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Abstract

In the last decade, wireless sensor network (WSN) domain had benefit from a huge development

effort and a major technological boom of Micro-Electro-Mechanical Systems which make, nowa-

days, each user or organization already connected to a large number of nodes (mobile phone,

network monitoring, sensors in the home, the sensors on the body, etc. .). These nodes generate

a substantial amount of data, making the management and storage of data not an obvious issue.

However, these nodes have, in general, a limited memory and processing capabilities, so they are

unable to store and manage the associated data flow. In addition, these data can contain user’s

confidential data (location, health, etc.). For these reasons, developing a secure system manag-

ing the collection, storage, indexing, sharing of data and alerts generation from heterogeneous

sensor nodes is a real need for users and organizations.

In the first part of the thesis, we developed a middleware for wireless sensor networks to

communicate with the physical sensors for storing, processing, indexing, analyzing and generat-

ing alerts on those sensors data. The middleware is composite-based system. A composite is a

software component that is connected to a physical node like a sensor node, a mobile phone or

a gateway, etc. or used to aggregate and process data from different composites. Each physical

node that has the capability to communicate with the middleware should be setup as a com-

posite. A composite is a set of instances of components interconnected using services. There

are some default components while new components can be added easily. The middleware has

been tested and used in the context of the European project Mobesens in order to receive, store,

process, index and analyze data from a sensor network for monitoring water quality.

In the second part of the thesis, we proposed a new hybrid authentication and key estab-

lishment scheme that will focus on the relationship between the three parties forming Wireless

Body Area Networks (WBANs), e.g. the senor node (SN), the mobile node (MN) and the

storage server (SS) or the middleware. The scheme combines symmetric cryptography and

identity-based cryptography. Nodes having scarce resources use symmetric keys, while those

having more resources use asymmetric keys. It is based on two protocols. The first protocol

intent is the mutual authentication between SS and MN, on providing an asymmetric pair of

keys for MN, and on establishing a pairwise key between them. The second protocol aims at

authenticating them, and establishing a group key and pairwise keys between SN and the two

others.

The middleware that was originally designed to be used by a single user or organization,

has been generalized in the third part of the thesis in order to provide a private space for each

organization or user to manage his sensors data using cloud computing. Next, we expanded the

composite with gadgets that can be integrated into the portal of the organization, the user or a

third party portal to share sensor data and then provide a social portal for sensor networks.
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Résumé

Les progrès des technologies micro-électromécaniques, électroniques, numériques et

des communications sans fil ont permis le développement de capteurs (SN) peu coûteux

communiquant à faible distance et peuvant traiter et stocker des données. Ces nœuds

minuscules ont la capacité de surveiller un ou plusieurs phénomènes physiques et de

s’auto-configurer entre eux dès leurs démarrage afin de former un réseau de capteurs

sans fil (RCSF).

Le développement à grande échelle de ces réseaux, met à disposition de chaque util-

isateur ou organisation un nombre important de nœuds (téléphones mobiles, réseaux de

surveillance, capteurs à la maison, capteurs sur le corps, etc.). Ces nœuds génèrent une

quantité importante de données, faisant ainsi de la gestion et du stockage de ces données

une tâche difficile. Ces nœuds sont généralement caractérisés par une faible capacité de

stockage et de traitement ; ils sont donc incapables de stocker et de gérer les flux de données

associés. De plus, ces données peuvent contenir des informations concernant la vie privée

de l’utilisateur (localisation, santé, etc.). Il en découle que le développement d’un système

sécurisé de collecte, de gestion, de stockage et de partage de données collectées par les

capteurs est un véritable besoin pour les utilisateurs et les organisations.

1 La gestion des données dans les RCSF

Le succès des réseaux sans fils, dont les réseaux de capteurs sans fils, est dû à l’utilisa-

tion de petits composants sans fil légers, autonomes et efficaces proposant divers services.

La taille minuscule de ces nœuds constitue un avantage, mais présente aussi des con-

traintes en terme d’énergie, de bande passante, de mémoire et de capacité de calcul. Cela

affecte l’ensemble du réseau et incite donc les chercheurs et les industriels à proposer des

solutions matérielles, logicielles, ou architecturales afin d’assurer l’efficacité et la fiabilité

de ces réseaux.

Ainsi, des applications spécifiques ont été élaborées pour s’exécuter sur des systèmes

d’exploitation légers conçus spécialement pour ces capteurs. De plus, grâce à l’apparition

I
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de nouvelles tendances en matière de programmation, des techniques telles que la virtu-

alisation et le Cloud Computing ont été adoptées pour fournir des réseaux de capteurs

plus flexibles, reconfigurables et performants. En effet, la performance d’un RCSF est

mesurée entre autre par sa capacité de gérer la grande quantité de données générées par

ces nœuds peuvant être homogènes ou hétérogènes. La collecte, l’analyse et le stockage des

données des capteurs devient une tâche fastidieuse d’autant plus que le nombre de cap-

teurs déployés dans le réseau peut être important. En outre, la faible capacité de stockage

des nœuds complique cette gestion des données au sein du RCSF.

En raison de leur nature spécifique, les réseaux sans fil sont plus vulnérables aux agres-

sions extérieures et présentent plus de failles de sécurité par rapport aux réseaux câblés.

La sécurité dans les RCSF est également une préoccupation majeure qui ne doit pas être

négligée. En fait, les nœuds sont généralement déployés sans protection ni surveillance. Par

conséquent, ils rencontrent de nombreuses menaces physiques telles que la manipulation

du nœud, l’injection de nœuds malicieux ou leur réplication.

La présence de capteurs dans plusieurs appareils mobiles ainsi que l’évolution et le

déploiement des réseaux de capteurs sans fil dans plusieurs domaines font que chaque

personne ou organisation est aujourd’hui en possession de beaucoup de capteurs, souvent

hétérogènes. Construits sur différentes configurations et modes de fonctionnement, ces

capteurs ne sont pas censés communiquer les uns avec les autres et génèrent de grande

quantités de données avec des formats différents. La capacité à gérer et traiter ces données

pour en extraire les informations utiles, ainsi que générer les alertes constitue un réel besoin

confronté à de nombreuses limites et problèmes.

Ces limites sont à la fois matérielles et logicielles. Les limites matérielles sont dues aux

ressources disponibles restreintes sur chaque capteur (traitement, communication, stock-

age, énergie), tandis que les limitations logicielles sont dues au protocole MAC utilisé dans

les réseaux de capteurs permettant aux nœuds d’avoir des intervalles périodiques de som-

meil afin de réduire leur consommation d’énergie, ceci rendant les nœuds périodiquement

inaccessibles. Pour surmonter ce problème, l’utilisation d’un système externe est également

envisageable. En outre, un compromis entre les deux approches de stockage dans le réseau

et dans un système externe peut être réalisé. Néanmoins, lorsque les données doivent être

conservées pendant une longue période, l’utilisation d’un système externe devient une obli-

gation, ce qui améliore la qualité du réseau mais rajoute aussi d’autres problématiques à

gérer.

Lorsqu’un utilisateur ou une application souhaite collecter des données, il envoie au

réseau des requêtes ou des routines pour récupérer les mises à jour périodiques ou les

alertes soulevées. Étant donné que ces derniers peuvent provenir de nœuds hétérogènes,

le système de collecte utilisé dans le RCSF doit tenir compte de cette hétérogénéité et

doit comprendre toutes les données afin d’être en mesure de bien les traiter. En effet, le

traitement des données dans le réseau peut signifier l’exécution de certaines opérations
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telles que l’analyse, l’agrégation, la conversion ou la traduction des données.

Le réseau de capteurs peut gérer des données publiques tout comme il peut être en

charge de données très sensibles et privées. Or, les réseaux sans fil sont très vulnérables

et peuvent être facilement manipuler par un utilisateur malveillant. Un choix multiple de

protocoles de sécurité existe actuellement pour les réseaux traditionnels mais ils ne sont

pas adaptés aux spécifités des RCSF. Un solution de sécurité sophistiquée et bien adaptée

à ce type de réseaux et à ses exigences est donc impérative afin de préserver la vie privée

des utilisateurs.

2 iSensors : un middleware dynamique et extensible

Afin de résoudre la problématique de collecte et de gestion des données hétérogènes

des RCSF, cette section présente un middleware basé sur les notions de composants et

d’événements.

2.1 Architecture

Figure 1 – Architecture globale du middleware iSensors.

Ce middleware, illustré en Fig. 1, est basé sur la notion de composants et de com-

posites, dans lequel chaque nœud physique (passerelle, capteur, etc.) communique avec

un composite du middleware qui lui ait dédié une interface RESTful. En plus des com-

posites liés à des nœuds physiques, un autre type de composite est présent afin d’écouter
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et d’agréger les alertes générées par d’autres composites. Pour former un composite, des

composants par défaut sont offerts par le middleware pour être instancié et interconnecté.

De nouveaux composants peuvent aussi être ajoutés à ce middleware. L’interconnexion,

l’ajout et le changement de composants peut se faire à chaud, le middleware ayant l’intérêt

d’être dynamique.

En plus des composites, un serveur d’événements est présent dans le middleware pour

gérer la réception et la distribution des alertes. Il est basé sur le modèle Publish-Subscribe

qui est un mécanisme de publication/souscription de messages dans lequel les émetteurs

envoient leurs messages à des centres d’intérêt au lieu de les envoyer à des destinations

spécifiques. L’abonné à un centre d’intérêt reçoit les publications des émetteurs. En effet,

le serveur peut acheminer les événements du middleware pour les applications extérieures

souscrites en utilisant de nombreux protocoles (RSS, JMS, XMPP, ajax, etc.). De plus,

les composites peuvent être aussi bien des publicateurs et/ou des abonnés. Grâce à cette

capacité de gestion des alertes, le serveur d’événements peut être considéré à la fois comme

un mécanisme pour router les événements vers des applications externes souscrites, ainsi

qu’un mécanisme de communication entre des composites hétérogènes. Un composite

agrégateur se souscrit alors à des sujets d’intérêt afin d’agréger les données publiées.

2.2 La structure des composites

Afin de garantir une flexibilité et une reconfiguration facile des fonctionalités du mid-

dleware, la notion de composition a été sélectionnée. En effet, cette caractéristique permet

de produire des composants indépendants et de les relier ensuite entre eux pour former

un composite ou un programme plus sophistiqué.

Ainsi, dans cemiddleware, chaque nœud est un composite qui instancie des composants

et/ou d’autres composites. Par conséquent, chaque nœud forme un espace privée qui

n’interfère pas avec les autres nœuds. Les composants sont reliés entre eux à l’aide de

services. Chaque composant peut fournir ou consommer un service pour s’interconnecter

aux autres composants. Sa configuration se fait à l’aide de l’un des services qu’il fournit,

ou en utilisant le constructeur lors de l’instanciation. Certaines configurations peuvent

également être faites en utilisant l’API RESTful pour ajouter ou modifier des scripts et

des variables de configuration.

Afin de faciliter l’ajout de nouveaux nœuds au middleware, des composants produisant

des services communs sont fournis par défaut. Ainsi, l’ajout d’un nouveau composite est

limité à l’instanciation de certains composants par défaut. La Fig. 2 décrit la structure

d’un composite représentant un nœud capteur ou une passerelle. Les composants les plus

important qui y sont définis sont :

– Le composant de stockage et d’indexation est chargé du stockage permanent

et de l’indexation des données. Il fournit les services d’enregistrement (Put), de



2. iSensors : un middleware dynamique et extensible V

Figure 2 – Structure d’un composite de capteur ou passerelle.

récupération (Get) et de recherche des données. L’appel du service Put retourne

un identifiant unique qui pourra être utilisé pour récupérer la donnée à l’aide du

service Get. Un composant embarqué dans le middleware est fourni par défaut pour

se connecter à la base de données non-SQL nommé existDB [1]. Ce service peut

également être fourni par un autre composant afin de s’interfacer à une autre solution

d’indexation ou de stockage, par exemple, en nuage.

– Le générateur de requêtes xQuery fournit une couche d’adaptation entre le

composant de stockage et d’indexation et les autres composants utilisant le service

de recherche. Ce composant traduit une requête générique en xQuery pour permettre

aux consommateurs de son service d’être indépendants de la solution utilisée pour

le stockage et l’indexation des données.

– Le composant générateur d’alertes est responsable de la génération des alertes

après l’analyse des données reçues et/ou traduites. La génération est effectuée par

l’exécution d’une fonction spécifique dans un script xQuery sur les données en entrée.

Afin de permettre au script d’exécuter les opérations de raisonnement, la dernière

version des données est injectée dans le script. À cette étape, le composant génère

un message d’alerte et des méta-données supplémentaires peuvent être insérées aux

données en entrée.

– Le gestionnaire d’événements est responsable du routage des événements reçus
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par son service alerte au meilleur serveur disponible adapté à la gestion de ce type

d’événements. Par exemple, les alertes XMPP [2] et JMS [3] sont redirigées vers le

serveur d’événements, tandis qu’un autre serveur est nécessaire pour acheminer les

SMS ou les e-mails.

– Le composant de l’API de communication implémente une API RESTful

pour configurer et interagir avec les composites. L’API RESTful a été choisie car il

s’agit d’une interface de services simple, sans état et compatible avec le standard

HTTP. Tout d’abord, lors d’une communication, le composant reçoit des données

des nœuds physiques. Il fournit alors un service pour envoyer des messages (réponse,

étalonnage, re-configuration, etc.) pour le nœud physique. Ensuite, il joue le rôle

d’interface pour naviguer et chercher dans les données des nœuds physiques. Enfin,

il donne la possibilité de configurer les autres composants du composite, comme la

mise à jour des fonctions xQuery du générateur d’alertes.

– Le composant traducteur est utilisé pour traduire et/ou ajouter des méta-

données aux données reçues à l’aide d’une fonction xQuery. Par exemple, il peut

être utilisé pour convertir les données de capteur reçues dans un format binaire en

XML ou tout autre format de données. De plus, il peut ajouter un état de validation

aux données ou tout autre méta-donnée.

– Le composant agrégateur est un élément du composite agrégateur utilisé pour

exécuter un script sur plusieurs données en entrée afin de les agréger en se basant

sur des paramètres de configuration et la fonction d’agrégation définie dans le script.

– Le composant d’écoute est un élément du composite agrégateur utilisé pour

se souscrire aux sujets qui intéressent l’agrégateur afin de recevoir les nouveaux

événements publiés et qui sont, ensuite, transférés au composant agrégateur.

2.3 Implémentation

Afin de garantir le concept de composition et la séparation des instances, les tech-

nologies OSGi et iPOJO ont été choisies pour implémenter le middleware. En effet, la

technologie OSGi rassemble un ensemble de spécifications qui définissent un système de

composants dynamiques. Ce framework offre un système modulaire et une plateforme

de services permettant d’installer, démarrer, mettre à jour et ré-installer à distance des

applications ou des composants sans pour autant re-démarrer le système.

De l’autre coté, la technologie iPOJO, une extension de la technologie OSGi, est un

composant de services d’exécution visant à simplifier le développement d’applications

OSGi. Il permet aux développeurs de séparer clairement le code fonctionnel (c.à.d. les

POJO) du non-fonctionnel (gestion des dépendances, configuration, etc.) et c’est au mo-

ment de l’exécutiion que ces deux aspects sont combinés.

Ainsi, grâce au choix de ces technologies, le middleware est entièrement personnalis-
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able. De nouveaux composants et services peuvent être facilement ajoutés à chaud dans

la plateforme (sans redémarrage).

2.4 Extensions

Considérant que le middleware est basé sur des composants et des services, l’ajout

d’extensions est à priori facile. Cette flexibilité ouvre donc les portes vers l’ajout de

nouvelles fonctionnalités et services au middleware.

Une des extensions possibles est la sous-traitance des calculs. En effet, les réseaux de

capteurs sont munis de ressources limitées alors que lemiddleware, installé sur un serveur à

haute performance, possède plus de capacité de calcul. Dans ces circonstances, une bonne

solution pour pallier les limites des capteurs est de permettre à l’utilisateur d’ajouter

un composant/composite au middleware pour fournir ce service au capteur. En appelant

ce service, le capteurs envoie les entrées et reçoit en sortie le résultat de l’exécution du

service.

L’extension dumiddleware aux réseaux sociaux est bénéfique aux utilisateurs vu qu’elle

permet le partage des données collectées par les capteurs. Afin de permettre ce partage

entre un patient et son médecin ou entre diverses équipes de recherche peuvant collaborer

au traitement et à l’analyse de ces données pour tirer des conclusions, le composite peut

être étendu avec un gadget utilisé comme un mashup web à intégrer dans un portail social,

voir Sec. 5.

3 Un système de stockage et de visualisation de données

d’un RCSF

Le middleware iSensors décrit auparavant est extensible, flexible et peut servir dans

divers domaines. Dans le cadre de cette thèse, nous avons choisi de l’utiliser et de le

tester dans le cadre du projet Européen Mobesens [4] dans le but de recevoir, stocker,

transformer, indexer et analyser les données d’un réseau de capteurs pour la surveillance

de la qualité de l’eau. Un système de visualisation a aussi été intégré pour visualiser les

données sur des clients légers (navigateurs web) en temps-réel.

3.1 Le projet mobesens

Le projet Mobesens [4] vise à développer des capteurs pour mesurer différents paramètres

physico-chimiques de l’eau afin d’en apprécier sa qualité dans l’environnement. Ainsi, il

met en place à la fois un réseau de communication et une infrastructure de typegrappe

de calcul pour permettre aux données d’être transmises à partir des capteurs et ensuite

stockées, traitées et affichées dans une interface utilisateur pratique et facile à utiliser. Il
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est à noter que, même si le projet se limite à mesurer et analyser les paramètres de la

qualité de l’eau, les travaux présentés peuvent être adaptés à tout autre type d’environ-

nement, comme le sol, l’air, etc.

Dans ce projet, plusieurs réseaux de capteurs sans fil ont été déployés dans différents

endroits : le lac de Genève, Brest, l’étang de Thau et au bord de l’Èbre. Chaque réseau

est composé de nœuds de capteurs CSEM [5] implémentant les protocoles WiseMAC [6]

et Wisenet [7]. Chaque noeud est relié à un/plusieurs capteurs physico-chimiques par

l’intermédiaire d’une interface RS485. Les nœuds peuvent être mobiles ou statiques.

Afin de permettre la collecte et le transfert des données, une passerelle avec des ca-

pacités de communication plus large est placée à proximité du réseau de capteurs sans

fil. Cette passerelle peut être soit fixe soit mobile, située en bord de mer ou dans l’eau.

Ensuite, les données sont transférées au système de stockage et d’indexation pour perme-

ttre à la fois leur stockage permanent et d’effectuer des traitements plus complexes. Les

données stockées dans le système sont disponibles via l’Internet. De plus, une interface de

visualisation est fournie pour aider les utilisateurs finaux à visualiser les données afin de les

surveiller, les analyser, etc. Cette interface Web a été développée pour permettre à divers

groupes de recherche à travailler ensemble. En plus, elle est compatible avec une grande

variété d’appareils comme les ordinateurs, les tablettes, les smartphones, etc. car elle a

été développée en utilisant des technologies web. Dans ce travail, nous nous intéressons

au système de gestion et de visualisation des données.

3.2 Architecture du système de gestion et de visualisation des

données

En se basant sur la spécification du projet, le système de gestion et de visualisation

des données doit fournir les fonctionalités suivantes :

– stocker les données de tous les éléments impliqués dans l’architecture, c’est-à-dire

les mesures issues des capteurs, ainsi que les données utilisées pour leur gestion, ou

toute autre donnée qui pourrait être utilisées ou échangées par différentes parties,

par exemple, les informations de localisation des passerelles.

– permettre la visualisation de toutes les données des capteurs en temps-réel par le

biais d’une application basée sur le Web.

– fournir une application web conviviale pour générer des graphiques, naviguer et

valider les données de l’historique.

– visualiser les nœuds capteurs comme des points d’ancrage sur une carte pour faciliter

leur localisation et leur suivi.

Dans le but de répondre à ces exigences, l’architecture du système, décrite en Fig. 3,

est caractérisée par :

∗ Le middleware iSensors : la différence d’avec la version standard est que dans
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Figure 3 – Vu abstraite de l’architecture et implémentation du système.

celle ci, deux composants différents sont dépoloyés pour la gestion du stockage et

l’indexations respectivement.

∗ Un serveur d’événements : ce serveur est l’un des éléments clés du système

puisqu’il permet de fournir les mesures en temps-réel aux utilisateurs finaux. Cette

partie a été réalisée en utilisant un serveur Apache ActiveMQ autonome.

∗ Un espace de stockage : cet espace vise à stocker les informations. Il est utilisé

pour stocker les données brutes et les fichiers XML. Cet espace est basé sur Tahoe [8],

une solution sécurisée de stockage dans le nuage.

∗ Un espace d’indexation qui compile toutes les métadonnées fournies par les

nœuds capteurs, les utilisateurs finaux et les applications afin de permettre des

recherches efficaces. En outre, il indexe les représentations XML des mesures. L’outil

utilisé pour effectuer l’indexation est eXist-db [1], qui a l’avantage d’offrir une solu-

tion fiable et efficace pour l’indexation et la recherche de documents XML.

∗ Une API RESTful : elle permet aux capteurs de pousser leurs données collectées
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dans le système et les clients Web pour visualiser ces données en utilisant la même

API. Chaque composite inclut un composant de communication, tel que décrit dans

la Fig. 2, qui fournit cette API.

∗ Un système de visualisation : ce système est responsable de l’affichage des

données en temps-réel et la navigation dans les données composant l’historique. La

page d’accueil de l’interface de visualisation contient une carte au dessus et dessous

un tableau de données pour chaque type de capteurs dans un onglet dédié. Les

nœuds capteurs sont représentés par des points d’ancrage cliquables sur la carte.

Lors d’un clic, une fenêtre, affichant des informations sur le nœud et ses données

récentes, est affichée. Le tableau des données affiche les données des capteurs en

temps réel en ordre décroissant en foction de la date de réception.

3.3 Implémentation et tests

Le système a été implémenté et hébergé sur un serveur à Évry, France. Des campagnes

de test et de déploiment ont été réalisées durant le projet devant la commission Européenne

pour valider le système et le projet Mobesens. En parallèle, nous avons réalisé nos propres

Figure 4 – Le délai de réponse du système en fonction du nombre de nœuds.

tests en laboratoire, parmi lesquels, un test pour émuler plusieurs nœuds qui envoient leurs

données en même temps au middleware. La passerelle lance plusieurs processus en même

temps pour envoyer un message d’une longueur de 40 octets au middleware. Les processus

émulent les nœuds qui sont en train d’envoyer un message aumiddleware. Cette expérience

est réalisée une centaine de fois pour chaque nombre de threads. La Fig. 4 affiche deux

courbes : la bleue montre la moyenne et l’écart-type du délai entre l’émission du message
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et la réception de la réponse du middleware pour chaque processus, et la rouge montre la

moyenne et l’écart-type du temps d’exécution dans le système. À titre d’exemple, lorsque

64 nœuds démarrent leur communication avec le système en même temps, la courbe bleue

montre que chaque communication se termine après une moyenne de 450 ms. Tandis que,

le temps d’exécution pour les fonctions de stockage, indexation et transformation dans le

système, illustré par la courbe rouge, est de 320 ms. En conséquence, après une moyenne

de 450 ms toutes les communications sont terminées et ceci permet de mettre en évidence

les bonnes performances du système.

