional
relations between a point (x, y, z) and the “medium” layer of the reference entity
is as follows:

“front™ = > Tmar and Ymin < Y < Ymaze a0d Zmin < 2 < Zmaz-

94 3. An Integrated Model of Spatial Constraints For Virtual Environments

above .
. I » front
left

above

(xmama Ymaz Zma:r) ﬁ”(_)nt-lefté front .__V.»-'"J':front—right
left neutral right .~
behind-lefi behind behing4right

belo;v (xmin7 Ymin, Zmzn)

(a) Direction based on the bounding box of a spatial entity.

front
A
front-left front-right
B
o
le ft -« OA) 7 ght
behind-left : behind-right
\J
behind
(b) Direction based on the referential point of a spatial

entity.

Figure 3.21: The proposed model of direction.

“front left” = > xpmae and ¥ > Ymaz and Zmin < 2 < Zmaz-
“front right”: * > Ty and ¥y < Ymin and zZpmin < 2 < Zmaz-
“left”: Tmin < T < Tmaz and Y > Ymaz A0d Zmin < 2 < Zmaz-
“right”: Timin < T < Timaz and Y < Ymin a0d Zmin < 2 < Zmaz-
“behind”: = < Tymin and Ymin < ¥ < Ymaz a0d Zmin < 2 < Zmaz-
“behind left”: = < Zyin and ¥ > Ymaz and zpin < 2 < Zmaz-

“behind right” = < xpin and ¥y < Ymin and Zpmin < 2 < Zmaz-

3.6. Modelling Directional Constraints 95

“neutral” Tiin < T < Tmaze a0d Ymin < Y < Ymaz a0d Zmin < 2 < Zmaz-

These definitions can be easily extended to the “above” and “below” layers. In
the case of the “above” layer, the last condition should be changed to z > zmnaz-
Whereas, in the case of the “below” layer, the last condition should be changed
to z < Zmin-

Point-based Direction

In several cases, spatial entities can be considered as points. It is specifically
true when spatial entities are virtual humans or users. In these cases, direction
is given from their viewpoint (e.g., eyes), represented as a point in a 3D space.
Whereas, the body representation of a virtual human or a user is not often
taken into account for the computation of directional relationships. Our model
of direction based on the referential point of a spatial entity is illustrated in
Figure 3.21b. Based on the vertical direction represented by the above vector
of the reference entity, the space around the entity is divided into three layers:
above, medium, and below. For each layer, based on the horizontal direction of
the spatial entity represented by the frant and le_ft vectors, the model defines
9 possible directional relationships, they are “front”, “front left”, “front right”,
“left”, “right”, “behind”, “behind left”) “behind right”, and “neutral”. It is obvious
that the point-based directional model has the same level of granularity as the
bounding box-based directional model. This allows a consistent representation
of direction, regardless of different levels of detail of representation of spatial
entities.

Let us now consider the question how to compute directional constraints
between spatial entities simplified as referential points. In fact, there exists
several methods enabling such a computation. In our context, we decided to lay
our model on the vector-based directional algebra proposed in (Shekhar et al.,
1999). The reason is that this algebra is also based on the concept of directed
object (i.e., object with internal orientation) that is similar to our concept of
spatial entity. To compute the relative position of the primary entity B to the
reference entity A, the algebra consists of computing the dot-product between
the vector AB and the three intrinsic directions of the reference entity A (i.e.,
A.frant, A.le}"t, A.abgve). First, it is needed to identify whether B belongs
to the “above”, “medium”, or “below” of A. The guaranteed conditions are as
follows:

B belongs to the “above” layer of A: AB ® A.above > 0.

B belongs to the “medium” layer of A: AB ® A.above = 0.
B belongs to the “below” layer of A: AB ® A.above < 0.

Next, for each layer of A, it is necessary to identify one of the 9 areas to which
B belongs. Considering Figure 3.21b, assume that B belongs to the “medium”
layer of A (i.e., AB ® A.above = 0), the checking conditions for a specific area
are the following.

“front” AB ® A.frant >0and AB® A.le?ft =0.

“front left> AB® A.front >0 and AB ® A.left >.

96 3. An Integrated Model of Spatial Constraints For Virtual Environments

“front right”: AB® A.frant >0and AB® A.le}t < 0.
“left” AB ® A.frgnt =0and AB® A.le_ft > 0.

“right”: AB® A.frant =0and AB® A.le_ft < 0.
“behind”: AB ® A.frgnt <0and AB® A.le_ft =0.
“behind left AB ® A.front < 0 and AB ® A.left > 0.
“behind right” AB ® A.front < 0 and AB ® A.left < 0.
“neutral”. AB ® A.frant =0and AB® A.le}”t =0.

These checking conditions are similarly applied to the “above” and “below”
layers of the reference entity A.

3.6.2 Direction From a Third-person Perspective

In this case, direction is observed from the perspective of a third-person. It
is also referred to as viewer-based or alo-/exo-centric direction. Figure 3.22
is a simplified illustration in 2D of the room presented in Figure 3.1. It is
used to illustrate several directional constraints from a third-person perspective
presented so far. For instance, Constraint 9 showed that “from the point of view
of the desk, the rectangular blue table must be on the left of the rounded red
table”. Constraint 10 indicated that “from the point of view of the desk, the
triangular green table must be behind the rectangular blue table”.

Rectangular

Triangular table
tablg °
C B

Desk Rounded
tablg
D‘ A

Figure 3.22: Example of direction from a third-person view: “From the view-
point of the desk (D), the rectangular blue table (B) must be on the left of the
rounded red table (A)”.

The most important point is that direction given from a third-person per-
spective is completely based on the intrinsic direction of the viewer. Whereas,

3.7. Modelling Distance Constraints 97

both primary and reference entities may not be oriented. For example, using
Figure 3.22, let us consider the directional relation between the rectangular blue
table (B) and the rounded red table (A), from the perspective of the desk (D).
Here, both of the primary entity B and the reference entity A do not have in-
trinsic direction. Instead, the viewer D has an intrinsic direction, it is used as
the frame of reference to describe the directional relation.

Based on this important remark, this leads us to the ability to specify third
person-based direction by using the first person-based model presented in the
previous section. Our main idea is to apply the intrinsic direction of the viewer
to the reference entity. Then, we use the reference entity, with an already defined
intrinsic direction, to specify the direction of the primary entity. Applying our
model to Figure 3.22, A has the same intrinsic direction with D. Using our
model of direction from a first-person perspective, it is easy to calculate that
AB ® D.front = 0 and AB ® D.left > 0 and AB ® D.above = 0. Thus,
it is concluded that B is on the left of A from the viewpoint of D, that is a
correct result. We have the same result when A, B, and D are approximated
by their bounding boxes. Because our model of direction from a third-person
perspective reuses the model of direction from a first-person perspective, there
are 27 possible directional relationships that can be specified from a third-person
perspective.

As a summary, both the two models of direction from a first- and third-person
perspective are mainly based on the concept of spatial entity. We enable the
modelling of a variety of frame of reference. Our model of direction from a third-
person perspective shares the same principle with our model of direction from
a first-person perspective. This leads to several advantages. On the one hand,
the models allow to specify directional constraints using both the two levels of
representation of spatial entities, with the same level of granularity. All of the
computation of direction are built upon spatial entities, and thus are simple to
perform. On the other hand, they still enable a consistent representation of
direction.

3.7 Modelling Distance Constraints

In this section, we aim to model distance constraints in VEs. In addition to
direction, distance provides important metric information about space. So far,
Constraint 11 described an example of a distance constraint in the room, that
is “the rounded red table must be closer than 1 meter to the desk”. In fact,
distance is often combined with other spatial knowledge, notably directional
knowledge. An example of such a combination was given in Constraint 13, that
is “the rounded red table must be in front of and closer than 1 meter to the
desk”.

As we have discussed in Section 2.2.4 of Chapter 2, there are two main ap-
proaches to distance models in the literature. The first one is based on absolute
distance, whereas the second one uses relative distance. Absolute distance is
directly computed between two spatial entities (e.g., “A is 10 meters from B”

98 3. An Integrated Model of Spatial Constraints For Virtual Environments

(xmax +d, Ymaz + d, Zmaz + d)

(xmzna Ymin, Zmin)

(xmin - d; Ymin — d, Zmin — d)

Figure 3.23: The proposed model of distance based on the bounding box of a
spatial entity.

or “A is close to B”). Whereas, relative distance is based on a comparison with
a reference distance (e.g., “A is closer to B than to C”). Our goal is to support
both the two types of distance in VEs.

Absolute Distance

With regard to absolute distance, it can be represented both in a quantitative
or qualitative way. Using a quantitative approach, distance between two spatial
entities is measured in a metric manner. In contrast, a qualitative approach
divides the space around the reference entity into different levels of granularity,
for example “close”, “medium”, and “far”. While qualitative distance models
are interesting, they are however very dependant to a specific domain. In fact,
like directional models, qualitative distance is mostly specified in the context of
frame of reference. Frames of reference for distance are strongly associated to a
domain. To qualitatively measure the concepts of “close”, “medium”, and “far”,
distance is defined based on the number of bus stops, metro stations, travelling

time, or travelling cost.

For the above reasons, we propose a semi-qualitative approach to distance
in VEs. That is, in our model, absolute distance is modelled in a quantitative
manner. Thereafter, the model supports a qualitative representation of relative
distance. Our model of absolute distance is illustrated in Figure 3.23 and Fig-
ure 3.24, corresponding to the two levels of specification of spatial entities. Our
model of relative distance will be discussed later in the end of this section.

3.7. Modelling Distance Constraints 99

(a) Distance from the referential point. (b) Distance from the referential point,
combining with the intrinsic direction of
the spatial entity.

Figure 3.24: The proposed model of distance based on the referential point of a
spatial entity.

When a spatial entity is represented by its bounding box, the sub-space
surrounding the spatial entity with a distance d is illustrated in Figure 3.23.
Given (Tmin, Ymin, Zmin) a0d (Tmaz, Ymaz, Zmaz) S the two extreme points of
the bounding box, a point (x, y, z) has a distance equal or less than d to the
spatial entity if and only if ;5 —d < & < Ty +d and Ypin —d < Y < Ypmaz +d
and zmyin — d < 2 < Zymae + d. As a result, when one of the conditions does not
hold, this leads to the fact that the point (z, y, z) has a distance further than
d to the spatial entity.

Interestingly enough, the formalisation of distance can be extended to take
into account directional information. In the previous section, direction was de-
fined by dividing the space around a spatial entity into three layers: above,
medium, and below. For each layer, there are nine possible directional con-
straints “front”, “front left”, “front right”, “left”, “right”, “behind”, “behind left”,
“behind right”, and “neutral”. Within the medium layer, each directional rela-
tionship is subsequently extended by combining with distance information (e.g.,
equal or less than d).

“front” with a distance d:

Tmaz < T < Tiaz + d and Ymin < Y < Ymaz and 2min < 2 < Zmaa-
“front left” with a distance d:

Tmaz < T < Typae +d and Ymaz <Y < Ymaz + d and zmin < 2 < Zmaz-
“front right” with a distance d:

Timaz < T < Tmae + d and Ymin — d <Y < Ymin and 2min < 2 < Znae-
“left” with a distance d:

100 3. An Integrated Model of Spatial Constraints For Virtual Environments

Tmin < T < Tmaz A0 Ymaz <Y < Ymae + d and Zpmin < 2 < Zmaz-
“right” with a distance d:

Tmin < T < Tmaz and Ymin — d <Y < Ymin and 2min < 2 < Zmaz-
“behind” with a distance d:

Tmin — d < T < Tmin a0d Ymin < Y < Ymaz a0d Zmin < 2 < Zmaz-
“behind left” with a distance d:

Tmin — d <& < Tmin and Ymae <Y < Ymae + d and 2min < 2 < Zimag-
“behind right” with a distance d:

Tpmin — AT < Tmin a0d Ymin — d < Y < Ymin and Zmin < 2 < Zmaz-
“neutral”:

Tmin < T < Tiaz and Ymin <Y < Ymae a0d 2min < 2 < Zinag-

In the case of the “upper” layer (respectively the “below” layer), the last
condition is changed t0 zpmar < 2 < Zmax + d (respectively zpmin — d < 2 < Zpin
for the “below” layer). The above formalisations serve as the basis for visualising
spatial constraints in VEs. Figure 3.25 illustrates the combination between
distance and directional constraints. Given a spatial entity like a desk, the
semantic areas “front of” with a distance d (e.g., 1.5 meter) to the desk are
visualised.

Figure 3.25: The area front of and 1.5 meters from the desk.

Let us now consider the case that spatial entities are represented by their
referential points. Our model of distance is illustrated in Figure 3.24a. Given
the reference entity B represented by its referential point (B,, By, B.), a point

3.8. Summary 101

(x, y, z) has a distance equal or less than d to B if and only if:

V(Be —2)? + (B, —y)* + (B. - 2)* <d

Moreover, this point-based distance model can be combined with the direc-
tional model. In the previous section, we have seen that point-based direction
is computed using a vector-based directional algebra. Considering Figure 3.24b,
a distance and directional constraint such as “B is front-right of A, and B has
a distance further than d to A” can be formalised by combining the conditions
of both the distance and directional models, explained as follows:

“B front-right of A”:

BA® B.frgnt >0and BA® B.le_ft < 0 and BA ® B.above =0
“B has a distance further than d to A

VBe = A+ (By — A + (B — A > d

Relative Distance

Already defined our model of absolute distance, let us now consider relative
distance. So far, we have defined relative distance between two spatial entities as
a comparison to the distance to a third entity. Figure 3.26 provides an example
of relative distance. In this example, B and C' have “equal”’ distances to A.
Whereas, the distance between D and A is “greater” than the distance between
B and A. In other words, the distance between B and A is “shorter” than the
distance between D and A. In general, spatial expressions of relative distance
take the forms as follows.

“A is closer to B than to C”

“Ais equal to B than to C”

“A is further than B from C”

In our model, relative distance is computed by comparing two absolute dis-
tances between two spatial entities. Given Constraint 11 “the rounded red table
is closer than 1 meter from the desk” and the fact that “the rectangular blue
table has a distance more than 2 meters to the desk”, it is possible to conclude
that “in the room, the rounded red table is closer to the desk than the the rect-
angular blue table”. In other words, it can be expressed that “the rectangular
blue table is further than the rounded red table, from the desk”.

3.8 Summary

In this chapter, we have presented a general model of spatial constraints for VEs.
An in-depth definition of both nonmetric spatial constraints (i.e., topological
and projective constraints) and metric spatial constraints (i.e., directional and
distance constraints) was presented. We also detailed the methods that allow to
compute spatial constraints in VEs. This general model provides a theoretical
basis for our framework to conceptualise spatial constraints in VEs that will be
presented in the next chapter.

Regarding topological constraints, to tackle the lack of precision when ma-
nipulating 3D objects within VEs, we introduced the concept of thick boundary

102 8. An Integrated Model of Spatial Constraints For Virtual Environments

Figure 3.26: Example of relative distance.

objects and then defined 17 topological relations between them. Our topological
model allows to specify 8 basic topological relationships between spatial entities,
they are “disjoint”, “meet”, “overlap”, “inside”, “coveredBy”, “contains”, “covers”,
“equal”.

Our model of projective constraints allowed one to define spatial constraints

b 13

among three objects (i.e., “before”, “between”, “after”, “leftside”, “rightside”)

and four objects (i.e., “above”, “below”, “coplanar”), both in orthographic and
immersive views.

Our directional model enables the specification of meaningful relationships
such as “left”, “right” or “north”, “south” in VEs. We proposed a formal model
for direction in VEs. The model is based on a qualitative description of di-
rection that has proven to be closer to how human represents the world. We
defined a clear semantics of reference systems used for describing direction. Our
directional model allows to specify direction both from a first- and third-person
perspective.

While our model of directional constraints is qualitative, our approach to
distance constraints is semi-qualitative. We modelled two types of distance:
absolute distance and relative distance. First, absolute distance is quantitatively
computed between two spatial entities. Next, relative distance is obtained by
comparing the quantitative distances between two spatial entities to a third
spatial entity. Relative distance is purely qualitative. There are three possible

constraints: “closer than”, “equal to”, and “further than”.

Through a simple but realistic VE illustrating a room, we showed how each
family of spatial constraints can be used to express spatial knowledge to users.
Furthermore, we argued that topological constraints, projective constraints, di-

3.8. Summary 103

rectional constraints, and distance constraints can be combined together to de-
fine complex spatial constraints.

104 8. An Integrated Model of Spatial Constraints For Virtual Environments

Chapter 4

A Language for Specifying
Spatial Semantics

The previous chapter described our formal model of spatial constraints in VEs.
We modelled and computed the four main types of spatial constraints (i.e.,
topological, projective, distance, and directional constraints). In this chapter,
we show how the formal model of spatial constraints is applied into a spatial
language and framework, named VRX-OCL, to specify spatial semantics of VEs
at the conceptual level.

This chapter is structured as follows. Section 4.1 positions the VRX-OCL
language into the overall architecture of the MASCARET framework. The syn-
tax and meta-model of VRX-OCL are described in Section 4.2. Sections 4.3,
4.4, 4.5, and 4.6 respectively present how topological, projective, directional,
and distance constraints are specified using the VRX-OCL language. Finally,
Section 4.7 summarises the chapter.

