
HAL Id: tel-00814630
https://theses.hal.science/tel-00814630

Submitted on 17 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of memory management on distributed
machine
Viet Hai Ha

To cite this version:
Viet Hai Ha. Optimization of memory management on distributed machine. Other [cs.OH]. Institut
National des Télécommunications, 2012. English. �NNT : 2012TELE0042�. �tel-00814630�

https://theses.hal.science/tel-00814630
https://hal.archives-ouvertes.fr

��������������	A����BC�DB����E���F�����A	D��
���E��BD��	�D����D�		�����FA	D����	D�

����������	A	BCDEF�������

���E��	�E��EF���	A��������	ABCDE�F�������C�A��	A����D	���D�	���ABCD��D����A�

�F���C���	��F

����	���	��

�E�F	E���C�F	��	�F���	��

��� �!"	��	 �#���$	�!���"B�

���������������������������� ���!��
�"!���#$���������!�%" ��

�E���C��	��	%&	���E�F�	'%('																													

��)�C�	��	*�F+	�E��E��	��	A

�A�D�	DC���D�	���D��
��A������� F� !�"	�D��D�������D��D�#$��%

���	A	C	�!A�D��&�F�������'�F�������(C����A�
��))��	DC��

!*��AD��D�+,� �F ����D��DC�����A-D��A	���D� A��D�.
!*�(�/��	AD�� �!�F ����D��DC����A-D��A	���0,������

�1��A��	DC��
�!*�2D��3 C�� �!,FF� ����D��DC����-D��A	���AD��D�D	�!��AD�4C�AD��
�!*�4��A�	�)�D�4���� ����D��DC����-D��A	�����A��.5
�!�D*�(D����+,�!����((� !�"	�D��D�������D��D�#$��%�4��!

���������2012TELE0042

��������	A�B��CD

����������	A�B��ACDEAFF�����E�B�B��A���DDEA���B��������F���AEA�B���	F�B�����F�DAE��F�E�
�E���E����A����B���E���F�AC�A��A�B�����A���FA������F��FF���F��B�A�EAB���������BA��������
�A�D��������E���F����B�����F�A����E��A�A�B���E����B�A�����A�DAE������������E	��

������E�BA����B����AF����D��B��� �����������!��"E�A���BA�F�����B�A��B�AE��A�#AEF����
$�%&���E�B�A�E��A�DF���E�������FBE�B��A�DE��A��EAF��

������AAD������A#BA��B��B�A�!�AB���AFA����AE��A�B���E�B�A�F�����EF��D�B��FB�����#E�����
����F��B���	�$�%&���E�B�A�����������F�DD�EB��������B�A���E	���������B���F��

����������	A�B��B���	���������E�A��F��B�$�%&���E�B�A�E�F�DD�EB�����B�A�F��E����������A'F�
ACDAE��A�BF�

(�����������AAD���B���	�B�A����FB��B�A����E��A�A�B�����F�DD�EB�����������A��������
�������������D�EA�BF�����F�FBAEF��������#E�B�AEF��������A�����B�����������EA�����
�A����BA�B��F�B�AF�F�B������B�A��A�#AEF��������������

��������

�������������	AB����CD��E����E��F�A���B�������C�A���BB�B�F��AD�������FE���F�D����

�DFE�����������FBD��������DB���A��F������������������F���B���FB�D��������DB���F���������

��������D���A���BB�B�B���D������������A�������FE�BB����������D���������E��A������������

A���� ��C ������ ��A��� ��� ����� ����� � �� �D�� ����E � ��� ����B��� � �� ��DAA��� � ��F�������B �

A���BB�B�!�������C���D����C���������F�BB�����������E���D������C��E�����������FE��DB����

����������� �"������� � �� � ������BB� � �������� � C�� � �E���� ������� � �������� ��A��� � ���

D�D�BB��B�����������������D�����������������������������������F��AD���������

����������A���E�������������A��� ��A��� �����������D�������������#E�������

���������AA���FE�������B��C�FD������	AB��������E��F�A���B�������C����A�F��B�������$�

��FE���F�D��������E���C����F����� �A�����������A�����BD����� ���E��������������������

�B����� �����B��B� � ��C����� � ��BD���� � �DFE ��� �%�&� �� � ��� �'B���B �(���� ����� � �� � ��

F����)D��F����E����������CC�FDB����������F������CDBB��F��AB���������E��E�A��C�����F��

��AB������������C��A��� ��

(� � ��� � ����E�� � �����A� � �� � �D�B� � �� ��A��� � F��AB���� � ��AB���������� � C���

�������D��������������������*(+ �,��E�FE��������C���*E�F$A��������(���� ���BB�B�

+	�FD���� �,� E�� ����� �����B�A�� ��E�FE ����E � �E� � C�BB����� � ����- ��E�� � ���FE��� � ��

A���BB�B���F�������E����������E���������D�A�����������������������������B����.��E������FE�

�B�����	�FD��������CC�������E����.�����E�������C��E��A���BB�B���F�������B�����E�������	���F��

��� � ���D�� � �� � �E� ������� � �E���� � �E� � B��� � �C � �BB �����C�F������ � �E�� � E�� ����� � B�F�BB��

A��C�����.��E�����������FBD�����E��������C�F��������������D���������	�FD������

������������A������E��C������B�����C��E���A����������E��C��������������C�*(+�����

��AB��������D�����F��AB����FE�F$A�������"��������A��B�����������B������E������E���

�E��B��������D����C�����������C���������������E�����������E���	���F������C��E��B�����C�

����C�F�������C����F��AB����FE�F$A������B����������$�A��C�����F����D��E���������E���

������������������F�������A���BB�B�A���B���������C������E��/�����������F�������������������

����������B����E����)D����������C��E�����������

#E����E�������������A�����������E���AA���FE������A��A����������A�����*(+��

A��C�����F� � ��� � �� �����F��� � �E� � ������F����� ��� � �E���� ������ ������� ��������B�A���

%�*0 #��E�FE��������C���%��F�����D�D����F�������B�*E�F$A��������������F�������B�

FE�F$A������� � ��FE��)D� � �E�� � �DAA���� � �E� � ���B��� � �� � ���� � ��F�������B � FE�F$A������

���F�����D�D�B���D������E���	�FD������C���A��F�����/���������E��%�*0 #���E���	�FD�����

�A�����C��E���������������C�*(+����������C�F���B����F�������������	��AB����E����������

F��AD�����B����������	������	�A���DF����������$��A�FBD�����E�����F�������������B������

�E� � �	�FD���� � ���� � �C � �E� � ���� � �A����!�� �� � � A������� ���������� � �E� � �A���DA�

����F����� ����E � �E�� ������������ � C�� ������D� ��D���� ��C � �E����� � �� �)D��� � B����� � C���

��CC������A���B�����!����

��� �E��������C��E���������� ����A��A�����1"23*���E�FE��������C���1A������

"����������2�!��3�B�����*��������F���������C�������������C��E��"����������2�!��

3�B���� �*��������F� � 4"23*5 ������� �����B� � �� ���$� � �� ����� � �AA��A����� � �� � �E��

FE���F�������F���C�*(+�� ������A��������B�����E��������AB�������E�����FE����!������

�����A��� �������E������FB�D������������F�����������B����A�F�C�����#E�����������$��

���D�����E�����B����C���*(+�������A�F���E������������E�������

���������	ABCDE�EF�A�C�	C��EC��EB�B

�� ������	���	�	AB�CD�E�F�A	���� ����E�A��A������AED���A�	�� ������������	AB�

C��	�DE � F�������� � ���B�����B� � �B�A������E� � �D�E��B�A�� � �� � ��� � �����
�A��DA	���A	�������������A� ������D�!��"�D#��	AB�����D�$���B���������%&���
' !���%&��()�*��D	A)��D	A)�+�$D�	D��%&����

%� ���� ��	� ��	�	AB �CD�E �F�A	���� ���E����	�D��������	�A� ���	��E�E ��� ����F�

�	E�D ��� ���EA��������E � �A������	� ��B�A������E� � �D�E��B�A�� ��� � ��� � �����
 �A��D�AE� ��A � ����A�E	���A�) � ������D� �	AB����A	� ��D�E����A� � '�	EF���
%&��(����E��D�)� 	A	B)�,������%&����

-� ���� � �	� � �	 � 	AB � CD�E � F�A	���� � ����!��� � �������	�A� � �� � ���F � �E��� �

��EA��������E � �A������	� � �B�A���������� � �D�E��B�A�� � �� � ��� � �����
�A��DA	���A	� � �A��D�AE� � �A � ���� � ��D��D�	AE� � 	AB � ����A�E	���A� � %&���
'�� .%&��(��/	A��)� 	A	B)�������$�D�%&����

0� ������	���	�	AB�CD�E�F�A	�����C��	�DE�	������A��������������	��������"���#��

�����E�������D�#������$�E���E��E�������F����B���EA��������E� �A������	� �

�B�A����������������D��A������	D���,B����D��������1�D#������/���B�A������!�2��
3�A�D	���A � �� � ,����E	���A � �E��A�����) � 	 � �	D� � �� � ��� � ���� � 	AB � , 4�
����D ������A�� �A��D�AE��%&���'� ��(����	����)�5�,)�!�6��$�D�%&���

7� ������	���	�	AB�CD�E�F�A	���� ���E�������	�EB	��D%���������D����������F��
�D�E��B�A� ��� � ��� �8�� � �A��DA	���A	� �1�D#������A�9��A4�� '�194��%&�%()�
F���)���	��)���D�A��D�:! ��;-%�)�����%<%.%<<)�=�A��%&�%��

��� ��� �������� �

������

�����	ABCDEF��B��EB����D�������	B��������B����B��D���EE�EB���BEEB����B�EB�����DDB���EB��
���EEB���EB��������B����E���D�F�B��B�����B��DE������B��B���EB������B��B��EB��������B��
��E��������� � �� � E�����B �	B �D�F��������F� �����B��BE � B� � ����EB � � ���E��B� � �B��B � �
	��BEFDDB���!��DF����	B���B�	��D�F�����B����"DB�#$�%�&�B������������EB� ����E��B��
B������	B�D����B���'�B� ������D������ ���DDF��B����B�D���EE�E�����F��������B���EB��E��
DF���(�E����	B�	�������	�������B�B���EB��F�(�B�	B���E��	ABC�����F���B����������'�B� �
�B����������B��	AF�	F�����B�B����)BDB�	������F��B��E�������������EB�B����F�*��DF���
	B� � ������B� � ����F��B � D������B� � "DB�#$� B�� � ������EB�B�� � ���� � E����� � DF���
B��B���B��	B����E��E������	B��������B�� ����F��B�	�����(��B�

!B��F�(�B��B���FE���F���F�������B�����B��DF�������B��F���B��"DB�#$�����	B��
������B�� ����F��B�	�����(��B��+B���DD�F��B��EB��DE����(F���B���B��F��B���B�������
E,BCDEF�����F� �	,��B �������B����B � ���B�� � �D����EB � B� �	F�� ��B �DB��B�� � �F����� ���B�
�FE���F��F��B��B��!A����B���F���(���B��������B��FE���F��EF����BEEB�	�- �	��DF��(EB��BEEB�
��B�!#.�%/&%0&��#$1�%2&%3&�F��4EF(�E�������%�5&��B��D����F�����B����B��F���B���	B��
	������E����DF����F��������B���DE��B�����F��	A"DB�#$��F�DE��B�B����F��F��B�B�� �
����B�DB��F�����B��

)�$6�7�DF�����������	A�	BCD�E�ECF�������C�����A��	�7�B�����B��FE���F��
�E�B������B�DB��B������	B�	��BEFDDB����B���DE��B�����F���F��F��B�	A"DB�#$�DF���
EB��������B�� ����F��B�	�����(��B��+A�	�B�B���E���������B�8�B����������� ���B��B���F��
D���EE�EB��EA����B�	��A����E���9��B�B�������B���	��B��B���B��F��B���C�B��E��B��:�D�����
�����B�B��E��B�BC����B�EA���	B� �A����E�C: � � E������	B�E���B���F��D���EE�EB� ������B�
A����E�� B��E��B� � BC����B�� � ��B � E���B � 	B � �F��B� ��F	�������F�� � ����� � ��� � B��B����B��
EF��EB�B���B��E���B��F�B����A����E���9��B�:�EB�A����E���9��B�������B��B���F	�������F���
B���BD�B�	��F��BC�����F��

�����	B�D�F��B��E�������(�E����	B��B��B��DD�F��B��E��D�B����B��B���F��	B�)�$6�
;)�$6��<�%�=&%�>&%�?& � � � ��� � ��DE��B���B � B� � ���E����� � 	B� � DF���� � 	B � �BD���B�
�F�DEB����)BDB�	�������B����E��B �D��E�������B ����F�������B�E������	B����������	B�
	F���B� � ��������B� �B���B � EB� �A����E�� B� � E,BC������F� �	B� E� � E���B �	B� ��F	�������F���
	BD����EB��DF�����	B��BD���B��F�DEB����F�	���� �	B����(EB��DB��F�����B���!B�DE����
�B��B ��B���F��B�� � E�����B� �	B� �D�F(E��B��D���EE�EB� ������������� � EB���F�	���F���	B�
@B����B��� � ����B�B�� � 	��� � �E � �B � DB��B� � D�� � 	B � D�B�	�B � B� � �F�D�B � EB� � 	F���B��
D������B��

+AF(-B���� � 	B � �B��B � ����B � B�� � 	B � D�FDF�B� � 	B � �F��BEEB� � �DD�F��B� � DF���
���E�F�B� � EB��DB��F�����B��	B�)�$6�B��	�D���B�� EB���B�������F������� EB��	F���B��
D������B��

���	ABC�DE�����F���������������F��F��������������	ABC���

�����BF������

+A�	�B�������EB�	B�����B�)�$6�B���EA���E�����F��	B�DF�����	B��BD���B�DF�����DE��B��B��
EB��F	�EB�	ABC�����F�����������	C	A"DB�#$�

!����E��D�B����B��B���F���)�$6�B���E������ �	B��D�F�����B���F��B�����	B��
����F�� � D���EE�EB� � ������������ � EB� � �F�	���F�� � 	B � @B����B��� � B� � EB� �A����E�� �F���
�B�DE�����D���	B��D�F�B����������	AA��B�	�����(��������	B��������B��	�����B��B���+B�
D�����DB�	B�)�$6�B���EB���������8

����=�� ��� �������� �

���	�(����EB�D�F�����B�B���BC������	��������B�E�D�F�B���������EB�D�F�B�����
��9��B��+F����B��B�D�F�B������B��F���B���B�����F��D���EE�EB�8

� D���B �����C8 � EB � ������E � B�� � 	����� � B� �D����B� � DE�� �DB���B� � D�� � EB � D�F�B�����
��9��B�����	�(���	B������B��F��B����EB�D�F�B�������9��B����B����DF����	B�
�BD���B��F�DEB��B��EAB��F�B� ���B�������B�	������B�DF������B�����D�F�B�����
B��E��B��6�����B��EB�D�F�B�������9��B��F�����B���B��E��D����B��������B��A�E�����
E�B����D����EB�	B���B���F��B����EB�D�F�B�������9��B����B�	�EB������E�����	B��
D�F�B���� � B��E��B�� �)����B �������B � 	������B � ���E��B � EB � DF��� � 	B � �BD���B�
��ABEEB����B*��DF����BD�B�	�B�EB�D�F�����B����	�(���	B����D����B��B�B��F���E��
D����B��B�����B��EB�����E����B���BC������B�����E�������������B�DF����	B��BD���B�B��
E� � 	�����B��B � 	A��B� � EB � DF��� � 	B � �BD���B � ������E � B�� � �B�F���� � �� �D�F�B�����
��9��B��6������EB�D�F�B�����B��E��B��B����B��F��BC�����F��:

� D���B����	C8��D������B��F���EB��D�F�B�����B��E��B��F����B������EB���BC�����F��
B����B�EB�D�F�B�������9��B����B*���F���EB������E�����	B��D�F�B�����B��E��B���EB�
D�F�B�������9��B��BD�B�	��F��BC�����F�� �E������F���������B�	��D�F�����B��
C��B��F�B���E ���E��A������A����B�E�D�F�B�����������	����EB�������B�

+B��F	�EB�)�$6�F���B�	B�C��������B��D�����D��C�8

� �E�B����F�D���(EB���B��EB��F	�EB�	B����F��B�D������B �������EC��	���A�	��C
	A"DB�#$�8 � EB� ����F��B� � 	� �D�F�B���� ���9��B � B� �	B� �D�F�B���� � B��E��B��
�F��B�DF�	B�� � �B�DB����B�B�� � ��C ����F��B� � B� � ��C � ��B� � �B�DF����B� � 	��
A����E� ��9��B � B� � 	B� �A����E�� B��E��B� � 	� � �F	�EB � 	A"DB�#$� � +F�� � 	B�
EABC�����F� � 	B � �����B � D����B� � EB� � D�F�B���� � B��E��B� � �A���E��B�� � ��B � EB���
B�D��B����F��B�D�FD�B� �6���F�����B��B� ��B��F	�EB�DB��B��	B���	���B� EB�
�B�D� � 	A����� � � E� � ���F��B � �F����B � B� � 	F�� � 	A����B��B� � E� � ���B��B�
	ABC�����F��	��D�F�����B��C�EABC�����F���E��������F������F��	B�����F��B��
	B� � D�F�B���� � B��E��B� � �AB�� � D�� � ���B�����B � D�����B � EB� � �F�	���F�� � 	B�
@B����B���	F��B���A��B����������B���+���FE���F��DB��B������	B�����F��B���B��B�
�B�������F��B���D���B���B�B��.B���D�:

� E� � DF���(�E��� � 	B � 	�����(�B� � ���F������B�B�� � EB� � ����F�� � D���EE�EB� � B� � 	B�
�B��B�EE�� ����F������B�B��� EB� ����E��� �	B��D�F�B�����B��E��B��; �D����� �	B��
DF�����	B��BD���B<�DB��B��	B�	�D���B��EB�����F�����B����	B������B���DD�F��B���
�F��B�)E���B��"DB�#$�	A1��BE�F��EB���FE���F���(���B������#$1�F��4EF(�E�
�������6���D���������EB��EF�B�����F��B���F	����B��EF���	B�EABC�����F��	A��B�
�B���F� � 	� � D�F�����B� � 	B�C � �E��B��� � ��DF������ � 	� � �F	�EB ���������	 C
DB��B���A��B����E��������F������B�B����B���B��������F���(B�F���	A���E��B��	B��
	��B����B� � ��DDE��B�����B�� � +B � D�B��B� � B�� � E� � 	�����(���F� � 	� � ������E � ��C�
D�F�B�����B��E��B��:�EB��B�F�	�B���E������D�����F��	B������E�����	ABC�����F��
	����EB��D�F�B�����B��E��B���)B��	B�C��E��B�����F��������	������EB�� ����E��B��
��B��EB������B���DD�F��B��������� �EABC�����F��	B�D�F�����B��"DB�#$�����
	B��������B�� ����F��B�D������B� �����	B�������B�DB��B���A��B��F���	���B��
�F��B�	B���FE���F���B�����B�B����F��F��B�B�� �����B�DB��F�����B�

�����BF��������	ABC����F�����D�������������������

+��F��� �� �D���B��B� E� � ���	����F��B��B����B ���� �����F	B� ���E���� ���B ��F��������F��
"DB�#$�����������������B���F��B��EB���������F���	B�E��(F��EB �	� �������������EB��
�F�	���F�� �	B�@B����B��� �$F�� � ����E��B� � E� �D���B�����F�� ���DDF�F�����B� EB ��F�(�B�
	A�������F���	B�E��(F��EB��F������E�����F�(�B�	B�D�F�B�����B��E��B���+B�D��B�����AB���
 �	��B�EB����	���9��B����E�������B�	B�E���B���F��	B��B��E��B��B���ABC����B������B�
�������F��	B�E��(F��EB�	����E��D����B�D���EE�EB��GF��B�F�����B����AB���D���F(E����F��B�B��
EB � ���	 ���9��B � DB�� � D�B�	�B �D��� � � EABC�����F� �	A��B �F� �DE���B��� � �������F�� �	B�

����>�� ��� �������� �

(F��EB��+�����	����F��B���(���B�����EB���F����F����������B��8

� A���B��C������D����B����DF����	B��BD���B��F�DEB��B��EAB��B�����B�	����EB�
�����B���������+����EB����B�F����B�D���E���F����F��B������E���B�DF���	��B����B��
���E���F����F����B���	B����B��EB�DF����	B��BD���B�F�����BEEB��B�F���B��D����E��
�BD���B�	B � EABC�����F� � �D����� �	��DF��� �	B��BD���B� �)B��B � �F����F� �B�� � �����
����E���B� �EA�DDBE�������B����E���������B�A���B���B��F�B�F�����D������F���
�������EB�DF����	B��BD���B�B���������D����E���BD���B�	B�EABC�����F��	��DF����	B�
�BD���B�:

� A��� � C �������� � �������� D� �FD�B � EB � �F��B�� � 	B �������� 	����
�������:

� �����C�������������������������	D�B��B�����B�	�����������E��E���B�
	B� ��F	�������F�� ���� �	B����B�� �A��B � �DDE����B� ���� �������C DF�� �F(�B����

F����B����#F	�EB�DF���EB��(F��EB���������������
	A"DB�#$���B��	B��DF�����	B��BD���B��F�DEB���

����?�� ��� �������� �

�������:

� ����� � C �������� � �������� D� �DDE���B � E� � E���B � 	B� � �F	�������F���
B��B������B��	��������������DF����	B��BD���B��F��B���	�����������:

� ���B���� � C ������ D� �B�F���B � �D��� � ��B � �F��B� � EB� � �F	�������F�� � �
B��B���B������EB������B��������F�������B��:

� ���B��B�C������D��BD�B�	�EABC�����F��	��D�F�B�����B���F���� �D������	��
DF����	B��BD���B��F��B���	���������

+AFD�����F�������F�����B� ��BD�B�	�B�EABC�����F��	B��DF�����	B��BD���B���������
DF��������B��������F��	B�(F��EB�;E��E���B�B�����E���B�	����E��F�����<�B���BC�����B�����
EB����	���9��B�������	�E����B� ����D�F�B�����BC�B��B�B�������B�	B�E���B���F��	B�E� �
	�����(���F��	B��D�F�B������������B��B�(EB�	B��B��F���B��	������B���@"1H)�����E����
	��� � EB � ��	�B � 	� � D�F-B� � .B��IJF�B� � B�� � D�F(�(EB�B�� � EA�� � 	B� � F���E� � EB� � DE���
��E�(�B��������� �	�����(�B��	B��������C��������B��B�(EB�	B��B��F���B���)BDB�	�����
	B��F�(�B��B������B���FE���F����F��B��)=��H��(����"DB�HB(�E��B��K"�+����F���
���EB�B���	��DF��(EB��

�����	�F�E�����E�����FE�����������D�������F�	ABC

@�B����B� E� � �����(�E��� �B� � E� ��F���B��B�	B�)�$6���B�� ���� �D�F���B� � � E� � �F�� �	B�
������B����F����B�B��D�����B���DE��B�����F����B�D�F�F��DB��AB���D���FD����E� �����B�
	B��B��������E��B������	�������������������B�B���E��DB��F�����B��EF(�EB�B��E��������
	B�������B���DDE�����F����+B��D�F(E��B��EB��DE�����DF��������F���EB�����������8

�� �	�CA���CB��	E�C���	A�A�CE�CE�		���CA��	������C���C��C��������+B�D�F�B�����
��9��B �� �(B�F���	AB��F�B� ��F�� ����B��F��� E� � �F��B�	A���DF��� �	B��BD���B�
�F�DEB�� ������B����	�B��E��B��)B��B�����������F���F�	���� �	B�C��E��B����
��DF���������������B��B���E�����������	B�	F���B��B��F��B������EB����B���8�EB�
D�B��B��B�����B��B���������������F�������	��D���B���A�E���F���B��B����F��B��EB��
���F�����F�� � E��B� � �� � D�F�B����� � 	F�� � EB� � 	F���B� � 	� � D�F�����B� ������
����F�� � EB � �F	B � 	� � D�F�����B� � �BE�� � 	B� � (�(E�F�����B� � ��ABEEB� � �F�B���
D������B��F���F���B�����B��	B���B����E��B���������������������DB�	�����F��B�E��
	���B�	B���B�	��D�F�����B�:�EB��B�F�	�B�����A�E���F���	�����B����DF��������B�
�������F��	B�(F��EB��B��D����F�����B�����B�EB�D�F�B�������9��B�	F���EB�����B��B��
EB��B��F�B������B���BEEB�B�����C�D�F�B�����B��E��B��:

=� ��CA���CB��	EC	�����CE�C����������	�C���C���C���	A�CE�C�������C������A� C

���	CE���A�����C��C�����A�ACE������A��	C���C���C	 �E�C�����!����)B���	B��B���
���DF�����������B�EF����B�EB��DF�����	B��BD���B��F�������	���EF�����B�E�����EEB�
	������E��������E�B���DB���B��!�����B�������������	��F�(�B�	B��F�D�����F���
�F���B��B����B���B���������B��B�������������B�B���EB��B�D��	ABC�����F������
EB�����	��B��E��B��B��	F�����	����E��DB��F�����B��EF(�EB�:

� �	�CA���CB��	E�C���	A�A�CE�C�������C	���������C��C�A����B�CE��CE�		��� C

A������������!�����B�D�F�F��DB��DE���B����DF�����	B��BD���B�F���(B�F���	AA��B�
����B���	���;����� ��� �B����B� �!�����<��+F����B�E�����EEB�	B��B��DF�����
	B � �BD���B � B�� � ����	B� � �B�� � ���B��B � ������������B�B�� � EA���E�����F� � 	B � E��
���F��B�:

>� �	 C E���� C ���� C E�������"�����	E�� C ��� C ��������� C A��� C �����A�	A#� +B��
D�F�B���� �B��E��B� �B� � EB �D�F�B���� ���9��B �	F��B�� �	�����B�L�BD�B�	�B � EB���
BC�����F� � DF�� � �����B � ����F� � D���EE�EB� � +B� � D�B��B�� � F�� � E�B� � EF�� � 	��
E���B�B���	B��D�F�B�����B��E��B�� �D������	B��DF�����	B��BD���B��+B��B�F�	���
E�B� � ��� � EB � D�F�B���� ���9��B � �D��� � ��F�� � �B*� � EB� � ����E���� � 	B� � D�F�B�����

����D�� ��� �������� �

B��E��B��������	A���E��B��F����B������E�����	�����F��B�D��B�	A�	�B����B������BE��
+��DF���(�E����	B��B���B� �-F���	��B��B�B���E�����F��B�	A���D�F�B����� �D������
	B�����F�����F����F��B��B��	����EB��DF�����	B��BD���B�DB��B�������	A����B���B��
���F�����B���:

� ������B�A��	CE�C��A�������C ��� C��	E�A��	�CE�C$��	�A��	� �"DB�#$����F���B� E��
������F������F� � 	B � E� ����F��B � B���B � EB� � 	�����B��� �A����E�� �� � �B�� � 	B��
����F�� �D���EE�EB�� ���B� �)�$6��� � ����� ���������B ��B � DB��B� � ��B � �BEEB�
��DE��B�����F���!B�DE����EB��	��B����B��B���E���B��	A"DB�#$����F���B����C�
�����(EB��D������B����BEEB����B����"�B���B#�������"�B������B����"�B���
���B���"�B����$�%AB�� ��B�����B��F���D����F���	���B��	�����B�D�F�F��DB��
��������B��	B�C��B�������F���E����B���	B�������B���DF�����B�EB��D�F�����B��
"DB�#$�DF������A��B�BC���������B��)�$6�

���B���������F��F�������F�����E���������������
��������������	A��BCDC��EF	��C����������� �!"	#B$�

�����BF������

+���B������B�	B��DF�����	B��BD���B�������B����C��F�����B� ���F�MB��	������������B��
EB��D����B��	B�E�����F��B�����F����������B�� �-F���	BD����EB�	�(���	B�EABC�����F��	��
D�F�B�����F��	BD����EB�	B���B��DF����	B�D���B��!A���DF����	B���B�D������B���B���DB���
A��B����E����B���B�	����EB��D��B�����F��B�����B���(EB��B��EB����B��B�EB�B���������	B�
�F��B�� EB�������B� �	�E���B����������E �.14.64N� ���D�F�B����������B��F�����A��B�
D��B�B�������	�B�B���������B��C�E�����BD��F��	B��B������E����B��FD�B�	B�E��D��B�B���
����B���	�B�	����������DF��B��EB��	�F����	A������ ��B��B�D��B��F����B�������� �EB���
��EB�� � ������EB� �+F����A���DF��� �	B�D���B�B�� �����B���	�� � EB ��F��B���	B��F��B�� EB��
D��B� ��F	����B� � �F�� � �F�D���B� � � �BEEB� � ����B���	�B� � 	��� � EB � ���DF� � B� � EB��
	�����B��B���F���B��B������B��	����EB������B��	B�DF����	B��BD���B�

+A�	�B�D�����D�EB����F���B� �E���B������B�	B��DF�����	B��BD���B�������B����C�
	���F�������;!1)K$G<�B���E���D���������F��	B������F���	��D�F�����B�	B�����A��B�
D���B��B���F�D�B�	����EB�DF����	B��BD���B��)B�����F�����F����F����F����B��B�����E������
	B� � 	��B����B� �D������ B� � DB��B�� � A��B � ��DE��B���B� � B� � ���E����� � 	�����B����
��������B���BE����B�EB��������C��EB��DF�����	A���A���B����G�F���	��B����B� �D������F���
����	�����B��8

� ������� ��AE�B� �B��B�8� 	�����B� � �� � DF��� � 	B � �BD���B� � �AB��� �	��B�
������E��B��EB����DF��	B��DF�����	B��BD���B�:

� ���������AE�B��B���8����DB�	�B�EB�DF����	B��BD���B���AB��� �	��B�B����B��EB�
���DF��	B��DF�����	B��BD���B�:

� ���������AE�B���"������ABC��8�����B���	B��EB�DF����	B��BD���B�	����EB�
�����B������ABC��B����������E��B��EB����DF��	B��DF�����	B��BD���B�

�����%&E��E�����������F'�F�E����

$F����F�D��B��EB��DB��F�����B��	B��B��B��F��BEEB��DD�F��B���B���BEEB�	B��DF�����	B�
�BD���B�������B����C��F����C���F�����F����B�����EB���B��B���������D�F�����B�	B�
��E��E�	B���E��B��������B������	A��B����9�B�	B�#��MF���)��F����=��!B�C�����F�������
�B�����8 ���B��EB�D�B��B�� ����E������ E���B������B�	B��DF�����	B��BD���B� ������B����C�
�F����C�����D�B��B��DF����	B��BD���B�B���B��B��������DF����5�;E���B�2<��D�����������B�
���DF������;E���B�=�<�:�EB��B�F�	��E��� �E���B������B�!1)K$G������B�EB�DF����	B��BD���B�
���DF����5�B��	F���EB�D�B��B��B���B��B��������DF�������!����EB��	B�C��������B��B�����B�

����/�� ��� �������� �

	B��B��B����	A������F�����E��E������DF����=�;E���B�=2<�B�����DF����	B��BD���B�B����������
�D���������B���E��E��HF��B�DE��B��F��B�	B��B���B����F�DF��B�	A���D�F�B��B���1��BE�
)F�B=�!�F�62?55���	B���� �>�4JE���B��>�4F�	B�O�#�B��FD����D���B(�����3��5�
����E��(��B�	���F����+���C�=�/�>��=���B�B�����+B���(EB���11�D���B��B�EB���B���B��	B�
DB��F�����B�DF���EB�������B����EEB��	B��B��B����;H����E� �>>=5��//?5��33/5�B���>=25�
�E��B��� � �B�DB����B�B��<� � $F�� � �����B � ���EEB � 	� � �B��B��� � EB� � DB��F�����B� � �F���
�B����B� � >5 � �F�� � ;EB� � ��EB��� � �F�B��B� � �F�� � �F����B� � 	��� � EB � ��(EB��< �B� � ���
���B���EEB�	B��F������B�	A����F����33�P����F�-F��������F(�B���DF���EB���B���B��������
	A����B� � E� � DFEE���F� � 	�B � ��C � ����� � 	����B � ��� � EB� ��B���B�� � �F��B� � EB� � 	F���B��
;EAB�D��B�	A�	�B����B������BE�	B��D�F�B������EB��DF�����	B��BD���B��B���<��F�������	B����
B�����F��B����B�

+��D�B����B��B���F��	����(EB���11�D���B��B�E�����EEB�	B��DF�����	B��BD���B����
DF��� � � � ;�AB��� �	��B � -���B � �D��� � EA������E�����F� � 7 � �F��B � 	��� � EB � ��� � 	��
��B�MDF���B��� ������B���E ��F���EB< �B� ����DF����=�;�F�� � -���B��D��� � EB���E��E �	A���
�F��B����B��B��<��+��	�����B��B�B���B�EB��	B�C��F��B�DF�	� �E�����EEB�	B�E��������B�	B�
��������F� � ��� � B�� � ������E���B � �� � 	�(�� � 	� � D�F�����B� �)B� � 	F���B� ��F���B�� � E��
�������� �	AB�D��B ����F��B �DF����� �A��B ���F�F����B �B� ��(��	F����� � EB �DF��� �	B�
�BD���B����DF������B���	B�E���A�B�������B���F��B���EB�DF����	B��BD���B�DB���A��B�DE���
��D�	B�B�����������������EB����B���������B�����B�

+� � 	B�C���B � �B���F� � 	B � �B ��A�B � ��(EB�� � ��	���B � EB � �B�D� � �B���� �DF���
BC����B��EB�D�F�����B������B��B�����B��	B�DF����	B��BD���B��B������B���	�����F���EB��

F����B�=��$�F�����B�	B���E��E�	B���E��B��������B������	A��B����9�B�	B�#��MF��

����0�� ��� �������� �

DF�����	B��BD���B��B��B������B���	����EB��DF�����	B��BD���B����DF����=������B�B����
6EEB��B��B�����	B��B���B�EB�����FQ����DE�����D���E����������F��EB��DF�����	B��BD���B�
���DF����=�B�����������(EB�;B���B���D�P�B��>�>�P�DF���EB���55�DF�����	B��BD���B���F���
B���B�5�5��P�B��5�5>�P�D���DF����	B��BD���B<�D�����DDF����������FQ����	����D��� E��
��������F�� �E���F���EB��DF�����	B��BD���B���C�DF�������B��=�;EB��B�D��	ABC�����F���F��E�
��������E��DE���D���2�D<�

+� � ��F�����B � �B���F� � 	B � �B � ��(EB�� � �F����� � EB � �B�D� � 	ABC�����F� � DF���
�BD�B�	�B � EABC�����F� �	� �D�F�B���� � � EA�������F� �D5 �	B � E� � (F��EB� �!B�C � ��� � �F���
B���������8�EB�D�B��B�����E��B��F���EB��DF�����	B��BD���B���AB��� �	��B���B�EB�D�F�����B�
B����B	�����������DB�	�����	�(���	B�E���F����F��D�����D�EB�;����<���F���EB��DF�����	B�
�BD���B��F�����-B�����	����EB�D�F�B�����B��EABC�����F���BD�B�	� �EA�������F��D5�	B�E��
(F��EB�:�EB��B�F�	��A���E��B���B�EB��DF�����	B��BD���B����DF����=���AB��� �	��B���B�EB�
D�F�����B�B����B	�����������DB�	���D����EA���DB�	A������E�����F��;DF�����<���F���EB��
DF�����	B��BD���B����DF����=��F�����-B�����	����EB�D�F�B�����B��EABC�����F���BD�B�	� �
EA�������F��D5�	B�E��(F��EB�

+B���B���B��	B�DB��F�����B���F���B�����A����B��EB�DF����	B��BD���B����DF����
��B����F�-F����(�������B�

$E����������E�F����

>>=5 //?5 33/5 �>=25

$E�������������������F��F��������()�

R�����DF�����

R�����DF����=

?=��3=

5�5�>

�/2�0?�

5�5=/

>03�/?2

5�5>2

/0?�3�=

5�5D�

$������*�������������E���������������

R������������B��	B�DF�����	B��BD���B

R��B������������F���EB��DF�����	B��BD���B

R��B������������B�EB�B���EB��DF�����	B��BD���B����DF����=

���>?

