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Transitions de Phase Quantiques dans des Modèles de Spin Collectif.

Applications au Calcul Adiabatique

Résumé

Partie I: Modèles de spin collectif

On utilise le formalisme des états cohérents de spin pour étudier des modèles de spin collectif,

qui ont plusieurs champs d’application en physique. Le modèle de Lipkin-Meshkov-Glick (LMG)

a en particulier été analysé à la limite thermodynamique. La méthode développée au cours de ce

travail peut être utilisée, en principe, pour des Hamiltoniens plus généraux, s’écrivant en fonction

des générateurs de l’algèbre su(2).

Nous avons pu dériver exactement la densité d’états intégrée du modèle. La nature des singu-

larités de la densité d’états a été mise en évidence. Les premières corrections de taille finie ont

également été calculées. Les valeurs moyennes d’observables ont été étudiées.

Près des singularités, la quantification de Bohr-Sommerfeld, adaptée aux spins, n’est pas valable.

Pour traiter ces cas, nous avons développé une nouvelle approche, permettant alors de décrire le

spectre au voisinage des points critiques.

Partie II : Calcul quantique adiabatique

Nous avons construit un modèle simple permettant de mettre en évidence la relation entre les

transitions de phase quantiques et le calcul (quantique) adiabatique. Ce modèle met en évidence

l’importance du choix du Hamiltonien initial et du chemin adiabatique considéré dans l’espace

des paramètres, et peut servir comme un cas d’école pour des modèles plus réalistes.

Nous avons enfin étudié la dynamique des populations des états à travers une transition de phase,

pour le cas du modèle LMG abordé dans la première partie. Une analyse numérique nous a montré

que ces changements de population sont très sensibles à la présence des points exceptionnels dans

le spectre, ce qu’un modèle simplifié de l’évolution quantique permettait de suggérer.
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Représentation de Majorana

Limite Semi-classique

Calcul Quantique Adiabatique



iii

Quantum Phase Transitions in Collective Spin Models.

Applications to Adiabatic Quantum Computation

Abstract

Part I: Quantum Collective Spin Systems

We use a coherent spin state formalism in order to study collective spin models, which have many

applications in physics. In particular, the Lipkin-Meshkov-Glick (LMG) has been analyzed in

the thermodynamic limit. The method developed during this work can, in principle, be used for

more general Hamiltonians written as a function of the su(2) algebra generators.

We have derived exact expressions for the integrated density of states for this model. The nature

of the density of states singularities has been detailed. The first order finite size corrections as

well as observables expectation values were also computed.

The standard Bohr-Sommerfeld quantization approach, adapted to the spin case, is no longer

valid near the spectral singularities. In order to treat these cases, we have developed a new ap-

proach that permits to describe the spectrum in the neighbourhood of the critical points.

Part II: Adiabatic Quantum Computation

We have proposed a simple model which highlights the relations between quantum phase transi-

tions and adiabatic (quantum) computation. This model puts in evidence the importance of the

choice of the initial Hamiltonian and of the adiabatic path in the parameter space; it should be

helpful as a toy model for more realistic cases.

We have also studied the state populations dynamics when a quantum phase transition point is

crossed, for the LMG model studied in the first part. Numerical simulations show that the dy-

namics of the populations is very sensitive to the presence of exceptional points in the spectrum,

which a simplified model for the quantum evolution already suggests.

Key words

Quantum Phase Transitions

Quantum Information

Collective Spin Systems

Lipkin-Meshkov-Glick Model

Coherent Spin States

Majorana Representation

Semi-classical Limit

Adiabatic Quantum Computation



iv



v

Remerciements - Acknowledgements

P. Ribeiro was partially supported by FCT and EU FEDER through POCTI and QuantLog

POCI/MAT/55796/2004 Project of CLC-DM-IST, SQIG-IT and grant SFRH/BD/16182/2004/2ZB5.





Contents

Acknowledgements vi

I Quantum Collective Spin Systems 3

1 Introduction 7

1.1 Quantum Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Quantum Spin Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Semi-classical Limit for Spin Systems 11

2.1 Coherent States for Spin Systems . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Coherent States - A brief introduction . . . . . . . . . . . . . . . . 11

2.1.2 Spin Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Majorana Polynomial and Majorana Sphere . . . . . . . . . . . . . 13

2.1.4 Operators in the CS Basis . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Generalized Husimi Function . . . . . . . . . . . . . . . . . . . . . 16

2.2 WKB method and Bohr-Sommerfeld Quantization for Spin Systems . . . . 17

2.2.1 WKB Wave Function . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Bohr-Sommerfeld Quantization . . . . . . . . . . . . . . . . . . . . 18

3 The Lipkin-Meshkov-Glick Model 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 The Lipkin-Meshkov-Glick model . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Classical-energy surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Classical description of the phase diagram . . . . . . . . . . . . . . 23

3.4 Majorana representation and spectrum . . . . . . . . . . . . . . . . . . . . 25



viii Contents

3.4.1 From Schrödinger to Riccati . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Density of states and poles of G . . . . . . . . . . . . . . . . . . . . 26

3.4.3 Algebraic Relations for the Zeros of Eigenstates . . . . . . . . . . . 27

3.5 The thermodynamic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Leading-order expansion for G . . . . . . . . . . . . . . . . . . . . . 28

3.5.2 Analytical expressions of the densities of states . . . . . . . . . . . 29

3.6 Finite-size corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 First-order expansion for G . . . . . . . . . . . . . . . . . . . . . 35

3.6.2 Energy gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Observable expectation values . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Matrix Elements in the Semi-Classical Limit 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Semi-Classical Development . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Regular Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Operator matrix elements for the LMG Model . . . . . . . . . . . 44

4.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Semi-classical Analysis of Spin Systems near Critical Energies 49

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Quantization near Hyperbolic Points . . . . . . . . . . . . . . . . . . . . . 49

5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion of Part I 57

II Adiabatic Quantum Computation 59

7 Introduction 63

7.1 Classical and Quantum Computation . . . . . . . . . . . . . . . . . . . . 63

7.2 Adiabatic Quantum Computation . . . . . . . . . . . . . . . . . . . . . . 64

8 Projector-like Hamiltonian 67

8.1 Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.2.1 A very simple test : Homogeneous magnetic field . . . . . . . . . . 70

8.2.2 3-SAT problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents ix

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 A Toy Model for Adiabatic Quantum Computation 75

9.1 The Adiabatic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.1.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.1.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.2.1 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3 Mean Field Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.4.1 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.4.2 Analysis of the Two States of Lower Energy . . . . . . . . . . . . . 81

9.5 Beyond the Mean Field Approximation . . . . . . . . . . . . . . . . . . . . 83

9.5.1 Holdstein-Primakov Mapping - Scaling of the Gap . . . . . . . . . . 84

9.5.2 Concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.5.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10 Dynamical Properties Accross a QPT in the LMG Model 91

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.2 Dynamical evolution : numerical results . . . . . . . . . . . . . . . . . . . 94

10.2.1 Forward evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.2.2 Backward Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.3 A phenomenological model for the quantum evolution . . . . . . . . . . . . 96

10.4 Simplified quantum model for the adiabatic evolution . . . . . . . . . . . . 98

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11 Conclusion of Part II 101

III Appendices 103

A Details of the Semiclassical Expansion 105

A.1 Identities and n−1 Expansions . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1.1 Development of H . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1.2 Relations between H and H . . . . . . . . . . . . . . . . . . . . . 106

A.2 Fluctuations around the Classical Trajectory . . . . . . . . . . . . . . . . 107

A.2.1 Saddle-Point Approximation . . . . . . . . . . . . . . . . . . . . . 107

A.2.2 Classical Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2.3 Action-Angle Coordinates . . . . . . . . . . . . . . . . . . . . . . 109



Contents 1

A.3 Mapping the LMG model onto an equivalent one-dimensional model . . . . 110

B Central spin model with homogeneous couplings 113

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.2 Collective spin interacting with a few-level system . . . . . . . . . . . . . 114

B.3 Application to the Mermin Model . . . . . . . . . . . . . . . . . . . . . . 116

B.3.1 The Mermin Model . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.3.2 Generalized eigenvalue equation - Equations for the zeros . . . . . 116

B.3.3 Mean Field Energy and the Large S Limit . . . . . . . . . . . . . 117

B.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C Entanglement and Hilbert space geometry for few qubits systems 121

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.2 Entanglement and Hopf fibrations . . . . . . . . . . . . . . . . . . . . . . . 122

C.2.1 Two qubits entanglement and the S7 Hopf fibration . . . . . . . . 122

C.2.2 Three qubits, and the S15 Hopf fibration . . . . . . . . . . . . . . . 123

C.3 Hilbertian polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.3.1 Discretization based on stabilizer theory . . . . . . . . . . . . . . . 126

C.3.2 Alternate approach: shelling the high-dimensional dense lattices . . 127

C.3.3 The one-qubit case and the Λ4 lattice . . . . . . . . . . . . . . . . . 127

C.3.4 The two-qubit case and the E8 lattice . . . . . . . . . . . . . . . . . 128

C.3.5 Finer discretizations of H2: higher E8 shells . . . . . . . . . . . . . 130

C.3.6 The three-qubit case, H3 and the Λ16 lattice . . . . . . . . . . . . . 130

D SU(3) Coherent States - Simple Collective Hamiltonians 133

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

D.2 Group structure and Symmetric Representations . . . . . . . . . . . . . . 134

D.3 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D.4 A First Example - Linear Hamiltonians . . . . . . . . . . . . . . . . . . . 136

D.5 Eigenstates for another Simple Class of Hamiltonians . . . . . . . . . . . 137

D.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 144





Part I

Quantum Collective Spin Systems





5

Résumé

Les modèles de spin collectif apparaissent assez naturellement dans de nombreux domaines

de la physique, par exemple dans l’étude de systèmes à deux niveaux avec des interactions

symétriques ou bien encore dans des systèmes bosoniques (du à des symétries particulières

du Hamiltonien). On se concentre le plus souvent sur le secteur symétrique de spin total

maximum s qui contient en général l’état fondamental du système. Pour ces modèles le

Hamiltonien conserve le spin total s et peut être écrit en fonction des opérateurs de spin

Si (i = x, y, z) qui sont les générateurs de l’algèbre su(2) correspondante.

Dû à la simplicité de l’algèbre su(2), ces modèles sont integrables, ce qui veut dire

qu’il est possible de donner un ensemble de relations explicites permettant de caractériser

les états propres et les énergies propres du Hamiltonien. Ces relations surgissent assez

naturellement quand on utilise le formalisme des états cohérents de spin, cadre dans lequel

s’exprime très simplement la représentation de Majorana pour des spins quelconques. La

fonction d’onde dans cette représentation est donnée par un polynôme d’ordre 2s et peut

donc être complètement caractérisée, à une constante non physique près, par la donnée

de l’ensemble de ses zéros. Il est alors possible d’écrire explicitement des équations (en

général compliquées) pour les zéros des fonctions propres et les énergies associées.

Nous nous sommes intéressés en particulier ici à la limite thermodynamique, où le

nombre de sous-systèmes en interaction tend vers l’infini (s→ ∞). Cette limite peut être

vue comme l’analogue de la limite semi-classique de la mécanique quantique où 2s joue le

rôle de l’inverse de la constante de Planck ~−1. Dans cette limite, une approche du type

WKB et des règles de quantification à la Bohr-Sommerfeld, adaptées au cas des spins,

permettent d’obtenir le spectre du système.

Dans cette partie de la thèse, le modèle de Lipkin-Meshkov-Glick (LMG) est étudié

dans le détail. Ce modèle a été introduit il y a plus de quarante ans, dans le domaine

de la physique nucléaire, pour étudier les transitions de phase dans des noyaux; mais il a

été utilisé depuis (et redécouvert) dans beaucoup d’autres domaines, comme par exemple

pour l’étude des propriétés magnétiques de certaines molécules, de systèmes de bosons en

interaction dans des structures de double puits, de condensats de Bose-Einstein, ou enfin

de jonctions Josephson.

Nous avons pu résoudre exactement le spectre du modèle LMG dans limite thermo-

dynamique. La méthode développée au cours de ce travail peut être utilisée, en principe,

pour tout Hamiltonien qui s’écrit en fonction des générateurs de su(2). Dans un premier

temps, une analyse de type champ moyen a été effectuée conduisant à une mise en rela-

tion entre les singularités des orbites semi-classiques et celles du spectre du modèle. Cela
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nous a permis de caractériser différentes régions dans l’espace de paramètres du modèle,

distinctes quant à leurs propriétés spectrales. Ces singularités de la densité d’états, qui

se produisent pour des niveaux excités (appelés parfois “points exceptionnels”), peuvent

d’un certain point de vue être considérées comme engendrant une généralisation des tran-

sitions de phase quantiques habituelles, non plus au niveau de l’état fondamental, mais à

l’intérieur du spectre.

L’analyse de la structure des zéros du polynôme de Majorana associé aux états propres

nous a permis de dériver exactement la densité d’états intégrée du modèle. La nature

des singularités de la densité d’états (et leur comportement logarithmique) a été mise en

évidence. Les premières corrections de taille finie ont également été calculées. Les valeurs

moyennes d’observables ont été étudiées, toujours dans la limite semi-classique. Enfin nous

avons pu déduire une relation entre les éléments de matrice des observables, calculés entre

états propres du Hamiltonien, avec les coefficients de Fourier de l’observable classique, sur

la trajectoire classique.

Près des singularités, la quantification de Bohr-Sommerfeld, adaptée aux spins, n’est

pas valable, car elle s’appuie sur une approximation du type WKB qui diverge près des

points hyperboliques caractérisant ces orbites critiques. Pour traiter ces cas, nous avons

développé une nouvelle approche, en analogie avec celle déjà connue pour la représentation

de Schrödinger, permettant alors d’obtenir les valeurs propres dans ce voisinage des points

critiques. Les propriétés physiques des état propres ont aussi été étudiées, par la car-

actérisation des éléments de matrice des observables entre états d’énergie proche de l’énergie

critique.



Chapter 1

Introduction

1.1 Quantum Phase Transitions

Phase transitions are among the most important physical phenomena, and have been the

subject of decades of experimental and theoretical studies. They occur whenever a minute

variation of an external control parameter (like temperature or pression) imposed on a

physical system leads to a qualitative change in its properties, as seen for example in the

behaviour of appropriate order parameters. Classical phase transitions are analysed in

terms of a subtle competition between energy and entropy contributions, and a prominant

role is played by thermal fluctuations. Exact solutions, within the statistical thermo-

dynamics framework, of simple models exhibiting phase transitions (like the celebrated

2-dimensional Ising model), paved the route for very rich and deep later theoretical inves-

tigations. In particular, universal properties characterising the vicinity of the transition

where understood within the renormalisation group analysis.

In more recent years, a strong emphasis has been put on a related kind of phenomena,

the quantum phase transitions (QPT)[1]. They occur at zero temperature when there are

qualitative changes in the ground state of the system, induced by a variation of the coupling

constants in the Hamiltonian. Here, the transitions are driven by quantum fluctuations,

and the ground state changes translate into singular behaviour of order parameters defined

as observables expectation values. As in the classical case, one defines the order of a

quantum phase transition in relation to the nature of the non-analytical behaviour of the

order parameter. A discontinuous order parameter characterizes a first order QPT, while

a continuous order parameter with a discontinuous first order derivative signals a second

order QPT, and so on. Here also, the critical behaviour of correlation functions can be

focused on, instead of an order parameter analysis.

At a generic first order QPT point, the gap between the two lowest energy states goes

to zero exponentially as the size of the system increases. Whenever a correlation length can

be defined, it also presents a singular behaviour, with exponentially fast varying spatial

correlations. At second order QPT points, universal scaling behaviors are observed. The

energy gap between the two lowest energy states, as well as spatial correlations, show

algebraic behaviour with the system size. The latter QPT belong to separate universality
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classes, characterised by sets of shared exponents. Even quantum state entanglement is

believed to be strongly sensitive to the proximity of the QPT. Typical examples of QPT

are found in many fields in physics, like nuclear physics [2, 3, 4, 5], describing transitions

of shape, geometry and magnetic properties of nuclei, atomic physics [6, 7, 8] or condensed

matter systems [9, 1]

More recently, singular behaviours not limited to the ground state, and therefore arising

throughout the excitation spectrum of certain many-body models, have been under focus

[10, 11, 12, 13, 14]. We shall discuss such cases in the present work, in the context of

collective spin systems.

1.2 Quantum Spin Systems

There are many examples such that the main physical properties of a given system can

be written in terms of collective spin or pseudospin variables. They arise naturally in the

study of mutually interacting two-level systems, or due to symmetries present in collective

bosonic Hamiltonians [15, 16]. Examples are found in nuclear [17, 2, 5], atomic [6, 7, 8] and

molecular physics [18]. A typical example is given by the the Lipkin-Meshkov-Glick (LMG)

model proposed in 1965 to describe shape phase transition in nuclei [17]. This model is

used to describe magnetic properties of molecules [18], interacting bosons in double-well

structures [15, 16] and to investigate the role of entanglement in quantum phase transitions

(QPT) [19, 20]. This model presents a second-order quantum phase transition. It can be

viewed directly as a large spin system, or equivalently as a system formed by a n interacting

spins 1/2, splitted into total spin representations, with a particular focus on a restriction

to the symmetric sector.

For such models, the analog of the semi-classical limit is obtained when the number

of interacting sub-systems increases (thermodynamic limit) [21, 22]. The semi-classical

parameter ~ is replaced by the the inverse of number of interacting sub-systems n−1 which

is related to the size of the considered su(2) representation, n = 2s.

su(2)-coherent states [23, 24] prove to be very useful in the treament of collective spin

models. They also allow for a simple presentation for the Majorana representation [25],

a very elegant approach to display the (generic) spin geometry. Analytic properties [26]

of the wave function, in the coherent state representation, permits to obtain the quan-

tization conditions. In the WKB framework, for regular orbits, i.e. away from critical

energies where the classical orbit is given by a separatrix, this approach leads to the Bohr-

Sommerfeld (B-S) quantization for spin systems [21, 27], also derived in a path integral

formalism [28].

Due to the simplicity of the su(2) algebra, with Cartan subalgebra of dimension 1,

this type of models is completely integrable, in the sense that is possible to give a set
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of explicit algebraic relations characterizing the eigenstates and eigenvalues of a given

Hamiltonian. This relations are simply obtained in the coherent state representation. In

this representation, the wave function is given as a polynomial of order n and can be

completely characterized, up to a non-physical constant, by the set of its zeros. It is

possible to give an explicit, but in general quite complicated, algebraic relation for the set

of zeros corresponding to the Hamiltonian eigenstates.

In this work, we study into details the LMG model, in the thermodynamic limit, and

then along finite size corrections. First, a mean field analysis is done, relating singular

classical orbits with singularities arising within the spectum. This allows us to characterize

different regions in the parameter space of the model, with respect of their qualitative

spectral differences. The analysis of the structure of the zeros of the Majorana polynomial

(associated to the eigenstates) permits to derive the exact integrated density of states in

the thermodynamic limit. A rather precise study of the spectral singularities, location and

non-analytic behavior, is proposed. We also address the behavior of matrix elements of

generic observables in the eigenstates basis and relate them to the Fourier coefficients of

the (equivalent) classical observables, obtained by integrating the flow equations.

We finally analyse, in a semi-classical framework, the set of classical trajectory separa-

trix, and their associated stationary hyperbolic points (HP). The regular Bohr-Sommerfeld

quantization conditions have to be modified for energies of order n−1 around the critical

energy. Orbits passing thought a HP signal a qualitative change in the classical orbits

topology. Quantization for this kind of orbits were obtained in the Schrödinger represen-

tation for a particle in an anharmonic potential [29, 30, 31, 32]. Here, we propose an

equivalent treatment adapted for the (coherent) spin case, which permits in particular to

obtain the eigenvalues at energies located near the semi-classical separatix. We then go

further, and analyse the behaviour of observable matrix elements near the separatrix, a

point which will be useful in the second part of this thesis.





Chapter 2

Semi-classical Limit for Spin Systems

2.1 Coherent States for Spin Systems

2.1.1 Coherent States - A brief introduction

Coherent states (CS) representations are as old as quantum mechanics, even though not

named as such. Indeed, already in 1926, Schrödinger used sets of non-orthogonal wave

functions to describe non-spreading wave packets for quantum harmonic oscillators. They

provided the first example of quantum states whose dynamics satisfy on aspect of the

correspondence principle, i.e. the quantum dynamics tends to the classical one in the limit

~ → 0. In the sixties, these types of states regain much attention [33, 34], in particular

following the work of Glauber, who showed in 1963 that they provide a good description

of the electromagnetic field [34]. Note that a particular feature of coherent states, that

they form an overcomplete basis, present number of advantages compared with a usual

orthogonal basis. Since the seminal works of Glauber, CS have pervaded almost all areas

of quantum physics, and are very useful in the context of semi-classical analysis.

The first CS, as introduced by Schrödinger, are related to the so-called Heisenberg-Weyl

group, the group obtained by exponentiating the operators {1, a, a†, a†a}. Recall that the

CS are eigenstates of the annihilation operator a. Whenever the Hamiltonian of a system

is written within the algebra formed by this set of operators, i.e. can be written as a sum of

such operators, the Weyl group is said to be the dynamical symmetry group of the system.

In particular, under time evolution, a coherent state remains coherent, which permits a

simplified analysis of the dynamics in terms of the one associated with the related classical

problem.

The generalization of coherent states for systems whose dynamical symmetry group is

an arbitrary Lie group was introduced independently by Perelomov and Gilmore [35, 36,

37]. The parametrization of CS permits to characterize the phase space of the associated

classical system, and therefore to address the semi-classical limit. Beside the important

cases covered by the Weyl group, a similar analysis is clearly very interesting for spin

systems. Spin coherent states (SCS) have been introduced to cover this case, associated

with an SU(2) dynamical group. They are now presented.
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2.1.2 Spin Coherent States

In this section we review the spin coherent states [23, 24], associated with the SU(2) group.

Let us denote by {|s,m〉} the standard eigenbasis of
{
S2, Sz

}
with eigenvalues s(s + 1)

and m respectively. For fixed s these states span a 2s+ 1 dimensional space in which the

generators of the su(2) algebra act irreducibly. For such an irreducible representation we

define the unnormalized spin coherent-state |α〉 as

|α〉 = eαS+ |s,−s〉. (2.1)

The scalar product of two such states can be obtained from the commutation relations of

the su(2) algebra, considering the Baker-Campbell-Hausdorff formulas for su(2) (see [37])

also called gaussian decomposition formulas [23], and reads

〈α′|α〉 = (1 + ᾱ′α)2s, (2.2)

where ᾱ is the complex conjugate of α. These coherent states obey the following closure

relation: ∫
dµ(ᾱ, α)

|α〉〈α|
〈α|α〉 = 1, (2.3)

where

dµ(ᾱ, α) =
n+ 1

(1 + ᾱα)2

dRe(α) dIm(α)

π
, (2.4)

and n = 2s.

In this representation, a quantum state Ψ(ᾱ) = 〈α|Ψ〉 is a polynomial in ᾱ, and the

action of the spin operators on Ψ translates into differential operators:

S+ = 2sᾱ− ᾱ2∂ᾱ, (2.5)

S− = ∂ᾱ, (2.6)

Sz = −s + ᾱ∂ᾱ, (2.7)

where S± = Sx ± iSy. These relations can be obtained using Eq. (2.1) together with the

su(2) commutation relations

[S+, S−] = 2Sz, (2.8)

[Sz, S±] = ±S±. (2.9)

We now discuss the representation of Ψ(ᾱ) in terms of its zeroes (the Majorana represen-

tation).
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2.1.3 Majorana Polynomial and Majorana Sphere

Any |Ψ〉 can be represented by its Majorana polynomial [25] defined as

Ψ(ᾱ) = 〈α|Ψ〉 =

s∑

m=−s

√
(2s)!

(s−m)!(m+ s)!
〈s,m|Ψ〉ᾱm+s, (2.10)

= C
d∏

k=1

(ᾱ− ᾱk) , (2.11)

where d 6 2s is the degree of this polynomial in ᾱ (d = 2s for a generic state). The roots

ᾱk of Ψ(ᾱ) fully characterize a quantum state |Ψ〉 up to a global unphysical constant.

It is also possible to represent such a state |Ψ〉 on the so-called Majorana sphere, which can

be seen as a generalization of the celebrated Bloch sphere used for spin 1
2

states. To do so,

one first complement the d roots Ψ(ᾱ) with (2s−d) roots at infinity in the complex plane.

Next, the resulting set of 2s complex numbers ᾱk is mapped onto 2s points on the unit

sphere by an inverse stereographic map: Π−1(ξ) = (1 + |ξ|2)−1 {2Re(ξ), 2Im(ξ), |ξ|2 − 1}
for ξ ∈ C. For instance, the basis states |s,m〉 are represented by (s −m) points on the

north pole and (s + m) points on the south pole (Fig. 2.1). Less trivial examples can be

found in Fig. 2.1-(b,c) for an eigenstate of a quadratic Hamiltonian and for a random state,

respectively.

Another, perhaps more physical, way of motivating the use of the Majorana polyno-

mial is to consider the spin s system as the symmetric sector of a collection of n spins

1/2, each of them characterized by an unnormalized wave function of the form |ψi〉 =

−ᾱi|1/2,−1/2〉 + |1/2, 1/2〉. To each such function, it corresponds an (order one) Ma-

jorana polynomial which simply writes 〈α|ψi〉 = ᾱ − ᾱi, where the inverse stereographic

projection of ᾱi is the antipode on the Riemann sphere of the standard Bloch representa-

tion. Let Pn be the projector onto the symmetric sector, for n = 2

P2 =
1

2
(1 + P1,2) (2.12)

with Pi,j = 1
2
(1 + σ(i).σ(j)) the operator permuting spin i and j and σi the Pauli matrices

defined as

σx =

(
0 1

1 0

)
; σy =

(
0 −i

i 0

)
; σz =

(
1 0

0 −1

)
. (2.13)

For a general n we have

Pn =
∏

i<j

1

2
(1 + Pi,j). (2.14)
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Figure 2.1: Zeros of the Majorana polynomial represented in the Riemann Sphere and

in the complex plane for s = 20. (a) |s,m〉 having (s −m) points on the north pole and

(s + m) points on the south pole; (b) eigenstate of a quadratic Hamiltonian having the

zeroes aligned along lines; (c) Random state.

The tensor product of a collection of n spin-1/2 states projected onto the symmetric sector

has a well defined total spin s = n/2, the zeros of the Majorana polynomial of this com-

posite symmetric state are given by the set of zeros of the spin 1/2 polynomials, as can be

seen easily from

|αs〉 =

n⊗

i=1

|αs=1/2〉, (2.15)

and so

〈αs|Ψs〉 = 〈αs|Pn

(
n⊗

i=1

|ψi〉
)

= C
n∏

i=1

(ᾱ− ᾱi) . (2.16)

The Majorana representation is thus the generalization of the Bloch sphere for a sym-

metrized set of two level systems.

Let us also introduce G(ᾱ), the logarithmic derivative of Ψ(ᾱ),

G(ᾱ) =
1

n
∂ᾱ ln Ψ(ᾱ) =

1

n

n∑

k=1

1

ᾱ− ᾱk

, (2.17)
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having simple poles, with residue 1/n, at the zeros of the Majorana polynomial and Ω(ᾱ, α),

the logarithm of the inner product of coherent states,

Ω(ᾱ, α) =
1

n
ln〈α|α〉 = ln(1 + ᾱα). (2.18)

The 1/n factor is here to ensure that G and Ω are well behaved at the (infinite n) thermo-

dynamic limit. Using the G(ᾱ), a state |Ψ〉, writes in the coherent state basis:

Ψ(ᾱ) = e
n

R ᾱ
ᾱ0

dᾱ′G(ᾱ′)
(2.19)

where the normalization is taken such that Ψ(ᾱ0) = 〈α0|Ψ〉 = 1.

2.1.4 Operators in the CS Basis

We consider operators that, in the coherent state basis, can be written as

Â =

n∑

i=0

pi(ᾱ)
1

ni
∂i

ᾱ, (2.20)

where the pi’s are polynomial functions of ᾱ. This is a quite general family of operators, in

particular all reasonable physical quantities are of this form. Indeed, the su(2) generators

Eq. (2.5,2.6,2.7) and their positive powers can be written in this way. To each operator we

can associate several functions of two variables, referred in the literature as the “symbols

of the operator” [23]. We define two such functions. A which is defined such that

Â = A(ᾱ, n−1∂ᾱ) (2.21)

and, by (2.20), is given explicitly as

A(ᾱ, ζ) =

n∑

i=0

pi(ᾱ)ζ i. (2.22)

And A, defined as the normalized matrix element of the operator Â between two coherent

states

A(ᾱ, α) =
〈α|Â|α〉
〈α|α〉 . (2.23)

For the set of considered operators, it is possible to give an explicit algebraic relation

between A and A; this is done perturbatively in n−1 in section A.1.2.
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2.1.5 Generalized Husimi Function

The Husimi function is defined as the probability of finding a state Ψ in a CS |〈α|Ψ〉|2〈α|α〉−1.

It was introduced by Husimi for the Heisenberg-Weyl group [38] and extended for general

Lie groups [39] in order to study eigenstates of chaotic Hamiltonians [39, 40].

We define the generalized Husimi function associated with two general states |Ψ〉 and

|Φ〉 as,

WΨ,Φ(ᾱ, α) =
〈Ψ|α〉〈α|Φ〉

〈α|α〉 = enSΨ,Φ(ᾱ,α), (2.24)

with

SΨ,Φ(ᾱ, α) =

∫ ᾱ

ᾱΦ

GΦ(ᾱ′)dᾱ′ +

∫ α

αΨ

ḠΨ(α′)dα′ − Ω(ᾱ, α), (2.25)

with G defined in the last section and states αΦ and αΨ defined such that 〈αΦ|Φ〉 =

〈Ψ|αΨ〉 = 1.

Using the closure relation given in Eq. (2.3), matrix elements of an operator Â can be

computed with the help of the Husimi function

〈Ψ|Â|Φ〉 =

∫
dµ(ᾱ, α)

〈Ψ|α〉〈α|Â|Φ〉
〈α|α〉 , (2.26)

=

∫
dµ(ᾱ, α) WΨ,Φ(ᾱ, α) A[ᾱ, n−1∂ᾱ +GΦ(ᾱ)], (2.27)

where A[ᾱ, n−1∂ᾱ +GΦ(ᾱ)] = 〈α|Φ〉−1Â〈α|Φ〉.

We now consider maximal sets of the generalized Husimi function, the extremal condi-

tions being given by

∂αSΨ,Φ(ᾱ, α) = ḠΦ(α) − ∂αΩ(ᾱ, α) = 0, (2.28)

∂ᾱSΨ,Φ(ᾱ, α) = GΨ(ᾱ) − ∂ᾱΩ(ᾱ, α) = 0. (2.29)

As we shall see below, these conditions imposed together with having Ψ and Φ as eigen-

states of an Hamiltonian, will permit to compute matrix elemens of observables in the

semi-classical limit. Moreover we shall also see that for Ψ = Φ the Husimi function is

exponentially localized around semi-classical orbits, which are the level sets of the classical

energy surface.
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2.2 WKB method and Bohr-Sommerfeld Quantiza-

tion for Spin Systems

The WKB, BWK, WBK, BWKJ, ..., method approximates a real Schrödinger wave func-

tion by a sinusoidal oscillation whose phase is given by the space integral of the classical

momentum. The method was introduced independentely in 1926 by G. Wentzel [41] and L.