4 Sécurité hybride pour les réseaux corporels

L’amélioration du niveau de vie, la croissance des coûts des soins et le vieillissement des

populations d’une part et le développement des puces électroniques et des communications

sans fil d’autre part ont permis le développement de nouveaux types de réseaux sans fil,

appelés réseaux corporels (WBAN) pour surveiller des patients à distance. Les WBAN

présentent certaines similitudes avec les réseaux de capteurs sans fil telles que la faible

capacité de calcul, de mémoire et d’énergie, mais aussi une quantité importante de données

générées et nécessitant une bonne gestion et un bon traitement. Le middleware iSensors

est donc particulièrement bien approprié pour gérer ces données.

Un réseau corporel (WBAN) est constitué essentiellement de capteurs ou d’actionneurs

intelligents implantés ou attachés au corps des patients et qui utilisent une communication

sans fil avec une unité de traitement locale et personnelle (LPU). Ce réseau assure alors la

transmission des données personnelles des patients, qui sont à la fois privées et sensibles.

Ainsi, en plus de la gestion des données et afin de préserver l’intimité et la santé des

patients, le middleware iSensors doit assurer leurs sécurisation.

Figure 5 – Architecture d’un WBAN.
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En tenant compte de cette problématique de sécurité et de l’architecture du réseau

WBAN, représentée en Fig. 5, un protocole hybride de sécurité a été proposé. Les SN sur

la figure représentent les capteurs d’un utilisateur alors que les MN jouent le role de LPU.

SS est le site de stockage. Sur la figure, deux types de communications entre les différents

composants de l’architecture sont représentés. Le premier type, nommé la communication

”intra-corporelle” (Intra-Body Communication ou IbC) représente la communication des

capteurs dans la grappe où les ressources sont restreintes. Le deuxième type, nommé

”communication extra-corporelle” (Extra-body Communication ou EbC), représente la

communication entre le MN et le SS qui, quant à eux, disposent de plus de ressources. En

plus de leurs différences au niveau des ressources, IbC et EbC rencontrent des menaces

de sécurité différents. En effet, au niveau IbC, les SN et leur MN associé sont attachés à

un seul utilisateur, ce qui fait de l’intrusion d’un attaquant une tâche difficile. En outre,

le petit rayon dans lequel le Ibc opère (environ 2 m) facilite la sécurité car il faut être

proche du réseau de capteurs pour attenter à sa sécurité. La sécurité au niveau EbC est

plus délicate, surtout si l’on considère que les communications entre MN et SS s’effectue

au travers de l’Internet, ceci ayant pour effet de multiplier les risques ainsi que les types

d’attaques.

Considérant que IbC et EbC ont des caractéristiques et des exigences sécuritaires

différentes, nous proposons un protocole hybride d’authentification et d’établissement de

clés basé sur deux protocoles, le premier gèrant l’authentification mutuelle entre SS et

MN, alors que le second traite l’authentification et l’établissemnet d’une clé de groupe

entre SN, MN et SS. La propriété hybride est utilisée pour mettre en évidence le fait que

les clés asymétriques sont générées et utilisées pour signer des messages au niveau EbC,

tandis que des clés symétriques sont générées et utilisées au niveau IbC.

4.1 Schéma d’authentification et d’établissement de clés entre

MN et SS

Ce premier protocole, traitant de l’authentification dans EbC repose sur la cryptogra-

phie basée sur les identités (IBC), initialement proposé par Adi Shamir en 1984 [9]. En

effet, les entités dans EbC ont besoin d’un haut niveau de sécurité car ils communiquent

par le biais de l’Internet et disposent de ressources suffisantes pour exécuter les fonctions

fournies par IBC. L’objectif de ce protocole est d’effectuer l’authentification mutuelle en-

tre SS et MN, en fournissant une paire de clés asymétriques pour MN en utilisant le

schema de Hess [10], et en établissant une clé de paire partagée entre MN et SS, générée

en se basant sur les hypothèses du problème de Diffie-Hellman (C-DH).
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4.2 Schéma d’authentification et d’établissement de clé entre

SN-MN-SS

Ce deuxième protocole concerne l’authentification au niveau IbC. En raison des ressources

limitées des entités, seules des clés symétriques peuvent être générées et utilisées. En effet,

après avoir établi un lien sécurisé entre MN et SS, grâce au protocole défini ci-dessus, les

nœuds SN doivent s’authentifier à la fois à leur MN associé, ainsi qu’à SS, avant d’être

en mesure de communiquer avec eux. Le protocole présenté pour IbC vise à fournir un

mecanisme de sécurité permettant à SN d’établir une clé tri-partites et deux clés de paires,

chacune étant partagée avec MN et SS respectivement. À la fin de cette phase, SN établit

des clés de paires avec MN et SS, ainsi qu’une clé tri-partites basée sur le protocole Joux

key agreement [11].

5 Un réseau social pour les RCSF

L’apparition des réseaux sociaux a révolutionné le monde de l’Internet. En effet, les

applications de partage de données, d’avis ou d’images ont rencontré un grand succès

auprès des utilisateurs et des organismes. Un tel partage, déployé dans les réseaux RCSF,

peut aussi être très bénéfique. En effet, il ouvre la porte aux chercheurs, par exemple, à une

collaboration étendue où chaque laboratoire met à dispositions des autres les informations

collectées par ses réseaux. Ainsi, ce partage peux servir dans le domaine de l’informatique

mais aussi de la météologie, du médical, le monde universitaire, etc.

Étant conscient de l’enjeu de ce partage, le middleware iSensors présenté initialement

ne peut être utilisé que par un seul utilisateur ou organisation. Dans cette partie de

thèse, il est étendu avec de nouvelles fonctionnalités multi-utilisateurs et de partage. Afin

de réaliser le portail social pour les réseux de capteurs sans fils, trois extensions ont

été proposées. La première consiste à rendre le middleware accessible de la façon qu’un

service sur le cloud pour qu’il devienne multi-utilisateurs. La seconde consiste à étendre

les composites du middleware avec des gadgets qui peuvent être intégrés dans le portail

de l’organisation, de l’utilisateur ou dans le portail d’un tiers. Ces gadgets servent à

partager les données des capteurs et à offrir par la suite un portail social pour les données

des réseaux de capteurs. La troisième extension consiste à permettre aux utilisateurs de

contrôler l’accès à leurs données.

5.1 L’infrastructure Cloud pour les réseaux de capteurs

Afin de réaliser la fonction multi-utilisateurs, l’architecture illustrée en Fig. 6 a été

proposée. Elle a été conçue comme un logiciel fournissant un service (Softaware as a Ser-

vice : SaaS ) dans une infrastructure de type Cloud Computing, afin d’offrir un service de

gestion des données des capteurs pour de nombreux utilisateurs. Ainsi, chaque utilisateur
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Figure 6 – Architecture globale de l’infrastructure cloud.

possède son propre système qui lui permet de gérer ses données issues des capteurs. Un

déploiement d’instances séparées du middleware pour chaque utilisateur dans le cloud a

été retenu pour différentes raisons :

– la possibilité de connecter différents périphériques et réseaux ;

– le stockage des données et des index dans le cloud ;

– la facilité d’ajout et de suppression de nouveaux utilisateurs/organisations ;

– l’utilisation des services sans se soucier de l’infrastructure ;

– la haute performance et la haute disponibilité.

La figure montre que chaque utilisateur possède sa propre machine virtuelle (VM) qui

héberge son middleware ainsi que d’autres serveurs nécessaires tels que le serveur de

stockage et celui des événements. La création d’une nouvelle machine virtuelle est effectuée

par le serveur d’allocation de ressources (RA) à réception d’une requête de souscription

d’un nouvel utilisateur. La VM est une instance d’un modèle (template) pré-défini. Elle

est ensuite personalisée en fonction de la demande de l’utilisateur. Après la création de la

VM, l’utilisateur peut s’y connecter afin de l’administrer et de la personnaliser. De plus,

le RA peut supprimer et mettre à jour les VM existantes.



5. Un réseau social pour les RCSF XV

5.2 Le réseau de capteurs social

Grâce à l’infrastructure cloud pour les RCSF, les données des capteurs de différents

utilisateurs sont isolées dans des bases de données séparées et hébergées sur des machines

virtuelles propres à chaque utilisateur/organisation. Afin de permettre la collaboration et

le partage de ces données, le middleware iSensors et l’infrastructure cloud ont été étendues

avec les fonctionalités des réseaux sociaux afin de définir un portail web social pour les

RCSF. Une telle extension présente de nombreux avantages :

– le partage des données issues des capteurs ;

– l’utilisation de gadgets (par défaut/personnalisés) inclus dans les composites du

middleware ;

– la surveillance en temps-réel ;

– des mécanismes de sécurité différents.

Dans cette extension, illustrée en Fig. 7, le composite a été étendu avec un gadget afin

d’afficher les données de ce composite et permettre la navigation dans l’historique. Ces

gadgets permettent de fournir des interfaces utilisateurs pour visualiser les données des

capteurs en temps-réel et leur historique à l’aide de tableaux ou de graphiques. Chaque

utilisateur doit disposer d’un portail personnel dans lequel il met ses gadgets, mais aussi

des gadgets importés d’autres utilisateurs, qui sont ses amis. Pour gérer les liens entre les

utilisateurs l’API sociale est utilisée. De plus, une autre API a été ajouté pour le capteurs

sociaux afin de stocker des informations sur les gadgets de l’utilisateur et les utilisateurs

de ses propres gadgets.

5.3 La sécurisation des accès dans le portail social

Comme présenté ci-dessus, le portail social des capteurs permet de partager des

données entre les utilisateurs. En conséquence, les amis d’un utilisateur U peuvent voir

toutes ses données peuvant contenir des informations privées et personnelles. Dans ces

circonstances, garantir un accès contrôlé aux données de l’utilisateur est devenue une

nécessité impérieuse afin de protéger sa vie privée. Pour cette raison, nous proposons un

schéma de sécurité basé sur la cryptographie avec des attributs (Attribute-Based Encryp-

tion) [12] pour protéger les données partagées des utilisateurs. Ainsi, l’utilisateur U peut

crypter les données tout en associant une combinaison booléenne d’attributs à chacuns

des types de données. Seuls les utilisateurs ayant le bon ensemble d’attributs résolvant

la combinaison peuvent décrypter ce type de données. En fait, l’utilisateur U fournit à

chacun de ses amis une clé asymétrique contenant un ensemble d’attributs que U choisit

pour définir les droits accordés à cet ami.
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Figure 7 – Architecture globale des réseaux de capteurs sociaux.
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6 Conclusion

Dans cette thèse nous nous sommes intéressés à la collecte sécurisée des données dans

les RCSFs, la gestion et l’analyse de ces données et leurs partage sécurisé dans un portail

social dédié aux RCSF.

Le middleware iSensors a été proposé afin de gérer la réception, le stockage, l’index-

ation et l’aggrégation des données reçues des capteurs hétérogènes, ainsi que la génération

d’alertes en cas de besoin. Pour pallier les limites des capteurs, nous nous sommes intéressés

à la production d’un middleware permettant de stocker et traiter les données dans des

serveurs extérieurs aux RCSF. L’utilisation de serveurs de haute performance a donc per-

mis d’obtenir de meilleurs temps de réponse aux requêtes des utilisateurs. En outre, ceci

ajoute de la souplesse au middleware grâce au fait que ces serveurs n’exigent pas un lan-

gage ou un programme spécifique à charger dans les capteurs. Ainsi, il est facile de relier

de nouveaux noeuds dans les RCSF sans nécessité d’y installer de nouvelles applications.

Le middleware iSensors a été mis en œuvre dans le cadre du projet européen Mobesens

qui vise à surveiller la qualité de l’eau. La flexibilité et la dynamicité du middleware ont

permis son adoption et interfaçage avec les RCSF déployés dans Mobesens ainsi qu’avec

une application de visualisation des données en temps-réel.

Afin de sécuriser le RCSF et empêcher des utilisateurs indésirables d’introduire des

nœuds malveillants dans le système, et ainsi falsifier ou récupérer des données, un schéma

d’authentification hybride et d’établissement de clés se déroulant en deux phases a été

mis en place. Il a été conçu pour sécuriser les transferts de données du RCSF vers le

middleware en utilisant deux niveaux de sécurité en fonction des capacités des nœuds

participants. Une sécurité avec des clés asymétriques a été adoptée entre la passerelle et

le middleware, tandis que des clés symétriques ont été utilisées pour sécuriser les deux

liens entre le capteur, et la passerelle et le middleware.

Étant donné l’importance du partage des données collectées et l’étendu de l’utilisa-

tion des réseaux sociaux de nos jours, le travail de la thèse conclut par la proposition

d’un portail social sécurisé permettant le partage de données issues de capteurs. Cette

solution n’est pas intégrée dans un site social existant. Cependant, elle est réalisée grâce

à l’extension des composites à base de gadgets génériques ou personnalisés qui peuvent

être intégrés dans les portails de différents utilisateurs. Ainsi, chaque utilisateur gère son

propre portail en personnalisant les gadgets qui y figurent et la liste de ses amis (qu’ils

acceptent ou refusent suite à une demande d’ajout). De plus, il peut restreindre l’accès

aux données de ses capteurs en utilisant une solution de sécurité pour la définition des

droits d’accès à l’aide de la cryptographie basée sur les attributs.
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Chapter 1

Introduction

Wired sensor networks have been very used to monitor machines, factories and homes.

Their limitations are due to the use of wires which can make their installation and in-

terconnexion a cumbersome task immediately with the growth of the number of nodes

or topology change. Hence, Wireless Sensor Networks (WSNs), which are considered as

the result of the advances realized in micro-electromechanical systems technology, digital

electronics and wireless communications over the last fifteen years, come to resolve the

aforementioned issues. In contrast, they raise new issues and challenges.

1.1 Wireless Sensor Networks

WSN has introduced new components named sensor nodes. These tiny and autonomous

communicating nodes, which have the ability to monitor one or more physical phenom-

ena, are self configured and build a wireless network with their neighbors at boot strap.

Usually, a network is composed of a multitude of homogeneous or heterogeneous sensor

nodes that form a mesh network, and there is one or more sinks in the network border to

collect data and/or interconnect the network to other networks such as the Internet. The

ease of use, the deployment and the organization of these networks pave the way for novel

applications that were impossible with legacy technology. This explains the wide number

of WSN applications used in various domains such as in battle fields to gather critical

data, in health care services to better manage emergency situations or for monitoring

both air or water quality.

However, like many other wireless components, these tiny nodes are characterized

by their resource limitations in terms of energy, bandwidth, memory and computation

capacity. This affects the whole network and poses new challenges for researchers and

industrials to ensure the efficiency, reliability, security, generated-data management and

self-configuration.

In order to handle the aforementioned challenges, specific applications should be de-

1
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veloped for sensor nodes, respecting their caracteristics, to be run on top of a specific

Operating System (OS) or in a middleware. Usually, WSNs are application specific.

However, in recent years and thanks to new programing trends, some techniques like

virtualization and cloud computing have been more and more used to provide flexible

and reconfigurable sensor networks. Nevertheless, there are many application-specific

networks that are already deployed and in use.

Due to their specific nature, wireless networks are more vulnerable to external attacks

and present more security breaches as compared to wired networks. The WSN security is

also a critical concern which should not be neglected. In fact, nodes are usually deployed

without protection neither surveillance. Consequently, they encounter many physical

threats such as the tampering of the node, the injection of a fake node or their replication.

1.2 Data management in WSNs

Usually, the WSN is composed of a multitude of homogeneous or heterogeneous sensor

nodes that collects measurements at different frequencies. A huge amount of data is

consequently generated in the network and needs to be translated and analysed in order

to be interpreted and deduce alerts, if necessary.

Further to the data collection, storing them in the WSN is a very delicate task espe-

cially as the sensor node’s storage capacity is very limited. To overcome this problem, the

use of an external storage is also conceivable. Also, a tradeoff between the two storing

approaches can be realised. Nevertheless, when data must be kept for a long period, the

use of an external storage becomes an obligation, which enhances the system especially

with the technological advancement of databases and cloud computing.

Users or applications can collect these data from the network by sending queries or

program routines to retrieve periodic updates or raised alerts. As data can come from

heterogeneous sensor networks, the collecting system should take into account this het-

erogeneity and should understand all data inputs in order to be able to well process them.

In fact, data processing means execution of some operations such as analysis, aggregation,

generation of statistics (average, maximum, etc.), conversion or translation of the data.

Processing can be performed in the node, the network, as well as in an external system.

This network enables to open innovation opportunities and to create various appli-

cations which can benefit from the availability of these data. The web-social sharing of

data is one among them. Indeed, geographically distant researchers sometimes wish to

work together by comparing and analyzing their sensor data and their results. Scientists

in different fields may also collaborate to interprete a physical phenomenon, or doctors

in diverse countries can diagnose a patient having implanted sensors that collect some

vital signs. This data sharing in a web-social application is highly beneficial for the rapid

advancement of research and has become feasible thanks to data availability and the ease
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of access. In short, the collection, management, securisation, exploitation, and sharing of

sensor data represent the real challenges for WSNs.

1.3 Contributions

The widespread use of WSNs in a multitude of application domains and the heterogeneity

in techniques has led to an increasing complexity for control and management of data they

collect or report because the application sector use and rely on very specific solutions.

This is exacerbated by the fact that each person or organization possesses a multitude

of heterogeneous devices and sensors. This thesis addresses this complexity by proposing

new approaches to handle heterogeneity when collecting, managing and sharing sensor

data.

The first contribution adresses the collection and management of data produced

by heterogeneous WSNs. Previous works are application-specific, require specific data

formats or require updates of programs in already deployed sensor nodes in the field. A

component-based middleware named iSensors that provides a standardized and lightweight

RESTful interface to collect data from SNs or gateways has been proposed to remove these

hurdles. In order to provide the different services of the middleware, default components

are defined to setup a private composite per node in communication with the middleware.

Each composite is a collection of components used to receive, store, index, translate and

process sensor data. Data processing is intended to add new meta-data, like data valida-

tion, or generate alerts which are routed using an eventing manager component. Users

can personalize or control the behavior of their components using xQuery scripts. To

make the middleware even more flexible OSGi is used to host components and compos-

ites, no-SQL database is used to store any data format, XML files are indexed to run

efficient queries and messaging services are used to route alerts between composites or to

external applications.

The second contribution consists of a real-time monitoring and management sup-

port system for water quality monitoring WSNs in the context of the Mobesens project.

A visualization system is in charge of providing web interfaces to scientists and users to

monitor and configure the WSN and visualize measurements in real-time. Upon receiving

sensor data from a gateway, the middleware generates alerts which are intercepted and

displayed in real-time. The visualization system also uses the RESTful API of the com-

posites to get and search history data to be processed and displayed. Thus, specific use

case confirmed the flexibility of the proposed middleware. To handle long term storage

of collected data a new component was added to the middleware to store data in cloud

storage system. The back-end middleware and the visualization system architecture is

reported.

As stated above, security is a major concern in WSNs especially when private and
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sensitive information are transported as in healthcare monitoring applications. The issue

of securing communications between sensor networks and the middleware is tackled in

the third contribution via a hybrid security scheme to address heterogeneity of com-

pute, memory and energy characteristics. The proposed authentication and key agree-

ment scheme uses symmetric cryptography in resource limited sensor/actuator nodes and

identity-based cryptography between the gateway and the middleware that have more

abundant resources. We present two protocols to authenticate and establish pairwise and

group keys between all tiers and to provide public and private keys for the gateways.

Sharing sensor data is often needed in applications to enable knowledge sharing and

to enhance collaboration. The iSensors middleware was originally designed to handle

sensor data of only a single user or an organization. To overcome this limitation, the

fourth contribution extended the system with a secure social sensor portal to enable

data sharing between users or organisations. Previous research focussed on how to inte-

grate sensor data in existing social networks. In our case, we propose a dedicated social

portal for sensor networks using web gadgets in each composite to facilitate the access

and control of sensor nodes as well as sharing sensor data between users. The contri-

bution is presented in three steps. First, a cloud infrastructure is proposed for sensor

networks where users can have their own servers equiped with a middleware. Second,

the middleware is extended with social network capabilities to provide a social sensor

portal which enables data sharing between users by facilitating mashups sharing. Users

can integrate their mashups or those of their friends in their portal. Since data sharing in

the social sensor portal raises new privacy challenges, we provide a new security scheme

using Attribute-Based encryption to enable users control what other users are authorized

to see and access.

1.4 Outline

The rest of the thesis is organized in six chapters, as follows. Chap. 2 provides back-

ground information on characteristics of the WSN technology and their impact on data

management. In the first part, we analyze hardware platforms of Sensor Nodes (SNs)

and their impact on the network characteristics. Next, we enumerate some applications

of WSNs. Then, we discuss and compare some OS properties. In the second part, we dis-

cuss data management challenges in WSNs and their different levels while presenting the

most important solutions in the literature. Finally, convergence between WSNs and both

cloud computing and social networking is discussed in parts three and four respectively.

In Chap. 3, we introduce the main features and components of the proposed middle-

ware. Here, we provide arguments for the use of the component model, focusing on its

flexibility and configurability. We present the middleware architecture and implementa-

tion. Then, we suggest some extensions.
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Chap. 4 presents a use case of the proposed middleware in the context of the Mobesens

European project. First, the project and its requirements are presented. Then, the

architecture and the used techniques to manage the collected data from SNs are described.

The chapter concludes on the description of some real-world experiments conducted during

the project and by evaluating the performance of the implemented system.

In Chap. 5, a mutal authentication scheme between SNs, the gateway and the middle-

ware is presented in order to secure their communications. First, we highlight the need for

security and the differences between involved elements in the scheme. Then, we provide

the related security background. Next, different steps of the scheme are explained and

discussed. Finally, we analyse the scheme resiliency against certain threats and we discuss

the performance.

Chap. 6 presents a secure social sensor portal for sharing sensor data between users.

To realise the portal three features are needed. First, a cloud infrastructure for sensor

networks to provide an instance of the middleware for each user. Second, a social sensor

network extension to the middleware to let it provide social services. Third, a security

scheme to protect the user’s sensor data.

The dissertation concludes in Chap. 7 with a summary of the contributions and several

directions for possible future work.

1.5 Publications related to this thesis
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Over the last decade, significant advances have been made in Wireless Sensor Networks

(WSNs), networking, computing, managing and data sharing. A convergence between

these fields is needed to overcome the limitations of WSNs and improve provided services.

This chapter provides in the first part an overview of the WSN technological landscape,

properties, applications and data management challenges. The second part describes

different levels of data management in these networks and surveys some existing solutions.