�>��5

���0�

?��>5

D2��?

?=��/

�52�=0

>3>�/5

�53�3/

�/2�/3

�?>>�0=

�0��05

$������*����������E�F+��F����EFE,��-��*���FE�����./�����
���������

R��B�����E������EB��DF�����	B��BD���B���C�DF�������B��=

R�B�����E�������B�EB�B���EB��DF�����	B��BD���B����DF����=

/�?�

/�53

=>��?

=��2?

D3�D/

D/�/?

3>�3�

22�0�

G�(EB������S��E����F��	B��DB��F�����B��	B�!1)K$G�

�����A&E��E,�����������&�������

$�� � ��DDF�� � � E� � �B������B � 	B� � DF���� � 	B � �BD���B � ������B����C � �F����C� � �B��B�
�F��BEEB��DD�F��B���EB��DF������F����B��EB��DF��������(EB����������8

� ��B��	A�A��	CE��C ��������	���� �!1)K$G�����B��B�E�����B��B�	ABC�����F��
	��D�F�����B�	����EB��	B�C�D���F	B��FT�	B��DF�����	B��BD���B�;��������	A�<�
�F���D����F���B	��������;����!���	B<��!B�DE�����E��	�����B��F��B�B���E�����EEB�
	B��DF�����	B��BD���B�:

� ��B��	A�A��	CE�C��C���������A�CE��A�����A��	��!1)K$G�DB��B��	B���EB���F��B��
	��� � EB � D�F�����B� EB� � ����F�� � � D�B�	�B � B� � �F�D�B � DF�� � EB� � DF���� � 	B�
�BD���B��+B�����	A���E�����F��	B��DF�����	B��BD���B�������B����C��F����C�;B��
�F��	���F������<�B�� �F(�B���B���-F������EB��	��B����B��!1)K$G� ��B��B� B��

����2�� ��� �������� �

�B���B��D�B����B�B��	B�����B����������F���B�DB����B�B���	��D�F�����B�:

� ����ACE�CE���C	��!�����C�������A��C�	A������	A��CE�	�C�DF���+��D�B����B�B���
EABC������F��	B��DF�����	B��BD���B�	����EB������F���	�E�����B���DF������A��B�
	��-F���B���+���B�F�	B�DB��B��	A��-B��B��	��B��B�B������DF����	B��BD���B�	����
EAB�D��B�	A�	�B����B�	��D�F�B�������(EB��)B��D�FD�����������E��B���EABC������F��
	B� � ����E���� �	B� EABC�����F� ���� � EB� ����	� �B��E��B� �B� � EA���������F� �	B ��B��
����E�����	����EAB�D��B�	A�	�B����B�	B� �A����E����������F��� �EB���B	�����B���
)B��	B�C�D�FD�������D������DB� �EA���E�F����F��	B��DB��F�����B��	B�)�$6�:

� ��E�����A��	CE�C��E�C������C8��AB���EA���F�����B���EB�DE�����DF��������	����D���
EA���E�����F��	A�����������	A����+A���E����B���	F��������B��	B��	��B����B��	����EB�
D�F�����B�DF�� � ��	���B� � EB� � ����F�� � ������� � EAF(-B� �	B �DF���� �	B � �BD���B��
GF��B�F����EF����A�� ���������	A��� B������E����	����)�$6���B��B����B���F���B�
�����	B�������B����F������B�D���EA���B���	����B�	���F�D�E��B���	B�)�$6��$���
�F�����B�����B���B����F�DE��B�B��������D��B���DF���EB�����E����B����	B�)�$6�

� ���B��	A�A��	CE��C���	A�CE�C�������C8 � EB��DF�����	B��BD���B��A������D���D����
	A����B�E�(EF��;�E���F���B��F�����D�����B�D���B ����������AE�B��B��B�B��
���������AE�B��B��<���E���B�DB��B���D���A��B�����F�����B�����DF����	B�
�BD���B������B� ������� �DE���B���� �����B����F������B�����B��DF����F��B���� EB��
DF�����	B��BD���B�	B�(EF���	�����B�����)B�����F�����B���DB���	B�B�����A�����
EF����B�EB��DF�����	B��BD���B������B��B�����B��A�B�EF�B�	B����F��B�

0� � 	ABC � DE�� � ��F � ��� � ������ � �� � F��F��� � ���F�����E���
�	ABC���
C��B� -F��� �	B�C��B���F�� �	B�)�$6�F�� ���� �	��BEFDD�B�� �+� �D�B����B � ;)�$6��<�
���E��B�	B��DF�����	B��BD���B��F�DEB����+���B�F�	B�;)�$6�=<����E��B�	B��DF�����	B�
�BD���B�������B����C��$F���	B������F���	B����DE�������F��B���������	�����F���F������B��
	����E������B�	��	F���B����)�$6��B��������B��B� �)�$6�=�

0����BF�����&�������E��FE�������

)�$6�B���(�����������B��B�(EB�	B�D�������B�� �	F����B�����B���F������F���B����C�
	��B����B� �!1)K$G� D���B���B� � � E� � .B�� � >��� � EB� � ����B� � ����� � ��� � 	�����B� � DE���
�D�������B�B���DF���)�$6�8

� �B��B�C�D� 	�����B �F� � �B	�����B ��� �DF��� �	B � �BD���B �B� � ������E����� � EB�
���DF� � 	B� � DF���� � 	B � �BD���B� �)B��B � 	��B����B � B�� � ���F���B � � E� � 	��B����B�
�B��B�	B�!1)K$G�:

� �B���C�D����DB�	����DF����	B��BD���B�B��B���*����EB����DF��	B��DF�����	B�
�BD���B��)B��B�	��B����B�B������F���B� �E��	��B����B��B���	B�!1)K$G�:

� A���B��C������D�B��B�����B�EB��F��B���	�����DF��	B��DF�����	B��BD���B�
	����EB������B��������D������������E��B�EB����DF��	B��DF�����	B��BD���B��)B��B�
	��B����B�B������F���B� �E��	��B����B�A���B��	B�!1)K$G�:

� � &�AB�C������D��B�� �-F���EB�D�F�B������F��������B��EB�����F�����F���
�F��B��B��	����EB�DF����	B�D���B�������)B��B�D�������B�	�����B�	B�E��D�������B�
F������EB�� &�AB�	B�!1)K$G��	����EB��B���FT��B��B�D�������B��B��B��D��� �
-F��� EB �DF���B�� �	A���������F�� ��AB��� �	��B���A�D������F�� ���� ����� � -F��� � EB�
D�F�B���� � �F�����B � �F� � BC�����F� � ��B� � EA���������F� � ������� � EA�DDBE � E��
�F����F��:

� ���B���C�D� �B�F���B �F���� EF����B�EABC�����F���AB��B���B�����EB�D�F�B�����

����3�� ��� �������� �

��9��B��B��������	����EB������F������B��)B��B�D�������B�DB���A��B���DE��B���B�
 �D������	B�E���F����F����B����A���� %��:

� �� ��C ����� 	� �ADE�� D� B��F�B� EB��F��B���	�������B� ������ ������	�
ADE��:

� ���B�����C������D� ���B�	���B��F���EB���E��B����	�������B� ������ ��B���
����F�����:

� ���B����������C�D��B�F���B�F����EF����B�EB�(EF��D���EE�EB��F������B���EB�
	B���B��(EF��D���EE�EB�	��D�F�����B�B��������	����EB������F������B�:

� ������C �������� � �������� D ��DDE���B � E� � E���B � 	B� ��F	�������F���
B��B������B��	����EB������B�����������������B���������:

� !����A��B�C������D�B��F�B�EB�DF����	B��BD���B ������ ��F���EB�����	��
B��E��B���)B��B��F����F���B�DB���A��B�BC�����B���B�����EB����	���9��B�:

� ��A��"��C������D����B�	���B�EB������B���������F���	��DF��(EB�:

� ��B����A���� %��C�D��B�F���B�EB������F�	��D�F�B������F������:

� ��B� %�����A������C�D��B�F���B�EB��F�(�B��F��E�	B�D�F�B�����

0����(��+������F��E������F�������������������

+���F��������F���������������B���E���F��������F��	B���D������F��	B���'��B��
E� �DE�� � �F�DEBCB� ����� � ����� � E� �DE�� ����E���B� �+� � ������F�����F� �	B ��B��B�
�F��������F� � B�� � ���� � ������EB � B� � DB�� � �B���� � �F��B � (��B � DF�� � E��
������F�����F��	B������B���F��������F���	�	��B�� �E����D������F��	B���'��B���+B�
�F	�EB�DB��B������	B�������F��B���B��B��F��������F���B���E���F��B�)�$6�B���
D���B��� � B� � F��� � >� � 1�����EB�B��� � EB � D�F�����B � B�� � BC����� � ��� � �F�� � EB��
D�F�B����� � +F����B � EB � D�F�����B � �����B � ��� � ��B � ����F� � D���EE�EB� � �F��
BC�����F� � ���� � EB � �F	�EB ���������	� � �F��B � 	��� � EB ��F	�EB �)�$6��� � �
EABC�BD��F��	B����F���DF�������DF����������������8��<�EB�D�F�B�������9��B����B�
B��B��F�B���C�D�F�B�����B��E��B��	B��DF�����	B��BD���B�������B����C�;E���B��?�
B��D<����E�B��	B�DF�����	B��BD���B��F�DEB���:�=<�EB������E�����	����EB��D�F�B�����
B��E��B� � �F�� � BC������ � 	��B��B�B�� � B� � ���E����� � 	B� � DF���� � 	B � �BD���B�
������B����C�;E���B��2<�����E�B��	B��F�D��B��	B��DF�����	B��BD���B��F�DEB���:�
>< � EB� �DF���� �	B � �BD���B ��F�� � ������� �	��B��B�B�� �	��� � EB� �D�F�B���� �DF���
�B���B� �-F���EB��B�D��B�����F��B�;E���B��3���D�B��=><���������F���(B�F���	B�
EB���B	����B��

$�����DDF������D�F�F��DB�)�$6�����BE������D���B��B�EB���������B�����������8

� ��E��A��	CE�C��C���	A�A�CE��CE�		���CA��	�������C���C��C������#�+�����EEB�	B��
DF�����	B�D���B�!������B���(B���F�D�DE������(EB��!����EB�����	B�)�$6�=���B��
DF�����	B�D���B��B��F���B��B���������EB�B�����A��������DB�����F�(�B�	AF��B����
���	�����B�EB��DF�����	B�D���B��F�DE����	����EB�����	B�)�$6����F���(B���F�D�
DE�� � ����	�� �!��� � EB � ��� � FT ��� �!����A��B� B�� � B��B���� � � E� � ��� � 	B � E��
�F��������F�� � ��B � E���B � 	B� � �F	�������F�� � B�� � ��������B � ��� � EB � ���B����
)BDB�	���� ��B��B� E���B���������EB�B�����B����EEB�DE���DB���B���B��BEEB�	A���
DF����	B��BD���B��F�DEB���!B�DE������B�(F��B���DE��B�����F��	� �(�F�	�����
DB�����	���B�������������B�B���EB��B�D��	ABC�����F��

�����5� ��� ��� �������� �

� ��E��A��	CE�C	�����CE�C����������	�C����C��A�����CE��C�����A�A� C���C ��� C

	 �E�C�����!��C%� ���E�����EEB�	B������F������F��B��F	����B������EB�����	��
B��E��B��B���DE���DB���B���B��BEEB�	B��DF�����	B��BD���B��F�DEB�����B��F�(�B�
B�����	����	A�������:

� ��E��A��	 C E� C �� C ���	A�A� C E������� C������� C 	��������� C ���� C �A����� C ��� C

E�		���CA������������+B��DF�����	B��BD���B ������ ����B����B��!������
	����EB�D�F�F��DB�)�$6����B��F���DE������E�����	����)�$6�=��B���F��B���
���DF��DF���EB��DF�����	B�D���B�������B����C���B���B����-F����������������EEB�
B���DE���DB���B���B��BEEB�	B��DF�����	B��BD���B��F�DEB���:

� ������ C ��A�	�� C��CE������B�C " C& C �� C������� CE�C �������A��	CE��C���������C%C

��'�B� �E��D�������B �� &�AB� 	� ���������	A���!1)K$G��EB��DF�����	B�D���B�
!�����������B����B���� ���DB��B���A��B����������	��B��B�B���	����EAB�D��B�
	A�	�B����B�	B��D�F�B�������������EB��D�F�B������B�	F��B���DE���A��B�	��������
F���BD�B�	�B�EB���BC�����F�� �D������	A���DF����	B��BD���B�B���D����F�����B����
EB��B�D��	ABC�����F���EF(�E�DB���A��B���	����

F����B�>��#F	�EB�DF���EB��(F��EB������������������E������	B��
DF�����	B��BD���B�������B����C�

������� ��� ��� �������� �

0����%&E��E�����������F'�F�E����

�����	B���E�	B���F��B��DD�F��B���F�����F������E����	B���B���B��	B�DB��F�����B�����
���E���A��C����A����F�DF���	B����	�� �(��B�	B�D�F�B��B����1��BEU�)F�BV�=�!�F�
62?55���	B����� �>�4JE������������=�4F�	B�O�#��BCDEF�����D���EB��F����+���C�
=�/�>D���B��B(������B���F���5��5�B�����B��F��B�����D���������B���6��B��B������	��	�
 ��55�#(L��������	A����B�����������B�DF���(EB�EB�����E�B��B��BC����B��B���EB�������B�
�������F���������C�B������DB�	�����F��B�E��	���B�	B���B���B��

+B�D�F�����B����E����DF���EB���B����B������D�F	����	B�������B��	F���E�����EEB�
����B�	B�>555W>555� ��=555W�=555��+B��������B���F���	B��B��B���������E�F�����B�
�D�������B � �A� � ��� ���� � B� �����B � DF�� � D�B�	�B � B� � �F�D�B � EB� �������B� � ��B��B���
)����B�BCD���B��B����������E���B�����F�����5��F���B��������B���EEB�	B��F������B�	A���
�F����35�P����F�-F��������F(�B���DF���EB���B���B���+B��	F���B����DDF���B�������F���
EB���F�B��B��	B���5��B���B��

+B��F����?�B� �D�D���B��B���EB� �B�D��	ABC�����F��B���B�F�	B�	��D�F	��� �	B�
������B��DF���	�����B�����F�(�B��	B����	��B�����EEB��	B�������B���6��	�D���	�������
��B�EB��D�F�B��B�����F�B���	F�(EB������������B�E���������������E����EF���	B���B���B���
G�F�� ��B���B� ��F�� � �BD���B���B� � ������B� �F���8 � ������B� ��BEEB �	B �)�$6���: ����
��E�B����BEEB�)�$6�=�:�B�� �	�F��B���BEEB�	B�#$1��+B�D�F�����B�#$1����E����������
	��BEFDD��D����F���F����B��B���FD������������	B�E����B�������C�����E����������	B�
	F���B���������B��

+��F����?�D���B��B�EB��B�D��	ABC�����F��DF���	�����B�����F�(�B��	B����	���
+� � ���EEB � 	B� � ������B� � B�� � �F������B � B� � ���EB � � �=555W�=555� �)BDB�	���� � 	B��
�B�����B� �����E���B� �DF�����B�� ������ �DF��� EB� �����B� � ���EEB� �	B�������B�� �"��DB���
�B�����B����B�������	����EB�����	B���F������	���EB��B�D��	ABC�����F��B�����E������	B��
DF���� � 	B � �BD���B � ������B����C � B�� � �F�-F��� � ������B�� � �� � �B�D� � 	ABC�����F� � B��
���E������	B��DF�����	B��BD���B��F�DEB����$E���EB��F�(�B�	B����	��B�������	��DE���
���(EB�B���EB��B�D��	ABC�����F��DF���)�$6�=�B��#$1��!B�DE����EB��B�D��	ABC�����F��
DF���)�$6�=��B���DD�F��B�	B�DE���B��DE���	B��BE���	B�#$1� ��B���B���B�EB��F�(�B�
	B����	������B��B��+B�����	B�)�$6���B���	�����B����+F����B�DB��	B����	���F���

F����B�?��GB�D��	ABC�����F��;B���B�F�	B�<�B���F����F��	���F�(�B�	B����	��

�����=� ��� ��� �������� �

���E�����DF���EB���E��E�;-����A ���<��EB��B�D��	ABC�����F��(����B�����	�EB��F�(�B�	B�
���	������B��B��B��E����EB���B������BE�����E���B���C�	B�C�����B������;)�$6�=�B��
#$1<��GF��B�F����DF���	B�DE�������	���F�(�B��	B����	���EB��B�D��	ABC�����F��DF���
)�$6���	B��B���	��B��B�B���D�FDF���F��BE�����F�(�B�	B����	���)B���B���	Q� �E��
���������	B�	F���B�������F�����������B������EB����B�������	B��B����������DF������;�E���
������F�������DF����	B��BD���B��F�DEB��DF��������B����	�B��E��B<� ��A�B��� �E��
���������	B�	F���B�������F���B��B����B�B��������B�����B��DF��������B����	�B��E��B�
B�����	���B��)B������E���B�B���-��������EA���E�����F��	B�DF�����	B��BD���B�������B����C�
DF���)�$6�

6�����B��EB��DB��F�����B��DF�����F������	��DB��B���D���9��B�������B���B�����
�B�D��	ABC�����F��DF���)�$6���DE������(EB���B�DF���)�$6�=��6����������B�����DB����
�F�(�B�	B����	��� E�����������	B�	F���B����������B��	B�����	��B��E��B���B��� EB�
���	���9��B�B���D�B���B�E���A�B���B�EAF�����E��B�	B��DF�����	B��BD���B��F�DEB���F��
������B����C��D�����B�	����EB��	B�C�������B�����	B�D����B�	B��������B��B������B� �
-F���D����������	B��B��E��B���!B�DE����EB����	���9��B��B�	F���B��F�B����A���DB��� �
�F�(�B �	B �DF���� �	B � �BD���B� � �B ���� � ���� ���B � EB � �B�D� �DF�� � �B��B �D���B �	B��B���
���E��B�(EB�	���� EB � �B�D��	ABC�����F�� �F��E� �GF��B�F��� �	��� �EB ���� �	B� �DF���� �	B�
�BD���B � ������B����C� � EB� � D�F�B���� � �F�� � ����B�EE�� � ���� � 	B � ��D���B� � EB� � D��B��
���F��B� � ����	�B � B� � �������B� � +B � ����FQ� � ��	��� � D�� � �B��B � ����B�EE���B � B���
D�FDF���F��BEEB� �E�����������	B���E��E�B�����B��B�B���D�FDF���F��BEEB�����F�(�B�	B�
���	��:�BEEB�B���	F���������EB��B�	����EB���	�B�	B��F���B���B��EF����B�DB��	B����	��
�F�� � ��DE������ � JB��B��B�B��� � �B�� � �AB�� � D�� � �� � D�F(E��B � DF�� �)�$6� � !B��
D�F�B��B���� ������B���F��B�������������F���	�- �	��DF��(EB������EB��������B���D���
�F�����B��� �)�$6 � ���B � 	B� � ������B����B� � ����� � �� � �F�(�B � 	B � ���	�L������
(B���F�D�DE����EB���

+��F����D�D���B��B�EB��B�D��	ABC�����F��DF���	B�����EEB��	B�������B��	�����B��B���+B�
�F�(�B�	B����	�����E��������B���>���)BDB�	�����	B���B�����B������E���B��DF�����B���
A��B�����B��DF���EB������B���F�(�B��	B����	�����	�����+�������B��F���B��E���B�B���

F����B�D��GB�D��	ABC�����F��;B���B�F�	B�<�D�����DDF��� �E�����EEB�	��D�F(E��B�

�����>� ��� ��� �������� �

��B�EB��B�D��	ABC�����F��	B�)�$6���B���	��B��B�B���D�FDF���F��BE����������	B�E��
���EEB � 	B� �������B�� � ���	�� � ��B � EB � �B�D� � 	ABC�����F� � DF�� �)�$6�= � B� �#$1 � B���
	��B��B�B���D�FDF���F��BE� �E�����EEB�	B�E��������B��)B���B���	Q�����������B�E�����F��B�
	B� �D�F�B���� � �B � �F�DF�B �D�����D�EB�B�� �	B� �������B�� � B� ���B �D�B���B � �F��B � E��
���F��B������BEEB�	B��D�F�B�����B�����������B�����EB����B���EF���	B�EA���E�����F��	B�
DF�����	B��BD���B��F�DEB������B��)�$6�=�B��#$1��EB�����F��B�������BEEB���B��F���
D�����������B������EB����B���B���B�EB��EB��	F���B������F����������B�� �-F���EF���	��
��E��E�	��D�F	����������B�������B��F���D���B��B���F�D�B��!B�DE����F��DB����B�����B��
��B�EB���B�D��	ABC�����F��DF���)�$6�=�B��#$1��F��������D�F��B���B�B����E��B�B��
D�F�F�	B���	B��DB��F�����B���F���B���B�EB��B�D��	ABC�����F��	B�)�$6�=��AB�����B�
�5�P �DE�� � ��DF����� � ��B � EB � �B�D� � 	ABC�����F� � 	B �#$1� � ���� � DF�� � EB� �������B��
>555W>555�FT�EB�����F�B���	B���>�

+��F����/��F���B�EA����E�����F��	B�)�$6�=�DF���	�����B�����F�(�B��	B����	��
B� � ���EEB� � 	B �������B� � +� � E���B � B� � DF����EE�B � �BD���B��B � EA����E�����F� � ���F����B�
��C���EB� �)B��B � �����B ��F���B � �E���B�B�� � ��B � E� � �FE���F� � B�� � B������B � ��B� � ���
�B�	B�B���;��DDF���	B�EA����E�����F������EB��F�(�B�	B����	�<�	B�EAF�	�B�	B�0D�P� �
35�P��6EEB��B��������B�����	B��B���B�DE���E�����EEB�	B��������B��B�������	B��DE���EB�
�����B�����B��B�B�����DF��������B������A������D���EB�������B��)�$6���

0�0��	���������

)B��B��B���F����D���B����)�$6�=��E���F��BEEB��B���F��	B�)�$6�(���B�����	B��DF�����
	B��BD���B�������B����C����B��EB���F��BEEB��D�FD��������F����B��D���!1)K$G���B��B�
�B���F����DB�����	B�����F��B��EB�������B�D�B��B���DF��������(EB��	B�)�$6���;)��
.B���=�><�8��<�E� ���	����F��	B�E�����������	B�	F���B����������B������EB����B���:�=<�E��
��	����F��	���F�(�B�	B��F�D�����F���DF����BC�����B�EB������E�����	ABC�����F������EB��
���	��B��E��B��:�><�E� ���	����F��	B�E�����������	AB�D��B����F��B�DF�����F�MB��	B��
	F���B� � �B�DF����B��: � B� � ?<�EA�E�������F�� 	B� � D���B� � 	�����B�L�BD�B�	�B � 	B��

F����B�/�8�����E�����F��B���F����F��	���F�(�B�	B����	��

�����?� ��� ��� �������� �

D�F�B�����DF���������B��EB��DF�����	B��BD���B�	����EB����B�D��B���B�DB�������GF��B���B��
���E�F����F���F���DB�����	A����F9��B�������������B�B���EB��DB��F�����B���EF(�EB��	B�
)�$6�

D��$���B�B���F�D�B�	B��	F���B��D������B�

.����1�����+������E�C�	��DC��E�C�	�E��	�CFCE�C	�������C���	
�231�	�

"DB�#$�B���(��������EB��F	�EB�	B����F��B�D������B ������E�������EC��	���A�	����
!��� � �B ��F	�EB� � �F�� � EB� �A����E�� D�����B�� � ��B ����F��B � �F����B� �GF��B�F����
�����B�A����E�DB������EB�B���BC����B���������D�FD�B����F��B�EF��EB������B�����B���B�
�B�DF����B�	B�E�����F��B��F����B��+���F���B��B�B���B� E�����F��B�EF��EB�B�� E��
���F��B��F����B�B������E���B�D���EA���E�����F��	B�E��	��B����B���%�#��B���DDBE� �E��
	��B����B ���%�#� DB��B� �	B��B�	�B ��F���B��B� E� ���B� �B�DF����B �	A�� �A����E� B� � E��
���F��B��F����B��$����F���B��BEEB��A���B��B�D���EB������B��A����E��

1E � BC���B � 	B�C � ��DB� � 	B ���%�#� 	��� �"DB�#$�8 � EB � D�B��B� � ;��������A CF��
�����A�!�C�����<����B����B�	B�D�����B��EB�������(EB���F��B���B��B��EB��B�F�	�;B����� C
�����<��B��B���B���������D�������B��$F���E�������A�!�C�������E���F���B��B�B����DDE����B�
�����B�B�������EB�������(EB��D������B������	�����B�DF���EB�B�����C�������E���F���B��B�
B����DDE����B�����EAB�D��B����F��B��F���B���B��

+B��F	�EB�	ABC�����F��	B�(��B�	B�)�$6�����	B��������B���F�F���B�������B�
E���F���B��B�B���B�EB�����F��B��	B��D�F�B�������9��B�B��B��E��B��	����EB������F���
����B���BEEB��B��EB��DF�����	B�	�(���B��	B�����	B�����F���D���EE�EB���C�EA������E�����F��
	��D�F�B�����B��	����EB������F�������B���BEEB����F���EB��A����E��BC����B���EB���A�B��
���������F�����E��F���	F���EB���A�B��B�D��B�����F��B���1E�B��B���	B��A�B�DF���EB�
	�(�� � 	B� � ����F�� � D���EE�EB� � ;����� � E� � 	�����F� � 	� � ������E � D�� � EB� � �F��������F���
D���EE�EB�<��C�E������	B���F��������F���D���EE�EB����F���EB��A����E����-B��B���EB��A�B�
B��B�(EB�	A�E��B�����F	��������B������B�	�EB����B�D��B�����F��B���F���B������������
EB��B�E �D�F(E��B��B����� � ������B� �B�� � E� ��F���B��B�B���B � EB� �A����E�� ����B���	B��
�B���F���D���EE�EB��B���EA��DE��B�����F��	A�����������B�DF���E��	��B����B���%�#'

$F���E��DE�D����	B���DD�F��B�����E������EB��F	�EB�'��������EC(�)�C*������ C
��	���A�	��� ;J+O)<� � �� ��E���� ��� � ��B � �FD�B � 	A��B � D��B � ��� � �� � ���	 � 	�������
�F�DF��B���F���D���B��D�����D�EB��8

�� ����EB����	�	�������8���E��E�	B��	�����B��B��B���B�EB��D��B��;�������F����E���B�
	B��E����<�B�����E������E���F����F��	�����D����B��F�B���B��	�����B��B��������	�
�����:

=� ����EB����	�����C%��DDE�����F��	B��	�����B��B���B*�B�� �E��D��B������:�D�����
��E��E � 	B� �	�����B��B� � B���B � EB� � D��B� � B� � B��F� � 	B� �	�����B��B� � �� ����	�
	�������:

>� ����EB����	�	�������8��DDE�����F��	B��	�����B��B���B*�B�� �E��D��B�

$F���EB �B�����C�������EB��D���B�����	B������F����DDE����B��DF��������B�D��B�
D������B�	��A����E�

!����EB�����	B�)�$6��EA�E�F�����B����	B�����DB���A��B����E����	��B��B�B���B��
�F���	��������B�EB����	���9��B�B���EB����	������B����B��B��D��B�����F��B���F���EB��
D��B� ��������)BDB�	����� �E������B�	B�EA���E�����F��	B�DF�����	B��BD���B��EB��FQ��	B�
EABC�����F��	��������DB���A��B���	����B��	B�C�������B���GF���	A�(F�	������EB�����	��
B��E��B�� � E� � �F����F� �A���B�� 	� ���������	A��� ������B���E � DB�� � �B�DE��B� � E��
�F����F�������D�����ABEEB���F���BC���B�B���EB��A�B�������E��!B�C���B�B��������EB�
���	���9��B��EB��F�(�B�	B��F�D�����F���B����F���	���(EB�B�����	���������B�E���B�

�����D� ��� ��� �������� �

	A�E��B�������F��B���F	����B��	B��F��B�� EB��D��B��D������B��B�� ������B��B�B� � E��
�F����F�������B����DDE����B������B��B�E���B����E�B��	B��D��B���������!A�������B�DF����
	B���B���B��B�E���B��F���B���EB������E�����	B�EABC�����F��	B�����	��B��E��B������F���
�DDBE��E���F����F� �B�����C�������!F�����B������E�����DB��B���A��B�����F�����	����EB�
	B���B������E���� �E������	B�E������F��D���EE�EB��6���B�DE��B�B���	B�E��E���B��F	����B�
D���EAB��B�(EB�	B��D��B����������B��F	�EB�B����DDBE���F	�EB�+�E�A�EC'����$���EC
(�)�C*������C��	���A�	���;BJ+O)<�

.����1*���������E�����������F����&��������E�����E���������E���
���������EF�E,�����*4���(B

+B�	B���B��D�F(E��B����F������C�	F���B��D������B���F��B��B�EA��DE��B�����F��	B��
	��B����B� � B� � 	B� � �E���B� � "DB�#$� � $F�� � EB� � 	��B����B� � � B� � �E���B� ��#������
B#�������"�B��� ���"�B��� ����B���"�B��� ���B���"�B��� A���� ��

A������"�B�� B� ��B	����F���E���FE���F���F�����B� �	��E��B��B�����E��B��	B�������(EB��
EF��EB����C�E����B��	���������B�D�F�B������B��B�����������EB�����������F������B�����B��
DF���������E��B���B�������(EB��B�LF���B���B� �-F���E����EB���	B�������(EB��	AF�����B� �E��
����	B���F��������F����+B�����	B����%AB�� �B������DB��DE����F�DEBCB�B�����B����B�
�� � �����B�B�� � ��DDE��B�����B� � B�B � �FE���F� � DF���(EB � �F�����B � � ���E��B� � ��B�
�F�(�����F��	B����EB����D����BEEB��	����EB��DF�����	B��BD���B�����EB�����	��B��E��B��
B��	B�EB���B��FEEB��B������EB����	���9��B�DF���B�������E��EB��E����EB���	B�E����	����F���
B�B�����B��FE���F���F�����B� ���E��B��	B���F����F����D����EB������EB�����	��B��E��B��B��
��9��B�DF���B��F�B��F���B�B�F��B�	B����EB����D����BEEB��	B�E�������(EB��B	���B��

+��������F�����F��	A���D�F�����B�"DB�#$��F��B�����	B��	��B����B��B���	B��
�E���B� � ���F���B� � ��C � 	F���B� � D������B� � B�� � 	�����B � B� � ��F�� � ���DB� � EF�� � 	B�
EA���E�����F��)�$6�8�;�<�EB��	��B����B��B���E���B���F��B�����EB���A�B�������(EB���F���
����F���B��: � ;=< � EB� � 	��B����B� � B� � �E���B� � �F�� � �B�DE���� � D�� � �� � B��B�(EB�
	A���������F�� � ������EB��B��: � ;>< � EB� � �F	�EB� � 	B �)�$6 � DF�� � 	B� � �F��������F���
"DB�#$��F����DDE������DF���������F��B��EB�D�F�����B��B���EB�E������B�	B�(��B�

.������5������������F����&��������E����

1E�DB��������B����A��B������(EB��F��������B���B�	����DE���B����	��B����B��B�LF���E���B���
!�����B��������E�B���DF���(EB�	B�EB�����B�B�� ���B��F��B������B��$���BCB�DEB��	����EB�
�F	B���������8

(������������B#�������"�B��C�)�D�
(�������������������������A���� �C�)�D�
����C�F�*���*���D���*

E��	��B����B�	B�E��D�B����B�E���B�DB���A��B���DD����B�B������F���B���B��E���E���B�
A���� �C)D�	B�E��	B�C���B�E���B��)B��B����EB�DB������EB�B���A��B��DDE����B�DF���
����F��B���B��B�	��B����B�B��E���E���B �A������"�B�'�)B���B���������E���(EB� �(�B��
	A����B������

.������(��+���,���FE��

+� � F��� � 0 � D���B��B � EB � �F	�EB � ������E � DB��B����� � 	B � ������F��B� � 	B� � (F��EB��
������������'

C� EA������E�����F�� � �F�� � EB� � (EF�� � �F�� � ������F����� � � � �F�D��� � EB�
!������!��AE��� B���!��AE���)�B�!��AE� B� ���B���!��AE� �����F�����	B���
$�����EB��F	�EB�B����DDE�����	B�������B���������B�DF��������B�	��B����B�F���E���B�B��
����F������EB��D����B��������F���B��	B�E��	��B����B�F���E���B��F��B�DF�	���� ������B�
���DB�

�����/� ��� ��� �������� �

.������)���������E��FE��'�F�E����

+B���(EB���=��F���B�EB��(EF���	B�������F�����F��DF���EB��	��B����B��B��EB���E���B��
���F���B����C�	F���B��D������B��	A"DB�#$��+B�����	B���E���B� �A������"�B�� B��
���%AB�� ��B��F���D����F�DE��B�B����F������	�����B���(EB���;��������������	����E��
����B<��C��B�-F����EA��DF����B�����B�������B�B�����B��F��B��EB�������(EB���F���D������B��
D���	������B��)�$6��B��F���	��B�D���EAFD��F�� � ��DF���EB�����	B�E���E���B�����%B��
��������B��B��E���B��AB���D���D���B�B���F�D�B�	����EB���(EB���

.����C&E��E�����������F'�F�E����

����BEEB�B��� � EA���������F� �	��� �)�$6 �	� ��F	�EB �BJ+O)�B� � EB � �����B�B�� � 	B��
	��B����B��B���E���B�����F���B����C�	F���B��D������B��B���B���F����	B�	��BEFDDB�B����
)BDB�	����� �D������	B�E��	B����D��F�����	B�������E��DD���9����B��B��B����������F���B�
	B����� �D�� � 	�����B� � ������������B�B�� � EB� � DB��F�����B� ��EF(�EB� � B� ��F���	������
��B�8

