
HAL Id: tel-00812431
https://theses.hal.science/tel-00812431

Submitted on 12 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooper pair box circuits: two-qubit gate, qubit
single-shot readout, and current to frequency conversion

François Nguyen

To cite this version:
François Nguyen. Cooper pair box circuits: two-qubit gate, qubit single-shot readout, and current to
frequency conversion. Quantum Physics [quant-ph]. Université Pierre et Marie Curie - Paris VI, 2008.
English. �NNT : 2008PA066493�. �tel-00812431�

https://theses.hal.science/tel-00812431
https://hal.archives-ouvertes.fr


 

 

 
 

 
THESE DE DOCTORAT DE  

L’UNIVERSITE PIERRE ET MARIE CURIE 

 
Spécialité : 

Physique quantique 
ED107 

 
Présentée par 

 
M. NGUYEN 

 
Pour obtenir le grade de 

 
DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE 

 
 
 

Sujet de la thèse : 
 

COOPER PAIR BOX CIRCUITS: TWO-QUBIT GATE, SINGLE-
SHOT READOUT, AND CURRENT TO FREQUENCY CONVERSION 
                                        
 

soutenue le 15 décembre 2008 
 
 

devant le jury composé de : 
 
 

O. Buisson (Rapporteur) 
R. Combescot 

D. Estève (Directeur de thèse) 
D. Haviland (Rapporteur) 

F. Piquemal 
R. Simmonds 

 
 

Thèse préparée au sein du Service de Physique de l’Etat Condensé, 
CEA-Saclay 





Contents

1 The Quantroswap: a two qubit gate based on the Cooper
Pair Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 The Cooper Pair Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 A brief survey of quantum bit circuits based on the
Cooper pair box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Discrete anharmonic energy spectrum allows to define
a qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Coherent manipulation and single qubit gate . . . . . . . . . . 12
1.1.4 Readout of Cooper Pair Boxes . . . . . . . . . . . . . . . . . . . . . . 14
1.1.5 Readout of a CPB through the charge . . . . . . . . . . . . . . . 15
1.1.6 Readout of a split CPB through the loop current . . . . . . 16
1.1.7 Towards a QND readout for the quantronium . . . . . . . . . 19
1.1.8 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 A two quantronium gate: the Quantroswap . . . . . . . . . . . . . . . . . 28
1.2.1 The two quantronium circuit and its Hamiltonian . . . . . 29
1.2.2 Coherent manipulation of the quantroswap and two

qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.2.2.1 Addressing the energylevels of the molecule . . . 38
1.2.2.2 An ISWAP gate with two resonant

quantroniums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.2.2.3 Gate based a non-resonant coupling induced

by irradiation of two quantroniums . . . . . . . . . . . 42
1.2.3 Readout of two coupled quantroniums by DC switching 46

2 The Quantroswap: design and implementation . . . . . . . . . . . . . 49
2.1 Quantum engineering and design of a two quantronium qubit

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.1.1 Determination of qubit parameters . . . . . . . . . . . . . . . . . . 52

2.1.1.1 Choice of the qubit frequency . . . . . . . . . . . . . . . 52
2.1.1.2 Single qubit gate, speed, and anharmonicity . . . 52
2.1.1.3 Readout discrimination . . . . . . . . . . . . . . . . . . . . . 53



4 Contents

2.1.1.4 Dephasing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.1.2 Design and parameters of the gate line circuit . . . . . . . . . 56

2.1.2.1 Maximization of the Rabi frequency . . . . . . . . . . 56
2.1.2.2 Gate line induced decoherence . . . . . . . . . . . . . . . 57

2.1.3 Design and parameters of the readout circuit . . . . . . . . . 58
2.1.3.1 Maximization of the readout fidelity . . . . . . . . . . 59
2.1.3.2 Minimization of the readout line induced

decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.4 Choice of the coupling strength . . . . . . . . . . . . . . . . . . . . . 63

2.2 Quantroswap design and fabrication - Experimental Setup . . . . 65
2.2.1 Design of a quantroswap sample . . . . . . . . . . . . . . . . . . . . . 65

2.2.1.1 Qubit-qubit coupling and gates . . . . . . . . . . . . . . 65
2.2.1.2 Quantronium loops and readout resonator . . . . 68
2.2.1.3 Getting rid of out-of equilibrium quasiparticles 69

2.2.2 Fabrication of quantroswap samples . . . . . . . . . . . . . . . . . 70
2.2.2.1 Wafer process flow . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.2.2.2 Chip process flow . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.2.3 Connecting the chip to the rest of the circuit . . . . . . . . . . 77
2.2.4 Electrical setup in the dilution refrigerator . . . . . . . . . . . . 77

2.2.4.1 Gate lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.2.4.2 Readout lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.2.5 Room temperature electronics . . . . . . . . . . . . . . . . . . . . . . . 84
2.2.5.1 Qubit and readout control . . . . . . . . . . . . . . . . . . 84
2.2.5.2 Readout signal measurement . . . . . . . . . . . . . . . . 86

2.2.6 Software control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 The Quantroswap experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1 Characterization methods of the different samples measured . . 90

3.1.1 Readout junction characterization . . . . . . . . . . . . . . . . . . . 92
3.1.2 Ground state characterization of the two quantroniums. 97
3.1.3 Spectroscopic characterization of each quantronium . . . . 98
3.1.4 Loss of signal in the persistent current of a

quantronium loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.1.5 Characterization of the gate lines . . . . . . . . . . . . . . . . . . . . 98
3.1.6 Characterizing the qubit coherence . . . . . . . . . . . . . . . . . . 100

3.2 Spectroscopy of the coupled quantroniums . . . . . . . . . . . . . . . . . . 102
3.2.1 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2.2 Spectroscopic data on two samples . . . . . . . . . . . . . . . . . . 106

3.2.2.1 Spectroscopic measurement of sample QS 2.1 . . 106
3.2.2.2 Evidence for a major problem on sample QS 4.2109
3.2.2.3 Experimental evidence for swapping at readout 110

3.2.3 Comparison with numerical simulation . . . . . . . . . . . . . . . 114
3.2.4 A necessary discussion: are our quantronium samples

suitable for gate experiments? . . . . . . . . . . . . . . . . . . . . . . . 115



Contents 5

3.3 Demonstration of swapping oscillations between two coupled
quantroniums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3.1 Calibration of microwave pulses . . . . . . . . . . . . . . . . . . . . . 116

3.3.1.1 Delay compensation . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3.1.2 Microwave crosstalk compensation . . . . . . . . . . . 120

3.3.2 Experimental demonstration of SWAP oscillations . . . . . 120
3.3.2.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4 Towards long coherence time qubits and single-shot
high-fidelity readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1 Theory and design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.1.1 Dispersive coupling of a Cooper Pair box with a
harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.1.1.1 A Cooper-pair box coupled to a harmonic

oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.1.1.2 The dispersive approximation . . . . . . . . . . . . . . . 130
4.1.1.3 Distributed resonator . . . . . . . . . . . . . . . . . . . . . . . 133

4.1.2 Dispersive readout with a Josephson Bifurcation
Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.1.2.1 Linear dispersive readout . . . . . . . . . . . . . . . . . . . 134
4.1.2.2 Cavity Josephson Bifurcation Amplifier based

dispersive readout . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2.2 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.3.1 Characterization of the sample . . . . . . . . . . . . . . . . . . . . . . 146

4.3.1.1 Characterization of the non-linear cavity . . . . . . 146
4.3.1.2 Characterization of the bifurcation phenomenon146
4.3.1.3 Characterization of the transmon . . . . . . . . . . . . 153

4.3.2 Single-shot readout for a sCPB . . . . . . . . . . . . . . . . . . . . . . 156
4.3.2.1 Readout fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.3.2.2 Is this readout method QND ? . . . . . . . . . . . . . . 156
4.3.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5 Current to frequency conversion in a Josephson circuit . . . . 163
5.1 Towards a new metrology of electrical units . . . . . . . . . . . . . . . . . 164

5.1.1 The triangle of quantum metrology . . . . . . . . . . . . . . . . . . 164
5.1.2 I = 2ef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.1.2.1 Experimental requirements for closing the
triangle of quantum metrology. . . . . . . . . . . . . . . 165

5.1.2.2 Single electron pumps . . . . . . . . . . . . . . . . . . . . . . 166
5.1.2.3 A new hybrid turnstile . . . . . . . . . . . . . . . . . . . . . 166



6 Contents

5.2 Current to frequency conversion from Bloch oscillations in a
Josephson device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2.1 First observation of Bloch oscillations in a

current-biased Josephson junction . . . . . . . . . . . . . . . . . . . 167
5.2.2 A new experiment for demonstrating Bloch oscillations . 167

5.2.2.1 The split Cooper Pair Box as a 2D lattice for
observing Bloch-like oscillations . . . . . . . . . . . . . 167

5.2.2.2 The Blochonium oscillator . . . . . . . . . . . . . . . . . . 168
5.2.2.3 Dynamics of the driven Blochonium oscillator . 170
5.2.2.4 An experimental trick for performing an

impossible experiment . . . . . . . . . . . . . . . . . . . . . . 171
5.2.2.5 Calculation of the reflected signal for

triangular gate voltage . . . . . . . . . . . . . . . . . . . . . 171
5.2.3 Circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.2.3.1 Avoiding quasiparticle poisoning of the
Blochonium island . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.2.3.2 Maximizing the modulation of 1/L(Ng) over Ng175
5.2.3.3 Adiabaticity of the evolution . . . . . . . . . . . . . . . . 176
5.2.3.4 Design of the Blochonium oscillator . . . . . . . . . . 177

5.2.4 Fabrication and experimental setup . . . . . . . . . . . . . . . . . 180
5.2.4.1 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.2.4.2 Microwave reflectometry measurements on

the Blochonium . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.3.1 Sample characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.3.2 Direct observation of Bloch oscillations in the time

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.3.3 Bloch oscillation spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A Manipulation of the qubit state: a few protocols . . . . . . . . . . . 193

B How the quantronium can be simplified as a basic Cooper
Pair Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
C.1 Sub-micron UV lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
C.2 Electron-beam lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

D Microfabricated microwave capacitance . . . . . . . . . . . . . . . . . . . . 207
D.1 Al/AlOx/Al capacitors fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 207

D.1.1 Al/AlOx/Al recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
D.1.2 Capacitor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

D.2 SiN capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
D.2.1 Magnetron sputtering recipe . . . . . . . . . . . . . . . . . . . . . . . . 209



Contents 7

D.2.2 Capacitor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

E Printed Circuit Board test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

F Microwave reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
F.1 Introduction to scattering matrix representation of electrical

circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
F.1.1 Transmission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
F.1.2 Discrete series impedance . . . . . . . . . . . . . . . . . . . . . . . . . . 216
F.1.3 Discrete impedance to ground . . . . . . . . . . . . . . . . . . . . . . . 217
F.1.4 Voltage source with internal impedance Z . . . . . . . . . . . . 217

F.2 Coefficient of reflexion of a Josephson oscillator . . . . . . . . . . . . . 219
F.3 Coefficient of reflexion of a non-linear distributed resonator . . . 220
F.4 Coefficient of reflexion of the non-linear cavity used in the

transmon experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

G Quantronium qubits coupled to Two Level Systems . . . . . . . . 225

Quantum nondemolition readout using a Josephson
bifurcation amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Current to Frequency Conversion in a Josephson Circuit . . . . . . 234

Tunable resonators for quantum circuits . . . . . . . . . . . . . . . . . . . . . . . 238

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247





Introduction

What makes quantum mechanics so interesting?

The theory of quantum mechanics was elaborated in the early 20th century
for the sake of understanding experimental facts that could not be explained
within the framework of classical physics: black-body radiation and atomic
spectra. Soon after, the quantum framework was invoked for explaining other
phenomena. In particular, superfluidity was explained as a manifestation of
the quantum properties of liquid He4 at low temperature [1, 2, 3], i.e. the con-
densation of weakly bounded atoms that occurs when thermal fluctuations
are weak enough. Superfluidity was thus the first many-body phenomenon
explained by quantum mechanics. A few decades later, in the 1950s, Bardeen,
Cooper, and Schriefer proposed a quantum theory [4, 5] based on the pairing
of electrons in so-called Cooper pairs to explain superconductivity. At about
the same period, quantum mechanics was at the origin of two major inven-
tions of the 20th century physics: the laser and the transistor.
But, even if quantum mechanics was undoubtedly successful in all the domains
where it was applied, many essential issues and "gedanken experiments" raised
by the founding fathers of quantum mechanics had remained unsolved.

The puzzle of entanglement

An important gedanken experiment is the celebrated EPR paradox [6] raised
by Einstein, Podolsky and Rosen in the nineteen-thirties. In the early nineteen-
eighties, A. Aspect [7] demonstrated that two distant photons originating from
a single quantum process and forming a non factorizable quantum state violate
Bell inequalities for hidden variable theories. By shedding shed light on the
properties of entangled states, this experiment conveyed a status of quantum
resource to the phenomenon of entanglement. Previously, entanglement was
merely considered as an illustration of quantum weirdness. This important
change of mind paved the way to quantum information.
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Quantum mechanical effects in electrical circuits

In the early nineteen-eighties, different groups tried to push ahead quantum
mechanics by performing experiments on more complex systems, and in par-
ticular on macroscopic systems described by collective variables implying a
large number of underlying microscopic degrees of freedom. Noticibly, the
quantum properties of superconducting electrical circuits based on Josephson
junctions were probed. J. Clarke et al. demonstrated in 1984 [8] the quanti-
zation of the energy levels for the superconducting phase difference across a
Josephson junction. This experiment proved unambiguously that a collective
degree of freedom such as the superconducting phase can behave quantum
mechanically, and that an appropriate Josephson circuit can be seen as arti-
ficial atom with well-defined quantum levels.
In a different direction, K. von Klitzing demonstrated the quantization with
metrological accuracy [9] of the Quantum Hall Conductance in a 2D electron
gas system. The conductance of a simple quantum point contact was also
found to be related to the conductance quantum e2/h, as predicted by T.
Ando [10]. All these experiments demonstrated that quantum mechanics is
relevant in mesoscopic electrical circuits both for transport properties and for
the quantum state of the whole circuit.

The advent of quantum information

The first success of quantum information for exploiting the resource provided
by entanglement was the quantum cryptography protocol based on entangled
photons proposed by C. Bennett and G. Brassard [11]. The first quantum
algorithm outperforming a sequential one was proposed by R. Jozsa and D.
Deutsch [12]. It proved that entanglement offers a powerful ability for storing
and parallel processing of quantum information beyond range of classical in-
formation processing. In 1995, P. Shor proved that a quantum algorithm can
be much much more efficient than a classical one by proposing a method for
the factorization of large numbers [13], which is considered as a hard problem.

Quantum information processing with superconducting circuits

On the experimental side, Josephson circuits were natural candidates for pro-
viding the quantum resources needed for processing quantum information,
namely quantum bits and quantum logical gates. This thesis is part of the
effort for implementing the building blocks of a quantum processor. Our ex-
periments are based on a specific qubit circuit, the quantronium [14], a variant
of the Cooper pair box circuit developed during the years 2001-2002 by the
Quantronics group. A strategy for reducing the dephasing arising from the
noise in the circuit control parameters provided to this qubit a better co-
herence than that of the Cooper pair box operated at NEC in 1999 [15].
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Good coherence properties and the possibility to readout the quantum state
allowed to perform qubit manipulation and to demonstrate single quantum
gates [16, 17].
Our initial goal was thus to proceed to the next step: implementing a universal
gate in a two-qubit circuit. A universal gate is a two qubit gate that allows
to perform any unitary evolution when combined with single-qubit gates. The
most natural universal gate for quantroniums is the

√
ISWAP gate. This gate

can fully entangle the two qubits, and produce Bell states that violate Bell
inequalities.
We have successfully implemented a suitable coupling between two quantro-
nium qubits, and demonstrated it yields the predicted swapping between the
qubits. However, the coherence times were too small to characterize the gate
and the fidelity of the entanglement produced. Furthermore, an unexpected
outcome of these experiments was the discovery that our quantronium samples
suffer from severe defects detrimental for advanced experiments on coupled
qubits.
We have then decided to switch from quantronium qubits to "transmon"
qubits, initially developed at Yale University by R. Schoelkopf [18]. The trans-
mon is a Cooper Pair Box operated in the phase regime, and embedded in a 1d
microwave cavity that provides a controlled electromagnetic environment. Its
coherence properties are presently the best of all Josephson qubits. However,
the transmon was lacking of a high fidelity readout, and we focused our effort
on developing one. For readout, we have designed and implemented a variant
of the Bifurcation readout method initially developed for the quantronium by
M. Devoret [19]. The first results obtained indicate that this new strategy does
provide a readout with high fidelity and little back-action, while maintaining
good quantum coherence. These results yield to a scalable architecture for
transmon qubits.

Towards a quantum-based definition of electrical units

Besides developing qubits for quantum information, Josephson devices were
also proposed for the metrology of the electrical current. In 1985, K. Likharev,
A. Zorin, and D. Averin [20] showed theoretically that a current-biased Joseph-
son junction exhibits Bloch oscillations analogous to those initially proposed
for electrons in solids, and with a frequency f related to the bias current I
by the relation I = 2ef . Together with the Quantum Hall Effect and the
Josephson effect, this experiment could provide a solution for closing the tri-
angle of quantum metrology that relates the time, current and voltage units.
This closure is important since its success could lead to a redefinition of the
SI system based on electrical units, and even possibly to a redefinition of the
kilogramme.
In this thesis, we have demonstrated that the phenomenon of Bloch oscilla-
tions initially proposed for the current biased Josephson junction also occurs
in a simpler setup involving a quantronium. When an alternating current ±I
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is injected in the gate electrode of this device, We have found that Bloch os-
cillations develop with a frequency f very accurately related to the current I
by the relation I = 2ef . This work can be considered as a first step along the
programme proposed long ago for the current-biased Josephson junction.
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1.1 The Cooper Pair Box

1.1.1 A brief survey of quantum bit circuits based on the Cooper
pair box

The Cooper Pair Box (CPB), described in Fig. 1.1, is a very simple quan-
tum electrical circuit based on a single Josephson junction. It was initially
proposed M. Büttiker in 1987 [21] in the context of Coulomb blockade and of
Bloch oscillations in Josephson junctions, and first implemented in 1996 by
the Quantronics group to investigate the competition between charging and
Josephson effects [22].

At that time, the amazing theoretical breakthroughs just obtained in the
domain of quantum computing, such as the discovery of a quantum factoriza-
tion algorithm [23], triggered an intense search of quantum devices suitable
for providing the elementary building blocks of a quantum processor, the
so-called quantum bits. Ideally, quantum bits are two level systems whose
quantum state can be manipulated and read, and that can be coupled in a
controlled way to implement a quantum algorithm. In the field of supercon-
ducting circuits, the Cooper pair box soon became an attractive candidate
investigated by a few research groups. Its quantum states, manipulation and
readout methods are described in the next sections. The research group of
Tsai and Y. Nakamura at NEC first demonstrated in 1999 [24, 15] the co-
herent manipulation of the quantum state of a CPB. However, the achieved
coherence time was rather short (a few ns), and the experiment could not
determine the quantum state for each realization of the experiment. The sig-
nal to noise ratio was much smaller than one in a single measurement, which
imposed heavy averaging. A readout method able to discriminate the qubit
states in a single readout is called a single-shot readout, and is characterized
by its readout fidelity. To provide such a single-shot readout, the research
group of P. Delsing at Chalmers University developed a CPB coupled to a
radio-frequency Single Electron Transistor [25] .

In parallel, the Quantronium circuit [14], derived from the Cooper pair
box, was developed in 2001 by the Quantronics group with the purpose of
implementing a strategy for reducing decoherence. Decoherence mainly arises
from the coupling of the quantum bit to its electrical environment. Ideally,
a quantum bit circuit should be decoupled from its environment during its
operation, and coupled to it only at readout time. This goal can be partly
reached by operating the circuit at an optimal point where the transition
frequency of the quantum bit is stationary respectively to variations of the
control parameters. At such a point, the dephasing is suppressed at first or-
der, which allowed to gain two orders of magnitude in the coherence time. A
single-shot readout method for the quantronium was obtained by controlling
the switching of a Josephson junction by the quantum state of the Cooper pair
box. The achieved coherence time, 0.5 µs, and readout fidelity, at best 0.4,
obtained with the original quantronium circuit were sufficient for performing
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interesting and useful experiments on qubit manipulation and on decoher-
ence [26, 27], but still far from meeting the criteria requested for quantum
computing.

The coherence of Cooper pair box circuits was then significantly improved
in 2004 by placing a Cooper pair box in a microwave resonator that provides
a well characterized electromagnetic environment, as proposed and demon-
strated by the group of R. Schoelkopf at Yale [18]. Recently, this group further
demonstrated that making the Cooper pair box almost insensitive to charge
noise significantly improves its coherence. For readout, a new microwave read-
out strategy was first developed by the group of M. Devoret at Yale in 2004
[28]. This new readout, based on the Josephson Bifurcation Amplifier (JBA),
exploits the dynamical switching of a Josephson junction between two different
dynamical states. It allows to measure the quantronium at its optimal point,
and, ideally, to perform a QND readout. It also allows to measure different
qubits with a single readout circuit by addressing them at different readout
frequencies, which is truly essential for operating even an elementary quan-
tum processor. Presently, the application of this multiplexed readout method
based on the JBA to qubits embedded in microwave resonators is a promising
research direction for Cooper pair boxes.

During this thesis work, in 2006, the group of O. Buisson in Grenoble
coupled a CPB to an other Josephson qubit (phase qubit) and demonstrated
the coherence of the system by spectroscopic measurement [29]. Besides the
Yale groups demonstrated in the time domain the coherent coupling between
two CPBs embedded in a microwave resonator [30].

1.1.2 Discrete anharmonic energy spectrum allows to define a
qubit

The Cooper Pair Box is made of two superconducting electrodes connected
together by one or two Josephson junctions. In its simplest version, it consists
in a superconducting island connected to a superconducting reservoir (see Fig.
1.1) by a single Josephson junction with capacitance CJ and Josephson energy
EJ = I0ϕ0, where ϕ0 = ~/2e is the reduced flux quantum and I0 is the critical
current of the junction given by the Ambegaokar-Baratoff formula [31]

I0 =
π

2

∆

eRT
, (1.1)

where ∆ is the superconducting gap of the superconductor and RT the tunnel
resistance of the junction. The island is electrostatically biased by a gate
voltage source Vg in series with a capacitance Cg. In addition to EJ , the box
has a second characteristic energy, the charging energy 1

EC =
(2e)2

2CΣ
, (1.2)

1 The charging energy is defined for a Cooper pair in this thesis work.
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where CΣ = Cg + CJ is the total capacitance of the island and 2e the charge
of a Cooper pair. At sufficiently low temperature, such that no quasiparticle
excitations exist in the superconductors (i.e. all the electrons in the electrodes
are paired), the system has a single degree of freedom corresponding to two

conjugate observables: the gauge invariant phase difference θ̂ across the junc-
tion, and the number N̂ of Cooper pairs in excess to electroneutrality in the
island. The Hamiltonian of the whole CPB circuit, including the gate voltage
source, is

Ĥ = EC(N̂ − Ng)
2 − EJ cos

(
θ̂
)

, (1.3)
[
N̂ , θ̂

]
= i,

with Ng = CgVg/2e the reduced gate charge. The first term corresponds to
the electrostatic energy of the circuit, while the second one is the Josephson
Hamiltonian that depends on the phase difference θ. This Josephson term
is the residual BCS pairing interaction between the electrodes, mediated by
electron tunneling across the junction.
It is often useful to make the Josephson energy tunable. For that purpose,
the CPB junction can be split into two junctions (see Fig.1.1) with energies
EJ(1 + d)/2 and EJ(1 − d)/2 respectively, where d ∈ [0, 1] is the asymmetry
coefficient between them. The island and the reservoir now form a supercon-
ducting loop that encloses a magnetic flux Φ. This loop has a geometrical
inductance negligible with respect to the Josephson inductance 2ϕ0/I0 of the
two junctions in series. Neglecting this geometrical inductance, the Hamilto-
nian of the split CPB writes

Ĥ0 = EC(N̂ − Ng)
2 − EJ

[
cos

(
δ̂

2

)
cos θ̂ + d sin

(
δ̂

2

)
sin
(
θ̂
)]

, (1.4)

with

θ̂ =
θ̂1 − θ̂2

2
,

δ̂ = θ̂1 + θ̂2, (1.5)

where θ̂1,2 ∈ [0, 2π] are the superconducting phase differences across each

Josephson junctions. In most cases [16], δ̂ undergoes small quantum fluctua-
tions, so that it can be considered as a classical parameter, equal to δ = Φ/ϕ0.

For the purpose of computing the eigenstates and the corresponding
eigenenergies, the Hamiltonian (5.2) can be equivalently written either in the

discrete charge state basis {|N〉C} of the eigenvectors of N̂ , or in the contin-

uous phase state basis {|θ〉} of the eigenvectors of θ̂. Using the commutation

relation between θ̂ and N̂ , one has [16]
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Fig. 1.1. Schematic representation and electrical schemes of the basic CPB (a) and
split CPB (b), in its original version with one island and a reservoir (left) and in its
symmetrized version (right).
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e±i bΘ |N〉C = |N ± 1〉C and N̂ =
1

i

∂

∂θ̂
. (1.6)

Thus, the Hamiltonian (5.2) writes

Ĥ = EC(N̂ − Ng)
2− EJ

2

∑
N

{ [
cos
(

δ
2

)
− id sin

(
δ
2

)]
|N + 1〉C 〈N |C

+
[
cos
(

δ
2

)
+ id sin

(
δ
2

)]
|N〉C 〈N + 1|C

}
(1.7)

or

Ĥ = EC

(
1

i

∂

∂θ̂∗
− Ng

)2

− E∗
J(d, δ) cos

(
θ̂∗
)

(1.8)

in the charge and phase representations, respectively. In Eq. (1.8), E∗
J(d, δ) =

EJ

√
(1 + d2 + (1 − d2) cos (δ) /2 plays the role of a magnetically tunable

Josephson energy, and θ̂∗ = θ̂ + ζ(d, δ) with tan[ζ(d, δ)] = −d tan(δ/2) [16].
The Hamiltonian (1.7) can be easily diagonalised by truncating the charge
basis, but the phase representation allows to obtain exact results. Indeed,
the Schrödinger equation associated to Hamiltonian (1.8) is a solvable Math-
ieu equation with periodic boundary conditions. The wavefunctions Ψk have
eigenenergies that form discrete energy bands 2π-periodic in δ, and even and
1-periodic in Ng. In the range Ng ∈ ]0, 0.5[, the eigenenergies and wavefunc-
tions are given by the expressions [16]:

Ek = EC

4 MA[k + 1 − (k + 1)mod2 + 2Ng(−1)k,− 2E∗
J

EC
]

〈θ∗|k〉 = Ψk (θ∗) (1.9)

= eiNgθ∗
√

2π

[
MC

(
4Ek

EC
,
−2E∗

J

EC
, θ∗

2

)
+ i(−1)k+1MS

(
4Ek

EC
,
−2E∗

J

EC
, θ∗

2

)]

The CPB can thus be regarded as an artificial atom subject to Zeeman (δ)
and Stark (Ng) fields. Figure 1.2 shows the three lowest energy bands for
different EJ/EC ratios. The two lowest energy states |0〉 and |1〉 define the
qubit. When inducing a resonant transition between |0〉 and |1〉, one has to
avoid excitation of the upper energy state |2〉. The anharmonicity ν12/ν01−1,
where ν12 = (E2 − E1)/h and ν01 = (E1 − E0)/h are the two first transition
frequencies, needs thus to be sufficiently large. More precisely [16], the anhar-
monicity has to be much larger than 1/ν01τ , where τ is the duration of the
excitation (see next section). The variations of the anharmonicity with the
ratio EJ/EC for a constant transition frequency is shown in Fig. 1.2 at the
optimal working point Ng = 1/2 and δ = 0. Three different regimes noted
1, 2 and 3 in Fig. 1.2 can be distinguished. The first one corresponds to the
charge regime EJ/EC << 1. The CPB operated in 1999 by Nakamura at
NEC [24, 15] to demonstrate the first coherent manipulation of an electrical
circuit, and the CPB operated at Chalmers university in 2004 [25] were in this
regime. Except in the vicinity of Ng = 1/2 mod 1, the CPB eigenstates are
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almost pure charge states |N〉C with eigenenergies EC(N −Ng)
2 in this case.

At Ng = 1/2 mod 1, the eigenstates are the symmetric and antisymmetric
superpostions of |N〉C and |N + 1〉C with energies EC/4 ± EJ/2. As shown
on Fig. 1.2 the anharmonicity is always large in this regime.
The opposite regime, EJ/EC >> 1, can be called a phase regime. We will
explain later how this regime allows to suppress the effect of charge noise,
as demonstrated by the group of R. Schoelkopf at Yale[18]. The qubit eigen
wavefunctions are now well localised in phase and the transition energy is
independant of the gate charge, and equal to the plasma frequency of the
junction

√
2E∗

JEC at δ = 0. The anharmonicity is much lower and tends to-

wards
√

2EC/E∗
J .

The Quantronium qubit, developed at Saclay since 2001 [14] lies in the in-
termediate regime EJ ∼ EC . In this regime, the eigenstates are superposi-
tions of typically 5 to 10 charge states (with weight larger than 1%) and the
energy bands depend on both Ng and δ (see Fig. 1.2). The anharmonicity
varies strongly and vanishes at a certain ratio EJ/EC = rc that depends on
ν01(δ = 0). A narrow window in EJ/EC around rc is thus unappropriate for
making qubits.
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Fig. 1.2. Energy spectra and anharmonicity of the split CPB as a function of
EJ/EC . Top: First three energy bands of a CPB with a transition frequency ν01 =
17 GHz and an asymmetry d = 5%, as a function of δ and Ng, and for EJ/EC = 0.12
(a), 1.9 (b), and 30 (c). d) Anharmonicity η = ν12/ν01 − 1 at the working point
δ = 0 and Ng = 1/2 for a constant transition frequency 17GHz. The charge (1) ,
intermediate (2) and phase (3) regimes are indicated as well as the region (hatched)
where the anharmonicity is above 10%. Josephson and charging energies EJ (red)
and EC (blue) are also shown. The diamonds indicate the EJ/EC ratios of the three
upper plots.
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1.1.3 Coherent manipulation and single qubit gate

The coherent manipulation of a qubit is realized by performing a non adiabatic
evolution with a time-dependent Hamiltonian. The qubit manifold can then

be regarded as a pseudo-spin 1/2 evolving in a fictitious magnetic field
−→
H

representing its Hamiltonian, and its evolution is conveniently visualized on
the Bloch sphere picture. Different non-adiabatic manipulation schemes can
be applied. In the first CPB manipulation experiment[15], Y. Nakamura and
coworkers applied ultrafast trapezoidal Ng pulses on a CPB in the charge
regime. In that case, the Hilbert space can be restricted to two pure charge
states |0〉C and |1〉C provided that Ng is kept in the range [0.2, 0.8]. These
two states respectively point to the north and south poles of the Bloch sphere
(see. Fig 1.3), while the fictitious magnetic field is

−→
H = Ec(N − Ng)

−→z + Ej−→x . (1.10)

The qubit was initially prepared in its ground state at Ng ≃ 0.3 (very close
to the north pole); then the longitudinal component of the field was suddenly
suppressed to bring the qubit at the degeneracy point Ng = 1/2. Since the
risetime of this pulse was shorter than h/EJ , the qubit state did not evolve
during this step. Then, the remaining transverse Josephson field induced co-
herent oscillations between the two charge states (see Fig. 1.3). Finally the
qubit was brought back to the initial Ng to be measured in the pure charge
states basis (see next section). Rabi oscillations were observed as a function
of the time spent at Ng = 1/2.

A more versatile and more accurate manipulation method consists in
applying an AC perturbation of the Hamiltonian on resonance with the
qubit frequency, as done in atomic physics or in Nuclear Magnetic Reso-
nance [24]. With CPBs, it consists in applying a small harmonic perturbation
∆Nrf cos (2πνrf t + ϕrf ) to the gate charge [14] at a frequency νrf resonant
or nearly resonant with the qubit frequency ν01. The north and south pole are
now the two energy eigenstates |0〉 and |1〉 at a fixed Ng (usually Ng = 1/2)

(see Fig. 1.3). At Ng = 1/2 the small harmonic perturbation in
−→
H is equiva-

lent to a purely transverse field 4EC∆Nrf | 〈1| N̂ |0〉 | cos (2πνrf t + ϕrf )−→x . It
is convenient to represent the dynamics in a frame rotating at the microwave
frequency νrf . Indeed, within the rotating wave approximation [32], the AC
field becomes static in the rotating Bloch sphere:

−→
H = 2EC∆Nrf | 〈1| N̂ |0〉 |(cos ϕrf

−→x + sin (ϕrf )−→y + δν−→z ), (1.11)

where δν = ν01−νrf (see Fig. 1.3). This field induces the Rabi precession of the

spin at the Rabi frequency νRabi =
√

ν2
r0 + δν2, the angle of precession being

adjustable by tuning the amplitude or the duration of the microwave pulse.
Note that νr0 should not be too high in order to avoid spurious population
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Fig. 1.3. Coherent manipulation of the CPB in the Bloch sphere picture. a) Case of
a CPB in the charge regime (1 in Fig. 1.2). The qubit states are pure charge states
at the poles of the Bloch sphere. An ultrafast trapezoidal gate pulse to Ng = 1/2
(bottom right) brings the system at the degeneracy point (magenta disk) of the
energy diagram (top right); the field Hex (orange arrow in the Bloch sphere) is sent
to the equatorial plane, which induces a precession of the spin (magenta arrow) along
a meridian (magenta circle). b) Manipulation of the CPB at the degeneracy point
Ng = 1/2 by a sinusoidal Ng perturbation nearly resonant with the qubit frequency
ν01. The Bloch sphere is now rotating at the microwave frequency and the field Hex

is static. In presence of microwave (b1), the field lays in a longitudinal plane making
an angle ϕrf with the reference X ′ axis and induces Rabi oscillations of the spin
at the Rabi frequency νRabi. In the absence of microwave (b2), the field is oriented
along the z axis, and the spin precesses freely around z at the detuning frequency
∆ν.
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of the third CPB level |2〉. Indeed, the matrix element m = 2νr0EC 〈2| N̂ |1〉
responsible for such a spurious population p2 is equal to α2νr0EC 〈1| N̂ |0〉
with α ∈ [1,

√
2] for EJ/EC > 0.5. We have calculated p2 due to the pertur-

bation applied to unperturbed evolution cos (πνr0t) |0〉 + sin (πνr0t) |1〉. For
(νr0)/(ν12 − ν01) << 1, we find

p2 = ((ανr0/2)/(ν12 − ν01))
2 (1.12)

Then combining three resonant pulses inducing rotations around x (ϕrf =
π/2), y and x, implements any single qubit operator [33, 26]. Alternatively,
adiabatic changes of Ng or δ increases the z component of the fictious field, and
so induces rotation around the z-axis [26]. All these gates can be characterized
by quantum tomography as demonstrated by M. Devoret on the quantronium,
following the experiment on phase qubit by J. Martinis [34].
It is important to notice that all these methods inspired from NMR and
atomic physics also apply to CPBs deep in the phase regime (region 3 of Fig.
1.2). Indeed, the smallness of EC can be compensated by a larger microwave
amplitude or a larger gate capacitance Cg, as demonstrated by the successful
manipulation of transmon devices at Yale [35].

1.1.4 Readout of Cooper Pair Boxes

Many strategies, which differ in many respects, have been proposed to discrim-
inate the |0〉 and |1〉 states of a CPB. A first essential distinction is whether or
not the readout is single-shot, that is whether or not the two qubit states can
be discriminated in a single measurement with a "reasonable" fidelity. This
definition is of course subjective, and any single-shot measurement has to be
characterized by its error rates e|0〉,|1〉 or fidelities 1− e|0〉,|1〉 for the two qubit
states, or by its readout contrast 1− (e|0〉 + e|1〉) between the two states. Note
that achieving a good readout fidelity requires to complete the measurement
in a time shorter than the relaxation time. In the case of a low signal to noise
measurement, the state preparation and measurement sequence has to be re-
peated numerous times in order to determine the average value of the qubit
at the end of the sequence. A single-shot readout is further characterized by
its projective or destructive character. Ideally, a single-shot measurement is
projective, i.e. it is associated to a Quantum Non Demolition (QND) mea-
surement that leaves the qubit in a state corresponding to the outcome of the
readout performed. For a perfect QND readout, subsequent readouts yield the
same result. The projection fidelity measures the QND character of a readout.
Similarly, a non single-shot readout, which takes only a partial information
on the qubit state, can have a back-action corresponding to the minimal de-
coherence imposed by quantum mechanics, or a larger one. A readout that
completely scrambles the qubit is said to be destructive.
Last but not least, one has to consider which variable of the qubit is in-
volved in the readout. In the case of CPBs, the measurements used so
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far for readout of the quantum state involve either the CPB island charge
N̂ = (∂Ĥ/∂Ng + Ng)/(2EC), or, for the split CPB, the persistent current

in the loop given by Î = ϕ−1
0 ∂Ĥ/∂δ [36]. The physical quantities actually

measured can be < N > or < I >, or further derivatives respectively to the
control parameters Ng and δ:

-the so-called quantum capacitance Ĉ = 2e(∂V̂ /∂Ng)
−1;

-the quantum inductance L̂ = (ϕ0∂Î/∂δ)−1 [28, 37].
The dependance of these measurable quantities are shown in Fig. 1.4 for

CPBs with different EJ/EC ratios. We now briefly review the various CPB
readouts implemented up to now.

1.1.5 Readout of a CPB through the charge

In their first experiment performed in 1999 [24], Y. Nakamura and cowork-
ers measured directly the island charge. A small and very opaque additional
tunnel junction was connected to the island and voltage biased. In this setup,
when the qubit is in the state |1〉 = |1〉C , the extra Cooper Pair in the island
can be broken into two electrons tunneling sequentially through the measuring
junction (see Fig. 1.5a)[24]. By repeating the preparation and measurement
sequence, a current of a few picoamps builds up and can be measured. This
readout method is intrinsically destructive as the qubit is always reset in state
|0〉 after the measurement. Moreover it is also non-single shot because current
meters do not resolve a single Cooper pair.

In the experiment [38, 39, 25] of P. Delsing and coworkers, a CPB in the
charge regime was coupled capacitively to a Radio Frequency Single Electron
Transistor (RFSET) used as a fast sensitive electrometer for measuring the
island potential 〈V 〉, proportional to the average island charge. Figure 1.5b
shows the setup with the RFSET made of a voltage biased SET in parallel
with a resonant tank circuit. Since the RFSET circuit resonance varies with
the charge coupled to its island, this results in a state dependent frequency
shift which can then measured by microwave reflectometry. This readout was
not found to be single-shot due to a too short qubit relaxation time, but could
be in principle be QND and projective.

More recently, in the experiments [35] implemented at Yale, a split CPB
was placed at the electric field antinode of a coplanar stripline resonator (see
Fig.1.5c). The CPB acts as an electric dipole that modifies locally the dielec-
tric constant in the resonator and displaces its resonance frequency νcav. This
frequency shift translates in a change of the amplitude and phase of the mi-
crowave signal transmitted through (or reflected by) the resonator [18]. This
dispersive method is by nature projective and QND, provided the number of
photons injected in the resonator is low enough to avoid excitation and relax-
ation of the CPB. Using microwave amplifiers with a noise temperature lower
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than presently available, this dispersive readout method would be single-shot
and QND.

1.1.6 Readout of a split CPB through the loop current

In 2001 the Quantronics group developed a new circuit [14, 16] called the
Quantronium (see Fig. 1.6) made of a split CPB, in which the persistent loop
current ik is exploited to discriminate the qubit states. An additional current
biased large Josephson junction with critical current I0 is inserted in the CPB
loop. During qubit manipulation, the bias current Ib is kept small compared
to I0, so that the quantum fluctuations of the phase γ across the readout
junction are small. This phase then behaves as a classical variable given by
γ = arcsin(Ib/I0). The bias current plays the role of an additional knob that
controls the CPB phase

δ(φ, Ib) = φ/ϕ0 + γ(Ib). (1.13)

For readout, the bias current is adiabatically increased up to a plateau with
duration τ and peak value Ip close enough to I0 (see Fig.1.6) to induce the
switching of the readout junction to its voltage state. Since the state de-
pendent persistent current ik(δ) adds algebraically to the bias current Ib, the
switching rate of the readout junction depends on the qubit state. The readout
junction thus behaves as a threshold detector that switches to a voltage state
with a high or low probability depending on the qubit state. The stochastic
dynamics of the junction phase γ during the readout time τ determines the
switching rate Γ . In the thermal regime ~ωp/kBT << 1, this rate Γ writes
[40]:

Γ (s) = ωp(1 − s2)1/4e
− 4

√
2

3

ξJ (1−s)3/2

kBT , (1.14)

with s = I/I0, the plasma frequency ωp =
√

I0/φ0CJ , the Josephson energy
ξJ = I0ϕ0. Integrated over τ , this rate leads to a switching probability

PS(s) = 1 − eΓ (Ip/I0)τ (1.15)

where Ip = Ip+ik(δp) and the index p denotes quantities taken at the plateau.
By precisely adjusting Ip and τ , the switching probability PS can be tuned
such that the probability p1 (qubit in state |1〉) is much larger than the prob-
ability p0 (qubit in state |0〉). The difference η = p1 − p0 depends strongly
on Ip, as shown on Fig. 1.7a. Its maximum in Ip defines the readout con-
strast, which depends on δp (see Fig. 1.7b). The fidelity is maximun betwen
0.8π and 0.9π. Since the quantronium is usually manipulated close to δ = 0,
and since γ can be ramped only up to π/2, it can be interesting to ramp Ib

starting from a negative value Ibin in order to reach the optimal phase range
for δp. The applied flux φ, and the bias currents Ibin and Ip should then be
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Fig. 1.4. Different properties of the CPB qubit can serve to discriminate its |0〉
(blue curves) and |1〉 (red curves) states. The difference in a given property between
the two qubit states is shown in orange. a) Average charge 〈N〉 of the island in the
charge regime (same parameter as in Fig. 1.2a), as a function of the reduced gate
charge Ng. b) Persistent loop current of the split CPB in the intermediate regime
(same parameter as in Fig. 1.2b), as a function of δ . c) Quantum inductance of the
CPB in the intermediate regime (same parameter as in Fig. 1.2b), as a function of
δ.
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Fig. 1.5. Several readout schemes for a CPB. a) The island of the CPB is connected
to a voltage biased opaque Josephson junction. When the qubit is in state |1〉, the
excess Cooper pair in the island can break into two electrons passing through the
readout junction and building a current i when the experiment is repeated. b) The
CPB is capacitively coupled to an RFSET, a sensitive electrometer whose impedance
depends on the average charge on the CPB island. The qubit state is determined by
measuring the amplitude A or phase ϕ of the reflected microwave. c) The CPB is
placed in a coplanar waveguide resonator with resonance frequency νcav shifted by
the qubit. The qubit is read by measuring the amplitude or phase of a microwave
transmitted through the cavity. d) The split CPB, which can be regarded as a state
dependent inductance Lk, is connected in parallel with a tank circuit to form a
resonator whose resonance frequency is measured by microwave reflectometry.
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Fig. 1.6. Electrical scheme of the quantronium qubit. The qubit is in blue and the
readout circuit in green. A large Josephson junction is inserted in the split CPB
loop to serve as a threshold detector: a current pulse Ib(t) (top right) with a peak
value Ip applied during a duration τ induces the switching of the junction to a finite
voltage with a probability that depends on the qubit state.

such that δ(φ, Ibin) ≃ 0 and δ(φ, Ip) ≃ 0.85π. This method requires to com-
pensate the negative bias current by an appropriate magnetic flux Φ. Using
this technique, the maximum theoretical fidelity is about 95% for a critical
current I0 of about 1µA. Experimentally the maximum fidelity was smaller,
about 40%, the discrepancy being only partly explained by level-crossings and
relaxation occuring during the readout ramp. This readout fidelity is insuf-
ficient for quantum information processing. Furthermore, the large amount
of quasiparticles generated in the superconducting leads during the switch-
ing destroys the qubit state. In a quantum processor this destruction would
prevent using the measured qubit later in the algorithm. Despite the qubit
state could be "copied" using an extra two-qubit gate before readout, a QND
readout method is clearly useful.