7
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Finally, convergence between WSNs and both cloud computing and social networking is

discussed in part three and four respectively.

2.1 Wireless Sensor Networks : background and chal-

lenges

The advances in micro-electromechanical system technology, digital electronics and wire-

less communications have enabled the development of low-cost sensor nodes that commu-

nicate in short distance, and can process and store data. Nodes for industrial use may

be very small, as presented in Fig. 2.1, due to the application of specific miniaturization

process when big quantities are produced. However research sensor nodes are bigger, for

example the tmote sky [1] size is 6.6 × 3.27 × 0.7 cm. These nodes have allowed the

development of a new kind of networks also known as WSNs which currently have many

applications.

Figure 2.1: Dust sensor nodes.

2.1.1 Hardware Platforms

Research sensor nodes are numerous and have different specifications. However, they

share some properties and constraints. They usually have a processing unit in the form

of a microcontroller which includes a processing unit, a program memory and a Random

Access Memory (RAM). They also have a limited source of energy as they operate with

the help of two AA batteries. Sensor nodes communicate wirelessly using a small low-cost

and low-power communication chip.

A set of the most used platforms is described in Table 2.1. With the exception of

IMote2, all nodes in Table 2.1 have very limited computing and memory resources. The

tmote sky [1], presented in Fig 2.2, is one of the most widely used platform. Its microcon-

troller has a clock speed of 8 MHz, a maximum program size of 48 kB and a RAM size of

10 kB. In addition, its communication operates at a bit rate of only 250 kbps using the
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IEEE 802.15.4 standard [2] which specifies the physical layer and media access control for

low-rate wireless networks.

Figure 2.2: Anatomy of the tmote sky platform.

Moreover, sensor nodes have sensing elements for gathering contextual information

from the physical reality around it. The nature of the collected information and the type

of these elements strongly depend on the application in which the node is used. The

tmote sky may integrate humidity, temperature, and light sensors.

Both size and energy constraints put limits on the communication system which op-

erates mostly using small data packets sent over relatively short distances and with low

average data rates. The power consumption of the node is dominated by the radio elec-

tronics and protocol solutions that limit the amount of idle listening are needed to achieve

long system lifetimes.

Despite these constraints, sensor nodes enable the construction of large distributed

monitoring and actuation networks that are deeply embedded in the physical environment

and offer unprecedented levels of temporal and spatial sampling density. Thanks to their

low-cost, tiny size, wireless communication, easy deployment and maintenance cost, they

open new challenges and pave the way for novel applications that were either impractical

or impossible with legacy technologies.
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Platform MicaZ [3] telosb [4] Tmote Sky
[1]

BTnode3
[5]

SunSPOTv1
[6]

IMote2 [7]

Producer Crossbow Moteiv Corporation ETH
Zurich

Sun Mi-
crosystems

Intel

Release 2002 2004 2004 2006 2005 2005

Microcontroller

Type Atmel AT-
mega128L

TI
MSP430

MSP430 Atmel AT-
mega128L

Atmel
AT91RM92

Intel
PXA271

Frequency 8 MHz 4 MHz 8 MHz 8 MHz 25 MHz 520 MHz

Program
Memory

128 KB 48 KB 48 KB 128 KB 128 KB -

RAM 4 KB 10 KB 10 KB 4 KB 16KB 32 MB

Storage 512 KB 1 MB 1 MB 3x60 KB 4 MB 32 MB

Communication

Type Chipcon
CC2420

Chipcon
CC2420

Chipcon
CC2420

Zeevo
ZV4002/
Chipcon
CC1000

Chipcon
CC2420

Chipcon
CC2420

Bit rate 250 kbps 250 kbps 250 kbps 721/76.8
kbps

250 kbps 250 kbps

Expansion 51-pin USB & 10-
pin

USB & 16-
pin

UART USB USB &
RS232

Table 2.1: Main platforms and their main components.

2.1.2 Network characteristics and challenges

The use of tiny sensor nodes having limited resources makes WSNs different from tradi-

tional wireless networks. These different characteristics bring new challenges to network

designers [8, 9].

• Deployment : Sensor nodes can either be deployed randomly or precisely, and

their number can vary from some nodes to many. The deployment method is closely

related to the network application and cost nodes. In [10], authors survey the most

prominent examples of sensor network deployments. The density and the number of

these nodes in the network affect scalability, reliability, accuracy, data management

protocols and the degree of coverage of the area of interest.

• Energy consumption : Sensor nodes usually operate with the help of batteries

which are difficult to change or reload when nodes are deployed in an unattended

area. Hence, the life time of sensor nodes and therefore of the whole network strongly

depends on the battery lifetime.
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• Limited hardware resources : As presented in Sec. 2.1.1, sensor nodes suffer

from resource limitations such as memory, computation, processing, communication,

etc.

• Application specific : A WSN is deployed to perform a specific task, so only

needed binaries and librairies are loaded into the node. So, after deployment, it is

not obvious to use them for another application. Some applications are described

in Sec. 2.1.3.

• Unreliable sensor nodes : Sensor nodes are deployed in harsh or hostile envi-

ronment which makes them prone to failures and physical damages.

• Self-configurable : Sensor nodes must be autonomous and be able to configure

themselves into a communication network. Moreover, the network may be either

mobile or static, and nodes can appear and disappear frequently due to node fail-

ures, damage, addition, energy depletion, or channel fading. To allow continuous

and reliable operation of the network, nodes must self-configure to meet these con-

straints.

• Data Aggregation/Data Fusion : The sensor data sensed by multiple sensor

nodes typically have a certain level of correlation or redundancy due to the continuity

of the physical environment and the density of the network. Thus, data aggregation

and fusion techniques could be used to reduce network traffic.

• Many-to-one and one-to-many traffic pattern : In general, the sensor data

captured by a sensor node is transmitted to a gateway, a sink or a base station

through one or multiple hops, which exhibits a many-to-one communication pattern.

A sink can broadcast a command, new parameters, or a query to all nodes, which

exhibits a one-to-many communication pattern.

• Quality of Service (QoS) support : This can be integrated into all network

layers, and can be a cross-layer service [11]. QoS requirements, such as delivery

latency, packet loss, freshness, fidelity, coverage and reliability, etc. depend from an

application to another. Moreover, QoS is related to the accuracy and frequency of

sensor measurements.

• Security : WSNs suffer from many threats which are described in [12] and sum-

marized as : passive information gathering, node subversion, fake node injection,

node malfunction, node outage, node replication, message corruption, traffic anal-

ysis, routing loops, selective forwarding, sinkhole attacks, sybil attacks, wormhole

and deny of service attacks. In addition, WSNs have limited hardware and energy

resources. Thus, traditional security schemes cannot be directly applied. Security
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requirements are closely related to applications, so designers of security protocols

should make a compromise between limitations and requirements.

2.1.3 Network applications

Wireless communication, tiny programmable nodes and the availability and low-cost of

sensors of different physical phenomena make WSNs easy to deploy and use. Many

projects have completed or are in progress and this section presents the most relevant

applications while focusing on some of them related to our work [13, 12].

2.1.3.1 Military

WSNs can be used to supervise a country frontier, to track enemy soldiers and to detect

and localize enemy snipers and soldiers. A self-healing land mines can use a network

of antitank landmines to monitor threats to nodes in order to ensure that a particular

area remains covered even if the enemy tampers with a mine to create a potential breach

lane [14]. A remote chemical biological, and explosive vapor detection system can be

used to measure trace concentrations of explosives, toxic chemicals, and biological agent

signatures [15].

2.1.3.2 Emergency situations

Amonitoring network for automatic fire detection can be used for early detection, promptly

extinguishing fire and rescuing people quickly. These networks can exist in residential ar-

eas or in forests, and some related works have been surveyed in [16]. A WSN can be used

to monitor rivers and generate early flood warning [17]. Moreover, sensor networks can

be deployed when disasters occurred in the specific area to monitor the situation as they

are autonomous, self-configurable, cheap and communicate wirelessly.

2.1.3.3 Buildings

WSNs have various aplications to provide smart homes. They can be used to save en-

ergy [18], to control heating and cooling systems or earthquake mitigation [19, 20].

2.1.3.4 The smart power grid

The advances in sensor networks have paved the way to modernize the power grid and

provide more services in addition to electricity distribution [21]: a) allow two-way flow

of both information and electricity, b) be self-healing, c) improve energy storage, d) be

environment friendly by minimising emissions of greenhouse gases, e) allow real-time

pricing, and f) manage residential energy.
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2.1.3.5 Smart bridges and smart tunnels

Sensor networks can be deployed in bridges and tunnels to monitor their operational

performance and deterioration [22]. Moreover, it can be used to monitor traffic in tunnels

and detect accidents in order to reduce damages [23].

2.1.3.6 Vital signs

As presented in [24, 25], sensor nodes are used to monitor many vital signs like tempera-

ture, heart rate, breathing rate, blood pressure, electrocardiogram, etc. Reports are sent

to the doctor and when alerts are generated, they are transmitted to an emergency rescue

team.

2.1.3.7 Supply chain

WSNs can be used a monitor the cold chain and supervise the goods temperature along

transportation from the manufacturer to the consumer [26].

2.1.3.8 Environment

Environment monitoring has been the concern of many works. The GlacsWeb project [27]

monitors the behavior of ice caps and glaciers for understanding the earth’s climate. Col-

lected data from probes (inserted in the glacier) are relayed through Base Stations to a

Sensor Network Server where it becomes accessible using web services. Jung et al. [28]

proposed an air pollution monitoring system involving a context model for understanding

the air pollution status on the remote place. The Integrated Sensor Web Grid Cyberim-

plementation [29] has two goals. The first one is to demonstrate the integration features

of heterogeneous environmental wireless sensor networks. The second one is to present a

sensor web grid Cyberimplementation as a server hiding the system heterogeneity.

2.1.3.9 Water quality

Other projects deal with the monitoring of water quality. Wang et al. [30] proposed a

Remote Water Quality Monitoring System based on WSN. In their system, sensors send

measurements data via a coordinator to a control center where they are stored in an SQL

database and shared with other users. Jin et al. [31] proposed a novel architecture which

collects data, store them in a database and display them on a real-time manner using a

C#.net software. However, this obliges users to install this software on their computers.

Paper [32] proposes a wireless Internet-based observatory (ReCON) which goal is to

develop a system to collect measurements from environmental sensors, and to store them

in a buoy and a shore station node until the control center Linux computer transfers data
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to an archiving system. Note that, authors have not specified how events are triggered to

enable real-time delivery of measurements to the web displays.

2.1.4 Operating systems

Sensor nodes are different from traditional systems and networks as explained in Sec. 2.1.2.

Some Operating Systems (OSs) have been designed to be tailored these characteristics.

The OS runs on a single node and is responsible for managing resources and tasks on this

node [33]. Moreover, it gives an abstraction level of the hardware for the programmer by

providing common libraries and system services. Many OSs for WSNs [34] are available

such as TinyOS [35], Contiki [36], Mantis [37], Nano-RK [38] and LiteOS [39]. There are

some characteristics that make differences between them [34] :

• Architecture : it can be either (i) monolithic where the system is a collection

of inter-connected services through interfaces, (ii) based on a micro-kernel which

implements the minimum functionalities, and most of OS services are provided via

servers, (iii) based on a virtual machine, or (iv) a layered architecture.

• Programming model : it can be either an event-driven programming or multi-

threaded programming model.

• Scheduling and real-time support: scheduling determines the order in which

tasks are executed. A real-time scheduling algorithm meets the deadlines of hard

real-time tasks where a deadline is a given time after a triggering event, by which a

response has to be completed.

• Memory management and protection : this is the used strategy, which can

be static or dynamic, to allocate and de-allocate memory for different processes and

threads.

• Communication protocol support : this refers to both inter-processes and

nodes communication.

• Resource sharing : this refers to the orchestration of resource access between

concurrent processes.

The most used OS in WSNs is TinyOS which is an open-source operating system for

wireless sensor networks, featuring a component-oriented architecture. In addition, it is

monolithic so it minimizes the code size as required by the severe memory constraints

inherent to sensor networks. TinyOS provides developers different libraries like network

protocols, distributed services, sensor drivers, and data acquisition tools – all of which

can be used as-is or be further refined for a custom application [12]. Primarily, it was
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event driven. Then, a support for threads has been added [40]. It uses a simple First In

First Out (FIFO) scheduler. TinyOS and programs running on it are written using nesC

which adds support to components, events handling and tasks to the C programming

language [41].

2.1.5 Data management challenges

The main task of a sensor node is to monitor one or more physical phenomena, such as

temperature, humidity, pression, chemical concentrations, etc. The observation process

or data acquisition process consists in converting a physical phenomenon into a measur-

able electrical signal, then to a digital value using a sensor (e.g., a transducer) and a

analog/digital converter. This process is done periodically by one or more sensor nodes in

the network for one or more physical phenomena. Consequently, a huge amount of spatio-

temporal sensor data is generated that needs to be well managed in order to realize the

application objectives.

These data need to be routed between sensor nodes and/or transferred to a sink. Many

routing approaches dealing with this problem can be found in the literature. In addition,

these sensor data need to be processed to deduce conclusions and extract intelligence.

There are three possible processing levels. Moreover, sensor nodes need to communicate

with other networks like the Internet for the purpose of giving more services to users.

Moreover, sensor data may be private and secret so that it is necessary to protect them.

2.1.5.1 Routing protocols

Sensor nodes communicate wirelessly using a routing protocol which defines the process

of moving packets across the network from one node to another. The chosen protocol

should take into account the network limitations, as shown in Sec. 2.1.2. It should provide

scalability, reliability, low overhead, etc. They can be classified according to the techniques

used throughout their execution. More fine grained classifications are proposed in [9, 42,

43]. They can be classified into six categories:

• flat-based routing where all sensor nodes play the same role.

• hierarchical-based routing where nodes play different roles as opposed toflat-

based routing. The network is divided into clusters headed by a cluster-head which

has more tasks to do such as data aggregation and fusion. This role can rotate

periodically between cluster members. LEACH (Low-energy adaptive clustering

hierarchy) [44] is the most known protocol belonging to this category.

• data-centric routing where there is no addressing mechanism and all commu-

nications are performed neighbor-to-neighbor. When source sensors send their
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data to the sink, intermediate sensors can perform a form of aggregation on the

data originating from multiple sources and send the aggregated result toward the

sink [9]. Some protocols belonging to this category are SPIN [45], Rumor [46], and

Cougar [47].

• location-based routing where the information position is used to compute the

distance between two particular nodes for the purpose of estimating for example

the energy consumption. Moreover, packets are relayed to the desired regions rather

than the whole network. Some protocols belonging to this category are Geographic

Adaptive Fidelity (GAF) [48], Geographic and Energy-Aware Routing (GEAR) [49]

and Trajectory-Based Forwarding (TBF) [50].

• Multipath-based routing is different from single-path routing. In a single-path

routing, when considering data transmission between a source node and the sink,

the former selects the shortest path to send the message to the latter. In Multipath-

based routing, the source node selects the first k shortest paths to the sink and

divides its load uniformly among these paths. [51, 52] present two routing protocols

belonging to this category.

• QoS-based routing provides a protocol that helps finding a balance between en-

ergy consumption and QoS requirements such as delay, reliability and fault toler-

ance. The SPEED [53] protocol belongs to this category.

2.1.5.2 Network convergence

Generally, nodes in WSNs communicate using a Wireless Personal Area Network (WPAN)

protocol such as IEEE 802.15.4 [2] or Bluetooth [54] standard which makes them discon-

nected from a global Wide Area Network (WAN) such as the Internet. In order to handle

this issue, multiple solutions have been proposed in the literature. This convergence pro-

motes the concept of an Internet of Things (IoT) where sensor nodes (e.g., the things) are

uniquely identifiable objects connected to the Internet. Some proposals aim at realizing

the convergence between Mobile Cellular Networks and WSNs [55] or at interfacing WSNs

to the core network using passive optical networks [56]. IPv6 over Low-power Wireless

Personal Area Networks (6LoWPAN) is an advanced solution to adapt the Internet Pro-

tocol version 6 (IPv6) to sensor nodes and thus provide the convergence between WSNs

and traditional IP networks [57, 58, 59, 60, 61, 62]. The proposed architecture of the

network is presented in Fig. 2.3. Mapping from the IPv6 network to the IEEE 802.15.4

network poses some challenges [58]:

• Packet size adaptation : The maximum packet size is 127 bytes in the

IEEE 802.15.4 standard, after the deduction of a maximum frame overhead in-

troduced at the media access control and link layers of 25 bytes without security or
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Figure 2.3: 6LoWPAN network architecture [57].

46 bytes after security application. It remains only 102 bytes or 81 bytes respectively

which do not respect the IPv6 minimum value (e.g. 1280 bytes) for the maximum

transmission unit (MTU) in IPv6 specification [62]. This issue was resolved using

the techniques defined in the next points.

• Fragmentation : A new adaptation layer is added between the network layer

and the data link layer. It receives the IPv6 network layer packets of 1280 bytes

and sends them to their counterpart on the remote node using 802.15.4 frames. The

payload size of these frames is only 81 bytes, the adaptation layer must fragment

IPv6 packets before sending them and reassemble them at reception [62].

• Header compression mechanisms were first standardized in [62], then updated in

RFC 6282 [61]. They are stateless mechanisms that remove redundant information

accross the link, network and transport layers. Moreover, common values for header

fields are assumed and compact forms of those values has been defined.

• Address compression and resolution : Sensor nodes may either use IEEE

64-bit extended addresses or, after an association event, unique 16-bit addresses

within the Personal Area Network (PAN). IEEE 64-bit addresses are derived from

link-layer addresses. All sensor nodes within the sensor network subnet share the

same subnet ID [62] which is ignored in the compressed header (traffic class and

flow label are 0, hop limit can be 1, 64, or 255, etc.).
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• Network management mechanisms : The SNMP [63] framework widely used

in traditional IP networks was optimized to fit 6LoWPAN requirements in [64].

• Routing is a two-phase problem that is being considered for 6LoWPAN network-

ing, first mesh routing in the PAN space, and second the routability of packets

between the traditional IPv6 networks and the 6LoWPAN network [62].

• Device and service discovery : The neighbor discovery protocol [65] was

adapted for 6LoWPAN in [66].

• Security remains an open issue in 6LoWPAN networks [62].

REpresentational State Transfer (REST) is an architectural style for distributed sys-

tems and the World Wide Web (WWW) represents a conforming implementation to this

style. Systems following the REST constraints are often referred to as RESTful. REST

consists of client-server system where the former initiates requests using Uniform Re-

source Identifiers (URIs) and methods (e.g. GET, POST, PUT, DELETE, etc.) to the

latter that processes them separately without saving any client context. Then, it returns

appropriate responses which are resource representations. The interface is uniform be-

tween both sides for the purpose of enabling each part to evolve independently. Interface

uniformity and stateless properties have encouraged the development of this service in

resource constrained devices.

Thus, some works are providing RESTful services for WSNs such as TinyREST [67]

and CoAP [68]. The Constrained Application Protocol (CoAP) is a specialized web

transfer protocol to be used with constrained nodes and constrained networks and has

been designed for machine-to-machine (M2M) applications. It includes the key concepts of

the Web such as URIs and Internet media types. It implements four HyperText Transfer

Protocol (HTTP) methods: GET, POST, PUT and DELETE. An implementation of

this protocol is provided for TinyOS and Contiki. In [69], authors present a Binary Web

Service (BWS) implementation for WSNs using the RESTful approach and the binary

encoded XML. They show the opportunities that the 6LowPAN and web services give to

WSNs in a real world system. The approach found in [70] integrates simple mashups and

RESTful API in sensors and proxy gateways, which gives a new way to integrate sensor

networks in the Internet of things.

The use of 6LoWPAN and REST web services pave the way for the integaration of

WSNs in the Internet. Clients can consider sensor nodes as web servers and communi-

cate with them through the Internet or sensor nodes can send them data to an external

server using REST services. Whereas, sensor nodes does not have enough resources to

handle/provide HTML and XML documents, and they are not able to work as servers

as they have periodical sleep intervals most of the time. The opportunity of sending raw

sensor data to an external server using a RESTful web service is considered in Chap. 3.
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2.2 Data management

As mentioned before, data in WSNs is very important and its efficient management is

a crucial need. In the following, the term data refers to ”sensor data”. There are three

levels of data management in WSNs : Data acquisition, Data Processing and Data Storage.

These features are discussed below, then two data management systems are presented.

2.2.1 Data acquisition

This defines how required data is delivered to applications. It can be either event-based

or query-based.

The event-based pattern promotes the production, the detection and the consump-

tion of events. When an application specifies its interest in some state changes of the data,

it receives event notifications when changes occur. MIRES [71] and TinyDB [72] provides

this feature. MIRES implements a publish/subscribe server in each node, as defined in

Sec. 3.2.2. Sensor nodes start by advertising their topics, e.g., their measured data like

temperature, in the network. A user application, connected to the sink, can subscribe to

the desired advertised topics on sending subscription messages to source nodes. Then,

sensor nodes publish the collected data associated with the subscribed topics.

In the query-based data model, the application considers the sensor network as a

distributed database. The two best-known solutions for this approach are Cougar [47]

and tinyDB [72]. TinyDB is a query processing system for extracting information from a

network of sensor nodes. It provides a SQL-like interface to specify the data one want to

extract, along with additional parameters, like the rate at which data should be refreshed.

Given a query specifying data interests, TinyDB collects, filters and aggregates the data,

and routes them out to a PC connected to the sink. Considering a user wishing to monitor

the temperature of the sixth floor rooms of a building choose to do this using a tinyDB

query that reports all rooms where the average temperature is over a specified threshold

every 30 seconds. The query is illustrated in Listing 2.1.

SELECT AVG(temperature),room FROM sensors

WHERE floor = 6

GROUP BY room

HAVING AVG(temperature) > threshold

SAMPLE PERIOD 30s

Listing 2.1: Alert message schema.

Hence, TinyDB belongs to both categories, event-based and query-based. The feature,

SAMPLE PERIOD, allows the definition of alerts, such as in Listing 2.1. The devices must

report their data once per thirty seconds.

When the application wants to keep periodic track of data, it can subscribe to periodic

events. Event has less downlink as the subscriber needs to subscribe once to receive
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periodic updates. However, queries pays the round-trip penalty for each data query. In

contrast, when handling sporadic data needs, alerting loses its edge due to the fact of

sampling and transmitting not needed data. Thus, the choice between them depend on

applications and situations. A compromise between these two categories can be selected

and balanced according to the situation [73].

2.2.2 Data processing

Data processing is the fact of analyzing, aggregating, computing statistical results (av-

erage, maximum, etc.), transforming, translating, etc. data. In WSNs, this can be per-

formed in the node providing the data, in a centralized processing unit where data is

collected from the WSN, then processed in a centralized manner, or in the network using

a distributed manner.