� 	A��B�������B�������EB��EB��F	�EB�BJ+O)��B��F	���B�D���������������B�B���
EB ��F	�EB����F��B�����BE �	B�)�$6��+B��B�E ��-F�� ����� �B�� � EB ���������B�
���E����DF�����DE��B��B��E��	��B����B���%�#��B����B��B�EB��'��B���C�E����B�B���
�-F���B���C��F���B�����1E��A����	F���D���(B���F�D�	B������B�B����	�����F��
BC�����F���.���EB�����	��B��E��B���EB���������B�����DE��B�������B��B��'��B�
B���EB��A�B���B��BE���	B�E���'��B�D�����D�EB�	����������	A���������B���E��6��
������B���F����F�������F��B��� ���������	A��� ������B���E��EB��F���B���	F���
�F�-F������F��B��EB��������C�	��D�F�B������F���F�����������EB�������E��F�����B�
���DEB�B��� ����E��B�����F��B�������DF���EB������E��-F����DF���E��	B���	B�
	B � �����B�B�� � 	B � E� � 	��B����B ���%�#�� 6� � F���B� � EB � ���	 ���9��B� � EF�� � 	B�
EABC�����F� �	B� � ����F�� �D���EE�EB�� � ���B � � ��D����� � 	B� � ������C ���C ����	��

F����B�0�8�#F	�EB�DF���EB��D�������B��B���E���B��
���F���B����C�	F���B��D������B��	����EB��(F��EB��

�������������

�����0� ��� ��� �������� �

B��E��B���D���� ����B�	�B�EB������E������)BE���������B���B�������EB�B����	����
EB� � ����F�� �D���EE�EB�� � EB � ���	 ���9��B � B�� � �������� �6� � �F�����B��B� � �B��B�
�F��BEEB � �'��B � 	B���	B � ���DEB�B�� � ��B � EB � ���	 � ��F��B � B� � �����B � EB��
	B���	B��	B��E�����B�����	B�����	��B��E��B��:

G�
(E
B�
��
=�
8�@

EF
��
�	
B�
E�
���
� �

��
F�
�
��
�F
��

�����2� ��� ��� �������� �

� ��B� � EB � �F	�EB � BJ+O)� � EB � �F�(�B � 	B � �F�D�����F�� �7 � EB � D�����D�E�
FD����B�� �DF��� ��DE��B��B�� E� �	��B����B ���%�#�7�B���	������� �1E �	B������
	F������F����B�B���F������	B��B�EEB��B��DB��F�����B��:

� EB������B�B���	B��	��B����B��B���E���B�����F���B����C�	F���B��D������B��B����
	����E��DE�D����	B�������B��B���������F�B���	B�E���F�D�E���F���+ABC�����F��
	B���F	B����DDE��B�����B���B��F��F��B�D���(B���F�D�	B��B�D����������B�
�B�C�����F���E������� �E��������F��	B������(EB��EF��EB��B�� �EA���������F��	B�EB���
��EB�� � ������EB� � +B � ��� � D������E�B� � 	B� � 	��B����B� ����%AB�� � B��
A������"�B�� BC��B�E��������B���	A��B�DB���B����������	B�	F���B��B���B�EB��
���	����B������A���B��B�D���EB��DB��F�����B��	A��B�������B�������EB�

.�0��	���������

)B��B��B���F����D���B����	B���FE���F���DF���	B�C���DB����E������C�	F���B��D������B��
	A"DB�#$�8�EA��DE��B�����F��	A����F	�EB�	B����F��B�D������B�B��EA��DE��B�����F��
	B��	��B����B��B���E���B�����F���B����C�	F���B��D������B��

)F��B������EB��F	�EB�	B����F��B�D��������BJ+O)�B�������F��B����F	�EB�
	B ����F��B � D������B � ��D����B � (��� � ��� � EB ��F	�EB �J+O)� � B�� � D���B��� � 	��� � �B�
	F���B����+B���E�F�����B��DB��B������E�����B�B������B�	B��FD�����F�����%�#�	����
�B ��F	�EB � �F�� � ���EB�B�� � D���B����� �4�'�B � ��C � ���E�F����F�� � ��� � ��	���B�� � EB�
�F�(�B�	AFD�����F���	B��F�D�����F���7�E��DE�����DF�����B�FD�����F��DF������������
E���F���B��B�	B�E�����F��B�	B��D�F�B�����7��B��F��B����F	�EB�D�F�B��	A���B��	�B�
	B�(F��B��DB��F�����B��

$F�� � EA��DE��B�����F� � 	B� � 	��B����B� � B� � �E���B� � ���F���B� � ��C � 	F���B��
D������B�� � �� ��F	�EB ��EF(�E � B� �	B� �(EF�� � �E��B�����B� � DF�� � �����B �	��B����B �B��
�E���B � � � ��� � D���B���� �)B��B � ��DE��B�����F� � DB��B� � 	B � ������F��B� � �F��B� � EB��
	��B����B� � B� � �E���B� � ���F���B� � ��C � 	F���B� � D������B� � 	A"DB�#$ � ���� � ���B��B��
������������B�B���EB��DB��F�����B���EF(�EB��

6��	���������������F������&��
)B�	F���B�����D���B����EB��������C�	B�E������B�����EB����F�����DB����D�����D��C��������
 � ���E�F�B� � EB� � DB��F�����B� � B� � � ����F��B� � EB� � �B�������F�� � 	B �)�$6 � ��� � EB��
D�F(E��B��E������C�	F���B��D������B��

�� !1)K$G�7���B��F��BEEB��B������B�	B�DF����	B��BD���B��!1)K$G�B���
��B � �B������B � (���B � 	B� � DF���� � 	B � �BD���B � ������B����C� � 6��
����F	������ � E� � DF���(�E��� � 	B � D�B�	�B � 	B� � DF���� � 	B � �BD���B�
������B����C � ��	�DB�	���� � ��� � 	B� � �B���F�� � 	���F�����B� � 	��
D�F�����B��EB��DB��F�����B��	B��DF�����	B��BD���B����������EB��B�D��
	ABC�����F� � ��B � ��� � E� � ���EEB � 	B� � DF���� � 	B � �BD���B� � B���
������������B�B�����	���B�	����	B��F�(�B�C������)B���B�����������EB�
DF�� �)�$6 � ���� � 	B � D�B�	�B � 	B� � DF���� � 	B � �BD���B � ��� � EB� � D����B��
���B�����B��	B��D�F�����B��"DB�#$�������F�������B������F����(�B� �
����F9��B � EB� � DB��F�����B� � �EF(�EB�� � 6� � 6CDEF����� � E� � ��������B�
D������E���B �	B �DF���� �	B � �BD���B � ������B����C� � �B�����B� �����F	B��
DB��B������	B�EB���F�D�B��B���F���������D���B���B��	����EB�	F���B���:

=�)�$6�=�7���B��F��BEEB��B���F��	B�)�$6�7����E��B�EB��DF�����	B�
�BD���B � ������B����C� � 6� � BCDEF����� � EB� � �F��BEEB� � D�FD������ � 	B�
!1)K$G������F��B����F	�EB�	ABC�����F��B��	B��F��B��C�D�F�F��DB��
	B � ������F�����F� � 	B� � �F��������F�� � 	�	��B� � �� � D�����B � 	� � ������E�

�����3� ��� ��� �������� �

;,���������	B< �	A"DB�#$�F�� ���� �D�FDF��� �!�����B��B ��B���F�� � EB��
���F�����B����	B�)�$6����������B����B���EB��DB��F�����B���EF(�EB��
F�����������F�����8�E�����������	B�	F���B����������B������EB����B����EB�
�F�(�B�	AFD�����F���DF���BC�����B�EB������E�����	ABC�����F���E�����������
	AB�D��B � ���F��B � DF�� � EB� � 	F���B� � �B�DF����B�� � F�� � ����
�F���	���(EB�B�� � ��	����� �!B �DE��� ���'�B � � E� �DF���(�E��� �	A��-B��B��
	��B��B�B�� � 	B� � DF���� � 	B � �BD���B � 	��� � EAB�D��B � 	A�	�B����B � 	B��
D�F�B������E�����B������	B��B	�����B���D�����EA���������F��	B��DF�����	B�
�BD���B�	����)�$6�����������DD������GF����B���E��B�����F�	���B��� �
��B��F��B ����E�F����F��	B��DB��F�����B��	B�)�$6�=�D��� ��DDF��� �
)�$6���:

>� +B� � �FE���F�� � DF�� � EB� � D�F(E��B� � E��� � ��C � 	F���B� � D������B��
	A"DB�#$� � !B�C � ��DB��� � F�� � ��� � D���B���� � B� � ���FE���8 � �<�
EA��DE��B�����F��	A����F��B����F	�EB �	B����F��B�D������B� �B� �=<�
EA��DE��B�����F� � 	B� � 	��B����B� � B� � �E���B� � ���F���B� � ��C � 	F���B��
D������B��

+B � D�B��B� � ��DB�� � D���B��� � B�� �BJ+O)� � �� ��F	�EB � 	B ����F��B�
D������B� � � (��� � ��� � EB ��F	�EB �J+O)� �)B ��F	�EB � DF���	B � 	B�C�
��F����F�� � ��DF�����B�� �+��D�B����B�B�� � EA���E�����F��	B� E� �	��B����B�
A���B�� 	� ���������	A��� !1)K$G � �� � E�B� � 	B � EA���E�����F� � 	B � E��
�F����F�������DF�����E��EB��EB��	�����B��B��B���B�EB��F��B�������BE�	B�
E�����F��B�	��D�F�B�����B���BEEB�	B�E�����F��B����DF���+���B�F�	B�
B���E��B�����B�DE��B�B���	B��D��B� ����� C	����EB �A����E���9��B�D���
��B � E���B �	A�E��B��� ����F��B ��F	������ �!A�� ��X��� ��BE� �DB��B� �	B�
��	���B�EB��F�(�B�	B��F�D�����F���	����E���F����F����%�#���F����F��
��� � B�� � ���E���B � DF�� � �������� � E� � �F���B��B � B���B � E� ����F��B � 	B��
D�F�B�������9��B�B��B��E��B���!A�������B��X������'�B� �E���F���������B�
	B�E��E���B�	B������F����F	����B��	����EAB�D��B����F��B�	B���F���B����
	B�)�$6��E�����������	B�	F���B����������B��B���B�EB��D�F�B�����B���
��	���B� � B� � �BE� � �F����(�B � � �F� � �F�� � � ����F9��B � EB� � DB��F�����B��
�EF(�EB�� � +B� � �E�F�����B� � DB��B����� � 	A��DE��B��B� � EB � �F	�EB�
BJ+O)�	����)�$6�������������D���B����

$F�� � EB � 	B�C���B � ��DB��� � EB� � �E�F�����B� � DF�� � ��DE��B��B� � EB��
	��B����B� � B� � �E���B� � E��B� � ��C � 	F���B� � D������B� � 	A"DB�#$� �F���
�F������

@�B����A����BEEB�B�����F����A��F���D���B��B�����EB��BCD����B�����F���
���B�����B� � � EA���E����F� � 	B� � DB��F�����B� � 	��� � �B � ���� � �F���
DF��F�� �B����B� ���B � EA���������F� �	B ��B ��F��B����F	�EB ����F��B�
	����)�$6��A���B��B�D���������������B�B���EB��DB��F�����B���EF(�EB���
)BE��B���	Q� �	B�C�D�����D��C������B�����+B�D�B��B��B���B���EB������
��B�EB��F��B����F	�EB����F��B�B����DD�FD��������F	�EB�	ABC�����F��
	B �)�$6���� ��B ����B����B ��EF�� ���B ���BE��B� � E��B�� ������B�B����
	����EB��D�F�F��DB��	B�)�$6��+B�	B�C���B�B���E��� �EA��DE��B�����F��
	B� � 	��B����B� � B� � 	B� � �E���B� � 	A"DB�#$ � � EA��	B � 	B � �B�EB�B���
��BE��B�����������F������DEB���B��F��F������D���(B���F�D�	B��B�D��
	ABC�����F��

4EF(�EB�B��� � EB� �DB��F�����B� �	B �)�$6�F�� � ��� � ����B���B� �	B �������B�
������������B � 	��� � �B��B � �F��BEEB � �B���F�� �GF�� � EB� � D�F(E��B� � E��� � ��C � 	F���B��
D������B��F����������E�����B�����FE���D���EA���E�����F��	���F��B����F	�EB����F��B�B��
EB���E�F�����B��D���B�����

����=5� ��� ��� �������� �

!�������D�F��B���B������F����F�����F���	��BEFDDB��	B��F��B��C��F�DF������
	B�)�$6�	����EB���BE��EB��F	�EB�BJ+O)�B��EB��	��B����B��B��EB���E���B��	A"DB�#$�
���F���B����C�	F���B��D������B���F����F�DE��B�B�����DE��B���B���B������B�������E�
�B���� �	B��B�B� �DE���	ABCD���B��B� ���� � EABC�����F��	B�)�$6��B��D������E�B� �B��EB�
�F�D����� � ��C � ����B� � ��DE��B�����F�� � 	A"DB�#$ � ��� � ������B� � � ���F��B�
	�����(��B� �)BE��DB��B���� �	B� �F����� ���B��B�EEB��B����E����F� �B� ������ �	B ���B�C�
	��F���B��EB���������B��	B��B��B���DE��B�����F��	B�)�$6��F��EB�B����F��F��B� �
"DB�#$�B�� �����B��DB��F�����B������	B��������B�� ����F��B�	�����(��B�

Contents

1 Introduction 1

1.1 Introduction . 1
1.2 Problem presentation . 6
1.3 Organization of the thesis . 7

2 State of the art 9

2.1 OpenMP . 9
2.1.1 Execution model . 10
2.1.2 Memory model . 11
2.1.3 Directive format . 13
2.1.4 “Hello World!” program . 13

2.2 OpenMP on distributed systems . 15
2.2.1 OpenMP on SSI or DSM . 16
2.2.2 Based on MPI . 20
2.2.3 Based on Global Array . 23
2.2.4 Conclusion . 25

2.3 Checkpointing . 27
2.3.1 Applications of checkpointing 27
2.3.2 Different levels of checkpointing 28
2.3.3 Complete Checkpointing vs. Incremental Checkpointing . . . 29

2.4 CAPE with complete checkpoints (CAPE-1) 31
2.4.1 CAPE prototype for parallel for loops 33
2.4.2 Some possible improvements for CAPE 35

3 Discontinuous Incremental Checkpointing 37

3.1 Linux memory architecture . 37
3.1.1 Memory address . 38
3.1.2 The Process Address Space 38
3.1.3 Paging in hardware . 41
3.1.4 Paging in Linux . 42
3.1.5 Page Table Handling . 43
3.1.6 Example: how to set a page to the writable status 45

3.2 Discontinuous Incremental Checkpointing 47
3.2.1 Mechanism for memory modification detection 47
3.2.2 The additional directives . 47
3.2.3 Checkpointer level . 49

3.3 Detailed design . 51
3.3.1 Execution mechanism in checkpointing cases 51
3.3.2 Execution mechanism in recovering cases 53
3.3.3 Implementation of the directives 55

xxviii Contents

3.4 Performance evaluation . 55

3.4.1 Advantages and drawbacks 57

3.5 Checkpoint structure optimization 58

3.5.1 Memory granularity . 58

3.5.2 Incremental checkpoint content 59

3.5.3 Identifying the method . 62

3.6 Conclusion . 63

4 CAPE using Incremental Checkpoints – CAPE-2 65

4.1 Execution model . 65

4.2 System organization . 67

4.3 Transformations primitives . 67

4.4 Transformation prototypes . 68

4.4.1 Prototype for the parallel for construct 70

4.4.2 Prototype for the parallel sections construct 72

4.4.3 Prototype for the parallel construct 76

4.4.4 Prototype for the single and the master constructs 78

4.5 Performance evaluation . 82

4.5.1 General evaluation . 82

4.5.2 Detailed analysis . 85

4.5.3 Speedup . 89

4.6 Conclusion . 89

5 Data Sharing 91

5.1 Shared-memory models on distributed systems 92

5.2 OpenMP flush directive and the Updated Home-based Lazy Release
Consistency model . 93

5.2.1 Updated Home-based Lazy Release Consistency model 94

5.2.2 Global flush using the UHLRC model 95

5.2.3 Selective flush directive using the UHLRC model 97

5.2.4 Mechanism to check whether variables are updated since the
last flush . 99

5.3 OpenMP data-sharing rules implementation 100

5.3.1 OpenMP data-sharing categories on CAPE 100

5.3.2 Implementation of OpenMP data-sharing attribute rules . . . 101

5.4 Implementation of OpenMP data-sharing directives and clauses . . . 103

5.4.1 Merging directives and clauses 104

5.4.2 General template . 105

5.4.3 Translation details . 105

5.5 Performance evaluation . 111

5.6 Conclusion . 112

Contents xxix

6 Conclusion and Future Work 113

6.1 Principle contributions . 113
6.2 Future work . 115

List of Figures

1.1 Parallel computing [2]. 2
1.2 POSIX Thread code of a matrix-matrix product computation. 3
1.3 OpenMP code for a matrix-matrix product computation. 4
1.4 Example of MPI code for the matrix-matrix product computation. . 5
1.5 OpenMP fork-join model. 6

2.1 OpenMP fork-join model with nested parallel regions. 11
2.2 Shared-memory architecture. 12
2.3 OpenMP directive format for C/C++. 13
2.4 OpenMP “Hello World!” program for C/C++. 14
2.5 Compilation and execution of an OpenMP program. 15
2.6 shmem memory model. 18
2.7 Saving a checkpoint of a Linux process. 27
2.8 OpenMP fork-join model vs. CAPE fork-join model. 32
2.9 Template for OpenMP parallel for loops with complete checkpoints. 34

3.1 Logical to Linear, and Linear to Physical address translations. 38
3.2 Linux process memory layout. 39
3.3 Linux paging model . 43
3.4 Example of pseudo-code for discontinuous incremental checkpoints. . 48
3.5 Preliminary design of DICKPT checkpointer. 50
3.6 Principle of DICKPT in cases of checkpointing. 52
3.7 Program computing the successive elements of a Markov Chain. . . . 56
3.8 Amount of memory to store updates. 61
3.9 Trade-off between SSD and MD. 62

4.1 Execution of OpenMP programs with CAPE-2. 66
4.2 System organization. 67
4.3 Translation OpenMP programs with CAPE. 69
4.4 Prototype for the parallel for with incremental checkpoints. . . . 71
4.5 Equivalence between parallel sections and parallel for. 74
4.6 Dedicated prototype for the parallel sections construct. 75
4.7 Equivalence between parallel and parallel for. 76
4.8 Dedicated prototype for the parallel construct. 77
4.9 Modified prototype to execute application codes on the master node. 79
4.10 Prototype for both single and master constructs. 81
4.11 Execution time (in seconds) vs. number of nodes. 83
4.12 Execution time (in seconds) vs. problem size. 84
4.13 Execution time (in seconds) vs. number of nodes. 87
4.14 Execution time (in seconds) vs. problem size. 88

xxxii List of Figures

4.15 Speedup vs. number of nodes. 89

5.1 Modified prototype for CAPE to implement the flush directive. . . 95
5.2 Global flush. 96
5.3 Selective flush, read case. 97
5.4 Selective flush, write case. 98
5.5 Template for data-sharing primitives and clauses in for loops. 105
5.6 Template to translate the copyprivate clause. 110
5.7 Modified prototype of CAPE to implement the reduction clause. . . 111

List of Tables

2.1 Matrix-matrix product execution time on dual-core and 16-core ma-
chines. 16

2.2 Execution times for running the HRM1D code on Kerrighed. 17
2.3 The implementations of OpenMP for distributed systems. 26
2.4 Examples of user-level transparent checkpointers. 30
2.5 Examples of user-level non-transparent checkpointers. 30

3.1 Page sizes and paging levels in some 64-bits architectures. 42
3.2 Processing the directives of the DICKPT on the monitor side. 54
3.3 Performance evaluation of DICKPT. 57
3.4 Amount of memory to store updates. 61

4.1 Number of directives in the NAS Parallel Benchmark codes. 70
4.2 Execution time (in seconds) on a single node. 82

5.1 Ways to satisfy the OpenMP data-sharing rules. 103
5.2 Possible combinations for OpenMP directives and clauses. 104
5.3 Transformed blocks for OpenMP directives and clauses. 109

Chapter 1

Introduction

Contents

1.1 Introduction . 1

1.2 Problem presentation . 6

1.3 Organization of the thesis 7

1.1 Introduction

Despite the quick development of hardware solutions, there are always requirements
that go far beyond the capabilities of sequential programs. Parallel programing has
been the unique solution to bypass the hardware limitations. In this approach, prob-
lems are divided in smaller parts that can be executed concurrently. For example,
in Fig. 1.1, the problem is divided in four parts and at each moment ti, different
instructions of these parts are executed concurrently on different CPUs. Almost
all modern programming languages enable parallel execution and the most com-
mon way consists in using processes and threads. Processes have separated memory
spaces and execute independently. This leads to solid systems: the break-down of a
process does not lead the system to shutdown. However, inter-process data sharing
and synchronization are complex and time consuming. Threads use a common vir-
tual address space that makes data sharing much easier and lower time consuming.
Nevertheless, the break-down of a thread affects the whole program. Furthermore,
multi-threaded programs typically run on SMP systems, not on distributed-memory
architectures. As an example, Fig.1.2 shows a matrix-matrix product program writ-
ten in C based on POSIX Threads, a widely used API for threads. Programming
parallel applications in this way requires many auxiliary works at the base level such
as creating parallel streams, assigning jobs to streams, making them running, ensur-
ing the synchronization, etc. that makes it becoming a heavy, boring and difficult
task. Parallel programing models at a higher level are required to help programmers
bypass these difficulties.

OpenMP [1] has become the standard for the development of parallel applications
on shared-memory platforms. It is composed of a set of very simple and powerful
directives and functions to generate parallel programs in C, C++ or Fortran. From
the programmer’s point of view, OpenMP is easy to use as it allows to incrementally
express parallelism in sequential programs, i.e. the programmer can start with a
sequential version of a program (written in C, C++ or Fortran) and step by step

2 Chapter 1. Introduction

Figure 1.1: Parallel computing [2].

add OpenMP directives to change it into a parallel version. Moreover, the level of
abstraction provided by OpenMP makes the expression of parallelism more implicit
where the programmer specifies what is desired rather than how to do it. This has
to be compared to message-passing libraries, like MPI [3], where the programmer
specifies how things must be done using explicit send/receive and synchronization
calls.

Figure 1.3 presents an OpenMP code computing the product of two-dimension
matrices A and B, with the result stored in matrix C.

The only difference between this code and the original sequential code is the
insertion of a directive to include the OpenMP header file and the directive in
the form of a pragma indicating that the following for loop has to be executed in
parallel. The work is more complex for programmers using MPI (an example of code
is presented in Fig. 1.4). In this case, programmers are responsible for organizing
the work: a master sends initial data to workers and each worker computes a part
of the product and sends back its result to the master. Programmers also have to
write many other auxiliary operations such at MPI initialization, specify data types,
transaction types, etc. All this makes the MPI code completely different from the
sequential code, and far more difficult to write, to debug and to understand.

Nevertheless, OpenMP has a major restriction for large-scale computers: it is
designed for SMP architectures. If SMP machines have been available for a long
time as multi-CPU systems and have become more popular with the development
of multi-core architectures, this restriction remains important as it prevents the
use of OpenMP on distributed-memory architectures such as clusters, grids and
clouds, and therefore does not allow OpenMP to take benefits of the development
of new architectures like low-cost desktop clusters, grids and more generally high-
performance systems [4].

Many attempts have tried to port OpenMP on distributed-memory systems.
However they all fail to give a fully-compliant high-performance OpenMP imple-
mentation. A straightforward idea to implement OpenMP on distributed systems

1.1. Introduction 3

#include <pthread.h>

...

#define N 100

int num_thrd, A[N][N], B[N][N], C[N][N];

void* multiply(void* slice){

int s = (int)slice;

int i, j, k;

for (i = (s * N)/num_thrd; i < ((s+1) * N)/num_thrd; i++){

for (j = 0; j < N; j++){

C[i][j] = 0;

for (k = 0; k < N; k++)

C[i][j] += A[i][k]*B[k][j];

}

}

}

int main(int argc, char* argv[]){

pthread_t* thread;

int i;

num_thrd = atoi(argv[1]);

thread = (pthread_t*) malloc(num_thrd*sizeof(pthread_t));

for (i = 1; i < num_thrd; i++){

if (pthread_create (&thread[i], NULL, multiply, (void*)i) != 0){

perror("Cannot create thread");

free(thread);

exit(-1);

}

}

/* main thread works on slice 0 so everybody is busy */

multiply(0);

/* main thead waiting for te other threads to complete */

for (i = 1; i < num_thrd; i++)

pthread_join (thread[i], NULL);

...

}

Figure 1.2: POSIX Thread code of a matrix-matrix product computation.

4 Chapter 1. Introduction

#include <omp.h>

...

#pragma omp parallel for private(row, col, ind)

for(row = 0; row < N; row++){

for(col = 0; col < N; col++)

for(ind = 0; ind < N; ind++)

C[row][col] += A[row][ind] + B[ind][col];

}

Figure 1.3: OpenMP code for a matrix-matrix product computation.

is to use the virtual global address space provided by a Single System Image (SSI)
and/or a Distributed Shared Memory (DSM) [5] to emulate the memory shared
by SMP systems. OpenMP programs can then be compiled and run without ma-
jor modifications. This approach can easily provide a fully-compliant version of
OpenMP. However, the global address space is located across machines and causes
a strong overhead to the global performance. This is clearly showed in [5], where
the larger the number of threads, the lower the performance. As a result, in order to
reduce the impact of synchronization of shared-memory regions, relaxed-consistency
memory models have been used [6][7]. However, this approach meets the difficulty to
specify shared variables outside parallel regions as DSMs require an explicitly dec-
laration of shared variables while OpenMP uses an implicit shared-memory model.
The implementation of OpenMP on top of MPI [8][9] was promising high perfor-
mance. However, it systematically requires the programmer to add non-OpenMP
additional directives, e.g. to specify returned data, meaning that these kinds of
implementations cannot be considered as fully OpenMP compliant. The implemen-
tation of OpenMP on top of Global Array [10] also implies many difficulties to specify
how data should be distributed. It is also the problem of the Cluster OpenMP of
Intel [11], that leads to the use of an additional directive to specify shared variables.

In the OpenMP fork-join execution model, an OpenMP program begins as a
single thread called the master thread that is executed sequentially. When the
thread encounters a parallel construct, it creates a set of slave threads to execute
concurently the job of the construct. Only the master thread resumes its execution
beyond the end of the parallel construct. Figure 1.5 presents the principle of this
model.

The base principle of the CAPE execution model is similar to the OpenMP fork-
join model, with the replacement of threads by processes. This helps distributing
them on the different nodes of distributed-memory architectures. Checkpointing
technique is used to dump the master process memory space, distribute it to the
other nodes of the system where the process is restarted (slave processes). It is also
the base tool to extract results from slave processes, merge them into the master
process’s space and resume the execution of the master.

1.1. Introduction 5

#include<mpi.h>

...

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

numworkers = numtasks-1;

if (taskid == MASTER) { /************* master task *******************/

...

/* send matrix data to the worker tasks */

averow = N/numworkers;

offset = 0;

for (dest=1; dest<=numworkers; dest++) {

rows = averow;

MPI_Send(&offset, 1, MPI_INT, dest, FROM_MASTER, MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, dest, FROM_MASTER, MPI_COMM_WORLD);

MPI_Send(&a[offset][0], rows*N, MPI_LONG, dest, FROM_MASTER, MPI_COMM_WORLD);

MPI_Send(&b, N*N, MPI_LONG, dest, FROM_MASTER, MPI_COMM_WORLD);

offset = offset + rows;

}

/* wait for results from all worker tasks */

for (i=1; i<=numworkers; i++) {

MPI_Recv(&offset, 1, MPI_INT, i, FROM_WORKER, MPI_COMM_WORLD, &status);

MPI_Recv(&rows, 1, MPI_INT, i, FROM_WORKER, MPI_COMM_WORLD, &status);

MPI_Recv(&c[offset][0], rows*N, MPI_LONG, i, FROM_WORKER, MPI_COMM_WORLD,

&status);

}

if (taskid > MASTER) { /********** worker task ******************/

...

MPI_Recv(&offset, 1, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);

MPI_Recv(&rows, 1, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);

MPI_Recv(&a, rows*N, MPI_LONG, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);

MPI_Recv(&b, N*, MPI_LONG, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);

for (k=0; k<N; k++)

for (i=0; i<rows; i++)

for (j=0; j<N; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];

MPI_Send(&offset, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD);

MPI_Send(&rows, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD);

MPI_Send(&c, rows*N, MPI_LONG, MASTER, FROM_WORKER, MPI_COMM_WORLD);

}

Figure 1.4: Example of MPI code for the matrix-matrix product computation.

6 Chapter 1. Introduction

Figure 1.5: OpenMP fork-join model.

From this based idea, CAPE has a major advantage: the capability to automati-
cally execute OpenMP programs in distributed-memory architectures. Indeed, from
an initial OpenMP program, a special compiler can change it into a CAPE program.
While running, a checkpointer is in charge of taking snapshots of process’ memory,
extract the result of program execution, include checkpoints into a process’ memory
and resume the execution of a process from a checkpoint. This feasibility has been
proved with the first implementation [12][13] that was using complete checkpoints.
However, there were two major restrictions in this version: the low performance and
the inability to process shared data. The first restriction is mainly due to the use
of complete checkpoints, that leads to a large amount of data transfered over the
network. It also leads to the execution a large number of comparison operators to
extract the result from slave processes. The second restriction is due to the fact that
Bernstein’s conditions must be verified in CAPE prototypes, which prevents CAPE
becoming an OpenMP fully-compliant implementation.

1.2 Problem presentation

After the analysis of the restrictions of CAPE from the above discussion, this the-
sis focuses on the improvement of CAPE with two main objectives: increase its
performance and add the ability of processing shared data.

For the first objective, we followed the CAPE execution principle and the anal-
ysis in [14]: the most important factor effects on CAPE’s performance are the
amount of transfered data over the network and the speed to extract execution’s
result from slave processes. Furthermore, the speed to include checkpoints into the
memory space and to resume from an execution process at a checkpoint also have
influences on the global performance. Decreasing the impact of these factors on the
performance of CAPE is the first problem to solve.

The second objective relates first to the implementation of a shared-memory
model for all processes of the system. As presented in [1], OpenMP uses the relaxed-

1.3. Organization of the thesis 7

consistency (RC) [15] shared memory model. All OpenMP threads have access to
a place to store and to retrieve variables, called the memory. In addition, each
thread is allowed to have its own temporary view of the memory. The temporary
view of the memory for each thread is not a required part of the OpenMP memory
model, but can represent any kind of intervening structure. On SMP systems, this
model is implicitly met as all threads use a common memory space. On distributed-
memory systems, memory is physically spread over many nodes, so implementing
a distributed-shared memory system (DSM) or a RC is required. Furthermore, for
better performance, some derivations of the RC model have been developed, such as
the Lazy Release Consistency (LRC) [16] model, the Home-Based Lazy Release Con-
sistency (HLRC) [17] model. As a result, second problem to solve is: which is the
most appropriate model for CAPE and how to implement it with high performance.
The rest of this second objective’s work relates to the processing of OpenMP data-
sharing directives and clauses. This includes directives such as threadprivate,
default and clauses such as private, firstprivate, lastprivate, reduction,
copyprivate, copyin.

From the above discussion, this thesis proposes to solve the following require-
ments:

1. Increase the performance of CAPE by improving the works related to check-
points and CAPE prototypes.

2. Implement a high-performance shared-memory model for CAPE.

3. Implement all OpenMP data-sharing directives and clauses.

1.3 Organization of the thesis

Chapter 2 is dedicated to the state of the art of CAPE. Section 2.1 presents an out-
line of OpenMP. Section 2.2 discusses about different implementations of OpenMP
on distributed-memory systems: their principles, advantages and drawbacks. Sec-
tion 2.3 focuses on checkpointing techniques, the base tool for CAPE. The last
section of this chapter is an in-depth presentation of the first version of CAPE
(CAPE-1), based on complete checkpoints.

Chapter 3 presents the Discontinuous Incremental Checkpointing (DICKPT)
technique which is based on the Incremental Checkpointing technique. The presen-
tation is composed of the design and a performance evaluation of the DICKPT.

Chapter 4 presents CAPE-2, a new version of CAPE using DICKPT technique.
Section 4.1 and Sec. 4.2 show its execution model and its organization. Sections 4.3
and 4.4 aim at presenting the primitives and the prototypes to transform OpenMP
constructs. The last section is used for an evaluation of performance.

Chapter 5 presents two of the main aspects to implement data-sharing for CAPE.
The first one is the design of the Updated Home-based Lazy Relax Consistency, a

8 Chapter 1. Introduction

new memory model based on Home-based Lazy Relax Consistency with modifica-
tions to exploit the special characteristics of CAPE. The second one presents the
prototypes implementing OpenMP data-sharing directives and clauses.

The last part of the thesis, in Chap. 6, concludes this document and presents
an overview of the future work.

Chapter 2

State of the art

Contents

2.1 OpenMP . 9

2.1.1 Execution model . 10

2.1.2 Memory model . 11

2.1.3 Directive format . 13

2.1.4 “Hello World!” program 13

2.2 OpenMP on distributed systems 15

2.2.1 OpenMP on SSI or DSM 16

2.2.2 Based on MPI . 20

2.2.3 Based on Global Array . 23

2.2.4 Conclusion . 25

2.3 Checkpointing . 27

2.3.1 Applications of checkpointing 27

2.3.2 Different levels of checkpointing 28

2.3.3 Complete Checkpointing vs. Incremental Checkpointing . 29

2.4 CAPE with complete checkpoints (CAPE-1) 31

2.4.1 CAPE prototype for parallel for loops 33

2.4.2 Some possible improvements for CAPE 35

2.1 OpenMP

OpenMP is a parallel programming API that provides a standard among a variety
of shared-memory architectures/platforms with four main goals [18]:

1. Establish a simple and limited set of directives to program shared-memory
machines, where most expression of parallelism can be implemented using
only three or four directives.

2. Provide the capability to incrementally parallelize a sequential program, unlike
message-passing libraries which typically require an all or nothing approach.

3. Provide the capability to implement both coarse-grain (domain decomposition)
and fine-grain (loop-level) parallelism.

10 Chapter 2. State of the art

4. Provide a portable product. This goal has been achieved by supporting Fortran
(77, 90, and 95), C, and C++ and a public forum for API and membership.

Led by the OpenMP Architecture Review Board (ARB), with many strong mem-
bers such as Compaq, Hewlett-Packard, Intel, IBM, Sun, etc. the OpenMP standard
specification started in Spring 1997. The current version (2012) is 3.1. It is composed
of a collection of compiler directives, library routines, environment variables and
provides a model for parallel programming that is portable across shared-memory
architectures from different vendors.

OpenMP is not an independent programming language [1]. OpenMP programs
have to be first written in a base language1, then changed into parallel form by
inserting OpenMP directives. An OpenMP compliant implementation2 is required
to compile such a program. At present, there are many OpenMP compliant imple-
mentations provided by many vendors such as GNU, IBM, Oracle, Intel, HP, Cray
on almost all common platforms such as Windows, Linux, Solaris, AIX, Mac OS,
Cray XT.

OpenMP is an explicit programming model [1]. Programmers have to explicitly
specify the actions to be taken by the compiler and runtime system in order to exe-
cute the program in parallel. OpenMP-compliant implementations are not required
to check for data dependencies, data conflicts, race conditions, or deadlocks, any of
which may occur in conforming programs. In addition, compliant implementations
are not required to check for code sequences that cause a program to be classified
as non-conforming. Application developers are responsible for correctly using the
OpenMP API to produce a conforming program. The OpenMP API does not cover
compiler-generated automatic parallelization and directives to the compiler to assist
such parallelization.