1.1.7 Towards a QND readout for the quantronium

In 2004, M. Devoret and coworkers [28] measured the quantum inductance L
of the CPB using a microwave readout method. More precisely, the series in-
ductance of the two CPB junctions, which depends on the qubit state, slightly
contributes to the effective inductance of the quantronium circuit mainly de-
termined by the inductance ϕ0/I0 of the readout junction. With the capacitor
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C, the quantronium thus forms a resonant circuit whose resonance frequency
ωp depends on the qubit state. Since the readout junction is furthermore a
non linear inductor, this resonator is a non linear system with several dynam-
ical states (for the same excitation) that can be exploited to discriminate the
qubit states. When driven at a frequency ωrf close to the circuit resonance
frequency ωp, the phase γ develops oscillations, which obey the following equa-
tion of motion

γ̈ +
ωp

Q
γ̇ + ω2

p sin (γ) =
V

ZI0
cos (ωrf t) (1.16)

with Q = ZCωP the quality factor of the resonator and Z the impedance
of the measuring line. With a drive frequency sufficiently detuned from ωp

(1−ωrf/ωp >
√

3/2Q), increasing the drive amplitude V induces a switching
or bifurcation from a regime with low amplitude oscillations to a regime with
large amplitude oscillations [37], and with a different phase. As the bifurca-
tion drive amplitude Vb depends strongly on the ratio ωrf/ωp [41], the drive
amplitude V can be set such that the bifurcation occurs only when the qubit
is in state |1〉. This AC switching method is expected to be single-shot. Exper-
imentally, the largest observed contrast for Rabi oscillations was about 60%
[28], which is already better than the one obtained with the DC switching
method. When the drive is not too large, the method is furthermore expected
to be projective. Its QND character was probed by performing successive mea-
surements. By measuring the conditional probability of obtaining an outcome
corresponding to state |0〉 (resp. |1〉) after a first readout having given the
outcome |0〉 (resp. |1〉), one can determine the QND fractions for both qubit
states. It was found that this QND fraction is about 35% for state |1〉, and
close to 100% for state |0〉 [42]. This bifurcation method has also been imple-
mented in flux qubits by the group of H. Mooij at T.U. Delft [43, 44], and
excellent QND behavior was demonstrated.

In the present thesis, we have designed a two-qubit circuit using either
the DC switching or the JBA readout method (see next chapter). Although
we have only implemented experimentally the first one, the JBA method was
also used in the "transmon" experiment reported (see chapter 4) and in the
experiment on current to frequency conversion for characterizing the detector
(see chapter 5).
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Fig. 1.7. Theoretical readout fidelity of the quantronium. a) Theoretical switching
probabilities for the two qubits states |0〉 (blue curve) and |1〉 (red curve) as a func-
tion of the peak bias current Ip for δ = γ = 0 before the readout pulse (ramp from
Ib = 0), and for typical experimental parameters: Ej=0.96K, Ec=0.54K, d=0.05,
I0=650nA, νp=5GHz, τ = 10ns, and T = 50mK. The maximum difference in the
two switching probabilities (as a function of Ip) is the readout constrast (orange
curve). b) Theoretical readout contrast as a function of δp. The dashed line corre-
sponds to graph (a)

1.1.8 Decoherence

As any quantum object, the CPB is subject to an interaction with its en-
vironment, which yields the decay of an initial density matrix towards the
thermal equilibrium density matrix. One makes the distinction between re-
laxation, that describes the evolution of the longitudinal part of the density
matrix, and decoherence that pertains to the transverse part. Relaxation in-
volves an energy transfer hν01 between the qubit and its environment, and
is characterized by an exponential decay with rate Γ1. Decoherence combines
two independent phenomena: relaxation and dephasing. Relaxation yields an
exponential decay factor of the coherence term with a rate Γ1/2. Dephasing
occurs without energy transfer, and consists in a progressive loss of coherence
for the phase ϕ of a coherent superposition |0〉+ eiϕ |1〉, due to fluctuations of
the qubit frequency ν01 induced by the noise from environmental degrees of
freedom. Dephasing does not always yield to an exponential decay. The decay
of quantum coherence is best measured with the two-pulse Ramsey sequence
followed by qubit readout [14].

Relaxation and dephasing have been widely studied both experimentally
[45, 46, 47, 48, 27] and theoretically [49, 50] in CPBs, and in other supercon-
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ducting qubits [51, 52, 53, 54]. We summarize the most relevant results about
theoretical and experimental decoherence rates of the quantronium, following
the treatment of Ithier et al [27]. These results will be used in the next chapter
for designing a two-quantronium experiment.

The different sources S of decoherence acting in the quantronium are pre-
sented in Fig. 1.8. They induce quantum and classical noise in the external
parameters λ entering Hamiltonian (1.3), i.e. Ng, δ/2π and EJ . The noise in
Ng can be due to charged two-level fluctuators (TLFs) present in the sub-
strate, in tunnel barriers of the CPB junctions, or at the surface of the device;
another source of charge noise arises from the impedance of the gate line,
assumed at thermal equilibrium. The δ phase noise can be due to fluctua-
tions of the magnetic field threading the quantronium loop (possibly induced
by moving magnetic vortices), and to bias current fluctuations produced by
the impedance of the readout circuit. Additionally, fluctuations of the critical
current I0 of the readout junction could also induce δ noise. Finally, noise
in EJ can be due to microscopic defects present in the CPB tunnel barriers
that change slightly their critical current. Each of these sources generates a
δλS = λS − 〈λ〉 noise2 which is in most cases gaussian, and is characterized
by a generalized quantum spectral density

SS,λ(ω) =
1

2π

∫ +∞

−∞
dτ < δλS(t)δλS(t + τ) > eiωτ . (1.17)

This spectral density contains both the classical and quantum fluctuations
of δλ, SS,λ(ω > 0) and SS,λ(ω < 0) corresponding to the absorption and
emission of energy by the source S, respectively.
At thermal equilibrium, the contribution to Ng fluctuations from the gate line
impedance Zg(ω), as seen from the gate capacitance, is characterized by the
spectral density [27]

SS,λ(ω) = κ2
g

~
2ω

E2
C

Re[Zg(ω)]

Rk

[
1 + coth

(
~ω

2kBT

)]
, (1.18)

where Rk is the quantum of resistance, κg = Cg/CΣ . Microscopic Ng fluctua-
tions (due to TLFs) were measured in previous quantronium experiment [27].
They were found to be characterized by a spectral density (see Fig. 1.9)

SS,λ(ω) = A/ω with A ≃ 1.6 10−6, for ω < 0.4 MHz. (1.19)

In the same way, at thermal equilibrium, the contribution to δ fluctuations
from the readout line admittance YR(ω), as seen from the readout junction,
is characterized by the spectral density [27]

2 We use here a simplified notation O for operator bO. The operator vector
−→bσ is

noted −→σ
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Sδ/2π(ω) =
1

64π4

~
2ω

2πξ2
J

Rk
Re[YR(ω)]

|1 + i2πLJYR(ω)ω|2
[
1 + coth

(
~ω

2kBT

)]
,

where ξJ = I0ϕ0 and LJ = ϕ0/I0 are Josephson energy and inductance of
the readout junction, respectively . Besides, microscopic δ fluctuations [27]
are characterized by the spectral density (see Fig. 1.9)

SS,λ(ω) = A/ω with A = 11 10−8, when ω < 0.1 MHz. (1.20)

Note that for dephasing (low frequencies) and relaxation (ω = ω01), the

1 + coth
(

~ω
2kBT

)
term in Eqs. (1.18) and (1.20) is equal to 2kBT/~ω and

2, respectively.

Fig. 1.8. Main decoherence sources in a quantronium device. Noise in Ng is gener-
ated by charged two-level fluctuators (A) in the vicinity of the island and by voltage
fluctuations of series impedance (C) in the gate line. Noise in δ is generated by
fluctuations in the flux φ (B), by current fluctuations in the finite impedance (D)
of the readout bias source. Noise in EJ is induced by critical current fluctuations of
the CPB junctions (E).

The spectral densities presented above enter the expressions of decoherence
rates, which we derive now. When the coupling between the environment and
the qubit is weak, the Hamiltonian

H = −1/2−→σ .
−−−→
H(λ) (1.21)

can be expanded at first order for each external parameter λ. Each of the
noise source S in λ yields a perturbation of the Hamiltonian

δHλ,S = −~

2

(−→
Dλ.−→σ

)
δλS . (1.22)
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where
−→
Dλ.−→σ is the restriction of −(2/~)∂H/∂λ to the {|0〉 , |1〉} Hilbert space.

The longitudinal and transverse parts of
−→
Dλ, i.e. Dλ,z and Dλ,⊥ respectively,

are thus

DNg,z = −2
EC

~

(
〈1| N̂ |1〉 − 〈0| N̂ |0〉

)

DNg,⊥ = 4
EC

~

∣∣∣〈0| N̂ |1〉
∣∣∣

Dδ/2π,z =
2πϕ0

~

(
〈1| Î |1〉 − 〈0| Î |0〉

)
(1.23)

Dδ/2π,⊥ =
4πϕ0

~

∣∣∣〈0| Î |1〉
∣∣∣ .

Relaxation rates

Following Fermi’s golden rule, one finds the relaxation rate

Γ rel
S,λ =

1

T1
=

π

2
|Dλ,⊥|2SS,λ(ω = ω01), (1.24)

where T1 is the relaxation time. At finite temperature, the qubit relaxation
and excitation rates follow the detailed balance.
In the Quantronium circuit, when the asymmetry d is zero, the first derivative
∂H/∂δ vanishes at δ = 0, and one has to take into account the second deriva-
tive ∂2H/∂δ2 (which does not depend on d) to evaluate the relaxation. In this
case, relaxation involves the absorption by the environment of two photons
hν1 and hν2, such that ν1 + ν2 = ν01. The corresponding rate is given by [55]

Γ rel
S,δ = |D(2)

λ⊥|2
∫ ω01

ω=0

SS,δ(ω)SS,δ(ω01 − ω)dω, (1.25)

where

D
(2)
δ,⊥ = −1/~| 〈0| ∂2Ĥ

∂δ2
|1〉 |

= −π/(hϕ2
0)| 〈0|

1

L̂
|1〉 | (1.26)

Dephasing rates

When the noise is regular at low frequency,
〈
eiϕ
〉

decays exponentially with
a pure dephasing rate

Γϕ
S,λ =

1

Tϕ
= πD2

λ,zSS,λ(ω = 0), (1.27)

with Tϕ the pure dephasing time.
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In the case of a singular spectral density of the form A/|ω| for ω ∈ [ωir,ωuv]
and zero elsewhere, the decay of the phase factor is gaussian:

〈
eiϕ
〉
(t) = e−t2D2

λ,z
<δλ2>

2 . (1.28)

The dephasing time Tϕ is in this case defined as the time after which
〈
eiϕ
〉

has decayed by a factor 1/e. Furthermore, two cases have to be distinguished:
the static case, where ωuv is below the decoherence rate and the parameter
λ can be considered as constant during Tϕ, and the non static-case, where λ
fluctuates during Tϕ [50, 56, 57]. For the static case,

< δλ2 >= 2A ln

(
ωuv

ωir

)
, (1.29)

and

Tϕ,λ =
1

|Dλ,z|
√

A ln
(

ωuv

ωir

) . (1.30)

At the working point {Ng = 1/2[ mod 1], δ = 0[ mod 2π]}, DNg,z and
Dδ/2π,z vanishes. The dephasing rate is thus minimum, which makes this
point optimal to operate a split CPB, as demonstrated in the first quantro-
nium experiment [16]. At the optimal point, dephasing is governed by the
second order contribution ∂2ω01/∂λ2 in the expansion of H(λ). The decay of〈
eiϕ
〉

is then not universal. The static approximation yields to

|
〈
eiϕ
〉
(t)|lf =

∣∣∣∣∣∣
1√

1 − i∂2ω01

∂λ2 σ2
δλt

∣∣∣∣∣∣

=

{
1 +

[
∂2ω01

∂λ2
tA ln(1/ωirt)

]2}−1/4

(1.31)

and

T lf
ϕ,Ng

=
7.2

2∂2ω01

∂N2
g

A ln(1/ωifTϕ)
. (1.32)

In the non-static case, for time t >> [(∂2ω01/∂λ2)A/2]−1, the high-frequency
contributions dominate the decay, and one has [17]

|
〈
eiϕ
〉
(t)|hf = e−

π
2

∂2ω01
∂λ2 At (1.33)

and

Thf
ϕ,λ =

1
π
2

∂2ω01

∂λ2 A
, (1.34)
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provided [π(∂2ω01/∂λ2)A]−1 >> 1/ωc.
Figure 1.9 shows the measured coherence times [27] that are compared

to the above theoretical expressions. These results as well as measurements
obtained on other sCPBs show that for EJ/EC ratios corresponding to regimes
1 and 2 (see Fig. 1.2), decoherence at the optimal point is clearly limited by
charged TLFs. In the case of the quantronium sample of Ithier et al [27],
relaxation was attributed at least partly to the gate line impedance , whereas
the NEC group [45] attributed it in their samples to energy exchange between
the CPB and charged TLFs.
Recent experiment made at Yale [47, 46] with symmetrized CPBs in the regime
EJ/EC >> 1 (regime 3 of Fig. 1.2) and embedded in microwave resonators
have demonstrated that the contribution of dephasing to decoherence can be
made small compared to that of relaxation.
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Fig. 1.9. a) Relaxation time T1 (orange), echo time TE (blue - see Annex 1) and
coherence time T2 (red) measured in a quantronium sample during G. Ithier’s thesis
[17]. Dots are measured data while solid lines are theoretical fits using the expressions
presented in this section. Fitting parameters are detailed in [27]. The dashed orange
line is only a guide for the eyes. b) Charge and phase noise spectral densities resulting
from the fit. Note that the spectra are even functions of ω.
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1.2 A two quantronium gate: the Quantroswap

Implementing a quantum algorithm corresponding to an arbitrary unitary
evolution requires adding to single qubit gates at least one two-qubit gate,
such that the ensemble forms a so-called "universal" set of quantum gates
[23]. While any two-qubit gate that entangles two qubits can be considered
universal, the most convenient ones are those which fully entangle them. The
most well-known examples are the Controlled-Phase gate, the CNOT gate, and
the

√
ISWAP gate. Contrarily to the CNOT, which can be characterized by

a truth table as a classical logical gate,
√

ISWAP has no classical analogue.
It is obtained by operating a swapping interaction during half the time needed
for a complete exchange of an energy quantum between the two qubits. This
gate transforms the computational basis {|00〉 , |01〉 , |10〉 , |11〉} into the Bell
state basis {|00〉 , (|01〉−|10〉)/

√
2, (|01〉+ |10〉)/

√
2, |11〉}, which demonstrates

its entangling character.
Different strategies have been developed to couple two superconducting qubits.
The first implementation [58] was demonstrated at NEC in 2003. It was a
CNOT gate with two capacitively coupled CPBs in the charge regime, driven
by fast trapezoidal gate pulses. The truth table was measured, but the lack
of single shot readout hindered the observation of correlations between the
two final qubit states and the characterization of the gate operator. Then,
several groups initiated a big effort on different Josephson qubits in order to
demonstrate a gate in a two-qubit circuit fitted with single shot readout. The
present work is part of this effort, focusing here on an ISWAP gate with two
quantronium qubits. Two groups have published results on such two qubit
circuits during the recent years:

- The complete tomography [59, 60] of coupled phase qubits was
obtained in J. Martinis’group at U.C.S.B. in 2006. The capacitive
coupling between the qubits induces the SWAP operation between
the qubits. The correlations between the two interacting qubits were
demonstrated. The fidelity for the production of Bell states was de-
termined at F = 0.87 by performing the state tomography of the
entangled qubits after operation of the

√
ISWAP gate.

- A CNOT gate was demonstrated on flux qubits in 2007, in H. Mooij’s
group [61] at T.U. Delft. The gate fidelity was determined at about
F = 0.4, but the reduced readout fidelity hindered to perform the full
gate tomography. These two works have used a fix coupling between
the qubits. Although, the effective coupling can generally be tuned
by changing the difference between the qubit frequencies, it is highly
desirable to change or switch on/off the coupling without changing
the qubit frequencies, by using a tunable coupler. Such couplers have
been demonstrated:

- with CPB qubits coupled by a Josephson junction [62, 63]
or by a microwave coplanar resonator [30];
- with flux qubits coupled by a SQUID [64, 65];
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- and with phase qubits coupled by a resonator[66].

We present in this section the circuit we have designed for operating a√
ISWAP gate. It consists of two quantroniums coupled by a fixed capac-

itor, and is nicknamed quantroswap. We first derive its Hamiltonian, then
discuss how to operate a gate, and address the issue of simultaneous readout
of the qubits.

1.2.1 The two quantronium circuit and its Hamiltonian

As shown on Fig. 1.10, the quantroswap is based on two quantroniums labelled
A and B whose islands are capacitively coupled. Each CPB is connected to
its own voltage source VgA,B

through its gate capacitances CgA,B
, and has

its own readout junction. Experimentally, the magnetic flux is produced by
a macroscopic coil above the circuit that induces the same flux Φ through
each loop. Thus, using the usual sign convention for voltages, currents and
superconducting phase differences (see Fig. 1.10), the phases and the flux are
related by δA = γA + Φ/ϕ0 and δB = γB − Φ/ϕ0.

The Hamiltonian of the system can be calculated following the method
proposed by B.Yurke [67] and developed in [68, 69]. We briefly summarize
it now. Starting from Kirchoff’s laws, which play the role of the equations
of motions for the electrical variables, one determines the Lagrangian. The
Hamiltonian is then derived from this Lagrangian. One has first to analyse
the topology of the circuit in terms of a spanning tree, i. e. a minimum set of
circuit branches XY (between two nodes X and Y) connecting ground to all the
other nodes X (without using twice the same branch). The number of degrees
of freedom of the circuit is the number of branches in the tree, not counting
those with a voltage or a current source. Each branch XY is characterized by
its voltage vXY and its current iXY . One defines the generalized branch fluxes

ΦXY (t) =

∫ t

−∞
vXY (t′)dt′,

(1.35)

and the branch charges

QXY (t) =

∫ t

−∞
iXY (t′)dt′. (1.36)

A branch with a capacitor C is characterized by the constitutive relation
Φ̇XY = QXY /C, whereas a branch with an inductor L is characterized by
Q̇XY = ΦXY /L. For a Josephson junction with critical current I0, the con-
stitutive relation is the Josephson relation Q̇XY = I0 sin θ, with θ the jauge
invariant superconducting phase difference across the junction. The second
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Fig. 1.10. Simplified diagram of the Quantroswap circuit with 2 quantroniums
whose islands are capactively coupled. Each qubit has its own gate and readout.
The fluxes through the loops are applied using the same coil and have consequently
opposite signs, considering the orientation of the different phases, voltages and loop
current.

Josephson relation V = ϕ0θ̇ (with V the voltage across the junction) and our
definition 1.35 lead to

Q̇XY = I0XY
sin

(
ΦXY

ϕ0
+ cst

)
. (1.37)

A branch with a current source i is modeled as an infinite reservoir of flux
ΦXY (infinite inductance L = ΦXY /i), whereas a branch with a voltage
source v is modeled as an infinite reservoir of charge QXY (infinite capac-
itance C = QXY /v). We also introduce node fluxes φX , which are equal to
the sum of all tree branch fluxes going from ground to node X; similarly, we
define node charges qX equal to the sum of the charges brought by all branches
reaching the node X.

In Annex A, we apply this method to show that a single quantronium can
be replaced by a basic CPB with effective Josephson energy E∗

JA,B
, capacitance

CJ , and island phase
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θ∗(dA,B ,±Φ̃, γ) = θA,B + ζ(dA,B ,±Φ̃, γA,B), (1.38)

as introduced in section 1.1.2.
Then, we apply the method to the quantroswap circuit shown in Fig. 1.11,
which has four nodes M,N,P,Q. Since all of these nodes are connected to
ground by only one branch, node fluxes φX are equal to branch fluxes
ΦXGround. As P and Q are connected to ground through voltage sources,
the system has only two degrees of freedom, which we take as the node fluxes
φM and φN (and their conjugate variables, the corresponding nodes charges
qM and qN ).

Fig. 1.11. Model electrical circuit of the quantroswap: the chosen spanning tree
leading to the four M,N,P,Q nodes is indicated in red. The two couples {qM , φM}
{qN , φN} of conjugated node variables chosen as the degrees of freedom of the system
are shown. The voltage sources VgA,B are modeled by infinite capacitor CSA,B having
delivered a charge qSA,B .

Using these definitions, one writes the Kirchhoff’s current law at all nodes.
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Node M: CJA
φ̈M + Cc

(
φ̈M − φ̈N

)
+ CgA

(
φ̈M − φ̈P

)

−I0A
sin
(

φM

ϕ0
− ζA

)
= 0

Node N: CJB
φ̈B + Cc

(
φ̈N − φ̈M

)
+ CgB

(
φ̈N − φ̈Q

)

−I0B
sin
(

φN

ϕ0
− ζB

)
= 0 (1.39)

Node P: CgA

(
φ̈P − φ̈M

)
+ ∂(CSA

φ̇P )/∂t = 0

Node Q: CgB

(
φ̈Q − φ̈N

)
+ ∂(CSB

φ̇Q)/∂t = 0

Here we have used the simplified notation ζA,B = ζA,B(dA,B ,±Φ̃, γA,B). These
equations of motion take the form of Euler-Lagrange equations

∂L
∂φ

=
∂

∂t

∂L
∂φ̇

with φ̇ =
∂φ

∂t
, (1.40)

associated to the Lagrangian

L =
CJA

2
φ̇2

M +
CJB

2
φ̇2

N +
Cc

2

(
φ̇M − φ̇N

)2

+
CgA

2

(
φ̇M − φ̇P

)2

+
CgB

2

(
φ̇N − φ̇Q

)2

+

∫ t

−∞
CSA

φ̇P dφ̇P +

∫ t

−∞
CSB

φ̇Qdφ̇Q (1.41)

−
∫ t

−∞
I0A

sin

(
φM

ϕ0
− ζA

)
dφM −

∫ t

−∞
I0B

sin

(
φN

ϕ0
− ζB

)
dφN .

This Lagrangian is the difference between the electrostatic energy stored on
all capacitors ("kinetic" energy), and the magnetic energy of all inductive
elements ("potential" energy). Using the definitions (1.38) of Josephson in-
ductances LJA,B

, the last terms in (1.41) are

∫ t

−∞
I0A,B

sin

(
φM,N

ϕ0
− ζA,B

)
dφM,N = −E∗

JA,B
cos

(
φM,N

ϕ0
− ζA,B

)
.(1.42)

Besides, after introducing the charges qSA,B
passed through the voltage sources

to the gate capacitor CgA,B
since t = −∞, taking the limit QSA,B

→ ∞, and
using the constitutive relation for capacitors, the terms of third lines in Eq.
(1.41) become

∫ t

−∞
CSA,B

φ̇P,Qdφ̇P,Q =
1

2CSA,B

[
(CSA,B

φ̇P,Q)2
]QSA,B

+qSA,B

QSA,B

= VgA,B
qSA,B

.

Using Eq. (1.39) at node P and Q, one has also
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qSA,B
= CgA

(
φ̇M,N − φ̇P,Q

)
.

The Lagrangian (1.41) can be re-expressed as

L =
CΣA

2
φ̇2

M +
CΣB

2
φ̇2

N − CgA

2
φ̇2

P − CgB

2
φ̇2

Q − Ccφ̇M φ̇N (1.43)

+E∗
JA

cos

(
φM

ϕ0
− ζA

)
+ E∗

JB
cos

(
φN

ϕ0
− ζB

)
.

where CΣA,B
= CJA,B

+ CgA,B
+ Cc.

By subtracting CgA
φ̇P φ̇M +CgB

φ̇Qφ̇N , L can be transformed in an equivalent
Lagrangian

L′ =
CΣA

2
φ̇2

M +
CΣB

2
φ̇2

N − CgA

2
V 2

gA
− CgB

2
V 2

gB

−Ccφ̇M φ̇N − CgA
VgA

φ̇M − CgB
VgB

φ̇N (1.44)

+E∗
JA

cos

(
φM

ϕ0
− ζA

)
+ E∗

JB
cos

(
φN

ϕ0
− ζB

)

that lets the equations Eq. (1.39) unchanged. L′ is now explicitly the La-
grangian of a two degree of freedom system with time independent sources.
The Lagrange conjugation relations yield the node charge

qM,N =
∂L′

∂φ̇M,N

= CΣA,B
φ̇M,N − Ccφ̇N,M − CgA,B

VgA,B
(1.45)

and to the Hamiltonian

H =
∑

i={M,N}
qiφ̇i − L′ =

=
1

2
CΣA

φ̇2
M +

1

2
CΣB

φ̇2
N +

1

2
CgA

V 2
gA

+
1

2
CgB

V 2
gB

− Ccφ̇M φ̇N

−E∗
JA

cos

(
φM

ϕ0
− ζA

)
− E∗

JB
cos

(
φN

ϕ0
− ζB

)
. (1.46)

We now switch from the conjugate variables {qM,N , φM,N} to the conjugate
superconducting variables

{NA,B = qM,N/2e, θ∗A,B =
φM,N

ϕ0
− ζA,B} : (1.47)

equation B.3

[
−2eNA + CgA

φ̇C

−2eNB + CgB
φ̇Q

]
=

[
CΣA

−Cc

−Cc CΣB

][
φ̇M

φ̇N

]
.
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Inverting this system, one obtains

φ̇M = α
1

CΣA

[
(−2eNA + CgA

VgA
) +

Cc

CΣB

(−2eNB + CgB
VgB

)

]

= α
−2e

CΣA

[
(NA − NgA

) +
Cc

CΣB

(NB − NgB
)

]

φ̇N = α
1

CΣB

[
(−2eNB + CgB

VgB
) +

Cc

CΣA

(−2eNA + NgA
)

]
(1.48)

= α
−2e

CΣB

[
(NB − NgB

) +
Cc

CΣA

(NA − NgA
)

]

with α = 1/(1 − C2
cc/(CΣaCΣb)) and NgA,B

= CgA,B
VgA,B

/2e.
Substituting Eq. in Eq. (1.46), we finally obtain

Ĥ = EΣA
(N̂A − NgA

)2 − E∗
JA

cos
(
θ̂∗A

)

+ EΣB
(N̂B − NgB

)2 − E∗
JB

cos
(
θ̂∗B

)
(1.49)

+ 2
EΣA

EΣB

Ecc
(N̂A − NgA

)(N̂B − NgB
)

+
CgA

2
V 2

gA
+

CgB

2
V 2

gB

with

EΣa = α(2e)2/2CΣA
,

EΣb = α(2e)2/2CΣB
,

Ecc = α(2e)2/2Cc.

Note that as junction capacitances CJ are in general much larger than gate and
coupling capacitances, ǫ = α − 1 = C2

cc/(CΣA
CΣB

) << 1. The Hamiltonian
(1.49) reads as the sum of the Hamiltonian of both qubits (with a charging
energy slightly renormalized by the presence of the other qubit) and of a

coupling term proportional to (N̂A −NgA
)(N̂B −NgB

). Physically, each qubit
can behave as an extra gate for the other qubit. Indeed the charge stored
on an island plays for the other island exactly the same role as its own gate
charge.

When restricting the Hilbert space to the space spanned by the uncoupled
basis (|00 >, |01 >, |10 >, and |11 >), the Hamiltonian (1.49) simplifies:

Ĥ0 =
h

2
νA(NgA

, δA)σ̂zA
+

h

2
νB(NgB

, δB)σ̂zB
(1.50)

+2
EΣA

EΣB

Ecc
(N̂A − NgA

)(N̂B − NgB
)

with νA,B the qubit frequencies.
At the charge degeneracy point NgA,B

= 1/2, where decoherence is minimum,
the Hamiltonian reduces to
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Fig. 1.12. Eigenenergies and eigenstates of two coupled quantroniums. a): Tran-
sition frequencies νA,B of the qubit A and B alone, and transition frequencies
νΦ0,Φ1 νΦ0,Φ2 of the coupled system as a function of δ with νA = νB = 17GHz,
EJA/ECA = EJB /ECB = 1.9, νcc = 800MHz and a phase difference δA−δB = 2rad.
b): Weights α2 (blue) and β2 (red) of |Ψ2〉 = α |10〉 + β |01〉 with respect to δ.
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2

h
Ĥ0 = νA(NgA

= 1/2, δA)σ̂zA
+ νB(NgB

= 1/2, δB)σ̂zB

+νccσ̂xA
σ̂xA

. (1.51)

where νcc = 4
∣∣∣< 0|N̂A|1 >< 1|N̂B |0 >

∣∣∣EΣA
EΣB

/hEcc is the coupling fre-

quency between the qubits.
In the uncoupled basis mentioned above, the matrix representation of Ĥ0 is

Ĥ0 =
h

2




−(νA + νB) νcc

νB − νA νcc

νcc −νB + νA

νcc νB + νA




=
h

2




−ν νcc

−∆ν νcc

νcc ∆ν

νcc ν




.

with ν = νA + νB , ∆ν = νA − νB , and where missing elements are zeroes.
The physical meaning of this Hamiltonian is enlightened by re-expressing it
in the frame rotating around zb at frequency νB :

Ĥ ′
0 =

h

2
νAσ̂zA

+ νccσ̂xA
eıπνB bσzB

tσ̂xB
e−ıπνB bσzB

t

=
h

2
νAσ̂zA

+
(
νccσ̂xB

e−ı2πνB bσzB
t
)

σ̂xA
. (1.52)

The last term in Eq. (1.52) is similar to an RF excitation of qubit A with
a driving field being an operator of qubit B oscillating at frequency νB (see
section 1.1.3): as in a Rabi precession, when νB is close to νA, the qubit A
precesses at the coupling frequency νcc. As explained in the next section, the
main difference is that the excitation field is not a coherent field but a spin
[70].
From Hamiltonian (1.51), one calculates the eigenenergies Ei and the corre-
sponding eigenstates |Ψi〉 in the uncoupled basis:

E0 = −hν

2

√
1 + r

E1 = −hνcc

2

√
1 + s2 (1.53)

E2 =
hνcc

2

√
1 + s2

E3 =
hν

2

√
1 + r

|Ψ0〉 = {−1 +
√

1 + r2

r
, 0, 0, 1}

|Ψ1〉 = {0, s −
√

1 + s2, 1, 0} (1.54)

|Ψ2〉 = {0, s +
√

1 + s2, 1, 0}

|Ψ3〉 = {−1 −
√

1 + r2

r
, 0, 0, 1}.
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with r = νcc/ν and s = ∆ν/νcc.
In the regime where νcc/ν << 1, the eigenstates Ψ0 and Ψ3 are close to states
|00〉 and |11〉.
As an example Figure 1.12 shows the eigenenergies of the system with respect
to δ for νcc = 800 MHz, when the two qubits have a phase difference δA −
δB = 2 rad. When both qubits have exactly the same energies (∆ν = 0),
the degeneracy of the |01〉 and |10〉 levels is lifted by the coupling, and the
two eigenstates |Ψ1〉 = {0,−1, 1, 0} and |Ψ2〉 = {0, 1, 1, 0} are two maximally
entangled states. As shown in the inset of Fig. 1.12, away from δ = 0, s
increases and the eigenstates tend to be the eigenstates of the uncoupled
system.
Thus, the frequency difference between the two qubits acts as the parameter
which controls the coupling between the two qubits: in principle, even if the
coupling is fixed, one can define a tunable effective coupling term s between
states |10〉 and |01〉.
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1.2.2 Coherent manipulation of the quantroswap and two qubit
gates

Depending on the coupling strength νcc, the quantroswap circuit can be re-
garded either as an artificial molecule; whose discrete energy levels can be
directly addressed, or as a system of two artificial atoms sufficiently weakly
coupled to be manipulated independently. More precisely, these two cases
correspond to νcc

√
1 + s2 being larger or smaller than the maximum Rabi

frequency νr max, respectively.
In the latter case, different strategies have been proposed to implement two-
qubit logic gates. The simplest one consists in bringing the two qubits close
to resonance. Unless one is able to fabricate two quantroniums with the very
same parameters, this method requires moving at least one qubit away from
its optimal working point, which is detrimental to coherence. An alternative
strategy consists in keeping the two quantroniums at their respective optimal
points, and in inducing an effective coupling by AC driving both qubits.
In this section, we first explain how to address the "molecular" energy levels of
two quantroniums strongly coupled; then we present two different two-qubit
gates made up of two quantroniums in or out of resonance.

1.2.2.1 Addressing the energylevels of the molecule

When νcc

√
1 + s2 >> νr, one can only address the energy levels of the whole

two-qubit molecule. This can be done by driving resonantly a molecular tran-
sition from any side of the "molecule", i.e. through gate A and/or B.
Let us consider first the case of the transition between the ground state Φ0 and
the first "molecular" state Φ1, excited through gate B with a signal ∆NgB

=
∆NgB0

cos (2πνµwt + ϕB) with νµw = (E1 − E0)/h = ν(1 − r
√

1 + s2)/2. In
the coupled (molecular) basis (1.53), the Hamiltonian (1.49) writes

2

h
Ĥ = νAσ̂zA

+ νBσ̂zB
+ νccσ̂xA

σ̂xB
+ 2νrB

cos (2πνµwt + φ) σ̂xB
,

(1.55)

which gives in the rotating wave approximation

2

h
Ĥ =




−ν α(s)ν̃∗
rB

β(s)ν̃∗
rB

0

α(s)ν̃rB
−νcc

√
1 + s2 0 α(s)ν̃∗

rB

β(s)ν̃rB
0 νcc

√
1 + s2 β(s)ν̃∗

rB

0 α(s)ν̃rB
β(s)ν̃rB

ν




{|Ψ0〉,..,|Ψ3〉}

(1.56)

where ν̃B = νrB
ei(2πνµwt+ϕB) (νrB

would be Rabi frequency of qubit B if it
were alone), ν̃∗

rB
notes for the conjugate of ν̃rB

, and



40 1 The Quantroswap: a two qubit gate based on the Cooper Pair Box

α(s) =
1√
2

√
1 + g(s)√
1 + s2

,

β(s) =
1√
2

1√
1 + g(s)

,

and

g(s) = s2(1 + sign(s)
√

1 + 1/s2).

(1.57)

Going first to the frame rotating at the excitation frequency, and applying
then the unitary operator

U = ei2π
ν(−|Ψ0〉〈Ψ0|+|Ψ3〉〈Ψ3|)−νcc

√
1+s2[|Ψ1〉〈Ψ1|+|Ψ2〉〈Ψ2|]

2 t (1.58)

to eliminate most oscillating terms, Hamiltonian (1.56) becomes

ĤI =
h

2




0 α(s)νrB

α(s)νrB
0

βνrB
0

0 α˜̃ν∗
rB

βνrB
0

0 α˜̃νrB

2νcc

√
1 + s2 β ˜̃ν∗

rB

β ˜̃νrB
0




{|Ψ0〉,..,|Ψ3〉}

(1.59)

with ˜̃νrB
= ei2π

√
1+s2νcct.

In matrix (1.59), the upper left block is responsible for the main transition
|Ψ0〉 → |Ψ1〉 at frequency ανrB

. In addition, the red terms induce the spurious
transition |Ψ0〉 → |Ψ2〉 at frequency

√
(βνrB

)2 + 4ν2
cc(1 + s2) leading to a

maximum population 1 − 2νcc

√
1 + s2/(βνrB

) of level |Ψ2〉. As an example,
for two resonant qubits (∆ν = 0) and νcc/νrB

> 5, this maximum population
of |Ψ2〉 is below 5%. Neglecting this leakage to |Ψ2〉 and noticing that the other
terms do not couple to states |Φ0〉 and |Φ1〉, Hamiltonian (1.59) simplifies to

ĤI = hανrB
(eiφB |Ψ1 >< Ψ0| + e−iφB |Ψ0 >< Ψ1|). (1.60)

We now consider the case of addressing the system through both gates
at the same frequency, but with different amplitudes νrA,B

and possibly dif-
ferent phases φA,B . This situation pertains to the capacitive crosstalk that
exists between gates A (resp. B) and island B (resp. A). Within the same
approximation, Hamiltonian is now

ĤI = h(νr|Ψ1 >< Ψ0| + ν∗
r |Ψ0 >< Ψ1|).

with νr = ανrA
eiφA + βνrB

eiφB . So by carefully adjusting νrA,B
and δφ =

φB − φA, it is possible to tune the frequency νr of the coherent oscillations.
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1.2.2.2 An ISWAP gate with two resonant quantroniums

We now consider the case of two quantroniums that can be manipulated indi-
vidually (νcc

√
1 + s2 << νr), and that are then brought on resonance to turn

on their coupling and make a two-qubit gate. After the resonant condition has
been established (∆ν = 0), the Hamiltonian (1.51) is

Ĥ =
ν − ∆ν

4
σ̂zA

+
ν + ∆ν

4
σ̂zB

+
νcc

2
σ̂xA

σ̂xB

=
h

2




−ν νcc

0 νcc

νcc 0

νcc ν



{|00〉,..,|11〉}

=
h

2




−
√

ν2 + ν2
cc

−νcc

νcc √
ν2 + ν2

cc



{|Ψ0〉,..,|Ψ3〉}

,

where the uncoupled basis |00〉 .. |11〉 is considered as the computational basis
for the qubit register.

Within the rotating wave approximation [32], in the doubly Larmor-
precessing frame R(2) rotating at νA,B around σzA,B

, the Hamiltonian is trans-
formed into

ĤI =
h

2




0

−νcc

νcc

0



{|00〉,..,|11〉}

. (1.61)

According to Schrödinger equation [71], the system initially prepared in state
|Ψ(0)〉 evolves as

|Ψ(t)〉 = Û(t) |Ψ(0)〉 , (1.62)

where

Û(t) = e−ı
cHI t

~ = e−ıπνcct(|10〉〈01|+|01〉〈10|) (1.63)

=




1

cos (πνcct) i sin (πνcct)

i sin (πνcct) cos (πνcct)

1




.
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This evolution operator leaves states |00〉 and |11〉 unchanged, while it induces
coherent oscillations between |10〉 and |01〉 with period 2/νcc. After half a
period, a quantum of energy has been swapped between the qubits, hence the
word SWAP in the name of the gates.
More precisely, the three durations t1 = 1/4νcc, t2 = 1/2νcc and t3 = 1/νcc

lead to the following quantum gates:

Û(t1 = 1/4νcc) =
1√
2




1

1 i

i 1

1



≡

√
iSWAP, (1.64)

Û(t2) =




1

0 i

i 0

1



≡ iSWAP, (1.65)

Û(t3) =




1

−1

−1

1




. (1.66)

The
√

ISWAP gate transforms |01〉 in the maximally entangled state |01〉 +

i |10〉, and is universal. The operator Û(t2), nicknamed ISWAP, transforms
|01〉 in ı |10〉.

In case the two qubits are not strictly on resonance, the evolution is
slightly modified, but still keeps the separation between the |00〉 , |11〉 and
|01〉 , |10〉. The evolution can be visualized in the Bloch sphere corresponding
the |01〉 , |10〉 subspace as shown in Fig. 1.13a.
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Fig. 1.13. Bloch sphere representation of the free evolution of quasi-resonant
quantroniums in the |01〉 , |10〉 subspace. a): Bloch sphere in the computational basis.
The fictitious spin precesses around the h(νA−νB)−→z +hνcc

−→x . b): Bloch sphere in the
energy eigenstate basis. The fictitious magnetic field is now hνcc

−→z − h(νA − νB)−→x .

1.2.2.3 Gate based a non-resonant coupling induced by irradiation
of two quantroniums

We now present a two-qubit gate with non-resonant quantroniums, both of
them being driven resonantly with drive amplitude properly chosen to intro-
duce an effective coupling between them. This method is well-known in NMR
[70] to induce an effective coupling between two spins with different Larmor
frequencies. Although, it has been described for qubits [72] in terms of qubit
dressed states, it can be derived in a semi-classical way as we do now. Figure
1.14 illustrates the idea behind this coupling scheme. It consists in introducing
terms at the same frequency in the dynamics of the two qubits. This is done
by choosing their Rabi frequencies such that νA − νrA

= νB + νrB
, or more

precisely νrA
= νrB

= ∆ν/2 (we suppose here νA > νB) .

The Hamiltonian of the two "spins", including their resonant driving
terms, is

Ĥ =
hνA

2
σ̂zA

+
hνB

2
σ̂zB

+ hνrA
cos (2πνAt + ϕA) σ̂xA

+ hνrb
cos (2πνBt + ϕB) σ̂xB

(1.67)

+
hνcc

2
σ̂xA

σ̂xB
,

with νrA,B
the Rabi frequency of each qubit.

