
HAL Id: tel-00811941
https://theses.hal.science/tel-00811941

Submitted on 11 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Optimized Flexible Multi-ASIP Architectures
for LDPC/Turbo Decoding
Purushotham Murugappa Velayuthan

To cite this version:
Purushotham Murugappa Velayuthan. Towards Optimized Flexible Multi-ASIP Architectures for
LDPC/Turbo Decoding. Electronics. Télécom Bretagne, Université de Bretagne-Sud, 2012. English.
�NNT : �. �tel-00811941�

https://theses.hal.science/tel-00811941
https://hal.archives-ouvertes.fr

N
o
d'ordre : 2012telb0260

Sous le sceau de l'Université européenne de Bretagne

Télécom Bretagne

en habilitation conjointe avec l'Université de Bretagne-Sud

Ecole Doctorale -sicma

Mention : STIC (Sciences et Technologies de l’Information et de la Communication)

par

Purushotham Murugappa Velayuthan

Towards Optimized Flexible Multi-ASIP
Architectures for LDPC/Turbo Decoding

soutenue le 17 décembre 2012 devant la commission d'examen :

Composition du Jury :

Président : M. Guy Gogniat, Professeur à l'Université de Bretagne-Sud

Rapporteurs : M. Gerd Ascheid, Professeur à l'Université RWTH Aachen
M. François Verdier, Professeur à l'Université de Nice

Examinateurs : M. Gilles Sassatelli, Directeur de Recherche CNRS au LIRMM
M. Fabien Clermidy, Ingénieur chercheur (HDR) au CEA-LETI

Directeur : M. Michel Jézéquel, Professeur à Télécom Bretagne

Encadrant : M. Amer Baghdadi, Professeur à Télécom Bretagne

To life and its infinite possibilities.

i

Acknowledgements

First, I would like to express my gratitude to my supervisor Amer Baghdadi, for his constant
motivation and patience during this entire thesis work. I also thank him for both personal and
technical help that he graciously offered irrespective of the time of the day it was needed. I
always will cherish the freedom he offered (as well as the pressure he exerted at times) in bring-
ing out the best in me. I also thank him for the kindness that he showed during those endless
arguments, discussions and obvious misunderstandings that we have had.

I would also like to thank Michel Jézéquel, the director of my thesis for his support during
this period.

I extend my gratitude to my collegues Atif, Rachid, Camilo, Jean-Noel and many others to
have supported me and made me feel welcomed every day at work. A special thanks also goes
to my dear friends Ashwani and Tarini (and many more from/in various parts of the world) to
have tirelessly counselled me to uplift my spirits whenever I felt down.

Lastly, it’s a pleasure to thank my family in India for having stood by me through thick and
thin. They have always encouraged me to pursue my dreams no matter how weird it seemed.

iii

Contents

Acknowledgements iii

Introduction 1

1 Background: Channel Codes and Decoding Algorithms 7

1.1 Communication system overview . 8

1.2 Turbo codes . 10

1.2.1 Recursive Systematic Convolutional codes 11

1.2.2 Turbo Code Interleaver . 14

1.2.2.1 Almost regular permutation (ARP) 14

1.2.2.2 Quadratic polynomial permutation (QPP) 15

1.3 Turbo decoding . 15

1.3.1 Maximum Aposteriori Probability (MAP) algorithm 17

1.3.2 Max-Log-MAP approximation . 18

1.3.3 Max-Log-MAP for Turbo decoding 19

1.3.4 Parallelism in Turbo decoding . 20

1.3.4.1 Metric level parallelism . 21

1.3.4.2 SISO decoder level parallelism 23

1.3.4.3 Turbo decoder level parallelism 25

1.4 Low Density Parity Check codes . 25

1.4.1 Linear block codes . 26

1.4.2 QC-LDPC codes . 27

1.4.3 LDPC in WiFi and WiMAX standard 29

1.5 Low Density Parity Check decoding . 29

1.5.1 LDPC decoding algorithm: Normalized Min-Sum (NMS) 30

1.5.2 Scheduling . 31

1.5.3 Modified NMS formulation for implementation 32

1.6 Summary . 33

v

vi CONTENTS

2 ASIP Design Methodology and State of the Art in Channel Decoder Design 35

2.1 Customizable embedded processors . 36

2.1.1 Application-Specific Instruction-set Processors 37

2.1.2 ADL-based design tool: Processor designer 37

2.1.3 Classical ASIP design flow . 40

2.2 State of the art in channel decoder design . 41

2.2.1 Turbo decoding architectures . 41

2.2.2 LDPC decoding architectures . 42

2.2.3 Multi-code channel decoding architectures 44

2.3 Initial ASIP architecture for flexible Turbo decoding 46

2.3.1 Overview of the TurbASIP architecture 46

2.3.2 TurbASIP pipeline . 47

2.3.3 Max and modulo operators . 49

2.3.4 TurbASIP: sample assembly code 50

2.3.5 Memory partitions . 53

2.3.6 ASIC synthesis results . 53

2.4 Summary . 55

3 DecASIP: Flexible Turbo/LDPC Decoder 57

3.1 Design motivations . 58

3.1.1 Architecture Efficiency . 59

3.1.2 Quantization analysis . 60

3.2 DecASIPv1 . 62

3.2.1 System architecture . 62

3.2.2 Turbo mode . 63

3.2.2.1 Memory architecture . 63

3.2.2.2 Processing schedule . 64

3.2.2.3 Pipeline architecture . 64

3.2.2.4 Interleave/deinterleave address generation 65

3.2.2.5 NoC messages . 67

3.2.2.6 Assembly code . 68

3.2.3 LDPC mode . 71

3.2.3.1 Proposed scheduling illustrated with simple example using 2-
DecASIPv1 architecture . 71

3.2.3.2 Proposed scheduling with 8-DecASIPv1 architecture 73

3.2.3.3 Memory architecture . 80

3.2.3.4 NoC messages . 82

3.2.3.5 Pipeline architecture and assembly Code 82

CONTENTS vii

3.2.4 ASIC synthesis results . 85

3.3 DecASIPv2 . 87

3.3.1 System architecture . 87

3.3.2 Turbo mode . 88

3.3.3 LDPC mode . 90

3.3.3.1 NoC messages and NoC schedule 92

3.3.3.2 LDPC assembly code . 93

3.3.4 Configuration memory . 95

3.3.5 ASIC synthesis results . 96

3.3.6 Discussions and analysis of recent related implementations 98

3.4 Summary . 100

4 FPGA and ASIC Prototyping of DecASIP 101

4.1 Overview of the proposed FPGA 4-DecASIP system prototype 102

4.2 Flexible channel encoder . 103

4.2.1 Flexible Turbo encoder . 103

4.2.2 Flexible LDPC encoder . 104

4.3 Flexible Turbo/LDPC decoder . 105

4.4 Other blocks of the system prototype . 105

4.4.1 Pseudo random generator . 106

4.4.2 Flexible channel model . 106

4.4.3 Global input interface . 107

4.4.4 Error counter . 107

4.4.5 Configuration module . 107

4.4.6 Global system controller . 108

4.4.7 Graphical User Interface (GUI) . 108

4.4.8 USB interface . 109

4.5 Results of the FPGA prototype . 110

4.5.1 FPGA synthesis results . 110

4.5.2 Speed of reconfiguration between different decoding modes 110

4.5.3 Scalability and throughput . 110

4.5.4 Performance results . 111

4.6 ASIC integration of DecASIP . 111

4.6.1 MAG3D chip from CEA-LETI . 112

4.6.2 Integration constraints . 114

4.6.3 ASIC integration results . 114

4.7 Summary . 115

viii CONTENTS

5 TDecASIP: Parameterized Turbo Decoder 117

5.1 Proposed design flow for parameterized cores 118

5.2 Design choices and TDecASIP decoder architecture 119

5.2.1 Design choices . 119

5.2.2 TDecASIP decoder architecture . 121

5.2.2.1 Pipeline control finite state machine 123

5.2.2.2 Pipeline architecture . 124

5.2.3 Memory organization . 124

5.3 FPGA prototype and synthesis results . 125

5.4 ASIC synthesis results . 126

5.5 Summary . 128

6 LDecASIP: LDPC Decoder 129

6.1 Design motivations and LDecASIP decoder architecture 130

6.2 Prototype and incremental feature addition . 132

6.3 FPGA and ASIC synthesis results . 133

6.4 Summary . 135

Conclusions and Perspectives 137

Résumé en Français 141

Glossary 147

Notations 151

Bibliography 153

List of publications 163

List of Figures

1 Overview of the thesis outline and contributions 4

1.1 Digital communication system model . 8

1.2 Bit error rate performance of a Turbo code w.r.t. channel capacity and other
conventional codes . 9

1.3 Serial concatenated code structure . 10

1.4 Parallel RSC Turbo encoder structure . 10

1.5 Examples of Non systematic and Systematic convolutional codes 11

1.6 Recursive systematic codes (RSC) . 13

1.7 Trellis diagram of encoder of Figure 1.6b . 13

1.8 Classical Turbo decoder structure . 16

1.9 Turbo decoding: Forward-Backward schedule 21

1.10 Turbo decoding: Butterfly schedule . 22

1.11 Radix-4 trellis compression . 22

1.12 Sub-blocking with initialization through acquistion 23

1.13 Sub-blocking with initialization through message passing 24

1.14 Sub-blocking and windowing with initialization through message passing . . . 25

1.15 Turbo decoding: Shuffled decoding strategy, where Dx= SISO decoders x=1,2,.. 25

1.16 Linear block code mapping example for (n=3, k=2) 26

1.17 Linear block code generator matrix G and parity check matrix H for (n=7,k=4) 27

1.18 Tanner graph of H matrix in 1.17 . 27

1.19 LDPC check matrix representations: Hbase 28

1.20 LDPC check matrix representations: Hexpanded form of 1.19 28

1.21 LDPC check matrix representations: Generalised Tanner graph representation
of LDPC H-matrix . 28

1.22 Tanner graph example showing the two-phase message passing decoding 30

1.23 LDPC decoding using vertical schedule . 32

1.24 LDPC decoding using horizontal schedule . 32

ix

x LIST OF FIGURES

2.1 Comparison of performance, flexibility and power dissipation trade-off of im-
plementation methods . 38

2.2 LISA-based ASIP architecture exploration flow 39

2.3 LISA-based ASIP architecture design flow . 40

2.4 TurbASIP architecture . 46

2.5 Multi-TurbASIP architecture . 48

2.6 Overview of the TurbASIP pipeline stages along with its register file and mem-
ory banks . 48

2.7 Four input max operator modes . 49

2.8 Max operator unit and over flow condition . 50

2.9 TurbASIP: LLRs storage in memory banks 54

3.1 C-simulations BER and FER results for WiMAX frame size 1920 bits and code
rate of 1/3 . 61

3.2 C-simulation BER and FER results for LTE frame size 1440 bits and code rate
of 1/3 . 61

3.3 C-simulation BER and FER results for LDPC WiMAX Z=48 and WiFi Z=54
and code rate of 1/2 . 61

3.4 DecASIPv1 System Architecture . 62

3.5 Binary de-Bruijn NoC topology for 8 nodes 63

3.6 DecASIPv1: Input memory (CV) bank0 organization in Turbo mode 64

3.7 DecASIPv1: Extrinsic memory bank0 organization in Turbo mode 64

3.8 DecASIPv1: Backward-Forward schedule adopted in Turbo mode. The number
of processed windows per DecASIP depends on the frame size, the maximum
number of windows per DecASIP is 12. 65

3.9 DecASIPv1: Pipeline architecture in Turbo mode 66

3.10 DecASIPv1: ARP and QPP interleaved/deinterleaved address generation in
Turbo mode . 67

3.11 DecASIPv1: NoC packets format in Turbo mode 68

3.12 Simple LDPC Hbase matrix example with Nb=6, Mb=2, and Z=6 71

3.13 DecASIPv1: Proposed LDPC decoding schedule with 2-DecASIP architecture
at time step t=T0 . 71

3.14 DecASIPv1: Proposed LDPC decoding schedule with 2-DecASIP architecture
at time step t=T1 . 72

3.15 DecASIPv1: Proposed LDPC decoding schedule with 2-DecASIP architecture
at time step t=T2 . 73

3.16 DecASIPv1: Proposed LDPC decoding schedule with 2-DecASIP architecture
at time step t=T3 . 73

3.17 LDPC check matrixHbase from the WiFi standard with code rate 1/2, sub-matrix
size Z=81, and frame length of 1944 bits. ThisHbase matrix consists ofMb×Nb

permutation sub-matrices of size Z (Mb=12, Nb=24, and Z=81 in this example) 76

LIST OF FIGURES xi

3.18 DecASIPv1: Proposed LDPC decoding schedule with 8-DecASIP architecture
— RV phase . 77

3.19 DecASIPv1: Proposed LDPC decoding schedule with 8-DecASIP architecture
— RV phase @t=T7 and RV+UV phase @t=T8 78

3.20 DecASIPv1: Proposed LDPC decoding schedule with 8-DecASIP architecture
— UV only phase . 79

3.21 DecASIPv1: Input memory bank 0 organization in LDPC mode 80

3.22 DecASIPv1: Extrinsic memory bank 0 organization in LDPC mode 80

3.23 DecASIPv1: Pseudo code for CV address generation of the input memory bank
storing VNGy in LDPC mode . 81

3.24 DecASIPv1: NoC interconnect and payload in LDPC mode 81

3.25 DecASIPv1: Pipeline architecture in LDPC mode 82

3.26 DecASIPv1: RV and UV messages scheduling with the 8-DecASIP architecture
in LDPC mode . 85

3.27 DecASIPv2 System Architecture . 87

3.28 DecASIPv2: NoC packets format using the Butterfly NoC 88

3.29 DecASIPv2: Input memory bank 0 organization in LDPC mode 90

3.30 DecASIPv2: Extrinsic memory bank 0 organization in LDPC mode 91

3.31 DecASIPv2: Variable node update unit in LDPC mode 91

3.32 DecASIPv2: NoC message format in LDPC mode 92

3.33 DecASIPv2: NoC message passing in LDPC mode. Example for CNG0 pro-
cessing with Z=48. 92

3.34 DecASIPv2: Pseudo code for CV address generation in LDPC mode 93

4.1 Global FPGA platform architecture overview 102

4.2 Flexible Turbo Encoder . 103

4.3 Flexible convolutional Encoder . 103

4.4 Flexible LDPC Encoder . 105

4.5 DecASIP decoder system architecture . 106

4.6 AWGN channel input and output ports . 107

4.7 FSM of the global system controller . 108

4.8 Graphical User Interface (GUI) for the DecASIP FPGA prototype 109

4.9 FPGA prototype BER and FER results in SBTC mode for LTE frame size of
1440 bits and code rate of 1/3 . 112

4.10 FPGA prototype BER and FER results in DBTC mode for WiMAX frame size
of 1920 bits and code rate of 1/3 . 112

4.11 FPGA prototype BER and FER results in LDPC mode for WiMAX Z=48 and
WiFi Z=54 and code rate of 1/2 . 113

4.12 MAG3D system architecture . 113

4.13 Placement of DecASIPv2 system on MAG3D 114

xii LIST OF FIGURES

4.14 4 DecASIP system: Network interface to GALS on MAG3D 115

4.15 Post-route DecASIP chip diagram on MAG3D 115

5.1 Proposed design flow for parameterized ASIP 118

5.2 TDecASIP: Windowing and backward-forward schedule 120

5.3 Overview and memory organization of the proposed 2-TDecASIP Turbo de-
coder architecture . 121

5.4 Detailed pipeline architecture and FSM of the proposed TDecASIP parametrized
core . 122

5.5 TDecASIP: Finite state machine for decoder execution control 123

5.6 TDecASIP: Prototyping environment . 125

6.1 LDecASIP pipeline architecture . 130

6.2 LDecASIP: Instruction/config memory . 131

6.3 LDecASIP: FPGA prototyping environment 132

6.4 LDecASIP: Min calculator unit for DVB-S2 133

List of Tables

1 Representative set of mobile wireless standards and related channel codes and
parameters . 1

1.1 Characteristics of WiFi and WiMAX LDPC check matrices 29

2.1 Memory bank partitions for a single TurbASIP in 4x4 mode 55

2.2 ASIC synthesis results for complete 4x4 TurbASIP system using 65nm general
purpose CMOS technology (worst case 0.9v, 125C) 55

3.1 DecASIPv1: Interleaved/deinterleaved address generation step and seed values
in Turbo mode . 67

3.2 DecASIPv1: ASIC synthesis results for the complete 8-DecASIPv1 system de-
coder using 65nm CMOS technology @510 MHz (worst case 0.9v, 125C) . . 86

3.3 DecASIPv1: Summary of the memory bank partitions for a single ASIP in the
8-DecASIP system decoder . 86

3.4 DecASIPv1: Throughput results and achieved architecture efficiency for an 8-
DecASIPv1 system decoder . 86

3.5 DecASIPv2: Configuration memory contents for DecASIP 0 96

3.6 DecASIPv2: ASIC synthesis results for the complete 4-DecASIPv2 system de-
coder using 65nm CMOS technology @510 MHz (worst case 0.9v, 125C) . . 97

3.7 DecASIPv2: Summary of the memory bank partitions for a single ASIP in the
4-DecASIP system decoder . 97

3.8 DecASIPv2: Results comparison with few recent state-of-the-art implementations 98

4.1 FPGA platform 2x2 DecASIP memory requirements of the banks 106

4.2 FPGA prototype synthesis on Xilinx Virtex-5 LX330 FPGA 110

4.3 Required number of cycles to change the decoding mode for the 4-DecASIP
system . 110

4.4 Scalability and throughput achieved for FPGA prototype implementation and
operating frequency of 80 MHz . 111

5.1 TDecASIP: FPGA (Xilinx Virtex-5 (xc5vlx330-1ff1760)) resource utilization
for 1 processor . 126

xiii

xiv LIST OF TABLES

5.2 TDecASIP: Memory partitions . 126

5.3 TDecASIP: Post synthesis area utilization per processor for 2 processor archi-
tecture with general purpose CMOS 65nm, (worst case 0.9v, 125C) 127

5.4 Results and comparison with with few recent related works 127

6.1 LDecASIP: Memory bank partition for WiFi and WiMAX standard 133

6.2 LDecASIP: ASIC and FPGA synthesis results 134

6.3 LDecASIP: Throughput (in Mbps) and latency L (in clock cycles per iteration)
for WiMAX and WiFi mode @500MHz . 134

6.4 LDecASIP: Expected DVB-S2 latency L (in clock cycles per iteration) and
throughputs (in Mbps) at 25 iterations @500MHz 134

6.5 LDecASIP: Comparison with the state of the art 135

Introduction

MOBILE wireless connectivity is a key feature of a growing number of devices, which
will count soon in tens of billions, from laptops, tablets, cell phones, cameras and other

portable devices. The variety of applications and traffic types will be significantly larger than
today and will result in more diverse requirements. These applications are driving the creation of
new transmission techniques and design architectures that push the boundaries to achieve high
throughput, low latency, area and power efficient implementations.

Channel coding is one of the key techniques that enable reliable high throughput data transfer
through unreliable wireless channels. However, as a large variety of channel coding options and
flavors are specified in existing and emerging digital communication standards, there is an in-
creasing need for flexible implementations. In fact, several powerful error correction techniques
exist today, each suitable for specific application parameters (frame size, transmission channel,
signal-to-noise ratio, bandwidth, etc). Considering the emerging multi-mode and multi-standard
applications, as well as the increasing interest for Software Defined Radio (SDR) and Cognitive
Radio (CR) applications, combination of multiple error correction techniques becomes manda-
tory. Table 1 shows a representative set of mobile wireless standards to highlight their differences
in data rates and channel encoding schemes. The most commonly used error correcting codes in
these standards are Convolutional Codes (CC), Turbo codes (SBTC: Single Binary Turbo Codes
and DBTC: Double Binary Turbo Codes), and Low-Density Parity-Check (LDPC) codes.

Standard Codes Rates States info. bits Channel Throughput
EDGE CC 1/4..1/3 64 ..870 384 kbps

UMTS
CC 1/4..1/2 256 .. 504 .. 32 kbps

SBTC 1/3 8 .. 5114 .. 2 Mbps
HSDPA SBTC 1/2 - 3/4 8 .. 5114 .. 14.4 Mbps

CDMA-2k
CC 1/6 .. 1/2 256 ..744 .. 28 kbps

SBTC 1/5 - 1/2 8 ..20730 .. 2 Mbps

IEEE-802.11n (WiFi)
CC 1/2..3/4 64 .. 4095 .. 450Mbps

LDPC 1/2 - 5/6 - .. 1620 .. 450Mbps

IEEE802.16e (WiMAX)
CC 1/2 - 5/6 64 .. 864 .. 75 Mbps

DBTC 1/2 - 3/4 8 .. 4800 .. 75 Mbps
LDPC 1/2 - 5/6 - .. 1920 .. 75 Mbps

DVB-S2 LDPC 1/4 - 9/10 - .. 64800 .. 90 Mbps
DVB-RCS DBTC 1/3 - 6/7 8 .. 1728 .. 2 Mbps
3GPP-LTE SBTC 0.33-0.95 8 .. 6144 .. 150 Mbps

Table 1 — Representative set of mobile wireless standards and related channel codes and parameters

1

2 INTRODUCTION

Problems

In this context, and at the receiver side, it is well known that channel decoding is one of the most
computation, communication, and memory intensive, and thus, power-consuming component.
Channel decoder design has been extensively investigated during the last few years and several
implementations have been proposed. Some of these implementations succeeded in achieving
high throughput for specific standards through the adoption of highly dedicated architectures
that work as hardware accelerators. However, these implementations do not take into account
flexibility and scalability issues. Particularly, this approach implies the allocation of multiple
separated hardware accelerators to realize multi-standard systems, which often result in poor
hardware efficiency. Furthermore, it implies long design time which is no more compatible
with the severe time-to-market constraints and the continuous development of new standards
and applications.

More recently, several contributions have been proposed targeting flexible, yet high through-
put, implementations of channel decoders. The flexibility varies from supporting different modes
of a single communication standard to the support of multi-standards multi-modes applications.
Other implementations have even proposed to increase the target flexibility to the support of
different channel coding techniques. As a matter of fact, a knowledge gap is growing quickly
in the last few years between the need for flexibility in the digital base-band processing seg-
ment of modern communication systems, and the actual availability of flexible while efficient
hardware support to the quest for reconfigurability. The main reason that determines this grow-
ing gap is related to the poor area and energy efficiency of flexible solutions proposed till now
and the huge increase of non-recurrent engineering (NRE) costs in the production of dedicated
integrated circuits for specific applications (ASIC) with new semiconductor technologies.

Objectives and scope of the thesis

Towards the target of filling the above mentioned gap, this thesis work aims at defining and
developing an efficient and high performance flexible channel decoder architecture model for
emerging and future digital communication systems. The need of optimal solutions in terms of
performance, area, and power consumption is increasing and cannot be neglected against flexi-
bility. In common understanding, a ”blind” approach towards flexibility results in some loss in
optimality. The objective of this work is related to unifying flexibility-oriented and optimization-
oriented approaches. The main goal is to deliver enablers and building block solutions in order
to derive, for a specific application need, the best balance between a highly flexible solution and
a specifically optimized one.

Towards this objective, the thesis work investigates multiprocessing and Application-
Specific Instruction-set Processor models (ASIP) which enable the designer to scale and freely
tune the flexibility/performance trade-off as required by the considered application requirements.
Related contributions are emerging rapidly seeking to improve the resulting architecture effi-
ciency in terms of performance/area and in addition to increase the flexibility support.

By considering mainly the challenging Turbo and LDPC decoding applications, multi-ASIP
channel decoder architectures are proposed targeting high flexibility combined with high Archi-
tecture Efficiency (AE) in terms of bits/cycle/iteration/mm2. Different architecture alternatives
and design approaches are explored. Furthermore, in order to be relevant to existing and emerg-
ing standards we limit the supported flexibility targeting LDPC and Turbo codes specified in

INTRODUCTION 3

WiFi, WiMAX, and LTE. This also enables to compare with existing state-of-the-art implemen-
tations.

Thesis contributions

Towards the above mentioned objectives, the results of this thesis work can be summarized in the
following 4 main contributions (which are also illustrated in Figure 1 corresponding to chapters
3, 4, 5, and 6):

• Design of a scalable and flexible high throughput multi-ASIP LDPC/Turbo decoder:

- Proposal and design of a flexible and optimized ASIP architecture, namely DecASIP, sup-
porting Turbo and LDPC decoding.

- Proposal of an efficient resource sharing between LDPC and Turbo decoding modes.

- Proposal of a scalable high throughput multi-ASIP channel decoder with efficient mapping of
the target standards.

- Proposal of a new LDPC decoding schedule adapted to the target multi-ASIP channel decoder.

- Exploring possible parallelism techniques for efficient decoding of SBTC, DBTC, and LDPC
codes.

- Optimization of the dynamic configuration speed between the different supported decoding
modes.

• FPGA and ASIC prototyping of the proposed multi-ASIP LDPC/Turbo decoder:

- Proposal and design of a complete FPGA-based prototype of the proposed multi-ASIP LD-
PC/Turbo decoder.

- ASIC integration of a 4-DecASIP channel decoder in the latest Telecom chip (namely
MAG3D) designed by the CEA-LETI targeting 4G communication applications

• Design of a parameterized ASIP for Turbo decoding, TDecASIP :

- Increasing the architecture efficiency in terms of bit/cycle/iteration/mm2.

- Enabling the design of application-specific parameterized cores using an ASIP design flow.

• Design of an optimized ASIP for LDPC decoding, namely LDecASIP :

- Increasing the architecture efficiency in terms of bit/cycle/iteration/mm2.

- Enhancing the ASIP-based LDPC decoder with a design-time feature enabling incremental
changes for future support of other QC-LDPC codes (e.g. DVB-S2 with high expansion factor
Z = 360).

Thesis Outline

The thesis manuscript is composed of six chapters as illustrated in Figure 1 and described below:

Chapter 1 introduces the basic concepts related to convolutional Turbo codes and LDPC
codes along with their decoding algorithms. First, an overview of the fundamental concepts
of channel coding and the basics for error-correcting codes are introduced. The second sec-
tion presents the Turbo codes and details their basic components. This is followed, in the third
section, by the presentation of the corresponding decoding algorithms, namely Maximum Apos-
teriori Probability (MAP) and the low complexity Max-Log-MAP. This section also briefs a note

4 INTRODUCTION

Background
Channel Codes and Decoding Algorithms

Chapter 1

ASIP Design Methodology and
State of the Art in Channel

Decoder Design

Chapter 2

DecASIP
Flexible Turbo/LDPC Decoder

Chapter 3

FPGA & ASIC Prototyping
of DecASIP

Chapter 4

TDecASIP
Parameterized Turbo Decoder

Chapter 5

LDecASIP
LDPC Decoder

Chapter 6

- Resource sharing b/w LDPC&Turbo modes
- Scalability (multiprocessor+NoC)
- LDPC scheduling
- Exploring different parallelism levels
- Rapid reconfigurability

- Increase architecture efficiency
- Support of QC-LDPC codes (e.g.

DVB-S2) with incremental
hardware changes at design time

- Increase architecture efficiency
- Use of ASIP design flow to design

parameterized cores
 (no instruction set design)

- Hardware validation through
flexible demonstrator

- Target standards: WiFi/WiMAX/LTE
- Exploring different architecture alternatives and design approaches

- Unifying flexibility-oriented and optimization-oriented approaches in
the design of channel decoders

Figure 1 — Overview of the thesis outline and contributions

on possible parallelism levels exploited for implementation. The last two sections focus on the
presentation of the LDPC codes and their most commonly used algorithm, namely Normalized
Min-Sum (NMS), in a reformulated manner as used in this thesis work.

Chapter 2 introduces the ASIP-based design approach and the considered Processor De-
signer tool from Synopsys (ex. CoWare tools). It further gives an overview on state-of-the-art

INTRODUCTION 5

efforts in channel decoder design in order to clarify the position of the proposed contributions
in this thesis work. Based on the ASIP design approach, the chapter presents an initial ASIP
architecture, namely TurbASIP, which constitutes the starting point of this thesis work.

Chapter 3 presents our first contributions in the design of flexible and optimized channel
decoder supporting Turbo and LDPC codes. Starting with the initial TurbASIP architecture pre-
sented in the previous chapter, several objectives have been specified for this work, which can
be summarized in the following points: (1) efficient resource sharing between the LDPC and
Turbo decoding modes, (2) scalability to enable the accommodation of current and future high
throughput requirements, (3) new LDPC decoding schedule adapted to the base TurbASIP ar-
chitecture, (4) exploring possible parallelism techniques for efficient decoding of SBTC, DBTC,
and LDPC codes, and (5) rapid configurability between the different supported decoding modes.

Towards fulfilling these objectives, an ASIP-based multiprocessor architecture is proposed
and designed in two phases. The first phase achieves the targeted objectives through the design
of a novel ASIP architecture, namely DecASIPv1, and the efficient mapping of the target stan-
dards on an 8-DecASIP system decoder. The second phase (DecASIPv2) mainly enhances the
throughput in LDPC mode by increasing the supported parallelism degree. It also modifies the
proposed LDPC scheduling to support 4-DecASIP or 2-DecASIP decoder architectures.

The first section of this chapter presents the design motivations and architectural choices
made for the DecASIPv1 along with the analysis on quantization and reference curves for the im-
plemented modes, namely SBTC (LTE), DBTC (WiMAX) and LDPC (WiFi, WiMAX) modes.
The second and third sections present the two design phases of the proposed DecASIP channel
decoder.

Chapter 4 is dedicated to the presentation of the conducted efforts towards FPGA and ASIC
prototyping of the proposed flexible channel decoder. A complete FPGA-based prototype of the
proposed multi-standard Turbo/LDPC decoder is demonstrated. The functional prototype imple-
ments a full communication system including encoder, channel model, ASIP-based decoder and
performance counters. All components are flexible and are dynamically configurable through a
dedicated GUI (Graphical User Interface). The proposed prototype supports all communication
modes defined in LTE, WiFi and WiMAX wireless communication standards. Furthermore, as
a joint effort with another PhD student at the CEA-LETI (Pallavi Reddy), an ASIC integration
of the proposed flexible channel decoder has been elaborated. A 4-DecASIP channel decoder
is integrated in the latest Telecom chip (namely MAG3D) designed by the CEA-LETI targeting
4G communication applications. The chapter is organised as follows. The first section reiterates
the communication system model presented in the first chapter drawing parallels to the imple-
mented design units on the target FPGA prototype. Two blocks are illustrated in detail in the
second section of this chapter: the flexible Turbo and LDPC encoders.

Chapter 5 presents a new optimized flexible standalone Turbo decoder, namely TDecASIP.
The objective behind this new design is twofold: (1) investigate the maximum attainable archi-
tecture efficiency for ASIP-based Turbo decoding, and related to this first objective (2) investi-
gate the possibility to design application-specific parameterized cores using the available ASIP
design flow. The idea of this last objective is to evaluate the benefits from removing the need
of a program memory and the related instruction decoder. Towards fulfilling these objectives,
TDecASIP architecture is proposed and designed as a parameterized Turbo decoder. The pro-
posed architecture exhibits a very high architecture efficiency and supports all SBTC and DBTC
modes of 3GPP LTE and WiMAX standards respectively.

This chapter is organized as follows. The first section presents the proposed design flow
using Synopsys Processor Designer tool to describe application-specific parameterized cores.

6 INTRODUCTION

The second section illustrates the motivations behind the architectural choices and describes the
proposed architecture of TDecASIP. Finally, the last two sections of the chapter presents the
FPGA and ASIC synthesis results highlighting the attained architecture efficiency of this new
flexible Turbo decoder design.

