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Résumé

Les circuits FPGAs (Field Programmable Gate Arrays) sont devenus des acteurs im-
portants dans le domaine du traitement numérique qui a été dominé auparavant par
les microprocesseurs et les circuits intégrés spécifiques. Le plus grand défi pour les FP-
GAs aujourd’hui est de présenter un bon compromis entre une grande souplesse et de
bonnes performances (vitesse, surface et consommation). La combinaison de trois fac-
teurs définit les caractéristiques d’un circuit FPGA: la qualité de l’architecture, la qualité
des outils CAO de configuration et la conception électrique du FPGA. L’objet de cette
thèse est l’exploration de nouvelles architectures et de structures d’interconnexion qui
pourront améliorer les performances de ces circuits. En effet, les ressources d’interconn-
exion occupent 90% de la surface totale et occasionnent 60% de la consommation élec-
trique. Les architectures étudiées présentent des structures matricielles et arborescentes.
Les principaux résultats sont les suivants:
• Au départ nous explorons différentes topologies arborescentes et nous comparons

leurs surfaces à celles des architectures matricielles. Pour cela, nous développons une
plateforme d’outils logiciels permettant d’implanter différents circuits logiques sur l’ar-
chitecture cible. En se basant sur cette étude expérimentale, nous définissons une nou-
velle architecture arborescente. Nous montrons, en nous appuyant sur un modèle d’esti-
mation de surface, que cette architecture permet de réduire la surface totale de 56% par
rapport à une architecture matricielle. Ceci est dû essentiellement à une meilleure utili-
sation des ressources d’interconnexion.
• Nous explorons les effets des différents paramètres de l’architecture proposée: le

coefficient de Rent, la taille des groupes logiques et le nombre d’entrées par bloc logique.
Ceci permet de régler l’architecture pour l’adapter à des domaines d’applications qui
ont des contraintes spécifiques en terme de surface, vitesse et consommation.
• Enfin, nous proposons une architecture qui rassemble les avantages des struc-

tures arborescentes et matricielles. Nous unifions les deux structures en construisant des
groupes de blocs logiques qui ont localement un réseau d’interconnexion arborescent et
qui sont connectés entre eux via un réseau matriciel. Nous montrons que l’architecture
obtenue présente un bon compromis entre l’évolutivité de la vue physique et la densité
de la surface.

Mots-clés: FPGA, Réseau d’interconnexion, Loi de Rent, Structure arborescente, Struc-
ture matricielle, Optimisation, Partitionnement, Placement, Routage, Analyse de timing





Abstract

Today, FPGAs (Field Programmable Gate Arrays) become important actors in the
computational devices domain that was originally dominated by microprocessors and
ASICs. FPGA design big challenge is to find a good tradeoff between flexibility and per-
formances. Three factors combine to determine the characteristics of an FPGA: quality
of its architecture, quality of the CAD tools used to map circuits into the FPGA, and its
electrical design. The subject of this dissertation is the exploration of new interconnect
topologies and architectures that may play important roles in FPGA performances im-
provement. In fact interconnect is the dominant factor in terms of area (90%) and power
dissipation (60%). The main architectures under exploration have Tree-based or Mesh-
Based topology. The main results are the following:
•We first explore different Tree-based architectures and we compare them to Mesh-

based architecture in terms of area. For this purpose we develop an exploration tools
platform allowing to implement various benchmark circuits on the target architecture.
Using experimental evaluation, we define a new Tree-based FPGA architecture and we
show that it has good performances and density characteristics. We show, based on total
cells area evaluation, that using the proposed topology we achieve a gain of 56% com-
pared to the common Mesh-based FPGA architecture. This is due essentially to the high
interconnect utilization achieved by this architecture.
•We explore the effect of different architecture parameters: Rent’s ratio, cluster sizes,

and LUTs sizes. We show how they interact and the way to tune them to satisfy different
specific applicative constraints (density, performance and power).
• Finally, we propose an architecture that takes advantage of both Mesh and Tree

strongest points. We unify both structures by building clusters with a Tree-based local
interconnect and we connect these clusters by a Mesh-based interconnect. We show that
the resulting architecture presents a good tradeoff between layout scalability and area
density.

Keywords: FPGA, Interconnect, Rent’s rule, Tree-based architecture, Mesh-based archi-
tecture, Optimization, Partitioning, Placement, Routing, Timing analysis.
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Introduction

Field-Programmable Gate Arrays are Integrated Circuits (ICs) whose functionality is
programmed after manufacturing. They consist of configurable logic blocks and I/O
blocks that are interconnected by a configurable routing. FPGAs are configured to im-
plement user circuits by writing into the configuration memory that is embedded within
the FPGA. Configuration memory is spread throughout the FPGA and defines the log-
ical function of each configurable logic block and the connections within the config-
urable routing fabric. Although other methods exist, FPGA configuration memory is
typically implemented using static RAM (SRAM). Other technologies used to imple-
ment configuration memory include antifuses [J.Greene et al., 1993] and floating gate
transistors [S.Brown, 1994]. However, this thesis focuses on SRAM-based FPGA devices
exclusively, since SRAM-based FPGAs are the most common commercial FPGAs.
Reconfigurability of FPGAs is fundamentally different from traditional general-purpose
microprocessors. An application is implemented on a microprocessor by compiling the
application to a stream of instructions that are sequentially decoded and executed by
fixed, general-purpose logic resources. Unlike FPGAs, the functionality of a micropro-
cessor’s logic resources cannot be modified on a per-application basis. Instead, each
application is compiled into a unique stream of instructions that are executed by the
microprocessor. Since it is possible to express almost any application as a sequence of in-
structions, microprocessors are arguably the most flexible computational devices today.
However, microprocessors often incur a performance penalty due to their very flexibil-
ity. To support flexibility, the fixed logic resources in a microprocessor are deliberately
designed to execute certain basic computations efficiently. Consequently, applications
that would benefit from customized, tailor-made logic resources often take a perfor-
mance hit when executed on a general-purpose microprocessors.
While microprocessors are attractive for their flexibility, an Application Specific Inte-
grated Circuit (ASIC) is a device that is customized to a specific application. Since the
exact nature of the application is known beforehand, ASIC hardware resources are de-
signed to provide the highest performance implementation for the application. The
price paid by ASICs because of their superlative performance characteristics is flexi-
bility. Once an ASIC has been manufactured, it is impossible to modify it to implement
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2 Introduction

another application, different from the one it was intended for. Further, since the Non-
Recurring Engineering (NRE) costs involved in designing and manufacturing an ASIC
are comparatively high, it is generally unfeasible to design and fabricate ASICs in low
volumes.
Since their introduction in the mid eighties, FPGAs evolved from a simple, low-capacity
gate array technology to devices [Stratix, II] [Virtex, 5] that provide a mix of coarse-
grained data path units, microprocessor cores, on chip A/D conversion, and gate counts
by millions. Today, FPGAs become important actors in the computational devices do-
main that was originally dominated by microprocessors and ASICs. Just like micropro-
cessors, FPGA-based systems can be reprogrammed on a per-application basis. At the
same time, FPGAs offer significant performance benefits over microprocessor imple-
mentations for a number of applications. Although these benefits are still generally an
order of magnitude less than equivalent ASIC implementations, low NRE costs, fast
time-to-market, and flexibility of FPGAs make them an attractive choice for low-to-
medium volume applications.
In order to investigate the quality of different FPGA architectures, one needs CAD tools
capable of implementing circuits automatically in each FPGA architecture of interest.
Once a circuit has been implemented in an FPGA architecture, one needs next accurate
area and delay models to evaluate the quality (speed achieved, area required) of the
circuit implementation in the FPGA architecture under test.
Three factors combine to determine the characteristics of an FPGA: quality of the FPGA
architecture, quality of the CAD tools used to map circuits into the FPGA, and electrical
(i.e. transistor-level) design of the FPGA.

1 Research goals and contributions

Despite their design cost advantage, FPGAs impose large area overheads when com-
pared to custom silicon alternatives (ASICs). To illustrate the magnitude of this prob-
lem we refer to the work presented in [I.Kuon and J.Rose, 2007] where authors measure
the gap between FPGAs and ASICs in terms of logic density, circuit speed and power
consumption. It is shown that for circuits containing only look-up table-based logic and
flip-flops, the ratio of silicon area required to implement them in FPGAs and ASICs is
on average 35. The dynamic power consumption ratio is approximately 14 times. This is
due essentially to the FPGA programmable interconnect which is the dominant area fac-
tor. In fact FPGAs have 90% routing and 10% logic occupancy. In addition interconnect
is the major factor behind power dissipation. According to results shown in [L.Shang
et al., 2002], the power dissipation share of routing, logic and clocking resources are
60%, 16% and 14%, respectively.
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Figure 1: Today’s FPGA design challenges [M.Hutton, 2005]

There is a considerable demand for FPGAs with less area, lower delay and power con-
sumption. As illustrated in figure 1, the 4 features characterizing an FPGA are: Area,
performance (achieved speed), power dissipation and cost (manufacturing). The tight
interaction between these features can be explained by the following examples:

- Reducing total switches number may induce area and power dissipation reduc-
tion, however it can reduce flexibility and consequently increases path lengths
(performance degradation).

- Using power management techniques reduces power at the cost of area increase,
performances degradation and manufacturing cost increase.

Thus FPGA design big challenge is to find a good tradeoff between the 4 different fea-
tures. A general method used to make FPGAs more efficient is to search for improve-
ments to the numerous algorithmic steps which map a logic circuit into FPGA. Improve-
ments to the logic synthesis step, for example, can reduce the amount and depth of
needed logic. Also, improvements to the partitioning, placement, and clustering steps,
such as those described in [V.Betz et al., 1999], can reduce interconnect use and delay by
shortening connections. Similarly, improvements on the routing step can map critical
delay paths to faster connections. Defining an FPGA architecture is a challenge of fixing
logic and routing resources so that these algorithms produce the most efficient results
possible. Since both algorithms and architectures can be simultaneously defined, there
is a significant amount of interaction which can influence the final result.



4 Introduction

The aim of this thesis is to present a new efficient way to design interconnection struc-
tures for programmable logic: the way in which the programmable wires are connected.
We also propose a set of new CAD tools to map circuits on the proposed architecture
and to explore its efficiency. The main characteristics of the proposed architecture topol-
ogy are summarized in the following points:

• Tree-based topology: Most logic designs exhibit locality of connections, which im-
plies a hierarchy in the placement and routing of the connections between logic
blocks. We propose a Tree-based FPGA (hierarchical) architecture which aims at
exploiting this feature to provide smaller routing delays and more predictable tim-
ing behavior. This architecture is created by connecting logic blocks into clusters.
Theses clusters are connected recursively to form a hierarchical structure.

• Interconnect depopulation: The interconnect structure in common FPGA archi-
tectures is designed generally to maximize logic utilization. Our philosophy is to
design architectures with depopulated interconnect. Our purpose is to increase
interconnect utilization at the expense of logic utilization. The philosophy behind
depopulated routing architecture is to increase silicon utilization through efficient
use of the interconnect structure, which accounts for 80-90% of the total area in
common Mesh-based FPGA devices.

• Interconnect predictability: We use an interconnect topology based on the Butter-
fly fat Tree distribution. This structure offers a predictability feature since paths
from sources to destinations are limited and predictable. This property is very in-
teresting and can be exploited in the placement phase to improve routability.

• Single driver interconnect: In early FPGA architectures, an interconnect wire was
shared and could be driven by many possible resources. Although this made wires
bidirectional, it required several large, tri-state buffers per wire and only one of
which could be turned on for a specific configuration. Consequently numerous
buffers were left unused, which added area, capacitance, power and delay. Mod-
ern Mesh FPGA architectures have shifted away from allowing multiple drivers
to connect to each interconnect wire. It was shown in [G.Lemieux et al., 2004] that
when single-driver wiring is used, area improves by 25% and delay improves by
9%. Common Tree-based FPGA architectures [A.DeHon, 1999] [Y.Lay and P.Wang,
1997] use bidirectional wires. In this thesis we propose a Tree-based interconnect
having a single driver at starting point of each wire. Instead of tri-states, each
driver has a multiplexer to select from many possible sources. This organization
results in unidirectional wires. The benefit of using unidirectional wires is the
elimination of bidirectional buffering and tri-states and consequently area reduc-
tion, performance improvement and power dissipation reduction.
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2 Outline

This section gives a brief overview of the contents of the following chapters:
The two first chapters give an overview of the current state-of-the-art FPGA architec-
tures and configuration CAD tools. We start with describing some academic and indus-
trial architectures with different interconnect topologies. The two most typical FPGA
architectures are Mesh-based and Tree-based. Next, we describe the different steps of
FPGA configuration flow. A survey of the most commonly used algorithms for each of
these steps is provided.
Since the purpose of the thesis is to evaluate different FPGA architectures experimen-
tally, we propose in the third chapter a generic exploration platform. In this environ-
ment we describe the different implemented tools and we explain their interaction with
the target architecture. To evaluate each architecture we propose models and metrics to
measure efficiencies in terms of area and speed performances.
In the three following chapters we present a progressive optimization of a Tree-based
architecture. First, in chapter 4 we propose a basic architecture with fully populated
switch boxes and optimized signals bandwidth. We conclude, based on a comparison
with a common Mesh architecture, that optimizing only signals bandwidth is not suf-
ficient. In chapter 5, we propose to optimize only switch boxes and to use large signals
bandwidth. We conclude, based on the same comparison, that area density is much
improved at the expense of routability degradation. Thus, in chapter 6 we propose an
architecture combining a moderate optimization in terms of switch box population and
signals bandwidth. We show experimentally, that this architecture has a good routabil-
ity and interesting area density.
In the last chapter, we propose an architecture unifying both Mesh and Tree advan-
tages, which are respectively: layout scalability and area efficiency. Finally, conclusions
are provided along with possible directions for future research and development.





1
FPGA Architectures

1.1 Introduction

A field Programmable Gate Array (FPGA) is a prefabricated silicon device that can be
reconfigured to implement various applications. Reconfigurability of an FPGA is de-
rived from reprogrammable Static Random Access Memory (SRAM) cells. By program-
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ming SRAM cells, the functionality of FPGA logic units can be tailored to implement
a particular computation. Logic Blocks and interconnections (figure 1.1 are established
by programming SRAM cells to connect prefabricated routing wires together. Thus, any
given application can be mapped into an FPGA by programming functionality and con-
nectivity of logic Blocks based on the specific characteristics of the application. The big
challenge of FPGA is to provide the maximum flexibility with the minimum area cost.
FPGA designers propose different architectures topologies to achieve this tradeoff.
In this chapter we, first, describe the reconfigurable Logic Block which allows functional
flexibility. Then, we describe different interconnect topologies which allow routing flex-
ibility.

1.2 Configurable Logic Blocks

Logic blocks implement the logical component of a user circuit. Since FPGAs must be
flexible enough to implement any user circuit, FPGA logic blocks must be capable of
implementing a wide range of logical functions. To achieve this flexibility, most com-
mercial FPGAs use lookup-table (LUT) based logic blocks. A LUT with k inputs (k-LUT)
contains 2k configuration bits and can implement any k-input function (or gate). Using
LUTs with many inputs (large k) reduces the number of LUTs required to implement a
user circuit and moreover reduces routing demands; however, it increases the area of
the k-LUTs exponentially. By examining speed, area, and routability tradeoffs, previous
works have shown that 4-input LUTs result in the fastest and the densest FPGAs [J.Rose
et al., 1990] [E.Ahmed and J.Rose, 2000].

K−Input
LUT

LB

LB

LB

LB

D Q

Logic Block(LB)
I inputs

Logic Blocks cluster

Figure 1.2: LB and Logic clusters

Early FPGAs had logic blocks that included a LUT, a flip-flop, and local interconnect.
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This simple structure, called a logic block (LB), is illustrated in figure 1.2. To enhance
their functionality, multiple LBs are combined into logic block with additional local in-
terconnect. This larger structure, called a cluster, is also illustrated in figure 1.2. The
advantages of clusters are similar to those of large LUTs: fewer logic blocks, less global
routing, and better performance. However, the area penalty incurred by a cluster is
much smaller than that of a large LUT. Modern FPGAs contain typically between 4 and
10 logic elements per cluster.
Most commercial FPGAs contain an increasingly larger number of hard macro blocks.
As shown in figure 1.1, these macro blocks can include embedded memories, multipli-
ers, or high speed I/Os. In this thesis we are interested to improve architecture per-
formances based on interconnect topologies exploration. The FPGA model used in the
following consists of programmable Logic Blocks (LBs) and programmable routing ele-
ments.

1.3 Interconnect topologies

FPGA routing interconnect connects internal FPGA components, such as logic blocks
and I/O blocks. The performance and the density of an FPGA is largely determined by
its routing architecture since routing accounts for most of the area, delay, and power of
the FPGA.

1.3.1 VPR-based Mesh interconnect

Mesh based FPGA are also called island-style FPGA, since, as illustrated in figure 1.3,
logic blocks look like islands in a sea of configurable routing. Logic Blocks are typically
arranged in a grid and are surrounded by horizontal and vertical routing channels.
Mesh architectures are most common among academic and commercial FPGAs. The
routing fabric consists of pre-fabricated wiring segments and programmable switches
organized into rows and columns. The set of switches used to connect a logic block to
an adjacent routing channel is called a connection block C. Similarly, the set of switches
used to connect intersecting routing channels is called a switch block S. Every routing
channel contains W parallel wire tracks, where W is called the channel width. The same
width is used for all channels. Figure 1.3 illustrates these various routing structures. The
structure of these individual routing components can be parametrized by routing chan-
nel width, segments distribution, connection block topology, and switch block topology.
Segments distribution describes the lengths of the wire segments in the routing chan-
nels. Figure 1.4 shows an example of channel segmentation distribution. Longer wire
segments span multiple blocks and require fewer switches, thereby reducing routing
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area and delay. However, they also decrease routing flexibility, which reduces the prob-
ability that a user circuit can be routed successfully. Modern FPGAs commonly use a
combination of long and short wires in order to balance this tradeoff.
Connection and switch block topologies describe the interconnection pattern within
these blocks. In terms of routability, fully populated blocks (that is, blocks for which
any incident pin can be connected to any other incident pin) would be optimal. How-
ever, in terms of area, the cost would be prohibitive. Previous work [J.Rose et al., 1990,
G.Lemieux and D.Lewis, 2002] has shown that connection and switch blocks still pro-
vide good routability even when only sparsely populated. Connection block population
is defined by Fcin

and Fcout
parameters, where Fcin

is routing channel to cluster input
switch density and Fcout

is cluster output to the routing channel density. Programmable
SRAM-based switches within connection blocks and switch blocks can be implemented
using either pass-transistors or tri-state buffers, as illustrated in Figure 1.5. Pass-transistor
switches require less area and dissipate less power than tri-state buffer switches. How-
ever, tri-state buffer switches are faster for connections that span many segments. It is
well known by VLSI designers [V.Adler and E.G.Friedman, 1997] that propagation de-
lay through one pass transistor is smaller than corresponding delay through one buffer.
However, it is also known that placing many pass transistors in series is much slower
than a similar chain of buffers because delay grows quadratically with the former, but
linearly with the latter. Routing architectures commonly use a combination of tri-state
buffer and pass-transistor switches to reduce area and delay. Global networks, such as
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clock and reset networks, are implemented with dedicated routing tracks which are
separated from the configurable routing. Like other integrated circuits, FPGA clock dis-
tribution networks are designed to minimize skew in order to maximize system perfor-
mance.
FPGA vendors do not offer FPGAs with different amounts of interconnects, for a given
logic capacity. This is surprising since interconnect consumes nearly 90% of the chip
area. Some reasons for not offering a variety of interconnect sizes are inventory con-
trol, the impact of marketing and sales of inferior or unroutable devices, and the large
amount of engineering effort required to develop a single device. The LUT size, the
number of LBs in every cluster and the number of inputs per cluster vary with each
vendor. For all experiments performed in the main chapters of this thesis, those param-
eters are chosen to be consistent with previous work [E.Ahmed and J.Rose, 2000]. Note
that the channel width of the FPGA is left as a variable. The CAD tools used in this
thesis attempt to find the minimum possible channel width required to route a specific
circuit. The amount of interconnect is tailored for the circuit to be implemented. This
technique allows us to compare different interconnect topologies in terms of routability
targeting different applications domains.

1.3.2 Altera’s Stratix II architecture

Altera’s Stratix II [Stratix, II] architecture is an industrial example of an island-style
FPGA (Figure 1.6). The logic structure consists of LABs (Logic Array Blocks), memory
blocks, and digital signal processing (DSP) blocks. LABs are used to implement general-
purpose logic, and are symmetrically distributed in rows and columns throughout the
device fabric. The DSP blocks are custom designed to implement full-precision multi-
pliers of different granularities, and are grouped into columns. Input- and output-only
elements (IOEs) represent the external interface of the device. IOEs are located along the
periphery of the device.
Each Stratix II LAB consists of eight Adaptive Logic Modules (ALMs). An ALM consists
of 2 adaptive LUTs (ALUTs) with eight inputs altogether. Construction of an ALM al-
lows implementation of 2 separate 4-input Boolean functions. Further, an ALM can also
be used to implement any six-input Boolean function, and some seven-input functions.
In addition to lookup tables, an ALM provides 2 programmable registers, 2 dedicated
full-adders, a carry chain, and a register-chain. Full-adders and carry chain can be used
to implement arithmetic operations, and the register-chain is used to build shift regis-
ters. Outputs of an ALM drive all types of interconnect provided by the Stratix II device.
Figure 1.7 illustrates a LAB interconnect interface.
Interconnections between LABs, RAM blocks, DSP blocks and the IOEs are established
using the Multi-track interconnect structure. This interconnect structure consists of wire
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Figure 1.6: Altera’s Stratix-II block diagram

segments of different lengths and speeds. The interconnect wire-segments span fixed
distances, and run in the horizontal (row interconnects) and vertical (column intercon-
nects) directions. The row interconnects (Figure 1.8) can be used to route signals be-
tween LABs, DSP blocks, and memory blocks in the same row. Row interconnect re-
sources are of the following types:

• Direct connections between LABs and adjacent blocks.

• R4 resources that span 4 blocks to the left or right.

• R24 resources that provide high-speed access across 24 columns.

Each LAB owns its set of R4 interconnects. A LAB has approximately equal numbers
of driven-left and driven-right R4 interconnects. An R4 interconnect that is driven to
the left can be driven by either the primary LAB (Figure 1.8) or the adjacent LAB to the
left. Similarly, a driven-right R4 interconnect may be driven by the primary LAB or the
LAB immediately to its right. Multiple R4 resources can be connected to each other to
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Figure 1.7: Stratix-II Logic Array Block (LAB) structure

Figure 1.8: R4 interconnect connections

establish longer connections within the same row. R4 interconnects can also drive C4
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and C16 column interconnects, and R24 high speed row resources.
Column interconnect structure is similar to row interconnect structure. Column inter-
connects include:

• Carry chain interconnects within a LAB, and from LAB to LAB in the same col-
umn.

• Register chain interconnects.

• C4 resources that span 4 blocks in the up and down directions

• C16 resources for high-speed vertical routing across 16 rows.

Carry chain and register chain interconnects are separated from local interconnect (Fig-
ure 1.7) in a LAB. Each LAB has its own set of driven-up and driven-down C4 intercon-
nects. C4 interconnects can also be driven by the LABs that are immediately adjacent to
the primary LAB. Multiple C4 resources can be connected to each other to form longer
connections within a column, and C4 interconnects can also drive row interconnects to
establish column-to-column interconnections. C16 interconnects are high-speed vertical
resources that span 16 LABs. A C16 interconnect can drive row and column intercon-
nects at every fourth LAB. A LAB local interconnect structure cannot be directly driven
by a C16 interconnect; only C4 and R4 interconnects can drive a LAB local interconnect
structure. Figure 1.9 shows the C4 interconnect structure in the Stratix II device.

1.3.3 Multilevel Hierarchical Interconnect

Most logic designs exhibit locality of connections implying a hierarchy in placement
and routing of connections between logic blocks. The Hierarchical FPGA architecture
attempts to exploit this feature to provide smaller routing delays and more predictable
timing behavior. Multilevel hierarchical architecture is created by connecting logic blocks
into clusters. These clusters are recursively connected to form a hierarchical structure.
The speed of a net is determined by the number of routing switches it has to pass
through and the length of wires. The relationship between switch delay and wire de-
lay is explained in section 3.3.3. In a Mesh structure, the number of segments in series
increases linearly with manhattan distance d, between the logic blocks to be connected.
An advantage of a Tree connectivity is that the number of switches in series in a route
connecting 2 logic blocks increases as a logarithmic function of the manhattan distance.
This is illustrated on figure 1.10.
We assume that Multilevel hierarchical interconnect regroups architectures with more
than 2 levels of hierarchy and Tree-based ones. For example VPR and APEX architec-
tures are not included in this category since they have only 2 levels of hierarchy.
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Figure 1.9: C4 interconnect connections
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d

d

(b) Number of Series Switches in a Tree Structure

(a) Number of Series Switches in a Mesh Structure

Figure 1.10: Mesh vs. Tree structure

HFPGA: Hierarchical FPGA

In the hierarchical FPGA called HFPGA, LBs are grouped into clusters. Clusters are then grouped
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Figure 1.11: Hierarchical FPGA topology

recursively together (see figure 1.11). The clustered VPR mesh architecture has a Hierarchical

topology with only two levels. Here we consider multilevel hierarchical architectures with more

than 2 levels. In [A.Aggarwal and D.M.Lewis, 1994] and [Y.Lay and P.Wang, 1997] various hi-

erarchical structures were discussed. The HFPGA routability depends on switch boxes topolo-

gies. HFPGAs comprising fully populated switch boxes ensure 100% routability but are very
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penalizing in terms of area. In [Y.Lay and P.Wang, 1997] authors explored the HFPGA architec-

ture, investigating how the switch pattern can be partly depopulated while maintaining a good

routability.