4.1 Positioning

4.1.1 Architecture

To conceptualise semantic spatial constraints in VEs, the VRX-OcCL approach
is composed of two main steps.

1. Building the conceptual model of the VE

2. Using the VRX-OCL spatial language to specify spatial constraints in the
conceptual model

The overall approach follows our critical remarks of the related solutions for
conceptualising spatial relationships, as previously discussed in Section 2.3. We
have stated that a conceptual schema, completed with a spatial language, ap-
pears to be a promising approach for conceptualising spatial relationships. The
first step aims to define the conceptual schema of the VE. In the context of the
VRX-OcCL approach, we use the MASCARET framework to build the conceptual

105

106 4. A Language for Specifying Spatial Semantics

MASCARET VRX-OCL
M2 MASCARET completing Meta-model of
, meta-models ‘ spatial constraints ‘:
1 \
<<model of>> \<<instance of>>
\ Formal language VRX-OCL I
\ Py - Logical constraints !
specifying - ! ;
M1 Al Conceptual model |« === Spatial constraints &
/

(i.e., topological, projective,
'/ directionnal, distance)

<<m | of>>

odel o ‘

\

\ .
,<<instance of>>
/

referring to

\
) N) ,
MO A Virtual Environment Jw] Execution of constraints |~/

Figure 4.1: Positioning the VRX-OCL approach into the MASCARET approach.

model and the semantic model of the VE. However, the semantic conceptual
model merely provides a description of the structure, behaviours, and concep-
tual links among spatial entities that compose the VE, not semantic spatial
relationships among them.

Therefore, in the second step, our aim is to specify spatial constraints among
spatial entities. To do so, we propose the VRX-OCL language that allows to spec-
ify spatial constraints and other types of constraints at the conceptual model.

Figure 4.1 situates the VRX-OCL approach into the overall architecture of
MASCARET. Similar to MASCARET, VRX-OCL uses a model-based approach.

e First, because the modelling of spatial constraint require additional con-
cepts, we had to extend the meta-model of MASCARET (i.e., the M2 layer)
to cover the concepts of spatial entity, frame of reference, and spatial con-
straints.

e Next, the VRX-OCL language is proposed to specify spatial constraints at
the conceptual model (i.e., the M1 layer).

e Finally, the execution of constraints (e.g., checking constraints satisfaction
or constraints violation) is carried out in a concrete VE (i.e., the MO layer).

4.1.2 Fitting into the Overall Development Process

Modelling of spatial constraints is fitted into the overall development process of
MASCARET. To take into account the phase of modelling of spatial constraints,
the development process of MASCARET must be adapted.

In the first phase (i.e., the domain modelling phase), the designer of the VE
uses the VRX-OcCL language to add spatial constraints to the conceptual model
of the VE produced by MASCARET. Initially, to conceptualise a VE, the designer
uses MASCARET diagrams such as class diagrams, statechart diagrams, or ac-
tivity diagrams. For instance, Figure 4.2 shows the MASCARET class diagram
representing the structure (i.e., domain concepts and their conceptual links) of a

4.1. Positioning 107

testEnvMascaret2

Jeat| w EETET = 4 > — T = o o> o> O - one [[125% 2 1 3]
e
<<EntityClass>> F
1
furi wall
<<EntityClass>> <<EntityClass>> 1 J<<EntityClass>>] <<EntityClass>>
' MoveableObject
Furniture Floor Wall
- color : string
<<EntityClass>> <<EntityClass>> | | <<EntityClass>> <<EntityClass>> | |<<EntityClass>>| |<<EntityClass>> | |<<EntityClass>>
- 10 o Table Chair Box Sphere Cone Dice
* 1|~ height : double
tabletop T <<EntityClass>>
<<EntityClass>> <<EntityClass>> Do
L + slideln()
+ slideOut()
| | _'l_]

Figure 4.2: Conceptual modelling of virtual environment. Top: graphical rep-
resentation of a room. Bottom: conceptual model of the room. Here, a MAs-
CARET class diagram is used to represent the structure of the room, without any
specification of spatial constraints.

virtual room. However, these conceptual diagrams are unable to convey spatial
constraints. Instead, it is done by means of textual expressions in the VRX-OcCL
language, as illustrated in Figure 4.3. The specification of spatial constraints
is performed using UML-supported modellers that allow to define constrains on
any element of MASCARET models.

In the second phase (i.e., the instantiating phase), there needs several adap-

tations taking into account additional spatial information of spatial entities.
Figure 4.4 shows an example of such an adaptation. A desk is an oriented spa-

108 4. A Language for Specifying Spatial Semantics

Bouml : testEnvMascaret3.prj

Project Windows Tools Languages Miscellaneous Help

ledane W ‘

browser || testenvMascaret2

T lestEnviascare? [lect| w B EIET = -+ > — T o= o o5 o3 O - one [Jomoe & s 3
- [G]BEHAVE oo ’
[GHavE
[Jenv
L Fgenv

<<EntityClass>>|
Floor

=<EntityClase>> <<EntityClass>>

Wall

{5l <<EntityClass>> Furniture
+-H <<EntityClass>> Room

<<EntityClass>>
Furniture
[<<Entity>> LenghtDevice e

[l <<Entity>> Gube
[<<Entity>> ClickButton
4 <<Entity>> Button

|- color - string

5 <<EntityClass>> Cone eEniyOiasssy | o [<<oryCEss-] [ccEnliyCiass>>] [<<EnlyClass>>) [<<EntlyClass>>] [<<EnltyClass>>] [<<EnillyClass>>
+-F <<EntityClass>> Dice Table Chair Box Sphere Cone Dice.
+-E <<EnlityClass>> Sphere * 4 |- height : double} [1 i 1 G i]
+-H <<EntityClass>> Box Class dialog o)
[<<Entity>> Clock raptéiop
+{E <<Entity>> GlockHand twl | | Properties |
[El<<EntityClass>> MoveableObject ||| [<<EntityClass>3 s Drawer name : [rabte
[ActiveObject TENTo L + sligein() . " -
E<<EntityClasss> Fioor o SRS stersotype : [VEHAENtityClass E|
+[E] <<EntityClass>> Wall . :
bstract ti public ¢ protected ¢ ite (% k
™ abstract ™ active public protecte private (¢ package
{5 <<EntityClass>> Chair
d tion ¢
[<<EntityClasss> Desk IpEH:
+[E] <<EntityClass>> Drawer Editor
[<<EnlityClass>> Leg Default
Ere < g . self height < 2
[EltestEnvMascaret2 constraint :
[[Jactors
[Clseenarios Editor
; s o] _ces |||

hN

Figure 4.3: Adding the specification of constraints into the conceptual model,
by means of textual expressions in the VRX-OCL language.

tial entity. However, it was impossible to specify the intrinsic direction of the
desk in UML models. In our approach, the instantiation of spatial entities is en-
riched with additional information used for modelling spatial constraints, such
as intrinsic direction of a spatial entity.

4.2 The VRX-OCL Language

To specify spatial constraints at the conceptual model of VEs, we define the
VRX-OcL language. In this section, we first give a general presentation of the
language. Then, we present the extended spatial syntax of VRX-OCL. Finally,
we describe the meta-model of VRX-OCL that enables the specification of spatial
entities and spatial constraints at the meta level.

4.2.1 Presentation

VRX-OCL is defined as a Virtual Reality eXtension of the Object Constraint
Language (Warmer and Kleppe, 2003). Initially, OCL is a standardised formal
language to specify constraints in a UML-based conceptual model. By extending
OcL, VRX-OCL is able to cover both spatial constraints as well as other types
of constraint at the conceptual model of a VE.

Our motivations to define VRX-OCL as a spatial extension of OCL are based
on the following characteristics of OCL.

e Both query and constraint language: OCL allows to express both con-
straints and queries at the conceptual model. OCL defines a constraint as
a restriction on the values or properties of an object-oriented model. For

4.2. The VRX-OCL Language 109

(xmax, ymax, zmax)

(xmin, ymin, zmin)

(1)<Entity class="Desk" name="desk1">
(2) <Inline url="VRMLS/Desk/desk1.xml"/>
(3) <Position x="-2.5" y="2" z="0"/>
(4) <Rotation roll="0" pitch="0" yaw="-1.11529828327"/>
(5) <IntrinsicDirection>
< frontVector x="1" y="0" z="0"/>
< leftVector x="0"y="1"z="0"/>
< aboveVector x="0" y="0" z="1"/>
</IntrinsicDirection>
(6)</Entity>

Figure 4.4: Adaptation at the instantiating phase. Top: a desk in the appli-
cation. Bottom: the instantiation of the desk with additional information used
for computing spatial constraints.

example, “the length of the table must be less than 2 metres” is a constraint
applied into the concept of table in the conceptual model. Additionally,
OcL is also used as a query language within a UML model (Akehurst and
Bordbar, 2001). An OCL expression returns a value or an object within
the system, but it has no side-effects, i.e., the evaluation of an expression
does not change the state of the system. It is specially relevant to seman-
tic modelling of VEs. OcCL can be used to perform high-level queries for
contents of the conceptual model of VEs.

e Formal foundation: OCL is an integral part of the UML standard. OCL’s
semantics can be expressed using UML’s meta-model, or using mathemat-
ical set theory and predicate logic (OMG, 2006). However, the syntax of

110 4. A Language for Specifying Spatial Semantics

OcL does not use mathematical symbols. Instead, OCL uses a notation
close to natural language.

e Expressiveness: OCL is a textual, formal, and declarative language to spec-
ify expressions on any elements in a UML model. OCL expressions convey
many semantics that UML diagrams can not represent by themselves, such
as cardinality constraints or logical constraints.

e Extensibility: Beyond initial formalizations that led to the OcL standard
specification!, numerous researches have been conducted in extending this
language to cover other constraint types, namely, temporal and spatial
constraints. First, OCL can be extended to cover temporal constraints, see
(Soden and Eichler, 2009) for a recent description. Alternatively, several
spatial extensions of OCL were proposed to deal with spatial constraints,
such as SOCL (Duboisset et al., 2005) or GeoOCL (Casanova et al., 2000;
Werder, 2009). However, these spatial extensions of OCL were only related
to topological constraints, not all types of spatial constraints.

e Flexibility: OcCL is flexible enough to express complex spatial constraints,
compared to the fine-grained classification of constraints previously pre-
sented in Section 2.1.4. OcCL allows to express constraints including mul-
tiple classes and multiple instances. In addition, constraints expressed in
OcCL can be used in many contexts, e.g., to indicate an invariant, a guard
condition, or a pre-/post-condition. For instance, a spatial constraint such
as “the cube must be on the table” can be used as the post-condition of
the user’s spatial interaction.

Using the UML class model presented in Figure 4.2, the following examples
illustrate the expressiveness of OCL.

Example 1. The constraint “the height of the table must be less than 2 metres”
is formally specified as follows.

context Table inv:
self.height < 2

In this example, the element taken as the context is the Table class whose
instance is denoted by self. The constraint is applied on the height attribute
of the contextual class. It is expressed in term of an invariant, i.e., a condition
that must be true for all instances of a class and during all their lifespan.

Example 2. In OCL, the allInstances() function returns the collection of
all the instances of a class. Universal and existential quantifiers are denoted as
forAll and exists. Logical relations and implication are also supported using
logical operators such as and, or, xor, and implies. The following expression
exemplifies that “different tables must have different positions”.

!Current version available in http://www.omg.org/spec/OCL/

4.2. The VRX-OCL Language 111

context Table inv:
Table. allInstances()—>forAll(t1,t2]
t1< >t2 implies t1.position< >t2.position)

Example 3. To express complex constraints with multi-classes, OCL allows the
navigation between classes using associations. Such a cardinality constraint as
“a room has only one floor but several walls” is expressed as follows.

context Room inv:
self.floor—>size()=1 and self.wall—>size()>=1

In this example, floor and wall are names of association ends between the
Room, Floor, and Wall classes. The expression self.wall returns the collection
of all walls associated to a room, while the function size() counts the number
of elements in a collection.

Example 4. OCL expressions can be used to form a pre- or post-condition of an
operation. For instance, the prototype of the constraint “Before the slideOut()
operation of the desk, verify that the drawer is in the Closed state” is as follows.

context Table::slideOut (): Boolean
pre: self.oclInState (Drawer:: slidingBehavior :: Closed)

Thus, whenever the operation slideOut() on the Desk is launched by the user,
the pre expression is verified to enable/disable this interaction.

4.2.2 Extended Spatial Syntax

Through the above examples, we can see that OCL facilitates the specification
of constraints in a formal way. However, the original syntax of OCL is limited
in expressing spatial constraints. First, let us briefly review and generalise the
syntax of OCL. The central element in an OCL expression is the access to
properties of an object. A property is either an attribute, an association end,
or an operation. To refer to a property of an object, the general syntax is as
follows.