Chapter 6 presents a new optimized flexible standalone LDPC decoder, namely LDecASIP.
The objective behind this new design is twofold: (1) investigate the maximum attainable archi-
tecture efficiency for ASIP-based LDPC decoding and (2) explore the possibility of realizing
a flexible decoder allowing to implement and validate new/incremental algorithm changes with
fast turnaround time in design. The idea of this last objective is to enhance the ASIP-based
LDPC decoder with a design-time feature enabling incremental changes for future support of
other QC-LDPC codes (e.g. DVB-S2 with high expansion factor Z = 360). Towards fulfilling
these objectives, LDecASIP architecture is proposed and designed. The proposed architecture
exhibits a very high architecture efficiency, supports all QC-LDPC codes and related parame-
ters of WiFi and WiMAX standards (with expansion factors ranging from Z = 24 to Z = 96),
and enables the support other QC-LDPC codes with structured incremental hardware changes at
design time.

The chapter is organized as follows. The first section describes the design motivations along
with the proposed LDPC decoder architecture. The second section presents the added design-
time flexibility feature and illustrates the proposed way of upgrading the design to support other
QC-LDPC codes through the example of DVB-S2 LDPC decoding. Finally, the third section
presents the FPGA and ASIC synthesis results with architecture efficiency evaluation and related
discussions.

CHAPTER

1 Background: Channel Codes
and Decoding Algorithms

THIS chapter presents an overview of a typical communication system with special emphasis
on channel coding and decoding algorithms. As this thesis work targets LDPC and Turbo

codes, the chapter focuses mainly on detailing the decoding algorithms of these codes.

The first section introduces the need for channel coding and the notion of channel capac-
ity. The second section presents the Turbo codes and details their basic components. This is
followed, in the third section, by the presentation of the corresponding decoding algorithms,
namely Maximum Aposteriori Probability (MAP) and the low complexity Max-Log-MAP. This
section also briefs a note on possible parallelism levels that should be exploited for high through-
put implementations. The last two sections focus on the presentation of the LDPC codes and
their most commonly used decoding algorithm, namely Normalized Min-Sum (NMS), in a re-
formulated manner as used in this thesis work.

7

8 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

1.1 Communication system overview

A simplified block digram of a communication system which emphasis the role of the
error-correction (control) coding (ECC) is shown in Figure 1.1. It consists of a source, a
channel encoder, a transmission channel, a channel decoder and a sink. The source abstracts
the information data to be transmitted, e.g. audio, video, text data, etc., while the sink
block abstracts the actual recipient of this data, e.g. television, radio, cell phone, etc. The
source output, if analog, has to be converted to digital form by a message encoder which
may additionally remove redundancy in the information bits (source coding) before sending
them to the channel encoder. The channel encoder introduces redundancy in a controlled
manner so that at the receiving end, the redundant bits can be used for error detection or
error correction. The modulator maps the encoded digital sequences into signal waveforms
suitable for propagation. Modulation can be performed by varying the amplitude, the phase
or the frequency of a sinusoidal waveform called the carrier. The channel block abstracts

Source
Message
Encoder

Channel
Encoder

Modulator

Analog
channel

Demodulator
Channel
decoder

Message
decoder

Sink

Transmitter

Receiver

Figure 1.1 — Digital communication system model

the communication medium over which the data is transmitted, e.g. air, wire-line, fiber optic
channels, etc. Two major limitations of real channels are thermal noise and finite bandwidth.
Hence in the receiver, the demodulator typically generates a digital sequence at its output as
the best estimates of the transmitted codeword. In other words, the demodulator demaps the
modulated signal received from the channel into soft values that represent the received signal.
From these values, the channel decoder estimates the transmitted message based on the encoding
rule and the characteristics of the channel with a goal to minimize the effect of the channel noise.

The Shannon limit: The aim of every digital communication system is to transmit as
much data as possible with little or no error utilizing minimum amount of power. Signal band-
width is the measure of the speed of transmission. High speed transmission waveforms would
need rapid changes in time and hence high transmission bandwidth. However, the capacitive
and inductive properties of the channel prevents instantaneous change of signals, depending on
the frequency range, environment and medium of the channel. Various probabilistic models
have been proposed for simplicity of mathematical analysis like, Additive White Gaussian
Noise (AWGN) channel, Rayleigh channel, etc. In this thesis, we consider the simple AWGN
channel model. As the name suggests, the added noise to the transmitted signal has a Gaussian
distribution.

For a given channel bandwidth B, there is an upper limit on the data rate related to the Energy

1.1. COMMUNICATION SYSTEM OVERVIEW 9

per bit to noise ratio Eb
N0 of the channel [1]. This maximum limit is called Channel capacity and

for an AWGN channel is given by (as shown by Claude Shannon [1]):

C = B × log2(1 +
Eb

N0
) bits/sec (1.1)

Shannon’s channel coding theorem guarantees that data can be transmitted reliably at very
low probability of error over a noisy communication channel if the transmission rate R is less
than the threshold C. The probability of errors can be made to decrease exponentially as the
frame length of the coding scheme goes to infinity. The gain or power saved w.r.t. to a uncoded
system achieved due to the use of channel coding is called Coding gain.

Figure 1.2 — Bit error rate performance of a Turbo code w.r.t. channel capacity and other conventional
codes

This theorem only guarantees the existence of such codes but does not define these codes.
Thus, ever since its first publication in 1948, the scientific community is trying to find error
correction codes of finite length with reasonable complexity and approaching as close as possible
to the channel capacity. In this context, different channel codes have been proposed aiming to
achieve this channel capacity such as: convolutional codes, Hamming codes, Reed Solomon
codes, convolutional Turbo codes, Block Turbo codes, LDPC codes, etc. Among these codes,
Turbo and LDPC codes are shown to be capacity approaching. Figure 1.2 [2] illustrates how
for a target bit-error rate of 10−6, the use of convolutional and concatenated codes provides
a 5.5-decibel and 7.75-decibel improvement respectively compared with the uncoded system.
The use of a Turbo code imparts an additional 2.25-decibel improvement compared with the
concatenated code, resulting in a total coding gain of 10 decibels compared with the uncoded
system. With the use of a rate-1/2 Turbo code, system error performance can approach levels
within about 1 decibel of the Shannon limit. Similar performance curves can be obtained for
LDPC codes too. Due to such excellent error correction properties, LDPC and Turbo codes are
widely used in recent and emerging wireless communication standards. The following sections
introduce these two families of codes with their commonly used decoding algorithms.

10 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

1.2 Turbo codes

As mentioned earlier, the probability of errors can be made to decrease exponentially as the
coded frame length (N) goes to infinity. However, for such long codes the optimum decoding
scheme that simply computes the likelihood of every possible transmitted codeword presents
a complexity which increases exponentially with N, hence practical implementation of such
decoders becomes infeasible. As an alternative, David Forney proposed a divide and conquer
approach to the problem by designing codes that are concatenation of simpler codes [3]. Two
possible methods of concatenation exist, namely:

• Serial concatenation (Figure 1.3) where the output of outer code is the input of the inner
code. Subsequently, it was observed that the addition of a function of interleaving be-
tween the two codes increases robustness of the concatenated codes significantly. Figure
1.3 shows an example of such serially concatenated codes with a global code rate of k/n
with two component encoders (Code1, Code2). The encoders Code1 and Code2 encode the
data at rates of k/p and p/n respectively.

k-bits Code1 Interleaver Code2

n-p p-bits k p-k p

Rate=k/p

n-bits p-bits

Rate=p/n

Figure 1.3 — Serial concatenated code structure

• Parallel concatenation (Figure 1.4) which consists of two systematic encoders, where the
first encoder receives the source data Xi in natural order and at the same time the second
encoder receives the same data but in interleaved order. The output is composed of the
source data and the associated redundant bits produced by the natural and the interleaved
domain encoders.

In fact, many existing and emerging wireless communication standards specify parallel con-
catenated convolutional Turbo codes. In this context, a typical Turbo encoder consists of parallel
concatenation of two Recursive Systematic Convolutional (RSC) encoders separated by an inter-
leaver as shown in Figure 1.4. The input bit stream Xi is encoded into 3 output streams namely
the systematic S as well as two parities Pi and P ′i from the encoders that encode the natural
and interleaved bit streams respectively. Generally, two types of RSC encoders are specified in

RSC0

RSC1

Interleaver

Si

Pi

P’i

Xi

Figure 1.4 — Parallel RSC Turbo encoder structure

1.2. TURBO CODES 11

current standards:

• Double Binary Turbo Code (DBTC) encoder (specified in DVB-RCS and WiMAX stan-
dards) uses a RSC that encodes bit pairs (double binary symbols) of the incoming payload
of size N bits to a stream of parity bit pairs.

• Single Binary Turbo Code (SBTC) encoder (specified in LTE standard) which uses a RSC
that encodes bitwise the incoming payload of size N bits to a stream of parity bits.

The rest of this section presents the concepts of convolutional codes and interleaving rules as
specified in the target wireless communication standards.

1.2.1 Recursive Systematic Convolutional codes

Convolutional codes have been widely used in applications such as space and satellite com-
munications, cellular mobile, digital broadcasting, etc. Their popularity is due to their simple
structure and easily implementable maximum likelihood soft decision decoding methods.
A convolutional code of rate r = k/n is a linear function which, at every instant i, transforms
an input symbol di of k bits into an output coded symbol ci of n bits (k > n). A code is called
Systematic if a part of the output is made up of systematic bits si = di and the rest of the bits
(n− k) are made up of parity bits. The output bits are the linear combination of the current and
the previous input bits. The linear function is usually given by generator polynomials. There

D D

+

+

P1i

P2i

di

(a) Non-systematic convolutional code

D D

+

+

P1i

P2i

di

Si

(b) Systematic convolutional code

Figure 1.5 — Examples of Non systematic and Systematic convolutional codes

12 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

are three main types of convolutional codes namely Non-Systematic (NSC), Systematic (SC)
and Recursive Systematic (RSC) convolutional codes. The only difference in the encoding of
the SC and NSC is that, in NSC the output does not contain input systematic bits as shown in
Figure 1.5a. This figure illustrates too how a convolutional encoder can be described using
shift registers and modulo two adders. The generator polynomials of the convolutional codes
examples of Figure 1.5 are given as:

Si = di

P1i = g1(x) = 1 + x1 + x2

P2i = g2(x) = 1 + x2

Ci ≡ (Si, P1i, P2i)

These generator polynomials represent the connections between the outputs of the shift register
and the modulo two adders. They are generally represented by their coefficients in binary: (111)
for P1i and (101) for P2i. If the encoder shift register has feedback and includes input data
as part of the output then it is called Recursive systematic encoder (RSC) (Figure 1.6a). The
encoder shown Figure 1.6a is a single binary Recursive Systematic Convolutional (RSC) code
(from LTE standard [4]) which encodes one bit at a time. The parity bits are generated by the
polynomial given by:

P (D) =
1 +D +D3

1 +D2 +D3

Ci ≡ (Si, Pi)

Similar representation is used for a RSC which encodes 2 bits at a time as shown in Figure 1.6b.
The encoder shown is called Double Binary Recursive Systematic Convolutional code (as used
in WiMAX standard [5]) and the parity bits are generated by the polynomial given by:

S0i = d0i

S1i = d1i

P1 =
1 +D2 +D3

1 +D +D3

P2 =
1 +D3

1 +D +D3

Ci ≡ (S0i, S1i, P0i, P1i)

Convolutional codes are characterized by a parameter called constraint length, given as K =
M+1, where M is number of flip-flops of the encoder shift register. The number of flip-flops
also indicated that the encoder has 2M states. Another commonly used representation of con-
volutional encoding is the trellis diagram [6] which is made up of nodes and branches. A node
represents the state S of the code. A branch represents a transition from one state (Si−1(m′)) to
another state (Si(m)) due to an input bit pair (in case of a double binary convolutional code).
Each transition is associated to input and output vector of the encoder. Figure 1.7 shows the
trellis representation of the double binary encoder of Figure 1.6b that has K=4, i.e. with M=3
(8 states). It has to be noted that each state has 2b=4 possible transitions, where b = 2 is the
number of bits at the input of the encoder.

1.2. TURBO CODES 13

D D D

+

+

+

Pi

Si

di

(a) Single binary RSC of rate r=1/2

D D

+

d0i

S0i

S1i

+ D+ +

+

P0i

d1i

+
P1i

(b) Double binary RSC of rate r=1/2

Figure 1.6 — Recursive systematic codes (RSC)

S0

S1

S2

S3

S4

S5

S6

S7

S0

S1

S2

S3

S4

S5

S6

S7

00
01
10
11

Figure 1.7 — Trellis diagram of encoder of Figure 1.6b

Trellis termination: During the encoding process the shift register of the encoder starts
typically with the state zero. Towards the end of the encoding process M zeros are inserted in

14 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

order to bring back the encoder state to zero. Thus, the transmitted codeword has extra parity
bits that are the result of the zero insertion, known in the literature as zero padding. Such
technique ensures that the encoder starts and ends in a known state, however it results in minor
loss of transmission bandwidth.

As an alternative, Tail biting scheme is used in some standards like DVB-RCS and WiMAX
which adopt circular recursive systematic convolutional (CRSC) codes. For this type of circular
codes, the encoder is initialized for each frame of data in a certain state called the circulation
state Sc that leads the encoder to return to the same state at the end of the encoding process of
the frame. The existence of such a state is ensured when the size of the encoded data frame is
not a multiple of the period of the encoding recursive generator [7]. The value of the circulation
state Sc depends on the contents of the sequence to encode and determining Sc requires a pre-
encoding operation. First, the encoder is initialized to the ”all zero” state and the data sequence
is encoded once, leading to a final encoder state S0

k . From this final state S0
k , the circulation state

Sc can be calculated using simple combinational operators or a corresponding lookup table as
described in [7].

Viterbi algorithm is commonly used to decode convolutional codes [8]. Viterbi decoding is
done via estimating the most likely sequence of states by observing the received bit sequence.

1.2.2 Turbo Code Interleaver

Interleavers in a digital communication system are used to temporally disperse the data. The
primary interest of them in concatenated codes is to put two copies of same symbol (coming
to two encoders) at different interval of time. This enables to retrieve at least one copy of a
symbol in a situation where the other one has been destroyed by the channel. An interleaver
(
∏

) satisfying this property can be verified by studying the dispersion factor S given by the
minimum distance between two symbols in natural order and interleaved order:

S = min
i,j

(|i− j|+ |Π(i)−Π(j)|) (1.2)

The design of interleavers respecting a dispersion factor can be reasonably achieved through
the S-random algorithm proposed in [9]. However, even if this kind of interleaver can be suffi-
cient to validate the performance in the convergence zone of a code, it does not achieve a good
asymptotic performance. Therefore to improve the latter, the design of the interleaver must also
take into account the nature of component encoders. Complexity of the hardware implemen-
tation should, in addition, be taken into account. In fact, the recent wireless standards specify
performance and hardware aware interleavling laws for each supported frame length.

In following sections the interleaving functions associated to Turbo codes for WiMAX and
LTE standards are described.

1.2.2.1 Almost regular permutation (ARP)

The ARP interleaver is used in double binary Turbo codes for both standards IEEE 802.16e
WiMAX . It can be described by the function

∏
(j) which provides the interleaved address of

each double-binary symbol of index j, where j = 0, 1, ...N −1 and N is the number of symbols
in the frame.

∏
(j) = (P0 × j + P + 1) mod N (1.3)

1.3. TURBO DECODING 15

where

P = 0 if j mod 4 = 0

P =
N

2
+ P1 if j mod 4 = 1

P = P2 if j mod 4 = 2

P =
N

2
+ P3 if j mod 4 = 3

(1.4)

where the parameters P0, P1, P2 and P3 depend on the frame size and are specified in the corre-
sponding standard [5].

Another step of interleaving is specified in these standards which consists of swapping the
two bits of alternate couples, i.e (aj , bj) = (bj , aj) if j mod 2 = 0.

It is worth to note that this interleaver structure is well suited for hardware implementation
and presents a collision-free property for certain level of parallelism.

1.2.2.2 Quadratic polynomial permutation (QPP)

The interleaver specified in single binary Turbo codes for the LTE standard [4] is called quadratic
polynomial permutation (QPP) interleaver. It is given by the following expression:∏

(j) = (f1j + f2j
2) mod N (1.5)

where the parameters f1 and f2 are integers, depend on the frame size N (0 ≤ j, f1, f2 < N),
and specified in the standard. In this standard, all the frame sizes are even numbers and are
divisible by 4 and 8. Moreover, by definition, the parameter f1 is always an odd number whereas
f2 is always an even number. Through further inspection, we can mention one of the several
algebraic properties of the QPP interleaver:∏

(j) has the same even/odd parity as j as shown in 1.6 and 1.7:∏
(2× k)mod 2 = 0 (1.6)

∏
(2× k + 1)mod 2 = 1 (1.7)

This property will be used later for the hardware implementation in order to design an extrin-
sic exchange module to avoid memory collisions when using particular parallelism techniques
(butterfly schedule and trellis compression). More information on the other properties for the
QPP interleavers are given in [10,11]. Moreover, the frame size N is always divisible by 16, 32,
and 64 when N≥ 512, N≥1024, and N≥2048, respectively. The specific structure of the QPP
interleaver equation enables sub-block parallelism degrees (see Sub-section 1.3.4.2) that range
from 1, 2, ... to 64.

1.3 Turbo decoding

This section presents the principle of Turbo decoding with a brief overview of the Maximum
Aposteriori Probability (MAP) algorithm. The Turbo decoding principle relies on the itera-
tive exchange of probabilistic messages between two (or more) decoders dealing with the same

16 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

received data [12]. In a typical Turbo decoding system (Figure 1.8), two decoders operate itera-
tively on the received frame (one in natural domain and the other in interleaved domain) and pass
probabilistic messages, the so-called extrinsic information, to each other after each iteration. The
decoders, namely Soft-Input Soft- Output (SISO) decoders, operate on soft information to im-
prove the decoding performance. Thus, each SISO decoder takes into consideration, besides its
own channel input data, the received extrinsic information from the other SISO decoder in order
to improve its estimation over the iterations. Usually, but not necessarily, the computations are

SISO
Decoder0

SISO
Decoder1

deinterleaver Interleaver

Interleaver

γpar

γsys Hard
decisions

γpar'

γsys'

γext01

γap01

γap10

γext10

Figure 1.8 — Classical Turbo decoder structure

done in the logarithmic domain. Each decoder calculates the Log-Likelihood Ratio (LLR) for
the ith data bit di, as

γ(di) = ln
Pr(di = +1|y)

Pr(di = −1|y)
(1.8)

Input LLRs causing trellis transition can be decomposed into 3 independent terms, as

γ(di) = γap(di) + γsys(di) + γpar(di) (1.9)

where γap(di) is the a-priori information of di, γsys(di) and γpar(di) are the channel measure-
ment of the systematic and parity parts respectively. γext(di) is the extrinsic information that is
sent by the SISO decoder to the other decoder (as shown in Figure 1.8). Extrinsic information
γext from one decoder becomes the a-priori information γap for the other decoder at the next de-
coding stage. In Figure 1.8, γext01 represents the extrinsic information sent from SISO decoder0
to SISO decoder1, while γext10 denotes the extrinsic information sent from SISO decoder1 to
SISO decoder0. Although different kinds of algorithms are proposed in the literature for this
SISO decoding, Soft Output Viterbi Algorithm (SOVA) and Maximum Aposteriori Probability
(MAP) algorithms are the most commonly used. The SOVA algorithm is a soft output variant
of the classical Viterbi algorithm that aims to find the most likely sequence of the transmitted
codeword [13]. This algorithm targets to minimize the frame error rate (FER). The MAP algo-
rithm [14] on the other hand, which also referred to in the literature as Bahl-Cock-Jelinek-Raviv
(BCJR) or forward-backward algorithm, targets to minimize the bit error rate (BER). This last

1.3. TURBO DECODING 17

algorithm, which is considered in this thesis work, is the optimal decoding algorithm which cal-
culates the probability of each symbol from the probability of all possible paths in the trellis
between initial and final states.

1.3.1 Maximum Aposteriori Probability (MAP) algorithm

For each source symbol dsymi comprised of m bits, encoded in n output bits by an encoder
having M memory elements (i.e 2M states) at rate r = k/n , a MAP decoder provides 2m a
posteriori probabilities given the channel output y received by the decoder. The hard decision
on the corresponding value j, i.e. dsymi = j, that maximizes the a posteriori probability is
expressed in terms of joint probabilities as:

Pr(dsymi = j|y) =
p(dsymi = j, y)∑2m−1

l=0 p(dsymi = l, y)
(1.10)

The trellis structure of the code enables us to decompose the calculation of joint probabilities
between past and future observations, given by:

Pr(dsymi = j|y) =
∑

(s′,s)/dsymi =j

αi(s
′)γi(s

′, s)βi+1(s) (1.11)

where:
Forward recursion metric (αi(s)), which gives the probability of the state s at instant i computed
from the past values received from the channel, is given by

αi+1(s) =

2M−1∑
s′=0

αi(s
′)γi(s

′, s), i ∈ 0, 1, ...N − 1 (1.12)

Backward recursion metric (βi(s)), which gives the probability of the state s at instant i com-
puted from the future values received from the channel, is given by:

βi(s) =
2M−1∑
s′=0

βi+1(s
′)γi(s

′, s), i ∈ N − 1, N − 2, ...0 (1.13)

Branch metric (γi(s′, s)), which gives the state transition probability from state s′ to state s of
the trellis at instant i, is given by:

γi(s
′, s) = P (si = s, yi|si−1 = s′) = p(yi|xi).P ra(dsymi = dsymi (s′, s)) (1.14)

Assuming an equi-probable source, i.e a source that transmits all symbols with equal proba-
bility, implies that apriori probability (Pra(dsymi = dsymi (s′, s)))= 1

2k
. The channel transition

probability for the considered AWGN channel model is given by p(yi|xi) and can be expressed
as:

p(yi|xi) =
n−1∏
l=0

1

σ
√

2π
.e−

(yi,l−xi,l)
2

2σ2

= Constant.e
∑n−1
l=0 yi,lxi,l (1.15)

18 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

where xi and yi are the ith transmitted modulated symbol and received symbol respectively.
The generated extrinsic information does not include the symbol channel input as this part of
the information is shared by both SISO decoders, and does not have to be a matter of additional
information transfer.

Prext(dsymi = j|y) =

∑
(s′,s)/dsymi =j αi(s

′)γexti (s′, s)βi+1(s)∑
(s′,s) αi(s′)γexti (s′, s)βi+1(s)

(1.16)

γexti (s′, s) = Constant.e

∑n−1
l=k

yi,lxi,l

σ2 (1.17)

1.3.2 Max-Log-MAP approximation

The Log-MAP algorithm is a simplification of the MAP algorithm, introduced in the pre-
vious section, that transforms the semi ring sum-product (R+,+,×, 0, 1) to semi ring
(R,max∗,+,−∞, 0) where the max∗ operator is defined as:

max∗(x, y) = σ2 ln(e
x
σ2 + e

y

σ2)

= max(x, y) + σ2 ln(1 + e−
|x−y|
σ2) (1.18)

≈ max(x, y) (1.19)

If equation (1.18) is used for metric computations, then the algorithm is called Log-MAP
algorithm [15]. In practice a version of the algorithm, called Max-Log MAP algorithm that em-
ploys equation (1.19) is used [15]. This results in some negligible loss in decoding performance
(0.1 db for DBTC) but simplifies the hardware implementation by eliminating the need of lookup
tables required to implement the second term of equation (1.18). Using this approximation to
compute the forward and backward recursion metrics, equations (1.12) and (1.13) become as
follows:

αi+1(s) =
2M−1
max
s′=0

(αi(s
′) + γi(s

′, s)), i ∈ 0, 1, ..N − 1 (1.20)

βi(s) =
2M−1
max
s′=0

(βi+1(s
′) + γi(s

′, s)), i ∈ N − 1, N − 2, ..0 (1.21)

(1.22)

Similarly, the equations for computing the branch metric become as follows:

γi(s
′, s) = σ2 ln γi(s

′, s) = γexti (s′, s) + La
i (j) + Lsys

i (j) (1.23)

γexti (s′, s) = σ2γexti (s′, s) = Constant+
n−1∑
l=i

y(j,i).x(j,i) (1.24)

where γai (j) and γsysi (j) correspond to the apriori and systematic part of the information respec-
tively.

Likewise, denoting ĵ as the most probable symbol, the aposteriori (Lapos
i) and extrinsic

informations (Lext
i) are simplified to:

γaposi (j) = γai (j) + Lsys
i (j) + γexti (j)− (γai (ĵ) + γsysi (ĵ)) (1.25)

γexti (j) = max
(s′,s)/dsymi =j

(αi(s
′) + γexti (s′, s) + βi+1(s))

−max
(s′,s)

(αi(s
′) + γexti (s′, s) + βi+1(s)) (1.26)

1.3. TURBO DECODING 19

1.3.3 Max-Log-MAP for Turbo decoding

Considering the above description of Max-Log-MAP algorithm and an 8-state double binary
Turbo code, i.e. m = 2 bits per symbol, we can summarize the steps for Turbo decoding as
follows: The SISO0 process bit LLRs in the natural order corresponding to (S0, S1, P0, P1)
while the SISO1 process in the interleaved sequence (S0

′
, S1

′
, P0

′
, P1

′
) corresponding to ith

symbol. Where (S0, S1) and (S0′, S1′) are the systematic bits in natural and interleaved order
respectively. Similarly, (P0, P1) and (P0′, P1′) are the parity bits in natural and interleaved
order respectively. Since the trellis is double binary, the input bit LLR’s (Λj) to the decoder
are converted to systematic (γsysi) and parity symbol LLR’s (γpari)given by the equations (1.27)
to (1.30) below. The ith systematic symbol γsys00i (s′, s) can be calculated as the negative of
γsys11i (s′, s). Similarly, γsys01i (s′, s), γpar01i (s′, s) and γpar00i (s′, s) can be calculated as the
negative of γsys10i (s′, s), γpar10i (s′, s) and γpar11i (s′, s) respectively.

γsys11i (s′, s) = Λ2∗j
S0 + Λ2∗j+1

S1 (1.27)

γsys10i (s′, s) = Λ2∗j
S0 − Λ2∗j+1

S1 (1.28)

γpar11i (s′, s) = Λ2∗j
P0 + Λ2∗j+1

P1 (1.29)

γpar10i (s′, s) = Λ2∗j
P0 − Λ2∗j+1

P1 (1.30)

The decoding consists of calculating the 8 current state metrics for the ith symbol computed
from future (i + 1) and previous (i − 1) state metrics, as given by the equations (1.31) and
(1.32). βi(s) is the backward state metric of state s for the ith input symbol and computed
from the state metrics of the (i + 1)th symbol, i.e. when traversing the trellis in the reverse
direction (Backward recursion). Similarly, αi(s) is the forward state metric and is computed
when traversing the trellis in the forward direction (Forward recursion).

βi(s) = max
s′

(βi+1(s
′) + γi(s

′, s))

∀(s′, s ∈ 0, 1, ..7)
(1.31)

αi(s) = max
s′

(αi−1(s
′) + γi(s

′, s)),

∀(s′, s ∈ 0, 1, ..7)
(1.32)

γi(s
′, s) is the state transition probability from the previous state s′ to the current state s as given

by equation (1.33). It consists of intrinsic (equation (1.34)) and parity information components.

γi(s
′, s) = γintrui (s′, s) + γparvi (s′, s),

∀(u, v ∈ 00, 01, 10, 11)
(1.33)

γintrui (s′, s) = γsysui (s′, s) + γn.apui (s′, s),

∀(u ∈ 00, 01, 10, 11)
(1.34)

The parameter γn.apui (s′, s) in equation (1.34) is the normalized apriori information of the ith

symbol or the normalized extrinsic information (γn.exti) sent by the other decoder component
given by the equations (1.35) and (1.36).

γexti (d(s′, s) = u) = γaposi (d(s′, s) = u)

− γintrui (s′, s),

∀(u ∈ 00, 01, 10, 11)

(1.35)

20 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

γn.exti (d(s′, s) = u) = Zext
i (d(s′, s) = u)

−min(Zext
i (d(s′, s) = u)),

∀(u ∈ 00, 01, 10, 11)

(1.36)

where d(s′, s) = u indicates the decision that the processed symbol being u for a transition from
state s′ to s. γaposi is the aposteriori information of the symbol given by the equation (1.37).

γaposi (d(s′, s) = u) = max
(s′,s)/d(s′,s)=u

(αi−1(s
′)

+ γi(s
′, s) + βi(s)),

∀(u ∈ 00, 01, 10, 11)

(1.37)

A Half iteration consists of one forward-backward recursion processing of all symbols of the
received frame either in natural/interleaved order. In this thesis, we consider processing of sym-
bols in natural order is called as the first half iteration and in interleaved order as the second half
iteration. Once all the iterations are completed (usually 6-7 iterations) the decoder produces
hard decisions (γhard dec.

i), given by the equations (1.38) and (1.39).

γhard dec.
i (S0) = sign(max(γaposi (d(s′, s) = 01),

γaposi (d(s′, s) = 00))

−max(γaposi (d(s′, s) = 11),

γaposi (d(s′, s) = 10)))

(1.38)

γhard dec.
i (S1) = sign(max(γaposi (d(s′, s) = 00),

γaposi (d(s′, s) = 10))

−max(γaposi (d(s′, s) = 01),

γposi (d(s′, s) = 11)))

(1.39)

Trellis initialization
In case the trellis is terminated circularly (as in WiMAX), the starting and the ending trellis state
metrics of the received frame are initialized as equi-probable, i.e.:

α0(s) = 0, s ∈ (0, 1, ...2M−1) (1.40)

βN−1(s) = 0, s ∈ (0, 1, ...2M−1) (1.41)

On the other hand, if the trellis is terminated using zero-padding technique (as in LTE), the state
with known probability, namely state s = 0, is initialized with a state metric equals to 0, while
the metrics of the other states s 6= 0 are initialized to −∞ (in practice, the most negative value
of the considered numerical representation).

α0(s = 0) = 0, α0(s 6= 0) = −∞, s ∈ (1, 2...2M−1) (1.42)

βN−1(s = 0) = 0, βN−1(s 6= 0) = −∞, s ∈ (1, 2...2M−1) (1.43)

1.3.4 Parallelism in Turbo decoding

From the equations (1.27) to (1.37), we can infer three levels of parallelism that can be exploited
in implementation of the Turbo decoder in order to achieve high throughput [16], namely:

• Metric level

1.3. TURBO DECODING 21

• SISO decoder level

• Turbo decoder level

The following sub-sections summarize briefly the different parallelism techniques available at
each of these levels.

1.3.4.1 Metric level parallelism

The metric level parallelism concerns the processing of all metrics involved in the decoding of
each received symbol inside a MAP SISO decoder. It exploits the inherent parallelism of the
trellis structure and the parallelism of the MAP computations [16, 17].

Parallelism of trellis transitions: Trellis-transitions parallelism refers to the trellis struc-
ture as the same operations related to the computation of γ, α, β and the extrinsic information
(γext) should be repeated for all the trellis transitions. Thus, the first metric (γ) calculations can
be done in parallel to the maximum degree of parallelism bounded by the number of transitions
in the trellis. The degree of parallelism associated with the computation of the branch metric is
bounded by the number of possible binary combinations of input and parity bits. For example,
in WiMAX DBTC case, which has 2 bits for systematic and parity, there can be 22 × 22 = 16
different branch metric combinations. The other metrics α, β and extrinsic computation can be
parallelized with a bound of total number of transitions (2M × 2(bits per symbol)) in a trellis. This
parallelism implies low area overhead as only the computational units have to be duplicated. In
particular, no additional memories are required since all the parallelized operations are executed
on the same trellis section, and in consequence on the same data.

Parallelism of MAP computations: The structure of the MAP algorithm permits paral-
lel execution of the three MAP computations (α, β and extrinsic computation γext) [18]. Two
scheduling strategies are followed, namely:

1. Forward-Backward schedule: Parallel execution of backward recursion and extrinsic
computations was proposed with the original forward-backward schedule as depicted in
Figure 1.9. First the Forward recursion (α) is calculated (parallelism degree =1), followed
by backward recursion (β) and extrinsic computation computed in parallel (parallelism de-
gree =2).

N

Frame T

Backward recursion + extrinsic gen.