HSRA: Hierarchical Synchronous Reconfigurable Array

A well-known academic hierarchical FPGA is the Hierarchical Synchronous Reconfigurable

Figure 1.12: HSRA interconnect structure

Array (HSRA) [A.DeHon, 1999]. HSRA has a strictly hierarchical, Tree-based interconnect struc-

ture (Figure 2-6). Consequently, HSRA logic and interconnect structures are not as closely cou-

pled as the logic and interconnect structures of island-style FPGAs. Recall that every LAB in

Altera’s Stratix II device owns R4 and C4 interconnects. In HSRA, the only wire-segments that

directly connect to the logic units are located at the leaves of the interconnect tree. All other

wire-segments are decoupled from the logic structure. A HSRA logic unit consists of a single

4-LUT / D-FF pair. The input-pin connectivity is based on a choose- k strategy [A.DeHon, 1999],

and the output pins are fully connected. The richness of HSRA interconnect structure is defined

by its base channel width and interconnect growth rate. The base channel width c is the number
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of tracks at the leaves of the interconnect Tree (in figure 1.12, c = 3). Growth rate p is the rate

at which the interconnect grows towards the root (in figure 1.12, p = 0.5). The growth rate is

realized using the following types of switch-blocks:

• Non-compressing (2:1) switch blocks - The number of root-going tracks is equal to the sum

of the number of root-going tracks of the two children.

• Compressing (1:1) switch blocks The number of root-going tracks is equal to the number

of root-going tracks of either child.

A repeating combination of non-compressing and compressing switch blocks can be used to re-

alize any value of p less than one. For example, a repeating pattern of (2:1 1:1) switch blocks

realizes p = 0.5, while the pattern (2:1 2:1 1:1) realizes p = 0.67. A HSRA that has only 2:1 switch

blocks provides maximum interconnection bandwidth (i.e. a value of p = 1).

APEX Altera

APEX architecture is a commercial product from Altera Corporation which includes 3 lev-

Figure 1.13: The APEX programmable logic devices [M.Hutton et al., 2001]

els of interconnect hierarchy. Figure 1.13 shows a diagram of the APEX 20K400 programmable

logic device. The basic logic-element (LE) is a 4-input LUT and DFF pair. Groups of 10 LEs are

grouped into a logic-array-block or LAB. Interconnect within a LAB is complete, meaning that

a connection from the output of any LE to the input of another LE in its LAB always exists, and

any signal entering the input region can reach every LE.
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Groups of 16 LABs form a MegaLab. Interconnect within a MegaLab requires an LE to drive a

GH (MegaLab global H) line, a horizontal line, which switches into the input region of any other

LAB in the same MegaLab. Adjacent LABs have the ability to interleave their input regions, so

an LE in LABi can usually drive LABi+1 without using a GH line. A 20K400 MegaLab contains

279 GH lines.

The top-level architecture is a 4 by 26 array of MegaLabs. Communication between MegaLabs

is accomplished by global H (horizontal) and V (vertical) wires, that switch at their intersection

points. The H and V lines are segmented by a bidirectional segmentation buffer at the horizontal

and vertical centers of the chip. In figure 1.13, We denote the use of a single (half-chip) line as H

or V and a double or full-chip line through the segmentation buffer as HH or VV. The 20K400

contains 100 H lines per MegaLab row, and 80 V lines per LAB-column.

1.4 Conclusion

The interconnect structure of a Mesh-based FPGA is generally designed to maximize logic uti-

lization. Hierarchical FPGAs belong to the class of routing-poor FPGA architectures that are

designed to increase interconnect utilization at the expense of logic utilization. The philosophy

behind routing-poor architectures is increased silicon utilization through efficient use of the in-

terconnect structure (which may account for ∼ 80− 90% of the total area in island-style FPGAs).

The most used and studied architecture is the Mesh. In the following chapters we will focus on

the Tree-based topology interconnect and we will try to combine it with the Mesh to take advan-

tage of both architectures merits.
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FPGA Configuration CAD Flow

FPGA architectures have been intensely investigated over the past two decades. A major aspect

of FPGA architecture research is the development of Computer Aided Design (CAD) tools for

mapping applications to FPGAs. It is well established that the quality of an FPGA-based im-

plementation is largely determined by the effectiveness of accompanying suite of CAD tools.

Benefits of an otherwise well designed, feature rich FPGA architecture might be impaired if the

CAD tools cannot take advantage of the features that the FPGA provides. Thus, CAD algorithm

research is essential to the necessary architectural advancement to narrow the performance gaps

between FPGAs and other computational devices like ASICs.

The process of converting a circuit description into a format that can be loaded into an FPGA can

be roughly divided into five distinct steps, namely: synthesis, technology mapping, clustering,

placement and routing. The final output of FPGA CAD tools is a bitstream that configures the

state of the memory bits in an FPGA. The state of these bits determines the logical function that

the FPGA implements. Figure 2.1 shows a flowchart of the FPGA CAD flow. In the following

sections, we describe the typical algorithms used in each step of the CAD flow.

2.1 Synthesis

Synthesis involves translating a circuit description, traditionally written in a hardware descrip-

tion language (HDL) (e.g. VHDL or Verilog), into a gate-level representation. The gate-level

representation is a network consisting of Boolean logic gates and flip-flops. There are no FPGA-

specific optimizations performed during synthesis since this is normally a technology indepen-

dent step. Further details concerning synthesis are omitted because they are beyond the scope

21
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Synthesis

Technology
Mapping

Clustering

Placement
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Figure 2.1: FPGA CAD flow
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A Boolean network An equivalent directed
acyclic graph (DAG)

Figure 2.2: Directed Acyclic Graph representation of a circuit
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Figure 2.3: Example of Technology Mapping

of this thesis.

2.2 Technology Mapping

The output from synthesis tools is a circuit description of Boolean logic gates, flip-flops and

wiring connections between these elements. The circuit can also be represented by a Directed

Acyclic Graph (DAG). Each node in the graph represents a gate, flip-flop, primary input or

primary output. Each edge in the graph represents a connection between two circuit elements.

Figure 2.2 shows an example of a DAG representation of a circuit. Given a library of cells, the

technology mapping problem can be expressed as finding a network of cells that implements the

Boolean network. In the FPGA technology mapping problem, the library of cells is composed

of k-input LUTs and flip-flops. Therefore, FPGA technology mapping involves transforming the

Boolean network into k-bounded cells. Each cell can then be implemented as an independent

k-LUT. Figure 2.3 shows an example of transforming a Boolean network into k-bounded cells.

Technology mapping algorithms can optimize a design for a set of objectives including depth,
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area or power. The FlowMap algorithm [J.Cong and Y.Ding, 1994a] is the most widely used

academic tool for FPGA technology mapping. FlowMap is a breakthrough in FPGA technology

mapping because it is able to find a depth-optimal solution in polynomial time. FlowMap guar-

antees depth optimality at the expense of logic duplication. Since the introduction of FlowMap,

numerous technology mappers have been designed that optimize for area and run-time while

still maintaining the depth-optimality of the circuit [J.Cong and Y.Ding, 1994b] [J.Cong and

Y.Hwang, 1995] [J.Cong and Y.Ding, 2000]. The result of the technology mapping step gener-

ates a network of k-bounded LUTs and flip-flops.

2.3 Clustering

The logic elements in a Mesh-based FPGA are typically arranged in two levels of hierarchy. The

first level consists of logic blocks (LBs) which are k-input LUT and flip-flop pairs. The second

level hierarchy groups k LBs together to form logic blocks clusters. The clustering phase of the

FPGA CAD flow is the process of forming groups of k LBs. These clusters can then be mapped

directly to a logic element on an FPGA. Figure 2.4 shows an example of the clustering process.

Clustering algorithms can be broadly categorized into three general approaches, namely top-

down [D.Huang and A.Kahng, 1995] [L.Hagen and A.Kahng, 1997], depth-optimal [R.Murgai

et al., 1991] [M.Dehkordi and S.Brown, 2002] and bottom-up [A.Marquart et al., 1999] [E.Bozorgzadeh

and al, 2004] [A.Singh and M.Marek-Sadowska, 2002]. Top-down approaches partition the LBs

into clusters by successively subdividing the network or by iteratively moving LBs between

parts. Depth-optimal solutions attempt to minimize delay at the expense of logic duplication.

Bottom-up approaches are generally preferred for FPGA CAD tools due to their fast run times

and reasonable timing delays. They only consider local connectivity information and can easily

satisfy clusters pin constraints. Top-down approaches offer the best solutions; however, their

computational complexity can be prohibitive.
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2.3.1 Bottom-up approaches

Bottom-up approaches build clusters sequentially one at a time. The process starts by choosing

an LB which acts as a cluster seed. LBs are then greedily selected and added to the cluster,

applying various attraction functions. The VPack [A.Marquart et al., 1999] attraction function

is based on the number of shared nets between a candidate LB and the LBs that are already in

the cluster. For each cluster, the attraction function is used to select a seed LB from the set of all

LBs that have not already been packed. After packing a seed LB into the new cluster, a second

attraction function selects new LBs to pack into the cluster. LBs are packed into the cluster until

the cluster reaches full capacity or all cluster inputs have been used. If all cluster inputs become

occupied before this cluster reaches full capacity, a hill-climbing technique is applied, searching

for LBs that do not increase the number of inputs used by the cluster. The VPack pseudo-code is

outlined in algorithm 2.1.

T-VPack [V.Betz et al., 1999] is a timing-driven version of VPack which gives added weight

to grouping LBs on the critical path together. The algorithm is identical to VPack, however,

the attraction functions which select the LBs to be packed into the clusters are different. The

VPack seed function chooses LBs with the most used inputs, whereas the T-VPack seed function

chooses LBs that are on the most critical path. VPack’s second attraction function chooses LBs

with the largest number of connections with the LBs already packed into the cluster. T-VPack’s

second attraction function has two components for a LB B being considered for cluster C :

Attraction(B,C) = α.Crit(B) + (1 − α)
| Nets(B) ∩ Nets(C) |

G
(2.1)

where Crit(B) is a measure of how close LB B is to being on the critical path, Nets(B) is the set

of nets connected to LB B, Nets(C) is the set of nets connected to the LBs already selected for

cluster C , α is a user-defined constant which determines the relative importance of the attraction

components, and G is a normalizing factor. The first component of T-VPack’s second attraction

function chooses critical-path LBs, and the second chooses LBs that share many connections with

the LBs already packed into the cluster. By initializing and then packing clusters with critical-

path LBs, the algorithm is able to absorb long sequences of critical-path LBs into clusters. This

minimizes circuit delay since the local interconnect within the cluster is significantly faster than

the global interconnect of the FPGA.

RPack [E.Bozorgzadeh and al, 2004] improves routability of a circuit by introducing a new set

of routability metrics. RPack significantly reduced the channel widths required by circuits com-

pared to VPack. T-RPack [E.Bozorgzadeh and al, 2004] is a timing driven version of RPack which

is similar to T-VPack by giving added weight to grouping LBs on the critical path.

iRAC [A.Singh and M.Marek-Sadowska, 2002] improves the routability of circuits even further

by using an attraction function that attempts to encapsulate as many low fanout nets as possible

within a cluster. If a net can be completely encapsulated within a cluster, there is no need to

route that net in the external routing network. By encapsulating as many nets as possible within

clusters, routability is improved because there are less external nets to route in total.
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UnclusteredLBs = PatternMatchToLBs(LUTs,Registers);
LogicClusters = NULL;
while UnclusteredLBs != NULL do

C = GetLBwithMostUsedInputs(UnclusteredLBs);
while | C |< k do

/*cluster is not full*/
BestLB = MaxAttractionLegalLB(C,UnclusteredLBs);
if BestLB == NULL then

/*No LB can be added to this cluster*/
break;

endif

UnclusteredLBs = UnclusteredLB − BestLB;
C = C ∪BestLB;

endw

if | C |< k then
/*Cluster is not full - try hill climbing*/
while | C |< k do

BestLB = MinClusterInputIncreaseLB(C,UnclusteredLBs);
C = C ∪ BestLB;
UnclusteredLBs = UnclusteredLB −BestLB;

endw

if ClusterIsIllegal(C) then
RestoreToLastLegalState(C,UnclusteredLBs);

endif

endif

LogicClusters = LogicClusters ∪ C;
endw

Algorithm 2.1: Pseudo-code of the VPack algorithm [V.Betz et al., 1999]

2.3.2 Top-down approaches

The K-way partitioning problem seeks to minimize a given cost function of such an assignment.

A standard cost function is net cut, which is the number of hyperedges that span more than

one partition, or more generally, the sum of weights of such hyperedges. Constraints are typi-

cally imposed on the solution, and make the problem difficult. For example some vertices can

be fixed in their parts or the total vertex weight in each part must be limited (balance constraint

and FPGA clusters size). With balance constraints, the problem of partitioning optimally a hy-

pergraph is known to be NP-hard [M.Garey and D.Johnson, 1979]. However, since partitioning

is critical in several practical applications, heuristic algorithms were developed with near-linear

runtime. Such move-based heuristics for k-way hypergraph partitioning appear in [B.Kernighan
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and S.Lin, 1970] [C.M.Fiduccia and R.M.Mattheyeses, 1982] [T.Bui et al., 1987].

Fiduccia-Mattheyses algorithm

The Fiduccia-Mattheyses (FM) heuristics [C.M.Fiduccia and R.M.Mattheyeses, 1982] work by

prioritizing moves by gain. A move changes to which partition a particular vertex belongs, and

the gain is the corresponding change of the cost function. After each vertex is moved, gains for

connected modules are updated.

The Fiduccia-Mattheyses (FM) heuristic for partitioning hypergraphs is an iterative improve-

partitioning = initial_solution;
while solution quality improves do

Initialize gain_container from partitioning;
solution_cost = partitioning.get_cost();
while not all vertices locked do

move = choose_move();
solution_cost += gain_container.get_gain(move);
gain_container.lock_vertex(move.vertex());
gain_update(move);
partitioning.apply(move);

endw

roll back partitioning to best seen solution;
gain_container.unlock_all();

endw

Algorithm 2.2: Pseudo-code for FM heuristic [D.A.Papa and I.L.Markov, ]

ment algorithm. FM starts with a possibly random solution and changes the solution by a se-

quence of moves which are organized as passes. At the beginning of a pass, all vertices are free

to move (unlocked), and each possible move is labeled with the immediate change to the cost

it would cause; this is called the gain of the move (positive gains reduce solution cost, while

negative gains increase it). Iteratively, a move with highest gain is selected and executed, and

the moving vertex is locked, i.e., is not allowed to move again during that pass. Since moving a

vertex can change gains of adjacent vertices, after a move is executed all affected gains are up-

dated. Selection and execution of a best-gain move, followed by gain update, are repeated until

every vertex is locked. Then, the best solution seen during the pass is adopted as the starting so-

lution of the next pass. The algorithm terminates when a pass fails to improve solution quality.

Pseudo-code for the FM heuristic is given in algorithm 2.2.

The FM algorithm has 3 main components (1) computation of initial gain values at the begin-

ning of a pass; (2) the retrieval of the best-gain (feasible) move; and (3) the update of all affected

gain values after a move is made. One contribution of Fiduccia and Mattheyses lies in observing

that circuit hypergraphs are sparse, and any move’s gain is bounded between plus and minus
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Figure 2.5: The gain bucket structure as illustrated in [C.M.Fiduccia and
R.M.Mattheyeses, 1982]

the maximal vertex degree Gmax in the hypergraph (times the maximal hyperedge weight, if

weights are used). This allows prioritizing moves by their gains. All affected gains can be up-

dated in amortized-constant time, giving overall linear complexity per pass [C.M.Fiduccia and

R.M.Mattheyeses, 1982]. All moves with the same gain are stored in a linked list representing a

“gain bucket”. Figure 2.5 presents the gain bucket list structure. It is important to note that some

gains G may be negative, and as such, FM performs hill-climbing and is not strictly greedy.

Multilevel Partitioning

The multilevel hypergraph partitioning framework was successfully verified by [C.J.Alpert et al.,

1997a] [G.Karypis et al., 1997] [G.Karypis and V.Kumar, 1999] and leads to the best known parti-

tioning results ever since. The main advantage of multilevel partitioning over flat partitioners is

its ability to search the solution space more effectively by spending comparatively more effort on

smaller coarsened hypergraphs. Good coarsening algorithms allow for high correlation between

good partitioning for coarsened hypergraphs and good partitioning for the initial hypergraph.

Therefore, a thorough search at the top of the multilevel hierarchy is worthwhile because it is

relatively inexpensive when compared to flat partitioning of the original hypergraph, but can

still preserve most of the possible improvement. The result is an algorithmic framework with

both improved runtime and solution quality over a completely flat approach. Pseudo-code for

an implementation of the multilevel partitioning framework is given in algorithm 2.3. As illus-

trated in figure 2.6, multilevel partitioning consists of 3 main components: clustering, top-level

partitioning and refinement or “uncoarsening”. During clustering, hypergraph vertices are com-

bined into clusters based on connectivity, leading to a smaller, clustered hypergraph. This step is
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level = 0;
hierarchy[level] = hypergraph;
min_vertices = 200;
while hierarchy[level].vertex_count() > min_vertices do

next_level = cluster(hierarchy[level]);
level = level + 1;
hierarchy[level] = next_level;

endw

partitioning[level] = a random initial solution for top-level hypergraph;
FM(hierarchy[level], partitioning[level]);
while level>0 do

level = level - 1;
partitioning[level] = project(partitioning[level+1], hierarchy[level]);
FM(hierarchy[level], partitioning[level]);

endw

Algorithm 2.3: Pseudo-code for the Multilevel Partitioning algorithm [D.A.Papa
and I.L.Markov, ]

repeated until obtaining only several hundred clusters and a hierarchy of clustered hypergraphs.

We describe this hierarchy, as shown in figure 2.6, with the smaller hypergraphs being “higher”

and the larger hypergraphs being “lower”. The smallest (top-level) hypergraph is partitioned

with a very fast initial solution generator and improved iteratively, for example, using the FM

algorithm. The resulting partitioning is then interpreted as a solution for the next hypergraph in

the hierarchy. During the refinement stage, solutions are projected from one level to the next and

improved iteratively. Additionally, the hMETIS partitioning program [G.Karypis and V.Kumar,

1999] introduced several new heuristics that are incorporated into their multilevel partitioning

implementation and are reportedly performance critical.

2.4 Placement

Placement algorithms determine which logic block within an FPGA should implement the corre-

sponding logic block (instance) required by the circuit. The optimization goals consist in placing

connected logic blocks close together to minimize the required wiring (wire length-driven place-

ment), and sometimes to place blocks to balance the wiring density across the FPGA (routability-

driven placement) or to maximize circuit speed (timing-driven placement). The 3 major classes

of placers in use today are min-cut (Partitioning-based) [A.Dunlop and B.Kernighan, 1985]

[D.Huang and A.Kahng, 1997], analytic [G.Sigl et al., 1991] [C.J.Alpert et al., 1997b] which are of-

ten followed by local iterative improvement, and simulated annealing based placers [S.Kirkpatrick

et al., 1983] [C.Sechen and A.Sangiovanni-Vincentelli, 1985]. To investigate architectures fairly
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Figure 2.6: Multilevel Hypergraph Bisection

we must make sure that our CAD tools are attempting to use every FPGA’s feature. This means

that the optimization approach and goals of the placer may change from architecture to architec-

ture. Partitioning and simulated annealing approaches are the most common and used in FPGA

CAD tools. Thus we focus on both techniques in the sequel.

2.4.1 Simulated annealing based approach

Simulated annealing mimics the annealing process used to cool gradually molten metal to pro-

duce high-quality metal objects [S.Kirkpatrick et al., 1983]. Pseudo-code for a generic simulated

annealing-based placer is shown in algorithm 2.4. A cost function is used to evaluate the quality

of a given placement of logic blocks. For example, a common cost function in wirelength-driven

placement is the sum over all nets of the half perimeter of their bounding boxes. An initial

placement is created by assigning logic blocks randomly to the available locations in the FPGA.

A large number of moves, or local improvements are then made to gradually improve the place-

ment. A logic block is selected at random, and a new location for it is also selected randomly.

The change in cost function that results from moving the selected logic block to the proposed

new location is computed. If the cost decreases, the move is always accepted and the block is

moved. If the cost increases, there is still a chance to accept the move, even though it makes

the placement worse. This probability of acceptance is given by e−
∆C
T , where ∆C is the change

in cost function, and T is a parameter called temperature that controls probability of accepting

moves that worsen the placement. Initially, T is high enough so almost all moves are accepted; it

is gradually decreased as the placement improves, in such a way that eventually the probability

of accepting a worsening move is very low. This ability to accept hill-climbing moves that make

a placement worse allows simulated annealing to escape local minima of the cost function.
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S = RandomPlacement();
T = InitialTemperature();
Rlimit = InitialRlimit;
while ExitCriterion() == false do

while InnerLoopCriterion() == false do
Snew = GenerateV iaMove(S, Rlimit);
∆C = Cost(Snew)− Cost(S);
r = random(0,1);
if r < e−

∆C
T then

S = Snew;
endif

endw

T = UpdateTemp();
Rlimit = UpdateRlimit();

endw

Algorithm 2.4: Generic simulated annealing-based placer [V.Betz et al., 1999]

The Rlimit parameter in algorithm 2.4 controls how close are together blocks must be to be con-

sidered for swapping. Initially, Rlimit is fairly large, and swaps of blocks far apart on a chip are

more likely. Throughout the annealing process, Rlimit is adjusted to try to keep the fraction of

accepted moves at any temperature close to 0.44. If the fraction of moves accepted, α, is less than

0.44, Rlimit is reduced, while if α is greater than 0.44, Rlimit is increased.

In [V.Betz et al., 1999], the objective cost function is a function of the total wirelength of the

current placement. The wirelength is an estimate of the routing resources needed to completely

route all nets in the netlist. Reductions in wirelength mean fewer routing wires and switches are

required to route nets. This point is important because routing resources in an FPGA are lim-

ited. Fewer routing wires and switches typically are also translated into reductions of the delay

incurred in routing nets between logic blocks. The total wirelength of a placement is estimated

using a semi-perimeter metric, and is given by Equation 2.2. N is the total number of nets in the

netlist, bbx(i) is the horizontal span of net i, bby(i) is its vertical span, and q(i) is a correction

factor. Figure 2.7 illustrates the calculation of the horizontal and vertical spans of a hypothetical

net that has 6 terminals.

WireCost =
N

∑

i=1

q(i) × (bbx(i) + bby(i)) (2.2)

The temperature decrease rate, the exit criterion for terminating the anneal, the number of moves

attempted at each temperature (InnerLoopCriterion), and the method by which potential moves

are generated are defined by the annealing schedule. An efficient annealing schedule is crucial

to obtain good results in a reasonable amount of CPU time. Many proposed annealing sched-

ules are “fixed” schedules with no ability to adapt to different problems. Such schedules can



32 Chapter 2. FPGA Configuration CAD Flow

bby

bbx

Figure 2.7: Bounding Box of an hypothetical 6-terminals net [V.Betz et al., 1999]

work well within the narrow application range for which they are developed, but their lack

of adaptability means they are not very general. In [M.Huang et al., 1986] authors propose an

“adaptive” annealing schedule based on statistics computed during the anneal itself. Adaptive

schedules are widely used to solve large scale optimization problems with many variables.

2.4.2 Partitioning based approach

Partitioning-based placement methods, are based on graph partitioning algorithms such as the

Fiduccia-Mattheyses (FM) algorithm [C.M.Fiduccia and R.M.Mattheyeses, 1982], and Kernighan

Lin (KL) algorithm [A.Dunlop and B.Kernighan, 1985]. Partitioning-based placement are suit-

able to Tree-based FPGA architectures. The partitioner is applied recursively to each hierarchical

level to distribute netlist cells between clusters. The aim is to reduce external communications

and to collect highly connected cells into the same cluster.

The partitioning-based placement is also used in the case of Mesh-based FPGA. The device is

divided into two parts, and a circuit partitioning algorithm is applied to determine the adequate

part where a given logic block must be placed to minimize the number of cuts in the nets that

connect the blocks between partitions, while leaving highly-connected blocks in one partition.

A divide-and-conquer strategy is used in these heuristics. By partitioning the problem into sub-

parts, a drastic reduction in search space can be achieved. On the whole, these algorithms per-

form in the top-down manner, placing blocks in the general regions which they should belong

to.

In the Mesh FPGA case, partitioning-based placement algorithms are good from a “global” per-

spective, but they do not actually attempt to minimize wirelength. Therefore, the solutions ob-

tained are sub-optimal in terms of wirelength. However, these classes of algorithms run very

fast. They are normally used in conjunction with other search techniques for further quality im-
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Figure 2.8: Modelling FPGA routing architecture as a directed graph [V.Betz et al., 1999]

provement. Some algorithms [Y.Sanker and J.Rose, 1999] and [P.Du et al., 2004] combine multi-

level clustering and hierarchical simulated annealing to obtain ultra-fast placement with good

quality.

In the following chapters, the partitioning-based placement approach will be used only for Tree-

based FPGA architectures.

2.5 Routing

The FPGA routing problem consists in assigning nets to routing resources such that no rout-

ing resource is shared by more than one net. Pathfinder [L.McMurchie and C.Ebeling, 1995] is

the current, state-of-the-art FPGA routing algorithm. Pathfinder operates on a directed graph

abstraction G(V,E) of the routing resources in an FPGA. The set of vertices V in the graph rep-

resents the IO terminals of logic blocks and the routing wires in the interconnect structure. An

edge between two vertices represents a potential connection between them. Figure 2.8 presents

a part of a routing graph in a Mesh-based interconnect.

Given this graph abstraction, the routing problem for a given net is to find a directed tree em-

bedded in G that connects the source terminal of the net to each of its sink terminals. Since the

number of routing resources in an FPGA is limited, the goal of finding unique, non-intersecting

trees for all the nets in a netlist is a difficult problem.

Pathfinder uses an iterative, negotiation-based approach to successfully route all the nets in a

netlist. During the first routing iteration, nets are freely routed without paying attention to re-

source sharing. Individual nets are routed using Dijkstra’s shortest path algorithm [T.Cormen

et al., 1990]. At the end of the first iteration, resources may be congested because multiple nets

have used them. During subsequent iterations, the cost of using a resource is increased, based on

the number of nets that share the resource, and the history of congestion on that resource. Thus,

nets are made to negotiate for routing resources. If a resource is highly congested, nets which

can use lower congestion alternatives are forced to do so. On the other hand, if the alternatives

are more congested than the resource, then a net may still use that resource. The cost of using a
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routing resource n during a routing iteration is given by Equation 2.3.

cn = (bn + hn) × pn (2.3)

bn is the base cost of using the resource n, hn is related to the history of congestion during

previous iterations, and pn is proportional to the number of nets sharing the resource in the

current iteration. The pn term represents the cost of using a shared resource n, and the hn term

represents the cost of using a resource that has been shared during earlier routing iterations. The

latter term is based on the intuition that a historically congested node should appear expensive,

even if it is slightly shared currently. Cost functions and routing schedule were described in

details in [V.Betz et al., 1999]. The Pseudo-code of the Pathfinder routing algorithm is presented

in algorithm 2.5.