Brillouin [42], and improved by H. A. Kramers [43] few months later. In these early days of

quantum theory, problems such as the tunnelling phenomenon through a potential barrier,

energy eigenstates in a potential well, among many others, required to solve differential

equations which, in general, and even in one dimension, have no analytic solutions. Ap-

proximating the wave function by an oscillatory wave depending on a phase integral proved

very useful in providing physical intuition, and qualitative and quantitative solutions.

The original formulation of the Schrödinger equation was given in the space of positions,

the so-called Schödinger representation, where functions of the operator x̂ are diagonal.

In this representation, the WKB approach in not always simple, due to the existence of

caustics, and matching formulas are needed. The phase-space representation, introduced by

Bargmann [44], wich is equivalent to the coherent state representation for the Heisenberg-

Weyl group, was recognised to have many advantages [26] when combined with WKB

methods. In particular the quantization rules follow simply from imposing analicity to the

eigenfunctions [26, 21].

We present here a derivation of the WKB approximation for a spin system using n−1 =

(2s)−1 as the semi-classical parameter. We also obtain the Bohr-Sommerfeld quantization

based on the analiticity of the WKB function along the classical trajectory.

2.2.1 WKB Wave Function

In this section we give the WKB approximation of the eigenstates of a hermitian operator

H . This is done by developing the involved quantities in powers of n−1.

Let us first write the time-independent Schrödinger equation Ĥ|Ψ〉 = ε|Ψ〉 in the coherent-

state representation. Note that for sake of simplicity we take nĤ and not Ĥ to be an

extensive operator. Using Eq. (2.19), one transforms the Schrödinger equation into a non-

linear differential equation for its logarithmic derivative G(ᾱ), which satisfies the following

Riccati-like equation

H
[
ᾱ, n−1∂ᾱ +G(ᾱ)

]
= ε. (2.30)

We suppose that all involved quantities admit a n−1 development:

H =

∞∑

i=0

n−iHi ; G =

∞∑

i=0

n−iGi ; ε =

∞∑

i=0

n−iεi. (2.31)
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H0 is, sometimes, called the principal symbol of the operator Ĥ and Hi>0 its sub-symbols.

The perturbative expansion in powers of n−1 permits, after some algebraic manipulations

(see section A.1.1), to obtain a hierarchy of equations for the Gi’s. For computing the wave

function at leading order we give explicitely the relations for both the leading G0 and the

next to leading G1, orders

ε0 = H0 (ᾱ, G0) , (2.32)

ε1 = H1 (ᾱ, G0) +
∂ᾱG0

2
∂2

ζH0 (ᾱ, G0) +G1∂ζH0 (ᾱ, G0) , (2.33)

where ∂ζH0 (ᾱ, G0) is the derivative of the symbol H0(ᾱ, ζ) computed in ζ = G0(ᾱ). Sim-

plifying the equation for G1 we get

G1(ᾱ) = −1

2

d

dᾱ
log [∂ζH0 (ᾱ, G0)] +

ε1 −H1 (ᾱ, G0) + 1
2
∂ᾱ∂ζH0 (ᾱ, G0)

∂ζH0 (ᾱ, G0)
. (2.34)

The WKB wave function then writes,

〈α|Ψ〉 = e
n

R ᾱ
ᾱ0

dᾱ′ G(ᾱ′)
(2.35)

=

√
∂ζH0 (ᾱ, G0)|ᾱ0√
∂ζH0 (ᾱ, G0)|ᾱ

e
n

R ᾱ
ᾱ0

dᾱ′
»
G0+

1
n

ε1−H1+1
2 ∂ᾱ∂ζH0

∂ζH0

–

[1 +O(n−1)],

where G0 is given by Eq. (2.32). The square root is defined as:
√
x = e

1
2

ln(x), and the

branch cut of the logarithm is taken to be the negative real axis.

2.2.2 Bohr-Sommerfeld Quantization

Quantization of the energies is obtained by imposing that Ψ(ᾱ) is a univaluated function

of ᾱ ∈ C. Writing the Ψ(ᾱ) as in Eq. (2.19) the wave function has to take the same value

when evaluated along the two different paths of Fig. (2.2). In terms of G this translates to

Iγ = − 1

2πi

∮

γ

dᾱ G(ᾱ) =
k

n
, (2.36)

with k ∈ N and for all closed paths γ.

We define I as being Iγ=C where the curve C is defined such that the probability amplitude

WΨ,Ψ(ᾱ, α) of finding the system in the coherent state |α〉 is maximal, see Eq. (2.28, 2.29):

C = {ᾱ : H
[
ᾱ, ∂ᾱΩ(ᾱ, α) + n−1∂ᾱ

]
= H (ᾱ, α) = ε}. (2.37)
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Figure 2.2: Quantization (2.36) derives from imposing that Ψ(ᾱ) be univaluated.

For this particular curve, one can see that I is given by the action of the classical flow

with energy ε

I = − 1

2πi

∮

C
dᾱ ∂ᾱΩ(ᾱ, α) =

1

2π

∫

Σ

ω, (2.38)

obtained upon integrating the symplectic 2-form ω = i∂ᾱ∂αΩ(ᾱ, α)dα ∧ dᾱ (see sec-

tion A.2.3) over the interior of the classical trajectory Σ.

In the semi-classical limit we define similarly the classical-orbit:

C0 = {ᾱ : H0 [ᾱ, ∂ᾱΩ(ᾱ, α)] = H0 (ᾱ, α) = ε0}. (2.39)

The relation between H0 and H0 is obtained in section A.1.2. If C0 contains no points

such that ∂ζH0 = 0, the WKB solution (2.35) is an analytic function of ᾱ in the vicinity

of C0. Hyperbolic points for which ∂ζH0 = 0 are treated in chapter 5. In the regular

case, Eq. (2.36) can be explicitly computed by choosing γ = C0 and using the semi-

classical expansion of G. Expanding I =
∑

i=0 n
−iIi, one obtains the Bohr-Sommerfeld

quantization condition

I0 + n−1I1 +O(n−2) = n−1k, (2.40)

where I0 is given by the classical action

I0 = − 1

2πi

∮

C0

dᾱ ∂ᾱΩ(ᾱ, α) =
1

2π

∫

Σ

ω, (2.41)

and

I1 =
1

2
− 1

2πi

∮

C0

dᾱ
ε1 −H1 + 1

2
∂ζ∂ᾱH0

∂ζH0

, (2.42)

with the 1/2 term coming from the square root branch cut of Eq. (2.35).

For spin systems ω = i(1 + ᾱα)−2dᾱ ∧ dα and I0 is the solid angle sustained by classical

trajectory divided by 2π.





Chapter 3

The Lipkin-Meshkov-Glick Model

3.1 Introduction

The Lipkin-Meshkov-Glick (LMG) model was proposed in 1965 to describe shape phase

transitions in nuclei [17, 45, 46]. This model is often used to describe the magnetic prop-

erties of molecules such as Mn12 acetate [18]. However, it also captures the physics of

interacting bosons in a double-well-like structure [15, 16] and is thus relevant to (two-

mode) Bose-Einstein condensates [6] as well as Josephson junctions. It has also been

recently used in optical cavity quantum electrodynamics in its dissipative version [8, 47],

for studying the decoherence of a single spin coupled to spin bath [48, 49] or quench dy-

namics [50]. Note also that, in recent years, the entanglement properties of its ground

state [19, 20, 51, 52, 53, 54, 55, 56, 57] as well! as the finite-size behavior [58, 59, 12, 60]

have focused much attention on this model.

An exact solution of this model has been derived [61, 62, 63] but it requires the solution

of Bethe-like equations, which is more costly in terms of computational effort than exact

diagonalization. Although the low-energy physics of the model has been widely studied

through different approaches (variational [17, 64, 65], bosonization [58, 66, 67], and coher-

ent states [68, 67]), its high-energy properties have only been very recently investigated

numerically [11, 69, 70] and several interesting features have been revealed. More precisely,

for special values of the energy, the spectrum has been shown to display singularities which

are reminiscent of the critical point responsible for the well-known quantum phase transi-

tion at zero temperature.

Note that along this chapter we use the total spin s as the expansion parameter instead

of n = 2s, and some care should then be taken when identifying with the notation taken

in the previous chapter.

3.2 The Lipkin-Meshkov-Glick model

The LMG model describes a set of n spins 1
2

particles mutually interacting through an

(anistropic) XY -like Hamiltonian and coupled to an external transverse magnetic field

h. The Hamiltonian of this system can be expressed in terms of the total spin operators
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Sα =
∑n

i=1 σ
i
α/2 where the σα’s are the Pauli matrices:

H = −1

n

(
γxS

2
x + γyS

2
y

)
− h Sz. (3.1)

In the following, for simplicity, we only consider the maximum spin sector s = n/2

with N even. Given the symmetry of the spectrum of H , we focus on the parameter range

h > 0; |γy| 6 γx. Note also that
[
H,S2

]
= 0 and

[
H, eiπ(Sz−s)

]
= 0 (spin-flip symmetry).

In the standard eigenbasis {|s,m〉} of S2 and Sz, this latter symmetry implies that odd

and even m states decouple. In the thermodynamic limit, both subspaces are isospectral

so that we further limit the following analysis to the (s + 1)-dimensional sector with m

even. It is known that H exhibits a quantum phase transition for h = γx or h = γy.

3.3 Classical-energy surface

In the thermodynamic limit, a variational description of the ground state [17, 64, 65],

built with respect to the |α〉 states, leads to the dominant behaviour of the model and, in

particular, the location of the quantum phase transition. The latter can be obtained from

an analysis of the minima of the variational energy H0:

H0(ᾱ, α) = lim
s→∞

1

s

〈α|H|α〉
〈α|α〉 =

2 (1 − α2ᾱ2)h− (α + ᾱ)2 γx + (α− ᾱ)2 γy

2 (1 + αᾱ)2
. (3.2)

Note that, in this limit, a classical spin description is valid, such that the correspondence

between a state |α〉 and a classical vector is simply obtained via a stereographic map from

the complex plane onto the S2 sphere [with α = eiθ tan(φ/2)], leading to the following

parametrization

S =
n

2
(sin θ cosφ, sin θ sinφ, cos θ). (3.3)

Here we shall first be interested in the geometrical properties of the whole classical

energy surface H0(ᾱ, α). Its extrema, obtained by imposing ∂ᾱH0 = ∂αH0 = 0, are given in

Table 3.1 together with the corresponding energy. When one further imposes that α and ᾱ

are complex conjugate, the configuration space (spanned by the Hamiltonian parameters)

is split into distinct regions characterized by the number of extrema and saddle points in

H0(ᾱ, α).

This phase diagram coincides with that derived from the analysis of density of states

singularities, as done in the next section. We shall describe below how far the classical

analysis can help in understanding the spectral results. Note that a related analysis of the

classical energy surface, including comparisons to numerically derived spectra, has already

been proposed by Castaños et al. [70] in terms of the (θ, φ) angles instead of the present

(ᾱ, α).
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α ᾱ H0

0 0 h

−
(

−h−γx

h−γx

)1/2

−
(

−h−γx

h−γx

)1/2

−h2+γ2
x

2γx(
−h−γx

h−γx

)1/2 (
−h−γx

h−γx

)1/2

−h2+γ2
x

2γx

−
(

h+γy

h−γy

)1/2 (
h+γy

h−γy

)1/2

−h2+γ2
y

2γy(
h+γy

h−γy

)1/2

−
(

h+γy

h−γy

)1/2

−h2+γ2
y

2γy

∞ ∞ −h

Table 3.1: Extrema of the energy surface H0.

3.3.1 Classical description of the phase diagram

The zero-temperature phase diagram of the LMG model is usually discussed in terms of its

ground-state properties. In this case, only two phases are distinguished [17, 65, 59]. For

h > γx (symmetric phase), the ground state is unique and lims→∞ 〈Sz〉 /s = 1, whereas for

h < γx (broken phase), the ground state is two-fold degenerate and lims→∞ 〈Sz〉 /s = h/γx.

Note that the degeneracy in the broken phase arises only in the thermodynamic limit,

where the gap between the ground and first excited states vanishes exponentially with s.

The quantum phase transition at h = γx is of second order and characterized by mean-field

critical exponents [65] as well as nontrivial finite-size scaling behavior [58, 59, 12].

We have shown [14, 71] that, when considering the full spectrum, four different zones

arise instead of two, corresponding to a splitting of the broken phase region into three

distinct parts characterized by different singularities in the density of states (see Fig. 3.1).

Note that such singularities have already been pointed out in the numerical study of the

special case γx = −γy [11, 69] and were called “exceptional points”. We emphasize in the

present study that these exceptional points are associated with saddle points of the energy

surface. Of course, the absolute minimum (maximum) gives the lower (upper) bound of

the spectrum. Note that these bounds may be degenerate.

In the thermodynamic limit, to a given energy in the spectrum corresponds a level set

on H0(ᾱ, α). At that energy, the Husimi function local maxima are known to concentrate

along this level set, which forms the classical orbit. Singularities of the surface (maxima,

minima or saddle points) translate into singularities of the level sets (a main ingredient

in Morse surface theory). This, in turn, affects the density of states computation, as

illustrated in the next section, and explains why the singularities in the H0(ᾱ, α) surface

and in the density of states are in close correspondance.

As an illustration, we display in Fig. 3.2 the classical-energy surface for (γx = 5, γy =
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Figure 3.1: Phase diagram in the (γx, γy) plane at fixed h > 0 and typical density of states

for (γx, γy, h) equal to I: (1/2, 1/3, 1), II: (2, 1/2, 1), III: (5, -3, 1), and IV: (5, 3, 1)

3, h = −1) which is precisely the point of zone IV whose density of states is shown in

Fig. 3.1. As can be seen, the density of states contains two different types of singular

points, being either the locus of a divergence or discontinuity. The analysis of the classical-

energy surface allows one to qualitatively understand all these features. Indeed, it contains

two absolute minima (noted m) which provide the lower bound of the spectrum (two-fold

degenerate ground-state energy); two saddle points (noted s) corresponding to the singular

behaviour of density of states; one local maximum (noted M) which is associated with the

discontinuity, and one absolute maximum, not shown here, giving the upper bound of the

spectrum.

The same geometrical analysis can be performed throughout the configuration space.

A typical classical surface in zone I displays one minimum and one maximum, which re-

spectively signal the lower and upper edges of the spectrum. A zone II surface has two

absolute minima (corresponding to the broken phase degenerate ground states), a saddle

point (corresponding to the density of states singularity), and one maximum (the upper

spectrum edge). Finally, a generic zone III surface has (again) two absolute minima, two

saddle points (corresponding to the two singularities in the spectrum, arising at different

energies), and two absolute maxima (corresponding to a degenerate upper state). Note

that, when displayed on the sphere, one recovers the standard result for surfaces singu-
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Figure 3.2: Typical classical-energy surface in zone IV (γx = 5, γy = 3, h = −1), containing

several critical points: two minimal points (m); two saddle points (S); one local maximum

(M). It also contains a global maximum, outside the range of this plot. The level curves

of H0 (classical trajectories) are plotted in blue.

larities, which states that the number of maxima plus the number of minima minus the

number of saddle points equals the genus of the sphere, i. e., 2.

Thus, the analysis of the classical-energy surface allows us to qualitatively describe the

phase diagram shown in Fig. 3.1. However, it does not give any quantitative information

concerning the density of states. The aim of what follows is to develop a reliable method

to exactly compute the full spectrum of the LMG model.

3.4 Majorana representation and spectrum

3.4.1 From Schrödinger to Riccati

Let us now write the time-independent Schrödinger equation H|Ψ〉 = E|Ψ〉 in the coherent-

state representation. Using relations (2.5), (2.6), and (2.7), one transforms the Schrödinger

equation into the following linear differential equation

[
P2(ᾱ)

(2s)2
∂2

ᾱ +
P1(ᾱ)

2s
∂ᾱ + P0(ᾱ)

]
Ψ(ᾱ) = εΨ(ᾱ), (3.4)
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where ε = E/s and

P0(ᾱ) =
1

4s

[
ᾱ2(2s− 1)(γy − γx) − γx − γy

]
+ h, (3.5)

P1(ᾱ) = ᾱ

{
2s− 1

2s

[
α2(γx − γy) − γx − γy

]
− 2h

}
, (3.6)

P2(ᾱ) = −1

2

[(
ᾱ2 − 1

)2
γx −

(
ᾱ2 + 1

)2
γy

]
. (3.7)

The next step consists in converting the linear second-order differential equation (3.4) for Ψ

into a nonlinear first-order differential equation for its logarithmic derivative G(α), which

satisfies the following Riccati-like equation

P2(ᾱ)

[
G′(ᾱ)

2s
+G2(ᾱ)

]
+ P1(ᾱ)G(ᾱ) + P0(ᾱ) = ε. (3.8)

3.4.2 Density of states and poles of G

The density of states is then obtained from the analysis of the poles of the function G. To

illustrate the poles location, several typical states are displayed in Fig. 3.3 on the Majorana

sphere. Each dot represents one pole of G, i. e., one Majorana zero αk, which is mapped

from the complex plane to the sphere by an inverse stereographic projection

The cornerstone of this study is that, for the LMG model, the αk’s spread over two

curves Γ0 and Γ1 in the complex plane. In addition, the n-th excited state of H has 2n

poles on Γ1 and 2(s−n) on Γ0 (thus defining both curves). This remarkable property stems

mainly from existing maps (which may differ between parameter space regions) between

the LMG model and the problem of a particle in an effective one-dimensional potential

(see Appendix A.3). In the latter case, the oscillation theorem indexes the excited states

by the number of wavefunction nodes on the real axis. This leads here to (at least one

set of) zeroes lying on simple lines in the complex plane, where the pole density varies

monotoneously with energy.

Let us consider the normalized integrated density of states N (ε) ∈ [0, 1]. We shall

enumerate by n the eigenstates of increasing energy, starting from n = 0 for the ground

state, to n = s for the highest-energy state. The special location of the G poles leads to a

simple relation between N (ε) and p, the number of poles lying in Γ1, which reads

N (ε) =
n+ 1

s+ 1
=

1

s+ 1

(
1 +

p

2

)
, (3.9)

=
1

s+ 1

[
1 +

s

2iπ

∮

eΓ1

G(ᾱ) dᾱ

]
, (3.10)

where Γ̃1 is a contour that surrounds Γ1 and oriented such that N ≥ 0, Γ̃1 is homotopic to

the classical trajectory C0. For the sake of simplicity, we shall further consider the density
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Figure 3.3: Upper part: representation of the poles ofG on the Majorana sphere (blue dots)

for three typical eigenstates computed for h = 1, γx = 5, γy = −3 and s = 20 (zone III in

Fig. 3.1). Black lines correspond to the G0 branch cuts Γ0 and Γ1, orange lines correspond

to the classical orbits. Lower part: Numerical (black dots s = 20) versus analytical (red

line s = ∞) integrated density of states. The two crosses indicate the singularities of

the density of states N III
0 (−h) and N III

0 (h) [Eqs. (3.27) and (3.31) respectively] in the

thermodynamic limit.

of poles in Γ1, called I ∈ [0, 1], which simply reads

I(ε) =
p

2s
=

1

2iπ

∮

eΓ1

G(ᾱ) dᾱ, (3.11)

In general, Eqs. (3.11) and (3.8) cannot be exactly solved for arbitrary s. The main goal

of this paper is to solve these in the thermodynamic limit (s → ∞) and to capture the

leading finite-size corrections in a 1/s expansion.

3.4.3 Algebraic Relations for the Zeros of Eigenstates

Since the LMG Hamiltonian and collective spin Hamiltonian in general are integrable is

possible to give a set of algebraic relations characterising the eigenstates. In order to do

that let us consider Eq. (3.8) with G(ᾱ) given in (2.17)

P2(ᾱ)

(2s)2

∑

k 6=k′

1

(ᾱ− ᾱk)(ᾱ− ᾱk′)
+
P1(ᾱ)

2s

∑

k

1

ᾱ− ᾱk
+ P0(ᾱ) = ε. (3.12)
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Generically ᾱk 6= ᾱk′ for k 6= k′ and the polynomials Pi(ᾱk) 6= 0, assuming these general

hypothesis we can develop the above equation around a zero ᾱi obtaining

1

2s

1

ᾱ− ᾱi

[
2
P2(ᾱi)

(2s)
Yi(ᾱi) + P1(ᾱi)

]
+

P0(ᾱ)−ε+ 1

2s
[P1(ᾱi)Yi(ᾱi) + P ′

1(ᾱi)]+
1

(2s)2
Yi(ᾱi) [P2(ᾱi)Yi(ᾱi) + 2P ′

2(ᾱi)]+O(ᾱ−ᾱi) = 0

(3.13)

with Yi(ᾱi) =
∑

k 6=i
1

(ᾱi−ᾱk)
. The condition of cancelation of order (ᾱ− ᾱi)

−1 gives a set of

2s non-linear coupled equations verified by the zeros of an eigenstate of H

2
P2(ᾱi)

(2s)
Yi(ᾱi) + P1(ᾱi) = 0 i = 1, ..., 2s. (3.14)

These equations present at least as many as 2s+1 sets of solution determining completely

the eigenstates of the system. The energy of each state can be obtained considering the

order (ᾱ− ᾱi)
0 in Eq. (3.13). Once the set of solutions is obtained by (3.14) the energy of

the corresponding eigenstate is given as

ε = P0(ᾱi) +
1

2s
[P1(ᾱi)Yi(ᾱi) + P ′

1(ᾱi)] +
1

(2s)2
Yi(ᾱi) [P2(ᾱi)Yi(ᾱi) + 2P ′

2(ᾱi)] . (3.15)

The existence of such set of equations is a characteristic of integrable systems; similar

equations arise, for example, for the eigenstates of integrable one dimensional systems

following the Bethe-ansatz procedure, or in matrix models.

3.5 The thermodynamic limit

3.5.1 Leading-order expansion for G

Let us assume that G, and ε, can be expanded in the form

G =
∑

i∈N

Gi

si
, ε =

∑

i∈N

εi

si
. (3.16)

At leading order (1/s)0, Eq. (3.8) becomes a second-order polynomial equation for G0

whose solutions are

G±
0 (ᾱ) =

ᾱ
[
ᾱ2(γy − γx) + γx + γy + 2h

]
±
√

2Q(ᾱ)

2P2(ᾱ)
, (3.17)



3.5. The thermodynamic limit 29

where

Q(ᾱ) = κ
(
ᾱ2 − r 2

−
) (
ᾱ2 − r 2

+

)
(3.18)

κ = − (γx − γy) (h+ ε0) , (3.19)

r± = (−κ)−1/2
√
h2 + γxγy + (γx + γy) ε0 ±A, (3.20)

A =
√

(h2 + γ2
x + 2γxε0)

(
h2 + γ2

y + 2γyε0

)
. (3.21)

The four roots of Q, ±r±, are branch points of G0. The integrated density of states in

the thermodynamic limit, N0(ε0), now reads

N0(ε0) = lim
s→∞

N (ε) = lim
s→∞

I(ε) = I0(ε0), (3.22)

=
1

2iπ

∫

Γ1

dα
[
G+

0 (ᾱ) −G−
0 (ᾱ)

]
. (3.23)

A natural choice for the G0 branch cuts is given by the curves Γ0 and Γ1, on which the

G poles accumulate as s increases. It indeed corresponds to the direction, in the complex

plane, for which the quantity computed in Eq. (3.22) is real at each (infinitesimal) step of

the integration. This latter condition was in fact implemented to draw the curves Γ0 and

Γ1 in the different figures.

In the next section, we analyze in detail the four above mentioned different regions in

the phase diagram, in terms of N0(ε0), its derivative and the density of states ρ0(ǫ0) =

∂ε0N0(ε0). These quantities are, in most cases, computed as indicated in Eq. (3.22). It may

happen, as noted below, that the Γ1 curve has a complex shape, while Γ0 is simple. Since

the integral over all branch cuts, corresponding to Γ0 and to Γ1, sums to unity, we can

safely consider the integral over Γ0, instead of the non-trivial one over Γ1, and write N0(ε0)

as one minus this integral. We also face the case of state degeneracies, with corresponding

symmetric or nonsymmetric classical orbits. Each such orbit is considered separately, by

imposing the analyticity of G0 in the region containing this orbit, bounded eventually by

a closed branch cut on the sphere. The related Ψ(α) is zero along this line, and can be

considered as vanishing outside the considered region. This corresponds quite well to the

(numerically derived) eigenstate in the nonsymmetric case. However, in the symmetric

case this description fails to reproduce the exact eigenstates since the latter is generically

a linear combination of states located close to the classical orbits.

3.5.2 Analytical expressions of the densities of states

A precise study of the branch cuts Γ0 and Γ1 allows one to distinguish between five different

forms of the density of states (labelled (a, b, c, d, e) below) that can be expressed in terms
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of the complete elliptic integral of the first kind

K(m) =

∫ π/2

0

(1 −m sin2 θ)−1/2dθ, (3.24)

the incomplete elliptic integral of the third kind

Π(n, φ|m) =

∫ φ

0

(1 − n sin2 θ)−1(1 −m sin2 θ)−1/2dθ, (3.25)

and the complete elliptic integral of the third kind Π(n|m) = Π(n, π/2|m).

Depending on the Hamiltonian parameters, we have already distinguished between four

different zones, following the classical surface singularities. We will now show how these

zones are characterized in terms of the density of states behavior. Indeed, each time a

classical surface singularity (maximum, minimum or saddle point) is crossed, the level sets

(classical orbits or Husimi function local maxima) experience topological changes, as well

as the integration contours, leading to a new expression for the integrated density of states.

We now detail these different expressions, by describing each zone.

• Zone I: |γy| < γx < h.

Within this range of parameters (which coincides to the “symmetric phase” discussed

in Sec. 3.3.1) the spectrum lies in the interval −h 6 ε0 6 h and the density of states is a

smooth decreasing function of the energy as can be seen in Fig. 3.1. The distribution of

Majorana polynomial roots in this zone is similar to that displayed in Fig. 3.3(b). In the

complex plane, Γ0 and Γ1 lie in the imaginary and real axes respectively. The integrated

density of states is given by

N (b)
0 (ε0) = 1 +

√
2

πr+
√−κ γxγy

[
a2
−Π
(
µr 2

−

∣∣∣
r 2
−

r 2
+

)
− a2

+Π
(r 2

−
µ

∣∣∣
r 2
−

r 2
+

)
+ 2

√
γxγy(h+ ε0)K

(
r 2
−

r 2
+

)]
,

with

a± = h±√
γxγy , µ =

√
γx −√

γy√
γx +

√
γy

. (3.26)

• Zone II: |γy| < h < γx.

In this region, one must distinguish between two cases:

− II (a): −h2+γ2
x

2γx
6 ε0 6 −h. Γ0 coincides with the whole imaginary axis while Γ1 is

made of two disconnected segments in the real axis as depicted in Fig. 3.3(a). Here, the

integrated density of states reads

N (a)
0 (ε0) = 1 +

√
κr 2

+

πr−
√

2γxγy

[
Π

(
1 − r 2

+

µ

∣∣∣1 − r 2
+

r 2
−

)(
1 − r 2

−
µ

)
−

Π

(
1 − µr 2

+

∣∣∣1 − r 2
+

r 2
−

)
(1 − µr 2

−)

]
.
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− II (b): −h 6 ε0 6 h. Γ0 and Γ1 are the same as in zone I and the analytic expression

of the density of states is given by Eq. (3.26).

These two branches (a) and (b) of the density of states diverge at ε0 = −h. Indeed, the

integrated density of states can be simplified into the following form

N II
0 (−h) = 1 +

2

π
√
γxγy

{
a− tan−1

[
a−
b+(h)

]
− a+ tan−1

[
a+

b0(h)

]}
,

with

b±(h) = ±
(√

hγx −
√
hγy

)
+
√

(γx − h) (h− γy), (3.27)

b0(h) =
√
hγx +

√
hγy +

√
(γx − h)(h− γy), (3.28)

and one can check that ρII
0 (−h) = ∂ε0N II

0 (ε0)|−h diverges. One can further extract the

leading behavior of the density of states near this point to obtain

lim
ε0→−h

ρII
0 (ε0) = − log |ε0 + h|

2π
√

(γx − h) (h− γy)
. (3.29)

• Zone III: h < −γy < γx.

In this region, one must distinguish between three cases:

− III (a): −h2+γ2
x

2γx
6 ε0 6 −h. Γ0 and Γ1 are the same as in II(a), and the integrated

density of states is given by Eq. (3.27).

− III (b): −h 6 ε0 6 h. Γ0 and Γ1 are the same as in I, and the density of states

N (b)
0 (ε0) is given in Eq. (3.26).

− III (c): h 6 ε0 6 −h2+γ2
y

2γy
. Γ0 is made of two disconnected segments on the imaginary

axis while Γ1 coincides with the whole real axis as depicted on the Majorana sphere in

Fig. 3.3(c). The integrated density of states simply reads

N (c)
0 (ε0) = 1 −N (a)

0 (ε0), (3.30)

where N (a)
0 is given in Eq. (3.27).

In this zone III, the density of states has two singularities at ε0 = ±h. The integrated

density of states for these energies is given by N III
0 (−h) = N II

0 (−h) [see Eq. (3.27)] and

N III
0 (h) =

2

π
√
γxγy

[
a+ tan−1 a+

b0(−h)
− a− tan−1 a−

b−(−h)

]
. (3.31)

As done in zone II, one can compute the leading behaviour of the density of states near

these points and one gets

lim
ε0→+h

ρIII
0 (ε0) = − log |ε0 − h|

2π
√

− (γx + h) (h+ γy)
. (3.32)
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For γx = −γy, the spectrum is symmetric with respect to ε0 = 0 and the above

expression gives the exact location, in the thermodynamic limit, of the so-called exceptional

point observed in Ref. [11, 69] where a more complex diverging behavior was conjectured.

• Zone IV: h < γy < γx.

In this zone the density of states presents three different regions, of type d, e and b.

The curve Γ1 is more complex here, while Γ0 always lies on a straight line in the complex

plane. This is why we choose to integrate around Γ0 instead of Γ1.