self . height <10
~~~ ~——

object property

OclExpression

Using this syntax, constraints in the original OCL are unary. Whereas, spa-
tial constraints might be binary, ternary, quaternary, or n-ary in general. An-
other drawback of OCL is related to the expression of frame of reference (FoR).
Previously, we have shown that most spatial relations must be given with re-
spect to an implicit or explicit FoR. We have modelled different types of FoR
that can be: intrinsic (the relation is given by inner properties of the reference
object), extrinsic (the relation is imposed by external factors on the reference
object), and deictic (the relation is given by the point of view from which the



112 4. A Language for Specifying Spatial Semantics

reference object is seen). In the third case, it is necessary to introduce the FoR
in the context of a spatial constraint.

As a consequence, to express spatial constraints, we propose VRX-OCL as an
extended spatial syntax of OcL. We distinguish two types of spatial expressions:
those are independent of FoR (SpatialExpWithOutFoR), and those are depen-
dent on FoR (SpatialExpWithFoR). A complete description of the grammar of
the VRX-OcL language can be found in Appendix B. In general, the syntax of
spatial expressions in VRX-OCL takes the form as below.

SpatialExp ::= SpatialExpWithOutFoR | SpatialExpWithFoR
SpatialExpWithOutFoR ::=

po ’>.” rel_name (> ro (°,” ro)*x (’,’ arg)? )’
SpatialExpWithFoR ::=

SpatialExpWithOutFoR ’@’ ’viewpoint’ ’(’ obs ’)’

The elements of the extended syntax are explained in the following.

e po is the primary object

e The primary object must be associated with one or more reference objects,
noted as ro. Thus, one po and several ro allow to represent binary, ternary,
quaternary or n-ary constraints

e FoR is represented using the new keyword @viewpoint. obs is a spatial
object that plays the role of observer from which the spatial constraint is

seen

e arg is a list of arguments (e.g., a projection plane or an approximation
level)

e Finally, rel_name stands for the name of spatial operators

Using the extended syntax of VRX-OCL, a binary spatial constraint without
a FoR takes the form as follows.

objectl . disjoint (object2)
—— —— ~—
primary object constraint reference object
Spatial ExpWithOutFoR

Similarly, below is the general form of ternary spatial constraint expressed
in VRX-OCL.

objectl . between,  (object2,object3)
— SN——— ~
primary object constraint referenceobjects

TernarySpatial ExpWithOutFoR



4.2. The VRX-OCL Language 113

Alternatively, a spatial constraint with an associated FoR takes the form as
follows.

objectl . leftOf (object2) Quiewpoint(object3)
— —— ——
primary object constraint referenceobject observer
Spatial ExpWithFoR

It is important to note that the primary object and the reference objects may
be resulted from a different VRX-OCL expression, for instance, a select expres-
sion. For example, a different way to express quaternary spatial constraints is
as follows.

objectl . above (a VRXOCL expressionreturns three objects)
— SN——
primary object constraint referenceobjects

QuaternarySpati(;ZExpWithOutF oR

4.2.3 Meta-model of Spatial Constraints

To express spatial constraints, the VRX-OCL language extensively uses new
concepts that have not yet been defined at the meta-model. In this section, we
describe the VRX-OCL’s meta-model that is able to cover new concepts used
in spatial constraints. Furthermore, we show how the meta-model of spatial
constraints is integrated into the MASCARET’s meta-models, and thus spatial
constraints can be used as invariants, pre-/post-conditions at the conceptual
model.

General View of the Meta-model

Figure 4.5 presents a general view of VRX-OCL’s meta-model. The VRX-
OcL’s meta-model is fitted into the overall meta-models of MASCARET, UML,
and OcCL. There exists important links between these meta-models. First, OCL’s
meta-model is defined as an integral part of UML’s meta-model. In our context,
MASCARET is positioned as an extension of UML. Meanwhile, VRX-OCL is
defined as an extension of OCL. The main elements of VRX-OCL’s meta-model
can be stated as follows:

e Spatial entity: Spatial entities represent elements involved in spatial con-
straints. In the VRX-OCL’s meta-model, we abstract the concept of spatial
entity by the SpatialEntityClass class, a type of domain concept (the Mod-
elElement class).

e Spatial constraints: Spatial constraints are specified by spatial expres-
sions. We respectively abstract the concepts of spatial constraint and
spatial expression by means of two classes VRXOCLConstraint and Expres-
sionInVRXOL.



114 4. A Language for Specifying Spatial Semantics

e Semantic areas: Before, spatial constraints have been considered as ab-
stract information. In our model, we informally define semantic areas (Se-
manticAreaClass) as geometrical representations related to a given spatial
constraint. By means of semantic areas, our main goal is to conceptualise,
and then visualise, abstract spatial constraints in VEs.

e Behaviours based on spatial constraints: Behaviours of users and agents
in VEs intensively require spatial knowledge. To model spatial behaviours
in VEs, we are based on the behaviour model of MASCARET and UML.

UML OCL

preCondition

bodyCondition 0.4 Constraint k——

ModelElement

postCondition *
Classifier Expression |
T AN AN T
Class i
ExpressioninOCL
AN
MASCARE I VRX-OCL
preCondition
Behavior i
bodyConditi
(from UML) odyCondition (..1|VRXOCLConstraint
postCondition
EntityClass N SpatialEntityClass ExpressionInVRXOCL p—
T 0.1
SemanticAreaClass FoR

Figure 4.5: Position of VRX-OCL’s meta-model within UML, OCL, and MAs-
CARET’S meta-model.

Meta-model of Spatial Entities

Figure 4.6 shows the meta-model representing the concept of spatial entity in
the VRX-OcCL approach. Our concept of spatial entity is defined as a generalisa-
tion of the concept of entity previously defined in MASCARET (the abstract class
SpatialEntityClass). Therefore, every entity is a spatial entity. A spatial entity
has a referential point (the Point class). In VRX-OCL, Point is an extension of the
already existing meta-class Point borrowed from MASCARET’s meta-model. A
referential point has topological properties (the TopologicalProperty class) that
are considered as a kind of property in a domain model (the Property class).



4.2. The VRX-OCL Language 115

However, our concept of spatial entity has additional semantics with regard
to the original concept of entity in MASCARET. First, we enrich the concept
of referential point with more spatial information needed for computing spa-
tial constraints (e.g., intrinsic direction represented by the three vectors frgnt,
le_ft, abgve). Second, every spatial entity has additional methods. Each method
is used to compute a corresponding spatial relationship, such as disjoint (),
between(), left0f (), or distanceTo().

MASCARET VRXOCL
Mascaret:VEHA:Entity

Classifier SpatialEntityClass
(from UML) —

disjoint()

between()

leftOf()

distanceTo()
Class EntityClass

from UML)¢——————— fo. 1
referentialPoint
1
¢ Point
! (from MASCARET)
position: Vector3
left: Vector3
. right: Vector3

above: Vector3

Property TopologicalProperty ‘
(from UML) [[¢&— ¢
<<struct>>
Vector3

Figure 4.6: Class diagram representing the meta-model of SpatialEntity.

Meta-model of VRX-OCL Constraints

Figure 4.7 illustrates the meta-model of constraint. In the VRX-OCL ap-
proach, spatial constraints as well as other types of constraint are represented
by the VRXOCLConstraint class (derived from the Constraint class existing both
in UML and MASCARET). A constraint contains an expression (the ExpressionIn-
VRXOCL class). Every expression returns a value (the ValueSpecification class).
To evaluate a VRX-OCL expression, an expression parser (the VRXOCLExpres-
sionParser class) is proposed. It is necessary to note that at the meta-level, the
VRXOCLExpressionParser class simply represents a parser in an abstract manner.

Linking VRX-OCL Constraints and Behaviours

Based on UML, MASCARET provides two different ways to specify behaviours
of entities within VEs. First, an entity may offer several operations, i.e., services



116 4. A Language for Specifying Spatial Semantics

VRX-OCL MASCARET
Mascaret:VEHA:Kernel
VRXOCLConstraint + spciflcatibn ValueSpecification Property
>

T *

InstanceValue

ExpressionlnVRXOCL

Class

VRXOCLExpressionParsel InstanceSpecification

EntityClass

Figure 4.7: Class diagram representing the meta-model of VRXOCLConstraint.

that users and other entities can perform on itself. Second, an entity can be
associated with a state machine. The state machine defines possible states of
the entity. Spatial constraints allow to convey and precise the semantics of
behaviours of entities. In the following, we show how the meta-model of spatial
constraints can be integrated into MASCARET’s meta-models of behaviours.

Spatial constraints (the VRXOCLConstraint class) can be used as pre- or
post-conditions of an operation (the Operation class). The link between spatial
constraints and operations are illustrated the meta-model in Figure 4.8. The
Operation class allows to express what a spatial entity or a user can perform
on another entity. An operation uses constraints as a pre- or post-condition.
Even the execution of an operation (bodyCondition) can also be defined by an
expression.

Figure 4.9 shows the link between spatial constraints (the VRXOCLConstraint
class) and states machines associated to spatial entities (the StateMachine class).
A constraint allows to express a state invariant. In addition, a constraint can
be used as a guard condition for a state transition that is triggered by an event.
To deal with spatial events, we enrich the meta-model by a new class, named
SpatialEvent. This class handles events that lead to the re-evaluation of spatial
constraints, such as motion, or rotation of spatial entities.

Meta-model of Semantic Areas



4.2. The VRX-OCL Language 117

MASCARET VRX-OCL

Mascaret:VEHA:Behavior::Common

Behavior preCondition | YRXOCLConstraint
—

*

0.1 =

_method bodyCondition po

stCondition

BehavioralFeature

]

Operation f(¢
ownedOperation
Class P vO..1
0..1
0..1 *
0..1

Figure 4.8: Class diagram representing the link between VRXOCLConstraint and
Behavior.

Despite spatial relationships convey many semantics about space, they are
however often considered as a kind of abstract information in several spatial
semantic models of VEs (Bowman et al., 2003). Based on our model of spatial
constraints, we formalise the concept of semantic area. Informally, we define
a semantic area as a geometrical and visual representation related to a spatial
relationship. For example, given a constraint such as “leftOf” between a primary
entity and a reference entity, the semantic area is the graphical representation
corresponding to the area “on the left” of the reference entity.

Our meta-model of semantic areas is illustrated in Figure 4.10. The main idea
is that we consider a semantic area as a spatial entity. Nevertheless, the main
difference is that a semantic area does not exhibit behaviours like a spatial en-
tity. Semantic areas are generalised by the SemanticAreaClass class, derived from
the SpatialEntityClass class. Semantic areas are instantiated and represented by
the SemanticArea class, derived from the InstanceSpecification class. Similar to
the concept of spatial entity, a semantic area has a shape and other geometri-
cal properties. However, these geometrical properties are not user-defined but
automatically computed and generated. The geometry of a semantic area can
be built upon several geometrical primitives. For example, the semantic area
“between two spatial entities” is built from the tangent planes of the two spatial
entities. As we will see later, like all 3D objects, semantic areas are mainly based
on simple geometrical primitives, such as points, lines, triangles, quadrangles,
and surfaces. These geometrical primitives are generated based on our methods
for computing spatial constraints.



118

4. A Language for Specifying Spatial Semantics

MASCARET

VRX-OCL

Mascaret:VEHA:Behavior::StateMachine

0.1 -t

PseudoState

Pay
StateMachine
0..1
4
1.*
0.1
Region
o postdondition|
! 1 precondition
0..1
Vertex Transition N guardl VRXOCL
v Constraint
1 0.1
0.1 0..1 statelnvariant
.1
State Tri
. igger Event
v
0.1 = 1 =
FinalState TimeEvent SignalEvent ChangeEvent SpatialEvent

Figure 4.9: Class diagram representing the link between VRXOCLConstraint and
StateMachine.

Furthermore, based on our meta-model of semantic area, it is interesting

to note that a semantic area can be instantiated (i.e.,

at the MO level). The

instantiation of a semantic area takes several parameters as input, such as the
name of spatial constraint, the identifiers of spatial entities involved, or the name
given to this semantic area. The following example illustrates the instantiation
of the semantic area “left of the desk named Desk1”.

<SemanticArea

/>

name = "areaLeftOfTheDeskl"
class = "LeftAreaClass"
constraint = "leftOf"
entity= "Deskl"

Similarly, the semantic area “between the red table and the blue table” is




4.2. The VRX-OCL Language 119
VRX-OCL MASCARET
Mascaret:VEHA:Entity
SpatialEntityClass N Classifier
—
SemanticAreaClass TopologicalProperty
T 9
v 0.1 1
H _classifier
EntityClass |
GeometryProperty Property

/

ShapeProperty

I
_instances |
L

InstanceSpecification

Point

TopologicalSpecification

.
SemanticArea /

ShapeSpecification

¢

>
_body

<<struct>>

BodyShapeSpecification

Figure 4.10: Class diagram representing the meta-model of SemanticArea.

instantiated as follows.

<SemanticArea
name — "areaBetweenTheRedAndBlueTables"
class = "BetweenAreaClass"
constraint = "between"

entity= "redTable"
entity= "blueTable"

/>

Thanks to the meta-model of semantic areas, an abstract concept such as
spatial relationships can be instantiated and further visualised. In the following
sections, we detail the syntax and related semantic areas for each type of spa-
tial constraint. Moreover, each type of spatial constrain is illustrated through
examples from the simple and realistic VE (i.e., the virtual room) that has been

presented in the previous chapter.



120 4. A Language for Specifying Spatial Semantics

4.3 Topological Operators

Description

Topological operators of the VRX-OCL language allow to specify topological
constraints in VEs. Our theoretical model of topological constraints has been
presented in Section 3.4.

Syntax

Binary topological operators in VRX-OCL take the form of:
po.rel_name(ro)
where:

e po and ro are respectively the primary and reference objects.

e rel_name is one of the eight basic topological relations: disjoint, meet,
overlap, inside, coveredBy, contains, covers, equal.

Example 5. Using VRX-OcL, Constraint 3 “every table must be disjoint with
other tables in the room ” is specified as follows.

context Table inv:
Table. allInstances()—>forAll(t1,t2 |
t1<>t2 implies t1.disjoint(t2) )

Example 6. Figure 4.11a illustrates another example of topological constraint.
That is “in the room, the black box must be on the red table”. This constraint
is expressed in VRX-OcCL as follows.

context Room inv:
let blackBox:Bor=Boz. allInstances ()
—>select (name="blackBoz "),
_redTable: Table=Table. allInstances ()
—>select (name="redTable ")
in _ blackBox.meet( redTable)

Semantic Areas

With regard to topological constraints, the semantic areas do not aim to
visualise the areas “inside” or “overlap” formed by two entities. Instead, they aim
to visualise the contact surfaces between two entities involved in a topological
constraint. The topological semantic areas are:

e The thick boundary of the primary object: Given the topological con-
straint “the black box must be on the red table”, Figure 4.11b shows the
thick boundary of the primary object (i.e., the black box).

e The thick boundary of the reference object: Similarly, Figure 4.11c¢ illus-
trates the thick boundary of the reference object (i.e., the red table).



4.8. Topological Operators 121

(a) The topological constraint “in the room, the black
box must be on the red table”.

(b) Visualising the “thick boundary” of the primary ob-
ject (i.e., the box).

¢}

(c) Visualising the “thick boundary” of the reference ob-
ject (i.e., the table).

Figure 4.11: Semantic areas related to topological constraints.



122 4. A Language for Specifying Spatial Semantics

The representation and visualisation of topological semantic areas (i.e., the
thick boundaries) help users in interacting with spatial entities in a more precise
manner.

4.4 Projective Operators

4.4.1 Ternary Projective Relations in Orthographic View

Description

Orthographic ternary projective operators allow to describe projective con-
straints among three spatial entities viewed from an orthographic view (i.e., front
view, top view, and side view). Our theoretical model of ternary orthographic
projective constraints has been presented in Section 3.5.1.

Syntax

Ternary projective constraints under orthographic views are formalised in
the context of a frame of reference as follows.
po.rel_name(rol,ro2,plane,collinearity_level)@viewpoint(obs)
where:

e po, rol, ro2 are respectively three spatial objects.

e rel_name is the name of the relationship. The five basic relations are
beforeOnPlane, betweenOnPlane, afterOnPlane, rightsideOnPlane, and
leftsideOnPlane.

e plane is the projection plane that is one of the three planes: XY, YZ, or
XZ. Each plane corresponds to an orthographic view.

e collinearity_level represents different levels of detail related to the
representation of spatial entities, involving: 1 - spatial entities are repre-
sented by their referential points; 2 - spatial entities are represented by
their bounding boxes.

e obs stands for the viewer from which the relationship is seen. Among the
five basic relations described above, only leftsideOnPlane and
rightsideOnPlane relations need a viewer as an explicit frame of refer-
ence to disambiguate the relation between the primary object and the two
reference objects under different orthographic views.

Example 7. As illustrated in Figure 4.12a, Constraint 14 “from the top-view
of the room, the triangular green table must be on the left side of the rounded
red table and the rectangular blue table” is expressed in VRX-OCL as below.

context Room inv:
let greenT:Table = Table. alllnstances ()
—>select (name="greenTable ),



4.4. Projective Operators 123

redT: Table = Table. allInstances ()
—>select (name="redTable "),
blueT: Table = Table. alllInstances ()
—>select (name="blueTable ’)
in greenT.rightsideOnPlane (redT, blueT, °'XY’)
@uiewpoint (Camera. alllInstances ()
—>select (name="TOP CAMERA’))

In this example, we assume that the top-view results from the projection
of the scene onto the XY plane. The evaluation of the constraint depends on
TOP_CAMERA, an instance of the Camera class that contains information about