Let: RTi be the set of nodes in the current routing of net i
while shared resources exist do

/*Illegal routing*/
foreach net, i do

rip-up routing tree RTi;
RT (i) = si;
foreach sink tij do

Initialize priority queue PQ to RTi at cost 0;
while sink tij not found do

Remove lowest cost node m from PQ;
foreach fanout node n of node m do

Add n to PQ at PathCost(n) = cn + PathCost(m);
endfch

endw

foreach node n in path tij to si do
/*backtrace*/
Update cn;
Add n to RTi;

endfch

endfch

endfch

update hn for all n;
endw

Algorithm 2.5: Pseudo-code of the Pathfinder routing algorithm [L.McMurchie
and C.Ebeling, 1995]

An important measure of routing quality produced by an FPGA routing algorithm is the critical

path delay. The critical path delay of a routed netlist is the maximum delay of any combinational
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path in the netlist. The maximum frequency at which a netlist can be clocked has an inverse

relationship with critical path delay. Thus, larger critical path delays slow down the operation

of netlist. Delay information is incorporated into Pathfinder by redefining the cost of using a

resource n (Equation 2.4).

cn = Aij × dn + (1 − Aij) × (bn + hn) × pn (2.4)

The cn term is from Equation 2.3, dn is the delay incurred in using the resource, and Aij is the

criticality given by Equation 2.5.

Aij =
Dij

Dmax

(2.5)

Dij is the maximum delay of any combinational path going through the source and sink termi-

nals of the net being routed, and Dmax is the critical path delay of the netlist. Equation 2.4 is

formulated as a sum of two cost terms. The first term in the equation represents the delay cost

of using resource n, while the second term represents the congestion cost. When a net is routed,

the value of Aij determines whether the delay or the congestion cost of a resource dominates. If

a net is near critical (i.e. its Aij is close to 1), then congestion is largely ignored and the cost of

using a resource is primarily determined by the delay term. If the criticality of a net is low, the

congestion term in Equation 2.4 dominates, and the route found for the net avoids congestion

while potentially incurring delay.

Pathfinder has proved to be one of the most powerful FPGA routing algorithms to date. The

negotiation-based framework that trades off delay for congestion is an extremely effective tech-

nique for routing signals on FPGAs. More importantly, Pathfinder is a truly architecture-adaptive

routing algorithm. The algorithm operates on a directed graph abstraction of an FPGA’s rout-

ing structure, and can thus be used to route netlists on any FPGA that can be represented as a

directed routing graph.

2.6 Timing Analysis

Timing analysis [R.Hitchcock et al., 1983] is used for two basic purposes:

• To determine the speed of circuits which have been completely placed and routed,

• To estimate the slack [J.Frankle, 1992] of each source-sink connection during routing (place-

ment and other parts of the CAD flow) in order to decide which connections must be made

via fast paths to avoid slowing down the circuit.

First the circuit under consideration is presented as a directed graph. Nodes in the graph rep-

resent input and output pins of circuit elements such as LUTs, registers, and I/O pads. Con-

nections between these nodes are modeled with edges in the graph. Edges are added between

the inputs of combinational logic Blocks (LUTs) and their outputs. These edges are annotated

with a delay corresponding to the physical delay between the nodes. Register input pins are not

joined to register output pins. To determine the delay of the circuit, a breadth first traversal is
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performed on the graph starting at sources (input pads, and register outputs). Then the arrival

time, Tarrival , at all nodes in the circuit is computed with the following equation:

Tarrival(i) = maxj∈fanin(i){Tarrival(j) + delay(j, i)}

Where node i is the node currently being computed, and delay(j, i) is the delay value of the edge

joining node j to node i. The delay of the circuit is then the maximum arrival time, Dmax, of all

nodes in the circuit.

To guide a placement or routing algorithm, it is useful to know how much delay may be added

to a connection before the path that the connection is on becomes critical. The amount of delay

that may be added to a connection before it becomes critical is called the slack of that connection.

To compute the slack of a connection, one must compute the required arrival time, Trequired, at

every node in the circuit. We first set the Trequired at all sinks (output pads and register inputs) to

be Dmax. Required arrival time is then propagated backwards starting from the sinks with the

following equation:

Trequired(i) = minj∈fanout(i){Trequired(j) − delay(j, i)}

Finally, the slack of a connection (i, j) driving node, j, is defined as:

Slack(i, j) = Trequired(j) − Tarrival(i) − delay(i, j)

2.7 Conclusion

The most important architectural feature of an FPGA is the interconnect structure. During ar-

chitectures exploration, the effectiveness of an FPGA interconnect structure is evaluated using

placement and routing tools. Fortunately, some classes of the used algorithms are architecture-

adaptive and can be used to evaluate different structures. In the next section we will present an

exploration tools platform that can be adapted to different architectures topologies.
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Architectures Exploration Environment

To compare different architectures we have first to ensure that they have the same flexibility and

the capability to implement netlists with equivalent congestion. Thus, architecture evaluation

must be based on benchmark circuits implementation. In this chapter we, first, propose an ex-

perimentation platform enclosing a set of architecture adaptive tools. Then, we present different

metrics and models to evaluate interconnect structures efficiency in terms of area and speed.

Finally, we present an example of an industrial architecture and how we have adapted our tools

to target it.

3.1 Exploration Methodologies

The aim of our work is to propose efficient interconnect topologies for FPGA. Efficiency is mea-

sured in terms of area and performance (clock frequency). In order to compare and evaluate

various architectures, we rely on two different procedures:

• Analytical method based on Rent’s rule modeling.

• Experimental method based on benchmarks circuits implementation.

3.1.1 Analytical comparison

The best characterization to date which empirically estimates interconnect requirements is Rent’s

Rule [B.Landman and R.Russo, 1971]. It states that the number of external in/out signals of a

37
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p = 0.63p = 0.1

Figure 3.1: Implication of local Rent exponent

partition is proportional to a power of LBs number included in the partition.

Nio = c.Np (3.1)

Nio is the number of in/out interconnections of a region containing N gates, c is a constant cor-

responding to in/out pins number per gate, and p is an empirical constant defining the growth

rate of Rent’s rule. Intuitively, as shown in figure 3.1, p presents the locality in interconnect re-

quirement. If most connections are exclusively local and only few of them come from the exterior

of a local region, p is small. On the other hand, a region with large p implies that it has relatively

more connections with outside cells. It was shown in [J.Pistorius and M.Hutton, 2003], for real

logic circuits, that p is typically between 0.5 and 0.6.

Rent’s rule is adapted to different interconnect topologies. Using this rule and the work in

[W.E.Donath, 1979], Dehon [A.DeHon, 1996] relates the channel width parameter W of a Mesh

arranged in a
√

N ×
√

N array to Rent’s parameters. Therefore he provides a lower bound for W

to support a design characterized by Rent’s parameters (c, p).

W ≥
( c

2p

)

Np−0.5 (3.2)

Thus, the total number of switches per logic block in a Mesh is:

Nswitch(LB) = O(W ) = O(N p−0.5) (3.3)

Rent’s rule can be easily associated to Tree-based topology. In fact a cluster located at level ℓ of

the Tree can be considered as a partition, with Nio external signals and kℓ LBs (leaves).

3.1.2 Experimental comparison

Rent’s rule provides an empirical estimation of switching and wiring requirements. Neverthe-

less this is not sufficient since it does not give accurate information about interconnect routabil-

ity. FPGA interconnect flexibility is a very important feature since it reflects the architecture

potential to route different highly congested benchmark netlists. The best way to verify this

point is to implement different benchmark circuits and to evaluate the required area and mini-

mal clock frequency. The proposed configuration flow to implement netlists is presented in the

next section.
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3.1.3 Reference architecture

To evaluate our proposed interconnect topology we compare it to the well known VPR clustered

architecture [V.Betz et al., 1999]. This Reference FPGA (RFPGA) uses an uniform routing with

single-length segments and a disjoint switch block. Each cluster logic block contains four 4-LUTs,

10 inputs and 4 outputs which are distributed over the cluster sides. LUTs pins are connected to

cluster pins using a full local crossbar. Connection block population is defined by Fcin
and Fcout

parameters, where Fcin
is routing channel to cluster input switch density and Fcout is cluster

output to routing channel density. Fcin
= 0.5 and Fcout = 0.25 are chosen to be consistent with

previous work [E.Ahmed and J.Rose, 2000]. In figure 3.2, we show an RFPGA cluster and its

surrounding interconnect.

RFPGA has a basic interconnect topology and present architectures consist in improved versions

of it. RFPGA is considered as a reference to evaluate improved architectures performance. For

example in [V.Betz et al., 1999], authors state that increasing wire segment length from 1 to 2

logic blocks increases the speed of long connections by 61% and reduces area by about 20%.

Work in [G.Lemieux et al., 2004], shows that using directional and single-driver wires instead of

bidirectional one improves area efficiency by about 25%. Thus, when we compare our proposed

architecture to the basic RFPGA we can get an idea about our architecture efficiency compared

to different recent FPGAs. To implement circuits on RFPGA we use the VPR place and route

toolset [V.Betz et al., 1999] which provides optimized packing, placement and routing tools.
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3.2 Exploration Platform

Since we are exploring different architectures topologies, we need as generic as possible CAD

tools which can deal with different types of architectures. We propose a set of generic tools

requiring a minimum effort to be adapted to a specific architecture topology. In figure 3.3 we

present the dependency between each phase in the CAD flow and the target architecture.

3.2.1 Synthesis and Mapping

Synthesis consists in translating a circuit description into a gate-level representation. As illus-

trated on figure 3.3 this operation is architecture independent. In our flow we use SIS [E.M.Sentovich

et al., 1992] synthesis tool. It can be replaced by any other commercial synthesis tool.

As explained in chapter 2, mapping consists in translating the description based on boolean

logic gates into a description with k-input LUTs and flip-flops. The only required architecture

parameter is k, the LUT inputs number. In our flow we use FlowMap algorithm [J.Cong and

Y.Ding, 1994a], which is included in SIS package. As presented in figure 3.3, this tool depends

only on LUTs size and can target any interconnect topology. It can be driven by different objec-

tives like timing (depth optimization) and area (LUTs number).

Notice that today, commercial mapping tools can target specific architectures interconnects.

Thus in this early stage they can alleviate routing congestion and improve performance.
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3.2.2 Clustering and Partitioning

In recent FPGA architectures, interconnect is organized in multiple hierarchical levels. Hierarchy

becomes an interesting feature to improve density, to reduce run time effort (divide and conquer)

and to consider local communication. For example in the case of VPR Mesh architecture, inter-

connect is organized in two levels of hierarchy: 1) Mesh level where clusters are surrounded

by depopulated interconnect organized in row and columns and 2) cluster level where LBs are

connected using a full crossbar. Stratix [D.Lewis and al, 2003] and [D.Lewis and al, 2005] archi-

tecture also has the same number of hierarchical levels but with a more optimized interconnect

topology.

In the case of a Tree-based interconnect we get multiple hierarchical levels. Levels number de-

pends on the LBs total number and clusters size (arity). Basically if 2 signals are within the same

hierarchy level, it does not really matter where they are within that hierarchy. Similarly, geomet-

rically close cells incur greater delay to get to other locations outside their hierarchical boundary

than to distant cells within their hierarchical boundary. Thus, unlike flat or island style device, a

hierarchical architecture uses a natural placement algorithm based on recursive partitioning.

Multilevel hierarchical organization is considered in our CAD flow and netlists instances are

partitioned between architecture clusters in the best possible way, reducing the desired objec-

tives. We implemented 3 different partitioning objectives:

- CUT: Corresponds to the total number of nets crossing parts boundaries.

- SOED (Sum of External Degree): External part degree corresponds to the number of nets

crossing a part boundary.

- MED (Max of External Degree): Corresponds to the maximum degree over all parts.

These objectives can be combined or considered separately. In figure 3.4, we present an example

of partitioning and an evaluation of the 3 different objectives.

As presented in chapter 2, there are two main partitioning approaches: bottom-up (clustering)

and top-down. The choice between both approaches depends on levels number, clusters size,

clusters number at each level and problem constraints. For example t-vpack [A.Marquart et al.,

1999] a bottom-up clustering tool is used to construct clusters in the case of VPR Mesh archi-

tecture. In [Z.Marrakchi et al., 2005], we proposed to replace t-vpack with hMetis [G.Karypis
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and V.Kumar, 1999] a top-down partitioner. We showed that we can improve results slightly in

terms of external nets reduction, at the cost of an important run time increase. In fact top-down

approaches based on FM refinement heuristics are efficient when we target a small number of

clusters (parts) of important size (balance constraint). Conversely in the case of VPR Mesh ar-

chitecture clusters size is small (between 4 and 16) and clusters number is generally important.

To investigate partitioning approaches, we used a multilevel hypergraph data structure called

Mangrove. It provides a development framework for efficient modeling of hypergraph nested

partitions. It offers a compact C++ data structure and a high level API. As illustrated in figure 3.5,

this structure is organized as follows:

• ClusteringHierarchy: holds a vector of nested partitions called ClusteringLevel, and

refers to a unique enclosing cluster TopLevelCluster,

• ClusteringLevel: corresponds to the set of clusters at the partitioning at a given level. A

clusteringLevel corresponds to an hypergraph where nodes are clusters located at this

level,

• Cluster: Aggregates sub-clusters belonging to a lower ClusteringLevel (unless leaf one).

A Cluster may cross multiple levels and has UpperLevel and LowerLevel identifiers,

• Net: presents a tree of branches,

• Branch: represents the net (signal) crossing point of a cluster boundary. Branch bifurcates

within a cluster if the net crosses at least 2 sub-clusters.

Since in Mangrove a clusteringLevel can be added at any level, this structure can be used in dif-

ferent partitioning approaches: Bottom-up and top-down. The combination of both approaches
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leads to an efficient multilevel partitioner where first multilevel bottom-up coarsening is run

and then top-down multilevel refinement is applied. In figure 3.6, we show the different steps

of recursive netlist partitioning based on a multilevel approach. The netlist is first partitioned

into 2 parts (first level) and then instances inside each part are partitioned into 2 fractions. In

each partitioning phase we apply a multilevel coarsening followed by a multilevel refinement.

Finally, we obtain the partitioning result corresponding to each level. The final result describes

how instances are distributed between clusters of the Tree-based topology. Recursive partition-

ing is also interesting to reduce run time since it allows to avoid applying FM heuristics directly

on a large number of parts, which can dramatically increase partitioning run time according

to [L.A.Sanchis, 1989].

3.2.3 Placement

Placement algorithms determine which logic block within an FPGA should implement the cor-

responding instance required by the circuit. In a cluster-based architecture (VPR clustered Mesh

or multilevel Tree), depending on interconnect structure, we identify two different placement

problems:
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• Mesh clusters placement: This placement problem consists in determining netlist logic

clusters positions on a 2D grid of clusters. Mesh interconnect is closely approximated by

geometric proximity. We implemented a simulated annealing based algorithm where the

objective is to reduce the total wirelength. A logic cluster is selected at random, and a new

location in the 2D grid for it, is also selected randomly.

• Intra-clusters placement: This placement problem consists in re-arranging logic blocks or

sub-clusters inside an owner cluster. In fact depending on the cluster local interconnect,

logic blocks ordering can have an important impact on routability. In the case of VPR

Mesh architecture, clusters local interconnect corresponds to a full crossbar. Thus, LBs po-

sitions are equivalent and no local arrangement is needed. However, using a full crossbar

is very penalizing and leads to cluster LBs number limitation. Local interconnect depop-

ulation and especially the way logic blocks outputs are connected, may induce important

constraints on LBs ordering. To solve such a problem, simulated annealing can easily be

adapted by choosing a suitable objective function and allowing LBs to move only inside

their owner clusters.

To solve both placement problems we use an “adaptive” annealing schedule [M.Huang et al.,

1986] based on statistics computed during anneal itself. The only elements to tune depending

on the target problem are the objective functions to optimize and the movement generator com-

ponent.

3.2.4 Routing

As stated in chapter 2, FPGA routing consists in assigning netlist signals to routing resources

such that no routing resource is shared by more than one net. Thus routing is interconnect de-

pendent. Fortunately, Pathfinder [L.McMurchie and C.Ebeling, 1995] is a truly architecture-

adaptive routing algorithm, since it can deal with any graph presenting the interconnect routing

resources. In this way the only element depending on architecture interconnect is the routing

graph. Our implementation is organized into 2 parts: routing graph generator (architecture de-

pendent) and routing algorithm (architecture independent).

3.2.5 Timing Analysis

Timing analysis evaluates performances of a circuit implemented on a FPGA in terms of func-

tional speed. Thus, once an application is completely placed and routed we estimate the mini-

mum feasible clock to run it. To achieve timing analysis we need 2 different graphs:

• Routed graph: Describes the way netlist instances are routed using architecture resources.

This graph allows to evaluate routing delays between netlist instances connections. A path

connecting two instances crosses several wires and switches. The connection delay is equal

to the sum of resources delays.
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• Timing graph: It is a direct acyclic graph generated from the netlist hypergraph. Nodes

correspond to instances pins and edges to connections. Based on the resulting routed

graph, each edge is labeled with the corresponding routed connection delay. The min-

imum required clock period is determined via a breadth-first traversal applied on this

graph.

Only the routed graph is architecture dependent. Timing graph generation and critical path

extraction depend only on netlist to implement.

3.3 Area and Delay Models

This section describes the area and delay models used to compute performance metrics for

FPGA architectures under investigation. Based on these metrics and models, we can compare

architectures efficiencies and achieve different tradeoffs.

3.3.1 Switches requirement

buffer

mux 2:1

mux 8:1

tri−state

wire

SRAM

Figure 3.7: Unidirectional vs. bidirectional wires

As mentioned in [V.Betz et al., 1999], discussions with FPGA vendors have revealed that

transistor area, and not wiring density, is the area limiting factor. The use of directional wires in

Virtex I also suggests that routing area is transistor-dominant and must be reduced. As it was

explained by DeHon in [A.DeHon, 2001], the large area of switches compared to wires is one of

the key reasons why we have to care about the number of switches required by a network. If the

wire pitch is 5 to 8λ, the area of a wire crossing is 25-64λ2. The area of static memory cell used

to configure a switch is roughly 1200λ2. A switch transistor size is 2500λ2. In this case the ratio

switches area/wires area can reach the value of 40. This ratio increases if we want more than just

a pass gate for the switch. We may want to rebuffer the switch or even add a register to it. Such

switch can easily be 5-10Kλ2. The large area ratio means that we definitely need to take much

care about switch count in the interconnect.
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Cell Area λ2

sram 30 × 50

tri-state 35 × 50

buffer 20 × 50

flip-flop 90 × 50

mux 2:1 35 × 50

Table 3.1: Standard cells characteristics

In this work we consider 2 area estimating models:

- Switches count: Since interconnect takes until 90% of the total FPGA area, we are interested

in evaluating the required interconnect switches number.

- Area evaluation: We estimate the layout area as the sum of areas required for all logic cells

in an FPGA. As presented in figure 3.7, switching cells depend on the interconnect structure and

especially on wires directions (unidirectional / bidirectional). We use symbolic standard cells

library [A.Greiner and F.Pecheux, 1992] to estimate the FPGA required area. Different cells areas

are presented in table 3.1.

3.3.2 Wiring requirement

To estimate the required wiring area in a two-dimensional layout, we refer to Thompson’s ar-

gument about bisection width [C.Thompson, 1979]. He defines the minimal bisection width of a

graph as the number of cuts needed to slice it in half. In figure 3.8 we show the smallest number

of edges whose removal disconnects one half of the vertices from the other. Let the minimum

Figure 3.8: The minimal bisection width of a Mesh and a binary Tree

bisection width of a network be ∝ (W ) (proportional to W ), meaning that in any layout, ∝ (W )

wires are necessarily crossing between the two halves of the layout. When we are limited to 2D-

VLSI, this means ∝ (W ) wires must cross the 1D-line that bisects the chip. This fact gives a lower

bound of ∝ (W ) on the width of the chip, if we assume a fixed number of wire layers. Since this
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property holds recursively, we can establish that both the width and height of the layout must

be ∝ (W ), making the entire chip area ∝ (W 2).

This property (relation between bisection width and wiring area) is an interesting feature to

estimate whether FPGA area is dominated by wires or switches.

3.3.3 Delay Model

The delay through the routing network may easily be dominant in a programmable technology.

Care is required to minimize interconnect delays. The 2 following factors are significant in this

respect:

• Wires delay: Delay on a wire is proportional to distance and capacitive loading (fanout).

This makes interconnect delay roughly proportional to distance run. Consequently short

signals runs are faster than long signals runs.

• Switches delay: Each programmable switches in a path (crossbar, multiplexer) adds delay.

This delay is generally much larger than the propagation or fanout delay. Consequently,

one generally wants to minimize the number of switch elements in a path, even if this

means using some longer signals runs.

Wire length and switches delays depend respectively on physical layout and cells library. The

SPICE circuit simulator is used to obtain highly accurate delay estimation in each sub-path. A

sub-path can be a wire, a switch or a set of connected wires and switches.

3.4 Benchmark circuits

In order to experiment and quantify the benefit of diverse architectures, we use Microelectronics

Center of North Carolina (MCNC) designs [S.Yang, 1991]. As presented in table 3.2, these cir-

cuits cover various application types with several sizes (<10K 4-Luts), In/Out Pads number and

congestion levels. We used also ava circuit [R.Tessier, 2005] [J.Pistorius et al., 2007] which is the

largest circuit (∼15K 4-LUTs) containing only lookup-tables and flip-flops.

To get any benchmarks over 15K 4-LUTs, we need to be able to support black-boxes for hard

blocks, e.g. memory. This is because designers cannot build a design larger than that, with no

memories, DSP blocks, arithmetic, etc. In this work we are interested only in interconnect topol-

ogy effects. Target architectures and tools do not support heterogeneous blocks; we use only

LUTs with 4 inputs (4-LUT).

When we evaluate a specific interconnect topology, we tailor different architectures to each

benchmark. For the same interconnect topology we select an architecture with an appropriate

level of routability based on the benchmark congestion level (estimated by Rent parameter).

For example in the case of Mesh architecture, VPR tool executes a binary search to determine

the smallest architecture with the minimal channel width that can route a specific benchmark

circuit. Architectures tailoring is interesting to explore different topologies and to check if they
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can deal with different applications families. In the case of commercial FPGAs, the architecture

is fixed independently of the targeted applications. Nevertheless, we can find different FPGA

families proposed by one vendor to better fit specific applications and constraints. In our ex-

perimentation approach, we consider each circuit benchmark as representing a design family.

3.5 Architecture Example

Our tools platform was validated and used to place and route circuits on two specific architec-

tures. The first one has a Mesh topology and is equivalent to the one described in section 1.3.1 (8

x 8 LBs and channel width 8). A prototype of this architecture was fabricated with 130nm CMOS

process. Figures 3.9 and 3.10 show respectively the physical layout and a photo of the chip.

Figure 3.9: Layout of a 8x8 Mesh architecture

The second architecture CFPGA were proposed and designed by CEA (Commisariat à l’Energie

Atomique in France). In figure 3.11, we present CFPGA architecture having the following fea-

tures:

• Mesh topology: Logic Blocks (LBs) and switch boxes are organized into rows and columns.

• Single driver routing architecture: There is only unidirectional wires driven by multiplex-

ers,

• Wire length equal to 2: A wire in the global interconnect spans 2 LBs,
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Design Name 4-LUTs In Pads Out Pads Function

alu4 584 14 8 ALU

apex2 1878 39 3

apex4 1262 9 19

ava 14964 9 74 AVA Decoder

b9 61 41 21 Logic

bigkey 1707 263 179 Key Encryption

c2678 363 233 140 ALU and Control

c5315 725 178 123 ALU and Selector

c7552 881 207 108 ALU and Control

cc 33 21 20 Logic

clma 8383 61 82 Bus Interface

count 37 35 16 Counter

decod 32 5 16 Decoder

des 3235 256 245 Data Encryption

diffeq 1497 64 39

dsip 1370 229 197 Encryption Circuit

elliptic 3604 131 114

ex1010 4589 10 10

ex5p 1064 8 63

frisc 3556 20 116

i4 110 192 6 Logic

i9 471 63 522 Logic

misex3 1397 14 14

pcle 29 19 9 Logic

pcler8 40 25 19 Logic

pdc 4575 16 40

s298 1931 4 6 PLD

s38417 6406 29 106 Logic

s38584 6447 39 304 Logic

seq 1750 41 35

spla 3690 16 46

tseng 1047 52 122

Table 3.2: Benchmarks characteristics
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Figure 3.10: Microchip made on 130nm CMOS technology process

• Disjoint switch boxes: Each LB is surrounded by 4 × W disjoint switch boxes, where W

is the channel width. Each switch box corresponds to a full cross bar. A switch box has

input signals coming from the adjacent switch boxes and LBs outputs. We can state that

interconnect is composed of 4 × W directional networks.

• Local interconnect: In addition to the global interconnect, there are direct connections be-

tween each LB and its 8 adjacent LBs.

Since this architecture does not contain any hierarchy (no LBs clusters), we adapted the place-

ment and routing tools only. We developed also an interactive user interface allowing to control

different algorithms parameters and to display CAD flow steps. User can also modify placement

manually.

To consider local interconnect in the placement phase, we use simulated annealing to optimize

a specific objective function. In fact, with signals bounding box evaluation, we cannot consider

direct connections between adjacent LBs. In figure 3.12, we show two different placements of the

same signal terminals. Despite that in the second case we can take advantage of direct connec-

tions to route adjacent LBs, in both cases we obtain the same bounding box (bbx) cost value. This

shows the inefficiency of signal bounding box objective to take into account direct connections.