− IV(d): −h2+γ2
x

2γx
6 ε0 6 −h2+γ2

y

2γy
. Γ0 coincides with the whole imaginary axis while

Γ1 has two disconnected branches lying symmetrically on the unit circle with respect to

the imaginary axes. We are here facing a case where the classical orbits are related by

symmetry (see Fig. 3.4(d)). One finds, for this region,

N (d)
0 (ε0) = 1 +

2
√

2r−

π (r− − r+)
√
−γxγy (h+ ε0)

[
a2
−

u (−r−) u (r−)
E (r−, y) −

a2
+

r 2
−u
(
− 1

r−

)
u
(

1
r−

)E
(

1

r−
,−y

)]
, (3.33)

with

E (r−, y) = Π

[
−u (−r−)

yu (r−)
, sin−1

√−y
∣∣∣
1

y2

]
− Π

[
−u (−r−)

yu (r−)
, sin−1 √y

∣∣∣
1

y2

]
−

Π

[
− u (r−)

yu (−r−)
, sin−1 √−y

∣∣∣
1

y2

]
+ Π

[
− u (r−)

yu (−r−)
, sin−1 √y

∣∣∣
1

y2

]
, (3.34)

where

y =
r− − r+

r− + r+

, (3.35)

u (r−) =
√√

γx −
√
γyr− +

√√
γx +

√
γy. (3.36)

− IV(e): −h2+γ2
y

2γy
6 ε0 6 −h. This region shows two disconnected classical trajectories

not related by symmetry (see Fig. 3.4), corresponding to two qualitatively different kinds

of states which alternate in the spectrum. Γ0 comprises two disconnected components lying

in the imaginary axis, while Γ1 is still complex and, moreover, is different for the two kinds

of states. One finds

N (e)
0 (ε0) = 1 +

√
2

πr+
√−κγxγy

{
− 4ε0

√
γxγyK

(
r 2
−

r 2
+

)
+ a2

−

[
Π

(
1

µr 2
+

∣∣∣
r 2
−

r 2
+

)
− Π

(
µr 2

−

∣∣∣
r 2
−

r 2
+

)]
+

a2
+

[
Π

(
r 2
−
µ

∣∣∣
r 2
−

r 2
+

)
− Π

(
µ

r 2
+

∣∣∣
r 2
−

r 2
+

)]}
. (3.37)
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Figure 3.4: Roots of the Majorana polynomial (blue dots) (γx = 10, γy = 5, h = 1, and

s = 40), classical orbits (orange curves), Γ0 and Γ1 (black curves), for eigenstates (labelled

by n) in zone IV(d) (n = 15), zone IV(e) [(e−): n = 25, (e+): n = 26 ] and zone IV(b)

(n = 35). In zone IV(e) two kinds of states coexist, of type (e−) and (e+), associated with

the two classical orbits nonrelated by symmetry that alternate in the spectrum.

For the critical energy, at the boundary between IV(d) and IV(e), the integrated density

of states simplifies to

N IV
0

(
− h2 + γ2

y

2γy

)
= 1 +

1

π
√
γxγy

[
a−c(−h) − a+c(h)

]
, (3.38)

with

c(h) = tan−1


 h

√
γx + γ

3/2
y√

(γx − γy)(γ2
y − h2)


 , (3.39)

N IV
0 (−h) = 1 − h

√
γxγy

. (3.40)

In addition, the density of states singular behaviour is not symmetrical, and reads

lim

ε0→
„
−h2+γ2

y
2γy

«−
ρ

(e)
0 = −

log
∣∣∣ε0 +

h2+γ2
y

2γy

∣∣∣√γy

π
√

(γx − γy)
(
γ2

y − h2
) , (3.41)

= 2 lim
ε0→

„
−h2+γ2

y
2γy

«+
ρ

(d)
0 . (3.42)

− IV(b): −h 6 ε0 6 h. Γ0 is simply connected and lies on the imaginary axes. Like in

the previous case, Γ1 is non-trivial (see figure 3.4). Nevertheless, the expression found for

N0 in this region coincides with that given by Eq. (3.26).

We now discuss the particular features found in the spectral region IV(e). At ε0 = −h,
the density of states is discontinuous (see Fig. 3.1), a fact which can be understood already
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Figure 3.5: Gap between two consecutive levels as a function of the energy in region IV for

γx = 15, γy = 10 and h = 1. In the central region, one sees a real lack of convergence toward

the red line when increasing s, which is the average gap as computed in the thermodynamic

limit.

from the topological analysis of the classical surface H0. Indeed, the transition from zone

(e) to zone (b) corresponds to leaving a local maximum of H0 (see Fig. 3.2);therefore a

family of classical orbits no longer contribute to the density of states.

In addition, as opposed to all other regions, the energy difference between two consec-

utive levels ∆(i) = E(i+1) −E(i), computed for increasing s, does not converge towards the

analytical result and, actually, does not converge at all. In region IV(e), ∆(i) spreads over

two branches (+) and (−), depending on the parity of the i, which oscillate without con-

verging as s increases, as can be seen in Fig. 3.5. In this case, the gap we compute, in the

thermodynamic limit, is actually the average gap, namely ∆0(ε0) = 1
2

[
∆(+)(ε0)+∆(−)(ε0)

]
.

This is clearly to be understood in relation with the existence of two kinds of states al-

ternating in the spectrum. Indeed, when analyzed separately within each set of states (e+

or e−), the computed energy gaps (between levels j and j + 2 in the energy spectrum)

converge as s → ∞. In addition, both such gaps converge to twice the value of ∆0(ε0)

(otherwise the two kind of states would not alternate as observed numerically). The os-

cillatory behaviour noted in Fig. 3.5 signals an energy drift (with s) of one set of energy

levels with respect to the other.

3.6 Finite-size corrections

In the previous section, we have analyzed the thermodynamic limit of the LMG model

spectrum by considering the leading terms in the expansion (3.16) [order (1/s)0]. We now

express the next-order corrections, which have already been shown, at least for the ground
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state, to display nontrivial scaling properties [65, 58, 59, 12]. For the sake of simplicity, we

limit the present analysis to the case γx = 1, γy = 0.

3.6.1 First-order expansion for G

Identifying terms of order 1/s in Eq. (3.8), one obtains the following form for the first-order

term of G:

G±
1 (α) = Ĝ1(ᾱ) + G̃±

1 (ᾱ), (3.43)

with

Ĝ1(ᾱ) =
hᾱ [h (ᾱ2 + 1) − ᾱ2 + 1]

2 (1 − ᾱ2)Q(ᾱ)
, (3.44)

G̃±
1 (ᾱ) = ±h (ᾱ2 + 1) + 2 (ᾱ2 − 1) ε1

2 (ᾱ2 − 1)
√

2Q(ᾱ)
. (3.45)

Ĝ1 is thus an analytic function of ᾱ with poles at ±r− and ±r+ while G̃1 has the same

branch cuts as G0. I(ε) reads, recalling Eq. (3.11), and developing up to first order

I(ε) =
1

2iπ

∮

eΓ1

G0(ᾱ) dᾱ +
1

s

1

2iπ

∮

eΓ1

G1(ᾱ) dᾱ, (3.46)

= I0(ε) +
1

s
I1(ε), (3.47)

where I0(ε) is given in Eq. (3.22) and where one can rewrite

I1(ε) =
1

4
+

1

2iπ

∫

Γ1

dᾱ
[
G̃+

1 (ᾱ) − G̃−
1 (ᾱ)

]
, (3.48)

the 1
4

coming from the integration over the poles.

For γx = 1, γy = 0, one has only zones I and II to consider, which focuses the analysis

on only two energy regions. In zone I and II(b) one obtains

I(b)
1 (ε) =

1

4
+

(h+ 2ε1)K
(

r
2
−

r
2
+

)
− 2h Π

(
r 2
−

∣∣∣ r
2
−

r
2
+

)

πr+

√−κ , (3.49)

whereas in region II(a) one finds

I(a)
1 (ε) =

1

π
√
κ

{
2h

r− (r 2
+ − 1)

[
K

(
1 − r 2

+

r 2
−

)
− r 2

+Π

(
1 − r 2

+

∣∣∣1 − r 2
+

r 2
−

)]
+

h + 2ε1

r+

K

(
1 − r 2

−
r 2
+

)}
. (3.50)
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Figure 3.6: Comparison between analytical (red line) and numerical (s = 50 black dots)

results for the (zeroth order) integrated density of states N0 (upper left) and energy gap

∆0 (upper right) and the first order finite-size corrections to the energy ε1 and to the gap

(∆1, lower right).

Now, for all s, we expect that I(ε) = I0(ε0), which implies, at order 1/s, I1(ε−ε1/s) =

I1(ε0) = 0. This condition allows one to compute the first-order correction to the energy,

ε1, which is displayed in Fig. 3.6 (lower left), and compares nicely with the numerical

values, already for small values of s (here s = 50).

3.6.2 Energy gaps

The gap between two successive levels has already been discussed above in the zone IV

case. At the thermodynamic limit, it generically reads

∆0(ε0) =
1

ρ0(ε)
=

∂ε0

∂N0(ε0)
. (3.51)

With the analysis done in the previous section, we can now compute finite size correc-

tions to the gap. To first order, we obtain
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∆ = ∆0 +
1

s
∆1 = ∆0

(
1 +

1

s

∂ε1

∂ε0

)
. (3.52)

The above derived values of ε1 allow us to get a closed form for ∆1, which nicely

compares to the numerical values, as can be seen in Fig. 3.6 (lower right) for s = 50.

The ∆1 correction is singular at the exceptional points, which are, as discussed in

Sec. 3.5 located at ε0 = −h. Note that Leyvraz and Heiss numerically found a logarithmic

singularity at the exceptional points [12]. A related feature was already observed for

the gap between the ground state and the first excited state [58, 59]. In the latter case, a

scaling hypothesis led to a derivation of the first order correction, showing a n−1/3 behavior.

Unfortunately, the scaling hypothesis cannot be used here at the exceptional points. We

have determined the behavior of the gap in their vicinity; setting η = |h+ ε0|, one gets

∆(ε0 → −h+) = −2π
√

(1 − h)h

log η

{
1 − 1

s

[
1

4(h− 1)
+

√
(1 − h)h sin−1(1 − 2h)

η log2 η

]}
,

∆(ε0 → −h−) = −2π
√

(1 − h)h

log η

[
1 − 1

s

2
√

(1 − h)h sin−1
√
h

η log2 η

]
. (3.53)

Note that the leading term is simply the inverse of ρ0 which is given in Eq. (3.29) and

vanishes when η goes to zero.

3.7 Observable expectation values

In this section, we discuss the expectation values of spin observables for generic eigen-

states of the LMG model. The simplest way to perform such a calculation is to use the

Hellmann-Feynman theorem, which relates these expectation values to partial derivative

of the eigenenergies with respect to Hamiltonian parameters. For instance

〈Ψ|Sz|Ψ〉 = −∂hE , 〈Ψ|S2
x|Ψ〉 = −2s ∂γxE. (3.54)

As an illustration, we compare in Figs. 3.7 and 3.8 three cases, computed numerically

(at finite s) and via the Hellmann-Feynman theorem in the thermodynamic limit, i. e.

replacing E by s ε0. As expected, one can see an almost perfect agreement, except for zone

IV(e) discussed below.

Let us still make use of the semi-classical analysis discussed in previous sections. The

expectation value 〈Ψ|Ô|Ψ〉 for an observable O reads [72], at leading order,

〈Ô〉 =
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 =

1

T

∫ T

0

dt 〈α(t)|Ô|α(t)〉, (3.55)

where T is the period of the classical orbit with energy ε0 and α(t) the solution of the

classical dynamics equation [21].
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Figure 3.7: Comparison of expectation values of several observables obtained from numer-

ical diagonalizations (black dots) and from the Hellmann-Feynman theorem in the thermo-

dynamic limit (red lines). Plot parameters: s = 60, zone I : (γx = 1/2, γy = 1/3, h = 1),

zone II : (γx = 2, γy = 1/2, h = 1), zone III : (γx = 5, γy = −3, h = 1).

Let us focus on the 〈Sz〉 case. In zone I, it is maximal for the ground state. Indeed, in

that region, H0 is minimum for α = 0, where the classical orbit degenerates to a single point

at which the ground-state amplitude |Ψ(α)|2 is concentrated. As a result, although this

true ground state differs from the simple fully-polarized state, 〈Sz〉 reaches its maximum

value s.

This also occurs, in region II and III, for energies corresponding to the exceptional

points. Here, classical orbits display a characteristic “figure eight” shape, with the values

of α therefore differing from zero. The saturation effect results in that case from the fact

that the period of the orbit diverges, with a vanishingly small classical velocity near α = 0,

forcing the expression in Eq. (3.55) to saturate. In all cases except zone IV(e), this latter

computation leads to the same result as that simply obtained from the Hellmann-Feynman

theorem.
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Figure 3.8: Same as Fig. 3.7, for a typical point in zone IV (γx = 5, γy = 3, h = 1)

and s = 60. In the central region [zone IV(e)], there is a clear discrepancy between the

numerical values (black dots), and those derived from the Hellmann-Feynman theorem (red

lines).

In zone IV(e), the numerically computed expectation values alternate along two distinct

curves, differing from the Hellmann-Feynman result. This corresponds to the already

discussed existence, for the same energy ε0, of two kinds of classical trajectories unrelated

by symmetry (see Fig. 3.4). For each numerically derived eigenstate, the associated |Ψ(α)|2
concentrates alternatively near one of the two classical orbits. Integrating separately along

each orbit precisely gives the two branches that are observed numerically (Fig. 3.8), while

the Hellmann-Feynman computation leads to an averaged value.

3.8 Conclusion

We have studied in detail the full spectrum of the Lipkin-Meshkov-Glick model, by means

of a coherent-states formalism. In a first step, we simply determined the main character-

istics of the (zero temperature) phase diagram by analyzing extrema and saddle points

of the classical-energy surface. This leads us to distinguish between four zones in the

phase diagram corresponding to various patterns of the density of states whereas the usual

ground-state criterion leads to only two distinct phases.

In a second step, we analyzed more deeply the nature of the eigenstates in terms of their

associated Majorana polynomial roots. This enabled us to exactly compute the integrated

density of states in the thermodynamic limit as well as the first finite-size corrections. This

remarkable result mainly stems from the fact that the roots of the Majorana polynomial

lies on well-defined curves, where their density varies monotoneously with the energy. We

also clarified the nature of the so-called “exceptional” points in the spectrum.

Finally, we addressed the question of computing generic observable expectation val-

ues, in particular when, owing to subtle spectral reasons, the Hellmann-Feynman theorem

cannot be used.
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In principle, the same type of analysis could be performed for any spin Hamiltonian

expressed in terms of single-spin operators (so-called “collective models”). Preliminary

investigations of such models with cubic or quartic interactions are currently under study.

Another perspective, also presently under investigation, concerns the dynamical properties

both for evolutions under fixed and variable Hamiltonian parameters.



Chapter 4

Matrix Elements in the Semi-Classical Limit

4.1 Introduction

Semi-classical approximations for eigenstate wave-functions and energies clearly provide

valuable informations on physical systems. Computing matrix elements of observables is

also of prime interest, for example in order to address dynamical properties.

In this section we derive, in the case of spin systems, a semi-classical formula for

operators matrix elements. We then apply our results in order to derive matrix elements

between eigenstates of the LMG Hamiltonian.

Even if in the following we only treat a spin system which is effectively one dimensional,

this approach generalizes for integrable systems having many degrees of freedom (see, for

example, [73, 72]).

4.1.1 Semi-Classical Development

Let us fist recall the expression of the unnormalized matrix elements in Eq. (2.26) now

computed between eigenstates |ηl〉 and |ηm〉 of the Hamiltonian Ĥ . For this case Eq. (2.26)

writes

〈ηm|Â|ηl〉 =

∫
dµ(ᾱ, α) enSm,l(ᾱ,α) A[ᾱ, n−1∂ᾱ +G(l)(ᾱ)], (4.1)

with

Sm,l(ᾱ, α) =

∫ ᾱ

ᾱl

G(l)(ᾱ′)dᾱ′ +

∫ α

αm

Ḡ(m)(α′)dα′ − Ω(ᾱ, α), (4.2)

where the normalization of the states is taken such that 〈ηm|αm〉 = 1 and 〈αl|ηl〉 = 1. We

evaluate the integral in Eq. (4.1) using a saddle point approximation in the semi-classical

parameter n, using the already defined (logarithmic derivative) G for wave functions com-

puted from the WKB approximation, satisfying the extremal conditions

∂αSm,l(ᾱ, α) = Ḡ
(m)
0 (α) − ∂αΩ(ᾱ, α) +O(n−1) = 0 (4.3)

∂ᾱSm,l(ᾱ, α) = G
(l)
0 (ᾱ) − ∂ᾱΩ(ᾱ, α) +O(n−1) = 0. (4.4)
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G0 obeys Eq. (2.32), and, for a generic couple of conjugated complex variables {ᾱ, α},
conditions (4.3) and (4.4) are not fullfilled, . In that case, the integration leads to an expo-

nentially small contribution. However, whenever ε
(l)
0 = ε

(m)
0 = ε0 and Ḡ

(m)
0 (α) = G

(l)
0 (ᾱ) =

G0(ᾱ), Eq. (4.3) and (4.4) do have a set of solutions corresponding to the classical orbit

C0 with energy ε0. States with a different “macroscopic” energy ε0 are exponentially con-

centrated in a band of order n−1 around different classical trajectories and their overlap is

exponentially small in n. Non-zero matrix elements are obtained for states corresponding

to the same energy at first order in n.

In order to fix the normalization condition, we define a function from the spectral energies

to the orbit C, ᾱ0(ε
(m)) = ᾱm. This function is chosen such that, in the thermodynamic

limit, ᾱ0(ε0) is a point in the classical trajectory C0 varying continuously with ε0.

The steepest descent approximation follows by integrating the second order fluctuations of

Sm,l perpendicular to the classical trajectory and evaluating the non-exponential diverging

terms over the classical trajectory. This is done explicitly in section A.2.

Upon choosing the parametrization ᾱ(τ) given by the classical evolution (section A.2.2),

we finally obtain

〈ηm|Â|ηl〉 = C × eΦm,l

∫ T/2

−T/2

dτ ei(ε
(m)
1 −ε

(l)
1 )τA0(ᾱ, α)[1 +O(n−1)], (4.5)

where T is the period of the classical evolution corresponding to the energy ε0 (see section

A.2.2), C and Φm,l are defined respectively in Eq. (A.25) and (A.26).

4.1.2 Regular Orbits

For regular orbits (e.g. far from singular classical orbits), for which the WKB solu-

tion (2.35) is always well defined, the period T is finite. Moreover, for this case, we

assume that a function ε(I) exits and has a good thermodynamic limit, I(m) being the

action defined in Eq. (2.41) computed for the state m. The energy difference between near

levels, l and m, is thus given by

ε(m) − ε(l) = ε(I(m)) − ε(I(l)) =
2π(m− l)

T
+O(n−1), (4.6)

where we use the fact that, at leading order, the classical action is the same for both states

and the results of section A.2.3. The leading order term of the normalized matrix element,

for the regular case, writes then

f Â
m,l =

〈ηm|Â|ηl〉√
〈ηm|ηm〉〈ηl|ηl〉

= eiΦ̃

∫ T/2

−T/2

dτ

T
e

i 2π(m−l)τ
T A0[ᾱ(τ), α(τ)], (4.7)
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with Φ̃ = i (ε(m)−ε(l))
2

[∂εα0(ε0)∂αΩ(ᾱ0, α0) − ∂εᾱ0(ε0) ∂ᾱΩ(ᾱ0, α0)] . In the following we con-

sider that we can always chose a parametrization ᾱ0(ε0) such that Φ̃ = 0 (for example

taking ᾱ0(ε0) real for all ε0).

Eq.(4.7) translates the fact that the matrix elements in the semi-classical limit are given by

the (m− l)-th Fourier coefficients of the classical observable evaluated along the classical

flow. Since the integral of the classical flow equations is regular, A is an analytic function

of τ . This fact implies that the amplitude of the Fourier mode decays exponentially as

|m− l| → ∞. This can be seen by considering the integral

fk =

∫ T/2

−T/2

dτ

T
eik 2πτ

T A0(τ), (4.8)

with A0(τ) a periodic and analytic function of τ with period T , and k stands for m − l.

Note that, since integration is proceeded along a classical orbit, parametrized by τ , we

dropped the α(τ) dependance in A0(τ). Supposing k > 0, we can deform the contour like

in Fig.4.1, by allowing for complex τ values. Periodicity, A0(τ + T ) = A0(τ), implies that

the contributions (1) and (3) cancel and, for k sufficiently large, the contribution of (2)

goes to zero as the contour is pushed to infinity. We can then write the integral as a sum

over the poles τp of A0(τ) :

fk =
2πi

T

∑

p

eik
2πτp

T Res[A0(τp)] −−−→
k→∞

2πi Res[A0(τ1)]
eik

2πτ1
T

T
, (4.9)

where Im(τ1) < Im(τ2) < ... . Since Im(τ1) > 0, fk vanishes exponentially as k → ∞.

The procedure is similar for k < 0 where the contour is chosen in the half plane Im(τ) < 0.

Figure 4.1: Integration contour for fk in the complex τ plane.
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For the present spin system, the symbol A0 of a regular operator have poles for [1 +

ᾱ(τ)α(τ)] = 0; recall that the “symbol” refers to an operator expectation value between

normalized spin coherent states. This is indeed the case for the symbols of the su(2)

generators

S =
n

2

{
(α + ᾱ)

1 + αᾱ
,
i(α− ᾱ)

1 + αᾱ
,
(αᾱ− 1)

1 + αᾱ

}
, (4.10)

and of their powers. The condition 1 + αᾱ = 0 arises only for non real values of τ

and the analytic continuation of A0 is considered. This is done regarding α and ᾱ given

by the classical flow equations (A.31,A.32) for complex values of τ . The {ᾱ, α} couples

obtained this way will not, in general, be a complex conjugated pair of variables. Using

the conservation of the energy along the evolution H0(ᾱ, α) = ε0, and considering H0

an rational function of its variables, one can obtain α(ᾱ) defined in the Riemann sheet

containing the initial conditions α0(ᾱ0) = α0. This permits to integrate explicitly the

equations of motion

i

∫ ᾱ∗

ᾱ0

∂ᾱ∂αΩ

∂αH0
dᾱ = τ ∗, (4.11)

where ᾱ∗ is defined such that the pole condition [∂ᾱ∂αΩ(τ ∗)]−1/2 = [1 + ᾱ∗α(ᾱ∗)] = 0 is

verified. The decay of the Fourier coefficients is dominated by τ1 which is the solution

of the pole condition with the smallest imaginary part. This procedure is applied in

section 4.1.3 for computing matrix elements of the LMG model. The critical case for

which the classical trajectory is a separatix and the period of the classical motion diverges

is treated in chapter 5.

4.1.3 Operator matrix elements for the LMG Model

For the LMG model the Riemann surface H0(ᾱ, α) = ε0 has two sheets (see Fig. 4.2) and

four couples (ᾱ, α) which are poles of the observables symbols for which (1 + ᾱα) = 0.

The structure of poles in the complex-τ plane is pictured in Fig. 4.3. We observe that

the “dynamics” for τ imaginary values is periodic, as can be understood from the top left

figure, with closed trajectories in the {Re(α),Re(ᾱ)} plane. So, there are infinite many

poles, periodically repeated, along the imaginary axes and along the Re(τ) = T/2 line.

Since their contribution decreases exponentially with Im(τ) we are just going to consider

the first 4 poles: two located at Re(τ) = 0 and two at Re(τ) = T/2. In fact for k > 2

the first two poles already give a very good approximation. In the Sz case, the residue

corresponding to each pole can be simply obtained by

Res[Sz(τp)] =
(1 + ᾱα) Sz(ᾱ, α)

∂τ (1 + ᾱα)

∣∣∣∣
τ=τp

= ± i

2
√
γxγy

, (4.12)
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Figure 4.2: Pictorial representation of the Riemann surface H0(ᾱ, α) = ε0. Colored points

represent the couples (ᾱ, α) for which (1+ ᾱα) = 0. The black point is the initial condition

used to integrate the flow equations. The four-dimensional representation is made three-

dimensional by dropping the imaginary part of α.

where the + sign is for “red” and “orange” poles and the − sign for “green” and “yellow”

poles (see Fig. 4.3). For other observables we proceed similarly. The matrix elements of

Sz in the semiclassical limit can thus be written

s−1〈ηm + k|Ŝz|ηm〉 =
π

T
√
γxγy

(eik
2πτ1

T − eik
2πτ2

T )(1 + eikπ) +O(n−1). (4.13)

Note that, due to the symmetry of the LMG model, matrix elements of Sz (Sx) for even

(odd) k vanish. The comparison between the semiclassical prediction of (4.13) and numer-

ically derived values is given in Fig. (4.4). The semiclassical fits very well the numerical

results in the region −h < ε < h, for both Sx and Sz, away from the critical point ε0 = −h.
Note that the fit gets better for increasing values of k meaning that the contribution of

subleading poles vanishes exponentially as expected.

Near ε0 = −h the agreement with the numerical results is not very good, as ex-

pected from the fact that the semiclassical approximation breaks down near this point

and Eq. (4.13) is no longer valid. For ε0 < −h there are two disjoint classical orbits

corresponding to two-fold exponentially degenerate states, each one with a well defined

parity. In this case the contributions of both orbits have to be taken into account with

their respective parity. Due to the symmetry of the model Eq. (4.13) is still valid for Sz

but that no longer true in the Sx case. The fact that the values for Sx alternate in this

region is due to the fact that for odd and even m, the states corresponding to m+ k (for

k odd) are of different nature. A finer analysis is still needed to address this case.
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Figure 4.3: Real and Imaginary time Dynamics for the LMG model for h = 1, γx = 2, γy =

1/3, ε0 = 0.9. (Down)- Complex τ plane. The color dots are poles of the observables where

(1 + ᾱα) = 0, the black dot is the initial point of the dynamics and the black square is the

opposite point of the evolution arising for τ = T/2. (Up Left)- Imaginary time dynamics.

The color dots are the couples (Re(ᾱ),Re(α)) for which regular observables have poles.

(Up Right)- Real time dynamics.

The decay rate of the matrix elements with k is given in Fig. (4.5), numerical calcula-

tions and semiclassical results are in very good agreement. The decay rate Γ = 2π
T

Im(τ1)

can be computed explicitly, with T = 2π∂ε0N0, N0 is the integrated density of states and

τ1 is given by Eq. (4.11). Near ε = −h, the decay rate goes to zero, translating the fact

that, in an energy region of order n−1 around value,the decay is no longer exponential with

k.

4.1.4 Conclusion

We have computed, by a semi-classical method, observable matrix elements for collective

spin systems. As in the Schrödinger representation, they are in relation with the Fourier

coefficients of the observables symbol computed along the classical flow. For energies



4.1. Introduction 47

Figure 4.4: Comparison between semiclassical predictions (red curve) and numerical values

(black dots) of the matrix elements of Sz and Sx computed between eigenstates of the LMG

Hamiltonian for h = 1, γx = 2, γy = 1/3 and n = 100.

Figure 4.5: (Left) Decay of the matrix elements of Sz for three different energies. The

decay rate Γ = 2π
T

Im(τ1) fits quite well the numerical values. (Right) Decay rate Γ as a

function of the energy computed by the semiclassical method Γ = 2π
T

Im(τ1) (red curve)

and numerically (black dots).

corresponding to regular classical orbits, the matrix elements vanish exponentially with k

(which measures the distance, in terms of label, in the sorted list of energy levels). For

spin systems, the matrix elements have been obtained by analyzing the pole structure of

the symbols of observables; this was done explicitly for the LMG model and compared

with numerically obtained values. Near the spectral critical points, the standard semi-

classical approximation breaks down and the decay rate with k vanishes, which is just a

manifestation that near these points, the matrix elements decay is no longer exponential
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in k. A further analysis, similar to the one presented here, remains to be done to addresse

the case of the broken phase region, where two disjoint classical orbits exist.



Chapter 5

Semi-classical Analysis of Spin Systems near

Critical Energies

5.1 Introduction

Bohr-Sommerfeld (B-S) quantization formulæ for nonregular values of the energy param-

eter have been set up in [29, 32] in the case of quantum Hamiltonians in the Schrödinger

representation. They differ from the regular case and show a logarithmic accumulation

of the spectrum near energies corresponding to hyperbolic fixed points. In this section,

the spectral properties of su(2) Hamiltonians near hyperbolic points (HP) of the classical

dynamics are studied. A method for obtaining an algebraic relation for the eigenvalues in

the vicinity of a HP, in inverse powers of the semiclassical parameter n = 2s (where 2s+ 1

is the dimensionality of the su(2) representation), is developped. It is then applied to a

LGM-like Hamiltonian, where such critical points are found, either isolated (homoclinic

case) or as HP pairs connected by the classical trajectories (heteroclinic case). Therefore,

in addition to analyzing an isolated HP case, we also explain how to treat the more general

case.

5.2 Quantization near Hyperbolic Points

In this section we use quantities that have been defined in chapter 2. If a HP is present

along a classical trajectory, i.e. a saddle point of the energy H0(ᾱ, ζ) having ∂ζH0 = 0

for some ᾱi ∈ C0, I1 diverges and the quantization condition (2.40) has to be modified

for energies of order n−1 around the critical energy ε0 = εc. Near such points, setting

β̄ = ᾱ− ᾱi, H can be linearized and brought to the form

H̃(β̄, ζ) − ε = τ2 ζ
2 + τ0 β̄

2 +
τ00 − ε1

n
+ O(|β̄|3), (5.1)

by a simple transformation Ψ(ᾱ) = en p(β̄)Ψ̃(β̄), where p is a second order polynomial of

β̄. The constants τk depend on the parameter of the Hamiltonian around the HP. The

solutions of
[
H̃(β̄, n−1∂β̄) − ε

]
Ψ̃(β̄) = 0, (5.2)
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Figure 5.1: Phase space portrait of a classical trajectory C0 (full lines) describing a critical

orbit that passing through two HP ᾱi and ᾱj . For O(n−1/2) < |ᾱ− ᾱi| < O(n0) both, the

linearized solutions around HP point and the WKB solutions, coexist (dark gray region),

permitting to identify both asymptotic behaviors. The “in” and “out” solutions are con-

nected via the T (i) matrices. Branch cuts of the WKB solutions are displayed as broken

lines.

are given explicitly in the form of Parabolic Cylindrical functions [74]. Let us consider

the following linear combinations of these two independent solutions, having a well defined

behavior when |β̄|n1/2 → ∞, for β̄ in a vicinity of C0 (see Fig. 5.1 for the directions along

which each limit is taken),

Ψ̃out,R(β̄)

Ψ̃in,L(β̄)

}
→ e−inρ2β̄2

β̄− 1
2
+iη
[
1 +O(|β̄|−1n−1/2)

]
,

Ψ̃out,L(β̄)

Ψ̃in,R(β̄)

}
→ einρ2β̄2

β̄− 1
2
−iη
[
1 +O(|β̄|−1n−1/2)

]
,

where

ρ =

∣∣∣∣
τ0
4τ2

∣∣∣∣
1/4

, η =
ε1 − τ00
4ρ2τ2

. (5.3)

Being solutions of a second order differential equation, these four functions are obviously

not independent. The explicit form of the Parabolic Cylindrical functions provides a “con-
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nection” between different asymptotic regions

(
Ψ̃out,L

Ψ̃out,R

)
= T

(
Ψ̃in,R

Ψ̃in,L

)
, (5.4)

with

T =

(
1 −c̄
c −e−2πη

)
+O(n−1), (5.5)

c =

√
2e−πη

π
cosh(πη)e−i[η log(4nρ2)+ π

2 ]Γ

(
iη +

1

2

)
. (5.6)

Constraints of the type (5.4) give a set of local relations between the “in” and “out” basis.

In the presence of two separate HP labelled by (i) and (j), a set of non-local relations is

obtained by identifying the asymptotics of WKB solutions (see Fig. 5.1), leading to

Ψ̃out,L = e2πinS(ᾱi,ᾱj)Ψ̃in,R, (5.7)

where S(ᾱi, ᾱj) is regularized action integral given in Table 5.1, νj = (±iηj − 1
2
) depending

on the side R/L and j indexing HP. ln(x) is defined as having a branch cut along the

negative real axes. σk = 0,±1: 0 if the classical orbit does not cut the branch-cut of

ln(ᾱ− ᾱk) and ±1 if it cuts it in the up-down or down-up directions respectively.