the top-view.

Semantic Areas

There are five semantic areas. Each area corresponds to a projective con-
straint.

e The area “between” two spatial entities on a projection plane: Figure 4.12b
illustrates the area “between” the rounded red table and the rectangular
blue table under a top-view.

e The area “before” two spatial entities on a projection plane, see Fig-
ure 4.12c.

e The area “after” two spatial entities on a projection plane, see Figure 4.12d.

e The area “leftside” two spatial entities on a projection plane, see Fig-
ure 4.12e.

e The area “rightside” two spatial entities on a projection plane, see Fig-
ure 4.12f.

The five semantic areas are built upon other geometrical primitives that
are internal tangent lines (see Figure 4.12g) and external tangent lines (see
Figure 4.12h).

4.4.2 Ternary Projective Relations in Immersive View

Description

Ternary projective operators allow to describe projective constraints among
three spatial entities under an immersive view. Our theoretical model of ternary
projective constraints has been presented in Section 3.5.1.

Syntax



124 4. A Language for Specifying Spatial Semantics

(a) The ternary orthographic projective constraint “from the top-view of the room, the trian-
gular green table must be on the left side of the rounded red table and the rectangular blue
table”.

(b) The area “between” the rounded table and the rectangular table on a projection plane.

Figure 4.12: Semantic areas related to ternary projective constraints under or-
thographic views.



4.4. Projective Operators 125

(c) The area “before” the rounded table and the rectangular table on a projection plane.

(d) The area “after” the rounded table and the rectangular table on a projection plane.

Figure 4.12: Semantic areas related to ternary projective constraints under or-
thographic views.



126 4. A Language for Specifying Spatial Semantics

(e) The area “leftside” the rounded table and the rectangular table on a projection plane.

(f) The area “rightside” the rounded table and the rectangular table on a projection plane.

Figure 4.12: Semantic areas related to ternary projective constraints under or-
thographic views.



4.4. Projective Operators 127

(g) The internal tangent lines.

(h) The external tangent lines.

Figure 4.12: Semantic areas related to ternary projective constraints under or-
thographic views.



128 4. A Language for Specifying Spatial Semantics

As ternary projective constraints in immersive perceiving mode are inher-
ently independent of the reference frame, we subsequently integrate these rela-
tions into VRX-OCL as new spatial operators that take the form as follows:

po.rel_name(rol, ro2, collinearity_level)
where:

® po, rol, ro2 are respectively three spatial objects.
e rel_name is one of the followings: before, between, after, aside.

e collinearity_level represents different levels of detail related to the
representation of spatial entities, involving: 1 - spatial entities are repre-
sented by their referential points; 2 - spatial entities are represented by
their bounding boxes.

Example 8. Figure 4.13a provides an alternative view of the room. This view
is used to illustrate Constraint 4. That is “in the room, the black chair must be
between the rounded red table and the rectangular blue table”. The VRX-OcCL
expression representing this constraint is as follows.

context Room inv:
let _blackChair: Chair = self.chair()
—>select (name="blackChair )
,_redTable: Table = self.table()
—>select (name="redTable ’)
, _blueTable: Table = self.table ()
—>select (name="blueTable ’)
in _blackChair.between ( redTable, _blueTable)

Semantic Areas

Based on our model of ternary projective constraints, the following semantic
areas can be defined and visualised:

e The area “between” two spatial entities: Figure 4.13b shows the area “be-
tween” the rounded red table and the rectangular blue table.

e The area “before” two spatial entities, see Figure 4.13c.

e The area “after” two spatial entities, see Figure 4.13d.

Note that, the semantic area corresponding to the constraint “aside” can not
be visualised. Instead, it is geometrically defined as the complementary part of
the union of the semantic areas “between”, “before”, and “after”.

4.4.3 Quaternary Projective Relations

Description



4.4. Projective Operators 129

(a) The ternary projective constraint “in the room, the black chair must be between the
rounded red table and the rectangular blue table”.

(b) The area “between” the rounded table and the rectangular table.

Figure 4.13: Semantic areas related to ternary projective constraints under im-
mersive views.



130 4. A Language for Specifying Spatial Semantics

(¢) The area “before” the rounded table and the rectangular table.

(d) The area “after” the rounded table and the rectangular table.

Figure 4.13: Semantic areas related to ternary projective constraints under im-
mersive views.



4.4. Projective Operators 131

Quaternary projective operators allow to describe projective constraints among
four spatial entities. Our theoretical model of quaternary projective constraints
has been presented in Section 3.5.2.

Syntax

Quaternary projective constraints are formalised in VRX-OCL as follows.
po.rel_name(rol, ro2, ro3,coplanarity_level)
where:

e po and rol, ro2, ro3 are respectively the primary and three reference
objects.

e rel_name is one of the following: inside, outside, above, below.

e collinearity_level represents different levels of detail related to the
representation of spatial entities, involving: 1 - spatial entities are repre-
sented by their referential points; 2 - spatial entities are represented by
their bounding boxes.

Example 9. Constraint 5 “in the room, the red chair must be surrounded by
the three tables: the triangular green table, the rounded red table, and the
rectangular blue table” is expressed in VRX-OCL as follows.

context Room inv:
let _blackChair: Chair = self.chair()
—>select (name="blackChair ")
,_redTable: Table = self.table()
—>select (name="redTable ’)
, _blueTable: Table = self.table()
—>select (name="blueTable ’)
, _greenTable: Table = self.table()
—>select (name="greenTable ’)
in _blackChair.inside( redTable, blueTable, greenTable)

Semantic Areas
With regard to quaternary projective constraints, the semantic areas are:

e The area “above” three spatial entities: Figure 4.14b shows the area “above”
the three tables (i.e., the triangular table, the rectangular table, and the
rounded table) in the room.

e The area “below” three spatial entities

e The area “inside (surrounded)” by three spatial entities

The three semantic areas are built upon other geometrical primitives, they
are internal tangent planes and external tangent lines (see Figure 4.14a).



132 4. A Language for Specifying Spatial Semantics

(a) The external tangent planes of three spatial entities.

(b) The area “above three spatial entities”.

Figure 4.14: Semantic areas related to quaternary projective constraints.



4.5. Directional Operators 133

4.5 Directional Operators

4.5.1 Direction From a First-person Perspective

Description

To express direction form a first-person perspective, we use 27 directional
operators. Our model of direction from a first-person perspective has been
presented in Section 3.6.1.

Syntax

In VRX-OcCL, directional operators from a first-person perspective is binary
and takes the form as follows:

po.rel_name(ro)
where:

e po, ro are respectively the primary and reference objects.

e rel_name is one of the 27 directional relations, such as isFront0f, isLeft0f,
isAboveOf, etc.

Example 10. Considering a situation in Constraint 6, a directional constraint
from a first-person perspective such as “in the room, the rounded red table must
be in front of the desk” is expressed as follows.

context Room inv:
let redTable:Table = Table. alllnstances ()

—>select (name = ’'redTable’),
_desk:Desk = Desk.alllnstances ()
—>select (name = ’deskTable )

in _redTable. frontOf( desk)

Semantic Areas

There are 27 semantic areas that respectively visualise 27 directional con-
straints from a first person perspective. Some of them are illustrated from
Figure 4.15a to Figure 4.15j.

4.5.2 Direction From a Third-person Perspective

Description

To express direction form a third-person perspective, we use 27 directional
operators. Our model of direction from a third-person perspective has been
presented in Section 3.6.2.

Syntax



134 4. A Language for Specifying Spatial Semantics

(a) The area “front” of the desk.

(b) The area “behind” the desk.

Figure 4.15: Semantic areas related to directional constraints.



4.5. Directional Operators 135

(c¢) The area “behind and left of” the desk.  (d) The area “behind and right of” the desk.

(e) The area “below” the desk. (f) The area “above” the desk.

(g) The area “front and left of” the desk. (h) The area “front and right of” the desk.

(i) The area “left of” the desk. (j) The area “right of” the desk.

Figure 4.15: Semantic areas related to directional constraints.



136 4. A Language for Specifying Spatial Semantics

Spatial relationships must be formalized in the context of a frame of reference
as follows.

po.rel_name(ro)@viewpoint(obs)
where:

e po, ro are respectively the primary and reference spatial objects.

e rel_name is the name of the relationship. Note that our model of di-
rection is consistent. Direction from third-person perspective shares the
same granularity with direction from first-person perspective. The 27
possible directional relations are isFrontOf, isLeftOf, isFrontLeftOf,
isAboveFrontOf, etc.

e obs stands for the viewer from which the relationship is seen.

Example 11. A directional constraint under a third-person perspective like
Constraint 9 “from the viewpoint of the desk, the rectangular blue table must
be on the left of the rounded red table” is expressed as follows.

context Room inv:
let desk:Desk = Desk.allInstances ()

—>select (name = ’'deskTable ),
_blueTable: Table = Table. allInstances ()
—>select (name = ’"blueTable ),
_redTable: Table = Table. allInstances ()
—>select (name = ’'redTable )

in _blueTable.leftOf( redTable)@uiewpoint( desk)

In this example, we can see that the syntax of the original OCL was extended
by the @viewpoint operator that allows the definition of a deictic FoR .

Semantic Areas

Similarly to direction from a first-person perspective, there are 27 semantic
areas corresponding to 27 directional constraints from a third-person perspec-
tive.

4.6 Distance Operators

Description

Distance operators allow to express distance constraints in VEs. Our theo-
retical model of ternary orthographic projective constraints has been presented
in Section 3.7.

Syntax

To express absolute distance that is directly computed between two spatial
entities, the general form of VRX-OCL expressions is as follows:



4.7. Summary 137

po.distanceTo(ro) ;

where:

e po and ro are respectively the primary and reference object.
e distanceTo is the keyword used to express distance constraints.

Based on the absolute distance between the two spatial entities, it is possible
to compute relative distance, i.e., to compare distances between two spatial
entities to a third spatial entity. The comparison is purely qualitative. There
are three possible qualitative constraints: “closer than”, “equal to”, and “further
than”. We do not formalise relative distance by specific operators. Instead,

relative distance are expressed using comparative operators.

Example 12. Constraint 11 “in the room, the rounded red table must be
closer than 1 meter to the desk” is expressed as follows.

context Room inv:
let desk:Desk = Desk.alllInstances ()

—>select (name = ’'deskTable ),
_redTable: Table = Table. allInstances ()
—>select (name = ’'redTable )

in _redTable. distanceTo( _desk) < 1

Example 13. A relative distance constraint such as “in the room, the rounded
red table is closer to the desk than to the rectangular blue table” is expressed
as follows.

context Room inv:
let desk:Desk = Desk.alllInstances ()
—>select (name = ’'deskTable ),
_redTable: Table = Table. allInstances ()
—>select (name = ’'redTable’),
_blueTable: Table = Table. alllnstances ()
—>select (name = ’blueTable )
in _redTable. distanceTo ( desk)
< _blueTable. distanceTo ( desk)

Semantic Areas

With regard to distance constraints, our model allows to conceptualise and
visualise the semantic area “with a distance d” around the reference object.
Figure 4.15a provides an example of such semantic areas. The area “1.5 meters”
around the desk is visualised.

4.7 Summary

This chapter has presented the VRX-OcCL language. VRX-OCL was defined as
a spatial constraint and query language that enables the conceptualisation of



138 4. A Language for Specifying Spatial Semantics

spatial constraints in VEs.

From the viewpoint of architecture and development process, the VRX-OCL
language is positioned into the MASCARET framework. First, it uses a concep-
tual model of VE, produced by the MASCARET framework, as an input. Then,
the language allows a high level, precise, and unambiguous specification of spa-
tial constraints in the conceptual model. Semantics of the language is explained
by its meta-model. VRX-OCL’s meta-model covers new concepts that are neces-
sary to represent spatial constraints. We described how the concepts of spatial
entity and spatial constraint are formalised in the meta-model. Furthermore,
we showed how spatial constraints can be used to specify behaviours in VEs.

Thereafter, we introduced the spatial syntax of VRX-OcCL. VRX-OCL was
defined as a spatial extension of the UML/OCL constraint language. VRX-OCL
inherits the expressiveness of the OCL language, but it is extended with a novel
syntax for modelling spatial constraints. Through a variety of examples, we
showed that VRX-OCL is expressive enough to convey spatial knowledge in a
formal and comprehensive way to users.



Part 111

Applications

139






Chapter 5

Applications

The previous chapter introduced the VRX-OCL language. In this chapter, we
describe real applications of this language for specifying spatial constraints in
two different VEs. Section 5.1 shows how VRX-OCL is applied to define user’s
constraints in a VE for learning, named Virtual Physics Laboratory (VPLab).
Section 5.2 describes the use of VRX-OCL in BRESTCOZ, a cultural heritage
application.

Both VPLab and BRESTCO0Z had been developed using MASCARET before
VRX-OCL was integrated in. For each application, we first describe its current
design solution and drawbacks, with regard to the representation of spatial con-
straints. Then, we discuss the benefits of VRX-OCL to conceptualise spatial
constraints in each application. Section 5.3 summaries the chapter.

5.1 Virtual Physics Laboratory
5.1.1 Presentation

The Virtual Physics Laboratory (VPLab) is a VE for human learning dedicated
to lab work in physics, particularly in optics, for students in the second year
at university (Baudouin et al., 2008). Students have to learn how to measure
the speed of light in different mediums, such as air, resin, and water. The
goal of VPLab is twofold. First, its pedagogical objective is the learning of
a measurement method, called differential measurement (Beney and Guinard,
2004). The method is detailed in the following paragraphs. Second, VPLab
has been used as an experimental environment to analyse the usage of different
virtual helps in VEs for learning (Baudouin et al., 2007).

Figure 5.1 shows the schema for measuring the speed of light in air. A light
transmitter sends a visible light beam that is reflected by the mirror to return to
a light receiver. An oscilloscope allows to measure the temporal interval between
the emitted signal and the received signal. The real configuration of the setup
is illustrated in Figure 5.2. The VPLab application is an adapted version of the
real environment. Figure 5.3 provides an overview of the objects of the work
surface with that the learner is supposed to interact. The application runs in

141



142 5. Applications

Light path

\M1

Light
transmitter & receiver

YW,

A
Oscilloscope

Mirrors

M2

X
Rule

Figure 5.1: Schema for measuring the speed of light in air, according to (Beney
and Guinard, 2004).

Figure 5.2: The real setup to perform the exercise of measuring the speed of
light (here, through the tube of water).

different configurations. Figure 5.4 shows a configuration in which the learner
can manipulate the objects using a haptic device.

Based on the schema, the difficulties in measuring the speed of light are as
follows.

e The exact positions of the transmitter and the receiver are unknown

e The distance between the two mirrors M1 and M2 can not be measured
accurately

e The zero time is unknown

Therefore, to measure the speed of light, the learners have no other choice
but to apply a method, named differential measurement. One way to measure
the speed of light in air is to put the mirror on an arbitrary position on the



5.1. Virtual Physics Laboratory 143

| Transmitter/Receiver |

Mirrors

Cube of
resin

Oscilloscope

Figure 5.3: The work surface in the VPLab, a VE to perform the exercise of
measuring the speed of light, according to (Baudouin et al., 2008) (labels were
added to the figure for explanation).

Figure 5.4: A user manipulates objects using an haptic device in a desktop
mode.

bench, and then to note the phase difference t; displayed by the oscilloscope
and the position P; of the mirror. Thereafter, the learners have to move the
mirror, and then to note the new phase difference to and the new position P, of
the mirror. The speed of light is calculated by the formula C' = %.

The method becomes more complicated for the other materials, such as resin
or water. One solution is to place the mirror on an arbitrary position on the
bench, and then to note the phase difference ¢;. Thereafter, the learners have
to place the material on the path of the light, and then to move the mirror

with a length equal to the length of air replaced by the material, and then



144 5. Applications

S
_ Light _ Resin
transmitter & receiver
B
(a)
........................ L e
Light
transmitter & receiver
(b)

Figure 5.5: Schema for measuring the speed of light in several materials, such
as (a) resin, (b) water, according to (Beney and Guinard, 2004).

to note the new phase difference to. The speed of light is calculated by the
formula C' = % L 77 Where [ is the length of the light path that travels through
the material. Figure 5.5 illustrates the schema for measuring the speed of light

in resin and water.

5.1.2 The Conceptual Model

VPLab has been designed using MASCARET. As for all VEs for learning, the
two main models are as follows.

e Model of the learning environment: it includes the learning resources and
the structure of the learning environment

e Model of exercises: it includes the procedures to realise the exercises, for