With the strong abilities and the ease to use, OpenMP is more and more applied
on shared-memory parallel programming.

2.1.1 Execution model

OpenMP uses the fork-join model of parallel execution. Multiple threads of execu-
tion perform tasks defined implicitly or explicitly by OpenMP directives. OpenMP
is intended to support programs that executes correctly both as parallel programs
and as sequential programs (directives ignored and a simple OpenMP stubs library).
However, it is possible and permitted to develop a program that executes correctly
as a parallel program but not as a sequential program, or that produces different
results when executed as a parallel program compared to when it is executed as a
sequential program. Furthermore, using different numbers of threads may result in
different numeric results because of changes in the association of numeric operations.

An OpenMP program begins as a single thread of execution, called the initial
thread. The initial thread executes sequentially. When any thread encounters a

1A programming language that serves as the foundation of the OpenMP specification.
2An implementation of the OpenMP specifications that compiles and executes any conforming

program as defined by the specification.

2.1. OpenMP 11

Figure 2.1: OpenMP fork-join model with nested parallel regions.

parallel construct, the thread creates a team composed of itself and zero or more
additional threads and becomes the master of the new team. A set of implicit tasks,
one per thread, is generated. The code for each task is defined by the code inside the
parallel construct. Each task is assigned a different thread in the team and becomes
tied, i.e. it is always executed by the thread to which it is initially assigned. There
is an implicit barrier at the end of the parallel construct. Only the master thread
resumes its execution beyond the end of the parallel construct, resuming the task
region that was suspended upon encountering the parallel construct. Any number
of parallel constructs can be specified in a single program.

Parallel regions may be arbitrarily nested inside each other. If nested parallelism
is disabled, or is not supported by the OpenMP implementation, then the new team
consists of only the encountering thread. However, if nested parallelism is supported
and enabled, then the new team can consist of more than one thread.

Synchronization constructs and library routines are available in the OpenMP
API to coordinate tasks and data access in parallel regions. In addition, library
routines and environment variables are available to control or query the runtime
environment of OpenMP programs. OpenMP makes no guarantee that input or
output to the same file is synchronous when executed in parallel. In this case, the
programmer is responsible for synchronizing input and output statements (or rou-
tines) using the provided synchronization constructs or library routines. For the case
where each thread accesses a different file, no synchronization by the programmer
is necessary.

2.1.2 Memory model

OpenMP provides a relaxed-consistency shared-memory model. All OpenMP threads
have access to a place to store and to retrieve variables, called the memory. In ad-

12 Chapter 2. State of the art

dition, each thread is allowed to have its own temporary view of the memory. The
temporary view of memory for each thread is not a required part of the OpenMP
memory model. However, it can represent any kind of intervening structure, such as
machine registers, cache, or other local storage, between the thread and the memory.
The temporary view of memory allows the thread to cache variables and thereby to
avoid going to memory for every reference to a variable. Each thread also has access
to another type of memory that must not be accessed by other threads, called the
threadprivate memory.

Figure 2.2: Shared-memory architecture.

A directive that accepts data-sharing attribute clauses determines two kinds of
access to variables used in the directive’s associated structured block: shared and
private. Each variable referenced in the structured block has an original variable,
which is the variable by the same name that exists in the program immediately
outside the construct. Each reference to a shared variable in the structured block
becomes a reference to the original variable. For each private variable referenced
in the structured block, a new version of the original variable (of the same type
and size) is created in memory for each task that contains code associated with
the directive. Creation of the new version does not alter the value of the original
variable. However, the impact of attempts to access the original variable during the
region associated with the directive is unspecified. References to a private variable
in the structured block refer to the current task’s private version of the original
variable. The relationship between the value of the original variable and the initial
or final value of the private version depends on the exact clause that specifies it.

A single access to a variable may be implemented with multiple load or store
instructions, and hence is not guaranteed to be atomic with respect to other accesses
to the same variable. Accesses to variables smaller than the implementation defined
minimum size or to C or C++ bit-fields may be implemented by reading, modifying,
and rewriting a larger unit of memory, and may thus interfere with updates of
variables or fields in the same unit of memory.

2.1. OpenMP 13

If multiple threads write without synchronization to the same memory unit,
including cases due to atomicity considerations as described above, then a data race
occurs. Similarly, if at least one thread reads from a memory unit and at least one
thread writes without synchronization to that same memory unit, including cases
due to atomicity considerations as described above, then a data race occurs. If a
data race occurs then the result of the program is unspecified. A private variable in a
task region that eventually generates an inner nested parallel region is permitted to
be made shared by implicit tasks in the inner parallel region. A private variable in a
task region can be shared by an explicit task region generated during its execution.
However, it is the programmer’s responsibility to ensure through synchronization
that the lifetime of the variable does not end before completion of the explicit task
region sharing it. Any other access by one task to the private variables of another
task results in unspecified behavior.

2.1.3 Directive format

OpenMP directives are inserted into a sequential base program to changed into par-
allel form. The format of these directives are dependent on the base language. This
document is restricted to the C/C++ format only. The syntax of a directive is
formally as follows:

pragma omp directive-name [clause[[,] clause]...] new-line

Figure 2.3: OpenMP directive format for C/C++.

Each directive starts with #pragma omp. The remainder of the directive follows
the conventions of the C and C++ standards for compiler directives. In particu-
lar, white spaces can be used before and after the #, and sometimes white spaces
must be used to separate words in a directive. Preprocessing tokens following the
#pragma omp directive are subject to macro replacement. OpenMP directives are
case-sensitive. An OpenMP executable directive applies to at most one succeeding
statement, which must be a structured block.

The example below specifies a parallel region that is run by all threads. Variables
x and y are private in each thread.

#pragma omp parallel private(x, y)

C/C++ command block

2.1.4 “Hello World!” program

No introduction to OpenMP can be considered as complete without the traditional
“Hello World!” program. Below is the source code for C/C++. Note that index

14 Chapter 2. State of the art

numbers on the left are line numbers, are not part of the code. The program consists
in concurrently displaying on the standard output the message "Hello World!".

1 #include <omp.h>

2 #include <stdio.h>

3 int main(int argc, char * argv[]){

4 int nthreads, tid;

5 printf("A simple OpenMP program\n");

6 #pragma omp parallel private(tid, nthreads)

7 {

8 tid = omp_get_thread_num();

9 nthreads = omp_get_num_threads();

10 printf("Hello World from thread number %d of %d\n",

tid, nthreads);

11 }

12 printf("End of program\n");

13 }

Figure 2.4: OpenMP “Hello World!” program for C/C++.

In the above code, the directive in line number 1 includes the OpenMP header
file. This file is available in OpenMP compliant compilers, and GNU gcc is one of
them.

In the flow of the main function, the program is first run as one thread (the
master thread), so the function in line 5 displays the message only once. The
directive in line 6 specifies a parallel region limited to the following pair of brackets.
The number of threads is not specified in the program, so it depends on environment
parameters. Clause private(tid, nthreads) specifies that the variables tid and
nthreads that contains the values of thread number and the number of threads
respectively are private in each thread of the parallel region. In fact, the number
of threads are identical in all threads. Therefore, nthreads does not need to be
private.

Routines omp_get_thread_number() and omp_get_num_threads() respectively
return the thread number of the current thread and the number of threads. These
values are displayed in line 10.

After the close bracket at line 11, all threads join and the master thread is the
only one to keep on resuming. As a result, function in line 12 is run only once.

To compile an OpenMP program, a compliant compiler with the associated
option is required. With gcc on Linux, the option is -fopenmp. Note that by
default, the number of threads specified by the environment equals to 1, so it has to
be reset to another value before running the program. In this example, four threads

2.2. OpenMP on distributed systems 15

are used.
Figure 2.5 shows the phases to compile and run the above program. One can

see that the displayed messages are not following thread numbers.

Figure 2.5: Compilation and execution of an OpenMP program.

2.2 OpenMP on distributed systems

As presented in the above section, OpenMP is very easy to use. Its execution and
memory models are strictly appropriate with SMP architectures such as multipro-
cessor and multi-core systems. The multiprocessor architecture started in 1962 with
the Burroughs D825, a system composed of two processors. After that, it has been
implemented on many other servers and mainframes with the number of processors
varied from 2 to 16 and more on the hight-end systems. The multi-core architec-
ture appeared later but developed quickly in the last near years. In cheap systems,
dual-cores and quad-cores have become popular and in the near future, octo-core
systems will be available. In hight-end systems, the number of cores can be far
larger, e.g. the Epiphany multicore IP architecture of Adapteva [19] contains up to
4,096 processors on a single chip.

It is important to notice that the speed-up of an OpenMP program depends not
only on the number of parallel threads but also on the number of processors in the
system. Using a large number of threads does not always increase the execution
speed. Normally, the speed-up is the best when the number of threads equals the
number of processors. Table 2.1 shows the cases of running a matrix-matrix product
on a dual-core and a 16-core machine. One can see that the best case is using two
threads for the dual-core and 16 threads for the 16-core.

With the above arguments, one can say that the SMP architecture supports all
requirements of shared-memory parallelism: the small size of cheap popular systems;
the medium size of servers and mainframes and the big size of hight-end systems.
However, beside SMP architectures, distributed-memory architectures are widely

16 Chapter 2. State of the art

Num. threads 1 2 4 8 16 24 32

t (s)
2 cores 1852.70 1050.01 1054.53 1068.93

16 cores 246.18 130.71 63.56 41.40 31.13 31.66 31.17

Table 2.1: Matrix-matrix product execution time on dual-core and 16-core ma-
chines.

used and support the special abilities. The most important ones are clusters, grids
and clouds. Desktop clusters that have been used since the 90s usually as a solution
to establish cheap systems. Cluster is also the architecture to build large systems
with capabilities far beyond SMP systems. For example, in the list ranking the 500
fastest machines [4] on November 2011, cluster systems count for 62% and are at
positions 1, 4, 5, 9, 10 in the top 10. Grid is an architecture that combines many
systems that are more loosely coupled, usually heterogeneous, and geographically
dispersed. Finally, although they appeared the latest, clouds have quickly emerged
as the solution to build dynamic, easy-to-use and low-cost (at the user’s view point)
systems.

Thus, porting OpenMP on distributed-memory systems is clearly a good trend
to extend the availability of OpenMP. From OpenMP specifications, these main
requirements have to be solved for an OpenMP compliance are:

• Implementing the fork-join execution model.

• Implementing the shared-memory model and processing data-sharing direc-
tives and clauses.

• Implementing the synchronization mechanism.

Many approaches have been tried, with different advantages and drawbacks. The
most important attempts are presented below.

2.2.1 OpenMP on SSI or DSM

2.2.1.1 Use a SSI as the common memory of all threads

The most straightforward approach to port OpenMP on distributed systems is using
a Single System Image (SSI). SSI provides an abstract shared-memory layer over
the physical distributed-memory architecture. The use of a SSI is not enough to run
directly OpenMP programs on different nodes as the original threads are created
and run on a single machine. However, this problem can be solved using distributed
threads. For example, using the SSI of Kerrighed [20] and the gthreads, an imple-
mentation of POSIX threads on this architecture, Morin et al. have successfully run
OpenMP programs without any modification on a commodity cluster [5]. The main
advantage of this approach is the ability to easily provide a fully-compliant version
of OpenMP. All execution model, memory model and synchronization mechanism

2.2. OpenMP on distributed systems 17

keep the original forms and can be easily implemented. Only a special compiler
is needed to link target programs with the gthreads library. However, the physical
expansion of memory on different machines delays access time [21] and requires a
synchronization mechanism. Both of them strongly reduce the global performance.
Table 2.2 presents the result of an experiment in [5] that shows that the larger the
number of threads, the lower the performance.

Number of OpenMP threads Execution time in seconds
1 19,78
2 31,57
4 42,71

Table 2.2: Execution times for running the HRM1D code on Kerrighed.

2.2.1.2 Map only a part of thread’s memory space on the shared memory

area of DSMs

To reduce the impact of the mapping of the whole memory space of threads on a
single abstract shared memory, another approach consists in mapping only a part
of it on the shared-memory area given by DSMs. This way, the synchronization op-
erations only affect on the considered area and data traffic can thus be significantly
reduced. The remaining problem then is how to specify variables that have to be
located in shared area.

Extend the OpenMP API

The first approach consists in extending the OpenMP API. For example, the
Cluster OpenMP solution [11] of Intel adds an additional directive — the sharable

directive. This directive identifies variables that are referenced by more than one
thread and are then managed by the DSM. Some variables are automatically made
sharable by the compiler like those that are allocated on the stack and the pass-by-
value formal parameters. Other variables must be explicitly declared as sharable,
e.g. file-scope variables in C and C++.

Use of the shmemory model

The shmem model provided by SCASH [22] is the approach used in Omni com-
piler system [23]. With this model, variables declared in the global scope are private.
The shared address space must be explicitly allocated by the shared memory allo-
cation primitive at run time. To compile an OpenMP program into the shmem
memory model, the compiler translates the code to allocate global variables in the
shared address space at run time. The compiler processes OpenMP programs by
means of the following three steps:

1. All declarations of global variables are converted into pointers containing the
address of the data in the shared address space.

18 Chapter 2. State of the art

Figure 2.6: shmem memory model.

2. The compiler rewrites all references to global variables to the indirect refer-
ences through the corresponding pointers.

3. The compiler generates the global data initialization function for each compi-
lation unit. This function allocates objects in the shared address space and
stores these addresses in the corresponding indirect pointers.

With the shmemory model and the transformation of shared variables as pre-
sented above, Omni enables OpenMP programs to run transparently on cluster
environments. However, as shared variables are located in a common memory and
used directly by all threads located anywhere across the system, the performance
is reduced by the relay access time and the management of concurrent accesses.
SCASH can deliver high performance for an OpenMP program if the placement of
data and the computation are such that data needed by each thread is local to the
processor on which thread is running. To use this mechanism, Omni has to extend
OpenMP with a set of directives to allow programmers to specify the placements
of data and computations on the shared address space and a new loop scheduling
clause, affinity, to schedule the iterations of a loop onto threads associated with
the data mapping.

Use a RC model

Built on top of a DSM too, the solution proposed by Sven Karlsson et al. [6] and
Jie Tao et al. [7] do not use a common shared area for OpenMP shared variables.

2.2. OpenMP on distributed systems 19

However they use the HLRC model of DSM systems to implement the OpenMP
relaxed-consistency shared model. The HLRC model uses a page-based mechanism
to ensure the consistency between the nodes in the system. This means that it uses
the virtual memory page protection mechanism to detect accesses to shared memory
and memory contents are replicated on a virtual memory page basis. In order to
simplify the protocol, each page in an HLRC system has a home node which always
holds an up-to-date copy of the page. Thus, whenever a processor accesses a page
which is not present locally, a copy is retrieved from the home node. Several nodes
can have write permissions to the same page in which case several data structures
are used to locally keep track of changes to the page. These changes are transferred
at synchronization points to the home node where they are merged. Synchronization
points also forces updated pages to be invalidated. Synchronization points normally
occur when synchronization primitives are executed.

Although the HLRC model can reduce the impact on performance of accesses to
a common shared-memory area, this approach meets some problems. The first one
is the difficulty to automatically identify all shared variables as the OpenMP API
does not require an explicitly declaration of shared variables while the DSMs do.
The second one concerns the implementation a high-performance flush directive
and for the initialization shared variables. Furthermore, the reduction clause and
the atomic directive also cause difficulties while being implemented on this model.
For more details about these problems, refer to [6] and [7].

2.2.1.3 TreadMarks - A solution for Clusters of SMPs

TreadMarks [31] is a DSM that runs at the user level on most Unix and Windows
NT-based systems. It provides a shared memory as a linear array of bytes via the
release and multiple-writer consistency. In its simplest form, running TreadMarks on
a network of SMPs could be archived by simply executing a process on each processor
of each multiprocessor node and having all of these processes communicate through
message passing. This direction, however, fails to take advantage of the hardware
shared memory on the multiprocessor nodes. In order to overcome this limitation,
a new version of TreadMarks has been built, in which POSIX threads is used to
implement parallelism within a multiprocessor. As a result, the OpenMP threads
within a multiprocessor share a single address space. Thus, memory areas are shared
by default within processors on the same nodes and are private between the different
nodes of the cluster. All nodes use the shared area provided by the TreadMarks DSM
system.

Using the shared memory provided by the TreadMarks DMS, Y. C. Hu and
.al presented in [32] an implementation of OpenMP for clusters of SMPs. In this
solution, translation was quite straightforward: OpenMP synchronization direc-
tives were replaced by TreadMarks synchronization operations; parallel regions in
OpenMP were encapsulated into separate functions and translated into the fork-
join code. When implementing OpenMP’s data environment, actual parameters
provided to procedures were converted to shared data if necessary, as the translator

20 Chapter 2. State of the art

does not perform interprocedural analysis and cannot determine whether they are
accessed from within a parallel region. Shared variables are allocated on the shared
heap; private variables are allocated on TreadMark’s stacks.

While testing on a cluster composed of four quad-processor SMP nodes, Tread-
Marks gives a high performance in the range from 7 to 30% of the MPI version.
However, this solution has the same drawback as the ones using the shmem model
and the HLRC model, that is the problem to automatically specify all shared vari-
ables that should be allocated on the system shared-memory area. Furthermore, the
number of nodes for the tests was quite small, so that the latency of access to the
system shared area might not have a significantly impact on the global performance.

2.2.2 Based on MPI

Due in part to its high performance, MPI has become the de facto programming tool
for distributed-memory systems. One of the main drawbacks of MPI is the need to
explicitly specify the data transfer between the nodes. On one hand, this helps to
increase the performance thank to the reduction of the amount of data transaction
on network. On the other hand, this requires efforts from programmers and this
is highly time consuming. As a result, some attempts [8][9] tried to implement
OpenMP on top of MPI, with the objective of exploiting its high performance.

The main challenge when porting OpenMP on MPI is implementing the OpenMP’s
shared-memory model. MPI uses a distributed memory model where each node of a
system owns an independent memory space and there is no shared memory. In MPI
programs, programmers have to explicitly write instructions for data exchange to
take place, while in OpenMP all variables are shared by default which means that a
modification on a variable by one thread is seen by the other threads at least after
an implicit/explicit barrier. To solve this problem, two different approaches have
been used in [8][9] each with their own advantages and drawbacks.

2.2.2.1 Extending OpenMP to specify exchanged data and to guarantee

memory consistency

The approach of B. D. Martino et al. [8] consists in extending OpenMP with llc ad-
ditional directives. They develop the llCoMP compiler, a source-to-source compiler
implemented on top of MPI. This compiler translates a code annotated with llc

directives into a C code with explicit calls to MPI routines. The resulting program
is then compiled using the native back-end compiler, and properly linked with the
MPI library. The llc language follows the One Thread is One Set of Processors [24]
(OTOSP) computational model. The OTOSP model is a distributed memory com-
putational model where all memory locations are private to each processor. A key
concept of the model is the processor set. At the beginning of the program (and also
in its sequential parts), all available processors in the system belong to the same
unique set. Processor sets follow a fork-join model of computation: sets are divided
(fork) into subsets as a consequence of the execution of a parallel construct, and they

2.2. OpenMP on distributed systems 21

join back together at the end of the execution of the construct. At any point of the
code, all processors belonging to the same set replicate the same computation; that
is, they behave as a single thread of execution. When different processors (sub-)sets
join into a single set at the end of a parallel construct, partner processors exchange
the contents of the memory areas they have modified inside the parallel construct.
The replication of computations performed by processors in the same set, together
with the communication of modified memory areas at the end of the parallel con-
struct, are the mechanisms used in OTOSP to guarantee a coherent image of the
memory.

llcCoMP uses two additional directives for shared variables. Any shared variable
in the left-hand side of an assignment statement inside a parallel loop should be
annotated with an llc result or nc result clause. Both clauses are employed to
notify the compiler that a region of the memory is potentially modifiable by the
set of processors executing the loop. Their syntax is similar: the first parameter
is a pointer to the memory region (addr), the second one is the size of that region
(size), and the third parameter, only present in nc result, is the name of the
variable holding that memory region. Directive result is used when all the memory
addresses in range [addr, addr+size] are (potentially) modified by the processor
set. This is the case, for example, when adjacent positions in a vector are modified.
If there are write accesses to non-contiguous memory regions inside the parallel loop,
these should be notified with the nc result clause.

llCoMP uses Memory Descriptors (MD) to guarantee the memory consistency
at the end of the execution of a parallel construct. MD are data structures based
on queues which hold the necessary information about memory regions modified by
a processor set. The basic information held in MD are pairs (address, size) that
characterize a memory region. In most cases, the communication pattern involved
in the translation of a result or nc result is an all-to-all pattern. The post-
processing performed by a processor receiving a MD is straightforward: it writes
the bytes received in the address annotated in the MD.

Although this allow to obtain a very high performance as shown in some ex-
periments [9], this approach has some drawbacks. The major weak points are the
requirement towards the programmer’s specification for data exchange and the guar-
antee of the memory consistency. It looses the easiness to use which is the most
important characteristics of OpenMP. Furthermore, with the OTOSP model, it is
difficult to implement some OpenMP directives such as the single, master, flush
directives.

2.2.2.2 Automatic translation using the Partial Replication model

A. Basumallik and R. Eigenmann in [9] use the Partial Replication model to avoid
programmers to explicitly specify exchanged data between nodes. In this model,
shared data is allocated on all nodes. However, no shadow copy or management
structures need to be allocated. A special mechanism is used to ensure that only a
part of the shared data is sent from the producer (the node producing data) to the

22 Chapter 2. State of the art

potential consumers (the nodes that may use the data in the future).
The execution model associated with the partial replication is SPMD, with the

following characteristics:

• All participating processes redundantly execute serial regions and parallel re-
gions demarcated by the omp master and omp single directives. Iterations of
OpenMP parallel for loops are partitioned between processes using block-
scheduling.

• Shared data is allocated on all processes. There is no concept of an owner
for any shared data item. There are only producers and consumers of shared
data.

• At the end of the parallel constructs, each participating process communicates
the shared data it has produced to the other processes that may use them in
the future.

The method that allows producers forwarding data to all potential consumers
ensures that processes always make local accesses when they read shared data. This
method may result in redundant communication where accesses are not completely
analyzable. An exception to redundant execution of the serial regions is the use of
file I/O. Reading from files is redundantly done by all processes (assuming that the
file-system is visible to all processes). Writing to a file is done by only one process
at a time (the process with the smallest MPI rank).

The translation from an OpenMP program to a MPI version contains three main
steps.

1. Interpretation of OpenMP Semantics Under Partial Replication. The compiler
converts the OpenMP program into a SPMD form, interprets OpenMP direc-
tives and performs the required partitioning work. Constructs for expressing
parallelism are translated by extracting the parallel region or the loop body
into a separate subroutine and inserting calls to a scheduling and dispatch
runtime library. When the program execution reaches one of these constructs,
the master thread invokes the corresponding subroutine on all threads, af-
ter explicitly invoking a synchronization barrier for ensuring shared memory
consistency before the parallel region starts. After the work partitioning, the
compiler builds the set of shared data used in the program using the Inter-
Procedural Analysis Algorithm for Recognizing Shared Data [25]. Then the
determined shared variables are allocated in the shared memory area of DMS.

2. Generation of MPI Messages using Array Dataflow. The compiler inserts MPI
calls to communicate data from producers to potential future consumers. To
solve the producer-consumer relationships, the compiler has to perform an
array-dataflow analysis. The compiler builds bounded regular section descrip-
tors [26] to characterize accesses to shared arrays. Then, the compiler creates
a producer-consumer flow graph which is used to solve the producer-consumer

2.2. OpenMP on distributed systems 23

relationships for shared data. This graph is finally used to conform to the
relaxed memory consistency model of OpenMP.

3. Translation of Irregular Accesses. A major challenge in translating OpenMP
applications directly to message passing is the handling of irregular accesses.
Irregular accesses are the reads and the writes that cannot be analyzed pre-
cisely at compile-time. A technique based on the property monotonicity is
used for handling irregular accesses to shared arrays at compile-time. How-
ever, there may be applications where this compile-time scheme is not appli-
cable, either because the indirection function is not provably monotonic or
because the irregular write is not in the form of ARRAY[indirection function].
In such cases, a runtime mechanism is used as a fallback. In this mechanism,
the compiler inserts code to record the writes at runtime. The inserted code
allocates a buffer on each process and at runtime puts in (location,value) pairs
for the written elements. At the end of the loop containing irregular writes,
processes intercommunicate this buffer.

With the performance evaluation shown in [9], this implementation of OpenMP
based on the translation into MPI involves a high performance. However, in their
compiler, which extends the Cetus Compiler Infrastructure [27], only steps 1 and
2 are implemented. Step 3 and some other optimizations have to be manually.
Furthermore, the SPMD execution model used in this approach can cause difficul-
ties to implement the constructs running on one thread only such as single and
master. These two facts prevent this approach from becoming a fully compliant
implementation of OpenMP.

2.2.3 Based on Global Array

A translation of OpenMP to Global Array (GA) was presented by L. Huang et

al. [10][29][30].
GA [28] is a collection of library routines that was designed to simplify the

programming methodology on distributed memory systems. GA simplifies parallel
programming by providing users with a conceptual layer of virtual shared memory
for distributed memory systems. Programmers can write their parallel program on
clusters as if they have a shared memory access, specifying the layout of shared
data at a higher level. However, it does not change the parallel programming model
dramatically since programmers still need to write SPMD style parallel code and deal
with the complexity of distributed arrays by identifying the specific data movement
required for the parallel algorithm. GA programs distribute data in blocks to the
specified number of processes. The current GA is not able to redistribute data.
Before a region of code is executed, the required data must be gathered from the
participating processes; results are scattered back to their physical locations upon
completion. GA relies upon MPI to provide it with the execution context.

L. Huang et al. [10][29][30] showed that almost all OpenMP directives, library
routines and environment variables can be translated into GA or MPI library calls

24 Chapter 2. State of the art

at source level. Exceptions are those that dynamically set/change the number of
threads, such as omp_set_dynamic, omp_set_num_threads since they would lead to
performing data redistribution and GA is based upon the premise that this is not
necessary.

The general approach to translating OpenMP into GA is to declare all shared
variables in the OpenMP program to be global arrays in GA. The most important
transformations are:

• OpenMP parallel regions are translated into GA by invoking MPI_Init and
GA_INITIALIZE routines to initialize processes and the memory needed for
storing distributed data array. To implement OpenMP parallel loops in GA,
the generated GA program reduces the loop bounds according to the specified
schedule so as to assign work. Based on the calculated lower and upper bounds,
and the array region accessed in the local code, each process in the GA program
fetches a partial copy of global arrays via GA_GET, performs its work and puts
back the modified local copy into the global location by calling GA_PUT or
GA_ACCUMULATE.

• Private variables can be declared as local variables that are naturally private
to each process in a GA. If the parallel region contains shared variables, the
translation will turn them into distributed global arrays in the GA program by
inserting a call to the GA_CREATE routine. OpenMP firstprivate and copyin

clauses are implemented by calling the GA broadcast routine GA_BRDCST. The
reduction clause is translated by calling GA’s reduction routine GA_DGOP.

• GA synchronization routines replace OpenMP synchronizations. As an OpenMP
synchronization ensures that all computations in the parallel construct has
completed, a GA synchronization does the same but also guarantees that the
required data movement has completed to properly update the GA data struc-
tures. GA locks and Mutex library calls are used to protect a critical section
and they are used to translate the OpenMP critical and atomic directives.

• The OpenMP flush directive is implemented by using GA put and get

routines to update shared variables. This could be implemented with the
GA_FENCE operations if more explicit control is necessary. GA provides the
GA_SYNC library call for synchronization; it is used to replace OpenMP barrier

as well as implicit barriers at the end of OpenMP constructs. The only di-
rective that cannot be efficiently translated into equivalent GA routines is the
OpenMP ordered. MPI_Send and MPI_Recv are used to guarantee the execu-
tion order of processes if necessary. Since GA works as a complement of MPI,
and must be installed on a platform with GA, there is no problem invoking
MPI routines in a GA program.

• The translation of the sequential program sections (serial regions outside par-
allel regions, OpenMP single, master, and critical constructs) become
non-trivial besides that of parallel regions. The program control flow must

2.2. OpenMP on distributed systems 25

be maintained correctly in all processes so that some parts of the sequential
section have to be executed redundantly by all processes. Subroutine/function
calls in sequential regions need to be executed redundantly if these subrou-
tines/functions have parallel regions inside. Three different strategies have
been identified to implement the sequential parts, check the special require-
ments and guarantee memory consistency: the master execution running only
on the master process, the replicated execution running redundantly the same
code on all processes and the distributed execution on each processor that
executes a portion of the work of the sequential part according to constraints
of the sequential execution order.

Afters the results shown in [10][29][30], the approach of translating OpenMP
into Global Array gives high performance. However, it meets a major drawback:
the requirement to explicitly specify shared variables which are implicitly shared
according to the OpenMP specification. This problem prevents it to become a fully
OpenMP compliant implementation on distributed systems.

Table 2.3 summarizes the main properties of the above implementations of
OpenMP on distributed systems.

2.2.4 Conclusion

There have been many attempts to port OpenMP on distributed memory systems.
However, none have successfully provided a fully-compliant and high-performance
OpenMP solution. The approach using SSI could have led to a fully compliant
solution but performance are very low. Approaches accepting a local memory in
threads meet the problem of specifying automatically shared variables which should
be allocated on the system shared-memory region. Some of them also meet other
problems such as the implementation to run the sequential sections on a single
thread; the need to use additional directives... As a consequence, finding an fully-
compliant implementation of OpenMP with high performance for distributed system
remains a challenge.

26 Chapter 2. State of the art

Method Platform Principle Advantages Drawbacks

SSI [5] DSM uses a SSI as a global
memory for threads

full
OpenMP
compliant

weak performance

Cluster
OpenMP
[11]

DSM maps only shared
variables on the
global shared mem-
ory

high
performance

use of additional di-
rectives

SCASH
[23]

DSM maps only shared
variables on the
global shared mem-
ory

high
performance

use of additional di-
rectives

RC
model
[6] [7]

DSM uses the HLRC
model to imple-
ment the OpenMP
memory model

high
performance

difficulty to auto-
matically identify
shared variables and
the implementation
of flush, reduction,
atomic...

Tread-
Marks
[32]

DSM,
cluster
of SMPs

extends the original
TreadMarks

high
performance

difficulty to auto-
matically identify
shared variables

llCoMP
[8]

MPI translates to MPI high
performance

use additional direc-
tives; difficulty to
implement single,
master, flush

Partial
Repli-
cation
model
[9]

MPI translates to MPI;
automatically spec-
ify exchanged data
between nodes

high
performance

not completely
implemented; diffi-
culty to implement
single, master...

GA
[10][29][30]

GA translates to Global
Array

high
performance

difficulty to auto-
matically identify
shared variables

Table 2.3: The implementations of OpenMP for distributed systems.

2.3. Checkpointing 27

2.3 Checkpointing

Checkpointing is the act of saving the state of a running program so that it can be
resumed later in time [33].

To take the checkpoint of a process, it is necessary to save all its state informa-
tion. When a program is executing, its state is composed of the values in memory,
the CPU registers, and the state of the process in the system such as the ID of the
process, the list of open file descriptors, signal masks... In Linux, the virtual space
address is composed of two parts: the kernel address space and the user address
space which also is divided into four segments: the text segment, the data segment,
the heap and the stack. Typically, values in the kernel part and the text segment do
not change during execution time, so they do not need to be saved in a checkpoint.
Figure 2.7 shows the principle of saving a checkpoint of a Linux process.

Figure 2.7: Saving a checkpoint of a Linux process.

2.3.1 Applications of checkpointing

Checkpointing is used in many applications. Belows are the most important ones [33][34][35].

28 Chapter 2. State of the art

2.3.1.1 Fault-Tolerance (Rollback recovery)

Along with the recovery technique, checkpointing is used in fault-tolerance applica-
tions that are used to resume the execution of a program to reduce the amount of
lost work after a failure. This is typically the main application of checkpointing.

Typically, at periodic intervals while the program is executing, checkpoints are
taken and saved in a stable memory. If a failure occurs, a recovering tool can resume
the program from the last saved checkpoint, thus losing at most an interval’s work
of computation. This application is very powerful since it has no binding with the
type of failure which can be hardware or software, or a power failure.

2.3.1.2 Process migration

In this application, a checkpoint is sent from one processor to another on which the
process is resumed from the checkpointed state. After sending the checkpoint, the
process in the initial processor is terminated. Process migration is very useful for
load balancing, i.e. to move a process from a heavily loaded processor to a lightly
loaded one. It can also be used for some other cases such as changing the hardware
without having to stop down the program for long.

2.3.1.3 Periodic backup

As in fault-tolerance applications, checkpoints are periodically taken and saved.
Using these checkpoints, users can return to previous states of the program.

2.3.1.4 Debugging

To help programmers find the errors when a program exit abnormally, some debug
tools automatically create checkpoints called core files. Using these files, program-
mers can identify the bugs or locate the regions with potential bugs.

Another type of debug using checkpoints is replay debugging. In this case, check-
points are periodically taken allowing users to turn the state of the examined pro-
gram back to any previous state.

2.3.1.5 Job swapping

In this application, many jobs are sharing (not concurrently) a resource. A running
job takes a checkpoint and then stops down to release the resource to another job.
After waiting for awhile, the stopped job can resume its execution from the saved
checkpoint and so on.

2.3.2 Different levels of checkpointing

Checkpointing may be categorized [33][36] in two main groups that are user level

or system level, depending on the space level in which it is implemented. User-level
checkpointing, in turn, may be divided into two subcategories which are transparent

2.3. Checkpointing 29

and non-transparent, based on level of requirements the user’s applications perform
the checkpointing.

2.3.2.1 System-level checkpointing

In this category, the mechanism is implemented and performed by the operating
system itself. Typically, any program can be checkpointed by the operating system
without any effort from the programmer or the user. For example, standard process
pre-emption (i.e. making a process relinquish the CPU and putting it on the ready
queue) can be viewed as a simple form of OS checkpointing.

Most operating systems do not implement checkpointing beyond process schedul-
ing. There are a few notable exceptions, such as Unicos [37], KeyKOS [38] and fault-
tolerant Mach [39], which implement rollback recovery, and Sprite [40], Mosix [41],
Gobelins [42], CHPOX [43] which are distributed operating systems that include
process migration as a primitive operation, Kerrighed [44] which implements check-
point/recovery mechanisms for a DSM cluster system.

2.3.2.2 User-level transparent checkpointing

In this case, checkpointing is performed in user space by the checkpointer without
modification of the source code of checkpointed programs. Transparency is usually
achieved by compiling the application program with a special checkpointing library,
although other methods are possible, such as rewriting executable files [45] or in-
jecting checkpointing into running processes [46]. The major drawback of user-level
checkpointing is the lack of ability of the checkpointer to access and to recovery
some system data such as the ID of the program. More details on these problems
are presented in [47] and [48].

Table 2.4 shows some examples of user-level transparent checkpointers.

2.3.2.3 User-level non-transparent checkpointing

This type of checkpoint is also performed in user space, but programmers have to in-
sert explicit checkpointing directives in the source code of the checkpointed program,
usually with the help of libraries and preprocessors. On one hand, this increases
the work of programmers. On the other hand, this increases flexibility and per-
formance. Programmers can specify exactly the information that have to be saved
and recovered and this usually leads to better performance. Another advantage of
this checkpointing type is the ability to save checkpoints in a machine-independent
format, which allows checkpoints be resumed on machines with a different architec-
ture.