Summarizing the local and non-local basis relations:

Ψout = TΨin; Ψout = ΓΨin, (5.8)

where Ψout and Ψin are column vectors collecting the “in” and “out” solutions for each

HP (i), T and Γ are matrices, the first coupling states with the same (i) and the second

coupling sates with (i) and (j) linked by the classical trajectory. Quantization is obtained

by imposing the compatibility relation

D = det(T − Γ) = 0. (5.9)

5.3 Examples

We now apply the general method presented above to a particular spin Hamiltonian

Ĥ =
2

n

(
hSz −

γxS
2
x + γyS

2
y

n
+ µ

S3
x

n2

)
. (5.10)

The Lipkin-Meshkov-Glick (LMG) model [17] is obtained from Eq. (5.10) setting µ = 0.

The cubic term in Eq. (5.10) is added to provide asymmetric orbits in order to test the
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Heteroclinic

2πiS(ᾱi, ᾱj) = 2πiSi,j + 1
n

{
νj ln[(−1)σj (ᾱi − ᾱj)] − νi ln[(−1)σi(ᾱj − ᾱi)] + σiiπνi − σj iπνj

}
;

2πiSi,j =
∫ ᾱi

ᾱj

α
1+ᾱα

dᾱ− 1
n

∫ ᾱi

ᾱj
∂ᾱ [(ᾱ− ᾱi)(ᾱ− ᾱj)G1]

ln[(−1)σi (ᾱ−ᾱi)]−ln[(−1)σj (ᾱ−ᾱj)]

ᾱi−ᾱj
dᾱ;

Homoclinic

2πiS(ᾱi, ᾱi) = 2πiSi + iπσ
n

;

2πiSi =
∫ ᾱi

ᾱj

α
1+ᾱα

dᾱ− 1
n

∫ ᾱi

ᾱj
ln[(−1)σ(ᾱ− ᾱi)]∂ᾱ [(ᾱ− ᾱi)G1] dᾱ;

Table 5.1: Regularized Action Integrals

quantization relations in the most generic case. For the LMG model a detailed analysis

of the phase space and the characterization of the critical points is given in chapter 3,

and in [70, 14, 75]. For small values of µ the phase diagram presented in [14] is kept

invariant. In particular the system conserves a homoclinic HP at α = 0 for εc = −|h|
when γx > |h| < |γy| and a heteroclinic trajectory joining two HP for γx > γy > |h|
corresponding to εc = −h2+γ2

y

2γy
. For the homoclinic case, one obtains

D = −cos [πn (SL + SR)]√
1 + e−2πη

− sin
{

arg
[
Γ(1/2 − iη)

]
+ η log

(
4ρ2n

)
+ πn (SR − SL)

}
,(5.11)

as in the case of the Schrödinger representation [32], where SR/L are given by Si in Table 5.1

(directions of integration are given in Fig. 5.2). For the heteroclinic case the quantization

condition is rather lengthy and will not be given explicitelly. The comparison of the

semi-classical quantization conditions with numerical diagonalization of the Hamiltonian

using a matricial representation of the spin operators is given in Fig. 5.2. In both cases

the agreement between the numerically derived energies and the points where D = 0 is

remarkable. In the heteroclinic case, the matching becomes less accurate as the modulus

of the renormalized energy η increases.

5.4 Matrix Elements

In the semiclassical limit, the normalized matrix elements

fA
k (ε(m)) =

〈Ψm+k|Â|Ψm〉√
〈Ψm+k|Ψm+k〉〈Ψm|Ψm〉

, (5.12)

of an observable Â computed between eigenstates of an Hermitian operator H (with the

energies ε(m) and ε(m+k) ), are known (see chapter 4) to be simply given as the amplitude

of the k-th Fourier mode of the observable symbol A, evaluated along the classical orbit of

energy ε(m) [72],

fA
k (ε(m)) =

1

T

∫ T/2

−T/2

dt eik 2π
T A[ᾱ(t), ζ(t)], (5.13)
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Figure 5.2: Homoclinic Case (Up): h = 1; γx = 4; γy = 1/4;µ = 5. Heteroclinic Case

(Down): h = 1; γx = 5; γy = 2;µ = 6. Left: Comparison between the zeros of D (blue line)

and the eigenvalues of (5.10) computed numerically (black dots) for n = 500. We define

the renormalized energy η = − h+ε1

2
√

(γx−h)(h−γy)
; η = η1+η2

2
=

−(λ+γy)
√

γy

2
q

(γx−γy)(γ2
y−h2)

respectively

for the homoclinic and heteroclinic cases. Middle: Stereographic projection of the critical

classical orbit. Right: Critical orbit on the Riemann-Majorana Sphere; the zeroes of Ψ(ᾱ)

(black dots) are plotted for n = 120, and condense in the semiclassical limit toward the

branch cuts of G0 [14, 76].

where T is the period of the classical orbit and the flow equations are given by:

∂tᾱ(t) = −i ∂ζH(ᾱ, ζ); ∂tζ(t) = i ∂ᾱH(ᾱ, ζ). (5.14)

ζ is the variable conjugated to ᾱ, which reads ζ = α(1 + ᾱα)−1 for the spin case. This

result stands for regular orbits and can be obtained considering the action-angle variables.

Since f is the Fourier transform of a analytic function, the matrix elements vanish exponen-

tially with increasing k. This is a generalization of the result early obtained by Heisenberg

in the harmonic oscillator case.

For singular orbits, containing an Hyperbolic Point, the period T diverges, and more-

over no action-angle variables can be defined. Nevertheless it is still possible to estimate

such matrix elements by analyzing local and global properties of the critical eigenstates

[77]. Let us use the resolution of the identity in order to write matrix elements as integrals
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over Σi, a domain of size O(n−1 lnn) around the HP ᾱi, and Σi,j, a domain of order n−1

around C0. Within these two sets of domains the eigenstates are given, respectively, by

special functions and WKB approximation,

〈Ψm+k|Â|Ψm〉 =



∑

(i)→(j)

∫

Σi,j

+
∑

(i)

∫

Σi


 〈Ψm+k|α〉〈α|Â|Ψm〉

〈α|α〉 dµ (5.15)

=
∑

(i)→(j)

gA
i→j[n(ε(m+k) − ε(m))] + δk,0

∑

(i)

A(ᾱi, ζi)µ(i).

The last equality follows from considering the symbol A constant on the domain Σi; by

orthogonality of the eigenstates this term is nonzero only for k = 0 where it gives the norm

of the eigenstate inside the domain, µ(i). The regular functions

gA
i→j(ω) =

∫ ∞

−∞
dtA(t)eitω (5.16)

are computed using the flow equations on the branch i → j. Since µ(i) ∝ lnn, we obtain

at leading order,

fA
k=0(ε

(m)) =

∑
(i) A(ᾱi, ζi)µ(i)
∑

(i) µ(i)
, (5.17)

fA
k 6=0(ε

(m)) =

∑
(i)→(j) g

A
i→j[n(ε(m+k) − ε(m))]
∑

(i) µ(i)
. (5.18)

Diagonal matrix elements (mean values of observables) are thus given as a sum of ponderate

weights of the different HP and depend on local properties of eigenstates near this points.

On the contrary, non-diagonal elements are given by the global properties of the classical

orbit. Since gA is analytic, the matrix elements will decay exponentially as the energy

difference increases; however, near the critical energy, the mean energy spacing is of order

n(ε(m+k) − ε(m)) ∝ k ln−1 n, meaning that the exponential decay in k becomes slower with

increasing n (see Fig. 5.3). For an observable with A vanishing at the HP, the amplitude

of all matrix elements vanishes as O(ln−1 n), for fixed k (Fig. 5.3) . This has a simple semi-

classical explanation. In the critical case the volume of the phase-space corresponding to

an energy band of order n−1 around εc is O(n−1) for regions of type Σi,j and O(n−1 lnn)

for Σi. However, for A vanishing at the HP, the relevant regions to compute the matrix

elements are Σi,j which, by Heisenberg inequalities, can carry only a finite number of states

O(n0) and not the total O(lnn) eigenstates. The only way of conciliating these two facts

is to take a quantized observable described by an O(lnn)×O(lnn) matrix whose elements

vanish in the classical limit.
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Figure 5.3: Matrix elements of the operator ŝz = Ŝz

s
between two states near the critical

energy. ε(c) is chosen to be the energy closest to the critical classical energy εc. The

agreement of the numerical data (dots) with the predictions of Eq. (5.18) (circles) gets

better for n big. The logarithmic downward shift as n increases is due to the fact that

µ(i) ∼ ln−1 n.

5.5 Conclusion

We have presented a method for computing semi-classical spectra associated to any number

of heteroclinic junctions. Not only the expected average spacing ∼ ln−1 n is observed, but

an algebraic relation is derived for eigenvalues near the critical energy. The method is

fully general and applies to any su(2) Hamiltonian. In order to test it in full generality we

have added a cubic term to the standard LMG model, breaking the quadratic underlying

symmetry. The agreement with numerics is remarkable, especially considering the fact that

the formulas are algebraically quite heavy in the case of two hyperbolic fixed points linked

by heteroclininc junctions. We have also computed the matrix elements of observables, and

show that their semi-classical behavior is universal, and different from the one in the regular

situation. Moreover we have given a physical argument for the logarithmic vanishing of

these matrix elements in the classical limit.





Chapter 6

Conclusion of Part I

We have studied collective spin models, with a particular focus on the thermodynamical

limit, which is treated here within a semi-classical framework, using the spin coherent

state representation. For this kind of models, integrability is related to the fact that they

are described, in this representation, with only one degree of freedom. Analyzing the

structure of the zeroes of the eigenfunctions, which display a regular but nevertheless rich

pattern, we were able to derive analytically the full spectrum of the LMG model and to

characterize its zero-temperature phase-diagram. Of particular interest for us, and indeed

one of the initial motivation of this study, is the way gaps vanish at the thermodynamical

limit, in relation with the behaviour and limitations of the adiabatic quantum computation

approach addressed in Part II.

The same type of analysis could in principle be performed for any spin Hamiltonian

expressed in terms of single-spin operators. However, for Hamiltonians presenting cubic or

quartic interactions there are in general more critical values of the energy, corresponding

to hyperbolic points of the classical evolution, where the density of state diverges in the

thermodynamic limit. Preliminary investigations of such models show also an interesting

“star-like” pattern of the zeroes of the wave functions, which remain to be explained.

Characterizing these types of complex structures, arising from higher order interactions,

could help to shed some light on the cases with more degrees of freedom, where even for

quadratic interactions the patterns are quite complex (see appendix D).

We have also presented a method for computing semi-classical spectra associated to

any number of heteroclinic junctions, arising for any su(2) Hamiltonian. We tested it,

numerically, for homoclinic and heteroclinic junctions and observed a very good agreement

with the analytical predictions.

Observable matrix elements for collective spin systems were also studied, corresponding

to both regular and singular semi-classical trajectories. For the regular case we were able

to compute them explicitly for the LMG model and compared with numerically obtained

values. A complete analysis nevertheless remains to be done, in particular in the broken

phase region, where two disjoint classical orbits exist. Near singular energies, we were

also able to compute the observables matrix elements, and show that their semi-classical

behaviour is universal, and different from the exponential decay observed in the regular

situation.
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Although many research work have already been done in higher dimensional models,

which are in general non-integrable, we think that a similar analysis to the one performed

for the su(2) could, at least for the integrable cases, be quite interesting. this may be the

case in particular in what concerns the interplay between invariant tori and the manifolds

of zeros of the wave function (appendix D).

Another perspective, also presently under investigation, concerns the dynamical prop-

erties both for evolutions under fixed and variable Hamiltonian parameters. In particular,

for the former, the separatix plays an important role (see chapter 10). We expect to explore

further this subject, based on the knowledge of the eigen-stucture presented in this work.



Part II

Adiabatic Quantum Computation
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Résumé

Le calcul quantique a connu un grand développement durant ces dernières années, tant

du point de vue théorique qu’expérimental. De nouvelles façons d’implementer le calcul

quantique ont été proposées, comme une alternative au modèle initial des portes logiques,

avec par exemple le calcul quantique adiabatique. Cette dernière proposition permet une

interprétation assez physique des processus intervenant au cours du calcul. Dans un algo-

rithme adiabatique, le problème à résoudre est ramené à la recherche de l’état fondamental

d’un Hamiltonien, appelé “Hamiltonien du problème”. Pour atteindre un tel état, on part

d’un Hamiltonien plus simple, dont l’état fondamental est connu et facilement préparable.

En agissant sur les paramètres externes du système, on fait alors évoluer le système en

interpolant (par exemple de façon linéaire) entre les deux Hamiltoniens, suffisamment

lentement pour laisser le système dans l’état fondamental (d’où le qualificatif de calcul

“adiabatique”). En effet, la réussite de ce processus nécessite que l’on soit dans un régime

(théorème adiabatique) tel que la durée totale reste beaucoup plus grande qu’un temps

caractéristique proportionnel à l’inverse du carré du gap minimal (différence entre l’état

fondamental et le premier état excité) rencontré pendant le processus.

En général, pendant l’évolution adiabatique, ce gap minimal tend vers zéro avec l’aug-

mentation du nombre de degrés de liberté du système n. Il est donc crucial de déterminer

avec plus de précision la dépendance de ce gap avec n. Si celui-ci s’annule exponentielle-

ment, l’algorithme n’est pas efficace car le temps pour résoudre un problème avec n degrés

de liberté augmente exponentiellement; si au contraire le gap présente une décroissance

algébrique avec n, on considère que l’algorithme peut être efficace.

Dans cette deuxième partie 2 de la thèse, nous avons abordé divers aspects intéressant

le calcul quantique adiabatique

Nous avons étudié dans un premier temps un modèle de Hamiltonien initial très par-

ticulier, qui permet de dériver une relation contraignant les énergies propres durant tout

le processus. Ceci nous a permis de prévoir le comportement du gap simplement à partir

de propriétés générales du Hamiltonien final. Nous avons testé cette approche dans un cas

simple, lié à un problème de satisfabilité de contraintes (modèle 3-SAT). A partir d’une

combinaison de résultats numériques et analytiques, nous concluons que la décroissance du

gap avec n est de nature exponentielle.

Nous avons ensuite construit un modèle simple (appelé dans le texte “toy model”)

permettant de mettre en évidence la relation entre les transitions de phase quantiques et le

calcul adiabatique. Le système proposé se ramène à un modèle de spins en interaction, où

la représentation symétrique contient l’état fondamental du système. Ce modèle présente,
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en fonction des paramètres, différents cas de figures: transitions de phase du premier ordre,

avec un gap décroissant de façon exponentielle; transitions de phase du deuxième ordre,

où le comportement est alors algébrique, et enfin des cas ou il n’y a pas de transition de

phase quantique. Ce modèle met en évidence l’importance du choix du Hamiltonien initial

et du chemin adiabatique considéré dans l’espace des paramètres, et peut servir comme un

cas d’étude pour des modèles plus réalistes.

Enfin, nous avons étudié la dynamique des populations des états à travers une tran-

sition de phase, dans le cas du modèle LMG abordé dans la première partie. Une anal-

yse numérique nous a montré que ces changements de population sont très sensibles à

la présence des points exceptionnels dans le spectre. Nous avons proposé un premier

modèle phénoménologique qui rend compte de quelques aspects de cette dynamique de

populations. Nous avons ensuite développé un modèle quantique (d’interaction entre états

propres instantanés) qui rend mieux compte du phénomène. En particulier la portée de

ces interactions augmente à l’approche des points exceptionnels. Nous avons également

analysé ce dernier phénomène dans le cadre semi-classique. Cette étude met également en

évidence les défauts d’une description simple en terme de transitions de type Landau-Zener.



Chapter 7

Introduction

7.1 Classical and Quantum Computation

The basis of the modern computer science theory were set in the thirties, more than a

decade before the rise of modern electronic computing machines. In particular, abstract

devices (following a simple set of rules) where proposed by Alan Turing to simulate, in the

line of the physicists thought experiments, the logic of any computer algorithm. Among

these devices, the “Universal Turing Machine” play a particular role, in that they are

formally able to simulate any other Tuting machines. A new reach scientific field arose,

with connections to deep mathematics, like with the so-called Church-Turing thesis and

the notion of effectively computable functions by recursion, in connection with Turing

machine (abstract) implementation. Other important concepts were developped in parallel,

like those of complexity measures. The computational complexity of a given problem is

measured in terms of the physical resources (time, space, energy) invested in solving it.

Different classes of complexity are defined based on how the quantity of resources grow

as a function of the initial input size n (number of bits of the input). Following this

idea, tractable (easy) problems can be solved with polynomial cost and intractable (hard)

problems can only be solved with exponential cost. More precisely the class P contains

all the computational decision problems that can be solved with polynomial cost and class

NP the contains all those computational decision problems whose proposed solution can

be verified with polynomial cost. Within NP class, the ”NP-complete” stands for the

class of problems that, if solved efficiently, could be used to solve all NP problems with a

polynomial cost.

The idea of the quantum computer, i.e. a system that can process information by ex-

plicitely using quantum phenomena such as superposition and entanglement, was proposed

in the early 1980’s independently by Benioff and Feynman. Benioff thought of a quantum

Turing machine [78, 79] that would use the reversible (unitary) time evolution of quantum

mechanics as a way to do computation without dissipating any energy. Feynman had quite

a different motivation and proposed a computer based on the laws of quantum physics

as a natural and efficient way to simulate the dynamics of quantum systems[80], whose

encoding in a classical computer/memory grows exponentially with the number of degrees
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of freedom. Following the first proposal, by Deutsch [81], in 1985, of a quantum algorithm

that could outperform the efficiency of a (deterministic) classical one, Shor showed in 1994

that it was possible to factorize integers efficiently using a quantum algorithm [82, 83].

This result has very important consequences, as it means that it is in theory possible to

challenge the privacy of most current electronic communications. Shor’s work sparked the

attention of both theorists and experimentalists to the idea of the quantum computer and

the race to build its respective hardware. Since then, a few other interesting quantum

algorithms have emerged and some important experimental steps were achieved, but so far

the quantum computer is still a machine that exists only in research laboratories, in an

embryonary form [84].

The first quantum algorithms were constructed based on the so called circuit model

where the information is treated, in analogy with classical computers, by a sequential set

of unitary operations (gates). Different models for quantum computing exist today differing

from the quantum circuit model. All of them have been demonstrated to be computation-

ally equivalent to the circuit model, i.e. any computational problem that can be solved by

the circuit model can be solved by these other models with only a polynomial overhead

in computational resources. Among them are the measurement-based model, where the

computation is performed using only non-unitary measurements on a well chosen initial

entangled state; the topological models, in which the information is encoded in particular

quantum states whose robustness (against errors and/or decoherence) has a topological

origin; and finally quantum adiabatic models, that to some respect correspond more di-

rectly to physical (experimental) implementations, and therefore provide more intuitive

physical picture of quantum computation.

7.2 Adiabatic Quantum Computation

Adiabatic Quantum Computation (AQC) has been proposed in 2001 by Farhi et al. [85] as

an alternative way to perform quantum computation. It is based on the quantum adiabatic

theorem [86] which states that a system initially in the eigenspace corresponding to a given

energy level, and subject to a sufficiently slow varying time dependent Hamiltonian will

remain in the corresponding eigenspace as long as there is no energy level crossing in the

course of the evolution. In particular, if the system is prepared in the ground state, it

will remain in the ground state of the instantaneous Hamiltonian. This approach has been

proved to be equivalent to the standard model of quantum computation[87, 88], which is

based on circuits of unitary gates. The time T necessary to perform the AQC is such that

it satisfies the adiabatic theorem, limiting the probability of jumping to the first excited
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state, which translates into the condition:

T >> ~
|∂sH(s)|min

∆2
min

, (7.1)

where s is a parametrization of the time such that t (s = 0) = 0 and t (s = 1) = T (roughly,

we have s = t/T ), and where ∆min is the minimum value, taken along the adiabatic

evolution, of the energy gap between the ground and the first excited states. Therefore

the time scaling with n (and so the computational efficiency) will be mainly determined

by the behavior of the energy gap between the two lowest energy states, and is rather long

whenever this scaling is exponentially small. In most cases of interest, the system will

undergo a quantum phase transition (QPT), almost closing the gap along the Hamiltonian

path. Therefore, the time scaling with the number n of quantum bits , and consequently

the computational efficiency, will be dominated by the behavior of the energy gap at the

QPT. The time will then increase exponentially with n in first order QPT, and algebraically

(i.e. polynomially) in second order ones.

Up to now only exponential decreasing gaps were proved to exist for some adiabatic

protocols trying to solve NP-complete problems [87, 89, 90, 91, 92] and some results,

namely for the 3-SAT problem are rather inconclusive [85, 93, 94]. For the unsorted data

base search a AQC algorithm was found that reproduce the gain of the Grover’s algorithm

for standard quantum computation [95]. Even if no new improvements in algorithm design

were obtained up to now using this approach, an advantage pointed out by [96] is the

robustness of this protocol against quantum errors.





Chapter 8

Projector-like Hamiltonian

The adiabatic approach to quantum computation depends crucially on the nature of the

intermediate quantum phase transition that is met when solving hard problems, and in

particular to the way the minimal gap scales with the system size. In this section we first

try to address this problem, from a rather modest point of view, using a simple model

characterised by a highly symmetrical initial Hamiltonian. In that case, we are able to

determine the scaling of the gap based on very general properties of the final (so-called

“problem”) Hamiltonian. In the first section, a general formula for the gap scaling is

derived, and it is applied to some generic examples in the second section. A similar work

was developed independently by Znidaric and Horvat in [92].

8.1 Sum Rule

We consider an n qubits system having an Hilbert space is of dimension 2n. States belong-

ing to the computational basis are written as |k〉 = |x0, x1, ...xn−1〉 where xi = 0, 1 is the

i-th digit of the binary decomposition of k = 0, ..., 2n −1. The action of the Pauli operator

σz in this computational basis is such that σ
(i)
z |k〉 = (−1)xi|k〉.

A simple choice for H0 is given by a projection operator

H0 = I − | ⇒〉〈⇒ |. (8.1)

with

| ⇒〉 =

n−1⊗

i=0

( |0〉 + |1〉√
2

)
=

1

2n/2

2n−1∑

k=0

|k〉, (8.2)

as a single ground state (having equal probability along all the different possible basis

kets |k〉) , and 2n − 1 degenerate excited states [95, 92]: Concerning the Hamiltonian

HP encoding the classical problem, we choose a cost function that has to be minimized

to obtain the solution. We assign to each computational basis ket |k〉 an “energy cost”
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εa(k), where a(k) ∈ {0, 1, ..., g − 1} is a function of k labeling g different energies, and the

degeneracy of each energy εa being noted na. HP writes :

HP =
2n−1∑

k=0

εa(k)|k〉〈k|. (8.3)

Due to the simple (symmetrical) form of H0, the result of the AQC process will only de-

pend on the set of energy costs and degeneracies.

For a physical system, the total energy range εg−1 − ε0 should roughly scale as the number

of degrees of freedom n; however we chose here to rescale the Hamiltonians such that the

true (physical) extensive operators are n HP and n H0. This choice is made for the sake of

simplicity, and this polynomial rescaling will not affect the exponential/algebraic nature

of the gaps.

The evolution is, as usual, taken to be a linear interpolation of the two Hamiltonians

H(s) = (1 − s)H0 + sHP . (8.4)

with s ∈ [0, 1] .

We now use the symmetry of the initial Hamiltonian to reduce the dimensionality of the

Hilbert space relevant to the adiabatic evolution. Consider the operator which permutes

the state |k〉 and |k′〉

Pk,k′ = (I − |k〉〈k| − |k′〉〈k′|) + |k〉〈k′| + |k′〉〈k|, (8.5)

verifying P2
k,k′ = I, P

†
k,k′ = Pk,k′ and thus having eigenvalues ±1.

It is straightforward to verify that [H0,Pk,k′] = 0 for all pairs k, k′. Similarly [Hp,Pk,k′] =

0 providing that a(k) = a(k′). There are
∑g−1

a=0
1
2
na(na − 1) permutations which fulfill this

condition. For such pairs [H(s),Pk,k′] = 0 for all s, implying that the evolution does not

couple sectors with different eigenvalues of the Pk,k′.

Since Pk,k′| ⇒〉 = | ⇒〉, H0 reduces to the identity for all sectors with at least one

negative eigenvalue under the permutation operations. The Hamiltonian restricted to

these sectors is diagonal in the computational basis, for all values of s, yielding to a trivial

evolution. The only sector undertaking a non-trivial evolution is symmetrical under all

permitted permutations, and is spanned by the orthonormal vectors

|a〉S =
1√
na

∑

k:a(k)=a

|k〉, (8.6)
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with a ∈ 0, 1, .., g − 1. The Hamiltonian (8.4) restricted to this subspace writes

HS(s) =

g−1∑

a=0

[(1 − s) + s εa]|a〉S〈a|S −
g−1∑

a,c=0

(1 − s)

√
ncna

2n
|c〉S〈a|S. (8.7)

Let |η(s)〉 =
∑

a ηa(s)|a〉S be an eigenvector of HS(s) corresponding to the η-th excited

energy λη(s), we have then

[(1 − s) + s εb]ηb(s) − (1 − s)

√
nb

2n

∑

a

√
naηa(s) = λη(s)ηb(s). (8.8)

Simple manipulations of the above equation lead to a sum rule for the eigenenergies

g−1∑

c=0

(1 − s)ρc

(1 − s) + sεc − λη(s)
= 1, (8.9)

where ρc = nc

2n is the normalized fraction of the excited c-th energies (
∑g−1

c=0 ρc = 1). Note

that the l.h.s. terms of Eq. (8.9) have poles at (1− s) + s εa; since by continuity λ cannot

cross these poles, we conclude that the energies are bounded : s εη < λη(s)−(1−s) < s εη+1

for s ∈]0, 1[.

We now particularize the analysis to obtain the minimal gap, arising during the evolu-

tion, between the ground an the first excited states. By the above argument, the two lower

energies are separated by the line (1 − s) + sε0. At the critical point the value of the gap

passes by a minimal value δ = λ− (1 − s) − sε0. This quantity is considered to be much

smaller that the separation s(ε1 − ε0) that scales roughly as g−1. This is indeed the case in

cases were the gap vanishes exponentially; the following approximation is not valid if δ is

of order g−1. Developing Eq. (8.9) up to the first order in δ and solving the second order

equation, we obtain

δ± =
(s− 1)sµ−1 − s2

2(s− 1)µ−2
± 1

2
∆(s), (8.10)

where

∆(s) =

√
s2 (4µ−2ρ0(s− 1)2 + (s− (s− 1)µ−1) 2)

(s− 1)2µ2
−2

, (8.11)

∆(s) approximates the difference λ1(s) − λ0(s) and

µi =

g∑

η=1

(εη − ε0)
i ρη. (8.12)
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The critical value of s for which the gap is minimal is obtained by setting ∂s∆(scrit) = 0.

If µ−1 and µ−2 are finite in the limit g → ∞ and ρ0 is small, the minimal gap and the

critical value of s simplify to

∆min =
2µ−1

µ−1 + 1

√
ρ0

µ−2
, (8.13)

scrit =
µ−1

µ−1 + 1
. (8.14)

The hypothesis that the µi’s have a good thermodynamic limit (n→ ∞) has to be verified

for the particular problems. Eq. (8.13) is the main result of this section. The approxima-

tions involved and the accuracy of its predictions will now be tested numerically on some

examples. A similar relation was derived independently in [92]. Other studies of adiabatic

evolution where a projector-like H0 is used where also performed [89], were, in particular,

the optimal time needed to perform successfully the adiabatic algorithm is proved to grow

as
√

2n if the degeneracy of the ground state n0 is of order one in n.

8.2 Examples

8.2.1 A very simple test : Homogeneous magnetic field

Consider a classical problem whose solution is given by the ground state of the Hamiltonian

HP =
1

n

n∑

i=1

σ(i)
z . (8.15)

Note that there is no interaction between the n different two level systems; indeed this

Hamiltonian describe an ensemble of non-interacting spin 1/2 subject to a constant mag-

netic field. The solution is trivial, minimizing the energy of each system separately. It is

easy to obtain, by inspection, the eigen-energies of Eq. (8.15) and their degeneracies

εc =
2k − n

n
, (8.16)

ρc = 2−n

(
n

k

)
. (8.17)

The energy spectrum, for the symmetric sector, is shown in Fig. 8.1 (left and center).

Using Stirling’s approximation one obtains, for n → ∞, µ−1 = µ−2 = 1 and Eq. (8.13)

then simplifies to ∆ = 2−n/2. Numerical confirmation of this scaling is shown if Fig. 8.1

(right). The minimal gap scales exponentially for this algorithm, meaning that the starting

H0 is not appropriated to “solve” this simple problem. But this permits however to test the

accuracy of the approximations done in the previous section for the case of an exponentially

closing gap.
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Figure 8.1: (Left) Energy spectrum as a function of s for n = 20, in the homogeneous

magnetic field example. (Center) Detail of the minimal gap between the ground and the

first exited states: numerical (orange), approximation by Eq. (8.10) (blue). (Right) Gap

scaling with n: numerical (orange circles); ∆ given by Eq. (8.10) computed for scrit given

in Eq. (8.10), µ−1 and µ−1 are computed numerically (blue dots); Scaling ∆ ∝ 2−n/2 (blue

line).

8.2.2 3-SAT problem

The Boolean satisfiability problem (SAT) is a decision problem whose instance is a Boolean

expression written using only AND, OR and NOT variables. The 3-satisfiability (3-SAT)

problem is a special case belonging to the NP-Complete class; it is given in terms of n

Boolean variables x1, ..., xn and m clauses of 3 literals, for example:

(x1 ∨ x4 ∨ x̄9) ∧ (x2 ∨ x3 ∨ x̄9) ∧ ..., (8.18)

where x̄ denotes the negation of the Boolean variable x. The problem is to discover if,

given a set of m clauses, the problem has a solution. Each clause C can be specified by

the set {{x1(C), x2(C), x3(C)}, {s1(C), s2(C), s3(C)}}, where xi(C) = 1, ..., n specifies the

variables involved and si(C) ∈ {−1,+1} specifies whether they appear negated (−1).

Consider the Hamiltonian (or cost function)

HP =
1

m

m∑

C=1

(
1 + s1(C)σ

x1(C)
z

2

)(
1 + s2(C)σ

x2(C)
z

2

)(
1 + s3(C)σ

x3(C)
z

2

)
. (8.19)

which is diagonal in the computational basis |x1, ..., xn〉, with eigenvalues mv/m where mv

is the number of violated clauses. This Hamiltonian admits a zero eigenvalue if there exists

at least one Boolean assigment that satisfies the classical problem.

If the adiabatic algorithm is performed, with a sufficiently long evolution time, the

final state will be a symmetrical superposition of all the solutions minimizing the number

of violated clauses, with ε0 as the final energy of such states and ρ0 their normalized

fraction. The particular classical problem has a solution if ε0 is zero.

The classical 3-SAT problem shows a SAT - NonSAT phase transition in the limit

n → ∞ as the control variable α = m/n equals αc = 4.3 [97], [98], where the fraction of
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assignments that satisfy a typical problem goes from a finite value to zero as n→ ∞.