The second approach is very suitable to reduce data traffic in the network as it is

reduced hop by hop. It can be used in query-based or event-based systems. For example

MIRES, TinyDB and Cougar provide this feature, whereas on processing data, some

information are lost and may be not suitable for data traceability. Thus, in certain

surveillance applications, all sensor data must be kept in raw format for the purpose of

analysing it when further analyzes are needed or a disaster occurs. Indeed, centralized

processing was selected in many monitoring projects such as [74, 30, 27, 31, 29].

2.2.3 Data storage

Data storage defines where data is stored in the WSN. It can be done at three different

levels. First, data can be stored in an external storage system such as a database in the

base station [30, 27] or a GRID [74, 29]. Second, it can be stored locally where it was

generated. Third, a tradeoff between the two approaches can be selected.

Storing data locally or in a hybrid mode is impossible for long term WSNs due to

memory limitations on sensor nodes, node failures and the huge amount of collected data.

Moreover, for better traceability, data should be stored for long periods in a reliable

external storage system.

This categorization serves to better differentiate data management levels in order to

understand each system characteristics and thus choose the adequate one for the applica-

tion. In order to manage and keep data coming from a multitude of heterogeneous WSNs

for long term, external data management systems are the most adequate.

2.2.4 External data management systems

Different data management levels were discussed above with a brief description of some

systems such as tinyDB and MIRES. In this section, a description of two other systems
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is provided.

2.2.4.1 QuadraSpace

The QuadraSpace Protocol [75] is an open-sensor network service for managing motes

and collecting their data. The protocol defines a common way for sensor registration,

data collection, remote communication and activation. The QuadraSpace architecture

is composed of four main components: QuadraServer, QuadraWeb, QuadraGate and

QuadraBox as depicted in Fig. 2.4. Communication between those components is guar-

anteed by the QuadraSpace protocol which also assures the communication between

QuadraServer and QuadraSpace enabled sensors. QuadraSpace protocol is based on

RESTful HTTP/HTTPS and XML, and it offers developer libraries for mobile and em-

bedded platforms.

Figure 2.4: The QuadraSpace architecture.

The QuadraServer is responsible for the management of user accounts, mote (i.e.,

sensor node) registration, event-data collection and activating triggers on user-defined

event conditions.
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The QuadraWeb offers the possibility to export, analyze events and subscribe to user’s

events RSS feeds, in addition to web interfaces for user registration, mote registration,

event management and trigger configuration.

The QuadraGate is the module responsible for accessing the QuadraServer using public

networks and protocols other than HTTP REST. After receiving events notifications via

SMS, MMS, email, etc., it encapsulates them in QuadraSpace events and sends them to

the QuadraServer.

The QuadraBox works as a gateway between private local networks and the QuadraServer.

They are three XML objects in QuadraSpace protocol: mote, event and trigger. Each

user creates an account for his objects. He registers his motes, which are identified by an

ID and characterized by a manufacturer, a location, one or more sensors and one or more

communication interfaces. Fig. 2.5 describes the structure of any XML mote object. An

event is a data sample of a sensor or a heartbeat notified by a mote to the QuadraServer.

An event may trigger an action. It consists in a type, a source, a location and a data

payload, when type is ’sample’ and contains the sensor reading value. Triggers are used

to automatically execute actions when one or more conditions on incoming events are

satisfied. An event object consists of an ID, a type, one or more conditions, and one or

more actions.

Figure 2.5: Structure of a mote object [75].
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2.2.4.2 SWE: Sensor Web Enablement

The Sensor Web Enablement (SWE) project [76] aims at enabling interoperability between

traditionally disparate community sensor networks and the realization of sensor webs. It

is a suite of standards from OGC (Open Geospatial Consortium): three standard XML

encodings (SensorML, O&M, TML) and four standard web interfaces (SOS, SAS, SPS,

WNS).

Sensor Model Language (SensorML) : standard models and XML Schema for de-

scribing sensors systems and processes; it provides information needed for the dis-

covery and the location of sensor observations.

Observations and Measurements Schema (O&M) : standard models and XML Schema

for encoding observations and measurements from a sensor, for both archived and

real-time ones.

Transducer Model Language (TransducerML) : conceptual approach and XML Schema

for supporting real-time streaming of data to and from sensor systems.

Sensor Observations Service (SOS) : standard web service interface for requesting,

filtering, and retrieving observations and sensor system information.

Sensor Planning Service (SPS) : standard web service interface for requesting user-

driven acquisitions and observations, to (re-)calibrate a sensor or to task a sensor

network.

Sensor Alert Service (SAS) : standard web service interface for publishing and sub-

scribing to alerts from sensors.

Web Notification Services (WNS) : standard web service interface for asynchronous

delivery of messages or alerts from any other web service.

Sensors, that are registered at a SOS, publish observation results to the service. The

description of sensors in sensorML and SOS are registered in a catalog service (CAT) as

described in the Fig. 2.6. The required steps by the user to obtain the needed observation

data are:

1. the user sends a search request to the catalog.

2. the catalog answers with a list of SOS service instances that fulfill the requirements.

3. the user binds the SOS and retrieves the observation data, encoded in O&M.

If the catalog does not provide any SOS instance that fulfills the requirements of the

request, the user can search for a link to an SPS instance in the catalog, and assign a
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Figure 2.6: SWE standards interactions -1- [76].

task to sensors through the SPS to produce the desired data. Then, SPS informs the

user about data availability either directly or through the WNS if the tasking is delayed.

Those steps are described in Fig. 2.7.

Figure 2.7: SWE standards interactions -2- [76].

Another use case is when the user wants to get notified immediately when a condition

is triggered. Once again, the client receives information about appropriate SAS from a

catalog and subscribes to the SAS. Sensors publish observation results continuously to the

SAS. The SAS handles all the filtering and alerts the client if the subscription condition

is matched. The SAS either sends the alert directly to the client, or makes use of the

WNS in order to deliver the alert message. Those steps are described in Fig. 2.8.
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Figure 2.8: SWE standards interactions -3- [76].

2.2.4.3 Sensor Bean

A new approach, called Sensor Bean, has been proposed based on a service-oriented

component model [77]. Sensor Bean (see Fig. 2.9) is a component with three pairs of

input/output interfaces. The first one, service requester/provider, is a port for syn-

chronous method calls to request/publish services. The second one, event sink/source,

is used to subscribe/publish events. Finally, the third one produces/consumes sensor

measurements.

Figure 2.9: The Sensor Bean component model [77]

An application in the Sensor Bean approach consists in two layers. The first layer

is composed of one or several gateway(s) built on top of an OSGi framework and using

sensor beans. Those beans are connected to sensors to collect data. The second layer

is a J2EE server built using web pages and sensor beans, and connected to gateways.

In addition to visualization, it ensures the storage of sensor data in a sensor warehouse

database as described in Fig. 2.10. SensorBean provides a description of a component-
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based architecture for sensor data collection without providing a mechanism to facilitate

component reconfiguration.

Figure 2.10: Distributed architecture for gathering sensor data [77]

Conclusion

These projects support data collection from heterogeneous sensor networks. However,

none of them provide a complete implementation, and the real-time issue has not been a

priority concern. The QuadraSpace project does not provide any specifications on how to

store, index and extract data from the middleware. The work done in the SWE project

is adapted to complex sensors and thus provides complex XML schemas, not suitable

for sensors with limited memory and storage capabilities. None of the projects have a

mechanism to be integrated with deployed WSN and well-known sensor operating systems,

like TinyOs and Contiki.

2.3 Cloud and WSNs

Cloud computing is the use of computing resources (hardware and software) that are

delivered as a service over a network (typically the Internet). The name comes from

the use of a cloud-shaped symbol as an abstraction for the complex infrastructure it

contains in system diagrams. Cloud computing entrusts remote services with user’s data,

software and computation [78]. Cloud computing comes into focus when one thinks about

increasing capacity, adding capabilities, having reliable shared services and servers, having

high-capacity networks, low-cost computers and storage devices, acquiring or delivering a

configured resource on demand. The key technology of cloud computing is virtualization

which is the ability to separate OS and applications from the hardware. A Virtual Machine

(VM) is a tightly isolated software container that can run its own OS and applications as
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if it were a physical computer. As a result, many VMs or virtual servers can be hosted

on a single physical computer.

The use of these techniques in WSNs can be very beneficial in terms of improving their

flexibility, re-usability, scalability and programmability and reduce their cost. Virtualiza-

tion can be used to virtualize sensor nodes and/or networks while the cloud can be used

to store the collected data from the sensor network or to share Virtual Sensor Networks

(VSNs).

2.3.1 Sensor data in the cloud

The amount of data generated by WSNs may be huge, so storing it in the cloud, which

offers long term and low-cost storage service, was investigated in many works. For ex-

ample, in [79], authors present a home healthcare system in the cloud which offers to

stakeholder, e.g., patients, family members, pharmacists, etc, three services: drug thera-

pies management, sleep and light management and physical acticity management. Then,

two strategies are followed to identify the security and privacy challenges of the appli-

cation: the business logic strategy and the architecture-driven strategy to the end that

patients be able to control the distribution and use of their personal data. In fact, the

proposed security scheme is perfomed using two steps. First, patient’s data are encrypted

using a symmetric key before being uploaded to the cloud. Second, the key is distributed

to authorized parties of decryption using either Attribute-Based encryption schemes or

licences. To sum up, authors present the architecture of the system and the used secu-

rity scheme to protect patient’s personal data. Data storage in the cloud facilitates data

sharing between actors but the security scheme limits this opportunity because of the

difficulty of managing and distributing keys. This issue is investigated in Chap. 6.

Authors in [73] present a three-tiered architecture named the Cloud-Edge-Beneath Ar-

chitecture in which sensors (Beneath layer) are connected to the cloud indirectly through

an edge computer (Edge layer). The acquisition of updated sensor readings can be real-

ized via communications between cloud, edge, and beneath layers using information push

and pull mechanisms which are respectiveley event-based and query-based mechanisms,

as explained in Sec. 2.2.1.

As push has less downlink than pulling, authors propose a hybrid approach to achieve

a near-optimal energy cost to balance the tradeoffs between pushing and pulling. The

optimisation is ideal for helping applications to switch between the two modes, but some

applications require periodic measurements, even if there is not a disaster or emergency.

2.3.2 Virtualization and WSNs

Some virtual machine based middleware have been proposed to run on sensor nodes,

such as Maté [80] and MagnetOS [81]. They allow to reprogram the network after nodes
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deployment. Melete [82], a based system on Maté, enables the execution of concurrent

applications on a single sensor node. In addition, it provides dynamic grouping to offer

flexible and on-the-fly deployment of applications based on contemporary status of the

sensor nodes. This feature allows program updates in already deployed sensor nodes

in the field but the issue remains the limited memory size of Sensor Nodes (SNs) and

consequently the size and number of VMs.

After the advances in the virtualization of sensor nodes, the virtualization of sen-

sor networks was studied in many works [83, 84] and is the subject of many ongoing

projects [85, 86].

In [83], authors presents a multi-layer task model for Body Sensor Networks (BSNs)

based on the concept of Virtual Sensors to improve architecture modularity and reusabil-

ity. Every processing task can be represented as a virtual sensor. Thus, the complete BSN

processing part can be modeled as multi-level hierarchy of virtual sensors. The solution is

composed of three building parts: Virtual Sensors (VS), Virtual Sensor Manager (VSM)

and Buffer Manager (BM). When a user requests certain outputs given specified inputs,

the VSM handles this request and configures a set of VSs to handle the computation

task and connects them. VSs use the BM to setup communication through the use of

buffers. Once configured the system is activated, and virtual sensors cooperate to produce

the final outputs. A table, that maps each available combination of possible inputs and

outputs to the appropriate VS implementation, is managed by the VSM and can be (re-

)configured at run time. The implementation of this solution relies on SPINE2 [87] which

is a framework for the development of signal processing applications on WSNs through a

task oriented programming abstraction.

2.3.3 Sensor-Cloud Infrastructure

In [84], authors propose a Sensor-Cloud Infrastructure that provides a sensor system

management to virtualize a physical sensor as a virtual sensor on the cloud computing

and to let users request the use of virtual sensors or virtual sensor groups that satisfy

their requirements. Dynamically grouped virtual sensors are provisioned automatically

in response to user requests. In addition, it provides a portal as a user interface for

registering or deleting physical sensors, for requesting, provisioning or destroying virtual

sensors, for controlling and monitoring virtual sensors, and for registering or deleting

users. The most important advantage of this solution is that users need not worry about

the real location and the differences of multiple physical sensors. However, in the majority

of sensor applications, the location of physical sensors is very important, and hiding this

information is not suitable for those applications.

A business model of the virtualization of sensor networks was proposed in [88] where

two types of providers collaborate to offer services to the application level users (ALU).
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The first provider is the sensor infrastructure provider (SInP) that manages the physical

sensor infrastructure. The second is the sensor virtualization network service provider

(SVNSP) that hires resources from one or more SInPs to form VSNs, deploys customized

protocol and offers services to ALU. This is illustrated in Fig. 2.11. This model differs

from the one defined in Chap. 3 and 6 where each user or organization manages its own

sensor data and they are free to share or sell it using the alerts, the RESTful API or the

social portal. However, this model enables infrastructure sharing which is not useful in

certain applications like healthcare monitoring.

Figure 2.11: Business model of sensor network virtualization [88].

In summary, the combination of virtualization, cloud computing and WSNs gives new

opportunities, applications, services and challenges. The virtualization of sensor networks

and their reprogrammability, which is the ability of reprogramming sensor nodes and

networks after deployment, are important opportunities. But the usefulness and the

impact of deploying VSNs on security and overhead communication traffic was not well

studied.
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2.4 Sensor networks and social networks

Since their introduction, Social Network Sites (SNSs) such as MySpace, Facebook, twitter

and googleplus have attracted millions of users, many of whom have integrated these

sites into their daily lives [89]. For example, on october 2012, Facebook has announced

a historic milestone of one billion active users. SNSs allow each user to have a profile,

construct a list of other users with whom they share a connection (friends), share contents,

and see the shared contents of their friends.

A web portal is a web site, built thanks to social mashup engines that brings informa-

tion from diverse sources in a unified way. Usually, each information source is represented

by a gadget and is displayed in a dedicated area on the page.

WSNs can use existing SNSs for sharing sensor data or built their own SNSs. This

combination is very important as it enables the collaboration between friends and the

sharing of sensor data.

In [90], authors propose to use existing social networking infrastructures and their

web-based APIs in order to integrate Smart Homes to the web, offering social status to

physical devices. Thus, the data is only published in SNSs which limits the opportunities

offered by these sites.

In [91], authors present a framework, named SenseFace, that creates an overlay net-

work to deliver the captured sensor data from a Body Sensor Network (BSN) to one’s

community of interest (COI). SenseFace can be seen as a four-tier application. The first

tier, BSN, consists of several sensors that collects sensor data and sends it on a real-time

manner to the second tier. The second tier is a personal gateway, which can be a mobile

phone. It locally checks the incoming sensory data for possible threshold crossing, if any

such violation of normal data is found, latest data and user ID will be sent to the next tier.

The third tier is responsible of receiving, processing, storing and delivering appropriate

sensor data to the overlay network, i.e. the fourth tier. Three components are involved.

First, the sensor data receiver receives data from the personal gateway, semantically sort

the sensor data from user information and store them. Second, the COI manager uses

a social network analysis (SNA) process in order to maintain one COI intelligently. The

SNA process [92] collects one’s social network ties from different existing sources e.g. per-

sonal website, blog, email, CV, local computer folders and other relevant sources. This

can also be provided manually by the user. Then, it categorizes the one’s relations to

some high level concepts, which are called personal social networks, such as friends, kin,

colleague, medical, etc. Then, an overlay network, called COI, is created on top of the

personal social network layer where each subgroup of the COI is mapped with a sensory

data types. Techniques like fuzzy ontology and swarm intelligence are used during this

process. Third, the content adaptation adapts the content based on end user devices and

the social network the data are published on. Regarding the fourth tier, SenseFace comes



2.5. Conclusion 31

with a service to send messages to on-line popular social networks and other technologies,

e.g. SMS, MMS and fax, in a real-time manner. In [93], authors present an application

of SenseFace to the e-health domain. The automatic generation of social ties is a novel

technique but to what extent it is reliable to support the management of critical data

such as healthcare monitoring data.

In [94], authors present Sensorpedia which is a Web site that creates a human-machine

network to connect sensors with users and applications for enabling global-scale sensor

information sharing. Sensorpedia system is divided into two main parts. First, a Web

based application is used to explore, contribute to, and share data from online sensor

systems. The main user interface of the application is a map-based mashup. Second, the

application programming interface (API) provides the software instructions for interfacing

sensors, sensor data, and sensor alerts. In addition, Sensorpedia allows users to establish

trusted groups, share relevant views and sensor data, and publish updates to external

applications such as Facebook, and Twitter. Sensorpedia’s primary activity is sensor data

sharing. Its social objects are the sensors and observation data. Its feature set provides

the functionalities: register sensors, establish social networks of trusted collaborators, and

explore available sensor data.

Sensor data formats are heterogeneous, so they need a specific component to adapt

and display them using an adequate visualization feature. Moreover, this convergence

between social sites and sensor networks raises new privacy challenges. These points were

not well addressed in theses works and are more discussed in Chap. 6.

2.5 Conclusion

This chapter introduced WSNs, their applications and data management challenges.

Then, different levels of data management in these networks have been discussed and

a survey of some existing solutions. Finally, opportunities of convergence between WSNs

and both cloud computing and social networking were presented along with some related

works in literature.

Limitations of WSNs and data management issue are tackled in Chap. 3 and 4, where

a flexible and extensible middleware is proposed, then applied in the field of water quality

monitoring.
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The presence of sensors in several mobile devices together with the development of

WSN systems for several domains makes each person or organization possesses heteroge-

neous sensors. These sensors are not supposed to communicate with each other, and they

generate a huge amount of data with different formats. The ability to manage these data,

to extract useful information, and to generate alerts is a need facing many limitations and

problems. These limitations are both hardware and software. Hardware limitations are

due to the limited amount of resource available on a sensor node (processing, communica-

tion, storage, energy), while software limitations are due to the MAC protocol in WSNs

32
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which allows nodes to have periodic sleep intervals to reduce their energy consumption

that makes nodes periodically unreachable.

3.1 Problem statement

As presented above, each person or organization possesses several heterogeneous sensor

nodes in disparate networks which generate a huge amount of data with different formats.

Heterogeneity makes providing a common data management system a challenging task as

it should be flexible and configurable. Moreover, these networks are mostly deployed and

application specific which limits any attempt to update their programs or to load new

ones. Therefore, the use of existing solutions in literature becomes impossible because

if one needs to update sensor nodes programs like TinyDB [72] and Cougar [47], others

require a protocol or a specific data format like SWE [76] and QuadraSpace [75].

Furthermore, the system collecting and managing the data from sensor nodes should

take into account this heterogeneity and understand all inputs in order to be able to

process them. Thus, it must be flexible in order to adapt itself to this heterogeneity.

Therefore, data acquisition and processing in such a system must be externally to the

network. So, this system can run on a data center which can be beneficial as it offers

more storage space and computation capabilities.

In order to interconnect sensor networks to the system collecting the data, a commu-

nication standard must be used and it must be compatible with the majority of systems

and programming languages. The HTTP standard fulfills these requirement and offer two

types of web services: Representational State Transfer (REST) and Simple Object Access

Protocol (SOAP). The first one is simpler and lighter as it is stateless and does not use

a lot of extra xml markup or specific toolkits. Moreover, it is compatible with OSs of

WSNs, as presented in Sec. 2.1.5.2, and most of the programming languages. Hence, it is

advantageous to use RESTful services. Incompatible sensor networks can use a dedicated

gateway to interconnects them to the system.

Moreover, preferably the system offers a private space for each physical node com-

municating with it. Also, there are some common functions to run on the system for

heterogeneous sensors, like reception and storage services. So, it is important to reuse the

code. In addition, such a system must hide the dynamicity of appearance and disappear-

ance of nodes in the WSNs and enables adding and deleting nodes at runtime. For these

reasons, the use of a component-based programming model is interesting.

In order to tackle with this problematic, this chapter proposes a new dynamic middle-

ware managing the reception, the storage, the indexing of data and the generation of alerts

from heterogeneous sensor nodes. In addition, the middleware is fully customizable and

configurable [95, 96]. The remaining of this chapter provides in Sec. 3.2 a description of

our proposed middleware architecture, followed by the implementation description of the
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iSensors middleware in Sec. 3.3. Sec. 3.4 presents some possible middleware extensions.

We wrap this chapter with a conclusion in Sec. 3.5.

3.2 Architecture

The iSensors middleware is made of a software installed on a server and accessible to

physical nodes via the Internet or local network. Fig. 3.1 describes the global architecture

of the middleware that is supposed to be hosted in an OSGi container. The communication

model between the physical nodes and the middleware is based on the push function where

the node pushes data periodically into the middleware using RESTful API. The push

frequency must be configurable in the view of optimizing the generated communication

traffic. This middleware is composed of two essential elements: a set of composites and

an eventing server.

Figure 3.1: Global architecture of the iSensors middleware.

3.2.1 Composite

A composite is a software component that is connected to a physical node like a sensor

node, a mobile phone or a gateway. It can also be used to aggregate and process data from

different composites. Each physical node that has the capability to communicate with the

middleware should be setup as a composite. There exists three families of composition:

1. a sensor composite is connected to a physical sensor node having one or more sensors.
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2. a gateway composite is connected to a physical gateway node which interconnects a

WSN, composed of one or more sensor nodes, and the middleware.

3. an aggregator composite has subscribed to different measurement sources in order

to collect sensor data, then analyses and aggregates them. It can then publish or

store the aggregated data and/or genenate reports.

The second family is used to hide the dynamic aspect of the network like a wireless

sensor network, where sensor nodes appear and disappear dynamically. Otherwise, in-

stalling and removing nodes would be difficult for the middleware administrator. The

generic structure of the first and second families is described in Fig. 3.2a. The difference

between those two families is limited to the configuration of the RESTful API, while the

generic structure of the aggregator node is described in Fig. 3.2b.

3.2.2 The eventing server

The eventing server is based on the publish-subscribe messaging pattern where senders of

messages, called publishers, do not program the messages to be sent directly to specific

receivers, called subscribers. Instead, published messages are characterized into topics,

without knowledge of what, if any, subscribers there may be. Similarly, subscribers express

interest in one or more topics, and only receive messages that are of interest, without

knowledge of what, if any, publishers there are. In addition, it can route events from the

middleware to external subscribed applications using many messaging protocols (RSS,

JMS, XMPP, ajax, etc.). Therefore, composites can be publishers and/or subscribers.

The eventing server is used to route messages to external subscribed applications and is

meant to act as a communication mechanism between even heterogeneous composites.

Hence, an aggregator composite subscribes to topics of interest in order to aggregate the

published data.

3.2.3 Composite design

A composite might be understood as a super-component composed of other composites or

components. It isolates its sub-parts to build a private space. It is identified by a family

and a unique identifier.