example how to measure the speed of light in air

Modelling the Learning Environment

The learning environment is defined by all the objects and concepts that
the learners have to manipulate to realise the exercises. Using MASCARET,
the learning resources, as well as the structure of the learning environment, are
modelled using class diagrams. Figure 5.6 illustrates the simplified class diagram
that provides an overview of domain concepts of the VPLab. The structure of the
learning environment is organised in the form of a Worksurface. The worksurface
has a Bench, a Mirror, several Lens, and Mediums. Interestingly enough, in the



5.1. Virtual Physics Laboratory 145
l<EntityClass>>
Worksurface
1 1
1 1 1
bench */ 1| mirror ~~medium D light

l<EntityClass>>

Bench

<<EntityClass>>

Lens

<<EntityClass>>

Mirror

<<EntityClass>>

Medium

<<EntityClass>>|

Light

Figure 5.6: The simplified class diagram representing the work surface of the

VPLab.

Speed

—_

IightSpeed'

<<EntityClass>>

Medium

refractivelndex: double

<<EntityClass>

Light

*

<<EntityClass>>
LightPath

getRefractivelndex: double

<<EntityClass>>|

Air

<<EntityClass>>

Water

<<EntityClass>>

Resin

<<EntityClass>

Distance

Figure 5.7: The class diagram representing the concept of light, speed of light,
light path, and material in VPLab, adapted from (Marion, 2010).

conceptual model, even an abstract concept such as the light may be modelled
by a class, named Light, whose instances are considered as virtual photons.

Figure 5.7 gives a more detailed description of the domain concepts in VPLab.
Light is represented in the VE by its light path (the LightPath class). A light path
travels through some materials (the Medium class). There are different types of
material, such as Air, Resin or Water derived from the Medium class. Every mate-



146 5. Applications

rial has a refractive index (the refractivelndex attribute) that impacts the speed
of light of the material.

Modelling the Exercises

In VPLab, the learner follows a pre-defined procedure to realise an exer-
cise. The procedure is described by an exercise statement in a textual format.
Different exercise statements can be given by the teacher (Marion, 2010). For
instance, the statement of the exercise for measuring the speed of light in a
material is as follows.

1. Move the mirror to a position

2. Note the position P;

3. Measure the phase difference t;

4. Reset the phase difference of the oscilloscope
5. Put the material on the light path

6. Move the mirror to the position P,

7. Measure the phase difference to

8. Compute the speed of light in the material

In VPLab, the learning procedures are specified using activity diagrams of
MASCARET. Figure 5.8 shows the activity diagram representing the steps to
measure the speed of light in a material. The last activity is not performed
within the VE and thus is not mentioned in the diagram.

5.1.3 Specifying User Constraints Using VRX-OCL

The added values of VRX-OcL to the VPLab application are as follows:

e To specify spatial constraints that the learners must respect when realising
exercises

e To offer additional virtual helps to the learners by visualising semantic
areas in the learning environment

Specifying Spatial Constraints

There exists many spatial constraints that are implied when the learners in-
teract with the learning environment. For example, in the procedure described
in Figure 5.8, Constraint 15 is imposed when the learner performs Step 5 “ Put-
MaterialOnLightPath’.



5.1. Virtual Physics Laboratory 147

4 N

:User
mirror : )
MoveMirrorToPositionl <« |mirror:
Mirror
positiod ]
rule }
NotePositionl rule:
Rule
Y
osc
MeasurePhaseDifferencel ]
osc:
Oscilloscope 4
ResetOscilloscope ]
0sC
Y
mat
mat:
[ PutMaterialOnLightPath ):l Material
MoveMirrorsToPosition2 jj
mirror
positionZ[ ]
0sc
@4— MeasurePhaseDifference2]

N /

Figure 5.8: Procedure of measuring the speed of light in a material, represented
in the form of an activity diagram, adapted from (Marion, 2010).

Constraint 15. Put the cube of resin on the light path such that the cube is on
the bench, between the lens and the mirror.

Step 5 merely indicates an instruction that the learner has to follow. How-
ever, the expected result of this step (in other words, the post-condition of the
learner’s activity) is expressed in the form of several spatial constraints like
“on” or “between”. In the early version of VPLab, these spatial constraints
were hard-coded in the controller of the user’s interactions, using a specific al-



148 5. Applications

gorithm. Thanks to VRX-OCL, these spatial constraints can now be formally
specified as the post-condition of the activity “ PutMaterialOnLightPath” in the
activity model. For readability, Constraint 15 is expressed in the two following
examples.

Example 14. The first part of Constraint 15 “the resin cube should be placed
on the bench” is expressed in VRX-OCL as follows.

context User:: PutMaterialOnLightPath : Boolean post:
let resinCube:Resin = Resin.alllnstances ()
—>select (name="resinCube '),
bench:Bench = Bench. allInstances ()
—>select (name="bench ’)
in resinCube—>meet(bench)

Note that, according to VRX-OCL’s syntax, the let. .in expression allows to
define a variable that can be used in the constraint. Meanwhile, the select ()
function is used to specify a subset of a collection(e.g., selecting the medium
named as “resinCube”).

Example 15. The latter part of Constraint 15 “put the cube between the lens
and the mirror” is expressed as follows.

context User:: PutMaterialOnLightPath :Boolean post:
let resinCube: Resin = Resin. alllnstances ()
—>select (name="resinCube "),
tLens:Lens = Lens.lens ()
—>select (name="transmitterLens ),
mirror: Mirror = Mirror. mirror ()
—>select (name="mirror’)
in resinCube.between (tLens, mirror)

Both of the two examples are non-metric spatial constraints. The first con-
straint (i.e., “on” or “meet”) stands for a topological constraint. The latter
constraint is an example of ternary projective constraints that is based on the
alignment between three objects: the lens, the cube, and the mirror. It can be
alternatively formulated as “put the cube on the bench such that the mirror is
after the lens and the cube”. As we have seen previously, spatial constraints
such as "between", "after" are called projective constraints because they are
preserved under projective operations that maintain the collinearity of a set of
points.

Within the VPLab, it is possible to provide some assistances to the learners.
For example, it is possible to represent that the speed of light depends on the
material it passes through. This abstract knowledge can be reified by graphically
representing the light as virtual photons moving at a speed which depends on the
object wherein they are located. Figure 5.9 illustrates such an assistance, called
Slow motion. This assistance can be stated in form of constraints as follows.



5.1. Virtual Physics Laboratory 149

Figure 5.9: The effect Slow motion is simulated based on spatial constraints.
The space between virtual photons is smaller in resin than in air.

Constraint 16. When the Slow motion assistance is activated, if a virtual pho-
ton is inside an object, its speed is proportional to the refractive index of the
material of this object, else its speed is proportional to the refractive index of
aur.

In Constraint 16, it is necessary to handle within the same expression both
object properties (e.g., the refractivelndex attribute) and spatial relations (e.g.,
“inside”). The former can be expressed using standard OCL, but not the latter.
As a spatial extension of OCL, VRX-OCL offers the ability to specify constraints
related to properties as well as spatial relations between objects.

Example 16. Constraint 16 is expressed using VRX-OCL as follows.

context LightPath ::getRefractivelndez ():: Real body:
let r:Resin = Resin.alllnstances ()
—>select (name="resinCube ’),
w: Water = Water. alllInstances ()
—>select (name="water Tube ’ ),

a:Air = Air.allInstances ()
—>select (name="airEnv’)
in if self.inside(r) then result = r.refractivelndex
else if self.inside(w) then result = w.refractivelndex
else result = a.refractivelndex endif endif

In this example, the context of the constraint is the LightPath class. Each
instance of the light path (represented by self) corresponds to a virtual photon.



150 5. Applications

The velocity of each photon is simulated based on the getRefractiveIndex ()
operation that is a query operation to get the refractive index of the material
in which a photon travels. The body expression defines the content of the op-
eration. The result of the operation (indicated by result keyword) is based on
topological relations between the photons (self) and the materials.

Providing Additional Virtual Helps to the Learners

To facilitate the learning process, VPLab provides some virtual helps to the
learners. According to (Baudouin et al., 2007), three types of virtual helps can
be distinguished.

1. Show an invisible thing
2. Materialise an abstract concept

3. Make explicit how the exercise works

For example, the “ Slow Motion” assistance illustrated previously in Figure 5.9
is an example of a virtual help of type “ materialise an abstract concept”. Mean-
while, to make explicit how the exercise works, it is possible to display the
textual formula for computing the speed of light in the learning environment.

Based on spatial constraints, VRX-OCL allows to define additional virtual
helps to the users. The main idea is to visualise semantic areas related to spatial
constraints that the learners must satisfy. The visualisation of semantics areas
is relevant to the definitions of two types of virtual helps: “show an invisible
thing” and “ materialise an abstract concept”.

Figure 5.10 illustrates the semantic area related to the topological constraint
as described in Constraint 15. The semantic area is the thick boundary of the
cube of resin. The visualisation of the thick boundary is very useful, because
it allows the learner to more precisely place the cube of resin on the bench.
Similarly, Figure 5.11 shows the three virtual helps that visualise the semantic
areas between the lens and the mirror.

5.2 BRESTCO0Z

The previous section described VPLab as a relevant “in-door” environment for
evaluating spatial constraints. In VPLab, we found mainly topological and
projective constraints. In this section, we describe how we evaluate our model
of spatial constraints and the VRX-OcCL language in a large-scale environment,
named BRESTCOZ.

The use of VRX-OcCL in BRESTCO0Z follows the same principle as described
in VPLab. That is, we use the semantic model of spatial constraints to specify
human-like activities of artificial agents and to visualise spatial constraints. Fur-
thermore, BRESTCOZ is an interesting application for different types of spatial
constraints, notably directional constraints.



5.2. BRESTCOZ 151

Figure 5.10: Visualisation of the cube of resin without (top figure) and with
(bottom figure) its thick boundary.

5.2.1 Presentation

BrESTCOZ is a VE for visiting Brest harbour in the 18" century. The Brest
harbour was mostly destroyed due to heavy bombing during World War II.
Using virtual reality techniques, BRESTCOZ aims to reconstruct the historical
site of Brest harbour and thus allows one to visit and discover activities such as
shipbuilding in the 18" century. Figure 5.12 illustrates a view of the BRESTCOZ
application.



152 5. Applications

(a) The zone before the lens and the mirror.

(b) The zone between the lens and the mirror.

(¢) The zone after the lens and the mirror.

Figure 5.11: Visualisation of the acceptance sub-spaces between the transmitter
lens and the mirror in the VPLab.



5.2. BRESTCOZ 153

ol ST | A ’ & = 7 vy, i
HHIIER R T oL o 3 Y
‘ ot Bk 5 i ) L0

Figure 5.12: A view in the BRESTCOZ application.

The main purposes of BRESTCOZ are twofold:

e As a cultural heritage application, it is necessary to simulate domain ac-
tivities (e.g., shipbuilding activities in the 18th century)

e As a virtual visiting application, it is necessary to provide interactive guide
to the visitors that allow to discover the domain concepts and human
activities (e.g., how do workers build a ship? where is located a specific
point of interest?)

5.2.2 The Conceptual Model

To achieve the above mentioned goals, BRESTCOZ has been designed using M As-
CARET framework. Thanks to its meta-modelling approach, involving a concep-
tual modelling phase, MASCARET offers the following advantages for the design
of BRESTCOzZ.

e First, MASCARET includes an explicit phase of domain modelling that
allows domain experts (e.g., experts in naval activities), graphical design-
ers, and software engineers to work together sharing their knowledge on a
single model.

e Second, the meta-model of MASCARET allows to introspect the domain
model at runtime. As a consequence, a virtual guide can be integrated
into BRESTCO0Z with the abilities to access to the content of the domain
model and provide explanations to the visitors.



154 5. Applications

<<EntityClass>> <<EntityClass>>
anchor
Ship " " Anchor

Figure 5.13: A partial simplified class diagram representing domain concepts
such as ships, anchors, and their relations in BRESTCOZ, see (Barange et al.,
2011) for a more detailed description of BRESTC0OZ’s domain model.

(1)<Entity class="Ship" name="ship1">
(2) <Shape url="VRMLS/Ships/ship1.wrl"/>
(3) <Position x="91.5075655701" y="30.1352004651" z="0"/>
(4) <Rotation rollI="0" pitch="0" yaw="-1.11529828327"/>
(5) <IntrinsicDirection>
< frontVector x="1" y="0" z="0"/>
< leftVector x="0"y="1"z="0"/>
< aboveVector x="0" y="0" z="1"/>
</IntrinsicDirection>
(6)</Entity>

Figure 5.14: Instantiation of a ship in BRESTCOZ.

The conceptual model of BRESTCOZ aims to specify domain concepts from
the naval domain. For example, Figure 5.13 shows the simplified partial class
diagram representing the concepts of ship and anchor. Conceptual relations
between domain concepts are represented by associations between classes.

Once the domain model is defined, it is possible to instantiate a specific
configuration of the VE. In the context of BRESTCO0Z, different instance models
can be defined. Each instance model corresponds to a specific configuration of
the domain model. Figure 5.14 illustrates the instantiation of a ship - a spatial



5.2. BRESTCOZ 155

l”.m""' .
> What is a couple ?

A couple is a wooden part of the
boat fixed on the boat’s keel.

-
& - l‘k

L |
AR »
P e o YRR

x

Figure 5.15: A virtual guide is integrated into BRESTCOZ providing explana-
tions to the visitors, from (Barange et al., 2011).

entity instantiated from the Ship class. Here, a ship is defined not only with
graphical properties such as shape, rotation, and position, but also with semantic
spatial properties such as intrinsic direction.

To assist the visitors during their visit of the virtual harbour, we integrate
into BRESTCOZ a virtual guide. The virtual guide is able to explain to users a
specific domain concept such as “What is a keel in a ship?” or a domain activity
such as “What a carpenter can do?”. Such semantic explanations are possible
thanks to the meta-model of MASCARET that allows a real-time reification and
introspection of the domain model. Figure 5.15 illustrates the virtual guide
in BRESTCOZ with the ability to communicate in natural language. A more
detailed description of the domain model and the virtual guide of BRESTCOZ
can be found in (Barange et al., 2011).

5.2.3 Modelling Human Activities Using Spatial Constraints

With regard to the purposes of BRESTCOZ application, the VRX-OCL language
is applied in two different contexts:

e First, VRX-OCL is used as a constraint language that enables to specify
constraints related to domain and human activities.



156 5. Applications

e Second, VRX-OCL is used to provide navigational aids to the visitors
during their visit within the BRESTCOZ environment. In this situation,
VRX-OCL enables the visualisation of semantic areas based on spatial con-
straints between spatial entities in the harbour.

Specifying Spatial Activities

An important issue in BRESTCOZ is related to the modelling of human ac-
tivities. In general, human activities mainly include different tasks, such as to
carry objects from one place to another, to meet other people, to search for a
specific point of interest, or to operate tools within specific areas. Many activ-
ities are based on spatial constraints. Figure 5.16 exemplifies a human activity
that is “A worker must move a trolley carrying timbers to the front of a ship”.

The performer
(e.g., a trolley work

The resource (e.g., a trolley) / \ \ &

The activity (e.g., "move")

Figure 5.16: Example of an activity in the BRESTCOZ application.

In BRESTCOZ, human activities are conceptualised by means of activity di-
agrams. An activity diagram depicts the procedure to realise a task, with refer-
ence to resources required and roles (in a hierarchical organisation). Thereafter,
human activities are simulated by artificial agents corresponding to the non-
player characters. Many types of artificial agents are involved in BRESTCOZ,
such as trolley workers, carpenters, sawers, or bearers. For example, Figure 5.17
shows the activity diagram corresponding to the human activity in Figure 5.16.
This diagram allows to model the activity “carry”, with the resources required as
“trolley” and “timbers”. It also defines “a trolley worker” as the performer of the



5.2. BRESTCOZ 157

activity. However, the diagram was limited to specify spatial constraints such
as “in front of a ship”. In the initial implementation of BRESTCOZ, to simulate
this human activity, the trajectory of agents was fixed in a configuration file
that defines the target of the activity (i.e., the position in front of the ship).

4 A

::TrolleyWorker
®

timbers :
<—tlmbers:
DepartFrominitialPlace Timber
trolley

. trolley trolley:
MoveTrolleyToFrontOfShip TroIIe{/-

[ ReturnTolntialPlace ]

N y

Figure 5.17: Activity diagram representing a human activity in BRESTCOZ.

To overcome this drawback, VRX-OCL allows to express spatial expressions
like “in front of a ship” in the conceptual model of BRESTCOzZ. Spatial con-
straints can be used in the activity diagram in different ways. Omne possible
solution is composed of two steps.

1. to define the semantic area corresponding to the target (i.e., the area front
of the ship)

2. to decide whether the worker is within the semantic area

For example, the semantic area “front of the ship” is defined in the conceptual
model as follows.

<SemanticArea



158 5. Applications

name = "areaFrontOfShipl"
class = "FrontAreaClass"
constraint = "frontOf"

entity= "shipl"
distance= 20

/>

Here, the target is defined as the area “front of the ship, named shipI”.
Furthermore, the area is limited by a distance of 20 meters from the ship. Once