In order to use the above sum rule, derived in the previous section, we need to study

how the quantities µi and ρ0 behave when n increases. This behaviour has to be averaged

over different possible sets of clauses. Since analytic expressions are not available for this

problem, we study these quantities numerically, the results being displayed in Fig. 8.2. ρ0

presents a clear exponential decay for α = 5; for α = 4 our numerical results are incon-

clusive but we know [97] from the existence of the SAT - NonSAT phase that it should at

least decay less than exponentially. The µi do not present an exponential dependency on n

so even if the gap is not exponential we expect Eq. (8.13) to give a good prediction. Even

if µ−1, µ−2 oscillate with n, their non exponential behaviour dictates that the gap depends

mainly on the ρ0 dependency with n.

Fig. 8.3 shows the average gap has a function of n for different values of α. As expected,

we find an exponential decreasing gap for α = 5, and the predictions of Eq. (8.13) are ver-

ified. We also computed an approximate gap by plugging in the formula the numerically

obtained mean values of ρ0 and µi, which leads to an overestimation. For α = 3, 4 the

decreasing should be non-exponential by the previous arguments; this is clear for α = 3,

but inconclusive in the case α = 4, at least based on our numerical results.

8.3 Conclusion

Using a projector-like Hamiltonian as the starting Hamiltonian for a AQC algorithm per-

mits to derive an algebraic relation (Eq. (8.9)) that eigen-energies have to respect along the

evolution. This relation, when particularized for the ground and first excited state, leads

to an approximated formula for the minimal gap arising during the adiabatic evolution as

a function of some general features of the classical problem, ρ0 and µi. This expression

permits to conclude that if ρ0 goes to zero much faster than µi the behaviour of the gap is

mainly given by ρ
1/2
0 . Based on the numerical computation of ρ0 and µi, we conclude that

this is indeed the case for the 3-SAT problem and so no exponential speed-up should be

observed in this case, at least while starting from a fully symmetrical Hamiltonian H0.
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Figure 8.2: Numerical data for the 3SAT problem, averaged over 500 random realizations,

α = 3, 4, 5 (red, green, blue).
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Figure 8.3: Minimal gap for the 3SAT averaged over 500 random problems, α = 3, 4, 5

(red, green, blue). Numerical values (circles), average gap using formula Eq. (8.13) (cross),

gap computed from the average ρ0 and µi values (triangles)





Chapter 9

A Toy Model for Adiabatic Quantum

Computation

9.1 The Adiabatic Algorithm

9.1.1 General Remarks

Let us first discuss the general properties of the Hamiltonians considered in this chapter.

We scale all Hamiltonians such that they have a bounded spectrum. Even if for a typical

physical system one expects the energy to be proportional to n, this is just a linear scaling

and can be later taken into account in the total computational time for a more realistic

physical system.

Given a classical computational problem one should first map its solution(s) onto a ground

state of an Hamiltonian denoted HP . We assume that the final measurement (output of the

computation) is performed in the computational basis, and so, that the final Hamiltonian

is diagonal in this basis. Once HP is defined, one can ask for an optimal initial Hamiltonian

H0 and an optimal path H(s) in the parameters space (that maximizes the energy gap).

We only consider Hamiltonian paths of the simple form H(s) = (1 − s)H0 + sHP . This

choice is motivated by the following arguments. First it is clear that any Hamiltonian

path of interest will be such that [∂sH(s), H(s)] 6= 0. Indeed suppose that for a path

H(s) there exist an interval of values of s ∈ [s0, s1] such that we have [∂sH(s), H(s)] = 0,

implying that Hamiltonians within that interval commute with each others. In this situa-

tion two cases may occur: either there is one or more level crossings between the ground

state and the first excited state and, in that case, the adiabatic condition is no longer

valid; or the ground state experiences no level crossing (so its correspondent eigenvectors

remains the same) and the evolution amounts to a rescaling of the energies which could

be performed ”instantaneously” without breaking the adiabatic condition, because all the

non-diagonal matrix elements of ∂sH(s) vanish. In this case the evolution between s0 and

s1 needs not to be done adiabatically. In the following we suppose that all Hamiltonian

paths do not have such “commuting“ intervals and so we end up with a path such that
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[∂sH(s), H(s)] 6= 0, ∀s ∈ [0, 1], which is the nontrivial part of the protocol.

It should be clear that in most interesting cases the system will undergo a Quantum

Phase Transitions (QPT) along the Hamiltonian path (see for example [99, 100]) . Indeed

the complexity of a classical computational problem translates into an increasing of the

computational time with n. In the framework of the adiabatic theorem, this implies that

there exists at least one value of s such that a gap closes (with increasing n) during the

adiabatic evolution. Passing a vanishing gap corresponds to QPT in physical terms. In the

vicinity of a QPT the system is described by its universality class which depends on the

relevant couplings of the Hamiltonian. The family of Hamiltonians with the same relevant

couplings presents the same behavior at the QPT and so share the same complexity when

considered as adiabatic algorithms.

The relation with QPT suggests that a given algorithm (path) should not fundamen-

tally depend on ”small details” of this path but rather on some relevant features near the

QPT. Indeed, since the smallest gap arises at the QPT point (and vanishes with n), if we

deform the Hamiltonian path maintaining the QPT point unchanged, the computational

complexity will still be dominated by the vicinity of the QPT point. This is why a simple

interpolation scheme (H(s) = (1− s)H0 + sHP ) can, a priori, be used. In that case, given

HP , the choice of the path is then reduced to the choice of H0. Note however, as cited

above (ref. [101]), that subtle choice of functions of the adiabatic parameter s with respect

to time can lead to substantial speedup. The effect of choosing paths other then linear

interpolations was also studied in [102].

9.1.2 The Algorithm

The output of the adiabatic computation is the ground state of the final Hamiltonian HP .

We build such a Hamiltonian by attributing to each possible classical configuration xi,

between the N = 2n possible ones, a real value εi (energy) that measures how well the

problem is satisfied by the string of bits xi. If xi is a solution of the problem we set εi = 0,

otherwise εi takes a non zero value, usually based on the problem statement (for example

for the 3-SAT problem, εi is the number of clauses violated by the string xi). The problem

Hamiltonian reads

H(s = 1) = HP =
∑

i

εi|i〉〈i|, (9.1)

where |i〉 runs over the N = 2n states in the computation basis which we take to be the

tensor product of the individual eigenstates of σz for a two level system. If the physical

system remains in its ground state, the final output corresponds to the minimization of



9.2. The Model 77

the energy εi as a function of i. For sake of simplicity we take H0 to be diagonal in the

x basis. Concerning the s parameter, we assume through this chapter that it is a simple

affine function of the time such that s(0) = 0 and s(T ) = 1. As said above, some authors

have proposed to speed up the adiabatic evolution far from the QPT point leading to an

efficient gain for the total computational time (see for example the work or Roland and

Cerf on the Grover algorithm case [101]).

9.2 The Model

In most of the previously published works on AQC, two different prescriptions of the initial

and final Hamiltonians were used. The most common is an additive Hamiltonian made of

interaction terms involving few qubits (pairs and triplets). Indeed this type of problems

is usually given by a set of local constrains (concerning few variables e.g. 3 for the 3-SAT

problem). This additive prescription can also be used for H0 providing that in that case

the ground state can be easily prepared. The other type of Hamiltonians are projector-

like (H2 ∼ H) [89, 92, 101], as treated also in the precedind chapter. A HP of this type

corresponds to an oracle-based problem which has two possible values of the energy: a

(possibly degenerate) ground state energy whose states are the problem solutions and an

excited energy for non solutions.

We are interested in studying different types of adiabatic evolutions which differ in terms

of the gap scaling. For that purpose we chose a fixed initial Hamiltonian H0 and we study

a range of HP with different gap scaling properties. Since H0 should be easy to implement

and diagonal in the x direction, the most natural choice is a simple (normalized) magnetic

field interaction along the x direction:

H0 =
I

2
− 1

n
Sx, (9.2)

where Sx = 1
2

∑n
k=1 σ

(k)
x . We aim to present a simplified model of adiabatic computation by

using an Hamiltonian H(s) which is solvable, while displaying some of the features which

will eventually be found in the more realistic case, namely the spectrum diagonal in the

z basis for H(s = 1), and a quantum phase transition at some intermediate value sc. We

choose a hermitian operator hp with k spin interaction terms of the form of the following

tensor product

hp = ⊗n
i=1(I

i + pσi
z), (9.3)

where i denotes the qubit. It is clearly a sum of k-spin interaction terms (k ranging from 1

to n), whose strength depends on p. Introducing the total spin Sz = 1
2

∑n
i=1 σ

i
z, and using



78 9. A Toy Model for Adiabatic Quantum Computation

the identity eασz = cosh(α) + sinh(α)σz, hp can be written as

hp = (1 − p2)−
n
2 e2 tanh−1(p)Sz . (9.4)

Finally, introducing α = n tanh−1(p), we rescale hp into HP in the following form

H(1) = HP (α) =
eαI − e2

α
n

Sz

2 sinh (α)
. (9.5)

Note that the n factor in the definition of α is introduced to obtain an Hamiltonian HP

such that nHP is an extensive operator.

The ground state of this Hamiltonian is |w〉 = ⊗n
k=1|0〉 which has zero energy. The mth ex-

cited states correspond to a state with m 1s having a binomial degeneracy n!
(n−m)!n!

for any

finite value of α and whose energy depends on α (see below). For α→ ∞ the Hamiltonian

is proportional to a projection operator:

HP (∞) = (I − |w〉〈w|) , (9.6)

and all the excited states have energy equal to one. The final Hamiltonian obtained this

way is the Grover-like unsorted data base searching considered in [92, 87] and [101]. The

limit α→ 0 decouples the qubits and H(s) can be written as a sum of independent single

qubit Hamiltonians:

H(s, α→ 0) =
1

n

n∑

k=1

(1 − s)
I − σ

(k)
x

2
+ s

I − σ
(k)
z

2
, (9.7)

which corresponds to a trivially separable problem that can be solved by parallelizing single

qubit problems.

Note that, although the above Hp ground state has a particular simple form, the properties

described below would apply to any Hamiltonian obtained from H(s) under unitary trans-

formations. Suppose a given problem has a solution corresponding to the ground state

|w(J)〉 = ⊗n
k=1|Jk〉, where Jk ∈ {0, 1}, and the same energies and degeneracies as the HP

described above. In this case by performing the unitary transformation:

U =
⊗

k

(σ(k)
x )Jk (9.8)

to H(s), H0 remains invariant and the ground state of HP is changed to |w(J)〉. Since U is

unitary the gap scaling nature and the energy spectrum stay invariant. So, upon studying

the particular form of HP (9.5), we have access to the gap behavior of problems which can

have the whole set of possible 2n ground states i.e. solutions. The advantage of HP (α) as
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a representant of this class is that it is symmetric under qubit permutation and so it can

be written as a function of the total spin Sa = 1
2

∑
k σ

(k)
a for a = x, y, z. Moreover since

H0 and HP (α) commute with S2 =
∑

a S
2
a and the ground state of HP has maximal value

for the total spin j = n
2
, the whole evolution will take place in this maximal spin sector

spanned by the Dicke basis: {|n
2
, i〉}

n
2

i=−n
2
, where the two quantum numbers stand for the

value of the total spin (j = n
2
) and the spin projection along the z axes. All the other spin

sectors can be disregarded because they are not coupled by the adiabatic evolution [86].

9.2.1 Density of states

As explained above the complexity of the adiabatic evolution is related to what happens

near the QPT; it is nevertheless interesting to describe the spectral properties of H(s) for

the extremal values of s (equal to zero and one). The density of states as a function of the

energy for s = 0 and s = 1 can be given analytically for large n. For s = 0, considering

the binomial degeneracy of each level, the density of states writes:

Ns=0(ω)dω =
2n

π
e−2n(ω− 1

2
)2dω, (9.9)

where Ns(ω)dω is the total number of levels between ω and ω + dω. For the case s = 1

one starts by remarking that the energies ωm in the maximal spin sector are given by:

ωm(s = 1) =
eα − eα(2m

n
−1)

2 sinhα
, (9.10)

where m is the level labeling m = 0, ..., n. For large n one can invert this relation and

obtain the energy density for the maximal spin sector:

Ns=1,S= n
2
(ω)dω =

1

α (1 − 2ω + cothα)
dω, (9.11)

To get the density of states as a function of the energy for the total spectrum one has to

consider the binomial degeneracy of each level:

Ns=1(ω)dω =
2n

π

e−2n(
α+ln(eα−2ω sinhα)

2α
− 1

2
)2

α (1 − 2ω + cothα)
dω. (9.12)

The behavior of the density of states at s = 1 as a function of n and α is shown in Fig.

9.1. Remark that for α = 0 one recovers the Gaussian centered at ω = 1
2

resulting from

the binomial degeneracy of the separable problem. For increasing α, the density of states

is more peaked toward the value ω = 1 which characterizes the projector-like Hamiltonian.
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Figure 9.1: Density of states as a function of the energy for s = 1 for different values of α.

The solid lines correspond n = 100 and dashed lines to n = 300, plotted for α ∈ {0, 1, 2, 3}.
The maximum of the curves shift to higher values of ω for increasing α.

9.3 Mean Field Approach

Since each qubit interacts in an equivalent way with all the other qubits, we expect that,

in the thermodynamic limit, a mean field approach will give access to the exact ground

state energy and signal quantum phase transitions whenever they occur. This is done by

injecting the separable ansatz state:

|Ψ (θ, φ)〉 = ⊗n
i=1

[
cos

(
θ

2

)
|0〉 + sin

(
θ

2

)
eiφ|1〉

]
, (9.13)

and minimizing the energy in order to determine the free parameters θ and φ. Doing so we

can see that a first order quantum phase transition occurs for some value of s = sc(α)(≈
2.598) providing that α > 3

√
3

2
. Fig.9.2 shows the mean value of the observable sx = Sx

n

which presents a discontinuity along the first order quantum phase transition line in the

α − s plane. This line ends with a second order point (α, s) = (3
√

3
2
, 2

2+3
√

6e
3
2 sinh

“
3
√

3
2

”−1 )

where the values of observables are continuous non analytic functions of α and s. For

α > 3
√

3
2

, a discontinuity of 〈Sx〉 is related to the abrupt change of the ground state

component with respect to the fully polarized states in the x (| ⇒〉 = ⊗n
i=1

(
1√
2
(|0〉 + |1〉)

)
)

and z directions (| ⇑〉 = ⊗n
i=1|0〉).

9.4 Numerical Analysis

9.4.1 Energy Spectrum

As predicted by the mean field approach the value of the ground state energy tends to

a maximum around s = sc(α) and approaches the mean field ground state energy for
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Figure 9.2: Mean value of sx = Sx

n
plotted in the α− s plane.

increasing n. At the critical point there is an energy level anti-crossing and the gap

vanishes as n increases. Fig. 9.3 shows the energy spectrum (in the symmetric sector) as

a function of s for different values of the α parameter and n.

9.4.2 Analysis of the Two States of Lower Energy

For the cases where a phase transition exists (α > αc = 3
√

3
2

) we now analyze the behavior

of the two less energetic states, in particular their projections along | ⇒〉 and | ⇑〉. Fig.9.4

presents a zoom of the ground state anti-crossing (at s = sc) with the first excited state

anteceded by some anti-crossings between more energetic states. As n increases this cascade

of anti-crossings gets closer to the QPT point. Fig.9.5 shows the projections of the ground

state and the first excited state along the fully polarized states | ⇒〉 and | ⇑〉. We observe

four different regions limited by the values of s where |
〈
⇒ |ψ0/1

〉
|2 or |

〈
⇑ |ψ0/1

〉
|2 change

abruptly. In the region 0 > s > s1 there are several level anti-crossings between excited

states but they do not affect significantly the first two states of the spectrum (Fig.9.4); we

have |ψ0〉 ≃ | ⇒〉 (Fig.9.5) and |ψ1〉 ≃ |n
2
, n−1

2
〉x up to a very good approximation. At s1

the first excited state suffers an anti-crossing with the second one and its projection along

| ⇑〉 increases drastically but remains different from one. Fig.9.6 shows the projections

onto the Dicke basis of the ground state immediately after the anti-crossing and of the

first excited state immediately before the anti-crossing (s = sc). At s = sc the transfer of

components between the ground state and the first excited state is clearly manifested. For

s > sc the ground state increases slowly its projection along | ⇒〉 and at s2 the first excited

state experiments another anti-crossing (Fig.9.4), increasing drastically his projection along

|j = n
2
, m = n

2
− 1〉. For s > s2 there are no anti-crossings and the states increase slowly

their projection along the ground and first-excited states: | ⇑〉 and |j = n
2
, m = n

2
− 1〉.
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Figure 9.3: Energy levels as a function of s computed for different values of n and α. The

series I presents the energy levels for n = 10 and α ∈ {0, 3, 10} respectively for {i, ii, iii}.
The series II presents the energy levels for n = 20, the values of α are labeled as before.

s1 sc s2
s

E

Figure 9.4: Different regions where the ground state ( lower curve, blue) and the first

excited state (red) undergo level anti-crossings, plotted for n = 30 and α = 5.



9.5. Beyond the Mean Field Approximation 83

0 s1s2 1
s

0

1

Pr
ob

ab
ili

ty

HbL

È<Þ È Ψ1>È2
È<Ý È Ψ1>È2

sc ®

0 sc 1
s

0

1

Pr
ob

ab
ili

ty

HaL
È<Þ È Ψ0>È2
È<Ý È Ψ0>È2

0 s1 s2 1
s

0

1
Pr

ob
ab

ili
ty

HcL

È<Þ È Ψ0>È2

È<Ý È Ψ0>È2

È<Þ È Ψ1>È2

È<Ý È Ψ1>È2

sc ®
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Here plotted for n = 50 and α = 5. (a) and (b) present respectively the evolution of the

ground and first excited states projections along the Hamiltonian path. (c) combines (a)

and (b), and clearly displays the exchange between these two states at s = sc.
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Figure 9.6: Square modulus of the projections of the ground state immediately after the

anti-crossing and of the first excited state immediately before the anti-crossing along the

Dicke basis, plotted for n = 100 and α = 5. Note that the a logarithmic scale is used.

9.5 Beyond the Mean Field Approximation

In order to characterize further the system let us now look at the gap scaling (with n) near

the QPT and the ground state entanglement content as measured by the concurrence [103].

To study the quantum fluctuations around the mean field solution we can for instance apply



84 9. A Toy Model for Adiabatic Quantum Computation

a method described in [59] which uses the Holstein-Primakoff mapping from a given spin

sector characterized by the value of S2 and the algebra of boson operators, obtaining a

interacting boson Hamiltonian which can be expanded in powers of 1
n
. Using this method

one is able to compute the ground state concurrence in the α− s plane and to predict the

gap behavior based on the universality class of the model.

9.5.1 Holdstein-Primakov Mapping - Scaling of the Gap

The Holdstein-Primakov (H-P) transformation maps the su(2) generators into non-linear

functions of boson operators a and a† (with [a, a†] = 1) preserving their commutation

relations,

Sz =
n

2
− a†a, (9.14)

S+ =
√
n− a†a a, (9.15)

S− = a†
√
n− a†a. (9.16)

This representation is well suited to capture the low energy physics of the spin-collective

models, by developing the above expressions in powers of n−1. The mean field approxi-

mation can be performed using this approach shifting a→ √
nµ+ a where µ is a complex

parameter. The mean field energy is obtained developing the Hamiltonian in inverse pow-

ers of n and considering the leading order term which is independent of a and a†. µ is

then computed in order to minimize the mean field energy. It can be easily interpreted by

computing the mean values of the spin operators at leading order,

〈→
S
〉

=

{
(µ+ µ̄)

√
1 − µ̄µ

2
,
(µ− µ̄)

√
1 − µ̄µ

2i
,
1

2
− µ̄µ

}
. (9.17)

This relations permit to make the parallel with the angles φ and θ considered for the ansatz

state employed in the mean field approach.

In order to study corrections to the mean field approximation we have to consider fur-

ther terms in the expansion of the Hamiltonian. The next to leading term of order n−1

gives a quadratic bosonic Hamiltonian

H = n−1

[
δ̄1
2
a†a† +

δ1
2
aa + δ0 a

†a

]
+O(n−2), (9.18)

with

δ0 =
(s− 1)µ (3µ2 − 4)

4 (1 − µ2)3/2
− sα

(
2αµ2 − 1

)
csch(α)eα−2αµ2

, (9.19)

δ1 = δ̄1 =
(s− 1)µ (µ2 − 2)

4 (1 − µ2)3/2
− 2sα2µ2csch(α)eα−2αµ2

. (9.20)
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where the minimal energy conditions lead to a real value of µ satisfying: e2αµ2
(s−1) (2µ2 − 1) =

2eαsαµ
√

1 − µ2csch(α). This Hamiltonian can be diagonalized by a simple Bogolioubov

transformation a→ a cosh(Θ/2) + a† sinh(Θ/2) yielding

HΘ = n−1ωa†a+O(n−2), (9.21)

by a suitable choice of the parameter Θ. The low energy excitation gap is thus given by

∆ = n−1ω = n−1
√
δ2
0 − δ̄1δ1. However, for the second order QPT point, the Bogolioubov

transformation is singular and the Hamiltonian cannot be written in the form (9.21). In

order to see why that is the case we present a simple argument that helps to clarify this

point. Consider the following transformation

H̃1 = R1(−ξ̄1)HR1(ξ̄1) = n−1

[
∆a†a+

δ1
2
aa

]
+O(n−2) (9.22)

with R1(ξ̄) = e
1
2
ξ̄a†a†

and ξ̄1 = ∆−δ0
δ1

. Even if R1(ξ̄) is not unitary, the transformation

conserves the spectrum of the operator H . In the case ∆ 6= 0 we can apply another simple

transformation R2(ξ) = e
1
2
ξaa to fully diagonalize the Hamiltonian obtaining, as before,

H̃2 = R2(−ξ2)HR2(ξ2) = n−1
[
ωa†a

]
+O(n−2) (9.23)

with ξ2 = − δ1
2ω

. If ∆ = 0, H̃1 commutes with R2 and thus can not be brought into the form

(9.23); moreover in this case the spectrum of the H̃1 is proportional to the spectrum of

the operator aa which is continuous, yielding to zero energy excitation. However for finite

values of n the excitation gap is non-zero translating the fact that higher order terms in

the n−1 expansion of the Hamiltonian must to be taken into account. The expansion of

the Hamiltonian up to order n−2 can then be then brought to the form

H̃ = −n
−1

4m
aa + n−24λ a†a†a†a† + ..., (9.24)

using a sequential series of transformations Rk = e−ξk nk/2 b1...bk, where b1...bk stands for a

string of bi = a†, a of maximal length 4. For this model the expression of m and λ can

be obtained analytically but their expression is quite involved, here we give only their

numerical values m ≃ 1.455;λ ≃ 0.700. The Hamiltonian given in Eq. (9.24) can also be

transformed, by the same kind of simple operations, to the one of a quartic oscillator

H̃ = n−1 p
2

2m
+ n−2λx4 + ..., (9.25)

where [x, p] = i. The other terms of equation (9.24) and (9.25) are higher powers of n−1

and/or of the creation and annihilation operators and give subleading corrections on the

gap behavior. In the Schrödinger representation, it is easy to see, by simply rescaling the
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x variable, that the gap of the Hamiltonian Eq. (9.24) is given by ∆ = ∆0m
−2/3λ1/3n−4/3,

where ∆0 ≃ 1.726 is the gap of the quartic oscillator (9.25) with m = λ = n = 1.

Fig.9.7 shows the scaling of the minimun energy gap, obtained along the path H(s),

with n. For α < 3
√

3
2

the gap is proportional to 1
n
. This arises because of our normalization

choice of the total Hamiltonian. Had we chosen a normalization in which the energy was

a extensive quantity (which can be obtained by multiplying the total Hamiltonian by n)

and the gap would be constant in the large n limit. This result is simply derived from the

standard Holstein-Primakoff method. At the second order transition point (α = 3
√

3
2

) the

numerical computation displays a clear slope crossover toward a still algebraic exponent

∆ ∼ n−ν (Fig.9.7). Numerically we find ν to be close to 4
3

as predicted by the simple

argument given above, which is the value found previously in [59] for an also fully connected

spin system but where the Hamiltonian was limited to two-body interactions. Fig. 9.8

displays the convergence of the prefactor to the one predicted by the mapping to the

quartic potential. In the region where the first order QPT occurs α > 3
√

3
2

the gap vanishes

exponentially with n. This is a general behavior for first order QPT. The gap obtained
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Figure 9.7: Scaling of the energy gap at the QPT point with n for different values of the

α parameter. The curves range from α = 0 to α = 3. One observes a clear crossover at

the critical value αc = 3
√

3
2

(yellow) with a ν value close to 4
3
.

by the H-P mapping gives the energy of the ”linearized” excitations around the mean field

solution, in particular it does not take into account non-local aspects of the phase space,

this is important in the case of degenerate mean-field minimum where, even if the local

excitations have finite values, the true gap of the system depends on non-local properties

of the Hamiltonian and is exponentially decreasing with n.

9.5.2 Concurrence

We measure the entanglement contend of the ground state by computing the concurrence

of the (n− 2)-qubit traced density matrix. The entanglement is encoded in the finite size
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Figure 9.8: Convergence of the numerical computed gap ∆num, at the second order QPT

point, to the one of an anharmonic oscillator with a pure quartic potential given by ∆ =

∆0m
−2/3λ1/3n−4/3.

corrections so the quantity to study is the rescaled concurrence CR = (N − 1)C which is

usually non trivial in the thermodynamic limit near a QPT. This quantity can be computed,

for the symmetric spin sector, as a function of the mean values of the spin operators Si, S
2
i ,

i = x, y, z, [104]. In the present case the real nature of the density matrix leads to the

simple expression: CR = 1− 4〈S2
y〉

n
: see [105]. Fig.9.9 displays the concurrence computed in

the α− s plane. Note that along the first order line the concurrence is discontinuous in s,

a feature that, to our knowledge, was not observed for other models. At the second order

transition point this quantity presents a cusp like form as in the simple LGM model [19] ;

the numerical analysis of the singularity strongly suggests that, as in the LGM model, the

rescaled concurrence behaves as 1 − CR ∼ n−µ with µ = 1
3
.

9.5.3 Entropy

Entropy of entanglement is a measure of the nonseparability of pure quantum states of a

bipartite system (A+B). It is obtained considering the density matrix of one of the subparts

after having traced out the degrees of freedom of the other ρA = TrB(|ΨA+B〉〈ΨA+B|), and

it coincides with von Neuwman entropy for a density matrix E = −TrA(ρA ln ρA).

In the present case we consider the entropy of entanglement between two subsystems

of spins 1/2 of sizes nA and nB (nA +nB = n). In order to compute this quantity we follow

[54] and write the spin operators of the symmetric sector as the sum of operators of the

two subsystems

Si = S
(A)
i + S

(B)
i , i = x, y, z. (9.26)

where spin (A) and (B) are obtained by summing, respectively, nA = ǫn and nB = (1−ǫ)n
spins 1/2.
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Figure 9.9: Reduced concurrence in the thermodynamic limit obtained, by tracing over

n − 2 arbitrary qubits, as a function of α and s. For α > αc the concurrence presents a

discontinuity which increases with α.

Appling the H-P mapping to both (A) and (B) spins, using two sets boson operators

{a, a†} and {b, b†}, yields to a two boson Hamiltonian. The mean field step follows, as

before, shifting the operators by a constant factor

a→ √
nAµA + a, (9.27)

b→ √
nAµA + b. (9.28)

The mean field energy should be minimized in order to µa and µb. Moreover, since we

are interested in the symmetric sector we should set µa = µb = µ. Performing the H-P

mapping and developing the Hamiltonian in inverse powers of n one obtains, at leading

order, a quadratic boson Hamiltonian

H =
∑

i,j

ti ωi,j tj (9.29)

with ti ∈ {a, a†, b, b†}, fully diagonalizable by a Bogoulibov Transformation c =
∑

iwc,iti; d =∑
i wd,iti. In the Bogouliubov transformed basis the ground state density matrix writes

simply |0c, 0d〉〈0c, 0d| = eiR |0a, 0b〉〈0a, 0b| e−iR. Since the Hamiltonian is quadratic the R

operator is a quadratic Hermitian operator in the initial boson operators a and b. In order

to compute the trace we write |0a, 0b〉〈0a, 0b| = limβ→∞ Z(β)−1e−βa†a where Z(β) = eβ

eβ−1
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is the partition function of the Harmonic oscillator. The density matrix for the A subpart

writes as

ρA = lim
β→∞

Z(β)−1 TrB(eiRe−βa†ae−iR). (9.30)

Note that all operators involved in the trace are quadratic implying that the resultant den-

sity matrix is also an exponential of a quadratic form of a and a†: ρA = eκ2a†a†+κ̄2a†a†+κ1a†a+κ0 .

By Wick’s theorem this quantity is fully characterized by its first moments:

〈O〉 = TrA(ρAO) = 〈0c, 0d|O|0c, 0d〉, (9.31)

with O ∈ {a†a†, a†a, aa} and the fact that 〈1〉 = 1. Diagonalizing the quadratic form and

computing the trace on its diagonal basis one obtains

S = u coth−1(u) + log

(
1

2

√
u2 − 1

)
, (9.32)

with u =
√

(2 〈a†a〉 + 1)2 − 4 〈a†a†〉2, where we used the fact that for this particular case〈
a†a†

〉
= 〈aa〉. Fig. 9.5.3 displays the entropy at the thermodynamic limit as a function

of s for different values of the α parameter for nA = nB = 1/2. As for the concurrence

this quantity presents a discontinuity along the first order QPT line. At the second order

QPT point the entropy diverges logarithmically as its was also found in [54] for the LMG

model.
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Figure 9.10: Entropy in the thermodynamic limit obtained, by tracing over n/2 arbitrary

qubits (ǫ = 1/2), as a function of α and s. For α > αc the entropy presents a discontinuity

which increases with α.

9.6 Conclusion

In this chapter we discuss in detail an Hamiltonian evolution which should be viewed as

a toy model for adiabatic computation. Indeed the phenomenological properties of this
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system correspond to what is usually expected in more realistic implementations: a Hamil-

tonian based on spin-spin interactions, a final Hamiltonian (s = 1) diagonal in the compu-

tational basis and a non trivial behavior for some intermediate values of s corresponding to

a QPT. An interesting feature of our model is that it is build on a two dimensional param-

eter space which allows to trigger the Hamiltonian path form a trivial one (without QPT)

to a regime where a first order QPT occurs, separated by a second order phase transition.

The above phase space may serve as a template for more realistic cases. Given a classical

computation problem the precise HP formulation and the choice of the initial Hamiltonian

H0 should result from an optimization process. A qualitative knowledge of the phase space

is required for that analysis (in terms of the topology of the first and second order phase

transition manifolds). In particular an heuristic point of view would lead to looking (in

the phase space) for second order QPT to built an optimum Hamiltonian path.



Chapter 10

Dynamical Properties

Accross a Quantum Phase Transitions in the

Lipkin-Meshkov-Glick Model

As already discussed above, it is of high interest, in the context of Adiabatic Quantum

Computation, to better understand the complex dynamics of a quantum system subject

to a time-dependant Hamimtonian, when driven accross a quantum phase transition. We

present here such a study in the Lipkin-Meshkov-Glick model with one variable parameter.

We first display numerical results on the dynamical evolution accross the LMG quantum

phase transition, which clearly shows a pronounced effect of the spectral avoided level

crossings. We then derive a phenomenological (classical) transition model, which already

shows some closeness to the numerical results. Finally, we show how a simplified quantum

transition model can be built which strongly improve the classical approach, and shed light

on the physical processes involved in the whole LMG quantum evolution. From our results,

we argue that the commonly used description in term of Landau-Zener transitions is not

appropriate for our model.