In this middleware, each node is a composite that instantiates components and/or

other composites, also called sub-components in the remaining part of this thesis. This

makes the node a private unit that does not interfere with other nodes. Those sub-

components are interconnected using services. So, a sub-component can provide or con-

sume a service and its configuration is done using a service that it provides, or using the

constructor at instantiation. Some configurations can also be done using the RESTful

API to setup new or modify existing scripts and variables.
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In order to easily add new nodes to the middleware, there are default components that

produce default services. Thus, adding a new composite is limited to the instantiation of

some default components.

Default (Inner) components

Fig. 3.2a and 3.2b describe the default structure of a composite. Important sub-components

are:

• The Storage & Index component is responsible for permanently storing and

indexing data. It provides services to put, get and search for data. Put service

returns a unique identifier of data which can be later used to get the data. In the

middleware, an embedded component connected to existDB [97] is provided. It can

also be provided by another party to be connected to a cloud storage and indexation

solution for example.

• The xQuery generator component is responsible on producing an adaptation

layer between the storage & index component and the other components using the

search service of the former. This component translates a generic query (provided

using the xQuery language) to allow the latter components to be independent from

the used solution for storing and indexing data.

• The alert generator component is responsible for generating alerts by processing

the received and/or transformed data. The generation is performed through the

execution of a dedicated function on the input data. In order to allow the xQuery

script to execute the reasoning operations, a version of the last data is injected in

the script. In addition, it can be wired to the search service for more advanced

scripts. At this level, the component generates an alert message and additional

meta-data can be inserted to the input. This process is described in Fig. 3.3. The

alert message schema is described in Listing 3.1.

• The event manager is responsible for routing events provided by the other sub-

components to the best available server managing this type of event. For example,

XMPP [98] and JMS [99] alerts are redirected to the Eventing server, while another

server is needed to route SMS or email messages. As depicted in Listing 3.1, the

type of the alert is given after parsing the alert XML file and extracting the value

of the ”type” tag.

• The transformer is used to translate and/or add meta-data information to data

using an xQuery function. For example, it can be used to translate received sensor

data in any format into the XML format or any other data format and at the same

time add a data validation status after executing an analysis function having the

input data and configuration settings as input parameters.
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(a) A sensor/gateway composite structure.

(b) Aggregator composite structure.

Figure 3.2: Different composite structures.
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<?xml version="1.0" encoding="UTF -8"?>

<xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema">

<xs:element name="GeneratedAlerts">

<xs:complexType >

<xs:sequence >

<xs:element name="memory" minOccurs="1" maxOccurs="1" type="xs:string"/>

<xs:element name ="alerts" type="AlertsList"/>

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:complexType name="AlertsList">

<xs:sequence >

<xs:element name="alert" type="AlertType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence >

</xs:complexType >

<xs:simpleType name="TypeOfTheAlert">

<xs:restriction base="xs:string">

<xs:enumeration value="jms"/>

<xs:enumeration value="rest"/>

<xs:enumeration value="rss+atom"/>

<xs:enumeration value="xmpp"/>

<xs:enumeration value="email"/>

<xs:enumeration value="sms"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="Content -typeType">

<xs:restriction base="xs:string">

<xs:enumeration value="Text/xml"/>

<xs:enumeration value="application/atom+xml"/>

<xs:enumeration value="application/json"/>

<xs:enumeration value="text/plain"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="AlertType">

<xs:sequence >

<xs:element name="type" type="TypeOfTheAlert"/>

<xs:element name="content -type" type="Content -typeType"/>

<xs:element name="destination" type="xs:string"/>

<xs:element name="msg" type="xs:string"/>

</xs:sequence >

</xs:complexType >

</xs:schema >

Listing 3.1: Alert message schema.

• The communication API component implements a RESTful API to configure

and interact with composites. First, it receives data from the physical nodes. Sec-

ond, it provides a service to send data (response, calibration, configuration, etc.) to

the physical node. Third, it is the interface to navigate and search for the physical

nodes’ data. Finally, it gives the ability to configure the other sub-components, like

updating the xQuery functions of the alert generator sub-component. The Applica-

tion Programming Interface (API) specification of a sensor node composite is given

in Table 3.1.

• The aggregator is a component of the Aggregator composite used to run a script on

many data inputs to be aggregated based on parameter and configuration variables

and the aggregate function defined in the script. Input data can be sensor data
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coming from a single or many physical sensor nodes. In the second case, data are

aggregated to be reduced to less output, e.g., the sensor data of many temperature

sensors in a building are aggregated to extract the maximum value of temperature

in order to detect a fire when this value exceeds some threshold. While, in the first

case, input data can be issued from a single sensor node at different time slots. As

an illustration, a sensor node can be immersed in water and capture several water

quality parameters at different depths. Then, the role of the aggregate function can

be the production of a report summarizing the measurement campaign.

• The listener is a component of the Aggregator node. It subscribes to topics in the

Eventing Server that interests the aggregator sub-component. Once new events are

published, they are caught and forwarded to the latter.

Alert generator

parameters

input data

script function configuration variables

alerts

Figure 3.3: Alert generator flows.
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Ressource

isensors/nodes

POST

(Create)

GET

(Read)

PUT

(Update)

DELETE

Easy API

—/{nodeid}/ ERROR Node description OR id Update/create node

description

ERROR

—/—/data Add new data (mes-

sage, packet, ...)

Last sent data ERROR ERROR

—/—/—/{data id} ERROR Get the data ERROR ERROR

Advanced API

—/{nodeid} ERROR {nodeid}, description, list

of sensors and channels

Update/create node

description

ERROR

—/—/sensors Create new {sensor id}

and descriptions

List of sensor IDs ERROR ERROR

—/—/—/{sensor id} ERROR {sensor id}, description, list

of channels

Update/create sen-

sor description

ERROR

—/—/—/—/channels Create new

{channel id} and

descriptions

List of channel IDs ERROR ERROR

—/—/—/—/—/{channel id} ERROR {channel id}, description Update/create chan-

nel description

ERROR

—/—/—/—/—/—/data Add new data (mes-

sage, packet, ...)

Last sent data ERROR ERROR

—/—/—/—/—/—/{data id} ERROR Get the data ERROR ERROR

Configuration API

... Continued on next page ...



3.2.
A
rch

itectu
re

41

... Continued from previous page ...

Ressource POST

(Create)

GET

(Read)

PUT

(Update)

DELETE

—/—/config Create a new con-

figuration file at the

node id local reposi-

tory (HTML form to

metalist)

ERROR ERROR ERROR

—/—/—/{config id} Create/update con-

figuration file with

{config id} (HTML

form to metalist)

GET the configuration file

{config id}

Update the con-

figuration file

{config id} by

uploading a new file

Delete the

configuration

file {config id}

Script API

—/—/script Create new script file

at the {node id} local

repository using an up-

loaded file

ERROR ERROR ERROR

—/—/—/{script id} ERROR GET the script file

{script id}

Update the script

file {script id} by

uploading a new file

Delete the

script file

{script id}

Search API

... Continued on next page ...
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... Continued from previous page ...

Ressource POST

(Create)

GET

(Read)

PUT

(Update)

DELETE

—/—/search/[ldm][1-*] ERROR Get the result of the search

query. The highlighted part

in red is required and takes

value l, d or m for last, day

or month respectively. The

highlighted part in green

is optional and can take a

value in N
∗. The default

value is 1.⋆

ERROR ERROR

—/—/—/sensors/{sensor id}/[ldm][1-

*]

ERROR Same as in ⋆. Search only

in {sensor id} data.

ERROR ERROR

—/—/—/—/—/channels/

{channel id}/[ldm][1-*]

ERROR Same as in ⋆. Search only

in {channel id} data.

ERROR ERROR

Table 3.1: RESTful API specification.

END
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3.2.4 Communication model

The default communication model between the middleware and the external entities is

based on the RESTful API and the Eventing server, while the communication between

components and composites is based on the Eventing server and service wiring.

When data or meta-data are received from a physical node by the communication API,

they are stored, indexed, and sent to an alerting sub-component for analysis and alerts

are generated if needed. Then, data are translated into another format such as SensorML

or O&M. Afterwards, the translated data are again stored, indexed, and sent to the alert

generator sub-component. This process is described in Fig. 3.4.

The event manager sub-component is responsible for routing generated events to the

best server managing this type of events. Reasoning is applied in the alert generator

sub-component by analyzing input data only or both input and history data.

The value returned to the sender (the physical node) must contain a unique identifier

of the received data that can be used later to retrieve data using a GET query. In addition,

it can contain a command or an update of a configuration parameter.

Figure 3.4: Communication steps after receiving data from the physical node.

3.3 Implementation

In order to implement the middleware while retaining the concept of composition and

separation of component instances, the OSGi and iPojo technologies, described below,

have been chosen. The key point of these technologies is also the possibility to reconfigure

the structure, delete and deploy new components at runtime. This adds the dynamicity

to the proposed iSensors middleware.
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• Open Service Gateway initiative (OSGi) alliance [100] provides specifications,

reference implementations, test suites and certification to develop lots of systems.

The OSGi technology is a set of specifications that defines a dynamic component

system. Developers can hide their implementations from other components while

communicating through services, which are objects that are specifically shared be-

tween components. The OSGi framework is a module system and service platform

for the Java programming language that allows to remotely install, start, stop,

update, and uninstall bundles, which contain applications or components without

requiring a reboot. The application life-cycle management (start, stop, install, etc.)

is done via APIs. The framework run a service registry that allows bundles to detect

the removal of services, or the addition of new services, and adapt accordingly.

• iPOJO [101] is a service-based composition extension of OSGi. It aims at separat-

ing functional code (the POJO which stands for Plain Old Java Object) from the

non-functional code (i.e., dependency management, service provision, configuration,

etc.). At run time, iPOJO combines the functional and non-functional aspects. It

provides an Architecture Description Language to describe components and wires

between them. It also supports the dynamic substitution and evolution of used

services and components at runtime.

The default components are provided and installed in the karaf OSGi container [102] as

iPOJO components. The composite is an iPOJO composite which is an instantiation of a

set of installed components. The middleware is fully customizable as new sub-components

and services can be added easily in the OSGi container. In fact, new composites and

services can be installed and connected at runtime. The setup of a new one is done

by uploading a bundle containing a meta-data file into the OSGi container. A simplified

sample of a sensor composite setting file is given in Listing 3.2. This composite instantiates

and connects some default sub-components.

3.4 Extensions

The middleware is based on composition and services which makes it extensible to provide

other services apart from those described in Sec. 3.2. This section outlines some possible

extensions of the middleware.

3.4.1 Sensors computation outsourcing

As presented above, sensor nodes have limited resources while the middleware should be

hosted on a high-performance server which has more abundant resources of computation,

storage and communication. Under those circumstances, it will be interesting to let
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<ipojo>

<!-- Declares a composite -->

<composite name="sensor -1">

<!-- Instantiates an instance of the communication API -->

<instance component="eu.tsp.isensors.test.Node" >

<property name="alias" value="/isensors/nodes /333 -214"/>

<property name="nodeID" value="333 -214" />

</instance >

<!-- Instantiates an instance of the storage and indexation component -->

<instance component="eu.tsp.isensors.impl.storage.StorageExistDBImpl" name="

ExistDBservice" />

<!-- Instantiates an instance of the Alert Geneator -->

<instance component="eu.tsp.isensors.impl.alert.gen.AlertGenerator" name="

alertGenService"/>

<!-- Instantiates an instance of the Alert Geneator -->

<instance component="eu.tsp.isensors.impl.alert.manager.AlertManager" name="alertManager

"/>

<!-- Instantiates an instance of the TRansformer -->

<instance component="eu.tsp.isensors.impl.transformer.MessageTransformer" name="

MessTrans"/>

</composite >

<!-- Instantiates an instance of our composition -->

<instance component="sensor -1"/>

</ipojo>

Listing 3.2: A sensor composite instantiation.

the user add a component/composite to provide a service that will be executed in the

middleware. Therefore, the physical node sends the inputs to its composite which calls

the service and returns the output to the node. A typical example is when a user having

a smartphone, set as a composite in the middleware, wants to convert a recently captured

video in order to send it in an email or to share it in a social site. For this to be done

in the smartphone, conversion algorithms, calculation and memory resources are required

which consume lots of energy. Therefore, calling a conversion service in the middleware

reduces the mobile charge and offers a better experience for the user.

3.4.2 A market of Composites

As seen above, each user/organization has many sensor nodes which have no support

for their data management, and due to their heterogeneity, it becomes more and more

difficult to know their message types and how to communicate with them. Thus, providing

a market for manufacturers and developers to offer specific components and composites

for their products seems to be an interesting feature. Thereby, users could find specific

components for their needs, e.g., a translator component for their solar water heating

system, an alert generator for their car, a storage component to store sensor data on the

amazon cloud storage service or an alert manager for sharing alerts on social sites.
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3.4.3 Composites network

Currently, a gateway composite is used in the middleware to communicate with a network

composed of many nodes. This feature hides the dynamic aspect of the network by

ignoring nodes appearance and disappearance. Therefore, the composite can see all node

data even if they are encrypted. In fact, it must have privileges to decrypt these data

in order to be able to translate and analyse them. In contrast, associating a composite

to each node in the network makes each node linked to its own composite which manage

its own data. Composites are linked using services or queues. When node N1 send

a message to its composite N v
1
, the message will go through the gateway G1 and the

gateway composite Gv
1
, then it reaches N v

1
following the reverse route between N1 and

G1. Thus, in a security scheme, each physical node can share a key with its composite to

secure their communications when the gateway is not trustworthy for example. Let N1

and N v
1
(G1 and Gv

1
) share a symmetric key KN1

(KG1
, respectively), and EK(D) means

that data D is encrypted using key K. When N1 and G1 communicate in one hop, the

message flow between N1 and N v
1
should be as described in Fig. 3.5 where nodes and

message data are highlighted in grey and red respectively. This extension can be useful

when using an advanced security scheme like the one proposed in Chap. 5.

D

N1
EKN1

(D) G1
EKG1

(EKN1
(D)) Gv

1
EKN1

(D) N v
1

D

Figure 3.5: Message flow between N1 and N v
1
.

3.4.4 Social extension

Data sharing between users of the middleware can be very useful in some applications as

highlighted in Sec. 2.4. Thus, adding social capabilities in the middleware for the purpose

of enabling this feature is highly benefic. It allows organizations to share some sensor

data. As an example, the national weather service can share some weather previsions

with other users even on existing social web sites or by providing a web mashup that they

can integrate in their social portal. Moreover, a collaboration platform between scientists

can be easily provided when each group share its sensor data and results with the others.

This extension is further discussed in Chap. 6.

3.5 Conclusion

This chapter has presented a new flexible and extensible middleware. This middleware

is fully configurable and does not impose a specific data schema, apart from the alert
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schema which is not related to data received from sensors. In addition, it sets up sensors,

gateways and aggregators in different composites, which ensures basic needs of separation

between composites to guarantee data privacy. Moreover, as it is generic, it can be used

to replace multiple middleware used in different domains.

This middleware was implemented and used in a real-world project Mobesens, as

presented in Chap. 4. A security solution, for securing communications from and to the

middleware, is proposed in Chap. 5. Finally, the middleware was extended to enable the

building of a social sensor network in Chap. 6.
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The iSensors middleware described in Chap. 3 is useful, extensible, flexible and can

serve in various fields. In our work, we choose the environment field in order to monitor

the water quality in the context of the mobesens project. The middleware was used

in the back-end system to manage sensor data. The global system was extended by

a visualization system for visualizing real-time and history sensor data using any web

browser [103, 104].

This chapter presents the Mobesens project and its requirements in Sec. 4.1. The

proposed system architecture is described in Sec. 4.2. Then, real-world experiments and

performance results are given in Sec. 4.3 and 4.4 respectively. Finally, conclusions are

drawn in Sec. 4.5.

4.1 The mobesens project

The Mobesens project [105], which stands for Mobility for Long Term Quality Water

Monitoring, aims at developing sensors to measure different physico-chemical parameters

48
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of water so as to appreciate its quality in the environment, and set up both a communica-

tion network and a grid infrastructure to allow data to be first transmitted from sensors

to the core network and second to be stored, processed and displayed in a convenient

and easy-to-use graphical user interface. Note that, even though the project is limited to

measure and report water quality parameters, the presented work may be adapted to any

other kind of environments, like the soil, the air, etc.

In this project, many wireless sensor networks have been deployed in different areas:

Lake Leman, Brest, Thau Lagoon and Ebro River. Each network is composed of CSEM

sensor nodes [106] implementing wiseMAC [107] and wiseNET [108] protocols. Each node

is connected to one/many physico-chemical sensor via an RS485 interface. Nodes can be

mobile or static.

In order to allow the collection and transfer of data for processing, a gateway with

broader communication capabilities is placed close to the wireless sensor network. This

gateway may either be static or mobile, located on the sea shore or in/on the water.

Then, data are transferred to the indexing, storing and eventing system both for persistent

storage and to allow more complex processing. Data stored in the system are available

through the Internet. Moreover, a visualization interface is provided to help end-users

displaying data for monitoring, analysis, etc. This web-based interface was developed to

give basic mechanisms to allow various research groups to work together. Furthermore,

it is compatible with a variety of devices like tablets, computers, smartphones, etc. as it

was developed using web technologies. Fig. 4.1 presents a global overview of the different

elements involved in the project and their relations.

The system architecture described in this chapter is integrated with the other elements

of this project and is presented in Fig. 4.1 as the GRID element. To summarize, the

requirements of the back-end system of the Mobesens project were:

• receiving data from all elements involved in the architecture;

• understanding and transforming received raw data;

• storing raw and transformed data to ensure traceability and persistence;

• tagging and indexing data to facilitate search and reporting;

• real-time alerting to monitor sensor data and network status in a real-time manner;

• enabling the visualization of all these data in a real-time manner from any web-based

browser.
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Figure 4.1: Mobesens project overview.

4.2 Back-end and visualization systems description

4.2.1 System Architecture and Implementation

The effective architecture of the system is presented in Fig. 4.2. From this architecture,

the back-end and visualization system play an important role in the global system and

they take in charge:

• storing data from all elements involved in the architecture, i.e. not only data mea-

sured by sensor nodes, but also those used for their management, or any other data

which might be used or exchanged by several parties, e.g., the location information

about gateways.

• enabling the visualization of all the sensor data in a real-time manner through a

web-based application.

• providing a user-friendly web application to generate graphs, browse and validate

history data.

• visualizing sensor nodes as anchor points in a map to facilitate their localisation

and tracking.

From the sensor nodes point of view, the system shall be seen as a container in which

it is possible to store any kind of data regardless the amount and the size. From the
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end-users point of view, it shall be seen as a huge collection of organized data on which

it is possible to perform high-level requests. In order to satisfy these two points of view

and improve the reactivity of the system, data stored by sensor nodes need to be tagged

(i.e., they need to be associated with metadata) and indexed before being searched.

The architecture is composed of those elements:

Figure 4.2: Abstract System Architecture and Implementation View.

• The iSensors middleware which is described in Chap. 3. Storage and indexation are

implemented as different sub-components.

• A Storage Space which aims at storing any information. It is used to store both Raw

data and XML files. This storage is based on Tahoe [109], a secure cloud storage

solution, known for its efficiency and ease of management. It is connected to the

Storage sub-component using Secure File Transfet Protocol (SFTP).

• An Indexation Space that compiles any metadata provided by sensor nodes, end-

users and applications to enable efficient searches. In addition, it indexes the XML
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representations of measurements. The tool used to perform the indexation is eXist-

db [97] which has been developed for the indexation of XML documents.

• An Eventing Space similar to the eventing server as defined in Sec. 3.2.2. This

part is one of the key elements inside the back-end system that allows data to be

provided to end-users in a real-time manner. This part has been implemented using

a standalone Apache ActiveMQ Server, which is an open source message broker

implementing the Java Message Service (JMS).

• A RESTful compliant API that allows sensors to push their collected data to the

system and web-based clients to visualize these data using the same API. Each

composite has a communication component, as described in Fig. 3.2a, that provides

this API.

• A Visualization System responsible for displaying data in a real-time manner and

navigating through history data. The home page of the visualization interface con-

tains a map on top and below a data table for each sensor data type in a dedicated

tab. Sensor nodes are represented as clickable anchor points in the map. On click,

a window, showing information about the sensor node and its recent sensor data,

is displayed. The data table displays real-time sensor data ordered from recent to

older using the reception date field.

4.2.2 Data processing details

First, raw data are sent from the WSN to the Gateway using IEEE 802.15.4 commu-

nication protocol. Then, they are relayed to the back-end system using HTTP and a

RESTful API, similar to the easy API described in Table 3.1. As shown in Fig. 4.3, data

are processed as follows when received at the Gateway composite in the back-end system:

1. Raw data are stored in the storage space.

2. Raw data are translated to the Metalist XML format [110].

3. The XML version of the data is stored in the storage space.

4. The XML version of the data is indexed in the indexation space.

5. The three identifiers (the stored raw data, and the stored and indexed translated

data) are mapped.

6. The mapping file is indexed.

7. The XML version of the data is encapsulated in a message and sent to the ActiveMQ

eventing server.
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8. The gateway is returned a Unique IDentifier (UID) of the mapping file.

Figure 4.3: Data processing details.

In order to guarantee the interoperability between the gateway, the back-end, the

visualization system and third-party applications, a HTTP RESTful interface has been

developed. Not only this interface allows the gateway to send data frames to the back-

end system, but also enables third-party applications to interact with stored and indexed

data.

This interface is generic enough to adapt to new sensors and nodes that may join

the network. For example, a node identified by NodeID can send a frame to the grid by

encapsulating it into a PUT request:

http://{ServerAddress}/{Gateway-info}/{SensorType}/NodeID

where SensorType is a unique identifier associated with each sensor type and a UID is

returned as a response to the node. This UID can later be used to retrieve the same data

from the system using a GET request:

http://{ServerAddress}/{Gateway-info}/UID

Data stored in the storage space are persistent. This means that unless they are

intentionally removed, data remains in the system regardless the application that stored

them is still alive or not. In addition, data are stored in both raw and translated formats

with metadata (e.g., source identifier (IP address), reception time, sensor node identifier,
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etc.) in order to enable data traceability and persistence. These requirements were fixed

by the project to prevent data loss during its translation and to allow scientists to do

more extensive analysis in the case of a natural disaster for example.

A dedicated search interface has been made available for the purpose of allowing

navigation through data stored and indexed in the system without necessarily knowing

their identifiers. This interface receives a query from a user or an application using the

Xquery language and returns the list of results that matches the given set of criteria. An

XQuery request can be sent to the back-end using the following prototype:

http://{ServerAddress}/{Gateway-info}/search?query={Query}

4.2.3 Real-time display at the end-user side

Apart from getting a specific piece of data using its UID or searching for a set of data

matching a set of criteria, the developed system allows to display the most up-to-date data

in a real-time manner. This has been made possible with the introduction of an eventing

system based on the combination of an ActiveMQ JMS Server [99] and ICEfaces [111].

This solution allows data to be visualized on the graphical user interface without refresh

notification required by the user or client. Moreover, the time needed to update the

graphical user interface is very low compared to the frequency of the measurements. This

is a key feature since even if data are not updated in a real-time manner in the graphical

user interface, the data update is performed quickly enough so that information provided

to the end-user is always up-to-date.