the semantic area corresponding to the target was defined, it can be used in the
following VRX-OCL expression that specifies the post-condition of the activity
MoweTrolleyToFrontOfShip.

context TrolleyWorker:: MoveTrolleyToFrontOfShip : Boolean

post:

let target:FrontAreaClass = FrontAreaClass.alllnstances|()
—>select (name = ’areaFrontOfTheShipl’)

in self.inside(target)

The satisfaction of the post-condition allows to know whether the activity
is accomplished or not. This example also shows a combination between topo-
logical and directional constraints. The activity Move TrolleyToFrontOfShip of
Trolley Worker is considered as satisfied if the trolley worker is “inside” the area
“front of” the ship.

Providing Navigational Helps to the Visitors

In BRESTCOZ, users are free to visit the environment and discover domain
activities. During their visit, it is quite often that users need helps to bet-
ter localise an item in the space that is in a spatial relation with other items.
Figure 5.18 provides an example of a directional relation between an anchor
and a ship, that is “the anchor is about 20m from the left of the ship”. As
we have seen previously, in BRESTCOZ, spatial constraints are expressed using
VRX-OcL, and the semantic areas can be described in the conceptual model.
Furthermore, when users can not localise the anchor, it is possible to visualise
the semantic area that contains the anchor. For example, semantic areas such as
“left”, “right”, or “behind” the ship can be visualised, as illustrated in Figure 5.19.
Moreover, it is also possible to highlight the reference object (e.g., the ship), the
primary object (i.e., the anchor), or the viewer.

5.3 Summary

In this chapter, we have presented the applications of VRX-OCL in two different
VEs. The main goal of the language is to specify spatial constraints at the
conceptual model of VEs.

First, the VRX-OcCL language was applied to express spatial constraints in
VPLab, a VE for learning of physics. We showed two situations in VPLab where
spatial constraints are needed. On the one hand, VRX-OCL allows to express



5.8. Summary 159

Figure 5.18: A view in BRESTCOZ application (labels were added to the figure
for illustrating the directional relation between the anchor and the ship).

constraints on user’s actions. These constraints must be respected when the
learners manipulate objects to realise an exercise in the VE. On the other hand,
the VRX-OcL language facilitates the specification of virtual assistances to the
learners in the context of VEs for learning. Many educational assistances can
be specified and visualised based on spatial constraints.

Second, VRX-OCL was applied to model activities of agents in BRESTCOZ, a
VE for culture preservation. The motivation was that many activities of agents
are based on spatial constraints. Furthermore, our model of spatial constraints
was integrated into a virtual guide agent that provides navigational aids to the
users.



160 5. Applications

Area "behind" the ship

Figure 5.19: Visualising spatial constraints in BRESTC0Z. Top: the area “on
the left and 20 meters” from the ship. Bottom: the area “behind and 20 meters”
from the ship.



Conclusion

This thesis has proposed a model of spatial semantics of VEs. We studied spatial
semantics from the point of view of spatial expressions that define spatial rela-
tionships among objects within VEs. In our approach, we represented spatial
relations by means of spatial constraints. We formalised the VRX-OCL con-
straint language that allows to conceptualise spatial constraints in VEs using a
model-based architecture. We argued that VRX-OCL is a relevant language for
specifying constraints on artificial agents’ and users’ activities within VEs.

In this final chapter, Section 1 provides an overall summary of our approach.
Section 2 discusses limitations of the proposed approach and gives suggestions
for future work that could be carried out to extend this research.

1  Summary of Contributions

To model spatial semantics of VEs, we were inspired from semantic modelling,
a novel paradigm for the design of semantic and intelligent VEs (Latoschik
and Blach, 2008). In our approach, spatial semantics were introduced into the
conceptual model of VEs during the modelling phase. As a result, our approach
made spatial knowledge about VEs explicit and meaningful for users as well as
artificial agents.

Modelling spatial knowledge of VEs has been recognised as a non-trivial
task. The main difficulties are that, daily communication of spatial knowledge
is very often given in an imprecise and incomplete manner. In addition, spatial
knowledge of VEs is multi-dimensional and sometimes ambiguous. To fulfil the
research objectives stated in the Introduction, our approach relied on the three
main propositions.

e A generic and integrated model of spatial constraints for VEs

e A spatial language named VRX-OCL for specifying spatial constraints
among objects at a conceptual level

e Practical validations and applications of the approach in real VEs

A Generic and Integrated Model of Spatial Constraints

Our first major contribution was a generic and integrated model of the main

161



162 Conclusion

families of spatial constraints. We tackled the issue of modelling spatial con-
straints from two aspects.

e Identifying the main families of spatial constraints. At the first stage, to
model spatial constraints, it was crucial to understand what types of spa-
tial relationships exist? How they are used in everyday communication?
To answer to these questions, we reviewed the literature and then proposed
a classification of spatial constraints. In our model, spatial constraints are
metric or non-metric. Metric constraints include topological and projective
constraints. Topological constraints are invariants under affine transfor-
mations, such as rotation, scaling, or translation. Meanwhile, projective
constraints are based on the concept of collinearity and coplanarity that
are invariants under projections. With regard to metric constraints, they
are directional and distance constraints.

e Proposing a generic model of spatial constraints dedicated to VEs. At
the second stage, based on our classification of spatial constraints, we pro-
posed an integrated model of spatial constraints for VEs. Our model was
built based on the notions of spatial entity and frame of reference. A
spatial entity conceptually represents an object in a VE, but with addi-
tional spatial semantics, such as position, referential point, and intrinsic
orientation. Based on the notion of spatial entity, we were able to model
the main families of spatial constraint, namely topological, projective, di-
rectional, and distance constraints. Every spatial constraint is specified
with a clear definition of frame of reference that can be implicit or ex-
plicit, first-person perspective or third-person perspective. Furthermore,
the model was dedicated to VEs, taking into account the characteristics of
VEs: interactive, real-time, and lack of precision in manipulating objects
with interface devices.

The VRX-OCL Language For Conceptualising Spatial Constraints

To conceptualise spatial constraints in VEs, we proposed VRX-OcCL, a Vir-
tual Reality eXtension of Object Constraint Language. Our approach to con-
ceptualising spatial constraints was composed of the two main steps.

e Defining the conceptual model of VEs. At this first step, to define the
conceptual model of VEs, we were based on the MASCARET approach.
MASCARET consists in using UML as a sound basis for the semantic mod-
elling of VEs. The main aspects of VEs, such as the structure of the envi-
ronment or the behaviours of objects, are specified using UML-MASCARET
diagrams. Our contribution was that, we provided a meta-model such that
the additional spatial concepts (e.g., spatial entity, frame of reference, and
spatial constraint) could be covered in the conceptual model of VEs.

e Specifying spatial constraints using VRX-OCL: The language enabled the
specification of spatial constraints in the conceptual model of VEs. We



5.8. Summary 163

defined VRX-OCL as an extension of OCL/UML. VRX-OCL is both a
constraint and query language. As a constraint language, VRX-OCL allows
to specify spatial constraints in a UML-MASCARET conceptual model using
a textual and formal syntax. The syntax of the language was extended to
cover specific concepts of spatial constraints, such as the concept of frame
of reference. As a query language, VRX-OCL enables high-level queries for
contents of the semantic conceptual model.

Applications of the Approach and the Language

To validate and show the feasibility of our approach, we applied the VRX-
OcL language in the two real different applications: a learning environment and
a cultural heritage application.

The first application named VPLab was a VE for learning of physics. In
VPLab, to realise exercises, there are many spatial constraints that the learners
have to follow. In the early version of the application, spatial constraints were
hard-coded in the controller of the learner’s interactions. Using the VRX-OCL
language, it was possible to specify the user constraints at the conceptual model.
In addition, we showed that VRX-OCL could be used to provide virtual helps to
the learners.

The second application was BRESTCOZ, a cultural heritage application that
provides virtual visits of Brest’s harbour. The purpose of the visit was to allow
users to discover domain activities, such as shipbuilding. In BRESTCO0Z, the
environment is populated by many types of virtual agent. Each type of agent
simulates a specific domain activity. Agents mainly perform tasks such as to
carry objects from one place to another, to meet other agents, or to operate tools
within specific areas. Many activities of agents were based on spatial constraints.
VRX-OcCL was useful to specify spatial activities of agents. Additionally, the
semantic areas introduced in VRX-OCL was used to enhance navigational aids
to the visitors during their visit.

2 Limitations and Future Work

In this section, we discuss the limitations of our work and indicate several direc-
tions in which this work can be extended in the future. We group the discussion
into categories as follows.

Limitations of the Proposed Model of Spatial Constraints For VEs

Everyday communication of spatial knowledge is mostly in a qualitative
way. Therefore, an important point of our approach was to model spatial con-
straints in a qualitative manner. The qualitative approach offers a representa-
tion closer to how human communicates and reasons about spatial knowledge.
In our model, spatial constraints were divided into two categories: metric and
nonmetric. Our approach to nonmetric spatial constraints was purely qualita-
tive, i.e., topological and projective constraints allow to represent relationships



164 Conclusion

among spatial entities without any metric information. With regard to met-
ric constraints, (i.e., directional and distance constraints), we only proposed a
qualitative representation of direction. Nevertheless, our model of distance still
remains semi-qualitative. Only relative distance is qualitative, whereas absolute
distance is represented in our model in a quantitative manner.

Distance has been an active subject for many studies in the field of VEs (Terz-
iman et al., 2009; Grechkin et al., 2010). The common question is related to
how human perceives and estimates distance within VEs (Plumert et al., 2005),
whereas the question of how to model distance was neglected. Sometimes, cur-
rent studies in distance perception in VEs lead to contradictory results, e.g.,
some studies stressed out the underestimation of distance within human in vir-
tual and real environments, that did not hold in other studies (Interrante et al.,
2006). Ideally, to represent and then reason about distance, distance should
be qualitative, such as “near”, “far” (Hernandez et al., 1995). However, this re-
quires an additional formalisation of frame of reference (FoR) for distance, that
is currently lacked in our model and thus needs further investigation. Currently,
to model distance, we use canonical units based on the concepts of metre, kilo-
metre, and so on. Whereas, the modelling of distance requires domain-oriented
FoRs. For instance, distance is very often evaluated based on the number of
bus stops or metro stations, or the travelling time and cost. FoRs of distance
can also depend on internal properties of entities, such as size or shape. Recent
work in the literature has been interested in modelling distance based on intrin-
sic properties of objects (e.g., size) but still far to fully support different types
of FoR for distance (Bittner and Donnelly, 2007).

Limitations of the VRX-OCL Language

Based on OcL, VRX-OCL is very well suited for expressing local constraints
on a specific element of a UML-based conceptual model, such as class invariants,
pre- and post-conditions of operations, and guard conditions. The specific ele-
ment is indicated by the context keyword. However, in our approach, we extended
VRX-OCL to express global constraints related to the entire model. In this case,
the VRX-OCL expressions mainly cover multi-classes and multi-instances con-
straints. As a consequent, the context of a constraint described by the reserved
word self becomes restrictive. Furthermore, when a constraint involves different
instances of many classes, the expression is overwhelmed with the let..in keywords
that are used to declare variables in OCL. In the future, it would be valuable
to extend the current spatial syntax of VRX-OCL such that allows to declare
many contexts and many instances of a class in a simple expression. In the liter-
ature, a possible solution consists in using and referring instances in expressions
by their identifiers that helps to avoid repeatedly writing long and complicated
navigation paths (Casanova et al., 2000). Alternatively, an interface between
natural language and spatial expressions can be introduced that allows to link
natural language descriptions of spatial situations with spatial logical calculi
(Hois and Kutz, 2008; Bateman et al., 2010). An approach for translating nat-
ural language constraints to the original OCL has been introduced in (Bajwa



5.8. Summary 165

et al.,, 2012). On the contrary, the specification of constraints using OCL can
be translated to natural language (Burke and Johannisson, 2005). To make the
link between the description of spatial constraints using natural language and
VRX-OcCL, a further investigation is needed.

Spatial Reasoning

Despite our model of spatial constraints is a sound basis for spatial reasoning,
there currently lacks of a specific module dedicated to reasoning in our approach.
As a consequence, it would also be of value to further investigate and incorpo-
rate into our model suitable spatial reasoning techniques that enable artificial
agents to find out new relationships from existing ones. For example, given “the
statue is in front of the picture” and “the table is in front of the statue”, one
can conclude that “the table is in front of the picture”. Current reasoning mod-
els aim to reason about a specific aspect of space, e.g. direction (Wolter and
Lee, 2010), or a combination of different aspects (Brageul and Guesgen, 2007).
However, most of them have been shown to be limited in terms of complexity,
even when objects are in 2D and simplified as points (Liu and Li, 2011). Spa-
tial reasoning in real-time VEs needs specialised and adapted techniques, such
that the reasoning result is achieved in an acceptable time. Furthermore, spatial
reasoning should take into account specific concepts of VEs, such as the point
of view of virtual agents, or the FoRs used as the contexts for reasoning (Brom
et al., 2011).

Temporal Constraints and Reasoning

Beside spatial knowledge, the problem of representing temporal knowledge
and temporal reasoning is critical in dynamic VEs. Temporal constraints have
not yet been supported in VRX-OcCL. A further extension of VRX-OcCL should
follow this direction. Interestingly enough, recent work has reconsigned OCL
as one of the most promising approaches to represent temporal constraints (So-
den and Eichler, 2009). Similar to spatial constraints, there exists two main
approaches to temporal constraints: quantitative approaches and qualitative
approaches. In quantitative approaches, temporal constraints are represented
as precise points in time. Consequently, temporal constraints such as “a worker
has to move a trolley periodically to the front of the ship at most 15 time units”
can be expressed (Flake and Mueller, 2004). Whereas, qualitative approaches
are mainly based on Allen’s temporal intervals that describe relative order be-
tween timing events like “after”; “before”, “during”, or “overlaps” (Allen, 1983).
Based on basic temporal intervals, it is possible to construct more meaningful
and complex temporal expressions, such as “always..until”, “sometime..before”,
“always..since”, or “sometime..since” (Ziemann and Gogolla, 2003).

Further Cognitive Validation

Finally, another research could be related to further applications and cog-
nitive validations of the integration of semantic spatial relationships into VEs.



166 5. Applications

Taking a navigation aid system for example, such a future work might be related
to empirical studies on how the visualisation of spatial constraints can help users
in navigating in a large-scale VE. With regard to other application domains, a
semantic model of spatial constraints could be used in other modules integrated
into VEs that exhibit intelligent behaviours to users, such as explaining causal
relationships (Aylett and Cavazza, 2001). Considering an intelligent tutoring
system, we plan to use our proposed model of spatial constraints to detect com-
plex errors realised by users in VEs and then explain to the users the reasons
why the errors have occurred. An initial step to this direction was introduced
in (Trinh et al., 2009).



Appendix A

Publications

The following papers concerning the VRX-OCL approach have been published:

1. T.-H. Trinh, P. Chevaillier, M. Barange, J. Soler, P. De Loor, and R.
Querrec (2011). “Integrating semantic directional relationships into virtual
environments: A meta-modelling approach”. In JVRC 2011: Proceedings
of the Joint Virtual Reality Conference of EGVE — EuroVR, pages 67-74,
20-21 September, Nottingham, UK, 2011.

2. M. Barange, P. De Loor, V. Louis, R. Querrec. J. Soler, T.-H. Trinh,
E. Maisel, and P. Chevaillier (2011). “Get involved in an interactive vir-
tual tour of Brest harbour: Follow the guide and participate”. In IVA
2011: Proceedings of the 11th International Conference on Intelligent Vir-
tual Agents, pages 93-99, vol. 6895 LNAI, 15-17 September, Reykjavik,
Iceland, 2011.

3. P. Chevaillier, T.-H. Trinh, M. Barange, F. Devillers, J. Soler, P. De Loor,