In the doubly Larmor-precessing frame R(2) rotating at νA,B around −→z A,B ,
this Hamiltonian becomes
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Fig. 1.14. Principle of a SWAP gate made with two non-resonant qubits. a) Energy
diagram showing how an effective coupling is introduced between the qubits by
driving both of them resonantly at Rabi frequencies νRA = νRB equal to half their
energy difference ∆nu = νA−νB . The qubits share a common frequency νA−νRA =
νB + νRB in their dynamics, which introduces the effective coupling. b) Physical
intuition on the effective coupling can be gained by looking semi-classically at the
dynamics of qubit A in its Bloch sphere rotating at microwave frequency νA. In this
frame called R(2) (see text), qubit A is subject to a transverse, static, classical, and
coherent field νRA (represented by an orange arrow along x ) and to the qubit B
induced "qantum field" νcc/4 cos (2π∆ν/2t) (represented here by a red double arrow
along y) that oscillates at the very same frequency νRA . Within the rotating wave
approximation applied to the frame R(4) that corresponds to R(2) rotating around
y at ∆ν/2 = νRA , this oscillating quantum field becomes static with an amplitude
νcc/16. So the effective coupling induces rotation of qubit A at frequency, νcc/16,
while symetrically, qubit B undergoes the same oscillation with opposite phase, so
that the net interaction is of the SWAP type.
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Ĥ1 = U1HU+
1 − ~

i U1
dU+

1

dt (1.68)

where U1(t) = eıπ[(νAt+ϕA)bσzA
+(νBt+ϕB)bσzB

]

U1 = eıπ(νAbσzA
+νB bσzB

)t

= eıπνAbσzA
t.eıπνB bσzB

t

= (cos (πνAt) + iσ̂zA
sin (πνAt))(cos (πνBt) + iσ̂zB

sin (πνBt)) (1.69)

is the transformation operator from the laboratory frame to R(2). By neglect-
ing all terms oscillating at the frequency 2νA,B (rotating wave approximation),

2

h
Ĥ1 = νrA

σ̂xA
+ νrB

σ̂xB
+ νccU1σ̂xA

σ̂xB
U+

1 , (1.70)

with

U1σ̂xA
σ̂xB

U+
1 = cos (∆νt + ∆ϕ)

σ̂xA
σ̂xB

+ σ̂yA
σ̂yB

2
+ sin (∆νt + ∆ϕ)

σ̂xA
σ̂yB

− σ̂yA
σ̂xB

2

and ∆ϕ = ϕB − ϕA.
Choosing νrA

= νrB
= ∆ν/2 as explained above, one gets

4

h
ĤI = ∆ν [σ̂xA

+ σ̂xB
]

+ νcc

[
cos (∆νt + ∆ϕ)

σ̂xA
σ̂xB

+ σ̂yA
σ̂yB

2
+ sin (∆νt + ∆ϕ)

σ̂xA
σ̂yB

− σ̂yA
σ̂xB

2

]
.

We now switch to the quadruply rotating frame R(4) that corresponds
to R(2) rotating around −→x A and −→x B at frequencies νrA,B

, respectively. The

corresponding transformation operator from frame R(2) to frame R(4) is

U2(t) = eı2π(
νrA

2 bσxA
+

νrB
2 bσxB

)t

= eı2π ∆ν
4 (bσxA

+bσxB
)t,

and leads to the new interaction Hamiltonian

Ĥ2 =
hνcc

4
U2

[
cos (2π∆νt + ∆ϕ)

σ̂xA
σ̂xB

+ σ̂yA
σ̂yB

2
+ sin (2π∆νt + ∆ϕ)

σ̂xA
σ̂yB

− σ̂yA
σ̂xB

2

]
U+

2 .

Now one has

U2σ̂xA
σ̂xB

U+
2 = σ̂xA

σ̂xB
,

U2σ̂yA
σ̂yB

U+
2 = eı 2π∆ν

4 bσxA
tσ̂yA

e−ı 2π∆ν
4 bσxA

teı 2π∆ν
4 bσxB

tσ̂yB
e−ı 2π∆ν

4 bσxB
t

=

[
cos

(
2π∆ν

2
t

)
σ̂yA

+ sin

(
2π∆ν

2
t

)
σ̂zA

] [
cos

(
2π∆ν

2
t

)
σ̂yB

+ sin

(
2π∆ν

2
t

)
σ̂zB

]
,
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and

U2σ̂xA
σ̂yB

U+
2 = σ̂xA

[
cos

(
2π∆ν

2
t

)
σ̂yB

+ sin

(
2π∆ν

2
t

)
σ̂zB

]
.

Thus, by considering νcc << ∆ν and suppressing all fast oscillating terms
that average to zero,

Ĥ2 =
hνcc

16
[(σ̂yA

σ̂yB
− σ̂zA

σ̂zB
) cos (∆ϕ) + (σ̂yA

σ̂zB
+ σ̂zA

σ̂yB
) sin (∆ϕ)] .

As U2(t = 4m/∆ν) = I with m ∈ N, the two frames R(2) and R(4) coincide
every 4m/∆ν periods. By adjusting ∆ϕ to 0 and ∆ν such that νcc/4 = ∆ν/m,
Hamiltonian is

Ĥ2(4m/∆ν) =
hνcc

16
(σ̂yA

σ̂yB
− σ̂zA

σ̂zB
)

The evolution operator ei bH2t/~ corresponds at t = 16/νcc to the universal two
qubit gate 1 + σ̂yA

σ̂yB
, which transforms, for example, |00〉 in a maximally

entangled state |00〉 − |11〉[73].
A few remarks need to be made at that level. Note first that suppressing
non-secular terms as we have done implies two strong conditions: ∆ν/2 =
νrA,B

<< νA,B and νcc << νrA,B
= ∆ν/2. Condition 1 is easily satisfied

since ∆ν can easily be made one order of magnitude smaller than the qubit
frequencies. The second condition is more drastic, as it requires to induce
Rabi oscillations at high frequency, which implies working with CPB with
large anharmonicity in order not to populate higher excited levels. Finally,
note that this protocol can not be implemented on CPBs circuit with large
gate crosstalk.
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1.2.3 Readout of two coupled quantroniums by DC switching

A natural requirement for the quantroswap readout is to be able to project
the two quantroniums onto the computational basis states (|00〉,..,|11〉), with
the correct probabilities that correspond to the two-qubit state just before the
readout was switched on. Then, the states of the two quantroniums are deter-
mined quasi-simultaneously and independently. This requirement applied to
the DC switching readout method, rises a technical issue and a more funda-
mental one. The technical one is called "readout crosstalk", and corresponds
to a possible perturbation of the switching of readout junction A, due to the
simultaneous operation of readout junction B, and vice and versa. We do not
address this problem in this theoretical chapter. The more fundamental issue
is the unwanted evolution of the two-qubit state while ramping the readout
currents ibA,B

, and consequently the frequencies νA,B [δA,B(IbA,B
)].As shown

by Eq. (1.53), this spurious evolution occurs as soon as ∆ν . νcc. It thus
occurs at the beginning of the readout ramp if the two qubits were invloved
in a swap operation just before, or when νA and νB cross each other during
the ramp.
We now evaluate quantitatively the probabilitiy that the two qubits stay in
the initially prepared state |10〉 or |01〉, in the simple case where only readout
B is ramped, as illustrated in Fig. 1.15. The time dependent Schrondinger
equation for the system is

i

π

∂

∂τ
=

[
−τ/x 1

1 τ/x

]

|10〉,|01〉
(1.71)

where τ = νcct and x = ν2
cc/(∂∆ν/∂t) is the only dynamical parameter.

This equation was integrated numerically starting either well before or at the
crossing point defined by νA = νB . Results are shown in Fig. 1.15 for these
two cases and for the initial state |10〉. In case the two qubits cross each other
during the ramp, P|10〉 coincides with the Landau-Zener tunneling probability
[74]

PLZ = e−2π2x, (1.72)

within a precision better than 1%. Figure 1.15 shows that the two qubit
state, and consequently the contrast of Rabi or SWAP oscillations, can be
tremendously modified at readout depending on the ramping speed. More
precisely the state is preserved with a probability better than 95% only when
∂∆ν/∂t >> 250ν2

cc. Note also that any two-level-system with a frequency
crossing the frequency of the qubits can induce exactly the same problem, as
already pointed out for other Josephson qubits.
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Fig. 1.15. Evolution of the two qubit states during a readout ramp of qubit B alone.
a) Time-dependant energy diagram of the system during a δB ramp over a range
of about 0.2×2π rad. Uncoupled states |01〉 and |10〉 are indicated by red and blue
dashed lines, while energies of eigenstates |Ψ1〉 and |Ψ2〉 are in orange. All energies
are expressed in νcc units. The system is initially prepared in the |10〉 state, and the
ramp is started either well before or at the crossing point C defined by νA = νB .
b) Probability P|10〉 that the system is still in the |10〉 state at the end of the ramp
as a function of νcc/(∂∆ν/∂t), when the ramp is started well before (purple line)
or at the crossing point C (magenta line). In the first case, P|10〉 coincides with the
probability of Landau-Zener tunneling across C. In the second case, when the energy
evolution is very slow compare to ν2

cc, the system is either in state |10〉 or |01〉 with
50% probability, and all the information about the initial state is lost.
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2.1 Quantum engineering and design of a two
quantronium qubit experiment

In this chapter we report on our design of a two-quantronium experiment for
demonstrating the coherent coupling between the qubits, and for implement-
ing the universal quantum gate (ISWAP )1/2, hence the name Quantroswap.
More precisely, the planned experiment involves two quantroniums A and B
whose islands are connected by a small capacitance as described in Fig. 1.10.
The quantroniums have slightly different frequencies at their optimal work-
ing points in order to have a negligible interaction there, which allows their
independent preparation in a first step. Then, the interaction is switched on
by placing the quantroniums in resonance, which is achieved by tuning the
phase of the quantronium with the highest frequency. In the simplest im-
plementation, a trapezoidal current pulse with fast rise and fall times Tb is
applied to its readout circuit, as described in Fig. 2.1b. Shifting the qubit from
its optimal point reduces its coherence time, and should be done in a time
shorter than the coherence time at the arrival point. Then the two qubits are
coupled and decoherence follows a different law explained at the end of the
present section. During the in-resonance step, the capacitive interaction yields
a periodic swapping of the two qubits, and the universal gate (ISWAP )1/2

is obtained after a quarter of period. An alternative implementation would
consist in keeping the two quantroniums at their optimal point, while cou-
pling them using the FLICFORQ method described in section 1.2.2.2. After
the swapping step, either one or both qubits are measured by DC switching
of their readout junctions (see section 1.1.6), or by bifurcation of their read-
out oscillators (see section 1.1.7). When reading out the two qubit states, the
measurement pulses are applied independently and simultaneously. However,
the readout measures the σZ component of the fictitious spin representing
each qubit, which does not fully characterize the two-qubit quantum state
produced by the gate. Ideally, the quantum tomography of the final quantum
state should be performed by applying suitable qubit rotations (π/2)X,−Y be-
fore readout in order to determine the nine average values of σUA

σUB
, where

U stands for X, Y or Z.
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Fig. 2.1. Different characteristic times and energies involved in a Quantroswap
experiment. a) Characteristic times for coherence and readout (green), qubit ma-
nipulation (purple), material properties and temperature (orange), and qubit and
readout oscillator frequencies (red). T1, Tϕ, and Tmeas are the relaxation, dephasing
and measurement times respectively. TSWAP and TFLICFLORQ are the two-qubit
gate durations for the two coupling schemes discussed. Tπ and Tb are the duration
of a π pulse, and the rise and fall time of the current pulse bringing the two qubits
in resonance in the first coupling scheme. Frequencies ν01, ν12 and νp are the first
two transition frequencies and the plasma frequency of the readout oscillator. T and
∆ are the typical electronic temperature of the circuit and the Al superconducting
gap. b): Simple experimental protocol for demonstrating a SWAP gate within the
resonant coupling scheme. Both qubits are initially at their optimal point. One of
them (A for instance) is prepared in state |1〉 by a π pulse. Then the qubit with the
highest frequency (here B) is brought in resonance with the other qubit by a pulse
in δ. The two qubits swap in a time TSWAP = 1/2νcc, with νcc the difference of
frequencies between the eigenenergies (dashed orange) of the system.

With this quantrowap experiment in mind, one has to optimize the vari-
ous parameters involved in the different building blocks of the circuit. A key
concept in this optimization is to achieve the desired hierarchy between the
different characteristic times involved in the experiment (see Fig. 2.1). First,
the duration of single qubit gates should be shorter than the duration of a
two-qubit gate in order to manipulate the qubits independently whether they
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are in resonance or not. Second, the two-qubit gate duration should be shorter
than the qubit coherence time in order to perform as much gate operations
as possible before quantum coherence is lost. Then, single qubit gates, repre-
sented in Fig. 2.1 by the duration Tπ of a π pulse, are of course much longer
than the qubit period. The time needed to reach the resonance condition Tb

should be shorter than TSWAP in order to avoid complex evolution of the sys-
tem during the rise and fall. The two qubit swapping time (either TSWAP or
TFLICFORQ for the resonant and FLICFORQ coupling schemes, respectively)
governed by the capacitive coupling between the quantroniums should then
be shorter than the times T1 and Tϕ that characterize coherence. Finally, the
measurement time Tmeas should be shorter than T1 in order to avoid spurious
relaxation during measurement.

This hierarchy between the timescales is not the only requirement to be
fulfilled. Indeed, other issues come into play: the electronic temperature of the
circuit, the sensitivity of the readout circuit, the fabrication process, and the
availability of microwave components. When several requirements contradict
one another, which often happens, trade-offs have to be found. By using the
results of chapter 1 to evaluate quantitatively these requirements and trade-
offs, we determine below the parameters of the various circuit blocks.
The section is organized as follows:

- We first select qubit parameters ensuring a sufficient anharmonicity
and the absence of thermal excitation of the qubit.
- Then, we determine the gate line parameters of each qubit in order
to achieve fast single qubit gates, with limited relaxation due to the
gate impedance.
- In a third step, the DC switching readout is designed for reaching a
high sensitivity, a short measurement time, a frequency decoupling to
the qubit, and limited relaxation due to the impedance of the readout
circuit.
- Finally, we determine the coupling capacitance between the quantro-
nium to ensure the adequate timescale separation.

2.1.1 Determination of qubit parameters

We determine in this section the qubit parameters, i.e. the Josephson energy
EJ , the charging energy EC , and the CPB asymmetry d.

2.1.1.1 Choice of the qubit frequency

The first requirement is to maintain the qubit energy hν01(δ = 0, Ng = 0.5)
well above the thermal energy scale kBT ≈ 40 mK in order to limit the
probability e−hν/kBT for thermal excitation of state |1〉. However, due to the
limited frequency range of commonly available microwave components and
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equipments, this frequency has to be lower than 20 GHz. In order to ensure
a sufficient safety margin, a suitable value for the qubit frequency is about
17 GHz. Given this value of ν01, the possible values of EJ and EC are shown
in Fig. 2.2.

Fig. 2.2. Josephson (red line) and charging (blue line) energies, as well as anhar-
monicity η (orange line) as a function of EJ/EC for ν01(δ = 0, Ng = 1/2) = 17 GHz.
Orange areas correspond to an anharmonicity larger than 10%, which is the mini-
mum target value for the experiment.

2.1.1.2 Single qubit gate, speed, and anharmonicity

As explained in section 1.1.3, the second requirement is to be able to operate
the qubit in a time much shorter than the qubit decoherence time and much
shorter than the swapping time. More precisely, microwave excitation pulses
have to induce selectively the transition between states |0〉 and |1〉, avoiding
excitation of the third level. Equation (1.12) leads to a minimum difference
of frequency ν12 − ν01 in order to populate the third level by less than 3%
during a π pulse of 1 ns. This corresponds to an anharmonicity larger than
10% for a qubit at 17 GHz, and thus to possible values of EJ/EC ratio below
1.9 (area I in Fig. 2.2) or in the range 4 to 5 (area II in Fig. 2.2). Area
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II was already explored experimentally before this thesis work by making
quantroniums with large and weakly oxidized junctions. Unfortunately, these
qubits always exhibited many spurious two-level systems coupled to the qubit.
Therefore, we have decided to limit our optimization to area I of Fig. 2.2.

2.1.1.3 Readout discrimination

As explained in section 1.1.6, the "DC switching" readout is based on the
discrimination of the persistent currents i|0〉 and i|1〉. The phase dependance
of the signal, i.e. i|1〉 − i|0〉(δ), is shown in Fig. 2.3a. The two specific values
of δ spotted on the figure correspond to two different values of the current
bias prepulses (see section 1.1.6). Figure 2.3b shows the iso-signal lines as
well as the regions with anharmonicity larger than 10%, in the EJ -EC plane
and at the optimal value of δ. When moving in region I along the target line
ν01 = 17 GHz (blue line in Fig. 2.3), the signal happens to be maximum at
the border, i.e. at EJ = 1kBK. This value is thus optimal, which is still the
case for limiting decoherence, as we now show.

Fig. 2.3. Maximization of the readout signal at Ng = 1/2. a) Difference between
persistent currents of the two qubit states with respect to δ for ν01(Ng = 0.5, δ =
0) = 17GHz. The orange and green dots correspond to phases δp reached at the
top of the readout pulse when starting from the optimal working point with no
pre-bias pulse (δ = 0) and with the optimal possible prepulse (δ = 0.12 × 2π rad),
respectively. b) Iso-values (red lines) of the maximum reachable signal i|1〉 − i|0〉 in
the EJ -EC plane for δ = 0.32×2π rad (dotted vertical line in graph a). The blue line
corresponds to the target value ν01 = 17GHz. Orange areas correspond to regions
where anharmonicity is larger than 10% (see Fig. 2.2)
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2.1.1.4 Dephasing time

The last constraint in the choice of (EJ , EC) is the maximisation of the deco-
herence time due to microscopic fluctuators. We thus calculate the charge and
phase noise contributions to dephasing time using Eqs.(1.32)-(1.30)-(1.34) at
and away from the optimal point, respectively, as well as the noise spectral
densities determined in experiment [27] (ANg

≃ 1.6 10−6 and Aδ ≃ 0.9 10−8).
The results are shown in Fig. 2.4 as a function of EJ/EC and of the working
point. Panel c) of the figure shows that close to the optimal point and below
EJ/EC = 1.9, Tϕ decreases quickly as EJ decreases, which is not a surprise
when remembering that Ng noise dominates decoherence in regimes 1 and 2 of
Fig. 1.2. The optimal EJ/EC is consequently 1.9, which leads to an expected
Tϕ of about 1 µs.

Partial conclusion

As a conclusion, considering the constraints of operability and sensitivity, the
optimal frequency of 17 GHz leads to EJ = 0.97 K and EC = 0.51 K (black
dot in Fig. 2.3b).
These two energies depend on three fabrication parameters of the Josephson
junctions: their area A, their specific tunnel conductance GTu, or equivalently
their critical current density I0u, and their capacitance CJu per unit area.
Using the Ambegaokar-Baratoff relation [31] and the definition of EC , one
has indeed:

EJ = I0ϕ0 = I0uϕ0A =
πϕ0

2e
∆GTuA,

EC =
(2e)2

2CJ
=

(2e)2

2CJu

1

A
,

where ∆ ≃ 180µeV is the value of the superconducting gap usually measured
on aluminum thin films (above 40 nm), and CJu ≃ 100 fF/µm2 (value mea-
sured for Aluminum oxide grown at room temperature).
The value EC = 0.51 K then gives a junction area of 0.2 × 0.18µm2, whereas
EJ = 0.97 K yields a critical current density of 113 A/cm2, or equivalently a
tunnel conductance 1/(500 Ω.µm2).

2.1.2 Design and parameters of the gate line circuit

The second design step consists in determining a suitable gate capacitance
that limits relaxation due to the gate line, given its standard 50 Ω impedance,
without loosing too much in qubit operability.

2.1.2.1 Maximization of the Rabi frequency

As explained in section 1.1.3, the Rabi frequency νr0 = 2EC∆Ng| 〈0| N̂ |1〉 | is
is proportional to ECCgVgµw

, where Vgµw
is the microwave amplitude of the
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Fig. 2.4. Dephasing time Tϕ as a function of EJ/EC and of the working point
for ν01 = 17GHz and d = 5%. Color lines are calculated iso-Tϕ contours in the
Ng−EJ/EC plane (at δ = 0) in left panels, and in the δ−EJ/EC plane (at Ng = 1/2)
in right panels. a), b) and c) correspond to the charge noise contribution only, to
the phase noise contribution, and to the sum of them, respectively. The horizontal
dashed lines indicates the EJ/EC value chosen for the design. The calculation use
expressions given in section 1.1.8, and charge and phase noise spectral densities
characterized by ANg ≃ 1.6 10−6 and Aδ ≃ 0.9 10−8.
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gate pulse. Note that this dependance allows to drive the Cooper pair box even
when EC is small 1, by increasing Cg or Vgµw

within the limits of the available
power. Although commercial continuous microwave sources can deliver up to
+20 dBm (up to 20 GHz), some power is lost when creating pulses by mixing
their CW output with DC pulses supplied by arbitrary waveform generators.
The available power in the pulse is in pratical about 10dBm. Moreover, the
microwave generators have noise temperatures of several 104K, and have to
be heavily attenuated to reduce the noise on the quantronium gate. More
precisely, as explained in section 1.1.8, the effective electronic temperature
Teff as seen from the gate has to be lower than Tq = hν01/kB in order to
prevent excitation of the qubit. This leads to a minimal attenuation of -60
dB to decrease the noise below Tq. This attenuation is provided by several
attenuators placed at proper locations all along the gate line to prevent heating
of the fridge and to thermalize gradually the electrons (this point will be
explained in more details in section 2.2). This leads to a maximal microwave
power available on the gate capacitance of the order of −50 dBm = 0.7 mV ≃
0.2%Cooper pair / aF.
Figure 2.5 shows the Rabi frequency νr0 as a function of Cg for the chosen
EJ and EC values. Taking our target value of νr0 = 0.5 GHz, we read on the
figure that Cg has to be larger than 1 aF. We now chose a more precise value
based on the evaluation of the gate line induced decoherence.

2.1.2.2 Gate line induced decoherence

The relaxation and dephasing times are given by Eqs. (1.18)-(1.23)-(1.24)-
(1.27), which lead for hν01/(kBT ) >> 1 to

T1,Ng
=

1

32π2
∣∣∣〈0| N̂ |1〉

∣∣∣
2

κ2 Re[Zg(2πν01]
Rk

ν01

(2.1)

and

Tϕ,Ng
=

1

16π2| 〈0| N̂ |0〉 − 〈1| N̂ |1〉 |2κ2 Re[Z(ν=0]
Rk

kBT
h

. (2.2)

Given the values chosen for EJ and EC , and assuming that the 50Ω impedance
of the line is at T = 100 mK, one gets T1,Ng

≃ 12/C2
g ms/aF

2
and Tϕ,Ng

≃
0.026(Ng − 0.5)−2/C2

g s/aF
2
. These functions are plotted on Fig. 2.6, which

shows that dephasing is completely negligible in the range of capacitance
considered above. Besides, T1 decreases with Cg, which should be kept below
30 aF to get T1 > 10 µs. We are thus left with Cg ∈ [1, 30] aF and chose
Cg = 10 aF.

1 This property is exploited in the transmon version of the Cooper pair box
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Fig. 2.5. Iso-values of the Rabi frequency as a function of gate capacitance Cg and
of the microwave power applied to the gate for the selected values EJ = 0.51 K
EC = 0.97 K. The green area corresponds to a gate power higher than available.
Dashed vertical line indicates the minimal value for Cg in order to apply a π pulse
in 1ns.

2.1.3 Design and parameters of the readout circuit

The design of the readout line is a bit more complicated than that of the
gate line. In this section, we only discuss the DC switching readout, which
is the only one we have actually used in Quantroswap experiments. The case
of the Josephson bifurcation amplifier is treated in chapter 4, devoted to
current to frequency conversion with a Quantronium. As far as DC switching
is concerned, we want to be able to apply fast readout pulses with a rise time
and a plateau duration (see Fig. 2.1b) as short as 10 ns, and with a noiseless
peak value Ip. Thus, we choose (see Fig. 2.7) to attenuate strongly the pulses
with several 50Ω attenuators (at different places along the readout line as
for the gate line), to place the bias resistor Rb of the current source Ib at
milliKelvin temperature, and to match the line to 50Ω above and below Rb.
As the readout oscillator (readout junction in parallel with capacitance Cr)
would behave as a short at the end of the line if it was alone, we insert a
Rl = 50 Ω load resistance in front of it. With such a design, Rb is the only
non 50Ω component, and the reflected and transmitted pulses are absorbed
completely. Besides, the impedance of the line as seen from the qubit (or from
the readout oscillator) has to be kept under control up to 20 GHz. However,
since Rb is made big for thermalization purpose, its impedance is not known at
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Fig. 2.6. Gate line contribution to decoherence as a function of Cg for EJ = 0.51 K
EC = 0.97 K: T1 (blue) is calculated at the optimal point whereas Tϕ is calculated
at δ = 0 in the relevant range Ng ∈ [0.4, 0.5]. The left green area is discarded for
power availability reason, while the bottom one corresponds to T1 shorter than our
target value 10µs.

high frequency, so that we choose to prevent the qubit from seeing it. Thus, we
place a capacitor to ground immediately after Rl. The value of this capacitor
is chosen so that it terminates the impedance as seen from the readout above
a few GHz, but does not disturb a 10 ns long readout pulse propagating down
the line. Finally, two high impedance voltage probes are connected to ground
and above the capacitor, respectively (more details will be given in the next
section).

With this structure of the readout line in mind, we have now to determine
the parameters of the readout oscillator, i.e. its critical current I0 and parallel
capacitance Cr, in order to maximize the readout fidelity and minimize the
readout line induced decoherence.

Let us first notice that Cr plays several roles in the quantronium circuit.
First, it reduces the plasma frequency νp = 1/2π

√
LCr of the oscillator 2 well

below the qubit transition frequency, during manipulation and readout ramp.

2 L = ϕ0/
p

I2
0 − I2

b is the inductance of the junction biased by a current Ib.
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Fig. 2.7. Schematic of the readout line with its readout oscillator (on the left),
an RlCf filter that matches the line to 50Ω and prevents the top part of the line
from being seen by the qubit, the bias line resistor Rb, and 50Ω attenuators. A
differential high-impedance voltage probe is inserted between the filter and Rb. The
environment seen by the qubit reduces to the Josephson oscillator in parallel with
Rl at high-frequency, and to Josephson junction in parallel with Rl+Rb+50 Ω at
low frequency.

It also reduces the δ phase noise by filtering the current noise produced by
the admittance Y (ν) of the line. Finally, it influences the quality factor Q of
the oscillator, and thus the physics of the switching.

2.1.3.1 Maximization of the readout fidelity

The switching probability PS(Ib + i|0〉,|1〉) of the readout junction during a
readout pulse with duration τ is given by Eq. 1.7, asssuming a quality factor
Q of the readout oscillator above 1 [75, 76, 77]. In this regime the escape
is dominated by quantum tunneling below the crossover temperature TCO =
hνp/7.2kB , and by thermal activation above. The readout sensitivity improves
thus upon cooling down till the crossover temperature is reached. As the
effective temperature of the dissipative elements of the readout line is about
40 mK, it is convenient to have TCO in this range or slightly below, so that the
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sensitivity is maximum and weakly dependent of temperature. This criterium
leads to a plasma frequency at switching in the range of 2 GHz−5 GHz, which
corresponds to a 4 − 10 GHz range at zero current. More precisely, Eq. 1.7
can be very well approximated (see p.53 of Ithier’s thesis [17]) by a universal
curve

PS(∆s) = 1 − exp

[
−| ln 0.4| exp

(
α

0.4| ln 0.4|∆s

)]
, (2.3)

where s = Ip/I0 and ∆s = s − s0 with s0 defined by PS(s0) = 0.6, where the
slope of PS(s) is maximum and equal to

α = 0.4| ln 0.4|2
√

2ξJ

kBT

√
1 − s0. (2.4)

The readout sensitivity is thus characterized by the width ∆Ip = I0/α of the
interval of Ip over which PS(s) varies from almost 0 to almost 1 (sensitivity
can be defined here as 1/∆Ip), and one has

∆Ip = 1.2

(
kBT

ϕ0

)2/3

ln(
νpτ

| ln 0.4| )I
1/3
0 . (2.5)

Figure 2.8 shows iso-∆Ip in the i0 −Cr plane, as well as νp and Q, T=40 mK,
τ = 10 ns and taking Rl = 50Ω as the only element seen from the oscillator.
The sensitivity increases slowly when I0 is decreased. Moreover, resolving a
small ∆Ip out of a small Ip is technically easier than out of a larger Ip, which
also pushes to choose a low I0 for the readout junction. However, I0 needs
to be larger than a few hundreds of nA in order to detect the switching fast
enough in practise. Furthermore, reducing the critical current decreases Q,
which can change the switching regime. Indeed, below a critical value Q ≃ 1,
the escape out of the readout junction does not trigger the switching auto-
matically since the junction can be retrapped in the next well. This noisy
retrapping regime should definitively be avoided.

Besides, Cr has to be placed very close to the qubit, which imposes some
restrictions on its shape and size. We have developed two techniques to fab-
ricate multi-layer capacitors with high dielectric permittivity (see Annex D).
The maximum capacitance available is about 3-4 fF/µm2 and the size is lim-
ited to a few hundreds of µm2 to avoid resonances below 20 GHz. Cr has
thus to be definitely lower than 4 pF. Last but not least, the currents to
be discriminated differ at best by 15 nA, as found in 2.1.1 (see Fig. 2.3). We
are thus left with the white region of Fig. 2.8 for the possible values of (I0, Cr).

Since a large Cr is also needed for reducing decoherence and a large dif-
ference between the plasma and qubit frequencies is desirable, we estimate
that a critical current I0 ≈ 0.65µA and a capacitance Cr ≃ 3pF (dot in Fig.
2.8), which yield a bare plasma frequency νp ≃ 4 GHz, provide a reasonable
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trade-off between all requirements. The sensitivity is however barely sufficient.

A further issue to address is the possible crossing of the qubit and plasma
frequencies during the readout ramp. Indeed, in the experiment, the qubit is
ideally manipulated at δ = 0 and then brought close to δ/2π ≃ 0.45, where
the difference between persistent currents is maximum. The qubit frequency
ν01 drops down from 17 GHz to about 3 GHz (for EJ = 0.97 K, EC = 0.51
K, and d < 5%), while the plasma frequency νp decreases from 4 to 2 GHz.
The crossing is thus avoided.

Fig. 2.8. Choice of readout oscillator parameters. a) Iso-Q curves (color lines) and
iso-νp (black lines) in the I0 −Cr plane at zero bias current. b) Iso-∆i curves (color
lines). The dash line indicates the chosen plasma frequency νp = 4 GHz. Green areas
are discarded to avoid retrapping, to get small enough capacitor, a sufficiently low
νp, and a sufficient sensitivity. Black dot indicates our final target point

2.1.3.2 Minimization of the readout line induced decoherence

The relaxation rate Γ
δ/2π
rel due to the readout circuit is calculated from Eqs.

(1.20)-(1.23)- (1.24) of section 1.1.8:

Γ
δ/2π
rel =

π

2

∣∣∣∣
2π

e
〈0| Î |1〉

∣∣∣∣
2

1

64π4

h2ν01

2πξ2
2Rk

Re[Y (ν)]

|1 + i2πLJY (ν01)ν01|2
. (2.6)

As ν01 >> νp, the environment seen by the qubit reduces to Cr in parallel
with Rl, and



2.1 Quantum engineering and design of a two quantronium qubit experiment 63

Γ
δ/2π
rel =

2

e2

∣∣∣〈0| Î |1〉
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01

1

C2
r

, (2.7)

where the matrix element 〈0| Î |1〉 depends on the asymmetry d The variations

of the relaxation time T1 = 1/Γ
δ/2π
rel through the readout circuit line with

respect to I0, Cr, and d are shown in Fig. 2.9. One deduces that Cr >2 pF in
order to get T1 > 1 µs, which is compatible with Cr = 3 pF, as chosen in the
previous section.

Fig. 2.9. Readout circuit induced relaxation. a) Iso-T1 contours (colored lines) in
the I0 −Cr plane at optimal point, and assuming a 50Ω impedance for the readout
line. Dashed line corresponds to the target νp = 4 GHz selected on Fig. 2.8. b) T1

as a function of d for the selected parameters indicated by a dot in panel a.

We now check that the readout line circuit does not induce too much de-
phasing. The contribution to Tϕ of the readout line admittance Y is calculated
from Eq. (1.20), (1.23) and (1.27), to first order in δ:

Γϕ
readout,δ/2π =

Rk

32
| 〈0| Î |0〉 − 〈1| Î |1〉)|2 kBT

(ϕ0I0)2
Re[Y (ν = 0)]Rk. (2.8)

with Rk = h/e2 the quantum of resistance, Re[Y (ν = 0)] = 1/(Rl + Rb + 50)
(see Fig. 2.7) and Rb ≃ 500Ω to develop a voltage RbI0 at switching below the
gap voltage (∆/2e). This expression gives Tϕ > 100µs for δ ∈ [0, 0.1×2π]. The
readout line induced dephasing is thus not a limiting factor for the design.
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Choice of readout oscillator parameters

As a summary, our selected trade-off is a bare plasma frequency νp . 4 GHz
with a quality factor Q ≃ 4 obtained with a critical current I0 = 650 nA and a
parallel capacitor Cr = 3 pF. As the critical current density has already been
set to 1.1A/cm2 (for fabrication of the CPB), one deduces an area A = 1.1µm2

for the readout junction.

2.1.4 Choice of the coupling strength

Finally, the last parameter to determine is the coupling capacitance Cg be-
tween the two quantronium islands. From section 1.2.1 (Eq. (1.51)), the ex-
pression of the coupling frequency is

νcc = 4
∣∣∣< 0|N̂a|1 >< 1|N̂b|0 >

∣∣∣EΣaEΣb/hEcc.

This coupling frequency is almost independent on δ, but strongly depends on
the EJ/EC ratio. For the selected values of EJ and EC , one obtains νcc =2.45
MHz.aF/Cc. Ideally, we would like νcc ten times smaller than the maximum
Rabi frequency (500 MHz), and ten times larger than the decoherence rate,
which is expected in the range 1−10 MHz. A convenient value is thus around
100MHz, which leads to Cc = 80aF .

We now discuss the consequences of moving one qubit away from its opti-
mal point for the on-resonance coupling scheme. The required δ phase shift is
smaller than 0.1 × 2π rad provided the difference between the transition fre-
quencies at the optimal points is smaller than 600 MHz. Such a δ shift away
from the optimal point is in fact large, and induces a sizeable decrease of the
dephasing time Tϕ down to few tens of ns, as shown in Figs. 1.9-2.4.

However, the coherence time for coupled qubits is larger than the one
for uncoupled qubits because each qubit behaves as a driving field for the
other one. The coherence time Tϕ,SWAP within the subspace {|Ψ1〉 , |Ψ2〉} can
be calculated following the method described in section 1.1.9 for a single
quantronium subject to δ and Ng noises, but with {|Ψ1〉 , |Ψ2〉} playing now
the role of {|0〉 , |1〉}. This leads to

Tϕ,SWAP =
1

2
νcc

(
∂ν

∂(∆ν/2π)

)2
2

7.2A ln(1/ωirTϕ)
, (2.9)

whose variations with δ are shown in Fig. 2.10. The 0.1 × 2π rad phase ex-
cursion mentioned above yields Tϕ,SWAP ∼ 500ns, a value significantly longer
than the duration of an ISWAP operation.
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Fig. 2.10. Dephasing time Tϕ,SWAP of a superposition α |Ψ1〉+ β |Ψ2〉 with respect
to the phase δ for different swapping time TSWAP = 1, 2, 10 ns.
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2.2 Quantroswap design and fabrication - Experimental
Setup

Starting from the theoretical considerations developed in the previous section,
we report here how a quantroswap experiment was prepared. The design of
quantroswap chips is first presented, by discussing the gate and coupling ca-
pacitances, the readout resonator layout, as well as the techniques used for
getting rid of out-of-equilibrium quasiparticles. Process steps involved in the
fabrication of the chip are then described. Then, we show how the chip is
connected to the electrical circuitry setup along the dilution fridge through
a printed circuit board fitted with microwave connectors. Finally, we present
the electronics and the software we have made for controlling the experiment.

2.2.1 Design of a quantroswap sample

2.2.1.1 Qubit-qubit coupling and gates

As already mentioned, the two quantronium islands have to be coupled by
a fixed capacitance of the order of 80 aF (see section 2.1.4). Such a low ca-
pacitance is easily obtained by placing the islands next to one another, in a
coplanar geometry. Furthermore, it allows making them small in order to max-
imize the output rate of out-of-equilibrium quasiparticles that could possibly
reach them. Their exact shape (two rectangles supplemented with two lateral
fingers with variable length) is shown on the design plot of the electrodes at
the center of the device (see Fig. 2.11). A home-made 2D electrostatic solver
(see Fig. 2.12) was used to determine the capacitance matrix of the circuit.
As shown in the figure, the solver determines the charge distribution on all
electrodes when one of them, say electrode i, is set at a finite potential (equal
to 1 for convenience), with all the other ones being grounded. The solver op-
erates by minimizing iteratively the electrostatic energy of the whole charge
distribution. The total charge Qj found on any electrode j then provides the
capacitance Cij = (ǫr + 1)/2Qj , where ǫr is the dielectric constant of the
wafer. The ratio [electrode thickness/gap between electrodes] is in all cases
small enough to warrant the validity of the 2D approximation. Note however
that, for a Si wafer oxidized on a thickness d, the effective dielectric constant
is an average over the Si and SiO2 ǫr values, which depends on the ratio [gap
between electrodes/d]. This correction is in practice relevant only for the two
islands and their gate. The validity of the approximations was checked using
the electromagnetic 2.5D simulator SONNET operated at low frequency. The
conclusion is that our simple electrostatic solver provides good enough results
for our purpose.

We have performed detailed capacitance calculations only within a small
rectangular field for the sake of limiting the calculation time. We estimate that
the long range contribution to the capacitance of an island is small. Indeed,
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this long range contribution are completely screened, and long-distance elec-
tric fields are very weak. Consequently, the gate crosstalk ratio, i.e. the ratio
CgA−islandA

/CgB−islandA
with CgA−islandA

and CgB−islandA
the capacitances

between gate A and island A and between gate B and island A respectively,
is mainly determined by the local geometry of the electrodes in the vicinity
of the islands. We have tried to minimize this crosstalk with the solver by
increasing the size of the guard electrodes, and by decreasing the distance
between each island and its gate. The best design leads to a 20% crosstalk.
Minimizing it further would require a non coplanar technology for the gate
capacitors. Finally, we were lead to design values for the gate capacitors and
for the quantronium-quantronium coupling capacitance equal to 10-20 aF and
30-50 aF, respectively.

Gate lines on the chip were designed as superconducting (aluminum) copla-
nar waveguides (CPW) with one central wire and two lateral grounds, as
shown in Fig. 2.11 and 2.14. They share one of their lateral grounds (central
electrode in the figure) close to the islands. The impedance of the CPW is
designed to be 50 Ω up to 20GHz and down to a distance of 100 µm ( 1% of
the wavelength) from the islands. Closer to the islands, the lateral grounds get
closer to the gates to minimize gate crosstalk. The gate lines were designed
to be entirely fabricated either by electron beam lithography or by optical
lithography.



68 2 The Quantroswap: design and implementation

Fig. 2.11. Design pattern of a quantroswap sample. a) Central part of the device
showing the two gates (blue) and the two quantroniums (green) as they can be
obtained with a double-angle evaporation technique. The Josephson junctions be-
tween two overlapping aluminum layers are in brown. The four bottom electrodes
lead to the readout capacitor. Red squares (partly overlapped) are gold pads aiming
at quasiparticles. b) Larger view of the device showing the gates (top center) and
the leads in blue, as well as the readout overlap capacitors in purple overlapped by
blue leads (bottom center). Two quantroswap twins are also to be fabricated for
characterization purpose.
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Fig. 2.12. Determination of the capacitance matrix of the quantroswap using a 2D
electrostatics solver. Colors encode the charge density. Here the electric potential
of one of the islands (8) is set to 1; all other electrodes are set to 0 potential,
including the other island (9), the gate lines (2 and 4), the guards (1,3, 5) and the
leads (10,11,12,13), as well as the islands images (6, 7) produced by the fabrication
technique. The total charges of each electrode i displayed on the left encode the
Ci8 capacitances. After minimizing the electrostatic of the system, the solver finds
C28 = 6.7 aF, C48 = 1.55 aF and C98 = 35 aF. A few runs lead to the relevant Cij

and allow to calculate the gate, coupling, and crosstalk capacitances.

2.2.1.2 Quantronium loops and readout resonator

The quantronium loop areas were made as small as possible in order to min-
imize the influence of flux noise. However, these areas have to be sufficiently
large in order to be able to apply one or several flux quanta, given the coil
setup in the fridge. The two loops are separated only by a fraction of a micron
and we have checked that the inductive coupling between them is absolutely
negligible even at readout when the current is maximum in the readout leads.
Besides, the width of the superconducting wires is made small to avoid trap-
ping magnetic vortices.

The design value of the critical current of the readout junctions is 650
nA, as determined in the previous section. These junctions are designed as
rectangles with an aspect ratio as close of one as possible given the fabrica-
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tion constraints, in order to avoid magnetic field penetration and associated
diffraction effects.

The shunt capacitors of the readout resonators have a design value of the
order of 3 pF (see section 2.1.3.2). They are fabricated as overlap capacitors in
order to keep their size below a few hundreds of µm, which avoids resonances
below 18 GHz. This small size also implies a large dielectric constant, ideally
above 10. Furthermore, to simplify fabrication and avoid having to pierce
vias in the structure, each readout capacitor consists in two capacitors in
series, made up of to coplanar electrodes overlaping a third one. To place
the capacitors not too far from the quantroniums and to avoid a too large
series inductance that would decrease their effective capacitance, we choose
an elongated shape with a width that increases with the distance to the qubits
(see Fig. 2.11). As a result, the capacitors are placed at a distance of 80 µm
from the quantronium loops, which introduces a series inductance of about
80 pH, i.e. 16% of the Josephson inductance of the readout junction. Two
types of capacitors with two different dielectric materials (Al0x and Si3N4)
have been fabricated and tested. Their fabrication and characterization are
described in more details in Annex D.

The capacitor terminals have a coplanar stripline geometry with a wave
impedance of about 50 Ω, which is connected through a two to three wire
transition to a true 50 Ω coplanar waveguide going to one of chip edges (see
top right panel of mask 1 in Fig. 2.14).