10.1 Introduction

Under a continuous change of the Hamiltonian parameters, a quantum system, initially

in its ground state, can undergo transitions to excited states. This point was already

studied in the early days of quantum mechanics, with the celebrated analysis of the two

level case by Landau[106] and Zener [107]. Here we first display some numerical results

on the dynamical evolution accross the LMG quantum phase transition with two very

different pattern whenever the critical point is reached from one side and another of the

QPT. We then write down a phenomenological (classical) transition model, which already

shows some closeness to the numerical results. Finally, we show how a simplified quantum

transition model can be built which strongly improve the classical approach, and shed light

on the physical processes involved in the whole LMG quantum evolution This question is

clearly of interest in the Adiabatic Quantum Computation context. We shall describe

below how the two parts of the standard LMG model will contribute to H0 and HP , and
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enter separately in the definition of the time-dependant Hamiltonian H(t),

H(t) = (1 − t

T
)H0 +

t

T
HP (10.1)

with t the physical time, and T the total evolution time. In the following, we shall use

s = t/T , with s ∈ [0, 1].

One faces here the interesting, although expected, picture that it is not the ground

state itself (for s = 1) that characterizes the problem complexity, but the nature of the

process, in parameter space (for s < 1). This should be related to the already noticed

strong relationship between AQC and Quantum Annealing problems, well studied in the

past years in the field of complex system (e.g. spin glasses) [108].

It is therefore of high interest to study, in the transition region, the dynamical and

spectral properties in the lower part of the spectrum. In particular, one should not only

focus on the first excited eigenstate coming close to the ground state, but in fact to a whole

set of excited levels. This is in particular expected whenever the ground state nature is

drastically changing, since its new decomposition is mainly weighted by the states for which

avoided crossings appear along the adiabatic process. So the state dynamical evolution

has to be thought as a complex transition cascade, rather than independant Landau-Zener

(LZ) processes. Therefore, despite its great success in other systems, the LZ theory, in

particular its ability to calculate the transitions between quantum states, may not be used

in the present AQC case, or be severely corrected [109, 110, 111, 112]. It should be stressed

in addition that LZ theory is intrinsically non-adiabatic, which suggest, for the AQC slow

evolution processes, to go back to more standard adiabatic analyses[86].

To get a better understanding of these processes, we propose here to study the dynami-

cal properties accross the quantum phase transition in the Lipkin-Meshkov-Glick model, a

simple (solvable) model which exhibits some of the expected features of AQC hamiltonians,

and whose spectral properties have been studied into large details in the first part of the

present manuscript.

The LMG model describes a set of N spins 1
2

mutually interacting through a XY -like

Hamiltonian and coupled to an external transverse magnetic field h. This Hamiltonian H

can thus be expressed in terms of the total spin operators Sα =
∑N

i=1 σ
i
α/2 where the σα’s

are the Pauli matrices:

H = − 1

N

(
γxS

2
x + γyS

2
y

)
− h Sz, (10.2)

In the following, we only consider the maximum spin sector S = N/2, with N even

and N + 1 levels. Although many different methods have been used to study its excita-

tion properties, the richness of the full spectrum has only be revealed quite recently by

means of numerical diagonalizations [11, 70], and then, at the thermodynamic limit, in an

analytical form [14] (see chapter 3). Of interest here is the determination of the so-called

“exceptional points” in the density of states, where the density of states is singular and the
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level separation vanish with N . These points gather, as N tends to ∞, on a curve which

we call here the “critical gap curve” (CGC).

Here, for sake of simplicity, we set γy = 0; it is clear that, up to a global reparametriza-

tion, the Hamiltonian only depends on the ratio between γx and h. To express this Hamil-

tonian in the form given by equation (10.1), we write γx = s, h = 1 − s, which leads to

H0 = −Sz and HP = −S2
x/N

The energy levels as a function of s are displayed in figure 10.1 for N = 20. At the

thermodynamic limit, this system undergoes a second order quantum phase transition for

s = 1/2, whose effect is already visible with N = 20, in terms of levels pinching. The locus

of avoided crossing levels appears very close to a straight line (exact CGC for infinite N)

starting at the QPT for s = 0.5, and E/N = −0.5, and reaching E = 0 for s = 1.

In later plots, we shall use the (normalized to one) integrated density of states x, in

the range [0, 1], instead of the energy. The CGC still has a simple expression, xc(s), which

reads

xc(s) = 1 − 4

π
cot−1

(√
s+

√
2s− 1√

1 − s

)
− 2

πs

√
(1 − s)(2s− 1) (10.3)

for s ∈ [0.5, 1]
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Figure 10.1: Spectrum of the “s”-dependant Lipkin-Meshkov-Glick model for N = 20,

with 21 levels.

In the following, we first display some numerical results on the dynamical evolution

accross the LMG quantum phase transition, with two very different pattern whenever the

critical point is reached from one side and another of the QPT. We then write down a

phenomenological (classical) transition model, which already shows some closeness to the

numerical results. Finally, we show how a simplified quantum transition model can be built

which strongly improves the classical approach, and shed light on the physical processes

involved in the whole LMG quantum evolution
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10.2 Dynamical evolution : numerical results

10.2.1 Forward evolution

We numerically solve the dynamical (arbitrarily called “forward”) evolution, proceeding

as follows. The initial state is the ground state corresponding to the s = 0 Hamiltonian.

The total evolution time T is a multiple of a fixed time interval ∆T , during which the

Hamiltonian parameters are kept fixed and the quantum evolution is computed by mean

of a standard second order discretization method. The final state, after ∆T , serves as the

intial state for the next step, with (slightly) varied Hamiltonian parameters. Therefore,

the larger the T value, the smaller the effective Hamiltonian variations from one step to

the next, and therefore the closer to an adiabatic evolution. Another parameter is N , the

system size. Increasing N decreases the gaps, which eases the transitions to excited states.

Computations are done here with N = 50 and three T values, corresponding qualitatively

to fast (T = 1), medium (T = 50) and slow (T = 100) evolutions.

The levels occupancy, as a function of s, are displayed in Figure 10.2 (upper plots).

Also shown is the CGC curve, in order to track the role of the gap closing phenomenon in

the quantum evolution.

As can be clearly seen, a common feature of these evolutions is that the system almost

remains in its ground state before reaching the quantum phase transition region.

Then, not only do the quicker evolutions drive the system to excited states transitions,

but this evolution is clearly controlled by the position of the avoided crossings, as marked

by the critical gap curve.

As expected, for slower evolutions (larger T ), the ground state is not completly depleted,

its population oscillates with time (as seen on the figure) and eventually stabilizes (see for

example Ref. [113]).

10.2.2 Backward Evolution

The above observation that the whole spectrum influences the overall quantum state evo-

lution, together with the fact that the LMG spectrum is far from being symmetrical (see

figure 10.1), leads to expect a qualitatively different time evolution whenever the system

is driven backward, which reads

Hinv(s) = sH0 + (1 − s)HP (10.4)

The levels occupancy, displayed in Figure 10.2 (lower plots), indeed shows a very dif-

ferent pattern. A first explanation arises quite naturally : in the forward case, the system

encounters the minimal energy gaps in an ordered sequence that allows the current wave
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Figure 10.2: Forward and backward evolution of the level populations for a system of

size N = 50 for different the total evolution times T . The red line is the analytical

CGC curve(see text). The three upper figures correspond to forward evolution : left, fast

evolution (T = 1); middle, intermediate speed (T = 50); right, slower evolution (T = 100).

The three lower figures correspond to the backward evolution, with the same speed (T

values) as the plots above

function to spread in the spectrum, with a high probability to change its eigenstate de-

composition along the avoided crossings. In the latter (backward) case, once the system

encounters the first small gap, and possibly leaves the ground state, it never meets again

avoided crossings situations, and therefore do not proceed significantly to higher energies.

In addition, the levels population displays other qualitative features which can be ex-

plained by looking to the spectrum. In the right part of the spectrum (Figure 10.1), which

is first visited in the backward evolution, the gaps are smaller with respect to those in the

left part. As a consequence, for the same T value, transitions to excited states are more

probable, and start occuring even before crossing the quantum phase transition (Figure

10.2 (lower left)).

Note finally (Figure 10.2) that the states population is slightly less peaked (it displays

a sudden small anti-bump) when the CGC curve is crossed. This is again a manifestation
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of the enhanced transition probability along this curve.

10.3 A phenomenological model for the quantum evo-

lution

Figure 10.3: Levels population in the forward evolution case for a 20 level system and

T = 10. Phenomenological rate equation (T b = 0.01) (up left), effective quantum chain

with constant matrix element (up right), effective chain with improved matrix elements

(down left), full numerical evolution (down right).

We shall be interested, in this chapter and the next one, in computing approximate

values for the evolution of the probability distribution among the different states.

We call {|ηi(s)〉} the instantaneous eigenbasis of the s-dependant Hamiltonian,H(s)|ηi(s)〉 =

ǫi(s)|ηi)(s)〉, and write the current state|Φ(s)〉, in this basis : |Φ(s)〉 =
∑

i ai(s)|ηi(s)〉. We

aim to compute the probability Pi(s) = |〈ηi(s)|Φ(s)〉|2 for the system to be in the i-th

instantaneous eigenstate at time s. We shall first suppose that transitions only occur, at

the same rate, from an instantaneous eigenstate |〈ηi〉 toward states |〈ηi+1〉 and |〈ηi−1〉. The
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transition rate matrix Γ inherits a tridiagonal form, but with nevertheless s−dependant

elements. This leads to the following differential equation for the probability

Ṗi(s) = Γi+1,i(s)Pi+1(s) + Γi−1,i(s)Pi−1(s)

−(Γi,i+1(s) + Γi,i−1(s))Pi(s) (10.5)

We choose a form for the rates Γi,i±1(s) which follows a generic adiabatic prescription

Γi,j(s) =
T b

(∆i,j(s))2
(10.6)

where ∆i,j(s) is the instantaneous gap between levels i and j, calculated from the spectrum,

T is the evolution time and b a (ajustable) coupling parameter .

Figure 10.4: Levels population in the backward evolution case for a 20 level system and

T = 10. Phenomenological rate equation (T b = 0.01) (upper left), effective quantum chain

with constant matrix element (upper right), effective chain with improved matrix elements

(lower left), full numerical evolution (lower right).

Numerical solutions of the master equation (10.5) are displayed in Figure 10.4 (up

left). This (very) simple model fairly reproduces some features of the computed evolutions.
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Figure 10.5: Logarithmic plot of |〈ηm(s)|∂sH(s)|ηn(s)〉| (with n = 3 and m > n) as

a function of the levels distance m − n and for different s (from lower to upper curves:

s = 0.75, s = 0.85 and s = 0.90), together with linear fits

Indeed, for the forward evolution, we find the sequential transition driven by the CGC curve

while for the backward evolution, a sudden transition to excited states and a subsequent

saturation effect (after crossing the CGC) are recovered.

However, in the backward case for instance, this simple model fails in decribing correctly

the lowest levels occupations. Indeed, the ground state remains here the most populated

state during the evolution, a feature which is clearly not found in the full numerical simu-

lations.

At this point an important remark must be done. In this phenomelogical model, we

choose a transition rate (10.6) which depends on the inverse of the square of the energy

gaps. This choice of an “adiabatic”-like transition rate is, in a certain sense, arbitrary.

Another possible choice would have been to take Γi,j(s) ∝ exp {−b(∆i,j(s))2} (with b ≥ 0),

which mimics the Landau-Zener transition rate. We tried to plug this type of behaviour in

the rate equation, but could not find any reasonable agreement with the numerical results.

This suggests that, for the present model, a generic Landau-Zener-like description is not

appropriate.

10.4 Simplified quantum model for the adiabatic evo-

lution

In order to better describe the full dynamical process, we need to improve the previous ap-

proach, and incorporate quantum effects more precisely, as follows. If the evolving quantum

state is written in the instantaneous basis of H(s), with the gauge choice 〈η̇n(s)|ηn(s)〉 = 0,

the am(s) coefficients satisfy the equation
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∂sam(s) = −iǫm(s)am(s) −
∑

n 6=m

〈ηm(s)|∂sH(s)|ηn(s)〉
∆n,m(s)

an(s) (10.7)

where, as above, ∆n,m(s) is the instantaneous gap between levels n and m. Note that

solving equation (10.7) requires the knowledge of both the time-dependant eigenvalues and

the matrix elements 〈ηm(s)|∂sH(s)|ηn(s)〉.
Let us further simplify this equation by using the numerically derived gaps and use an

approximate form for the matrix elements. In addition, we limit the transitions from level

n to neighbouring levels n + 1 and level n − 1, leading to an effective 1d quantum chain

model. This is justified , far from the CGC curve, as can be seen in figure 10.5, where

these matrix elements clearly display an exponentially decaying form with distance in the

effective chain.

We then use two forms for the matrix elements. In the simplest case, we take them

equal for any inter-level transition and constant with s. This already improves the previous

phemenological approach, as can be seen in figure 10.3 (up-right). To further improve our

model, we numerically compute the matrix elements in equation (10.7). We find that in

general, for a given level n, 〈ηn(s)|∂sH(s)|ηn+1(s)〉 have a maximum near the CGC curve

and then show a fast decrease. We fit this s-dependance with a Gaussian form, centered at

the critical point. In addition we find that these matrix elements have maximal values, as

a function of n, which can be well approximated by a logarithmic behaviour. We therefore

write them as 〈ηn(s)|∂sH(s)|ηn+1(s)〉 = (a + b log n) exp (−γ(s− s0(n))2), where a, b and

γ are fitted parameters and s0(n), the s value where the gap between levels n and n+ 1 is

minimum, is very closely approximated from the analytic expression of the CGC curve.

The numerical simulation with this latter approximation is shown in figure 10.3 (down

left). It shows a clear improvement with respect to the phenomenological approach (10.5),

and even to the above constant matrix element approximation, in particular after crossing

the CGC line, where the depleted population of the lowest levels is better reproduced.

Backward evolution, treated with the same approximations, are presented in figure 10.4,

with similar trends as in the forward case.

Let us stress that the qualitative form of the computed evolution does not depends

critically on the s dependence of the matrix elements. Analogous results are obtained

within a vast range of γ coefficients and even with a different functional dependence, as

long as the approximating function remains well peaked around the critical point. This

confirms that the CGC drives the main feature of the dynamics; on the other hand, the

absolute value of the matrix elements determine the “fine details” of the evolution, such

as the ratio of the population levels.

A final remark concerns one important basic assumption of the above approaches (both

phenomenological and quantum), that this system is well approximated by an effective

chain with only nearest neighbour transitions between levels. This is true only far from
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the CGC curve; near the critical point, long “distance” transitions occur. This point has

been analysed in a semi-classical framework, and will be presented elsewhere [75].

10.5 Conclusion

We have studied time dependant dynamics of the Lipkin-Meshkov-Glick model driven

across its Quantum Phase Transition Point. The dynamics of the quantum evolution, not

restricted to the lowest level occupancy, is determined by the spectral critical gap curve,

where the energy gaps vanish at the thermodynamic limit. In order to compare with the

full numerical solution, we have developped simplified models for the transitions during

the evolution.

First, we use a phenomenological rate equation approach, with adiabatic-like transition

rates, which already recovers the role of the CGC curve in driving the main quantum

evolution. But this approach misses some important features of the quantum evolution.

We then improve our description by building a quantum model, which treats the inter-

level jumps as the consequence of an effective interaction between the instantaneous levels

of the “s”-dependant Hamiltonian, restricted to nearest-neighbour level interactions. In a

first step, this interaction is only varied following the values of the “s”-dependant gaps,

which already compares better with the full numerical solution. We then further improve

this effective chain model by including an approximate form for the rate of change of the

Hamiltonian averaged over neighbouring levels. In that case, the main features of the

quantum evolution are recovered.

Future investigations should focus on a finer description of the quantum evolution near

the critical curve. In particular, long range interactions between instantaneous levels,

which come close in energy near that curve, have to be taken into account.



Chapter 11

Conclusion of Part II

The aim of this part of the manuscript is to address some questions of interest for adiabatic

quantum computation, in particular with respect to the characterization of the quantum

phase transition expected to occur during the process. We have chosen to study simple

models for that purpose, with as much as possible of analytical treatment, in order to

investigate some essential features of this adiabatic model for quantum computation.

First, using a projector-like Hamiltonian as the starting Hamiltonian for a AQC algo-

rithm, we have derived a quite general algebraic relation for the eigen-energies, leading in

particular to a simple expression for the minimal gap between the ground and first excited

states. This gap is given as a function of simple quantities characterizing the classical

problem to be solved. We have then studied an implementation of the classical 3-SAT

problem in such an adiabatic algorithm, using numerically computed quantities for the

classical problem and conclude that, for this particular initial Hamiltonian, and whenever

the classical case is “hard”, the minimal gap vanishes exponentially with the system size.

Secondly, we discuss in details an Hamiltonian evolution which should be viewed as a

toy model for adiabatic computation. According to the value of one adjustable parameter,

this model displays the interesting feature of having two regimes characterized by the

occurrence, or not, of a first order QPT, separated by a second order phase transition

point. As said above, these singularities, and the way the gap scales with the system size,

are of prime importance as far as the AQC efficiency is concerned. This model shows the

importance of the phase space path followed in an AQC algorithm and suggests, from a

heuristic point of view, to look for the vicinity of a second order quantum phase transition

to built an optimal adiabatic path.

We have finally studied the time dependant dynamics of the LMG model driven across

its quantum phase transition point. Numerical simulations using different adiabatic times

show the important role of the critical gap curve, where the energy gaps vanish at the

thermodynamic limit. In order to compare with the full numerical solution, we have devel-

oped simplified models for the transitions during the evolution, which treats the inter-level

jumps as a consequence of an effective interaction between the instantaneous eigenstates.

This allowed us to reproduce the qualitative features of the exact dynamics and, near the

critical region, to put in evidence the role of the range of levels interaction.

Future investigations should focus on a finer description of the quantum evolution near
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the critical curve. In particular, long range interactions between instantaneous eigenstates,

which come close in energy near that curve, have to be properly taken into account. We

expect to incorporate in this description the knowledge of exact expressions for the observ-

ables matrix elements, along the lines developed in the first part of this work.
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Appendix A

Details of the Semiclassical Expansion

A.1 Identities and n−1 Expansions

A.1.1 Development of H
Let us consider the expression

H[ᾱ, n−1∂ᾱ +G(ᾱ)] = L[G]H[ᾱ, G(ᾱ)] (A.1)

where the symbol H is given by Eq. (2.21). We are going to obtain an expression for the

operator L[G] in powers of n−1. In fact, since the symbol H(ᾱ, ζ) has a series development

in ζ , we have only to consider the development of
(
n−1∂ᾱ +G(ᾱ)

)i
= L[G]G(ᾱ)i, (A.2)

From this it is easy to compute that

L[G] =

[
1 +

1
2
G′(ᾱ)∂2

ζ

n
+

1
8
G′(ᾱ)2∂4

ζ + 1
6
G′′(ᾱ)∂3

ζ

n2
+O(n−3)

]
, (A.3)

the explicit expression of the operator L can be calculated following the identity
(
n−1∂ᾱ +G(ᾱ)

)i
= ∂i

λ

∣∣
λ=0

eλ[n−1∂ᾱ+G(ᾱ)] = ∂i
λ

∣∣
λ=0

e
R λ
0 G(ᾱ+n

−1x)dx, (A.4)

where the right-hand side of the above expression permits an explicit development in n−1,

the final form of Eq. (A.3) follows after some algebraic manipulations.

Considering the expansions for G and H (2.31) and the explicit development of L (A.3)

we have that

Hk

[
ᾱ, G(ᾱ) + n−1∂ᾱ

]
=

[
1 +

∂ᾱG(ᾱ)

2n
∂2

ζ + ...

]
Hk

[
ᾱ, G0(ᾱ) +

1

n
G1(ᾱ) + ...

]

= Hk [ᾱ, G0(ᾱ)] +
1

n

{
G1(ᾱ)∂ζHk [ᾱ, G0(ᾱ)] +

1

2
∂ᾱG0(ᾱ)∂2

ζHk [ᾱ, G0(ᾱ)]

}
+O(n−2).

(A.5)

The explicit equations for G0 and G1 follow by identifying the coefficients of the different

powers of n−1 in the Ricatti-like equation (2.30) with ε given in Eq. (2.31), leading to

Eq. (2.32) and (2.33).
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A.1.2 Relations between H and H

We first remark that by definition of the symbol H (2.20) and the coherent states inner

product (2.18),

H(ᾱ, α) = H[ᾱ, n−1∂ᾱ + ζ(ᾱ, α)] = L[ζ]H[ᾱ, ζ(ᾱ, α)], (A.6)

where we setted ζ(ᾱ, α) = ∂ᾱΩ(ᾱ, α). The last equality follows from the results of the

previous section. Note that ᾱ and α are seen here like independent variables, i.e. we are

considering the analytic continuation of the expression in both variables. By means of

these, we can invert the operatorial relation (A.6),

H[β̄, ζ ] = L−1
[ζ] H(ᾱ, α) (A.7)

where we performed the change of variables β̄ = ᾱ and ζ = ∂ᾱΩ(ᾱ, α). L can be pertur-

batively inverted in powers of n−1 yielding

L−1
[ζ] = 1 −

∂ᾱζ(ᾱ, α)∂2
ζ

2n
+O(n−2). (A.8)

Gathering this results with the one of the last section one obtains

H[β̄, n−1∂β̄ +G(β̄)] = F[G]H(ᾱ, α), (A.9)

where

F[G] = 1 +

[
∂β̄G(β̄) − ∂ᾱζ(ᾱ, α)

]
∂2

ζ

2n
+O(n−2), (A.10)

computed at ζ = G(β̄).

If one considers the expansions of G and H given in Eq. (2.31) and the previous expansion

one gets

H[β̄, n−1∂β̄ +G(β̄)] = H0(ᾱ, α)+

+
1

n

{
G1(β̄)∂ζH0(ᾱ, α) + H1(ᾱ, α) +

1

2
∂2

ζ H0(ᾱ, α)
[
∂β̄G0(β̄) − ∂ᾱζ(ᾱ, α)

]}

+O(n−2), (A.11)

also computed at ζ = G(β̄) and β̄ = ᾱ and ζ = ∂ᾱΩ(ᾱ, α). Using Eq. (2.30), Eq. (2.32)

and (2.33) can, equivalently be given using the symbol H,

ε0 = H0(ᾱ, α), (A.12)

G1(β̄) = −1

2

d

dβ̄
log [∂ζH0(ᾱ, α)] + (A.13)

+
ε1 − H1(ᾱ, α) + 1

2
∂β∂ζH0(ᾱ, α) + 1

2
∂ᾱζ(ᾱ, α)∂2

ζ H0(ᾱ, α)

∂ζH0(ᾱ, α)
.
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A.2 Fluctuations around the Classical Trajectory

A.2.1 Saddle-Point Approximation

Expanding Sm,l(ᾱ, α) in Eq. (4.2), using the fact that the leading order energies for the

two states l and m have the same value ε0 and the definition of ᾱ0 of section 4.1.1, one

gets

Sm,l(ᾱ, α) = S0 + n−1S1 +O(n−2), (A.14)

where

S0 =

∫ ᾱ

ᾱ0(ε0)

G0(ᾱ
′)dᾱ′ +

∫ α

α0(ε0)

Ḡ0(α
′)dα′ − Ω(ᾱ, α), (A.15)

S1 =

∫ ᾱ

ᾱ0(ε0)

G
(l)
1 (ᾱ′)dᾱ′ +

∫ α

α0(ε0)

Ḡ
(m)
1 (α′)dα′ −

−ε(l)
1 ∂εᾱ0(ε0)G0[ᾱ0(ε0)] − ε

(m)
1 ∂εα0(ε0)Ḡ0[α0(ε0)]. (A.16)

The integral of Eq. (4.1) can now be written on the form

B =

∫
dᾱdα

2πi
enS0F (ᾱ, α) (A.17)

where F accounts all the non exponential growing terms as n → ∞. Consider the change

of variables

ᾱ = ᾱ(φ) +
iℓ

2α′(φ)
; α = α(φ) − iℓ

2ᾱ′(φ)
; (A.18)

where α(φ) is some parametrization of the classical trajectory. In the new variables, after

integrating quadratic corrections in ℓ, we obtain

B = enS
∗
0

∫
dφdℓ

2π
e

n

2
(∂2

ℓ S0)ℓ2F [ᾱ(φ), α(φ)] (A.19)

= enS
∗
0

∫
dφ

√
M F [ᾱ(φ), α(φ)], (A.20)

with

M =
2α′(φ)2ᾱ′(φ)2∂αH0(ᾱ, α)∂ᾱH0(ᾱ, α)

−π [α′(φ)∂αH0(ᾱ, α) − ᾱ′(φ)∂ᾱH0(ᾱ, α)]2 ∂α∂ᾱΩ(ᾱ, α)
. (A.21)

S∗
0 = −Ω[ᾱ0(ǫ0), α0(ǫ0)] is the value of S0 along the classical path where ᾱ0(ε0) fixes the

normalization of the states of energy ε0.
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S1 over the Classical Trajectory

Consider the two first terms of Eq.(A.16), with G1 given by (A.13), one gets after some

algebraic manipulations,

∫ ᾱ

ᾱ0(ε0)

G
(l)
1 (ᾱ′)dᾱ′ +

∫ α

α0(ε0)

Ḡ
(m)
1 (α′)dα′ = −1

2
log

(
∂αH0(ᾱ, α)∂ᾱH0(ᾱ, α)

∂ᾱ∂αΩ(ᾱ, α)

)∣∣∣∣
φ

φ0

+ ε
(l)
1

∫ φ

φ0

dφ ᾱ′(φ)
∂α∂ᾱΩ(ᾱ, α)

∂αH0(ᾱ, α)
+ ε

(m)
1

∫ φ

φ0

dφα′(φ)
∂α∂ᾱΩ(ᾱ, α)

∂ᾱH0(ᾱ, α)
, (A.22)

using the change of variables of section A.1.2 and the fact that the energy is constant along

the classical trajectory d
dφ

H0(ᾱ, α) = 0. The last two terms, computed over the classical

orbit, give simply

− ε
(l)
1 ∂εᾱ0(ε0)G0[ᾱ0(ε0)] − ε

(m)
1 ∂εα0(ε0)Ḡ0[α0(ε0)] =

− ε
(l)
1 ∂εᾱ0(ε0)∂ᾱΩ(ᾱ0, α0) − ε

(m)
1 ∂εα0(ε0)∂αΩ(ᾱ0, α0). (A.23)

Matrix Elements at Leading Order

Gathering the results of the two last sections, Eq. (4.1) writes

〈ηm|Â|ηl〉 = C × eΦm,l

∮
dφ v(φ) eθm,l(φ) F[G]A(ᾱ, α)

∣∣
α(φ)

. (A.24)

where F[G]A(ᾱ, α)
∣∣
α(φ)

= A[ᾱ(φ), (φ)] +O(n−1) and

C = c e−nΩ(ᾱ0,α0)

√
1

2π

∂αH0(ᾱ0, α0)∂ᾱH0(ᾱ0, α0)

∂ᾱ∂αΩ(ᾱ0, α0)
+O(n−1), (A.25)

Φl,m = −ε(l)
1 ∂εᾱ0(ε0)∂ᾱΩ(ᾱ0, α0) − ε

(m)
1 ∂εα0(ε0)∂αΩ(ᾱ0, α0) + O(n−1), (A.26)

v(φ) =
2α′(φ)ᾱ′(φ) ∂α∂ᾱΩ(ᾱ, α)√

[ᾱ′(φ)∂ᾱH0(ᾱ, α) − α′(φ)∂αH0(ᾱ, α)]2
+O(n−1), (A.27)

θl,m(φ) =

∫ φ

φ0

∂α∂ᾱΩ(ᾱ, α)
[
ε
(m)
1 ∂αH0(ᾱ, α)α′(φ) + ε

(l)
1 ∂ᾱH0(ᾱ, α)ᾱ′(φ)

]

∂ᾱH0(ᾱ, α)∂αH0(ᾱ, α)
dφ+O(n−1),

(A.28)

with c defined such that dµ(ᾱ, α) = c ∂α∂ᾱΩ(ᾱ, α)dRe(α) dIm(α)
π

, for the spin case c = n+ 1.

Note that the result is independent of the parametrization of the classical orbit.
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A.2.2 Classical Dynamics

Consider the Classical Mechanics [114] given by the symplectic 2-form

ω = i ∂α∂ᾱΩ(ᾱ, α) dα ∧ dᾱ. (A.29)

The equation of flow gt, with initial conditions z0 = (α0, ᾱ0), is given by

d

dt
gt(z0) = I(dH) (A.30)

where H is the classical Hamiltonian, d stands for the external derivative and I is a iso-

morphism between 1-forms u and 1-vectors v defined as ω(v, Iu) = u(v) (in a coordinate

system ωijv
i(Iu)j = ukv

k). In coordinates we have

d

dτ
α(τ) = i

∂ᾱH (ᾱ, α)

∂α∂ᾱΩ(ᾱ, α)
, (A.31)

d

dτ
ᾱ(τ) = −i

∂αH (ᾱ, α)

∂α∂ᾱΩ(ᾱ, α)
. (A.32)

In the case of the semi-classical limit spin system, where ∂ᾱ∂αΩ(ᾱ, α) = (1 + ᾱα)−2, the

equations describe the motion of a particle in a sphere S2 submeted to the potential H ,

and the coordinates {ᾱ, α} are obtained by stereographic projection.

A.2.3 Action-Angle Coordinates

The classical evolution in the action-angle variables are defined such that the evolution in

this basis writes trivially,

d

dτ
I = 0, (A.33)

d

dτ
ϕ(τ) = w(I), (A.34)

where w(I) is the frequency of the motion, the 2-form writes then

ω = dI ∧ dϕ. (A.35)

For an integrable system, away from critical trajectories, it is allways possible to define

such variables and they can be given explicitly as [114]

I =
1

2π

∮

C
iζ(ᾱ, α)dᾱ =

1

2π

∫

Σ

ω (A.36)

where C is the classical trajectory defined by H0(ᾱ, α = ε0, Σ is the area inside it. ζ(ᾱ, α) =

∂ᾱΩ(ᾱ, α),defined as in section A.1.2, is the variable conjugated to ᾱ: ω = i d[ζ(ᾱ, α) dᾱ].

The period of an orbit of energy ε0 is defined by

T (I) =
2π

w(I)
=

2π

∂Iε
. (A.37)
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A.3 Mapping the LMG model onto an equivalent one-

dimensional model

The density of states calculation given in this paper relies on the fact that the roots of the

Majorana polynomial lie on well-defined curves in the complex plane. This result stems

from the well-known wave function nodes oscillation theorem for one-dimensional systems,

which arise here via a mapping of the LMG model onto the problem of a particle in a

one-dimensional potential (see [16] for a review), which we summarize here. A one-to-one

relation exists between the energy spectrum of the spin system and the low-lying quantum

states of such a particle.

We aim to rewrite the equation for the eigenstate Ψ(α) as a Schrödinger equation for

a particle moving in a one-dimensional potential. The procedure consists in three steps,

given first for the case γy < 0.