and R. Querrec (2011). “Semantic modelling of virtual environments using
MASCARET”. In SEARIS 2011: Proceedings of the Fourth Workshop on
Software Engineering and Architectures for Realtime Interactive Systems,
in conjunction with IEKE VR, 29 March, Singapore, 2011.

4. T.-H. Trinh, R. Querrec, P. De Loor, and P. Chevaillier (2010). “Spec-
ifying and dynamically visualizing semantic spatial constraints in a vir-
tual environment for training using VRX-OcCL”. In AFRV 2010: Actes
des 5eémes Journées de I’Association Frangaise de Réalité Virtuelle, Aug-
mentée, Mixte et d’Interaction 3D, pages 127-134, 6-8 December, Paris,
France, 2010.

5. T.-H. Trinh, R. Querrec, P. De Loor, and P. Chevaillier (2010). “Ensuring
semantic spatial constraints in virtual environments using UML/OcL”. In
VRST 2010: Proceedings of the 17th ACM Symposium on Virtual Reality
Software and Technology, pages 219-226, 22-24 November, Hong Kong,
China, 2010.

167



168 A. Publications

6. T.-H. Trinh, C. Buche, R. Querrec, and J. Tisseau (2009). “Modeling
of errors realized by a human learner in virtual environment for train-
ing”. International Journal of Computers, Communications € Control,
IV(1):73-81, March 2009 (special issue of selected and extended papers of
ICVL 2008).

7. T.-H. Trinh, C. Buche, and J. Tisseau (2008). “Modeling of errors realized
by a human learner in virtual environment for training”. In ICVL 2008:
Proceedings of the 3rd International Conference on Virtual Learning, pages
71-80, 31 October - 02 November, Constanta, Romania, 2008.



Appendix B

VRX-OCL Grammar

This appendix presents the complete grammar of the VRX-OCL language im-
plemented using the Boost Spirit! library.

oclFile = +(no_node d[str token("package")]|
>> root_node_d[packageName |
>> oclExpressions
>> no_node d[str token("endpackage")]|);

packageName = pathName;
oclExpressions = x(constraint );

constraint = contextDeclaration
>> (+(constraintDefinition
| (stereotype >> !(NAME)>> COLON>> oclExpression)));

constraintDefinition = str token("def") >> NAME
>> I(formalParameterList) >> !(COLON >> typeSpecifier)
>> EQUAL >> expression;

contextDeclaration = no node d|[str token("context")]|
>> (operationContext | classifierContext );

classifierContext = (NAME >> COLON >> NAME) | NAME;

operationContext = NAME >> DCOLON >> operationName
>> LPAREN >> formalParameterList >> RPAREN
>> 1 (COLON >> returnType);

stereotype = str_ token("pre")| str token("post")
| str token("inv");

"http://boost-spirit.com

169



170 B. VRX-OCL Grammar

operationName = NAME | EQUAL | NEQUAL| PLUS | MINUS
| GE | LT | LE | GT | DIVIDE | MULT
| str _token("implies") | str token("not")
| str token("or") | str token("xor")
| str_ token("and");

formalParameterList = !(infix node d|formalParameter
>> % (COMMA >> formalParameter)]);

formalParameter = NAME >> COLON >> typeSpecifier;
typeSpecifier = simpleTypeSpecifier | collectionType;

collectionType = collectionKind
>> LPAREN >> simpleTypeSpecifier >> RPAREN;

oclExpression = !(x(letExpression )
>> no_node_d[str_ token("in")| ) >> expression;

returnType = typeSpecifier;
expression = logicalExpression;

ifExpression = discard node_d|[str_ token("if")| >> expression
>> discard node d|[str token("then")| >> expression
>> discard node d[str token("else")| >> expression
>> no_node_d|[str_token("endif")];

logicalExpression = relationExpression
>> x(root mnode d|logicalOperator |
>> relationExpression );

relationExpression = additiveExpression
>> !(root node d[relationalOperator |
>> additiveExpression );

additiveExpression = multiplicativeExpression
>> x(root mnode d|addOperator |
>> multiplicativeExpression );

multiplicativeExpression = unaryExpression
>> x(root mnode d[multiplyOperator |
>> unaryExpression );

unaryExpression = (unaryOperator >> postfixExpression)



171

postfixExpression ;

postfixExpression = primaryExpression
>> x((root_node d|DOT|>> propertyCall)
(root node d[RARROW| >> collectionCall));

collectionCall

= (iteratorCallName >> iteratorCallParameters)

(collectionMethodName >> propertyCallParameters);

iteratorCallName = str token("exists") | str_ token("forAll")
| str_ token (" 1sUn1que ) | str_token("any")
| str token("one") | str token("collect")
| str_ token(" select") | str_token("reject")
| str_ token("sortBy") | str_ token("iterate");

iteratorCallParameters = (LPAREN >> NAME >> «(COMMA >> NAME)
I'(COLON >> simpleTypeSpecifier)
' (SEMICOL >> NAME >> COLON

>>
>>

>> typeSpecifier >> EQUAL >> expression)

>> BAR >> oclExpression >> discard node d|RPAREN])
| (LPAREN >> oclExpression >> discard node d[RPAREN]);

collectionMethodName = str token ("isEmpty") | str token("size")
|

| str_ token ("notEmpty") str _token ("sum")
| str token("includes") | str token("excludes")
str token ("coun str token("1ncludes
k " t" k ns3 l d All”
| str token(”excludesAll") | str token("product")
| str token("union") | str_ token("intersection")
| str token("lncludlng ) | str_token("excluding")
str token str token (" symmetricDifference
k " k " t 37 D'ff n
| str_token (" flatten ”) | str_ token("asOrderedSet")
| str token("asSequence") | str token("asBag")
| str token("append") | str token("preprend")
str _token ("insertAt str token("subOrderedbset
ken (" At" _token ("subOrderedSet"
| str_token("at") | str_ token("indexOf")
| str_ token("first") | str token("last")
| str_ token ("subSequence");
primaryExpression = literalCollection | ifExpression

(STRING | NUMBER | leaf node d]

(NAME >> DCOLON >> NAME >> x(DCOLON >> NAME))]|)

propertyCall |

(inner node d[ LPAREN >> expression >> RPAREN]);

propertyCallParameters = LPAREN >>
I'( expression >>x(discard node d|COMMA| >> expression))



172 B. VRX-OCL Grammar

>> RPAREN;
simpleTypeSpecifier = pathName;

literalCollection = collectionKind >> discard node d[LCURLY]|
>> I(collectionltem >> x*(discard node d |COMMA]
>> collectionltem )) >> discard node d[RCURLY];

collectionItem = expression >> !(DOIDOT >> expression );

propertyCall = specialOperationCall
| spatialOperationCallWithFoR
| spatialOperationCallWithoutFoR
| operationCall | attributeCall;

"oclName")

specialOperationCall = (str_token(
| str_token ("ocllsTypeOf")
| str_ token ("oclIsKindOf")
| str token("oclAsType") |

>> propertyCallParameters;

| str token("oclIsInState")
str_token ("alllnstances"))

spatialOperationCallWithoutFoR =

( str_token("distanceTo") | str token("ray")

| str_token("isInRay") | str token("distance")

| str_ token("radar") | str_ token("isInRadar")

| str_ token("dimensions")

| str_token("isInDimensions")

| str token("disjoint") | str_ token("meet")

| str_ token("equal") | str token("inside")

| str token("coveredBy") | str_ token("contains")
| str_token("covers") | str token("overlap")

| str_token("asideOnPlane")

| str_ token ("betweenOnPlane")

| str_token ("nonbetweenOnPlane")

| str_token("beforeOnPlane")

| str_ token("afterOnPlane")

| str _token("collinear") | str token("noncollinear")
| str token("between")| str token("nonbetween")
| str _token("before")| str token("after")

]str token (" aside") | str token("outside")

| str token("coplanar") | str_ token("noncoplanar")
| str_ token("internal") | str token("external")
| str token("above")| str token("below")

) >> propertyCallParameters;

spatialOperationCallWithFoR =



( str_token("leftsideOnPlane")

| str_ token("rightsideOnPlane")

/* we enumerate here only 9 (of total 27)
directional operators of the medium layer x/

| str token("frontOf") | str token("frontLeftOf")

str _token("rightOf") | str token("neutralOf")

(

str_token ("frontRightOf") | str token("leftOf")
(
(

str _token("behindOf") | str_ token("behindLeftOf")

|

|

|

| Str*token("behindRightOf")

) >> propertyCallParameters

>> I(str_token (" @viewpoint"))

>> !(propertyCallParameters);
operationCall = NAME >> propertyCallParameters;
attributeCall = NAME >> !( qualifiers);

qualifiers = LBRACK >> expression

>> x(discard _node d[COMMA| >> expression) >> RBRACK;

pathName = NAME >> x( DCOLON >> NAME );
timeExpression = ATSIGN >> str token("pre");

actualParameterList = expression
>> x(discard node d|COMMA| >> expression );

logicalOperator = str_token("and") | str_ token("or")
| str token("xor") | str token("implies");

collectionKind = str token("Set") | str token("Bag")

| str token("Sequence") | str token("Collection")

| str_token("OrderedSet");

relationalOperator = EQUAL | NEQUAL | GE | LE | GT | LT ;

ddOperator = PLUS | MINUS;
multiplyOperator = MULT | DIVIDE;
unaryOperator = MINUS | str_ token("not");
LPAREN — ch_p(’(
RPAREN = ch _p(’)’
IBRACK = ch_p(’]
RBRACK = ch p(’]|



174 B. VRX-OCL Grammar

LCURLY = ch_p(’'{’);
RCURLY = ch p(’}7);
COLON = ch p(’:7);
DCOLON = str token("::");

COMMA = ch p(7,7);

EQUAL = ch_p(’=");
NEQUAL = str token("<>");
LT = ch p('<’);

GT = ch_p('>");

LE = str_token("<=");

GE = str_token(">=");
RARROW = str_token("—>");
DOTDOT = str_token ("..");
DOT = ch_p(’."7);

POUND = ch _p('#’);
SEMICOL = ch_p(7;7);
BAR — ch_p('] ')

ATSIGN = ch_p(’@’);
PLUS = ch p(’+);
MINUS = ch p('=");
MULT = ch _p(’*7);
DIVIDE = ch_p(’/);

NAME = no node d[*(str_ token(" "))]
>> leaf node d[lexeme d[chset<>("a—zA-7 ")
>> x(chset <>("a—zA-Z0-9 "))|]
>> no _node d[x(str_ token(" "))];

NUMBER = access_node_d|real p||assign_real ()]
| access node d[int_p||assign int ()];

STRING = access node d|

leaf node d[lexeme d[ch p(’\’’)>>%("(chset<>(""\n\r")))

>>ch p(’\’7)]|]|assign_string ()];



References

Akehurst, D. and Bordbar, B. (2001). On Querying UML data models with
OCL. «UML» 2001—The Unified Modeling Language. Modeling Languages,
Concepts, and Tools, pages 91-103. 109

Al-Khatib, W., Day, Y., Ghafoor, A., and Berra, P. (1999). Semantic modeling
and knowledge representation in multimedia databases. Knowledge and Data
Engineering, IEEE Transactions on, 11(1):64-80. 1

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832-843. 54, 165

Aylett, R. and Cavazza, M. (2001). Intelligent virtual environments - A state-
of-the-art report. In Duke, D. and Scopigno, R., editors, STAR Proceedings
of Eurographics 2001, Manchester, UK. Eurographics Association. 2, 166

Aylett, R. and Luck, M. (2000). Applying artificial intelligence to virtual reality:
Intelligent virtual environments. Applied Artificial Intelligence, 14(1):3-32. 2

Bajwa, I. S., Lee, M., and Bordbar, B. (2012). Translating natural language
constraints to OCL. Journal of King Saud University - Computer and Infor-
mation Sciences, (0):—. 164

Barange, M., De loor, P., Louis, V., Querrec, R., Soler, J., Trinh, T.-H., Maisel,
E., and Chevaillier, P. (2011). Get involved in an interactive virtual tour of
Brest harbour: Follow the guide and participate. In Proceedings of the 11th
International Conference on Intelligent Virtual Agents, IVA’11, volume 6895
of Lecture Notes in Artificial Intelligence, pages 93-99, Reykjavick, Iceland.
Springer-Verlag. 9, 31, 154, 155

Bateman, J. A., Hois, J., Ross, R., and Tenbrink, T. (2010). A linguistic ontology
of space for natural language processing. Artif. Intell., 174:1027-1071. 164

Baudouin, C., Beney, M., Chevaillier, P., and Le Pallec, A. (2007). Virtual helps
usage in a virtual environment for learning. In Jth INTUITION International
Conference and Workshop, pages 52-60. ISBN 978-960-254-665-9. 141, 150

Baudouin, C., Chevaillier, P., Le Pallec, A., and Beney, M. (2008). Feedback on
design and use of a virtual environment for practical lab work. In Proceedings
of the Virtual Reality International Conference, VRIC 2008, pages 117-125.
141, 143

175



176 REFERENCES

Bejaoui, L., Pinet, F., Bedard, Y., and Schneider, M. (2009). Qualified topolog-
ical relations between spatial objects with possible vague shape. International
Journal of Geographical Information Science, 23(7):877-921. 77

Beney, M. and Guinard, J. (2004). L’évaluation de 'efficacité du guidage dans
les travaux pratiques de deug: un probléme méthodologique complexe. Di-
daskalia, (24):29-64. 141, 142, 144

Ber, F. L. and Napoli, A. (2002). The design of an object-based system for rep-
resenting and classifying spatial structures and relations. Journal of Universal
Computer Science, 8(8):751-773. 54

Billen, R. and Clementini, E. (2006). Projective relations in a 3D environment.
In Raubal, M., Miller, H. J., Frank, A. U., and Goodchild, M. F., editors,
GIScience, volume 4197 of Lecture Notes in Computer Science, pages 18-32.
Springer. 49, 82, 87, 89

Bittner, T. and Donnelly, M. (2007). A formal theory of qualitative size and
distance relations between regions. In Proceedings of the 21st International
Workshop on Qualitative Reasoning. 164

Borrmann, A. and Rank, E. (2009). Specification and implementation of di-
rectional operators in a 3d spatial query language for building information
models. Adv. Eng. Inform., 23(1):32-44. 51, 52, 55

Bouzeghoub, M. and Métais, E. (1991). Semantic modeling of object oriented
databases. In Lohman, G. M., Sernadas, A., and Camps, R., editors, 17th
International Conference on Very Large Data Bases, pages 3—14, Barcelona,
Catalonia, Spain. Morgan Kaufmann. 1

Bowman, D. A., North, C., Chen, J., Polys, N. F., Pyla, P. S., and Yilmaz,
U. (2003). Information-rich virtual environments: theory, tools, and research
agenda. In VRST ’03: Proceedings of the ACM symposium on Virtual reality
software and technology, pages 81-90, New York, NY, USA. ACM. 4, 17, 24,
25, 117

Brageul, D. and Guesgen, H. W. (2007). A model for qualitative spatial rea-
soning combining topology, orientation and distance. In FLAIRS Conference,
Proceedings of the Twentieth International Florida Artificial Intelligence Re-
search Society Conference, pages 653—-658, Key West, Florida, USA. 165

Brom, C., Vyhnanek, J., Lukavsky, J., Waller, D., and Kadlec, R. (2011). A com-
putational model of the allocentric and egocentric spatial memory by means
of virtual agents, or how simple virtual agents can help to build complex
computational models. Cognitive Systems Research, (0):—. 165

Buche, C., Querrec, R., De Loor, P., and Chevaillier, P. (2004). MASCARET
: A pedagogical multi-agent system for virtual environment for training. In-
ternational Journal of Distance Education Technologies (JDET), 2(4):41-61.
ISSN 1539-3100. 36



REFERENCES 177

Burke, D. and Johannisson, K. (2005). Translating Formal Software Specifica-
tions to Natural Language/A Grammar-Based Approach. Logical Aspects of
Computational Linguistics (LACL 2005), 3492:51-66. 165

Casanova, M., Wallet, T., and D’Hondt, M. (2000). Ensuring quality of geo-
graphic data with UML and OCL. In Evans, A., Kent, S., and Selic, B., ed-
itors, UML2000 - The Unified Modeling Language, Advancing the Standard,
Third International Conference, York, UK, October 2-6, 2000, Proceedings,
volume 1939 of Lecture Notes in Computer Science, pages 225-239. Springer.
55, 110, 164

Casati, R. and Varzi, A. C. (1997). Spatial entities. In Stock, O., editor,
Spatial and Temporal Reasoning, pages 73-96. Kluwer Academic Publishers,
Dordrecht. 6

Chen, J., Liu, D., Jia, H., and Zhang, C. (2007). Cardinal direction relations in
3D space. In Zhang, Z. and Siekmann, J. H., editors, KSEM, volume 4798 of
Lecture Notes in Computer Science, pages 623-629. Springer. 51, 93

Chen, T. and Schneider, M. (2010). Modeling cardinal directions in the 3D space
with the objects interaction cube matrix. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC 10, pages 906-910, New York, NY,
USA. ACM. 52

Chevaillier, P. (2006). Les systéemes multi-agents pour les environnements
virtuels de formation. Habilitation & diriger des recherches, Université de
Bretagne Occidentale, Brest. 31

Chevaillier, P., Querrec, R., and Septseault, C. (2009). VEHA, un métamodéle
d’environnement virtuel informé et structuré. Technique et Science Informa-
tiques, 28(6-7):715-740. 32, 38, 39, 40

Chevaillier, P., Trinh, T.-H., Barange, M., Devillers, F., Soler, J., De Loor,
P., and Querrec, R. (2011). Semantic modelling of virtual environments using
MASCARET. In Proceedings of the Fourth Workshop on Software Engineering
and Architectures for Realtime Interactive Systems SEARIS, in conjunction
with IEEE VR 2011, Singapore. 5, 8, 32, 36, 37

Clementini, E. and Billen, R. (2006). Modeling and computing ternary pro-
jective relations between regions. Knowledge and Data Engineering, IEEE
Transactions on, 18(6):799-814. 49, 82, 84, 87

Clementini, E. and Di Felice, P. (1997). Approximate topological relations.
International Journal of Approzimate Reasoning, 16(2):173-204. 77

Cockeroft, S. (1997). A taxonomy of spatial data integrity constraints. Geoin-
formatica, 1(4):327-343. 44, 45

Cockeroft, S. (2004). The design and implementation of a repository for the
management of spatial data integrity constraints. Geolnformatica, 8(1):49—
69. 44



178 REFERENCES

Cohn, A. and Gotts, N. (1996). The ‘egg-yolk’representation of regions with
indeterminate boundaries. Geographic objects with indeterminate boundaries,
2:171-187. 77

Cohn, A. and Renz, J. (2008). Qualitative spatial representation and reasoning.
Handbook of Knowledge Representation, pages 551-596. 6, 44

Darken, R. and Peterson, B. (2001). Spatial orientation, wayfinding, and repre-
sentation. Handbook of virtual environment technology, pages 1-22. 3

De Troyer, O., Kleinermann, F., Pellens, B., and Bille, W. (2007). Conceptual
modeling for virtual reality. In ER ’07: Tutorials, posters, panels and indus-
trial contributions at the 26th international conference on Conceptual mod-
eling, pages 3-18, Darlinghurst, Australia, Australia. Australian Computer
Society, Inc. 16, 17

Donikian, S. (1997). Vuems: A virtual urban environment modeling system.
In Proceedings of the 1997 Conference on Computer Graphics International,
CGI 97, pages 84—, Washington, DC, USA. IEEE Computer Society. 15, 17

Duboisset, M., Pinet, F., Kang, M.-A., and Schneider, M. (2005). Precise mod-
eling and verification of topological integrity constraints in spatial databases:
From an expressive power study to code generation principles. In Delcambre,
L. M. L., Kop, C., Mayr, H. C., Mylopoulos, J., and Pastor, O., editors, ER,
volume 3716 of Lecture Notes in Computer Science, pages 465-482. Springer.
110

Durlach, N.; Allen, G., Darken, R., Garnett, R., Loomis, J., Templeman, J., and
Wiegand, T. (2000). Virtual environments and the enhancement of spatial

behavior: Towards a comprehensive research agenda. Presence: Teleoperators
& Virtual Environments, 9(6):593-615. 3

Egenhofer, M. (1994). Spatial SQL: A query and presentation language. Knowl-
edge and Data Engineering, IEEE Transactions on, 6(1):86-95. 55

Egenhofer, M. (2002). Toward the semantic geospatial web. In Proceedings of the
10th ACM international symposium on Advances in geographic information
systems, pages 1-4. ACM. 1

Egenhofer, M. and Franzosa, R. (1991). Point-set topological spatial relations.
Int’l. J. Geogr. Inf. Syst., 5(2):161-174. 75

Egenhofer, M. J. (1991). Reasoning about binary topological relations. In SSD
'91: Proceedings of the Second International Symposium on Advances in Spa-