2.2.1.3 Getting rid of out-of equilibrium quasiparticles

In section 1.1, we have described the quantronium as an ideal device with
perfect superconducting electrodes, in which all electrons are paired. In re-
ality, out of equilibrium quasiparticles (QP) are commonly found in Joseph-
son devices at low temperature. Furthermore, the switching readout method
produces a large number of them in the quantronium leads, and recovering
thermodynamical equilibrium takes a long time of about 1-10 ms. Now, from
the quantronium point of view, a single QP entering its island corresponds to
a state that does not belong to the Hilbert space considered in section 1.1.2,
and has the effect of shifting Ng by 1/2 and making the qubit dephase and
also possibly relax. In order to minimize this QP poisonning of the island, we
have used two well known technical tricks: gap engineering and quasiparticle
trapping.

These two tricks are explained on Fig. 2.13, which shows the energy dia-
gram of QPs in normal and superconducting aluminum electrodes with differ-
ent thicknesses. First, the superconducting energy gap ∆ of aluminum hap-
pens to increase for thinner films. A potential step ∆island − ∆lead of a few
microvolts, making the entrance of QPs in the island thermodynamically un-
favorable, can thus be created by choosing island and lead thicknesses of about
12 nm and 45 nm, respectively (these are our target values).
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Second, QP can be trapped in a non superconducting metallic electrode,
which plays the role of a potential well with depth ∆lead. When entering the
well, the QPs thermalize with other conducting electrons, in thermal con-
tact with the phonon bath [78]. Our design includes three such QP traps per
quantronium (see Fig. 2.11). One is located as close to the island as possi-
ble, while the other two are located on both sides of the readout junction.
These traps are in good contact with the quantronium leads. Consequently
they weaken the superconductivity of these leads by inverse proximity effect.
They are thus placed sufficiently far not to perturb the quantronium super-
conducting loop. They made of gold and appear as bright areas in Fig. 2.15.

Fig. 2.13. Removing quasiparticles from the quantronium islands. The graph rep-
resents the quasiparticle density of state in a non-superconducting electrode (left), a
thick superconducting Al lead (center), and thin Al island (right). Electron-like (red)
and hole-like (blue) quasiparticles in the superconducting island (right) tend to tun-
nel to the lead and then to diffuse to the normal metal, where they get thermalized
and trapped.

2.2.2 Fabrication of quantroswap samples

The samples were fabricated on oxidized silicon or saphire 2 inch wafers com-
prising 57 5×5mm2 chips per wafer. The fabrication masks use optical lithog-
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raphy at the scale of the whole wafer for the QP traps, for the readout ca-
pacitors, and for the leads. After the wafer has been cut with a dicing saw,
e-beam lithography is used at the chip level for making the quantroniums,
whose parameters have to be adjusted chip by chip.

2.2.2.1 Wafer process flow

The fabrication of a wafer involves three optical lithography steps, three metal
depositions and one dielectric growth. Details on the optical process is given
in Annex C. The three optical masks used are shown at different scales on
Fig. 2.14.

The first step (see mask 1 in the figure) is the fabrication of the bottom
electrode of the readout capacitors: a 40 nm thick aluminum layer is deposited
by e-beam evaporation. The dielectric layer for the capacitors is then grown
either by plasma oxidizing the aluminum at about 200◦C (see Annex D) or
by covering the whole wafer with a 15 nm thick layer of reactively sputtered
silicon nitride (see Annex D).

The second step is the fabrication of the QP traps and of alignment marks
for future e-beam lithography (see mask 2 in Fig. 2.14): a 30 nm thick gold
layer is deposited by e-beam evaporation (see Annex C).

In a third step (mask 3), aluminum is deposited as in step 1 to form the
top electrode of the capacitors, the quantronium gates, and the leads. A few
things have to be noticed at this point: first, the gates have a sub-micron
size and great care must be taken to perform a successful lithography. Second
the alignment of this third mask (gates) with the second one (gold QP traps
and alignment marks) is critical for future success of the e-beam lithography.
Finally, notice that additional leads are available on the left and right sides of
each chip for connecting quantroswap twins used for characterization purposes
(see mask 1 in Fig. 2.14).

Then, the wafer is spin-coated with a 1 µm+0.1 µm thick bilayer of
MAA/PMMA resists for subsequent e-beam lithography. In the case of a
saphire wafer, the bilayer is covered with a 7 nm thick layer of evaporated
aluminum to avoid charging effects during e-beam lithography. Finally, the
wafer is cut with a dicing saw, and each chip is cleaned in propanol.
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Fig. 2.14. Series of three optical masks used for fabricating quantroswap wafers
(57 5×5mm2 chips), shown at different scales. a) Third Mask used for the final Al
deposition and lift-off of the top readout capacitor electrode, the gates, and the
leads. The top panels show the mask the wafer (left) and chip (right) scale. Bottom
panels show smaller scales. b) Second mask used for Au deposition and lift-off of the
quasiparticles traps and alignment marks. c) First mask used for Al deposition and
lift-off of the bottom electrodes of readout capacitors. Scales are indicated on each
panels.
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Fig. 2.15. Optical micrographies of a quantroswap chip before e-beam lithography.
One can see the whole chip (a), the readout capacitor (bottom structure) and the
100×100µm2 central area for e-beam lithography (b), as well as the central part
with the gates (top electrodes), the readout leads (bottom electrodes), and the
quasiparticles (small yellow pads)
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2.2.2.2 Chip process flow

The quantroniums and the top electrodes of the readout capacitors are made
chip by chip in a single pump-down by e-beam lithography and double angle
shadow evaporation of aluminum (the principle of the technique is presented
in Annex C). Figure 2.16 shows the e-beam lithography pattern designed
for evaporating the two aluminum layers at opposite angles +/- 20◦ (angle
between the axis perpendicular to the sample surface and the trajectory of
evaporated Al atoms). Blue and green elements on the figure correspond to
a nominal electron dose leading to openings in the mask, whereas orange el-
ements correspond to a lower dose aiming at enlarging the undercut below
the suspended mask (see Annex D). Note that the pattern includes an 100
µm2 overlap (not shown) between each quantronium leg and its corresponding
"optically pre-fabricated" lead. Note also that two additional pairs of quantro-
niums are included in the pattern (see Fig. 2.11) for characterization purposes
and estimate of the parameter dispersion. These quantroswaps have the very
same geometry and dose as those to be used in the experiment, except that
one of the quantroniums of each pair has its readout junction open, whereas
the other one has an open in the CPB arm.

E-beam exposure is performed in a XL30S FEI scanning electron micro-
scope equipped with a Raith Elphy Quantum lithography system. A pre-
alignment on optically made gold marks is performed with a 200 nm pre-
cision before exposure. Development of the exposed resist is done in a 1:3
MIBK/propanol mixture, at room temperature, during 1 minute. The sample
is then dried and introduced in an e-gun evaporator with a base pressure of
10−7 mbar (resp. 10−6 mbar) at the level of the source (resp. sample). A gentle
milling with few 10−16× 500eV Ar atoms/cm2 is performed before depositing
the first layer of aluminum, in order to warrant a good contact of the new
pattern with the optically pre-fabricated leads and QP traps. Then, a 12 nm
thick aluminum layer is deposited at 1nm/s and at angle -20◦. It is oxidized at
room temperature by introducing an 85%Ar-15%O2 gas mixture in the vac-
uum chamber, during 10 minutes. After re-pumping, during a few minutes, a
last 45 nm thick aluminum layer is deposited at the opposite angle. The resist
is then removed by lift-off in acetone, and rinsed in propanol to obtain a cir-
cuit as that shown on Fig. 2.17. Finally, the tunnel resistances of the readout
junction, of the CPB junctions in series, or of their parallel combination are
measured at room temperature for the three quantroswaps on the chip.
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Fig. 2.16. E-beam exposure pattern of the central part of the quantroswap circuit.
Green areas correspond to openings though the PMMA resist, that define the various
quantroswap electrodes, whereas orange elements corresponds to lower exposure dose
aiming at increasing the undercut below the suspended mask. Blue and red areas
represent the optically pre-fabricated gates and quasiparticles traps.

Fig. 2.17. Scanning electron micrography of the central part of the quantroswap
obtained after double angle evaporation of aluminum through the mask defined in
Fig. 2.16.
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2.2.3 Connecting the chip to the rest of the circuit

After electrical characterization at room temperature, the chip is glued with
a low melting temperature wax at the center of the printed circuit board
(PCB) shown on Fig. 2.18. This PCB has a square lodging for the chip, so
that its top surfaces and that of the chip are at the same level. It is made
of a material (TMM10) with a relative dielectric constant (10) very close to
that of silicon, and is designed to provide eight 50 Ω microwave CPW lines
with the very same geometry as those on the chip. The gap between the chip
and the lodging is of order 100 µm but could have been made smaller, taking
into account the accuracy of the dicing saw that was used. The three stripes
of a CPW line on the chip are wire-bonded to their corresponding stripes on
the PCB, with two or three wires per strip. The lateral stripes of each CPW
have vias through the PCB to a ground plane on the opposite side. The CPW
lines on the PCB are terminated by a footprint optimized for soldered female
microwave mini-SMP connectors. The typical reflection coefficient at the chip
input is measured to be below -20 dB with such a setup. As already explained
in section 2.1.3, our design includes a RC filter on each readout line to let fast
readout pulses reach the readout junction, while preventing the qubit from
seeing the electromagnetic environment behind the filter, at its transition
frequency. These filters are implemented on the PCB with surface mounted
microwave resistors and capacitors whose values undergo little variations when
cooled at 20 mK. Each filter includes one R=50 Ω NiCr resistor inserted in
the central strip of the CPW, and two 10 pF and two 1 pF SMC capacitors
[69] between the central strip and the lateral grounds. Their transmission has
been tested at 4K: their frequency cut-off at -3 dB is about 1 GHz and their
attenuation is larger than 35 dB in the 6-20 GHz band. Characterization of
the filters is documented in more details in Annex E.

The PCB with the chip, the filters, and the connectors is screwed in a cop-
per case (see Fig. 2.18) with holes for male mini-SMP connectors. The cover
of the case incorporates a small piece of microwave absorber for damping spu-
rious microwave resonances in the box. It also incorporates a superconducting
coil of inductance 0.12 H, located 3 mm above the chip, for flux biasing the
quantronium loops. The outer surface of the case is plated with tin in order
to avoid penetration of the external residual magnetic field. This case is an-
chored to the cold plate of a dilution refrigerator and the PCB is connected
to the rest of the electrical circuit, as described now.

2.2.4 Electrical setup in the dilution refrigerator

The two quantroniums of the quantroswap pair are connected to separated
and nominally identical circuits, although they share the same flux bias coil.
Figure 2.19 gives an overview of this circuit along the dilution refrigerator,
while Fig. 2.20 shows a picture of the setup between 600 mK and 20 mK. We
describe now the gate and readout lines.
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Fig. 2.18. Connecting the quantroswap chip to its electrical circuit. A Printed
Circuit Board (a) with a central lodging for the chip is equipped with four mini-
SMP microwave connectors (for gates and readout leads), and with Surface Mounted
resistor and Capacitor for filtering the readout lines (b). The chip is glued in lodging
(b)„ and wire-bonded. The PCB is inserted in a copper box with holes in front of the
connectors, and which has a coil for flux biasing the quantroswap (c). The ensemble
is anchored to the cold plate of a dilution refrigerator.
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Fig. 2.19. Electrical wiring of the quantronium experiment. The two quantroni-
ums share a common magnetic biasing line (left vertical line). Both of them being
connected to nominally identical circuits, only the circuit of the right quantronium
is shown here. This circuit comprises a DC gate line and microwave gate line (two
vertical lines in the center) connected to the quantronium gate through an induc-
tive bias tee, and a bias readout line and measurement readout line (two vertical
lines on the right) connected to the sample through a special resistive tee. The gray
boxes are NiCr microwave attenuators (attenuation indicated on the box). LP and
BP boxes are low-pass and band-pass filters (cut-off frequencies indicated beside).
Light gray cylinders are coaxial cables labeled according to the material of their
inner conductor (CuBe-CuNi, CuNi-CuNi, StainlessSteel-StainlessSteel). The coil
line and the measurement readout line are shielded twisted pairs whose inner wire
material is indicated beside. The top part of the figure shows the room-temprature
DC power supplies (Vb, Vg), the microwave and arbitrary waveform generator used
for the different lines, as well as the amplifier and digitizer used for measurement.
More details on this room temperature electronics is indicated on Fig. 2.22 . The
color scale on the left indicates the temperature of the various elements.
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Fig. 2.20. Picture of the 20 mK to 600 mK stage of the experiment with the
complete wiring.
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2.2.4.1 Gate lines

Each quantronium gate is connected through an Anritsu bias tee placed at 20
mK to a DC and to a microwave gate line.

The DC line is heavily filtered with a copper powder filter at 20 mK and
with lossy NiCr coaxes going from dilution temperature to room temperature.
The total distributed resistance and capacitance of these coaxes are 480 Ω and
200 pF. A 10-180 kΩ resistance divider (factor 19) is inserted at 4K.

The microwave gate line is made of cryogenic (i.e. low thermal conductiv-
ity) 50 Ω microwave cables, in SS/SS (stainless steel) between 30 mK and 4
K, and in CuBe (inner wire)/ CuNi (external ground) between 4K and room
temperature. This line has to have a transmission as smooth as possible in the
microwave domain and a large attenuation so that the effective temperature
Teff of the 50 Ω impedance as seen from the qubit is below hν01/kB . For this
purpose, several cryogenic (NiCr) 50 Ω matched SMA attenuators are inserted
along the line. As already explained in section 2.1.2.1, the maximum allowed
attenuation is given by the target value of the quantronium gate voltage and
by the maximum available power. Besides, each element i placed at a given
temperature Ti, if properly thermalized, plays the role of a 50 Ω thermal noise
source. As long as Ti>hν01/kB , the game is thus to adequatly distribute the
total attenuation so that the noise of every element i is attenuated by element
i+1 with a factor larger than Ti/Ti+1. When Ti ∼ hν01/kB , the attenuation
has to be large enough in order to have an effective temperature lower than
hν01/kB after the penultimate elements. This problem can be solved graphi-
cally, as shown on Fig. 2.21, for the case of ν01=17 GHz and -20 dB, -10 dB,
and -10 dB attenuators placed respectively at 4K, 600 mK and 20 mK (taking
into account the 3 dB additional attenuation by cryogenic coaxes). The figure
shows that an effective temperature of kT/hν01 ∼ 0.2 can be reached, which
corresponds to an upper bound of 1% for the qubit excited state population.
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Fig. 2.21. Graphical determination of the attenuation at the qubit frequency ν01

along high-frequency lines. Left: Normalized voltage spectral density (black curve)
at frequency ν01 as a function of the temperature T expressed in reduced unit x =
kBT/(hν01). Colored dots show the noise of the 50 Ω impedances of the source and
of the three attenuators X, Y, Z placed at 300K, 4K, 600mK and 20mK, respectively.
Arrows show the attenuation applied to each of these noises by the attenuator placed
immediately below (noise from 300K is attenuated by X, whose noise is attenuated by
Y, whose noise is attenuated by Z). The goal is to have a spectral density of noise,
such that the equivalent temperature is lower than hν01/kB (green dashed line).
The three attenuations X, Y, Z correspond to nominal attenuations of 20,10,and 10,
respectively, supplemented by the coax losses (see text).
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2.2.4.2 Readout lines

Starting from the PCB, a readout line is connected through a home made
tee, placed at 20 mK, to a coaxial current bias line on one side and to a
high impedance heavily filtered bifilar voltage measurement line on the other
side (see Fig. 2.19). The tee is actually a through on the bias side; on the
measurement side, it forms a bililar line from the qubit readout line and from
its own ground. Two 10 kΩ resistors are inserted in the tee at the extremity of
these two wires to provide a high impedance as seen from the bias side, and
prevent any perturbation on the bias pulses.

The bias line includes a 436 Ω bias resistor placed at 20 mK, which is
made big (several resistors in parallel and in series) for electron thermalization
purposes. Although the spurious capacitance of this element was kept as low
as possible, it limits the rise time of the bias at about I0 (critical current of
the readout junction) in 2-4 ns. The line is then made (see Fig. 2.19) of 50 Ω
SS/SS and CuNi/SS coaxial cables, as well as of commercial 50 Ω attenuators
and 1.3 GHz low pass filters (Mini-circuit VLFX-1350 and VLP-16) . The
total attenuation of the line from DC to 1 GHz is about 60 dB.

The voltage measurement line is an RC distributed bifilar twisted pair
made up of two Manganin wires in a SS capillary. In addition, a home made
microfabricated distributed RC filter [79] is inserted in each wire at 20 mK.
The effective RC time of the line is of order 1 µs, while its attenuation from
100 MHz to 20 GHz is larger than - dB.

2.2.5 Room temperature electronics

2.2.5.1 Qubit and readout control

The coil and each DC gate are biased with a commercial Yokogawa 7651
stabilized DC voltage source, further filtered above 1 Hz.

The microwave pulses for controlling the two quantroniums are generated
by splitting the CW signal of an Anritsu 3692 microwave source and by mixing
both outputs with DC pulses generated by an Agilent 81200 multichannel
pulse generator, using Marki M8040 mixers, as described in Fig.2.22. Extra
attenuators, filters and circulators are connected to these mixers in order to
reduce the parasitic transmission of the mixers.

The current pulses used for tuning the quantroniums δA,B phases and for
readout are made with a multichannel Tektronix 5014 arbitrary waveform gen-
erator having a DC-240MHz analog bandwidth. Since the noise temperature
of the output signal is large, the output signal used is close to the maximum
available voltage and is then attenuated by more than 20 dB before entering
the fridge.
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Fig. 2.22. Room temperature electronics for controlling the quantroswap experi-
ments.
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2.2.5.2 Readout signal measurement

The voltages that develop across the readout junctions at switching, and prop-
agate along the bifilar measurement lines in about 1 µs, are measured with
high impedance low noise amplifiers connected to a digitizer (see Fig. 2.22).
To prevent the noise coming back from these devices from going through the
amplifiers to the measuring lines, an optical decoupler is used: the output of
each twisted pair is first connected to a battery-powered low noise amplifier
NF LI75A [80], with a noise level of 1.2 nV/

√
Hz in a 1MHz bandwidth. This

amplifier and its batteries are placed in a shielded cabinet. Its output is am-
plified using an AC coupled preamplifier SA-220F5 [81], passing above 300Hz,
and then sent to a battery-powered Ifotec optical transmitter, optically con-
nected through the shielded box to a receiver. The receiver signal is finally
connected to a SR560 Stanford amplifier [82] with a 1 MHz bandwidth.

The output voltages are finally analyzed using either a LeCroy LC 684DM
oscilloscope or an Acqiris DC282 digitizer. As the output of interest is wether
the readout junction has switched or not, one uses a voltage discriminator
that compares the voltage at a precise time with a tunable threshold. Several
counters as well as the inputs of the Agilent 81200 bit error rate tester (already
used for generating the control pulses) have been used for that purpose.

2.2.6 Software control

All the apparatuses used for DC biasing the two quantroniums, for generating
the control microwave pulses and arbitrary readout pulses, and for measuring
the switching probabilities of the readout junctions are remotely controlled
with a unique software developed in Testpoint, an event-driven object lan-
guage for remote control. Figure 2.23 shows a few screenshots of the control
interface with measured results.
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Fig. 2.23. Screen captures of the Testpoint software used for controlling the
quantroswap experiment.
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Preamble: drawing lessons from failing experiments
We report in this chapter the results obtained on different Quantroswap

samples and for several cool-downs. Each experiment always started with the
same protocol: characterizing the qubit parameters, the readout circuit, and
the coherence properties. We soon found that the more complex quantronium
qubits of our Quantroswap samples did not meet the performances already
observed on simpler single Quantronium samples and those estimated in the
previous design chapter. All the samples had a readout visibility lower than
25 %, most of them having a T1 shorter than 100 ns; when one of the quantro-
niums of the quantroswap pair had a not too short T1, the other quantronium
with exactly the same fabrication parameters had a T1 so short that find-
ing its spectroscopic line was even impossible. In addition, spurious two level
systems or charged TLS strongly coupled to the island were often observed,
their effect being drastically detrimental to spectroscopic data. Due to these
problems, we embarked in a series of sample and design variations. Let us
say immediately that none of these variations resolved the critical problems
encountered, and that we only tried to characterize them. We found that the
quantronium samples fabricated in our laboratory and measured in our set-up
suffer from problems so severe that they cannot be used for developing even
a very elementary processor.
Despite these very negative results, we tried to operate the Swap gate. Al-
though we could not probe it in depth, we could demonstrate the swapping
phenomenon induced by the coupling between the two qubits.
All these experimental findings led us to re-think the quantum bit research
project in depth.

3.1 Characterization methods of the different samples
measured

We expose in this section the experimental methods used for characterizing
all the samples measured. These samples could differ by:

- the presence of quasiparticle traps that help avoiding quasiparticles
to enter the quantronium islands;
- the fabrication method of the shunt capacitance;
- the type of connecting lines;
- the nature of the wafer, whose dielectric constant controls the elec-
trostatic couplings;
- the qubit parameters.
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The main characteristics of the measured samples are summarized in Table
3.1.

Name QS 1.1 QS 2.1 QS 3.1 QS 4.1 QS 4.2 QS 4.3

Fabrication characteristics

Quasiparticle traps yes yes yes yes yes no

Dielectric AlOx AlOx SiN SiN SiN interdigitated

Leads metal Au Au Al Al Al Al

Wafer Si Si Si Si Sapphire Si

Bias resistance Rl (Ω) 4k 4k 240 436 436 436

JJ impedance (Ω) 350 560 550 380 436

DC gate crosstalk 67% 24% 43% (66%) 36% 36%

Measured parameters

EJ (kBK) 0.81 0.76 (0.846) 1.35 (1.32) 0.97 0.76 (0.846)

EC(kBK) 0.58 0.55 (0.584) 0.59 (0.53) 0.5 (0.55) 0.55 (0.584)

T1 ≤1ns ≤ 100ns ≤270ns ≤50ns ≤70ns ≤300ns (Qubit2)

T2 20-30ns

Max[PS|1>
-PS|0>

] 20% 10% 10% 14% 20%

Gate capacitance 29aF 30aF 17aF 22aF 14aF

Coupling frequency 230MHz 600MHz

Table 3.1. Characteristics and parameters of the various measured samples when
they could be measured or estimated.

Scanning Electron micrographies of sample QS 2.1



94 3 The Quantroswap experiments

Fig. 3.1. Detailed Scanning Electron Micrography of the central part of sample QS
2.1.

3.1.1 Readout junction characterization

The first step in characterizing a quantroswap sample consists in measuring
the superconducting gap of the aluminum, and the readout junction proper-
ties: the tunnel resistance, the critical current, and the electronic temperature
that governs the sensitivity of the quantronium readout.

One first measures the I-V curve of the readout junction by applying a
low frequency triangular voltage to the readout bias line, and by measuring
the voltage V across the junction. Two branches can be distinguished in this
curve: the supercurrent branch at V = 0 up to a maximum, the switching
current, and the dissipative branch at voltages larger than the gap voltage. The
switching current provides at low temperature an estimate of the junction’s
critical current with a 5 % accuracy. The precise shape of this I-V depends
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on the biasing impedance Rl in series with the readout junction. The value of
Rl was varied between the different samples (see Tab. 3.1):

- in experiment QS 1.1 and QS 2.1, this impedance was 10 times
larger than the normal state resistance of the junction, and the volt-
age switched directly from the supercurrent branch to the gap voltage
branch at about the same current.
- in the other experiments, Rl was of the same order as the junction’s
tunnel resistance, and the voltage switched to the end of sub-gap part
of the I − V characteristic, just before the gap voltage, as shown on
Fig. 3.2. In this region the current is small, and the dissipated power
is significantly smaller, which offers the advantage of generating fewer
quasiparticles.

One also determines from the I-V curve shown in Fig. 3.2 that the super-
conducting gap voltage of the aluminum in our circuit is about 205 µeV, which
is higher than the bulk value found for thick films (∆bulk = 180µeV). Actually,
as junctions are made of two layers of Aluminum with different thicknesses
(12nm and 45nm), this value is an average of the superconducting gaps of the
two electrodes. We estimate from refs. [83, 84, 85] that the superconducting
gap is larger in the bottom thin layer by about 20−40 µeV, a value compatible
with our average gap.



96 3 The Quantroswap experiments

Fig. 3.2. I-V curves of sample QS 4.2 at different scales and different temperatures
during cooling. a) Large scale IV curve whose slope gives a 436 Ω tunnel resistance.
b) IV curves at a smaller scale and at different temperatures showing the supercon-
ducting gap as well as subgap structures attributed to dissipative resonances in the
environment at high-frequency.
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The critical current I0 of the junction and the effective electronic temper-
ature Te are then determined precisely by applying trapezoidal bias current
pulses and by measuring the switching probability as a function of the pulse
height. The result of such a measurement is shown in Fig. 3.3. Using then Eq.
1.14 for the escape rate, one determines I0 and Te from the so called "b2/3"
plot (see Fig. 3.3). Although the fridge temprature was about 50 mK in the
first experiments (QS 1.1, QS 2.1, and QS 3.1), it was 20 mK in the last ones
(QS 4.1, QS 4.2 and QS 4.3). At this latter phonon temperature, one always
found Te ≤ 45 mK, the difference being attributed to unperfect filtering. In
principle, such a low effective Te is supposed to lead to a sufficient resolution
for discriminating the two quantronium persitent currents associated to the
ground and excited states, as discussed in section 3.1.1.1. However, we always
found an apparent sensitivity significantly lower, as we discuss below.
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Fig. 3.3. Switching probability and electronic temperature on sample QS 4.1. a)
Switching probability PS as a function of the peak value Ip of the current readout
pulse, for a readout-plateau duration τ = 10ns. b) Plot of b2/3 = ln(Γ/νpbias

)2/3 =

( 4
√

2
3

ϕ0I0/(kBTe))
2/3(1 − Ib/I0) (blue line). The fit (red dotted line) yields an ef-

fective switching temperature equal to 32 mK and a critical current of about 830
nA. The shunting capacitance is about 2.8 pF, which yields a plasma frequency of
4.75 GHz at zero bias current, and of about 2.5 GHz at switching. The theoretical
crossover temperature Tco = 18 mK is a bit lower than the temperature of the re-
frigerator and than the fitted escape temperature. Thus, the escape occurs at the
beginning of the thermal regime.
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3.1.2 Ground state characterization of the two quantroniums

In a second step, one characterizes the ground state of the quantroniums
through the dependence of their persistent loop current on the gate voltage
(or Ng) and on the magnetic flux (or δ). As the switching probability can
easily saturate at 0 % or 100 % as δ is varied, it is convenient to operate in
a so-called "feedback mode" that consists in adapting the peak height of the
bias current pulse to keep the switching probability PS at a constant value.
Figure 3.4 shows such a mapping over Ng and δ of the ground state of one
of the quantronium of the pair, for sample QS 2.1. One could think that this
mapping provides a first estimate of the quantronium parameters EJ and EC .
Nevertheless, it is not the case due to a loss of signal reported below. EJ and
EC have thus to be determined spectroscopically.

Fig. 3.4. Ground state mapping of one of the quantronium of sample QS 2.1. The
two panels show the experimental apparent loop current modulation (solid lines), i.e.
the switching current variations in feedback mode, as a function of δ/(2π) = Φ/Φ0

(a) for Ng = 0 (blue) and Ng = 0.5 (red), and as a function of Ng (b) for various
Φ/Φ0 represented by vertical segments in (a). Dashed lines correspond to 60% of
the theoretical persistent loop current predicted from the parameters determined
spectroscopically.
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3.1.3 Spectroscopic characterization of each quantronium

The most important parameters EJ and EC are determined by qubit spec-
troscopy. A spectroscopy experiment consists in applying on one of the two
gates a microwave pulse long enough for saturating any transition it couples
to, and in measuring the induced change in the switching probability of the
readout junction when a readout bias pulse is applied immediately after. One
expects a change in the switching probability whenever the applied frequency
matches a transition of the quantroswap circuit initially prepared in its ground
state by relaxation. Such a measurement is repeated while scanning the mi-
crowave frequency and either the flux Φ threading the quantronium loops or
the gate charge Ng. One obtains 2D plots of the readout signal at fixed Ng

(usually 1/2)or fixed δ (usually zero), as those shown on Fig. 3.9 for sample
QS 4.2. These plots show the qubit resonance whose position is fitted with
Eq. 1.9 to determine the qubit parameters. One finds EJ = 0.97kB K and
EC = 0.5kB K for this sample. The values for the other samples are indicated
in Tab. 3.1. Note also that it was impossible to determine spectroscopically
the asymmetry coefficient d since it has an effect only near δ = π, where the
resonance line of the qubit could never be observed.

3.1.4 Loss of signal in the persistent current of a quantronium loop

Once EJ and EC are determined spectroscopically, one can directly compare
the Ng and δ modulations of the switching current in feedback mode with the
expected quantronium loop currents(see section 1.1.4). Figure 3.4 shows this
comparison for sample QS 2.1 and shows that the experimental modulation is
only 60 % of the expected one. This factor 0.6, observed on all our samples,
was partly overlooked in previous experiments, and yields a reduction of the
readout contrast compared to that expected (see Fig. 2.3). This effect can
be interpreted either as a lowered effective sensitivity of our detector (when
it converts a loop current into the bias current change keeping the switching
probability PS constant), or as a problem with the split Cooper pair box itself
that would not be always in a state with the expected loop current.
Since the measurement of the supercurrent through a superconducting atomic
size contact [86], performed with a very similar set-up, did not show such a
discrepancy, we rather think that our problem is related to the CPB itself
rather than to the detector. Another problem also identified and reported
below is in favor this hypothesis.

3.1.5 Characterization of the gate lines

We then switch to the determination of the capacitances between the quantro-
nium islands and the gate electrodes, and determine in particular the gate
cross-talk. We address separately the DC and microwave gate signals aiming
at tuning the working point and at resonantly controlling the qubit, respec-
tively.
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Low frequency crosstalk

The experimental gate capacitances are deduced from the gate voltage peri-
ods of the switching probalility in the ground state, at a magnetic flux where
the gate modulation is maximum (see Fig. 3.4). Figure 3.5 shows this switch-
ing probability for the two quantroniums of sample QS 2.1, in their ground
state, as a function of the gate voltage applied on gate A or on gate B. The
capacitances between island B and gate B and between island B and gate A,
are for instance estimated at about 29 aF and 6 aF, respectively. The low
frequency gate crosstalk is thus 20%, close to the value expected from simu-
lations (see section 2.2.1.1). Values of this DC crosstalk is indicated for the
different samples in table 3.1.

Fig. 3.5. Measurement of the DC gate capacitances in sample QS 2.1. The two
curves show the modulation of the switching probability PS of qubit B (in the
ground state) as a function of the gate voltages VgB (red) and VgA(blue). From the
voltage periodicity, one can determine the gate capacitances (29 aF and 6 aF), and
the parasitic crosstalk (20%).

High frequency crosstalk and compensation

This second crosstalk regime is more complex and involves the non local mi-
crowave coupling between all the lines on the chip. It is deduced from the
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measured Rabi periods of the two quantroniums driven from the same gate,
as shown in Figure 3.6 for sample QS 2.1. In this experiment, the frequencies
νA and then νB of the measured qubit are successively the same, the frequency
of the non measured one being shifted away by applying a bias current pulse
to its readout junction. The microwave gate crosstalks is found to be equal to
about 50% in this sample, which is twice as large as the DC crosstalk.

Such a large microwave crosstalk raises the issue whether it is possible or
not to manipulate the two qubits independently when they are close to or
at resonance. Actually, one can do it using a compensation technique: two
microwave signals are sent simultaneously to both gate lines, with opposite
phases and well-adjusted amplitudes in order to cancel the driving signal for
the qubit which should not be addressed. This method is demonstrated with
sample QS 2.1 on Fig. 3.14. It was used to demonstrate swap oscillations
between two quantroniums, as reported at the end of this chapter.

3.1.6 Characterizing the qubit coherence

Coherence times T1 and T2 were determined for each qubit when it was possi-
ble to do it, using standard manipulation techniques described in [16, 17] and
in Annex 1. To summarize, T1 is measured by applying a π gate pulse, then
waiting for a time τ , and finally measuring the switching probability. The lat-
ter decreases exponentially with τ with the characteristic time T1. The time
T2 is the decay time of the Ramsey oscillations produced by a sequence of
two slightly out-of-resonance π/2 gate microwave pulses separated by a free
evolution period of time. Table 3.1 indicates measured values of T1 and T2 for
some of the sample, and estimated upper bound for other samples.
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Fig. 3.6. Measurement of the microwave gate crosstalk in sample QS 2.1. The
two panels show the switching probability variations induced by Rabi oscillations
of qubit A (top) and B (bottom) when resonant microwave pulses at 12.17 GHz
with identical nominal amplitudes are applied to gate A (blue) or to gate B (red).
The frequency of the non measured qubit is shifted away. From the observed Rabi
frequencies νR, one estimates a parasitic microwave crosstalks of about 50%
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3.2 Spectroscopy of the coupled quantroniums

The coupling between the two quantroniums of a quantroswap pair can be
first characterized by performing the spectroscopy of the coupled system, i.e.
by finding the transition frequencies between the eigenstates of the two-qubit
molecule, as explained in section 1.2.2.1.

3.2.1 Experimental protocol

The experimental protocol for a two quantronium spectroscopy consists in the
following steps:

One first tunes the DC gate voltages so that NgA
= NgB

= 1/2, a condition
that maximizes coherence and improves the visibility of spectroscopic lines.

Then, a delta phase shift δB − δA between the two qubits is chosen for
the whole experiment. As already mentioned, the two quantroniums share the
same magnetic flux, and

δA = Φ/ϕ0 + γA

δB = −Φ/ϕ0 + γB .

Since the qubit eigenenergies are even functions of δ, we have always applied
readout pulses with opposite signs, so that the qubit frequencies evolve in
the same direction when the flux is varied, which facilitates the analysis. The
effective δ shift is thus equal to γB + γA, and is imposed by the values of the
readout currents at the footing of the readout pulses (the so-called prepulse
currents introduced in section 1.1.6).

The magnetic flux φ is then swept step by step. For each flux value, one
goes over the following sub-steps:

a) The gate voltages are fine tuned to NgA = NgB = 1/2 in order to
compensate for any gate charge drift due to 1/f charge noise.
b) The peak value of the readout pulse is chosen, so that the switching
probability of each active readout is set to PS,0 = 20% in the absence
of microwave.
c) The microwave frequency νrf is then switched on and swept step
by step. The same excitation-readout sequence is repeated a few thou-
sands of time:

- The bias currents in the readout junctions are set to zero to
let the electron reach the thermal equilibrium.
- Then, the prepulse currents are established during about one
microsecond, a time longer than the qubit relaxation times T1.
- During this step, a microwave gate pulse is applied to one of
the gates. When the microwave frequency matches a molecu-
lar transition |Ψ0〉 → |Ψ1〉, |Ψ0〉 → |Ψ2〉 or |Ψ0〉 → |Ψ3〉 (two-
photon transition), the corresponding level gets populated.
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Since the microwave pulse is long with a small amplitude, it
is expected to saturate the transition and populate the corre-
sponding upper molecular level with a weight of about 50%.
- At the end of the microwave gate pulse, the readout current
is established in the active readouts. One can use either one
readout, or two readouts. In the latter case, one can switch
them on simultaneously, or with a short delay of a few tens
of nanoseconds between one another. The repetition of the
sequence leads to a single switching probability PS(Φ, νrf )

The double sweep over the frequency and the flux produces a 2D plot of
PS(Φ, νrf ) or of PS(Φ, νrf )−PS,0, which contains the spectroscopic lines. One
finally fits the positions of these lines to determines the qubit parameters EJ

and EC , and the coupling frequency νcc when the qubits undergo a level cross-
ing in the explored flux range.

A discussion of what is measured is needed at the present point. Indeed,
the switching probability of readout X (X stands for A or B) gives the weight
of the excited state of qubit X in the two-qubit system state, at the read-
out plateau, i.e. at the end of the readout pulse rise. Ideally, when the state
populated by the microwave pulse is |Ψi〉 = α |10〉 + β |01〉, the switching
probabilities of readout A and B should vary as the weights α2 and β2, re-
spectively. But as explained in section 1.1.9, these weights can be modified
along the readout pulse rise, especially when the two qubit frequencies are
equal at the beginning of the rise or cross each other during the rise. Indeed,
as shown in Fig. 3.7, when the coupling frequency is large enough to make
the Landau-Zener transition rate small at the level crossing between the two
qubits (see section 1.2.3), the level crossing occurs adiabatically and the quan-
tum states are swapped during the readout ramp.
This means that the increase in the switching probability of readout A, for
example, is either due to an excitation of qubit A by the microwave pulse, or
due to an excitation of qubit B (or both of them) and to a swapping between
qubit B and qubit A during the readout pulse rise.
In our experiments, the rise time of the current readout pulse is in the range 4-6
ns, whereas the coupling frequency is in the range of [100 MHz, 600 MHz] de-
pending on the sample. Since the Landau-Zener transition probability strongly
depends on νcc, as shown in Figure 1.15, we estimate that the only sample in
which swapping occurs at readout with a large probability is sample QS 4.2
for which νcc = 600 MHz is the largest. For the other samples, the evolution
at readout is more diabatic and swapping is estimated not to exceed 40 %.
Figure 3.7 shows the influence of the readout pulse rise on the eigenenergies
and on the qubit eigenstate populations for different initial states and for the
parameters of sample QS 4.2. This issue will be considered in more details
when comparing the experimental spectra to numerical simulations later in
this section.
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Fig. 3.7. Effect of readout pulse A on the state populations of qubit A and B,
for the parameters of sample QS 4.2, for Ng = 1/2, and for γA/(2π) = 0.7 and
γA/(2π) = −0.18 before readout. Blue and red colors code for the weights of qubit
A and B in a particular state, respectively. All panels show the eigenenergies |Ψ1〉
and |Ψ2〉 of the system (solid lines) as a function of flux Φ (top scale), as well as
the uncoupled qubits eigenenergies (dashed lines)as a function of δA (bottom scale).
During the readout pulse rise, δA evolves between the two vertical orange lines in
the direction of the orange arrow. Correspondingly, the eigenenergies |Ψ1〉 and |Ψ2〉
evolves along the solid orange lines. The initial and final energies are also indicated
with dots. The green Φ interval is where the two qubit frequencies do not cross
during the readout ramp, so that the qubits do not swap. Panels a), b), and c)
correspond to initial working points, on the left, in, and on the right of this green
interval.
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3.2.2 Spectroscopic data on two samples

We present in this section two sets of spectroscopic measurements performed
on samples QS 2.1 and QS 4.2, which have the minimal and maximal coupling
frequencies νcc that we have explored.

3.2.2.1 Spectroscopic measurement of sample QS 2.1

We have first characterized each qubit separately by performing its spec-
troscopy while displacing the frequency of the other qubit with a large bias cur-
rent pulse (around 0.7 I0). Results are shown in Fig.3.8a. This data were also
completed by performing the spectroscopy in Ng in the vicinity of Ng = 1/2.
Despite a very low visibility, the peak positions could be fitted to determine
EJ and EC for each qubit (see. Table 3.1).

We have then performed the spectroscopy of the coupled system, in the
vicinity of the point where the two qubit frequencies cross one another, by
measuring both switching probabilities at the same time and by following the
method described above. Figure 3.8 shows the result. When the two qubits are
in resonance (here at δ/(2π) ≃ 0.07), one observes somehow (see Fig. 3.8b)
the superposition of an avoided level crossing induced by the coupling and of
a crossing of the levels (this point will become clearer with sample QS 4.2).
By fitting with the eye the anticrossing (see Fig. 3.8c), one determines the
order of magnitude of the coupling frequency, i.e. νcc = 230 + / − 20MHz.
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Fig. 3.8. Independent switching probabilities of readout A (top) and of readout B
(bottom) with respect to the microwave frequency applied to both qubits, and to
the reduced flux Φ/Φ0 during excitation, for sample 2.1 . The prepulse bias currents
are adjusted to displace the resonance frequency of the qubit not being measured.
The excitation microwave pulse has a duration of 200 ns, and its on-resonance Rabi
frequency is 30 MHz. Black and white color scale codes for the switching probability:
black meaning high and white low. The switching probability are measured over
40000 samples.
Simultaneous readout of qubit A (top) and qubit B (bottom) with respect to the
excitation frequency and to the reduced flux Φ/Φ0 during excitation. The prepulse
bias currents are 0.48 I0 (qubit A) and 0.4 I0 (qubit B). The excitation microwave
pulse has a duration of 200ns, and its on-resonance Rabi frequency is 30 MHz.



3.2 Spectroscopy of the coupled quantroniums 111

3.2.2.2 Evidence for a major problem on sample QS 4.2

We have performed a similar spectroscopy experiment on sample QS 4.2, fab-
ricated on a Sapphire wafer. Due to the high-dielectric constant of sapphire,
the coupling frequency νcc of this sample is increased by a factor 2.5 compared
to similar ones fabricated on silicon wafers. The effect of the coupling on the
energy levels is thus larger, which makes them more clearly visible even when
the linewidth is large due to strong decoherence. Figure 3.9 shows the spec-
troscopy of this sample, with qubit B measured 30 ns after qubit A.

This figure displays clearly a surprising, and let us say here extremely
worrying, phenomenon: transition lines are observed at positions predicted
for the coupled qubit system, AND at positions predicted for the qubit A
and B decoupled from the other one. In other words, each qubit seems to
disappear part of the time, leaving the other one alone! This dramatic problem
was already guessed from other samples (i.e. see Fig. 3.8) fabricated on silicon,
but a clear proof could be obtained only from this sample with a large coupling
frequency νcc.

Several hypothesis can now be made for explaining such a strange behavior:

a) The capacitive coupling itself is unstable and randomly vanishes
with a sizeable probability.
b) The frequency of each qubit is unstable, and varies between its ex-
pected value and other ones that are not detected. Such an instability
could for instance be explained by strongly coupled charged two level
fluctuators inducing a large ∆Ng and a large frequency shift to a point
where decoherence is so large that no spectroscopic line is detected;
c) The quantronium qubit does not even longer exist as a "two-level-
atom". Poisonning of the island by quasiparticles introduces for in-
stance a third level whose dynamics is not necessary coherent.