Forward recursion

Time

Figure 1.9 — Turbo decoding: Forward-Backward schedule

2. Butterfly schedule: This schedule doubles the parallelism degree of the Forward-
Backward schedule by calculating the forward and backward recursions in parallel as

22 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

shown in Figure 1.10. Thus the parallelism degree is double that of Forward-Backward
schedule. This results in factor 2 reduction in computation time with doubling of MAP
computation resources but with no increase in memory. Metric computation parallelism is
area efficient.

N

Frame T/2

Backward recursion

Forward recursion

Time T/2

Extrinsic gen.

Figure 1.10 — Turbo decoding: Butterfly schedule

High radix trellis compression: The throughput can further be enhanced by adopting radix-
2n computation as used in [19], where n is the number of trellis sections that compressed in a
single trellis. Figure 1.11 shows two trellis sections of a 4-state single binary trellis compressed
to form a 4-state double binary trellis. This gives rise to decoding of two source data bits at the
same time, thus increasing the throughput by 2 in the SBTC case (provided the duplication of
the related hardware resources). In this case, the generation of individual aposteriori LLR’s are
done by the following equations:

γexti (d(s′, s) = 1) = max{γexti (d(s′s) = 01), γexti (d(s′, s) = 00)}
−max{γexti (d(s′, s) = 11), γexti (d(s′, s) = 10)} (1.44)

γexti+1(d(s′, s) = 1) = max{γexti (d(s′s) = 01), γexti (d(s′, s) = 00)}
−max{γexti (d(s′, s) = 11), γexti (d(s′, s) = 10)} (1.45)

S0’’

S1’’

S2’’

S3’’

S0’

S1’

S2’

S3’

S0

S1

S2

S3

S0

S1

S2

S3

S0’’

S1’’

S2’’

S3’’

Radix-4
transformation

Transition
due to input

00

01

10

11

Transition
due to input

0

0

i i+1 i+2

γi+1 γi {γi,γi+1}
i i+2

Figure 1.11 — Radix-4 trellis compression

Similarly, the definition of the branch metric γ and state metric calculations (α, β) are mod-
ified as follows:

αi(s) = max
s′′
{αi−2(s

′′
) + γi(s

′′
, s)} (1.46)

βi(s) = max
s′′
{βi+2(s

′′
) + γi(s

′′
, s)} (1.47)

γi(s
′′
, s) = γi−1(s

′′
, s
′
) + γi(s

′
, s) (1.48)

1.3. TURBO DECODING 23

1.3.4.2 SISO decoder level parallelism

This level of parallelism exploits the use of multiple SISO decoders, each executing the MAP
algorithm and processing a sub-block of the same frame in natural or interleaved orders. At this
level, parallelism can be applied either on sub-blocks and/or on component decoders.

Frame Sub-blocking: In sub-block parallelism, each frame is divided into Nsub−blocks
sub-blocks and then each sub-block is processed by a MAP-SISO decoder using adequate
initializations. Besides duplication of the SISO decoders, this parallelism imposes two other
constraints:

• The interleaving has to be parallelized in order to scale proportionally to the number of
SISO decoders added. Because of the scramble property of interleaving, this parallelism
can induce communication conflicts in accessing memories that store channel/extrinsic val-
ues. The interleavers of emerging standards are conflict-free for certain parallelism degrees
(as explained in Section 1.2.2). In case of conflicts, an appropriate communication struc-
ture, e.g. Network On Chip (NoC), should be implemented for conflict management [20].

• The MAP-SISO decoders have to be initialized adequately; this is done either by acquisition
or by message passing.

1. Acquisition method: The acquisition method involves estimating sub-block boundary
recursion metrics using an overlapping region, called acquisition window or prologue,
as illustrated in Figure 1.12. The state metrics of the SISO decoders are initialized to
zero and backward/forward recursion is carried out in order to find the more reliable
state metric at the sub-block boundary. This has two implications on the implemen-
tation. First of all, extra memory is required to store the overlapping windows. Sec-
ondly, extra time will be required for performing the acquisition related computations,
which impacts the throughput performance of the decoder.

N

Frame

Backward recursion
 + extrinsic gen.

Forward recursion

Time iteration0

N/2

N/2

A

A

iteration1

acquisition phase

A=acquisition length

Figure 1.12 — Sub-blocking with initialization through acquistion

2. Message passing: In this method, sub-block boundaries are initialized with recursion
metrics computed during the previous iteration in the neighboring sub-blocks (see
Figure 1.13). Thus, there is no need for overlapping windows and the related extra
memory, in addition the time overhead is negligible. In [16] a detailed analysis of the

24 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

parallelism efficiency of these two methods is presented which clearly favors the use
of message passing technique.

N

Frame

Backward recursion
 + extrinsic gen.

Forward recursion

Time iteration0

N/2

N/2

iteration1

β init. message
passing

α init. message
passing

Figure 1.13 — Sub-blocking with initialization through message passing

Windowing: The LTE standard specifies a target throughput of 150 Mbps and has a maxi-
mum frame length of 6144 bits. The previous paragraph discussed achieving high throughputs
via sub-block parallelism, wherein the incoming frame is divided into sub-blocks and each SISO
decoder operates on a sub-block with message passing across sub-block boundaries. Assuming
Backward-forward scheduling (which is similar to forward-backward schedule except here back-
ward recursion is scheduled first) is used, using only sub-block parallelism would require storing
the intermediate β state metrics calculated in the backward recursion in the memory. Thus, the
state metric memory (henceforth called the cross metric memory) has to have a memory depth
equals to the sub-block length. In order to increase the area efficiency of the design, sub-blocks
are further divided into L windows usually of size 64-128 symbols. Thus, the cross metric
memory depth is now reduced to the size of the window (with an additional requirement of stor-
ing state metric boundaries values of all windows to be used in the next iteration). Each SISO
decoder processes the sub-block, window by window using message passing for state metric
initializations across window boundaries as shown in Figure 1.14.

Shuffled Turbo decoding: The basic idea of shuffled decoding technique [21] is to execute
all component decoders in parallel and to exchange extrinsic information as soon as it is created,
so that component decoders use more reliable a priori information as soon as available. The
shuffled decoding technique performs decoding (impacts computation time) and interleaving
(impacts communication time) fully concurrently while serial decoding implies waiting for the
update of all extrinsic information before starting the next half iteration (Figure 1.15). Thus,
by doubling the number of MAP SISO decoders, component-decoder parallelism halves the
iteration period in comparison with originally proposed serial Turbo decoding. Nevertheless,
in return to the high parallelism degree an overhead of iteration between 5 and 50 percent is
incurred depending on the MAP computation schedules, on the degree of sub-block parallelism,

1.4. LOW DENSITY PARITY CHECK CODES 25

Backward recursion (β)

Forward recursion (α)
& Extrinsic generation

Boundary β metrics
exchanged between
iterations.

W1

W2

W3

t0 t1 t2 t5 t3 t4

β α
Boundary α metrics
exchange between
windows of same iteration

Su
b

-b
lo

ck 0

Figure 1.14 — Sub-blocking and windowing with initialization through message passing

on propagation time, and on interleaving rules, to attain the same BER performance of serial
decoding [16].

Iteration 1 Iteration 2

D2 D3 DMD1

DM+2 DM+3DM+1

D2 D3 DMD1

DM+2 DM+3DM+1D2M D2M

Figure 1.15 — Turbo decoding: Shuffled decoding strategy, where Dx= SISO decoders x=1,2,..

1.3.4.3 Turbo decoder level parallelism

The highest level of parallelism simply duplicates whole Turbo decoders to process iterations
and/or frames in parallel. Iteration parallelism occurs in a pipelined fashion with a maximum
pipeline depth equal to the iteration number, whereas frame parallelism presents no limitation
in parallelism degree. Nevertheless, Turbo-decoder level parallelism is too area-expensive (all
memories and computation resources are duplicated) and presents no gain in frame decoding
latency.

1.4 Low Density Parity Check codes

Low-density parity-check (LDPC) codes constitute the other class of error correction codes that
have received popularity over the past decade in the coding community because of their excellent
error correction capability and near-capacity performance. They were first introduced by Gal-
lager in his PhD thesis in 1960 [22], but they were ignored until 1997. They were rediscovered
independently by MacKay (1997) [23] and Richardson/Urbanke (1998) [24] as an alternative to
the capacity achieving codes, namely Turbo Codes. Authors in [25] report to have constructed
LDPC codes and measured bit error rate (BER) performance that comes very close to the Shan-
non limit for the AWGN channel (within 0.04 dB at BER=10−6) with iterative decoding and very
long frame size of 107. The LDPC codes have been recently adopted in many standards, such

26 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

as IEEE 802.11n (WiFi), IEEE 802.16e (WiMAX), DVB-S2, etc. The following sections give a
brief background of linear block codes, to which LDPC codes belong, followed by a description
of QC-LDPC codes adopted in recent wireless communication standards and a presentation of
the most commonly used decoding algorithm, namely Normalized Min-Sum (NMS).

1.4.1 Linear block codes

Unlike convolution codes, where the encoding process depends on the past inputs and current
state of the encoder, linear block codes operate on blocks of data of length k. The output encoded
data is of length n and consists of the actual input data and redundancy bits. The redundancy
bits use a linear combination of input bits or group of bits over Galois field 2m. If m = 2, the
arithmetic operations can be mapped over logical XOR (modulo-2 adder) and AND (modulo-2
multiplier) operations.

The encoding process consists of forming a n bit codeword from k information bits by
adding n − k parity bits. In other words, encoding can be simply done by choosing 2k vectors
out of 2n as valid codewords for transmitting, as shown in Figure 1.16 for (n=3,k=2) linear
block code. As we can see, there are many possibilities of mapping. One such particular case of
mapping is called systematic encoding, where the input message bits are found in the beginning
(or end) of the codeword while the rest of the bits are parity bits. This method simplifies the
encoding process at the encoder and also the realization of the decoder.

Figure 1.16 — Linear block code mapping example for (n=3, k=2)

The encoding process consists of a simple multiplication (over GF(2)) of the input vector X
with the generator matrix G to obtain the codeword C as illustrated in the example of Figure
1.17 and equation (1.49). In this example the generator matrix G is composed of an identity
matrix I(k,k) of size k and a parity matrix P(n−k,n).

C = X.G, e.g. X = [0100], C = [0100 000] (1.49)

Decoding on the other hand is done by matrix multiplications over GF(2) of the received
codeword R, with the parity check matrix H as illustrated in the example of Figure 1.17 and

1.4. LOW DENSITY PARITY CHECK CODES 27

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1

0 1 1

1 0 1

1 1 0

I(k,k) P(k, n-k)

G=

1 0 1 1

1 1 0 1

1 1 1 0

H=

1 0 0

0 1 0

0 0 1

PT
(n-k,k)

I(n-k,n-k)

Figure 1.17 — Linear block code generator matrix G and parity check matrix H for (n=7,k=4)

equation (1.50).

S = R.HT , e.g. R = [0100 001], S = [011] (1.50)

If the resulting vector S (called the syndrome) is zero vector, it indicates no errors have been in-
troduced. The decoding process can also be represented using a Tanner graph (Figure 1.18),
where the ones in the H matrix are shown as the lines connecting the variable and check
nodes [26]. The variable nodes (n equals to the number of columns) are initialized with the
input message and the check nodes (m equals to number of rows) implement XOR operations
and calculate if the resulting syndrome S evaluates to zero. If the syndrome is non-zero, then
a lookup table based decoding is used to compare the received codeword and the syndrome
obtained to detect and correct the error.

Figure 1.18 — Tanner graph of H matrix in 1.17

Different types of linear block codes are proposed in the literature and used in existing
communication systems, such as LDPC codes, Reed-Solomon codes (based over GF(2m)), BCH
codes, Goley codes, etc.

1.4.2 QC-LDPC codes

LDPC codes are a class of linear block codes specified by a very sparse binary parity check
matrix H:

H.xT = 0 (1.51)

where x is a codeword and H is the check matrix that has M rows and N columns. The parity-
check matrix H of an LDPC code can be seen as a concatenation of parity-check matrices
H0, H1, ...,HM−1, corresponding to the super-codes C0, C1, ...CN−1, hence can be regarded
as a class of concatenated codes [27].

28 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

In the Gallager’s original LDPC code design, there were a fixed number of ones in both
the rows (M) and the columns (N) of the parity check matrix. Furthermore, each bit is used
in say L parity check constraints and each parity check constraint is the XOR of L bits. This
class of codes is referred to as regular LDPC codes. Current standards specify irregular LDPC
codes which contain unequal number of ones along rows and columns in the check matrix.
Irregular LDPC codes provide generally better BER performance characteristics when compared
to regular LDPC codes. The number of ones along the row of a check matrix is called Variable
node degree, in the Tanner graph representation, is the number of edges that connect to the
variable node, while check node degree is the number of edges that connect to the check node.
As the focus of the thesis is the irregular LDPC codes adopted in the standards, namely WiFi
and WiMAX, this section discusses only the related family of LDPC codes.

I1 I25 I55 I47 I4 I91 I84 I8 I86 I52 I82 I33 I5 I0 I36 I20 I4 I77 I80 I0

I6 I36 I40 I47 I12 I79 I47 I41 I21 I12 I71 I14 I72 I0 I44 I49 I0 I0 I0 I0

I51 I81 I83 I4 I67 I21 I31 I24 I91 I61 I81 I9 I86 I78 I60 I88 I67 I15 I0 I0

I50 I50 I15 I36 I13 I10 I11 I20 I53 I90 I29 I92 I57 I30 I84 I92 I11 I66 I80 I0

Figure 1.19 — LDPC check matrix representations: Hbase

Hexpanded=
Layer0

Layer1

Layer2

Layer3

Z
sublayer

Figure 1.20 — LDPC check matrix representations: Hexpanded form of 1.19

VNG0

Check

node groups

VNG1 VNG2 VNG(Nb-1) VNG(Nb-2)

CNG0 CNG1 CNG(Mb-1)

Variable node groups

Permutation

n/w

Permutation

n/w

Permutation

n/w

Permutation

n/w

Permutation

 n/w

Figure 1.21 — LDPC check matrix representations: Generalised Tanner graph representation of LDPC
H-matrix

Figure 1.19 shows the typical format of the Hbase specified to define LDPC check matrix in
the considered wireless communication standards (WiFi and WiMAX). It consists of Nb block
columns and Mb block rows where each of the non-negative values is replaced by a permutation
matrix of size Z×Z. Z is the so-called expansion factor specified by the standard. The negative
values are replaced by zero square matrix of size Z. LDPC codes whose check matrices can be
expressed in this form are called Quasi-Cyclic LDPC (QC-LDPC) codes.

1.5. LOW DENSITY PARITY CHECK DECODING 29

The LDPC check matrix can also be represented in a graphical form with a bipartite Tanner
graph (Figure 1.21) as illustrated in the previous section on linear block codes. In the LDPC case,
each column and row in Hexpanded represents a variable node and a check node respectively.
The particular structure of QC-LDPC codes allows to define Check Node Groups CNGx ∀ x =
0, 1..(M − 1) of size Z connected to Variable Node Groups V NGy ∀ y = 0, 1..(N − 1). The
lines connecting the variable and check node groups are representative of the ones in the check
matrix H (refer Figure 1.20).

Although, LDPC encoding through the method of generator matrix as in the case of linear
block codes is possible, it is seldom done in implementations due to the large frame sizes. Al-
ternatively, [5] and [28] specifies different ways of encoding of LDPC codes directly from the
check matrix definitions for WiFi or WiMAX LDPC codes respectively.

1.4.3 LDPC in WiFi and WiMAX standard

Low-density parity-check (LDPC) codes have been adapted in new standards such as in the
WiFi [28] and WiMAX [5] standards. These standardized LDPC codes are based on structured
irregular QC-LDPC codes which exhibit great levels of scalability, supporting multiple code
structures of various code rates and code lengths. As a result, a decoder for these applications
must be very flexible and reconfigurable. InWiMAX specification, 19 expansion factors which
represent permutation matrix sizes are defined ranging from 24 to 96 with an increment of 4.
On the other hand, In WiFi specification, only 3 expansion factors are defined i.e. 27,54 and
81. Table 1.1 summarizes the LDPC code parameters for these two standards. The maximum
required channel throughput is up to 75 Mbps for the WiMAX, and 450 Mbps for WiFi.

Standard WiMAX WiFi
Parameters # min max # min max

Frame lengths 19 576 2304 3 648 1944
Sub-matrix Sizes 19 24 96 3 27 81

Code Rates 4 1/2 5/6 4 1/2 5/6
CN Degrees 7 6 20 9 7 22
VN Degrees 4 2 6 8 2 12

Edges 90 1824 8448 8 2376 7128

Table 1.1 — Characteristics of WiFi and WiMAX LDPC check matrices

1.5 Low Density Parity Check decoding

Several algorithms are proposed for LDPC decoding and most of them are derived from the
well-known belief propagation (BP) algorithm. The principle consists of exchanging iteratively
messages (probabilities, or beliefs) along the edges of the Tanner graph. The message L(n,m)
which is passed from a variable node (VN) n to a check node (CN) m is the probability that VN
n has a certain value (0 or 1). It depends on the channel value (L(n)) of that variable node n
and all the messages from connected check nodes to VN n except m. Similarly, the message
from CN m to VN n L(m,n) depends on all messages received from connected VNs except the
one being updated (as shown in Figure 1.22). These two phases are often called as check node
update and variable node update, respectively. This algorithm is also referred to as two-phase
message passing (TPMP). When all variable nodes and check nodes have been updated, one

30 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

iteration is said to be complete. Iterations are executed until all parity-check equations (equation
1.51) or another stopping criteria are satisfied or the maximum number of iterations is reached.

VN2

CN1

VN4

CN0 CN2

VN3 VN1 VN5 VN0 VN6

L(n,m)

L(m,n)

L(5) L(6) L(4) L(3) L(2)
L(1) L(0)

Figure 1.22 — Tanner graph example showing the two-phase message passing decoding

1.5.1 LDPC decoding algorithm: Normalized Min-Sum (NMS)

The Min-sum decoding algorithm [29] for LDPC codes are usually described in the Log-domain
using LLR to reduce the computational implementation complexity. The Min-Sum algorithm
is the hardware efficient implementation of the Sum-product/Belief propagation algorithm [22].
It proposes an approximation to simplify the calculations of updated messages. The message
passing is summarized as follows:

Let, the a posteriori probability (APP) Log-Likelihood Ratio (LLR) of each bit n is defined
as:

Lch(n) = log
Pr(n = 0)

Pr(n = 1)
(1.52)

The check node message from check nodem to variable node n is denoted asL(m,n). Similarly,
the message from variable node n to check node m is denoted as L(n,m).

1. Initialization: The variable message L(n) is initialized to the channel LLR input and
L(m,n) are initialized to zero.

2. Variable Node Update: For each check node m, the new check node messages L(n,m),
corresponding to all variable nodes j that participate in this parity check equation, are
computed using the belief propagation algorithm:

L(m,n) =
∏

j∈N(m)\n

sign(L(j,m))Ψ(
∑

j∈N(m)\n

Ψ(L(j,m))) (1.53)

where N(m) is the set of variable nodes that are connected to check node m, and N(m)\n
is the set N(m) with variable node n excluded. The non-linear function Ψ(x) is defined as

Ψ(x) = − log(tan(
|x|)
2

) (1.54)

1.5. LOW DENSITY PARITY CHECK DECODING 31

To reduce the implementation complexity, the sub-optimal min-sum algorithm [30] can be
used to approximate the non-linear function Ψ(x). The normalized min-sum and the offset
min-sum algorithms are the two most often used algorithms. For offset min-sum algorithm
the equation (1.53) is changed with a offset factor β, as shown below:

L(m,n) =
∏

j∈N(m)\n

sign(L(j,m)). min
j∈N(m)\n

(|L(j,m)|)− β (1.55)

For neglible performance loss, normalized min-sum algorithm is used neglecting the offset
factor β and using a scaling factor α. Thus, the above equation of check node update is
written as:

L(m,n) = α.
∏

j∈N(m)\n

sign(L(j,m)). min
j∈N(m)\n

(|L(j,m)|) (1.56)

3. Check Node Update: The a posteriori LLR messages Ln are computed as:

L(n) =
∑

j∈M(n)

L(j, n) (1.57)

where M(n) is the set of check nodes that are connected to variable node n. The variable
to check node update message L(n,m) is computed as :

L(n,m) = L(n)− L(m,n) (1.58)

4. Parity check: If all the parity check equations are satisfied, the decoding process is com-
pleted, else the above two phases are computed to start a new iteration.

1.5.2 Scheduling

The previous section described flooding schedule, which is the classical way of scheduling the
BP algorithm. Several other scheduling techniques have been investigated in the literature and a
summary is given below:

1. Vertical shuffle: In [21] authors proposed a shuffled BP algorithm which converges faster
than the BP algorithm. In this schedule, the idea is to update the information as soon as
it has been computed and so that the next check node /variable node uses most updated
information. The decoding process is as follows:
At each step all the CN that are connected to a VN are updated according to equation (1.63).
This is followed by the update of related VN as given by the equation (1.59). Thus all the
variable node are processed one after the other. This schedule is also called as vertical
shuffle. The following figure explains the decoding schedule in the context of linear block
code presented in Section 1.4.1.

2. Horizontal shuffled: The logical data flow of the decoding process is shown in Figure
1.24, for the check matrix of the linear block code presented in Section 1.4.1. The figure
shows the an alternative to the previous scheduling technique. Here, a check node receives
updates from several variable nodes connected to it followed by the check node updating
those variable nodes.

32 CHAPTER 1. BACKGROUND: CHANNEL CODES AND DECODING ALGORITHMS

+ + +

+ + +

+ + +

+ + +

(a) VN1 to CNs update

(b) CNs to VN1 update

(c) VN2 to CNs update

(d) CNs to VN2 update

Figure 1.23 — LDPC decoding using vertical schedule

+ + +

+ + +

+ + +

+ + +

(a) VNs to CN1 update

(b) CN1 to VNs update

(c) VN2 to CNs update

(d) CNs to VN2 update

Figure 1.24 — LDPC decoding using horizontal schedule

In the context of QC-LDPC codes which is the type of LDPC codes specified in WiMAX and
WiFi standard the authors in [27] introduced the concept of Turbo Decoding Message Passing
(TDMP, also referred as layered decoding) where block rows (check nodes) are seen as super-
codes. Each super-code of the H matrix is a parity-check code corresponding to the row (layer)
of the Hbase matrix. The layered decoding algorithm decodes a codeword iteratively in a M sub-
iterations which are equal to the number of super-codes, with one sub-iteration per constituent
super-code. This can be considered as a variant of the horizontal schedule presented here ex-
cept that group of check nodes that are not connected the same variable nodes are schedule for
decoding at a time. Once both the updates are complete the next check node is scheduled for
processing. Furthermore, this scheduling improves the decoding convergence speed by a factor
of 2.

1.5.3 Modified NMS formulation for implementation

In this section, we present the computations implied by NMS algorithm with a slightly modified
formulation adapted to the hardware architecture presented in this thesis.

Every decoding iteration consists of M sub-iterations corresponding to the M-check node
groups in the Hbase. Each sub-iteration i consists of two phases:

1. CN-update: all the V N nodes send extrinsic messages given by equation (1.58) to their
corresponding CNs in the check node group. These messages contain the sum of the
extrinsic messages sent by the other CNs to the V N and the channel value.

1.6. SUMMARY 33

Li(n,m) = Li(n)− Li−1(m,n), L0(m,n) = 0 (1.59)

2. VN-update: when a CN receives all the messages, it sends a message to each connected
variable node. We denote N(m) to be the set of all the variable nodes connected to the
check node m, and N(m)\n to be the same set except the variable node n. Then the check
node to variable node message is given as in equation (1.60). The sign of the message is the
product of the signs of the messages received from all V Ns, as given in equation (1.61).

minin′m = min
n′∈N(m)\n

(|Li(n′,m)|) (1.60)

sgnim =
∏

n∈N(m)

sgn(Li(n,m)) (1.61)

It can be observed that the magnitudes of the messages leaving a check node have only
two values: either the overall minimum (min0i) of the received messages |Li(n,m)| or
the second overall minimum (min1i). In fact, min1i is sent to the variable node who sent
min0i. Calculations at the check node thus result in tracking the two running minimums,
min0i andmin1i, the index of the connected variable node providingmin0i (ind), and the
overall sign (sgnim). These four informations are grouped and denoted as Running Vector
(RV):

RV i(m) = [min0,min1, ind, sgn]im (1.62)

The extrinsic information (Li(m,n)) is derived at the variable node as

Li(m,n) = sgn(Li(n,m))× sgnim × (α× (min0i or min1i)) (1.63)

Thus, the overall estimation (a posteriori LLR) of the decoded bit can be computed as:

Li(n) = Li(n,m) + Li(m,n) (1.64)

The sign of Li(n) indicates the hard decision on the decoded bit.

The above two steps are repeated for all check node groups to complete one iteration.

1.6 Summary

This chapter provided the basic background on Turbo and LDPC codes along with their con-
struction and decoding algorithms. Max-Log MAP and Normalized Min-Sum algorithms were
illustrated to be the hardware efficient versions of the MAP and Sum-Product algorithms respec-
tively. The different parallelism levels which can be exploited in the implementation of a Turbo
decoder were also explained. For LDPC decoding, a brief presentation on existing computation
scheduling techniques was given. Finally, the modified NMS formulation adopted in this thesis
work was presented.

CHAPTER

2 ASIP Design Methodology and
State of the Art in Channel
Decoder Design

APPLICATION -specific processors are being widely investigated these last years in System-
on-Chip design. The main reason behind this emerging trend is the increasing requirements

of flexibility and high performance in many applications, and particularly in the considered
digital communication domain. The availability of well established design methodology and
tools further promotes this trend.

The first section of this chapter introduces the evolution of embedded processor architectures
towards customizable instruction-set ones illustrating our main motivation behind the selection
of Application-Specific Instruction-set Processor (ASIP) design approach. It also presents an
overview on existing ASIP design flows and presents the considered Processor Designer tool.

The second section gives an overview on state-of-the-art efforts in channel decoder design
in order to clarify the position of the proposed contributions in this thesis work. A considerable
amount of contributions have been proposed in this challenging domain over the past years
targeting many different variants in terms of classes of error correction codes, algorithmic and
architecture optimization techniques, design objectives, and design approaches. The proposed
overview is far from being exhaustive, however a selection of recent works related to the thesis
scope in terms of flexibility support of Turbo and LDPC decoding is presented.

One of these related recent contributions has been carried out at the Electronics department
of Telecom Bretagne using the ASIP design approach and targeting flexible Turbo decoding.
Thus, the third section of this chapter presents this initial ASIP architecture, namely TurbASIP,
which constitutes the starting point of this thesis work.

35

36 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

2.1 Customizable embedded processors

A large share of the integrated circuits manufactured today feature an impressive complexity of
hundreds of millions of transistors [31]. The non-recurrent engineering costs of such high-end
application-specific integrated circuits are becoming hardly bearable by many products indi-
vidually. In addition, product life cycles are becoming in general more and more short due to
the accelerated emerging of new applications and services (often approaching one year in the
consumer electronics market). This new context drives several trends in design approaches and
architecture models. Regarding design approaches, system level design and high level synthesis
methodologies to accelerate the design cycle and to reduce the non-recurrent engineering costs
are being widely investigated. Concerning the architecture model, opportunities for modular
reuse are pushing industry to use more and more flexible (or software-programmable) solutions
for practically every class of devices and applications.

In traditional design of flexible hardware architectures, the flexibility is incorporated by the
expert designer through the use of initialization parameters loaded from a configuration memory
or input ports of the design. The architecture description involves manual design of a Finite
State Machine (FSM) that controls the different design units of the pipeline taking into account
the various supported parameters. But when the number of flexibility parameters increases, the
design and validation of such parametrized control logic become more and more complicated.

On the other hand, instruction-set based processors provide inherently high flexibility in
terms of control logic design. Their architectures have evolved dramatically in the last couple of
decades [31]: from microprogrammed finite state machines, processors have transformed into
single rigid pipelines; then, they became parallel pipelines so that various instructions could
be scheduled for execution at once; next, to exploit the ever-increasing pipelines, instructions
started to get reordered dynamically; and, more recently, instructions from multiple threads of
executions have been mixed into the pipelines of a single processor, executed at once. However,
the great majority of the high-performance processors produced today address relatively narrow
classes of applications. This is to design customized processors to the very needs of the
application rather than having them as rigid fixed entities. The emergence of this trend has been
made successful given the development of new design methodologies and tools. Such tools
enable the designers to specify a customizable processor in weeks rather than months. Leading
companies in providing such methodologies and tools include Processor Designer tool [32] and
ARC cores by Synopsys [33] and Tensilica [34]. The shape and boundaries of the architectural
space covered by the tool chain differentiate the design approach attempted. These approaches
can be classified roughly into three categories [31]:

Parameterizable processors are families of processors belonging to a single type and
sharing a single architectural skeleton, but in which some of the characteristics can be turned on
or off (presence of multipliers, of floating point units, of memory units, etc.) and others can be
scaled (main data-path width, number and type of execution pipelines, number of registers, etc.).

Extensible processors are processors with some support for application-specific exten-
sions. The support comes both in terms of hardware interfaces and conventions and in terms
of adaptability of the tool chain. The extensions possible are often in the form of additional
instructions and corresponding functional pipelines but can also include application-specific
register files or memory interfaces [35, 36].

Custom processor development tools are frameworks to support architects in the effort
to design from scratch a completely custom processor with its complete tool chain (compiler,

2.1. CUSTOMIZABLE EMBEDDED PROCESSORS 37

simulator, etc.). Ideally, it uses an Architectural Description Language (ADL) to describe the
architecture of the design from which all tools and the synthesizable description of the core can
be generated [32, 37].

It is worth noting that these approaches are not mutually exclusive, as some characteristics
can overlap, for example a parameterizable processor may also be extensible, or a template
processor in a processor development framework can be easily parameterized and is naturally
extensible. All these approaches fall under the name of customizable processors and often are
referred as ASIP for Application-Specific Instruction-set Processors (ASIPs).

In addition to the above mentioned categories which provide hardware flexibility only at de-
sign time (and software programmability at run time), it is worth to cite the family of partially
reconfigurable ASIPs (rASIP) which targets to add this hardware flexibility at run time. The
idea is to combine the programmability of ASIPs with the postfabrication hardware flexibility
of reconfigurable structures like FPGAs and CGRAs (Coarse Grained Reconfigurable Archi-
tectures). Although several specific rASIP architectures have been proposed in the literature
(e.g. [38, 39]) and several design methodologies are emerging recently (e.g. [40, 41]), there is a
lack of commercially available well established tools. Exploring the opportunities offered by this
approach in the considered application domain constitutes, however, one of the future research
perspectives.

2.1.1 Application-Specific Instruction-set Processors

ASIPs are tailored to particular applications, thereby combining performance and energy effi-
ciency of dedicated hardware solutions with the flexibility of a programmable solution. The
main idea is to design a programmable architecture tailored to a specific application, thus pre-
serving a much higher degree of flexibility than a dedicated ASIC solution. Several alternative
solutions to ASIPs are available in order to implement the desired task, depending on the re-
quirements: for functions which need lower processing capacity but should be kept flexible a
software implementation running on a General-Purpose Processor (GPP) or a microcontroller
may be the best solution; if some additional processing capacity is needed, moving to a domain
specific processor, like a Digital Signal Processor (DSP) optimized for signal processing and
offering some additional specialized instructions (e.g. Multiply-Accumulate, MAC), may be
beneficial. On the contrary, system modules with very high processing requirements are usually
implemented as dedicated hardware blocks (Application Specific Integrated Circuits, ASICs, or
even physically optimized ICs), with no flexibility feature. If some flexibility is required, FPGAs
which allow for reconfiguration after fabrication, may be the right choice if some price in terms
of performance, area and power can be acceptable. ASIPs represent an intermediate solution
between DSPs and FPGAs in terms of performance and flexibility, thus becoming in many cases
the best choice to play this trade-off. Comparison of these implementation methods in regard to
performance, flexibility and power consumption is best described in Figure 2.1 [42].