tial Databases, pages 143-160, London, UK. Springer-Verlag. 47, 48

Farenc, N., Boulic, R., and Thalmann, D. (1999). An informed environment
dedicated to the simulation of virtual humans in urban context. Computer
Graphics Forum, 18(3):309-318. 15, 17, 18



REFERENCES 179

Fernando, T., Murray, N., Tan, K., and Wimalaratne, P. (1999). Software
architecture for a constraint-based virtual environment. In Proceedings of the

ACM symposium on Virtual reality software and technology, pages 147-154.
ACM. 56

Flake, S. and Mueller, W. (2004). Past- and future-oriented time-bounded tem-
poral properties with OCL. In SEFM ’0j: Proceedings of the Software En-

gineering and Formal Methods, Second International Conference, pages 154—
163, Washington, DC, USA. IEEE Computer Society. 165

Frank, A. (1992). Qualitative spatial reasoning about distances and directions
in geographic space. Journal of Visual Languages and Computing, 3:343-343.
50, 93

Frank, A. U. (1996). Qualitative spatial reasoning: cardinal directions as an ex-
ample. International Journal of Geographical Information Science, 10(3):269—
290. 51

Freksa, C. (1992). Using orientation information for qualitative spatial reason-
ing. In Frank, A. U., Campari, I., and Formentini, U., editors, Theories and
Methods of Spatio- Temporal Reasoning in Geographic Space. Intl. Conf. GIS—
From Space to Territory, volume 639 of Lecture Notes in Computer Science,
pages 162-178, Berlin. Springer. 49, 50

Goyal, R. K. and Egenhofer, M. J. (2001). Similarity of cardinal directions.
In Proceedings of the 7th International Symposium on Advances in Spatial
and Temporal Databases, SSTD 01, pages 36-58, London, UK, UK. Springer-
Verlag. 51

Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., and Kearney,
J. K. (2010). How does presentation method and measurement protocol affect

distance estimation in real and virtual environments? ACM Trans. Appl.
Percept., 7:26:1-26:18. 164

Grimaldo, F., Barber, F., and Lozano, M. (2006a). An ontology-based approach
for IVE+VA. In International Conference on Intelligent Virtual Environments
and Virtual Agents (IVEVA), Aguascalientes (Mexico). 22, 23

Grimaldo, F., Barber, F., Lozano, M., and Orduna, J. M. (2006b). Semantic
virtual environments for interactive planning agents. In International Digital
Games Conference (iDiG), Portalegre (Portugal). 17, 30, 31

Gutierrez, M., Vexo, F., and Thalmann, D. (2005). Semantics-based representa-
tion of virtual environments. International Journal of Computer Applications
in Technology, 23(2):229-238. 22, 23, 30

Gutierrez, M. A. (2005). Semantic Virtual Environments. PhD thesis, Lausanne,
EPFL. 2, 17, 22



180 REFERENCES

Harrouet, F., Cazeaux, E., and Jourdan, T. (2006). Arevi. In Fuchs, P., Moreau,
G., and Tisseau, J., editors, Le traité de la Réalité Virtuelle, volume 3, pages
369-392. Les Presses de 1Ecole des Mines, 3ieme edition. 34

Hazarika, S. (2005). Qualitative Spatial Change: Space-Time Histories and Con-
tinuity. PhD thesis, The University of Leeds. 52

Hernéndez, D. (1994). Qualitative Representation of Spatial Knowledge, volume
804 of Lecture Notes in Artificial Intelligence. Springer, Berlin. 3, 73

Hernandez, D., Clementini, E., and Di Felice, P. (1995). Qualitative distances.
Lecture Notes in Computer Science, 988:45-58. 52, 164

Heumer, G., Schilling, M., and Latoschik, M. (2005). Automatic data exchange
and synchronization for knowledge-based intelligent virtual environments. In
Virtual Reality, 2005. Proceedings. VR 2005. IEEFE, pages 43-50. IEEE. 26

Hois, J. and Kutz, O. (2008). Natural Language Meets Spatial Calculi. In
Proceedings of the international conference on Spatial Cognition VI: Learning,
Reasoning, and Talking about Space, page 282. Springer-Verlag. 164

Ibanez, J. and Delgado-Mata, C. (2011). Lessons from research on interaction
with virtual environments. J. Netw. Comput. Appl., 34:268-281. 2, 14

Ibanez, J. and Delgado-Mata, C. (2006). A basic semantic common level for vir-
tual environments. IJVR - International Journal of Virtual Reality, 5(3):25-
32. 17, 19, 20, 30

Interrante, V., Ries, B., and Anderson, L. (2006). Distance perception in im-
mersive virtual environments, revisited. In VR ’06: Proceedings of the IEEE
conference on Virtual Reality, pages 3—10, Washington, DC, USA. IEEE Com-
puter Society. 164

Kallmann, M. and Thalmann, D. (1999). Direct 3D interaction with smart
objects. In Proceedings of the ACM symposium on Virtual reality software
and technology, pages 124-130. ACM. 17, 30, 70

Kalogerakis, E., Christodoulakis, S., and Moumoutzis, N. (2006). Coupling
ontologies with graphics content for knowledge driven visualization. Virtual
Reality Conference, IEEE, 0:43-50. 15, 17, 20, 21, 30, 31

Kleinermann, F., De Troyer, O., Mansouri, H., Romero, R., Pellens, B., and
Bille, W. (2005). Designing semantic virtual reality applications. In Proceed-
ings of the 2nd INTUITION International Workshop, Senlis, France, pages
5-10. 26, 27, 30, 31

Kleinermann, F., Mansouri, H., De Troyer, O., Pellens, B., and Ibanez-Martinez,
J. (2008). Designing and Using Semantic Virtual Environment over the Web.
International Journal of Virtual Reality, 7(3):53-58. 4



REFERENCES 181

Kosters, G., Pagel, B., and Six, H. (1997). Gis-application development
with geoooa. International Journal of Geographical Information Science,
11(4):307-335. 53

Latoschik, M. and Schilling, M. (2003). Incorporating VR databases into Al
knowledge representations: A framework for intelligent graphics applications.
In Proceedings of the Sizth IASTED International Conference on Computer
Graphics and Imaging, pages 79-84. 26

Latoschik, M. E. and Blach, R. (2008). Semantic modelling for virtual worlds:
A novel paradigm for realtime interactive systems? In VRST ’08: Proceedings

of the 2008 ACM symposium on Virtual reality software and technology, pages
17-20, New York, NY, USA. ACM. 1, 2, 161

Latoschik, M. E. and Frohlich, C. (2007). Towards intelligent VR - multi-layered
semantic reflection for intelligent virtual environments. In Braz, J., Vazquez,
P.-P., and Pereira, J. M., editors, GRAPP (AS/IE), pages 249-260. INSTICC
- Institute for Systems and Technologies of Information, Control and Com-
munication. 16, 17, 25, 30

Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. Scientific
American, 284(5):34-43. 1

Liu, W. and Li, S. (2011). Reasoning about cardinal directions between extended
objects: The NP-hardness result. Artificial Intelligence, 175(18):2155-2169.
165

Liu, Y., Wang, X., Jin, X., and Wu, L. (2005). On internal cardinal direction
relations. In Cohn, A. G. and Mark, D. M., editors, COSIT, volume 3693 of
Lecture Notes in Computer Science, pages 283-299. Springer. 52

Liu, Y., Xu, C., Pan, Z., and Pan, Y. (2006). Semantic modeling for ancient
architecture of digital heritage. Computers & Graphics, 30(5):800 — 814. 15,
17, 19

Louwsma, J., Zlatanova, S., Lammeren, R., and Oosterom, P. (2006). Specifying
and implementing constraints in GIS—with examples from a geo-virtual reality
system. Geoinformatica, 10(4):531-550. 45, 47

Manjunath, B., Salembier, P., and Sikora, T. (2002). Introduction to MPEG-7:
multimedia content description interface, volume 1. John Wiley & Sons Inc.
22

Marion, N. (2010). Modélisation de scénarios pédagogiques pour les environ-
nements de réalité virtuelle d’apprentissage humain. PhD thesis, Université
de Bretagne Occidentale. 145, 146, 147

Marion, N., Septseault, C., Boudinot, A., and Querrec, R. (2007). GASPAR :
Aviation management on an aircraft carrier using virtual reality. In Proc. Int’l
Conf. on Cyberworlds 2007, pages 15-22. 31



182 REFERENCES

MOF, O. M. G. (2011). MetaObject Facility (MOF) Core Specification,
formal/06-01-01. www.uml.org/mof. 35

OMG (2006). Unified Modeling Language 2.0 Object Constraint Language Spec-
ification, formal/06-05-01. http://www.omg.org/spec/OCL/2.0/. 5, 32, 109

OMG, O. M. G. (2011). Model-driven architecture. http://www.omg.org/mda/.
5, 13, 32

Otto, K. (2005a). Semantic virtual environments. In Special interest tracks and
posters of the 14th international conference on World Wide Web, page 1037.
ACM. 21

Otto, K. (2005b). The semantics of multi-user virtual environments. In Work-
shop Towards Semantic Virtual Environments (SVE’05). 21, 31

Pacheco, J., Escrig, M. T., and Toledo, F. (2002). Qualitative spatial rea-
soning on three-dimensional orientation point objects. In Agell, N. and Or-
tega, J. A., editors, 16th International WorkShop on Qualitative Reasoning
(QR’02), pages 113-124, Barcelona, Spain. 50

Papadias, D. and Theodoridis, Y. (1997). Spatial relations, minimum bounding
rectangles, and spatial data structures. International Journal of Geographical
Information Science, 11(2):111-138. 70

Parent, C., Spaccapietra, S., and Ziméanyi, E. (1999). Spatio-temporal concep-
tual models: data structures + space + time. In GIS ’99: Proceedings of
the Tth ACM international symposium on Advances in geographic information
systems, pages 26-33, New York, NY, USA. ACM. 54

Pellens, B., De Troyer, O., Bille, W., and Kleinermann, F. (2005). Conceptual
modeling of object behavior in a virtual environment. In Proceedings of Virtual
Concept, pages 93-94. 27

Pinet, F., Duboisset, M., and Soulignac, V. (2007). Using UML and OCL to
maintain the consistency of spatial data in environmental information systems.
Environmental Modelling and Software, 22(8):1217-1220. 55

Pinet, F., Kang, M.-A., and Vigier, F. (2004). Spatial constraint modelling with
a GIS extension of UML and OCL: Application to agricultural information
systems. In Metainformatics, pages 160-178. 54

Plumert, J. M., Kearney, J. K., Cremer, J. F., and Recker, K. (2005). Distance
perception in real and virtual environments. ACM Trans. Appl. Percept.,
2:216-233. 164

Polys, N. and Bowman, D. (2004). Design and display of enhancing information
in desktop information-rich virtual environments: challenges and techniques.
Virtual Reality, 8(1):41-54. 25, 30



REFERENCES 183

Querrec, R. (2002). Les Systémes Multi-Agents pour les Environnements Virtuels
de Formation : Application & la sécurité civile. PhD thesis, Université de
Bretagne Occidentale, Brest (France). 31

Querrec, R. (2010). Apprentissage de procédures en environnements virtuels. Ha-
bilitation & diriger des recherches, Université de Bretagne Occidentale, Brest,
France. 31, 32

Querrec, R., Buche, C., Lecorre, F., and Harrouet, F. (2011). Agent metamodel
for virtual reality applications. In Ryzko, D., Rybinski, H., Gawrysiak, P., and
Kryszkiewicz, M., editors, Emerging Intelligent Technologies in Industry, 19th
International Symposium, ISMIS 2011, Warsaw, Poland, June 28-30, 2011.
Proceedings of the Industrial Session, volume 369 of Studies in Computational
Intelligence, pages 81-90. Springer. 36, 38

Querrec, R., Buche, C., Maffre, E., and Chevaillier, P. (2004). Multiagents
systems for virtual environment for training. application to fire-fighting. In-
ternational Journal of Computers and Applications (IJCA), 1(1):25-34. ISSN
1710-2251. 36

Randell, D. A., Cui, Z., and Cohn, A. G. (1992). A spatial logic based on
regions and connection. In Proceedings of the 3rd International Conference

on Principles of Knowledge Representation and Reasoning (KR’92), pages
165-176. 47, 48, 75

Renz, J. and Nebel, B. (2007). Qualitative spatial reasoning using constraint
calculi. In Handbook of Spatial Logics, pages 161-215. Springer Netherlands.

5

Rishe, N. (1992). Database design: the semantic modeling approach. McGraw-
Hill Companies. 1

Salamin, P., Thalmann, D., and Vexo, F. (2006). The benefits of third-person
perspective in virtual and augmented reality? In VRST ’06: Proceedings of

the ACM symposium on Virtual reality software and technology, pages 27-30,
New York, NY, USA. ACM. 72

Salamin, P., Thalmann, D., and Vexo, F. (2009). Intelligent switch: An al-
gorithm to provide the best third-person perspective in augmented reality.

In Proceedings of the 22nd Annual Conference on Computer Animation and
Social Agents (CASA 2009), Amsterdam, the Netherlands. 73

Salehi, M., Bédard, Y., Mostafavi, M. A., and Brodeur, J. (2007). On lan-
guages for the specification of integrity constraints in spatial conceptual mod-
els. In Hainaut, J.-L., Rundensteiner, E. A., Kirchberg, M., Bertolotto, M.,
Brochhausen, M., Chen, Y.-P. P., Cherfi, S. S.-S., Doerr, M., Han, H., Hart-
mann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E. S. K.,
and Ziményi, E., editors, Advances in Conceptual Modeling - Foundations
and Applications, ER 2007 Workshops CMLSA, FP-UML, ONISW, QolS,



184 REFERENCES

RIGIiM,SeCoGIS, Auckland, New Zealand, November 5-9, 2007, Proceedings,
volume 4802 of Lecture Notes in Computer Science, pages 388-397. Springer.
54

Schafer, W. and Bowman, D. (2004). Evaluating the effects of frame of refer-
ence on spatial collaboration using desktop collaborative virtual environments.
Virtual Reality, 7(3):164-174. 73

Septseault, C. (2007). Représentation d’environnements virtuels informés et de
leur dynamique par un personnage autonome en vue d’une crédibilité com-
portementale. PhD thesis, Université de Bretagne Occidentale. 31

Shekhar, S., Liu, X., and Chawla, S. (1999). An object model of direction and
its implications. Geoinformatica, 3(4):357-379. 95

Skiadopoulos, S., Giannoukos, C., Sarkas, N., Vassiliadis, P., Sellis, T., and
Koubarakis, M. (2005). Computing and managing cardinal direction relations.
IEEE Trans. on Knowl. and Data Eng., 17(12):1610-1623. 51

Smith, G. and Stuerzlinger, W. (2001). Integration of constraints into a VR
environment. In VRIC °01: Proceedings of the Virtual Reality International
Conference 2001, pages 103-110. 57

Smith, S. P. and Willans, J. S. (2006). Virtual object specification for usable
virtual environments. In OZCHI °06: Proceedings of the 18th Australia confer-
ence on Computer-Human Interaction, pages 183-190, New York, NY, USA.
ACM. 57

Soden, M. and Eichler, H. (2009). Temporal extensions of OCL revisited. In
ECMDA-FA ’09: Proceedings of the 5th European Conference on Model Driven

Architecture - Foundations and Applications, pages 190-205, Berlin, Heidel-
berg. Springer-Verlag. 55, 110, 165

Stuerzlinger, W. and Smith, G. (2002). Efficient manipulation of object groups
in virtual environments. In VR ’02: Proceedings of the IEEE Virtual Reality
Conference 2002, page 251, Washington, DC, USA. IEEE Computer Society.
57

Terziman, L., Lecuyer, A., Hillaire, S., and Wiener, J. M. (2009). Can camera
motions improve the perception of traveled distance in virtual environments?
In VR ’09: Proceedings of the 2009 IEEE Virtual Reality Conference, pages
131-134, Washington, DC, USA. IEEE Computer Society. 164

Trinh, T. H., Buche, C., Querrec, R., and Tisseau, J. (2009). Modeling of errors
realized by a human learner in virtual environment for training. International
Journal of Computers, Communications € Control, IV(1):73-81. 9, 166

Trinh, T. H., Buche, C., and Tisseau, J. (2008). Modeling of errors realized by a
human learner in virtual environment for training. In " International Con-

ference on Virtual Learning - ICVL’08, pages 71-80, Constanta (Romania).
9



REFERENCES 185

Trinh, T.-H., Chevaillier, P., Barange, M., Soler, J., Loor, P. D., and Querrec,
R. (2011). Integrating semantic directional relationships into virtual environ-
ments: A meta-modelling approach. In Coquillart, S., Steed, A., and Welch,
G., editors, JVRC11: Joint Virtual Reality Conference of EGVE - EuroVR,
Nottingham, UK, 2011. Proceedings, pages 67-74. Eurographics Association.
8

Trinh, T.-H., Querrec, R., De Loor, P., and Chevaillier, P. (2010a). Ensuring
semantic spatial constraints in virtual environments using UML/OCL. In
Proceedings of the 17th ACM Symposium on Virtual Reality Software and
Technology, VRST 10, pages 219-226, New York, NY, USA. ACM. 8

Trinh, T.-H., Querrec, R., De Loor, P., and Chevaillier, P. (2010b). Spec-
ifying and dynamically visualizing semantic spatial constraints in a vir-
tual environment for training using VRX-OCL. In Actes des 5émes

Journées de I’Association Francaise de Réalité Virtuelle, Augmentée, Mixte
et d’Interaction 3D (AFRV), pages 127-134, Paris, France. 8

Tutenel, T., Bidarra, R., Smelik, R. M., and Kraker, K. J. D. (2008). The role
of semantics in games and simulations. Comput. Entertain., 6:57:1-57:35. 8

Tutenel, T., Smelik, R., Bidarra, R., and Jan De Kraker, K. (2009). Using
semantics to improve the design of game worlds. In Proceedings of the Fifth

Artificial Intelligence and Interactive Digital Entertainment Conference (Al-
IDE’09), pages 14-16. 17, 25

Vanacken, L., De Boeck, J., Raymackers, C., and Coninx, K. (2008). Using
relations between concepts during interaction modelling for virtual environ-
ments. In Latoschik, M. E., Reiners, D., Blach, R., Fidueroa, P., and Dachselt,
R., editors, Software Engineering and Architectures for Realtime Interactive
System (SEARIS), page 65-70, March. 27

Vanacken, L., Raymaekers, C., and Coninx, K. (2007). Introducing semantic in-
formation during conceptual modelling of interaction for virtual environments.
In Proceedings of the 2007 workshop on Multimodal interfaces in semantic in-
teraction, WMISI °07, pages 1724, New York, NY, USA. ACM. 16, 17, 28

Waller, D., Hunt, E., and Knapp, D. (1998). The transfer of spatial knowledge in
virtual environment training. Presence: Teleoper. Virtual Environ., 7(2):129-
143. 3

Waller, D., Loomis, J., Golledge, R., and Beall, A. (2000). Place learning in
humans: The role of distance and direction information. Spatial Cognition
and Computation, 2(4):333-354. 3, 43

Wang, Y., Jayaram, U., Jayaram, S., and Imtiyaz, S. (2003). Methods and
algorithms for constraint-based virtual assembly. Virtual Reality, 6(4):229—
243. 56



186 REFERENCES

Warmer, J. and Kleppe, A. (2003). The Object Constraint Language: Getting
Your Models Ready for MDA (2nd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA. 55, 108

Werder, S. (2009). Formalization of Spatial Constraints. In Proceedings of the
12th AGILE International Conference on Geographic Information Science,
Jun, pages 2-5. 55, 110

Wolter, D. and Lee, J. (2010). Qualitative reasoning with directional relations.
Artificial Intelligence, 174(18):1498-1507. 165

Ziemann, P. and Gogolla, M. (2003). OCL extended with temporal logic. In
Perspective of System Informatics, LNCS 2244, pages 351-357. Springer. 165

Zlatanova, S. (2000). On 3D topological relationships. In DEXA ’00: Pro-
ceedings of the 11th International Workshop on Database and Fxpert Systems
Applications, page 913, Washington, DC, USA. IEEE Computer Society. 48

Zlatanova, S., Rahman, A., and Shi, W. (2004). Topological models and frame-
works for 3D spatial objects. Computers and Geosciences, 30(4):419-428. 48

Zlatev, J. (2007). Spatial semantics. In Cuyckens, H. and Geeraerts, D., editors,
Ozford Handbook of Cognitive Linguistics, pages 318-350. Oxford University
Press, Oxford, UK. 1, 3