Since the coupling capacitance is obtained from the electrostatic coupling be-
tween the islands, hypothesis a) is hard to believe. We rather attribute the
observed effect to hypotheses b) or c), although a more precise diagnosis could
not be performed. Indeed, quantroniums could not be controlled and measured
away from Ng = 1/2 since decoherence drastically increases away from the
degeneracy point. A pairing instability in the qubit islands (hypothesis c), is
plausible since the variations of the persistent current in each qubit ground-
state provide some evidence for depairing effects close to Ng ≃ 1/2, as often
observed in single Cooper pair transistors.
Besides, it is also possible that this problem of qubit dissapearence also ex-
plains the 40% apparent effective loss of persistent current presented in pre-
vious section 3.1.4.
To evaluate more quantitatively this disappearance effect, we show on Fig. 3.11
the spectroscopic lines obtained from readout A when the two quantroniums
are in resonance. The central peak in this spectroscopy corresponds to the ex-
citation of the transition |0〉 → |1〉 of qubit A uncoupled from qubit B, whereas
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the two other peaks corresponds to the expected transitions |Ψ0〉 → |Ψ1〉 (left)
and |Ψ0〉 → |Ψ2〉 (right) of the coupled system. As the two qubits are in res-
onance, the weights of qubit A and B in |Ψ1〉 and |Ψ2〉 are equal to 0.5, and
qubit A is in principle to be found in state |1〉 at readout with the very same
probability for both states |Ψ1〉 and |Ψ2〉. The experimental dissymmetry be-
tween the amplitudes A|Ψ0〉→|Ψ1〉 and A|Ψ0〉→|Ψ2〉 of the lateral peaks is due to
the non-adiabaticity of the readout process (see section 1.2.3 and next sec-
tion), which induces a swap of energy between the two qubits. Nevertheless
this effect only transfers weights from the right-hand peak to the left-hand
one, and does not change the total weight of the two lines. The probability
p for the two qubits to be normally coupled can thus be calculated from the
ratio between the sum amplitude of the two lateral peaks and the total sum
over the three peaks 1: one finds

p =
A|Ψ0〉→|Ψ1〉 + A|Ψ0〉→|Ψ2〉

A|Ψ0〉→|Ψ1〉 + A|Ψ0〉→|Ψ2〉 + A|10〉
. (3.1)

From the fit of Fig. 3.11, we obtain a probability 1 − p ∼ 30% of disappear-
ance of qubit B, to be compared to the 40% apparent effective loss already
mentioned.

3.2.2.3 Experimental evidence for swapping at readout

Do the spectroscopic data of Fig. 3.9 provide any evidence for a swapping
at readout, as expected from the discussion of section 1.2.3, when the work-
ing point during excitation (before readout) is not in the green interval of
Fig. 3.7? Sample QS 4.2 has indeed a large coupling frequency that yields a
small Landau-Zener probability when the qubit A (in the excited or ground
state) crosses qubit B (in its ground or excited state, respectively) dur-
ing a fast readout ramp. Taking into account the prepulse currents in the
junctions, the region where swapping is supposed to occur corresponds to
δ/(2π) ∈ [−0.2,−0.08]

⋃
[0.17, 0.4]. Note that intermediate situations can also

occur, in which the readout of qubit A transfers some weight from |10〉 to |01〉
(and vise and versa).
In order to demonstrate more precisely this swap effect at readout, we have
performed a simulation of the whole spectroscopy experiment including read-
out by time-integrating the master equation of the system (next section). The
result of this simulation is shown on Fig. 3.10 and is to be compared with the
experimental data of Fig. 3.9. Both the experiment and the simulation show
the large signal on readout A at Φ/Φ0 < −0.08; this can be understood only
because the two qubits swap at readout.
Note that a similar effect was also observed when one of the two qubits is

1 As spectroscopic lines have a low visibility, a large excitation power was used to
perform the spectrscopy, so that all lines are saturated. The weight of a line is
consequently given by its amplitude rather than by its area.
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coupled to a Two Level System in the environment (see Annex G).
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Fig. 3.9. Experimental spectroscopy of the coupled quantroniums in sample QS 4.2.
The current prepulses in the readout A and B are 0.7 I0 and -0.18 I0, respectively,
which corresponds to γ values indicated on the figure. The microwave pulse duration
is 500 ns and the amplitude corresponds to a Rabi frequency of 150MHz. The current
pulse on readout B is delayed by 30ns with respect to readout A. Top and bottom
panels shows the measured changes in switching probabilities (see scale at the top)
of readout A (top) and B (bottom) as a function of the excitation frequency and of
the magnetic flux Φ. The probability is calculated by averaging over 40000 samples.
Left panels contains only recorded data, whereas theoretical curves are superposed
on right panels. Dashed curves are the energies of qubit A (blue) and qubit B (red)
calculated from the parameters deduced from the spectroscopy of uncoupled qubits.
The dashed orange lines are fits leading to a coupling frequency νcc = 600 MHz.
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Fig. 3.10. Theoretical spectroscopy of the coupled quantroniums of sample QS 4.2
obtained by numerical integration of a master equation (see text). The parameters
of the simulation are those used or determined independently in the experiment
of Fig. 3.9: the energies of the sCPB, the coupling frequency νcc = 600MHz, the
prepulse currents, the 50% microwave crosstalk between the two gates, and the
readout risetime of 6 ns. The panels show the simulated weights of state |1〉 for
qubit A (top) and qubit B (bottom) as a function of the excitation frequency and
of the magnetic flux Φ. The theoretical spectroscopic lines are shown in the right
panels as in Fig. 3.9. One observes weight transfers in the phase regions indicated
in Fig. 3.7.
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Fig. 3.11. Spectroscopic lines of sample QS 4.2 when the two quantroniums are
in resonance, i.e. at Φ/Φ0 = 0.1 on Fig. 3.9. The central peak corresponds to the
excitation of the transition |0〉 → |1〉 of qubit A uncoupled to qubit B, whereas the
two other peaks corresponds to the transition |Ψ0〉 → |Ψ1〉 (left) and |Ψ0〉 → |Ψ2〉
(right). The blue lines corresponds to the measured switching probability variations,
whereas the red lines is a fit with three lorenztian lines of amplitude x, y, and z (from
left to right).
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3.2.3 Comparison with numerical simulation

The simulation of a complete spectroscopy experiment was performed by in-
tegrating the Lindblad equation for the driven two-qubit system in presence
of decoherence. In the simple case of a unitary Hamiltonian evolution, the
density matrix ρ of a quantum system obeys the equation

∂ρ

∂t
= − i

~
[H, ρ] . (3.2)

In presence of Markovian decoherence sources, this equation can be general-
ized to non-unitary evolution, and the density matrix obeys a master equation
that can be put in the so-called Lindblad form:

∂ρ

∂t
= − i

~
[H, ρ] +

∑

k

CkρCk† −
1

2

(
C†

kCkρ + ρC†
kCk

)
, (3.3)

where the operators Ck and C†
k are the collapse operators. For the quantroswap

system, H is given by Eq. (1.51), and the operators C correspond to the relax-
ation operator

√
γrσ− with γr the relaxation rate and the dephasing operator√

γϕσz with γϕ the dephasing rate.

The simulation uses the same parameters as in the experiment described
in the previous section. The two qubits are initialised in state |0〉, and their
phases are shifted with the same amount as for the spectroscopy experiment
shown on Fig. 3.9. Then a microwave field is applied on both gates during 200
ns (i.e. 10 times longer than the relaxation time used in the simulation) with
an amplitude corresponding to a Rabi frequency νr0 = 100 MHz, taken into
account the 50% microwave crosstalk. Finally, a ramp in δ with a duration
τ is applied to qubit A, such that it simulates the readout ramp. At the end
of the ramp, the probabilities of being in state |00〉, |01〉, |10〉, and |11〉 are
obtained from the density matrix.

The results obtained are shown on Fig. 3.10 for a ramp with duration
τ = 6 ns. They qualitatively reproduce important features of the spectroscopic
data shown in Fig. 3.9:

- First, the comparison between the amplitude of |Ψ0〉 → |Ψ2〉 observed
with readout A and B shows that no or little energy transfer from qubit
B to qubit A occurs during readout A, when νB = 16.8 GHz > νA

(region green in Fig. 3.7).
- Second, in presence of a level crossing during the readout ramp, one
does find that the Landau-Zener transition probability is very small,
and that an adiabatic energy transfer takes place from one qubit to
the other one, as expected from Fig. 1.72 for such values of νcc and τ .
The presence of the spectroscopic lines |00〉 → |01〉 on readout A (in
experiment and in simulation) indeed clearly shows the effect.
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- Finally, note that the microwave excitation power was sufficiently
large to populate the state |11〉 (transition |Ψ0〉 → |Ψ3〉 in Fig. 3.10),
as also observed in the experimental spectra (see middle orange dashed
curves in top right panel of Fig. 3.7).

3.2.4 A necessary discussion: are our quantronium samples
suitable for gate experiments?

We have determined the coupling between two quantronium qubits by fit-
ting spectroscopic data in the vicinity of their avoided level crossing. During
these investigations, we have characterised a dramatic problem found in our
quantroswap samples: their transition frequency is unstable and undergoes
sudden changes, which we attribute to large changes of the gate charge. We
have not been able to determine the characteristic time of these changes: how
long and how often do they occur? We can only affirm that the time spent
away from the tuned operating point is not small, which severely hinders
qubit operation. Moreover, these frequency changes cannot be analyzed using
standard coherence time measurement technique, like Ramsey sequence, as it
requires first to prepare the qubit in a superposition of state |0〉 and |1〉.

Two consequences can be directly seen. First, it implies that in quantro-
nium experiments (single or two qubit experiment), part of the time we do
not address the qubit at the correct frequency, which decreases the contrast
on all experiments, including the observation of Rabi oscillations. Secondly, it
also implies that the amplitude of the swap oscillations between the coupled
quantroniums will be severely reduced. Note that a similar problem was also
found for a charge qubit coupled to a phase qubit (see Aurelien Fay’s thesis
[87]).



3.3 Demonstration of swapping oscillations between two coupled quantroniums 119

3.3 Demonstration of swapping oscillations between two
coupled quantroniums

Despite the problems encountered in our samples, we have been able to observe
experimental evidence for swapping oscillations in Quantroswap samples. We
present here the results obtained on sample QS 2.1.

3.3.1 Calibration of microwave pulses

In experiment QS 2.1, the short relaxation time (see Table 3.1) prevented us
from preparing the system in state |01〉 with the qubits at different frequencies,
and to displace then their working points to achieve the resonance condition
necessary for performing swapping oscillations.
We have thus prepared the state |01〉 with the two qubits already on resonance,
but using a very short π pulse on qubit B. As explained in section 1.2.2, the
π pulse duration has to be much shorter in this case than the swapping time
1/νcc. In experiment QS 2.1, νcc = 230MHz, and the π pulse duration was set
to 1.5 ns. Besides, the 50% microwave gate crosstalk was compensated using
the technique presented in section 3.1.5: two microwave pulses with a phase
shift and an amplitude properly adjusted to compensate the crosstalk were
applied to both gates. The two microwave pulses then interfere destructively
on island A, which enables to maintain qubit A in the ground state.
To implement this strategy, we have first calibrated the delay between the
microwave gate lines in order to cancel it.
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Fig. 3.12. Determination of the readout sensitivity using Rabi oscillations for both
qubits. The lines are fit curves. The measured contrast and switching probabilities
are used to calculated the expected switching probabilities in Fig. 3.16.
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3.3.1.1 Delay compensation

The time calibration of the readout pulses was achieved by measuring the
switching probability for both readout lines when varying the delay between
the readout pulses and a 1ns resonant microwave pulse applied to gate A (or
B), as shown on Fig. 3.13. These delays are then compensated by applying
the microwave pulses at different times as needed.
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Fig. 3.13. Time calibration of the microwave excitation pulses and readout pulses.
Measured switching probabilities of readout A (blue and cyan) and readout B (red
and magenta) with respect to the delay between a π pulse on gate A (blue and
magenta) or a π pulse on gate B (cyan and red) for nominal 0 delays on all sources.
When the excitation pulse lays just before the readout pulse, the switching prob-
ability PS is maximum. The arrows show the 3.5 ns long delay between the two
microwave lines (orange) and the 4.4 ns long delay between the two readout lines
(green). These measured delays are then canceled by programing proper delays on
each source.
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3.3.1.2 Microwave crosstalk compensation

In order to cancel the 50% microwave crosstalk already discussed in section
3.1.5, we have applied two similar microwave pulses on gate A and B, but
with an amplitude twice as small on gate A as on gate B and an adequate
phase shift (see Fig. 3.14) in order to have destructive interferences on island
A. Using this technique, we were able to reduce spurious Rabi precession of
the qubit A by a factor better than 5 as shown on Fig. 3.14, and to induce a
π pulse on qubit B with a spurious excitation of qubit A of only 2%.

Fig. 3.14. Calibration of the phase shift between the two gate lines. a) Switching
probability as a function of the dephasing due to the phase shifter when a microwave
pulse is applied on both gates. b) Reference contrast (Rabi oscillations) on the same
qubit with only one microwave applied.

3.3.2 Experimental demonstration of SWAP oscillations

For observing SWAP oscillations, we have first tuned the two qubits in reso-
nance by adjusting the magnetic flux through the loops and the bias currents
of the prepulses (see section 1.1) applied to the readout junctions, as shown on
Fig. 3.15. The spectrocopy experiment shown in Fig. 3.8 shows that, when the
reduced flux Φ/(2π) is set to 0.065 and the phases γA,B/(2π) adjusted by the
prepulses respectively equal to -0.065 and 0.08, the qubits are on resonance,
with a transition frequency equal to 12.87 GHz.

In order to improve the contrast on the readout A (see section 1.1), we have
used better parameters, i.e. Φ/(2π) to 0.081, γA/(2π) to 0.07 and γB/(2π) to
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0.11. Then two microwave pulses at 12.83 GHz with duration 1.2 ns are applied
using the techniques described above. The switching probability of the two
readout junctions are finally measured with respect to the delay between them
and the microwave pulses. Between preparation in state |01〉 and readout,
the system evolves under the effect of the coupling, as explained in section
1.2.2.2, and swapping between the two qubits is expected. The data obtained
are shown in Fig. 3.16.

Fig. 3.15. Time dependence of the bias signals (unscaled) applied to readout A
(blue) and readout B (red) for achieving the resonance condition, and for performing
the readout.

3.3.2.1 Data analysis

The dashed curves on Fig. 3.16 show the predicted switching probabilities
calculated from the model described below using the readout contrast CA =
15% and CB = 20% measured from the Rabi oscillations of the uncoupled
qubits (see Fig. 3.12), and a relaxation time T1 = 40 ns. The goal of this
model is to include the qubit disappearance already discuss in section 3.2. For
that purpose we make the following assumption:

- first, we assume that the frequency of each qubit is fixed during one
measurement sample, and is equal to the excitation frequency ν with
a probability p;
- second, when the qubit "disappears", we assume that the switching
probability of its readout junction is P ∗.
- third, we use the switching probabilities P|0〉A,B

, P|1〉A,B
measured

from Rabi oscillations on each qubit A and B, when they are in state



3.3 Demonstration of swapping oscillations between two coupled quantroniums 125

|0〉 and |1〉 (see in Fig. 3.12).
The two switching probabilities, when qubit is prepared in state |0〉
and |1〉, are thus

P0A,B
= pP|0〉A,B

+ (1 − p)P ∗,

PπA,B
= pP|1〉A,B

+ (1 − p)P ∗,

respectively, and the contrast CA,B is equal to PπA,B
− P0A,B

=
p(P|1〉A,B

− P|0〉A,B
).

- finally, we suppose that any excited state relaxes in state |00〉 with
a characteristics time T1.

As explained in section 1.2.2.3, when qubit B is prepared in state |1〉 (or equiv-
alently the system is prepared in state |01〉), the two qubits being in resonance,
the probabilities for being left in state |01〉 and |10〉 at the end of the free

evolution are given by cos (νcct)
2
, and sin (νcct)

2
, respectively. Thus, taking

into account relaxation, these probabilities are actually cos (νcct)
2
e−t/T1 and

sin (νcct)
2
e−t/T1 , whereas the probability for being in state |00〉 is 1− e−t/T1 .

Using all these expressions, one obtains the switching probability of readout
B during a SWAP experiment:

PB = p2
[
cos (νcct)

2
e−t/T1P|1〉B

+ sin (νcct)
2
e−t/T1P|0〉B

+ (1 − e−t/T1)P|0〉B

]

+p(1 − p)
[
e−t/T1P|0〉B

+ (1 − e−t/T1)P|0〉B

]

+(1 − p)pP ∗

+(1 − p)2P ∗,

where the first, second, third, and fourth lines correspond to case where νA =
ν = νB , νA = ν 6= νB , νA 6= ν = νB , and νA 6= ν 6= νB , respectively. One
simplifies this expression in

PB = p(P|1〉B
− P|0〉B

)e−t/T1

[
p cos (νcct)

2
+ (1 − p)

]

+pP|0〉 + (1 − p)P ∗

PB = CBe−t/T1

[
p cos (νcct)

2
+ (1 − p)

]
+ P0B

.

The switching probability of readout A is

PA = CAe−t/T1p sin (νcct)
2

+ P0A
.

The dashed curves on Fig. 3.16 corresponds to these probabilities with p = 0.4,
a value is similar to the reduction coefficient used for fitting the loop current
modulation shown in Fig. 3.4.

This model is actually based on the assumption that qubit disappearance
has a slow dynamics. More precisely, once qubit B is excited at its nominal
frequency, no frequency change occurs during the later 50 ns.
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Moreover, this model does not take into account possible reduction of the
swap oscillations due to the adiabaticity of the readout pulse (see section 1.2.3
for theory, section 3.2.2 for simulations). Indeed, when starting from two reso-
nant qubits, measuring state |01〉 and |10〉 requires to move qubit frequencies
faster than 0.01 × ν2

cc (see Fig. 1.15 in section 1.2.3). Considering readout
ramp about 4-6 ns, and the experimental working points of each qubits, we
estimate that ν2

cc × (∂∆ν/∂t)−1 ≃ 0.07 ± 0.02, which gives an error due to
readout of about 25% ± 10%.
To prevent the contrast from being reduced, we have applied an other π pulse
on qubit B just before the measurement. This pulse transforms states |10〉
and |01〉 into states |11〉 respectively |00〉, which are uncoupled eigenstates of
the system. Figure 3.16b shows that amplitudes of the SWAP oscillations on
both readout are indeed increased compared to experiment in 3.16a.

Finally, this model does not take into account eventual spurious correla-
tions between the switchings of the two readout junctions. More precisely,
we have observed an increase of about 20% the switching probability on one
readout when the second one switches with 100% probability, and this change
follows the switching probability of the second one. Unfortunately, we have
not been able to investigate this problem, and to determine the origin of this
effect: electron heating in the wires, electromagnetic coupling, ...
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Fig. 3.16. Oscillations of switching probabilities corresponding to the swapping of
the quantum of energy between the two qubits. Plain curves correspond to measured
switching probabilities of readout A (blue) and B (red). Dashed curves are plots of
the two functions Preadout A,B(t). a) the system is prepared in state |01〉 with a 1.2
ns pulse, and is measured after a time t. b) the system is also prepared in state |01〉,
then evolves freely during a time t, and is finally submitted to the same π pulse just
before measurement. For an unknown reason prediction (magenta) and experiment
(red) differ.
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3.4 Conclusion

In conclusion, despite huge problems with our samples, we have demonstrated
swapping oscillations between two coupled quantroniums. However, due to the
low T1 and readout visibility, we have been able neither to measure correlations
between qubit readouts, nor to perform the full tomography of the

√
iSWAP

gate. In the course of the experiments, we have provided evidence for a very
serious problem encountered in our quantronium qubits. They stay only part
of the time at their nominal working point. Their transition frequency is thus
not stable, which reduces the amplitude of any measurement performed. We
attribute this instability problem to charge noise, possibly due to quasipar-
ticle poisoning. The characteristic time of this instability is not known. We
know from the observation of Rabi, Ramsey and swapping oscillations that
it is longer than 100 ns. The reduced amplitude of all experimental signals
involving an averaging time longer than a fraction of ms indicates that jumps
already occur on this time scale.
Whatever the explanation, the conclusion is that the lack of coherence and of
readout visibility in our Quantroswap samples does not make our quantron-
iums suitable for multiqubit experiments. We need more robust qubits, with
better coherence properties, and with better readout fidelity. In this aim, in
a subsequent chapter, we propose to use an other type of qubit circuits that
was developed by R. Scholkopf’s group at Yale combining at the same time
another readout method developed by M. Devoret in order to achieve at the
same time the two long sought-after goals of coherence and readout fidelity.
We will present the first results obtained.





Chapter 4
Towards long coherence time

qubits and single-shot

high-fidelity readout

The quantroswap experiments have put in evidence many problems of quantro-
nium qubits : "‘blinking"’ of the qubit (see chapter 3), irreproducibility of the
decoherence time from sample to sample, and low readout fidelity.
The first problem seems to be related to the quantronium sensitivity to mi-
croscopic charge fluctuators and quasiparticle poisoning. The second problem
might be related to the complexity of the quantroswap circuit compared to the
first quantronium, leading to an imperfect control of the microwave impedance
seen by the qubits (in particular through the readout circuit) despite our ef-
forts. This opens unforeseen channels of relaxation and decoherence. The low
readout fidelity might be due to the qubit blinking problem. Realizing multi-
qubit experiments requires to solve all these issues.

Reducing the qubit sensitivity to charge noise can be achived by increas-
ing the EJ/EC ratio in order to have a qubit frequency almost insensitive to
variation of Ng as shown on Fig. 1.2. Rob Schoelkopf group at Yale proposed
and demonstrated a modification of the Cooper Pair box design : shunting the
Cooper Pair box by a large interdigitated capacitor lowers EC while main-
taining EJ to a value comparable to the quantronium circuit. This circuit has
been nicknamed "‘the transmon"’ [47] and has shown good coherence times
[46]. In the Yale experiments, the transmon is driven and measured through
a high-Q resonator, detuned from the qubit frequency, which filters out the
electromagnetic noise at the qubit frequency. This setup offers a good control
over the environment impedance seen by the qubit. The dispersive coupling
between the qubit and the cavity provides an interesting readout method,
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which perturbs only weakly the qubit during readout. However, this readout
is not single-shot due to insufficient signal-to-noise ratio. We propose here to
improve the dispersive readout method by using the bifurcation of a non-linear
oscillator.

In order to discuss the dispersive readout of a qubit through a resonator,
we will start with a brief introduction on the coupling of a qubit to a simple
harmonic resonator. We will then explain the basic principles of dispersive
coupling, starting with the simple linear dispersive method used in previ-
ous experiments. We will finally explain how the bifurcation of a non-linear
resonator can improve this readout, and present first experimental results
already demonstrating high-fidelity single-shot qubit state readout of a trans-
mon qubit.

4.1 Theory and design

4.1.1 Dispersive coupling of a Cooper Pair box with a harmonic
oscillator

4.1.1.1 A Cooper-pair box coupled to a harmonic oscillator

Our readout system is based on the dispersive interaction between a qubit
and a harmonic oscillator. The system considered is shown in Fig. 4.1. A split
Cooper Pair Box (assumed perfectly symmetric) of total Josephson energy EJ

and charging energy EC is capacitively coupled to a LC harmonic oscillator
of resonance frequency ωcav with a gate capacitor Cg. As explained in section
1.2, the sCPB is described by the Hamiltonian (1.8)

ĤCPB = EC
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(4.1)

where δ = 2πΦ/Φ0 is the total phase imposed on the SQUID loop by the
external flux Φ.

The resonator Hamiltonian is
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Fig. 4.1. Schematic representation of a transmon embedded in an microwave res-
onator.

We treat the qubit-resonator capacitive coupling in the same way as we
did in Annex B for the inductive coupling. The reduced charge Ng is replaced
in hamiltonian (4.1) by the operator

Cg

2e
(VgDC

+ V̂cav), (4.3)

and the Hamiltonian ĤsCPB is
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The second line corresponds to the coupling Hamiltonian Hi between the
sCPB and the resonator, whereas the third line can be seen as a renormaliza-
tion term for the resonator capacitance. The Hamiltonian Ĥi is
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Ĥ = ĤsCPB + ~ωcav(â+â +
1

2
) − ~g0N̂(â + â+). (4.6)

This Hamiltonian can be simplified by considering only the first two energy
levels {g, e} of the CPB, and removing fast oscillating terms (rotating wave
approximation) yielding

Ĥ

~
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ωge

2
σ̂z

+g(σ̂+â + σ̂−â+)

+ωcav(â
+â +
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)

where ωge (see Fig. 1.2) is the transition frequency between ground state and

first excited state, g = g0 〈g| N̂ |e〉. This is the well-known Jaynes-Cummings
Hamiltonian on which relies all cavity Quantum Electrodynamics (cavity
QED) experiments. In particular, when the g − e transition is resonant with
the resonator frequency (ωge = ωcav), the coupled system energy eigenstates
are coherent superpositions of qubit and photonic wavefunctions. This leads to
the opening of an anticrossing in the system’s energy spectrum, the vacuum
Rabi splitting 2g. A numerical calculation of the system’s first two energy
states as a function of the phase δ is shown in Fig. 4.2 top, for a situation
where the maximum CPB frequency ωge(δ) is above ωcav (so that it crosses
the cavity frequency for a certain value of δ) and for typical sample param-
eters. The anticrossing is clearly visible. The first experimental observation
of this anticrossing with superconducting circuits by the Yale group [18] has
opened the way to the realization of cavity QED experiments with circuits, a
promising new field nicknamed circuit QED.

4.1.1.2 The dispersive approximation

In this chapter we will be mainly concerned by the possibilities of performing
qubit state readout using circuit QED setups. For readout purposes, the most
interesting regime is the so-called dispersive regime, in which |ωge−ωcav| >> g
so that there can be no energy exchange between the qubit and the resonator.
One can then derive an effective Hamiltonian [88] that reads

Ĥ

~
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(4.7)
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This Hamiltonian shows that the cavity resonance frequency ω′
cav =

ωcav + χσ̂z is shifted by ±χ depending on the qubit state (an effect called
"‘cavity pull"’ by the qubit). This constitutes the basis of all dispersive read-
out methods that we are going to analyze in the following. The value of the
parameter χ fully determines the amount of cavity pull ; the larger it is, the
easier the measurement. In Fig. 4.2 bottom, the value of χ is shown as a
function of δ (blue dashed line), together with a non perturbative calculation
of χnon−pert (red dashed line). The domain of non-validity of the dispersive
approximation is the region where red and blue lines are far from each other.
It is shown in green in Fig. 4.2. Note the strong dependence of χ with the de-
tuning from the cavity resonance frequency |ωge −ωcav|. This means that the
fidelity of dispersive readout methods based on this Hamiltonian depends on
the specific bias point at which the experiment is done. The best situation is
when |ωge −ωcav| is just large enough to be in the dispersive limit while small
enough so that χ still has significant value (for instance, |ωge − ωcav| ≈ 5g is
typically a good compromise).

A slight complication arises when the CPB is of the transmon type. Indeed,
transmons are less anharmonic than CPBs with a smaller EJ/EC ratio. As
a result, the resonance frequency between first and second excited state ωef

is relatively close to ωge
1. This does not change the form of the dispersive

Hamiltonian describing a transmon coupled to a resonator, but just the value
of χ = g2

ge/(ωge−ωcav)−g2
ef/2(ωef−ωcav) where gge (resp. gef ) is the coupling

constant between the g − e (resp. e − f) transition and the resonator mode.
[88].

Note also that the validity of the dispersive approximation is limited to low
photon number occupation of the resonator. Indeed, if the cavity contains N
photons, the coupling constant on the g−e transition becomes gge

√
N , which

should always stay smaller than the detuning |ωge − ωcav|. This leads to the
definition of a critical photon number below which the dispersive approxima-
tion is valid ncrit = |ωge − ωcav|2/4g2

ge. This important caveat means that
all dispersive readout experiments should be performed at low measurement
powers.

Before going on with the description of the principles of dispersive readout,
we need to discuss a small technical detail which has to do with the experimen-
tal implementation of the resonator. Lumped element LC resonators working
at GHz frequencies are in fact difficult to realize properly using microfabrica-
tion techniques. Distributed resonators allow to obtain larger quality factors
and give a better control of the impedance seen by the qubit at microwave fre-
quencies. We will now briefly describe distributed resonators and show under
what conditions the coupling hamiltonian is still valid.

1 To be more specific, ωef ≈ ωge − EC/4~
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Fig. 4.2. (top) First two energy levels of a two-level Cooper-pair box coupled to a
resonator for EJ = 400mK, EC = 200mK, ωcav = 2π×6.3GHz and g = 2π×60MHz
as a function of δ/(2π)(top). The dashed lines show the uncoupled energy states,
the blue solid line shows the coupled system energy spectrum. (bottom) (dashed
blue line) Dispersive coupling constant χ as a function of δ/(2π). (dashed red line)
Non-perturbative cavity frequency shift. The non-validity domain of the dispersive
approximation is the shaded green region.
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4.1.1.3 Distributed resonator

We consider the system shown in Fig. 4.3 : a transmission line of length
L, of inductance and capacitance by unit length L and C, of characteristic
impedance Z0 =

√
L/C, is interrupted at its two ends at x = −L/2 and

x = L/2. The voltage at point x and time t can be decomposed on the
resonator’s eigenmodes at frequencies ωk = kπc̄/L, where c̄ = 1/

√
LC is

the wave phase velocity. More precisely [89], one can show that the voltage
operator at point x and time t can be written

V̂ (x, t) = −
∞∑

k=1

√
~ω2k−1

LC sin

(
(2k − 1)πx

L

)
[a2k−1(t)+a+

2k−1(t)]+

√
~ω2k

LC cos

(
2kπx

L

)
[a2k(t)+a+

2k(t)]

(4.8)
Here we restrict ourselves to the fundamental mode k = 1 so that ωcav =

πc̄/L. The voltage at x = −L/2 is V (t) =
√

~ωcav

LC [a(t) + a+(t)].

The equivalent lc circuit can be found by satisfying two conditions : the
resonant frequency of the lc oscillator should be ωcav, and the voltage op-
erator across the capacitor c should be equal to V (t). This leads to the

conditions 1/
√

lc = ωcav and
√

~ωcav

LC =
√

~ωcav

2c . This yields c = LC
2 and

l = 2LL/π2. This can be reexpressed by noting that L = πZ0/(Lωcav) and
C = π/(LZ0ωcav), yielding c = π

2ωcavZ0
and l = 2Z0

πωcav
. Under these conditions,

the Hamiltonian of the coupled qubit-distributed resonator shown in Fig. 4.3
is the same as the coupled qubit-lumped element lc resonator.
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Fig. 4.3. Schematic representation of a distributed microwave resonator of length
L.

4.1.2 Dispersive readout with a Josephson Bifurcation Amplifier

4.1.2.1 Linear dispersive readout

The basic principle of the linear dispersive readout method is shown in Fig.
4.4a. The qubit-cavity system is coupled to a 50Ω transmission line through
a capacitor Cg. An input microwave signal Vin at the bare cavity resonance
frequency ωcav is reflected on the cavity. Measuring the phase of the reflected
signal Vout should ideally yield ϕe or ϕg depending on the qubit state.

Unfortunately, for technical reasons, in present-day setups the signal-to-
noise ratio (SNR) is not enough to discriminate between ϕg and ϕe in one
single experimental sequence (so-called single-shot regime). This is due to
two distinct constraints limiting the efficiency of the linear dispersive readout
method. First of all, the integration time during which the phase is measured
after each experimental sequence can not be longer than the excited state
relaxation time T1. In addition to that, the measurement power should always
stay below the critical photon number inside the cavity. This means that we
are bound to measure the phase of a weak signal, in a limited time. The
bottleneck is then the noise of our first amplifier. Although it is one of the
best commercially available HEMT amplifier with a noise temperature of 3K,
the final signal-to-noise is not sufficient to properly discriminate between ϕg

and ϕe.
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Nevertheless, the average value of the phase computed over many identical
experimental sequences still gives the average qubit excited state population.
This method has been successfully applied by the Yale group to perform a
number of interesting experiments : high fidelity single-qubit operations [90],
two-qubit coherent exchange of energy [30], ... but the lack of single-shot
resolution is a serious limitation of this linear dispersive readout method.

Fig. 4.4. (a) Principle of the dispersive readout, and (b) qubit-state dependent
phase of the reflected signal

4.1.2.2 Cavity Josephson Bifurcation Amplifier based dispersive
readout

In order to increase the signal to noise ratio, and thus to achieve single-shot
measurement, with a dispersive readout, we have decided to build an active
device, on-chip, cooled at 20 mK, which should thus have a much lower noise
temperature than our HEMT amplifier. A natural choice is to use a Josephson-
junction based amplifier, which can be very naturally integrated with qubit
circuits. We have decided to use a device called "‘Josephson Bifurcation Am-
plifier"’ (JBA) developed at Yale University by M. Devoret’s group [19]. We
will first explain the basic principle of Josephson Bifurcation Amplifiers.

Principle of the Josephson Bifurcation Amplifier

The Josephson Bifurcation Amplifier (JBA) is based on the existence of sev-
eral dynamical states of oscillations for a non-linear oscillator submitted to
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a radio-frequency excitation. As an example, we can first consider the case
of a Josephson oscillator made of a Josephson junction (of superconducting
phase γ) in parallel with a capacitance C, and connected to a 50 Ω line. When
driven at a frequency νrf close to the resonance frequency νp, the phase γ
develops oscillations, which obey the following equation of motion (see Annex
F)

γ̈ +
ωp

Q
γ̇ + ω2

p sin (γ) = ηω2
p cos (ωrf t) (4.9)

with η = V/(ZI0), Q = 50C2πνp the quality factor of the resonator and ω2
p =

I0/(ϕ0C). With a drive frequency sufficiently detuned from νp (1 − νrf/νp >√
3/(2Q)), the amplitude |γ| of oscillations can be multi-valuated. Indeed,

considering only stationary solutions for this equation, and thus looking for
solutions for γ under the form |γ| cos (2πνrf t + ϕ), this equation is simplified
in

−Ω2|γ| cos (ωrf t + ϕ)−Ω

Q
|γ| sin (ωrf t + ϕ)+2J1(|γ|) cos (ωrf t) = η cos (ωrf t) ,

(4.10)
where Ω = ωrf/ωp and the Bessel function J1 comes from the Jacobi-Anger
relation (see Annex F). By multiplying this expression by cos (ωrf t) and in-
tegrating over one period of oscillation, one obtains

(2J1(|γ|) − Ω2|γ|)2 +

(
Ω

Q

)2

|γ|2 = η2, (4.11)

By expanding the Bessel function around 0 at the third order, one obtains a
polynomial, whose roots are the solutions of the simplified equation:

((1 − Ω2) − x

8
)2x +

(
Ω

Q

)2

x = η2, x ∈ R
+. (4.12)

Depending on the driving parameters ωrf , and η, this equation has one, two
or three solutions. Points {ωrf , η} where only two solutions exists are called
bifurcation points B, as they corresponds to borders between region where one
solution exists, and region where three exist. These two regions are noted I
and II, respectively, in Fig. 4.5 and 4.7. These bifurcation points are gathered
into two categories B↑ and B↓, which correspond to bifurcation from region
of low-amplitude oscillations to large-amplitude ones, and from large ones to
low ones, respectively. These two categories have one common point, called
the critical point, where the three solutions are degenerated.

As explained in [91, 17], in region II only the low and large amplitude mode
of oscillations are stable. Moreover, the existence of multiple solutions induces
an hysteric behavior of the oscillator. More precisely, for a given frequency
when increasing the amplitude η, the oscillations switches at point B↑ from low
to large amplitude oscillations; while, when coming backward, the oscillations
switches at point B↓ from large to small amplitude oscillations [91, 17].
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Fig. 4.5. Amplitude |γ| of the oscillations as a function of the reduced driving
amplitude η for different value of Ω. The two bifurcation points B↑ and B↓ at
Ω = 0.86 are indicated by dots, they define the two regions I and II for this value
of Ω.

Switching occurs by activation above an energy barrier. At high temperatures,
the activation is thermal and switching is a stochastic process characterized
by a transition rate Γ that depends on temperature and on the distance
between the working point and the nearest bifurcation point. In the case of
the Duffing oscillator, M. Dykman has proposed a method to calculate the
switching probability Ps [92, 93]. At low temperature (T < ~ωcav/kB), the
switching becomes activated by quantum fluctuations [94] with equivalent
temperature Tq = ~ωcav/(2kB).

In this paragraph we discussed so far a lumped element version of the
bifurcation amplifier, consisting of a Josephson junction in parallel with a
capacitor. It is also possible to realize a JBA with a non-linear distributed
resonator, consisting of a transmission line resonator with a Josephson junc-
tion in its center (an anti-node for the current) as shown in Fig. 4.6. Such
device is called a Cavity Josephson Bifurcation Amplifier (CJBA) and has
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been studied shown in [19].

Cavity Josephson Bifurcation Amplifier based readout

Our readout circuit design is shown in Fig. 4.6. It consists in a CJBA capac-
itively coupled to a Cooper Pair Box of the transmon type. As in the linear
dispersive readout method, this circuit relies on the shift of the cavity fre-
quency experienced by the cavity when the qubit changes state due to the
dispersive qubit-cavity Hamiltonian ; but we now probe this frequency shift
using the CJBA.

The experimental sequence allowing to measure the qubit state with a
CJBA is shown in Fig. 4.7. The envelope of the readout microwave pulse is
shown on top of the figure. The microwave amplitude is first increased at
a value Vp and kept constant during a time interval called "‘plateau"’. One
choses Vp such that B↑e < Vp < B↑g, so that the CJBA bifurcates if the qubit
is in state e and does not if the qubit is in state g. The qubit state measurement
is performed during this plateau. After the plateau, the microwave amplitude
is decreased to a value Vl such that B↓e < Vl during a time interval called
"latching". This second part of the measurement pulse has nothing to do
with qubit readout ; it simply maintains the CJBA in its final oscillation
mode reached at the end of the plateau. The duration of this latching step
can be as long as needed to properly distinguish between the two oscillator
states, without limitation. This allows to discriminate with 100% efficiency the
two oscillator states by measuring the phase of the reflected signal. Provided
the two switching curves associated with the two qubit states are separated
enough, one should obtain a single-shot discrimination of the two qubit states.
As for DC switching measurement, we define the fidelity of the readout as the
difference of switching probabilities when the qubit is in state |g〉, and |e〉.

Comparison with existing dispersive readout methods

Our readout method is based on the coupling of a qubit to a resonator whose
frequency slightly depends on the qubit state. In order to understand properly
the specific interest of our circuit design, it is useful to compare it to other
existing dispersive readout methods based on the same principle. As we will
see, various coupling types have been investigated. We will more specifically
discuss 3 experiments and compare them to our setup : (1) dispersive readout
of a Cooper-pair box by linear capacitive coupling to a linear resonator [18, 90]
(2) dispersive readout of a Cooper-pair box coupled to a non-linear resonator
via the inductance of a Josephson junction [28, 37, 42, 48] and (3) dispersive
readout of a flux qubit inductively coupled to a DC SQUID based non-linear
resonator [43, 44]. Our circuit design consists in (4) the dispersive readout
of a Cooper-pair box capcitively coupled to a non-linear resonator. All these
readout circuits are summarized in Fig. 4.8.
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Fig. 4.6. Cavity Josephson Bifurcation Amplifier based dispersive readout scheme.
A transmon is capacitively coupled to a microwave cavity resonator. A Josephson
junction is inserted at the antinode of the magnetic field (and current), making the
resonator non-linear.

Let us remind that an ideal readout method would take at its input an
unknown qubit state α |e〉 + β |g〉 and measure 0 with a probability |α|2 and
1 with probability |β|2. Readout errors occur 1) if the mapping between the
quantum state of the qubit |i〉 (i = e, g) and the result of the readout j
(j = 0, 1) is not perfect 2) if the readout takes so much time that the qubit has
time to relax before being measured (this results in an asymmetric readout
error, present only if the qubit is in |e〉), or 3) if the readout process by
itself induces some transition between the two qubit states. For instance, the
readout process may lower the qubit excited state lifetime, or even induce
some excitation from ground to excited state. It is therefore important to
properly understand, for each readout method, what limits its speed, and
what backaction it will exert on the qubit. We would like to stress that the
only relevant backaction here is the backaction that induces some mixing
between states |g〉 and |e〉 ; a measurement backaction that leads to dephasing
is not a problem at all ; in fact, the best readout apparatus has to induce a
complete dephasing of the qubit state once readout is completed. Although
a detailed comparison of all qubit-resonator coupling schemes is out of the
scope of this paragraph, we would like to point out in this paragraph a few
differences between these circuits in order to understand better the interest
of our design. These differences consist in the type of backaction seen by the
qubit during the measurement.
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Fig. 4.7. Principle of the dispersive qubit state readout with a CJBA. The mi-
crowave pulse envelope (top) includes a measurement plateau at a value Vp and
a latching part at a value Vl. The plateau maps the qubit state on the resonator
dynamical state, and the latching part keeps the oscillator in the same state as at
the end of the plateau. Depending on the qubit state, the switching probebilities
are very different and allow to discriminate between the two qubit states in a single
measurement.
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Fig. 4.8. Comparison between four different dispersive qubit state readout methods:
1) Cooper pair box capacitively coupled to a linear resonator, 2) Cooper pair box
inductively coupled to a non-linear resonator through a Josephson junction, 3) flux
qubit inductively coupled to a non-linear SQUID based resonator, and 4) Cooper
pair box capacitively coupled to a non-linear resonator.

Given the basic principle of dispersive readout detection, it seems natural
to think that the ideal system Hamiltonian would be H = Hq + Hcav + HI

with Hq = −~ωq/2σz, Hcav = ~ωcava†a, and HI = χa+aσz, so that the res-
onator frequency is shifted by a quantity χσz that bears some information on
the qubit state. All the experiments considered in this paragraph do contain
such interaction term, that describes a coupling between the qubit energy (σz

operator) and the photon number stored in the resonator (term a†a). This
interaction leads to a measurement-induced dephasing by ac-Stark (or Zee-
man) shift [95] that is nearly unavoidable in any dispersive readout scheme,
and which should not induce any energy relaxation. However, in circuits (2)
and (3) other terms are also present. For instance, in circuit (2), the qubit en-
ergy depends not only on the photon number stored in the resonator, but also
on the current that flows through the readout junction. In order to perform
readout, one needs to excite the resonator at its resonance frequency ωcav,
so that the qubit frequency is then modulated at ωcav during readout, on a
frequency range that may be relatively important (typically a few 100 MHz).
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This is also valid for circuit (3), and may cause spurious relaxation from state
|e〉 to state |g〉 as has indeed been observed [96]. To the contrary, in circuits
(1) and (4), the transmon resonance frequency does not depend at all on a
DC electric field because of its large EJ/EC ratio, so that the qubit frequency
is not modulated at ωcav during readout (purely transverse coupling term)
; it is only shifted due to measurement-induced ac-Stark shift. Preliminary
measurements seem to indicate that the qubit relaxation rate is indeed hardly
affected by the readout in our design, in contrast with other readout schemes
[96].