We propose an incremental objective function called STAR which considers geometric proxim-

ity (wire length reduction) and direct connections. This objective is easy to compute and corre-

lates well with routability and delay metrics. Algorithm 3.1 presents pseudo-code to compute

cost function variation after a single instance move. We consider that 2 instances are adjacent if

they are located at 2 neighboring LBs (see direct connections presented in figure 3.11). If we use

STAR function to evaluate placements presented in figure 3.12, we obtain a cost equal to 20 for
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Direct connection

Switch block
Unidirectional wire

Logic Block

Figure 3.11: Single driver-based Mesh interconnect

the first placement and 9 for the second one. This is obvious since the second placement allows

the router to take advantage of interconnect direct connections.

old_cost = 0;
new_cost = 0;
foreach instance insi connected to the instance to move insm do

if insi is not adjacent to insm then
old_cost = old_cost+ | X(insm)−X(insi) | + | Y (insm)− Y (insi) |;

endif

endfch

Move instance ins;
foreach instance insi connected to the instance moved insm do

if insi is not adjacent to ins then
new_cost = new_cost+ | X(insm)−X(insi) | + | Y (insm)− Y (insi) |;

endif

endfch

∆cost = old_cost− new_cost ;
Algorithm 3.1: pseudo-code to compute cost function variation after a single in-
stance moving

To route netlists, we model CFPGA routing resources with a direct graph where nodes corre-

spond to LBs pins and wires and edges correspond to switches. We use the Pathfinder algo-

rithm to route signals using graph nodes and edges.
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a) placement 1: BBx = 9 b) placement 2: BBx = 9
Star = 20 Star = 9

Figure 3.12: Placements cost evaluation based on two different objective functions

Placement and routing steps on CFPGA are illustrated by the following figures:

- Figure 3.13 shows a random placement of pcler8 circuit ( LBs , In pads and Out Pads) on CF-

PGA matrix. LBs colored in gray are occupied by instances. White squares correspond to empty

LBs. In/out Pads are located at the circuit boundary. Black lines correspond to nets.

- Figure 3.14 shows instances placement after simulated annealing process. The objective

function STAR were improved by 60%.

- Figure 3.15 shows the routing resources of CFPGA architecture. In this case channels width

is equal to 2 and each directional connecting network is plotted with a different color.

- Figure 3.16 shows routed signals using CFPGA resources.

- Figure 3.17 shows some routed signals connected to a specific LB (colored in black). Cor-

responding LBs drivers and receivers are colored respectively in red and blue. An LB output

signal starts at the square center and an input signal stops at the square edge.

3.6 Conclusion

With this background, we can formulate design requirements for FPGA programmable inter-

connect as follows:

• Adequate flexibility: The network must be capable of implementing the interconnection

topology required by the programmed logic design with acceptable delays.

• Interconnect depopulation: Interconnect is the major factor concerning area, delay and

power consumption inefficiencies of FPGA compared to ASICs. It is a big challenge to

provide an interconnect architecture with high flexibility and reduced routing resources.

In [F.Li et al., 2005], authors show that utilization rate of interconnect switches is extremely

low (about 12%). The remaining 88% of resources are necessary for flexibility and to deal

with a large number of various designs.

• Efficient configuration memory utilization: Space required for configuration memory can
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account for a reasonable fraction of the total area. Configuration encodings can be tight

and do not have to take up substantial area, compared to the wires and switches area.

• Balanced bisection bandwidth: Interconnect wiring takes space and, in some topologies

may dominate the array size. The wiring topology should be chosen to balance intercon-

nect bandwidth with array size and expected design interconnect requirement.

• Delays reduction: The delay through the routing network is the dominant delay in FPGA.

Switching can be used to reduce fanout on a line by segmenting tracks, and large fanout

can be used to reduce switching by making a signal always available in several places.

Minimizing the interconnect delay, therefore, always requires technology dependent trade-

offs between the amount of switching and the length of wire runs.

In the following chapters we propose architectures taking advantages of both Mesh and Tree

merits. The evolution of the architecture is driven progressively to be consistent with points

formulated above.

Figure 3.13: Random netlist placement on CFPGA architecture
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Figure 3.14: Optimized netlist placement on CFPGA architecture

Figure 3.15: CFPGA architecture routing resources
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Figure 3.16: Routed netlist on CFPGA architecture

Figure 3.17: Routed signals connected to an LB





4
Tree-based FPGA with optimized cluster

signals bandwidth

Design of large devices implies fundamental and efficient innovation in architecture to im-

prove speed, density and software mapping time. Relying on industry experience with stan-

dard ASICs, we believe that partitioning and hierarchy become unavoidable for hardware and

software developments. In fact most logic designs exhibit local connections, which implies a hi-

erarchy in placement and routing of connections between logic blocks.

We propose a Tree-based FPGA architecture TFPGA which takes advantage of this feature to

provide smaller routing delays and more predictable timing behavior. Routability and intercon-

nect area depend on switch boxes topology and signals bandwidth (in/out signals per cluster).

In TFPGA we use full crossbar switch boxes and we aim at exploiting the available flexibility to

reduce signals bandwidth based on suitable partitioning approaches.

To reduce clusters signals bandwidth, we tested different partitioning strategies. We compare the

resulting Tree-based architecture to the common Mesh-based architecture in terms of switches

requirement.

4.1 Proposed Architecture

As illustrated in figure 4.1, in TFPGA (Tree-based FPGA), Logic blocks and routing resources are

partitioned into a multilevel clustered structure. Each cluster contains sub-clusters and a switch

box allowing to connect external signals to sub-clusters. In this first study of hierarchical topol-

ogy, we consider the problem with a different stand point. All Tree based networks presented

57
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LBLB LB LB LB LB LB LB

SB SB SB SB

SBSB

SB Level 3

Level 2

Level 1

Figure 4.1: General Tree-based architecture

in the chapter 1 use bidirectional switches and wire tracks. This introduces considerable com-

plication in both hardware network design and increases the load on routing tools [G.Lemieux

et al., 2004]. In this architecture we use only single-driver unidirectional wires. As proposed

in [A.DeHon, 1996], we build a fully hierarchical interconnect with inter-level signal bandwidth,

growing according to Rent’s Rule. We consider only unidirectional signal wires. Logic Blocks

represent the Tree leaves. Let N the number of LBs in the architecture. Gates are recursively

partitioned into k equally sized sets at each level of the hierarchy. The principal interconnect

occurs at each node of convergence in the hierarchy (see figure 4.2). At level ℓ in the hierarchy,

each node has a fan-in from the lower level equal to k ∗ nout(ℓ − 1) signals and a fan-in from

the upper level equal to nin(ℓ). Similarly, it has a fan-out of k ∗ nin(ℓ − 1) toward the leaves and

nout(ℓ) towards the root. At each level ℓ, we have nLB(ℓ) LBs, nin(ℓ) external inputs and nout(ℓ)

external outputs. We are interested to evaluate wiring and switching growth. According to the

architecture hierarchy and the Rent’s rule growth we have:

NLB(ℓ) = kℓ

nin(ℓ) = cin.kℓ.p

nout(ℓ) = cout.k
ℓ.p (4.1)

Where cin (cout) represents the number of a leaf inputs (outputs) and p is the Rent’s growth

parameter described in section 3.1.1.

4.1.1 Wire growth model

First we consider how wiring resources grow in this structure. At each level ℓ of the hierarchy,

each switching node has nin(ℓ) inputs and nout(ℓ) outputs. This makes the bisection width equal

to (cin + cout)k
ℓ.p. Since ∀ℓ ∈ {1, . . . , logk(N)} kℓ.p ≤ N , the bisection width is O(N p). For a

2-dimensional network layout this bisection width must cross out of the subarray through the
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Figure 4.2: TFPGA: Tree based FPGA interconnect

perimeter. Thus the perimeter of each subarray is O(N p). The area of the subarrays will be pro-

portional to the square of its perimeter, making: Asubarray ∝ N2p. The required area per logic

block (LB) based on wiring constraints, then goes as:

Awiring(LB) ∝ N2p−1

4.1.2 Switch growth model

We have k + 1 distinct output directions from each node of convergence in the interconnect: k

for the k leaves, plus one for the root. Allowing full connectivity within each Tree node, each

one of the k leaves picks its nin inputs from the (k − 1) ∗ nout outputs from its siblings and from

the nin inputs from the parent node. The nout outputs of this node are selected from the k ∗ nout

outputs from all k subtrees converging to this point. Figure 4.3 shows this basic arrangement

for k = 2. Each one of the logical switching units is a fully-populated crossbar. At each level ℓ,

the total switch number is:

Nswitch(ℓ) = [k ∗ ((k − 1)noutℓ−1
+ ninℓ

) ∗ ninℓ−1
] + [(k ∗ noutℓ−1

) ∗ noutℓ)] (4.2)

= [kp(cin + cout) + (k − 1)cout]kcink2p(l−1) (4.3)

Dividing by the number of LBs supported at level ℓ, we can count the number of switches per

LB at each level:

Nswitch(ℓ) =
[kp(cin + cout) + (k − 1)cout]kcink2p(ℓ−1)

kℓ

Summing across all levels we obtain:

Nswitch(LB) = [kp(cin + cout) + (k − 1)cout] × cin

logk(N)
∑

ℓ=1

k(2p−1)(ℓ−1) (4.4)
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Figure 4.3: Switching node in 2-arity Hierarchical Interconnect [A.DeHon, 1996]

Nswitch(LB) =











O (1) if p < 0.5

O (logk(N)) if p = 0.5

O
(

N2p−1
)

if p > 0.5

(4.5)

Equation 4.5 shows that we have switching area per LB grows as O(1), for p < 0.5, and

O
(

N2p−1
)

for p > 0.5.

The large area of switches relative to wires is one of the reasons that we care about the number of

switches required by the network. To reduce switches requirement we aim at reducing intercon-

nect Rent’s parameter. Architecture Rent’s parameter is the minimum possible Rent’s parameter

of the architecture allowing routability achievement of a given netlist. In the proposed architec-

ture, we use fully populated switch boxes (crossbar). There is exactly one switch associated with

every possible input to output connection, so routing is trivial and guaranteed. Architecture

Rent’s parameter corresponds exactly to the partitioned netlist Rent’s parameter. In [L.Hagen

et al., 1994], authors showed that the resulting Rent’s parameter is subject to the algorithm which

generates the partitioning Tree. Thus in a TFPGA architecture switches requirement depends on

the partitioning methodology.

To determine Rent’s parameter of a netlist design we run a multilevel partitioning. In each hier-

archical level, we determine the maximum number of inputs and outputs in all parts. Numbers

of inputs and outputs of a cluster located at level ℓ of the Tree architecture are given by:

Nin(ℓ) = max
part∈P (ℓ)

Nin(part)

Nout(ℓ) = max
part∈P (ℓ)

Nout(part)

P (ℓ) is the set of parts at level ℓ.

4.2 Partitioning methodologies

Rent’s parameter is an accurate indicator of wiring and switching requirements for a given par-

titioning hierarchy. In particular, in the case of two partitioning tools, the one with lower Rent’s
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parameter requires less switching and wirelength and corresponds to a denser final layout. Thus,

in one part of this work various partitioning methods are compared, to identify the partition-

ing strategy leading to the optimal hierarchy. This yields a new methodology for comparing

multilevel partitioning techniques efficiencies.

4.2.1 Top-down partitioning

Top-down approaches split a given netlist into smaller subclusters. This technique is based on

global connectivity informations and leads to a good partitioning solution. The objective is to

group logic blocks in order to reduce external communication. Since we have to reduce the max-

imum Input/output signals crossing each part, we use a multi-objective function which con-

siders Maximum External Degree (MED) and the cut (see figure 3.4). We implement a solution

similar to the direct multi-phase refinement presented in [N.Selvakkumaran and G.Karypis,

2006]. Thus, we first generate a partitioning solution with the cut as objective, then we apply a

multi-phase multi-objective refinement with MED as the highest priority objective. We also add

a constraint to respect clusters arity imposed by the architecture. Our approach is top down; first

we construct clusters of the top level and then each cluster is partitioned into subclusters. This

is done until the bottom of the hierarchy is reached.

4.2.2 Bottom-up partitioning

Channel widthLogic block

Logic block Channel width

a) Highly congested regions b) balanced congestion

Figure 4.4: Congestion-aware placement

The size of the smallest TFPGA is penalized by the coarse granularity of the architecture.

This means that in most cases the number of logic blocks slots present in the architecture is

greater than the number of instances in the netlist to implement. This may have a good effect

on congestion alleviating. In fact, DeHon [A.DeHon, 1999] showed that for hierarchical FPGAs,

100% logic use is not necessarily beneficial for overall device area minimization. The philosophy

behind Logic and interconnect balancing is increasing logic utilization through efficient use of
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the interconnect structure (which often accounts for ∼ 90% of the total area in current FPGA

families). The efficiency of this philosophy was shown in 2 different works:

- In [A.Sharma et al., 2005], authors proposed an efficient placement technique, called

Independence, for routing-poor architectures. Routing-poor architectures attempt to in-

crease interconnect utilization at the expense of logic utilization. As presented in figure 4.4,

they modified the VPR’s semi-perimeter based formulation (figure 4.4-a) and integrated

an approch trying to spread congestion over all the area (figure 4.4-a). Specifically, they

used Pathfinder in the simulated annealing inner loop to maintain a fully routed solution

at all times. In this way the required routing resources (channel width) are reduced con-

siderably. Nevertheless, to create white spaces, instances are moved away and this might

increase delays to connect logic blocks and consequently reduce speed performances. Au-

thors [A.Sharma et al., 2005] do not give an accurate estimation of delay increase since

they are only interested in area reduction.

- In [A.Singh and M.Marek-Sadowska, 2002], authors present a routability-driven clustering

technique (iRac) for area and power reduction. The idea is to get a good device utilization

by reducing clusters external signals at the cost of using more clusters. As illustrated in

figure 4.5, when clusters are sparsely populated highly congested regions are eliminated

and the required channel width is reduced.

a) Full popuplated clusters b) sparse populated clusters

LBs cluster Channel width

LBs cluster Channel width

Figure 4.5: Congestion-aware clustering

In the following we present two different techniques to distribute instances over clusters. In both

cases we use the same objective function proposed in iRac [A.Singh and M.Marek-Sadowska,

2002] to compute the attraction of each block to a cluster. iRac introduces a connectivity metric

to the seed selection process of VPack [A.Marquart et al., 1999]. An unclustered block with most

used inputs, and minimum connectivity is chosen as the cluster seed. Connectivity, defined in

equation 4.6 measures the number of blocks appearing in the neighborhood of a given block.

Gain computation for candidate blocks is based on common nets with the cluster under con-

struction. High priority is given to absorbing 2-terminal nets, and edges of multi-terminal nets
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with low terminals count. For 2 nets with same number of terminals, the net with more terminals

already absorbed within the cluster is given higher weight.

Connectivity =
Separation

Degree2
(4.6)

Separation =
∑

i∈Nets(B)

TerminalCount(i)

Degree = Number of Connected Nets

iRac achieves a large reduction in number of external nets, as it absorbs as many 2-terminal nets

as possible, and tries to bring multi-terminal nets to an absorbable state.

LBs-limit strategy

Tessier [R.Tessier and H.Giza, 2000] showed that depopulation of clusters can result in reduced

channels width in the case of Mesh architecture. The presented algorithm depopulates each

cluster equally in order to reach an uniform distribution of empty LBs across the chip. In this

approach, an attempt is made to spread the logic evenly across all clusters on the device. In this

clustering algorithm, the possible number of LBs to be included in each cluster (Nhigh,Nlow) are

determined first. These numbers reflect the overall LB utilization of the device and are such that

Nhigh = Nlow + 1. After this step, the numbers Chigh and Clow clusters that include respectively

Nhigh and Nlow LBs are determined. Clustering is then performed for both types of clusters.

a a

a

3 external nets created 1 external nets created

C

p = 0.4 p = 0.2

a) b)

Figure 4.6: Reducing external routing demand [A.Singh and M.Marek-Sadowska, 2002]

Pins-limit strategy

iRac [A.Singh and M.Marek-Sadowska, 2002] clustering tool is very effective at reducing channel



64 Chapter 4. Tree-based FPGA with optimized cluster signals bandwidth

width in the case of Mesh architecture. iRAC limits the number of inputs to each cluster using

Rent’s parameter, resulting in solutions that exhibit some depopulation. The aim of this tech-

nique is to alleviate routing congestion by absorbing as many nets into clusters as possible, and

depopulating clusters according to Rent’s rule in order to achieve spatial uniformity in the clus-

tered netlist. In figure 4.6, we present an example of constructing clusters with size constraint

k equal to 4 and pin constraint equal to 10 (2k + 2). Cluster C can absorb an additional LB. LB

a has the highest gain and adding it to C does not violate either the architecture pin or cluster

size constraint. Nevertheless, inserting a into cluster C creates 3 external nets and increases the

cluster Rent’s parameter p from 0.2 to 0.4. The interconnect-resource-aware clustering constraint

adopted in [A.Singh and M.Marek-Sadowska, 2002], identifies this and ensures that the situa-

tion in figure 4.6-a) does not occur. Instead, LB a is chosen as seed for a new cluster, therefore

adding a single external net as shown in figure 4.6-b).

We notice that pins-limit strategy is inefficient when applied in high levels. This is due essen-

tially to the bottom-up and the greedy aspect to construct clusters with this technique. In fact

clustering in high levels has a limited freedom and is penalized by choices made in lower levels.

To deal with such a problem, we propose to create clusters in high levels without pins-limit en-

forcing. As presented in figure 4.7, once the multilevel clustering is achieved, we run a multilevel

top-down refinement.

4.2.3 Multilevel refinement

clustering 
  & 

FM refinement

clustering FM refinement

Level 0

Level 1

original cells netlist clustered netlist

constraints enforcing

Figure 4.7: Multilevel clustering & refinement

After completing the clustering phase (with Pins-limit strategy), we obtain a tree of clus-

ters each one containing k sub-clusters. During the refinement phase, cells are moved between

clusters (parts) to optimize an objective function without violating the constraints imposed by

the cluster size. In a level ℓ, cells are not allowed to move between all clusters, because this

can decrease the quality of the solution obtained in the higher level. To prevent such unwanted

effect, cells can only move between neighboring clusters. We call neighboring clusters, all clus-

ters in a level belonging to the same super-cluster. Thus in every level, neighboring clusters are
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isolated and form a subgraph. In figure 4.7 those subgraphs are represented by the continuous

lines and partition by the dashed ones. A cell is allowed only to move across dashed lines. The

objective function is specific to each subgraph and corresponds to the Maximum External De-

gree (MED) of all parts belonging to the same subgraph. An FM algorithm [C.M.Fiduccia and

R.M.Mattheyeses, 1982] is applied to each subgraph to optimize the local objective function.

The complexity of our k-way refinement is reduced since we apply it successively for each sub-

graph (in each subgraph there are small number of parts: Arity of the architecture) and only for

the highest levels (where bottom-up pins-limit strategy fails).

4.3 Experimental Results

LB LB LB LB

SB

LB LB LB LB

SB

SB

LB LB LB LB

SB

LB LB LB LB

SB

SB

SB Level 3

Level 1

Level 2

Figure 4.8: 4x2x2 Tree architecture: clusters arity definition at every level

The aim of this section is to compare different partitioning techniques. Our comparison met-

ric is reducing clusters signals bandwidth. Once we identify the approach requiring the smallest

architecture, we compare the TFPGA required switches to the Mesh-based FPGA.

4.3.1 Partitioning methodologies comparison

In the preceding approaches, the main classes of partitioning are top-down and the bottom-up.

The following algorithms were used in our experiments:

- TD: Top-Down partitioning.

- BU-B : Bottom-Up clustering with LB-limit.

- BU-P : Bottom-Up clustering with Pins-limit.

- BU-P-R: A BU-P followed by the refinement phase.
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Benchmark TD BU-P BU-B BU-P-R

Name LBs Arch level Rent T(s) Rent T(s) Rent T(s) Rent T(s)

seq 1750 8x8x8x8 1 0.828 27.3 0.773 20 0.845 12 0.773 27

2 0.686 0.727 0.743 0.712

3 0.605 0.667 0.651 0.626

apex2 1878 8x8x8x8 1 0.877 30 0.712 20 0.877 15 0.712 37

2 0.722 0.773 0.770 0.722

3 0.602 0.674 0.684 0.626

s298 1931 8x8x8x8 1 0.828 43 0.733 16.3 0.828 13 0.733 50

2 0.517 0.627 0.631 0.597

3 0.341 0.588 0.579 0.480

frisc 3556 8x8x8x8 1 0.877 65.5 0.733 44 0.810 38 0.733 75

2 0.669 0.732 0.725 0.681

3 0.605 0.674 0.690 0.626

elliptic 3604 8x8x8x8 1 0.828 71 0.712 42 0.828 35 0.712 80

2 0.624 0.702 0.741 0.687

3 0.626 0.732 0.669 0.712

spla 3690 8x8x8x8 1 0.861 75.4 0.733 55 0.845 40 0.733 84

2 0.745 0.790 0.783 0.747

3 0.629 0.667 0.709 0.667

Table 4.1: Rent parameter partitioning results

Figure 4.9: Results for partitioning Rent’s parameters at level 1
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Figure 4.10: Results for partitioning Rent’s parameters at level 3

Figure 4.11: Results for partitioning Rent’s parameters at level 2
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We consider an architecture with cluster size equal to 8 in each level. The number of levels is

determined to match the number of instances in the netlist. As shown in table 4.1, the third col-

umn presents the number of levels and clusters arity. For example in figure 4.8, we show an

architecture 4x2x2. This means that it has 3 levels of hierarchy; clusters in the first one have a

4-arity, clusters in the second one have a 2-arity and cluster in the third one has a 2-arity.

The experiments were performed as follows. Each partitioning algorithm was used to construct

a partitioning hierarchy for the circuit via recursive partitioning of this circuit and its sub-

partitions. We have used some of the MCNC benchmark circuits with various logic sizes. At

each partitioning step, we noted the number of external pins for each sub-partition as explained

previously. In order to correlate the experimental data to Rent’s rule, we reformulate the rela-

tionship wℓ = c(kℓ)p as:

p =
log(wℓ) − log(c)

log(kℓ)

(ℓ is the corresponding level). As shown in table 4.1, for each level we have an associated Rent’s

parameter.

As presented in table 4.1, for the bottom-up clustering approaches we notice that pins-limit strat-

egy BU-P is more efficient than LBs-limit strategy BU-B. This seems obvious since the aim of the

first strategy is to reduce the number of external pins of every constructed cluster.

Figure 4.9 and figure 4.10 show that the TD method is the most efficient to reduce Rent’s param-

eter in the highest level. This is due to the fact that the top down approach starts by partitioning

instances between the highest level parts. Conversely, BU-P approach leads to better results in

reducing the lowest level parts degrees. Thus BU-P approach is more efficient to reduce Rent’s

parameter in the lowest level; but with this technique, we obtain a poor solution when we con-

struct the highest levels (level 1 and level 2). This is due to the inefficiency of pins-limiting in this

stage. As shown in figure 4.11 the solution can be improved if we run a top-down refinement

phase. With BU-P-R we obtained a good Rent’s parameter in all levels (lowest and highest ones).

Nevertheless, results obtained in level 2 by TD method are better than the ones obtained by BU-

P-R approach. Thus, we conclude that TD approach is the best partitioning technique since it

provides a good tradeoff between high and low levels Rent’s parameters reduction.

4.3.2 Architectures comparison

We compared the switches requirement in TFPGA to a Mesh-based architecture. Mesh architec-

ture is similar to the RFPGA architecture described in chapter 3. It is composed of clusters and

has an uniform routing network with single-length segments and a subset switch box. Each clus-

ter contains 8 4-LUTs. The number of inputs in each cluster is 18 and the number of outputs is

8. We use T-Vpack to construct clusters and the channel minimizing VPR 4.3 to place and route

the obtained netlists. We vary the IOratio to achieve the optimal array size. VPR determines the

optimal size as well as the optimal channel width to place and route each benchmark.

From table 4.2, we notice that the average number of needed switches in hierarchical TFPGA is

about 3 times greater than in Mesh architecture. This is due essentially to the fully populated
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Benchmark Mesh TFPGA

Name LBs CLBs W IO Switches Arch Occup- Switches

ratio x103 ancy% x103

seq 1750 242 41 2 410 8x8x8x8 42 1627

apex2 1878 263 40 1 445 8x8x8x8 45 1854

s298 1931 305 30 1 374 8x8x8x8 47 699

frisc 3556 737 54 2 1633 8x8x8x8 86 3643

elliptic 3604 527 46 3 950 8x8x8x8 87 3343

spla 3690 750 56 2 1956 8x8x8x8 90 4269

average 2734 470 44 2 961 66 2573

Table 4.2: Switches comparison between Mesh-based FPGA architecture and TFPGA

crossbar.

4.4 Conclusion

We introduced the notion of architecture Rent’s parameter defined as the lowest Rent’s param-

eter achievable by any partitioning method (since we considered fully populated switch boxes).

Our results indicate that a combination between a multilevel bottom-up clustering and a top-

down refinement generates partitioning hierarchies with reduced Rent’s parameters. Neverthe-

less, a top-down partitioning approach combining cut and MED objectives offers the best trade-

off between high and low levels signals bandwidths optimization. The aim of this study was to

find the best partitioning method to obtain the smallest TFPGA area. Despite our effort we found

that with a fully-populated crossbar, TFPGA cannot be denser than Mesh-based FPGAs. Thus to

make TFPGA more competitive, we must use depopulated routing interconnect. The question

is how to depopulate the hierarchical interconnect and keep a good routability? In the following

chapters we will try to give an answer and to present the effect of interconnect depopulation on

the architecture Rent’s parameter.





5
Tree-based interconnect with

depopulated switch boxes

To improve Tree-based interconnect density we must sparsely populate switch boxes (Tree nodes).

In the sequel we propose a Butterfly Fat-Tree interconnect topology called MFPGA (Multilevel

FPGA). Switch boxes depopulation is compensated by routing predictability and a large signals

bandwidth (Rent’s growth parameter p = 1). We start by presenting architecture interconnect

topology. Next, based on Rent’s parameter we evaluate analytically switches and wiring require-

ment. Then, we present placement and routing approaches considering interconnect predictabil-

ity. Finally, we compare area and performance efficiency of MFPGA to Mesh-based architecture.

5.1 MFPGA routing interconnect

As illustrated in figure 5.1, MFPGA contains N LUT-based logic blocks (LBs) and two unidirec-

tional connecting networks:

• The downward network is inspired from SPIN [P.Guerrier and A.Greiner, 2000]. It is based

on the Butterfly Fat-Tree (BFT) style interconnect [C.Leiserson, 1985] with linear populated

switch boxes and unidirectional wires. Tree leaves correspond to logic blocks.

• The upward network connects logic blocks outputs and input pads to the various levels

of the Tree.