1. We changeH into an equivalent form such that the roots of the Majorana polynomials

(nodes of the wavefunction) which are aligned on the C1 curve are sent onto the

unit circle. This is achieved through the following unitary transformation: H̃ =

ei π
2
SxHe−i π

2
Sx

2. The unit circle being parametrized by an angle θ, we write Φ(θ) = e−isθΨ(eiθ) for

θ ∈ [0, 2π[.

3. Finally, we define a new function φ(x), which satisfies a one-dimensional Schödinger

equation, and such that part of its spectrum is put in one-to-one correspondance

with the original spin spectrum. This is achieved by setting Φ(θ) = ef [x(θ)]φ[x(θ)]

where f(x) and x(θ) are chosen to suppress the first-order derivative in the initial

Eq. (3.4) for Ψ(α) and to set the “mass” term equal to s. The resulting Schrödinger-

like equation for φ(x), describing a particle in a one-dimensional periodic potential,

reads:

− 1

2s
∂2

xφ(x) + V (x)φ(x) = Eφ(x). (A.38)

Following this procedure, one obtains the effective potential

V (x) =
1

2γy − 2γx sn(B|γx/γy)2

{
h(2s+ 1) (γx − γy) sn(B|γx/γy) −

[
h2s + (s+ 1)γxγy

]
cn(B|γx/γy)

2
}
, (A.39)

with

B =
√

−γy x+K

(
γx

γy

)
. (A.40)
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Note that V is periodic with period L = 4√−γy
K
(

γx

γy

)
.

The mapping onto a one-dimensional potential and the celebrated node oscillation

theorem allows one to sort the eigenstates of increasing energy according to their number

of nodes. Clearly, a φ(x) node leads to a Ψ(α) node for the corresponding LMG eigenstate.

The first (2s + 1) eigenstates of this Hamiltonian H̃ correspond to the eigenstates of the

LMG Hamiltonian with the same energy. Note that, since we focus in this paper onto the

(s+ 1)-dimensional “even m” sector, this leads eventually to a node number inceasing by

steps of 2 for each new eigenstate.

Figure A.1: Effective one-dimensional potential in the thermodynamic limit V∞(x) =

lims→∞
V (x)

s
for γy < 0 and h = 1. Blue and red lines are respectively the lower and upper

bounds of the spin system spectrum ε0 = E
s
.

Typical potentials are shown in Fig. A.1, with parameters associated to regions I, II

and III of the LMG phase diagram. The LMG spectrum corresponds to the energies lying

between the lower (blue) and the upper (red) lines. The qualitative differences between

the three regions appears clearly here. Indeed, in region I the particle moves in a single-

well potential whereas it is in a double-well potential in region II. In region III, a higher

“allowed” energy region appears, with the extended (unbounded) states above the potential

barrier. Crossing the latter corresponds to the upper density of states singularity discussed

in the text. Note however that the extended or bounded nature of the eigenstates for this

equivalent one-dimensional system does not have a direct translation into the nature of the

corresponding eigenstates in the LMG problem.

Similar transformations can be achieved for positive γy but, in this case, one must

consider H̃ = −ei π
2
SyHe−i π

2
Sy . Note the occurence of the minus sign which maps the high-

energy states of the LMG model onto the low-energy states of the particle-problem (and

reciprocally). Following steps (2) and (3), one obtains the potential:
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Figure A.2: Effective one-dimensional potential in the thermodynamic limit V∞(x) =

lims→∞
V (x)

s
for γy > 0 and h = 1. Blue and red lines correspond respectively to the upper

and lower bounds of the energy ε0 = E
s

in the LMG problem.

V (x) =
1

2γycn[C |γy/(γy − γx)]2 − 2γx

{
h(2s+ 1) (γx − γy) cn[C |γy/(γy − γx)] −

(
h2s+ (s+ 1)γxγy

)
sn[C |γy/(γy − γx)]

2

}
,

with

C =
√
γx − γy x. (A.41)

Here, V is periodic with period L = 4√
γx−γy

K
(

γy

γy−γx

)
. The effective potentials are dis-

played on Fig. A.2 for zones I, II and IV, where some care must now be taken for the

correspondence with the LMG model. The upper levels (close to the upper red line) cor-

respond to the lower levels in the LMG case.



Appendix B

Central spin model with homogeneous

couplings

B.1 Introduction

The spin-boson and central-spin models are universal models describing a two-level system

interacting weakly with an environmental bath composed respectively of bosonic or spin-

1/2 degrees of freedom. These models are therefore of prime interest in the context of

decoherence processes.

Recent developments, for instance in solid state physics, permit to manipulate and con-

trol individual two-level systems; however, the correlations of the spin with many degrees of

freedom of the surrounding environment lead to finite lifetime of quantum superpositions,

bringing pure states into mixed ones. The central-spin model has been used to describe

noise sources in this solid state spin nanodevices arising from the hyperfine interaction

with nuclear spins; a lot of efforts has been devoted to model spin bath systems (see for

example [115])..

In 1991 Mermin proposed a simplified version of the central-spin model where all the

spins of the bath interact symmetrically with the central one and have the same frequency

[116], the so called monochromatic bath. In the literature some variations of this model

were also studied under the denomination of finite Jaynes-Cummings [117] or spin-star

model [118]. Moreover this model can be also viewed as a special case of the Gaudin model,

which describes 1/2-spins interacting via isotropic Heisenberg couplings, in the case where

coupling constants are taken to be homogeneous [119]. Although both monochromatic and

polychromatic baths bring about a localization transition, in the two-level system, there

nevertheless present some fundamental differences [120].

Even if it was originally introduced in order to study the ground state properties of

a localization due to environment coupling [116, 120], most works on Mermin-like models

consider dynamical properties of the system. The interaction of a central spin with a bath

of environmental spins presents often a strong non-Markovian behavior, leading the usual

derivations of Markovian quantum master equations known, e.g., from atomic physics and

quantum optics, to fail. These simplified models allow sometimes formal or exact analytical

solution permitting to explore non-Markovian environments [121, 118]. Variations of this
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model also comprise two or more central spins in a bath of interacting spins [122], where

the entanglement between central spins can also be studied.

In this section we present a method, very similar to the one used for the spin collective

models in part 1 one this manuscript, to study eigenstates of a big spin S coupled to a

few-level system. We apply the method to the Mermin model. The results obtained in this

section are still preliminary, and we hope in the future to be able to study the dynamics

of such systems.

B.2 Collective spin interacting with a few-level sys-

tem

Consider a system where a spin S is coupled to a finite dimensional system taken to be a

spin s. We are interested in the limit were s is small (typically s = 1/2, 1, ...) and S → ∞.

The system’s Hamiltonian takes the form

H = Hs +HS +Hs+S (B.1)

where Hs and HS are Hamiltonians of the s and S spin respectively and Hs+S is the

coupling Hamiltonian. The Hilbert space of such system is spanned by the basis {|S,M〉⊗
|s,m〉 = |M,m〉} with −S < M < S and −s < m < s. Therefore, a general state

|Ψ〉 =
∑

M,m cM,m|S,M〉 ⊗ |s,m〉 of the joint s-S system in the coherent S-states is given

by

〈α|Ψ〉 =
∑

m

Ψm(ᾱ)|s,m〉 (B.2)

where

Ψm(ᾱ) =
∑

M

cM,m〈α|S,M〉 = C

d∏

k=1

(
ᾱ− ᾱ

(m)
k

)
(B.3)

is a polynomial of maximal order n = 2S. In this basis, the time independent Schrödinger

equation writes

H
(
ᾱ, n−1∂ᾱ

)
Ψ(ᾱ) = εΨ(ᾱ) (B.4)

where Ψ(ᾱ) is a column vector with entries Ψm(ᾱ) for −s < m < s, and H is a matricial

differential operator.

The order of the linear differential equation for Ψ (B.4) is given by the powers of the

S operators appearing in the Hamiltonian. Particularizing a Ψm(ᾱ), and eliminating the

other components, this equation can be transformed into a higher order linear differential
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equation for Ψm(ᾱ). However, in general, the resulting equation cannot be written in a

Schrodinger-like form, and this procedure generates a generalized eigenvalue problem

L
(
ε, ᾱ, n−1∂ᾱ

)
Ψm(ᾱ) = 0 (B.5)

where L is a differential operator depending, in general, non-linearly on the energy. In the

following we shall indeed follow this procedure of specifying one of the m values, and we

will drop the m label of Ψ.

Written in the form (B.5), the system can be considered as a generalized one dimensional

problem and thus is completely integrable. However in the limit S, s→ ∞ the system has

two classical degrees of freedom, presenting in general a chaotic behavior [123].

Focusing on the pairs {ε, Ψε(ᾱ)}, with s finite, solutions can nevertheless be given

explicitly in the form of closed algebraic relations as in the LMG model. But for practical

purposes the best way of studying this problem for large but finite values of n is to diag-

onalize numerically the Hamiltonian in its matricial form. One way of obtaining explicit

solutions is, as in the LGM case, to consider the logarithmic derivative of Ψε

Gε(ᾱ) = n−1∂ᾱΨε(ᾱ) = n−1
n∑

k=1

1

ᾱ− ᾱk
, (B.6)

that satisfies a Riccati-like equation corresponding to the operator L. Considering the

equation near the pole ᾱk of G and setting the residue to zero, we obtain a set of n

coupled equations determining all the ᾱk’s. This coupled set of non-linear equations admits

(2S + 1)(2s+ 1) solutions given by sets of {ᾱk}n
k=1. The energy ε of each solution can be

obtained by considering the next to leading order term in the expansion around ᾱk.

The mean field approximation is obtained upon considering a separable state ansatz

Ψ(ᾱ) = η (1 + ᾱα)2S where η is an array of 2s+1 complex numbers. Inserting this ansatz

state in Eq.(B.4) results in a matricial equation for the η vector. The mean field energies

εm(ᾱ, α) are the eigenvalues of the matrix obtained by this procedure. In the complex

ᾱ-plane we obtain a set of 2s + 1 sheets. Each sheet correspond to a energy band in

the n → ∞ limit. Equivalently we could obtain the same result by inserting the ansatz

Ψ(ᾱ) = (1 + ᾱα)n in Eq.(B.5).

The large n limit is obtained by the general WKB approximation: assuming the expansions

G = G0 + n−1G1 + ..., ε = ε0 + n−1ε1 + ... (B.7)

the Riccati-like equation decouples in powers of n−1 and the standard WKB procedure can

be applied to obtain the spectrum and the associated eigenfunctions.
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B.3 Application to the Mermin Model

B.3.1 The Mermin Model

In order to illustrate the general procedure described in the previous section, we study now

the Mermin Model [116, 117, 120] with (s = 1/2), given by the Hamiltonian

H =
ωz

2
σz + Ω

Sz

n
+ γxσx

Sx

n
(B.8)

where σi = 2ŝi, i = x, y, z are the Pauli matrices. The coefficients of the S-spin operators

are rescaled by 1/n, the so-called weak-coupling regime. With this definitions, this model

presents a non-trivial phase diagram as S → ∞ for finite values of the coupling constants.

In the S-spin coherent states with s = 1/2, the state is given by a “vector” of two polyno-

mials of degree n

Ψ(ᾱ) =

(
Ψ+ (ᾱ)

Ψ− (ᾱ)

)
(B.9)

and the Hamiltonian is given by the matrix differential operator Eq.(B.4)

H =




ω−Ω
2

+ Ωᾱ∂ᾱ

n
γᾱ
2
− γ(ᾱ2−1)

2
∂ᾱ

n

γᾱ
2
− γ(ᾱ2−1)

2
∂ᾱ

n
−ω

2
− Ω

2
+ Ωᾱ∂ᾱ

n


 . (B.10)

B.3.2 Generalized eigenvalue equation - Equations for the zeros

Eliminating Ψ− we obtain a closed generalized eigenvalue equation for Ψ+

[
p2(ᾱ)

n2
∂2

ᾱ +
p1(ᾱ)

n
∂ᾱ + p0(ᾱ)

]
Ψ+ (ᾱ) = 0 (B.11)

where the pi’s are polynomials of ᾱ that depend on ε; explicit expressions are rather lengthy

and will not be given explicitly. The corresponding Riccati equation for G (Eq. (B.6)) is

given by

p2(ᾱ)

[
G(ᾱ)2 +

1

n
∂ᾱG(ᾱ)

]
+ p1(ᾱ)G(ᾱ) + p0(ᾱ) = 0. (B.12)

Writing G(ᾱ) as a sum over simple poles (last equality of Eq. (B.6)), expanding around

the pole ᾱk and equating the residue to zero, we get a set of n coupled equations

n

2
p1 (ᾱk) + p2 (ᾱk)

∑

i6=k

(ᾱk − ᾱi)
−1 = 0 (B.13)
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Figure B.1: Inverse stereographic projection of a set {ᾱk}n
k=1 for Ψ+ (orange) and Ψ− (blue)

for the k-th excited state of the Mermin Hamiltonian. (n = 40, Ω = 2, ω = 0.1, γ = 1,

from left to right: k = 1, 20, 60. )

The missing equation relating the ᾱk’s and the energy ε can be obtained by evaluating

Eq.(B.12) away from a pole (for example at ᾱ = 0 assuming ᾱk 6= 0 for all k ). Figure

(B.1) represents an example of such set of ᾱk’s. We have assumed here that the ᾱk’s are

all different, which is true in general. Note however that, for some specific values of the

coupling constants, G can have poles with residues bigger than 1, a case that we do not

consider here.

B.3.3 Mean Field Energy and the Large S Limit

Applying the above described method to the mean field energy ε(ᾱ, α) , with s = 1/2, two

energy sheets are obtained

ε± = −
Ω(1 − αᾱ) ±

√
γ2 (α + ᾱ)2 + ω2 (αᾱ+ 1)2

2αᾱ+ 2
(B.14)

To each such sheet, it corresponds an energy band in the spectrum. The extremal energies

of each band can be obtained by analyzing these surfaces (see Fig. B.3). It is also possible

to identify hyperbolic points, which lead to singular behavior in the density of states. In

addition, and in constrast to the LMG case, we now face cases where energy bands intersect

(for example in Fig. B.3-(3), around ε = 0). The mean field results are summarized in the

phase diagram of the model, Fig. B.2, presenting four regions with qualitatively different

spectra.

Observable expectation values, for eigenstates, are presented in Fig. B.4. Due to the

symmetry of the model the mean values of σx and σy are both zero for all eigenstates. For a

single spin 1/2, the radius of the Bloch sphere for a pure state is r2 =< σ >2= 1 and r = 0

for maximal entangled states. The entanglement between the small s and the big S spin

can thus be simply read in the value of σz: un-entangled states have < σz >= ±1. Note

also that, in this simplified model, the two energy bands are symmetrical with respect the
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Figure B.2: Phase Diagram for the Mermin Hamiltonian model (for γ = 1). Due to

symmetry, only the first quadrant needs to be analyzed. The four labels indicate the

precise parameter values that are considered in the examples treated in Fig. B.3, and Fig.

B.4.

Figure B.3: Mean field energy sheets in the complex ᾱ for the representative cases of

Fig. B.2.

middle of the spectrum; corresponding eigenstates are the “plus” or “minus” occurrence

for eiπ(Sz+S)σz|Ψ〉 = ±|Ψ〉; for a general s−S system, this symmetry will be absent. Using

a method similar to the one used for the LMG model, it is possible to compute analytically

all the quantities presented in Fig. B.4; this analysis will be done in the future. We just

briefly describe the different zones:

Zone (1) - The spectrum extrema for the two energy bands correspond to separable states

at the thermodynamic limit. No singularities arise within the spectrum.

Zone (2) - Similar to zone (1), but with energy band interpenetration.

Zone (3) - There are critical energies within the spectrum corresponding to hyperbolic

points showed in Fig. B.3; moreover this region presents a energy band interpenetration.

The ground and the most excited states correspond to entangled states of the s−S system.

Zone (4) -Similar to zone (3) but without energy band interpenetration.

The model presents a QPT line given by ω = γ2

Ω
, where the ground state mean value

of σz presents a singular behaviour (Fig. B.5), passing from a region where the s − S

system is not entangled at the thermodynamic limit to a region where the ground state is
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non-separable.

Figure B.4: Integrated density of states N and mean values of the observables (Sz, Sx and

σz), computed numerically for the eigenstates of the Mermin model as a function of the

energy, for the representative cases of Fig. B.2 (n = 50).
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Figure B.5: Ground State expectation value of σz .
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B.3.4 Conclusion

We present a method which allows us to treat a few-level system coupled to a spin S in the

limit S → ∞. It is an extension of the spin coherent states, and the WKB approximation,

developed for collective spins in the first part of this manuscript, and gives the spectrum

and the eigenvectors of the model. We study the Mermin Hamiltonian and derive the

phase diagram of the model. We also present some numerical computations of observables

expectation values for eigenstates, and point-out the existence of “exceptional” points

within the spectrum for phases (3) and (4). At the border between these regions, there

is a QPT line corresponding to a second order phase transition, where the s − S system

also displays an entangled to non-entangled behaviour. We expect this preliminary work

to help us studying the dynamical properties of the model. It could also be interesting,

but maybe difficult in practice, to study big, but nevertheless finite s values; such a system

would interpolate between an integrable system, with one (collective) degree of freedom

and an effective two dimensional system (where chaotic behaviour would be expected).



Appendix C

Entanglement and Hilbert space geometry

for few qubits systems

C.1 Introduction

The rapidly growing field of quantum information is based on the subtle and often counter-

intuitive properties of quantum states entanglement[124][84]. It is therefore of high interest

to have a geometrical picture of this latter property, directly written in the Hilbert space

where the quantum evolution takes place. However, even for few qubits, this space is of

high dimension, which makes it difficult to visualize, and entanglement turns out to be a

complicate concept (see for example [125, 126]).

In this appendix, we present some optimal discretized Hilbert space (similar to what

polytopes are to continuous hyperspheres), and their interesting relation to dense sphere

packings in high-dimensional real space. To do so, we briefly recall some known facts

on Hilbert space geometry for few (two and three) qubits, in relation with the so-called

(high dimensional) sphere Hopf fibrations. For one qubit (a single two-level system), a well

known tool in quantum optics is the Bloch sphere (S2) representation, which is related to

Hopf fibration of the S3 hypersphere. A generalization for a two-qubit system was proposed

[127], in the framework of the S7 sphere Hopf fibration. An interesting result is that the

S7 Hopf fibration is entanglement sensitive and therefore provides a kind of foliation for

the 2 qubits (projective) Hilbert space with respect to their entanglement content. An

extension of this description to a three qubits system, using the S15 Hopf fibration, will

also be presented here.

Interesting sets of discrete two and three-qubits states are then obtained by intersecting

the S7 and S15 spheres with high dimensional dense lattices in 8 and 16 dimensions. The

same discrete qubits sets can also be defined algebraically based on stabilizer theory.
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C.2 Entanglement and Hopf fibrations

A n-qubit state can be written as

|Ψ〉 =
2n−1∑

l=0

tl |l〉 with tl ∈ C, and the normalization
∑

|tl|2 = 1

Here |l〉 stands for the n-qubit base 2 decomposition of the integer l, with each qubit

being associated with one basis factor of the n-qubit tensor product

|l〉 = |α1〉1 ⊗ |α2〉2 ⊗ · · · |αn〉n

where αj = 0 or 1 according to the decomposition of l. In principle, the n-qubit Hilbert

space is C2n
, or CP 2n−1 for the projective version where the global phase freedom is taken

into account. But the normalization condition makes it more natural to consider S2n+1−1

spheres embedded in R2n+1

C.2.1 Two qubits entanglement and the S7 Hopf fibration

A generic two-qubit state reads

|Ψ〉 = t0 |00〉 + t1 |01〉 + t2 |10〉 + t3 |11〉

where we have explicitely used the base 2 decomposition to highlight the underlying

tensor product. A state |Ψ〉 is said ”separable” if, thank to individual qubits basis rotations,

it can be written as a simple product

|Ψ〉 = |ϕ〉1 ⊗ |θ〉2 .

It is easy to show that this is only possible if

t0t3 − t1t2 = 0

The deviation of the LHS from zero leads to a measure of state entanglement, which is

known as the ”concurrence” c [103], in the form

c = 2 |t0t3 − t1t2|

a quantity which will play an important role below. Indeed, we aim to foliate the two qubit

projective Hilbert space CP 3, in terms of equi-concurrence manifolds. As will become soon

clear, the S7 Hopf fibration will prove to be of great help to fulfill this task [127].
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The S7 Hopf fibration is defined using quaternions (with the quaternion algebra denoted

Q), instead of complex numbers. We combine two complex components into a quaternion

(using the quaternionic j unit) in the form

q1 = t0 + t1j, q2 = t2 + t3j, q1,q2 ∈ Q, (C.1)

A point (representing the state |Ψ〉) on the unit radius S7, is represented as a pair of

quaternions (q1,q2) satisfying |q1|2 + |q2|2 = 1. The Hopf map from S7 to the base S4 is the

composition of a map h1 from S7 to R4 (+∞), followed by an inverse stereographic map

h2 from R4 to S4.

h1 :
S7 −→ R4 + {∞}

(q1, q2) −→ Q = q1q
−1
2

q1,q2 ∈ Q

h2 :
R4 + {∞} −→ S4

Q −→ M(xl)

l=4∑

l=0

x2
l = 1 (C.2)

The base space S4 is not embedded in S7 : the fibration is not trivial. The fibre is a

unit S3 sphere : the S7 points (q1,q2) and (q1q, q2q), with q a unit quaternion (geometrically

a S3sphere) are mapped onto the same Q value.

Let us write Q in terms of the original components tl

Q = q1q
−1
2 =

1

sin2 (θ/2)
(C1 + C2j) (C.3)

with sin (θ/2) = |q2| , C1 =
(
t0t2 + t1t3

)
, C2 = (t0t3 − t1t2) and C1, C2 ∈ C

The simple relation between the concurrence entanglement measure c and the C2 term

is striking : c = 2 |C2|. This shows that, if correctly oriented, the Hopf map is en-

tanglement sensitive! Indeed, states that are mapped onto pure complex values for Q

are separable states. In addition, the fibre structure implies that a whole S3 manifold is

singled out with the same entanglement content.

C.2.2 Three qubits, and the S15 Hopf fibration

A generic three-qubit state reads

|Ψ〉 =
7∑

l=0

tl |l〉 with tl ∈ C, and
∑

|tl|2 = 1

The |Ψ〉 normalization condition leads to considering the 15-dimensional sphere S15,

embedded in R16. This has suggested to look whether the third Hopf fibration (that of
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S15, with base S8 and fibres S7) could be helpful for describing the 3 qubits Hilbert space

geometry[128][129]. One should first recognize that the concept of entanglement turns

complicate when more qubits are added. Do we speek of the entanglement of one qubit

with respect to the other two qubits (irrespective of the dedree of entanglement between

these latter two), or of some ”true” three qubit entanglement, as measured for instance by

the 3-tangle [130]?

It is interesting here to recall about entanglement invariants, which are functions of

the state component tl, invariant under the action of local unitary operations (the latter

leaving entanglement unchanged). For two qubits, there are 2 such invariants, the (trivial)

norm of the state, and the concurrence. Therefore, as shown above, the S7 Hopf map

displays the two-qubit invariant. For three qubits, there are 6 invariants, which can be

expressed in different ways. A possible choice is the norm of the state, the three radii rj ,

j = 1 · · · 3 of the partial Bloch spheres, the 3-tangle τ3 and a last one, introduced by J.

Kempe [131]

Omitting the trivial norm invariant, we would like to foliate the (14-dimensional) three

qubits projective Hilbert space CP 7 with respect to the different values of the invariant

5-uplets. This task is rather complicate, and has not been fulfilled up to now; however, we

shall see now that the S15 Hopf fibrations can tell something about this manifold.

To define the fibration, one proceeds along the same line as for the S7 case, but using

now octonions (with the octonion algebra denoted O). The interested reader should refer

to the appendix of ref. [129] for information about the octonion multiplication that is used

here. We write

a = a′ + a′′e, b = b′ + b′′e, a, b ∈ O, and a′, a′′, b′, b′′ ∈ Q, (C.4)

and a point (representing the state |Ψ〉) on the unit radius S15 as a pair of octonions

(a, b) satisfying |a|2+|b|2 = 1. But, to get a Hopf map of physical interest, with coordinates

simply related to interesting observable expectation values, one needs to define a slightly

tricky relation between |Ψ〉 and the octonions pair (a, b), as follows:

a = (t0 + t1j,t2 + jt3) = (t0 + t1j,t2 + t3j) = (a′, a′′) (C.5)

b = (t4 + t5j,t6 + jt7) = (t4 + t5j,t6 + t7j) = (b′, b′′)

The Hopf map from S15 to the base S8 is the composition of a map h1 from S15 to R8

(+∞), followed by an inverse stereographic map h2 from R8 to S8.

h1 :
S15 −→ R8 + {∞}

(a, b) −→ P = ab−1
a, b ∈ O

h2 :
R8 + {∞} −→ S8

P −→ M(xl)

l=8∑

l=0

x2
l = 1 (C.6)
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The base space S8 is not embedded in S15 : the fibration is again not trivial. The

fibre is a unit S7 sphere, the proof of which is more tricky (and not given here) than in the

lower dimension case. The h1 map leads to

P = ab−1 =
1

sin2 θ/2
(Q1 +Q2e) (C.7)

with sin θ/2 = |b| , Q1 = (b′a′ + a′′b′′), Q2 = (−a′′b′ + b′′a′) and Q1, Q2 ∈ Q

Although this is not at first sight evident, the Hopf map is still entanglement sensitive

in that case. To show this, it is instructive to first express Q1 and Q2 in term of the tl
components read out from (C.5).

Q1 =
(
t0t4 + t1t5 + t2t6 + t3t7) + (t0t5 − t1t4 + t2t7 − t3t6

)
j

Q2 =
(
t0t6 + t2t4 + t3t5 − t1t7) + (t1t6 − t2t5 + t0t7 − t3t4

)
j

Introducing the generalised complex concurrence terms Tij,kl = titj−tktl allows to write

in a synthetic form the coordinates on the unit radius base S8. The second map h2 sends

states onto points on S8, with coordinates xl, with l running from to 0 to 8. With the

inverse stereographic pole located on the S8 ”north pole ” (x0 = +1), and the target space

R8 cutting S8 along the equator, we get the following coordinate expressions

x0 = cos θ = |a|2 − |b|2 = 〈σz ⊗ Id⊗ Id〉Ψ (C.8)

x1 + ix2 = 2
(
t0t4 + t1t5 + t2t6 + t3t7

)
=
〈
(σx + iσy)1 ⊗ Id⊗ Id

〉
Ψ

x3 + ix4 = 2
(
T05,14 + T27,36

)

x5 + ix6 = 2
(
T06,24 + T35,17

)

x7 + ix8 = 2
(
T16,25 + T07,34

)

Three-qubits states such that the first qubit is separated from the two others map onto

a point such that xj = 0, for j = 3 · · ·8. Indeed, in a multi-qubit state, a given qubit is

separated from the others when its partial Bloch sphere has a radius r1 = 1. The first qubit

partial Bloch sphere is spanned here by the triplet (x0, x1, x2). Going back to the above

definition of the h1 map, this means that in that case, the Hopf map carries an octonion

couple onto a pure complex number P . Therefore, as for two-qubits case, the S15 Hopf

fibration is also entanglement sensitive for three qubits!

C.3 Hilbertian polytopes

In this section, we derive discretized versions of the n-qubit projective Hilbert space CP 2n−1

, which are analogous to standard polytopes with respect to spherical spaces. These
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“Hilbertian polytopes” have been described along two a priori different (algebraic and

geometric) approaches, which eventually leads to the same structures. These structures

have been defined from a generic point of view, and detailed for one and two qubits [132].

This construction will be briefly recalled here; in addition, we further describe the three-

qubit case, with its 1080 states in CP 7.

C.3.1 Discretization based on stabilizer theory

Let us first define the n-qubit Pauli group Gn, as the set of all n-fold tensor products of

2 × 2 Pauli matrices, with four possible overall phases to satisfy the closure requirement:

Gn = {σw, σx, σy, σz}⊗n ⊗ {±1,±i} ,

We denote by Σαβ...ζ = σα ⊗ σβ ⊗ · · · ⊗ σζ the generalized Pauli matrices .

Here we disregard the phases {±1,±i} required for closure of Gn under multiplication

and deal with the set Sn of 4n generalized Pauli matrices rather than the group Gn. Doing

this, the stabilizer of Gn transfer to Abelian subsets of Sn, called pseudostabilizers. The

largest possible subsets of Sn whose elements all mutually commute have 2n elements, and

are denoted sa
n, where a labels the different subsets . These maximal pseudostabilizers

form the foundation of this discretization procedure.

Finally, the Hilbertian polytope Hn is defined as the set of n-qubit state vectors which

are the common eigenvectors of the elements of sa
n, for all subsets a.

The uniform Hilbertian polytope on n qubits Hn contains

Vn = 2n
n−1∏

k=0

(2n−k + 1)

vertices, or states. The following table gives the first values of Vn, along with Cn, the

number of classical bit configurations for comparison.

n 1 2 3 4 5 6 7

Vn 6 60 1080 36720 2423520 315057600 81284860800

Cn 2 4 8 16 32 64 128

Vn grows as 2(n2+3n)/2, so the information content is super-extensive in n.

We shall not give here an explicit construction of the uniform Hilbertian polytope for

the one- and two-qubit cases based on this algebraic approach. We shall focus on an

alternative geometrical approach.
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C.3.2 Alternate approach: shelling the high-dimensional dense

lattices

We now present another, more geometrical, approach to Hilbert space discretization, which

uses the successive shells of dense lattices in R2n+1
to discretize the high dimensional

hyperspheres. At the same time, we must take into account the global phase freedom,

and show how a discretization of the projective Hilbert space is induced (this means that

several points on S2n−1 will represent the same physical state). In light of this, it is

important to distinguish between “qubit states”—the quantum states associated to the

points on S2n−1—and “physical states”—the states in the projective Hilbert space, which

has the geometry of a complex projective space CP 2n−1.

We consider the family of laminated lattices Λi. These laminated lattices form a series

which starts with the triangular lattice in 2d (the densest lattice in 2d). Λ3 is obtained as a

particular sequence of Λ2 lattices packed in a third dimension, which gives the face centered

cubic lattice, one of the two densest lattices in 3d. Appropriately packing Λ3 lattices along

a fourth dimension leads to Λ4, whose first shell is precisely the {3, 4, 3} polytope [133] we

will use here for the one-qubit case. Upon iteration, this construction eventually leads to

the Λ8 = E8 lattice suitable for the two-qubit case. We shall focus here on the set of 240

sites belonging to the E8 first shell that forms the, so-called, Gosset polytope and, as for

the one-qubit case, enumerate the physical states they represent. Finally we present new

results with a set of 1080 discrete 3-qubits states which originate from the 16-dimensional

dense lattice Λ16

C.3.3 The one-qubit case and the Λ4 lattice

We give two possible (dual) coordinates for the {3, 4, 3} vertices, in each case as a real

quadruplet and a complex pair. The correspondence between real quadruplets and complex

pairs amounts simply to taking the first two (last two) real numbers as the real and

imaginary part of the first (second) complex number. The first (second) complex number

in the pair corresponds to t0 (t1).