To summarize, our goal with this circuit design (4) was to combine the
minimum backaction during readout that had been achieved with circuit (1)
together with the large signal-to-noise ratio provided by the bifurcation ampli-
fier as demonstrated in circuits (2) and (3) allowing single-shot discrimination
between the two qubit states.

4.2 Implementation

4.2.1 Fabrication

We briefly present in this section the various techniques used to fabricate our
samples. Fig. 4.9 shows the main parts of the circuit.

The center photograph is a view of the distributed resonator. It consists
of a Niobium coplanar waveguide (CPW) deposited on a Si-SiO2 wafer, inter-
rupted on the right by a coupling capacitor towards the 50Ω line, and on the
left by an open end with a gap in which the qubit is fabricated. The inner con-
ductor has a width of 10 µm and the gap between it and the ground is 5 µm, so
that the impedance of the CPW is 50 Ω (ǫrSi

≃ 12). The resonator length was
chosen such that the resonance frequency of the fundamental mode is close to
7 GHz (for a resonator without junction). In the middle of the resonator, the
inner conductor is interrupted in order to place a Josephson junction.
The CPW is fabricated by first sputtering Niobium on top of a wafer, which
is then reactive-ion etched through a resist mask patterned by optical lithog-
raphy (see Annex C). The central Josephson junction and the sCPB are fabri-
cated by e-beam lithography and double-angle evaporation of Aluminum (see
Annex C).

4.2.2 Measurement Setup

A schematic drawing of our measurement setup is shown in Fig. 4.10. Once
the circuit is fabricated, it is glued with wax on a microwave printed circuit
board and connected to copper gold-plated coplanar waveguides using wire-
bonding. The PCB is placed in a copper box, and thermally anchored at 20
mK.
Microwave signals are generated by mixing continuous wave signals with DC
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Fig. 4.9. Pictures of the main circuit elements. In the center, the Coplanar Waveg-
uide resonator. At its left side (green) is placed the transmon (top left), while at its
right side, it is connected to 50 Ω line through an interdigitated capacitor (red) (top
right). In the middle of the resonator (yellow), a Josephson junction is inserted in
the inner conductor.
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pulses generated by an Arbitrary Waveform Generator 2. Two distinct sources
are used, one tuned in resonance with the qubit resonance frequency ωge

to coherently drive it, and another one at the frequency ωrf required by
the bifurcation readout scheme (note that each source is associated with a
separate set of mixers and envelope pulses). The two pulses are then combined
and sent down the cryostat through the input line, which includes heavy
attenuation and filtering at low temperatures in order to suppress thermal
radiation at the resonator input. After reaching circulator C1, the microwave
pulses reach the sample input, are reflected and channeled by C1 towards the
output line. The pulses are amplified by a cryogenic amplifier cooled at 4 K,
after passing through a low-loss superconducting coaxial cable and 2 isolators
which protect the qubit from thermal and amplifier noise. The pulses are then
further amplifier at room-temperature. Homodyne detection is performed on
the readout pulse by mixing it with a local oscillator originated from the same
microwave readout source. The mixed-down I and Q quadratures are finally
sampled by a fast digitizer.

2 We use IQ mixer, and send DC pulse on both quadrature in order to compensate
defaults of mixers, and increase the ratio on/off.
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Fig. 4.10. Electrical wiring of the experiment. The flux applied through the trans-
mon loop is changed using the coil (left). The drive and readout microwave pulses
are generated by mixing continuous wave with DC pulses generated by Arbitrary
Waveform Generator. They pass from room temperature to 20 mK through the in-
put microwave line (green), which is attenuated and filtered. At 20 mK, they are
sent towards the microwave resonator by a cryogenic circulator C1. The reflected
signal is sent via C1 to the output line (purple), which includes a niobium microwave
line, filters and isolators. At 4K the signal is amplified by a cryogenic amplifier with
a noise temperature TN = 3K. After being amplified at room temperature, the
reflected signal is sent to a digitizer.
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4.3 Experimental results

In this section are summarized preliminary results obtained on the first sample
fabricated and tested.

4.3.1 Characterization of the sample

4.3.1.1 Characterization of the non-linear cavity

We first characterize the resonator by sending a continuous microwave signal
of adjustable frequency and power, and measuring the phase of the reflected
signal using a Vector Network Analyser. The results are shown in Fig. 4.11. At
low signal powers, the phase of the reflected wave displays the characteristic
behavior of a linear resonator, allowing us to fit the resonance frequency and
quality factor (see Fig. 4.12): here, ωcav = 2π×6.332 GHz and Q = 600, close
to the design values. At higher powers, the resonance curve shifts towards
low frequency and sharpens, until for even larger powers the phase presents a
discontinuity indicating the bifurcation phenomenon.

4.3.1.2 Characterization of the bifurcation phenomenon

The bifurcation phenomenon can be further characterized by applying a slow
triangular ramp, and monitoring the reflected phase as a function of the trian-
gle amplitude. Results are shown in Fig. 4.13. Figure 4.13a (top graph) shows
the reflected phase when the triangle is rising ; figure 4.13b (middle graph)
when the amplitude is decreased. The difference between the two graphs (fig.
4.13c, bottom graph), reveals the hysteresic nature of the bifurcation process.
We compare these measurements to the theory of the CJBA given in Annex
F, with all the parameters determined from the experiment. Indeed, we know
Q = 600, ωcav = 2π × 6.332 GHz (see previous paragraph). From additional
measurements on identical resonators without a Josephson junction, we also
know ωcav,b = 2π × 7.35 GHz yielding ωcav/ωcav,b = 0.86. This allows us
to compute the switching B↑(ωrf ) and retrapping B↓(ωrf ) curves. They are
shown in Fig. 4.13 as red and blue solid lines. The agreement with the retrap-
ping curve is excellent ; however there is a discrepancy for the switching curve
which may be due to an experimental artifact in these preliminary data.
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Fig. 4.11. Resonator measurements with a Vector Network Analyzer. Phase of the
reflected signal as a function of the microwave frequency ωrf for various input pow-
ers. At high power, the resonance curve shifts towards low frequency and sharpens,
indicating the bifurcation phenomenon.
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Fig. 4.12. Determination of the resonance frequency νcav and quality factor Q of
the resonator. Note that the resonance frequency is changed by about 2.5 MHz
compared to fig. 4.13 due to the change of the working point of the qubit. Here
ωge << ωcav.
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Fig. 4.13. Bifurcation and hysteresic behavior of a non-linear cavity. Phase of the
reflected signal as a function of microwave power for various frequenceis, measured
with a triangular envelope microwave pulse for (a) increasing microwave power (b)
decreasing microwave power (retrapping). The switching (retrapping) is shown as a
sharp transition between red and blue regions. The theoretical curves for switching
B↑(ωrf ) and retrapping B↓(ωrf ) are shown as red and blue lines. In region (I),
the system has only one metastable oscillating state. In region (II), two metastable
dynamical states are possible and the system is hysteretic. (c) Difference between
the two curves (a) and (b) displaying clearly the hysteretical region (II).
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In order to measure the qubit state, we need much faster pulses than this
triangular ramp. Pulse envelopes such as shown in Fig. 4.7, including a mea-
surement pulse and a latching plateau, with a total duration of typically 600
ns, are used (see Fig. 4.14). The same microwave pulse is sent many times,
and the quadratures of the reflected pulse are measured for each pulse. Typi-
cal time traces of one quadrature are shown in Fig. 4.14 for Vrf close to the
bifurcation threshold. Two different families of traces are clearly observed,
revealing the two metastable states of the oscillator. A histogram of the mea-
sured values of one quadrature is shown in Fig. 4.14. It is possible to define
a threshold value Vth allowing to perfectly discriminate between the two dy-
namical states of the oscillator by comparing the measured quadrature value
to Vth in one single shot. This allows us to measure the switching probability
at a value Vth by counting the number of events during which the resonator
switched. By varying Vrf , we obtain switching curves (s-curves) analogous
to the ones obtained with DC switching. If we manage to have a good map-
ping of the qubit state on the resonator state, we should therefore obtain a
high-fidelity single-shot qubit state readout.

Readout sensitivity

To characterize the readout sensitivity of our system, we should compare
s-curves obtained at a given readout frequency νrf for two different cavity
frequencies νcav − χ and νcav + χ, since a change in the qubit state modifies
the resonator frequency by 2χ. It is easier instead, and equivalent, to keep νcav

fixed and measure s-curves for various readout frequencies νrf . Such a mea-
surement is shown in Fig. 4.15 for various frequencies with a step of 5 MHz. At
the temperatures at which we work (T = 20 mK), M. Dykman’s theory [94]
predicts that the width of the switching curves is due to quantum noise, and
that it amounts to a thermal noise corresponding to half an energy quantum,
i.e. Teff = ~ωcav/2kB = 150 mK. We performed some simulations to compute
the s-curves at T = 150 mK, and obtained curves that are somewhat less steep
than the ones measured in Fig. 4.15. More detailed and systematic measure-
ments and analyses are needed to understand this discrepancy. Putting this
problem aside, we note that given our experimental s-curves we should have
an excellent single-shot qubit readout fidelity provided 2χ ≥ 5 MHz.
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Fig. 4.14. Switching probabilities PS as a function of the microwave signal power
and distribution of the quadrature amplitude of the reflected signal for three different
values of PS 10%, 50%, and 90%. Top right : oscillograms of the microwave pulse
envelope (green) and of on of the quadratures of the reflected signal.
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Fig. 4.15. Switching probabilities PS as a function of the microwave signal power
for different values of the microwave frequency ωrf . The microwave pulse has a
plateau duration of 150 ns, and a latching duration of 400 ns.
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4.3.1.3 Characterization of the transmon

Spectroscopy

We first determine the split Cooper Pair box characteristics (EJ and EC) by
performing the spectroscopy of the qubit using the exact same technique as
for the quantronium experiments. By convenience, we performed these exper-
iments using the readout in the linear regime, without bifurcation (which is
still possible at very low measurement powers). More precisely, a microwave
pulse is applied with a frequency ωd, and a duration of 2 to 5 µs. The read-
out microwave signal is then applied with an amplitude corresponding to one
photon in the cavity, and the phase of the reflected signal is measured as a
function of the flux Φ (proportional to the coil voltage) and ωd. Experimen-
tal data are shown in Fig. 4.16As explained in previous sections, this phase
changes when ωd matches the qubit frequency ωeg, and it is thus possible to
measure the qubit frequency as a function of δ = Φ/ϕ0.
To determine both energy EJ and EC of the sCPB, one also needs to measure,
for example at δ = 0, the transition frequency ωef . In this purpose, a third
microwave pulse at frequency ωaux is inserted in the pulse sequence between
the first pulse at frequency ωge, and the readout pulse. As for the first excited
state |e〉, the phase of the reflected signal changes when ωaux matches ωef .
In the regime of large EJ/EC ratio, the difference of frequency between the
two transition is equal to EC/(4h). The measured values, EJ = 0.698K and
EC = 0.05K, demonstrate that the CPB is indeed in the large EJ/EC regime.
However, EJ was in this sample 20% lower than expected, causing the maxi-
mum qubit frequency ωge to stay always below the cavity resonance ωcav. The
smallest detuning is thus obtained when δ = 0. It is equal to 700 MHz.

Coherence times

We have characterized the qubit coherence times by applying the same method
than for quantronium experiments, and explained in Annex A.

The characterization was first performed at δ = 0, where the qubit-cavity
detuning is minimal, and thus the readout sensitivity is the largest. We first
measured Rabi oscillations using the CJBA readout, as shown in Fig. 4.17.
This allowed us to determine the pulse duration necessary to perform a π
rotation of the qubit state.
Figure 4.17c shows a measurement of the relaxation time T1. A π pulse is first
applied in order to populate the qubit in state |e〉, then the readout pulse is
applied after a delay time ∆t. The switching probability decreases exponen-
tially with a characteristic time T1 following the relaxation of the quantum
of energy. In this sample, we measure T1 = 750ns. This relaxation time is
longer than the ones obtained in the Quantroswap experiment (see chapter
3), which confirms the interest of protecting a qubit by measuring it through a
resonator that filters out the electromagnetic quantum noise at its resoannce
frequency. Over three different samples, the relaxation time was found to be
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Fig. 4.16. Spectroscopy of the transition |g〉−|e〉. The spectroscopy of the transition
|e〉− |f〉 gave a difference ωge −ωef = 300 MHz, yielding EC = 0.05K. One can thus
fit (red) the spectroscopy with EJ = 0.698K. The two photon transition |g〉 → |f〉
is visible in the bottom of the figure.

sensibly the same in similar biasing conditions. In addition, this relaxation
time is actually close to the one obtained taking into account the relaxation
through the resonator in the 50Ω line [47, 46].
We also measured the decoherence time T2 (see Fig. 4.17d) with a Ramsey
fringe experiment. The amplitude of the Ramsey oscillations decays exponen-
tially with a characteristic time T2 = 1.44µ s. This is much longer than the
coherence times measured with the Quantronium design (see chapter 3), even
at the doubly optimal point. In addition, since the measured T2 is extremely
close to 2T1, dephasing is completely limited by relaxation. The pure dephas-
ing time is not even measurable, and is at least larger than 10µs. This clearly
demonstrates that working in the EJ >> EC regime gives much better coher-
ence times. Note also that only the magnetic flux needs to be tuned in this
circuit, the dc gate voltage being not relevant for the qubit operation. This
results in much simpler and robust operation than with previous Cooper pair
box designs.



4.3 Experimental results 159

Fig. 4.17. Coherence times measurement at δ = 0 when νge = 5.553 GHz. a)
Switching probabilities PS as a function of the readout plateau amplitude Vp for the
two qubit states |g〉 and |e〉. b) Rabi oscillations with a frequency νR = 33 MHz. The
contrast (amplitude of oscillations) is about 40%. c) T1 measurement. Experimental
curve (red) corresponds the exponential decay of the quantum of energy. The fit (blue
curve) gives T1 = 749ns. d) Ramsey fringes obtained with two π/2 pulses 8 MHz
detuned from the qubit resonance and of duration 15 ns. The fit (blue line) gives
T2 = 1.44 µs, very close to 2T1.
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4.3.2 Single-shot readout for a sCPB

We present in this section the characterization of the Cavity Josephson Bifur-
cation readout method of a transmon qubit.

4.3.2.1 Readout fidelity

In order to characterize the readout fidelity, we measured an s-curve with-
out and with a π pulse. Results are shown in Fig. 4.17a, together with a
curve showing the difference between the two curves. The maximum fidelity
obtained is 40%. Additional measurements have shown that this fidelity did
not seem to strongly depend on the value of ωrf used for the readout. This
can be qualitatively explained looking at 4.15. One observes that the s-curves
measured with ωrf being close to ωcav are more separated, but also wider,
than the s-curves measured further from ωcav. In total, the readout sensitiv-
ity is roughly unchanged. Further theoretical and experimental studies are
however needed to address this question more precisely. Note however that it
is in principle better to work with ωrf as close as possible to ωcav because
switching occurs at lower power, so that the dispersive approximation will
have a greater validity making the readout potentially less destructive for the
qubit state. The limited fidelity of 40% in that sample is simply due to the
excessive qubit-cavity detuning, which yields 2χ = 1.4MHz, not enough to
properly separate the switching curves when the qubit is in state |g〉 and |e〉.
A later sample corrected this error, giving a much larger fidelity.

4.3.2.2 Is this readout method QND ?

Finally, we have also characterized eventual qubit relaxation and excitation
during readout. For this purpose, we have applied two readout microwave
pulses successively, and measured the switching probabilities and their corre-
lations, similar to previous experiments [42, 97]. The plateau duration was set
to 150 ns and the latching duration to 320 ns. The two pulses were separated
by 150 ns so that the field inside the resonator has enough time to relax in-
between. The measurements are shown in Fig. 4.18.
In Fig. 4.18a we show the switching probability measured with the second
pulse in presence of a first measurement pulse (but irrespective of what the
first pulse measured), in red, and the switching probability measured with
one single readout pulse sent after the exact same delay as the other, in blue.
The two curves are practically identical. This is a strong indication that the
readout essentially does not affect at all the qubit state.

In order to obtain more quantitative results, we have measured the joint
probabilities Pij where i, j = 0, 1 indicate the result of the first (i) and the
second (j) result. The data are shown in Fig. 4.18b. To account for these
data, we use a model similar to the one explained in [42] to determine the
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measurement error rates and the non-destructive character of the readout.
The principle is shown in Fig. 4.19 : the readout gives result 0 when the qubit
is in |g〉 with an error rate α, and 1 when the qubit is in |e〉 with an error
rate 1 − β ; and the qubit stays in state g after a measurement with a rate
1 − s, and 1 − r for e. Assuming that the Rabi oscillation is in fact perfectly
accomplished (the qubit oscillates with 100% contrast between states |g〉 and
|e〉), we can fit the data in Fig. 4.18b (dashed lines). We obtain α = 0.23± 2,
β = 0.72 ± 2, r = 0.58 ± 4, s = 0.05 ± 4. As already mentioned, the readout
error rates are due to the insufficient separation between the s-curve obtained
when the qubit is in |g〉 and the one obtained after a π pulse when the qubit
is in |e〉 (see Fig. 4.17a). As for the non-destructive character, we have a rela-
tively large rate r, but it is completely explained by the qubit relaxation time
even in absence of the measurement pulse. The excitation rate s is negligible
within the error bars. We therefore conclude that a readout pulse seems to
have a negligible effect on the qubit state ; unfortunately, the duration of a
measurement pulse is too long (of order T1) and the measurement error rate
too large to obtain large correlations between the two measurement results as
has been measured with flux-qubits [97].
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Fig. 4.18. Switching probabilities of two successive readout measured for νrf = 6.26
GHz and νge = 5.59 GHz, and comparison with theory using parameters shown on
Fig. 4.19. a) Comparison of the probabilities of switching of the second readout pulse
with the probabilities of switching of the same readout pulse when first readout
pulse is absent. In this case the change in amplitude of oscillations is only due to
the relaxation decay. b) Probabilities P11 (red), P10 (magenta), P01 (cyan), and P00

(blue) of two successive readout pulse (0 and 1 code for non-switching and switching
respectively). Dashed lines corresponds to fitted curves with model described in text.
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Fig. 4.19. Schematic representations of the parameters characterizing the measure-
ments errors. a) Schematic representation of the probabilities of non-switching (0)
and switching (1) as a function of the state |g〉 and |e〉. From Fig. 4.18b (calculating
the switching probability during the first readout), one determines that α = 0.77 and
β = 0.28 (contrast is equal to 49%). b) The corresponding probabilities of switching
for the two qubit states. c) The measurement can also induce changes in the qubit
state in addition to the projection of the qubit state into a pure state: excitation (s)
or relaxation (r). The relaxation probabilities in absence of readout is fitted from
Fig. 4.18c, and is equal to 0.58. d) The corresponding probabilities of switching for
the two qubit states.

4.3.2.3 Conclusion

In this first sample, the readout fidelity was about 40%. This value was clearly
limited by a too small value of χ, due to a too large qubit-resonator detuning,
about 730 MHz at δ = 0, larger than was actually designed.
Since this experiment we have fabricated a new sample, whose qubit frequency
at δ = 0 is higher than ωcav, and thus enables to have a frequency detuning
as small as desired. Preliminary results have shown that when the qubit is
closer to the cavity the fidelity is increased (see Fig. 4.20) up to 90%, even
slightly better than the highest single-shot fidelity reported so far [44]. How-
ever, bringing ωge to close to ωcav also slightly increases the relaxation rate
[47]. A further optimization of the sample parameters is thus still needed,
in order to have a large readout fidelity together with long relaxation and
coherence times at the same bias point. In conclusion, this readout scheme
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associated to a sCPB with large EJ/EC ratio embedded in a cavity seems to
be very promising to create robust multi qubit circuit. We have demonstrated
the first single-shot high-fidelity qubit state readout for a transmon. Further
optimization of the sample parameters should lead to high-fidelity measure-
ments of quantum correlations in multi-qubit experiments.
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Fig. 4.20. Contrast and Rabi oscillations. Top) Switching probabilities qubit being
in state |0〉 (blue) and |1〉 (red) and their difference (orange). Bottom) Corresponding
Rabi oscillations.
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We report in this chapter the results obtained with a quantronium device
for converting a current i into a frequency f = i/2e. The experiment per-
formed aims at demonstrating Bloch oscillations in a split Cooper Pair Box
probed by microwave reflectometry. This work is related to the effort aiming
at redefining electrical units a explained below.

5.1 Towards a new metrology of electrical units

The present status of the electrical units in the SI system, like the volt and
the ampere, is presently profoundly unsatisfactory. Their definitions, which
relate them to mechanical units, are the following:

- the ampere is the current passing through two parallel wires, distant
by 1 m, that produces a force of 2.10−7 N per unit length.
- the volt is the electrical potential drop across a wire dissipating one
watt when the current is 1 A.

One easily understands that these definitions cannot lead to accurate rep-
resentations. Since January 1st 1990, the recommendation of the CIPM
(Comité International des Poids et Mesures) is to redefine the volt by using
the AC Josephson effect, which relates the AC voltage U across the junc-
tion to the frequency f of its Josephson oscillations through the relation
U = h/(2e)f = f/KJ−90, with KJ−90 = 483597.9GHz/V [98]. A similar
recommendation is to redefine the ampere by using the Quantum Hall Effect,
which relates the current I through a Hall bar to the transverse Hall voltage
V through the relation V = h/e2I = RK−90I, with RK−90 = 25812.807557 Ω
the von Klitzing resistance [9].

5.1.1 The triangle of quantum metrology

According to the present knowledge of physics, the above physical constants
RK−90 and KJ−90 are related to fundamental constants h and e through the
relations:
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KJ−90 = 2e/h, (5.1)

RJ−90 = h/e2

One notices the relation 1/(KJ−90RJ−90) = e/2. The consistency of the two
above relations could thus be checked by relating a current to a frequency
through a third relation of the type I = ef . Establishing the consistency of the
three relations, which form the triangle of quantum metrology shown in Fig.
5.1 would then provide a solid basis for changing the SI system, and basing
the electrical units on physical phenomena involving fundamental physical
constants. In a second step, one could relate the mass unit to the electrical
units with the watt balance experiment [99] that equates a mechanical power
mgv to an electrical power IV . The success of this experiment would then
free the SI system from any artefact subject to unavoidable hopefully small
drifts.

Fig. 5.1. Quantum metrological triangle relating the second s to the volt V through
the AC Josephson effect (left branch, U is the voltage and f the frequency), the volt
to the Ampere A through the quantum Hall effect (bottom branch, I is the current),
and the Ampere to the second through an experiment to be defined.
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5.1.2 I = 2ef

5.1.2.1 Experimental requirements for closing the triangle of
quantum metrology

Closing the triangle of quantum metrology is demanding because the opera-
tion of a Quantum Hall Device requires a rather large current in the µA range
when the searched accuracy is in the 10−8 range. With the help of a supercon-
ducting transformer with a topologically defined transformation ratio [100],
it is possible to bring this current range down to the sub nA range, which
is still a large current compared to what can current produced by electron
pump, which are in the tens of pA. We briefly review here existing devices for
relating a current to a frequency.

5.1.2.2 Single electron pumps

The most advanced device is presently the single electron pump first operated
in the Quantronics group [101]. In this Coulomb blockade device, a single
electron charge is transferred during each operation cycle by forcing its passage
across a series of tunnel junctions by applying suitable gate voltages to the
islands between the junctions. Single electron pumps have already been used
for the metrology of the electrical charge [102, 103, 104], and present day single
electron pumps can deliver currents up to a few tens of pA with metrological
accuracy (10−8), which is still too small for closing the triangle of quantum
metrology.

5.1.2.3 A new hybrid turnstile

Different types of pumps now exist, but the only device able to reach the
needed current range is the hybrid SNS device recently developed in the group
of J. Pekola [105]. This device is a turnstile [106], which makes use of the gap
energy to stabilize a charge configuration. This device has the potential to
deliver 0.1 nA, and is simple to parallelize (its accuracy is currently analyzed
and in rapid progress).

5.2 Current to frequency conversion from Bloch
oscillations in a Josephson device

A rather different approach had been proposed earlier to relate a current to
a frequency: the Bloch oscillations of a current biased Josephson junction
[107, 20]. Indeed, Likharev and Zorin have predicted that the voltage across
a Josephson junction, which is perfectly current-biased by a current I oscil-
lates periodically at a frequency fB = I/(2e). A simple way to understand
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this phenomenon is to consider the mechanical analogue of the current bi-
ased junction: the phase difference ϕ across the junction is equivalent to the
position of a particle moving in the Josephson potential −EJ cos ϕ, the volt-
age across the junction to the particle velocity, and the bias current I to a
constant applied force. The dynamics of the particle is well-explained within
the framework of the Bloch energy bands ǫi(q) formed by the eigenstates of
the particle, with q its quasimomentum having the dimension of an electric
charge. The particle velocity oscillates at the Bloch frequency fB due to the
reflection of the Bloch waves at the edge of the Brillouin zone.
Provided a perfect current bias can be applied to a junction, a direct obser-
vation of the voltage oscillations should be possible. It was also suggested
to detect these Bloch oscillations by inducing quantized current plateaus in
presence of an applied microwave frequency. These current plateaus would be
the dual of the voltage Shapiro steps of the AC Josephson effect.

5.2.1 First observation of Bloch oscillations in a current-biased
Josephson junction

The indirect observation of Bloch oscillation in a Josephson junction was first
reported in [108, 109]. This experiment consisted in measuring the I(V ) char-
acteristic of a small Josephson junction embedded in a resistive environment
made of thin Chromium resistors, and subject to microwave irradiation. An ef-
fect of the microwaves on the I(V ) characteristic was convincingly observed at
currents close to that predicted by theory, but the expected current plateaus
were not observed. The authors found that current-biasing was not perfect
enough in this experiment for obtaining narrow Bloch lines at a given cur-
rent. The estimated frequency width for the Bloch oscillations produced is
about 1 GHz [109], which is too large for locking Bloch oscillations in the ex-
plored frequency range 3-10 GHz. The experiment clearly demonstrated that
current-biasing a Josephson junction is extremely difficult, and furthermore
prone to effects difficult to control, such as electron heating.

5.2.2 A new experiment for demonstrating Bloch oscillations

In order to circumvent the difficulty to current-bias a Josephson junction, one
can use a Cooper pair box (CPB) circuit in which the junction is charge-
biased by applying a voltage to a small gate capacitance. Increasing linearly
the gate voltage mimics a perfect current bias, and produces oscillations of
the box island potential, i.e. Bloch-like oscillations of the voltage across the
box junction. We now show that embedding this CPB in a quantronium like
sample leads to an easy detection of these Bloch oscillations.
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5.2.2.1 The split Cooper Pair Box as a 2D lattice for observing
Bloch-like oscillations

More precisely, the proposed experiment consists in using a split Cooper Pair
Box (sCPB) in a quantronium geometry for detecting the Bloch oscillations
by microwave reflectometry. The Hamiltonian of the sCPB is

Ĥ = EC(N̂ − Ng)
2 − EJ

[
cos

(
δ

2

)
cos θ̂ + d sin

(
δ

2

)
sin
(
θ̂
)]

, (5.2)

with Ng the reduced gate charge, δ the phase across the two small junctions

of the box, and N̂ and θ̂ the two conjugated observables forming the de-
gree of freedom of the Cooper pair box. This Hamiltonian is 1-periodic in
Ng, and 2π-periodic in δ. Thus, if Ng is varied in time at a constant rate

Ṅg = I/(2e), a constant displacement current I flows through the gate ca-
pacitance Cg, and if the sCPB stays in its ground state, the system is forced
to evolve at a constant speed along the periodic ground state energy band
(see Fig. 5.2).As explained above, the sCPB undergoes periodic oscillations of
its island voltage. Correlatively, all the physical quantities such as the island
charge < N >, the persistent current, or all the derivatives of the Hamilto-
nian with respect to the control parameters Ng and δ vary periodically at the
Bloch frequency νB = I/(2e). We use one of these derivatives, the inverse in-
ductance L−1(Ng, δ) = ϕ−2

0 ∂2E/∂δ2 (see Fig. 5.2) to detect Bloch oscillations.

Fig. 5.2. Principle of the current to frequency conversion with a Cooper pair box.
a) Linear evolution of Ng(t). b) Ground state energy band (left) and its second
derivative L−1 with respect to δ (right) as a function of Ng.

5.2.2.2 The Blochonium oscillator

As explained in section 1.1.4, different techniques have been developed for
the purpose of qubit readout, and in particular microwave methods. For the
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detection of Bloch oscillations, we exploit the periodic modulation of the reso-
nance frequency of a quantronium-like sample with the gate charge Ng, which
we call Blochonium in this context. More precisely, we apply a microwave CW
signal to a quantronium and monitor the spectrum of the reflected signal.
As explained in section 1.2, the whole quantronium circuit forms a resonator
with resonance frequency

νp =
1

2π

√
1

Cr

(
1

L(Ng, δ)
+

1

LJ(γ)

)
, (5.3)

where γ = δ − Φ/ϕ0 is the phase across the "readout" junction, Φ is the flux
in the quantronium loop, and Cr is the total capacitance in parallel with the
readout Josephson of inductance LJ(γ). The iso-inverse inductance curves
L−1(Ng, δ) are shown in Fig. 5.3. These curves show the periodicity in Ng

and δ. They also show that the maximum modulation in Ng, is obtained
for δ = π, which makes this point optimal for probing the variations of the
resonator frequency νp.

Fig. 5.3. Iso-inverse inductance of the split CPB as a function of its working point
(Ng,δ) for EJ = 2kBK, EC = 1kBK and d = 0.05. This inductance is 1-periodic in
Ng, and its maximal modulation in Ng occurs at δ = π.
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Fig. 5.4. Electrical scheme of the Blochonium circuit. A 50 Ω source applies an
incoming wave of amplitude Vin to a quantronium-like sample. This wave is reflected
on the Blochonium oscillator and propagates through a circulator to a 50 Ω amplifier
( 50 Ω resistor on the figure).

5.2.2.3 Dynamics of the driven Blochonium oscillator

Here we focus only on the dynamics of the Blochonium oscillator submitted
to a continuous incoming microwave signal of amplitude Vin and frequency
νrf (see Fig. 5.4). Using the constitutive relations of the Josephson junction,
the dynamics of γ is :

∂2γ

∂(ωpt)2
+

1

Q

∂γ

∂(ωpt)
+ sin (γ) = η cos (2πνrf t) , (5.4)

where η = 2Vin/(RI0), Q = RCrωp is the quality factor of the resonator, and
R = 50 Ω is the load impedance of the 50 Ω matched microwave lines (see Fig.
5.4). This equation describes the dynamics of a fictitious unit mass particle
with position γ in a cosine potential, subject to friction, and harmonically
driven.
Two regimes can be distinguished: a linear regime, where the restoring force
− sin (γ) ≃ −γ, and a non-linear regime, where the third-order term −γ3/6
in the expansion of sin (γ) has to be taken into account. Both regimes are
described in [110].

In our experiment, we do not monitor directly the oscillations of γ, but
the microwave signal which is reflected by the Josephson oscillator. In an
adiabatic (νg << νp/Q) and linear approach, assuming the oscillations γ are
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small, we define the coefficient of reflection r = Vout/Vin (the outgoing and
incoming signal), and the admittance of the Blochonium oscillator

Y (ω, γ, Ng(t), δ) = iCrω +
R

iLJ(γ)ω

[
1 +

LJ(γ)

L(Ng(t), δ)

]
. (5.5)

One has

Vin = 50iin , Vout = 50iout,

(iin − iout) =
1

50
(Vin − Vout) = Y (ω, γ, Ng, δ)(Vin + Vout),

leading to

r(t) =
2

1 + RY (ω, γ, Ng(t), δ)
− 1. (5.6)

Since the Blochonium oscillator is dissipation-less |r| = 1and the information
on Ng(t) is carried by the phase ϕ(Ng) = Arg(r(Ng)). Figure 5.8 shows an
example of resonance curves ϕ(Ng = 0) and ϕ(Ng = 1/2) for this linear regime
and parameters determined in the next sections. Nevertheless, we will see that
the maximization of the signal requires using large drive amplitude Vin for
which the linear approximation is no longer valid. More general calculations
of the reflected signal will be presented later.

5.2.2.4 An experimental trick for performing an impossible
experiment

In a real experiment, it is impossible to increase linearly and indefinitely
Ng, which would lead at some point to a break-down of the capacitor Cg.
Instead, one can apply a triangular gate voltage with frequency νg, amplitude

∆Ng, and offset Ng0
(see Fig. 5.5) covering the range [Ng0

− ∆Ng

2 , Ng0
+

∆Ng

2 ]. If the extremal values of this range coincide with symmetry points of
the Blochonium inductance modulation pattern, i.e. ∆Ng and Ng0 are half-
integers, this inductance is the same as for an infinite linear increase of Ng

(see Fig. 5.5). This trick thus allows to perform the proposed experiment,
although it can not demonstrate Bloch oscillations with a true DC current.

5.2.2.5 Calculation of the reflected signal for triangular gate
voltage

We now calculate the reflected signal for a triangular gate voltage with ar-
bitrary Ng0

and ∆Ng by looking for steady state solutions for γ(t) involving
only the frequency νrf , and νg and its harmonics:
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Fig. 5.5. Mimicking a linear Ng ramp with a triangular Ng(t). Both panels show
a triangular time evolution of Ng with amplitude ∆Ng and offset Ng0 (top left),
the corresponding L(Ng)−1 dependance (top right), and the corresponding L(t)−1

(bottom left). a) When Ng0 or ∆Ng is not half-integer, L(t)−1 is different from
what it would be with a linear ramp. b) When Ng0 and ∆Ng are half-integers,
L(t)−1 mimics what it would be with a linear ramp.
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Vin(t) = vinei2πνrf t (5.7)

Vout(t) =
∑

n∈Z

αnvinei2π(νrf +nνg)t,

with αn are complex number. This form assume implicitly that the dynamics is
not chaotic and monochromatic in the sense that it does not involve oscillating
terms at frequencies multiple of νrf . But it does not assume an adiabatic
behavior of the reflection coefficient as in section 5.2.2.3. In this formalism,
Eq. (5.6) takes the form

vinei2πνrf t +
∑

n∈Z
αnvinei2π(νrf +nνg)t = (5.8)

RY (2πνrf , γ, Ng, δ)vinei2πνrf t −∑n∈Z
RY [2π(νrf + nνg), γ, Ng, δ]αnvinei2π(νrf +nνg)t.

By multiplying this expression by e−i2πνrf t, one simplifies it in

1 +
∑

n∈Z
αnei2πnνgt = (5.9)

RY (2πνrf , γ, Ng, δ) −
∑

n∈Z
RY [2π(νrf + nνg), γ, Ng, δ]αnei2πnνgt.

It is then convenient to rewrite Y as a series of eikνgt (with k ∈ Z). For this
purpose, Y is first rewritten as the Fourier series in Ng

RY (ω, γ, Ng, δ) =
∑

k∈Z

βk(ω)ei2πkNg , (5.10)

where

βk(ω) = β−k(ω) = δk0

[
iRCrω +

R

iLJ(γ)ω
− R

iω

∫ 0.5

Ng=−0.5

1

L(Ng, δ)
dNg

]

+
2R

iω

∫ 0.5

Ng=−0.5

1

L(Ng, δ)
cos (2πkNg) dNg.

Note that we limit the expansion of Y to cosine functions due to the parity
of L(Ng). A small number of harmonics k ∈ [−10, 10] is sufficient to provide
an accurate description of the gate modulation of the inductance.
In a second time, each cosine functions of Ng(t) is also expanded as the Fourier
series

cos[2πkNg(t)] =
∑

p∈Z

sk
p cos (2πpνgt) , (5.11)

where the Fourier coefficients are

sk
p = sk

−p = 2(2 − δk0)νg

∫ 1/2νg

t=0

cos[2πkNg(t)] cos (2πpνgt) dt.

Note that for a proper tuning of ∆Ng Ng0
simulating an infinite Ng ramp,

sk
p = δp 2k. One reduces Eq. 5.9 to
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2 +
∑

n∈Z

α′
nei2πnνgt = −

∑

n∈Z

∑

k∈Z

βn
k α′

nei2πkNgei2πnνgt (5.12)

with α′
n = αn − δn0 and βn

k = βk2π(νrf + nνg). Using Eq. 5.11, one finally
obtains

2 +
∑

n∈Z

α′
nei2πnνbt = −

∑

n∈Z

∑

k∈Z

βn
k α′

n

∑

k∈Z

sk
pei2πkνgtei2πnνgt. (5.13)

By identifying the terms oscillating at the same frequency, one obtains a
linear system of equations in αn:

∑

l∈Z

(
∑

k∈Z

βl
ksk

n−l + δnl)α
′
l = −2δn0, n ∈ Z. (5.14)

Solving this system gives the amplitude {αn}n∈Z of all the sidebands present
in the reflected signal.

5.2.3 Circuit design

This section explains how we have designed the Blochonium circuit in order
to observe Bloch oscillations.
We have first maximized the signal by increasing the amplitude of modulation
of 1/L with Ng. Then, in order to avoid excitation of the CPB in its upper
energy bands, we have chosen its parameters in order to have a sufficiently
large energy gap between the ground state and the first excited state. Finally,
we have determined the parameters of the Josephson oscillator and of the
microwave probe signal in order to maximize the modulation of the reflected
signal with a drive frequency νrf falling in the [1.1 GHz, 1.7 GHz] bandwidth
of our cryogenic low-noise amplifier.

5.2.3.1 Avoiding quasiparticle poisoning of the Blochonium island

As explained in the previous section, the Bloch oscillations and their frequency
are determined by the time-variation of Ng. This implies to reduce any fluc-
tuations of Ng due to electronic noise or to quasiparticles entering the island
and shifting suddenly Ng by 1/2. To make this quasiparticle poisoning ener-
getically unfavorable even when out-of-equilibrium quasiparticles are already
present in the leads, the superconducting gap of the island was made larger
than that of the leads. To estimate the poisoning rate in our experiment, we
use the model proposed by J. Aumentado et al. [111] for single Cooper pair
transistors. Given a rate γ0,l (resp. γl,0) for the creation (resp. annihilation)
of a quasiparticle in the leads, the ratio α between the probabilities of having
one quasiparticles in the lead or in the island is given by

α = α0,le
−E0(Ng+0.5)−E0(Ng)+∆v

kBT (5.15)
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with α0,l = (1 + γl,0/γ0,l) and ∆v the difference of superconducting gap be-
tween leads and island. α is maximum at Ng = 1/2 and depends essentially on
the ratio (EC)/(4∆v). In practice, the variation of the gap is obtained by vary-
ing the thickness of the aluminum. Indeed, the typical superconducting gap of
bulk Al is about 180 eV; when reducing the thickness down to 12 nm, the gap
increases up to 220 eV. Thinner layers would have a larger superconducting
gap, but their fabrication requires depositing aluminum at low temperature
in order to obtain a "continuous" film rather than isolated grains. We thus
chose this 12 nm thickness of the island, which leads to EC smaller than 2 K
to get α/α0,l < 0.04 at 50mK.

5.2.3.2 Maximizing the modulation of 1/L(Ng) over Ng

As explained in the previous section, the goal of the experiment is to impose
a linear variation of Ng and to measure the change in the sCPB inductance
by reflectometry on the Josephson oscillator. As already shown in Fig. 5.3,
the maximum amplitude of variation, which is actually the difference of 1/L
between Ng = 0 and 1/2, is obtained at δ = π. Figure 5.6 shows that this
maximum difference increases with both EJ and EC . At the maximum allowed
EC (2 K), this increase is almost linear in the [1 K, 4 K] EJ range, and
saturates above 5 K. We can not choose a too high EJ value that would lead
to very transparent junctions, which are unstable and fragile; this is why we
choose EJ ≃ 4 K.
This yields a size for the two junctions of about (150 nm)2 assuming a specific
capacitance CJu ≃ 100 fF/µm2, and a critical current density of about 6
µA/µm2.
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Fig. 5.6. Iso-amplitude of variation of 1/L(Ng, δ = π) as a function of EJ and EC

for d = 0.15. The green region indicates forbidden values of EJ and EC in order to
avoid poisoning. Our target design values are at the intersection of the dashed line
and of the green border.

5.2.3.3 Adiabaticity of the evolution

Whatever the choice of the sCPB parameters, this experiment requires first
that the sCPB stays in its ground state. One has thus to avoid a Landau-
Zener transition to the first excited state, while ramping Ng. The probability
of such a transition is

PLZ = e
− [hν01(Ng=0.5,δ=π)]2

~EC fB , (5.16)

where hν01(Ng = 0.5, δ = π) ≃ dEJ for EJ/EC . 5 and d . 0.2. As already
explained in section 2.1.3 for the Quantroswap experiments, lowering this
probability requires either to evolve at low enough speed or to increase the
energy difference hν01 between the two levels. In the case fB = 1 GHz for the
already given value of EJ and EC , PLZ is equal to 1%4 for d = 0.065.

Besides, one has also to avoid the multi-photon excitation of the sCPB
due to δ oscillations at the plasma frequency νp, when ν01 = kνp, k ∈ N. It
requires k > 8 at δ = π and Ng = 1/2, which yields an asymmetry d ≥ 15%
for the value of EJ and EC already given.
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5.2.3.4 Design of the Blochonium oscillator

Finally one has to determine the parameters of the readout oscillator. Ideally,
its resonance frequency νp should be in the middle of our cryogenic amplifier
bandwidth [1.1 GHz, 1.8 GHz], i.e. at about 1.5 GHz. Its quality factor Q
should be low enough so that the Bloch sideband falls within the resonance
bandwidth even if νB > 100 MHz, and so that the response time of the
oscillator is not too large compared to the Bloch period 1/νB . On the other
hand, a large Q yields larger signals as the reflected signal response is sharper
when passing through resonance. We estimate that a quality factor Q ≈ 10
is a reasonable trade-off (see Fig. 5.8) as the variation of the Blochonium
frequency is about 70 MHz for the given values of EJ and EC .

This low-enough quality factor also ensures that the phase difference γ is
a classical variable as well as δ = π + γ.
The bare plasma frequency (without the CPB) and the associated quality
factor being

νp =
1

2π

√
I0

ϕ0Cr

and

Q = R

√
I0Cr

ϕ0
,

the choices made above lead to Cr = 20pF and I0 = 620 nA.