Each logic block contains one Look-Up-Table (with cin inputs and cout = 1 output), followed

by a bypass Flip-Flop. Like TFPGA architecture Logic Blocks (LBs) are grouped into k sized

71
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S

S S S S

Logic Blocks

Figure 5.1: MFPGA interconnect

clusters and interconnect is organized into levels. Let nbℓ denote the number of levels of a given

Tree containing N leaves (nbℓ = logk(N)). In each level ℓ we have N
kℓ clusters; C is the set of

clusters in all levels. A cluster with index c belonging to level ℓ is noted by cluster(ℓ, c). A cluster

switch block is divided into separated Mini Switch Boxes (MSBs). Each MSB corresponds to a full

crossbar. Each cluster(ℓ, c) where ℓ ≥ 1 contains a set of inputs Nin(ℓ), a set of outputs Nout(ℓ),

a set of MSBs and k sub-clusters. Sub-clusters of cluster(ℓ, c) are cluster(ℓ − 1, k.c + i) where

i ∈ {0, 1, 2, .., k − 1}. k is called cluster(ℓ, c) arity. Let nbMSB(ℓ) the MSBs number in a cluster in

level ℓ. MSB with index m belonging to cluster(ℓ, c) is denoted MSB(ℓ, c,m). Each MSB contains

k inputs driven by the upper level and 1 feedback coming from a leaf output pin. Each cluster

in level 0 is denoted cluster(0, c) or leafcluster(c) and corresponds to the Logic Block (LB) and

contains cin inputs, 1 output, no MSBs and no sub-cluster. Each cluster(ℓ, c) where ℓ < nbℓ−1 has

an owner in level ℓ′, where ℓ′ > ℓ, denoted cluster(ℓ′, c÷ k(ℓ′−ℓ)). We define for each cluster(ℓ, c)

a position inside its owner in level ℓ + 1 (direct owner) by the following function:

pos : C −→ {0, 1, 2, .., k − 1}
cluster(ℓ, c) 7−→ c mod k

2 clusters belonging to level ℓ and with the same owner at level ℓ + 1 have 2 different positions.

To get the cluster owner in level ℓ′ of cluster(ℓ, c) (ℓ < ℓ′ ≤ nbℓ − 1) we define the function:

owner : C × IN −→ C

(cluster(ℓ, c), ℓ′) 7−→ cluster(ℓ′, c ÷ kℓ′−ℓ)

5.1.1 Downward Network

Figure 5.2 shows a sparse downward network based on unidirectional MSBs. The downward

interconnect topology is similar to the butterfly fat tree. Each MSB of a cluster(ℓ, c) where ℓ > 1
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MSB MSB MSB MSB
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MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB
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Level 1

Level 2

Figure 5.2: Downward Network

is connected to each sub-cluster through one and only one input pin. Thus, the MSBs number

in a cluster situated in level ℓ is equal to the input number of a cluster situated in level ℓ − 1:

nbMSB(ℓ) = Nin(l − 1).

We name MSB(ℓ′, c′,m′) as the successor of an MSB(ℓ, c,m) where 0 < ℓ′ < ℓ if there is a

downward directed path from MSB(ℓ, c,m) to MSB(ℓ′, c′,m′). The path between an MSB and

its successor is unique. We define the function:

Modℓ : IN −→ IN

m 7−→ m mod nbMSB(ℓ)

Thus each MSB(ℓ, c,m) has a successor in each sub-cluster belonging to level ℓ ′ MSB(ℓ′, c′,m′)

where 0 < ℓ′ < ℓ, with:

m′ = Modℓ′ ◦ · · · ◦ Modℓ−1(m) (5.1)

5.1.2 Upward Network

We propose to connect the output signals of leaf clusters to specific MSBs of upper levels. Thus

for each logic block (LB) output, we define a list of feedbacks. Each one enables the LB output

to reach one and only one MSB in a particular level. Each MSB is reached by one and only one

Logic Block output. This means that the number of MSBs in each level is equal to the number of

the Tree leaves (LBs). Since in each level we have N
kℓ clusters we obtain:

N

kℓ
× NbMSB(ℓ) = N
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Since NbMSB(ℓ) = Nin(l − 1), we obtain, according to Rent’s rule:

cin.k(ℓ−1)p = kℓ (5.2)

Equation 5.2 is verified if k = cin and p = 1, we call this the predictability condition. This condi-

tion is penalizing in terms of area but ensures interconnect predictability construction which is

exploited by the placement and routing tools. Routing predictability is an interesting property

that can be exploited in the placement phase to enhance congested netlists routing.

The way feedbacks are distributed has an important impact on the structure routability. Con-

necting an output of a leaf cluster to MSBs with different indexes increases the number of paths

from a source to a destination. This specific distribution is described in figure 5.3-(a). Figure

5.3-(b) shows how the cluster leaf ’A’ output can reach the cluster leaf ’B’ inputs using differ-

ent paths. Each leaf cluster cluster(0, c) is connected to one and only one MSB(ℓ, c ′,m) in level

ℓ > 0. c′ is the index of the owner of cluster(0,c) in level ℓ: c′ = c ÷ kℓ; m is given by:

m = (pos(cluster(0, c)) + ℓ− 1) modulo (k) +

ℓ−1
∑

=1

pos(owner(cluster(0, c), ))×nbMSB() (5.3)

5.1.3 Connection with outside

As shown in figure 5.4, output pads are clustered with the logic blocks at level0. The number

of output pads per cluster can be varied to obtain the best design fit. We use a local intercon-

nect between the logic block outputs and the output pads. Input pads are connected directly to

MSBs of the highest level. In this way each input pad can reach all logic blocks. As presented in

figure 5.4, input pads feedbacks distribution is similar to LB outputs one.
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5.1.4 Rent’s Rule based MFPGA model

As we parametrize MFPGA architecture we can now evaluate wires and switches requirement.

Consider a k-arity MFPGA as depicted in figure 5.4 with N Logic Blocks and whose wire growth

follows Rent’s Rule. Each Logic Block has cin inputs and cout outputs.

Switches requirement:

A cluster located at level ℓ contains Nin(ℓ− 1) MSBs with k outputs and Nin(ℓ)+kNout(ℓ−1)
Nin(ℓ−1) inputs.

Since MSBs are full crossbar devices, we have k(Nin(ℓ)+kNout(ℓ−1)) switches in the switch box

of a level ℓ cluster. As we have N
kℓ clusters at level ℓ, we have a total number of switches equal to:

logk(N)
∑

ℓ=1

kN
Nin(ℓ) + kNout(ℓ − 1)

kℓ

Based on Rent’s rule, we have Nin(ℓ) = cinkℓ.p and Nout(ℓ) = coutk
ℓ.p. If we take into account the

predictability condition (section 5.1.2 (cin = k and p = 1), we get Nin(ℓ) = kℓ+1 and Nout(ℓ) = kℓ.

The number of switches per Logic Block is :

Nswitch =

logk(N)
∑

ℓ=1

(k2 + k)

Nswitch = (k2 + k) logk(N)

Nswitch = O (logk(N)) (5.4)

It was established in [A.DeHon, 1999] that in the Mesh architecture, switches per logic block

grow as:

Nswitch(LB) = O(Np−0.5) (5.5)

Equations (5.4) and (5.5) show that in MFPGA switches requirements grow more slowly than in

Mesh architecture. Mesh switches requirement depends largely on Rent’s parameter p value:

- for p = 0.65, if N > 15× 106, Mesh becomes more penalizing than Tree in terms of switches

requirement.

- for p = 0.7, if N > 17 × 103, Mesh becomes more penalizing than Tree in terms of switches

requirement.

- for p = 0.78, if N > 2, Mesh becomes more penalizing than Tree in terms of switches re-

quirement. This is the case of APEX architecture discussed in [J.Pistorius and M.Hutton, 2003].

These results are encouraging for the construction of very broad MFPGA structures. But this

does not mean that MFPGA topology is more efficient than Mesh-based architecture since they

do not have the same routability. The best way to check this is to launch experimental work and

compare the area results using MFPGA and the Mesh-based FPGA.
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Wires requirement:

At each level ℓ of the hierarchy, each switching node (cluster) has nin(ℓ) inputs and nout(ℓ) out-

puts. This makes the bisection width equal to (cin+cout)k
ℓ. Since ∀ℓ ∈ {1, . . . , logk(N)} kℓ ≤ N ,

the bisection width is O(N). For a 2-dimensional network layout this bisection width must cross

out the subarray through the perimeter. Thus the perimeter of each subarray is O(N). The area

of the subarrays will be proportional to the square of their perimeter, making: Asubarray ∝ N2.

The required area per logic block (LB) based on wiring constraints is given by:

ALB ∝ N (5.6)

Equations 5.6 and 5.4 show that wiring is the dominant resource constraining LB area in the

proposed MFPGA architecture.

5.2 MFPGA placement

The MFPGA placement problem can be stated as assigning to each netlist cell a logic block

(leaf) in the MFPGA architecture. The way how cells are distributed has an important impact

on routability. In fact after cells placement, the router tries to find a path to connect a source

LB (cluster leaf) to its destinations LBs (cluster leaf) using architecture resources. Thanks to the

interconnect predictability provided by the MFPGA architecture we can introduce, in the place-

ment phase, some conditions to limit later conflicts in the routing phase.

5.2.1 Conflict conditions

Definition 1. There is a resource conflict in level ℓ if 2 leaf clusters (or more), such as cluster(0, c)

and cluster(0, c′) reach a cluster(ℓ, c′′) on the same pin pi.

Property 1. The owner in level ℓ + 1 of cluster(ℓ, c′′) has one and only one MSB(ℓ + 1, c′′ ÷ k,m)

which can reach this cluster(ℓ, c′′) on pin pi.

Definition 2. Referring to the previous property, the definition 1 can be stated as:

There is a resource conflict problem in level ℓ if 2 leaf clusters (or more) such as cluster(0, c) and

cluster(0, c′) attempt to reach a cluster(ℓ, c′′) and have both already reached its owner cluster(ℓ+

1, c′′ ÷ k) at the same MSB(ℓ + 1, c′′ ÷ k,m).

From definition 2, we can detect a resource conflict by finding 2 leaf clusters reaching the

owner cluster of a common destination in the same MSB. We consider that cluster(0, c) reaches

cluster(ℓ, c′′) in MSB(ℓ, c′′,m) using the level ℓup, and that cluster(0, c′) reaches the same cluster

destination in MSB(ℓ, c′′,m′) using level ℓ′up. From equation (5.3) and (5.1) in this order we get:

{

m = (pos(cluster(0, c)) + ℓup − 1) modulo (k) +
∑ℓ−1

=1 pos(owner(cluster(0, c), )) × nbMSB()

m′ = (pos(cluster(0, c′)) + ℓ′up − 1) modulo (k) +
∑ℓ−1

=1 pos(owner(cluster(0, c′), )) × nbMSB()

(5.7)
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thus,



































m = m′

m
(pos(cluster(0, c)) + ℓup) modulo (k) = (pos(cluster(0, c′)) + ℓ′up) modulo (k)

pos(owner(cluster(0, c), )) = pos(owner(cluster(0, c′), ))

∀ ∈ {1, . . . , ℓ − 1}

(5.8)

Proof : Equations 5.7 correspond to the decomposition of m and m′ in the base k because:

- 0 < (pos(cluster(0, c)) + ℓup) modulo (k) < k

- 0 < pos(owner(cluster(0, c), )) < k ∀j, c

- nbMSB() = k

Therefore we obtain results presented in equation 5.8.

Lemma 1. We say that 2 leaves cluster(0, c) and cluster(0, c′) are in conflict to drive a common

destination cluster(ℓ, c′′) if and only if:















pos(cluster(0, c)) − pos(cluster(0, c′)) = (ℓ′up − ℓup) modulo (k)

pos(owner(cluster(0, c), )) = pos(owner(cluster(0, c′), ))

∀ ∈ {1, . . . , ℓ}

Where, ℓup (ℓ′up) is the level allowing cluster(0, c) (cluster(0, c′)) to reach cluster(ℓ, c′′).

5.2.2 Placement example

We propose to apply the obtained conflict condition on a practical example. We consider specific

architecture with the following parameters: clusters arity k = 4, Rent’s parameter p = 1 and

Logic Block inputs number cin = 4. We refer to the netlist presented in figure 5.5. We propose

to place cells as shown in figure 5.6. In this example cell0, cell1, cell2, cell3 and cell4 are placed

respectively in cluster(0, 9), cluster(0, 5), cluster(0, 10), cluster(0, 18), and cluster(0, 3).

Referring to the clustered netlist, cluster(0, 18) and cluster(0, 3) have 3 common destinations:

cluster(0, 5) at level 0 and cluster(1, 2) and cluster(1, 1) at level 1. Referring to lemma1, we
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Figure 5.6: Detailed placement example

check whether there is a resource conflict to connect both sources to the 3 destinations. We pro-

pose to use the lowest possible level to connect a source to its destinations. To reach cluster(0, 5),

cluster(0, 3) must go up to level 2 (ℓup = 2) and cluster(0, 18) to level 3 (ℓ′up = 3).

Since pos(cluster(0, 3)) = 3 and pos(cluster(0, 18)) = 2,

we get pos(cluster(0, 3))− pos(cluster(0, 18)) = ℓ′up − ℓup. Thus the condition of lemma1 is satis-

fied and there is a resource conflict in level 0 to reach cluster(0, 5). The second common destina-

tion is cluster(1, 2). To reach this destination, cluster(0, 3) must be connected up to level 2 (ℓup =

2) and cluster(0, 18) to level 3 (ℓ′up = 3). Since pos(cluster(0, 3)) = 3 and pos(cluster(0, 18)) = 2,

we get pos(cluster(0, 3)) − pos(cluster(0, 18)) = ℓ′up − ℓup. Thus the first condition in lemma1 is

satisfied. We check now the second condition of lemma1 since destination cluster(1, 2) belongs

to level 1 (ℓ > 0). We have owner(cluster(0, 3), 1) = cluster(1, 0) and owner(cluster(0, 18), 1) =

cluster(1, 4) . Since pos(cluster(1, 0)) = pos(cluster(1, 4)) = 0 the second condition of lemma1 is

verified too. Thus there is a resource conflict at level 1 to connect cluster(0, 3) and cluster(0, 18)

to cluster(1, 2).

We have the same problem with the third common destination cluster(1, 1). The routing solu-

tion of the placed netlist using the lowest levels is presented in figure 5.6. The dashed arrows

present the resource conflicts. To prevent resource conflicts we propose the following:

• To change positions of the leaf cluster sources.

• To change positions of the sources owners in level 1.

When we try to settle a congestion problem to reach a destination, we can introduce unexpected

problems to reach other destinations. The aim of the following sections is to develop a method

to model all placement constraints and to perform the optimal positions assignment.
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Figure 5.7: CCH: Cell Constraints Hypergraph

5.2.3 Partitioning

The way we distribute logic blocks between MFPGA clusters has an important impact on routing

congestion reduction. Based on the upward interconnect specificity, we notice that the number

of different paths to connect a source to a destination depends on their enclosing clusters. If they

are packed in the same cluster, the source can use more levels to reach its destination and there-

fore more paths. From this remark we can consider that the netlist cut reduction is an important

factor for routability improvement.

A second partitioning objective is deduced from routability conditions presented in lemma1.

Consider 2 leaf sources cluster(0, c) and cluster(0, c′) driving a common destination cluster(0, c′′).

If we pack both sources in the same cluster we obtain on the one hand ℓup−ℓ′up = 0 (ℓup is the low-

est used level to reach the common destination). On the other hand we get pos(cluster(0, c)) −
pos(cluster(0, c′)) 6= 0. In this case referring to lemma1, the conflict condition is not verified and

no resource conflict occurs.

To include this objective in the clustering technique, we propose to construct a Cells Constraints

Graph (CCG). The CCG consists of a set of vertices and weighted edges derived from the netlist.

An edge is established between 2 vertices (adjacent) when they drive the same destination clus-

ter. Each edge contains a weight equal to the number of common destinations between two

adjacent vertices. Using only this graph in the partitioning weakens the obtained clusters netlist

results in terms of external communication. To take both objectives into account, we propose, as

presented in figure 5.7, to generate a new Constrained Cells Hypergraph (CCH) from the initial

netlist hypergraph and the CCG. In this hypergraph, vertices are cells (as in the netlist) and it

contains all hyperedges of the netlist and all edges of the CCG. This constrained hypergraph is

partitioned using a top-down partitioner and objective priorities are defined according to hy-

peredges weights. We first construct clusters of the top level and then each cluster is partitioned

into sub-clusters. This is done until the bottom of the hierarchy is reached.
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Figure 5.8: ACCG: Advanced Cell Constraints Graph

5.2.4 Detailed placement

If during detailed placement we take lemma1 conditions into account, significant gain can be

obtained in terms of routability and congestion reduction. For this purpose we introduce the

Advanced Cells Constraints Graph (ACCG) which is associated to a given multilevel clustered

netlist (previous section) and a placement problem. Input and output Pads are also concerned

by the detailed placement. To simplify the approach description, we consider only logic blocks

detailed placement. Inputs pads are treated exactly like logic blocks. Output pads are clustered

with their logic block drivers.

Advanced Cell Constraints Graph:

We can say that an ACCG is a CCG that contains extra cells partitioning informations required

to check conditions of lemma1. An ACCG consists of a set of vertices and directed edges derived

from the netlist and the way its cells are partitioned between clusters in each level. Each vertex

corresponds to a cell of the netlist. A pair of opposite directed edges is established between 2 ver-

tices when they drive the same destination cluster (located at any level), which are then called

adjacent. To be able to verify conditions proposed in lemma1, we need to add some informa-

tions to the constraints graph. Those informations are stored in each directed edge connecting 2

adjacent vertices as a list of pairs (shift, level), featuring:

• The forbidden shift between adjacent vertices positions.

shift = (ℓup − ℓ′up) modulo (k)

• The level where is located the common destination cluster.

It is worthwhile to use the lowest level feedback link to connect a source to its destination, since

it has an important impact on delay reduction. That is why, when we construct the ACCG, ℓup

corresponds to the lowest level where the source has to go up to reach its destination. Reducing

the conflict between sources using the lowest level is beneficial for the first routing iteration. In

fact, as it will be explained in section 5.3, we use an iterative rip-up routing algorithm based on

the congestion negotiation. We assign an adjustable cost to each feedback. A lower level induces

lower cost; consequently in the first routing iteration, signals will be routed using the lowest

levels. Using the lowest levels to construct the ACCG has two advantages:
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foreach Leaf Cluster cl do

foreach level ℓ do

foreach Receiver rc of cl in level ℓ do

foreach leaf driver dr of rc do
/*cl and dr both drive rc*/
if (*) rc has no common subreceiver of dr and cl then

if No edge e between cl and dr then
create edge e between cl and dr;

endif

level = GetLevel(rc);
shift = ShiftCompute(cl, dr, rc);
append pair(shift, level) to edge e;

endif

endfch

endfch

endfch

endfch

Algorithm 5.1: ACCG construction

• Fewer switches will be crossed to route signals.

• A good initial solution for the iterative router exists: first iteration is run with the least

number of resource conflicts.

Figure 5.8 presents the Advanced Cell Constraints Graph constructed from the instances place-

ment described in figure 5.5. Algorithm 5.1 describes the used method to construct ACCG. In

line (*) of the algorithm, we test whether the common receiver rc has already a sub-cluster (slave)

which is also a common receiver of cl and dr. This verification is important to avoid comput-

ing many times the same conflict to reach a destination. The conflict can occur when reaching

the destination or its owners. For example, in the netlist described in section 5.2.2, we have a

conflict driving cluster(0, 5) and its owner cluster(1, 1). In the routing phase this conflict will

be considered only once. That is why, in the generated ACCG we append in the edge only the

couple (1, 0) corresponding to destination cluster(0, 5) and the couple (1, 1) corresponding to

destination cluster(1, 2), but we do not append the couple (1, 1) corresponding to destination

cluster(1, 1). In addition, referring to lemma1, if there is no conflict to reach cluster(l, c), there is

no conflict to reach any one of its owners.

Optimal solution:

The placement problem that we are treating is a special case of graph labeling problem also
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known as graph coloring [M.R.Garey et al., 1974] [D.J.A.Welsh and M.B.Powell, 1967]. In fact, re-

ferring to lemma1, if ℓup = ℓ′up, the conflict condition becomes pos(cluster(0, c)) = pos(cluster(0, c′)).

Thus to avoid conflicts we must give two different positions (labels, colors) to adjacent vertices of

the CCG. The number of different colors (positions) is equal to clusters size (arity). In figure 5.9,

we present a netlist example and its corresponding CCG. We suppose we have an MFPGA ar-

chitecture with 2 levels of hierarchy, arity 4, and that after cells partitioning each source has to

go to level 2 to reach its destination (To be consistent with the condition ℓup = ℓ′up). The obtained

constraints graph corresponds to a clique since the 5 vertices are mutually adjacent. In the case

described in figure 5.9, it is impossible to find a placement with no conflicts. In fact on one hand,

the maximum clique size equal to 5 presents a lower bound on the minimum number of labels

needed to color the graph. On the other hand, since clusters arity is equal to 4, we are allowed to

use only 4 different colors. The aim of the detailed placement is to reduce, as possible, conflicts

number. The remaining conflicts can be solved by instances replication (section 5.2.5) and by

using upper levels, if they exist, to route signals (section 5.3).

Simulated Annealing technique:

A detailed placement consists in assigning a position for each cell and each cluster of cells

inside its direct owner. The objective is to reduce the number of resource conflicts. By analogy to

graph coloring problem [M.R.Garey et al., 1974], we can say that instances placement is an NP-

Complete problem. We propose to use metaheuristic algorithm based on simulated annealing to

obtain a near optimal solution.

To compute the conflicts number of a specific placement, we take each vertex in the ACCG and

we check whether conditions of lemma1 are verified; if they are, the global cost function is incre-

mented by 1. Computing this cost for a specific detailed placement is given by the pseudo-code

of algorithm 5.2. The cost is updated incrementally in the sequel.

To check whether there is a resource conflict (*), we must check conditions of lemma1. To do so
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Figure 5.10: Moves range limiters

foreach vertice v do
mark vertice v visited;
foreach adjacent vertice adj of v do

if adj was not visited then

foreach pair(level, shift) do

if (*) conflict(v, adj, shift, level) then
cost++;

endif

endfch

endif

endfch

endfch

Algorithm 5.2: Incremental cost computing

we need information about the first source position, the second source position (adjacent), the

forbidden shift and the destination level. All these data are provided by the ACCG.

To find the best detailed placement combination we suggest an adaptive simulated annealing

algorithm [S.Kirkpatrick et al., 1983] [F.Aarts et al., 1985]. In this algorithm the operating param-

eters are controlled using statistical techniques.

Moves are applied randomly to the configuration and consist in assigning new positions. First

we choose randomly an element to be moved; it can be a basic cell or a cluster of cells (located

at any level). Second we choose randomly the new position inside the direct cluster owner; if

it is occupied, we swap both elements positions. The cost function is updated incrementally by

evaluating the extra cost of the moved vertices and their adjacent ones. Moving a cells cluster

is important (referring to lemma1) and can lead to cost reduction. In this case, since the ACCG

vertices correspond only to basic elements, we update the cost by visiting all basic elements of

the moved cluster and their adjacent ones.

We adopt a hard windowing move restriction approach. As presented in figure 5.10, a cell or
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a cluster can only move inside its direct owner. This restriction is important to keep constant

the partitioning result obtained by the tool described in section 5.2.3. In addition, with this re-

striction, we do not have to update the ACCG since the common receivers and the levels to use

to reach them always remain unchanged. This yields important run time reduction for the cost

updating phase.

Moves that decrease the configuration cost are always accepted, while moves that increase the

cost function are accepted with a given probability, directly related to the annealing temperature

and inversely related to the cost function variation. As annealing proceeds, the temperature is

slowly lowered.

Greedy technique:

We propose to apply a greedy iterative placement approach where only moves decreasing the

configuration cost are accepted, thus losing the hill-climbing capability which is important to

avoid local minima.

This technique is interesting, since unlike simulated annealing, it can consider an initial good

solution. In fact if we build a good initial solution, the greedy technique will improve it locally.

This significantly reduces placement run time.

The initial solution construction is described in algorithm 5.3: To find the best sub-clusters or-

while repeat do
repeat = false;
foreach level ℓ > 0 do

foreach cluster cl in level ℓ do
(*) find the best ordering of sub-clusters of cl;
update cost;
if cost is decreased then

repeat = true;
endif

endfch

endfch

endw

Algorithm 5.3: Constructed solution

dering (*), we try all combinations. Since a Cluster does not contain more than k sub-clusters,

the number of combinations will be k!. The cost is updated incrementally using ACCG data.

5.2.5 Logic replication

The idea behind logic replication consists in making copies of one or more logic cells, in order

to maintain the logical behavior of a netlist while, hopefully, enabling additional optimization.
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In figure 5.11, we consider netlist logic cell a and suppose that we have created a duplicate cell

a′. Cell a′ takes precisely the same inputs as a and produces as output exactly the same boolean

function. In this situation, the pins in the circuit that need this signal may now obtain it from

either the output of a or a′. This adds freedom and enhances routability since it enables to reach

destination cells using additional routing resources. In addition if we place the duplicate logic

block a′ inside the super cluster (owner) containing the original logic block a, we do not add

routing congestion to connect a′ inputs. In figure 5.12-a we show that, if we group a and a′

together in the same cluster, the cost of connecting the same input to cell a′ is only one local

switch and only one wire. On the other hand, as shown in figure 5.12-b, we can use a ′ routing

resources (2 more upward paths) to reach destination cells.

Consequently, logic replication must be done after original logic blocks partitioning. Thus we

have to estimate which logic blocks that need to be duplicated before partitioning, in order to

reserve vacant positions and depopulate the containing clusters. To consider this we use the

CCG graph to attribute weights to logic blocks. Logic block weight is equal to the number of

its adjacent vertices in the CCG. Vertices weights are added to the CCH hypergraph and the

partitioner distributes vertices and controls clusters population based on these informations.

Once logic blocks are partitioned between clusters, we run the detailed placement. After the

last placement iteration, we define logic blocks arrangement inside clusters and we evaluate the

number of conflicts that may occur in the first routing iteration. Using the ACCG we can easily

identify logic blocks (drivers) leading to these conflicts and duplicate them inside their cluster
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owners. When routing iterations are progressing, the router can use the duplicate logic blocks to

reach some destinations.

In figure 5.13, we take the netlist proposed in figure 5.9 and we duplicate instance S0. S0 drives

only d0 and the copy instance S′0 drives d1. In this way, the maximum clique size obtained in

the CCG, is reduced to 4, allowing to find a solution to the coloring problem. In fact, since S0 and

S4 are no more adjacent, we give them the same position 0. As shown in figure 5.13, we solved

successfully the coloring problem by giving different positions to adjacent vertices.