2.1.2 ADL-based design tool: Processor designer

Processor Designer is an ASIP design environment belonging to the category of custom
processor that uses LISA ADL [43]. The LISA language (Language for Instruction Set
Architecture) and the tool were the results of the research work conducted at Aachen University
of Technology, Germany. It was first commercialized by the startup LISATek which was
then acquired by CoWare in 2003 and later by Synopsys in 2010. The tool was developed
with a simulator-centric view [31] and uses a C-like language (LISA) for design description

38 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

Figure 2.1 — Comparison of performance, flexibility and power dissipation trade-off of implementation
methods

of programmable architectures, their peripherals and interfaces. It was developed to close
the gap between purely structural oriented languages (VHDL, Verilog) and instruction set
languages for architecture exploration and implementation purposes of a wide range of modern
programmable architectures. The language syntax provides a high flexibility to describe the
instruction set of various processors such as Single Instruction Multiple Data (SIMD), Multiple
Instruction Multiple Data (MIMD) and Very Long Instruction Word (VLIW) type architectures.
Moreover, processors with complex pipelines can be easily modeled. The language has been
used to produce production quality simulators. An important aspect of LISA is its ability to
capture control path explicitly. Explicit modeling of both data-path and control is necessary for
cycle-accurate simulation.

Processor Designer tool’s high degree of automation greatly reduces the time for developing
the software tool suite and hardware implementation of the processor, which enables designers to
focus on architecture exploration and development. The usage of a centralized description of the
processor architecture ensures the consistency of the Instruction-Set Simulator (ISS), software
development tools (compiler, assembler, and linker etc.) and RTL (Register Transfer Level)
implementation, minimizing the verification and debug effort.

The LISA machine description provides information consisting of the following model com-
ponents [42]:

• The memory model lists the registers and memories of the system with their respective bit
widths ranges and aliasing.

• The resource model describes the available hardware resources, like registers, and the re-
source requirements of operations. Resources reproduce properties of hardware structures
which can be accessed exclusively by a given number of operations at a time.

• The instruction set model identifies valid combinations of hardware operations and admis-
sible operands. It is expressed by the assembly syntax, instruction word coding, and the
specification of legal operands and addressing modes for each instruction.

• The behavioral model abstracts the activities of hardware structures to operations changing
the state of the processor for simulation purposes. The abstraction level can range widely
between the hardware implementation level and the level of High-Level Language (HLL)
statements.

2.1. CUSTOMIZABLE EMBEDDED PROCESSORS 39

• The timing model specifies the activation sequence of hardware operations and units.

• The micro-architecture model allows grouping of hardware operations to functional units
and contains the exact micro-architecture implementation of structural components such as
adders, multipliers, etc.

By using these various model components to describe the architecture, it is then possible to
generate a synthesizable HDL representation and the complete software tool suite automatically.

The generation of the software development environment by Processor Designer enables to
start application software development prior to silicon availability, thus eliminating a common
bottleneck in embedded system development. As it is shown in Figure 2.2, the design flow of
Processor Designer is a closed-loop of architecture exploration for the input applications. It
starts from a LISA 2.0 description, which incorporates all necessary processor-specific compo-
nents such as register files, pipelines, pins, memory and caches, and instructions, so that the
designer can fully specify the processor architecture. Through Processor Designer, the ISS and
the complete tool suite (C-compiler, assembler, linker) are automatically generated. Simulation
is then run on the architecture simulator and the performance can be analyzed to check whether
the design metrics are fulfilled. If not, architecture specifications are modified in LISA descrip-
tion until design goals are met. At the end, the final version of RTL implementation (Verilog,
VHDL and SystemC) together with software tools are automatically generated.

As previously mentioned, ASIPs are often employed as basic components of more complex
systems, e.g. MPSoCs. Therefore, it is very important that their design can be embedded into
the overall system design. Processor Designer provides possibilities to generate a SystemC
model for the processor, so that it can be integrated into a virtual platform. In this way, the
interaction of the processor with the other components in the system can be tested. Furthermore,
the exploration as well as the software development of the platform at early design stage becomes
possible.

Figure 2.2 — LISA-based ASIP architecture exploration flow

40 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

2.1.3 Classical ASIP design flow

Figure 2.3 shows the classical ASIP design flow adopted with the Processor Designer tool. The
architecture design description is refined over 3 abstraction levels.

ASIP design description in the LISA ADL and the assembly code (ASM) define the func-
tionality of the architecture through the instructions designed for the specific application. These
ASMs are interpreted and tested for functional correctness through the use of macro assembler
and linker. The generated executable EXE can be later used for simulation and debugging.

Once the correctness of the design description is ensured the design description in LISA
is automatically translated to VHDL equivalent models by the Processor Designer along with
memory layout and HDL simulation memory files. The Processor Designer tool also pro-
vides exe2txt script that automatically translates memory initialization files described in ASM
to equivalent text (*.mmap) files that can be used by the VHDL files for VHDL memory ini-
tialization. This is the second level of design description which can be used along which HDL
simulation tools like Modelsim for hardware simulation.

The third level of description is at the circuit level through the use of ASIC or FPGA tools
for hardware realization. At this level, the only missing elements are the synthesizable memory
models. Depending upon the target FPGA device and the synthesis tool, the declaration of
the memory models for simulation can be replaced by equivalent declaration of synthesizable
memories. The obtained model containing the ASIP and its memories can be used for synthesis,
placement and routing to verify timing and area performances.

LISA files

ASIP HDL
files

VHDL
memory files

Synthesis

Place &
route

User
Constraint

(.ucf)

HDL simulation
Memory files

Memory layout
file

exe2txt

Memory
content files

(.mmap)

Exe file
Macro

assembler and
linker

Processor
generator

Simulation
HDL

Simulator
and

debugger

FPGA

ASM file
(Code + memory contents)

LISA level

HDL level

FPGA level

Figure 2.3 — LISA-based ASIP architecture design flow

2.2. STATE OF THE ART IN CHANNEL DECODER DESIGN 41

2.2 State of the art in channel decoder design

This second gives an overview on state-of-the-art efforts in channel decoder design in order to
clarify the position of the proposed contributions in this thesis work. A considerable amount
of contributions have been proposed in this challenging domain over the past years targeting
many different variants in terms of classes of error correction codes, algorithmic and architecture
optimization techniques, design objectives, and design approaches. The proposed overview is
far from being exhaustive, however a selection of recent works related to the thesis scope in
terms of flexibility support of Turbo and LDPC decoding is presented. The section is organized
in three parts summarizing recent related works in Turbo decoding architecture design, LDPC
decoding architectures, and multi-code channel decoding architectures.

2.2.1 Turbo decoding architectures

Ever since the discovery of Turbo codes in 1993 [12], considerable amount of research works has
been targeting practical VLSI implementations of Turbo decoders. Using mainly the low com-
plexity sub-optimal Max-Log-MAP algorithm, many contributions have been proposed targeting
diverse design objectives in terms of area efficiency, energy efficiency, flexibility, scalability and
high throughput. Among the initial efforts in this context we can cite the examples of [44–47].
The work in [44] has investigated sub-block parallelism in order to increase the throughput. At
the lower parallelism level of MAP computations, the work in [18] has explored several com-
putational scheduling schemes. The butterfly schedule using two recursion units is shown to
achieve the best results in terms of computational logic and decoding latency. Further, forward
backward schedule using two recursion units each working on adjacent windows is shown to
achieve the same decoding latency with slight addition of computational logic. In both cases,
acquisition for backward recursion and message passing for forward recursion are used. How-
ever, the presented analysis does not consider the extrinsic memory access conflicts that might
arise due to the interleaving rules imposed by the standard. Quantization issue have been studied
in [45] which reported the use of 6 bit and 8 bits for input and extrinsic LLRs respectively with
acceptable degradation of 0.1 dB w.r.t. the floating point reference model. They further report
the use of 10 bit quantization for state metric LLRs. Authors of [48] present an overview of the
implementation aspects related to Turbo decoding architectures discussing the issues of LLR
quantization and iteration stopping criteria. Several joint algorithmic/architecture optimization
techniques have been investigated and proposed in [49]. One of the first ASIC implementa-
tion was presented in [50] achieving a throughput of 50 Mbps with 10 decoding iterations and
an operating frequency of 1 GHz. On the other hand, few works have investigated new Turbo
decoding architectures based on other decoding algorithms like SOVA [46, 51].

Turbo codes have been since widely adopted in wireless communication standards like
CDMA2000, 3GPP, LTE, WiMAX, DVB-RCS, etc. Many implementations have succeeded to
meet the low throughput requirements of the early standards (e.g. CDMA2000 and 3GPP) using
advanced DSP architectures [52–54] or customizable processors [55]. However, the scalability
of such implementations are limited by the block interleavers specified in these standards which
cause memory access contentions when targeting higher sub-block parallelism degree. The in-
troduction of contention-free interleavers, like ARP in WiMAX and QPP in LTE, alleviated
this limitation enabling high throughput implementations [56–61]. The work presented in [56],
targeting LTE, allows multiple SISO decoders (1, 2, 4, or 8) to concurrently process frame sub-
blocks and integrates a three stage network to connect the multiple memory and SISO decoder
modules. Implemented in 90nm CMOS technology, the design achieves a throughput of 129
Mbps with 8 iterations and occupies an area of 2.1 mm2 while exhibiting a power consumption

42 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

of 219 mW and supporting the maximum specified frame size of 6144 bits. The dedicated ar-
chitecture proposed in [61] for SBTC specified in LTE achieves high throughput of 150 Mbps
while using the acquisition method for boundary state metric initialization along with 11 bits
state metric quantization. Targeting Gbps throughputs, a recent work [62] has proposed an LTE
compliant Turbo decoder architecture with 32 parallel SISO decoders using Radix-4 trellis com-
pression and butterfly schedule of forward backward calculations. A throughput of 2.15 Gbps is
achieved with an on chip area of 7.1 mm2 using 65nm CMOS technology.

Other works have proposed the additional support of DBTC specified in WiMAX standard.
As an example, the work in [60] presents an architecture which supports all DBTC parameters
specified in WiMAX and 18 frame sizes of the 188 specified in LTE. A high area efficiency is
achieved by supporting only those frame sizes with interleaving properties that can be easily
mapped to the extrinsic exchange paths of DBTC. Another example is the parameterized ar-
chitecture of [59] which supports both Turbo modes (DBTC and SBTC) and achieves a high
throughput of 187 Mbps with 8 parallel MAP decoders. It exploits sub-block parallelism along
with radix-4 trellis compression scheme for efficient support of SBTC.

Furthermore, ASIP design approaches have been explored in this application context. In [63]
a flexible and high performance ASIP model for Turbo decoding was proposed which can be
configured to support all simple and double binary Turbo codes up to eight states. The architec-
ture uses shuffled decoding with frame sub-blocking. The extrinsic information are iteratively
and concurrently exchanged between multiple component decoders via an on-chip communica-
tion network presented in [64]. Since Turbo code interleaving rule varies from one standard to
another and/or one mode to another, NoC based solutions are investigated [64] for parallel Turbo
decoding. The flexibility of these on-chip communication networks enables their use for both
DBTC and SBTC standards. To that purpose, several application specific on-chip communica-
tion networks were recently introduced based on various topologies like de-Bruijn, Butterfly, 2D
Mesh, chordal ring [65], and Benes [66],.

2.2.2 LDPC decoding architectures

Since the renewed interest in LDPC codes by 1997, considerable number of LDPC decoder
architectures have been proposed targeting different design objectives and/or using different
design approaches [27,67,68]. The first efforts in this context were mainly aiming to reduce the
implementation complexity by defining new classes of LDPC codes jointly with their efficient
hardware decoding architectures. Examples of such efforts can be found in [69–72] which were
mainly implemented on FPGA.

Some early results have succeeded to demonstrate high throughput ASIC implementation
for specific code structure and parameters. The work in [67] achieves 1 Gbps throughput for
1024-bit frame size and 1/2 code rate by wiring the whole Tanner graph into hardware. In [73],
a code-programmable and code-rate tunable LDPC decoder is proposed, but the code length
is still fixed to 2048 bits for simple VLSI implementation. On the other hand, some works
[70, 72, 74, 75] have considered partly parallel decoder architecture to achieve high throughput
targeting special class of LDPC codes for implementation realized on FPGA. [69] one of the
first FPGA implementation of LDPC and further shows its implementation complexity to be
comparable to that of Turbo decoding.

Later designs included flexibility as a design objective in order to support different code
rates, frame sizes, check matrices, and parallelism degrees for a class of LDPC codes. The work
in [70] proposes and new class of LDPC codes (namely Hardware-Constrained LDPC) and
demonstrates a low complexity flexible FPGA-based implementation. In [76], a LDPC decoder

2.2. STATE OF THE ART IN CHANNEL DECODER DESIGN 43

that supports three block sizes and four code rates is designed by storing 12 different parity check
matrices on-chip. The flexible implementation solution given in [77] exploits commonalities
between 2 specific types of LDPC codes (one derived from [23, 78] and the second from [79])
and derives a decoding architecture capable of efficiently handling these codes.

These early efforts eventually resulted in the emergence of the class of QC-LDPC codes
in many applications and communication standards such as: WiMAX, WiFi, DVB-S2, DVB-
T2, etc. These codes allow for high parallelism degrees and an efficient implementation of the
connectivity between variable and check nodes.

In this context, many channel decoder architectures have been proposed following the in-
troduction of QC-LDPC codes in WiMAX by 2005 (IEEE 802.16e-2005) and in WiFi by 2009
(IEEE 802.11n). Both standards specify various code rates (ranging from 1/2 to 5/6) and frame
sizes (ranging from 576 to 2304 bits) with a target throughput of 70 Mbps for WiMAX and 300
Mbps for WiFi.

Hence, some of the proposed architectures have targeted WiMAX standard, like the ones
found in [80–83]. Other works have proposed dedicated architectures targeting the WiFi stan-
dard, like the ones found in [81, 84, 85]. [84] shows a scalable LDPC decoder for 802.11n WiFi
standard suitable for portable devices shows that the proposed design is suitable for portable de-
vices, with throughput ranging from 180 to 410 Mbps, and the power consumption being below
235 mW when implemented on 65 nm CMOS technology. The implementation in [85] decodes
LDPC frames consuming low power (less than 435 mw) when implemented in 180 nm CMOS
technology. The design utilize the column overlapping of the LDPC parity check matrix through
which the amount of access for the memory storing the posterior values is minimized. In addi-
tion, a thresholding decoding scheme is proposed which reduces the memory access by trading
off the error correcting performance. As both WiMAX and WiFi standards specify similar struc-
tion of structure of QC-LDPC codes, few other initiatives have proposed multi-standard LDPC
decoder architectures supporting WiMAX and WiFi standardized LDPC codes and associated
parameters, such as [86–89]. In [88] a reconfigurable message-passing network is proposed to
facilitate message transportation in decoding multimode QC-LDPC codes. WiFi and WiMAX
LDPC codes are supported by exploiting the shift-routing network features, to route the decod-
ing messages in parallel to fully support those specific to 19 and 3 sub-matrix sizes defined in
IEEE 802.16e and IEEE 802.11n applications with less hardware complexity. While in [89]
a multi-mode message passing through an enhanced self-routing and the two-way duplicated
switch network are presented.

Most of these architectures utilize a parametrized design approach and efficiently exploit
the parallelism level allowed by the standard [81, 84, 88–90]. Each proposes new algorithmic
and/or architecture techniques to meet specific design objectives in terms of throughput and
multi-mode support with low area and/or low power consumption as mentioned before. For
example: [81] utilizes the value-reuse property of offset min-sum, block-serial scheduling of
computations and turbo decoding message passing algorithm to achieve low memory usage,
reduction of routers, and increased throughput. [90] used two stopping criteria along with usage
of belief propagation algorithm (through the use of lookup tables) in the design of low power
high throughput architecture. The decoding will stop if the two conditions are satisfied: (1)
the hard decisions for the information bits based on their LLR values do not change over two
successive iterations, and (2) the minimum of the absolute values of the information bit LLRs is
larger than a pre-defined threshold.

However, some recent works have also proposed the use of ASIP-based approach [91, 92].
[91] presents a decoder with a five-stage pipeline, 32-bit RISC processor and it can supports
three different code rates (0.4, 0.6 and 0.8) by only modifying the program. [92] proposed a four

44 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

pipeline stage decoder for a special class of LDPC codes (based on extended irregular repeat-
accumulate codes) using Synopsys processor designer tool.

Finally, the QC-LDPC code structure and the allowed efficient partial parallelism lead gen-
erally for efficient memory organization and communication interconnect. Most of the proposed
decoder designs use barrel shifters [80, 87, 90] to implement the underlined shift operations in
routing the exchanged information between processing elements or to/from memories. In this
context, targeting flexible multiprocessor LDPC decoder implementations, several works have
investigated the use of application-specific Networks-on-Chips (NoC) [81,93–96]. For example,
in [96], a de-Bruijn topology NoC is proposed to handle the communication between variable
and check nodes for any LDPC code. The router embeds a modified shortest path routing al-
gorithm that can be executed in 1 clock cycle, together with deadlock-free and buffer-reducing
arbitration policies. In [81] on the other hand, uses benes-network for inter-processing element
communication. In [95] analyzes further the possible architectural possibilities and choices in
this context considering 2D, de-Bruijn, ZONOC and MDN networks.

Regarding wireless digital video broadcasting standards (DVB-S2/T2), the specified LDPC
codes are characterized by two main differences with respect to those specified in WiMAX
and WiFi: (1) very large frame sizes of 16400 bits and 64800 bits and (2) existence of double
diagonal permutation matrices in the definition of check matrix. These parameters impact con-
siderably the decoder architecture, memory requirements, and error rate performances. Several
dedicated architectures have been proposed [97–99]. As an example, the architecture proposed
in [97] processes 360 check nodes in parallel achieving a throughput of 91 Mbps (at 300 MHz
for rate 1/2) and occupying an area of 11 mm2 in 90nm CMOS technology. [99] solves the well
known problem of superpositions of permutation matrices. The enhanced convergence speed of
Gauss-Seidel decoding is used to reduce area and power consumption. Furthermore, propose
a modified version of the lambda-Min algorithm which allows to further decrease the memory
requirements of the decoder by compressing the extrinsic information.

2.2.3 Multi-code channel decoding architectures

Flexibility requirement of channel decoding architectures becomes more and more crucial when
considering the emerging multi-mode and multi-standard applications, as well as the increasing
interest for Software Defined Radio and Cognitive Radio concepts [100, 101]. Even for a single
standard like WiMAX, several error correction codes (convolutional, Turbo, LDPC, and block
Turbo) are specified as mandatory or optional. Hence, in the last few years, several multi-code
architectures have been explored and proposed to support the decoding of two or more different
classes of error correction codes (e.g. LDPC and Turbo decoding, Turbo and convolutional
(Viterbi decoding), etc.). The main aim is to share the memory, logic and/or communication
interconnects in order to achieve better efficiency in terms of area when compared to the direct
assembly of dedicated individual decoders.

In this context, few initiatives have investigated the combination of Turbo and Viterbi decod-
ing. Authors of [102] and [103] have proposed a unified architecture designed for UMTS base
stations. A dual mode Viterbi/Turbo decoder, sharing path metric calculation and extrinsic infor-
mation memories, is proposed. A trellis processor used to update path metrics in both supported
decoding algorithms. A 2 Mbps throughput at 88 MHz of clock frequency is demonstrated when
performing 10 Turbo decoding iterations. In [104], another combined architecture is suggested
for wireless terminals. In this architecture the data-path and the memories are shared. A Max-
Log-MAP algorithm is used for decoding both convolutional and Turbo codes. However, this is
only possible when the throughput requirement for convolutional codes (e.g. 12.2 kbps) is much

2.2. STATE OF THE ART IN CHANNEL DECODER DESIGN 45

lower than that of Turbo codes (e.g. 384 kbps). In another effort to combine the two types of
decoders, soft Viterbi decoding is used for Turbo decoding and hard output Viterbi decoding is
used for convolutional codes [105].

Similarly, unified decoder architectures for LDPC and Turbo codes has been presented in
[106–110]. Multi-code decoding is achieved in [106] by employing flexible add-compare-select
(FACS) units. By representing LDPC codes as parallel concatenated Single Parity Check (SPC)
codes, the authors have efficiently reused the Turbo decoding hardware resources for LDPC
decoding functions. The architecture supports decoding of SBTC codes of LTE and LDPC
codes of WiFi and WiMAX. When implemented in 90nm CMOS technology, the work reports
a maximum throughput of 450 Mbps for SBTC decoding and 600 Mbps for LDPC decoding
while occupying a total area of 3.2 mm2. Similar architecture is presented in [110] to share
logic and memory resources with additional decoding support of Turbo codes specified in 3GPP,
DVB-SH, and WiMAX standards. The entire design is implemented in 45nm CMOS technology
occupying an area of 0.9 mm2 and clocked at 150 MHz to achieve low power and yet meeting
the target throughput. However, studies presented in [111] conclude that such data-path sharing
for LDPC and Turbo decoding has little benefits and only for special configurations which have
similar memory requirements between the decoding modes (LDPC / Turbo). It further mentions
that even in such cases, sharing memory is much more attractive than sharing computational
hardware. In fact, the best match for a combined LDPC/Turbo data path can be achieved when
both have the same granularity, e.g. at the check-node and log-butterfly operator level [111].
However the size of these data-paths is so small that the configuration logic will have comparable
area and thus lead to ineffective reuse of data-path logic.

Besides the above mentioned multi-code decoder architectures which can be considered as
parameterized cores, several initiatives have explored ASIP based design in this application
context. As an example, the FlexiTreP ASIP presented in [112] supports trellis based channel
codes (i.e. convolutional, SBTC and DBTC) for various standards. Decoding of QC-LDPC
codes was later added to this architecture and presented in [113] as FlexiChap where memory
sharing across Turbo and LDPC modes was explored. It was shown that only a slight increase
in area occurs (from 0.31 mm2 for FlexiTreP to 0.39mm2 for FlexiChap). In [108, 109], the
authors propose an ASIP architecture addressing in a unified way the Turbo and LDPC coding
requirements of LTE, WiFi, WiMAX and DVB-S2/T2 with data-path and memory reuse across
the different FEC families. Results illustrate how the obtained area was lower than the cumulated
area of dedicated Turbo and LDPC solutions.

Finally, several NoC-based scalable multiprocessor architectures for combined LDPC/Turbo
decoding were investigated. The authors in [114] propose an efficient algorithm which can
compute a collision-free memory mapping of interleaving laws with no constraint imposed on
the code itself and the target parallelism degree. Thus, a versatile implementation supporting
LDPC/Turbo decoding requires for each supported code a pre-processing step to recompute the
corresponding memory mapping. A flexible on-chip interconnection network is designed with
the aim of fully exploiting the parallelism of the LDPC/Turbo decoder architecture by reducing
the message latency, alleviating the memory conflicts and efficiently routing any permutation
from the network input ports to its output ports. Another example is the work presented in [115]
which proposes a NoC based multiprocessor architecture, based on generalized Kautz topology
[116], supporting LDPC and Turbo decoding and achieving throughputs of 93 Mbps and 72
Mbps respectively.

Overall, many contributions are emerging rapidly in this domain, seeking to increase the flex-
ibility support and to improve the resulting architecture efficiency in terms of performance/area
[117]. This thesis work belongs to these last efforts targeting multi-code channel decoding ar-

46 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

chitectures. The main objective is to investigate the maximum achievable architecture efficiency
when adopting the rapid design methodology and well established tools related to ASIP design
concept associated with the high scalability provided by multiprocessor architecture models. By
considering mainly the challenging Turbo and LDPC decoding applications, new multi-ASIP
channel decoder architectures are proposed targeting high flexibility combined with high Archi-
tecture Efficiency. Different architecture alternatives and design approaches are explored in this
context.

2.3 Initial ASIP architecture for flexible Turbo decoding

One of the recent related state-of-the-art efforts has been initiated few years ago at the Electronic
department of Telecom Bretagne towards the design of flexible Turbo decoding architecture in
the context of a previous thesis study [16]. In this initial effort, the main target was to explore the
effectiveness of the newly proposed ASIP-design tools in terms of quality of the generated HDL
code and flexibility limitations when targeting this class of applications. To that end, the target
flexibility was set very high to investigate the support of any convolutional code trellis of Turbo
codes. Furthermore, besides the non support of LDPC decoding, this initial ASIP architecture
were missing several features which will be addressed in the next chapter.

In this section we give a brief summary of this initial reference ASIP architecture (namely
TurbASIP) for flexible Turbo decoding. One of the main feature of this architecture is the inves-
tigation and the exploitation of the various parallelism techniques available for Turbo decoding,
particularly for DBTC.

2.3.1 Overview of the TurbASIP architecture

Extrinsic

Information

Complete ASIP Architecture

RG
x16

RC
x8

RMC
x8

DECISION

BM Generator

PR

Global ALU

State metric calculation matrix

Forward

Recursion

Unit

A

Cross

Memories

AB

x8

Program
Memory

Config
Memory

Future sub-
block state

metric memory

Past sub-block
state metric

memory

Extrinsic

Information

ASIP
decision

decision

Cross

Memories

BA

x8

Control Unit

Backward

Recursion

Unit

B

Extrinsic

Info.

Memory

Input Data

(sys+par)

Memory

From Cross

Memories

To Cross

Memories

Extrinsic

Information

max

max

max
Radd

Or

RMC

Radd

RT(i,j)

Radd
RC

RG

RIE

From extrinsic

memory

RMC

ANF

Figure 2.4 — TurbASIP architecture

Figure 2.4 presents the block diagram of the initial TurbASIP architecture. Most of the
parallelism techniques presented in Sub-section 1.3.4 (page 20) are exploited (except trellis

2.3. INITIAL ASIP ARCHITECTURE FOR FLEXIBLE TURBO DECODING 47

compression). At the branch metric level, the ASIP computes in parallel all possible combi-
nations of branch metric LLRs (γ) and store them to 16 RG registers. The branch metric LLRs
are computed from the channel LLR values and extrinsic values stored in the input memories
and extrinsic memory banks. Adding to it, butterfly schedule (described in 1.3.4.1, page 21) is
adopted by the use of two recursion units to process the window in parallel in the forward and
backward directions. As the flexibility target was limited to the support of a maximum of 8 states
double binary Turbo codes, each of the 8 states in the trellis has 4 branches. Therefore, and in
order to fully exploit the efficient parallelism of trellis transition, each recursion unit integrates
32 state metric calculation units that compute the possible 32 next state metric LLRs and store
them in the RADD registers, using the trellis description information which are written in the RT
registers (refer to the architecture of the ANF unit of Figure 2.4). The trellis description bits are
read from the external trellis configuration registers of depth 4 and width 32 bits. Each register
contains the trellis branch description for sets the 8 RT registers. The muxes connected to the
RADD registers enable the circuit to calculate state metrics (α or β) by RG+RMC operation.
Alternatively, it also enables to calculate α + β + γ required for aposteriori LLR calculation
by adding RC fetched from the cross memories and newly calculated RADD. The structure of
the max units permits it to compute symbol aposteriori values (γapos) or state LLRs (α(s′, s) or
β(s′, s)) by taking maximum row-wise or column wise respectively. The 8 state LLRs calculated
by the max units are stored in RMC registers. The butterfly scheme needs storage of intermediate
state metric LLRs until the half window boundary is reached. Cross metric memories A and B
store the intermediate state metric generated from the recursion units. During the processing of
the second half of the window, Cross metric memories are read to RC registers. RMC registers
store the previous α(s′, s) (for recursion unit A) or β(s′, s) (for recursion unit B) state values
fetched from the cross memories. The calculated aposteriori LLR values γapos or the extrinsic
information γext are exchanged via Extrinsic information ports. The hard decisions produced
by the recursion units are provided on the 2 Decisions ports of width WindowLength/2.

Furthermore, at the SISO decoder level, multiple SISO decoders are supported by the use of
sub-blocking with message passing for boundary state initialization as shown in Figure 2.5. To
increase the use of parallelism degree, shuffled decoding is used by employing multiple SISO
decoders grouped into natural and interleaved domain processing the frame in natural order (i.e.
first half iteration done by component decoder 0) and interleaved order (i.e. second half iteration
done by component decoder 1) respectively. Finally, the extrinsic information generated are sent
to the other domain through the butterfly NoC interconnection.

2.3.2 TurbASIP pipeline

TurbASIP is modelled as a processor with 8 pipeline stages as shown in Figure 2.6. The first 3
stages of the pipeline correspond to instruction address generation, instruction fetch and instruc-
tion decode. The branch metrics are calculated in two stages: BM1 calculates the symbol LLRs
γsys, γpar along with the scaled γext with the scaling factor Sc = 0.875. BM2 calculates the
intrinsic LLRs γintr and branch metric LLR γ(s′, s). The EX stage contains the adders required
for the calculation of the 32 state metric LLRs as defined by the equations (1.31) and (1.32) (in
page 19). The MAX1 stage contains the reconfigurable max operators and calculates the α and
β state metric LLRs by taking the maximum of the RADD registers column wise (Figure 2.7a).
During extrinsic generation phase, the max units of MAX1 are reconfigured to calculate the max-
imum of the four RADD registers along the horizontal direction (Figure 2.7b). Thus, 2 partial
aposteriori LLR values are generated per row. The final aposteriori LLRs are generated by the
max units of the MAX2 pipeline stage that calculate the maximum of the eight partial aposteriori
LLRs, to produce the four aposteriori symbol LLRs γapos. The aposteriori LLRs thus generated

48 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

NI

NI

TurbASIP0

Init mem

Ext.
mem

Input
mem

NI

NI

TurbASIP1

Init mem

Ext.
mem

Input
mem

NI

NI

TurbASIP2

Init mem

Ext.
mem

Input
mem

NI

NI

TurbASIP3

Init mem

Ext.
mem

Input
mem

NI

NI

TurbASIP4

Init mem

Ext.
mem

Input
mem

NI

NI

TurbASIP5

Init mem

Ext.
mem

Input
mem

NI

NI

TurbASIP6

Init mem

Ext.
mem

Input
mem

NI

NI

TurbASIP7

Init mem

Ext.
mem

Input
mem

NI

NI

R R R

R R R

R R R

R R R

R R R

R R R

R R R

R R R

Butter fly NOC
Component decoder 0 Component decoder 1

Figure 2.5 — Multi-TurbASIP architecture

can contain overflow errors, which are detected and corrected in the MAX2 pipeline stage (as it
is explained in the next sub-section). The last stage of the pipeline (ST) generates the extrinsic
information from aposteriori LLRs and the intrinsic LLRs γintr as given by the equation (1.36)
(in page 20).

P
re

fe
tc

h

P
ip

el
in

e
re

gs
.

In
st

ru
ct

io
n

 F
et

ch

P
ip

el
in

e
re

gs
.

O
p

er
an

d
 fe

tc
h

P
ip

el
in

e
re

gs
.

γ
sy

s ,
 γ

 p
ar

, S
c*

 γ
 ex

t

P
ip

el
in

e
re

gs
.

γ
in

tr
, γ

B
ac

kw
ar

d
 r

ec
u

rs
io

n
 u

n
it

(γ

 +
β

)

o
r

Fo

rw
ar

d
 r

ec
u

rs
io

n
 u

n
it

(γ

+α
)

P
ip

el
in

e
re

gs
.

P
ip

el
in

e
re

gs
.

M
ax

 u
n

it
s

1

P
ip

el
in

e
re

gs
.

M
ax

 u
n

it
s

2

&

M
ag

n
it

u
d

e
co

rr
ec

ti
o

n

P
ip

el
in

e
re

gs
.

A
p

o
st

er
io

ri
 /

 E
xt

r.
 G

en
.,

H

ar
d

 d
ec

is
io

n

&

N
O

C
 P

ac
ke

t
co

n
st

ru
ct

io
n

PFE FE OPF BM1 BM2 EX MAX1 MAX2 ST

Instruction
Mem.

Input
Mem.

Extr.
Mem.

Cross
Mem.

RMC (α or β)

RC (β or α)

RADD (α,β,γapos)

RG (ϒ)

Register file

x16x2

x32x2

x8x2

x8x2

Interlv.
Mem.