Finally, one has also to choose the frequency νrf and the amplitude Vrf of
the microwave probe. For this purpose, one maximizes the phase modulation
of the reflected signal given by Eq. (5.6).

iRCrω +
R

iLJω
+

R

iL(Ng, δ)ω
=

1 − r(Ng, π)

1 + r(Ng, π)
, (5.17)

where

δ = π + γ,

γ = γae−i π
2 ei2πνrf t =

V

iϕ02πνrf
,

and V = (1 + r)Vin = ei2πνrf t (For a sake of simplification, we have changed
the phase reference compared to previous sections).
This equation is normally valid for small oscillations of γ. Nevertheless it
is possible to extend its validity to large γa by replacing LJ by an effective
inductance LJ,eff (γa) (see Annex F). Indeed, using Jacobi-Anger relation and
limiting the expansion of the dynamics to oscillating terms at frequency νrf

(monochromatic approximation), one obtains
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LJ,eff (γa) =
γa

2J1(γa)
LJ

with J1 the Bessel function of the first kind.
The very same expansion in δ is also performed for the sCPB inductance
L(Ng, δ) in order to take into account the AC-Stark shift effect induced by
the γ oscillations. For this purpose, 1/L(Ng, δ = π + γ) is first expanded as a
Fourier series

1

L(Ng, π + γ)eff
=
∑

n∈Z

αk(Ng) cos (kγ) (5.18)

where

αk = (2 − δk,0)

∫
1

L(Ng, π + γ)
cos (γ) dγ. (5.19)

Then, replacing γ by −iγaei2πνrf t, using the the same Jacobi-Anger relation,
and eliminating fast oscillating terms, one obtains

1

L(Ng, δ = π)eff
=
∑

n∈Z

αk[J0(kγa) + J2(kγa)], (5.20)

with J0 and J2 the Bessel functions of the first kind. The reduction ratio of
the inverse effective inductance, L(Ng, δ = π)/L(Ng, δ = π)eff, depends essen-
tially on the asymmetry d. As an example for the already chosen parameters
of the sCPB (EJ = 4 K and EC = 2 K), this ratio is equal to 0.96 for γa = 0.1
rad and to 0.7 for γa = 0.4 rad.

Using the above expressions, one calculates the reflexion coefficient r. Fig-
ure 5.7 shows its 2π phase shift when passing through the resonance. One
notices that, when increasing Vin, the oscillator becomes non linear, its reso-
nance frequency decreases, and the phase shift becomes more abrupt. Thus,
the small Ng modulation of the resonance frequency (much smaller than the
bandwidth ∆ν = νp/Q) can be enhanced by increasing γa as shown on Fig.
5.8. However, γa can not be increased too much, taking into account the re-
duction of 1/L due to the AC-Stark shift mentioned above.

As a conclusion, it is convenient to work at maximum power but still
below |γa| = 0.1 rad, with a probe frequency νrf between νp(Ng = 0) and
νp(Ng = 1/2) (see Fig. 5.8), where the amplitude of the phase modulation of
the reflected signal is maximum for the chosen values of EJ , EC , and d.
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Fig. 5.7. Response of the Blochonium oscillator to microwave excitation as a func-
tion of the probe signal frequency for three drive amplitudes |2Vin/(RI0)| = 0.001
(blue), 0.01 (orange) and 0.1 (red): phase of the reflected signal (a) and amplitude
γa of oscillations (b) for νp = 1.5 GHz and Q = 10.
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Fig. 5.8. Gate charge induced phase modulation of the Blochonium for νp = 1.5
GHz, Q = 10, EJ = 4 K, EC = 2 K, and d = 0.15. Thin lines are absolute
phases of the reflected signal as a function of the probe signal frequency for two
amplitudes |2Vin/(RI0)|= 0.001 (blue) and 0.1 (red), and for Ng = 0 (solid) and 1/2
(dashed). Bold lines are the corresponding differences between Ng = 0 and 1/2 for
|2Vin/(RI0)|= 0.001 (cyan) and 0.1 (magenta).

5.2.4 Fabrication and experimental setup

5.2.4.1 Sample fabrication

The sample was fabricated using techniques similar to those used for the
quantronium. In a first step, large leads ( width larger than 100 µm) and
quasiparticle traps are fabricated by optical lithography and Au deposition.
Then, the Al bottom layer of the capacitance Cr is deposited and plasma-
oxidized in a reactive Ion Etching machine following the process described in
Annex 3. Finally, the sCPB, the readout junction, and the top layer of the
capacitance are fabricated by e-beam lithography and double-angle shadow
evaporation of Aluminum. In order to avoid quasiparticle poisoning, the is-
land is made thinner than the leads (13 nm and 42 nm respectively). Pictures
of the sample are shown ion Fig. 5.9.
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Fig. 5.9. Optical and scanning electron micrographs of the central part of the
Blochonium from large (top) to small (bottom) scale. a) Large scale view showing
the Cr capacitors (green box) and gate (top electrodes). b) SEM picture showing the
split Cooper Pair Box in parallel with its "readout" Josephson junction, and gold
quasiparticle traps (bright structures). c) Detailed view of the gate (top structure),
of the island (middle rectangle), and of the two asymmetric Josephson junctions
with d = 15% (bottom structure).
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5.2.4.2 Microwave reflectometry measurements on the Blochonium

The circuit is glued with wax on a Printed Circuit Board, and is wire-bonded
to two coplanar Waveguide lines made of gold-platted copper. Mini-SMP con-
nectors are soldered at the end of each CPW line.
The PCB is then placed in a tin-lead platted copper box anchored to the cold
plate bottom of a dilution fridge with base temperature 25 mK. It is con-
nected to the gate and to measuring lines, as shown in Fig. 5.10. The gate line
is attenuated and filtered above 250 MHz in order to prevent electromagnetic
noise to affect Bloch oscillations. The measuring line is actually made of two
lines: one for the microwave injection, and one for measuring the reflected
signal.
For generating and demodulating the microwave signal, the output of a mi-
crowave generator (Anritsu MG3692) is split in two channels. One of them
is used as a reference local oscillator for the demodulation of the reflected
signal. The other one is sent to the excitation line, which is strongly atten-
uated, and passed through a bandpass filter [1.2 GHz-1.8 GHz]. At 25 mK,
the injected signal goes through a circulator, then is phase modulated and
reflected on the Blochonium oscillator. The reflected signal goes through the
same circulator to the measuring line. The signal is then transmitted through
a superconducting line to a cryogenic amplifier (Quinstar L-1.5-30H) with
a noise temperature of 2.4K at 1.5 GHz. To prevent outside noise to pass
through this line, three circulators are inserted at different temperatures. At
room temperature, the signal is amplified again. The output signal is finally
sent to the input of a spectrum analyzer for spectral measurement, or to the
input of mixer for time-domain measurement.
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Fig. 5.10. Electrical wiring of the experiment. The triangular gate voltage is applied
through a filtered attenuated line (left vertical line). The flux is tuned using the
central vertical line. The microwave signal generated by a microwave source passes
through a attenuated and filtered line. At 20 mK, it goes through a first circulator,
goes to the probe junction on which it is reflected. Then it goes back through the
same circulator, and two other ones, before being amplified at 4 ◦K by a cryogenic
amplifier with noise temprature TN = 2.2◦K. At room temperature, the signal is
either sent to a spectrum analyzer or demodulated by homodyne detection.
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5.3 Experiments

5.3.1 Sample characterization

We have first characterized the sample by measuring the resonance frequency
of the sCPB in parallel with the Josephson oscillator. Using a vector network
analyser, one applies a microwave continuous wave, and measures the reflected
signal ϕ. By sweeping the frequency, the phase ϕ changes by about π when
passing across the resonance at νp. This allows to follow νp as a function of
Ng and δ. As the values of the critical current I0 and the parallel capacitor
Cr are known from room temperature measurements of the resistance and
capacitance, one can use the expression (5.3) to determine the sample param-
eters EJ , EC , and d (see Fig. 5.11). In this sample I0 = 870nA, Cr = 47pF ,
EJ = 2.879kBK, EC = 1.416kBK, and d = 0.139. Note that this measure-
ment requires low power injection in order to induce oscillations of γ small
enough for staying in the linear regime and for inducing small renormalisation
of 1/L by the AC-Stark shift.
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Fig. 5.11. Modulation of the resonance frequency of the Josephson oscillator in
parallel with the sCPB as a function of δ (a) and Ng (b). a) The curves at Ng = 0
(red) and Ng = 0.5 can be fitted (dashed lines) in order to determine the sample
parameters: EJ = 2.88kBK, EC = 1.42kBK, and d = 0.14. These resonance fre-
quencies were determined by fitting the phase of the reflected signal as a function
of the microwave frequency for all the values of δ and Ng plotted here. For these
experiments, the amplitude of the induced oscillations of γ was about 0.1 rad.
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5.3.2 Direct observation of Bloch oscillations in the time domain

The Bloch oscillations of the Blochonium were first directly probed in the time
domain by applying a low frequency triangular modulation to the gate, and by
measuring one quadrature of the reflected signal with a demodulator (AD8347
from Analog Devices). Figure 5.12 shows this quadrature for a Bloch frequency
of 8 kHz. The limiting factor for this experiment is the noise temperature of
the cryogenic amplifier, which imposed to reduce the measurement bandwidth,
and thus the Bloch frequency. When monitoring the signal during 2 s, we have
not observed any spurious change of Ng, which indicates the absence of stable
quasiparticle poisoning.

Fig. 5.12. Quadrature of the demodulated reflected signal (blue trace) when the
gate charge is varied at low frequency (red trace). The periodic oscillations of the
reflection coefficient result from the Bloch oscillations of the current-biased split
cooper Pair Box during the linear ramps. Each period corresponds to a single Cooper
pair injected in the box island.

5.3.3 Bloch oscillation spectrum

The oscillations of the sCPB inductance have been more quantitatively mea-
sured from the power spectrum of the reflected signal.
A microwave signal, which induces γ oscillations with an amplitude of about
0.1 rad, is applied to the Josephson oscillator at a frequency νrf . At the
same time, a gate charge triangular modulation pattern is applied to the gate
line with reduced voltage offset Ng0 , amplitude ∆Ng, and frequency νg. The
spectral power of all the ith harmonics at frequency νrf + iνg is measured
using a power spectrum analyzer with a 1 Hz bandwidth. Figure 5.13 shows
the harmonic amplitudes for different sets of Ng0 and ∆Ng. Starting from a
modulation pattern that does not fulfil the criteria for observing only Bloch
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sidebands, one progressively clean the spectrum by adjusting the amplitude
and the offset till the spectrum contains only Bloch lines, as in the case of a
perfectly current-biased Josephson junction.

Figure 5.14 shows the comparison between similar data and the theoretical
predictions using the model given in section 4.2.1.2, and using the measured
transmission of our microwave lines. One can notice that the plasma frequency
of the Josephson oscillator was smaller than expected, which imposed to work
on the lower side of the circulator frequency bandwidth, which yielded some
spurious leakage and interferences between incident and reflected signals.
It was possible to increase the amplitude ∆Ng and the frequency νg, and to
reach νB values of a few hundreds of MHz, as shown on Fig. 5.15. At this fre-
quency, the sideband amplitudes were nevertheless significantly reduced due
to the finite oscillator bandwidth. Moreover, the finite bandwidth of the pulse
generator AG 3252 used to produce the triangular modulation patterns yields
an appreciable rounding at the turning points, which results in spurious peaks
in the spectrum.
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Fig. 5.13. Spectra of a reflected signal at 1.14 GHz for different triangular gate
voltages (see pictograms on the right) at frequency νg=200 Hz. These spectra consist
in peaks at the different harmonics at frequency i×νg. When Ng0 and ∆Ng are tuned
to integer values only peaks at the Bloch frequency and its multiple νB = 2∆Ngνg

remain (see bottom panel).
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Fig. 5.14. Comparaison of the measured and calculated harmonics amplitudes as
a function of Ng0 and ∆Ng, for νg = 1 kHz. Calculated curves were shifted by 45dB
(estimated value was 44dB) to best match the experimental Bloch line of order 1.
Left: Offset dependance for ∆Ng = 2; the observed harmonics correspond to odd
multiples of νg (top), and to the Bloch line k=4 and its harmonics k=4n, with period
1/(2n) in Ng0 (bottom). Right: amplitude dependance for Ng0 = 0. The Bloch lines
correspond to k=2 for ∆Ng = 1, k=4 for ∆Ng = 2, and k=6 for ∆Ng = 3.
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Fig. 5.15. Amplitudes of the harmonics of νB . Top: Ng0 = 0, ∆Ng = 50, and νg = 1
MHz. Bottom: Ng0 = 0, ∆Ng = 85, and νg = 2.4 MHz. The Bloch lines of order 1
are marked with an asterisk and correspond to Bloch frequency of 100 MHz = 32
pA and 408 MHz = 130 pA.
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5.3.4 Conclusion

Using microwave reflectometry techniques, we have demonstrated Bloch-like
oscillations in a charge-biased Cooper pair box, a circuit equivalent to a
current-biased Josephson junction. Bloch oscillations were observed up to 400
MHz, which corresponds to a current of about 130 pA.
This experiment demonstrates that current to frequency conversion in the
sub-nA range requested for closing the triangle of quantum metrology can in
principle be performed using Bloch oscillations in a current-biased Josephson
junction.
As discussed in [107, 109], this requires to invent and fabricate a current source
with specific characteristics:

- a high impedance to ensure that the split junction is in the Coulomb
blockade regime
- a very low noise in order to maintain the fluctuations of the injected
charge well below a single Cooper pair, so that Bloch lines are suffi-
ciently narrow for current metrology.

This is undoubtedly a difficult goal that goes beyond the reach of this thesis,
which just demonstrates the validity of current to the frequency conversion
with Bloch oscillations.





Annex A
Manipulation of the qubit state:

a few protocols

In this annex we present the different pulse sequences used in qubit experi-
ments, in particular to characterize the decoherence.

- π pulse: resonant microwave pulse whose duration is 1/2νRabi.
It induces a rotation of π around the x-axis, and transforms
|0 > into |1〉.

- π/2 pulse: resonant or nearly resonant microwave pulse
whose duration is about 1/4νRabi in order to transform |0〉
into (|0〉 + eiϕ |1〉)/

√
2, where ϕ depends on the phase of

the microwave pulse (with respect to a reference) and on
the possible frequency detuning.

- Ramsey sequence n◦: this sequence is used to measure the
precession around the z-axis at the qubit frequency dur-
ing a free evolution. A first nearly resonant π/2 pulse with
a zero phase and a detuning ∆ν = νrf − ν01 prepares a
equal-weight superposition of state |0〉 and |1〉; then the
qubit evolves freely in the equatorial plane during a time
∆t, precessing around z at frequency ∆ν; finally a second
π/2 pulse with a possible different phase χ is applied. The
probability of being in state |1 > is cos(χ)2.

- Echo sequence : it is based on the Ramsey sequence n◦ 2,
where a π pulse is applied at ∆t/2. This enables to measure
z-axis precession being sensitive only to high-frequency
(higher than 1/∆t) noise.
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Fig. A.1. a) is the Bloch sphere in a rotating frame with a microwave field in
resonance. b) is the free evolution of the qubit. c) is a typical Ramsey sequence for
two different values ∆t 0 and 1/2δν



Annex B
How the quantronium can be

simplified as a basic Cooper Pair

Box

We explain here why it is possible to simplify the quantronium circuit made
of a split CPB in parallel with a current biased and capacitively shunted
Josephson junction as an equivalent basic CPB (see Fig. B).

The Hamiltonian of the quantronium circuit can be calculated following
the method proposed by M. Devoret [68] and B.Yurke [67], which is summa-
rized at the beginning of section 1.2.1.

Figure B shows the spanning tree that we choose for the circuit, and its
three nodes A, B, and C. All these nodes X are connected to ground by only
one branch, so that φX = ΦXGround.
The three Kirchoff’s current laws at nodes A, B, C are

0 = ibias − I0r
sin (γ) − I01

sin (θ1) + Crφ̈A + CJ1
(φ̈A − φ̈B),

0 = −I01
sin (θ1) − I02

sin (θ2) + CJ1
(φ̈B + CJ1

(φ̈B − φ̈A) + Cg(φ̈B − φ̈C),

0 = CSφ̈C + Cg(φ̈C − φ̈B),

where θ1 = φA − φB , θ2 = φB and γ = θ1 + θ2 + Φ/ϕ0.

These equations of motion are the Euler-Lagrange equations

∂L
∂φ

=
∂

∂t

∂L
∂φ̇

and φ̇ =
∂φ

∂t
(B.1)

associated with a lagrangian L defined as the kinetic energy (energy of the
capacitive elements) minus the potential energy (energy of the inductive el-
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Fig. B.1. Transforming the quantronium in an equivalent circuit with a basic CPB.
a): Electrical schematic of the whole quantronium circuit with its three biases Vg,
Φ, and ib. The different parameters and quantum variables. b): Equivalent circuit
involving a basic CPB instead of split one. The coupling between the two sub-circuits
occurs the bγ observable. For low enough bias current ib, quantum fluctuations of γ
can be neglected and bγ replaced γ0 = 〈γ〉.

ements). Then, by integrating Eq. (B.1) from t = −∞ (one has to integrate
carefully the infinite terms coming from sources), one obtains

L =
CΣ

2
φ̇2

B + EJ1
[cos (θ1) − 1] + EJ2

[cos (θ2) − 1] − Cg

2
φ̇2

C

−CJ1 φ̇Bφ̇A − Cgφ̇Bφ̇C

+
CJ1

+ Cr

2
φ̇2

A + EJr (cos (γ) − 1) + ϕ0γibias

=
CΣ

2

(
φ̇B − CJ1

CΣ
φ̇A

)2

+ EJ1
cos (θ1) + EJ2

cos (θ2) − Cgφ̇Bφ̇C

+
1

2

[
Cr + CJ1

(
1 − CJ1

CΣ

)]
φ̇2

A + EJr cos (γ) + ϕ0γib + cst. (B.2)
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Here CΣ = CJ1
+ CJ2

+ Cg ≃ 2CJ with CJ1,2
= (1 ± d)CJ1,2

/2.
It is convenient to rewrite this Lagrangian using the two conjugate variables
{qB = 2eN, φB} of node B with

qB =
∂L
∂φ̇B

= CΣ

(
φ̇B − CJ1

CΣ
φ̇A

)
− CgVg

and Vg = φ̇C .
Finally, one then deduces the Hamiltonian from the Lagrangian:

H =
∑

i={A,B}

∂L
∂φ̇i

φ̇i − L

=

[
Cr + CJ1

(
1 − CJ1

CΣ

)]
φ̇2

A − CJ1

(
φ̇B − CJ1

CΣ
φ̇A

)
φ̇A

+CΣ

(
φ̇B − CJ1

CΣ
φ̇A

)
φ̇B − CgVgφ̇B − L.

One finds

H = EC(N − Ng)
2 − EJ1 cos (θ1) − EJ2 cos (θ2)

+
1

2

[
Cr + CJ1

(
1 − CJ1

CΣ

)]
γ̇2 − EJr

cos (γ) (B.3)

−ϕ0γib

with φ̇A = ϕ0γ̇, EC = (2e)2/CΣ . Hamiltonian (B.3) can be regarded as the
sum of the split Cooper Pair Box Hamiltonian (line 1), of the readout Joseph-
son oscillator Hamiltonian (line 2), and of the current source Hamiltonian
(line 3). The readout contribution contains a Josephson term analogue to a
potential energy and a γ̇2 term analogue to a kinetic energy, with the "mass"
Cr slightly renormalized by the CPB (term in CJ1

). This renormalization
comes from the asymmetric grounding of the circuit (only one CPB junction
is directly connected to ground). It is nevertheless negligible as Cr >> CJ1

.
Using the definitions EJ1,2

= EJ
1±d
2 , θ = θ1−θ2

2 and δ = θ1 + θ2, and
considering the degrees of freedom as quantum observables, one obtains

Ĥ = ĤsCPB + Ĥreadout

ĤsCPB = EC(N̂ − Ng)
2 − EJ

[
cos

(
δ̂

2

)
cos θ̂ + d sin

(
δ̂

2

)
sin
(
θ̂
)]

(B.4)

Ĥreadout =
C∗

r

2
ϕ2

0
̂̇γ2 − EJr cos (γ̂) − ϕ0γ̂ib

(B.5)

with C∗
r = Cr + CJ1(1−CJ1/CΣ) ≃ Cr. Considering quantum fluctuations of

the phase γ̂ as small, ĤsCPB in Eq. (B.4) is mathematically equivalent to [16]
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ĤsCPB = EC

(
N̂ − Ng

)2

− E∗
J(d, δ) cos

(
θ̂∗
)

(B.6)

with

E∗
J(d, δ) = EJ

√
(1 + d2 + (1 − d2) cos (δ) /2

θ̂∗ = θ̂ + ζ(d, δ)

(B.7)

with tan[ζ(d, δ)] = −d tan(δ/2) and δ = γ−Φ/ϕ0. As a conlusion, the quantro-
nium circuit can be regarded as two separate (but dependent) circuits: a basic

CPB with effective Josephson energy E∗
J and island phase θ̂∗, and the readout

circuit. This equivalence will be used to calculate Lagrangian and Hamilto-
nian of the quantroswap circuit in section 1.2.1.

Ĥreadout can be furthermore simplified to enlight the coupling between the

split CPB and the readout circuit: it can be expanded in fluctuations δ̂γ near
the value γ0 that minimizes the potential energy of the readout junction (in
presence of the sCPB):

Ĥreadout =
Cr

2
ϕ2

0
̂̇
δγ

2

− ϕ2
0

2LJr

δ̂γ
2

with LJr (γ0) = ϕ0/(I0 sin (γ0)). Switching to second quantification, one has

Ĥreadout = hνp

(
â+â + 1/2

)

with νp(γ0) = 1/2π
√

LJrCr the resonance frequency of biased junction, â+ â

the creation annihilation operators, δ̂γ = δγ0(â
+ + â), and δγ2

0 = hνpLJr/ϕ2
0.

The Hamiltonian of the whole systems finally

Ĥ = ĤsCPB(Ng, δ = γ0 + Φ/ϕ0)

+Î

∣∣∣∣
Ng,δ=γ0−eΦ/ϕ0

(δγ0ϕ0)(â
+ + â) +

1̂

L

∣∣∣∣
Ng,δ=γ0−eΦ/ϕ0

(δγ0ϕ0)
2

2
(â+ + â)2

+hνp

(
â+â + 1/2

)

with

Î =
∂ĤsCPB

∂δ
and 1̂/L =

∂2ĤsCPB

∂δ2
. (B.8)

This expression can be used to evaluate relaxation rate of the CPB due to the

exchange of one and two photons (terms in Î and 1̂/L) with the environment.



Annex C
Lithography

We present in this Annex the optical and electron-beam lithography processes
used for fabricating the quantroswap and blochonium circuits.

C.1 Sub-micron UV lithography

We have developed a sub-micron UV lithography process on two-inch wafer (Si
or Sapphire) using an MJB4 mask aligner equipped with a 365 nm monochro-
matic UV source (i-line).
Three-inch squared Chromium-quartz masks were designed using the Auto-
Cad software and were ordered to the Toppan Photomask company. The first
step is to draw the circuit and fabricate a Cr coated mask using AutoCad.
Since all the masks were used for lift-off, a bilayer of resists (LOL1000+Shipley
S1805) was always used to obtain a large undercut facilitating the final disso-
lution of the resist mask.This procees led to pattern with minimal size down
to 600nm, which is close to the UV wavelength.
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Sub-micron UV lithography recipe

◦ Wafer dehydration at 155◦C × 2 min (hotplate). Cooling back to room
temperature.

◦ Spin of Shipley primer (adhesion promoter): 3000 rpm × 60s.
◦ Spin of filtered LOL 1000 (ballast resist): 6000 rpm × 60 s. Thickness of

about 150 nm
◦ Softbake at 155◦C × 5 min (hotplate). Cooling back to room temperature.
◦ Spin of Shipley S1805 (optically active resist): 6000 rpm × 60 s (2 s accel-

eration).
◦ Softbake at 115◦C × 60s. Cooling back to room temperature.
◦ UV Exposure in "vacuum contact": 15 s × 5.7 mW/cm2 on MJB3 (broad-

band lamp), or 1.2 s × 30.5 mW/cm2 on MJB4 (i-line).
◦ Pure MF319 development at room temperature.

The developing time is a critical parameter if your goal is a submi-
cron resolution. It has to be measured each time, using a test wafer
for instance. It can depend strongly on the storing time at air of
the MF319 and on the amount of resist already dissolved during
previous developments. It can be determined by observing the red
cloud formed by the resist dissolved close to the edges of big pattern
elements, while moving the wafer back and forth in the developer.
The correct time corresponds to the disappearance of the cloud +
5-10 seconds depending on the targeted undercut. Typical time is
between 30+5 and 60+10 s.

◦ Rinse in water and dry at 60◦C × 2 min
◦ Metal evaporation below 150 nm.
◦ Lift-off in an ultrasonic bath of Remover 1165 at 50 ąC × 10 min.
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Fig. C.1. Illustration of the submicron optical lithography process developed during
this thesis work. LOL1000 and S1805 resist (pink) are first spun on a Si-Si02 or
sapphire 2-inch wafer. In a second step, the wafer is exposed to a monochromatic
UV light (i line) trough a Cr-quartz 3-inch mask. The exposed resist is developed
by immersion in MF319. Then metal is evaporated in an electron gun evaporator.
Finally the mask is lifted off.
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Fig. C.2. Detailed Scanning Electron Micrography showing the role of the buffer
layer (LOL 1000) in our lift-off process. The image is taken just before lift off and
shows that the resist dot will be easily dissolved thanks to the gap (dark region)
between the metallic layer deposited on the substrate and the resist dot (undercut).

Fig. C.3. Micrographies of the central part of the quantroswap chip after three
optical lithography steps. a) Optical micrography. Bottom aluminum electrodes
(bottom of the Figure), then gold pads (yellow), and finally top aluminum layer
were deposited successively. Gold crosses are used for further alignment in e-beam
lithography. b) SEM micrography showing both the optical and e-beam fabricated
electrodes. The lateral size of the optically made quantronium gates is indicated.
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C.2 Electron-beam lithography

E-beam lithography was used for fabricating our Josephson devices by double
angle evaporation of Aluminum. This technique consists in making a mask
suspended well-above the surface of the substrate so that two successive de-
positions through the mask at different angles can lead to an overlap between
different electrodes (see Fig. C.5). An oxidation step between the two deposi-
tion steps leads to Superconductor-Insulator-Superconductor structure at the
overlaps, thus defining Josephson junctions.
The suspended mask is obtained from a resist bilayer: a less sensitive thin
resist layer on top of a more sensitive bottom layer. The openings of the mask
are obtained by exposing the corresponding areas to an electron beam that
cracks the resist molecules. The exposed area are then dissolved in a solvent.
Whereas openings are precisely defined in the top layer, the higher sensitiv-
ity of the bottom one leads to large cavities or undercut in their vicinities,
hence the suspended mask. The depth of these undercuts can be enlarged by
exposing additional areas on the edges of the openings (undercut boxes) at
sufficiently lower dose so that the top layer is not impacted. The bilayer resist
for all the sample made during this thesis work is made of an about 100 nm
thick PMMA (PolyMethylMetaAcrylate) layer on top of an about 1 µm thick
PMMA/MAA (PolyMethylMetaAcrylate/MethylAcrylate acid) layer. The de-
veloper is a mixture of 25% MethylIsoButyl Ketone (MIBK)- 75%IsoPropanol
(in volume).

Electron-beam lithography recipe

◦ Bilayer 1 µm MAA - 100 nm PMMA
· Spin filtered PMMA/MAA 8.5K EL10 (8.5 kg/mol in EthylLac-

tate solvent) at 2000 rpm × 60s
· Dry at 170 ◦C × 60 s. Cool down to room temperature.
· Spin again filtered PMMA/MAA 8.5K EL10 at 2000 rpm × 60

s.
· Dry at 170 ◦C × 60 s. Cool down to room temperature.
· Spin filtered PMMA 950K A3 (950 kg/mol in Anisole solvent)

at 4000 rpm × 60s.
· Dry at 170 ◦C × 20 min.

◦ Expose the pattern with a dose of 260 µC/cm2, and undercut boxes below
50 µC/cm2 if necessary.
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Fig. C.4. Electronic lithography process. PMMA-MMA and PMMA-MAA resist
(pink) are spinned. Then specific part are exposed by steering on the desired pattern
electrons. Aluminum is then evaporated a first time at a first angle, then aluminum
is oxidized to form a thin layer of insulator, and a second layer of aluminum is
deposited at a different angle. Finally the resist is removed. Overlapping layers form
the Josephson junctions.
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Fig. C.5. SEM image of central part of quantroswap circuit.

Josephson junctions fabrication

During the metal evaporation process, an oxidation step can be added in order
to create a very thin (few Amgstrons) insulator layer between two overlapped
layers. More precisely, the already deposited layer of Aluminum is oxidized at
room temperature in the main chamber of the electron gun evaporator with
a 15% O2-85% Ar mixture at a pressure of about 20 mbar (static) during 20
min.

Alignment of e-beam lithography on the already deposited pattern

As our device fabrication processes imply several step of optical and electronic
lithography. All the mask contain alignment cross. The precision of realign-
ment between two optical lithography step, and between optical and electronic
lithography is about 100-200 nm.





Annex D
Microfabricated microwave

capacitance

We explain in this annex the two processes we have developed to fabricate
microwave capacitors with high-dielectric constant materials. These capaci-
tors are made of a floating Aluminum electrode either thermally and plasma
oxidized, or covered with a sputtered Si3N4 layer, then overlapped by two
other electrodes. The ensemble forms two capacitors in series.

D.1 Al/AlOx/Al capacitors fabrication

D.1.1 Al/AlOx/Al recipe

◦ 1st optical lithography according to C.1
◦ E-beam evaporation of a 40 nm thick aluminum layer at a rate of

1nm/s.
◦ Oxidation in the e-beam evaporator chamber: 15% O2-85% Ar

mixture at a pressure 20 mbar × 2 min at room temperature.
◦ Lift off in an ultrasonic bath of acetone during a few minutes.
◦ Rinse the wafer in ethanol.

◦ Plasma oxidation in a plasma cleaner.
· Heat the wafer at 150 ◦C in vacuum × 4 min at an O2 pressure

of 12 × 10−3 mbar.
· Transfer to the plasma chamber in about 15 s (the wafer is still

hot).
· Oxidize in an O2 plasma at 0.2 mbar and a power of 50 W on

about 75 cm2 (self bias voltage = -540 V)
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or
◦ Plasma oxidation in a Reactive Ion Etcher

· Heat a massive sample holder between 170 and 200 ◦C in an
oven.

· Transfer this sample holder in a RIE, put the wafer on it, and
pump down the chamber.

· Oxidize in an O2 plasma at 0.0112 mbar and a power of 260W
on about 75 cm2 (self bias voltage = -500V). Oxygen mass
flow is 50 cm3/min. The duration was varied between 10 s and
5 min.

◦ 2nd optical lithography according to C.1
◦ E-beam evaporation of a 40 nm thick aluminum layer at a rate of

1nm/s.
◦ Lift off in an ultrasonic bath of acetone during a few minutes.

D.1.2 Capacitor characteristics

Capacitance per unit area, DC leakage resistance, breakdown voltages, and
fabrication yield were measured on large area test capacitors of about 1 mm2

as a function of several process parameters.
Capacitance per unit area was measured using a RLC-meter (ISO-TECH 819)
and a probe station at room temperature. When the substrate was semicon-
ducting (for example Si), samples were also measured at 4K, in order to get rid
of any contribution from the substrate. DC leakage resistance, and breakdown
voltages were measured by ramping slowly a voltage source and measuring the
current. The results are summarized in the table below.

Process 1 2 3 4

Size 1.1 mm2 0.36 mm2 0.36 mm2 0.21 mm2

Temperature 200◦C 200◦C 200◦C 200◦C

Duration 45 s 40 s 25 s 10 s

Capacitance 3 nF/mm2 10 nF/mm2 12 nF/mm2 15 nF/mm2

DC leakage 3 GΩ 1 GΩ 1 GΩ few MΩ

Yield >90% 50%

Unexpected problem with plasma oxidized capacitors

This fabrication process is based on the implantation of oxygen ions in the
aluminum. As the process requires to heat the substrate at 200◦C, it is diffi-
cult to protect the metal-free part of wafer with resist. Thus, the whole wafer
is submitted to the oxygen plasma, and in the case of Si wafers, oxygen ions
are implanted in the Silicon oxide (see Fig. D.1). Charge defects are created
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and induce an electric field at the semiconductor-insulator border. A conduc-
tive region below Si02 is thus created. The scenario was first suggested to us
by anomalous microwave losses in our quantroswap devices (experiment 4.1
in chapter 3). We have then validated it by fabricating test structures with
two large non-overlapping electrodes whose coplanar capacitance was negligi-
ble. The measured capacitance between these electrodes could be interpreted
only by a conducting layer below Si02 with conductance as high as about x
mS/square at 4 ◦K.

D.2 SiN capacitor

An other way to create a capacitor is to deposit an insulator (Al0x, Si02 or
Si3N4) on top of the first floating layer of Aluminum. In this project we have
deposited Si3N4 with a reactive magnetron sputtering machine using the fol-
lowing recipe.

D.2.1 Magnetron sputtering recipe

◦ Si3N4 sputtering
· Clean the wafer: alcohol + nitrogen
· Pump down the chamber and heat the sample to 250 ◦C during 2 min.
· Stabilize partial pressures of N2 and Ar at 0.210−3 mbar and 0.810−3

mbar, respectively (mass flows are unknown in this process, and these
pressures have been optimized empirically).

· Set the plasma power to 450W (the area of the target is about x cm2),
and a pre-deposition during x s (the sample is behind a shutter during
this step).

· Make the deposition during 30 s. Self-bias voltage is equal to −520V ,
and deposition rate to 30 nm/min.

◦ Cool down the sample in nitrogen gas.

D.2.2 Capacitor characteristics

This process leads to a capacitance of 2.5nF/mm2, which corresponds to a
Si3N4 thickness of about 15nm calculated from the Si3N4 dielectric constant.
This thickness was confirmed by a measurement with a spectral reflectometer
(Filmetrics F20 [112]). The DC leakage resistance is about 10GΩ up to 10V
(for an overlapping area of about xx mm2), and the breakdown voltage is
more than 15V .
We have also checked qualitatively that the dielectric losses in Si3N4 were not
too large by sputtering it on top of an high quality-factor resonator (Q = 105),
and by measuring that Q did not change.
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Fig. D.1. Fabrication steps of microwave capacitors made of a first floating elec-
trode, either plasma oxidized (left) or covered with sputtered Si3N4 layer (right), and
then covered by two overlapping electrodes. Process steps, materials, and chemicals
species involved are indicated in the drawings. The circular inset on the left points
out an unexpected technical problem encountered during fabrication (see text).



Annex E
Printed Circuit Board test

We explain in this annex how we have tested the printed circuit board (PCB)
used for the quantroswap experiment of chapter 3.

Different tests have been made:

◦ Characterization of the spurious coupling between lines by mea-
surement of the S parameters of a special PCB with no chip in the
center.

◦ Characterization of the microwave lines of the normal PCB with a
special chip with simple coplanar waveguides going through it (see
Fig. E.2a).

◦ Test of the readout lines with their on-PCB surface mounted filters
(see Fig. E.2b).

All the tests were done at 4 K. The last two were performed with a chip
having two niobium coplanar waveguides, whose shapes are very similar to
that of the gate lines (see Fig. E.1). However, these two waveguides are never
closer than 200µm in the center of the chip (which is more than 10 times
higher than the waveguide width).
Figure E.2 shows that spurious cross-transmission exists between these two
lines. By comparing this transmission on PCBs having a ground plane or
not, we were able to attribute this effect to resonances due to an imperfect
impedance matching between the chip and the PCB.

without filters (blue),
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Fig. E.1. Geometry of the special chip used in the PCB characterization
(quantroswap experiment). a) Drawing of the chip with its two 50Ω niobium mi-
crowave coplanar waveguides. Arrows indicates the different ports for the S parame-
ters. b) Detailed optical micrograph of the central part. c) Overall view of the PCB
with the surface mounted filters of the readout lines.
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Fig. E.2. Microwave characterization at 4 K of the PCB used for the quantroswap
experiment, using the special chip shown of Fig. E.1. The two panels show Sij

parameters, where ij refers to the port numbers defined in Fig. E.1. a) S parameters
of the unfiltered microwave lines with and without a ground plane below the PCB.
b) S parameters of the microwave lines supplied with the filters used for readout
lines. Filter 1: 50 Ω in series + 10 pF to ground (orange); filter 2: 50 Ω in series
+ 1 pF + 10 pF to ground(red); no filtering as a reference (blue). Note that these
results correspond to those expected from the datasheets of the Surface Mounted
Capacitor.





Annex F
Microwave reflectometry

We present in this section a general method to calculate the coefficient of re-
flection of a linear or a non-linear oscillator submitted to a resonant or nearly
resonant microwave excitation. The method is very similar to the one in [91].

F.1 Introduction to scattering matrix representation of
electrical circuit

Let first introduce the notations and relations for describing the scattering
matrix representation applied to electrical circuits.

F.1.1 Transmission line

Two points M and N are connected through a transmission line MN of length
lMN and characteristic impedance 1 Z equal to the impedances ZM and ZN of
the two lines on the M and N sides (see Fig. F.1c). The potentials VM,N and
currents iM,N at M and N obey the relation

VM = (1 + rM)V +
M

IM = (1 − rM)
V +

M

ZM

(F.1)

where V +,−
M,N are the incoming and outgoing signal voltages, rM,N = V +

M,N/V −
M,N

are the reflexion coefficients, and

1 The characteristic impedance is defined as the ratio
p

L/C, where L and C are
the inductance and capacitance per unit length.
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Fig. F.1. Schematic representation of circuits a) General representation of a electri-
cal component (green) connected to two points M and N, and the associated voltages
and currents. b) Case where the component is a discrete impedance Z connected to
ground. c) Case where the element is transmission line of impedance Z and length
l. d) Case where M and N are connected through a discrete impedance Z.

VN = (1 + rN)V +
N = (eiklMN + rMe−iklMN)V +

M

ZMNiN = (1 − rN)V +
N = (eiklMN − rMe−iklMN)V +

M ,

with k the wave vector. This gives a general relation between voltage and
current at points M and N

[
VN

ZNiN

]
=

[
cos (klMN) i sin (klMN)

i sin (klMN) cos (klMN)

][
VM

ZMiM

]
. (F.2)

F.1.2 Discrete series impedance

The same relation can be determined when a discrete element of impedance
ZMN (capacitor or inductor) is inserted between M and N (see Fig. F.1d). One
has

[
VN

ZNiN

]
=

[
1 −Z/ZM

0 ZN/ZM

][
VM

ZMiM

]
. (F.3)
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In the case where the element is a Josephson junction, one has

VMN = VJ = ϕ0γ̇

IM = IN = iJ = I0 sin (γ)

with I0 the critical current and γ the superconducting phase between M and
N. Considering a junction undergoing to microwave oscillations

γ = γa cos (ωrf t) ,

the Jacobi-Anger relation gives

sin (γ) = −2
∑

n∈N∗

(−1)nJ2n−1(γa) cos [(2n − 1)ωrf t] . (F.4)

Thus, keeping only terms oscillating at frequency ωrf (single frequency ap-
proximation),

iJ = 2I0J1(γa) cos (ωrf t)

=
2J1(γa)

γa

1

LJ
ϕ0γ

with LJ = ϕ0/I0. The derivative of the above expression gives

VJ =
γaLJ

2J1(γa)
i̇J (F.5)

and thus an effective inductance for the Josephson junction

LJ,eff (γa) = γaLJ/(2J1(γa)). (F.6)

F.1.3 Discrete impedance to ground

When the points M and N are equal and are connected to ground through a
discrete element of impedance Z (see Fig. F.1b), one has

[
VN

ZNiN

]
=

[
1 0

−ZN/Z ZN/ZM

][
VM

ZM iM

]
. (F.7)

F.1.4 Voltage source with internal impedance Z

When a voltage source with internal voltage V0 is connected at one side of
the previous circuit, and when its internal impedance Z matches the wave
impedance of the line that connects it, one has, as shown on Fig. F.2, V0 =
2Vin, and
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Fig. F.2. Schematic representation of circuit for microwave reflectometry measure-
ment.

[
VM

ZiM

]
=

[
Vin + Vout

Vin − Vout

]
, (F.8)

where Vin and Vout are incident and reflected voltage at point M . One can
then calculate the reflexion coefficient r = Vout/Vin.
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F.2 Coefficient of reflexion of a Josephson oscillator

Using the expressions above within the single frequency approximation, one
can calculate the reflexion coefficient of a Josephson oscillator (as the one used
in the Blochonium experiment of chapter 5) made of a Josephson junction with
inductance LJ in parallel with a capacitance Cr, both connected to ground
(see Fig. F.3a). Equation (F.7) gives

[
1 + r

0

]
Vin =

[
1 0

−Zline/Z 1

][
1 + r

1 − r

]
Vin. (F.9)

where Zline = 50 and

1

Z
= iCrωrf +

1

iLJ,eff (γa)ωrf
. (F.10)

Using Eq. (F.5), one obtains

1 − r

1 + r
= iRCrωrf +

R

iLJ,eff (γa)ωrf
=

2

1 + r
− 1. (F.11)

As the non-linearity is a function of γa ∝ (1+r)Vin, it is convenient to rewrite
this equation as a function of 1+ r, and more precisely as a function of |1+ r|
by taking the moduli of left and right terms of the Eq. (F.11). This gives

4

|1 + r|2 = 1 +

[
RCrωrf − R

2J1(γa)

γaLJωrf

]2
(F.12)

or in reduced units,

η2 =
Ω2γ2

a

Q2
+
[
Ω2γa − 2J1(γa)

]2
, (F.13)

where Ω = ωrf/ωp is the reduced frequency, ωp = 1/
√

LJCr is the plasma
frequency, Q = RCrωp is the quality factor, and η = 2Vin/(RI0) is the reduced
drive amplitude. This expression is similar to the one in [17, p140]. Once, this
equation is solved, one uses the solutions for γa in Eq. (F.11), and obtain the
solutions for r.
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Fig. F.3. Schematic representation of a discrete Josephson oscillator (a) or of a
non-linear distributed resonator (b) measured by microwave reflectometry.