Table 2.5 shows examples of user-level non-transparent checkpointers.

2.3.3 Complete Checkpointing vs. Incremental Checkpointing

Complete Checkpointing is a technique in which all the information associated with

30 Chapter 2. State of the art

Name Functionality Computing platform

Libckpt [49] Fault-tolerance Uniprocessors

Condor [50] Process migration Uniprocessors

Igor [51] Debugging Uniprocessors

ckpt [46] Fault-tolerance Uniprocessors

Manetho [52] Fault-tolerance Message-passing distributed systems

CoCheck [53] Fault-tolerance/migration Message-passing distributed systems

CGS [54] Fault-tolerance Message-passing distributed systems

Ickp [55] Fault-tolerance Intel iPCs/860

CLIP [56] Fault-tolerance Intel Paragon

ZAP[57] Process migration Distributed systems

Bproc[58] Process migration Distributed systems

DMTCP[59] Fault-tolerance Distributed systems & Desktop

MPICH-V[60] Fault-tolerance Message-passing distributed systems

Pcl[61] Fault-tolerance Message-passing distributed systems

Table 2.4: Examples of user-level transparent checkpointers.

Name Functionality Computing platform

Libft[62] Fault-tolerance Distributed systems

Dome[63] Fault-tolerance / load balancing Distributed systems

PUL[64] Fault-tolerance Distributed systems

Calypso[48] Fault-tolerance / load balancing Distributed systems

COSMOS[65] Fault-tolerance Distributed systems

PM2[66] Process migration Distributed systems

DEMOS/MP[67] Process migration Distributed systems

Table 2.5: Examples of user-level non-transparent checkpointers.

2.4. CAPE with complete checkpoints (CAPE-1) 31

process is saved in each checkpoint. Its major drawback is the redundancy of data
when several checkpoints are taken consequently without many changes in process
space. Moreover, this is not efficient, for example for both the text segment and
data that can be easily retrieved from the executable code of the program.

With the Incremental Checkpointing technique [68][69], only the information
that have been modified since the beginning of the execution or since the previous
checkpoint are effectively considered. Most of incremental checkpointers use the
page-fault mechanism to specify the modified data in which, following a checkpoint,
all pages in memory are set to be read-only. When the program attempts to write
a read-only page, an access violation occurs, and the checkpointer processes the
resulting interrupt by storing the identity of the page in a list, and resetting its
protection to read-write. At the time to save the checkpoint, only the pages that
have caused access violations (those stored in the list of accessed pages) are stored
in the checkpoint file.

Incremental checkpointing improves performance over complete checkpointing if
the few pages saved by the checkpointer are smaller than the penalty for setting
the page protections and processing access violations. Unless almost all memory is
altered between two checkpoints, this is usually the case. More details about this
technique are presented in the next chapter.

2.4 CAPE with complete checkpoints (CAPE-1)

The initial idea behind CAPE is the use of checkpoints to implement the OpenMP
fork-join model. In this model, a program initially run on a single thread called the
master thread. Whenever the program meets a parallel region, the master thread
is duplicated several times to create slave threads using instruction clone and the
job to be computed in the parallel section is distributed among them. The join

phase of the model is associated with the termination of slave threads after they
have finished their particular job and updated their result to the master’s memory.

Figure 2.8 presents the relation between the OpenMP fork-join model and the
CAPE fork-join model for a program’s section composed of three parallel parts ex-
ecuted in three different threads in case of OpenMP and in three processes in the
case of CAPE. The reason for replacing threads by processes is explained in the
Sec. 2.2.4. Note that in this model, CAPE is restricted to programs containing par-
allel sections that matches the Bernstein’s conditions and processes may be located
on different machines. The principle of CAPE is described below.

At the beginning, the program runs on a single process called the master process.
When this process meets a parallel region:

• fork phase: the job is divided into smaller parts or chunks by the master
process. At the beginning of each chunk, the master process creates a complete
checkpoint and sends it to a distant machine to create a slave process. Then,
the master process jumps to the next chunk if any. After the last chunk, the
master process waits for the results from slave processes. The distant machines

32 Chapter 2. State of the art

use the received checkpoint to resume the program at the begin of the chunk.
After the chunk is completed, the result is extracted using another checkpoint
and reported to the master process. Then, the slave process terminates its
execution.

• join phase: after all slave processes have terminated their execution and the
master process has received all results from the slave processes, the master
process resumes its execution to the next region of the program. At that time,
there is only one active process in the system.

Figure 2.8: OpenMP fork-join model vs. CAPE fork-join model.

The CAPE model offers two main advantages:

• It is compatible with the relaxed-consistency shared-memory model of OpenMP:
the memories in the master process and in slave processes are matching the
memory and the temp views in the master and the slave threads of the OpenMP
model respectively. During the execution of the job of each chunk, slave pro-
cesses only use their own memory spaces. As a result, this model can reduce
the access time to the common memory and thus increase the execution speed
of the program. Note that synchronization between the memory of slave pro-
cesses at execution time is not necessary since the need to verify the Bernstein’s
conditions. The solution to overcome this restriction is presented in Chap. 5.

• The ability to automatically distribute parallel sections and collect results
from slave processes (based on checkpoints) overcomes the drawbacks of the

2.4. CAPE with complete checkpoints (CAPE-1) 33

other approaches, based on MPI or Global Array for example. In fact, as
the identification of memory locations that have been modified during the
execution of a slave process, that might be called the result of the execution of a
slave thread, is automatically extracted from the difference of two checkpoints
while the same result can be very hard to achieve when implementing OpenMP
on distributed systems using the other approaches.

2.4.1 CAPE prototype for parallel for loops

By using complete checkpoints, the above model can easily be installed and in this
document, it is referred to as CAPE-1 to differ with the implementation using in-
cremental checkpoints called CAPE-2 and presented in the Chap. 4. In the fork

phase, complete checkpoints contain process space and thus, when used to resume
the execution in the slave processes, they create the same process space as the space
created when using system calls fork or clone to duplicate the process. The extrac-
tion of results in a slave process, after finishing its job, can be done by comparing
the checkpoint taken at this time and the initial checkpoint that was used to resume
the execution of the slave processes.

Figure 2.9 presents the effective transformation that is performed on a code
that specifies a parallel for with all loop iterations D satisfying the Bernstein’s
conditions when using OpenMP directives. The parallel section construct can
be implemented by using a similar prototype [12] or by a translation into an in-
termediate parallel for form. To ease the presentation, assume that the number
of loop iterations is equal to the number of slave processes. The parent, i.e. the
master node, is in charge of managing the slaves only and does not execute any loop
iteration in the parallel part. This is not mandatory and the master node can also
take part in the execution of one or more loop iterations. The translation is based
on the following functions:

• create (< file >) generates a checkpoint and saves it in the file provided
as a parameter. The value returned by the function is used to identify whether
the function has just created the checkpoint and returned, or the process has
been created after resuming the execution from the checkpoint. This function
is very similar to the fork system call, except that create returns TRUE after
generating the checkpoint and FALSE after resuming the execution from the
checkpoint.

• copy (< file_1 > , < file_2 >) duplicates the content of a file into an-
other one.

• diff (< file_1 > , < file_2 > , < file_3 >) saves into the last file pro-
vided as a parameter the list of modifications that should be applied on the
first file to obtain the second one.

• merge (< file_1 > , < file_2 >) applies the list of modifications saved
in the second file provided as a parameter to the checkpoint file provided as

34 Chapter 2. State of the art

pragma omp parallel for

for (A ; B ; C)

D

↓ automatically translated into ↓

parent = create (original)

if (! parent)

exit

copy (original, target)

for (A ; B ; C)

parent = create (beforei)

if (parent)

ssh hostx restart (beforei)

else

D

parent = create (afteri)

if (! parent)

exit

diff (beforei, afteri, deltai)

merge (target, deltai)

exit

parent = create (final)

if (parent)

diff (original, final, delta)

wait_for (target)

merge (target, delta)

restart (target)

Figure 2.9: Template for OpenMP parallel for loops with complete checkpoints.

2.4. CAPE with complete checkpoints (CAPE-1) 35

the first parameter.

• wait_for (< file >) returns after the file whose name is provided as a
parameter is available.

• restart (< file >) resumes the execution of the current process from the
checkpoint file provided as a parameter.

Note that the operation that consists in resuming the execution of checkpoints
generated for each loop iteration, the line in italic in Fig. 2.9, is executed on the
master node but delegated to an external process in charge of managing the dis-
tribution of processes on a set of remote resources. BOINC [70], used in the scope
of the Seti@Home project, is probably one of the most famous tool aiming at dis-
tributing works among a set of computing resources. However, many other solu-
tions are also available such as AC2 [71], Nimbus [72][73], OpenNebula [74] and
KOALA [75][76]. Details of this prototype including its proof and its evaluation
are presented in [12][13]. [14] presents a model to determine the optimal number of
nodes to use to minimize the execution time of a parallel program based on CAPE.

2.4.2 Some possible improvements for CAPE

Although the feasibility and the consistency of CAPE have been proved both by a
theoretical analysis and by practical tests on its implementation, this prototype is
not optimal as some elements significantly reduce its global performance and limit
its applicability. The most important problems are:

1. The large amount of data transfered over network. The master process needs
to send one snapshot of the process image in the form of a complete check-
point to each slave node. This transfer leads to two important elements that
increase the amount of data sent over the network. First, these snapshots are
large because they contain all the information related to the process: shared
libraries, program’s code, program’s data, etc. Second, they are different for
each loop iteration, so the master process has to sequentially create and send
them to the slave processes.

2. The large number of comparisons in complete checkpoints to extract the result

on slave nodes. This is critical when large checkpoints are generated and the
final amount of data is small. In this case, a lot of comparison operations are
performed that significantly increase the execution time on slave nodes and
reduce the global performance.

3. A large amount of memory space is required to store the temporary data. In this
prototype, several checkpoints need to be saved: original, target, before.
In case of big checkpoints, they significantly affect the memory usage.

4. The delay involved to start/resume the processes. Both slave processes and
the master process have to start/resume in each parallel region. The first ones

36 Chapter 2. State of the art

happen to start slave processes from the received checkpoints. The second
happen on the master process after it receives the results from slave processes,
to include all these results in its process space. The ability to directly update
a process memory would avoid this drawback.

5. The requirement to verify the Bernstein’s conditions. OpenMP allows the syn-
chronization of memory between the threads in parallel regions. In CAPE-1,
there is no mechanism to implement this ability. Furthermore, OpenMP direc-
tives and clauses related to data-sharing problems such as private, threadprivate,
firtsprivate, lastprivate, reduction... are not considered in this proto-
type. These two restrictions limit the types of programs that can be executed
with CAPE.

The next chapters aim at presenting the solutions to overcome these drawbacks.
First, Discontinuous Incremental Checkpointing, presented in Chap. 3 provides the
ability to extract the changes in specified regions of programs. Based on this tool,
a new prototype called CAPE-2, presented in Chap. 4 bypass problems 1 to 3.
Problem 4 is solved by introducing function inject in this checkpointing technique,
that directly includes the changes contained in checkpoints into the process space
without the need to restart them. The shared-memory model and the processing of
data-sharing primitives and clauses, presented in Chap. 5 finally solve the problem 5.

Chapter 3

Discontinuous Incremental

Checkpointing

Contents

3.1 Linux memory architecture 37

3.1.1 Memory address . 38

3.1.2 The Process Address Space 38

3.1.3 Paging in hardware . 41

3.1.4 Paging in Linux . 42

3.1.5 Page Table Handling . 43

3.1.6 Example: how to set a page to the writable status 45

3.2 Discontinuous Incremental Checkpointing 47

3.2.1 Mechanism for memory modification detection 47

3.2.2 The additional directives 47

3.2.3 Checkpointer level . 49

3.3 Detailed design . 51

3.3.1 Execution mechanism in checkpointing cases 51

3.3.2 Execution mechanism in recovering cases 53

3.3.3 Implementation of the directives 55

3.4 Performance evaluation . 55

3.4.1 Advantages and drawbacks 57

3.5 Checkpoint structure optimization 58

3.5.1 Memory granularity . 58

3.5.2 Incremental checkpoint content 59

3.5.3 Identifying the method . 62

3.6 Conclusion . 63

3.1 Linux memory architecture

Checkpointing technique is used in all architectures and all operating systems even
though it is not always implemented in the same way. The following description is
limited to Linux with x86 microprocessors.

38 Chapter 3. Discontinuous Incremental Checkpointing

3.1.1 Memory address

80x86 microprocessors distinguishes three kinds of addresses [77]:

• Physical addresses are used to address memory cells in memory chips. They
correspond to the electrical signal sent along the address pins of the micro-
processor to the memory bus. Physical addresses are represented as 32-bit or
36-bit unsigned integers.

• A linear addresses (also known as virtual address) is a single unsigned integer.
Linear addresses are usually represented in hexadecimal notation. In 32-bit
systems, their values range from 0x00000000 to 0xFFFFFFFF. In most cases,
Linux programmers use linear address to refer to a memory position.

• Logical addresses are included in the machine language instructions to specify
the address of an operand or of an instruction. This type of address em-
bodies the well-known 80x86 segmented architecture that forces MS-DOS and
Windows programmers to divide their programs into segments. Each logical
address consists of a segment and an offset (or displacement) that denotes
the distance from the start of the segment to the actual address. In Linux,
addresses begin with 0x00000000, so logical addresses and linear addresses are
the same as the value of the offset field of a logical address is always the same
of the corresponding linear address.

The Memory Management Unit (MMU) translates a logical address into a linear
address by means of a hardware circuit called the segmentation unit; subsequently,
a second hardware circuit called the paging unit translates a linear address into a
physical address (see Fig. 3.1). This translations is transparent to programmers in
most cases and thus they do not need to be interested in the physical address.

Figure 3.1: Logical to Linear, and Linear to Physical address translations.

3.1.2 The Process Address Space

A process is a program in execution. An executable program on a disk contains a set
of binary instructions to be executed by the processor together with the data used
in the program. While running, all these elements are loaded in the process memory
space. Furthermore, the process memory also contains the shared libraries which
are included in program, the kernel code and data. Figure 3.2 [78] shows the layout
of a process memory, in which the gray regions represent virtual addresses that are
mapped to the physical memory, whereas white regions are unmapped. Belows are
the description for each region.

3.1. Linux memory architecture 39

Figure 3.2: Linux process memory layout.

40 Chapter 3. Discontinuous Incremental Checkpointing

• Text, BSS and data segments. A process image starts with the program code
and data. Code and data consists in the program instructions, and both initial-
ized and uninitialized local static and global data respectively. The address of
each region is specified at compile time and unchanged during execution time.
Typically, the text segment is also unchanged at the execution time.

• Stack segment. This is the topmost segment in the process address space,
which stores automatic local variables and function parameters in most pro-
gramming languages. Calling a method or function pushes a new stack frame
onto the stack. The stack frame is destroyed when the function returns. This
simple design, made possible thanks to the LIFO order, means that no com-
plex data structure is needed to track stack contents – a simple pointer to the
top of the stack will do. Pushing and popping are thus very fast and deter-
ministic. Also, the constant reuse of stack regions tends to keep active stack
memory in CPU caches, thus speeding up access. Each thread in a process
gets its own stack.

• Heap segment. Above the data segment is the heap region which contains the
dynamically allocated variables. As the amount of memory space used by a
program can vary while the program is running, the position of the top of
the heap also can change during execution time. Most languages provide heap
management functions to programs. Satisfying memory requests is thus a joint
cooperation between the runtime language and the kernel. In C, the interface
to the heap allocation is malloc() and friends. If there is enough space in the
heap to satisfy a memory request, it can be handled by the language runtime
without kernel involvement. Otherwise, the heap is enlarged via the brk()

system call to make room for the requested block.

• Memory mapping segment. In this region the kernel maps the content of files
directly to memory. Any application can ask for such a mapping via the Linux
mmap() system call. Memory mapping is a convenient and high-performance
way to do file I/O, so it is used for loading dynamic libraries, for example the
libc*.so. In Linux, if one requests a large block of memory via malloc(), the
C library will create such an anonymous mapping instead of using the heap
memory. ‘Large’ means larger than MMAP_THRESHOLD bytes, 128 kB by
default and adjustable via mallopt().

Some addresses of the above segments are fixed and specified at compile time,
including the ones of text, BSS and data segments. Furthermore, they can be
extracted in program, for example by using the associated variables such as the
__data_start, _edata, __bss_start, which contain address of the beginning and
the end of the data segment, and the beginning of the BSS segment respectively.
On Fig. 3.2, these variables are presented on the left side. Some others are changed
at execution time and there are not associated system variables. However, there
are some other methods to find these addresses, for example using the sbrk system

3.1. Linux memory architecture 41

call with a parameter equal 0 that returns the current position of the top of the
heap. In kernel mode, using the mm_struct that contains the fields that refer to
addresses of most the segments of processes, except addresses of the end of the BSS
segment, and the end of the stack. On Fig. 3.2, these fields are presented on the
right side. Another method in kernel mode to find all allocated memory regions of a
process at the execution time which uses the mmap field of mm_struct that refers to
the first element of a vm_area_struct list. Each member of this list is a structure
containing the fields that specify both start and end addresses of the associated
region and some other properties.

Another important element is Linux randomizing stack, memory mapping seg-
ment and heap by adding an offset. This aims at preventing remote attacks and does
not cause any problem in case of complete checkpoints. However, in case of incre-
mental checkpoints, the problem is more complex and requires a special processing
to resume the process or to inject a checkpoint into a process memory as the mem-
ory spaces of the process are different between the different executions. A possible
solution consists in modifying the addresses of memory regions in checkpoints when
injecting them into the process memory. On one hand, this is slightly complex and
consumes execution time. On the other hand, this cause the requirement to update
value of pointers while modifying associated dynamically allocated variables. This
requirement in turn, is very complex to solve dues to difficulties to specify all point-
ers of the program. As a result, we have decided to set all the randomize regions to
0, to avoid this problem. The following command must be executed in the terminal
before processes are started.

sysctl -w kernel.randomize_va_space=0

The “snapshot” of process memory contains all these above regions. However,
since some of them are read-only and/or do not change in execution time, they
can be built from the executable code of the program and thus, do not need to be
saved, and this reduces the size of checkpoints. Furthermore, this prevents system
fatal errors due to write operations in read only regions of text or memory mapping
segments.

3.1.3 Paging in hardware

The paging unit translates linear addresses into physical ones. One key task in the
unit is to check the requested access type against the access rights of the linear
address. If the memory access is not valid, it generates a Page Fault exception. For
the sake of efficiency, linear addresses are grouped in fixed-length intervals called
pages; contiguous linear addresses within a page are mapped into contiguous physical
addresses. This way, the kernel can identify the physical address and the associated
access rights of a page instead of those of all the linear addresses includes. The page
size depends on the architecture. On the 32-bit x86 architecture, it is 4kB. Table 3.1
shows the page size for some 64-bit architectures.

42 Chapter 3. Discontinuous Incremental Checkpointing

Platform name Page size Number of paging levels

alpha 8 kB1 3

ia64 4 kB1 3

ppc64 4 kB 3

sh64 4 kB 3

x86_64 4 kB 4

Table 3.1: Page sizes and paging levels in some 64-bits architectures.

The paging unit considers of all RAM as partitioned into fixed-length page frames
(sometimes referred to as physical pages). Each page frame contains a page. A page
frame is a component of the main memory, and hence it is a storage area. It is
important to distinguish a page from a page frame; the former is just a block of
data, which may be stored in any page frame or on disk, while the latter refers to a
physical region in main memory.

The data structures that map linear to physical addresses are called page tables;
they are stored in the main memory and must be properly initialized by the kernel
before enabling the paging unit.

3.1.4 Paging in Linux

Linux adopts a common paging model that fits both 32-bit and 64-bit architectures.
For 32-bit architectures, two paging levels are enough, while 64-bit architectures
require a higher number of paging levels. Up to version 2.6.10, the Linux paging
model consisted in three paging levels. Starting with version 2.6.11, a four-level
paging model has been adopted1. The four types of page tables are:

• Page Global Directory (PGD)

• Page Upper Directory (PUD)

• Page Middle Directory (PMD)

• Page Table (PT)

The Page Global Directory includes the address of several Page Upper Directo-
ries, which in turn include the address of several Page Middle Directories, which in
turn include the address of several Page Tables. Each Page Table entry points to a
page frame. Thus, the linear address can be split into up to five parts. Figure 3.3
presents this division in the Linux paging model, on which the bit numbers are not
shown, because the size of each part depends on the computer architecture.

1This architecture supports different page sizes; This is the typical value adopted by Linux.
1This change has been made to fully support the linear address bit splitting used by the x86_64

platform (see 3.1)

3.1. Linux memory architecture 43

For 32-bit architectures with Physical Address Extension enabled, three paging
levels are used. The Linux Page Global Directory corresponds to the 80x86 Page
Directory Pointer Table, the Page Upper Directory is removed, the Page Middle
Directory corresponds to the 80x86 Page Directory, and the Linux Page Table cor-
responds to the 80x86 Page Table. Finally, for 64-bit architectures, three or four
levels of paging are used depending on the linear address bit splitting performed by
the hardware (see Tab. 3.1).

Figure 3.3: Linux paging model

3.1.5 Page Table Handling

Linux supports a set of data structures, functions and macros to handle Page Tables.
pte_t, pmd_t, pud_t, and pgd_t data types describe the format of Page Table,

Page Middle Directory, Page Upper Directory, and Page Global Directory entries re-
spectively. Five type-conversion macros __pte, __pmd, __pud, __pgd and __pgprot)
cast an unsigned integer into the required data type. Five other type-conversion
macros pte_val, pmd_val, pud_val, pgd_val and pgprot_val perform the reverse
casting from one of the four previously mentioned specialized data types into an
unsigned integer.

The kernel also provides several macros and functions to read or modify page
table entries:

• Functions pte_none, pmd_none, pud_none and pgd_none check the existence of
entries. They yield to value 1 if the corresponding entry has value 0; otherwise,
they yield to value 0.

• Functions pte_clear, pmd_clear, pud_clear and pgd_clear clear an entry of
the corresponding page table, thus forbidding a process to use the linear ad-

44 Chapter 3. Discontinuous Incremental Checkpointing

dresses mapped by the page table entry. The ptep_get_and_clear() function
clears a Page Table entry and returns the previous value.

• Functions set_pte, set_pmd, set_pud and set_pgd write the given value into
a page table entry; set_pte_atomic is similar to set_pte. However, when
the Physical Address Extension Paging Mechanism (PAE) is enabled, it also
ensures that the 64-bit value is written atomically.

The kernel also provides some macros to check the validity of an element in the
Directories. The pmd_bad macro is used by functions to check Page Middle Directory
entries passed as input parameters. It yields to value 1 if the entry points to a bad
Page Table, i.e. if at least one of the following conditions applies:

• The page is not in main memory (Present flag cleared).

• The page allows only Read access (Read/Write flag cleared).

• Either Accessed or Dirty is cleared (Linux always forces these flags to be set
for every existing Page Table).

The pud_bad and pgd_bad macros always yield 0. No pte_bad macro is defined,
as it is legal for a Page Table entry to refer to a page that is not present in main
memory, not writable, or not accessible at all. The pte_present macro yields to
value 1 if either the Present flag or the Page Size flag of a Page Table entry is
equal to 1, value 0 otherwise. Remind that the Page Size flag in Page Table entries
has no meaning for the paging unit of the microprocessor; however, the kernel marks
Present equal to 0 and Page Size equal to 1 for pages present in main memory
but without read, write, or execute privileges. In this way, any access to such pages
triggers a Page Fault exception as Present is cleared, and the kernel can detect
that the fault is not due to a missing page by checking the value of Page Size.

The pmd_present macro yields to value 1 if the Present flag of the corresponding
entry is equal to 1, i.e. if the corresponding page or Page Table is loaded in main
memory. pud_present and pgd_present macros always yield to value 1.

To specify access properties of pages, each element in a Page Table Directory
is adopted a set of flags. To read and set their values, the kernel provides a set
of functions. Functions pte_user(), pte_write(), pte_young() and pte_dirty()

read the value of flags User/Supervisor, Read/Write, Young and Dirty respectively.
Functions pte_wrprotect(), pte_rdprotect(), pte_mkdirty() and pte_mkold()

clear flags Read/Write, User/Supervisor, Dirty and Accessed respectively.
Another set of macros serve to find elements in Table Directories. The pgd_offset(mm, addr)

function receives as parameters the address of a memory descriptor and a linear ad-
dress addr. The macro returns the linear address of the entry in the Page Global
Directory that matches address addr. pud_offset(pgd, addr) receives as param-
eters a pointer to a Page Global Directory entry and a linear address addr. It
returns the linear address of the entry in the Page Upper Directory that matches
addr. In a two- or three-level paging system, this macro returns pgd, the address of

3.1. Linux memory architecture 45

the Page Global Directory entry. Macro pmd_offset(pud, addr) receives a pointer
to a Page Upper Directory entry and a linear address addr as parameters. It re-
turns the address of the entry in the Page Middle Directory that matches addr. In
a two-level paging system, it returns pud, the address of the Page Global Directory
entry. Finally, the pte_offset_map(pmd, addr) macro receives a pointer pmd to a
Page Middle Directory entry and a linear address addr as parameters. It returns
the linear address of the entry in the Page Table that corresponds to linear address
addr.

There are many other functions and macros provided by kernel for the Table
Handling. A complete list can be referred in the page 61–65 of [77].

3.1.6 Example: how to set a page to the writable status

All the above information are used in our checkpointer to write the operations
managing the memory space of the checkpointed process. For example, to set the
Read/Write flag of the page containing the address addr in the memory space of
the process having process ID pid, the main steps are:

• search the process memory object (mm_struct object). This object is the initial
clue to access most of the process memory managing objects. From the process
ID, it is possible to get the associated task_struct object and the mm field of
this object points to the effective memory object.

• check the validity of the address. Theoretically, the virtual memory space of a
process consists of 4GB, from 0x00000000 to 0xFFFFFFFF as a global view
and from the start_code address to 0xC0000000 for the user space. However,
the kernel only allocates virtual memory areas (vma) for the regions that really
used by the process. As a result, a verification of the validity of an address is
equivalent to checking whether it is in a vma.

• find the associated memory page and set its status to writable. Sequentially find
the associated objects in the Page Global Directory, the Page Middle Directory
and the Page Table. There are three important notes in this steps. The first
one consists in locking/unlocking the page table each time properties of page
table elements are modified. This prevent conflicts from the other accesses
in multi-processors/multi-cores systems. The second one consists in calling
the handle_mm_fault() kernel function to solve the case where a memory
region is valid but not located in the main memory. The last note consists in
updating the Page Table from the cache, after it has been modified, to ensure
that updates are seen by the next operation. The pte_mkwrite() function
is used to set the page to the writable status.

Below is an extraction from our checkpointer. This is a function which gets
a process ID and an address as parameters and then sets the page including this
address to the writable status.

46 Chapter 3. Discontinuous Incremental Checkpointing

int clear_write_protect(unsigned int pid, unsigned long addr){

struct task_struct *t, *task = NULL;

for_each_process(t) //find the task associated with process

if (t->pid == pid) task = t; //search the task object

if(task == NULL){ printk("pid invalid"); return 1; }

mm = task->mm; //the memory object

vma = find_vma(mm, addr); //the virtual memory area

if(!vma) { printk("addr invalid"); return 2; } //this address is not allocated

spin_lock(&mm->page_table_lock); //lock the Page Table

pgd = pgd_offset(mm, addr); //search the PGD

if (pgd_none(*pgd)) { ret = 3; goto out; }

pmd = pmd_offset((pud_t *)pgd, addr); //search the PMD

if (pmd_none(*pmd)){ //In case of setting a new value for the brk

//(end of heap), the PMD may not be exist.

//So, let the kernel try to process first.

spin_unlock(&mm->page_table_lock); //unlock the PT before letting

//the kernel to process

ret = my_handle_mm_fault(mm, vma, addr, 0); //this will call

//the handle_mm_fault() kernel function.

spin_lock(&mm->page_table_lock);

}

if(pmd_none(*pmd)) { ret = 4; goto out; }

pte = pte_offset_map(pmd, addr); //search the PTE

if (pte_present(*pte)){ //page is in the main memory

*pte = pte_mkwrite(*pte); //set its status to writable

flush_tlb_page(vma, addr); //flush the cache to update the PT

}else{ //page is not in the main memory, let the kernel to process first

vma->vm_flags |= VM_WRITE;

pte_unmap(pte);

spin_unlock(&mm->page_table_lock);

ret = my_handle_mm_fault(mm, vma, addr, 0);

spin_lock(&mm->page_table_lock);

vma->vm_flags &= ∼VM_WRITE;

if(ret == 0){

pte = pte_offset_map(pmd, addr);

*pte = pte_mkwrite(*pte);

flush_tlb_page(vma, addr);

}else{

pte_unmap(pte);

goto out;

}

}

pte_unmap(pte);

spin_unlock(&mm->page_table_lock);

return ret;

out:

printk("error: %d\n", ret);

spin_unlock(&mm->page_table_lock);

return ret;

}

3.2. Discontinuous Incremental Checkpointing 47

3.2 Discontinuous Incremental Checkpointing

Specially designed for CAPE, Discontinuous Incremental Checkpointing (DICKPT)
technique is based on Incremental Checkpointing technique with the additional abil-
ity of executing the checkpointing in discrete sections of programs.

3.2.1 Mechanism for memory modification detection

As in incremental checkpointing, the first challenge of DICKPT is to recognize the
updated regions of the process space while the process is running. At present, there
are three mechanisms to solve this problem.

1. Use the dirty bit. When a page is written, the hardware sets the dirty

bit in the corresponding page. Thus, when a checkpoint is taken, all the Page
Table entries are examined to determine whether the page has been changed
since the previous checkpoint or since the beginning of the program. Then,
all the writable pages are marked as clean (non-dirty). There is an important
problem inherent to this method: all dirty bits are cleared when the cache
containing updated pages is written back to the main memory. A solution
presented in [79] consists in mirroring the original dirty bit into one of the
unused entry bits in the Page Table entry. Low-level functions used by the
kernel to access this bit are properly updated.

2. Use the write bit. At the beginning of the program or after a checkpoint,
all the writable pages are set to read-only. When a page is written for the first
time, a page fault exception is generated and the page fault exception handler
saves the address of the fault page in a list. Then, the page is set to writable
status. When a checkpoint is taken, all pages having addresses in the saved
list are read from the current memory space and saved to the checkpoint.

3. Use the write bit and Save in a buffer. This mechanism is the same as
the previous one except that the page is also copied into a buffer before being
set to writable.

Among the above mechanisms, the first one has the advantage of having no
effect on the process performance. Only the third one can provide a detection of
memory changed at variable-granularity. This ability is given by the comparison
between the pages in the buffer and the current pages in process memory at the
time the checkpoint is taken. As a response to the requirement of providing the list
of memory modifications in slave nodes at variable-granularity, DICKPT uses this
last mechanism to detect all memory modifications.

3.2.2 The additional directives

An incremental checkpointer can be transparently implemented i.e. no add extra
information in the code of checkpointed program. At the beginning of the program,

48 Chapter 3. Discontinuous Incremental Checkpointing

the checkpointer set all writable pages of checkpointed process to the read-only
status and then waits for page-fault signals. Checkpoints can be taken periodically
or at any time after a signal is sent by the user.

It is different in the case of DICKPT. To exactly specify the checkpointed sections
in a program, additional information have to be inserted into the original source
code. This can be performed manually by programmers or automatically be another
tool such as a compiler in the case of CAPE. Three following directives have been
added.

• pragma dickpt start clears the buffer and then starts or resumes check-
pointing. Any modifications occurring on the process after a call to start is
reported in the buffer. A call to start while the checkpointer is active results
in clearing the content of the buffer which is definitively lost.

• pragma dickpt stop stops checkpointing, i.e. any modifications that occurs
on the process after a call to the stop is not reported in the buffer. A call to
stop while the checkpointer is not active is just discarded.

• pragma dickpt save filename saves the content of the buffer in the file pro-
vided as a parameter. Several calls to save may occur inside a start/stop

pair of directives. If the filename is the same as in the previous call, the
current checkpoint is merged with the previous one. Otherwise, a new file is
created.

Assume that a program consists of segments (A, B, C, D) in which, only B
and D need to be checkpointed and two checkpoints are taken in B and one in D.
Fig. 3.4 presents the prototype of the changed program, i.e. the directives that have
been inserted to verify the above requirements.

A

pragma dickpt start

B1
pragma dickpt save <filename1>

B2
pragma dickpt save <filename1>

pragma dickpt stop

C

pragma dickpt start

D

pragma dickpt save <filename2>

pragma dickpt stop

Figure 3.4: Example of pseudo-code for discontinuous incremental checkpoints.

According to the discontinuous feature, checkpoints of this type can be merged
only when they have been taken in the same region, surrounded by a pair of

3.2. Discontinuous Incremental Checkpointing 49

start/stop pragmas. Furthermore, they cannot be used to restart the execution
of the program. However, they can be injected into the state of programs. In fact,
resuming a program is more complex and contains the phases of injecting check-
points interwoven with the phases of re-running the program. As a result, resuming
is correct only when the conditions that consist in the phases resuming the program
are the same as the conditions when the program was originally running.

3.2.3 Checkpointer level

As presented in 2.3.2, checkpointer can be developed in the user-level or in the
kernel-level.

At the user-level, when the checkpointing is included in application programs, it
makes programs lost their independence. When using an independent checkpointer,
there are two important limits. The first one is the restriction of the access to the
information system of checkpointed programs. The second one is the difficulties to
built a high-speed data exchange mechanism between the checkpointer and check-
pointed programs. For example, most of incremental checkpointers (i.e. those using
the write bit) use the ptrace mechanism to catch signals from checkpointed ap-
plications. This mechanism limits the use of functions to read/write data from/to
checkpointed programs as only one byte each call. Thus, if the checkpointer reads
a page from the checkpointed program, a large number of system calls have to be
used and this strongly reduces the global performance.

From the above analysis, we develop our own checkpointer as a two layer one,
i.e. one part in the kernel space and another one in the user space. The first one
is a collection of functions to manage and to read/write from/to the memory of
checkpointed programs. While being developed at this level, there is no limit to
access the information system and data of checkpointed programs. The part of the
checkpointer at user space is a monitor that tracks signals from checkpointed pro-
grams and call the functions in the kernel space to perform the checkpointing tasks.
In this way, all checkpoint tasks are executed by the monitor. In the checkpointed
program, only the directives that might be implemented by the signals, are inserted.

Figure 3.5 shows the two layers of the DICKPT checkpointer with the main
functions that are presented below.

• lock_process_image() sets all pages of the application process to the read-
only status.

• unlock_process_image() sets all pages of the application process to their
initial status.

• unlock_a_page(addr) sets the page including the address addr to its initial
status.

• read_range(addr, length, dst) reads from the application process space
length bytes, starting at address addr. Result is set to the location pointed
by the dst pointer.

50 Chapter 3. Discontinuous Incremental Checkpointing

• write_range(addr, length, values) writes to the application process
space length bytes, start at address addr. Values to write are pointed by
the values pointer.

• start_signal_proc() process signals associated with the dickpt start pragma.
It initializes the checkpoint buffer and calls the lock_process_image() func-
tion to set all pages of application process to the read-only status.