16 32
56 224 224 17

Figure 2.6 — Overview of the TurbASIP pipeline stages along with its register file and memory banks

2.3. INITIAL ASIP ARCHITECTURE FOR FLEXIBLE TURBO DECODING 49

ANF0 ANF1 ANF2 ANF3 ANF4 ANF5 ANF6 ANF7

ANF8 ANF9 ANF10 ANF11 ANF12 ANF13 ANF14 ANF15

ANF16 ANF17 ANF18 ANF19 ANF20 ANF21 ANF22 ANF23

ANF24 ANF25 ANF26 ANF27 ANF28 ANF29 ANF30 ANF31

M
ax o

p
erato

r

M
ax o

p
erato

r

M
ax o

p
erato

r

M
ax o

p
erato

r

M
ax o

p
erato

r

M
ax o

p
erato

r

M
ax o

p
erato

r

M
ax o

p
erato

r

00

01

10

11

S0 S1 S2 S3 S4 S5 S6 S7

(a) Max operators in α or β calculation mode

ANF0 ANF1 ANF2 ANF3 ANF4 ANF5 ANF6 ANF7

ANF8 ANF9 ANF10 ANF11 ANF12 ANF13 ANF14 ANF15

ANF16 ANF17 ANF18 ANF19 ANF20 ANF21 ANF22 ANF23

ANF24 ANF25 ANF26 ANF27 ANF28 ANF29 ANF30 ANF31

Max operator Max operator

Max operator Max operator

Max operator Max operator

Max operator Max operator

00

01

10

11

S1 S2 S3 S4 S5 S6 S7 S0

(b) Max operators in aposteriori calculation mode

Figure 2.7 — Four input max operator modes

2.3.3 Max and modulo operators

While performing the addition operation involved in extrinsic information computation, the al-
ready stored sum (in RADD REG) of state metric and branch metric (α + γ or β + γ) is added
with the other state metric (β or α respectively). Thus, the accumulated metrics during the
backward and forward recursions pose an issue when using a fixed quantization in a hardware
implementation. To avoid this issue, most of existing implementations adopt a rescaling scheme
which often consists of subtracting the minimum metric from all metrics. A more efficient tech-
nique to avoid this issue, which has been adopted in the proposed ASIP architecture, is to apply
the modulo operator [118] which corresponds to the overflow mechanism in two’s complement
arithmetic and therefore has no hardware cost. When overflow occurs, causing metric values to
enter from positive region to negative region, the largest value becomes the smallest. In order
to handle this case, specialized MAX operators are designed (Figure 2.8a) to detect this condi-
tion and produce the correct MAX value. Another issue is when hard decisions are taken on
aposteriori LLR informations or extrinsic LLRs are sent to the other component decoder, as that
component decoder will not be able to differentiate the correct maximum extrinsic. This issue
is resolved by correcting the overflow errors as shown in Figure 2.8b, in which n bits represent
the quantization of state metrics or extrinsic information. If an extrinsic information lies in Q-2,
its two MSB’s will be “01” whereas in Q-3 they will be “10”. Hence, if some of the extrinsic

50 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

S1 S2
13 12 0 13 12 0

-

S2
13 12 0

xor

1 0

S0 S1 S2

MAX(A,B)

14 14
13 13

14

A B

(a) The Max Operator

-2n-1+1 2n-1

0

-2n

2 MSBs=10
 Q3

2 MSBs=11
 Q3

2 MSBs=00
 Q1

2 MSBs=01
 Q2

Overflow

(b) Overflow condition during aposteriori/extrinsic calculation

Figure 2.8 — Max operator unit and over flow condition

informations related to different combinations of a symbol lay in Q-2 and others in Q-3 this will
identify the problematic situation. In this case, the second step is to correct the extrinsic infor-
mation in a way that the largest extrinsic information remains largest. This can be done simply
by incrementing the two MSB bits of all the extrinsic informations of the symbol.

2.3.4 TurbASIP: sample assembly code

TurbASIP is programmed through an assembly code. The instructions of the assembly code are
designed to specifically do specialized operations required by the Turbo decoding algorithm. The
program memory can be split into 3 code sections. The first section (Listing 2.1) corresponds
to the assembly code of the first iteration of the turbo decoding which starts by initializing
the ASIP configuration registers setting the mode by reading the trellis configuration registers
(instruction SET CONF). Next, the size in symbols of half of the window (SET SIZE), the scal-
ing factor (SET SF), number of windows (SET WINDOW N) and the initial window counter
(SET WINDOW ID). The value 6 used by the SET SF command is to scale the input extrinsic
LLRs by 0.875 before computing the branch metrics. Since, WiMAX Turbo code is a circular
code, the initial window boundary state registers of the first window (RMC) are initialized to be
uniform i.e. equi-probable. ZOLB i.e. zero overhead loop instruction, uses branch prediction in
looping. With this single instruction, lines from (@26) and (@27) of code are executed 32 times
i.e. half of window size (as set by the SET SIZE instruction). The instruction at line (@26),
DATA LEFT WITHOUT EXT ADD M COLUMN implement the left side of butterfly decoding
scheme. During the first iteration of the shuffled decoding schedule the extrinsic memories are
uninitialized, hence the WITHOUT EXT field of the instruction specifies not to use extrinsic in-
formation in the branch metric calculations. The ADD M field of the instruction force the ANF
unit to do 32 state metric calculations (α+ γ or β + γ) in the RADD registers in the EX stage of
the pipeline. The COLUMN field enforces MAX units to do max operation column wise, storing
the resulting state metric LLRs (α or β) in the RMC registers in the MAX1 stage of the pipeline.
As RADD and RMC are updated in adjacent pipeline stages, this creates data dependency in the
calculation of RADD register values. Hence, an idle cycle is introduced via NOP instruction at

2.3. INITIAL ASIP ARCHITECTURE FOR FLEXIBLE TURBO DECODING 51

line (@27).

Once the left side of butterfly decoding schedule is complete for a window, the right side
of the butterfly schedule is processed by executing the instructions at lines (@30) and (@33)
32 times. DATA RIGHT WITHOUT EXT ADD M COLUMN calculates the state metric LLRs
similar to the previous DATA instruction. While the subsequent instruction, EXT ADD i LINE
calculates the extrinsic information, wherein the ADD i configures the multiplexers in the ANF
unit of the EX pipeline stage to calculate the sum of RC (α or β) and RADD (which contains
β + γ or α + γ). The field LINE enforces the max operators in the MAX1 pipeline stage to
calculate the maximum row-wise. Additionally, this instruction activates MAX2 and ST pipeline
stages to calculate the γapos and γext informations. Furthermore, the ST stage is activated to
fetch the corresponding interleaved/de-interleaved address for NoC packetization.

If the current processed window is not the last window of the sub-block, the EXC WINDOW
instruction handles the boundary state metrics initialization of the RMC registers (inside the
ASIP). If not, this instruction initializes the next logical window processed by neighboring
ASIPs (neighboring sub-blocks). In both cases, the window counter WINDOW ID is incre-
mented. The instruction REPEAT UNTIL ptr y times at line (@18) executes y+1 times the
instructions from (@current line+2, i.e. line @22) to the flag pointer ptr at line (@38).

The second section of the assembly code (shown in Listing 2.2) corresponds to the other
iterations of the Turbo decoding process, except the last iteration (shown in Listing 2.3). Thus,
the second section is similar to the one presented above, except that the DATA instructions utilize
(and scale) extrinsic LLRs during branch metric calculation. REPEAT UNTIL .. instruction is
reused here in nested way to realize the execution of all the windows for num iter times by the
use of PUSH and POP instructions at lines (@46) and (@60) respectively. These instructions
store and retrieve the current loop counter value (of the outer REPEAT UNTIL... instruction) in
an stack of depth 1.

The final section of the assembly code is presented in Listing 2.3 and corresponds to the
execution of the last iteration. HARD WITH EXT ADD i LINE is similar to the EXT WITH EXT
ADD i LINE instruction, however instead of calculating γext it calculates the hard decision bits
from the aposteriori LLRs. The hard decision bits are accumulated in an internal register while
the instruction ST DEC outputs the final hard decision.

Listing 2.1 — TurbASIP assembly code for the first iteration �
1 .text
2 ;set configuration wimax
3 SET CONF 0
4 SET CONF 1
5 SET CONF 2
6 SET CONF 3
7 ;set half window size
8 SET SIZE 32
9 ; set the scale factor 6=0.875

10 SET SF 6
11 ;set number of windows and initial
12 ;window id counter to zero
13 SET WINDOW N 2
14 SET WINDOW ID 0
15 ;set boundary initialization of
16 ;RMC registers as uniform

52 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

17 SET RMC UNIFORM, UNIFORM
18 REPEAT UNTIL loop0 1 times
19 NOP
20 ;repeat instructions between RW1 to CW1
21 ;and between CW1 to LW1 SET SIZE times
22 ZOLB RW1, CW1, LW1
23 W LD BETA 0
24 ;configure max units to take max column wise.
25 ;store results in RMC
26 RW1: DATA LEFT WITHOUT EXT ADD M COLUMN
27 CW1: NOP
28 ;configure max units to take max column wise.
29 ;store results in RMC
30 DATA RIGHT WITHOUT EXT ADD M COLUMN
31 ;configure max units to take max rowwise.
32 ;to calculate extrinsic
33 LW1: EXT WITHOUT EXT ADD i LINE
34 ;increment the window number
35 EXC WINDOW
36 NOP
37 NOP
38 loop0: NOP

Listing 2.2 — TurbASIP assembly code for the middle iterations (e.g. iterations 2 to 6) �
39 ;start the second part of the turbo decoding
40 ;iterations 2 to 6
41 NOP
42 set window id 0
43 NOP
44 REPEAT UNTIL loop1 4 TIMES
45 NOP
46 PUSH
47 NOP
48 REPEAT UNTIL loop2 1 TIMES
49 NOP
50 ZOLB RW0, CW0, LW0
51 W LD BETA 1
52 RW0: DATA LEFT READ EXT ADD m COLUMN
53 CW0: NOP
54 DATA RIGHT READ EXT ADD m COLUMN
55 LW0: EXT WITH EXT ADD i LINE
56 EXC WINDOW
57 NOP
58 NOP
59 loop2: NOP
60 POP
61 NOP
62 SET WINDOW ID 0

2.3. INITIAL ASIP ARCHITECTURE FOR FLEXIBLE TURBO DECODING 53

63 loop1: NOP

Listing 2.3 — TurbASIP assembly code of the last iteration �
64 ;start the last iteration giving
65 ;out hard decisions
66 REPEAT UNTIL loop3 1 TIMES
67 NOP
68 ZOLB RW, CW, LW
69 W LD BETA 1
70 RW: DATA LEFT READ EXT ADD m COLUMN
71 CW: NOP
72 DATA RIGHT READ EXT ADD m COLUMN
73 LW: HARD WITH EXT ADD i LINE
74 EXC WINDOW
75 NOP
76 NOP
77 ST DEC
78 loop3: NOP
79 NOP
80 NOP
81 NOP

2.3.5 Memory partitions

The input memories are partitioned into two banks each of width 16 bits. Each location of the
memory stores systematic and parity bits adjacent to each other. Considering W is the number
of symbols in a window (i.e. window length) and L the number of windows in the sub-block,
the LLRs corresponding to the first half of the window is stored in the memory bank A and the
second half is stored in the memory bank B (Figure 2.9a). Similarly, the four symbol extrinsic
LLRs arriving through the NoC are also stored in similar order as in Figure 2.9b. The widths
and the depths of the other memory banks in the architecture for TurbASIP in 4x4 configuration
is given in Table 2.1. The instructions are of 16 bits width. The input and extrinsic LLRs are
quantized to 4 bits and 8 bits respectively. Since 8 RMC (each quantized to 8 bits) values are
stored during the processing of the left butterfly. The width of the cross memories is 80 bits. The
interleave / de-interleave memories require 13 bits wide memories as the maximum frame size
is 6144 bits.

2.3.6 ASIC synthesis results

The proposed ASIP was described in LISA and was translated into VHDL using the Processor
Designer tool. ASIC synthesis targeting 65nm general purpose CMOS technology has resulted
in a total TurbASIP area of 0.19 mm2 (logic and memories) with a clock frequency of 500 MHz.
The area utilization of each pipeline stage is as shown in Table 2.2. All the registers used in
the design are jointly represented as Register file. The TurbASIP was initially designed to be
a highly flexible architecture supporting run-time or design time reconfigurability. While trellis
descriptions can be changed at run-time, the bit width or quantization of LLR represented needs

54 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

{S0 S1 P0 P1}W/2 {S0 S1 P0 P1}0

{S0 S1 P0 P1}W/2+1 {S0 S1 P0 P1}1

{S0 S1 P0 P1}W/2+2 {S0 S1 P0 P1}2

{S0 S1 P0 P1}W/2+3 {S0 S1 P0 P1}3

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

{S0 S1 P0 P1}3W/2 {S0 S1 P0 P1}W

{S0 S1 P0 P1} 3W/2+1 {S0 S1 P0 P1}W+1

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

{S0 S1 P0 P1} LW/2 {S0 S1 P0 P1}LW

{S0 S1 P0 P1} LW/2+1 {S0 S1 P0 P1}LW+1

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

Memory bank B Memory bank A

W
in

d
o

w
 0

W

in
d

o
w

s
 1

 to
 (L-1

)
Last

 W
in

d
o

w
 (L)

16 16

(a) Channel LLRs

{γext11 γext10 γ
ext

01 γ
ext

00}W/2 {γext11 γext10 γ
ext

01 γ
ext

00}0

{γext11 γext10 γ
ext

01 γ
ext

00}W/2+1 {γext11 γext10 γ
ext

01 γ
ext

00}1

{γext11 γext10 γ
ext

01 γ
ext

00}W/2+2 {γext11 γext10 γ
ext

01 γ
ext

00}2

{γext11 γext10 γ
ext

01 γ
ext

00}W/2+3 {γext11 γext10 γ
ext

01 γ
ext

00}3

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

{γext11 γext10 γ
ext

01 γ
ext

00}3W/2 {γext11 γext10 γ
ext

01 γ
ext

00}W

{γext11 γext10 γ
ext

01 γ
ext

00}

3W/2+1

{γext11 γext10 γ
ext

01 γ
ext

00}W+

1

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

{γext11 γext10 γ
ext

01 γ
ext

00} LW/2 {γext11 γext10 γ
ext

01 γ
ext

00}LW

{γext11 γext10 γ
ext

01 γ
ext

00} LW/2+1 {γext11 γext10 γ
ext

01 γ
ext

00}LW+

1

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

Memory bank B Memory bank A

W
in

d
o

w
 0

W

in
d

o
w

s
 1

 to
 (L-1

)
Last

 W
in

d
o

w
 (L)

32 32

(b) Extrinsic LLRs

Figure 2.9 — TurbASIP: LLRs storage in memory banks

to be fixed at design time. As TurbASIP serves as the base design of the thesis, we present the
architecture synthesis results with its original quantization of 4 and 8 bits input and extrinsic
LLR representation respectively. The total area of the 4x4 TurbASIP system decoder is 1.53
mm2 (Table 2.2).

2.4. SUMMARY 55

Memory Number of banks Depth Width
Input 2 768 16

Extrinsic 2 768 32
Cross 2 32 80

Interleave/deinterleave 1 768 13
Trellis description Regs. 1 4 32

State boundary 1 12 80
Instruction memory 1 16 64

Table 2.1 — Memory bank partitions for a single TurbASIP in 4x4 mode

Design unit Area in um2

PF 613
FE 261
DC 1481
OPF 804
BM1 1741
BM2 2272
EX 9974

MAX1 7200
MAX2 842

ST 2205
Register File 34380

Memory Interface 4586
Total TurbASIP logic 70426

Total TurbASIP memories 120308
Butterfly NOC 18980

Total 4x4 TurbASIP system decoder 1535368

Table 2.2 — ASIC synthesis results for complete 4x4 TurbASIP system using 65nm general purpose
CMOS technology (worst case 0.9v, 125C)

On average, in order to process two double binary symbols, TurbASIP needs 2 instructions
for left butterfly (lines @52 and @53 of Listing 2.2) and 2 instructions for right butterfly (lines
@54 and @55 of Listing 2.2) per iteration. This means that TurbASIP needsNinstr = 4 instruc-
tions (thus 4 clock cycles) to process 4 bits (2 symbols each composed of Bitssym = 2 bits),
per iteration. The throughput achieved is given by the expression:

Throughput =
2×Bitssym × fclk ×NA/2

Ninstr ×Niter
(2.1)

where NA= Number of ASIPs.

Considering a 4x4 TurbASIP system decoder, and using the above expression where NA=8,
fclk=500MHz, Niter=6, the achieved throughput is around 333 Mbps.

2.4 Summary

This second chapter has introduced the concept of ASIP-based design and the associated de-
sign methodology and tool which are considered in this thesis work. Furthermore, an overview

56 CHAPTER 2. ASIP DESIGN METHODOLOGY AND STATE OF THE ART IN CHANNEL DECODER DESIGN

on state-of-the-art efforts in channel decoder design was addressed. The proposed overview
presents a selection of recent works related to the thesis scope in terms of flexibility support of
Turbo and LDPC decoding in order to clarify the position of the proposed contributions in this
thesis.

The chapter has also presented the architecture of an initial ASIP for flexible Turbo decoding.
This ASIP has been developed in a previous thesis study at the Electronic department of Telecom
Bretagne. In this initial architecture, the main target was to explore the effectiveness of the
newly proposed ASIP-design tools in terms of quality of the generated HDL code and flexibility
limitations when targeting this class of applications. To that end, the target flexibility was set
very high to investigate the support of any convolutional code trellis of Turbo codes. Although
not supporting LDPC decoding, this architecture has investigated the exploitation of the various
parallelism techniques available for Turbo decoding, particularly for DBTC. This initial effort
constitutes the starting point of this thesis work.

CHAPTER

3 DecASIP: Flexible
Turbo/LDPC Decoder

THIS chapter presents our contributions in the design of flexible and optimized channel de-
coder supporting Turbo and LDPC codes. Starting with the initial TurbASIP architecture

presented in the previous chapter, several design goals were specified for this work, which were:
(1) efficient resource sharing between the LDPC and Turbo decoding modes, (2) scalability
to support current and future high throughput requirements, (3) new LDPC decoding schedule
adapted to the base TurbASIP architecture, (4) exploring possible parallelism techniques for ef-
ficient decoding of SBTC, DBTC, and LDPC codes, and (5) quick reconfigurability between the
different supported decoding modes. In order to be relevant to the industrial needs we limited
the design flexibility supporting only LDPC and Turbo codes specified in WiFi, WiMAX, and
LTE. Furthermore, this also enables to compare with existing state-of-the-art implementations.

Towards fulfilling these objectives, an ASIP-based multiprocessor architecture is proposed
and designed in two steps. In the first step we designed a novel ASIP architecture (DecASIPv1)
and developed an 8 DecASIP system decoder, efficiently mapping the target standards. In the
second step (DecASIPv2) mainly enhanced the throughput in LDPC mode by increasing the
supported parallism degree. Additionally, a modified LDPC scheduling was proposed to support
4-DecASIP or 2-DecASIP decoder architectures.

The first section of this chapter presents the design motivations and architectural choices
made for the DecASIPv1. A detailed analysis of the quantization impacts alongs with the per-
formance evaluation vis a vis reference models for different implemented modes (SBTC (LTE),
DBTC (WiMAX) and LDPC (WiFi, WiMAX) modes) are also presented. The second and third
sections present the two design phases of the proposed DecASIP channel decoder.

57

58 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

3.1 Design motivations

Towards the design goals stated above, and considering the state-of-the-art analysis presented
in the previous chapter together with the available TurbASIP architecture, few general design
decisions have been made. Regarding the target architecture model, we adopt multi-ASIP NoC
based approach for rapid design cycle and design scalability. Regarding resource sharing for
the target Turbo/LDPC channel decoder, and taking into consideration the dominant memory
requirement along with the availability of low computational complexity decoding algorithms,
we choose to investigate efficient memory and communication interconnect sharing while using
Max-Log-MAP for Turbo decoding and NMS for LDPC decoding.

As the target flexibility is chosen to be limited to the support of LDPC and Turbo codes
specified in WiFi, WiMAX, and LTE standards, the corresponding communication modes and
throughput requirements (Table 1 in page 1) are considered.

In addition to these general design choices, below a summary of other specific design
choices related to LDPC and Turbo modes for the target proposal of flexible ASIP channel
decoder, namely DecASIP.

LDPC mode:

• With the general design choice of investigating multi-ASIP architecture model and scala-
bility, and the fact that all LDPC codes specified in the target WiFi and WiMAX standards
have 24 variable node groups (columns of the Hbase), we chose to target an ASIP design
processing 3 variable node groups and 3 check nodes. The aim is to design a reasonable
scalable decoder that avoids small memory fragments and yet be capable of processing the
entire input frame with reasonable parallelism degree. In this regard, the parallelism degree
can be scaled using a multi-ASIP decoding architecture with a maximum of 8 ASIPs to
process the whole 24 variable node groups in parallel.

• With the target scalable multi-ASIP decoder, we choose to investigate new computational
scheduling which allows to keep channel LLRs localized to the ASIP and to move only the
required data as messages across the multiple ASIPs. Furthermore, in this context, NoC
based communication interconnect can be adopted.

Turbo mode:

• We chose to use the available TurbASIP architecture as a starting point for the target De-
cASIP in Turbo mode. Given the target maximum scalability of 8 ASIPs in LDPC mode,
we chose to reduce the internal parallelism degree of TurbASIP by removing one recursion
unit. This choice halves the throughput of TurbASIP, yet achieves the target throughput of
150Mbps in LTE mode with 8 TurbASIP (equation (2.1)).

• Low complexity ARP and QPP hardware interleaving generators are adopted in DecASIP
rather than the memory-based interleavers used in TurbASIP.

• Radix-4 trellis compression technique is adopted in SBTC mode (LTE) for efficient hard-
ware resource sharing with DBTC mode (WiMAX).

• As seen in the previous chapter, the program memory of the TurbASIP is composed of
3 sections: one for the first iteration, followed by an assembly code section for regular
iterations and at the end a section for the last iteration and hard decision. This results in a
large program memory which we target to avoid in DecASIP by making the loop branch
decisions automatically based on internal counters.

3.1. DESIGN MOTIVATIONS 59

3.1.1 Architecture Efficiency

The aim of this thesis work is to propose channel decoder architectures targeting high flexibility,
but with a main focus on the architecture efficiency in terms of performance/area. In order to be
able to evaluate the different architecture alternatives and design approaches which are explored
and to be able to compare with state-of-the-art implementations, we define the Architecture
efficiency (AE) metric as follows:

AE =
Throughput×Niter

AreaNorm × fclk
(3.1)

Its unit of measure is bits/cycle/iteration/mm2 and it represents the number of decoded
bits per clock cycle per iteration per mm2 that the proposed iterative channel decoder imple-
mentation is able to deliver. A high architecture efficiency indicates an optimized design which
exploits efficiently its hardware resources during its execution time. It is worth to note here that
even this metric does not exhibits directly the energy consumption measure it still has an indirect
relation with it: improving the use of the hardware resources at each clock cycle will typically
lead to improved energy efficiency for a fixed target throughput requirement.

An interesting point in the above expression of the AE concerns the normalization of the
throughput achieved with respect to the considered clock frequency (fclk) which increases the
fairness when comparisons are done between different decoding architectures running at differ-
ent clock frequencies. Published results in this context consider either the maximum achievable
clock frequency by the proposed architecture or a lower operational clock frequency which is
sufficient to achieve the target throughput. Thus, normalizing the presented throughput by the
considered clock frequency enables to better exhibit the efficiency of the proposed architectural
choices.

Towards the same objective, the above expression of the AE normalizes the throughput by
the considered number of decoding iterations (Niter) as the published results can use slightly
different values which impact the overall throughput. In most of these works, the same low
complexity decoding algorithms, with identical convergence speed, are used.

Similarly, the AE expression uses a normalized area measure (AreaNorm) as the published
decoders are often based on different technology nodes (e.g. 180nm, 130nm, 65nm, etc.). To
than end, the following scaling formula is used [119]:

AreaNorm = AreaGiven(
TechNorm

TechGiven
)2 (3.2)

where:
TechNorm = Feature size of the target technology for normalization; in our case it is 65nm,
TechGiven = Feature size of the technology used,
AreaGiven = Occupied Area,
AreaNorm = Normalized Area.

In addition, when the published design area is given post-place and route a downscaling
factor of 2 is applied to obtain a reasonable estimate of the post-synthesis area. This factor
is not very accurate as it depends to many parameters (technology node, CAD tools, operat-
ing conditions, etc.), but it gives a reasonable idea as it corresponds to the usually observed
ratio [117]. Similarly, the achievable maximum clock frequency can vary in this context. It

60 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

is worth to note here that the technology nodes and foundries provide many different libraries
associated with different characteristics and conditions (high speed, high density, low power,
general purpose with worst, nominal, or best case operating conditions in terms of temperature
and supply voltage) which can impact considerably the resulting area and maximum clock fre-
quency. This issue increases the difficulty to make a fully fair comparison with state-of-the-art
implementations which use different target technology and/or operating conditions.

Finally, we consider in this evaluation that the compared architectures provide identical com-
munication performances in terms of error rates, close to the reference optimal decoding of the
considered codes and communication parameters. In this context, it is worth to note that an ap-
propriate quantization should be used as besides its impact on the communication performance,
it impacts significantly the channel decoder area in terms of memory, computation, and commu-
nication resources.

In this thesis work, we consider the technology feature size of the target technology
for normalization to be TechNorm=65nm. Using the above expression, the architecture
efficiency of the TurbASIP decoder (presented in the previous chapter) evaluates to 2.6
bits/cycle/iteration/mm2.

3.1.2 Quantization analysis

In the objective to achieve an area optimized channel decoder while preserving the communica-
tion performances in terms of error rates, accurate simulation analysis of the quantized C-models
of Turbo and LDPC decoding algorithms are inevitable. The analysis presented in this section
considers the quantization levels of input and extrinsic LLRs along with extrinsic LLR scaling
factors Sc in order to achieve the required convergence with acceptable performance degrada-
tion in terms of bit error rates. For Turbo decoding, the algorithm considered is the Max-Log
MAP algorithm presented in Chapter 1. For ease of presentation, we denote the quantization
values of the input LLRs (in), the extrinsic LLRs (ex), and the extrinsic scaling factors (SC) as
(in, ex, SC). Figure 3.1 presents the BER simulation results for 6 and 8 Turbo iterations for the
WiMAX standard (DBTC) with a frame size of 1920 bits using floating point C-simulations. The
figure also presents the BER simulation results for 7 iterations with two different quantizations:
(6,8,0.875) and (5,7,0.875). Similar curves from floating point C-simulations (6 iterations) along
with quantizations of (5,7,0.4375) and (6,8,0.4375) are drawn in Figure 3.2 for the LTE standard
(SBTC) with a frame size of 1440 bits using radix-4 trellis compression with 8 and 7 iterations
respectively. From both figures it can be observed that the quantizations (in,ext)=(6,8) and (5,7)
perform close to the floating point simulation results with acceptable performance degradation
of less than 0.2 dB. Additionally, scaling factors of 0.875 (for the DBTC of WiMAX) and 0.4375
(for the SBTC of LTE) were found suitable for both communication performance and hardware
implementation requirements.

Regarding LDPC decoding, Figure 3.3 presents the reference curves obtained for the code
rate 1/2 of WiMAX and WiFi LDPC codes for frame sizes of 1152 bits and 1296 bits. Floating
point C-simulations of the NMS algorithm are found to have approximately 0.10 dB performance
degradation w.r.t the ideal reference using Sum-Product Algorithm (SPA). The quantized model
with (7,5,0.875) has less than 0.1dB w.r.t. the floating point C-simulations of the Sum-Product
Algorithm. Very little BER performance improvements are obtained beyond 15 iterations. Au-
thors of [107] present a look up table based update that further reduces the performance loss to
less than 0.1 dB.

3.1. DESIGN MOTIVATIONS 61

0 0.2 0.4 0.6 0.8 1 1.2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

C_floating_WiMAX_960_6iter
C_floating_WiMAX_960_8iter
C_equiv_WiMAX_960_7iter_in5ext7
C_equiv_WiMAX_960_7iter_in6ext8

(a) BER results

0 0.2 0.4 0.6 0.8 1 1.2
10

−3

10
−2

10
−1

10
0

SNR [dB]

F
E

R

C_floating_WiMAX_960_6iter
C_floating_WiMAX_960_8iter
C_equiv_WiMAX_960_7iter_in5ext7
C_equiv_WiMAX_960_7iter_in6ext8

(b) FER results

Figure 3.1 — C-simulations BER and FER results for WiMAX frame size 1920 bits and code rate of
1/3

0 0.2 0.4 0.6 0.8 1 1.2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

C_equiv_LTE_720_8iter_in5ext7
C_equiv_LTE_720_7iter_in6ext8
C_floating_LTE_720_6iter

(a) BER results

0 0.2 0.4 0.6 0.8 1 1.2
10

−3

10
−2

10
−1

10
0

SNR [dB]

F
E

R

C_equiv_LTE_720_8iter_in5ext7
C_equiv_LTE_720_7iter_in6ext8
C_floating_LTE_720_6iter

(b) FER results

Figure 3.2 — C-simulation BER and FER results for LTE frame size 1440 bits and code rate of 1/3

0 0.5 1 1.5 2 2.5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

C_SPA_WiFi_Z54_15iter
C_NMS_WiFi_Z54_15iter
C_NMS_WiFi_Z54_15iter_a875_in7ex5
C_SPA_WiMAX_Z48_15iter
C_NMS_WiMAX_Z48_15iter
C_NMS_WiMAX_Z48_15iter_a875_in7ex5

(a) BER results

0 0.5 1 1.5 2 2.5

10
−3

10
−2

10
−1

10
0

SNR [dB]

F
E

R

C_SPA_WiFi_Z54_15iter
C_NMS_WiFi_Z54_15iter_a875
C_NMS_WiFi_Z54_15iter_a875_in7ex5
C_SPA_WiMAX_Z48_15iter
C_NMS_WiMAX_Z48_15iter_a875
C_NMS_WiMAX_Z48_15iter_a875_in7ex5

(b) FER results

Figure 3.3 — C-simulation BER and FER results for LDPC WiMAX Z=48 and WiFi Z=54 and code
rate of 1/2

62 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

3.2 DecASIPv1

In this section we present our first design approach towards the target flexible multi-ASIP ar-
chitecture supporting the decoding of LDPC and Turbo codes. Regrading the support of Turbo
decoding, the presented TurbASIP architecture in the previous chapter constitutes our starting
point and this section details mainly the added or modified features. Additionally, this section
presents the architectural enhancements to support the LDPC decoding with special emphasis on
LDPC computational scheduling and hardware resource sharing (memories and communication
structure).

3.2.1 System architecture

Based on the design motivations presented in the previous section, the proposed “DecASIPv1”
system architecture is shown in Figure 3.4. It consists of 8 DecASIPs interconnected via a de-
Bruijn network. The topology of the de-Bruijn NoC is as shown in Figure 3.5. For the Turbo
decoding mode, the DecASIPs of each of the two component decoders are also connected by
two 10-bit buses (referenced here as α − β bus) to allow the exchange of sub-block boundary
state metrics. Each DecASIP has 3 memory banks of size 256× 24 which are used to store the
input channel LLR values (input CV memories). The extrinsic LLR values are stored in 3 banks
of size 256× 30. Each DecASIP is further equipped with two 32× 80 memories (not shown in
Figure 4.5) which implement buffers to store the state metrics β in Turbo mode and the variable
to check node messages L(n,m) in LDPC mode.