F.3 Coefficient of reflexion of a non-linear distributed
resonator

The same method can be applied to calculate the reflexion coefficient of a res-
onator of length l and characteristic impedance Z, whose one of the two sides
is connected to a microwave line of impedance Zline through a capacitance
Cc and the other one is connected to ground through a josephson junction of
critical current I0 (see Fig. F.3 b).
Equation (F.7) gives

[
VJJ

0

]
=

[
1 0

−Z/(iωrfLJ,eff (γa)) 1

][
VJ

ZiJ

]
(F.14)

with VJ and iJ the voltage and current across and through the junction.
Equation (F.2) gives

[
VJ

ZiJ

]
=

[
cos (kl) i sin (kl)

i sin (kl) cos (kl)

][
VB

ZiB

]
. (F.15)

Equation (F.3) yields

[
VB

ZiB

]
=

[
1 −1/(iZlineCcωrf )

0 Z/Zline

][
VA

ZlineiA

]
(F.16)

with
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[

VA

ZlineiA

]
=

[
1 + r

1 − r

]
Vin. (F.17)

Combining the last three equations, one obtains a set of two equations that
can be solved as a function of the two external parameter Vin and ωrf :

[
1 1

1 −1

][
1 1/(iZlineCcωrf )

0 Z/Zline

][
cos (kl) −i sin (kl)

−i sin (kl) cos (kl)

][
VJ

ZiJ

]
=

[
1

r

]
2Vin.

By expanding this equation and replacing iJ by VJ/(iLJ,eff (γa)ωrf ), one
obtains the system

[
Q + iΩ + α(iΩ)2

]
cos (x) − i

[
(1 + Qα)iΩ + (iΩ)2

]
sin (x) =

iαΩ2Vin

VJ

[
Q − iΩ + α(iΩ)2

]
cos (x) + i

[
(1 + Qα)(−iΩ) + (iΩ)2

]
sin (x) = r

iαΩ2Vin

VJ
,

where Z = Zline, α(γa) = LJ,eff (γa)ω0/Z, Q = 1/(ZCcω0), Ω = ωrf/ω0 and
x = kl = −πΩ/2.
Using notation Leff = Z/ω0 and Ceff = 1/Zω0, α(γa) = LJ,eff (γa)/Leff is
the ratio between effective Josephson junction inductance and the effective
inductance of the resonator. Note that the left terms of these equations are
complex conjuguates, which means |r| = 1.
As LJ,eff (γa) = γaLJ/(2J1(γa) and ωrfϕ0γa = |VJ |, solving the first equation
leads to VJ . In a second step, one can use these solutions in the second equation
to calculate r.

F.4 Coefficient of reflexion of the non-linear cavity used
in the transmon experiment

The same procedure can be applied to the non-linear cavity used for the
transmon experiment of chapter 4. It consists in a cavity of length l = λ0/2 =
c/(2ν0) (with ν0 the resonance frequency of the first harmonic). One side of
this cavity is connected to an external microwave line through a capacitance
Cc. The impedance of the line is 50 Ω. A Josephson junction of critical current
I0 is inserted in the center of the cavity, i.e. at a distance l/2 of both cavity
"walls".

Following the very same procedure as in the previous section, one obtains
[

1 1

1 −1

][
1 Q/(iΩ)

0 Z/Zline

][
cos (kl) −i sin (kl)

−i sin (kl) cos (kl)

][
i(αΩ + tan (kl)

−1
)

1

]
ϕ0

I0LJ,eff (γa)
γ =

[
1

r

]
η

with η = 2Vin/(ZI0). From this system of equations, one can calculate the
amplitude γa of the oscillations (see Fig. F.5) and the phase Arg(r) of the
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Fig. F.4. Calculated phases of the reflected signal in the linear regime as a function
the drive frequency ωrf for two value of the Josephson inductance inserted at the
center of a λ/2 resonator. The resonance frequency of the second harmonic (ωrf =
2ω0) is not modified by the presence of the Josephson junction at the center of the
resonator as this point corresponds to a node of the current for even harmonics of
ω0.

reflected signal in both the linear (see Fig. F.4) and the nonlinear regimes
(see Fig. F.6).

valued
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Fig. F.5. Calculated amplitudes γa, the superconducting phase across the junction
inserted at the center of a λ/2 resonator as a function of the drive frequency ωrf

and for different drive amplitudes η. At low drive amplitude the resonance peak is
lorentzian, whereas at large drive amplitude, multiples solutions appears correspond-
ing to multistability regime of the oscillations. Orange curves are unstable solutions,
whereas red and blue ones are stable. The curves join each others at points called
bifurcation points (see chapter 4).
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Fig. F.6. Calculated phase of the reflection coefficient r in the linear and non-linear
regimes from the solutions γa plotted in Fig. F.5. The phase are multi-valued for
certain values η and ωrf .



Annex G
Quantronium qubits coupled to

Two Level Systems

We present, in this section, complementary results obtained while measuring
quantroswap samples.
We focus here on the coupling between qubits and spurious two level systems
of unknown origin. The data presented here were obtained while performing
spectroscopic measurements on sample QS 4.1.

Figure G.1 shows the switching probabilities of readout A and B as a func-
tion of the flux and of the microwave excitation frequency.
As in spectroscopic measurements presented in chapter 3, dark lines corre-
spond to transition frequencies of the system made of the two qubits.
One notices first the avoided level crossings at different frequencies: 21.7 GHz
and 19.5 GHz on qubit A (top), and 18.5 GHz and 17.5 GHz on qubit B (bot-
tom). We attribute them to the coupling between the qubits and two level
systems in their environment. The shape of the avoided crossings, and in par-
ticular the horizontal black lines, indicates that the resonance frequency of
the TLSs does not depend on the flux. Moreover, the TLSs coupled to qubit
A and to qubit B have different resonance frequencies νTLS and different cou-
pling frequency νcc,TLS , which indicates that the qubits are probably coupled
to microscopic degrees of freedom. We have calculated the transition frequen-
cies of the system using a model consisting in two coupled qubits and two
TLSs, each of them being coupled to one qubit (see Fig. G.1). The fact that
qubits are not coupled to the same TLS and the large values of the coupling
frequencies between qubit and TLS (about 600 MHz - 800 MHz) indicate that
the TLSs are localized in the vicinity of the qubit and are strongly coupled to
the qubit. As a coupling frequency between two qubits in the 100 MHz range
requires to have large island (few µm2) and small gap between them (100 nm-
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200 nm), we attribute the TLSs to defects localized in the oxide barrier of the
Josephson junction, where the electric field is maximum. These observations
are similar to the one obtained in phase qubit experiment [53, 113].

As in the case of coupling between two qubits, coupling between qubit
and TLS induces a drastic reduction of the measurement signal. Indeed, for
example in the case of TLS21.5GHz, the readout ramp induces a energy swap
between qubit and TLS, and makes spectroscopic peaks disappear (contrast
is smaller) above 21.5 GHz. Below this frequency, the readout phase ramp
amplitude (+ 0.3 Φ0) is large enough to induce two crossings during ramp : a
first swap of the energy from qubit to TLS at δ/(2π) = −0.12 and a second
one from TLS to qubit at δ/(2π) = 0.08, which makes the spectroscopic peaks
reappears below 21.5 Ghz. For the other TLSs, the swap effect at readout is
less important as the TLS-qubit coupling frequency is smaller.



G Quantronium qubits coupled to Two Level Systems 231

Fig. G.1. Spectroscopic measurements of the two qubits A (top) and B (bottom)
of sample QS 4.1. Using a model consisting in two coupled qubits A and B, and
two TLSs (note TLS,A and TLS,B) coupled to qubit A and B respectively, we plot
the different transition frequencies of the system using parameters EJA = 1.35kBK,
ECA = 0.59kBK, EJB = 1.32kBK, ECB = 0.53kBK, νcc = 0.15 GHz, νTLS,A = 21.5
GHz, νcc,TLS,A = 0.6 GHz, νTLS,B = 18.7 GHz, and νcc,TLS,B = 0.5 GHz.
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We report an experiment on the determination of the quantum nondemolition �QND� nature of a readout

scheme of a quantum electrical circuit. The circuit is a superconducting quantum bit measured by microwave

reflectometry using a Josephson bifurcation amplifier. We perform a series of two subsequent measurements,

record their values and correlation, and quantify the QND character of this readout.
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I. INTRODUCTION

Performing repeated measurements on a single quantum

object has become possible with the technological advances

of the last 30 years. When the state of the system is de-

stroyed by the measuring apparatus, the quantum object has

to be prepared and measured in an identical manner a large

number of times so that the ensemble description of the ex-

periment is adequate.1 It was while developing methods and

techniques to detect gravitational waves with accuracy levels

exceeding the standard quantum limits1 that experiments

with repeated measurements were first envisioned. It is

within this context that the special kind of “quantum non-

demolition” �QND� measurement was designed and first

coined by Braginsky and Vorontsov in 1975.2 A QND mea-

surement is defined as a projective measurement where the

output state of the measured quantum object is unaffected by

subsequent measurements1,3 and by its free evolution �see

mathematical definitions in Sec. IV�. When the state, how-

ever, is disturbed by the measuring apparatus or by other

degrees of freedom during the measurement, one can still

quantify the disturbance by measuring the QND

“fractions”—i.e., the probabilities of leaving each possible

projected state unaffected by the measurement.

Here we report an experiment on a quantum electrical

circuit, the quantronium,4 where the QND fraction left by the

readout apparatus—namely, the Josephson bifurcation ampli-

fier �JBA�,5 coupled to a split Cooper pair box—was mea-

sured. We first start with a review of the quantronium and its

different components. Second, we describe the JBA measure-

ment principles and motivate its QND aspect. We then de-

scribe the experimental setup and present the experimental

results. Our data and model provide lower bounds on the

QND fractions of the JBA in this particular setup.

II. QUANTRONIUM CIRCUIT

The basic element of the quantronium circuit is a split

Cooper pair box �Fig. 1�. It consists of a low-capacitance

superconducting electrode, called the island, connected to a

superconducting reservoir by two parallel Josephson junc-

tions with capacitances C j /2 and Josephson energies

EJ�1±d� /2, where d is the asymmetry factor quantifying the

difference between the two junctions �0�d�1�,4,6 EJ

=�0I0, I0 is the sum of the critical currents of the junctions,

and �0=� /2e is the reduced flux quantum. The island is

biased by a voltage source Vg0 in series with a gate capaci-

tance Cg. The second energy scale of the box is the Coulomb

energy ECP= �2e�2 /2�Cg+C j�. For readout purposes, a larger

Josephson junction is inserted in the superconducting loop

formed by the island, the two junctions, and the reservoir.

The quantronium qubit is then described by the Hamiltonian

H = ECP�N̂ − Ng�2 − E j�cos
�

2
cos �̂ − d sin

�

2
sin �̂� , �1�

where N̂ is the operator associated with the number of excess

Cooper pairs in the island, Ng=CgVg0 /2e is the reduced gate

charge, �̂ is the superconducting phase operator �“conjugate”

to N̂—i.e., ��̂ , N̂�= i�, and � is the superconducting phase

� �
� �

δ

�������	
��


��	�

����	���
�� ���
	 ��� ������	

φ
�

��	�

�
�

γ
φ�

�


�0

FIG. 1. Quantronium circuit with preparation and readout ports.

The qubit consists of two Josephson junctions delimiting an island

�black node� and inserted in a superconducting loop. Its eigenstates

are tuned using the dc gate voltage Vg0 and the magnetic flux �

through the loop. Resonant microwave pulses Vg�t� are applied to

the gate to manipulate the qubit state. A larger junction and a shunt

capacitor C forming an anharmonic oscillator are inserted in the

loop for readout. A microwave readout pulse is sent to the system

by a microwave generator with internal impedance R=50 �. The

state-dependent inductive behavior of the qubit affects the plasma

resonance of the oscillator and modifies the phase � of the micro-

wave readout pulse reflected by the system. In the case of large

driving amplitudes, the dynamics of the superconducting phase 	

across the readout junction can bifurcate between two distinct dy-

namical states, leading to a jump of �.
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across the series combination of the two small junctions.

Hence this Hamiltonian can be tuned using the Ng and �
control knobs �considered as classical parameters for most

applications of interest�. For most values of �Ng ,��, the

Hamiltonian has a strongly anharmonic energy spectrum, al-

lowing a qubit—i.e., a quantum two-level system—to be en-

coded into the first two energy levels.4,6 In addition, by sym-

metry, the system possesses in this parameter space points

where �
01 /�Ng=�
01 /��=0. At these optimal working

points, the qubit is immune to dephasing arising from fluc-

tuations of Ng and �, up to first order.7

III. JOSEPHSON BIFURCATION AMPLIFIER READOUT

To implement a QND readout, we use a dispersive

method based on the reflection of a microwave pulse on the

parallel combination of the qubit with a nonlinear oscillator

made of the readout Josephson junction and an on-chip ca-

pacitance. This scheme is called the Josephson bifurcation

amplifier5 �see Fig. 1�. Its operating principle relies on the

fact that the dynamics of the phase 	 across the readout

junction depends on the total inductance of the circuit, itself

dependent on the qubit state. The phases � and 	 are linked

by the relation �=	+� /�0, where � is the flux threading the

quantronium loop. When sending a microwave signal onto

the circuit, the classical equation of motion of the phase

across the readout junction, assuming the qubit remains in

one of the instantaneous qubit eigenstates �0(��t�)� or

�1(��t�)� �adiabatic limit8�, is

RC�0	̈ + �0	̇ + R�I0 sin 	 +
1

�0

�E0,1

��
� = U�t� , �2�

where the reader can refer to Fig. 1 to identify the different

variables and E0,1 denote the energies for the ground and first

excited states �0� and �1�, respectively. In this paper, the cir-

cuit is operated only at �=0, which implies �=	 and corre-

sponds to an optimal point for 	=0. Taylor-expanding

eigenenergies to second order yields

�3�

where L0,1 denote the effective qubit inductances corre-

sponding to the states �0� and �1�. This scheme therefore con-

stitutes a dispersive measurement in the sense that the second

derivative of the energy with respect to � is measured. For

small excursions of the phase 	, the dynamics is the one of a

damped harmonic oscillator. As the microwave power is in-

creased, one enters the nonlinear regime of the oscillator.

When the detuning of the microwave frequency with respect

to the plasma frequency �p of the readout junction, ��
=�p−�, is such that ��
 �	3/2Q��p and when the drive

current U /R
 IB, where IB is the bifurcation current given in

Ref. 9 and Q=�pRC is the quality factor of the readout junc-

tion, the resonator switches from a small-amplitude to a

large-amplitude state, these two dynamical states having dif-

ferent phases � of oscillation.10 This phenomenon has a

probabilistic nature in both quantum and thermal regimes. In

our experiment, it occurs at the thermal to quantum cross-

over kBT=��p,11 and the frequency and amplitude of the

drive current can be tuned so that the system bifurcates with

a high �low� probability when the qubit is in state �1� ��0��.
This bifurcation is detected by measuring the phase � using

homodyne demodulation. The method allows single-shot dis-

crimination of the inductances L0,1 and hence of the qubit

states.

IV. QND CHARACTER OF THE JBA MEASURING THE

QUANTRONIUM

When studying a measurement problem quantum me-

chanically, the total system is often conveniently described

with the following Hamiltonian:1,3,12

Htot = HS + HP + HI, �4�

where HS, HP, and HI are the system, the probe �the measur-

ing apparatus�, and their interaction Hamiltonians, respec-

tively. When trying to measure an observable AS, one should

obviously have �HI /�AS�0. The standard conditions to have

a QND measurement are the following.3

�i� �HI ,AS�=0⇒ there is no back action of the measuring

device on the measured observable.

�ii� �HS ,AS�=0⇒ a subsequent free evolution after the

measurement leaves the projected state of the system unaf-

fected.

After the projection of the first measurement, subsequent

free evolutions and measurements always yield the same out-

come. When �HS ,HI��0, determining the basis into which

the wave function collapses, the so-called pointer states

basis,12 can be a difficult task. Cucchietti et al. indeed show

the rotation of that pointer basis with the relative strengths of

the system and interaction Hamiltonians in the case of a cen-

tral spin system coupled to a spin environment.13 We now

show, however, that for the JBA with a low-asymmetry fac-

tor d there is no ambiguity in the two-level approximation.

We now write the total Hamiltonian of the quantronium

coupled to the readout junction under irradiation:

Htot = ECP�N̂ − Ng�2 − EJ
cos��̂� � cos� �̂

2
� − d sin��̂�

� sin� �̂

2
�� +

Q̂2

2C
− EJ0 cos��̂� −

U�t�

R
�0�̂ , �5�

where EJ0 is the Josephson energy of the readout junction

and ��0�̂ , Q̂�= i�. Note that the dissipation of the anharmonic

oscillator was not included here for the sake of simplicity.

The structure of Htot should make the correspondence with

Eq. �4� obvious. However, because the coupling between the

system and the measuring apparatus is strong—i.e., EJ

�ECP—and because under no irradiation 
cos��̂ /2���1, we

recast the Hamiltonian as
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�6�

To simplify our analysis, we now restrict ourselves to the

first two energy eigenstates of the system, supposed to be

biased at the optimum Ng=1/2. With this truncation, the

Hamiltonian can be conveniently reexpressed as Eq. �4� with

HS = −
��01

2
�z,

HI = − ���z � 
cos� �̂

2
� − 1� − ��y � sin� �̂

2
�� ,

HP =
Q̂2

2C
− EJ0 cos��̂� −

U�t�

R
�0�̂ , �7�

where �z,y denote the Pauli spin matrices, �=EJ�
0�cos �̂�0�

− 
1�cos �̂�1�� /2, and �= idEJ�
0�sin �̂�1�− 
1�sin �̂�0�� /2.

With AS=�z, the QND conditions are fulfilled in the limit

d=0. By symmetry, when d is not strictly equal to zero, we

expect a correction to the QND fraction of order d2.

V. MEASURING THE QND FRACTIONS

A. Experimental setup

The sample �see SEM inset of Fig. 2� was fabricated on

an oxidized Si chip using standard double-angle evaporation

and oxidation of aluminum through a shadow mask patterned

by e-beam lithography. The sample was mounted on the cold

plate of a dilution refrigerator and wired as indicated in Fig.

2. The JBA setup used at CEA is similar to the one described

in Ref. 5. The plasma frequency of the sample was lowered

in the 1–2 GHz bandwidth by adding an on chip capacitor

equal to 33 pF in parallel with the junction. It is then easier

to control the macroscopic electromagnetic environment in

this frequency range than at higher frequencies. Furthermore,

3 0 0  K

Q u a n t r o n i u m

4  K

0 . 6  K

3 0  m K

1 . 3 - 2
G H z

- 2 0 d B

- 3 0 d B

0 1 0 0 2 0 0 3 0 0 4 0 0
0

1

2

3

4

 

 

V
M
 (
V
)

t i m e  ( n s )

Q

5
0
 Ω

4 0 d B
T N = 2 . 5 K

4 0 d B

I
L O

d e m o d u l a t o r

5 . 4
G H z

- 3 d B

5 0  Ω

3 . 3
G H z

2 µ m

5
0
 Ω

S

ℎ

C

ℓ

R F

∆ φ

FIG. 2. Experimental setup of the JBA readout. The probing pulses come from the continuous microwave source mixed with a dc pulse

VM�t� �middle left inset�, consisting of a first plateau aimed at inducing the bifurcation or not and of a latching period for measuring the phase

�. The resulting microwave pulses propagate to the microfabricated circuit �bottom left SEM micrograph� along a filtered attenuated line and

a directional coupler. The reflected pulse travels through the coupler and to the amplification stage via three cascaded circulators. Then it

undergoes a homodyne demodulation; one of the quadratures is recorded with respect to time. The top right inset shows in gray levels

thousands of superposed records, with one of them emphasized �shaded line�. The observed quadrature either follows the envelope of the

readout pulse when no bifurcation occurs �bottom traces, readout outcome r= l� or switches upwards in the opposite case �readout outcome

r=h�, corresponding to a phase jump. A threshold �dashed line� is used to count the switching events and deduce a switching probability.
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the thermal population of the resonator is still negligible

���p /kBT=3�. For generating and demodulating the micro-

wave pulses, the output of a microwave generator is split into

two channels. One of the channels is used for the homodyne

detection of the reflected signal on the system, while the

other one is mixed �using Minicircuit ZEM-4300MH mixers�
with pulses coming from an arbitrary wave-form generator.

The resulting microwave pulses are then sent to the micro-

wave excitation line, which is strongly attenuated in order to

use the full dynamical range of the microwave generator, and

thus increase the signal-to-noise ratio at the level of the

sample. At 30 mK, this line is coupled to the sample through

a directionnal coupler �−16 dB coupling� via a 3-dB attenu-

ator to avoid standing waves between the sample and the

directional coupler. This main line is strongly filtered �band-

width of 1.2–1.8 GHz� in order to avoid spurious excitation

in the qubit by the external noise. After going through two

circulators at 30 mK, the signal is amplified by a cryogenic

amplifier �Quinstar L-1.5-30 H� with a noise temperature

TN=2.2 K at 1.5 GHz. A third circulator completes the total

isolation of the line to 75 dB which provides a strong attenu-

ation of the room-temperature noise in the bandwidth of in-

terest. A second stage of amplification is required and is pro-

vided by an amplifier �Miteq AFS4� placed at room

temperature. The amplified signal goes through a bandpass

filter �K&L-5BT-1000/2000� centered at a tunable frequency

and having a bandwidth of about 100 MHz in order to sup-

press the main part of the noise generated by the amplifier

and which could saturate the demodulation card. This de-

modulation card �Analog Device AD8347� provides the in-

phase and quadrature components of the reflected microwave

with respect to the carrier reference. Demodulated signals

showing no bifurcation �readout outcome r= l� or bifurcation

�readout outcome r=h� are shown in Fig. 2.

The parameters of the sample, determined by electrical

measurements and by spectroscopy of the qubit, were ECP

=1.12 K, EJ=0.39 K, d�0.1, EJ0=20.3 K, and C=33 pF,

which led to ��0.2 K, ��0.02 K, and �01 /2��8.1 GHz.

We have coherently manipulated the quantronium state,

achieving 55%-contrast Rabi oscillations as opposed to 40%

with the dc switching readout scheme previously used.14,15

The discrepancy between the experimental contrast and the

one expected theoretically ��90% �Ref. 15�� can be partially

attributed to spurious relaxation during the readout pulse.

Indeed, the ac Stark shift of the qubit due to the applied

microwave modifies the transition frequency and can make it

cross electromagnetic resonances able to relax the qubit very

efficiently.5

B. Experimental results

To measure the two QND fractions of the JBA, we pre-

pared the states �0� and �1� in distinct experiments, then sent

two successive nominally identical measurement pulses, re-

corded the switching events for both measurements, and ex-

tracted their correlations. The �1� state was prepared by ap-

plying a � pulse, whose power and duration were deduced

from the analysis of Rabi oscillations, while the �0� state was

simply obtained by letting the system relax to the ground

state. The experiment schematics is provided in Fig. 3. The

probabilities p��i� ,rA ,rB� of the possible outcomes rA and rB

�r= l or r=h� for the two readouts A and B, starting from

state �i� ��0� or �1�� before readout, were measured over 2

�104 events �see Fig. 3�c��. If the readout discrimination

between both qubit states was perfect, one could infer the

QND fraction directly from the second answer rB. The situ-

ation here, however, is a bit more complex due to the imper-

fect fidelity of the readout. We thus introduce the probabili-

ties
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FIG. 3. Measurement of the QND fractions of the quantronium-

JBA system. Panel �a�: the qubit is prepared in state 1 �0� by apply-

ing a gate � pulse �no � pulse�. Then two adjacent readout pulses A

and B are applied. The two successive output quadrature voltages

are averaged during the last 100 ns of the latching period of the

pulses. Panel �b�: bivalued histograms of the quadrature voltages

�open symbols, no � pulse; solid symbols, � pulse�. The top and

bottom peaks correspond to bifurcation �readout r=h� and no bifur-

cation �readout r= l�, respectively. A threshold �dashed horizontal

line� leads to the determination of the bifurcation probabilities.

Panel �c�: the eight probabilities of getting two successive responses

�rA ,rB�.
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PA��i�,r, �f�� �8�

for getting the response r at readout A starting from state �i�
before and leaving the qubit in state �f� after. Like the data

set p, the probability set PA contains eight variables con-

strained by two normalization relations—i.e., six indepen-

dent variables. We also introduce for both states the probabil-

ity PA,B��i� ,r� to obtain a given answer, whatever the final

state. Although the pulses A and B are nominally identical,

the switching rate is so sensitive to small changes of the

microwave amplitude a of the readout pulses that it is nec-

essary to introduce a small uncontrolled amplitude difference

�a between both pulses. In order to deal with this complica-

tion, we have independently measured �data not shown� the

derivative of the switching probabilities �PA��i� ,r=h� /�a,

which allows us to evaluate the effect of a small amplitude

change. Besides, direct observation of the microwave pulses

with an oscilloscope provides an upper bound ��a /a�
�0.5% for such uncontrolled amplitude differences between

the two readout pulses. The set of equations linking the prob-

abilities introduced in the model is

p��i�,rA,rB� = �
f=0,1

PA��i�,rA, �f��PB��f�,rB� , �9�

where

PB��f�,rB� = PA��f�,rB� + �PA��f�,rB�/�a�a . �10�

The probabilities PA��i� ,rB� are readily obtained from Eq. �9�
by summing over the possible outcomes of the second mea-

surement:

PA��i�,rA� = �
rB=l,h

p��i�,rA,rB� . �11�

The system to solve is thus a linear system depending on the

parameter �a. We find that it yields acceptable solutions—

i.e., with positive values in the range �0,1�—only for �a /a

�−0.4%. Taking into account the upper bound already men-

tioned, ��a /a��0.5%, and the error bars in the measured

probabilities, we obtain the solution given in Fig. 4, which

yields the following QND fractions for both qubit states:

q1 = �
rA=l,h

PA��1�,rA, �1�� = 34 % ± 2 % , �12�

q0 = �
rA=l,h

PA��0�,rA, �0�� = 100 % + 0 – 2 % . �13�

The large departure from perfect QND readout observed

in this experiment cannot be attributed to the nonzero asym-

metry factor d�0.1, which would yield corrections of at

most 1%. Besides, our results are to be compared with the

ones obtained in similar JBA readout experiments performed

on a quantronium at Yale �q0=100%, q1=55% ±5% �Ref.

16�� and on a flux-qubit at T.U. Delft �q0=100% and q1


76% �Ref. 17��. The difference between the couplings of

these two circuits to their environments may explain the dif-

ferences observed for the QND character and for the readout

fidelity. Although the theory in the two-level approximation

predicts the JBA measurement to be a QND process, it is

clear that during the measurement itself, other environmental

degrees of freedom interact with the system and cause it to

relax, thus reducing the contrast of the Rabi oscillations.7 As

a consequence, all we can directly characterize is the com-

bined action of the measurement itself and the environment

on the qubit. Whether the JBA scheme itself is fully QND or

not can be eventually inferred using additional independent

relaxation time, T1, measurements. Using the T1 value at the

optimal point, one can estimate the QND fraction, correcting

for the relaxation that would occur if no readout pulse was

applied—i.e., for �=0. The zeroth-order loss being 1−exp

�−t /T1�=0.20, with T1=1.3 �s, the corrected QND fraction

for state �1� is thus 54% ±2%. However, this value must be

considered with caution since there is no proof that relax-

ation during the readout pulse is the same as during free

evolution. Indeed, one should bear in mind that T1 greatly

depends on the spectral density of the available states for

qubit decay. This density can vary significantly with the qu-

bit frequency,7 which is changed by the Stark shift due to the

ac excitation.9

VI. CONCLUSION

We have analyzed and characterized the quantum non-

demolition aspect of the JBA readout scheme for the quant-

ronium. For vanishing asymmetry, in the two-level approxi-

mation, the theory predicts a QND measurement. We have

carried out an experiment consisting of preparing two or-

thogonal qubit states and then sending a series of two subse-

quent measurement pulses in order to measure both out-

comes and their correlation. Using our model and data, we

were able to obtain bounds on the QND fractions of this

measurement scheme. The results obtained show that the

QND character of the JBA readout of the quantronium is less

perfect than expected, but the reasons for this discrepancy

are not understood presently. Additional measurements of the

T1 dependence on the control parameters and a better control

of the measurement pulse shapes in our experimental setup

should lead to a more precise estimation of the QND frac-

tions and of the parameters that affect it.
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Current to Frequency Conversion in a Josephson Circuit
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The voltage oscillations which occur in an ideally current-biased Josephson junction were proposed to

make a current standard for metrology. We demonstrate similar oscillations in a more complex Josephson

circuit derived from the Cooper pair box: the quantronium. When a constant current I is injected in the

gate capacitor of this device, oscillations develop at the frequency fB � I=2e, with e the electron charge.

We detect these oscillations through the sidebands induced at multiples of fB in the spectrum of a

microwave signal reflected on the circuit, up to currents I exceeding 100 pA. We discuss the potential

interest of this current-to-frequency conversion experiment for metrology.

DOI: 10.1103/PhysRevLett.99.187005 PACS numbers: 74.50.+r, 74.25.Fy, 74.45.+c, 74.78.Na

Exploiting the quantum properties of a current-biased

Josephson junction to make a current standard suitable for

metrology was proposed by Averin, Zorin, and Likharev

[1]. This system has a simple mechanical analog: the phase

difference ’ across the junction is equivalent to the posi-

tion of a particle moving in the Josephson potential

�EJ cos’, the voltage across the junction to the particle

velocity, and the bias current I to an applied force. The

dynamics of such a particle is well explained within the

framework of the Bloch energy bands �i�p� formed by the

eigenstates of the particle, with p its quasimomentum [2].

It was predicted, in particular, that the voltage across the

junction (particle velocity) oscillates at the Bloch fre-

quency fB � I=2e [1]. These Bloch oscillations, which

provide a direct link between time and current units, would

be of fundamental interest for electrical metrology.

However, it is extremely difficult to current-bias a junction

because it requires one to embed it in a circuit with a high

impedance over a wide frequency range [3,4]. On the other

hand, it is easy to force Bloch oscillations [5] by imposing

the quasimomentum, that is the total bias charge Q deliv-

ered to the junction [1], by connecting it to a small gate

capacitor Cg in series with a voltage source Vg, so that Q �

CgVg. This scheme cannot impose a constant current, but

can deliver alternatively two opposite values of the current

dQ=dt � �I. In this Letter, we report experiments using

this procedure and demonstrating oscillations at the Bloch

frequency fB � I=2e in a Josephson circuit that allows

their detection. Our setup, shown in Fig. 1(a), is based on

a modified Cooper pair box [6], the quantronium [7]. We

show how this new current-to-frequency conversion

method exploits the quantum properties of the circuit.

We also discuss its interest in metrology of electrical

currents, for which electron pumping [8,9] and electron

counting [10] have also been proposed.

The quantronium device [7,11] is a split Cooper pair box

that forms a loop including also a probe junction. The box

island with total capacitance C is defined by two small

junctions having Josephson energies EJ�1� d�=2 and

EJ�1� d�=2, d being an asymmetry coefficient. The super-

conducting phase �̂ of this island, conjugated to the num-

ber N̂ of extra Cooper pairs inside, forms the single degree

of freedom of the box [12]. The third larger junction with

critical current I0, in parallel with an added on-chip ca-

pacitor Ca, forms a resonator with plasma frequency fp in

the 1–2 GHz range [13]. Since this frequency is always

smaller than the box transition frequency, we treat the

phase difference � across the probe junction as a clas-

δ γ

Φ

∆

δ

I

FIG. 1. Operating principle of the quantronium circuit for the

production and detection of Bloch-like oscillations. The circuit

(a) is a split Cooper pair box with a probe junction for the

detection of the oscillations that develop when the gate charge is

swept linearly. When the linear sweep is replaced by a triangular

sweep (b) with extrema corresponding to symmetry points of the

inductance modulation pattern (c), the time variations of the

inductance (d) are the same as for a continuously increasing

linear sweep. This modulation manifests itself as sidebands in

the spectrum (e) of a microwave signal reflected onto the circuit.
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sical variable. The same thus holds for the phase difference

� � ���=’0 across the two box junctions in series,

with � the magnetic flux applied through the loop, and

’0 � @=2e. The control parameters of the split-box are �
and the reduced gate charge Ng � CgVg=2e, with Cg the

island gate capacitance and Vg the gate voltage. The

Hamiltonian of the box writes

 Ĥ � EC�N̂� Ng�
2 � EJ cos

�

2
cos�̂ � dEJ sin

�

2
sin�̂;

(1)

with EC � �2e�2=2C.

The eigenenergies �i�Ng; �� vary periodically with Ng

(period 1) and � (period 2�) [11]. The experiment consists

in imposing a linear variation of the reduced quasimomen-

tum Ng that induces a periodic evolution of the quantum

state along the first Bloch band �0�Ng; ��, at the Bloch

frequency fB � dNg=dt � I=2e. Therefore, the current

i�Ng; �� � ’�1
0 @�0�Ng; ��=@� through the two small junc-

tions, the associated effective inductance for small phase

excursions

 L�Ng; �� � ’2
0

�
@2�0�Ng; ��

@�2

�
�1

; (2)

and hence the admittance Y�!� � j�Ca!� I0=’0!�

1=L�Ng; ��!� as seen from the measuring line, vary peri-

odically. We measure this admittance Y�!� by microwave

reflectometry, as for the rf-SET [14]. In our experiment, we

apply a triangular modulation of the gate signal centered on

Ng � Noff , with peak to peak amplitude �N, and with

frequency fg. Because of the symmetry properties of the

quantum states with respect to Ng, the inductance varies as

for a linear sweep, as shown in Fig. 1, provided that the

extremal values of Ng are integer or half-integer, with a

Bloch frequency fB � 2�Nfg. In order to obtain the larg-

est gate-charge modulation of the inductance, the phase is

adjusted at � 	 � with the flux �. When a small micro-

wave signal at frequency f0 is sent on the measuring line,

the periodic modulation of the reflection factor yields side-

bands in the spectrum of the reflected signal [14], shifted

from the carrier by multiples of fB, and called Bloch lines

[15]. Because of the periodic excitation, the stationary

outgoing amplitude can be written as a series:

 vout�t� �
X
k

vk exp�2i��f0 � kfg�t�: (3)

The circuit equations and the loop-current expression

[7,11] allow to calculate all sideband amplitudes vk, which

get smaller and become asymmetric (v�k � vk) when the

sideband frequencies depart from the resonance.

The sample was fabricated using electron-beam lithog-

raphy [7,11] and aluminum deposition and oxidation. In

order to avoid quasiparticle poisoning, the island was made

thinner than the leads (13 and 42 nm, respectively), and

gold quasiparticle traps were used [16]. In the present

experiment, a sizeable asymmetry d was introduced on

purpose in order to maintain a large gap G0 � �1 � �0 at

(Ng � 1=2, � � �), which avoids microwave driven tran-

sitions towards excited bands. The sample was placed in a

sample holder fitted with microwave transmission lines, at

a temperature T ’ 30 mK. The gate was connected to a

250 MHz-bandwidth RF line. The microwave signal, after

reflecting on the probe junction, went through 3 circulators

before being amplified by a cryogenic amplifier with noise

temperature TN � 2:2 K, and a room temperature ampli-

fier. The signal was then either demodulated with the cw

input signal, or sent to a spectrum analyzer. In the latter

case, the applied power was 	 �132 dBm, corresponding

to phase excursions smaller than �0:1 rad, and the total

measurement gain was 	 88 dB. As a function of Ng and

�, the plasma resonance varied in the range 1.11–

1.21 GHz, slightly below the circulator bandwidth, which

yielded an extra attenuation of the signal due to a spurious

interference with the leakage signal through circulator

[17]. Fitting the variations of the resonance yielded fp �

1:19 GHz, Q	17, EC�1:42�0:2kBK, EJ�2:88�
0:2kBK, and d � 0:15� 0:03 leading to G0 	 7hf0.

The reflected signal demodulated with the carrier is

shown in Fig. 2 for a triangular gate voltage corresponding

to fB � 8 kHz. Because of noise, such time-domain mea-

surements could only be performed within a 100 kHz

bandwidth [18]. In the following, the reflectometry spectra

are taken with a 1 Hz bandwidth resolution.

A series of spectra recorded at f0 � 1:14 GHz with

fg � 200 Hz, and taken with progressively tuned gate

sweep signal amplitude and offset, is shown in Fig. 3:

when �N and Noff are tuned as sketched in Fig. 1, the

spectrum consists only of Bloch lines, as predicted, with

linewidth limited by the spectrum analyzer.

An example of comparison between the measured and

predicted sideband amplitudes when Noff or �N is varied is

shown in Fig. 4 for fg � 1 kHz. The measured amplitudes

are well accounted for by the solution of Eq. (3), but for the

carrier, which suffers from the spurious interference effect

FIG. 2 (color online). Demodulated output signal (left scale)

recorded with a 300 Hz—30 kHz bandwidth during a 3 ms time

window, when a triangular wave voltage corresponding to a

Bloch frequency fB � 8 kHz is applied to the gate (right scale).

Each period corresponds to the injection of one extra Cooper

pair.
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already mentioned [17]. Although the overall agreement

for the sidebands, and, in particular, the cancellation of

some of them at particular offsets and amplitudes, demon-

strate the phase-coherence of the measured signal, it does

not prove that the quantronium undergoes a perfect coher-

ent adiabatic evolution of its ground state while Ng and �

are varied: incoherent excitation or deexcitation processes

are for instance not excluded. Because of the opposed

inductance modulation in the excited state, they would

only reduce the amplitude of the Bloch lines in proportion

of the time spent in this state.

Spectra obtained at larger frequencies fg and larger

amplitudes �N, corresponding, respectively, to currents

and Bloch frequencies I � 32 pA, fB � 100 MHz, and

I � 130 pA, fB � 408 MHz, are shown in Fig. 5. These

results demonstrate that Bloch oscillations persist at Bloch

frequencies larger than the resonator bandwidth fp=Q 	

70 MHz, even though Bloch lines become weaker. The

successful current-to-frequency conversion performed up

to currents I > 100 pA using Bloch oscillations is the main

result of this work. However, the amplitudes of the Bloch

lines at these high frequencies are smaller than predicted

by the model, and additional sidebands are present, which

we attribute to the rounding of the gate triangular wave

signal at its turning points, and to drifts of the gate-charge

due to background charge noise. In principle, the theoreti-

cal maximum current is limited by two fundamental phe-

nomena. First, the conversion mechanism requires

fB 
 f0, with f0 
 G0=h to avoid multiphoton excita-

tions. Second, the current must be low enough to avoid

Zener transitions at Ng � 1=2 where the gap is minimum.

For the present experiment, the Zener probability pZ �
exp���2G2

0=hsfB� 	 exp��13 GHz=fB�, with s the slope

of �1�Ng� � �0�Ng� away from Ng � 1=2, is negligible.

An important application of these experimental results

could be to establish a direct link between a dc current and

a frequency through the Bloch frequency fB � I=2e, in

order to close the triangle of quantum metrology [19]. Such

an experiment would aim at measuring the current IH

FIG. 4 (color online). Comparison of the measured (symbols)

and calculated (lines) sideband amplitudes as a function of the

sweep offset Noff and amplitude �N, for fg � 1 kHz. Left

panels: Offset dependence for �N � 2; the observed sidebands

correspond as predicted to odd multiples of fg (top) and to the

Bloch line k � 4 and its harmonics k � 4n, with period 1=�2n�
in Noff (bottom). Right panel: �N amplitude dependence for

Noff � 0. The Bloch line corresponds to harmonic 4 at �N � 2,

and to harmonic 6 at �N � 3. Calculated curves were shifted by

45 dB (estimated value was 44 dB) to best match the experi-

mental Bloch line of order 1.

FIG. 3. Spectrum of a reflected cw signal at 1.14 GHz for

different triangular wave gate modulation patterns, at frequency

fg � 200 Hz. The spectrum consists of sidebands shifted by kfg
from the carrier. Progressive tuning of the amplitude �N and of

the offset Noff yields a spectrum consisting only of Bloch lines

shifted from the carrier by a multiple of fB � 2�Nfg. The

Bloch lines of order 1 (k � �2�N) are marked by an asterisk.

FIG. 5 (color online). Amplitude of the sidebands at positive

harmonics (top scale) of the gate frequency fg. Top panel: �N �

50, fg � 1 MHz (I � 32 pA, fB � 100 MHz); bottom panel:

�N � 85, fg � 2:4 MHz (I � 130 pA, fB � 408 MHz). The

Bloch line of order 1 is marked by an asterisk. The continuous

line is the noise level. We attribute the presence of non-Bloch

lines to the imperfections in the gate signal, and to charge noise.
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passing through a Quantum Hall bar device in terms of a

rate _NH of transferred Cooper pairs, in order to check the

consistency of the Quantum Hall effect (QHE) with the ac

Josephson effect. Using this latter effect, the Hall voltage

VH � �h=e2�IH across a QHE bar can indeed be related to

a frequency fH through the relation �h=e2�IH � �h=2e�fH.

If the description of both QHE and Josephson experiments

is exact, one predicts _NH � fH=4. A consistency check of

this relation at the 10�8 level is presently a major goal in

metrology because, in conjunction with a metrological

realization of the mass unit by a Watt-balance experiment

[20], it would provide a serious basis for a redetermination

of the SI unit system in terms of electrical experiments

involving only fundamental constants. The large current

IH 	 1 �A, needed for QHE experiments, can be trans-

posed to a smaller range 0.1–1 nA using topologically

defined transformers [21]. This current range, which is still

beyond reach of single electron pumps [8] or of direct

electron counting experiments [10], can be accessed with

the sluice Cooper pair pump [9], with Bloch oscillations in

a single Josephson junction [3], or with the method dem-

onstrated here provided it can be used with a true dc

current. In the last two cases, the impedance of the current

source as seen from the single junction or from the box

needs to be larger than RQ � h=4e2 to preserve single

Cooper pair effects, and temporal fluctuations have to be

small enough to obtain narrow Bloch lines enabling an

accurate measurement of their frequency. Using for in-

stance a resistive bias yields a Bloch linewidth of the order

of the Bloch frequency [3], due to thermal fluctuations of

the self-heated bias resistor. Developing a suitable current

source for charge injection is thus a challenging prerequi-

site to metrology experiments based on Bloch physics.

High impedance dissipative linear Josephson arrays have

already been used to demonstrate indirectly Bloch oscil-

lations [4]. Combining Ohmic, inductive, and Josephson

elements, and possibly nonequilibrium cooling tech-

niques [22], might provide an adequate low-noise high

impedance.

In conclusion, we have demonstrated the conversion of a

current �I to a frequency fB � I=2e in a Josephson device

biased through a small capacitor, through the production of

ultra narrow sidebands in the spectrum of a reflected

microwave signal. This new method, which reaches a

current range I > 0:1 nA, would be extremely appealing

for metrology if operated with a dc current.
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