Also note that all clients are synchronized, and updates happen concurrently towards

all clients. Changes in sensed or stored data automatically trigger updates in all the

clients according to their subscriptions and expressed interests.

Figure 4.4: Real-time architecture details.

Fig. 4.4 presents the architectural details for the implementation of the real-time
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display in the visualization system. The two main elements are the eventing server, e.g.,

JMS Server, which aims at dealing with any events in the back-end system and ICEFaces

that provides an Ajax PUSH link to any registered clients.

At initialization, the visualization system, that implements the Ajax Push components

provided by ICEFaces, initiates a persistent communication with the JMS Server and sub-

scribes to topics that match its interest. Then, any time a piece of data is received by the

back-end system, the translated (e.g., transformed) version of the data in the XML format

is published in the JMS Server as an alert on a specific topic. When events are published

on its topics of interest, the visualization system is triggered. Then, it updates or adds

new entry in dedicated collection of sensor data Si values. Next, it informs the ICEFaces

core about the update. Once informed, ICEFaces forwards the updates to the browsers

(e.g., clients) which are displaying the web interfaces that have subscribed this kind of

alerts. For example, a visualization interface displaying temperature measurements re-

ceives only temperature updates. Thus, subscribers are notified in a real-time manner

and update the visualization interface using the AJAX Push technology. A pseudo code

presented in Listing 4.1 is executed in the visualization system server.

public void onMessage(Message message) {

if(message instanceof MeasurementUpdate){

// Etract information from the message

parsedMessage = parse(message);

// Produce a new abstract sensorData object

// depending on the type and readings of the sensor

sensorData = SensorDataFactory.getInstance(parsedMessage);

// Update the list of sensor measurements

myDataList.update(sensorData.getDataType (), sensorData.getUID (), sensorData);

// Notify subscribers (Visualization interface)

SessionRender.render(sensorData.getDataType () + "Topic");

}

}

Listing 4.1: Pseudo-code executed when new alerts arrive at the Visualization system.

The connection between the systems and the clients for the real-time display is per-

formed using the publish/subscribe paradigm. Consequently, the visualization system

acts as a subscriber and a publisher of alerts at the same time. It is a subscriber from

the point of view of the back-end system, and a publisher from the point of view of the

clients. It is the role of this system to establish data synchronization between the new pub-

lished measurements on the back-end system and the displayed data on the visualization

interfaces.

4.3 Real world experiments

The architecture presented above has effectively been developed and is functional. It is

possible to see partial results of the visualization interface at this location:
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http://mobesens.free.fr/

The system is located in Évry, close to Paris, France. The storage space and the

indexation space are running on a cluster composed of 32 nodes each including an 8-core

Intel Xeon E5540 cluster with 24 GB RAM. The visualization interface has been developed

using a Tomcat web application server.

After the entire system has been developed, some real experiments have been con-

ducted. The first one was on Lake Geneva, Switzerland. The second one was in Brest,

France. The third one was on the Thau lagoon, France. The fourth one was conducted

on the Ebro River, Spain. Finally, the last one was conducted again in Brest with the

presence of some members of the European Commission. Fig. 4.5 shows a picture of the

kayak and some buoys taken during experiments.

Figure 4.5: Picture of kayak and some buoys taken during tests in Thau lagoon.

The configuration included in the latter experiment:

• 20 buoys, each one equipped with sensor nodes and Ion-Sensitive Field-Effect Tran-

sistor (ISFET) [112] sensors to measure temperature and pH.

• a kayak equipped with:

– a multi-parameter sensor to realize profiles at different depths.

– a sensor node to forward data to the Gateway.

• a Gateway to collect measured data and send them to the back-end system in Évry

through a 3G connection. The gataway is shown in Fig. 4.6, an edited picture taken

during experiments in Brest.
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Figure 4.6: An edited picture of the Gateway taken during tests in Brest.

During and after the deployment, it has been possible to automatically validate re-

ceived data (physico-chemical measurements) and visualize them in a real-time manner

using any web browser in smartphone, tablet or laptop. In addition, using the real-time

interface, available at http://mobesens.free.fr/, it was possible to monitor the network,

sensor measurements and calibration under a boat in the sea. This has allowed us to

detect and quickly solve problems during and after deployment.

4.4 Performance results

The sensor nodes and the gateway communicate using IEEE 802.15.4, wiseMAC and

wiseNET protocols while the Gateway and the back-end system communicates using the

HTTP protocol. As mentioned above, ISFET sensors are integrated in some sensor nodes.

Their measurements are formatted in 37-byte ASCII strings. Sensor nodes send measure-

ments in a single packet to the Gateway over one-or multi-hop routes. The gateway should

send an acknowledgement to the sensor node in order to confirm the reception. Then,

the Gateway sends the measurement in an HTTP PUT message to the back-end system

which confirms by sending an acknowledgement. After storing, transforming and indexing

a measurement, the back-end system sends an UID as a response to the Gateway which

confirms the reception by an acknowledgement. The generated HTTP traffic is composed

of two messages and two acknowledgements having a total size of 878 bytes. The traffic

has been cut by two by disabling the sending of the UID. This way, the size is limited to
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547 bytes.

Various experiments have been performed in order to check the performance of this

work and especially the ability for the system to provide data in a real-time manner.

In the first test, we stressed our system in order to study how it would behave. The

gateway was emulated using a laptop which regularly sent GPS position frames of different

nodes to the system. On the same laptop, a browser was opened for the visualization

interface to display sending and receiving data times. We used the same laptop to be able

to measure the difference between sending and receiving data times using the same clock.

For each experiment, each node sent one hundred messages, e.g., for the experiment

with eight nodes, 800 messages was sent to the system. Then, the mean and the standard

deviation of the end-to-end delay between sending and receiving frames was computed.

Results are presented in Fig. 4.7a. They show that the end-to-end delay is low (less than

500 ms can be considered as real-time for water monitoring as water physico-chemical

parameters are changing slowly in the natural environment) and stable.

For the second test, the message size varies. The gateway sends one hundred messages

of each size to the system. Fig. 4.7b shows the mean and the standard deviation of the

delay between sending the message and receiving the identifier, e.g., the UID in Sec. 4.2.2,

for each message size in a logarithmic scale. The default payload length in TinyOS is 29

bytes, so putting a node message in the system takes less than 100 ms which is reasonable

compared to the communication delay between the gateway and nodes in the WSN.

For the third test, the gateway launches several threads at the same time, to send a

40-byte message to the system. Threads emulate nodes that are attempting to send a

message at the same time to the system. This experiment is performed one hundred times

for each number of threads. Fig. 4.7c displays two curves: the blue one shows the mean

and the standard deviation of the delay between sending the message and receiving the

identifier in each thread, and the red one shows the mean and the standard deviation of

the execution time in the system, e.g., functions represented in Sec 4.2.2. As an example,

when 64 nodes start communications with the system at the same time, the blue curve

shows that each communication will end after a mean of 450 ms. While, the execution

time for storing, indexing and transforming functions in the system, illustrated by the red

curve, takes 320 ms. As a result, after a mean of 450 ms all communications have finished

and this highlights the system performance.

4.5 Conclusion

This chapter presented the design and the implementation of a system for water quality

monitoring. The system performance was proven using many tests and it has been tested

and used many times in real-world experiments. The system provides many features and

services for scientists. In addition, third party applications can be easily interfaced with
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(a) End-to-end update latency.

(b) The system response delay depending on the message size.

(c) The system response delay depending on the number of nodes.

Figure 4.7: Different performance test graphs.
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the back end system due to the use of the RESTful API and the eventing server.

Unfortunately, the security issues of data reception and sharing, which is crucial in

such a system, were not treated. Receiving data from the WSN must be secured to prevent

an attacker from inserting false data and consequently generating false alerts and altering

the integrity of sensor data. Sharing data with other users of the system must also be

secured so that each user only sees what he is authorized to see and access. These issues

are addressed in the Chap. 5 and Chap. 6 respectively.
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The increase in living standards, the growth of aging population and health care

costs on one side and the electronics and wireless communication advances on the other

side triggered the development of new kinds of networks, named Wireless Body Area

Networks (WBANs), to remotely monitor patient. WBANs have some similarities with

wireless sensor networks (WSNs) such as low computation capacity, small amount of

memory and limited energy resources [113].

A WBAN consists of small intelligent sensor and/or actuator nodes attached or im-

plemented in the user body which are communicating wirelessly with a personal Local

Processing Unit (LPU), eg., a PDA or a smartphone. In the remaining of the chapter,
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we note sensor and/or actuator nodes as SN and LPU as a Mobile Node (MN). MN acts

as a sink for data of SN and forwards data to a Storage Site (SS) where they are stored

and analyzed [114, 115]. These SNs provide continuous health monitoring and feedback

to the user or medical personnel. SS can be seen as the gateway composite in the iSen-

sors middleware and for more simplicity it is considered in the rest of the chapter as the

middleware.

Sensor and/or actuator nodes have extremely scarce resources in term of memory,

energy and storage. They communicate wirelessly with the MN using either ZigBee or

Bluetooth [113]. Although MN has more resources, they remains limited as it uses a

battery and wireless networks. As presented in [24, 25], sensor nodes are used to monitor

many vital signs like temperature, heart rate, breathing rate, blood pressure, electrocar-

diogram, etc. Actuators take some specific actions according to the data they receive

from sensors or through interactions with the patient like pumping the dose of insulin to

diabetics based on glucose level measurements.

The iSensors middleware described in Chap. 3 can be very useful for a user or orga-

niation to manage their WBAN data. However, these data can encapsulate sensitive and

private information and thus strictly deprived. In addition, the middleware must avoid

the anonymous push of data in order to prevent attackers from inserting false sensor data.

This chapter presents a novel security scheme to fulfil these requirements [116].

The network architecture, as presented in Fig. 5.1, is composed of many clusters.

Each one is headed by an MN and other members are SNs which can communicate

in a single-hop with their associated MN. The cluster head can communicate with SS

using any Internet connection: GPRS, 3G, wifi, etc. In order to differentiate those two

communication types, they were classified as intra-body communication (IbC) and extra-

body communication (EbC) [25]. IbC and EbC are interconnected through the MN. IbC is

composed of SNs with scarce resources while EbC is composed of MNs and an SS where

resources are more abundant: higher communication bit rate, processing and storage

capabilities. Besides their hardware difference, these two communication types encounter

different security threats. Indeed, SNs and their associated MN belong to a user, which

makes an attacker unable to easily tamper these nodes. In addition, the small radius

in which IbC operates (∼2 m) facilitates the preservation of security and privacy [117].

In contrast, EbC is transported over the Internet which makes security threats more

important.

It is important to realize that IbC and EbC have different properties and need differ-

ent security mechanisms. This chapter proposes a hybrid authentication and key estab-

lishment scheme that enables mutual authentication and key establishment between all

entities composing a WBAN, eg. SN, MN and SS. This is based on two protocols. The

intent of the first one is the mutual authentication between SS and MN, by providing an

asymmetric pair of keys for MN, and by establishing a pairwise key between them. The
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second one aims at authenticating them, and at establishing a group key and pairwise

keys between SN and the two others. Note that the resulted symmetric keys can serve

as master keys for key derivation functions (KDF) [118] or the µ-Tesla protocol [119] for

advanced key management scheme. The hybrid property is used to highlight the fact

that asymmetric keys are generated and used to sign messages in the EbC while only

symmetric keys are generated and used in the IbC.

Figure 5.1: WBAN architecture.

Note that the traffic between the middleware and the physical nodes takes two forms.

In the first form, the physical gateway node interconnects a set of physical sensor nodes to

the gateway composite. The security can be applied either only between the gateway node

and composites or between sensor nodes, the gateway node and gateway composites. In

the second form, the communication is performed between sensor nodes and sensor com-

posites directly which makes it similar to the case where communication occurs between

the gateway node and composites. Thus, similar security mechanisms can be applied in

this form.

The rest of the chapter is organized as follows: security primitives and the WBAN

architecture are presented in Sec. 5.1. Sec. 5.2 describes the two protocols for authentica-

tion and key establishment. Security and performance analysis of the presented scheme

are the subject of Sec. 5.3. Sec. 5.4 presents some related works. Finally, conclusions are

drawn in Sec. 5.5.

5.1 Background

This section presents some security primitives that are used to prove the efficiency of the

proposed scheme in Sec. 5.2.
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5.1.1 Identity-based Signature

Identity-based cryptography (IBC) is a type of asymmetric key-based cryptography in

which a publicly known string representing an individual or an object is used as a public

key. The private key is related to the identity too. There is no need for a certificate, a

Public Key Infrastructure (PKI) or a Certification Authority (CA). This makes IBC more

suitable for nodes having limited resources (energy and memory). A complete comparison

between IBC and PKI is presented in [120]. The concept of IBC was first introduced by

Adi Shamir in 1984 [121].

Based on this work, many researches have proposed practical signing and/or encrypt-

ing schemes. Hess proposed an ID-based signature scheme (IBS) using ECC and based on

pairings [122]. The security relies on the hardness of the W-DH problem. The scheme con-

sists in four algorithms (Setup, KeyGen, Sign and Verify) and three parties (the trusted

Private Key Generator (PKG), the signer and the verifier).

Let (G1,+) and (G2, .) be two cyclic groups of prime order q, P ∈ G1 be a generator

of G1 and ê : G1 ×G1 → G2 be a pairing which satisfies the following conditions:

1. Bilinearity: ê(aX, bY ) = ê(X, Y )ab for all X, Y ∈ G1 and a, b ∈ Z
∗

q.

2. Non degenerate: There exists x ∈ G1 and y ∈ G1 such that ê(x, y) 6= 1.

Assume that for any given random b ∈ G1 and c ∈ G2, it should be infeasible to

compute x ∈ G1 such that ê(x, b) = c. Let the two hash functions h and H1 be defined

as h : {0, 1}∗ × G2 → Z
∗

q and H1 : {0, 1}∗ → G∗

1
. In this context, the public parameters

are params = (G1, G2, ê, q, P, h,H1) and algorithms can be specified as follows:

• Setup: The PKG picks a random integer s ∈ Z
∗

q as the local secret value, computes

Ppub = s.P and publishes Ppub.

• KeyGen: The key generation starts when the PKG receives the ID of the signer

(let the signer’s identity be string ID). The private key of the signer is then given

by PrivID = s.H1(ID). It is computed by the PKG and given to the signer. The

public key of the signer is H1(ID).

• Sign: To sign message m, the signer chooses an arbitrary point P1 ∈ G∗

1
and a

random integer k ∈ Z
∗

q and executes the following steps:

1. r = ê(P1, P )k

2. v = h(M, r)

3. U = v.PrivID + k.P1

Then, the signature is the pair (U, v) ∈ G1 × Z
∗

q
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• Verify: On the reception of message m and signature (U, v) the verifier computes:

1. r = ê(U, P ).ê(PubID,−Ppub)
v

2. the signature is accepted if and only if v = h(m, r)

5.1.2 Diffie Hellman Assumptions

Developed in 1976, the Diffie Hellman method for exchanging cryptographic keys has been

extensively used to allow two entities to generate a shared secret to securely exchange data

over an non-secure communication link. Its efficiency is based on the assumption that

some mathematical problems are very difficult to solve. To prove the effectiveness of the

security protocol, we present some Diffie Hellman problems.

5.1.2.1 The Weak Diffie-Hellman (W-DH) problem

Given P,Q, sP ∈ G1 for some s ∈ Z
∗

q, it is hard to compute sQ.

5.1.2.2 The Computational Diffie-Hellman (C-DH) problem

Given P, aP, bP ∈ G1 for some a, b ∈ Z
∗

q, it is hard to compute abP .

5.1.2.3 The Bilinear Diffie-Hellman (B-DH) problem

Given P, aP, bP, cP ∈ G1 for some a, b, c ∈ Z
∗

q, it is hard to compute ê(P, P )abc ∈ G2.

5.1.3 Joux Key Agreement

The Joux protocol provides a three party key agreement protocol [123] based on the

Bilinear Diffie-Hellman (B-DH) problem. Assume three nodes A, B and D generate KA,

KB and KD respectively, which are parts of a common key. Each node broadcasts its part

multiplied by P to the others. Then, common key Kc is computed as follows:

• A computes K1 = ê(KB.P,KD.P )KA

• B computes K2 = ê(KA.P,KD.P )KB

• D computes K3 = ê(KA.P,KB.P )KD

In fact, the common agreed key is given by

Kc = K1 = K2 = K3 = ê(P, P )KA.KB .KD
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5.2 Authentication and key establishment scheme

The proposed protocol in this section uses three types of keys. First, asymmetric pair

of keys are generated using Hess scheme [122] presented in Sec. 5.1.1. Second, pair wise

keys are generated based on the Computational Diffie-Hellman (C-DH) problem. Third,

a three-party key is based on Joux key agreement described in Sec. 5.1.3.

The protocol can be divided into two parts. The first one focuses on the authentication

and key establishment in the EbC. It lets MN get public and private keys using Identity

based cryptography (IBC) after an authentication process with SS which is supposed to

be the PKG. PKG can be a specific composite in the iSensors middleware, thus it can be

reduced on the SS as this latter is considered as the middleware. A pairwise key is also

established in this part based on Elliptic Curve Diffie–Hellman (ECDH). In the second

part, SN, which is joining the network, authenticates itself to MN and SS, and establishes

pairwise keys with each of them and a three party key.

5.2.1 Prerequisite

MN, SN and SS are synchronized and the drift between clocks should not exceed a given

threshold (∆ in EbC and ∆′ in IbC), specified in the system and stored in all nodes. This

condition is not crucial but gives a better efficiency for the scheme against replay attacks.

Assume that hash function H is sufficiently secure.

5.2.2 Setup

Each node SN or MN is identified by a node ID, a user ID and password pwd, all stored

in SS and setup in nodes at initialization. The ID of MN must be unique in the system.

The ID of an SN must be unique in the set of user’s SNs. The pwd is private for each

node and must not be stored in the MN and entered by the user at the beginning of its

authentication process. All identifiers and passwords are securely stored in SS.

SS plays the role of the PKG, so it generates public parameters params which are

then stored in MNs and SNs.

5.2.3 MN-SS authentication and key establishment scheme

This scheme ensures the authentication and key establishment between MN and SS. At

its end, if MN and SS are successfully authenticated, MN must obtain an asymmetric pair

of keys and share a pairwise key with SS. It is presented in Fig. 5.2 and can be divided

into five steps as described below:
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Figure 5.2: MN-SS authentication and key establishment scheme.

5.2.3.1 Step 1

Objectives : MN wants to authenticate itself to SS, so it must prove its identity using

a pre-shared password.

Details : MN starts the process by sending a start authentication message containing

a nonce value n0, its identity IDMN , its user identity IDu and time stamp t0; all those

values and their associated password pwdMN are hashed and the result is added to the

message footer. Then, the message is sent. A nonce value and a time stamp are provided

in the message to enforce its resiliency against replay attacks. pwdMN is included along

with the hashed values to let SS authenticate MN and prevent Deny of Service (DoS)

attacks.

5.2.3.2 Step 2

Objectives : The goal for SS is (i) to verify MN identity, (ii) to prove its identity,

(iii) to generate and to share its part (KSS.P ) of the pairwise key KMN−SS with MN.
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Details : On receiving this message, SS checks identities IDMN and IDu to ensure that

MN is allowed to integrate the network. Then, it checks that the difference between the

actual time and t0 is smaller than ∆. Finally, it checks that MN has the corresponding

pwdMN by verifying the result of the hash function.

If the verification succeeds, SS generates its part KSS of the Diffie–Hellman (DH) key.

Next, it generates a message containing the received nonce value n0, a new one n1, time

stamp t1, and its part of the DH key multiplied by point P (KSS.P ). The hash of pwdMN

and all the fields using the private key are signed and concatenated to the signature of the

message. The three first fields are used to establish the message sequencing and provide

resiliency against replay attacks. pwdMN is included in the hash computation to let SS

argue that it knows it, so it is not an attacker. Note that signing a hash is more secure

than signing clear fields to prevent attacker from having the pwdMN .

5.2.3.3 Step 3

Objectives : The goal for MN is (i) to authenticate SS, (ii) to generate its part (KSS.P )

of the pairwise key KMN−SS, (iii) to compute the key, (iv) and to share its part with SS.

Details : On receiving the message from SS, MN checks the freshness of the message,

the authenticity of SS and that this latter knows pwdMN . As a result, MN checks that

n0 is present in the message and that the difference between the actual time and t1 is

smaller than ∆. Then, MN checks SS authenticity and knowledge of pwdMN by verifying

the signature using this latter public key.

Success in verification means that the message is an authentic and fresh response

from SS, otherwise the authentication fails. When authentication succeeded, MN gener-

ates its part KMN of the DH key KMN−SS and computes it using equation KMN−SS =

KMN .(KSS.P ). Finally, it generates a message containing n1, a new nonce n2, time stamp

t2, KMN .P and pwdMN . Then the message is sent to SS after including the hash result

of all the fields and its pwdMN .

5.2.3.4 Step 4

Objectives : The goal for SS is (i) to get the part of MN (KSS.P ), (ii) to generate the

pairwise key KMN−SS, (iii) to generate the private key of MN, (iv) and to send it to MN

encrypted using KMN−SS in order to verify that this key was successfully computed.

Details : On receiving the message from MN, SS checks the hash result, time stamp

t2 and the presence of n1. Then, it gets KMN .P from the message and computes the

DH key using equation KMN−SS = KSS.(KMN .P ), and generates the private key of MN

(PrivMN). Finally, SS creates a message containing the received nonce n2, a new one n3,
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PrivMN , time stamp t3 and the validity time tval of the private key. All the fields are

encrypted using DH key KMN−SS and the messages is sent to MN.

5.2.3.5 Step 5

Objectives : The goal for MN is (i) to get its private key, (ii) and to prove that the

correct pairwise key was successfully computed.

Details : MN decrypts the message, checks t3 and the presence of n2. MN gets its

private key and generates a message containing the hash of n2, n3 and t3, signs it using

its private key and sends it back to SS.

5.2.3.6 Step 6

Objectives : SS checks that MN received its private key successfully.

Details : SS checks the message fields and the signature to make sure that MN received

its private key successfully. If the verification succeeds, SS sends an authentication success

message to MN to end the authentication and key establishment protocol; otherwise the

message is ignored.

5.2.4 SN-MN-SS authentication and key establishment scheme

After establishing a secure link between MN and SS thanks to the defined protocol in

Sec. 5.2.3, connected SNs to MN must authenticate themselves to both MN and SS before

being able to communicate with them. The protocol, presented in this section, aims at

providing a secure scheme to let SN securely establish a three-party key and two pairwise

keys, each one being shared with MN and SS respectively. Running the protocol presented

in Fig. 5.3 needs four steps which are described below.

5.2.4.1 Step 1

Objectives : SN wants to authenticate itself to MN and SS, so it must prove its identity

using a pre-shared password with SS. MN generates its part (KMN .P ) of both the pairwise

key KSN−MN and the three-party key.