DecASIP0

DecASIP1

DecASIP2

DecASIP3

DecASIP7

DecASIP

DecASIP5

DecASIP4

CV

CV

CV

CV

Ext.
Mem

Ext.
Mem

Ext..
Mem

Ext.
Mem

Ext.
mem

Ext..
Mem

Ext.
Mem

Ext.
Mem

NI0

NI1

NI2

NI3

CV

CV

CV

CV

Component decoder 1 Component decoder 0

NI7

NI6

NI5

NI4

10

10

10

10
3x

3x

3x

3x x3

x3

x3

x3

x3

x3

x3

x3 3x

3x

3x

3x

De-Bruijn NOC

α-β network α-β network

Figure 3.4 — DecASIPv1 System Architecture

3.2. DECASIPV 1 63

NI0

NI4

NI1

NI2 NI5

NI6

NI3

NI7

Figure 3.5 — Binary de-Bruijn NoC topology for 8 nodes

3.2.2 Turbo mode

The system architecture in Turbo mode is quite similar to the TurbASIP system architecture
presented in Section 2.3 (page 46), with DecASIPs connected to the Network Interfaces (NI)
(0,1,2,3) and (4,5,6,7) as component decoder0 and component decoder1 respectively. As a de-
sign choice, a maximum window size of 64 symbols is adopted. Window sizes below this value
present boundary effects that result in performance degradation [16] for a given number of it-
erations. Each input memory bank can store a maximum of 4 windows and each DecASIP can
process a maximum of 12 windows (3 banks with 4 windows each). Thus, the maximum frame
size that can be supported in Turbo mode with the 4 × 4 DecASIP system architecture is 6144
bits (which is the maximum frame size specified in the LTE standard). The α and β state metric
exchanges across sub-block boundaries are done via the 10 bit α-β buses.

3.2.2.1 Memory architecture

As mentioned in the previous section, the input channel values (LLRs) are quantized to 6 bits in
Turbo mode (SBTC, DBTC). Systematic LLRs (S1, S0) and parity LLRs (P1, P0) are stored in
the input memory banks as shown in Figure 3.6. Each of the 3 input memory banks of the De-
cASIPs of component decoder0 are 24 bits wide. Note that for SBTC mode, systematic channel
LLRs (S1’, S0’) of the component decoder1 arrive in interleaved order, while the parity chan-
nel LLRs (P1’, P0’) arrive in natural order. Hence, each input memory bank of the component
decoder1 are split into 3 sub-banks of width 12, 6, and 6.

Each extrinsic memory bank is divided into 2 smaller banks (15 bits each). In DBTC mode,
γn.ext01 and γn.ext10 are stored in the MemL, while γn.ext11 is stored in MemU (Figure 3.7a).
In SBTC mode, the two extrinsic LLRs (γext0 and γext1) corresponding to S0 and S1 are stored
in the lower and upper memory respectively as shown in Figure 3.7b.

As Radix-4 trellis compression technique is used in SBTC mode, (i)th and (i+1)th bit ex-
trinsic LLRs (γexti , γexti+1) corresponding to the systematic bits (Si, Si+1) are generated in
pairs and are written in the extrinsic memory banks of the other component decoder in inter-
leaved/deinterleaved order as required. This implies that the write addresses of these bit extrin-
sic LLRs can be different. In DBTC mode, the 3 normalized extrinsic LLRs (γn.ext11, γn.ext10,
γn.ext01)i have the same write address corresponding to the same ith systematic bit pair (S0,S1)i.

64 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

In order to enable simultaneous writing in both modes, the extrinsic memory banks are divided
as shown in Figure 3.7.

P1(1) P0(0)

P1(3) P0(2)

P1(5) P0(4)

P1(511) P0(510)

S1(1) S0(0)

S1(3) S0(2)

S1(5) S0(4)

S1(511) S0(510)

24

Mem

(a) Component decoder 0

P1’(1) P0’(0)

P1’(3) P0’(2)

P1’(5) P0’(4)

P1’(511) P0’(510)

S1’(1)

S1’(3)

S1’(5)

S1’(511)

S0’(0)

S0’(2)

S0’(4)

S0’(510)

6 12 6

MemL MemU

(b) Component decoder 1

Figure 3.6 — DecASIPv1: Input memory (CV) bank0 organization in Turbo mode

0 γn.ext11(0)

0 γn.ext11(1)

0 γn.ext11(2)

0 γn.ext11(255)

γn.ext10(0) γn.ext01(0)

γn.ext10(1) γn.ext01(1)

γn.ext10(2) γn.ext01(2)

γn.ext10(255) γn.ext01(255)

8

MemL MemU

6 8 8

(a) In DBTC mode

0 γext1(1)

0 γext1(3)

0 γext1(5)

0 γext1(511)

0 γext0 (0)

0 γext0(2)

0 γext0(4)

0 γext0(510)

7 + 8 8

MemL MemU

7

(b) In SBTC mode

Figure 3.7 — DecASIPv1: Extrinsic memory bank0 organization in Turbo mode

3.2.2.2 Processing schedule

Each of the DecASIP recursion unit is optimized to process the SBTC trellis specified in the LTE
standard with Radix-4 trellis compression along with the DBTC trellis specified in the WiMAX
standard in forward and backward recursion modes. The forward-backward schedule (presented
in Section 1.3.4.1, page 21) is slightly modified in this implementation by first executing the
backward schedule followed by the forward schedule. Figure 3.8 illustrates the adopted pro-
cessing schedule in Turbo mode. Notice that this scheme ensures that the extrinsic information
generated are always in sequence within a sub-block requiring initialization at the beginning of
the sub-block. As in the TurbASIP case, the sub-block boundary state metric initialization are
done via exchange of α and β state metrics at the end of each iteration (Figure 4.5) through the
α-β buses.

3.2.2.3 Pipeline architecture

Figure 3.9 presents the pipeline stages of the DecASIPv1 using the same building blocks of the
TurbASIP (referred in Section 2.3.2). The main difference here remains in the utilization of one

3.2. DECASIPV 1 65

W1

W2

W12

Time

Su
b

b
lo

ck
0

…

…

…

… … … … …

D
ec

A
SI

P
0

W1

W2

W12

Su
b

b
lo

ck
1

D
ec

A
SI

P
1

W1

W2

W12

Su
b

b
lo

ck
2

D
ec

A
SI

P
2

W1

W2

W12

Su
b

b
lo

ck
3

D
ec

A
SI

P
3

…

…

…

… … … … …

…

…

…

… … … … …

Iteration 1 Iteration 2

C
o

m
p

o
n

en
t

d
ec

o
d

er
 0

…

…

…

… … … … …

…

…

…

Same scheme applies for DecASIP2

Same scheme applies for DecASIP3

Backward recursion (β)

Forward recursion (α)
& Extrinsic generation

Boundary α metrics
Exchange inside DecASIP

αinit

βinit

αinit

βinit

Boundary α metrics
Exchange between DecASIPs
(via the α- β network)

Boundary β metrics
Exchange inside DecASIP
(between iterations)

Boundary β metrics
Exchange between DecASIPs
(via the α- β network)

Figure 3.8 — DecASIPv1: Backward-Forward schedule adopted in Turbo mode. The number of pro-
cessed windows per DecASIP depends on the frame size, the maximum number of windows per De-

cASIP is 12.

recursion unit that processes the trellis steps in the backward and the forward directions in the
Ex pipeline stage. Furthermore, the ST pipeline stage produces two extrinsic LLRs in SBTC
mode and 3 normalized (w.r.t. to γext00) symbol extrinsic LLRs in DBTC mode.

3.2.2.4 Interleave/deinterleave address generation

The generated extrinsic information packets also carry the address header which determines
the destination DecASIP and the memory address at which the data is written. The inter-
leaving/deinterleaving addresses required w.r.t. the LTE standard QPP interleaving rule is as
described below.

Let N be the frame size in bits at the encoder input. For j = 0...N − 1,
I(j) = (F1 ∗ j + F2 ∗ j2)modN , where F1 and F2 are constants defined in the standard
with j being the index of the natural order. These addresses can be recursively derived using the

66 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

P0

Bit2sym

FIFO
(internal)

βi=0..7

(12x80)

Extrinsic regs.

Scale factor

4- Adders

10 adders and sub tractors

Max2

Sign rotation

Sym2LLR

4 subs tractors

Normalization and
saturation to 8 bits

Ext3

WiMAX LTE

Bit2sym

S1 S0 P1

RMC1 RMC2 RMC3 RMC4 RMC5 RMC0 RMC6 RMC7

Max2 Max2 Max2

Ext2 Ext1 Ext0

Cross
Metric
βi=0..7

(32x80)

S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(7)

S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(7)

S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(7)

S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(7) γ00

γ 01

γ 10

γ 11

Bit2sym

γintr
00,γ

intr
01,γ

intr
10,γ

intr
11

8 RC
Regs

γext
00

γpar
11,γ

par
10

γsys
11,γ

sys
10

γn.ext01

Interleave /
Deinterleave

address
generation

γn.ext10 γn.ext11

Concat

0

32

32 32

32 28

6 6 6 6

Input
memory

(256x24)

Extr.
memory

(256x30)

Instr.
memory

(128x16)

3X

3X

2X

PreFetch

Fetch

Decode

OPF

BM1

BM2

EX

MAX1

MAX2

ST

14

hard LTE

32

Addr0,Addr1

in
it

Fo
rw

ard

γext(i) γext(i+1)

Figure 3.9 — DecASIPv1: Pipeline architecture in Turbo mode

following expressions:

I(j + 1) = (I(j) +G(j))modN (3.3)

G(j) = (G(j − 1) + 2F1)modN (3.4)

The deinterleaved address pattern required by component decoder1 can be generated recursively
as described here. Let the deinterleaved address sequence be D = [d0, d1, ..dN−1]. Taking a
second order modulo-N linear circular difference of the sequence D gives step size values as
given by the equation (3.5) and (3.6) below. The number of steps (Ns) depends on the frame
size and can take at most 8 different values.

D′ = [d0 − dN−1, d1 − d0, ..., dN−1 − dN−2]modN (3.5)

D′′ = [D′0 −D′N−1, D′1 −D′0, ..., D′N−1 −D′N−2]modN (3.6)

3.2. DECASIPV 1 67

value
LTE 1440 bits WiMAX 1920 bits

Interleaved deinterleaved Interleaved deinterleaved
Step 0 840 120 39 659
Step 1 840 120 35 587
Step 2 840 120 59 759
Step 3 840 120 135 87
Step 4 840 120 39 659
Step 5 840 120 35 587
Step 6 840 120 59 759
Step 7 840 120 135 87
Seed 0 929 1409 886 302
Seed 1 1111 1351 0 0

Table 3.1 — DecASIPv1: Interleaved/deinterleaved address generation step and seed values in Turbo
mode

The following pseudo code illustrates the deinterleave address generation process:

for i = 1 : N
d(i) = (d(i−1) −D′(i−1))modN ;

D′i = (D′(i−1) +D′′((i− 1)mod(Ns)))modN ;

end

Similar sequences is generated for the ARP interleaver specified in the WiMAX standard, where
the number of steps obtained is maximum 4. Figure 3.10 presents the corresponding hardware
generation architecture. Table 3.1 gives an example of the step and seed values for LTE and

Step
 0

..7

Mod N Mod N

R
egister

Index counter =0..7

init init Seed0 Seed1

Interleaved/
Deinterleaved
address

1 1 0 0

Init=1, at initialization
 0, for addr. generation

Figure 3.10 — DecASIPv1: ARP and QPP interleaved/deinterleaved address generation in Turbo mode

WiMAX frames of length 1440 bits and 1920 bits respectively. Similar values can be derived
from the above expressions for all frame sizes specified in these standards.

3.2.2.5 NoC messages

As the maximum number of NoC messages (extrinsic information) generated in the forward
recursion is 2 (SBTC mode), the NoC message format is as shown in Figure 3.11. In the
DBTC mode, two packets are generated one carrying (γn.ext10 & γn.ext11) and the other car-
rying γn.ext01. Both packets are addressed to the same destination. The router adds 13 more

68 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

bits for network congestion management, namely the time stamp and priority bits. Detailed
description on this NoC routing can be found in [20].

Routing
information

Priority Time stamp Address
Extrinsic

Data

4 bits 4 bits 5 bits 13 bits 16/8 bits

Figure 3.11 — DecASIPv1: NoC packets format in Turbo mode

3.2.2.6 Assembly code

An assembly code example of the DecASIP in Turbo mode is as shown in Listing 3.1.
First we initialize the DecASIP mode (SBTC, DBTC), the current window counter value
(n = 0), the number of windows (L) per DecASIP, the length of windows (W) and the
length of the last window (WL). The REPEAT instruction controls the number of iterations
(ITER MAX=6). Notice the absence of the PUSH and POP instructions (used in TurbASIP),
which are implied through the REPEAT instruction that recursively increments the window
counter until WINDOW N to complete one iteration and then initializing it back to zero at
the beginning of a new iteration. Furthermore, the REPEAT instruction also enables the
execution of the EXE REC only if the last window is executed in the previous iteration. This
ensures that the boundary state metric LLRs are exchanged only after the last window is
processed. For the first iteration (iter=0) the DecASIPs start with zero as the initial state metric
(α int(witer=0

n=0)(i = 0) = β int(witer=0
n=0)(i = W − 1) = 0). During the first iteration, the

extrinsic memory contents are not read as they are still uninitialized.
As in the TurbASIP design, the ZOLB instruction enables the execution of the instructions at
lines @26-27 and @30-32 to execute W number of times. In case the current window being
processed is the last window of the sub-block, instructions at lines @26-27 and @30-32 are
executed WL number of times.

Listing 3.1 — DecASIPv1: Assembly code in DBTC mode. Example with a frame size of 1920 bits
and 8-DecASIP system decoder �

1 ;initialize DecASIPs registers from configuration memory
2 SET CONF double
3 INIT: NOP
4 ;set current window counter n=0
5 SET WINDOW ID 0
6 ;set max. number of windows
7 SET WINDOW N 3
8 ;set regular (W) and last window length W L
9 SET SIZE 63,48

10 ;repeat @11−41 if last window executed else
11 ;repeat @28−41, for 6∗WINDOW N times
12 REPEAT until LOOP 6 times
13 NOP
14 ;exchange alpha0−beta0 of state0−7
15 EXE REC ALPHA BETA0

3.2. DECASIPV 1 69

16 EXE REC ALPHA BETA1
17 EXE REC ALPHA BETA2
18 EXE REC ALPHA BETA3
19 EXE REC ALPHA BETA4
20 EXE REC ALPHA BETA5
21 EXE REC ALPHA BETA6
22 EXE REC ALPHA BETA7
23 ;repeat 30−31, and 35−36 for Current ”WindowLen” times
24 ZOLB RW1, CW1, LW1
25 NOP
26 RW1: DATA LEFT ADD M COLUMN2
27 NOP
28 ;save last beta load alpha init
29 CW1: EX BETA ALPHA
30 DATA RIGHT ADD M COLUMN2
31 ;gen ext
32 LW1: EXTCALC add i line2 EXT
33 ;save last alpha load beta init if lastwindow
34 ;else exchange calculated alpha and beta
35 EXCH WIN
36 NOP
37 LOOP: NOP
38 ;finish decoding and halt
39 PROC STOP

Backward recursion
The DATA LEFT instruction executes the backward recursion calculating the β metrics. At
the end of the window processing in the backward direction, the EX BETA ALPHA instruction
saves the last calculated β int(witer

n)(i = 0) state metric in the boundary state memory (internal
FIFO) and loads the α int(witer

(n))=α(witer
(n−1)) metric of the previous window to the state metric

registers (RMC).

Forward recursion
The DATA RIGHT instruction executes the forward recursion calculating the α metrics, while
the instruction EXTCALC calculates the extrinsic information (equation (1.37), page 20)
and sends them to the other component decoder through the de-Bruijn NoC. The EXTCALC
instruction also asserts the interleave/deinterleave generation logic to generate the address that
forms the address field of the NoC message. In case of SBTC mode, the address generation
logic is asserted twice to obtain the addresses of two bit extrinsic LLRs generated (equations
(1.32) and (1.37), page 20). In DBTC mode, the address generation logic is asserted once to
obtain the address for the normalized symbol LLRs. The EXCH WIN instruction increments
the current window counter (n = n+ 1) and forwards the last α int(witer

n−1)(i = W − 1) values
as α int(witer

(n))(i = 0). It also initializes the state metric registers (RMC) that now contain
βwitern

(i = W − 1) with βwiter−1
n+1

(i = 0) of window n + 1, thus preparing the DecASIP for the
next window processing.

The above two steps are repeated until all windows and all iterations are completed.
During the last iteration, the REPEAT instruction sets a flag to generate the hard decisions while

70 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

executing the forward recursion.

The trellis termination strategy used in the SBTC of the LTE standard is through zero
padding and is achieved by inserting 3 zeros at the end of encoding process (Sub-section 1.2.1,
page 13). This equates to processing an extra 1 and half symbols (after radix-4 compression) by
DecASIPs 3 and 4. As per the specifications of the standard, these tail bits do not exchange ex-
trinsic information but are needed to be processed to estimate the initial states for the backward
recursion of the last window of DecASIPs 3 and 4. In the DecASIPv1, this tail bits processing
is achieved by rounding off the extra 1 and half symbols to 2 symbols by adding dummy zero
LLRs to the last bit and processing these last 2 symbols separately as a window (as shown
in the Listing 3.2). The instructions between lines @11 and @12 process these tail bits by
initializing the fetch units to one more than the last window, i.e. L+1, and executing the two sym-
bols in the backward direction. This initializes the βwiter=0

n=L
(i = WL−1) boundary state register.

After this tail bits processing is completed, the window counters are initialized back to 0
and the execution continues similar to the DBTC mode. During the tail bits processing, all other
DecASIPs (0,1,2 and 5,6,7) execute idle (NOP) instructions.

Listing 3.2 — DecASIPv1: Assembly code in SBTC mode. Example with a frame size of 1440 bits and
8-DecASIP system decoder �

1 ;initialize DecASIPs registers from configuration memory
2 SET CONF single
3 ; set number of windows to L+2
4 SET WindowsN 5
5 ;set initial window counter to L+1 and k=1
6 SET WindowsInit 4, 1
7 ; execute (11) and (12) twice
8 ZOLB RW, RW, LW
9 NOP

10 ; replaced with NOP for DecASIPs 0..2 and 4..6
11 RW: DATA LEFT ADD metric column2
12 LW: NOP
13 ; exchange window boundary i.e. initialize window 3 with
14 ; tail bits state values
15 ; replaced with NOP for DecASIPs 0..2 and 4..6
16 EXCH WIN
17 ;flush pipeline
18 NOP
19 NOP
20 NOP
21 ;set current window counter n=0
22 SET WINDOW ID 0
23 ;set max. number of windows
24 SET WINDOW N 3
25 ;set regular (W) and last window length W L
26 SET SIZE 63,52
27 ;execute normal window processing as in DBTC case

3.2. DECASIPV 1 71

3.2.3 LDPC mode

In LDPC mode, each DecASIP operates as a variable node and check node processing engine.
Each DecASIPv1 processes 3 check nodes and its associated edges from the 3 consecutive vari-
able node groups: e.g. DecASIP0 processes all the check nodes (3 at a time) that are asso-
ciated with variable node groups VNG[0..2], while DecASIP1 processes those associated with
VNG[3..5], etc. In other words, each DecASIP in this mode can process three CNs present in the
same group and its corresponding variable nodes present in three different variable node groups.

3.2.3.1 Proposed scheduling illustrated with simple example using 2-DecASIPv1 architec-
ture

In order to illustrate the proposed original computational scheduling in LDPC mode towards the
target scalable multi-ASIP channel decoder, let us consider an example of a simple LDPC check
matrix and a 2-DecASIP architecture. The example of a simple LDPC check matrix with 36
variable nodes and 12 check nodes is represented with the Hbase permutation matrix of Figure
3.12. This Hbase matrix example has an expansion factor Z=6, thus 2 check node groups

I0 I1 I3 I4 I1 I2

I4 I1 I0 I1 I4 I1

Figure 3.12 — Simple LDPC Hbase matrix example with Nb=6, Mb=2, and Z=6

(CNGs) and 6 variable node groups (VNGs). The proposed scheduling for LDPC decoding is
illustrated as follows:

at time t = T0 : DecASIP0 reads the LLR values associated with the check nodes m=(0,1,2).
These LLRs correspond to L(n) and L(m,n) values related to the 9 variable nodes
n=[(0,1,2),(7,8,9),(15,16,17)]. These variable nodes belong to 3 variable node groups
VNG[0,1,2]. Note that memory banks should be organized in a way to enable simulta-
neous access to all these values.

Similarly, DecASIP1 handles the check nodes m=(3,4,5) and the associated variable nodes
n=[(19,20,21),(27,28,29), (34,35,30)] of the VNG[3,4,5] (Figure 3.13).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CN0 1 1 1 1 1 1

CN1 1 1 1 1 1 1

CN2 1 1 1 1 1 1

CN3 1 1 1 1 1 1

CN4 1 1 1 1 1 1

CN5 1 1 1 1 1 1

CN6 1 1 1 1 1 1

CN7 1 1 1 1 1 1

CN8 1 1 1 1 1 1

CN9 1 1 1 1 1 1

CN10 1 1 1 1 1 1

CN11 1 1 1 1 1 1

Variable
nodes

C
N

G
0

C

N
G

1

C
h

eck
n

o
d

es

DecASIP0

DecASIP1

RV(m)T0
0

RV(m)T0
1

Figure 3.13 — DecASIPv1: Proposed LDPC decoding schedule with 2-DecASIP architecture at time
step t=T0

72 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

Each DecASIP calculates variable to check node messages L(n,m) according to (1.59).
Additionally, it processes equation (equation 1.62) and produces 3 sets of messages (cor-
responding to the three check nodes) that we denote by RV (m)kT0, where k refers to the
DecASIPs [0, 1]. The RV (m)kT0 set of messages carries the following informations:

1. The 2 least minimums (min0, min1).
2. The ASIP ID and the channel memory bank number to locate the index (ind) corre-

sponding to the least minimum.
3. sgnm which is the XOR of the sign of the 3 L(n,m) messages calculated for the

check node m.

These messages are sent to the next DecASIP through the de-Bruijn NOC.

at time t = T1 : DecASIP0 reads the LLR values associated with the check nodes m=(3,4,5).
These LLRs correspond to L(n) and L(m,n) values related to the 9 variable nodes
n=[(3,4,5),(10,11,6),(12,13,14)]. Similarly, DecASIP1 handles the check nodes m=(0,1,2)
and the associated variable nodes n=[(18,22,23),(24,25,26), (31,32,33)] of the VNG[0,1,2]
(Figure 3.14). Both DecASIPs generate RV (m)kT1 messages as in the previous step except
that the new messages take into account the RV (m)kT0 messages received from the other
DecASIP.

This completes the CN-update phase, with RV (m)1T1 containing the final (min0, min1)
information associated with check nodes m=(0,1,2).

Similarly, RV (m)0T1 contains the final (min0, min1) information associated to check nodes
m=(3,4,5). We represent these final messages to be the Update Vector (UV) UV (m)k that
is circulated again to the next DecASIP as shown in Figure 3.14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CN0 1 1 1 1 1 1

CN1 1 1 1 1 1 1

CN2 1 1 1 1 1 1

CN3 1 1 1 1 1 1

CN4 1 1 1 1 1 1

CN5 1 1 1 1 1 1

CN6 1 1 1 1 1 1

CN7 1 1 1 1 1 1

CN8 1 1 1 1 1 1

CN9 1 1 1 1 1 1

CN10 1 1 1 1 1 1

CN11 1 1 1 1 1 1

Variable
nodes

C
N

G
0

C

N
G

1

C
h

eck
n

o
d

es
DecASIP0

DecASIP1

RV(m)T1
1

RV(m)T1
0

Figure 3.14 — DecASIPv1: Proposed LDPC decoding schedule with 2-DecASIP architecture at time
step t=T1

at time t = T2 DecASIP0 calculates the final aposteriori LLRs L(n) using the UV (m)1 mes-
sages and the L(n,m) messages related to n=[(0,1,2),(7,8,9),(15,16,17)] and m=(0,1,2)
according to equation (1.64).

Extrinsic messages L(m,n) are generated according to equation (1.63) and stored in the
extrinsic memory banks of the DecASIP.

Similarly, DecASIP1 calculates LLRs L(n) using UV (m)0 message, where n=[(19,20,21),
(27,28,29), (34,35,30)] andm=(3,4,5). Both DecASIPs forward theUV (m) message to the
next DecASIP (Figure 3.15).

3.2. DECASIPV 1 73

Variable
nodes

C
N

G
0

C

N
G

1

C
h

eck
n

o
d

es

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CN0 1 1 1 1 1 1

CN1 1 1 1 1 1 1

CN2 1 1 1 1 1 1

CN3 1 1 1 1 1 1

CN4 1 1 1 1 1 1

CN5 1 1 1 1 1 1

CN6 1 1 1 1 1 1

CN7 1 1 1 1 1 1

CN8 1 1 1 1 1 1

CN9 1 1 1 1 1 1

CN10 1 1 1 1 1 1

CN11 1 1 1 1 1 1

DecASIP0

DecASIP1

UV(m)
0

UV(m) 1

Figure 3.15 — DecASIPv1: Proposed LDPC decoding schedule with 2-DecASIP architecture at time
step t=T2

at time t = T3 Similar to the previous step at t = T2, DecASIP0 calculates aposteriori
LLRs L(n) using UV (m) where n=[(19,20,21),(27,28,29),(34,35,30)] and m=(0,1,2)
and DecASIP1 calculates L(n) for n=[(0,1,2),(7,8,9),(15,16,17)] using UV (m) where
m=(3,4,5) as shown in Figure 3.16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CN0 1 1 1 1 1 1

CN1 1 1 1 1 1 1

CN2 1 1 1 1 1 1

CN3 1 1 1 1 1 1

CN4 1 1 1 1 1 1

CN5 1 1 1 1 1 1

CN6 1 1 1 1 1 1

CN7 1 1 1 1 1 1

CN8 1 1 1 1 1 1

CN9 1 1 1 1 1 1

CN10 1 1 1 1 1 1

CN11 1 1 1 1 1 1

Variable
nodes

C
N

G
0

C

N
G

1

C
h

eck
n

o
d

es

UV(m) 0 DecASIP0

DecASIP1

UV(m)
1

Figure 3.16 — DecASIPv1: Proposed LDPC decoding schedule with 2-DecASIP architecture at time
step t=T3

The above 4 time steps completes one sub-iteration carried over a Check node group (CNG0)
with 2 DecASIPs. The first two time steps correspond to the CN-update phase (RV), while
the last two time steps correspond to the VN-update phase (UV). Thus according to the pro-
posed computational scheduling, we complete one sub-iteration in 4 time steps (2 DecASIPs x
(1RV+1UV)) where each DecASIP processes 3 check nodes associated with 3 VNGs simulta-
neously.

3.2.3.2 Proposed scheduling with 8-DecASIPv1 architecture

All LDPC check matrices specified in WiFi and WiMAX standards contain 24 VNGs. With
the proposed internal parallelism degree for DecASIPv1 (3 check nodes and its associated
edges from 3 consecutive VNGs), it is possible to process all the VNGs simultaneously with
8 DecASIPs. Thus, with the proposed scheduling, these 8 DecASIPs will be able to process

74 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

24 check nodes (8x3) simultaneously. Now, if the CNG contains 24 check nodes (Z=24),
a sub-iteration is completed in 16 time steps (2 phases x 8 DecASIPs). We will illustrate
in this section the proposed scheduling for an 8 DecASIPs architecture (NA = 8) and with
higher sub-martix size (Z = 48). In this case, each group of CNs should be divided into two
sub-groups, each containing 24 check nodes.

For the ease of explanation, we denote n=PV NGy
x (m) as the variable node n of VNGy

which is connected to the check node m of the xth check node group of the LDPCHbase matrix.
Check node and variable node update cycles over a check node sub-groups are scheduled in the
following order:

1. at time t=T0: DecASIPs calculate min0, min1 and sgn values as given below:

RV k
T0(m)

∥∥∥∥∥∥∥∥∥∥
with VN n=PV NGy

0 (m),
for DecASIP0,m=[0,1,2], x=(0,1,2)
for DecASIP1,m=[3,4,5], x=(3,4,5)
:
for DecASIP7,m=[21,22,23],x=(21,22,23)

(3.7)

min0(m),min1(m) are the minimum and second least minimum calculated for the check
node m. The location of the min0(m) is identified through LOC(m), which consists
of ASIP ID and the variable node group number of the variable node n. The partial
min0, min1 information thus obtained is communicated through the NoC to the next De-
cASIP that contain the next set of edges connected to the check node m. We refer the NoC
message sent as Running Vector (RV) message. Thus, each DecASIP sends 3 RV messages
corresponding to the 3 processed check nodes (Figure 3.18a).

RV k
T0(m) = [min0,min1, LOC, sgn](m) ∀ k=current DecASIP=[0,1,2..7] (3.8)

2. at time t=T1: DecASIPs calculate the min0 and min1 as in the previous step, except that it
now includes the min0k1T0(m),min1k1T0(m) of the RV messages received from the previous
DecASIP, hence the min0 and min1 calculations of equation (3.7) are modified as shown
below:

min0(m) = min(|L(n,m)|,min0k1T0(m)) (3.9)

min1(m) = min(|L(n,m)|,min1k1T0(m)) 6= min0(m) (3.10)

RV k
T1(m) =



where n=PV NGx
0 (m),

for DecASIP0,m=[21,22,23], x=(21,22,23)
for DecASIP1,m=[0,1,2], x=(0,1,2)
:
for DecASIP7,m=[18,19,20],x=(18,19,20)
k1=DecASIP[(k-1)%NA], k=current DecASIP,
NA=number of DecASIPs

(3.11)

Thus, the new RV message generated carries the min0,min1 information of 6 edges con-
nected to a check node in CNG0 (Figure 3.18b). The process continues until time t = T7

3.2. DECASIPV 1 75

(Figure 3.19a) by which the RV k
T7(m) message carries the information related to all edges

connected to the check nodes m = [0, 1, 2, ..23]. This final RV is now considered to be the
variable node message Update Vector (UV) from which the variable node update messages
can be calculated in the next time step.

UV k(m) = RV k
T7(m) = [min0,min1, LOC, sgn](m) (3.12)

3. at time t=T8: UV k(m) messages are used by the corresponding DecASIPs to calculate and
update the variable nodes.

updtMag(m) =

{
min0(m) if CurrLOC(m) 6= UV k[LOC(m)]
min1(m) otherwise

(3.13)

L(m,n) = α ∗ sgn(m) ∗ (updtMag(m))
L(n) = L(n,m) + L(m,n)


where n=PV NGx

0 (m),
for DecASIP0,m=[0,1,2], x=(0,1,2)
for DecASIP1,m=[3,4,5], x=(3,4,5)
:
for DecASIP7,m=[21,22,23],x=(21,22,23)

(3.14)

The structure of the QC-LDPC codes implies that there is a unique set of edges between
a check node group and a variable node group, i.e. a variable node has at maximum one
single edge in a check node group. Therefore, the RV calculation of the check nodesm >=
24, yet inside the same check node group, can be performed in parallel along with the
UV message processing of the check nodes m=[0,1,..23]. Hence, for the considered sub-
matrix size Z = 48, the DecASIPs perform the RV k

T8(m) of check nodes m=[24,25...47]
in parallel to the UV of check nodes m=[0,1...23] as illustrated in Figure 3.19b.

RV k
T8(m) =



where n=PV NGx
0 (m),

for DecASIP0,m=[24,25,26], x=(24,25,26)
for DecASIP1,m=[27,28,29], x=(27,28,29)
:
for DecASIP7,m=[45,46,47],x=(45,46,47)
k1=DecASIP[(k-1)%NA], k=current DecASIP,
NA=number of DecASIPs

(3.15)

Therefore, the VN-update phase of the first sub-group can take place along with the CN-
update of the second sub-group. This combined UV and RV phase continues until time
t=TT15.

4. at time t=T16 to t=T23: DecASIPs calculate the UV phase for the second sub-group of check
nodes m=[24,25...47] as illustrated in Figure 3.20.

Thus, one sub-iteration is completed in 24 time steps: 8 DecASIPs× (1RV+1RVUV+1UV).
This scheduling based on sub-groups of check nodes enables us to handle efficiently all specified

76 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

sub-matrix sizesZ in the WiFi and WiMAX standards. For any sub-matrix size Z, a sub-iteration
is completed in Tsub−iteration time steps, given as:

Tsub−iteration = NA × (1RV + (dZ/(3CNs ×NA)e − 1)RV UV + 1UV) (3.16)

where NA=Number of DecASIPs.