• stop_signal_proc() process signals associated with the dickpt stop pragma.
It clears the checkpoint buffer and calls the unlock_process_image() function
to set all pages of application process to their initial status.

• save_signal_proc() process signals associated with the dickpt save pragma.
When called, it creates an incremental checkpoint by comparing the pages in
the checkpoint buffer and the pages read from the application process space.
Then, it clears the buffer and calls the lock_process_image() function to
prepare the potential next checkpoint.

• SIGSEGV_proc() process SIGSEGV signals generated by the application pro-
gram. It calls the read_range() function to read the associated page of ap-
plication process then adds this page to the checkpoint buffer. Finally, it calls
the unlock_a_page() function to set the page to the writable status.

Figure 3.5: Preliminary design of DICKPT checkpointer.

3.3. Detailed design 51

3.3 Detailed design

In order to perform checkpoint operations, each process that may be checkpointed
has to be associated a monitor. Typically, this monitor is in charge of starting
the process which checkpoints will be computed, catching checkpointing signals,
generating the checkpoint files or/and restoring the process state from checkpoint
files and waiting for the termination of the process. However, this is not mandatory
as a monitor may be attached to any already running processes.

3.3.1 Execution mechanism in checkpointing cases

The basic principle of DICKPT in the case of checkpointing is showed in Fig. 3.6.
After starting the checkpointed program, the monitor waits for signals to be caught.
There are three main cases: three of them are associated with the three check-
pointing directives and the other two are associated with both SIGSEGV and exit
signals.

1. After the start signal, the monitored process is suspended to set access
rights to read-only to all its pages. Then, the process is ready to be check-
pointed. From now, any SIGSEGV signal delivered to the monitored process
is caught by the monitor.

2. After the SIGSEGV signal, there are two possibilities:

• The SIGSEGV signal is delivered because the program wants to write in
a read-only memory page which original access rights included the write
capability. This means that this page is valid and it is the first time it
is accessed since the last start signal had been generated. As a result,
the content of the page is read by the monitor using the read_range()

function of the DICKPT driver and stored in the monitor for future refer-
ence, then the writable property is added to the page and the monitored
process is asked to resume its execution. No signal is delivered to the
monitored process for which this operation is therefore completely trans-
parent. In the case the page is valid, but does not exist in the current
memory space, the checkpointer firstly call the mm_handle_fault() ker-
nel function to process it.

• In any other cases, this means that the page does not exist in the vir-
tual address space of the monitored program or the original access rights
of this page do not include the write capability. In other words, the
SIGSEGV signal is not delivered because the monitor changed the access
rights of this page at the beginning of the execution of the monitored
process, but for any other reasons including a bug inside the program.
In this case, nothing is performed by the monitor and the signal is left
to the monitored process. If any mechanism was set inside the program
to catch this signal, the associated handler is executed.

52 Chapter 3. Discontinuous Incremental Checkpointing

Figure 3.6: Principle of DICKPT in cases of checkpointing.

3.3. Detailed design 53

3. The save signal. When the monitor receives a request to generate a check-
point of the monitored process, it 1) reads the content of all pages that have
been modified since the last checkpoint or since the beginning of the program
using the read_range() function of the DICKPT driver, 2) determines the
list of memory locations that have been modified in each modified pages to
generate the new checkpoint, and 3) removes the write permission to pages in
order to prepare the potential incremental checkpoint.

4. After the stop signal, the monitored process is suspended to set access
rights to writable status on all its pages. Then, the monitor is not responsible
anymore for processing SIGSEGV signals from the monitored process.

5. The exit signal. When the monitored process finishes its execution, i.e.
after the exit system call has been called, whenever it has been explicitly
called or not, and the error code of the child process has been returned, the
monitor returns from the waitpid system call and is therefore notified that
the monitored process terminated. Then, the monitor can also terminate its
execution.

3.3.2 Execution mechanism in recovering cases

In recovering cases, the monitor is started with a list of checkpoints. To ease the
processing, all checkpoints that were taken in a single start/stop pair of directives
were merged into an unique file.

After starting the checkpointed program, the monitor waits for signals from it.
The three signals associated with the three DICKPT directives are processed as the
following.

1. After the start signal, the monitored process is suspended and the monitor
search the next checkpoint in the list. If it is not found, the monitor notifies
an error and stop the execution. In the other case, the checkpoint is injected
into the monitored process space. If it is the last checkpoint, the monitor sets
access rights of all checkpointed process pages to read-only and changes to the
checkpointing mode.

2. The stop signal. In recovery mode, this signal is just ignored.

3. The save signal. This requirement is valid only when in checkpointing mode,
and in this case the monitor notifies an error and stops the execution.

Note that in recovering mode, the monitor is not responsible for processing the
SIGSEGV signals since it does not lock the memory of the monitored process.
Table 3.2 summarizes the processing of the directives in both checkpointing
and recovering modes.

54 Chapter 3. Discontinuous Incremental Checkpointing

Table 3.2: Processing the directives of the DICKPT on the monitor side.

Directive Checkpointing mode Recovering mode

start set all pages to the read-only status find the next checkpoint:

- if found:

. + inject the checkpoint to the moni-

tored process

. + if it is the last checkpoint:

.... . set all pages to the read-only sta-

tus

.... . change to checkpointing mode

- else:

. + notifies error

. + stop process

stop set all pages back to their original sta-

tus

clear the buffer

ignored

save file save memory locations that have been

modified up to the current checkpoint

if file contains previous checkpoint:

. + create file and append current

checkpoint

else:

. + save current checkpoint to file

set all pages to the read-only status

notifies error

stop process

3.4. Performance evaluation 55

3.3.3 Implementation of the directives

In DICKPT checkpointer, directives have been implemented using signals. The
signaling mechanism provides a quick asynchronous communication mechanism be-
tween processes. Linux defines a set of signals. Most of them are reserved for system
tasks. Only two signals, SIGUSR1 and SIGUSR2, are free for user programs. Since
DICKPT requires only three directives, it can be implemented using these two sig-
nals and another one that is not often used, e.g. SIGTSTP, i.e. one signal for each
directive. However, this leads to two drawbacks. The first one is the loss of inde-
pendence. These signals can be already used by the user program and in this case,
there will be a collision. The second one is the need of additional cases, for exam-
ple for the asynchronous data exchange when using the checkpointer in CAPE. To
solve these problems, we used only the SIGTRAP signal which is used to set break
points in debuggers. Typically, this signal is not used in user program at execution
time, so there is not collision when using it. To branch the signal to many cases,
an additional arguments is sent to the checkpointer. In the current version, we used
the dx register as the argument.

The inline assembler code below implements the DICKPT directive to send the
SIGTRAP signal with option 1 to the monitor process.

asm("push %edx; mov $1, %edx; int $3; pop %edx");

The command assigns the dx register the value 1, after saving its original value.
Then, interrupt number 3 is called. This interrupt delivers the SIGTRAP signal to
the monitor process and stops the monitored process execution. After the SIGTRAP
signal has been processed, the original value is set to the dx register, and the process
resumes its execution.

On the monitor side, when a SIGTRAP signal is received, it reads the dx register
of the monitored process (using the ptrace system call) and performs the associate
checkpointing task. After finishing all the work, a signal is sent to the monitored
process to ask it to resume its execution.

3.4 Performance evaluation

To compare the performance of our new approach and the one of the normal in-
cremental checkpointing technique, we have measured their impacts on a program
computing the successive elements of a Markov Chain, see Fig. 3.7. Two cases were
tested. The first one associated with the normal incremental checkpointing tech-
nique includes a directive to begin the checkpointing at location 0 (line 8) and takes
a checkpoint at location 1 (line 21). The second one associated with DICKPT tech-
nique avoids the checkpoint at location 1 and begins checkpointing at location 1.
For both cases, one hundred state vectors are computed at location 3 (line 28) and
one checkpoint is generated after each computation. The testbed is composed of an
Intel Core2 Duo E8400 running at 3 GHz with 3 GB RAM and operated by Ubuntu

56 Chapter 3. Discontinuous Incremental Checkpointing

9.10 based on Linux kernel 2.6.31-21-generic. Table 3.3 presents the performance
evaluation for four vector sizes (N equals to 3320, 6640, 9960 and 13280 elements
respectively). For each vector size, performance are measured 30 times (mean val-
ues are provided in the table) and a confidence interval of at least 99% has always
been achieved for the measures. In order to avoid the disk effect pollution on mea-
surements, all data (the virtual address space of processes, checkpoints, etc.) are
resident in RAM.

1 # include <stdio.h>

2 # include <stdlib.h>

3 # define LOOP 100

4 # define N 9960

5 # define RAND 10000

6 float M [N] [N], V [2] [N] ;

7 int main (int argc, char * argv []) {

8 //location 0

9 float sum, val ;

10 int i, j, k, l ;

11 for (i = 0 ; i < N ; i ++) {

12 for (sum = j = 0 ; j < N ; j ++, sum += val)

13 M [i] [j] = val = rand () % RAND ;

14 for (j = 0 ; j < N ; j ++)

15 M [i] [j] /= sum ;

16 }

17 for (sum = i = 0 ; i < N ; i ++, sum += val)

18 V [0] [i] = val = rand () % RAND ;

19 for (i = 0 ; i < N ; i ++)

20 V [0] [i] /= sum ;

21 //location 1

22 for (k = l = 0 ; l < LOOP ; l ++, k = 1 - k) {

23 for (i = 0 ; i < N ; i ++) {

24 V [1 - k] [i] = 0. ;

25 for (j = 0 ; j < N ; j ++)

26 V [1 - k] [i] += (V [k] [j] * M [j] [i]) ;

27 }

28 //location 2

29 }

30 return 0 ;

31 }

Figure 3.7: Program computing the successive elements of a Markov Chain.

The first section of Table 3.3 presents the size of checkpoints at location 1 (i.e.
just after initialization as the case of normal incremental checkpointer) and at loca-
tion 2 (i.e. just after the computation of a new vector). This difference is the size
of the transition matrix which is initialized at the beginning of the program. These

3.4. Performance evaluation 57

data show how much disk space can be saved while abandoning the checkpoint at
location 1 and, in the same way, how faster the checkpoint can be transfered over
the network if necessary.

The second section of the table shows the time required to run the program
without saving checkpoints, while saving all checkpoints and while saving location 2
checkpoints only. It highlights the fact that the overhead involved by the generation
of location 2 checkpoints is very light (between 1.5% and 3.3% for 100 checkpoints,
i.e. between 0.01% and 0.03% per checkpoint) compared to the overhead involved
by the generation of both location 1 and location 2 checkpoints (the total execution
time is multiplied by 8.5).

The third section of the table provides the execution time to run the process
restarting from loop iteration number 50. Two cases are envisaged: the first one
uses all checkpoints, i.e. the program is restarted, suspended at the beginning of
function main, all checkpoints are injected in the process and the execution resumes
at loop iteration 50; the second one uses location 2 checkpoints only, i.e. the program
is restarted, suspended after the initialization step, all location 2 checkpoints are
injected in the process and the execution resumes at loop iteration 50.

Performance measurements show that avoiding location 1 checkpoints is always
beneficial.

Table 3.3: Performance evaluation of DICKPT.

Matrix size

3320 6640 9960 13280

Checkpoint size (in MB)

... at location 1 42.192 168.741 379.648 674.912

... at location 2 0.013 0.026 0.038 0.051

Total execution time (in seconds)

... without generating checkpoints 11.34 41.30 108.27 168.69

... generating all checkpoints 13.10 58.14 393.60 1433.72

... generating location 2 checkpoints only 11.71 42.16 109.96 171.70

Execution time restarting after

loop iteration #50 (in seconds)

... using location 1 and location 2 checkpoints 6.41 23.14 59.56 93.91

... using location 2 checkpoints only 6.09 21.84 56.64 88.71

3.4.1 Advantages and drawbacks

While comparing with the normal incremental checkpointing technique, our new
approach has the following strengths and weaknesses:

58 Chapter 3. Discontinuous Incremental Checkpointing

• In terms of performance, this solution increases the execution speed of the pro-
gram in both periods of checkpointing and recovering; it also strongly decrease
the size of checkpoints.

• Flexibility: DICKPT allows to select the segments to be checkpointed in pro-
grams. The case of normal (not discontinuous) incremental checkpointing is
obtained by setting a pragma dickpt start and a pragma dickpt stop as
the first and the last instruction respectively in the checkpointed program.

• It provides special abilities to CAPE, like the ability to exactly specify dis-
crete sections that should be checkpointed and the ability to directly inject
a checkpoint into process space of application programs. This leads to the
ability to directly extract execution results on slave nodes, to integrate results
into the memory space of the master thread without resuming it. All of them
help to increase the performance of checkpointing.

• Change of the source code: in the role of a checkpointer, it is the most im-
portant drawback. Users have to insert directives to indicate the regions that
may be checkpointed. However, when used in CAPE, this insertion is done by
the compiler. As a result, this drawback has no impact on CAPE’s users.

• Fragmentation of checkpoints: checkpoints which are not taken in a single
block (surrounded by a pair of # pragma dickpt start and # pragma dickpt

stop) can not be merged into a unique checkpoint. So, many files are needed
to contain the checkpoints of different checkpointing blocks. This drawback is
important when checkpoints reference the same memory area.

3.5 Checkpoint structure optimization

The structure of a complete checkpoint is usually quite straightforward. After some
very specific data like the content of registers and the size of the memory, the rest
of a complete checkpoint is usually composed of the content of all memory pages
the one after the other one.

In the case of an incremental checkpoint, several cases have to be envisaged. All
solutions are storing the content of registers. However, regarding memory updates,
the best solution really depends upon the granularity of data, which ranges from
one byte to one page with the most interesting case at the word level.

3.5.1 Memory granularity

There are two main drawbacks when the granularity is the page. The first one is
that a complete page must be saved even though a single byte in the page has been
modified, which is not memory efficient. Considering the size of today disks, this
may not be a problem unless a very large number of checkpoints have to be saved.
The problem may have a more important impact if for example these checkpoints

3.5. Checkpoint structure optimization 59

have to be sent over the network, especially with a limited bandwidth. The second
main drawback is that there is no information on which bytes in the page have been
modified effectively. The latter drawback definitively forbids any merge operation
of successive incremental checkpoints.

Setting the granularity of the checkpoint to a single byte solves the memory
inefficiency problem of the page granularity. However, it leads to other subtle prob-
lems, like for example the reference to memory locations that do not exist in the
virtual address space of the process. Let < a, b, c, d > be four bytes stored at a
memory location and representing a pointer in memory. After a first checkpoint,
this memory location may contain < a, b′, c, d >. After a second checkpoint, the
same memory location may contain < a, b, c′, d >. If, for any reasons, it is required
to merge the two checkpoints (and this is typically the case with CAPE), the result
might become < a, b′, c′, d > which may not be part of the virtual address space of
the process.

Setting the granularity of the checkpoint to a word (i.e. four bytes) is the
best compromise as it solves the problem of memory space efficiency and does not
introduce any pointer problem as described above. This solution is not the perfect
solution. However, problems involved by setting the granularity of the checkpoint
to a word has no significant impact on the execution of the program.

Finally, one can note that setting the granularity of the checkpoint to the en-
tire virtual address space turns an incremental checkpointer into a complete check-
pointer.

3.5.2 Incremental checkpoint content

Apart from the specific values also stored in complete checkpoints, an incremental
checkpoint should be composed of the list of memory locations that have been
modified since the beginning of the execution of the program, or since the previous
checkpoint, and the last value for each of these specific memory locations. The
simplest structure to store such a list is to save the one after the other one both
the addresses and their associated value. However, since the spatial locality of data
in most programs implies that a modification at a memory location increases the
probability for adjacent memory locations to be modified, this way of storing data
is not necessarily efficient.

Thus, in order to take advantage of the spatial locality of updates and there-
fore reduce the size of checkpoints, several alternative methods for storing memory
updates have been identified:

• Single data. This case occurs when a single memory location has been updated.
In this case, the only information to store are the basic address of the memory
location and the content at the memory location. Data to store all information
into the checkpoint are:

< addr, value >

60 Chapter 3. Discontinuous Incremental Checkpointing

• Several successive data. This case occurs when more than one consecutive
memory locations have been updated. For example, this is encountered when
the content of an array has been modified. The best way to store all the
information in this case is:

< addr, size, [value...] >

• Many data. This occurs when lots of non-successive memory locations have
been updated on a single page. In this case, instead of storing a large number
of Single data and Several successive data elements, it is more efficient to store
the address of the page, the list of memory locations on the page that have
been modified and for each modified memory location the associated value.
The efficiency of this solution resides in the mapping, i.e. the list of memory
locations on the page. As this is a binary information for each data in the page,
it can be represented using a single bit per memory location. For example, for
a 4-kB page, the size of the map is 1024 bits (or 128 bytes) with a granularity
set a word.

< addr,map, [value...] >

• Entire page. This occurs when all memory locations on a memory page have
been modified. This case is quite common when a new page is added to the
virtual address space of a process. The best way to store the complete content
of a page is:

< addr, [value...] >

No size need to be provided in this case as it is implicit.

Table 3.4 compares the amount of memory needed to store updated data for all
cases presented above. The size of a memory page is assumed to be 4 kB. Let a
chunk be a set of contiguous memory locations that have been updated. Let c be
the number of chunks in a memory page, let si be the number of elements in chunk

i and let u be the number of updates in the memory page. By definition,
c

∑

i=1

si = u.

Figure 3.8 shows a comparison of the amount of memory needed to store all
updates in a 4-kB page as a function of the number of updated memory locations in
the page. SD, MD and EP only depend upon the number of updated memory loca-
tions while SSD also depends on the distribution of the updated memory locations.
As a result, Fig. 3.8 shows both the best case (SSDmin) that is when all updated
memory locations are in a single chunk, and the worst case (SSDmax) that is the case
when updated memory locations are distributed in the configuration that requires
the maximum number of chunks. For 4-kB memory pages and 4-byte words, this
maximum is given by:

{

⌊u/2⌋ if 0 < u ≤ 682

1024− u if 682 < u ≤ 1024

3.5. Checkpoint structure optimization 61

Table 3.4: Amount of memory to store updates.

Amount of memory

Method for a single chunk for a page

Single data (SD) 8 8× u

Several successive data (SSD) 8 + 4× s 8× c+ 4× u

Many data (MD) 132 + 4× u 132 + 4× u

Entire page (EP) 4100 4100

One can note that when two successive memory locations have to be stored, the
amount of memory needed to store the information for both Single data and Several
successive data cases is the same.

Figure 3.8: Amount of memory to store updates.

The most efficient solution, i.e. the one that reduces the most the memory usage,
is identified this way. For each page, first the Many data representation is built.
It requires at most 4228 bytes; second, a combination of Single data and Several
successive data methods is built, having Single data chosen for isolated data and
Several successive data chosen when at least two consecutive memory locations have
been updated; third, the shortest representation between both computed is stored.
Note that the Entire page method is left to the storage of new pages.

From the expressions provided in Table 3.4, one can demonstrate that the Several

62 Chapter 3. Discontinuous Incremental Checkpointing

Figure 3.9: Trade-off between SSD and MD.

successive data method is always the most interesting solution when the number of
updates is smaller than 34. Then, there is a trade-off between the Several successive
data method and the Many data method that depends on the number of chunks.
Figure 3.9 is a magnification of Fig. 3.8 for a number of updates in the range from 0
to 50.

3.5.3 Identifying the method

Considering that more than one method is used to store memory updates, it is
important to identify which one was used when restoring the content of the check-
point. A simple solution would have consisted in adding an extra integer or even a
character before any data description or set of data description. However, in order
to keep the size of checkpoints as small as possible, it has been decided to add no
extra byte to the checkpoint.

Instead, considering that all methods require an address as the first field and that
these addresses are necessarily aligned on a boundary of a word, i.e. these addresses
are necessarily a multiple of 4 or the last two digits of their binary representation
are necessarily 00, it is possible to use this “free” space to store which method was
used to store the data. In our current implementation, 00 is associated with Single
data, 01 with Several successive data, 10 with Many data and 11 with Entire page.
When restoring the content of a checkpoint, these two bits are reset to 00 after the
storage method has been identified and before the address is effectively used.

3.6. Conclusion 63

3.6 Conclusion

This chapter presented DICKPT, an improved version of the Incremental Check-
pointing Technique and some algorithms serving to compress incremental check-
points. DICKPT provides a new capacity to specify exactly in programs the sections
that have been checkpointed. This significantly reduces both the size of checkpoints
and the time of checkpointing and recovery. Its most important advantage consists
in providing new abilities to improve CAPE execution model, as presented in the
next chapter.

Chapter 4

CAPE using Incremental

Checkpoints – CAPE-2

Contents

4.1 Execution model . 65

4.2 System organization . 67

4.3 Transformations primitives 67

4.4 Transformation prototypes 68

4.4.1 Prototype for the parallel for construct 70

4.4.2 Prototype for the parallel sections construct 72

4.4.3 Prototype for the parallel construct 76

4.4.4 Prototype for the single and the master constructs . . . 78

4.5 Performance evaluation . 82

4.5.1 General evaluation . 82

4.5.2 Detailed analysis . 85

4.5.3 Speedup . 89

4.6 Conclusion . 89

As of now, two versions of CAPE have been developed. The first one that uses
complete checkpoints is referred to as CAPE-1, and the second one using incremental
checkpoints is called CAPE-2. For the sake of simplification of names, the name
CAPE without any additional number refers to CAPE-2 since this point.

4.1 Execution model

The initial idea behind CAPE is the use of checkpoints to implement the fork-
join model of OpenMP for parallel constructs. The first important change is the
replacement of threads by processes, each process usually running on an independent
machine. A program initially runs on a set of machines in which one plays the role
of the master process and the others are slave processes. Whenever the program
meets a parallel region, the master process distributes jobs to the slave processes
by sending incremental checkpoints if they are necessary (fork phase). Each slave
process receives a checkpoint if it exists, merges it into the process memory space
and executes the divided job. Then, results are collected by taking an incremental
checkpoint and sent back to the master process. The master process receives results

66 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

from all slave processes and merges them into the process memory space (join phase).
This execution mechanism is presented in Fig. 4.1 with two slave processes.

Figure 4.1: Execution of OpenMP programs with CAPE-2.

The model of running sequential sections on all threads/processes and dis-
tributing parallel sections on slave threads/processes is used in most OpenMP on
distributed-memory systems. In [24], it is called the “One Thread is One Set of
Processors” (OTOSP) model (cf 2.2.2.1). Although this model causes unnecessary
occupation of CPUs, it provides a simple mechanism to guarantee a coherence of
memories in the system. This is performed through the replication of computations
performed by processors in the same set, along with the communication of modified
memory areas at the end of the parallel construct.

A new and most important advantage of CAPE in this model is the OpenMP
compliant property. Programs are automatically transformed without any auxiliary
information. It differs from other implementations, such as llCoMP [8] in which
an additional directive (nc_result) is used to specify the returned data from slave

4.2. System organization 67

threads, or in Cluster OpenMP by Intel [11] in which the sharable directive is used
to specify shared variables.

Although sequential sections are executed on all nodes, sections that are strictly
required to be run on a single node, including master and single sections, may be
easily implemented with CAPE as presented in deeper details in Sec. 4.4.

4.2 System organization

In CAPE, each node consists in two processes. The first one runs the application
program. The second one plays two different roles: first as a DICKPT checkpointer
and second as a communicator between the nodes. As a checkpointer, it catches
signals from the application process and executes appropriate handles. In the com-
municator role, it ensures the distribution of jobs and the exchange of data between
nodes. Figure 4.2 shows the principle of this organization.

Figure 4.2: System organization.

In the current version, the master node is in charge of managing slave nodes and
does not execute any application job in the parallel sections. However, this is not
mandatory.

4.3 Transformations primitives

CAPE is based on a set of primitives, some of them are associated with the directives
of DICKPT that are presented in Sec. 3.2.2. The others are presented below.

68 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

1. start () clears the buffer and starts or resumes checkpointing. It is associ-
ated with the start directive of DICKPT.

2. stop () suspends checkpointing. It is associated with the stop directive of
DICKPT.

3. create (file) saves the content of the buffer in file . It is associated with
the save directive of DICKPT.

4. inject (file) updates the current process with the information provided
in the checkpoint file provided as a parameter. Differs from the original
inject primitive of DICKPT as this primitive does not update the instruction
pointer, i.e. after being updated, the process continues to run the instruction
following the call to the primitive.

5. master () returns TRUE when executing on the master process and FALSE

otherwise. This primitive can be derived from the get_process_num ()

primitive, presented below.

6. send (file , node) transfers the content of file to node.

7. wait_for (file) waits and merges all the components of the file .

8. last_parallel () returns TRUE when the current parallel block is the last
one of the entire program and FALSE otherwise.

9. merge (file_1 , file_2) applies the list of modifications saved in file_2
to checkpoint file_1.

10. broadcast (file) sends file to all slave nodes. This function can only
be executed on the master node.

11. receive (file) waits for file to be available.

12. get_process_num () returns the process number, i.e. 0 for the master
process, 1 for the first slave process and so on.

13. get_num_processes () returns the number of processes, including the mas-
ter.

4.4 Transformation prototypes

The transformation of OpenMP programs into the form of CAPE programs is per-
formed by a set of prototypes. At present, CAPE does not allow nested constructs
like nested parallel for loops and a worksharing construct contained in parallel

constructs. However, there is no important difficulty to extend the below prototypes
to overcome these limits. Furthermore, the cases where worksharing constructs are

4.4. Transformation prototypes 69

nested in parallel one can easily be transformed into a parallel worksharing con-
struct as showed in the example below.

pragma omp parallel

{

pragma omp for

for (A ; B ; C)

D

}

can be translated to:

pragma omp parallel for

for (A ; B ; C)

D

The above prototype can be applied in cases where parallel constructs does not
contains a single construct by first dividing them into many parallel immediate
parallel constructs.

The prototypes to translate the most important OpenMP constructs into the
CAPE forms are presented in the next section, in which it is assumed that workshar-
ing parts satisfy the Bernstein’s conditions. Solutions to overcome this restriction
are presented in the Chap. 5. Remind that, as presented in 4.1, CAPE follows the
OTOPS execution model where sequential parts of application programs are exe-
cuted on all processes and the master process distributes jobs of worksharing parts
to slaves. Thus, programs initially run on all processes and each time a workshar-
ing construct is met, its jobs are divided and executed on different processes of the
system.

Using these prototypes, CAPE compiler translates OpenMP source codes into
CAPE forms which do not contains anymore OpenMP directives and constructs.
Then, a C/C++ compiler continues to compile them into executable codes that can
execute on distributed systems equipped CAPE platform. This compilation chain
is shown in Fig 4.3.

Figure 4.3: Translation OpenMP programs with CAPE.

70 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

4.4.1 Prototype for the parallel for construct

The parallel for construct is the most complex worksharing construct. It is also
the most used one, as showed in the Table 4.1, a statistical work in [8] (assume the
for is transformed to the parallel for). The translation of this construct is very
general and can serve as a basic for the translation of other worksharing constructs.

BT CG EP FT IS LU MG SP

parallel 2 2 1 2 2 3 5 2

for 54 21 1 6 1 29 11 70

parallel for 3 1

master 2 2 1 10 4 2 1 2

single 12 5 2 10

critical 1 1 1 1 1

barrier 1 2 3 1 3

flush 6

threadprivate 1

Table 4.1: Number of directives in the NAS Parallel Benchmark codes.

The job division to distribute the parallel for construct to slave threads is
usually based on the computation of the differences between the low and the high
boundaries of the count variable. In the following, let the number of iterations be
equal to the number of slave nodes. The effective translation is shown in Fig. 4.4,
in which the numbers on the left side are used to make the code easier to read, but
are not part of it.

At each for loop, the master distributes jobs to each slave by taking and sending
it an incremental checkpoint (lines 4 and 5). Since checkpoints are started from the
beginning of the loop, they have very small size, usually a very few bytes. As a
result, the job distribution is quickly performed.

After receiving an incremental checkpoint (line 16), a slave node inject it into the
process memory (line 17) and then execute the corresponding part of the loop (line
19). The execution result on the slave node is then extracted into an incremental
checkpoint (line 20) and sent back to the master node (line 22) to update its memory
(lines 9 and 10). Finally, the master node broadcasts the result to all slave nodes
(line 13) to guarantee the memory consistency if necessary. Then, the loop can be
considered as has been executed on all nodes.

Therefore, this prototype performs both the devision jobs and collection exe-
cution results of parallel for constructs to/from different nodes of distributed
systems. One can note that no additional user information is needed, i.e. the
translation is transparent to the user and this leads to an OpenMP compliant im-
plementation on distributed-memory systems. This property is one of the most

4.4. Transformation prototypes 71

pragma omp parallel for

for (A ; B ; C)

D ;

↓ automatically translated into ↓

1 if (master ()) {

2 start () ;

3 for (A ; B ; C) {

4 create (before) ;

5 send (before, slavex) ;

6 }

7 create (final) ;

8 stop () ;

9 wait_for (after) ;

10 inject (after) ;

11 if (!last_parallel ()) {

12 merge (final, after) ;

13 broadcast (final) ;

14 }

15 } else {

16 receive (before) ;

17 inject (before) ;

18 start () ;

19 D ;

20 create (afteri) ;

21 stop () ;

22 send (afteri, master) ;

23 if (!last_parallel ()) {

24 receive (final) ;

25 inject (final) ;

26 }

27 else

28 exit () ;

29 }

Figure 4.4: Prototype for the parallel for with incremental checkpoints.

72 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

important advantage of CAPE while comparing with other approaches (cf Sec. 2.2).
Furthermore, no common shared-memory mechanism is used in the prototype as
each process only access its own memory space and the memory consistence be-
tween nodes is quickly performed at only the beginning and the end of worksharing
constructs. This one overcomes the need of use commune shared-memory mecha-
nisms for shared variables that significantly reduces the performance of systems (cf
Sec. 2.2). Both of these advantages make CAPE becoming a high-performance and
compliant implementation of OpenMP on distributed-memory systems.

Compared with the prototype of CAPE-1 presented in Sec. 2.4.1, the above
prototype has the following advantages:

1. Reduction of the amount of data transfered over the network: the size of the
before checkpoints are far smaller. In case of CAPE-2, these checkpoints
usually contain only very few bytes, while complete checkpoints are stored
in the case of CAPE-1. When a broadcast is performed at the end of the
construct, the list of modifications is transferred over the network. However,
the size of this list is usually smaller than the one of a complete checkpoint.
Furthermore, a good implementation of the broadcast can strongly reduce the
execution time. As a result, the execution time to distribute jobs to slave
nodes is strongly reduced.

2. Reduction of the number of comparisons to extract the result on slave nodes:
if the size of modified memory regions on slave nodes are smaller than the one
of complete checkpoints, it is implicitly reduced.

3. Reduction of the amount of memory space to store the temporary data: check-
points original, target and before in the CAPE-1 prototypes are not used
in the CAPE-2. A new buffer for the after incremental checkpoint is needed.
However, its size is usually far smaller than the one of a complete checkpoint.

4. No delay time to start/restart processes: thanks to the inject primitive of
the DICKPT checkpointer, before and after checkpoints can be directly inte-
grated into process spaces. Thus, processes are not necessarily started/restarted
from checkpoints and as a consequence, the global execution time is reduced.

4.4.2 Prototype for the parallel sections construct

Two solutions have been identified to translate the parallel sections construct.
The first one consists in translating it into a parallel for form before applying the
existing prototype for this construct. The second one consists in using a dedicated
prototype for the parallel sections construct.

Figure 4.5 shows an example of translation of a parallel sections containing
three parts into a parallel for loop with three iterations. The translation is quite
straightforward: the number of loop iterations is specified while counting the number
of section; in each iteration, a branching is performed to select the appropriated job.

4.4. Transformation prototypes 73

Combined with the above parallel for prototype, parallel sections constructs
can be automatically executed on distributed systems with CAPE.

The dedicated prototype to translate the parallel sections construct is pre-
sented in the Fig. 4.6. It is assumed that the master node does not perform any
part of the parallel sections construct. Thus, it just waits for execution results
from slave nodes (line 2), then injecting them into the process memory (line 3) and
broadcasting if necessary (line 5). At the slave nodes side, each one selects a part
of the parallel sections construct (line 8, 15 or 22), based on its process num-
ber. After performing the appropriated part of jobs (line 10, 17 or 24), the node
extracts its execution result (line 11, 18 or 25) and send it back to the master node
(line 13, 20 or 27). Therefore, parallel sections constructs can be automatically
distributed and executed on distributed systems with CAPE.

One can note that the solution using dedicated prototype is more complex than
the solution that uses immediate parallel for constructs. However, the dedicated
prototype provides better performance thanks to the elimination of the distribution
phase of jobs to slave nodes. Similar with the case of parallel for prototype, no
additional user information is needed in these both prototypes, so the translation is
automatically performed. It also does not use common shared-memory for shared
variables. Both of them assure the compliant and high-performance properties of
CAPE as an OpenMP implementation on distributed-memory systems.

74 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

pragma omp parallel sections

{

pragma omp section

P0 ;

pragma omp section

P1 ;

pragma omp section

P2 ;

}

↓ can be translated into ↓

pragma omp parallel for

for (i = 0 ; i < 3 ; i ++) {

switch (i) {

case 0 :

P0 ;

break ;

case 1 :

P1 ;

break ;

case 2 :

P2 ;

}

}

Figure 4.5: Equivalence between parallel sections and parallel for.

4.4. Transformation prototypes 75

pragma omp parallel sections

{

pragma omp section

P0 ;

pragma omp section

P1 ;

pragma omp section

P2 ;

}

↓ automatically translated into ↓

1 if (master ()) {

2 wait_for (after) ;

3 inject (after) ;

4 if (!last_parallel ())

5 broadcast (after) ;

6 } else {

7 switch (get_process_num ()) {

8 case 1 :

9 start () ;

10 P0 ;

11 create (after0) ;

12 stop () ;

13 send (after0, master) ;

14 break ;

15 case 2 :

16 start () ;

17 P1 ;

18 create (after1) ;

19 stop () ;

20 send (after1, master)

21 break ;

22 case 3 :

23 start () ;

24 P2 ;

25 create (after2) ;

26 stop () ;

27 send (after2, master) ;

28 break ;

29 }

30 if (!last_parallel ()) {

31 receive (after) ;

32 inject (after) ;

33 } else

34 exit () ;

35 }

Figure 4.6: Dedicated prototype for the parallel sections construct.

76 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

4.4.3 Prototype for the parallel construct

The parallel construct specifies in a programs the regions that are executed in
concurrence on all nodes. However, in the following prototype, it is assumed that
the master node does not execute any application code, i.e. it does not take any
application part of jobs of the construct. The solution to make the master node
executing application code of worksharing constructs is presented in the next section.

This construct is the simplest case and is very similar with the parallel sections

above. There are also two ways to perform the translation. The first one consists
in translating it into a parallel for form before applying the existing prototype
for this construct. The second one consists in using a dedicated prototype for the
parallel construct.

Figure 4.7 presents the prototype to translate a parallel construct into a
parallel for construct. Since the master node does not execute application codes,
the number of loop iterations equals to the number of slave processes. The body of
the loop exactly is the application codes of the parallel construct, since all slave
processes execute this region.

pragma omp parallel

A ;

↓ can be translated into ↓

pragma omp parallel for

for (i = 0 ; i < get_num_processes () - 1 ; i ++)

A ;

Figure 4.7: Equivalence between parallel and parallel for.