Details : SN starts the protocol by sending a message to MN including nonce value n0,

its identity IDSN , its user identity IDu and time stamp t0; it hashes all these fields and

its pwdSN shared with SS, then it includes the resulted hash to the message and sends it

to MN.

MN checks if the time stamp t0 is fresh. If it is the case, MN stores the three first

fields and generates its part KMN of DH key KSN−MN to be shared with SN. Next, it
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Figure 5.3: SN-MN-SS authentication and key establishment scheme.

adds its identity IDMN , its user identity IDu and KMN .P to the received message from

SN, it hashes all the fields and signs the hash using its private key PrivMN . Finally, it

adds the signature to the message footer and sends it to SS.

5.2.4.2 Step 2

Objectives : The goal for SS is (i) to verify SN and MN identities, (ii) to generate and

share its part (KSS.P ) of both the pairwise key KSN−SS and the three-party key with

MN and SS, (iii) and to confirm the authenticity of MN and its part (KMN .P ) to SN. In

addition, MN verifies the authenticity of SN.

Details : On receiving the message from MN, SS checks all the identities in the message

and the fact that the time stamp fulfill inequation |t− t0| < ∆+∆′. Then, it checks the

signature of MN using PubMN and the hash included in message B to verify that SN has

the correct pwdMN and the message was not modified during routing.

If all verifications succeed, SS generates its part KSS of DH key KSN−SS before gen-

erating a response to SN, which contains received nonce n0, a new one n1, time stamp t1,

KSS.P , MN identity to inform SN that it is an authorized node, and KMN .P . It signs the

hash of all those fields and pwdSN using its private key PrivSS and adds the signature to

the message footer. Finally, it sends the message to SN.
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5.2.4.3 Step 3

Objectives : The goal for SN is (i) to verify the authenticity of SS and MN, (ii) to

generate and share its part (KSN .P ) of the two pairwise key (KSN−SS and KSN−MN) and

the three-party key with MN and SS, (iii) to compute the three keys, (iv) and to prove

that the correct keys were successfully computed. Moreover, MN computes the two keys

and proves their rightness.

Details : First SN checks the availability of n0 and IDMN , the validity of t1, and the

signature. If this verification succeeds, SN generates its part (KSN) of the two DH keys and

the three party key and then computes these three keys. After SN have picked nonce value

n2, it encrypts n1 and n2 using common key KSN−MN−SS to get e1 = KSN−MN−SS(n1, n2).

Finally, it builds message G using its part of DH keys multiplied by point P , e.g. KSN .P ,

and e1. It adds the result of hashing all the fields and pwdSN to the message and sends

it to MN .

MN gets the part of SN (KSN) in the DH pairwise key (KSN−MN) and the common

key (KSN−MN−SS) and generates the two keys. Then it decrypts the encrypted field with

this latter key and checks that n1 is available. It gets n2, picks a new nonce n3 and

encrypts them with key KSN−MN−SS. It adds the result with the flag OKMN and signs

the received message and the new fields using its private key PrivMN . Finally, it sends

the resulted message to SS.

5.2.4.4 Step 4

Objectives : The goal for SS is (i) to compute the three keys, (ii) and to prove to SN

and MN the success of the authentication and key establishment process. Let MN and

SN validate the authentication process.

Details : SS checks both the signature of MN using the latter public key and the

availability of OKMN in the message. If the verification succeeds, it gets the part of SN

KSN .P and computes twice KSN−SS and KSN−MN−SS. It decrypts the encrypted field in

the message and verifies the existence of n1. If the verification succeeded, it gets n2 and

sends a message to SN containing OKSS, OKMN , the encrypted values sent by MN in

message I. All these fields and n2 are hashed then signed before being sent.

MN just checks that SS sent OKSS, OKMN , the encrypted fields, the SS signature

and forwards the message to SN.

On receiving the message, SN checks the signature of the message, that both SS and

MN had sent an OK value. Finally, it checks the encrypted values of n2 and n3. If

verifications succeeded, the authentication and key establishment are valid too.
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5.3 Analysis of our scheme

5.3.1 Security analysis

The protocol described in Sec. 5.2.4 shows that MN cannot check the hash of message B

and the signature in message E. Therefore, they can be forged by an attacker to realize

a DoS attack on this node. In order to minimize the threat of forging message B, SS

must send to MN the list of identifiers of all the user’s authorized SNs, after the success

of the protocol presented in Sec. 5.2.3. This list should be dynamic and updated when

modifications occur. Moreover, SS must sign message E using its private key or encrypt

it using pairwise key KMN−SS for the purpose of allowing MN to check SS authenticity.

The rest of the section is devoted to describe the resiliency of the aforementioned

protocols against some attacks.

Denial of Service attack (DoS)

Besides the aforementioned enhancements to avoid an attacker from sending a big amount

of authentication requests to MN, received requests should be limited to some threshold

on SS to avoid a distributed DoS (DDoS) attack. In fact, an attacker may control many

MNs and launches a DDoS attack against the SS by sending different authentication

request messages from both MNs and SNs. The aim of the attack is to flood the SS with

a big amount of authentication requests in the intention of making SS unable to process

legitimate requests. In order to avoid such an attack, SS should limit both the number of

authentication requests of new MNs to a given threshold T0 during a time slot ∆T0
and

the number of requests of new SNs from each MN to T1 (≤ the maximum number of SNs

per user) during time slot ∆T1
. In addition, the use of the MN signature helps the SS to

authenticate the message origin and to make sure the freshness is correct thanks to the

timestamp.

Replay attack

In such attack, a malicious node repeats or delays the transmission of valid messages.

In order to prevent it, exchanged messages in both protocols include nonce integers and

time stamps to establish message sequencing and prove message freshness. Additionally,

the user identifier is included in authentication request messages. Then, in all upcoming

messages, every nonce integer is associated with the one that has been sent in the previous

message. For example in message E (see Fig. 5.3), n0 is associated with n1 and in

message G, n1 is associated with n2. So, an attacker is able either to impersonate the

MN or the SN. However, it is not able to replay old messages. In addition, if it catches a

message in a cluster and tries to replay it in another one, it fails because IDu is different.
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Man in the middle attack

To perform this attack, the attacker makes independent connections with the victims

and relays messages between them, making them believe that they are talking directly

to each other, when in fact the entire communication is controlled by the attacker who

can forge and inject new messages. Attack succeed when the attacker can impersonate

each endpoint to the satisfaction of the other. In order to prevent it, both protocols use

password pwd and/or signatures which makes message forgery impossible. In the protocol

defined in Sec. 5.2.3, when an attacker attempts a man in the middle attack, it needs to

get pwdMN in order to masquerade the SS from one side and the MN from the other side.

As pwdMN is kept secret and sent hashed, the attacker is not able to get it unless a brute

force attack is performed. The same conditions occur in the protocol defined in Sec. 5.2.4.

5.3.2 Performance Analysis

In order to analyze the performance of this scheme, the main operations and the number of

times they are used in each step are countered. It is important to consider pairing function

ê, as its complexity is O(log2p) [124]. A multiplication also is a time-consuming operation

as a 160-bit ECC point multiplication takes about 0.81 s on an 8-bit microcontroller [125].

Exponentiation and hashing functions are also considered in the analysis while symmetric

encryption is ignored for the reason that it does not take a lot of time and usually is

optimized using a hardware accelerator. Considering the optimization proposed in [126]

and the fact that data are hashed before they are signed, the signature operation requires

one exponentiation, one multiplication and two hash-function evaluations. However, the

verification requires one exponentiation, two hash-function evaluations and one paring ê.

The cost of both protocols defined in Sec. 5.2.3 and 5.2.4 are given in Tables 5.1 and 5.2

respectively. We deduce from these tables that the computation load is more important in

the SS side in both protocols. Table 5.2 shows that SN computation load is low although it

performs the authentication of two nodes MN and SS because SS checks the authenticity

of MN messages and includes relevant information in its messages destinated to SN. Thus,

SN only checks signatures of SS.

5.4 Related work

Authors in [115] propose an IBC scheme to secure access to patient data. In this scheme,

each SN periodically generates, e.g. each day or each hour, a new public key using a

string str = {date|time|ER}, where ER is the monitored vital sign. SN encrypts each

1
ê pairing evaluation

2Exponentiation
3Multiplication
4Hash
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MN SS

ê1 E2 M3 H4 ê E M H

step 1 0 0 0 1 0 0 0 0

step 2 0 0 0 0 0 1 2 3

step 3 1 1 1 3 0 0 0 0

step 4 0 0 0 0 0 0 2 2

step 5 0 1 1 2 0 0 0 0

step 6 0 0 0 0 1 1 0 2

SUM 1 2 2 6 1 2 4 7

Table 5.1: Computation cost in MN-SS authentication and key establishment scheme.

SN MN SS

ê E M H ê E M H ê E M H

step 1 0 0 0 1 0 1 2 2 0 0 0 0

step 2 0 0 0 0 0 0 0 0 1 2 2 4

step 3 1 2 3 3 0 2 3 2 0 0 0 0

step 4 1 1 0 2 1 1 0 2 1 3 3 4

SUM 2 3 3 6 1 4 5 6 2 5 5 8

Table 5.2: Computation cost in SN-MN-SS authentication and key establishment scheme.

measurement using this public key to get tuple (c1, c2) which is later sent to MN where

tuples are aggregated to form set {(c1
1
, c1

2
), . . . , (ck

1
, ck

2
)}. MN sends the sets to SS. A

doctor, willing to obtain data collected under some str, first gets permission from the

CA. After the CA agreement, it derives the corresponding private key needed to decrypt

data and sends it back to the doctor. Finally, the doctor retrieves the data from SS.

This solution is interesting since it protects SN data using IBC and does not generate any

communication overhead for the key management. However, it has some drawbacks:

• the need for a CA despite the use of IBC.

• data arrive encrypted to SS which makes realtime data analysis impossible.

• data querying operation is very heavy.

• the attacker can simply inject forged messages in the network as data are encrypted

using the public key. Thus, any attacker having IBC public parameters and the

str syntax can generate the public key, generate a legitimate message and inject it

in the network as data are sent encrypted and no access control or authentication

mechanism is performed.
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Authors in [127] and [128] have focused only on security between SN and MN. M. Barua

et al. [127] classify all data packets into two major categories, high and low priority classes.

Then, IBC schemes are used to authenticate, encrypt and decrypt packets. J. Liu et

al. [128] use IBC, when there is not a pre-shared master key, to establish a symmetric

session key between SN and MN.

The use of IBC in mesh networks has been proposed as a practical scheme to authen-

ticate stations to Access Points in the first hand and to enable authentication between

stations on the other hand [129]. Authors also propose some extensions to update asym-

metric keys and adapt the protocol to different network architectures. In [130], an identity

based key agreement and encryption scheme were proposed but evaluation results show

that encryption and decryption with 160-bit key requires 6.8s and 5.2s respectively which

makes IBC not suitable to be used in frequent operations in a WBAN where messages

should be delivered in reasonable time to SS [25].

5.5 Conclusion

This chapter presented a hybrid authentication and key-establishment scheme which com-

bines symmetric cryptography and identity-based cryptography. Nodes having scarce

resources use symmetric keys, while those having more resources use asymmetric keys.

The identity-based signature concept has been chosen as it offers a simpler private key

management and generation system than a traditional Public Key Infrastructure. The se-

curity and performance analysis shows that our scheme is resilient against known attacks

and that computation load is reduced on SNs due to MNs authentication done by SS.

In fact, this chapter presented a security scheme to secure the communication between

physical nodes and the middleware. Securing the sharing and distribution of sensor data

is described in the next chapter.
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Social networking sites have penetrated the lives of Internet users. They allow collab-

oration, sharing, making social relationships, etc. through web-based interfaces. Social

mashup engines enable building personalized web portals and sharing applications.

Chap. 3 presented the iSensors middleware which gives users or organizations the

ability to have a private space to manage their heterogeneous sensor data. Therefore, users

should have, maintain and administrate an online server where the middleware is installed

to real-time collect data from the connected nodes. This is difficult for an ordinary user.

Thus, providing a system that allows each user to have its private middleware in an

online server while offering the administration and maintenance of the server is a today

concern. Moreover, in order to interpret and analyse sensor data, the system should be

shared by different collaborators, for example by scientists insterested on monitoring an

environmental phenomena or by patients and doctors. When considering the issues of
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sensor data sharing on user privacy, the aforementioned requirements lead to significant

challenges.

This chapter describes in Sec. 6.1 a cloud infrastructure for sensor networks where each

user can have its own server, equiped with the middleware, in the cloud. Sec. 6.2 describes

a social networking extension for the iSensors middleware. The security challenges of data

sharing in social sensor networks are handled in Sec. 6.3.1. The conclusion is provided in

Sec. 6.4.

6.1 Cloud infrastructure for sensor networks

6.1.1 Motivations

Each user/organization has to use, manage and administrate its own instance of the

iSensors middleware, as defined in Chap. 3. As a result, the middleware can be deployed

as a SaaS (Software as a Service) in the cloud for the purpose of making it able to manage

data coming from many users at the same time while keeping its advantages. Deploying

an instance of the middleware for each user in the cloud is a good solution for many

reasons:

• connect different devices and networks.

• storage of data and index it on the cloud.

• easy to add new users/organizations.

• use services and do not care about infrastructure.

• the high performance and availability.

6.1.2 Architecture

In order to make the iSensors middleware available on the cloud for many users, the ar-

chitecture described in Fig. 6.1 is used. The cloud infrastructure is managed using the

OpenNebula open-source software which offers rich solution for complete management of

virtualized data centers to build private, public and hybrid IaaS (Infrastructure as a Ser-

vice) clouds in existing infrastructures. It orchestrates storage, network, virtualization,

monitoring, and security technologies to deploy VMs on distributed infrastructures [131].

As depicted in Fig. 6.1, each subscribed user or organization should have a VM for hosting

the middleware and the needed servers such as storage and eventing servers. The Resource

Allocator (RA) is responsible for receiving user subscribtion requests and resource allo-

cation. Each VM should have a name, a DNS address and be accessible through the

Internet to allow its owner to administrate it.
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In order to add a new user to the system, i.e. a new VM, there are four different steps

to be processed:

• Template definitions are defined and stored in a Template Repository by the

administrator. Template defines a VM properties like the number of CPUs, CPU

speed, memory, disks, the OS Image previously registered in the Image Repository,

and configuration scripts. The OS Image is a linux server having pre-installed

programs and iSensors middleware. There are different templates and OS Images

to match each user needs. This step is done by the administrator only the first time

or when adding or modifying some templates is needed.

• Instanstiation : Once a request to add a new user is received by the RA, it

instanciates the specific template that matches the user needs using OpenNebula

commands.

• Virtual machine personalization : The RA personalizes the VM : name, DNS,

etc. then, it creates the new user account and adds user’s public key to the autho-

rized keys. Last, it returns to the new user needed information to access the VM,

the middleware and servers.

• User personalization : user personalizes the middleware by instanciating com-

posites and uploading needed scripts.

6.1.3 CRUD operations

The RA and Open Nebula make the run of CRUD operations possible on images, tem-

plates and VMs. CRUD stands for Create, Retrieve, Update and Delete operations.

Operations on the virtual network and the way to connect a VM to the public network is

strictly reserved to the platform administrator.

6.2 Social sensor networks

6.2.1 Motivations

Using the above solution, sensor data of different users are isolated in separated databases,

middleware instances and virtual machines. In order to enable collaborations and sensor

data sharing between users, we propose a social networking extension for the iSensors

middleware which has many benefits:

• share sensor data.

• use gadgets (default/personalized) in composites.
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Figure 6.1: Global architecture of the cloud infrastructure for sensor networks.

• real-time monitoring.

• different security mechanisms.

6.2.2 Architecture

This extension can be seen as simply as adding gadgets to composites for providing user

interfaces to visualize real-time and history sensor data using tables or graphs. Each user

should have a personal portal, i.e. web and social mashup engine, where his own or other

users gadgets can be imported. Each composite can be extended with a gadget to visualize

data coming from sensors. A default gadget is provided in order to display, in a real-time

manner, sensor data coming from a default topic in the eventing server. Personalized

gadgets can be added by the user to provide more complex data visualization interfaces

and to send commands to physical sensors.

As described in Fig. 6.2, the Social Sensor Network Infrastructure is composed of

several parts:

• The sensor Social Portal is a web and social mashup engine that serves and hosts
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Figure 6.2: Global architecture of the Social Sensor Network Infrastructure.
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social gadgets. It is hosted in a dedicated server. Each user have his own portal and

can add, modify or remove personal/others sensor gadgets to organize his own page.

Both the portal state and the page context are saved, so that at each connection,

user finds the same interface.

• The Social Network Infrastructure contains the standard infrastructure of So-

cial Networks and provides the Open Social services: people, activities, appdata

and groups. Moreover, it stores all the information about users, their profiles, VMs

relations and recent activities.

• The Sensor Social Platform is an extended version of the Sensor Cloud Infras-

tructure. Accordingly, each VM should contain in addition to default software, e.g.

the iSensors middleware, storage and eventing servers, a new server named Sensor

Social Directory and a Sensor Social API. Furthermore, a gadget is setup in each

composite. New features of the Sensor Social Platform can be more clarified as

follows:

– The Sensor Social API is an extension to the Open Social API in order to

standardize and facilitate the access from the portal website and gadgets to

the Sensor Social Platform. So, accessing VMs, exploring users gadgets and

navigating through sensor data is more intuitive.

– The Sensor Social Directory is in each user VM to store information about

his personal gadgets. These gadgets can be explored by the user himself or by

other users with the intention of adding them to one’s portal if he has sufficient

authorizations. The list of all external users of gadgets is saved for the purpose

of making the owner able to control the access to its gadgets.

– The Sensor Social Security Security is an important issue in the Social Sen-

sor Network Infrastructure. Each user should be authenticated to access the

infrastructure using common used solutions like OAuth or public/private key.

We assume in this proof of concept of the Social Sensor Network Infrastruc-

ture that the problem of users authentication can be easily solved. While, an

attribute-based scheme is proposed in the next section to solve authorization

issues.

6.3 Secure access for the data in the social sensor

networks

As presented above, the social sensor network enables data sharing between users. As

a result, one’s friends see all his associated data which includes private and personal
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data depending on the kind of sensors. These statements will not motivate people and

organizations for using such a system unless a data protection mechanism is included in

order to let users easily define authorizations and accesses.

6.3.1 Background

Access Control mechanisms are mandatory in social networks to protect users privacy. A

very large set of solutions have been proposed in the literature that combines authenti-

cation and authorization mechanisms to access resources. Solutions can be grouped into

five main classes.

The first class holds the simplest mechanism, where resources are simply protected by

a username-password pair. This mechnism is very simple, but is limited as not all

users need to have access to all resources.

The second class is Access Control Lists (ACLs), where each resource to which

access should be controlled has its own associated list of mappings between the set of

users requesting access to the resources and the set of actions that each user can take

on the resources. ACLs are widely used, but the administration of the mappings is a

cumbersome task when a large number of resources and users is involved, due to the fact

that the ACL treats every user as a distinct entity with distinct sets of permissions for

each resource.

The third class, the Role Based Access Control (RBAC ), comes to solve this

issue. In RBAC, the user’s function or role determines whether access is granted or denied.

Thus, access control is done using rules that define which roles can execute which actions

on which resources. In addition, the user is allowed to be a member of multiple groups.

Affecting users on roles can make the definition of granular access control a difficult task

as a user can fall into a particular role, but do not need to have the full rights accorded

to the other members of a group.

The fourth class is the Attribute-Based Access Control (ABAC ) model where

the access is controlled based on a set of characteristics, or attributes, associated with

the user and/or the resource itself. Each attribute is a discrete, distinct field and can

be a user’s role. Access is granted when user’s attributes fulfil the required combination

of attributes. As can be seen, this model does not require to know the identity of the

receiver as the data protection is using attributes. The issue of this model is that it can

exists disparate attributes and access control mechanisms in the same organization.

The fifth class, the Policy-Based Access Control (PBAC ) model, is an emerging

model and an evolution of ABAC that tries to provide a more uniform access control

model throughout the system.
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CP-ABE : Ciphertext-Policy Attribute-Based Encryption

ABE extends the concept of Identity-Based Encryption (IBE) which was first introduced

by Adi Shamir in 1984 [121] and provides an ABAC based on encryption. The first

CP-ABE scheme was introduced in [132] where attributes are used to describe a user’s

credentials and the party encrypting data determines a policy for who can decrypt using

an access structure. So, a user private key is associated with an arbitrary number of

attributes while the access structure is described as a monotonic access tree where nodes

are composed with threshold gates and leaves describe attributes. In fact, the struc-

ture ("parent" OR ("doctor" AND "Antoine-Béclère Hospital")) can be defined to

grant access for parent and doctors from Antoine-Béclère Hospital.

The CP-ABE scheme consists of four fundamental algorithms: Setup, Encrypt, Key

Generation and Decrypt. In addition, there is an optional fifth algorithm: Delegate.

• Setup : The setup algorithm takes no input other than the implicit security

parameter. It outputs public parameter PK and master key MK.

• Encrypt(PK,M,A) : The algorithm takes as input public parameter PK, mes-

sage M, and access structure A over the universe of attributes. It encrypts M and

produce a ciphertext CT such that only a user that possesses the set of attributes

that satisfies the access structure will be able to decrypt CT .

• Key Generation(MK,S) : The algorithm is a function that takes as input a

master key MK and the set of attributes S that describes the key. The output is a

private key SK.

• Decrypt(PK,CT ,SK) : The inputs of the algorithm are public parameters PK,

ciphertext CT , which contains access policy A, and private key SK, which is the

private key for the set of attributes S. If set S satisfies access structure A then the

algorithm can decrypt the ciphertext and return a message M. Otherwise it returns

an error.

• Delegate(SK,S̃) : The inputs of the algorithm are secret key SK for some set of

attributes S and set S̃ ⊆ S. It outputs secret key ˜SK for the set of attributes S̃.

6.3.2 Related work

Many works in the litterature are using ABE to secure the access to data. The close three

solutions to our work are described in this section.

In [133], Persona, an online social network (OSN) with user-defined privacy, was pro-

posed. Persona hides user data with ABE, allowing users, not OSN, to apply fine-grained

policies over who may view their data. Each user can assign his friends to groups. At



84 Chapter 6. Social sensor networks

the beginning, each user generates an ABE public key and an ABE master secret key.

Then, the user can generate for each friend an ABE secret key corresponding to the

set of attributes that defines the groups that friend should be part of. A user has two

objects: abstract resources and user data. Resources are protected using Access Control

List (ACL) and user data is stored encrypted and can only be decryped by users belonging

to the group for which the data was encrypted.