It is to be noted that the LDPC check matrices are more sparse for low code rates (e.g. 1/2,
Figure 3.17) than for high code rates (e.g. 5/6, Figure 1.19 in page 28). Thus, the proposed
current scheduling scheme implies that the DecASIPs will be processing no check nodes if no
check nodes are connected to the VNG in a time step but will only forward the RV and UV
messages to the next DecASIP. Thus, the number of time-steps required for one iteration is
independent from the check node degree, i.e. the maximum number of edges connected to a
check node.

I57 I50 I11 I50 I79 I0 I0

I3 I28 I0 I55 I7 I0 I0

I30 I24 I37 I56 I14 I0 I0

I62 I53 I53 I3 I35 I0 I0

I40 I20 I66 I22 I28 I0 I0

I0 I8 I42 I50 I8 I0 I0

I69 I79 I79 I56 I52 I0 I0 I0

I65 I38 I57 I72 I27 I0 I0

I64 I14 I52 I30 I32 I0 I0

I45 I70 I0 I77 I9 I0 I0

I2 I56 I57 I35 I12 I0 I0

I24 I61 I60 I27 I51 I16 I1 I0

Figure 3.17 — LDPC check matrix Hbase from the WiFi standard with code rate 1/2, sub-matrix size
Z=81, and frame length of 1944 bits. ThisHbase matrix consists ofMb×Nb permutation sub-matrices

of size Z (Mb=12, Nb=24, and Z=81 in this example)

3.2. DECASIPV 1 77

 V
ar

ia
b

le

n
o

d
es

V
N

G
0

V

N
G

1

V
N

G
2

V

N
G

3

V
N

G
4

V

N
G

5

V
N

G
6

V

N
G

7

V
N

G
8

V

N
G

9
 V

N
G

1
0

 V
N

G
1

1
 V

N
G

1
2

 V
N

G
1

3
 V

N
G

1
4

 V
N

G
1

5
 V

N
G

1
6

 V
N

G
1

7
 V

N
G

1
8

 V
N

G
1

9
 V

N
G

2
0

 V
N

G
2

1
 V

N
G

2
2

 V
N

G
2

3

0

4
8

9

6

1
4

4

1
9

2

2
4

0

2
8

8

3
3

6

3
8

4

4
3

2

4
8

0

5
2

8

5
7

6

6
2

4

6
7

2

7
2

0

7
6

8

8
1

6

8
6

4

9
1

2

9
6

0

1
0

0
8

1

0
5

6

1
1

0
4

4
7

9

5

1
4

3

1
9

1

2
3

9

2
8

7

3
3

5

3
8

3

4
3

1

4
7

9

5
2

7

5
7

5

6
2

3

6
7

1

7
1

9

7
6

7

8
1

5

8
6

3

9
1

1

9
5

9

1
0

0
7

1

0
5

5

1
1

0
3

1

1
5

1

Check nodes

0
..2

3
..5

6
..8

9
..1

1

1
2

..1
4

1
5

..1
7

1
8

..2
0

2
1

..2
3

2
4

..2
6

2
7

..2
9

3
0

..3
2

3
3

..3
5

3
6

..3
8

3
9

..4
1

4
2

..4
4

4
5

..4
7

A
SI

P
0

R

V
0 T0

(0
..2

)

A
SI

P
1

A

SI
P

2

A
SI

P
3

A

SI
P

4

A
SI

P
5

A

SI
P

6

A
SI

P
7

R
V

1 T0
(3

..5
)

R
V

3 T0
(9

..1
1

)
R

V
4

T0
(1

2
..1

4
)

R
V

5 T0
(1

5
..

1
7

)

R
V

6 T0
(1

8
..

2
0

)

R
V

7 T0
(2

1
..

2
3

)

R
V

2 T0
(6

..8
)

(a
)

t=
T
0

V
ar

ia
b

le

V
N

G
0

V

N
G

1

V
N

G
2

V

N
G

3

V
N

G
4

V

N
G

5

V
N

G
6

V

N
G

7

V
N

G
8

V

N
G

9
 V

N
G

1
0

 V
N

G
1

1
 V

N
G

1
2

 V
N

G
1

3
 V

N
G

1
4

 V
N

G
1

5
 V

N
G

1
6

 V
N

G
1

7
 V

N
G

1
8

 V
N

G
1

9
 V

N
G

2
0

 V
N

G
2

1
 V

N
G

2
2

 V
N

G
2

3

 N
o

d
es

0

4

8

9
6

1

4
4

1

9
2

2

4
0

2

8
8

3

3
6

3

8
4

4

3
2

4

8
0

5

2
8

5

7
6

6

2
4

6

7
2

7

2
0

7

6
8

8

1
6

8

6
4

9

1
2

9

6
0

1

0
0

8

1
0

5
6

1

1
0

4

4
7

9

5

1
4

3

1
9

1

2
3

9

2
8

7

3
3

5

3
8

3

4
3

1

4
7

9

5
2

7

5
7

5

6
2

3

6
7

1

7
1

9

7
6

7

8
1

5

8
6

3

9
1

1

9
5

9

1
0

0
7

1

0
5

5

1
1

0
3

1

1
5

1

Check nodes

0
..2

3
..5

6
..

8

9
..1

1

1
2

..1
4

1
5

..1
7

1
8

..2
0

2
1

..2
3

2
4

..2
6

2
7

..2
9

3
0

..3
2

3
3

..3
5

3
6

..3
8

3
9

..
4

1

4
2

..4
4

4
5

..4
7

A
SI

P
0

R
V

0 T0
(0

..2
)

A
SI

P
1

A

SI
P

2

A
SI

P
3

A

SI
P

4

A
SI

P
5

A

SI
P

6

A
SI

P
7

R
V

1 T0
(3

..5
)

R
V

3
T0

(9
..1

1
)

R
V

4 T0
(1

2
..1

4
)

R
V

5 T0
(1

5
..1

7
)

R
V

6 T0
(1

8
..2

0
)

R
V

7
T0

(2
1

..2
3

)

R
V

2
T0

(6
..8

)

R
V

1 T1
(0

..2
)

R
V

2
T1

(3
..5

)

R
V

4 T1
(9

..1
1

)

R
V

5 T1
(1

2
..1

4
)

R
V

6
T1

(1
5

..
1

7
)

R
V

7 T1
(1

8
..2

0
)

R
V

k T1
(2

1
..2

3
)

R
V

3
T1

(6
..8

)

(b
)

t=
T
1

Fi
gu

re
3.

18
—

D
ec

A
SI

P v
1
:

Pr
op

os
ed

L
D

PC
de

co
di

ng
sc

he
du

le
w

ith
8-

D
ec

A
SI

P
ar

ch
ite

ct
ur

e
—

RV
ph

as
e

78 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

V
ar

ia
b

le

V
N

G
0

V

N
G

1

V
N

G
2

V

N
G

3

V
N

G
4

V

N
G

5

V
N

G
6

V

N
G

7

V
N

G
8

V

N
G

9
 V

N
G

1
0

 V
N

G
1

1
 V

N
G

1
2

 V
N

G
1

3
 V

N
G

1
4

 V
N

G
1

5
 V

N
G

1
6

 V
N

G
1

7
 V

N
G

1
8

 V
N

G
1

9
 V

N
G

2
0

 V
N

G
2

1
 V

N
G

2
2

 V
N

G
2

3

 N
o

d
es

0

4

8

9
6

1

4
4

1

9
2

2

4
0

2

8
8

3

3
6

3

8
4

4

3
2

4

8
0

5

2
8

5

7
6

6

2
4

6

7
2

7

2
0

7

6
8

8

1
6

8

6
4

9

1
2

9

6
0

1

0
0

8

1
0

5
6

1

1
0

4

4
7

9

5

1
4

3

1
9

1

2
3

9

2
8

7

3
3

5

3
8

3

4
3

1

4
7

9

5
2

7

5
7

5

6
2

3

6
7

1

7
1

9

7
6

7

8
1

5

8
6

3

9
1

1

9
5

9

1
0

0
7

1

0
5

5

1
1

0
3

1

1
5

1

Check nodes

0
..2

3
..5

6
..8

9
..1

1

1
2

..1
4

1
5

..1
7

1
8

..2
0

2
1

..2
3

2
4

..2
6

2
7

..2
9

3
0

..3
2

3
3

..3
5

3
6

..3
8

3
9

..
4

1

4
2

..4
4

4
5

..4
7

A
SI

P
0

A

SI
P

1

A
SI

P
2

A

SI
P

3

A
SI

P
4

A

SI
P

5

A
SI

P
6

A
SI

P
7

R
V

7 T6
(3

..5
)

R
V

1 T6
(9

..1
1

)
R

V
4 T7

(1
2

..
1

4
)

R
V

3
T6

(1
5

..
1

7
)

R
V

4 T6
(1

8
..2

0
)

R
V

6
T7

(2
1

..2
3

)

R
V

7 T7
(0

..2
)

R
V

6 T7
(1

5
..1

7
)

R
V

0 T7
(3

..5
)

R
V

1 T7
(6

..8
)

R
V

7
T6

(0
..

2
)

R
V

0 T6
(6

..8
)

R
V

2
T7

(9
..

1
1

)

R
V

6 T6
(2

1
..2

3
)

R
V

5 T7
(1

8
..2

0
)

R
V

2 T6
(1

2
..1

4
)

(a
)

t=
T
7

 V
ar

ia
b

le

n
o

d
es

V
N

G
0

V

N
G

1

V
N

G
2

V

N
G

3

V
N

G
4

V

N
G

5

V
N

G
6

V

N
G

7

V
N

G
8

V

N
G

9

V
N

G
1

0
 V

N
G

1
1

 V
N

G
1

2
 V

N
G

1
3

 V
N

G
1

4
 V

N
G

1
5

 V
N

G
1

6
 V

N
G

1
7

 V
N

G
1

8
 V

N
G

1
9

 V
N

G
2

0
 V

N
G

2
1

 V
N

G
2

2
 V

N
G

2
3

0

4
8

9

6

1
4

4

1
9

2

2
4

0

2
8

8

3
3

6

3
8

4

4
3

2

4
8

0

5
2

8

5
7

6

6
2

4

6
7

2

7
2

0

7
6

8

8
1

6

8
6

4

9
1

2

9
6

0

1
0

0
8

1

0
5

6

1
1

0
4

4
7

9

5

1
4

3

1
9

1

2
3

9

2
8

7

3
3

5

3
8

3

4
3

1

4
7

9

5
2

7

5
7

5

6
2

3

6
7

1

7
1

9

7
6

7

8
1

5

8
6

3

9
1

1

9
5

9

1
0

0
7

1

0
5

5

1
1

0
3

1

1
5

1

Check nodes

0
..
2

3
..
5

6
..
8

9
..
1

1

1
2

..
1

4

1
5

..
1

7

1
8

..
2

0

2
1

..
2

3

2
4
..
2
6

2
7

..
2

9

3
0

..
3

2

3
3
..
3
5

3
6

..
3

8

3
9
..
4
1

4
2
..
4
4

4
5

..
4

7

A
SI

P
0

 (
U

V
)

U
V

0 (
0

..2
)

A
SI

P
1

 (
U

V
)

A
SI

P
2

 (
U

V
)

A
SI

P
3

 (
U

V
)

A

SI
P

4
 (

U
V

)
A

SI
P

5

A
SI

P
6

A

SI
P

7

U
V

1 (
3

..
5

)

U
V

3 (
9

..
1

1
)

U
V

4 (
1

2
..1

4
)

U
V

5
(1

5
..

1
7

)
U

V
6 (

1
8

..
2

0
)

U
V

7 (
2

1
..

2
3

)

U
V

2 (
6

..
8

)

A
SI

P
0

 (
R

V
)

R
V

0 T8
(2

4
..2

6
)

A
SI

P
1

(R
V

)
A

SI
P

2
(R

V
)

A
SI

P
3

 (
R

V
)

A
SI

P
4

 (
R

V
)

A
SI

P
5

 (
R

V
)

A
SI

P
6

 (
R

V
)

A
SI

P
7

 (
R

V
)

R
V

1 T8
(2

7
..

2
9

)

R
V

3 T8
(3

3
..3

5
)

R
V

4 T8
(3

6
..3

8
)

R
V

5 T8
(3

9
..

4
1

)
R

V
6 T8

(4
2

..
4

4
)

R
V

7 T8
(4

5
..

4
7

)

R
V

2 T8
(3

0
..

3
2

)

R
V

7 T7
(0

..
2

)

R
V

0 T7
 (3

..
5

)

(b
)

t=
T
8

Fi
gu

re
3.

19
—

D
ec

A
SI

P v
1
:

Pr
op

os
ed

L
D

PC
de

co
di

ng
sc

he
du

le
w

ith
8-

D
ec

A
SI

P
ar

ch
ite

ct
ur

e
—

RV
ph

as
e

@
t=
T
7

an
d

RV
+U

V
ph

as
e

@
t=
T
8

3.2. DECASIPV 1 79

 V
ar

ia
b

le

n
o

d
es

V
N

G
0

V

N
G

1

V
N

G
2

V

N
G

3

V
N

G
4

V

N
G

5

V
N

G
6

V

N
G

7

V
N

G
8

V

N
G

9

V
N

G
1

0
 V

N
G

1
1

 V
N

G
1

2
 V

N
G

1
3

 V
N

G
1

4
 V

N
G

1
5

 V
N

G
1

6
 V

N
G

1
7

 V
N

G
1

8
 V

N
G

1
9

 V
N

G
2

0
 V

N
G

2
1

 V
N

G
2

2
 V

N
G

2
3

0

4
8

9

6

1
4

4

1
9

2

2
4

0

2
8

8

3
3

6

3
8

4

4
3

2

4
8

0

5
2

8

5
7

6

6
2

4

6
7

2

7
2

0

7
6

8

8
1

6

8
6

4

9
1

2

9
6

0

1
0

0
8

1

0
5

6

1
1

0
4

4
7

9

5

1
4

3

1
9

1

2
3

9

2
8

7

3
3

5

3
8

3

4
3

1

4
7

9

5
2

7

5
7

5

6
2

3

6
7

1

7
1

9

7
6

7

8
1

5

8
6

3

9
1

1

9
5

9

1
0

0
7

1

0
5

5

1
1

0
3

1

1
5

1

Check nodes

0
..
2

3
..
5

6
..
8

9
..
1

1

1
2

..
1

4

1
5

..
1

7

1
8

..
2

0

2
1

..
2

3

2
4
..
2
6

2
7

..
2

9

3
0

..
3

2

3
3
..
3
5

3
6

..
3

8

3
9
..
4
1

4
2
..
4
4

4
5

..
4

7

A
SI

P
0

 (
U

V
)

U
V

0 (
2

4
..2

6
)

A
SI

P
1

(U
V

)
A

SI
P

2
(U

V
)

A
SI

P
3

 (
U

V
)

A
SI

P
4

 (
U

V
)

A
SI

P
5

 (
U

V
)

A
SI

P
6

 (
U

V
)

A
SI

P
7

 (
U

V
)

U
V

1 (
2

7
..2

9
)

U
V

3 (
3

3
..3

5
)

U
V

4 (
3

6
..

3
8

)
U

V
5 (

3
9

..
4

1
)

U
V

6 (
4

2
..

4
4

)

U
V

7 (
4

5
..

4
7

)

U
V

2 (
3

0
..3

2
)

R
V

7 T1
5(

2
4

..
2

6
)

R
V

0 T1
5

(2
7

..2
9

)

(a
)

t=
T
1
6

V
ar

ia
b

le

V
N

G
0

V

N
G

1

V
N

G
2

V

N
G

3

V
N

G
4

V

N
G

5

V
N

G
6

V

N
G

7

V
N

G
8

V

N
G

9
 V

N
G

1
0

 V
N

G
1

1
 V

N
G

1
2

 V
N

G
1

3
 V

N
G

1
4

 V
N

G
1

5
 V

N
G

1
6

 V
N

G
1

7
 V

N
G

1
8

 V
N

G
1

9
 V

N
G

2
0

 V
N

G
2

1
 V

N
G

2
2

 V
N

G
2

3

 N
o

d
es

0

4

8

9
6

1

4
4

1

9
2

2

4
0

2

8
8

3

3
6

3

8
4

4

3
2

4

8
0

5

2
8

5

7
6

6

2
4

6

7
2

7

2
0

7

6
8

8

1
6

8

6
4

9

1
2

9

6
0

1

0
0

8

1
0

5
6

1

1
0

4

4
7

9

5

1
4

3

1
9

1

2
3

9

2
8

7

3
3

5

3
8

3

4
3

1

4
7

9

5
2

7

5
7

5

6
2

3

6
7

1

7
1

9

7
6

7

8
1

5

8
6

3

9
1

1

9
5

9

1
0

0
7

1

0
5

5

1
1

0
3

1

1
5

1

Check nodes

0
..2

3
..5

6
..8

9
..1

1

1
2

..1
4

1
5

..1
7

1
8

..2
0

2
1

..2
3

2
4

..2
6

2
7

..2
9

3
0

..3
2

3
3

..3
5

3
6

..3
8

3
9

..
4

1

4
2

..4
4

4
5

..4
7

A
SI

P
0

A

SI
P

1

A
SI

P
2

A

SI
P

3

A
SI

P
4

A

SI
P

5

A
SI

P
6

A
SI

P
7

U
V

7 (
2

7
..2

9
)

U
V

1 (
3

3
..3

5
)

U
V

4 (
3

6
..

3
8

)

U
V

3 (
3

9
..4

1
)

U
V

4 (
3

9
..4

1
)

U
V

6
(4

2
..4

4
)

U
V

7 (
2

4
..2

6
)

U
V

6 (
3

9
..4

1
)

U
V

0 (
2

7
..2

9
)

U
V

1 (
3

0
..

3
2

)

U
V

6 (
2

4
..2

6
)

U
V

0 (
3

0
..3

2
)

U
V

2 (
3

3
..

3
5

)

U
V

5 (
4

2
..4

4
)

U
V

5 (
3

9
..4

1
)

U
V

2 (
3

6
..3

8
)

(b
)

t=
T
2
3

Fi
gu

re
3.

20
—

D
ec

A
SI

P v
1
:

Pr
op

os
ed

L
D

PC
de

co
di

ng
sc

he
du

le
w

ith
8-

D
ec

A
SI

P
ar

ch
ite

ct
ur

e
—

U
V

on
ly

ph
as

e

80 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

3.2.3.3 Memory architecture
It has be seen from the bit error rate analysis of Section 3.1.2 that a minimum of 7 bits are needed
for the quantization of the input channel LLRs in LDPC mode. Input memories are shared with
Turbo mode by storing 2 channel LLRs onto one memory location of the input memory bank as
shown in Figure 3.21. Each input memory bank holds the channel values associated with one
variable node group. As the maximum value of Z = 96 (for WiMAX), the maximum number
of valid locations in each input memory bank in the LDPC mode is 48.

0

L(n=1) L(n=0)

L(n=3) L(n=2)

L(n=5) L(n=4)

L(n=7) L(n=6)

: :

L(n=95) L(n=94)

0

7 7

48

208

2

Figure 3.21 — DecASIPv1: Input memory bank 0 organization in LDPC mode

L(m=1,n) 2 L(m=1,n) 1 L(m=1,n) 0 L(m=0,n) 2 L(m=0,n) 1 L(m=0,n)0

L(m=3,n) 2 L(m=3,n) 1 L(m=3,n) 0 L(m=2,n) 2 L(m=2,n) 1 L(m=2,n) 0

: : : : : :

L(m=95,n) 2 L(m=95,n) 1 L(m=95,n) 0 L(m=94,n) 2 L(m=94,n) 1 L(m=94,n) 0

L(m=1,n) 5 L(m=1,n) 4 L(m=1,n) 3 L(m=0,n) 5 L(m=0,n) 4 L(m=0,n)3

L(m=3,n) 5 L(m=3,n) 4 L(m=3,n) 3 L(m=2,n) 5 L(m=2,n) 4 L(m=2,n) 3

: : : : : :

L(m=95,n) 5 L(m=95,n) 4 L(m=95,n) 3 L(m=94,n) 5 L(m=94,n) 4 L(m=94,n) 3

L(m=1,n) 8 L(m=1,n) 7 L(m=1,n) 6 L(m=0,n) 8 L(m=0,n) 7 L(m=0,n)6

L(m=3,n) 8 L(m=3,n) 7 L(m=3,n) 6 L(m=2,n) 8 L(m=2,n) 7 L(m=2,n) 6

: : : : : :

L(m=95,n) 8 L(m=95,n) 7 L(m=95,n) 6 L(m=94,n) 8 L(m=94,n) 7 L(m=94,n) 6

L(m=1,n) 11 L(m=1,n) 10 L(m=1,n) 9 L(m=0,n) 11 L(m=0,n) 10 L(m=0,n)9

L(m=3,n) 11 L(m=3,n) 10 L(m=3,n) 9 L(m=2,n) 11 L(m=2,n) 10 L(m=2,n) 9

: : : : : :

L(m=95,n) 11 L(m=95,n)10 L(m=95,n) 9 L(m=94,n) 11 L(m=94,n) 10 L(m=94,n) 9

0 0

Check node groups 0,1,2

Check node groups 3,4,5

Check node groups 6,7,8

Check node groups 9,10,11

15 15

192

64

64

Figure 3.22 — DecASIPv1: Extrinsic memory bank 0 organization in LDPC mode

There are 3 extrinsic memory banks per DecASIP that store the extrinsic messages L(m,n),
i.e. check nodes to variable nodes messages. As the VN degree is at most 12 (for WiFi standard),
there can be at most 12 check node messages L(m,n) for each VN. These messages are stored
in th eextrinsic memory in 4 groups, each at an offset of 48 as illustrated in Figure 3.22 for the
extrinsic memory bank 0. With this memory organization, the DecASIPv1 needs two consecutive
memory accesses (1 time step = 2 clock cycles) to process at most 3 check nodes, each associated
with 3 edges.

Thus, the complete extrinsic memory bank (30 bits wide) is utilized for extrinsic messages

3.2. DECASIPV 1 81

L(m,n) from 12 check node groups connected to a variable node group. In case that some check
nodes are not connected to the variable node group, the corresponding section of the memory
bank is left unused.

In fact, the maximum depth of the input and extrinsic memories are constrained by the Turbo
mode (LTE standard), whose maximum frame size is 6144 bits. Thus, the proposed memory
organization allows for efficient memory sharing with LDPC mode where both WiMAX and
WiFi specified LDPC frame lengths are well supported (2304 bits and 1944 bits respectively).
Notice that the width of the extrinsic memory sub-banks was extended to 15 bits (which are not
fully used in Turbo mode as shown in Figure 3.7, page 64) in order to enable to store 3 L(m,n)
messages per address location.

Furthermore, the two 80-bit wide cross memory banks of the Turbo mode (Figure 3.9, page
66) are shared in LDPC mode and used as FIFO’s (FIFO1 and FIFO2). FIFO1 is used to buffer
the variable node to check node messages L(n,m) (9 messages each of 8 bits per location),
while FIFO2 buffers the corresponding input memory bank addresses.

Address generation
Regarding addresses generation, as illustrated in the previous section, with 8 DecASIPs it is
possible to process RV or UV phase of 8 × 3 = 24 check nodes (=maximum size of the sub-
group) in 16 clock cycles. For each bank, the fetch addresses (6 bits each) of the input LLRs are
stored in FIFO2 along with the variable node degree (4 bits each). The variable node degree is
used during the update phase to regenerate the address for the extrinsic LLRs given as:

Extrinsic Address = b(current variable node degree/3)c × 48 + b(CV address/2)c

The following pseudo code describes the generation of CV address sequences for the input chan-
nel value memories. Px,y is the permutation value of the VNG as described in the Hbase matrix.
As it can be seen, the implementation of the corresponding logic consists of few counters, mod-
ulo operators, and adders.

For (subgroup=0; subgroup < (Z/(3*NA)) ; subgroup++)

 For (timestep=0; timestep <NA; timestep++)

 CV address = (Px,y + subgroup*(3*NA) + 3*((timestep + ASIPID) % NA)) % Z

Figure 3.23 — DecASIPv1: Pseudo code for CV address generation of the input memory bank storing
VNGy in LDPC mode

NI0

NI4

NI1

NI2 NI5

NI6

NI3

NI7

(a) NoC interconnect in LDPC mode

Sgn
(1 bit)

ASIPID
(3 bits)

Bank
(2 bits)

Min0
(4 bits)

Min1
(4 bits)

x3

(b) NoC message

Figure 3.24 — DecASIPv1: NoC interconnect and payload in LDPC mode

82 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

3.2.3.4 NoC messages

In the LDPC mode, the de-Bruijn NoC is reconfigured to form a unidirectional interconnect of
42 bits wide as shown in Figure 3.24a. The NoC message format is as shown in Figure 3.24b
which is used for RV or UV messages sent by the DecASIPs. Notice that there is no addressing
field as the message has a predetermined path and has to be routed only to the next DecASIP.

3.2.3.5 Pipeline architecture and assembly Code

Figure 3.25 presents the proposed pipeline architecture of DecASIPv1 in the LDPC mode. As for
the decoder pipeline in Turbo mode, the first three pipeline stages in LDPC mode are dedicated
to instruction fetch and decode. The LDPC address generator block of the OPF pipeline stage
generates address sequences for the input and extrinsic memories as previously described in
Figure 3.23.

CVExtRead

min1 min0 Sgn Bank

0

x3

Saturate to 5 bits
x3

min1 min0 Sgn Bank
min1 min0 Sgn Bank

Instr.
Memory
(128x16)

CVnExtRead

CV
memory CV

memory
Extr.

memory
(256x30)

L(m,n)

CV
memory

Input
memory
(256x24)

L(n)

NoCin 42

NoCout

42

UVMsg
MinSelect

+

L(n,m)

L(n,m)

UpdateNoC Satu
rate

to

 7
 b

its

L(n) to input
memories

L(m,n)
to extr.
memories

0= first iter.
1=other iter.

0 1

3x

PF

FE

DC

Subtractor

Scaled
UVMsg

RVMsg
MinUpdate

TwoMinBnk3

FIFO1
(cross

metric)
(32x80) ReadNoC

LDPC Addr.
generator

FIFO2
(cross

metric)
(32x80)

3x
x3

 Input & extr. address

x3 x3

sgn

L(n,m)

Minfind

OPF

ADDRs

ADDRs

Figure 3.25 — DecASIPv1: Pipeline architecture in LDPC mode

3.2. DECASIPV 1 83

The rest of the pipeline stages incorporates the logic to process the instructions RUNVEC,
RUNVEC1, UPDATEVEC, and UPDATEVEC1 described below. The CVnExtRead pipeline
stage integrates 3 × 3=9 subtractors which are used to calculate the L(n,m) messages. The
TwoMinBnk3 pipeline stage integrates 9 units for saturation of the L(n,m) messages to 5 bit
width, in addition to 3 MinFind blocks. Each MinFind block computes the partial minimums
(min0, min1) of the 3 messages |L(n,m)| associated with the check node m. It also computes
the sgn bit, which is the XOR of the sign bits of the 3 L(n,m) messages. These L(n,m)
messages and the corresponding addresses are buffered in FIFO1 and FIFO2 respectively.

The ReadNoc pipeline stage contains the hardware resources (3 RvMsgMinUpdate units) to
update the incoming RV message read from the NoCin bus with the min0, min1, and sgn fields
computed in the previous pipeline stage TwoMinBnk3. It also integrates 3 UVMsgMinSelect
units to select the min0 from the UV part related to the current DecASIP. The last pipeline
stage (UpdateNoc) incorporates 9 adders and 9 saturation units to compute 9 extrinsic messages
L(m,n) and to update the channel LLRs L(n).

Assembly code
The DecASIP is first initialized with the parallelism degree (P = NA × 3), sub-matrix size (Z),
and the three columns of permutation values from Hbase matrix as shown in Listing 3.3. As
channel data are stored in couples, two clock cycles are needed to read/write the channel data
associated with three check nodes. Thus, a read operation to the input and extrinsic memories is
accomplished by RUNVEC and RUNVEC1 instructions (refer to Listing 3.4). The RUNVEC in-
struction does not perform additional tasks, however as the RUNVEC1 instruction moves through
the pipeline stages, it selects the 3 channel LLRs and its associated extrinsic LLRs related to the
check nodes under processing and the it calculates the L(n,m) message (CVExtRead pipeline
stage). In the pipeline stage TwoMinBnk, the instruction computes the partial RV message asso-
ciated with the 3 check nodes under process. It also writes the L(n,m) message to the FIFO1
and the associated read addresses to the FIFO2. In the pipeline stage ReadNoC, the partial RV
message is updated with the RV message received from the previous DecASIP. Finally, in Up-
dateNoc pipeline stage, the updated RV message is forwarded to the next DecASIP. Executing
RUNVEC and RUNVEC1 instructions 8 times completes a CN-update phase on one check node
sub-group.

Similar to the read operation, the write operation is accomplished by UPDATEVEC and
UPDATEVEC1 instructions which activate the last two stages of the pipeline. In ReadNoC
pipeline stage, the UPDATEVEC instruction reads the UV message from the NoC along with the
L(n,m) message and the associated addresses from FIFO1 and FIFO2 respectively and com-
putes the extrinsic message L(m,n) and the aposteriori channel LLR L(n). In the UpdateNoC
pipeline stage, the UV message is forwarded to the next DecASIP along with writing theL(m,n)
message and the aposteriori channel LLR L(n) into the extrinsic and input channel memories
respectively.

Listing 3.3 — DecASIPv1: Assembly code in LDPC mode. Example with a frame size of 1152 bits
(WiMax, Z=48) and 8-DecASIP system decoder – initialization �

1 ;8 DecASIPs each processing 3 CN =24 at a time
2 LDPCSIZE PSize,24
3 ;submatrix size
4 LDPCZSIZE Zsize,48
5 ;rows,NumZerosTriplets
6 LDPCADDRREGINIT1 1,7
7 ;SubRows=floor(PSize/Zsize),

84 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

8 ;num of DecASIPs and RowRem=mod(Zsize,3)
9 LDPCAddrRegInit2 1,8,1

10 ;set ASIP ID
11 LDPCASIPID 0
12 ;writing the H matrix offset column 1 row 1 (−1 represented as 127)
13 LDPCADDRCONFIG1 0,127
14 writing the H matrix offset column 2 row 1
15 LDPCADDRCONFIG2 0,46
16 writing the H matrix offset column 3 row 1
17 LDPCADDRCONFIG3 0,25
18 writing the H matrix offset column 1 row 2
19 LDPCADDRCONFIG1 1,127
20 writing the H matrix offset column 2 row 2
21 LDPCADDRCONFIG2 1,27
22 writing the H matrix offset column 3 row 2
23 LDPCADDRCONFIG3 1,127
24 :
25 :

Listing 3.4 — DecASIPv1: Assembly code in LDPC mode. Example with a frame size of 1152 bits
(WiMAX, Z=48) and 8-DecASIP system decoder – frame decoding �

84 Repeat until ITER for 20 times
85 PUSH
86 Repeat until LOOP0 for 8 times
87 load and initialize the address generator
88 LDPCAddrGenInit
89 RUNVEC
90 RUNVEC1
91 LOOP0:Repeat until LOOP1 for 8 times
92 LDPCAddrGenInit
93 RUNVECWITHUPT
94 RUNVECWITHUPT1
95 LOOP1:Repeat until LOOP2 for 8 times
96 LDPCADDRGENINIT
97 UPDATEVEC
98 UPDATEVEC1
99 LOOP2:POP

100 ;ceil(Zsize/2)=14}
101 ITER:Repeat until DEC for 14 times
102 NOP
103 HardDecision
104 DEC:NOP

NoC scheduling
As mentioned in Section 3.2.3.2, RV and UV phases can be scheduled in parallel as they access
different memory locations. In order to allow this operation, two instructions (RUNVECWITH-
UPT and RUNVECWITHUPT1) are designed to enable the execution of the VN update phase

3.2. DECASIPV 1 85

of the previous check node sub-group in parallel to the RV phase of the current check node
sub-group.

Note that the RV and UV messages are always forwarded to the next DecASIP every two
clock cycles and are sent on different time slots (as shown in Figure 3.26).