5.3 MFPGA routing

The routing problem can be stated as assigning signals to routing resources in order to route

all signals successfully. This goal is difficult to achieve in our architecture due to lack of routing

resources (depopulated switch boxes). In fact the number of paths to reach a destination from

a source is significantly reduced and those paths depend on the location of cells and on the

number of levels in the architecture. Thus signals will compete for the same resources and the

challenge is to find a way to allocate resources to route all signals. Paths predictability in MF-

PGA architecture presents a great advantage and simplifies the routing problem. Unlike with

the other architecture (Mesh-connected arrays, Triptych ...) there is no need defining a directed

graph to describe the routing architecture, thus reducing the routing process complexity.

To route our architecture we implemented a modified version of PathFinder [L.McMurchie and

C.Ebeling, 1995]. Since we have only one downward path to reach a destination, we eliminate the

breadth-first search in the detailed routing part. Our detailed router corresponds to a function

that determines directly the next wire to reach LB destination. Whatever corresponding feed-

back is chosen, only one path (only one next wire) can lead to destination. Since the feedback

choice sets the path to follow, our negotiation must be done on the choice of the feedback lead-

ing to a path with less congestion. Consequently, we assign an adjustable cost to each feedback.

The global router dynamically adjusts the congestion penalty for each feedback. Initially, each
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feedback has a cost equal to the level index where it is located. This confirms the interest of using

lower levels to reduce the path length and the number of switches to cross. During this iteration

individual routing resources may be used by more than one signal. During subsequent itera-

tions, the penalty for using shared resources is gradually increased so that signals will negotiate

effectively for resources. In fact, feedbacks costs for a source will change: a feedback belonging

to a higher level can get a lower cost than a feedback located in a lower level. The implemented

router is described in algorithm 5.4.

while repeat do
/*global router*/
foreach signal i do

repeat
rip up branch Bij ;
find feedback fij with lowest cost;
Bij ← fij;
repeat

find next_wire;
add next_wire to Bij;

until new tij is found ;
until all sink tij are found ;

endfch

/*backtrace*/
foreach node in Bij do

/*path from tij to si*/
Update cost of fij ;

endfch

endw

Algorithm 5.4: Adapted Pathfinder

The algorithm is based on two simple basic functions that depend strongly on our MFPGA rout-

ing architecture. The first one belongs to the global router and determines the feedback to be

used by the source to reach the destination. Knowing the source cell index, the sink cell index,

this function returns the best level to jump to, in other words the feedback with the lowest cost.

The second function belongs to the detailed router and determines the next wire to use to reach

destination knowing the actual wire index.

5.4 Timing Analysis

It is interesting to evaluate the performance of MFPGA architectures in terms of functional

speed. Thus once an application is completely placed and routed on MFPGA, we propose to
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estimate the minimum feasible clock period to run it. Since we have a Tree-connecting network,

we propose to divide a path into several sub-paths. Each sub-path connects a source to a sink

and consists in going from a source up to a particular level and then down to the sink. The num-

ber of sub-paths depends on the number of levels. The first step consists in estimating delays

on each sub-path, next we compute the delay for each path composed of several sub-paths. This

method enables us to estimate the clock frequency for applications implemented on MFPGA.

5.4.1 Sub-paths delays evaluation
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Figure 5.14: Sub-paths timing caracterisation

A sub-path connects a source to a sink and crosses several MSBs. The number of sub-paths

in the architecture is limited and depends on the number of levels. Consequently, given an ar-

chitecture with n levels, we can isolate the n different sub-paths (symmetric structure). In fig-

ure 5.14 we show the 3 isolated sub-paths of an architecture containing 3 levels. We use the

SPICE circuit simulator to obtain highly accurate delay estimation in each sub-path. Each archi-

tecture is composed of combinational sub-paths that either start from a logic block (Combina-

tional/Sequential) or from an input pad pi and end on a logic block (Combinational/Sequential)

or an output pad po. To ensure proper circuit operation, we must also take register setup-times

tset and sequential propagation delays dseq into account (Sometimes denoted as “Clock-to-Q”

delays). Classification of sub-paths and resulting delays is given below:

1. Combinational logic block → Combinational logic block

d(p) = d(switches)

2. Combinational logic block → Output-pad
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d(p) = d(switches) + d(po)

3. Input-pad → Combinational logic block

d(p) = d(pi) + d(switches)

4. Sequential logic block → Sequential logic block

d(p) = dseq + d(switches) + tset

5. Sequential logic block → Combinational logic block

d(p) = dseq + d(switches)

6. Sequential logic block → Output-pad

d(p) = dseq + d(switches) + d(po)

7. Input-pad → Sequential logic block

d(p) = d(pi) + d(switches) + tset

8. Combinational logic block → Sequential logic block

d(p) = d(switches) + tset

Delays on sub-paths depend on the length of wires connecting MSB and logic blocks. These

Figure 5.15: 4-levels symmetric MFPGA layout

lengths are extracted from the routed MFPGA layout. Figure 5.15 shows the placed symmetric

layout of a 4-levels MFPGA architecture (256 LBs). The basic tiles of the structure are:

• The LB that contains one multiplexer 16:1, one Flip-Flop and a bypass 2:1 Multiplexer,

• The MSB that contains 4 buffered multiplexers,

• The configuration Memory blocks composed of 16 SRAM cells,

• The decoder for configuration memory addressing.

These basic tiles are duplicated at each level to construct the hierarchy recursively. We abut those

tiles using a symmetric "H" planing technique.

The MFPGA prototype is targeted to 0.13µ CMOS process with 6 metal layers.
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5.4.2 Critical path extraction

Once the circuit has been placed and routed we obtain a direct graph called “routing graph”.

This graph describes wires that are used to connect logic block pins as described in the netlist.

Each wire and each logic block pin becomes a node in this “routing graph” and each passing

switch (inside the MSB) becomes a directed edge. Edges are also added between logic blocks

inputs and their outputs. Figure 5.16 shows a simple circuit implemented via 2-input LUTs and

registers, and the corresponding “routing graph”. On this graph we can isolate easily different

sub-paths through a depth-first traversal. We replace each sub-path by only one edge labeled

with the sub-path delay. We obtain a new direct acyclic graph called “timing graph”. In this
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Figure 5.16: Timing graph modeling of a simple circuit

graph nodes represent the input pins and output pins of basic circuit elements, such as registers

and LUTs. Register input pins are not linked to register output pins. Register outputs have no

edges incident to them and register inputs have no edges leaving them (acyclic graph). Simi-

larly, primary inputs (input pads) have no incident edges and primary outputs (out pads) have

no exit edges. Each edge is labeled with the delay required to pass through circuit element or

routing (sub-path delay). Figure 5.16 shows the obtained “timing graph” of the routed circuit.

One can determine the minimum required clock period with O(n) computation for a “timing

graph” with n nodes via a breadth-first traversal. This traversal begins at nodes with no inci-

dent edges (primary inputs and register outputs) and labels each one with a signal arrival time,

Tarrival, of 0. Each node which has incident edges from previously labeled nodes is then labeled

with its arrival time according to:

Tarrival(i) = maxj∈fanin(i){Tarrival(j) + delay(j, i)}

where node i is the node being labeled, and delay(j, i) is the delay value marked on the edge

joining node j to node i. This procedure continues until every node in the graph has been labeled.

Then the node with the largest arrival time, which will be always a primary output or a regis-

ter input, defines the maximum delay, Dmax (= minimum clock period), through the circuit. In

figure 5.16, for example, the arrival time at node Reg is 5.5 ns, which is the largest arrival time,
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and hence the maximum circuit delay.

5.5 Experimental results

To evaluate architecture and tools efficiency, we placed and routed several MCNC benchmark

circuits.

5.5.1 Placement techniques evaluation

First we propose to check placement techniques efficiency. Placement and routing algorithms

were run on a Pentium 4 (3 GHz) machine. To evaluate detailed placement techniques we made

experiments as shown in table 5.1. We notice the importance of the detailed placement to achieve

circuit routing. The good quality of the iterative solution is penalized by the required run time

for iterative algorithms (Simulated Annealing and Greedy). Run time is reduced with the greedy

approach, but the solution quality is significantly impaired when compared to the simulated an-

nealing approach. Note that in both cases the detailed placement is followed by logic replication

described in section 5.2.5.

Despite that the cost function is updated incrementally, the Simulated Annealing placement re-

quires substantial computing time for the following reason. The used perturbation method is

based on element moves and those elements can be clusters (groups) of logic blocks, therefore

updating the cost function requires to visit all the basic elements (on the ACCG) of the moved

cluster and this takes a large amount of time. As shown in table 5.2 we have evaluated the

effect of clusters moving on placement solution quality and run time. We observe that, by al-

lowing only logic blocks (leaves) to move we save a large amount of run time but we decrease

the resulting solution quality. This confirms the effectiveness of the conflict condition defined

in lemma1. The routing solution is degraded by about 3%, meaning that basic elements moves

are more efficient than clusters moves. Referring to lemma1 a cluster position can, on the one

hand, be beneficial to reduce conflicts caused by some leaf sources, but on the other hand, it can

introduce conflicts to others. Thus cluster moving efficiency is penalized by the high number of

conflicts (between leaf sources) depending on its position. As described previously the detailed

placement objective is to reduce the number of resource conflicts that occur in the first rout-

ing iteration (I-R% : the Initial percentage of Routed branches). This estimated value is verified

when we run the first routing iteration. As shown in table 5.1, we also notice that starting from

a good initial solution leads the iterative router to achieve better final results (F-R% : the Final

percentage of Routed branches). This clearly confirms that in MFPGA architecture, the routing

problem must be treated in early stages and especially in the detailed placement.

We notice that we fail to route circuit benches with high occupancy ratio (more than 80%). This

was expected, since in MFPGA architecture, to avoid congested regions, we propose to com-

pensate the depopulated interconnect by a decreased logic blocks occupancy ratio allowing in-

stances replication.
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Benchmark Sim-Annealing Greedy Arch

Circuit LUTs I-R% F-R% R-Time I-R% F-R% R-Time Levels Occup-%

(mn) (mn) ancy

alu4 584 99 100 0.9 97 100 0.3 4x4x4x4x4 55

C5315 725 96 100 1.2 94 99 0.7 4x4x4x4x4 69

C7552 881 90 96 1.3 85 93 0.7 4x4x4x4x4 86

tseng 1047 98 100 10 96 100 6 4x4x4x4x4x2 51

ex5p 1064 95 100 60 90 96 32 4x4x4x4x4x2 51

apex4 1262 97 100 100 97 100 45 4x4x4x4x4x2 61

dsip 1370 97 100 20 93 100 9 4x4x4x4x4x2 66

misex3 1397 95 100 70 91 95 34 4x4x4x4x4x2 68

diffeq 1497 96 100 43 92 97 19 4x4x4x4x4x2 73

bigkey 1707 95 100 42 93 97 39 4x4x4x4x4x2 80

apex2 1878 90 94 120 86 91 65 4x4x4x4x4x2 90

s298 1931 92 96 93 90 95 40 4x4x4x4x4x2 94

frisc 3556 89 93 220 84 90 100 4x4x4x4x4x4 86

spla 3690 88 93 255 80 85 110 4x4x4x4x4x4 90

Table 5.1: Detailed placement techniques evaluation

Bench No Clusters Moving Clusters Moving

Circuits I-R F-R R-Time I-R F-R R-Time

% % (mn) % % (mn)

alu4 96 100 0.4 99 100 0.9

C5315 94 98 0.7 96 100 1.2

C7552 88 95 0.6 90 95 1.3

tseng 95 98 1 98 100 10

ex5p 92 100 3 95 100 60

apex4 93 97 7.5 97 100 100

dsip 96 100 2 97 100 20

misex3 93 98 2.5 95 100 70

diffeq 93 100 3.5 96 100 43

bigkey 95 97 4 96 100 42

apex2 86 93 10.5 90 94 120

s298 89 90 10 92 96 93

frisc 88 87 15 89 93 220

spla 86 90 17 88 93 255

Table 5.2: Clusters Moving effect
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Mesh MFPGA

Bench Switches Area(λ2) N Switches Area(λ2)

number x103 number x103

alu4 81926 207423 13 106496 299008

C5315 220004 555362 19 106496 299008

tseng 210014 531058 17 253952 679936

ex5p 315084 785075 17 253952 679936

apex4 329894 822706 19 253952 679936

dsip 396504 1009107 27 253952 679936

misex3 353376 882555 20 253952 679936

diffeq 332324 836917 20 253952 679936

bigkey 337062 864003 27 253952 679936

AVER 286243 721578 221184 595285

Table 5.3: Area Comparison: MFPGA vs Mesh

5.5.2 Density performances

We use the same benchmark circuits to compare switch and area requirements between MFPGA

architecture and clustered Mesh topology (NxN clusters). We use RFPGA, which were described

in chapter 3, as reference Mesh-based architecture. We use t-vpack [A.Marquart et al., 1999] to

construct clusters and the channel minimizing router VPR 4.3 [V.Betz et al., 1999] to route the

Mesh. VPR chooses the optimal size as well as the optimal channel width needed to place and

route each benchmark.

We compare the areas of both architectures using successively a simple cost model based on

routing switches count, and a more refined model that estimates effective circuit area. The Mesh

area is the sum of its basic cells areas like SRAMs, Tri-states and multiplexers. The same evalua-

tion is made for MFPGA, composed of SRAMs, multiplexers and buffers. We use the same cells

library, described in chapter 3, for both architectures.

In table 5.3 we show that we can implement several circuits on MFPGA using a smaller area than

with Mesh architecture. The area reduction is about 17.5%. We notice that in some cases (“tseng”

and “alu4” circuits) MFPGA is penalized by its very low occupancy ratio. We also, notice that

despite the effort deployed in the placement phase, several circuits are unroutable using MF-

PGA resources. This means that the proposed architecture cannot deal with highly congested

netlists and especially in the case of high logic occupancy (>75%).

5.5.3 Speed performances

It is clear from previous comparison that MFPGA architecture is more efficient in terms of area

and this has a positive effect on circuit speed: the smaller the area, the shorter the connecting

wires. In addition the speed of a net is determined by the number of routing switches it must
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Circuit LUTs Mesh MFPGA

T(ns) T(ns)

pcle 29 6.1 4.34

decod 32 5.36 3.56

cc 33 6.5 4.25

count 37 8.55 7.78

b9 61 10.77 6.98

i4 110 11.14 6.03

c2670 363 19.95 9.97

i9 471 15.67 10.90

alu4 584 20.9 11.26

C5315 725 24.63 15.17

Average 245 12.95 8.02

Table 5.4: Speed Comparison (0.13µm CMOS, 1.2V )

cross. In a Mesh structure, the number of segments in series increases linearly with the manhat-

tan distance, between the logic blocks to be connected. An advantage of a Tree connectivity is

that the number of switches in series in a route connecting two logic blocks increases as a loga-

rithmic function of the manhattan distance.

We compared the speed of MFPGA architecture to the Mesh. We implemented the same circuits

and we used our timing analyzing tool for MFPGA (section 5.4) and the one proposed in VPR

for the Mesh (note: we applied a VPR timing-driven placement and routing). Timing results are

presented in table 5.4. In this comparison we only used small benches (< 1024 BLEs). In fact we

have only generated architectures layouts (16, 64, 256 and 1024) and, as explained in section 5.4,

layout information (wires lengths) is important for sub-paths delay characterization. We notice

that MFPGA largely outperforms clustered Mesh architecture (40%) in terms of speed despite

we did not integrate timing driven techniques yet. Nevertheless, we expect that the gain ratio

will decrease for larger benchmark circuits. This is due to the high fanout of the upward network

signals, which increases when we add more hierarchical levels.

5.6 Conclusion

This chapter describes a new hierarchical multilevel FPGA architecture and its suitable configu-

ration tools. The preliminary results show that good LUT and interconnect utilization balancing,

reduces area compared with traditional Mesh architectures.

The new topology based on two hierarchical unidirectional networks seems to be robust and

can achieve better speed than Mesh-based FPGA architectures. The downward network is a

predictable interconnect which has a very interesting impact on accelerating the routing phase.

The routing key of the proposed architecture is the upward network. Enhancing routability leads
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to populate the upward network to increase path number between LBs. This can increase area,

but may be compensated by controlling clusters signals bandwidth based on Rent’s rule.



6
Tree-based FPGA with optimized switch

boxes and signals bandwidth

Based on previous investigations, we conclude that optimizing separately clusters switch boxes

and signals bandwidth is not efficient to improve density and to deal with highly congested

netlists. Thus, we propose an architecture where we can control simultaneously switch boxes

depopulation and signals bandwidth reduction. Improvement essentially concerns the upward

network of MFPGA architecture presented in the previous chapter.

This chapter is organized as follows. First, we present the improved upward network. We eval-

uate switches and wiring requirement based on Rent’s Rule. Then, we present the developed

configuration flow to implement benchmark circuits on the architecture. Finally, we evaluate

MFPGA density efficiency compared to the Mesh-based architecture.

6.1 Interconnect Improvement

In the previous chapter a hierarchical Multilevel FPGA architecture (MFPGA) was designed and

experimentally evaluated. This architecture unifies 2 unidirectional networks. The downward

network has a "Butterfly Fat Tree" topology and allows to connect switch blocks to LBs (leaves)

inputs. The upward network uses a limited connectivity Tree to connect LBs outputs to Switch

Blocks. While providing good density and some interesting features like an almost predictable

routing once the placement is defined, this approach revealed some drawbacks hindering highly

congested netlists routing:

• The very depopulated upward network, which only allows each LB output to reach any

97
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Figure 6.1: Tree-based interconnect: upward and downward networks

destination through paths as the number of levels in the hierarchy, is detrimental for highly con-

gested netlists.

• The placement of clusters (or LBs) inside their owner cluster critically controls available

routing resources, thus limiting freedom to re-arrange them and making impossible to construct

carry chains in this type of architecture.

• Rent’s growth rate (p = 1) is very penalizing in terms of wiring requirement. Intercon-

nect wiring takes space and dominates the array size. The wiring topology should be chosen to

balance interconnect bandwidth with array size and expected design interconnect requirement.

Thus we really need to control clusters signals bandwidth based on Rent’s rule.

• In the upward network an LB output fanout depends on the number of levels. Thus in a

large architecture with high levels number, performance may be penalized in terms of delays.

Switching can be used to improve flexibility (more stop-off points) and to reduce fanout on a

feedback line by segmenting tracks .

To alleviate those weaknesses we propose to add routing flexibility by modifying specifically

the upward network. We propose, as shown in figure 6.1, to add Upward Mini Switch Boxes

(UMSB). These UMSBs allow LBs outputs to reach a larger number of Downward MSBs (DMSBs)

and to reduce fanout on feedback lines. The UMSBs are organized in a way that allows logic

blocks (LBs) belonging to the same “owner cluster” (at level 1 or above) to reach exactly the

same set of DMSBs at each level. Therefore, we can ensure the following points:

- Pads, clusters or logic blocks positions inside the direct owner cluster become equivalent

and re-arranging them is unnecessary.

- The interconnect offers more routing paths to connect a net source to a given sink. In this

case we are more likely to achieve highly congested netlists routing. In fact, while in the previ-

ous architecture each LB output had only one reachable DMSBs per level, with the new upward

network, LBs can negotiate with their siblings the use of a larger number of DMSBs. This is more

efficient for mapping netlists since instances may have different fanout sizes. For example in fig-
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ure 6.1, an LB ouput can reach all 4 DMSBs of its owner cluster at level 1 and all the 16 DMSBs

of its owner cluster at level 2.

- By adding UMSBs, long wire segments with high fanout are eliminated. There are no more

wires spanning more than one level.

6.2 Interconnect Depopulation

When we add UMSBs in the upward network, the number of architecture switches increases.

This can be compensated by reduction of in/out signals bandwidth of clusters at every level. In

fact Rent’s rule [B.Landman and R.Russo, 1971] is easily adapted to Tree-based structure:

IO = c.kℓ.p (6.1)

Where ℓ is a Tree level, k is the cluster arity, c is the number of in/out pins of an LB and IO the

number of in/out pins of a cluster situated at level ℓ.

Intuitively, p represents the locality in interconnect requirements. If most connections are purely

local and only few of them come in from the exterior of a local region, p will be small. In Tree-

based architecture, both the upward and downward interconnects populations depend on this

parameter. As shown in figure 6.2, we can depopulate the routing interconnect by reducing from

16 to 10 the number of inputs in each cluster of level 1 and outputs from 4 to 3 (p = 0.73). This

induces a reduction from 16 to 10 of the number of DMSBs in each cluster of level 2 and the

UMSBs number from 4 to 3. In this case, if we consider an architecture with 2 levels of hierarchy,

we get a reduction of the interconnect switches number from 521 to 368 (28%). By doing so the

architecture routability is reduced too. Thus we have to find the best tradeoff between intercon-

nect population and logic blocks occupancy. Dehon showed in [A.DeHon, 1999] that the best

way to improve circuit density is to balance logic blocks and interconnect utilization. In MFPGA

architecture, the logic occupancy factor is controlled by N , the leaves (LBs) number in the Tree.

N is directly related to the number of levels and the clusters arity k. In most cases N is larger

than the number of netlists instances. This means that in these cases we have a low logic utiliza-

tion. This is not really penalizing since it can be compensated by a high interconnect utilization.

In other words, the area overhead due to unused LBs is compensated by congestion spreading

and interconnect reduction.

6.3 Connection with Outside

As shown in figure 6.1, output and input pads are grouped into specific clusters. The cluster size

and the level where it is located can be modified to obtain the best design fit. Each input pad is

connected to all UMSBs of the upper level. In this way each input pad can reach all LBs of the

architecture with different paths.

Similarly, output pads are connected to all DMSBs of the upper level; in this way they can be
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Figure 6.2: Tree-based interconnect depopulation using Rent’s rule (level 1 with p =

0.73)

reached from all LBs through different paths. As one can notice, in/out pads have higher inter-

connection flexibility than LBs.

For example we consider frisc netlist which contains 3556 LBs, 20 input pads and 116 output

pads. The Tree architecture with 4 arity clusters and 6 hierarchical levels (4096 LBs) fits to this

netlist. If input/output pads clusters are located at level 2 (256 clusters) every one contains 1

input/output pad. If we place input/output pads clusters in level 3 (64 clusters), every input

cluster contains 1 input and every output cluster contains 2 outputs in order to fit to the netlist.

6.4 Rent’s Rule Based Model

Based on Rent’s rule presented in equation (6.1), we evaluate the Tree architecture switches

requirement to connect LBs.

6.4.1 Switches requirement

We model upward and downward networks separately:

Downward network:

We note:

- Nin(ℓ) the number of inputs of a cluster located at level ℓ.

- Nout(ℓ) the number of outputs of a cluster located at level ℓ.

- cout the number of outputs of an LB.

- cin the number of inputs of an LB.
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- k clusters arity (size).

Clusters located at level ℓ contain Nin(ℓ − 1) DMSB with k outputs and Nin(ℓ)+kNout(ℓ−1)
Nin(ℓ−1) inputs.

As we assume that the DMSB are full crossbar devices, we get k(Nin(ℓ) + kNout(ℓ− 1)) switches

in the switch box of a level ℓ cluster. Since we have N
kℓ clusters in level ℓ, we get a total number

of switches, related to the downward network, given by:

logk(N)
∑

ℓ=1

k × N × Nin(ℓ) + kNout(ℓ − 1)

kℓ

Nout(0) = cout is the number of outputs of a Basic Logic Block. Following equation (6.1), we

get Nin(ℓ) = cin.kℓ.p and Nout(ℓ − 1) = cout.k
(ℓ−1)p. The total number of switches used in the

downward network is:

Nswitch(down) = N × (kpcin + kcout) ×
logk(N)
∑

ℓ=1

k(p−1)(ℓ−1)

Upward network:

Clusters located at level ℓ contain Nout(ℓ − 1) UMSB with k inputs and k outputs. As we as-

sume that UMSB are full crossbar devices, we get k2 × Nout(ℓ − 1) switches in the switch box of

a level ℓ cluster. As we have N
kℓ clusters at level ℓ we get the total number of switches, related to

the upward network:
logk(N)
∑

ℓ=1

k2 × N

kℓ
× Nout(ℓ − 1)

Nout(0) = cout is the number of outputs of a Basic Logic Block. Following (6.1), we get Nout(ℓ −
1) = cout.k

(ℓ−1)p.

The total number of switches used in the upward interconnect is:

Nswitch(up) = N × k × cout ×
logk(N)
∑

ℓ=1

k(p−1)(ℓ−1)

The total number of Tree-based interconnect switches is

Nswitch(Tree) = Nswitch(down) + Nswitch(up)

Nswitch(Tree) = N × (kpcin + 2kcout) ×
logk(N)
∑

ℓ=1

k(p−1)(ℓ−1)

The number of switches per Logic Block is:

Nswitch(LB) = (kpcin + 2kcout) ×
logk(N)
∑

ℓ=1

k(p−1)(ℓ−1)
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Figure 6.3: Interconnect switches distribution

Nswitch(LB) =

{

(kpcin + 2kcout) × 1−Np−1

1−kp−1 if p 6= 1

(kpcin + 2kcout) × logk(N) if p = 1

Nswitch(LB) =

{

O (1) if p < 1

O (logk(N)) if p = 1
(6.2)

The cost of adding the upward can be compensated by reducing the architecture Rent’s param-

eter. In addition we notice that the number of the upward network switches is smaller than the

switches number in the downward network:

Nswitch(down)

Nswitch(up)
=

kpcin + kcout

k × cout

With p = 1, k = 4, cin = 4 and cout = 1 this ratio is equal to 5. In figure 6.3, we show the

distribution of interconnect resources between the upward and the downward networks for

different Tree sizes (we include in/out pads connections).

6.4.2 Wiring Requirements

At each level ℓ of the hierarchy, every switching node has nin(ℓ) inputs and nout(ℓ) outputs. This

makes the bisection width equal to (cin + cout)k
ℓ.p. Since ∀ℓ ∈ {1, . . . , logk(N)} kℓ.p ≤ N , the

bisection width is O(N p). For a 2-dimensional network layout this bisection width must cross

the perimeter out of the subarray. Thus the perimeter of each subarray is O(N p). The areas of

the subarray will be proportional to the square of its perimeter, making: Asubarray ∝ N2p. The

required area per logic block (LB) based on wiring constraints, is therefore evaluated by:

ALB ∝ N2p−1

Unlike, the architecture discussed in the previous chapter, with the new MFPGA architecture we

can control bisection bandwidth in each level based on Rent’s parameter (p < 1). Consequently,

physical layout generation may be much optimized since wiring is no more dominant.