In [134], authors propose a system to provide a secure access for electronic health

records (EHRs) in the cloud. There are three parties involved in this system: healthcare

providers, an attribute authority (AA) and a cloud-based EHR system. EHRs are en-

crypted using CP-ABE and a policy based on authorized healthcare provider’s attributes;

and to decrypt EHRs, a healthcare provider must possess the set of attributes needed for

proper access. EHRs are stored encrypted in the cloud-based EHR system. At initializa-

tion, AA generates the public key and the master private key. When a new healthcare

provider joins the system, AA derives a distinct secret key associated with its attributes.

Healthcare providers must regenerate keys after a predefined expiration date. An issue of

this solution is that the patient is not considered as a system user.

Another system for the secure management of EHRs was proposed in [135]. Authors

describe a variant of a CP-ABE scheme where the patient can encrypt its health records

according to an access policy which has attributes issued by two trusted authorities TA1

and TA2. TA1 authenticates users of the professional domain, and issue secret keys based

on their attributes. The patient, who can take the role of the trusted authority (TA2) of

the social domain, might use the reputation of the users of the social domain to generate

appropriate secret keys. For example, the patient can encrypt its health records such that

only a user, who has the attribute "Doctor" issued from TA1 or the attribute "friend"

issued by TA2, can decrypt it. Thus, the data is encrypted according to an access policy

P=P1 OR P2 where P1 is intended for the professional domain and P2 is intended for

the social domain. In addition, each measurement data has three related meta-data: a

number (MD), a category (DC) and an administrator category (AC). Consequently, P2

has this structure : P2=aMD OR aDC OR aAC , where ax is an attribute of category x. This

data categorization is intended to give the patient the choice of issuing keys to decrypt all

or part of the measurements. A shared issue between those solutions is the fact of storing

the encrypted form of data, which constitute a problem for the revocation and update of

keys.

6.3.3 Our solution

This section proposes a security scheme to protect user sensor data and let him apply

fine-grained policies over who may view his sensor data. In this scheme, data are still

stored clear for two reasons. The first one is for allowing components (Alert generator,
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Transformer, etc.) to analyse and transform data. The second reason is for allowing keys

revocation and easy update without the need to decrypt all the stored data and then to

encrypt them using new keys. Let assume the existence of a mechanism to protect access

to the user’s VM from outsiders and the administrator of the cloud infrastructure. Data

encryption is done when data is going out or may go out the isensors middleware. In brief,

data encryption is done when data is encapsulated at alerts sent through the eventing

server or when data is sent as a response to a query received through the communication

API. Note that data is also protected from the aggregator component which should have

rights to decrypt them due to external users that can subscribe to topics in the eventing

server.

CP-ABE was selected to encrypt data and protect the access to this data for many

reasons. CP-ABE has many advantages as discussed in Sec. 6.3.1. In addition, it facilitates

the management of access rights due to the use of attributes. When data is encrypted,

it is associated with a combination of a set of attributes (access structure). Thus, only

users having a private key that fulfil this required combination can decrypt the data.

This is very useful as the composite does not need to know the identity of the receiver

when generating alerts, so it encrypts data using attributes and a unique key instead of

encrypting using each receiver key or a group key. Similarly, when data is displayed in

the gadget included in the user’s friend portal.

6.3.3.1 System architecture

To get access to the social sensor portal, the user must be authenticated using either

a login/password pair or a public/private key. Thus, each user is uniquely identifiable.

The user have friends and is the friend of other users; he can choose his friends and can

request to be a friend of an other user, but he can not unless this latter approve the

request. These functions are provided, in general, by the social network infrastructure.

In order to protect his data, the user issue a distinct private key associated with a set

of attributes to each of his friends. Attributes can be roles, groups, affiliations and so on.

When alerts or responses to queries are generated, they are encrypted using the public

key of the user and an access policy which is a combination of attributes, only users (e.g.

friends) having the required combination of attributes in their private keys can decrypt.

To provide these features, the security scheme need two additional parties in the

architecture of the social sensor portal described in Sec. 6.2.2:

• Authorization Authority (AA) : it is unique and private for each user. It can

be integrated in the Sensor Social Directory. AA is responsible of the generation

and delivery of friends private keys and stores the user private keys. AA provides

an interface for the user to assign attributes to friends, and to generate, update

and revoke their private keys. When user U has a new friend F, the U ’s AA is
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triggered to let U assign some attributes to F and generate the private key of F.

Moreover, AA stores the private keys of user U delivered by his friends. These keys

can be used by other components (for example the aggregator component) and are

downloaded by U to use them in his browser.

• Local Security Component (LSC) : it is unique and private for each composite.

First, it is responsible of encrypting alerts using the user’s public key and an access

policy. So, an additional element is added to the alert scheme which is "access

policy". This field is filled at the time of alert generation in the Alert Generator

component. When an alert is received by the events manager, it is forwarded to LSC

for applying the access policy and then returned encrypted to the events manager to

proceed in its distribution. Second, it protects the access to GET queries through

Easy and Advanced APIs in the communication API component using ACLs which

are defined as lines of two columns. Each line contains the URL to be protected

and the access policy.

6.3.3.2 Key management

Key management is a tricky part which ensures the proper execution of the access man-

agement protocol and should be cost-effective.

Generation and distribution : At the begining and during VM instanstiation or VM

personalization, the Setup algorithm of the CP-ABE is executed. Then, when the user

has a new friend, he assigns him some attributes, generates a private key and sends it to

this new friend (or to his AA). In the other side, the user must receive her private key to

access his friend data. Note that the user should have a key with all the set of attributes

to get access to all his sensor data.

Revocation : To facilitate the management of the key life cycle, each attribute is tagged

with a version like doctor-v5.1 where ”5” and ”1” denote major and minor versions of

the attribute respectively. Whenever the user wants to remove the right of a friend to use

an attribute that he was authorized to use, he updates the minor version of the attribute

and distributes new keys to his friends who keeps this attribute. After a certain time slot

τa, whithout a minor or major version update of the attribute a, AA should update the

major version of a and redistribute the keys to friends having the right to use a.

6.4 Conclusion

The sensor social portal proposed in this chapter facilitates the integration of Sensor net-

works into Social Networking Sites and also provides a Sensor Social Platform to setup
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virtual composites that communicate with physical sensors and gateways or aggregate

data. These composites can be added by the user on instantiating some default compo-

nents or on uploading other manufacturer components (like drivers) for example. It also

extends the iSensors middleware, defined in Chap. 3, and makes it ready to be provided for

many users and organizations using cloud computing. In addition, the discussed solution

offers a security scheme to protect the access to user’s sensor data.
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Conclusions

Applications in WSNs are numerous and are spread over different areas where the network

is mostly specific to the application and uses heterogeneous SNs as well as communica-

tion systems. In addition, the proliferation of sensors make each person or organization

possesses heterogeneous sensors. Thus, data management complexity increases when con-

sidering WSN properties. This thesis has handled this complexity and presented new

approaches for the collection, management and sharing of sensor data. Sec 7.1 presents

a series of summaries of the achievements for each chapter of the dissertation. Then, we

propose further research directions in Sec 7.2.

7.1 Summary of the dissertation

Chap. 2 summarized different aspects related to WSNs and the related background to

our work. In the first part, the characteristics and limitations of the physical node has

been highlighted as well as their capacity to form a WSN and the impact of their capa-

bilities on these networks. Next, some applications of WSNs were enumerated to argue

their importance and widespread use in various fields. Then, important properties of

OSs were highlighted and TinyOS were presented as a sample. The second part was

devoted to discuss some adressed problematics in this dissertation while presenting the

most important related solutions in the literature. The first was sensor data management

in WSNs. While the second and the third were concerned with the convergence between

these networks and, respectively, cloud computing and social networking. Opportunities

and challenges of these issues were discussed to highlight their importance to revolutionize

sensor networks.

Chap. 3 proposed a middleware managing the reception, the storage, the indexing, the

aggregation of sensor data from heterogeneous sensor nodes and the generation of alerts.

We were interested to produce a middleware storing and processing data externally, unlike

tinyDB [72], in order to have a better response time due to the use of a high performance
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server where data is stored and indexed instead of collecting them from the network.

Moreover, il is flexible because it does not impose a specific format of data or a specific

program to load on sensor nodes unlike SWE [76] and QuadraSpace [75]. So, it is easily

interconnected to existing WSNs without the need to update applications. Furthermore,

we provide a RESTful API and alert server to allow external applications to interface

easily and offer other additional services using the stored data and the generated alerts

by the middleware.

In Chap. 4, we developed a system for monitoring water quality using the middleware

presented in Chap. 3 and we demonstrated the possibility of its interfacing to an external

application for data visualization. The system has been used in real-world experiments

and its performance has been proven in test campaigns. We imposed the property of

displaying data in a real-time manner for users which was not sufficiently investigated in

the literature. We used cloud storage and no-SQL indexing solutions to offer an unlimited

persistent and reliable storage and indexing systems in order to keep data for the long

term.

Chap. 5 proposed a security scheme to secure the communication between the middle-

ware and physical nodes, e.g. sensor and gateway nodes. It was applied in the context of

Wireless Body Area Network (WBAN). After the analysis of the security scheme defined

in [115], and discussed in Sec. 5.4, we found some issues such as the easy injection of false

data and the inability to analyze data on the SS. Moreover, we identified the different

properties and security level needs for each entity. Based on these observations, we pro-

posed a hybrid authentication and key establishment scheme which is performed in two

phases. The first one ensures the authentication and key establishment between the two

entities : a gateway and the middleware. These entities need a high-security level as they

communicate through the Internet and have enough resources to execute Identity-Based

Cryptography (IBC) functions. Initially, the gateway generates a public key using IBC.

During the authentication process, a pairwise key is established between the two entities

based on the C-DH problem and the gateway gets a private key generated by the mid-

dleware. After the success of this phase, each sensor node can initiate the second phase

in order to authenticate themselves to the gateway and the middleware. Also, the mid-

dleware authenticates itself and approves the gateway authenticity to the sensor node in

order to reduce the computation load in the latter. During this phase, SN can only verify

IBC signatures, and at its end, a three-party key is established and two pairwise keys

are shared between SN and both the gateway and the middleware respectively. Thus the

hybrid property is used to highlight the fact that asymmetric keys are generated and used

during the first phase while only symmetric keys are generated and used in the second

one due to the limited resources of SNs.

In Chap. 6, we realized that sharing sensor data among the users middleware to allow

their collaboration and knowledge sharing was very challenging. For that reason, we
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presented a secure social sensor portal for sharing sensor data between users. It is not

integrated in other social sites like the proposed works in [90, 136]. Instead, it enables

each sensor composite to provide its own generic or customized mash-up to be integrated

in the portal unlike the other systems that offer a separate visualization system like those

defined in Chap. 4 and [94]. In order to realise this feature, we hosted the middleware

defined in Chap. 3 in a cloud infrastructure for sensor networks to make it available for

many users as a softaware as a service (SaaS) where they have their private system to

manage their sensor data. Under those circumstances, securing access to user data became

a critical need to protect his privacy. For that reason, we propose a security scheme based

on Attribute-Based Encryption [132] to protect user sensor data and let him apply fine-

grained policies over who may view his sensor data. Moreover, we proposed a practical

mechanism to manage key life cycle such as generation, distribution and revocation.

To summarize, in this dissertation we covered the secure data collection from sensor

networks, its management and secure sharing in a multi-user SaaS.

7.2 Perspectives

The proposed middleware in Chap. 3 allows adding new composites which need to be

configured when data must be translated or alerts must be generated. Moreover, the

installation of a composite is not an easy task, despite its simplicity, for an ordinary user.

For that reason, we proposed the market extension in Sec. 3.4.2. This remains limited as

the user must seek the proper composite. Thus, adding an automatic discovery service in

the middleware to discover the user’s sensor nodes and download the proper components

from the market to interface with them.

Apart from adding new composites, it is important to send commands to the sensor

node from the middleware, for example after an alert to reconfigure or calibrate. More-

over, the traffic between them is not controlled by the middleware, so the push frequency

is not optimized in the sensor node unless a specific algorithm is running. In order to

handle these issues, a specific VM can be deployed on sensor nodes to create a commu-

nication tunnel between the SN and the middleware. Thus, the middleware can control

the traffic frequency, execute standardized commands on the sensor node and implements

the security scheme as defined in Chap. 5.

As a result, the formal validation of this security scheme, its implementation and

performance measurements are very important to validate the theoretical results already

proved in Chap. 5.

As a final but equally important note, finishing the implementation of the social sensor

network proposed in Chap. 6 is very interesting to test it and validate the design. Al-

though, some features need to be inverstigated. For example, how Bob can grant access

for Alice to the data of his friend Oscar who is not a friend of Alice. But, Oscar should
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be able to revoke Bob access and all of his granted friends or to refuse this grant. Using

ABE, Bob can grant access to Alice without any need of the acceptance of Oscar.



Appendix A

Isfet case study

ISFET [112] were used during the mobesens project. They measures the water pH and

temperature. The captured sensor data is sent to the back-end system in this format :

timeStamp;status;probeType;Vs;pH;Vt;temperature;pid

A sample of a sensor data :

1339599780;0;pH;1470;11.40;1870.6;13.8;2
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xquery version "1.0";

(: $Id: devguide_xquery.xml 15318 2011 -09 -07 19 :43:24Z dizzzz application/xquery $ :)

import module namespace request="http: //exist -db.org/xquery/request";

import module namespace session="http: //exist -db.org/xquery/session";

import module namespace util="http://exist -db.org/xquery/util";

import module namespace fn="http://www.w3.org /2005/ xpath -functions";

declare option exist:serialize "method=xhtml media -type=text/xml";

declare function local:transformerIsfet ($ sequence as item()*) as element ()*

{

let $count := count($ sequence)

let $seqelem := (’timeStamp ’, ’status ’, ’probeType ’, ’Vs’, ’pH’, ’Vt’, ’temperature ’,

’pid’)

return

if ($count = 8) then (: Verify fields number of ISFET Data :)

let $res1 := for $item at $id in $sequence

return

<metadata attribute=’{$ seqelem [$id]}’>{$item}</metadata >

return local:validateIsfet ($res1 , $count + 1)

else

<metadata attribute=’error’>measurement length {$count} is not the needed length

</metadata >

};

declare function local:validateIsfet ($seq as element ()*, $pos as xs:integer) as element ()

*

{

let $valiAttr := ’validation ’

let $validation_status := (’PreValidated ’, ’YES’, ’NOT’)

return if (fn:number ($seq[@attribute="status"]) != 0 or (fn:number ($seq[@attribute="Vt"

]) > 4000) or (( fn:number ($seq[@attribute="Vt"]) > 3200) and (fn:number ($seq[

@attribute="Vs"]/text()) > 3500))) then

insert -before ($seq , $pos , (<metadata attribute=’{$ valiAttr}’>{$ validation_status [3]}</

metadata >))

else

insert -before ($seq , $pos , (<metadata attribute=’{$ valiAttr}’>{$ validation_status [1]}</

metadata >))

};

declare function local:main () as element ()*

{

(: recuperation des parametres du request :)

let $nodeID := request:get -parameter("nodeID", "")

let $memory := request:get -parameter("memory", "")

let $data_id := request:get -parameter("data_id", "")

let $configID := request:get -parameter("configID", "")

(: recuperation des donnees :)

let $binary := util:binary -doc($ data_id)

let $input := util:binary -to-string ($ binary)

let $delimeter := if (not ($ configID))

then ’;’

else ’;’

let $sequence := tokenize ($input , $delimeter)

return local:transformerIsfet ($ sequence)

};

<metalist >

{local:main ()}

</metalist >

Listing A.1: Translation script of ISFET data.
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xquery version "1.0";

(: $Id: Tue 19 Jun 2012 01 :53:53 PM CEST -- application/xquery $ :)

import module namespace request="http: //exist -db.org/xquery/request";

import module namespace session="http: //exist -db.org/xquery/session";

import module namespace util="http://exist -db.org/xquery/util";

import module namespace fn="http://www.w3.org /2005/ xpath -functions";

declare option exist:serialize "method=xhtml media -type=text/xml";

(: CONSTANT definitions :)

declare variable $seq_types := (’jms’, ’rest’, ’rss+atom’, ’xmpp’, ’email’, ’sms’);

declare variable $seq_contentTypes := (’Text/xml’, ’application/atom+xml’, ’application/

json’, ’text/plain’);

(: recuperation des parametres du request :)

declare variable $nodeID := request:get -parameter("nodeID", "");

declare variable $memory := request:get -parameter("memory", "");

declare variable $data_id := request:get -parameter("data_id", "");

declare variable $configID := request:get -parameter("configID", "");

(: recuperation des donnees :)

declare variable $binary := util:binary -doc($ data_id);

declare variable $input := util:binary -to-string ($ binary);

declare variable $input_xml := util:parse ($input);

(: declare variable $input_xml := doc($ data_id); :)

declare function local:getFireAlert () as element ()*

{

(: trigger fire alert :)

if (( fn:number ($ input_xml // metadata[@attribute="temperature"]) > 60) and (($ input_xml //

metadata[@attribute="validation"]/text() = ’PreValidated ’) or ($ input_xml // metadata[

@attribute="validation"]/text() = ’YES’))) then

(

<alert>

<type>{$ seq_types [1]}</type>

<content -type>{$ seq_contentTypes [4]}</content -type>

<destination >{$ nodeID}-alerts </destination >

<msg>Attention !! *** Fire *** !! Temperature value is {$ input_xml // metadata[@attribute=

"temperature"]// text()}. </msg>

</alert>

)

else

()

};

declare function local:getNewDataAlert () as element ()*

{

(

<alert>

<type>{$ seq_types [1]}</type>

<content -type>{$ seq_contentTypes [1]}</content -type>

<destination >{$ nodeID}-updates </destination >

<msg>{$ input_xml}</msg>

</alert>

)

};

declare function local:main () as element ()*

{

(

<memory >{$ data_id}</memory >,

<alerts >

{local:getFireAlert ()}

{local:getNewDataAlert ()}

</alerts >

)

};

<GeneratedAlerts >

{local:main ()}

</GeneratedAlerts >

Listing A.2: Alert generation script to be executed on ISFET data.
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Ebro river campaign

B.1 Objectives

The Ebro river campaign was an opportunity to test improvements to the visualisation

interfaces of the back-end system and the new APIs, especially the interface to the KML

fusion file that links GPS coordinates to the sensor data: at the campaign, the coordi-

nates and the measurements are achieved by different means and devices to allow reliable

localization of the monitored sites. In this test, the back-end system has the key role

of ensuring monitoring of sensors and networking is supported and provided, following

deployment on a 24 hour basis. The back-end system offers analysis and measurements

validation services as well.

B.2 System description

As described in Sec.4.3, the gateway PC installed inside the Xerta station was connected

to a GSM/GPRS router in order to send the sensor collected data from the SinkNodes to

the back-end system. During the Ebro river test, data were sent to the back-end system

according either in real time or opportunistically in bursts when node connectivity to the

back-end becomes available.

B.3 Results

Since data sent from ISFET sensors can be corrupted or contain some errors, it was

necessary to provide a validation service from the back-end system to administrators

reinforced by a pre-validation service due to the massive amounts of data received from

the campaigns. The pre-validation consists of tagging measurements with a flag in the

meta-data associated to a measurement. This flag indicates the status of the measurement

prior to analysis by an operator for final validation via the graphical user interface of

95
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the back-end visualisation system. The pre-validation status flags are: ”pre-validated”,

”yes” or ”not”. The algorithm developed for this purpose is depicted in Fig.B.1. The

algorithm first verifies if the status flag indicates that there are no errors and if so checks

the measurement value against a legitimate interval. If the measurement falls within

the expected interval, the flag is set to the pre-validated status, otherwise it is declared

as not pre-validated. The administrator, operator or scientific expert can now approve

or disapprove the pre-validation by setting the flag to ”yes” or ”not”. To improve the

capacity of the administrator to monitor the status of ISFET sensors, the validation flag

is presented in real-time to the expert via the visualisation system interface as depicted

in Fig. B.2.

Figure B.1: Pre-validation algorithm.

The display of real-time ISFET data in a table is not very practical as it presents

to the end user only the latest data. This information does not reflect the measurement

status and dynamic changes. To improve visualisation of the data, a graph displaying in

real time the measurements and the received data history was added to the interface. The

graph display can be activated or disabled by the end user according to preferences and

needs. This interface, depicted in Fig. B.2, enables real-time visualisation of the ISFET

sensor data and thus remote detection of sensor failures.
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Figure B.2: Real-time visualization interface of ISFET data.

These tests were also the opportunity to remove some inconsistencies and inconve-

nient data representations. The visualization and interpretation of RSSI real time-data,

expressed in hexadecimal values, make the representation in the real time tables inap-

propriate because of fast RSSI changes as each node has an associated value for each

neighbour. A visual interpretation was preferred, developed and integrated in the in-

terface to allow intuitive interpretation and understanding of the networking situation

between the measurement nodes. A visualisation module was consequently added to the

RSSI real time interface to draw colour coded links to indicate the RSSI values between

nodes. Fig. B.3 illustrates how the real time RSSI data is presented in the visualisation

graphical user interface.

Another feature was also added so that when users point the mouse on a link between

two nodes, an information window is automatically prompted to display all information

on the selected link as shown in Fig. B.4.

When clicking on the RSSI colour configuration icon (or button), a dialog window (see

Fig. B.5) pops up to allow the user to configure themselves the associated colour for each

RSSI value.

During these last tests, CSEM deployed autonomous GPS sensors along with the

WiseNodes. These nodes do not send real time data to the back-end system but produce

after the measurement campaign a KML file that contains GPS coordinates related to

the localization of sites where measurements were conducted. There was therefore a
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Figure B.3: RSSI visualization interface.

need to fuse the GPS data (provided as a KML file) with the measurement data coming

separately from the ISFET sensor probes, to produce a richer KML file. The Fusion

algorithm is described in Fig. B.6. Using the resulting rich and fused KML file, points

where measurements were conducted are visualised using flags, and visited points are

visualised using squares. Clicking on a flag displays an associated window to display the

ISFET measurements made at the selected point.

As described before, the ISFET data were at first step validated automatically through

an algorithm, enabling at a second step the administrator or expert to validate data

manually through the visualization interface with the display of sensor history data. The

user can set the validation status to ”yes” or ”not” (as highlighted in blue in Fig. B.7).

The user can also export validate data in CSV or excel format as highlighted in red in

Fig. B.7.

The back-end system provides also the opportunity during and after tests to visualise

and to validate ISFET history data in tables as described in Fig. B.7. To ease the inter-

pretation of data, an interface that generates dynamic graphs in the back-end system was

available during tests to assist monitoring of ISFET measurement through the back-end

visualisation and interpretation services. Fig. B.8 presents a screen shot of this interface.

To generate the graphic, users select the day of the campaign, the ISFET identifier (PID),

the measurement parameter (Vs, pH, Vt or temperature) and the validation state of the

data (all states (field = all), pre-validated, validated (YES) or not valid (NO)).
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Figure B.4: Info window representation when moving mouse on a line.

Figure B.5: Configuration of pairs: RSSI value and color.
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Figure B.6: Fusion between KML file and ISFET data.

Figure B.7: Visualization and validation of ISFET history data.
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Figure B.8: ISFET history data visualization interface.
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