A first set, denoted T1, is the union of the eight permutations of type (±1, 0, 0, 0) and

the sixteen permutations of type 1
2
(±1,±1,±1,±1). Note that, modulo a global phase

factor, these twenty-four points really represent six different physical states, which appear

on the Bloch sphere as opposite points on the three orthogonal axes x, y, z. Indeed, the

four points,
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Real quadruplets Complex pairs

(1, 0, 0, 0) (1, 0)

(−1, 0, 0, 0) (−1, 0)

(0, 1, 0, 0) (i, 0)

(0,−1, 0, 0) (−i, 0)

represent the states |Ψ1, ω〉 = eiω |0〉, with ω = 0, π/2, π, 3π/2 ,which map to the same point

on the Bloch sphere (the north pole), and they are therefore associated to the physical state

|Ψ1〉 . Equivalently, the four points

Real quadruplets Complex pairs

(0, 0, 1, 0) (0, 1)

(0, 0,−1, 0) (0,−1)

(0, 0, 0, 1) (0, i)

(0, 0, 0,−1) (0,−i)

represent the four states |Ψ2, ω〉 = eiω |1〉 with ω = 0, π/2, π, 3π/2. The other sixteen

vertices represent four other physical states, in the following way:

|Ψ3〉 ≡ ei(ω+π/4)√
2

(|0〉 − |1〉) , |Ψ4〉 ≡ ei(ω+π/4)√
2

(|0〉 − |1〉) ,
|Ψ5〉 ≡ ei(ω+π/4)

√
2

(|0〉 + i |1〉) , |Ψ6〉 ≡ ei(ω+π/4)
√

2
(|0〉 − i |1〉) ,

with ω = 0, π/2, π, 3π/2.

For the later purpose of a discrete two-qubit construction, it is useful to describe a

second version of the polytope {3, 4, 3}, for which the twenty-four vertices form a set

T2 given by twenty-four permutations of the type {±1,±1, 0, 0} /
√

2. This polytope is

obtained from the former one through a screw motion on S3 of angle π/4. This set leads

to twenty-four states

|Φl, ω〉 = ǫ |Ψl, ω〉 , l = 1..6, ω = 0, π/2, π, 3π/2, and ǫ = eiπ/4

and to the six one-qubit physical states |Φl〉 identical to |Ψl〉 . Indeed, the six states |Ψj〉
sit at the vertices of a regular octahedron. Since the states |Φl, ω〉 only differ from |Ψl, ω〉
by a global phase, they map onto the same six points on the Bloch sphere.

C.3.4 The two-qubit case and the E8 lattice

The 240 vertices of the Gosset polytope belong to a sphere S7. These 240 vertices may

be separated into ten equivalent subsets, each belonging to non-intersecting S3 spheres.

This is nothing but a discrete version of the S7 Hopf fibration, with fibers S3 and base

S4[134, 135, 136].
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We use here quaternionic coordinates instead of complex or real ones. The above set

T1, scaled such that the corresponding points belong to a sphere S3 of radius 1√
2
, now

reads:

T1 = {± 1√
2
,± i√

2
,± j√

2
,± k√

2
,

1

2
√

2
(±1 ± i ± j± k)},

where i, j and k are the standard unit quaternions. The set T2 stays on a unit sphere and

reads:

T2 = { 1√
2
(±1 ± i),

1√
2
(±1 ± j),

1√
2
(±1 ± k),

1√
2
(±i ± j),

1√
2
(±i ± k),

1√
2
(±j ± k)}.

The 240 vertices of the Gosset polytope belong to the ten sets:

S1 = (T2, 0), S2 = (0, T2), S3 = (T1, T1), S4 = (T1,−T1), S5 = (T1, iT1),

S6 = (T1,−iT1), S7 = (T1, jT1), S8 = (T1,−jT1), S9 = (T1,kT1), S10 = (T1,−kT1).

Each of the ten sets gives a copy of a {3, 4, 3} polytope on a fiber S3. The points can

be Hopf mapped, as described above, onto the base space S4. The location of the mapped

point is intimately related to the entanglement of the corresponding two-qubit state.

It is then easy to verify that the sets S1 to S6 correspond to separable states, while sets

S7 to S10 correspond to maximally entangled states.

More precisely, the six sets S1 · · · S6 encompass 6×24 = 144 vertices, forming altogether

36 physical states, with four values of the global phase for each qubit state. Note that the

precise value of the phases are important here in order that our discretization procedure

uniformly cover the full Hilbert space. Using the above defined eigenstates of the one-qubit

Pauli matrices, these states read:

|±x〉 ⊗ |±x〉 ei(π/4+mπ/2) |±x〉 ⊗ |±y〉 ei(π/4+mπ/2) |±x〉 ⊗ |±z〉 eimπ/2

|±y〉 ⊗ |±x〉 ei(π/4+mπ/2) |±y〉 ⊗ |±y〉 ei(π/4+mπ/2) |±y〉 ⊗ |±z〉 eimπ/2

|±z〉 ⊗ |±x〉 eimπ/2 |±z〉 ⊗ |±y〉 eimπ/2 |±z〉 ⊗ |±z〉 ei(π/4+mπ/2)

where m = 0, 1, 2, 3 triggers the global phase. Each of the nine entries stands for the four

possible sign combinations, leading to the announced thirty-six physical states. A simple

view of these separable states consists in relating them to the “product” of two octahedra,

each one belonging to the Bloch sphere of the individual qubits.

The remaining four sets (altogether 4 × 24 = 96 sites) lead to a slightly more subtle

structure. We find a total of twenty-four different physical MES, with four phase-distinct

two-qubit states for each. But in the present case, the phase-distinct states actually belong

to two different sets, either (S7, S8) or (S9, S10). These twenty-four physical states can be

written as
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1√
2

(
|+z,+z〉 + eiθ |−z,−z〉

)
1√
2

(
|+z,−z〉 + eiθ |−z, z〉

)

1√
2

(
|+z,+x〉 + eiθ |−z,−x〉

)
1√
2

(
|+z,−x〉 + eiθ |−z,+x〉

)

1√
2

(
|+z,+y〉 + eiθ |−z,−y〉

)
1√
2

(
|+z,−y〉 + eiθ |−z,+y〉

)

with θ = 0, π/2, π, 3π/2.

Note that these twenty-four entangled states, together with the above thirty-six sepa-

rable states, are in one-to-one correspondence, up to a global phase, with the sixty discrete

states on H2 obtained by the algebraic approach.

C.3.5 Finer discretizations of H2: higher E8 shells

The present lattice approach have the benefit of allowing finer discrete sets to be explored

in a straightforward manner by considering the higher order shells in E8. This construction

would provide a uniform set of two-qubit states, some of which would have intermediate

entanglement. A note of caution is in order here, since we are only interested in describing

normalized quantum states. Lattice points which are aligned, as viewed from the origin,

contribute to the same two-qubit state.

We do not give here a detailed description of these finer discretizations of H2. However,

we note that the number MJ of sites on the J th shell around an E8 vertex is simply given

by[137]

MJ = 240
∑

d|J
d3,

where d denotes integers which divide J . The table below displays these numbers for the

first four shells. Again, the physical states are obtained from these two-qubit states by

modding out a global phase.

J 1 2 3 4

M 240 2160 6720 17520

The shell by shell analysis, and its relation to the Hopf map, was done elsewhere[134,

135]. It allows us to get points on the second shell corresponding to states having concur-

rence 0, 1/2, 1/
√

2, 1. The third shell contributes states of concurrence 0, 1/3, 2/3,
√

5/3,√
8/3 and 1.

C.3.6 The three-qubit case, H3 and the Λ16 lattice

This case should be related to the dense lattice Λ16 in R16 (see ref.[137]). It is interesting to

note that the number of lattice sites closest to the origin—the lattice “kissing number”—

for this case is 4320, which is precisely four times the expected number of vertices on the
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uniform Hilbertian polytope H3. We are therefore likely to face a similar situation as in

the one- and two-qubit cases, where there were four phase-related qubit states associated

with each physical state. And indeed, the four-to-one relation between the Λ16 first shell

sites and the vertices of H3 has been checked.

With a suitably oriented S15 Hopf fibration, the 4320 sites in the first shell organize

as 18 sets of 240 sites belonging to a S7 fibre; each such set is a copy of a 240-site Gosset

polytope, which therefore shows a nice nested structure. The 18 sets are uniquely defined

by the coordinates of the corresponding point on the base space S8. The corresponding

18-site polytope is nothing but the ”cross polytope” in R9, with two opposite points along

9 orthogonal directions.

Upon modding out the global phase, we find that, as for the entangled 2-qubits states,

some phase-distinct states belong to different fibres. The 1080 discrete 3-qubits states

belong to three different classes : fully separable, products of one-qubit times a maximally

2-qubits entangled states, or maximally entangled (as measured by the 3-tangle).

More precisely, among the 18 fibres :

- six fibres (whose octonionic coordinates on the base space reduce to a complex number)

contains states that are either triple product states, or product of the first qubit with a

MES in the remaining two qubits

- the remaining 12 fibres contains states that are either product of the second or third

qubit with a MES in the remaining two qubits, or states with true (and maximal) 3-qubit

entanglement, characterized by a 3-tangle equals to unity

As a whole, one finds :

- a set of 216 triple product states

- a set of 432 states, product of one qubit times a MES in the remainig two

- a set of 432 maximally entangled 3-qubit states (with unit 3-tangle)

Note that the first two sets could already be generated from the two and one-qubit

analysis, with (suitably oriented) Λ8 and Λ4, while the third is really new.

Generalization to more than three qubits cannot use the Hopf fibrations, limited to

S15. A particularly interesting family to be checked further is the one described long ago

by John Leech[138], which coincides with those studied here for N = 1, 2 and 3, and whose

kissing number is, for any N , precisely four times that given in the first part of this paper

for the number of states in the generic Hilbertian polytopes.





Appendix D

SU (3) Coherent States - Simple Collective

Hamiltonians

D.1 Introduction

The SU(2) collective systems are always integrable and most of their physical properties

can be obtained following the treatment sketched in Part I of this work. When dealing with

higher rank groups, the analysis is complicated by the existence of many degrees of freedom

and the fact that the analog classical system exhibits, in general, a chaotic behavior. SU(3)

provides a low dimensional model (having 2 of 3 degrees of freedom, depending on the

representation) possessing these non-trivial properties. It was used during the 80’s and

early 90’s as a toy model to explore the phenomena of quantum chaos. Compared with

other low dimensionality models it has the advantage of having a compact phase space

that facilitates the analysis and permits to study the full Hilbert space without need to

truncation.

Note that the LMG model has an SU(3) analog, the so-called three-orbital LMG model

[17, 139] having a quadratic Hamiltonian in the generators of the su(3) algebra. This

model was used to study the classical-quantum correspondence for non-integrable systems

[24, 140], in particular through the analysis of the Husimi functions associated with the

eigenstates [141, 39], and to test the hypothesis that the level spacings for quantum-chaotic

Hamiltonians are characterized by the Gaussian-orthogonal ensamble statistics [139].

In this section we briefly recall the coherent states basis for the fully symmetric irre-

ducible representations of SU(3). They are labeled by an integer n that, as for the SU(2)

case, will provide a semi-classical parameter ~ = n−1, a limit case which will not be con-

sidered here. This coherent state basis leads to a representation of eigenfunctions in terms

of polynomials in two complex variables, in contrast with the SU(2) one-variable Majo-

rana polynomials studied before). We then present a preliminary analysis of simple SU(3)

Hamiltonians, which are such that their eigenstates representative polynomials have non

generic forms, now characterized by a set of pairs of complex numbers.
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D.2 Group structure and Symmetric Representations

The special unitary group of degree 3, denoted SU(3), is the group of 3×3 unitary matrices

with determinant 1. Its algebra generators are given for a 3-dimensional representation in

a quite simple way: consider the Ei,j as the matrix with entries [Ei,j]k,l = δi,kδj,l, we define

the generators of the su(3) algebra as

H i = Ei,i − Ei+1,i+1 for i = 1, 2; (D.1)

Eα(1)

= E1,2 ; Eα(2)

= E2,3 ; Eα(3)

= E3,1 ; (D.2)

E−α(i)

= (Eα(i)

)† for i = 1, 2, 3 ; (D.3)

Let us also define H3 = H1+H2. The (representation independant) commutation relations

then write in this basis
[
H i, E±α(j)

]
= ±[α(j)]iE

±α(j)

;
[
Eα(j)

, E−α(j)
]

= Hj

[
E±α(1)

, E±α(2)
]

= E±α(3)

;
[
E±α(1)

, E∓α(3)
]

= ∓E∓α(2)

;
[
E±α(2)

, E∓α(3)
]

= ∓E±α(1)

;

(D.4)

where [α(j)]i is the i-th component of the root (j) (see Fig. D.1). All the other commutators

are zero. The commutation relations in (D.4) are given in the so-called Chevalley basis for

a semi-simple Lie algebra (see, for example, [142]).

SU(3) is semi-simple compact group [142], its irreducible representations are fully char-

acterized by the highest-weight Λ = n1λ1 + n2λ2, where λi are the fundamental weights

which are orthogonal in the Chevalley basis (Fig. D.1-(a)). We are only going to consider

the fully symetric irreducible representations of the form (n1 = n, n2 = 0) like the ones

displayed in Fig. D.1-(b).

The Hilbert space for a system in which SU(3) acts irreducibly throug a fully sym-

metrical representation (n, 0) is spanned by the vectors {|Λ,Λ − k1α
(1) − k3α

(3)〉} with

k1 + k3 ≤ n, where the first index Λ is the highest weight labeling the representation and

the second index labels the state. This space has dimension (n+1)(n+2)
2

.

D.3 Coherent States

Following the construction by Perelomov [23], we define the coherent states of SU(3) as

|τ 〉 = eτ .E−|Λ,Λ〉; (D.5)

where

E− =

(
E−α(1)

E−α(3)

)
; τ =

(
τ1 τ3

)
, (D.6)
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Figure D.1: (a) Root system of the su(3) algebra in the Chevalley basis. (b) Symmetric ir-

reducible representations of su(3) for (n1 = n, n2 = 0). The highest weight Λ is represented

for n = 1, 2, 3.

depending on two complex parameters τ̄1 and τ̄3. We also define the conjugated quantities

E+ = (E−)† =
(
Eα(1)

Eα(3)
)

; τ † =

(
τ̄1
τ̄3

)
; (D.7)

Acting with the lowering operators E−α(i)
, the coherent state writes explicitly, in the basis

where H1 and H2 are diagonal,

|τ 〉 =
n∑

k1,k3=0;k1+k3≤n

√
n!

k1!k3!(n− k1 − k3)!
τk1
1 τk3

3 |Λ,Λ − k1α
(1) − k3α

(3)〉. (D.8)

Note that, as for su(2), the equation 〈τ |Ψ〉 = 0 characterizes the state Ψ up to an un-

physical constant, but this equation now describe an algebraic surface in C2. The inner-

product of two coherent states is simply given by

〈τ |τ ′〉 = 〈Λ,Λ|eE+.τ†
eτ

′ .E−|Λ,Λ〉 = (1 + τ ′.τ †)n. (D.9)

Using a Baker-Campbell-Hausdorff-like formula for su(3) [142] (also called Gaussian de-

composition formulas [23]) it is possible to obtain representations of the generators of the



136 D. SU(3) Coherent States - Simple Collective Hamiltonians

algebra in the CS basis

H1 = n− 2τ̄1∂τ̄1 − τ̄3∂τ̄3 ; H2 = τ̄1∂τ̄1 − τ̄3∂τ̄3 ; (D.10)

Eα(1)

= ∂τ̄1 ; E−α(1)

= −τ̄ 2
1 ∂τ̄1 + n τ̄1 − τ̄3τ̄1∂τ̄3 ; (D.11)

Eα(2)

= τ̄1∂τ̄3 ; E−α(2)

= τ̄3∂τ̄1 ; (D.12)

Eα(3)

= ∂τ̄3 ; E−α(3)

= −τ̄ 2
3 ∂τ̄3 + n τ̄3 − τ̄1τ̄3∂τ̄1 . (D.13)

The coherent states form an overcomplete basis. Defining the logarithm of the inner-

product

Ω(τ †, τ ) = n−1 ln〈τ |τ 〉 (D.14)

and the matrix [ω]i,j = ∂τ̄i
∂τj

Ω for i, j = 1, 3, the closure relation reads
∫

dµ
|τ 〉〈τ |
〈τ |τ 〉 = 1 (D.15)

where dµ = (n + 1)(n + 2) det(ω)dReτ1 dImτ1
π

dReτ3 dImτ3
π

with det(ω) = (1 + τ .τ †)−3. The

symplectic two-form describing the geometry of the phase space is given by ω = [ω]i,j dτ̄i ∧
dτj .

D.4 A First Example - Linear Hamiltonians

The simplest type of su(3) Hamiltonians are linear in the generators. Let us briefly describe

the eigen-structure of such linear Hamiltonians

Ĥ =
∑

i=1,2

hi H
i +

∑

i=1,2,3

κ̄iE
(αi) + κiE

(−αi), (D.16)

where, in order to respect hermicity, hi and κi are respectively real and complex valued

constants. For this case the eigenstates, in the coherent state basis, have the simple form

Ψ(τ †) = 〈τ |Ψ〉 =
(
1 + τ †.τ (1)

)k1
(
1 + τ †.τ (2)

)k2
(
1 + τ †.τ (3)

)k3
(D.17)

with k1, k2, k3 ∈ N, k1 + k2 + k3 = n and τ (i) = {τ (i)
1 , τ

(i)
3 } being three couples of com-

plex numbers characterizing the state. This decomposition arises because this type of

Hamiltonians can always be written brought to the diagonal form

RĤR† =
∑

i=1,2

h̃i H
i (D.18)

by a suitable unitary transformation R = e
P

i tiT i
, where T i are the generators of su(3)

defined in (D.1 - D.3). Indeed in the rotated basis the eigen-energies are given by

ε = (Λ − k1α
(1) − k3α

(3)).h̃ = (n− 2k1 − k3)h̃1 + (k1 − k3)h̃2 (D.19)

= ε1k1 + ε2k2 + ε3k3, (D.20)
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where the extremal energies ε1 = (−h̃1 + h̃2), ε2 = h̃1, ε3 = −h̃2 correspond respectively

to the energies of the extremal states (k1 = n, k3 = 0), (k1 = 0, k3 = 0), (k1 = 0, k3 = n)

divided by n. The eigenstates in the rotated basis are simply given by

Ψ̃(τ †) = 〈τ |Λ,Λ − k1α
(1) − k3α

(3)〉 ∝ τ̄k1
1 τ̄k3

3 . (D.21)

Inserting the state (D.17) as an ansatz eigenstate for the linear Hamiltonian (D.16) and

using the above given coherent state representation of the generators, it is easy to obtain

the values of τ (i)’s

τ (i) =

(
− h2κ̄1+εiκ̄1+κ2κ̄3

h2
2−h1h2−ε2

i−h1εi+κ2κ̄2

− −κ̄1κ̄2−h1κ̄3+h2κ̄3−εiκ̄3

−h2
2+h1h2+ε2

i +h1εi−κ2κ̄2

)
(D.22)

where the εi’s are given as the roots of the equation

[
−h2h

2
1 +

(
h2

2 + κ2κ̄2 − κ3κ̄3

)
h1 − κ̄1 (h2κ1 + κ3κ̄2) + (h2κ3 − κ1κ2) κ̄3

]
+ (D.23)

(
−h2

1 + h2h1 − h2
2 − κ1κ̄1 − κ2κ̄2 − κ3κ̄3

)
ε+ ε3 = 0 (D.24)

where the three solutions add to zero : ε1 + ε2 + ε3 = 0. The simple form (D.17) of the

eigenstates is due to the fact that the rotation operator R keeps invariant the form (D.17),

changing only the values of the complex contants τ (i); the eigenstates in the rotated basis

are just particular simple states of that form.

These types of Hamiltonian are simple in relation with the fact that they commute

with any operator of the type A =
∑

i=1,2 ãi R
†H iR. It is interesting here that, as with the

Majorana representation for SU(2) states, it is still possible to represent the eigenstates

by a set of points on spheres (2 spheres in the present case). Indeed, the above particular

form of the eigenvectors allows us to represent them by three points in C2 together with

their multiplicities k1 and k3. Each point in C2 is a couple of complex numbers, which we

can represent (with a double stereographic map) as corresponding points on two separate

spheres S2, as shown for example in Fig. (D.2).

D.5 Eigenstates for another Simple Class of Hamil-

tonians

Let us consider an su(3) Hamiltonian Ĥ that commutes with a special element F =

(H1 − H2) of the su(3) algebra. This implies that Ĥ couples only states with the same

value of H1 −H2 like in Fig. D.3, i.e. it couples states with the same powers of τ̄1. We can
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x

y

z

x

y

z

Τ1 Τ3

Figure D.2: Couples τ i = {τ (i)
1 , τ

(i)
3 } characterizing the eigen-structure of a linear Hamil-

tonian, {h1 = 4, h2 = 5, κ1 = 4 + 2i, κ2 = 1 + 2i, κ3 = 3}.

show that the Ĥ eigenstates factorizes to

Ψ̃(τ †) = C τ̄k
1

n−k∏

i=1

(
1 + τ̄3τ

(i)
3

)
, (D.25)

where C is a non-physical constant and τ
(i)
3 are n − k complex numbers. We shall below

that these states keeps a rather simple form in any rotated basis.

Figure D.3: Coupling matrix elements of an Hamiltonian Ĥ that commutes with H1−H2.

Each node corresponds to the basis vectors such that H1 and H2 are diagonal which, in

the coherent state representation, leads to a polynomial form τ̄k
1 τ̄

k′
3 . The matrix elements

of Ĥ couple only states with the same values of H1 −H2 and thus the eigenstates can be

written as in Eq. (D.25).

A simple Hamiltonian having this property is, for example, given by

Ĥ =
∑

i=1,2

hiH
i +

∑

i=1,2

λi[H
i]2 + κ3E

(α3) + κ̄3E
(−α3) +m3[E

(α3)]2 + m̄3[E
(−α3)]2. (D.26)

This construction works for an operator F = f1H
1 + f2H

2 for which f .α(i) = 0 for one

of the roots i = 1, 2, 3, which means couplings along one the direction prallel to the side
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of the representative triangle. These operators have the particular property of being the

only linear operators, diagonal in the (H1,H2) basis, such that their extremal eigenvalues

εi, defined in the previous section, verify εi = εj = −2εk for some triplet i, j, k = 1, 2, 3.

Using a simple rotation R = e−i
P

i tiT
i
, where T i’s stand for the algebra generators, we

can perform the transformation F̃ = R−1FR. R is indeed an element of the group SU(3),

as it is the exponential of some element of the algebra T =
∑

i tiT
i with T † = T . Using

the Baker-Campbell-Hausdorff relations, it can be decomposed as

R =
∏

i

et̃iT i

, (D.27)

for some constants t̃i. We need to describe the action of each “decomposed” rotation etT i

on a general state Ψ(τ †) = Ψ(τ̄1, τ̄3). Using the differential form of the generators, we

obtain

T (i) Ψ̃ (τ̄1, τ̄3) = etT i
Ψ (τ̄1, τ̄3)

H1 Ψ̃ (τ̄1, τ̄3) = etnΨ (e−2tτ̄1, e
−tτ̄3)

H2 Ψ̃ (τ̄1, τ̄3) = Ψ (etτ̄1, e
−tτ̄3)

E(α1) Ψ̃ (τ̄1, τ̄3) = Ψ (t+ τ̄1, τ̄3)

E(−α1) Ψ̃ (τ̄1, τ̄3) = (tτ̄1 + 1)n Ψ
(

τ̄1
tτ̄1+1

, τ̄3
tτ̄1+1

)

E(α2) Ψ̃ (τ̄1, τ̄3) = Ψ (τ̄1, tτ̄1 + τ̄3)

E(−α2) Ψ̃ (τ̄1, τ̄3) = Ψ (τ̄1 + tτ̄3, τ̄3)

E(α3) Ψ̃ (τ̄1, τ̄3) = Ψ (τ̄1, t+ τ̄3)

E(−α3) Ψ̃ (τ̄1, τ̄3) = (tτ̄3 + 1)n Ψ
(

τ̄1
tτ̄3+1

, τ̄3
tτ̄3+1

)

. (D.28)

It is then simple to observe that these transformations keep invariant the polynomial form

Ψ(τ †) = C
n∏

i=1

(
1 + τ †.τ (i)

)
, (D.29)

changing only the pairs of complex numbers τ (i) = {τ (i)
1 , τ

(i)
3 } that characterize the state

and the non-physical constant C. Note that the state (D.25) is also a state of that form.

Suppose now that an Hamiltonian H̃ commutes with an element of the algebra F̃ hav-

ing εi = εj = −2εk. This implies that all eigenstates of H̃ are of the form (D.29) because

we can always perform a rotation R−1 that sends H̃ to Ĥ and F̃ to F .

The Ψ(τ †) = 0 equation characterizing these types of states leads to a simple surface

∪i{τ † : (1 + τ †.τ (i)) = 0}. This is in contrast with generic states that cannot be written

in the form (D.29) and are thus characterized by a more complicated surface.
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If the Hamiltonian is known to commute with some F̃ , and thus its eigenstates are

of the form (D.29), the equations for the values of the couples {τ (i)
1 , τ

(i)
3 } can be ob-

tained in a similar way as in the su(2) case. Consider the Riccati-like equation for

S(τ †) =
∑

i ln
(
1 + τ †.τ (i)

)
and evaluate it both in τ † → {− 1

τ
(i)
1

, 0} and τ † → {0,− 1

τ
(i)
3

, }.
The result is a set of 2n coupled non-linear equations that are obtained by canceling the

poles in the right-hand side of the expressions

H[τ †,∂
τ
†S(τ †) + n−1∂

τ
† ]
∣∣
τ
†→{− 1

τ
(i)
1

,0} = ε, (D.30)

H[τ †,∂
τ
†S(τ †) + n−1∂

τ
† ]
∣∣
τ
†→{0,− 1

τ
(i)
3

} = ε, (D.31)

for i = 1, ..., n. The solutions of the pole cancellation conditions correspond to eigenstates

of the Hamiltonian. As before, the energy can be obtained easily, once these equations

are solved, by evaluating the Riccati-like equation on a regular value of τ †. This method

was tested numerically for eigenstates of a quadratic-su(3) Hamiltonian similar the one

in D.26. A typical distribution of the τ i’s is displayed in Fig. D.4. In order to show

the non-triviality of such distribution we also show in Fig. D.5 the superposition of the

τ (i) corresponding to all the eigenstates of the Hamiltonian. Even if we think that, in

practice, this is not an efficient method to obtain the eigenstates of the system, it may

prove usefull in the limit n → ∞. Indeed, since the τ (i)’s code the sets Ψ(τ †) = 0, we

expect that they lay along (eventually complicated) lines, as in the SU(2) case and as

it was found in other integrable systems in the literature (see, for example, [40, 143]).

Note that, if the Hamiltonian is not of the class specified above, we can always write the

equations in (D.30), but the solutions, if they exit, will not uniquely characterize the state.

Τ1 Τ3

Figure D.4: Inverse stereographic projection of the τ (i)’s characterizing one eigenstate of

a simple quadratic-SU(3) Hamiltonian for n = 15. The colors label the couples {τ (i)
1 , τ

(i)
3 }.

Let us now consider the more complicate case of a Hamiltonian Ĥ commuting with some

F = f1H
1 + f2H

2 operator having f .u = 0 with u = u1α
(1) + u3α

(3) for some integers
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Figure D.5: Superposition of the values of τ (i)’s characterizing all eigenstates of a

quadratic-SU(3) Hamiltonian for n = 8. The orange and blue dots are respectively the

inverse stereographic projections of the τ
(i)
1 ’s and the τ

(i)
3 ’s.

u1 and u3. We can take as example the case u1 = −2, u3 = 3 yielding u = {−1, 1}, see

Fig. (D.6). The fact that an element of the (H1, H2) basis is an eigenstates of F , with

eigenvalue a, writes

F |Λ,Λ − k1α
(1) − k3α

(3)〉 = f .(Λ − k1α
(1) − k3α

(3))|Λ,Λ − k1α
(1) − k3α

(3)〉 (D.32)

= a|Λ,Λ − k1α
(1) − k3α

(3)〉, (D.33)

i.e. k3 = nf1−a
f1+f2

+ (f2−2f1)k1

f1+f2
. Note that states |Λ, λ〉 and |Λ, λ+ku〉 have the same eigenvalue

a since f .u = 0. The choice of u leads to a foliation of the representative triangle into chains

of states (along dotted lines in the figure)connecting states sharing the same eigenvalue a

Let us chose k1, k3 such that the state |Λ,Λ − k1α
(1) − k3α

(3)〉 is an eigenvector of F ,

with eigenvalue a, and also such that the state |Λ,Λ− k1α
(1) − k3α

(3) +u〉 does not belong

to the representation. This state is at one end of the chain as in Fig.(D.6); the state at

the other end of the chain is obtained by acting m times with a u translation. A general

eigenstate of an Hamiltonian commuting with F writes, in the CS basis,

Ψ(τ †) = τ̄k1
1 τ̄k3

3

m∑

k=0

ck(τ̄
u1
1 τ̄u3

3 )k (D.34)

= Cτ̄k1
1 τ̄k3

3

m∏

i=1

(
1 + τ (i)τ̄u1

1 τ̄u3
3

)
, (D.35)

for m constants τ (i) ∈ C characterizing the state and some non-physical constant C. Note

that we can always chose u1 to be positive and so u3 can be a positive or negative integer.

In case u3 < 0 we can rewrite the polynomial (D.34) as

Ψ(τ †) = Cτ̄k1
1 τ̄k3+mu3

3

m∏

i=1

(
τ̄−u3
3 + τ (i)τ̄u1

1

)
. (D.36)
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Figure D.6: Coupling matrix elements of an Hamiltonian Ĥ that commutes with F =

−H1 −H2. The states that differ by u are coupled by the Hamiltonian. The state marked

by the red dot is the initial state in the extremity of the chain.

Performig a R rotation the states Ψ transform to

Ψ̃(τ †) =

m∏

i=1

pi(τ̄1, τ̄3), (D.37)

where pi(τ̄1, τ̄3) are polynomials of maximal degree d = max{u1, u3, u1 + u3}, which still

remain to be better characterized. Note that we expect that the complexity of the surface

Ψ(τ †) = 0 will increase with |u|.

D.6 Discussion and Conclusion

In this appendix, we have performed a preliminary study about the algebraic structure of

the eigenstates of simple SU(3)-Hamiltonians (integrable in the sense of [24, 140]). Our

aim was in particular to find simple models, in the framework of SU(3) coherent state

representation, about which some characterization of the eigenstate structure could be

done.

Indeed, for the most generic integrable systems, the eigenstates are associated with

quantized invariant tori and the classical actions of these tori provide a complete set of

good quantum numbers for the quantization rules [24, 140]. But, even if the quantization in

such cases is understood, the structure of the eigenfunctions are in general rather complex.

We first treated the rather trivial case of “linear” Hamiltonians, for which the eign-

states are the product of first order polynomials. We then introduced a particular class
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of SU(3)-Hamiltonians, whose eigenstates, in the coherent state basis, belong to a simple

family of polynomials parametrized by couples of complex numbers. In that case, a set of

algebraic relations can be derived for these complex couples. We finally tried to generalize

this treatment to other classes of simple Hamiltonians, leading to still non generic, but

nevertheless more complex, polynomial forms for the eigenstates.

An interesting perspective would be to study this system in the semi-classical limit,

where n → ∞. In particular, we would like to check whether a generalization of the

method used in the SU(2) case, may provide spectral details of these types of model.
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