6.5. Configuration Flow 103

6.4.3 Comparison with Mesh Model

Concerning switches per logic block growth, it was established in [A.DeHon, 1999] that in the

Mesh architecture:

Nswitch(LB) = O(Np−0.5) (6.3)

Equations (6.2) and (6.3) show that in the MFPGA architecture, switches requirement grows

more slowly than in common Mesh architecture. These results are encouraging for constructing

very large structures, especially when p is less than 1. But this does not mean that our Tree-

based topology is more efficient than Mesh-based architecture, since they do not have the same

routability. The best way to check this point is through experimental work. Based on benchmark

circuits implementation, we compare the resulting areas in the case of Tree-based and the VPR

clustered Mesh FPGA.

6.5 Configuration Flow

To explore the modified architecture we must adapt the configuration flow. Since logic blocks

positions inside the owner cluster are equivalent, the detailed placement phase (Arrangement

inside clusters) is eliminated.

6.5.1 Multilevel Partitioning

The way how logic LBs are distributed between Tree clusters has an important impact on con-

gestion. It is worthwhile to reduce external communications, since local connections are cheaper

in terms of delay, but also in terms of routability, as it allows to get more levels (more paths) for

connecting sources to destinations. Another way to decrease congestion consists in eliminating

competition between nets sources reaching their sinks. This can be achieved by depopulating

clusters based on netlist instances fanout. Instances with high fanout need more resources to

reach their sinks. Thus in the partitioning phase, instances weights are attributed according to

their fanout size.

We use a top-down recursive partitioning approach. First, we construct the top level clusters,

then every cluster is partitioned into sub-clusters, until the bottom of the hierarchy is reached.

6.5.2 Routing

Once the netlist is partitioned into a Tree of nested clusters, we attribute randomly to every clus-

ter a position inside its owner (no detailed placement is required). The routing problem consists

in assigning the nets that connect placed logic blocks to routing resources in the interconnect

structure. The new topology of the upward interconnect adds extra paths to connect a LB to

a destination but eliminates the predictability property. Hence we must model the routing re-

sources as a directed graph abstraction G(V,E). As illustrated in figure 6.4, the set of vertices V

represents the in/out pins of logic blocks and the routing wires in the interconnect structure. An
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Figure 6.4: Routing graph
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edge between two vertices represents a potential connection between the two vertices. The rout-

ing algorithm we implemented is “PathFinder” [L.McMurchie and C.Ebeling, 1995], which uses

an iterative, negotiation-based approach to successfully route all nets in a netlist. During the

first routing iteration, nets are freely routed without paying attention to resource sharing. Two

terminal nets are routed using Dijkstra’s shortest path algorithm [T.Cormen et al., 1990], and

multi-terminal nets are decomposed into terminal pairs by the Prim’s minimum-spanning tree

algorithm [T.Cormen et al., 1990]. At the end of an iteration, resources can be congested because

multiple nets use them. During subsequent iterations, the cost of using a resource is increased,

taking into account the number of nets that share the resource, and the history of congestion on

that resource. Thus, nets are made to negotiate for routing resources.

To speed up graph-based search we use the following techniques:

- A∗ algorithm: The A∗ algorithm speeds up routing by reducing the search space of Dijk-

stra’s algorithm. The search space is reduced by preferentially expanding the search wave-

front in the direction of the target node. When the search is expanded around a given wire,

the routing algorithm expands the search through the neighbor wire that is nearest the tar-

get node. This form of directed search is accomplished by increasing the cost of routing
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Figure 6.6: MFPGA architecture evaluation flow

wire with a calculated estimate of the cost to the target node. The cost from a node n to the

target is easily estimated thanks to hierarchy. In fact by knowing the level where node n

(wire) is located, we can determine exactly the minimum number of nodes to cross in the

routing graph to reach a target node.

- Hierarchy properties: If we look carefully to the target node position we notice that from

a source wire some paths can never reach it. As shown in figure 6.5, if we want to connect

src wire to the target LB, we notice that there is only one path from the src to the target.

The idea is to prune useless node in the graph expansion phase and consequently reducing

search effort. In the case of figure 6.5, only wire Next1 allows to reach the target LB. This

information is available to us since we know that this wire belongs to the owner cluster

(cluster 1) of the target LB.

6.6 Experimental Evaluation

To evaluate the proposed architecture and tool performances, we place and route the largest

MCNC benchmark circuits, and consider as a reference the optimized clustered Mesh (VPR-

style) architecture. This reference architecture RFPGA was described in chapter 3. We use t-

vpack [A.Marquart et al., 1999] to construct clusters and the channel minimizing router VPR

4.3 [V.Betz and J.Rose, 1997] to route it. VPR determines the optimal size as well as the optimal

channel width W to place and route each benchmark circuit.
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6.6.1 Tree-based architecture optimization

First, we evaluate the efficiency of the new Tree-based architecture to implement MCNC bench-

mark circuits. With the previous MFPGA architecture (previous chapter), several MCNC circuits

were unroutable. As shown in table 6.3, we achieved all the 21 benchmarks routings. This illus-

trates the improvement in routing flexibility provided by the new upward network.

As explained in section 6.2, MFPGA routability and switches number depend on 2 parame-

ters: p (architecture Rent’s parameter) and N (number of LBs in the architecture which defines

occupancy ratio). To find the best tradeoff between device routability and switches (area) re-

quirement, we explore MFPGA architectures with various N and p parameters. The purpose is

to find for each netlist, the architecture with the smallest area that can implement it. N depends

on Tree levels number and clusters arity. For a specific clusters arity, we determine the smallest

levels number to implement the circuit. With our tools we can consider, in the same architec-

ture, different p values at each level. Clusters located at the same level have the same Rent’s

parameter. In the case of Mesh, VPR adjusts the channel width W and for the Tree-based inter-

connect, we adjust Rent’s parameters at every level in order to obtain the smallest architecture

fitting every benchmark circuit. Like VPR which applies a binary search to find the smallest ar-

chitecture channel width, we apply to each level a binary search to determine the smallest Rent’s

parameter. Depending on levels order processing we distinguish 3 different approaches:

- Bottom-up approach: As shown in figure 6.6 a), we start by optimizing the lowest level

up to the highest one. To each level we apply a binary search to determine the smallest

input/output signals number allowing to route the benchmark circuit.

- Top-down approach: As shown in figure 6.6 b), we start by optimizing the highest level

down to the lowest one. To each level we apply a binary search to determine the smallest

input/output signals number allowing to route the benchmark circuit.

- Random approach: All levels are optimized simultaneously. We choose a level randomly,

we decrease its input/output signals number, depending on the previous result obtained

in this level; then we move to an other level. In this way we move randomly from a level

to another until all levels are optimized.

The 3 approaches have the same objective and aim at reducing clusters signals bandwidth for

every level. The difference is the order in which levels are processed. In table 6.1, we show ar-

chitecture Rent’s parameter (in each level) obtained with each technique. The first column of the

table shows Rent’s parameters, at each level, obtained after circuits partitioning. Results corre-

spond to averages of all 21 circuits. We notice that in all cases, architecture Rent’s parameters are

larger than partitioned circuits Rent’s parameters. This is due to the depopulated switch boxes

topology. In fact, to solve routing conflicts, a signal may enter from 2 different DMSB to reach 2

different destinations located at the same cluster. In figure 6.7 we show an example of a parti-

tioned netlist to place and route on an architecture with LBs inputs number equal to 2 (2 DMSBs

in each cluster located at level 1) and clusters size equal to 4. As shown in figure 6.7, if each signal

enters from only one DMSB, we cannot solve conflicts. To deal with such problem we propose to
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Level Circuits Architecture Architecture Architecture
partitioning top-down bottom-up random

1 0.64 0.98 0.79 0.88
2 0.55 0.88 0.74 0.79
3 0.50 0.80 0.77 0.76
4 0.49 0.75 0.86 0.73
5 0.45 0.59 0.87 0.7

Table 6.1: Levels Rent’s rule parameters

DMSBDMSB

d1 d3d2

DMSBDMSB

s0

s2

b) Routed netlist with conflict c) Routed netlist with no conflict

d1d1

d2

d3
d1 d3d2

a) Partitioned netlist

cut = 3

s1
s1 s1s0 s0s2

conflict
s0/s2

s0 s2

Figure 6.7: A netlist routing example

Figure 6.8: Overhead between Architecture and partitioned netlist Rent’s parameters
(21 benchmark avg.)
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Optimizing Area (λ2) Critical path
approach ×106 switches
Top-down 1498 98
Bottom-up 1326 106
Random 1221 101

Table 6.2: Area and performance comparison between various optimizing approaches

enter the signal driven by S0 from two different DMSBs. Thus, the resulting architecture cluster

degree is equal to 4, whereas the corresponding part degree is equal to 3 (number of crossing

signals).

In figure 6.8, we show the average overhead between partitioning and architecture Rent’s pa-

rameters with each optimizing approach. We notice that in the case of the top-down (bottom-up)

approach, overhead increases when we go down (up) in the Tree. This was expected since the

top-down (bottom-up) approach first optimizes high (low) levels. With the random approach,

we notice that levels overheads are balanced.

We compared the resulting architectures (with the 3 approaches) in terms of area and speed

performance. Average results are shown in table 6.2. We notice that with the random approach

we obtain the smallest area (22% less than Top-down and 8% less than bottom-up). This means

that optimizing levels simultaneously allows avoiding local minima and obtaining a balanced

congestion distribution over levels. The bottom-up approach provides a smaller area than the

top-down one. Nevertheless, it is penalizing in terms of critical path switches number (8% more

switches than top-down approach). In fact starting by optimizing low levels means that local

routing resources are intensively reduced and signals are routed with resources located at higher

levels. Consequently, signals routing uses more switches in series.

To reduce the gap between circuit and architecture Rent’s parameters, we must improve the par-

titioning tool and especially the objective function in order to reduce congestion and resources

(clusters inputs) required to route signals.

6.6.2 Area Efficiency

We compare MFPGA to the Mesh-based architecture in terms of area efficiency. In both cases

we consider architectures with clusters arity 4 and LUT size 4. We determine in each case the

smallest architecture implementing every benchmark circuit. As shown in table 6.3, in the case

of Mesh we use VPR to find the smallest channel width and in the case of MFPGA we use the

random optimizing approach described in the previous section to determine the smallest levels

Rent’s parameters.

In table 6.4, we observe that the Tree-based architecture has a better density and can imple-

ment circuits with lower switches number than the Mesh-based architecture. An average 59%

reduction of the switches number is achieved. We achieve a 42% switches reduction with alu4
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MCNC Clustered Mesh Tree architecture

benchmarks cluster size 4

Circuits LUTs IN OUT Arch Occup Channel Architecture Occup Routed

Names Number Pads Pads NxN % Width levels % signals %

alu4 584 14 8 13x13 86 32 4x4x4x4x4 57 100

apex2 1878 39 3 23x23 88 40 4x4x4x4x4x2 91 100

apex4 1262 9 19 19x19 87 42 4x4x4x4x4x2 61 100

ava 14964 11 74 64x64 91 63 4x4x4x4x4x4x4 91 100

bigkey 1707 263 197 21x21 96 28 4x4x4x4x4x2 83 100

clma 8383 61 82 47x47 94 51 4x4x4x4x4x4x4 51 100

des 3235 256 245 29x29 96 29 4x4x4x4x4x4 78 100

diffeq 1497 64 39 20x20 93 29 4x4x4x4x4x2 73 100

dsip 1370 229 197 19x19 95 31 4x4x4x4x4x2 67 100

elliptic 3604 131 114 31x31 94 41 4x4x4x4x4x4 87 100

ex1010 4589 10 10 35x35 93 43 4x4x4x4x4x4x2 56 100

ex5p 1064 8 63 17x17 92 44 4x4x4x4x4x2 51 100

frisc 3556 20 116 30x30 98 45 4x4x4x4x4x4 86 100

misex3 1397 14 14 20x20 87 36 4x4x4x4x4x2 68 100

pdc 4575 16 40 35x35 93 61 4x4x4x4x4x4x2 55 100

s298 1931 4 6 23x23 91 27 4x4x4x4x4x2 94 100

s38417 6406 29 106 41x41 95 37 4x4x4x4x4x4x2 78 100

s38584 6447 39 304 41x41 96 36 4x4x4x4x4x4x2 78 100

seq 1750 41 35 22x22 90 40 4x4x4x4x4x2 85 100

spla 3690 16 46 31x31 96 53 4x4x4x4x4x4 90 100

tseng 1047 52 122 17x17 90 27 4x4x4x4x4x2 51 100

Average 2567 78 87 92 38 74 100

Table 6.3: Netlists and architectures characteristics
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MCNC Clustered Mesh Tree architecture Gain

Cluster size 4

Circuits SW SRAM Area (λ2) SW SRAM Area (λ2) SW SRAM Area (λ2)

×103 ×103 ×106 ×103 ×103 ×106 % % %

alu4 100 74 319 47 43 182 53 41 42

apex2 506 375 1541 173 127 565 65 66 63

apex4 359 267 1092 138 103 466 61 61 57

ava 3570 2326 10131 1428 1047 4661 60 55 54

bigkey 349 253 1056 129 101 450 63 60 57

clma 2541 1879 7672 1031 821 3614 59 56 52

des 667 487 2047 326 247 1087 51 49 46

diffeq 307 226 954 121 108 445 60 52 53

dsip 310 224 934 143 107 484 52 48 46

elliptic 944 701 2883 326 247 1087 65 48 62

ex1010 1234 915 3763 515 410 1804 58 55 52

ex5p 305 224 915 134 103 460 56 54 49

frisc 952 811 3287 346 254 1134 63 68 65

misex3 354 263 1085 150 113 502 53 53 50

pdc 1636 1207 4889 714 523 2329 56 56 52

s298 380 280 1192 121 108 445 68 61 62

s38417 1508 1126 4662 493 439 1807 67 60 61

s38584 1501 1113 4590 535 452 1898 64 59 58

seq 463 343 1411 163 123 541 64 64 61

spla 1144 847 3448 428 299 1350 62 64 60

tseng 216 157 665 110 90 370 41 36 33

Average 920 670 2787 411 314 1221 59 55 56

Table 6.4: Tree vs. clustered VPR-style Mesh
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Figure 6.9: MFPGA area vs Mesh area (21 benchmark circuits)

Figure 6.10: Area distribution between interconnect resources and logic blocks

(smallest circuit), and 60% with ava (largest circuit). This confirms that Tree-based interconnect

is very attractive for both small and large circuits.

We compare the areas of both architectures using a refined estimation model of effective circuit

area. The Mesh area is the sum of its basic cells areas like SRAMs, Tri-states and Multiplexers.

The same evaluation is made for the Tree, composed of SRAMs and Multiplexers. Both archi-

tectures use the same symbolic cells library. As presented in figure 6.9, in all cases, the required

Tree area is smaller than the Mesh one. On the average with the Tree architecture we save 56%

of the total area.

The Tree architecture efficiency is due essentially to the ability to control simultaneously logic

blocks occupancy and the interconnect population, based on LBs number N and architecture

Rent’s parameter p respectively. For example in the case of apex2 circuit, we used an architecture

with a high logic occupancy (91%) and a high Rent’s parameters as shown in table 6.5. In the case

of tseng circuit, we have a low occupancy (51%) and we achieve routability with a low architec-

ture Rent’s parameters as illustrated in table 6.5. This confirms that we can balance interconnect
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Circuits Level 1 Level 2 Level 3 Level 4 Level 5
apex2 1 0.89 0.86 0.84 0.77
tseng 0.79 0.79 0.79 0.72 0.67

Table 6.5: Levels Rent’s parameters for 2 circuits

LB LB LBLB LB LB LB LB

LB LB LB LB LB LB LB LB

8 LBs grouped into 2 clusters (Arity 4)
Multiplexers 5:1 / 296 switches / 108 wires

8 LBs grouped into the same cluster (arity 8)
Multiplexers 10:1 / 484 switches / 80 wires

Figure 6.11: MFPGA architectures with different arity factors

and logic blocks utilization thanks to logic occupancy decreasing and congestion spreading. In

fact we have a 20% lower LBs occupancy than Mesh case, the logic extra area allows us to better

exploit interconnect. The Tree high-interconnect/low-logic utilization approach is just opposed

to the high logic utilization approach that has been adopted for Mesh-based FPGA. As shown

in figure 6.10, unlike Mesh case where interconnect occupies 90% of the overall area, in Tree-

based architecture interconnect occupies 73%. In this case logic area is increased by 20% and

interconnect area is reduced by 69%.

6.6.3 Clusters Arity Effect

As one can notice, we considered in table 6.3 Tree architecture with clusters arity equal to 4. To

get an idea about arity effect on architecture density and speed performances, we vary clusters

arity and evaluated for every benchmark circuit the required switches and wires number and

the resulting critical path. Since we have no information about layout characteristics, to evaluate

performances, we used a simple model based on evaluation of the number of switches crossed

by the critical path. This estimation consists in determining the longest path in terms of switches

(ignoring wires delays). The extraction of the longest path were described in section 3.2.5.

We notice that when we increase clusters arity, the required switches number increases. When

clusters arity increases, the required multiplexers grow larger and consequently the bound on

area efficiency goes down. For example as shown in figure 6.11, in the case of architecture with
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Clusters Arity
Increasing

Figure 6.12: Varying multiplexers sizes and numbers

Figure 6.13: Clusters arity effect on switches number

Figure 6.14: Clusters arity effect on critical path crossed switches
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Figure 6.15: Clusters arity effect on wires number (<=> Muxes number)

clusters arity 4 we use muxes 4:1 and muxes 5:1. With clusters arity 8, we use muxes 8:1 and

muxes 10:1. As shown in figure 6.13, switches number is increased by 23% when we increase

clusters arity from 4 to 8.

When we increase clusters arity, the architecture levels number decreases. Consequently mul-

tiplexers sizes increase and their total number decreases. Thus the total number of wires de-

creases. For example, as shown in figure 6.15, wires number is reduced by 32% when we increase

clusters arity from 4 to 8. As shown in figure 6.12, FPGAs use unidirectional buffers nowadays.

According to [S.Kaptanoglu, 2007], buffers and SRAM are the major factors behind static power

dissipation. By increasing clusters arity we can reduce multiplexers number and consequently

buffers number without reducing routability.

In terms of performance we notice, as shown in figure 6.14, that the number of switches crossed

by the critical path decreases when we increase arity. With larger clusters arity, we can absorb

larger number of nets, and communication becomes local. For example when we increase clus-

ters arity from 4 to 8, the crossed switches number in the critical path is reduced by 27%.

The choice of clusters arity must be consistent with the application specifications and con-

straints. For applications requiring high speed performance and low power dissipation, it is

recommended to use clusters with high arity (8-16). If we need to reduce silicon area, using

small clusters arities seems to be more efficient.

6.6.4 LUT Size Effect

In this section we evaluate the effect of LUTs size k (number of LUT inputs) on MFPGA perfor-

mances. Mapping is the phase where logic gates are transformed into k-bounded cells. When k

increases the size of LUTs increases and their number decreases. Thus, as shown in [E.Ahmed

and J.Rose, 2000], the effect of k increasing is not predictable and can only be determined by

experimentation.

Our experimentation is based on generating circuits with LUTs sizes ranging from 3 to 7 and
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Figure 6.16: Total area for clusters sizes 4-8 (21 benchmark avg.)

Figure 6.17: LUTs number and LUT area versus LUT size (for cluster arity = 4)
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Figure 6.18: Critical path switches number clusters sizes 4-8 (21 benchmark avg.)

implementing them on MFGA with these LUTs sizes and clusters arities ranging from 4 to 8.

First, as shown in figure 6.16, we evaluate the effect of LUTs size changing on MFPGA area.

Results correspond to the average area of all the 21 largest circuits. We notice that initially there

is a reduction in area between 3-LUT and 4-LUT and afterwards there is an increase in area with

the rise in LUT and cluster size. It can be noted that architecture with LUT size 4 and cluster size

4 gives overall most efficient average area for benchmark circuits. The bad effect of cluster size

increase on area confirms results and discussions made in the previous section.

The total area can be broken into two parts, the logic block area and interconnect area. From

our experimentation we notice that logic area increases as LUT size increases. This area is the

product of the total number of LUTs times the area per LUT. A plot of these two components

for clusters arity equal to 4, is given in figure 6.17 (the left vertical axis presents area per LUT in

(λ2) and the right vertical axis presents LUTs number). The logic block area grows exponentially

with LUT size as there are 2k bits in a k-inputs LUT. As k increases, though, the number of LUTs

decreases (because each LUT can implement more logic functions) as shown by the downward

curve in figure 6.17. However, the rate of increase in area is steeper than the rate of decrease

in LUTs number. Concerning the interconnect area we notice that it decreases with LUT size in-

crease. Since logic area increase is steeper than interconnect area decrease, we obtain the upward

trend in figure 6.16.

The second key metric is critical path delay. Since we have not an accurate wires lengths estima-

tion (we do not have yet a complete layout generator), we only evaluate the number of switches

crossed by the critical path. Figure 6.18 shows the average critical path switches number across

all the 21 circuits as a function of clusters arities and LUTs sizes. Observing the figure, it is clear

that increasing clusters arity and LUTs size decreases the number of switches crossed by the
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Figure 6.19: Buffers number clusters sizes 4-8 (21 benchmark avg.)

Figure 6.20: SRAM points number clusters sizes 4-8 (21 benchmark avg.)
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critical path. These decreases are significant: an architecture with cluster arity 4 and LUT size

3 has an average critical path switches number of 180 while cluster arity 8 and LUT size 7 has

an average critical path switches number of just 76. This behavior is explained by the decrease

of the number of LUTs and clusters in series on the critical path. Nevertheless, to get an idea

about the accurate delay we have to consider the increase of intrinsic LUT delay when its size

increases. In addition, clusters arity increasing, as it will be explained in the next section, may

induce wires lengths increase.

To get idea about LUT size effect on static power dissipation, we evaluate buffers and SRAM

points numbers in function of LUT size. We notice, as shown in figure 6.19, that initially there

is a reduction in buffers number between 3-LUT and 4-LUT and afterwards buffers number in-

creases with the rise in LUT size. As shown in figure 6.20, we notice that SRAM points number

has the same behavior. Clearly, the results for all clusters sizes consistently show that LUT size 4

gives minimum leakage energy compared to other LUT sizes. This result is expected since LUT

size 4 achieves the highest total-area efficiency.

6.7 Conclusion

The improved Tree-based architecture significantly alleviates placement constraints and offers

better routability. Based on MCNC benchmark implementation, we showed that the Tree-based

architecture has better area efficiency than the common VPR-Style clustered Mesh. We also

showed that Tree-based architecture efficiency in terms of area, performance and static power

can be controlled by interconnect Rent’s parameters, clusters arity and LUTs size. In this way

this architecture can be tuned and adapted to specific domains and to satisfy various tradeoffs.

Nevertheless, this Tree-based architecture can be penalizing in terms of physical layout genera-

tion, it does not support scalability and does not fit with a planar chip structure, especially for

large circuits. Conversely, the Mesh and in particular the Mesh of Tree (a Mesh where clusters

local interconnect has a Tree topology) has a good physical scalability: once the cluster layout

is generated we can abut it to generate Mesh layouts with the desired size and form factor. We

are interested to take advantage of both architectures strong points by unifying Mesh and Tree

interconnects (Mesh of Tree) to get better area efficiency and layout scalability.
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Mesh of Tree Architecture

As shown previously, Tree-based architecture is better optimized in terms of switches number

than VPR Mesh architecture. Nevertheless, the Butterfly Fat Tree in stand alone mode, is very

penalizing in terms of physical layout generation. As illustrated in figure 7.1, it does not support

scalability and does not fit with a planar chip structure especially for large circuits. In the Tree

lower levels, clusters are small and close by, but as we get higher into the Tree (connecting large

clusters), wiring distances increase. Interconnect in the higher part of the Tree may need to be

subdivided. Our idea is to use Tree topology as an intra-cluster interconnect and to use Mesh

topology to achieve inter-clusters interconnection. In this way we can limit the Tree size and

generate a layout of any size by tiles abutment.

First, we describe the Mesh of Tree interconnect topology. Then, we present 3 different config-

uration approaches to implement circuits. Finally, we compare the proposed architecture to the

Tree-based and Mesh-based architectures in terms of switches requirement.

7.1 Mesh of Tree architecture

The architecture we propose has a Mesh of Tree interconnect topology and is built as a matrix of

abutted nodes presented in figure 7.2; every node has a Tree-based intra-cluster interconnect.

The resulting network corresponds to a Mesh of clusters (each one encapsulating the intra-

cluster interconnect and the LBs). Clusters surrounded by Mesh interconnect are called Mesh

clusters and clusters included in the diverse levels of the Tree are called Tree clusters. This topol-

ogy is proposed as an alternative to the common cluster-based Mesh architectures. As shown in

figure 7.2, there exist different ways to connect signals to the LUT input muxes. In Xilinx Vir-

119
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tex architectures [Virtex, 5], routing tracks are connected directly to input muxes. In the VPR

architecture [V.Betz et al., 1999] and the Altera Stratix architecture [D.Lewis and al, 2003], rout-

ing tracks are connected to input muxes via an intermediate level of muxes called connection

block. VPR-style interconnect has a sparsely populated connection block and a fully populated

intra-cluster crossbar. The fully populated intra-cluster crossbar is simple but takes no advan-

tage of the logical equivalence of LUT inputs and induces significant inefficiency. Lemieux and

Lewis [Lemieux and Lewis, 2004] improved the basic VPR-style interconnect in two ways. They

proposed an approach to generate highly routable sparse connection block. Furthermore, they

showed that the intra-cluster full crossbar can be depopulated to achieve significant area reduc-

tion without performance degradation. A practical example is Stratix, which depopulates this

crossbar by 50% [D.Lewis and al, 2003]. All these studies consider the connection block intercon-

nect level and the intra-cluster crossbar separately. In [W.Feng and S.Kaptanoglu, 2007], authors

investigate joint optimization of both crossbars and proposed a new class of efficient topology.

Nevertheless, in the intra-cluster crossbar they optimized only the part connecting external sig-

nals to LBs inputs. Using a full crossbar to connect feedbacks (LBs outputs) to LBs inputs is very

penalizing and imposes a very low bound on the cluster LBs number. For example we assume

we have a cluster with 256 LBs and we use a full crossbar to connect feedbacks to 4-LUT in-

puts. This means we need 256 × 1024 switches to route clusters internal signals only, which is

very expensive. In the proposed Mesh of Tree architecture, our first contribution corresponds

to a joint optimization of connection blocks and intra-cluster interconnect topologies. We op-

timize both crossbars: 1) connecting external signals to LBs inputs 2) connecting feedbacks to

LBs inputs. Our second contribution consists in using only single-driver interconnect based on

unidirectional wires. As illustrated in [G.Lemieux et al., 2004], single-driver interconnect has a

good impact on density improvement. In the sequel, architecture and its configuration tools are

described.