4.4. Transformation prototypes 77

Figure 4.8 presents the dedicated prototype to translate parallel constructs into
CAPE form. This prototype is very similar with the dedicated prototype for the
parallel sections construct above. The master process just waits for execution
results from slave nodes (line 2), then injecting them into the process memory (line
3) and broadcasting if necessary (line 5). At the slave nodes side, each one performs
the application code of the construct (line 9), then extracts its execution result (line
10) and send it back to the master node (line 12). Therefore, parallel constructs
can be automatically distributed and executed on different nodes of distributed
systems with CAPE without using any shared-memory mechanism.

pragma omp parallel

A ;

↓ automatically translated into ↓

1 if (master ()) {

2 wait_for (after)

3 inject (after) ;

4 if (!last_parallel ())

5 broadcast (after) ;

6 } else {

7 i = get_process_num () ;

8 start () ;

9 A ;

10 create (afteri) ;

11 stop () ;

12 send (afteri, master) ;

13 if (!last_parallel ()) {

14 receive (after) ;

15 inject (after) ;

16 } else

17 exit () ;

18 }

Figure 4.8: Dedicated prototype for the parallel construct.

78 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

4.4.4 Prototype for the single and the master constructs

Both single and master constructs specify regions that should be executed in a
single thread and in the case of the master, this thread is the master.

Prototypes to translate these constructs are quite simple with CAPE. However,
the assumption that sets the master node out of the execution of the application
code of worksharing constructs leads to a small problem. On one side, a master

construct is always binding with an enclosing parallel region, i.e. it can be considered
as a part of the application code of this region. On the other side, as presented in
the above prototypes, the application code of parallel regions is not executed in the
master node with CAPE. Both of them leads to the fact that the application code of
the master construct can not executed in the master node, i.e. the master construct
can not be implemented with CAPE while assuming that the master node does not
execute the application code of parallel regions.

There are two possible ways to solve the above problem. The first one consists in
assigning the role of the “master thread” to a slave node and the former master node
only plays the role of a task manager. The second one consists in modifying the
prototypes for the worksharing constructs to ensure that a part of the application
code of parallel regions is executed on the master node. These modifications are
not complex as shown in an example (see Fig. 4.9) in which application codes of the
parallel construct are also executed on the master node. This modified prototype
is the same as the one for the parallel construct presented in the previous section,
excepts two important modifications. The first one is the insertion of A in the
master node (line 3) to make this node running the application code. The second
one consists in appending the execution result on the master node to the execution
result from the slaves (line 9), before broadcasting the final updating list (line 10).

4.4. Transformation prototypes 79

pragma omp parallel

A ;

↓ automatically translated into ↓

1 if (master ()) {

2 start () ;

3 A ;

4 create (after0) ;

5 stop () ;

6 wait_for (after) ;

7 inject (after) ;

8 if (!last_parallel ()) {

9 merge (after0, after) ;

10 broadcast (after) ;

11 }

12 } else {

13 start ()

14 A ;

15 create (afteri) ;

16 stop () ;

17 send (afteri, master) ;

18 if (!last_parallel ()) {

19 receive (after) ;

20 inject (after) ;

21 } else

22 exit ();

23 }

Figure 4.9: Modified prototype to execute application codes on the master node.

80 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

Along with the above modified prototype, the prototype shown in Fig. 4.10 may
be used to translate single and master constructs. The translation is quite simple.
The application code is executed only on master node (line 4 or 10), thanks to a
test at line 1 and 11. To reduce the impact on execution performance, checkpoint-
ing and broadcast are performed only in case necessary (line 3 and lines 5 to 7).
Slave nodes just wait for the execution result from the master node (line 13) and
inject it into process memories (line 14). Thus, this prototype make single and
master construct run on one node. It also assures the memory consistency between
nodes. No additional user information and no shared-memory for shared variables
are needed in this prototype, similar as cases of prototypes in the above sections.

One can note that this prototype makes single sections run on the master node.
This is not mandatory and the prototype can be modified to run these sections on
a slave node. However, in the second case, an additional phase has to be added to
send the execution result from the slave node to the master node before calling the
broadcast function.

4.4. Transformation prototypes 81

pragma omp single

A ;

or

pragma omp master

A ;

↓ automatically translated into ↓

1 if (master ()) {

2 if (!last_parallel ()) {

3 start () ;

4 A ;

5 create (after) ;

6 stop () ;

7 broadcast (after) ;

8 }

9 else

10 A ;

11 } else

12 if (!last_parallel ()) {

13 receive (after) ;

14 inject (after) ;

15 } else

16 exit () ;

Figure 4.10: Prototype for both single and master constructs.

82 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

4.5 Performance evaluation

In order to validate our approach, some performance measurements have been con-
ducted on a Desktop Cluster. This testbed is composed of nodes including Intel(R)

Core(TM)2 Duo E8400 CPUs running at 3 GHz and 2 GB RAM, operated by Linux
kernel 2.6.35 with the Ubuntu 10.10 flavor, and connected by a standard Ethernet
at 100 MB/s. In order to avoid as much as possible external influences, the entire
system was dedicated to the tests during performance measurements.

The program used for tests is a matrix-matrix product for which the size varies
from 3,000×3,000 to 12,000×12,000. Matrices are supposed to be dense and no
specific algorithm has been implemented to take into account sparse matrices. Each
experiment has been performed at least 10 times and a confidence interval of at least
90% has always been achieved for the measures. Data reported here are the means
of the 10 measures.

Size Sequential OpenMP

3,000 258.9 142.4

6,000 1,852.7 1,048.7

9,000 7,314.5 3,986.2

12,000 14,990.5 8,999.4

Table 4.2: Execution time (in seconds) on a single node.

The execution of both the sequential version and the OpenMP version of the
program on one of the nodes gives the result provided in Table 4.2. A single core was
used for the sequential execution of the program, while the OpenMP program takes
benefits of the two cores. One can check that results in Table 4.2 are consistent as the
execution time for both sequential and OpenMP versions are directly proportional
to the cube of the matrix size. Typically, this means that no important cache effects
have polluted the performance measurements, probably because almost all data fit
into memory. Moreover, the speedup obtained by OpenMP is 1.8 for the first three
matrix sizes and 1.65 for the fourth one, which are expected values.

4.5.1 General evaluation

Figures 4.13 and 4.14 present the execution time in seconds of the matrix-matrix
program for various number of nodes and matrix size. Note that, despite the fact
that processors are dual core, a single core was used during the experiments. Three
measures are represented each time: the left one is associated with CAPE using
complete checkpoints, the middle one is also associated with CAPE but with incre-
mental checkpoints, and the right one is associated with MPI. The MPI program has
been developed for reference as exchanges to keep all processes consistent between
nodes are kept minimal.

4.5. Performance evaluation 83

Figure 4.11: Execution time (in seconds) vs. number of nodes.

Figure 4.13 presents the execution time for different number of nodes. The size
of matrices are 12,000×12,000. However, similar trends are observed for the other
matrix sizes. One can remark that the 3-node case apart, the execution time when
using incremental checkpoints is always better than the execution time using com-
plete checkpoints. The larger the number of nodes, the smaller the execution time
for both CAPE using incremental checkpoints and MPI. Moreover, the execution
time for CAPE using incremental checkpoints is getting closer and closer as the
number of nodes is increasing. The case for CAPE using complete checkpoints is
different. When few nodes are used for computation (up to 11), the execution time
is decreasing as the number of nodes is increasing and the value is quite similar to
the other two cases (CAPE using incremental checkpoints and MPI). However, for
larger number of nodes, the execution time for CAPE using complete checkpoints
is directly proportional to the number of nodes. This is due to the amount of data
that is transmitted over the network which is getting very important (there is at
least one complete checkpoint for each slave node) even though the amount of data
that are effectively interesting for each slave node is reduced. This clearly justifies
the use of incremental checkpoints for CAPE.

At first, the performance for three nodes may look strange as the execution time
of the program with CAPE using complete checkpoints is better than the execution
time with CAPE using incremental checkpoints. In fact, for small number of nodes,
the amount of data transmitted over the network between the different nodes is
almost the same for both complete and incremental checkpoints, as in the case of
incremental checkpoints, slave nodes receive a big part of matrices. However, in

84 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

the case of incremental checkpoints, processes are monitored in order to capture the
memory pages that are accessed for writing. The monitoring of the slave processes
involves a computing overhead that is reduced proportionally with the amount of
computation, and therefore with the number of nodes, when a large number of nodes
is used. Fortunately, this is not a problem for CAPE. Processors with 4 and even
8 cores are available on the market and, as a result, CAPE is targeting distributed
architectures with a far larger number of nodes.

Figure 4.12: Execution time (in seconds) vs. problem size.

Figure 4.14 presents the execution time for difference matrix sizes. The num-
ber of nodes involved in the parallel machine is 31. However, remarks below would
be the same with other number of nodes. The figure clearly shows that the exe-
cution time for CAPE using complete checkpoints is directly proportional to the
square of the matrix size, while the execution time for both CAPE using incremen-
tal checkpoints and MPI is directly proportional to the matrix size. This is due
to the fact that the virtual address space of the processes is mainly composed of
the matrices, and that the complete virtual address space is transmitted over the
network for complete checkpoints. However, for CAPE using incremental check-
points and MPI, the complete virtual address spaces are not transmitted over the
network and only the data that have been updated during the computation of the
matrix-matrix product are considered. Moreover, one can remark that the execution
time for CAPE using incremental checkpoints and MPI are very close. An in-depth
analysis of the performance results shows that the execution time for CAPE using
incremental checkpoints is only 10% higher than the execution time for MPI, except
for 3,000×3,000 matrices where the ratio is 1.3 .

4.5. Performance evaluation 85

4.5.2 Detailed analysis

To more clearly know which elements affect on the global performance, a deeper
analysis has been performed. This one also gives advices to choose the best solution
when implementing CAPE.

Figures 4.13 and 4.14 present the execution time in seconds for the different
phases. Three measures are represented each time: the left one is associated with
CAPE-1, the middle one is also associated with CAPE-2, and the right one is asso-
ciated with MPI.

For both figures, two series of graphs are provided. Upper series are related to
the master node, while lower series are associated with slave nodes. Each series is
composed of four graphs (refer Fig. 4.4 for line numbers):

• Init is the elapsed time between the beginning of the program and the begin-
ning of the parallel for loop in the matrix-matrix product. On Fig. 4.4, these
are all lines before the first one.

• Before is the time spent to create and send checkpoints (lines 2 to 5) on
the master node. On slave nodes, this includes waiting for and receiving the
checkpoint, and then updating the slave process using the checkpoint (lines 16
and 17). For the case of MPI, this is the time to send data to slave nodes.

• Compute is the time to generate the last checkpoint on the master node (lines 7
and 8) and the time to do the job (execute the code of matrix-matrix product)
on the slaves (lines 18 and 19).

• Update is the time to wait for and receive all updates from the slave nodes
and inject them into the master process memory (lines 9 and 10). On slave
nodes, this is the time to generate the incremental checkpoints and send them
to the master node (lines 20 to 22). For the case of MPI, this is the time to
send results from slave nodes to the master node.

Figure 4.13 presents the execution time in the detailed phases with different
number of nodes. The size of matrices are 9,000×9,000. However, similar trends are
observed for the other matrix sizes.

On the master node, the most important phases are Before and Update. It is
the consequence of not running the application code on the master node. In the
Before phase of CAPE-2 and MPI, the time is very small and quite similar for the
different number of nodes. It is very different for the case of CAPE-1, as this time is
very important and directly proportional to the number of nodes. In phase Update,
CAPE-2 has the biggest values for the cases with small number of nodes. However,
for the last case, CAPE-1 has the biggest one. Theoretically, this phase has to be
similar for all three methods. Differences here are due to the time on the master to
wait for updated data from slave nodes.

On slave nodes, the most important phase for CAPE-2 and MPI is the Compute

and this proves the reasonableness of the new approach: the application job is

86 Chapter 4. CAPE using Incremental Checkpoints – CAPE-2

divided for the slave nodes with a small cost on auxiliary phases. This is very
different in the case of CAPE-1, where the phases for job distribution and result
collection take a long time. The affectation of the incremental checkpointing on the
execution time of the checkpointed process is clearly shown in the Compute phase,
where the time is always longer with CAPE-2. However, the larger the number of
nodes, the smaller the difference between CAPE-2 and the two others. This explains
why the global execution time of CAPE-2 is larger for 3 nodes and then closer and
closer to the one of MPI while increasing the number of nodes.

Figure 4.14 presents the execution time for difference matrix sizes. The number
of nodes involved in the parallel machine is 31. However, the remarks below would
be the same with other number of nodes. The figure shows that the execution time
of phase Before is very small for CAPE-2 and MPI and does almost not depend
on the size of the matrix. It is very different for CAPE-1 where this time is very
important and directly proportional to the square of matrix size. It is similar with
phase Final on the master node, except that the execution time in this phase is less
important. The figure also shows that phase Update is quite similar for CAPE-2
and MPI, and always larger for CAPE-1. This is due to the time on the master to
wait for the updated data from slave nodes, as mentioned above.

Note that graphs for phase Compute on the master node on Fig. 4.13 and 4.14
do not show any data for CAPE-2 and MPI as the execution time for both is far
too small to be represented.

4
.5

.
P
e
rfo

rm
a
n
c
e

e
v
a
lu

a
tio

n
8
7

On the master node.

(a) Init (b) Before (c) Compute (d) Update

On slave nodes.

(e) Init (f) Before (g) Compute (h) Update

Figure 4.13: Execution time (in seconds) vs. number of nodes.

8
8

C
h
a
p
te

r
4
.

C
A

P
E

u
sin

g
In

c
re

m
e
n
ta

l
C

h
e
ck

p
o
in

ts
–

C
A

P
E
-2

On the master node.

(a) Init (b) Before (c) Compute (d) Update

On slave nodes.

(e) Init (f) Before (g) Compute (h) Update

Figure 4.14: Execution time (in seconds) vs. problem size.

4.6. Conclusion 89

4.5.3 Speedup

Figure 4.15 shows the speedup of CAPE using incremental checkpoints for various
number of nodes and matrix sizes. The dotted line represents the theoretical maxi-
mum speedup. The figure clearly shows that the solution provides an efficiency (the
ratio of the speedup over the number of nodes) in the range from 75% to 90% which
is very good. Also, it highlights that the larger the size of matrices, the higher the
speedup, which was not the case with the complete checkpoint implementation.

Figure 4.15: Speedup vs. number of nodes.

4.6 Conclusion

This chapter presented CAPE-2, i.e. CAPE based on incremental checkpoints. With
the new capabilities of the DICKPT technique, this version has overcome the four
first weak points of CAPE-1 (cf Sec. 2.4.2): reduction of the amount of data trans-
fered over network, reduction of the number of comparison operations to extract
execution results, reduction of the amount of memory space to store temporary
data, and elimination of the restart process phase to integrate checkpoints into
process spaces. All of these improvements significantly increase the global perfor-
mance of CAPE. The last problem remaining in CAPE, relates to the requirement
to match the Bernstein’s conditions in application programs. This is solved in the
next chapter.

Chapter 5

Data Sharing

Contents

5.1 Shared-memory models on distributed systems 92

5.2 OpenMP flush directive and the Updated Home-based

Lazy Release Consistency model 93

5.2.1 Updated Home-based Lazy Release Consistency model . . 94

5.2.2 Global flush using the UHLRC model 95

5.2.3 Selective flush directive using the UHLRC model 97

5.2.4 Mechanism to check whether variables are updated since

the last flush . 99

5.3 OpenMP data-sharing rules implementation 100

5.3.1 OpenMP data-sharing categories on CAPE 100

5.3.2 Implementation of OpenMP data-sharing attribute rules . 101

5.4 Implementation of OpenMP data-sharing directives and

clauses . 103

5.4.1 Merging directives and clauses 104

5.4.2 General template . 105

5.4.3 Translation details . 105

5.5 Performance evaluation . 111

5.6 Conclusion . 112

OpenMP is based on a relaxed-consistency shared-memory model [1]. All OpenMP
threads have access to a place to store and retrieve variables, called the memory.
Additionally, each thread is allowed to have its own temporary view of the memory.
The temporary view of the memory for each thread is not a required part of the
OpenMP memory model. However, it allows to represent any kind of intervening
structure. This memory model is strongly appropriate with the fork-join execution
model in which the program initially executes in a single thread called the master
thread; each time a parallel region is reached, the master thread is derived (fork)
into a group of slave threads; then, the master thread divides the job to slave threads
and waits for their results; slave threads terminate after their job and join in the
master thread after the parallel region. As threads use a shared memory space, this
execution model implicitly matches the shared-memory model of OpenMP. Further-
more, these properties are supported by most of the modern programming languages
so that OpenMP can be easily implemented in SMP systems.

92 Chapter 5. Data Sharing

The context is completely different with distributed memory architectures. Typ-
ical threads cannot be created and run on a remote machine, nor they can directly
share their respective address spaces except when using a DSM or a SSI. As a result,
OpenMP implementations for distributed systems start programs on all machines,
each machine executing a part of the parallel regions and the sequential regions
being executed only on one (the master) or on all machines.

5.1 Shared-memory models on distributed systems

One of the most important element to take into account to built an OpenMP com-
pliant is to cope with its shared-memory model. The approach using a SSI or a DSM
as the common shared memory of all threads on distributed systems is a straightfor-
ward idea. However, the global address space is located across machines and causes
a strong overhead to the global performance. This is caused by both the delay to
access the remote memory and the synchronization mechanism to access the shared
memory: the larger the number of processes, the longer the delay to access the
shared memory. This was clearly shown in an experiment using Kerrighed SSI to
run OpenMP programs on distributed systems (cf Sec. 2.2.1.1).

To reduce the overhead of the use a common shared memory across distributed
systems for all threads, there are two main approaches, as presented in Sec. 2.2.
The first one consists in mapping only the shared variables to the common shared
memory. The second one focuses on using local memories for threads and building
a mechanism to synchronize these memories.

The most difficult problem when mapping only the shared variables to the com-
mon shared memory is the identification of shared variables. This requires explicitly
declare shared variables that are located in the common memory, while in OpenMP
all variables are implicitly shared. Solution to this problem consists in extending
OpenMP with additional directives to specify shared variables. However this means
that the implementation is no longer fully compliant (cf Sec. 2.2.1.2).

In the approach that consists in using local memories for threads, shared data
could be copied into several nodes. However, this leads to consistency issues when
write operations on shared data have to be seen by the other processes. To solve this
problem, most of today DSMs use the page-fault mechanism to catch accesses to
shared variables. With this mechanism, all pages in shared regions are initially set
to the read-only status to force the system to generate a page-fault signal whenever
there is a write operation to one of the pages of this region. This signal is then caught
and the whole page is sent to all the other processes. When many write operations
occur on shared regions, the amount of exchanged data strongly increases which
leads to a significant reduction of the global performance. As a result, in order
to reduce the impact of the synchronization of shared memory regions, relaxed-
consistency memory models are used.

The most restrictive model is Sequential Consistency [80] that ensures the result
on any execution of a multiprocessor system is the same as if operations of all

5.2. OpenMP flush directive and the Updated Home-based Lazy
Release Consistency model 93

processors would have been executed in the sequential order, and operations of each
individual processor appear in this sequence in the order specified in the program.
This model requires the memory system to propagate updates early and prohibits
optimizations. To improve the performance, other models have been proposed to
relax the constraints of the sequential consistency.

Relaxed Consistency (RC) model [81] [16] allows the propagation and application
of coherence operations (e.g., invalidations) to be postponed to synchronization
points. Synchronized memory accesses are divided into Acquires and Releases where
an Acquire allows the access to shared data and ensures that data are up-to-date
and a Release relinquishes this access right and ensures that all memory updates
have been properly propagated. By greatly reducing the impact of false sharing
and the frequency of coherence operations, the performance of relaxed consistency
models are usually far better than the one of sequential models [82]. OpenMP uses
this model as its standard memory model.

Lazy Release Consistency (LRC) [16] is a specific variant of the relaxed consis-
tency model presented above. Instead of propagating modifications to the shared
address space on each release, modifications are further postponed until the data
is actually needed. To reduce the communications involved by false sharing, where
multiple unrelated shared data are located on the same page, the LRC protocol usu-
ally supports a multiple-writer scheme. Within this scheme, multiple writable copies
of the same page are allowed and a clean copy is generated after an invalidation.
An implementation of LRC is Home-based Lazy Release Consistency (HLRC) [17],
in which, each shared page has a home page. This home page always hosts the
most updated content of the page, which can then be fetched by a non-home node
that needs the last version. An example of use of this model, used to implement
OpenMP on distributed systems, was shown in [7].

5.2 OpenMP flush directive and the Updated Home-

based Lazy Release Consistency model

The OpenMP standard is based on the RC shared memory model (cf Sec. 5.1) where
all threads share a common memory. However each thread can also execute on its
own local memory which is a temporary view of the common memory. The con-
sistency between the local memory and the common memory is performed through
the use of the flush directive. Note that a call to flush enforces the consistency
between a thread’s temporary view and the memory, and does not affect the other
threads [1]. Therefore, to ensure that a value written to a variable by one thread
may be read by another thread, the programmer must make sure that the second
thread has not written to this variable since the last variable’s flush, and that the
following sequence of events happens in this specific order:

1. The value is written to the variable by the first thread.

2. The variable is flushed by the first thread.

94 Chapter 5. Data Sharing

3. The variable is flushed by the second thread.

4. The value is read from the variable by the second thread.

There are two types of flush in OpenMP: one specifying a set of variables called
the flush-set and another one without any parameter. In [6], they are called selective

flush and global flush respectively and the same names are used in this document.
For the selective flush, consistency is applied on the given flush-set, while for the
global flush the consistency is applied on the whole memory space.

Considering the advantages of high performance that have been proved in [17][83],
the HLRC model has been used with some modifications to implement the memory
model of CAPE.

5.2.1 Updated Home-based Lazy Release Consistency model

As presented in Sec. 4.1, the basic implementation of CAPE in homogeneous systems
ensures the consistency between the memory of the master thread and the ones of
slave threads in the sequential regions and at the begin and end points of parallel
regions. In the beginning and in sequential regions, all threads run the same set
of instructions, so that they have the same memory spaces in these regions. It is
the same case for the beginning of parallel regions (before the division into jobs of
parallel constructs). At the end of parallel constructs, all threads inject the same
set of updated memory items that makes their memory spaces becoming consistent.
Thus, the only problem remaining to ensure the consistency between threads is
implementing a mechanism for flush directives.

For most approaches using the HLRC model, a flush on a page located on a
distant node involves three main phases:

1. On the distant node: compute the differences between pages (called the diffs

list) by using the diff function [17], and then sending those differences to the
home node.

2. On the home node: apply the received differences to the home page, compute
the differences between pages and send those differences to the distant node.

3. On the distant node: apply the received differences to the page.

For the global flush, the above phases are applied for each process shared page.
In the case of CAPE, the above algorithm can be directly used by considering

the master node is the home node and its memory pages are home pages. However,
as a result of using checkpointing, the cost of the flush execution can be reduced in
two ways. First, on slave nodes, the create function of incremental checkpointers
can replace the diff function as they both do exactly the same job. Second, on the
master node, the number of comparisons can usually be significantly reduced if a list
of updated memory items of all shared pages is maintained and the diff function

5.2. OpenMP flush directive and the Updated Home-based Lazy
Release Consistency model 95

is applied on this list instead of home pages. From another point of view, this list
contains the immediate execution results of the slave nodes that have called the
global flush functions. So, this result may be merged into the last result at the end
of the parallel region. As a replacement of the updated list for the set of home pages,
this model is called the Updated Home-based Lazy Release Consistency (UHLRC)
model. Two other main operations are necessary to implement the mechanism:

1. The initialization of the updated list and merging this list with the after

checkpoint on the home node. For the first one, after having divided jobs to
slave nodes, the master thread creates a null list as the updated list. The
second one is executed by a merge instruction after receiving the after check-
point. Thus a part of the prototype in Fig. 4.4 is modified as in Fig 5.1 where
additional line 8a initializes the updated list and line 9a merges this list into
the after checkpoint.

...

8 stop ()

8a init (update_list)

9 wait_for (after)

9a merge (update_list, after)

...

Figure 5.1: Modified prototype for CAPE to implement the flush directive.

2. The organization of a mechanism to catch flush requests for the synchroniza-
tion between slave nodes and the master node. In this design, an auxiliary
task is added to the monitor–checkpointer (see Sec. 4.2) on each node and
executed in event-driven mode. Each time a flush request occurs on a slave
node, a signal is sent to the local monitor. This monitor then coordinates with
the one on the master node to execute all flush operations. Note that in our
design, that uses the DICKPT checkpointer, both the buffer for checkpoints
and the checkpoints themselves are saved in the memory space of the monitor.
As a consequence, the update_list is also contained in this memory space to
ease the processing. From this point, the name monitor is used for the object
that contains also the role of a checkpointer.

5.2.2 Global flush using the UHLRC model

A global flush on a slave node enforces the consistency between the local process
memory and the master process memory. Follow the mechanism presented in the
previous section, not whole memory spaces but only their updated regions are ex-
changed between nodes. Furthermore, on slave node, an incremental checkpoint is
exactly a list of updated regions (diffs list) on the node and a update list containing

96 Chapter 5. Data Sharing

all updated regions from slave nodes is maintained on master node, as presented
above. As a result, jobs of global flush can easily be performed while using incre-
mental checkpoints and the function to create them of the incremental checkpointer.
First, the diffs list is created using the create function on the slave node and sent
to the master node. Then, the master node computes differences between the re-
ceived list and the exist update list on the node and send them back to the slave
node. Finally, the master node updates its update list and the slave node updates
its process memory. Therefore, all updated regions in the slave node memory are
updated into the master node and all the updated regions on the master node are
injected into the memory of the slave node, i.e. jobs of global flush are performed.
Details of this algorithm is presented in Fig. 5.2.

Figure 5.2: Global flush.

1. On slave nodes

• step 1: the slave thread sends a signal to the local monitor and stops its
execution.

• steps 2–3: the monitor uses the create function (see Sec. 4.3) to create an
incremental checkpoint that takes the role of a diffs list in this case, and saves
this list in its memory space. Then, it calls the stop function to temporary
suspend the checking process on the slave thread.

• step 4: the local monitor sends a request to the master’s monitor and waits
for the acknowledgement.

• step 6: after receiving the acknowledgement, the local monitor sends the diffs

list to the master’s monitor and waits for the returned data.

• steps 9b, 10: After receiving the returned update list, the local monitor merges
it into the process memory space, calls the start function to resume the
checking process and notifies the slave thread to resume its execution too.

2. On the master node

5.2. OpenMP flush directive and the Updated Home-based Lazy
Release Consistency model 97

• step 5: after the master’s monitor has received the flush request, it sends an
acknowledgement to the slave’s monitor and waits for the diffs list.

• steps 7, 8: after the master’s monitor has received the diffs list, it computes
the differences between the current updated list and the received list and sends
the result back to the slave’s monitor.

• step 9a: the master’s monitor applies the received diffs list to the current
updated list.

5.2.3 Selective flush directive using the UHLRC model

This case is slightly different from the global flush case and the associated algorithm
is far simpler since only variables in the flush-set are synchronized. The below algo-
rithm is designed for the specific case where the flush-set contains a single variable.
For more than one variable, the solution is derived from the case with a single
variable. Also note that OpenMP does not distinguish between reading or writing
from/to the memory to/from the temporary view of the thread. This requires to
use a special mechanism to check whether variables are modified, as presented in
the next subsection.

Figure 5.3: Selective flush, read case.

1. On slave nodes

• step 1: the slave thread sends a signal to the local monitor.

• step 2: the slave’s monitor check whether the variable is modified since the
last flush. If yes, this mean that this is a write flush. Otherwise, this is a
read operation. Then, it sends a request to the master’s monitor and waits
for the acknowledgement.

• In case of a read flush:

98 Chapter 5. Data Sharing

– step 4: after receiving the acknowledgement, the local monitor sends the
address of the variable to the master’s monitor and waits for the returned
value.

– step 6.a: after receiving the value, if it is not null, the monitor merges
it into the process memory space. Then, the monitor notifies the slave
thread to resume its execution.

• In case of a write flush:

– step 4: the local monitor sends both the address and the value of the
variable to the master’s monitor and notifies the slave thread to resume
its execution.

Figure 5.4: Selective flush, write case.

2. On the master node

• step 3: after receiving the flush request, the master’s monitor sends the ac-
knowledgement to the slave’s monitor and waits for data.

• In case of a read flush:

– step 5: after receiving the address of the variable, the master’s thread
searches for the address in the updated list. When found it reads and
sends back the updated value to the slave’s monitor. Otherwise it sends
back a null value to the slave’s monitor.

• In case of a write flush:

– step 4: the master’s monitor receives the address and the value of the
variable, updates this value into the updated list and keeps on executing.

5.2. OpenMP flush directive and the Updated Home-based Lazy
Release Consistency model 99

5.2.4 Mechanism to check whether variables are updated since the

last flush

In OpenMP 3.1, the flush operation enforces the consistency between the temporary
view of a thread and the memory. There is only one type of flush directive for the
both two cases of reading from and writing to memory. Theoretically, a flush on
a variable performs a write-flush if variable’s value has been changed from the last
flush or from the beginning of the program execution. Otherwise, it is a read-flush.

For an implementation targeting distributed-memory systems with the RC model,
there is a difficulty to recognize whether a variable has been updated. The straight-
forward solution consists in comparing its current value with its initial saved value
in the buffer (in the checkpoint buffer in case of CAPE). This mechanism leads to
a false result for a write operation on a variable without changing its value.

Consider the example below, in which thread_A and thread_B make a flush

on shared variable x having its initial value equal to 0.

thread_A thread_B x value in shared memory

x = 1 0

flush(x) 1

x = 0 1

flush(x) ?

While the first flush is considered as a write-flush, the second one is considered
as a read-flush because until the current moment, in the local memory of thread_B,
the value of variable x has not been changed. Therefore, instead of the desired 0
value for variable x in both (shared) memory and thread_B’s local memory after
the execution of the flush operation, value 1 is kept and updated. An alternative
but not complete solution is adding before command x = 0, a command to assign
x with another value and make a flush on it.

At the side of implementing a compiler for OpenMP, there is no perfect solution
for this ambiguous problem. Below are some directions with their advantages and
drawbacks.

The direction that uses the page-fault mechanism to recognize all write operation
leads to requirement of re-lock all memory pages after each memory update and a
bad consequence is the reduction of the global performance. Furthermore, for a
write on an adjacent block of memory containing many variables, only one variable
at the begin of block can be recognized to have been written in case this write does
not change the value of this block. This is a consequence of using the SIGSEGV
signal in the page-fault mechanism to recognize the updated memory and the lack
of the length of the updated memory block. This means that this mechanism can
provide the start location of updated memory block but not its size.

With CAPE, a possible solution consists in adopting for each page in the check-
point buffer a map which contains updated flags for each byte/word in the page.
These maps are updated in three cases. The first one consists in write operations.

100 Chapter 5. Data Sharing

As a result, this requires to catch all memory write operations to update flags of
the associated memory regions. The second case is performed in the selective flush
to update flags of variables in the flush-set. Finally, a global flush resets all maps
to their initial status. This solution can completely solve the above ambiguous
problem. However, the mechanism to maintain updated maps for all updated pages
significantly decreases the global performance in cases application program performs
a large number of memory write operations.

Another solution consists in requiring programmers to supply information to dis-
tinguish the cases of write and read flush. However, this leads to an un-compliant
OpenMP. Another good solution would be the modification of OpenMP specifica-
tions to explicitly separate the two cases implementation of the flush operation.

5.3 OpenMP data-sharing rules implementation

5.3.1 OpenMP data-sharing categories on CAPE

Along with the relaxed-consistency shared memory model, OpenMP classifies vari-
ables into three categories:

• Shared: accessible from all threads.

• Threadprivate: local to a thread, unaccessible from another thread.

• Private: local to a construct or a region, unaccessible from outside the con-
struct or region.

Implicitly, all variables are shared. The other cases are specified by data-sharing
attributes and through the use of data-sharing primitives and clauses.

From the memory process memory structure (see Sec. 3.1.2), the principle of
CAPE and the UHLRC model, attributes for variables in different regions of a
process memory are:

• Data and BSS regions: shared. Their addresses are coherent on all processes
and synchronizations are done at the beginning and the end of worksharing
constructs, at the end of single constructs and when using flush directives.

• Heap region: shared. This case is quite complex as the address of a dynamic
variable may be different when allocated in different slave processes. The
heap’s sizes may be also different on different processes. Thus, checkpoints
created in these processes are different and cause incorrect updates when in-
jected into process memories. To overcome this problem, a mechanic to ensure
the coherence of dynamic variables over all the system is required. A possible
solution consists in catching all memory allocation requests on slave processes
and ensuring the consistency of the virtual address spaces on processes using
the following steps:

5.3. OpenMP data-sharing rules implementation 101

1. A malloc or free or friend request is caught on a slave thread by the
local monitor.

2. The local monitor sends a request to the master’s monitor.

3. The master’s monitor sends a request to the master process.

4. The master process executes a dynamic allocation and returns results to
the master’s monitor.

5. The master’s monitor sends the received results to the slave’s monitor.

6. The slave’s monitor sends received results to the slave process.

7. The slave process updates the received results into process memory.

Along with the above mechanism, the heap region is shared and consistent on
all processes.

• Stack region: shared or threadprivate. Variables which are put in the stack
by the code of sequential sections of application programs are coherent in all
processes, so they are shared. This case is similar with the case when running
the program on SMP systems. Variables which are put in the stack by the
code of worksharing sections are local to the thread running this code. Thus,
these variables are threadprivate. From this point, the name Stack1 is used
to refer the stack region of the first case while the name Stack2 refers to the
regions of the second case.

• Other regions: shared. It is the case of text, shared libraries, program argu-
ments and environment regions. These regions are coherent in all processes
and thus variables allocated in them are shared.

As a result, in CAPE, all variables are implicitly shared except variables allocated
in Stack2 regions. This is compatible with the OpenMP memory model, in which all
threads share a common memory and each thread may have a local stack. Therefore,
in CAPE, threadprivate and private variables should be implicitly or explicitly
allocated in Stack2.

5.3.2 Implementation of OpenMP data-sharing attribute rules

OpenMP provides a set of rules specifying data-sharing attributes. In [1], they are
presented in Sec. 2.9.1. Below is the list of rules available for C and C++.

5.3.2.1 General rule

• Data-sharing attributes of variables that are referenced in a construct can be
predetermined, explicitly determined, or implicitly determined, according to
the rules in the OpenMP specifications.

• Specifying a variable on a firstprivate, lastprivate or reduction clause
of an enclosed construct causes an implicit reference to the variable in the
enclosing construct.

102 Chapter 5. Data Sharing

5.3.2.2 Detailed rules

Some variables and objects have predetermined data-sharing attributes as follows:

• R1: Variables appearing in threadprivate directives are threadprivate.

• R2: Variables with automatic storage duration declared in a scope inside a
construct are private.

• R3: Objects with dynamic storage duration are shared.

• R4: Static data members are shared.

• R5: Loop iteration variables in the associated for-loops of a for or parallel
for construct are private.

• R6: Variables with const-qualified type having no mutable member are shared.

• R7: Variables with static storage duration that are declared in a scope inside
a construct are shared.

• R8: Loop iteration variables in the associated for-loops of a for or parallel
for construct may be listed in a private or lastprivate clause.

• R9: Variables with const-qualified type having no mutable member may be
listed in a firstprivate clause.

The data-sharing attributes of variables that are referenced in a region, but not
in a construct, are determined as follows:

• R10: Variables with static storage duration declared in called routines in the
region are shared.

• R11: Variables with const-qualified type having no mutable member, and that
are declared in called routines, are shared.

• R12: File-scope or namespace-scope variables referenced in called routines in
the region are shared unless they appear in a threadprivate directive.

• R13: Objects with dynamic storage duration are shared.

• R14: Static data members are shared unless they appear in a threadprivate

directive.

• R15: Formal arguments of called routines in the region that are passed by
reference inherit the data-sharing attributes of the associated actual argument.

• R16: Other variables declared in called routines in the region are private.

5.4. Implementation of OpenMP data-sharing directives and clauses103

5.3.2.3 Ways to satisfy the OpenMP data-sharing rules on CAPE

Table 5.1 presents the positions of variables associated with the above rules and the
ways to satisfy these rules. The names of memory regions in the second column are
specified in Sec. 5.3.1.

Table 5.1: Ways to satisfy the OpenMP data-sharing rules.

Allocation Status

Rule Stack Heap BSS Data Other Implicit Explicit by

R1 X the threadprivate implementation

R2 X X

R3 X X

R4 X X X

R5 X the private implementation

R6 X X X

R7 X X X

R8 X the for or

the parallel for implementation

R9 X the firstprivate implementation

R10 X X X

R11 X X

R12 X X X X the threadprivate implementation

R13 X X

R14 X X X X the threadprivate implementation

R15 X X X X X inheriting the other rules

R16 X X

5.4 Implementation of OpenMP data-sharing directives

and clauses

The last problem relates to the data-sharing requirements for the implementation
of OpenMP data-sharing directives and clauses. For both data-sharing clauses and
data-sharing directives, including the shared, threadprivate, private, firstprivate,
lastprivate, copyin, copyprivate and reduction, the solution consists in declar-
ing and using auxiliary local variables in each thread and inserting the necessary
instructions to initialize these variables and/or update the value of original variables
afterward. The reduction case is a little bit more complex and requires additional
processing. A possible solution consists of a combination of the partial values into
the checkpoints on slave nodes and a re-collection them on the master node to arise

104 Chapter 5. Data Sharing

the reduction value.

The translation of an OpenMP program containing data-sharing directives and
clauses is divided into three steps when using CAPE: (1) directives and clauses
containing the same variables are merged; (2) directives and clauses are replaced
by a set of equivalent instructions; (3) CAPE templates for OpenMP constructs are
applied to translate the program into base language form.

5.4.1 Merging directives and clauses

There are some cases for which a variable is contained in many directives and/or
clauses. These cases may be translate into a single form. For example, in the fol-
lowing piece of code:

pragma omp threadprivate (x)

pragma omp parallel for copyin (x)

for (A ; B ; C)

D ;

the directive in the first line can be deleted and merged with the copyin(x)

clause of the second line. This rule can also be applied to merge this directive with
the copyprivate clause.

Note that OpenMP allows combinations of a few directives and clauses, like
threadprivate and reduction directives. Table 5.2 shows the possible combina-
tion between OpenMP directives and clauses.

sh
ar

ed

th
re

ad
pr

iv
at

e

pr
iv

at
e

fir
st

pr
iv

at
e

la
st

pr
iv

at
e

re
du

ct
io

n

co
py

in

co
py

pr
iv

at
e

shared

threadprivate X X

private

firstprivate X

lastprivate X

reduction

copyin X

copyprivate X

Table 5.2: Possible combinations for OpenMP directives and clauses.

5.4. Implementation of OpenMP data-sharing directives and clauses105

5.4.2 General template

Figure 5.5 presents the general template to translate parallel for loops.

pragma omp parallel for clause_U

for (A ; B ; C)

D ;

↓ automatically translated into ↓

before_block ;

{

enter_block ;

pragma omp parallel for

for (A ; B ; C)

{

D ;

exit_block ;

}

}

after_block ;

Figure 5.5: Template for data-sharing primitives and clauses in for loops.

At initialization, all translated blocks (before_block, enter_block, exit_block
and after_block are empty. Then, the template is iteratively applied for each di-
rective or clause by merging the translated parts of the directive or clause at each
step.

5.4.3 Translation details

5.4.3.1 Summary of OpenMP data-sharing directive and clauses

Below is the list of OpenMP data-sharing directive and clauses with a brief descrip-
tion for each one. Their full descriptions can be referred in section 2.9 of [1].

1. threadprivate Directive

Syntax

pragma omp threadprivate(list) new-line

Summary description

The threadprivate directive specifies that variables are replicated, with each thread
having its own copy.

106 Chapter 5. Data Sharing

Each copy of a threadprivate variable is initialized once, in the manner specified
by the program, but at an unspecified point in the program prior to the first reference
to that copy. The storage of all copies of a threadprivate variable is freed according
to how static variables are handled in the base language, but at an unspecified point
in the program.

2. default clause

Syntax

default(shared | none)

Summary description

The default clause explicitly determines the data-sharing attributes of variables
that are referenced in a parallel or task construct and would otherwise be implicitly
determined.

The default(shared) clause causes all variables referenced in the construct that
have implicitly determined data-sharing attributes to be shared.

The default(none) clause requires that each variable that is referenced in the
construct, and that does not have a predetermined data-sharing attribute, must have
its data-sharing attribute explicitly determined by being listed in a data-sharing
attribute clause.

3. private clause

Syntax

private (list)

Summary description

The private clause declares one or more list items to be private to a task.

5.4.3.2 firstprivate clause

Syntax

firstprivate (list)

Summary description

The firstprivate clause provides a superset of the functionality provided by the
private clause.

The firstprivate clause declares one or more list items to be private to a task,
and initializes each of them with the value that the corresponding original item has
when the construct is encountered.

5.4. Implementation of OpenMP data-sharing directives and clauses107

4. lastprivate clause

Syntax

lastprivate (list)

Summary description

The lastprivate clause declares one or more list items to be private to an implicit
task, and causes the corresponding original list item to be updated after the end of
the region.

5. reduction clause

Syntax

reduction (operator:list)

Summary description

The reduction clause specifies an operator and one or more list items. For each list
item, a private copy is created in each implicit task, and is initialized appropriately
for the operator. After the end of the region, the original list item is updated with
the values of the private copies using the specified operator.

6. copyin clause

Syntax

copyin (list)

Summary description

The copyin clause provides a mechanism to copy the value of the master thread’s
threadprivate variable to the threadprivate variable of each other member of the
team executing the parallel region.

The copy is done after the team is formed and prior to the start of execution of
the associated structured block.

7. copyprivate clause

Syntax

copyprivate (list)

108 Chapter 5. Data Sharing

Summary description

The copyprivate clause provides a mechanism to use a private variable to broadcast
a value from the data environment of one implicit task to the data environments of
the other implicit tasks belonging to the parallel region.

To avoid race conditions, concurrent reads or updates of the list item must
be synchronized with the update of the list item that occurs as a result of the
copyprivate clause.

The effect of the copyprivate clause on the specified list items occurs after the
execution of the structured block associated with the single construct, and before
any of the threads in the team have left the barrier at the end of the construct.

5.4.3.3 Dedicated translated blocks

Table 5.3 shows the translated blocks for all OpenMP data-sharing directives and
clauses. The cases of copyprivate and reduction clauses are not completely pro-
vided in this table and are presented in the next sections. At present, along with
an assumption that all variables are shared by default, CAPE does not consider the
option none for the case of the default clause. Thus, this clause is not considered in
the table. One can easily verify that translations using translated blocks in the ta-
bles match OpenMP requirements for data sharing directives and clauses presented
above.

5
.4

.
Im

p
le

m
e
n
ta

tio
n

o
f
O

p
e
n
M

P
d
a
ta

-sh
a
rin

g
d
ire

c
tiv

e
s

a
n
d

c
la

u
se

s1
0
9

Table 5.3: Transformed blocks for OpenMP directives and clauses.

before_block enter_block exit_block after_block

shared (x)

threadprivate (x) typeof (x) __x__ ; typeof (__x__) x ;

private (x) typeof (x) __x__ ; typeof (__x__) x ;

firstprivate (x) typeof (x) __x__ ; typeof (__x__) x ;

__x__ = x; x = __x__

lastprivate (x) typeof (x) __x__ ; typeof (__x__) x ; if (thread_num == (num_threads - 1)) x = __x__ ;

__x__ = x ;

reduction (x) typeof (x) __x__ ; typeof (__x__) x; send (x, master) ; continue in subsec. 5.4.3.5

init_value (x) ;

copyin (x) typeof (x) __x__ ; typeof (__x__) x ;

if (master ()) if (master ()) {

__x__ = x ; x = __x__ ;

broadcast (x) ; }

else {

receive (x) ;

inject (x) ; }

110 Chapter 5. Data Sharing

5.4.3.4 Template for the copyprivate clause

The copyprivate clause cannot be inserted in parallel regions but only in single

regions. The current version of CAPE executes sequential regions in all threads, so
that at present it cannot implement this clause. However, this is scheduled in the
next version, thanks to the ability to run sequential regions on a single thread as
presented in the Sec. 4.4.4. Thus, template in Fig. 5.6 will be applied where the
original single construct is separated into two parts: one executed on the master
node and the other on slave nodes. The first part consists of a single construct
without the copyprivate clause. As presented Sec.4.4.4, this construct executes on
the master node. Thus, the broadcast () at the end of this construct sends the
value of the associated variable to all slave nodes. The part executed on slave nodes
receives the broadcast value and inject it into process memories.

pragma omp single copyprivate (x)

D ;

↓ automatically translated into ↓

pragma omp single

{

D ;

broadcast (x) ;

}

if (!master ())

{

receive (x) ;

inject (x) ;

}

Figure 5.6: Template to translate the copyprivate clause.

5.4.3.5 Special processing for the reduction clause

reduction is the most complex data-sharing clause as it requires to accumulate in
a variable on the master node the different values from all slave nodes. For the case
of CAPE, two solutions are proposed: the first one consists in integrating the value
of the variable into the checkpoint of all slave nodes and then extract these values
on the master node; the second one consists in using separate functions to send and
receive these values on the slave nodes and the master node respectively. For the
second solution, beside the translation using the translated blocks from table 5.3,
a modification of the template for parallel constructs is also required. Figure 5.7
presents the modified template for the parallel for loop (see Fig. 4.4 and Fig. 5.1)
to integrate the translation of the reduction clause.

5.5. Performance evaluation 111

0 init (x) ;

1 if (master ()) {

...

8 stop () ;

8a init (update_list) ;

9 wait_for (after) ;

9a merge (update_list, after) ;

9b receive_reduction (x) ;

9c merge (x, after) ;

...

15 } else {

...

22 send (afteri , master) ;

22a send (x , master) ;

Figure 5.7: Modified prototype of CAPE to implement the reduction clause.

In this prototype, new function init (x) (line 0) which executes on all nodes,
aims at initializing the reduction variable x. Each slave node, after sending its
execution result in form of a checkpoint (line 22), sends its own value of variable
x to the master node (line 22a). On the master node, after receiving execution
results from slave nodes, new function receive_reduction (x) (line 9b) receives
different values of x from all slave nodes and accumulates them into x. Then, the
reduction variable is added into the final checkpoint (line 9c) before this checkpoint
is injected into process memories of the nodes. Therefore, the reduction variable is
accumulated and updated on all nodes. Rules to initialize and accumulate reduction
variables is presented in Sec. 2.9.3.6 of [1];

5.5 Performance evaluation

At present, the integration of the UHLRC model and the processing of data-sharing
directives and clauses into the CAPE implementation is being investigated. How-
ever, from the description above, it appears that this integration does not signifi-
cantly decrease the global performance as the reasons below.

In general, the UHLRC model does not significantly change the current memory
model of CAPE. The unique additional fact is the mechanism used to implement
the flush directive. Whether an auxiliary task is added to the monitor, there are
not many changes in its execution. On slave nodes, the mechanism to implement
this task is the same as the main task for the incremental checkpointer. In fact,
while running with the role of an incremental checkpointer, the monitor has to keep
on listening for signals from the checkpointed program. Thus, the work consists in
including the new case to process the added signal for the flush request from the

112 Chapter 5. Data Sharing

program. Furthermore, the master node, when executing parallel regions, aims at
distributing the jobs to slave nodes and then waiting for results. This means that
typically, in the parallel regions, the node is idle almost all the time. As a result,
this new task only requires the node to listen and process flush requests from slave
nodes and does not affect their respective time.

The advantage of the HLRC model to implement the shared-memory of OpenMP
has been approved in [7]. With the UHLRC model, the number of comparisons —
the main operator to implement the flush directive — decreases. As a result, it
should theoretically provide better performance.

As presented in Sec. 5.4, the processing of data-sharing directives and clauses
in most cases is performed at compile time. The execution of additional codes does
not consume a lot of time either as there are only very few instructions executed to
create local variables and to assign their initial values. The special cases for both
reduction and copyprivate directives require the transaction of a small amount
of data between nodes which does not affect the global performance.

5.6 Conclusion

This chapter presented the solutions for two aspects of OpenMP data-sharing prob-
lems: implementing a shared-memory model and implementing data-sharing direc-
tives and clauses.

For the implementation a shared-memory model, UHLRC has been presented.
This new distributed-shared memory model is based on the HLRC model. Al-
gorithms for implementing the flush operations on this memory model are also
designed. Within the improvements that reduces the number of comparison opera-
tions — the most important operation to guarantee the memory consistency — this
new model promises good performance.

For the implementation of data-sharing directives and clauses, a global template
and detail parts for all directives and clauses have been presented. This implemen-
tation completely performs all the OpenMP shared directives and clauses without
significantly affectation to the global performance.

Chapter 6

Conclusion and Future Work

Contents

6.1 Principle contributions . 113

6.2 Future work . 115

OpenMP is a simple and strong API for shared-memory parallel programming.
Many attempts have tried to port it on distributed-memory systems. However,
they all meet difficulties to provide a fully-compliant and high-performance solution.
CAPE is an approach that uses checkpoints to automatically distribute parallel
sections of OpenMP programs to distributed machines, then automatically collect
results from these machines to the original machine. Along with this important
characteristic, CAPE promises to become a fully-compliant solution of OpenMP on
distributed-memory systems.

CAPE-1 that refers to CAPE using complete checkpoints, has proved the feasi-
bility of the approach but the use of complete checkpoints as the base tool strongly
decreased the global performance. Furthermore, CAPE-1 is only applicable for prob-
lems matching the Bernstein’s conditions, i.e. OpenMP data-sharing problems are
not completely solved.

Our works in this thesis have successfully improved the performance of CAPE
and overcome its restriction on data-sharing aspects.

6.1 Principle contributions

1. In chapter 3, we proposed DICKPT that stands for Discontinuous Incremental

Checkpointing, a new checkpointing technique based on the incremental check-
pointing technique. Thanks to the new ability to take independent incremental
checkpoints on discontinuous sections of a program, the performance of check-
pointing, in both aspects of execution time and checkpoint size, is significantly
reduced in some cases. This is very useful for CAPE to take checkpoints only
on necessary parts of transformed OpenMP programs, that help to increase the
global performance. Exploits the special structure of incremental checkpoints,
some methods to compress checkpoints also proposed in this chapter.

2. In chapter 4, we presented CAPE-2, a new version of CAPE that uses incre-
mental checkpoints. Exploits the new abilities of DICKPT, a new execution
model and new prototypes to transform OpenMP work-sharing constructs
have been proposed. In this version, the drawbacks of CAPE-1 that affect

114 Chapter 6. Conclusion and Future Work

to the global performance have been overcome: all the amount of transfered
data on network, the number of operations to extract execution results, the
amount of memory space for temporary data, have been significantly reduced.
Furthermore, thanks to the ability to directly inject updated data into process
space, the requirement to restart process execution after integrating updated
data is removed. All of them leads to a strong improvement of performance
in CAPE-2, while comparing with CAPE-1. This was clearly showed in an
experiment at the last part of this chapter, where performance of CAPE-2 is
quite similar with the one of optimized MPI programs and speedup of CAPE-2
is quite linear with the number of used machines.

3. In the last contribution of the thesis, presented in chapter 5, we proposed the
methods to satisfy the data-sharing requirements of OpenMP. Both the two
aspects related to OpenMP data-sharing problems were presented and solved:
1) the implementation of OpenMP relaxed shared memory model and 2) the
implementation of OpenMP directives and clauses.

In the first part of this chapter, we proposed UHLRC that stands for Updated
Home-Based Relaxed Consistency memory model. This model is based on
the HLRC model and has two important changes. The first one is the use of
create primitive of DICKPT checkpointer instead of the use of diff function
to compute differences between the current content of process memory and
the one in the buffer. The second one related to the replacement home pages
in the master thread by a list of modified memory items. In one side, this
reduces the number of comparison operations in flush function that is used
to guarantee the coherence between the memories of the master and slave
threads. In the other side, thanks to the location of the list of modified
regions in memory spaces of CAPE’s monitors, the amount of interprocess data
transfer is reduced and that in turn helps to increase the global performance.
Algorithms to implement the UHLRC model on CAPE also were presented.
Based on the UHLRC model, the second part of this chapter showed a list of
OpenMP data-sharing rules and the methods to satisfy these rules in CAPE.

The third part of this chapter presented the implementations of OpenMP
directives and clauses in CAPE. Most directives and clauses are implemented
by use of transformation’s prototypes. Some other ones are implemented by
special algorithms.

Although at present, we have not experiments but we believe that the inte-
gration into CAPE the new memory model and the data-sharing abilities does
not significantly affect the global performance. This is due to the two most
important arguments. The first one is the appropriation of the new memory
model to the previous execution model of CAPE, that leads to only some
light changes in CAPE’s prototypes have to be added to implement the new
memory model. The second one related to the implementation of OpenMP
directives and clauses by some simple instructions that do not consume many

6.2. Future work 115

of execution time and memory space. Detailed arguments were presented in
the last part of this chapter.

While comparing with initial purposes of the thesis, we can say that it has been
completely finished. The performance of CAPE has been significantly increased in
the new version. All data-sharing problems have been analyzed and solved by the
use of a new memory model and the special prototypes and algorithms.

6.2 Future work

In the near future, we would like to develop new CAPE’s components in which
the UHLRC and all OpenMP data-sharing directives and clauses are completely
implemented. Another planed work due to carry more experiments on execution
CAPE with different problems and compare it with other OpenMP implementations.
This can provide a better evaluation and thus better prove the advantages of CAPE
as a fully-compliant and high-performance OpenMP implementation on distributed-
memory systems.

Bibliography

[1] OpenMP specification 3.1. OpenMP Architecture Review Board. 2011.

[2] Blaise Barney. Introduction to Parallel Computing. Available at:
https://computing.llnl.gov/tutorials/parallel_comp/#Abstract.

[3] http://www.mpi-forum.org/

[4] http://www.top500.org/

[5] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard, Gaël Utard,
R. Badrinath and Louis Rilling. Kerrighed: A Single System Image Cluster Op-

erating System for High Performance Computing. Euro-Par 2003 Parallel Pro-
cessing, Klagenfurt, Austria, LNCS 2790, pp. 1291–1294, August 2003.

[6] Sven Karlsson, Sung-Woo Lee, Mats Brorsson, Sahni Sartaj, Viktor K. Prasanna
and Shukla Uday. A fully compliant OpenMP implementation on software dis-

tributed shared memory. Proceedings of the International Conference on High
Performance Computing, Bangalore, India, LNCS 2552, pp. 195–206, December
2002.

[7] Jie Tao, Wolfgang Karl, Carsten Trinitis. Implementing an OpenMP Execution

Environment on InfiniBand Clusters. In proceeding of the First International
Workshop on OpenMP (IWOMP 2005). Eugene, Oregon, June 2005.

[8] Beniamino Di Martino, Dieter Kranzlmüller and Jack Dongarra Implementing

OpenMP for clusters on top of MPI. Proceedings of 12th European PVM/MPI
Users’ Group Meeting Sorrento, LNCS, Volume 3666/2005, 148–155, DOI:
10.1007/11557265_22, Italy, September 2005.

[9] Ayon Basumallik and Rudolf Eigenmann. Towards automatic translation of

OpenMP to MPI. Proceedings of the 19th annual international conference on
Supercomputing, Cambridge, MA, pp. 189–198, 2005.

[10] Lei Huang and Barbara Chapman and Zhenying Liu. Towards a more efficient

implementation of OpenMP for clusters via translation to global arrays. Journal
of Parallel Computing, 31(10–12):1114–1139, October–December 2005.

[11] Jay P. Hoeflinger. Extending OpenMP* to Clusters - White paper.

Available at: http://140.110.240.196/grid/raw-attachment/wiki/Osaka/ In-
tel_Extend_OpenMP_Cluster.pdf

[12] Éric Renault. Distributed Implementation of OpenMP Based on Checkpoint-

ing Aided Parallel Execution. International Workshop on OpenMP (IWOMP),
Beijing, China, LNCS 4935, pp. 183–193, June 2007.

118 Bibliography

[13] Éric Renault. Parallelization of For Loops Using Checkpointing Techniques. Pro-
ceedings of the 2005 International Conference on Parallel Processing Workshops,
Oslo, Norway, pp. 313–319, June 2005.

[14] Laura Mereuta and Éric Renault. Checkpointing Aided Parallel Execution Model

and Analysis. High Performance Computation Conference (HPCC), Houston,
TX, LNCS 4782, pp. 707–717, September 2007.

[15] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable

shared-memory multiprocessors. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pp. 15–26, Seattle, Washington, May
1990.

[16] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel Lazy Release Consistency

for Soflware Distributed Shared Memory. In Proceeding of the 19th Annual In-
ternational Symposium on Computer Architecture. Queensland, Australia, May
1992.

[17] Yuanyuan Zhou, Liviu Iftode and Kai Li. Performance Evaluation of Two

Home-Based Lazy Release Consistency Protocols for Shared Virtual Memory

Systems. Proceedings of the second USENIX symposium on Operating systems
design and implementation (OSDI). New York, NY, USA 1996.

[18] Blaise Barney. OpenMP. Available at https://computing.llnl.gov/tutorials/openMP

[19] www.adapteva.com

[20] http://www.kerrighed.org

[21] Jens Breitbart. Analysis of a memory bandwidth limited scenario for NUMA

and GPU systems. In Proceeding of the 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
Kassel, Germany May, 2011.

[22] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto and T. Takahashi.
Dynamic Home Node Reallocation on Software Distributed Shared Memory. Pro-
ceeding of tje HPC Asia 2000, Beijing, China, May 2000, pp. 158—163.

[23] Mitsuhisa Sato , Hiroshi Harada, Atsushi Hasegawa and Yutaka Ishikaw.
Cluster-enabled OpenMP: An OpenMP compiler for the SCASH software dis-

tributed shared memory system. Journal Scientific Programming, Volume 9 Issue
2,3, August 2001.

[24] Antonio J. Dorta, Jesús. A. González, Casiano Rodríguez, Francisco de Sande.
llc: A parallel skeletal language. Parallel Processing Letters 13(3) (2003) 437–
448.

Bibliography 119

[25] Seung-Jai Min, Ayon Basumallik, Rudolf Eigenmann. Optimizing OpenMP Pro-

grams on Software Distributed Shared. International Journal of Parallel Program-
ming, 31(3):225–249, June 2003.

[26] Paul Havlak and Ken Kennedy. An implementation of interprocedural bounded

regular section analysis. IEEE Transactions on Parallel and Distributed Systems,
2(3):350–360, 1991.

[27] Sang-Ik Lee, Troy A. Johnson and Rudolf Eigenmann. Cetus - An Extensible

Compiler Infrastructure for Source-to-Source Transformation. In Proceeding of
the Workshop on Languages and Compilers for Parallel Computing(LCPC’03),
pages 539–553. (Springer Verlag Lecture Notes in Computer Science), Oct. 2003.

[28] Jaroslaw Nieplocha, Robert J. Harrison and Richard J. Littlefield Global Ar-

rays: A non-uniform memory access programming model for high-performance

computers. The Journal of Supercomputing, 10:197-220, 1996.

[29] Lei Huang, Barbara Chapman, Zhenying Liu and Ricky Kendall. Efficient

Translation of OpenMP to Distributed Memory. Lecture Notes in Computer Sci-
ence, 2004, Volume 3038/2004, 408-413.

[30] Lei Huang, Barbara Chapman and Ricky Kendall. OpenMP for Clusters. In the
Fifth European Workshop on OpenMP, EWOMP’03, Aachen, Germany, 2003.

[31] TreadMarks: shared memory computing on networks of workstations. Cristiana
Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakr-
ishnan Rajamony, Weimin Yu and Willy Zwaenepoel. The Journal Computer,
29(2): 18–28, Feb 1996.

[32] Y. Charlie Hu, Honghui Lu, Alan L. Cox and Willy Zwaenepoel OpenMP for

Networks of SMPs. The Journal of Parallel Distributed Computing, 60: 1512–
1530, 2000.

[33] Jame S. Plank. An Overview of Checkpointing in Uniprocessor and Distributed

Systems, Focusing on Implementation and Performance. Technical Report UT-
CS-97-372, Department of Computer Science, University of Tennessee, Juilly
1997.

[34] Kalaiselvi S. and Rajaraman. A survey of checkpointing algorithms for parallel

and distributed computers. In Sadhana (Academy Proceedings in Engineering
Sciences), 25 (5). pp.489-510, October 2000.

[35] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pi-Yu Chung and Chandra
Kintala. Checkpointing and its applications. 25th Annual International Sympo-
sium on Fault-Tolerant Computing, (FTCS-25), pp.22-31, June 1995.

[36] John Mehnert-Spahn, Eugen Feller and Michael Schoettner. Incremental check-

pointing for grids. In Linux Symposium, 2009.

120 Bibliography

[37] Unicos Operating System (Unix). Available at: http://www.operating-
system.org/betriebssystem/_english/bs-unicos.htm .

[38] Charles R. Landau. The checkpoint mechanism in KeyKos. In the Proceed-
ings of the Second International Workshop on Object Orientation in Operating
Systems, September 1992.

[39] Mark Russinovich and Zary Segall. Fault-tolerance for off-the-shelf applications

and hardware. In 25th International Symposium on Fault-Tolerant Computing,
pp. 67-71, Pasadena, CA, June 1995.

[40] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nel-
son, and Brent B. Welch. The sprite network operating system. IEEE Computer,
21(2):23-36, February 1988.

[41] Amnon Barak. Scalable cluster computing with mosix for linux. In Proceedings
of Linux Expo, pp.95–100, 1999.

[42] Christine Morin , Pascal Gallard , Renaud Lottiaux and Geoffroy Vallée. To-

wards an efficient single system image cluster operating system. Proceeding of
the Fifth International Conference on Algorithms and Architectures for Parallel
Processing, 2002.

[43] Oleksandr O. Sudakov, Ievgenii S. Meshcheriakov and Yuriy V. Boyko. CH-

POX: Transparent Checkpointing System for Linux Clusters. In the 4th IEEE
workshop on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS). 2007.

[44] Ramamurthy Badrinath, Christine Morin and Geoffroy Vallée. Checkpointing

and Recovery of Shared Memory Parallel Applications in a Cluster. In Proceeding
of the 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid 2003). Tokyo, Japan, May 2003.

[45] Robert H.B. Netzer and Mark H. Weaver. Optimal tracing and incremental re-

execution for debugging long-running programs. In Proceeding of the ACM SIG-
PLAN 1994 (PLDI’94) on Programming language design and implementation,
pp. 313–325, Orlando, FL, June 1994.

[46] ckpt home page. http://pages.cs.wisc.edu/ zandy/ckpt/

[47] Miron Livny and Mike Litzkow. Making Workstations a Friendly Environment

for Batch Jobs. In Proceedings of Third Workshop on Workstation Operating
Systems. April 1992.

[48] Arash Baratloo, Partha Dasgupta and Zvi M. Kedem. Calypso: A Novel Soft-

ware System for Fault-Tolerant Parallel Processing on Distributed Platforms. In
4th IEEE International Symposium on High Performance Distributed Comput-
ing, August 1995.

Bibliography 121

[49] Diskless checkpointing. James S. Plank, Kai Li, Member and Michael A. Puen-
ing. Journal of Parallel and Distributed Systems, 9: 971–986, October 1998.

[50] Michael Litzkow, Todd Tannenbaum, Jim Basney and Miron Livny. Checkpoint

and migration of unix processes in the condor distributed processing system. Tech-
nical report 1346, University of Wisconsin-Madison, 1997.

[51] S. I. Feldman and C. B. Brown. Igor: A system for program debugging via

reversible execution. In the ACM SIGPLAN Notices, Workshop on Parallel and
Distributed Debugging, 24(1):112–123, January 1989.

[52] Elmootazbellah N. Elnozahy, and Willy Zwaenepoel. Manetho: transparent roll

back-recovery with low overhead, limited rollback, and fast output commit. In the
IEEE Transactions on Computers Special Issue on Fault-Tolerant Computing,
41(5), May 1992.

[53] Georg Stellner. CoCheck: Checkpointing and process migration for MPI. In
Processing of the 10th International Parallel Symposium, pp. 526–531, April
1996.

[54] Manuel Costa, Paulo Guedes, Manuel Sequeira, Nuno Neves and Miguel Cas-
tro. Lightweight logging for lazy release consistent distributed shared memory.

In Proceedings of the second USENIX symposium on Operating systems design
and implementation, October 1996.

[55] James S. Plank and Kai Li. Ickp - a consistent checkpointer for multicomputers.

In the Journal IEEE Parallel & Distributed Technology, 2(2):62–67, Summer
1994.

[56] Yinqun Chen, James S. Plank and Kai Li. CLIP: A checkpointing tool for

message-passing parallel programs. In Proceeding of the SC97: High Performance
Networking and Computing, San Jose, November 1997.

[57] Steven Osman, Dinesh Subhraveti, Gong Su and Jason Nieh. The design and

implementation of zap: A system for migrating computing environments. In Pro-
ceedings of the 5th Operating Systems Design and Implementation (OSDI 2002),
Boston, MA, December 2002.

[58] Erik Hendriks. BProc: The Beowulf Distributed Process Space. Technical report,
Advanced Computing Laboratory, Los Alamos National Laboratory, 2001.

[59] Jason Ansel, Kapil Arya and Gene Cooperman. DMTCP: Transparent Check-

pointing for Cluster Computations and the Desktop. In Proceeding of the
32rd IEEE International on Parallel and Distributed Processing Symposium
(IPDPS09), Rome, Italy, May 2009.

122 Bibliography

[60] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T.
Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri and A. Se-
likhov. MPICH-V: Toward a scalable fault tolerant MPI for volatile nodes. In
ACM/IEEE 2002 Conference on Supercomputing. IEEE Press, 2002.

[61] Thomas Herault, Pierre Lemarinier, and Franck Cappello. Blocking vs. non-
blocking coordinated checkpointing for large-scale fault-tolerant MPI. In Pro-
ceedings of International Symposium on High Performance Computing and Net-
working (SC2006), 2006.

[62] Yennun Huang, Chandra Kintala and Yi-Min Wang. Software tools and libraries

for fault toleranc. In IEEE Technical Committee on Operating Systems and
Application Environments, 7(4):5–9, Winter 1995.

[63] Adam Beguelin, Erik Seligman and Peter Stephan. Application Level Fault Tol-

erance in Heterogeneous. Networks of Workstations. Journal of Parallel and Dis-
tributed Computing, 43(2): 147–155, June 1997.

[64] Luis M. Silva, Simon Chapple, João G. Silva and Lyndon Clarke. Portable

checkpointing and recovery. In Proceeding of the Fourth IEEE International
Symposium on High Performance Distributed Computing, August 1995.

[65] David Cummings and Leon Alkalaj. Checkpoint/rollback in a distributed sys-
tem using coarse-grained dataflow. In Proceeding of the Twenty-Fourth Interna-
tional Symposium on Fault-Tolerant Computing, June, 1994.

[66] Gabriel Antoniu, Luc Bougé and Raymond Namyst. An efficient and transpar-

ent thread migration scheme in the PM2 runtime system. In Proceedings of the
11 IPPS/SPDP’99 Workshops Held in Conjunction with the 13th International
Parallel Processing Symposium and 10th Symposium on Parallel and Distributed
Processing, 1999.

[67] Michael L. Powell and Barton P. Miller. Process Migration in DEMOS/MP. In
Proceedings of the Ninth ACM Symposium on Operating Systems Principles,
1983.

[68] http://hpc.pnl.gov/sft/tick.html

[69] Sangho Yi, Junyoung Heo, Yookun Cho, Jiman Hong, Jongmoo Choi and
Gwangil Jeon. Ickpt: An Efficient Incremental Checkpointing Using Page Writ-
ing Fault - Focusing on the Implementation in Linux Kernel. In Proceedings of
the ISCA 19th International Conference on Computers and Their Applications
(CATA04), Seattle, WA, pp. 209-212, March 2004.

[70] David P. Anderson. BOINC: A System for Public-Resource Computing and

Storage. In Proceedings of 5th IEEE/ACM International Workshop on Grid
Computing, Pittsburg, PA, pp. 4–10, November 2004.

Bibliography 123

[71] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.

[72] Nimbus Home Page. http://www.nimbusproject.org

[73] Paul Marshall, Henry Tufo, Kate Keahey, David LaBissoniere and Matthew
Woitaszek. Architecting a Large-Scale Elastic Environment: Recontextualization

and Adaptive Cloud Services for Scientific Computing. In Proceedings of the 7th
International Conference on Software Paradigm Trends (ICSOFT). Rome, Italy.
July 2012

[74] OpenNebula Home Page. http://opennebula.org/

[75] KOALA Home Page. http://code.google.com/p/koalacloud/

[76] Christian Baun, Marcel Kunze, Viktor Mauch. The KOALA Cloud Manager

Cloud Service Management the Easy Way. In Proceeding of the 2011 Interna-
tional Conference on Cloud Computing (CLOUD 2011), Washington DC, July
2011.

[77] Daniel P. Bovet and Marco Cesati. Understading the Linux Kernel. 3rd version.
O’Reilly 2006.

[78] Sandeep Grover. Buffer Overflow Attacks and Their Countermeasures.

http://www.linuxjournal.com/article/6701

[79] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, Fabrizio Petrini and Kei
Davis. Transparent, Incremental Checkpointing at Kernel Level: a Foundation

for Fault Tolerance for Parallel Computers. In Proceeding of the the 2005
ACM/IEEE conference on Supercomputing. Washington DC, 2005.

[80] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Exe-

cutes Multiprocess Programs. In the IEEE Transactions on Computers, 28(9):241-
248, 1979.

[81] L. Iftode and J. P. Singh. Shared Virtual Memory: Progress and Challenges. In
Proceeding of the IEEE, Special Issue on Distributed Shared Memory, volume
87, pages 498-507, 1999.

[82] Yong-Kim Chong and Kai Hwang. Evaluation of relaxed memory consistency

models for multithreaded multiprocessors. In Proceeding of the 1994 International
Conference on Parallel and Distributed Systems, p474-480, Hsinchu, Taiwan,
December 1994.

[83] Alan L. Cox, Eyal de Lara, Charlie Hu and Willy Zwaenepoel. A Performance

Comparison of Homeless and Home-based Lazy Release Consistency Protocols in

Software Shared Memory. In Procceding of the Fifth International Symposium
On High-Performance Computer Architecture, Janvier 1999.