7.1.1 Cluster local interconnect

Mesh clusters are composed of Logic Blocks (LBs) which communicate within a programmable

local interconnect. The intra-cluster interconnect is organized as a Tree and has the topology

previously used to connect MFPGA LBs (previous chapter). Mesh Clusters input and output

pins are connected to LBs as MFPGA input and output pads. Figure 7.3 illustrates Mesh cluster

Tree-based local networks and its interface with the Mesh-based interconnect. Input and output

signals are grouped into clusters located at level ℓ of the Tree (in figure 7.3 we have ℓ = 1):

- every cluster of input signals contains 4 inputs connected to the 4 adjacent channels. As

shown in figure 7.3, every input is connected to all UMSBs located at level ℓ + 1 of the Tree. In

this way the 4 inputs are logically equivalent since they exactly share the same routing resources

to reach LBs. Inputs located at different clusters can all reach every LB but with different paths.

- every cluster of output signals contains 4 outputs connected to the 4 adjacent switch boxes.

As shown in figure 7.3, all outputs are connected to all DMSBs located at level ℓ + 1 of the Tree.

In this way the 4 outputs are logically equivalent. Outputs located at different clusters can all be
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reached by every LB but from different paths.

The distribution of equivalent inputs and outputs over the 4 sides has an important impact

on routability and eliminates constraints in the placement of Logic Blocks inside clusters. All

four Mesh cluster sides have the same number of inputs and outputs. Side inputs and outputs

numbers depend on the number of Tree leaves and on the level where they are located.

Nbin =
N

kℓin+1

Nbout =
N

kℓout+1

k is Tree clusters arity and N is the number of Tree leaves; ℓin and ℓout are respectively levels

where input and output clusters are located. For example the number of inputs in figure 7.3 is

equal to 4 since input cluster is located at level 1. If we move input clusters to level 0, we get 4

input clusters (16 inputs) connected to UMSBs of level 1. The number of inputs and outputs can

be different if input and output clusters are located at different levels.

In figure 7.4, we show an example of a Mesh cluster containing 2 16-LBs clusters (figure 7.3).

This cluster has in total 8 inputs and 8 outputs equally distributed on the 4 sides. In all sides we

have the same number of inputs and outputs.

7.1.2 Mesh routing interconnect

As presented in figure 7.2, clustered Mesh architecture is composed of logic blocks clusters,

switch blocks, and connection blocks. Interconnection between clusters is made by routes through

switch blocks, along horizontal and vertical routing channels.

Mesh with bidirectional wires

The connection block is the region where the cluster input and output pins connect to the rout-

ing channels. In the case of bidirectional wiring, Mesh cluster output can connect to any channel

track. Figure 7.5 shows how every output can connect one or several tracks. Connection block

population is defined by Fcin
and Fcout parameters, where Fcin

is routing channel to cluster input

switch density and Fcout is cluster output to routing channel density. In figure 7.5 Fcin
= 0.5 and

Fcout = 0.25.

The switch block is the place where connections are made between horizontal and vertical rout-

ing channels, allowing nets to turn around corners or to extend farther along the channel. Fig-

ure 7.6 shows a design using tri-states to drive a channel track.

Every routing channel contains W parallel wires tracks, where W is called the channel width.

The same width is used for all channels. The Mesh cluster inputs are connections from the ex-

ternal routing, carrying signals from other clusters into this one. Cluster local and external in-

terconnect flexibilities can be controlled separately:

- Cluster local interconnect: as was illustrated in the previous chapter, we can use different

Rent’s parameters to change Tree-based interconnect flexibility,
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- External interconnect: to vary Mesh interconnect flexibility we change the channel width

W .

Mesh with single-driver unidirectional wires

In the Mesh interconnect we use only single-driver unidirectional wires, in fact in [G.Lemieux

et al., 2004], authors show that single-driver based interconnect leads to a 25% improvement

in area density. Each Mesh cluster is surrounded by 4 channels which are connected by Switch

Boxes (SB). We do not use connection blocks in the Mesh to connect channel tracks to cluster

inputs and outputs. In fact, as presented in [W.Feng and S.Kaptanoglu, 2007], interconnect is

better optimized when the connection block is combined with the cluster local interconnect.

As described in figure 7.7, Mesh cluster input signals are connected to the 4 adjacent channels

tracks. Thus, channel width W is given by:

W =
Nbin

4
=

N

kℓin+1

Consequently, W depends on the cluster inputs number and is very expensive to modify in

terms of routing resources. In fact modifying the channel width induces modification of the

cluster interface and consequently the Tree interconnect structure.

A Mesh Switch Box (SB) allows to connect horizontal and vertical channel tracks together and

also to clusters outputs. SB inputs come from the 4 channel tracks and the 4 adjacent clusters out-

puts. Since we use a single-driver based interconnect, each SB output is driven by a multiplexer.

SB has a disjoint topology. As presented in figure 7.8-b), input track j of a channel is connected to

output tracks j of the other channels. SB also allows to connect Mesh cluster outputs to channels

tracks. As illustrated in figure 7.8-a), each cluster output is connected to all switch box outputs

located at the 4 sides.
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Figure 7.8: Mesh switch box topology

Figure 7.9: Maximum wire lengths depending on Tree size (arity 4)

7.1.3 Track length

New deep-submicron semiconductor technologies involve smaller transistors and wires. This

makes transistors faster and wires get slower [E.Lee et al., 2006]. In FPGA architecture design

we have to pay attention to long interconnect wires distribution since they behave like an RC

transmission line where delay grows quadratically with length.

Considering Tree-based architecture, we notice that when LBs number increases, wires become

longer. Unlike for Mesh-based architecture, where wires distance is fixed with no regard to ar-

chitecture size, in Tree-based architecture when we add levels and increase Tree size, wiring dis-

tances increase. In figure 7.9 we show how tracks length increases when the Tree size increases.

Tracks length is estimated through the layout generation approach presented in figure 7.11. The

length of a wire corresponds to the number of LBs that it spans. In figure 7.10, we show the ef-

fect of Tree clusters arity on wires length. We notice that clusters arity increasing induces tracks

lengths increasing.

In figure 7.11 we show the layout of a Mesh of Tree tile (Mesh cluster and Mesh switch box). The
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Figure 7.10: Maximum wire lengths depending on Tree clusters arity (4096 LBs)

Length Fraction

2 29%

3 29%

6 21.8%

12 16.2%

16 4%

Table 7.1: Mesh of Tree track length

Mesh cluster corresponds to a Tree with 256 LBs and p = 0.88. In table 7.1 we show the percent-

ages of different routing track lengths. We notice that with such distribution, this architecture

presents a good tradeoff between area and speed. In fact, based on the the experimentations

shown in [V.Betz et al., 1999], authors expect that the best FPGA architectures include some

wires shorter and some wires longer than length 8.

7.2 Configuration flow

Now we present the different steps to implement a netlist on the proposed Mesh of Tree archi-

tecture. The placement of a netlist on this architecture is run in two stages:

• The Mesh stage, where clusters are considered as black boxes with i inputs and j outputs.

The initial netlist is partitioned into N parts where N corresponds to Mesh clusters number. We

obtain N independent sub-netlists and an external netlist describing communication between

clusters. The external netlist is used to place clusters on the 2-D Mesh grid.

• The Tree stage, where every sub-netlist (cluster internal netlist) is partitioned individually

to define instances positions on the Tree.

A Mesh of Tree architecture can be set flat in the routing phase or can be separated into Mesh and

Tree levels. Flat routing consists in routing the circuit netlist considering the total Mesh of Tree
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resources. Separating Mesh and Tree routing means to consider clusters interface as a boundary

between both levels. The order in which we route both levels has an impact on the final result,

thus we distinguish three different routing strategies:

- The top-down routing approach: The complete configuration top-down flow is described

on figure 7.12-a). First, the external netlist (inter-clusters) is routed on the Mesh; consequently,

input and output signals in clusters interfaces are assigned. Then, every internal netlist (intra-

clusters) is placed and routed separately respecting the external signals assignment.

- The bottom-up routing approach: The complete configuration bottom-up flow is described

on figure 7.12-b). First, internal netlists (intra-clusters) are routed separately. Consequently, in-

put and output signals in clusters interfaces are assigned. Then, the external netlist is routed on

the mesh respecting the external signals assignments.

- The flat routing approach: The complete configuration flat flow is described on figure 7.12-

c). The total Mesh of Tree routing resources are first presented by a single routing graph. Then

all initial netlist signals are routed on this graph.

7.2.1 Mesh partitioning

The purpose of the partitioning step is to distribute netlist instances between the N Mesh clusters

(sub-domains) in order to reduce external communication (cut) and congestion. Since we have a

balanced Mesh interconnect (the same width is used for all channels), it is mandatory to match

cluster in/out resources and worthwhile to spread the congestion over all the interconnect. To

address this problem we used the multi-objective function presented in chapter 4, in which the

cut and MED (Max External Degree) are taken into account. After main netlist partitioning, we

obtain an inter-clusters netlist and N intra-cluster netlists.

7.2.2 Mesh placement

To place clusters on the Mesh 2-D grid, we use the inter-clusters netlist to evaluate signals bound-

ing boxes cost. A simulated annealing strategy is used to optimize the total wire length. As pre-

sented in figure 7.13, the way to evaluate signals bounding boxes depends on the configuration

strategy. Figure 7.13-a) shows the case where clusters pins positions were assigned by intra-

clusters routing and are taken into account in the cost function. Each pin has a position on the

2-D grid and the bounding box contains all pins connected to the specific signal. In figure 7.13-b),

the Bounding box function considers clusters positions since pins positions are not defined.

7.2.3 Top-down pins assignment

The logical boundary between inter and intra-clusters levels is defined by the Mesh clusters

in/out pins. After completing the inter-clusters netlist routing, the clusters in/out pins are as-

signed to specific signals. Those signals are considered as in/out pads in the generated intra-
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Figure 7.13: Bounding box function evaluation

cluster netlists. Thus, as presented in figure 7.12-a), external netlist routing assigns a specific po-

sition to each internal netlist pad (pin assignment). Those positions are strictly respected when

we place and route an internal netlist on the Tree-based architecture. In order to handle this point

in the Tree partitioning process, these pins are considered as fixed vertices and their signals are

taken into account in the cut objective function evaluation.

7.2.4 Bottom-up pins assignment

As we do not have a full crossbar inside Mesh clusters, inputs and outputs located at different

clusters cannot be considered as logically equivalent. As presented in figure 7.12-b), each sub-

netlist is partitioned and routed separately. Sub-netlist inputs/outputs are assigned to specific

cluster inputs and outputs pins. This new ordering is back annotated in the clusters interfaces

of the inter-clusters netlist. The pins ordering constraint is very penalizing in the inter-clusters

netlist routing. To alleviate the effect of this penalty, we propose the following actions:

• As presented in figure 7.13-a), we consider pins positions (and not cells positions) to eval-

uate signals bounding boxes in the placement phase.

• We take advantage of equivalence between input/output pins located in the same cluster.

In fact, as presented in figure 7.3, all 4 inputs and all 4 outputs are grouped into Tree

clusters and are respectively connected to the same UMSB and DMSB. In this case the

router can process pins located in the same Tree cluster as logically equivalent and keeps

freedom to route any one of them without degrading the intra-clusters routing performed

before.
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Figure 7.14: Interconnect distribution in Mesh of Tree architecture: Bottom-up approach

7.2.5 Routing

In all cases we generate a routing graph to describe the routing resources. In the flat routing case

we use only one routing graph describing the total resources and in the other cases we use two

routing graphs, the first describes the Mesh routing resources and the second describes the Tree

routing resources. In all cases we use the Pathfinder algorithm to route signals. In the bottom-

up case, Tree routing defines Mesh clusters boundary and Mesh routing must comply with it. In

the top-down case, the Mesh routing takes clusters input and output pins as logically equivalent

(every input can reach all Tree LBs and every output can be reached by all LBs) and defines their

positions and consequently the Tree routing must be consistent with these positions.

7.3 Experimental results

First, we evaluate the various configuration approaches on architecture area optimization. The

idea is to compare the required switches number to implement a circuit with every routing

approach. Next, we compare the Mesh of Tree architecture to the VPR-based Mesh and the Tree-

based architectures.

7.3.1 Mesh of Tree: top-down vs. bottom-up

Here we compare the different configuration approaches. In all cases, we use clusters containing

256 LBs and we compare the required architecture characteristics to implement the same circuits.

We consider a Mesh architecture with bidirectional wires since it provides flexibility in the Mesh

channel width (not the case of unidirectional Mesh architecture). Switch blocks have disjoint

topology. The connection block flexibility is Fcin = 0.5 and Fcout = 0.25.

In all cases, we vary channel width and Tree Rent’s parameter to match the smallest architecture

to route a particular circuit.
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Figure 7.15: Interconnect distribution in Mesh of Tree architecture: Top-down approach

Figure 7.16: Interconnect distribution in Mesh of Tree architecture: Flat approach
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With the top-down approach we reduce the required Mesh channel width. The external intercon-

nect switches reduction can be seen in figure 7.14 and figure 7.15. External switches are reduced

by 58%. Nevertheless, intra-clusters interconnect (Tree level) were increased to get more flexi-

bility to satisfy the pins assignment constraints. Consequently, the internal switches number is

increased by 43%. Using the top-down approach, we have achieved on average a total switches

reduction of 14%. As illustrated in figure 7.16, the most optimized architecture is the one gen-

erated by the flat routing approach. This seems obvious since this technique has larger routing

search space. Nevertheless it requires 4 to 7 times more CPU run time compared to the other

approaches.

7.3.2 Mesh of Tree vs. VPR-style Mesh

To evaluate the proposed architecture and tool performances, we place and route the 3 largest

MCNC benchmark circuits and the ava circuit which is the largest design containing only LUTs.

We consider as references the optimized cluster-based (VPR-style) Mesh and the MFPGA archi-

tectures. We map the 4 largest benchmark circuits on the Mesh of Tree architecture. We consider

an architecture with unidirectional wires and Mesh clusters size equal to 256 LBs. Every cluster

has 256 inputs and 64 outputs equally distributed on the 4 sides. This is obtained by putting

input clusters at Tree level 0 and output clusters at level 1. As shown in table 7.2, for every

benchmark circuit we adjust only the Mesh clusters array size. We do not tailor the interconnect

flexibility to every circuit. The Mesh channel width is equal to 64 and Tree signals growth rate

p is equal to 0.88. The Mesh of Tree switches requirement and its distribution between Tree and

Mesh levels is presented in figure 7.17. As shown in figure 7.18, we notice that, compared to the

VPR-based Mesh architecture, total area is reduced by 42%. This is due essentially to the depop-

ulated intra-cluster crossbar. In fact with p = 0.88 the Tree required switches number is equal to

20 × 103 switches only.

We also notice that, compared to a stand-alone Tree, the total area is increased by 28%. This

increase is compensated by the Mesh of Tree layout generation simplicity and wires length re-

duction, compared to stand-alone Tree, especially when we target large circuits sizes. We also,

notice that in the Mesh of Tree architecture, the use of Mesh interconnect with unidirectional

wires leads to 20% area saving compared to the use of bidirectional wires (figure 7.18).

7.4 Conclusion

We notice that the Tree-based architecture is the most optimized architecture in terms of switches

requirement. Nevertheless, this Tree-based architecture, in stand-alone mode, is very penalizing

in terms of physical layout generation; it does not support scalability and does not fit with a pla-

nar chip structure, especially for large circuits. Conversely, the Mesh of Tree has a good physical

scalability: once the cluster layout is generated we can abut it to generate Mesh layouts with the

desired size and shape factor. The proposed Mesh of Tree architecture is a good tradeoff between

area density and layout scalability.
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Figure 7.17: Interconnect distribution in Mesh of Tree architecture

Figure 7.18: Comparison of various FPGA architectures areas

Benchmark Array Mesh Cluster Tree External Internal Total

circuits W size p SW ×103 SW ×103 SW ×103

ava 9 × 8 64 256 0.88 771 1440 2211

clma 6 × 8 64 256 0.88 411 840 1251

pdc 5 × 5 64 256 0.88 408 500 908

s38417 8 × 4 64 256 0.88 385 640 1025

average 64 256 0.88 493 855 1348

Table 7.2: Mesh of Tree: switches requirement
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This chapter presents an introduction to the exploration of Mesh of Tree architecture. There is

still room to optimize it and to investigate the effect of Mesh cluster sizes, Mesh switch boxes

topology and the best tradeoff between internal and external interconnect populations.





Conclusion and Future Lines of Research

1 Conclusion

The subject of this dissertation was the exploration of new interconnect topologies and archi-

tectures that may play important roles in FPGA performances improvement. The main architec-

tures under exploration were Tree-based and Mesh-Based. Mesh is the most common architec-

ture in academic and industrial fields. Much research effort was deployed to improve architec-

ture performances in terms of area, speed and power dissipation. Modern Mesh architectures

have depopulated interconnect, different wire lengths and well adapted algorithms to optimize

circuit implementation. Despite its good properties, Tree-based architecture has been overlooked

up to now, and there was still room to optimize it. First, we proposed a simple Tree-based ar-

chitecture and optimized it progressively in terms of density. The major features we used to

depopulate interconnect are clusters signals bandwidths and switch blocks topologies. Then,

we compared the resulting architecture to Mesh based-topology in terms of performance and

area requirement. Finally, we took advantage of both topologies strong points, and we proposed

an architecture unifying Mesh and Tree interconnects to get good area efficiency and layout

scalability. To compare different architectures we used an adaptive configuration platform. The

largest MCNC benchmark circuits were placed and routed using interconnects resources and re-

quired area is evaluated based on switches counting and cells areas summation. The following

remarks were retained along various architectures exploration:

Architecture and tools interaction:

In chapter 4 we showed that interconnect predictability is an interesting feature that can be taken

into account in the placement phase to reduce congestion. MFPGA architecture presented in this

chapter had a poor interconnect and much effort was done by configuration tools to deal with

routability. It was shown that using poor interconnect but making much effort in the placement

phase does not produce efficient solution and does not lead essentially to an optimized architec-

ture. FPGA designers must think about flexibility when interconnect topology is defined. With

the improved MFPGA architecture proposed in chapter 5 the algorithmic effort was reduced at

the cost of adding some resources. We showed that by reducing external communication in the

partitioning phase, added resources were compensated by reduction of signals bandwidth. The

resulting architecture presents a good tradeoff between flexibility and density.

Density efficiency:

In chapter 5 we proposed an architecture with depopulated switch boxes and reduced signals

137
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bandwidth. We showed that with such architecture we can obtain a better density compared to

Mesh. We achieved a gain of 56% in terms of area. This confirms that we can balance intercon-

nect and logic blocks utilization by logic occupancy decreasing and congestion spreading. In fact

despite increasing logic blocks area by 20% we reduced the total area by more than 2 times. Our

idea consisted in leaving some logic blocks unused to create white spaces to spread congestion

and efficiently exploit interconnect structure which accounts for 75% of the total area (in the case

of MFPGA).

We also took advantage of communication locality of designs thanks to hierarchy. In fact, we

controlled clusters signals bandwidth at each hierarchical level separately. This was an impor-

tant feature since designs Rent’s parameters depend on the partitioning level and congestion is

not the same over all levels. This is similar to the use of a Mesh architecture with various channel

widths in different regions. The problem in the case of a Mesh is how to consider interconnect

heterogeneity in the placement phase. In the case of Tree-based architecture we showed that the

distribution of Rent’s parameters has an impact on area and performance characteristics. For ex-

ample with high Rent’s parameters in the lowest levels and low parameters in the highest levels

we get good performance at the cost of area increase. The opposite case has the opposite effect.

Clusters arity has an important impact on area. In fact this feature allows to control multiplexers

sizes. We showed that the smaller clusters arity is, the smaller multiplexers are and consequently

switches number and area are reduced. We also showed that LUT size has an impact on area and

that LUT with 4 inputs provides the best density. We proposed an architecture with an intercon-

nect having a single driver at starting point of each wire. Instead of tri-states, each driver has

a multiplexer to select from many possible sources. This organization resulted in unidirectional

wires. The benefit of using unidirectional wires is the elimination of bidirectional buffering and

tri-states and consequently area reduction, performance improvement and power dissipation

reduction. In chapter 7, we proposed two Mesh of Tree based interconnects. In both cases Tree

interconnect has unidirectional wires. We showed that by using a Mesh interconnect with unidi-

rectional wires, we save area by 20% compared to using a Mesh interconnect with bidirectional

wires.

Performance efficiency:

We proposed a Tree-based interconnect organization to take advantage of designs locality and

exploit local resources to route signals. This feature was taken into account in the partitioning

phase which aimed at reducing external communication between clusters. In addition, as we

showed in chapter 7, Tree based architecture has a good wire lengths distribution. This is an

interesting feature since minimizing the interconnect delay, always, requires technology depen-

dent tradeoffs between number of switches and the length of wires runs. Clusters arity and LUT

size have also an important impact on paths delays. We showed that increasing clusters arity

and LUTs size decreases the number of switches crossed by the critical path. This behavior is

explained by the decrease of the number of LUTs and clusters in series on the critical path.

Power dissipation efficiency:

According to the work presented in [F.Li et al., 2005], interconnect power is dominant and leak-

age power is significant in nanometer technologies. Thus, reducing interconnect switches leads
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Figure 1: FPGA architectures tradeoffs

to power consumption reduction. To evaluate dynamic power one needs to estimate circuit ac-

tivity. Since we do not have such feature in our exploration platform we were interested to take

care about buffers and SRAMs points numbers since they are the major factor behind static

power dissipation. We showed that buffers number can be controlled through clusters arities.

When arity increases, multiplexers get larger but their number is reduced and consequently

total buffers required at the output of every multiplexer are reduced. We also showed that ar-

chitecture with LUTs size equal to 4 provides the smallest number of buffers and SRAM points,

and consequently the minimum leakage energy.

Layout scalability:

As we showed in chapter 7, Tree layout generation is not adapted to planar shape. Each added

level interconnect has its specific design and there is no scalability. The proposed Mesh of Tree

architecture represents a good tradeoff between density and layout generation. In fact a single

cluster with its Tree local interconnect and its neighboring routing channels is designed; when

creating a complete architecture this single tile is replicated.

In figure 1, we show some tuning factors to balance different tradeoffs. For example, architec-

ture Rent’s parameters and clusters arity can be determined to optimize area; however this may

induce a bad effect on speed performances. In the same way, increasing arity has a good effect

on speed and static power dissipation but may induce area increase. We also showed that LUT

sizes increase improves speed performance but increases area. Design choice to enhance area,

performance or power depends on application domain. Thus, it is difficult for a single FPGA

family to cope with different market needs. This is confirmed by to day’s industry practice. Ven-

dors have moved to provide different FPGA families to comply with different requirements. It

is now common for FPGA manufacturers to offer a high end, high performance family [D.Lewis

and al, 2003] [Virtex, 5] and a lower cost, lower performance family [Cyclone, 3] [Spartan, 3e].
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2 Future work

The presented work has tackled different aspects of FPGA interconnect optimization. Diverse

research directions have emerged from the type of problems explored. In particular, the follow-

ing points seem interesting to investigate:

Logic blocks heterogeneity

The aim of this thesis was to optimize interconnect in order to reduce area and to improve per-

formance. Interconnect is the major but not the unique factor to improve FPGA performance. In

fact we showed that LUT size influences density, speed and power. The use of architectures com-

posed of LUTs with various sizes and associated to logic block with specific functions (adders,

multipliers ...) deserves exploration. Most industrial FPGAs contain an increasingly larger num-

ber of hard macro blocks. These macro blocks can include embedded memories, adders and

multipliers. Figure 2 shows an example of a Tree-based architecture with heterogeneous logic

blocks. Using such specific blocks may reduce flexibility but improves performances and den-

sity.

Clusters size effect on Mesh of Tree

SB SB SB SB

SB

SB Level 3

Level 2

Level 1

SB

DSP DSP DSP DSPLUT LUT LUT LUT

Figure 2: Tree-based architecture with heterogeneous logic blocks

Mesh of Tree has a good layout scalability but it is penalizing in terms of area compared to a

stand-alone Tree-based architecture (MFPGA). Two points deserve to be explored: 1) clusters

size effect on area: in fact in this thesis we evaluated an architecture with 256 LBs per cluster.

Varying cluster size has an impact on the ratio between interconnect at Mesh and Tree levels. 2)

Mesh switch boxes topologies: in this thesis we used Mesh switch boxes with disjoint topology.

Using a topology similar to the one used inside clusters (Tree-based) may induce better density.

Tree layout generation

Layout generation is very important to get accurate timing and area characteristics. In fact the

exact wire lengths in the Tree topology can only be determined by layout. This is important to

determine buffers number exactly, their positions and consequently delays. In addition it is often
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seen in the custom design world, that there are a range of logically equivalent but electrically

distinct implementations [J.M.Rabey, 1996]. We believe the same holds true for FPGA circuits

and it is very interesting to explore the range of area and delay tradeoffs that are possible in the

design of an FPGA architecture by varying both its logical architecture (LUTs size, clusters size,

Rent’s parameters ...) and its electrical implementation.

Congestion aware partitioning

As shown in chapter 6, architecture Rent’s parameters are larger than circuits partitioning Rent’s

parameters. This is due essentially to the depopulated interconnect and presence of congested

regions. Thus, by reducing congestion and spreading it over all the interconnect we can narrow

Rent’s parameters gap and obtain a much optimized area. Reducing only external communi-

cation is not sufficient and a congestion aware partitioning becomes obvious. To predict con-

gestion in the partitioning phase we propose two solutions: 1) To use a congestion prediction

function, for example it was shown in [A.Pandit and A.Akoglu, 2007] that considering ISPL

(Intrinsic Shortest Path Length) [A.B.Kahng and S.Reda, 2005] in the clustering phase reduces

the required channel width to route circuits on a Mesh-based architecture. 2) To take advantage

of Tree-based interconnect predictability. In fact there is a single predictable path connecting a

source LB to a sink LB crossing a specific DMSB. This property can be exploited to alleviate

considerably the detailed search in the routing phase, thus reducing the required CPU run time.

In this way a technique predicting routing conflicts in the partitioning phase, similar to the one

proposed in [A.Sharma et al., 2005], can be used with reduced run time penalties.
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