RV0

N
o

 tran
sactio

n

RV1

N
o

 tran
sactio

n

RV2

N
o

 tran
sactio

n

: RV7 UV0 RV0 UV1 RV1 UV2 : UV7 RV7 UV0

N
o

 tran
sactio

n
UV1

N
o

 tran
sactio

n

: UV7

RV1 RV2 RV3 : RV0 UV1 RV1 UV2 RV2 UV3 : UV0 RV0 UV1 UV2 : UV0

RV2 RV3 RV4 : RV1 UV2 RV2 UV3 RV3 UV4 : UV1 RV1 UV2 UV3 : UV1

RV3 RV4 RV5 : RV2 UV3 RV3 UV4 RV4 UV5 : UV2 RV2 UV3 UV4 : UV2

RV4 RV5 RV6 : RV3 UV4 RV4 UV5 RV5 UV6 : UV3 RV3 UV4 UV5 : UV3

RV5 RV6 RV7 : RV4 UV5 RV5 UV6 RV6 UV7 : UV4 RV4 UV5 UV6 : UV4

RV6 RV7 RV0 : RV5 UV6 RV6 UV7 RV7 UV0 : UV5 RV5 UV6 UV7 : UV5

RV7 RV0 RV1 : RV6 UV7 RV7 UV0 RV0 UV1 : UV6 RV6 UV7 UV0 : UV6

ASIP0

ASIP1

ASIP2

ASIP3

ASIP4

ASIP5

ASIP6

ASIP7

Time

clk0 clk1 clk2 clk3 clk4 clk5 ……. clk15 clk16 clk17 clk18 clk19 clk20 clk30 …….. clk31 clk32 clk33 clk34 clk35 clk47 …….

N
o

C
 in

terface o
f A

SIPs

RV only phase RV+UV phase UV only phase

Figure 3.26 — DecASIPv1: RV and UV messages scheduling with the 8-DecASIP architecture in
LDPC mode

3.2.4 ASIC synthesis results

As in the TurbASIP case, DecASIPv1 was modeled in LISA language using Processor Designer
tool. The generated VHDL description was synthesized with general purpose 65nm CMOS
technology (worst case 0.9v, 125C) that gave a logic area of 0.087mm2 per DecASIPv1 with a
maximum clock frequency Fclk = 510MHz. Table 3.2 presents the detailed synthesis results of
the combined pipeline stages. The de-Bruijn network with 8 nodes, and a data width tailored to
the application need, has an area of 0.15mm2. Thus, an 8-DecASIPv1 system decoder requires
a post-synthesis total area of 2.67 mm2 (which includes a total memory area of 1.8 mm2, repre-
senting 67%). Table 3.3 gives a summary of the memory bank partitions for a single DecASIPv1

in the 8-DecASIP system decoder.

The throughput estimate in LDPC mode is given by the expression (3.17) below, where a
sub-iteration is completed in Tsub−iteration clock cycles (see equation (3.16)).

Throughput in LDPC mode =
Z ∗Nb ∗ Crate ∗ Fclk

Tsub−iteration ∗ ClkCN ∗Mb ∗Niter
(3.17)

The best throughput achieved is 306Mbps for WiMAX code rate (Crate) = 5/6, Z =
96, Mb = 4 block rows, Nb = 24 block columns and Niter = 10 iterations. The architec-
ture has NA = 8 DecASIPv1 each processing CNA = 3 check nodes per ClkCN = 2 clocks.

Similarly, equation (3.18) gives the throughput in Turbo mode. An average Ninstr = 4
instructions are needed to give 1 symbol which is composed of Bitssym = 2 bits (lines @26,
@27, @30, @32 of the assembly code example given in Listing 3.1). Considering Niter = 6.5
iterations, the maximum throughput achieved is 156Mbps.

Throughput in Turbo mode =
Bitssym ∗ Fclk ∗ (NA/2)

Ninstr ∗Niter
(3.18)

86 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

Table 3.4 presents the throughput results of DecASIPv1 architecture for an 8-DecASIPv1 system
decoder, in addition the achieved architecture efficiency (using the equation 3.1). The discussion
of these results and the comparison with state-of-the-art implementations are regrouped at the
end of this chapter, i.e. after the presentation of the enhanced second version DecASIPv2 in the
following section.

Design unit Area in um2

PF 1087
FE 361
DC 5522
OPF 3855

BM1/CVnExtRead 4144
BM2/TwoMinBnk3 3695

EX/ReadNoC 8575
MAX1/UpdateNoC 5075

MAX2 1018
ST 2338

Register File 42338
Memory Interface 5310

Total logic 87233
Total logic for 4x4 system 697871

Total Memories for 4x4 system 1816505
de-Bruijn NoC 152292

Total 4x4 System 2666668

Table 3.2 — DecASIPv1: ASIC synthesis results for the complete 8-DecASIPv1 system decoder using
65nm CMOS technology @510 MHz (worst case 0.9v, 125C)

Memory Number of banks Depth Width
Input(component dec0) 3 256 24

Input(component dec1)
6 256 6 (for S0’,S1’)
3 256 12

Extrinsic 6 256 15
Cross metric 2 32 80

Config 1 64 24
Instruction memory 1 128 16

Table 3.3 — DecASIPv1: Summary of the memory bank partitions for a single ASIP in the 8-DecASIP
system decoder

Mode Throughput (Mbps) AE (bits/cycle/iter/mm2)
DBTC, SBTC 156 @6.5iter 0.76

WiMAX (LDPC) 306a @10iter 2.3
WiFi (LDPC) 258a @10iter 1.9

a Best achieved throughput for code rate 5/6

Table 3.4 — DecASIPv1: Throughput results and achieved architecture efficiency for an 8-DecASIPv1
system decoder

3.3. DECASIPV 2 87

3.3 DecASIPv2

This section presents the proposed enhanced version of the DecASIPv1 architecture. This new
version of the ASIP is also considered for FPGA prototyping and ASIC integration (presented
in chapter 4). The major added design features correspond to: (1) scalability support of 2 to 8
DecASIP decoding system architecture and (2) enhanced throughput in the LDPC mode (around
25%).

The DecASIPv2 architecture design targets to achieve a decoder configurations in 1x1, 2x2
or 4x4 modes using 2,4 and 8 DecASIPs respectively. Additionally, in LDPC mode, each
DecASIPv2 processes 2 check nodes per clock cycle instead of 3 check nodes in 2 clock cy-
cles (as in DecASIPv1). Thus, a throughput enhancement of 25% w.r.t. DecASIPv1 can be
achieved. This feature implies also a different memory partitioning of the input and extrinsic
banks.

3.3.1 System architecture

Figure 3.27 presents the system overview of a scaled down version of the architecture with 4-
DecASIPv2 system decoder. The de-Bruijn NoC in the previous architecture (DecASIP4v1) was
used to forward NoC messages to adjacent ASIPs in LDPC mode which results in inefficient
use of NoC resources. Therefore, this de-Bruijn NoC is replaced by a simpler low complexity
butterfly NoC in DecASIPv2. This enables efficient forwarding of the NoC messages in Turbo
mode. While the LDPC mode NoC messages are forwarded through the α-β buses of the compo-
nent decoders (multiplexed to form a ring). Furthermore, the decoding operations are simplified
by moving all the configuration data from the program memory to a dedicated configuration
memory.

ASIP0

ASIP1

ASIP2

ASIP3

ASIP7

ASIP

ASIP5

ASIP4

CV

CV

CV

CV

Ext.
Mem

Ext.
Mem

Ext..
Mem

Ext.
Mem

Ext.
mem

Ext..
Mem

Ext.
Mem

Ext.
Mem

NI0

NI1

NI2

NI3

CV

CV

CV

CV

Component decoder 1 Component decoder 0

NI7

NI6

NI5

NI4

40

40
40

40 3x

3x

3x

3x x3

x3

x3

x3

x3

x3

x3

x3 3x

3x

3x

3x

Butterfly NOC

α-β network

α-β network

 DBTC LDPC

LDPC DBTC

Figure 3.27 — DecASIPv2 System Architecture

88 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

3.3.2 Turbo mode

As in the DecASIPv1 case, shuffled decoding is used Turbo mode in DecASIPv2 along with sub-
blocking and windowing. Message passing is used for initialization of sub-block state metric
boundary. The forward and backward 8 state metric values are exchanged in two clock cycles
via two buses connecting the DecASIPs of the component decoders in two clocks cycles (i.e. 4
state metric values in each clock cycle).

In SBTC mode, two NoC packets are generated corresponding to the systematic LLR bits
(S0,S1) processed as a symbol (by to radix-4 trellis compression technique). As these two
address can be different they packetized over two NoC packets each of width 25 bits each. This
does not cause any congestion in the NoC as two packets are generated every two clock cycles
(two instructions for the forward recursion) as explained Section 3.2.3.5.

In DBTC mode, the three normalized extrinsic informations saturated to 8 bits are sent across
the NoC in two packets as shown in Figure 3.28b. The address fields of these two NoC packets
are the same as they are destined to the same location of the other component decoder as shown
in Figure 3.28b.

0 11 22 12 24 23

@Local

8 7

0000 Ext Route

(a) SBTC NoC packet

0 11 22 12 24 23

@Local

0 11 22 12 24 23 3 4

Ext_11 Ext_10(7..5) @Local
Route

1

Route

0
Ext_01 Ext_10(4..0)

8 7

(b) DBTC NoC packet

Figure 3.28 — DecASIPv2: NoC packets format using the Butterfly NoC

Unified SBTC and DBTC assembly code: A common assembly code for SBTC and DBTC
mode is as shown in the Listing 3.5 and Listing 3.6. Notice that the three sections of the code
in the program memory does not contain any parameters that has to be modified. NumConfig-
Param is the value read from the input pin of the DecASIP. Thus the number of parameters to be
read from the configuration memory can be configured as DecASIP is powered up. The number
of windows (L) in the sub-block and current window number at line (@9) and (@12) are read
from registers initialized from the config memory. Thus reconfiguration of the system is just the
rewriting necessary parts of the configuration memory. The exchange of sub-block state bound-
ary metrics (4 at a time) are achieved through the instruction WINDOW INIT with parameters
ALPHABETA 0 3 and WINDOW INIT ALPHABETA 4 7. By initialization of appropriate val-
ues from configuration memory into registers during DecASIPv2 power up, the presented ASM

3.3. DECASIPV 2 89

code can decode the SBTC or DBTC frame. The registers to be initialized are: NWindowReg,
NWindowReg1, NWindowReg2, WindowId2, WindowLenReg1, WindowLenReg2, MaxItera-
tionsReg and TailBitAddr. The values for these registers are stored in the configuration memory.
Descriptions of these registers are given in section 3.3.4.

Listing 3.5 — DecASIPv2: Unified assembly code for DBTC and SBTC modes – initialization �
1 ; load configuration data from configuration mem
2 REPEAT until INIT for NumConfigParam times
3 NOP
4 ASIP INIT
5 INIT: NOP
6 ; set number of windows to a number greater than
7 ; actual number of windows without tail bits
8 ; here, always set to NWindowReg2=NWindowReg+2
9 SET WINDOWSN NWindowReg2

10 ;WindowId1 always set to NWindowReg+1
11 ;WindowLenReg1 always set to 1
12 SET WINDOWSINIT WindowId1, WindowLenReg1
13 ; load the address of the tail bits i.e. TailBitAddr
14 TAILBITS TailBitAddr
15 ; execute line (19) and (20) twice
16 ZOLB RW, RW, RW
17 NOP
18 ;for If window id=0,7 treat the next line as NOP
19 DATA LEFT ADD metric COLUMN2
20 RW: NOP
21 NOP
22 EXCH BETA ALPHA
23 NOP
24 NOP
25 NOP
26 ;load the number of windows NWindowReg1
27 SET WINDOWSN NWindowReg1
28 ; current windowid, window size
29 SET WINDOWSINIT WindowId2, WindowLenReg2

Listing 3.6 — DecASIPv2: Unified assembly code for DBTC and SBTC modes – frame decoding �
30 ;execute 10 iterations, i.e. (33) to (54) Max. Iterations times
31 Repeat until LOOP for MaxIterations times
32 NOP
33 ;execute the lines (37) and (38), followed by
34 ;(42) and (43) ”Window length” times
35 ZOLB RW1, CW1, LW1
36 NOP
37 RW1: DATA LEFT ADD metric COLUMN2
38 NOP
39 ;store last window alpha and beta and
40 ;load the next window beta state boundary metrics

90 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

41 CW1: EXCH BETA ALPHA
42 DATA RIGHT ADD metric COLUMN2
43 LW1: EXTCALC ADD info LINE2
44 ;end of sub−block state boundary metrics
45 WINDOW INIT ALPHABETA 0 3
46 NOP
47 WINDOW INIT ALPHABETA 4 7
48 ;flush pipeline to start new iteration
49 NOP
50 NOP
51 NOP
52 NOP
53 NOP
54 LOOP: NOP
55 ;finish decoding and halt
56 PROC STOP

3.3.3 LDPC mode

The LDPC mode DecASIP functionality is optimized to gain better throughput and resource
utilization. The input memory banks are split in a way to store one LLR value in each loca-
tion. Each DecASIP processes 2 check nodes connected to 3 variable node groups. The RV and
UV calculations are made in one clock cycle. Since only four DecASIPs are available RV/UV
calculations takes place in 2 sub-phases. In the first sub-phase the DecASIPs process the even
variable node groups. The partial RV/UV messages thus obtained are then updated by calcu-
lating the RV/UV messages for the odd variable node groups in the second sub-phase. As each
ASIP can process two CNs in parallel, 4 DecASIPs in combination process a minimum P=8 CNs
(P=maximum parallelism level in LDPC mode=2 ×NA). Each DecASIP has 3 memory banks
of size 24×256 used to store the input channel LLR values (L(n)) (Figure 3.29). As seen in the
figure, each memory bank is internally divided into two sub-banks of 12 bits width. There are

0

L(n=0)

L(n=2)

L(n=4)

L(n=6)

:

L(n=2Z-2)

0

5 7

Z

256-Z

0

L(n=1)

L(n=3)

L(n=5)

L(n=7)

:

L(n=2Z-1)

0

5 7

MemL MemU

Figure 3.29 — DecASIPv2: Input memory bank 0 organization in LDPC mode

3 other extrinsic memory banks of size 24 × 256 used for storing check node to variable node
extrinsic information (L(m,n)) (Figure 3.30). As it is shown, the extrinsic values (each of word
length 5 bits) belonging to one VNG, are stored in couples i.e. L(m,n) for m = 0, 2, ..dZ/2e at
bit location (0..4) MemL and m = 1, 3, ...dZ/2e at the (5..9) of MemU. Subsequent, even and

3.3. DECASIPV 2 91

odd sequence of extrinsic values generated by the DecASIP are stored in the in the MemL and
MemU sub-banks respectively.

The cross metric memories act as FIFO’s to store variable node to check node L(n,m),
generated input addresses and extrinsic memory offset values. The FIFO’s are used to store
intermediate values and generated addresses during RV phase and to be used in subsequent UV
phase.

L(m=1,n) 1 L(m=1,n) 0 L(m=0,n) 1 L(m=0,n)0

L(m=3,n) 1 L(m=3,n) 0 L(m=2,n) 1 L(m=2,n) 0

: : : :

L(m=Z-1,n) 1 L(m=Z-1,n) 0 L(m=Z-2,n) 1 L(m=Z-2,n) 0

L(m=1,n) 4 L(m=1,n) 3 L(m=0,n) 4 L(m=0,n)3

L(m=3,n) 4 L(m=3,n) 3 L(m=2,n) 4 L(m=2,n) 3

: : : :

L(m=Z-1,n) 4 L(m=Z-1,n) 3 L(m=Z-2,n) 4 L(m=Z-2,n) 3

L(m=1,n) 7 L(m=1,n) 6 L(m=0,n) 7 L(m=0,n)6

L(m=3,n) 7 L(m=3,n) 6 L(m=2,n) 7 L(m=2,n) 6

: : : :

L(m=Z-1,n) 7 L(m=Z-1,n) 6 L(m=Z-2,n) 7 L(m=Z-2,n) 6

L(m=1,n) 10 L(m=1,n) 9 L(m=0,n) 10 L(m=0,n)9

L(m=3,n) 10 L(m=3,n) 9 L(m=2,n) 10 L(m=2,n) 9

: : : :

L(m=Z-1,n)10 L(m=Z-1,n) 9 L(m=Z-2,n) 10 L(m=Z-2,n) 9

Check node groups 0,1

Check node groups 2,3

Check node groups 4,5

Check node groups 6,7

12 12

256

MemL MemU

Figure 3.30 — DecASIPv2: Extrinsic memory bank 0 organization in LDPC mode

m
in

0

m
in

1

Satu
rate

 C
o

m
p

are

A
b

s

L(n,m)
from FIFO

From UV NoC message

5 8 4

4

4

4

sgn
 1

5

A
d

d
 &

satu

rate

L(n)
To input mem

L(m,n)
To extr. mem

 Scale facto
r

Lo
o

k u
p

4

1

0

1

Figure 3.31 — DecASIPv2: Variable node update unit in LDPC mode

92 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

Parity Sgn min1 min0

4 4 1 1

x2

Figure 3.32 — DecASIPv2: NoC message format in LDPC mode

3.3.3.1 NoC messages and NoC schedule

In DecASIPv2, the RV and UV messages widths are reduced to 20 bits by omitting the location
or edge identifier (ASIPID, Ind) present the DecASIPv1. During the variable update phase, the
variable node that sent the min0 is identified by comparing the min0 of the UV message with the
saturated L(n,m) message sent during the RV phase (Figure 3.31). RV and UV NoC messages
formed are of the format as shown in Figure 3.32. In addition to Sgn,min1,min0 fields, a
Parity field is also introduced to enable partity check and early termination.

Figure 3.33 shows the RV and UV messages passed over the NoC interface, i.e. α-β network
that connects all four DecASIPs. As it is seen, the RV and UV messages are transmitted over
the NoC simultaneously over the 40 bit bus. Each sub-group now consists of 8 check nodes (i.e.
4 DecASIPs with 2 CNs each). Each sub-group is processed in 2 sub-phases (NPh=2) where in
the first sub-phase even numbered VNGs associated with the sub-group are processed, followed
by the odd numbered VNGs. Thus, an RV only phase on a sub-group of check nodes needs 8
clock cycles. Similarly, UV or RV+UV phase takes 8 clock cycles. RV and UV messages are
sent on lower and upper 20 bits of the α-β network respectively.

Inactive UV0 UV1 UV2 : UV3 UV0 UV1 UV2 : UV3

RV0 RV1 RV2 : RV3 RV0 RV1 RV2 : RV3 Inactive

Inactive UV1 UV2 UV3 : UV0 UV1 UV2 UV3 : UV0

RV1 RV2 RV3 : RV0 RV1 RV2 RV3 : RV0 Inactive

Inactive UV2 UV3 UV0 : UV1 UV2 UV3 UV0 : UV1

RV2 RV3 RV4 : RV1 RV2 RV3 RV0 : RV1 Inactive

Inactive UV3 UV0 UV1 : UV2 UV3 UV0 UV1 : UV2

RV3 RV4 RV5 : RV2 RV3 RV0 RV1 : RV2 Inactive

Time

clk0 clk1 clk2 clk7 clk8 ……. clk10 clk47 clk48 clk49 clk50 clk55 …….. clk9 …….

ASIP0

ASIP1

ASIP2

ASIP3

RV only phase RV+UV phase UV only phase

20

20

D
ec

A
SI

P
v2

α
─
β

 n
/w

Figure 3.33 — DecASIPv2: NoC message passing in LDPC mode. Example for CNG0 processing with
Z=48.

Overall, 4 DecASIPs process 8 check nodes in two sub-phases, where each sub-phase takes
4 clock cycles. Thus, the required number of clock cycles to process one complete sub-iteration
can be given by the following expression:

Tsub−iterationv2 = NA × (1RV + (dZ/(2CNs ×NA)e − 1)RV UV + 1UV)×NPh (3.19)

The address generation scheme presented in section 3.2.3.3 is now modified to support sub-
phase decoding schedule as shown in Figure 3.34. Here Nph indicates the number of sub-phases
which can be (1,2,4). The actual implementation of the logic presented involves the use of
internal address FIFO’s to store the Px,y+subgroup*(2*NA) and modulo- counters.

3.3. DECASIPV 2 93

It is to be noted here that though the architecture presented illustrates a scaled down ver-
sion with 4-DecASIPv2, the presented addressing logic facilitates scalability with 8 or 2 ASIPs
systems in LDPC and Turbo modes.

For (subgroup=0; subgroup < (Z/(2*NA*Nph)) ; subgroup++)

 For (x=0; x < Nph; x = x + Col_Incr)

 For (timestep=0; timestep < NA; timestep ++)

 CV address = (Px,y + subgroup*(2*NA) + 2*((timestep+ASIPID) % NA)) % Z

Figure 3.34 — DecASIPv2: Pseudo code for CV address generation in LDPC mode

3.3.3.2 LDPC assembly code

The assembly code of LDPC decoding is as shown in Listing 3.7, Listing 3.8, and Listing 3.9.
The instruction set in LDPC mode mainly consist of 4 instructions:

• RVEC: As in the RunVec instruction in DecASIPv1, this instruction fetches 6 variable node
values corresponding to the 2 check nodes under processing. It calculates the absolute min0
and min1, the partial sgn and partial parity. Based on these values, it updates the NoC RV
received from the adjacent DecASIP and forwards to the next DecASIP.

• UVEC: Similar to the UpdateVec of DecASIPv1, this instruction calculates the L(m,n) i.e.
the update value of th VN of the DecASIP connected to the check node under processing
from the UPDT NoC message received from the previous DecASIP and forwards the UV
NoC message (unmodified) to the next DecASIP.

• RVEC UVEC: This instruction is a combination of the above two instructions. By this
instruction RV messages are updated for the current sub-group while the variable nodes are
updated for the previous sub-group.

• LDPCHardDecCalc: This instruction reads the input memories to give hard decisions (i.e.
7th bit of each sub-bank) in the LDPC mode.

Listing 3.7 — DecASIPv2: Assembly code in LDPC mode – initialization RV only phase �
1 Repeat until INIT for NumConfigParam times
2 NOP
3 ASIP INIT
4 INIT: LDPCAddr INIT
5 ; current windowid=0, window size=19
6 SET WINDOWSINIT WindowId1, WindowLenReg1
7 REPEAT until ITER for MaxIterations times
8 LDPCAddr INIT
9 PUSH

10 ; execute RV, RV+UV and UV phases for NumRows+1 check node groups
11 REPEAT until LOOP for NumRows times
12 NOP
13 ;8 running vector instructions to complete RV calculation
14 ;of 8 check nodes associated with 24 VNGs

94 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

15 RVEC
16 RVEC
17 RVEC
18 RVEC
19 RVEC
20 RVEC
21 RVEC
22 RVEC

Listing 3.8 — DecASIPv2: Assembly code in LDPC mode – RV+UV phase and UV only phase �
23 ; execute (27) −(28) 19∗2 times
24 ;∗note instruction @(28) is executed 2 times more than
25 ;the instruction at @27 , hence a total of 40 (RV+UV)
26 ;are executed.
27 ZOLB CW1, CW1, CW1
28 UVEC
29 RVEC UVEC
30 CW1: RVEC UVEC
31 ;execute 8 UV calculations note the first UV only is at line (26)
32 UVEC
33 UVEC
34 UVEC
35 UVEC
36 UVEC
37 UVEC
38 UVEC
39 ;flush the pipeline to start a new group/layer
40 NOP
41 NOP
42 NOP
43 NOP
44 NOP
45 NOP
46 NOP
47 LOOP: POP
48 NOP
49 NOP
50 ITER: NOP

Listing 3.9 — DecASIPv2: Assembly code in LDPC mode – Hard decision �
51 ;read and generate hard decision for input bank 0 (sub−banks 0,1)
52 Repeat until HardDec0 for Z times
53 NOP
54 LDPCHardDecCalc 0
55 ;read and generate hard decision for input bank 1 (sub−banks 0,1)
56 HardDec0: Repeat until HardDec1 for Z times

3.3. DECASIPV 2 95

57 NOP
58 LDPCHardDecCalc 1
59 ;read and generate hard decision for input bank 2 (sub−banks 0,1)
60 HardDec1: Repeat until HardDec2 for Z times
61 NOP
62 LDPCHardDecCalc 2
63 HardDec2: nop
64 ;finish decoding and halt
65 PROC STOP

3.3.4 Configuration memory

One of the added features in the DecASIPv2 is that all the parameters that define the operating
mode of the design is moved to a configuration memory. This memory is initialized at the
start of the decoding process and enables quick reconfiguration between operating modes. The
different words of the configuration memory are as shown in Table 3.5, and the different fields
are explained below.

• Mode: This field configures DecASIP in any of the three supported decoding modes:
DBTC, SBTC, and LDPC.

• ExtrMemRead: This field controls if the extrinsic memory is to read in the first iteration or
not during shuffled decoding in Turbo mode (used for debug purpose).

• C.D.: This field identifies the DecASIP to be in either the part of the component decoder
(C.D.) 0 or 1.

• TurboInitIteration: sets the initial number of iteration counter, used for debug.

• State1,State2 : Sets the state values in for Turbo interleave and deinterleave address gener-
ation (Figure 3.10), these bits are used to control the load of Seed values at the start of the
address generation process.

• StepIndex: Sets the initial value of the counter in for Turbo interleave and deinterleave
address generation (Figure 3.10).

• Scaling factor: Turbo mode extrinsic scaling factor.

• NumPhases: Number of phases in the LDPC mode.

• Parity check: Expected parity check bits in the LDPC mode. They can be maximum of 12
bits , i.e. one expected check bit per check node group.

• MaxIterationsReg: Maximum iterations that is to be executed.

• LastWindowSize: Length of the last window in Turbo mode.

• NumRows: Number of rows in the LDPC check matrix.

• zsize: Permutation matrix size of the LDPC check matrix.

• Param0=NA−dZ(2∗NA)e%NA, which indicates the number of empty clock cycles when
processing the last subgroup.

96 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

• Param1= 2*NA, Maximum number of check nodes processed in one RV cycle.

• Param2= d Z
2∗NA e, number of subgroups, (NumSubGroups).

• Px,y= permutation value of xth row and yth column in the LDPC Hbase matrix.

Addr 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 - StepIndex CD ExtrMemRead State TurboInitIteration Mode ASIPId NA
1 - - - - NumPhases d Z

(2∗NA)
e - - - - NumRows - (Z-1)%2

2 Param0 Scaling factor LastWindowSize
3 Param2 zsize Param1
4 - Parity check
5 MaxIterationsReg Tail bit address
6 NWindowReg1 WindowId1 WindowLenReg1
7 - CVLDPCBankDepth WindowLenReg2
8 - Turbo step 0 (Figure 3.10)
9 - Turbo step 1 (Figure 3.10)
: :
: :
14 - Turbo step 6 (Figure 3.10)
15 - Turbo step 7 (Figure 3.10)
16 - Turbo seed 0 (Figure 3.10)
17 - Turbo seed 1 (Figure 3.10)
18 - Turbo/LDPC frame length in Bits (N) (Figure 3.10)
19 - Turbo prev step (Figure 3.10)
24 P1,1 P1,3 P1,5

25 P1,2 P1,4 P1,6

26 P2,1 P2,3 P2,5

27 P2,2 P2,4 P2,6

: : : :
: : : :
48 P12,2 P12,4 P12,6

Table 3.5 — DecASIPv2: Configuration memory contents for DecASIP 0

3.3.5 ASIC synthesis results

Table 3.6 details the post-synthesis results obtained for the DecASIPv2 using general purpose 65
nm CMOS technology (510MHz, worst case 0.9v, 125C). The total logic area of one DecASIPv2

is 0.126 mm2. The total area occupied by the 2x2 system is 1.37 mm2 that includes the area of
memories (0.86 mm2) and the butterfly NoC (0.09 mm2). Table 3.7 gives a summary of the
memory bank partitions for a single DecASIPv2 in the 4-DecASIP system decoder.

For an 8-DecASIPv2 system architecture, the estimated total area is 2.74 mm2 achieving a
maximum throughput of 437 Mbps and 156 Mbps in LDPC and Turbo modes respectively. The
best throughput achieved for the LDPC mode in 8-DecASIPv2 architecture is 437 Mbps, when
calculated for WiMAX LDPC frames with code rate Crate = 5/6, sub-matrix size Z = 96,
number of rows Mb = 4 and number of columns Nb = 24 in the check matrix Hbase (equation
3.20). The number of iterations considered is Niter = 10. The required number of clock cycles
to process one complete sub-iteration Tsub−iterationv2 is given by the equation (3.19). The clock
speed considered is Fclk=510MHz.

ThroughputLDPC =
Z ∗ Crate ∗ Fclk

Tsub−iterationv2 ∗ (Mb∗Niter

Nb
)

(3.20)

As no changes to the architecture have been done for DecASIPv2 in Turbo mode, the
throughput calculation for the Turbo mode remains the same as in equation 3.18. It can be

3.3. DECASIPV 2 97

observed, when comparing with the results of related to DecASIPv1 in Table 3.2, that there is a
slight increase in area which is attributed to the increase in logic area of DecASIPv2. The decode
pipeline stage (DC) of DecASIPv2 design occupies more area when compared to DecASIPv1,
this is in fact due to the address decoding logic (Figure 3.34) which is simpler in DecASIPv1

(see the pseudo code in Figure 3.23). The complexity in case of DecASIPv2 arises from the
storage of address counter values in temporary FIFOs when changing from even block column
processing (first sub-phase) to odd block column processing (during the second sub-phase). Fur-
thermore, the presented architecture is scalable supporting a decoding system with 2 DecASIPv2

(1x1) processing LDPC in 4 sub-phases. Similarly, the EX pipeline stage of this design occupies
also more area than in DecASIPv1 due to the increased multiplexing complexity introduced by
routing LDPC NoC messages through α-β network.

Design unit Area in um2

PF 1574
FE 517
DC 12619
OPF 6853

BM1/CVnExtRead 4520
BM2/TwoMinBnk3 4764

EX/ReadNoC 14140
MAX1/UpdateNoC 9790

MAX2 7790
ST 3920

Register file 47398
Memory interface 9645

Total logic 126040
Total logic for 2x2 system 504159
Memories for 2x2 system 864718

Butterfly NoC 9490
Total 2x2 DecASIPv2 System 1378367

Table 3.6 — DecASIPv2: ASIC synthesis results for the complete 4-DecASIPv2 system decoder using
65nm CMOS technology @510 MHz (worst case 0.9v, 125C)

Memory Number of banks Depth Width
Input(component dec0) 6 256 12

Input(component dec1)
6 256 6 (for s0’,s1’)
3 256 12

Extrinsic 6 256 12
Cross metric 2 32 80
Configuration 1 64 24

Instruction 1 64 16

Table 3.7 — DecASIPv2: Summary of the memory bank partitions for a single ASIP in the 4-DecASIP
system decoder

Table 3.8 compares the AE obtained for the DecASIPv2 to other state of the art architectures
and to that of DecASIPv1 system (taken from Table 3.4). Comparing with DecASIPv1 system,
the proposed DecASIPv2 system achieves a marginal increase in AE in LDPC mode. In fact,

98 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

the increased throughput in this mode does not lead to the expected increase in AE. This is due
to the increased area caused by the scalability feature added for LDPC mode. On the other
hand, in Turbo mode, the throughput remains identical as in DecASIPv1 system which leads
to lower AE. Furthermore, 8-DecASIPv2 (which support maximum of 3072 symbols in Turbo
mode) architecture obtains the same AE of 4-DecASIPv2 system (which support maximum of
1536 symbols in Turbo mode) as the memory and logic duplicate with number of processors in
the system to support larger block sizes.

DecASIPv2 DecASIPv2 DecASIPv1
4 ASIPs 8 ASIPs 8 ASIPs [107] [113] [110] [115]

SBTC SBTC, SBTC, CC, LTE, DBTC,
Standard supported DBTC LDPC, DBTC, DVB-SH SBTC

LDPC LDPC LDPC LDPC
Tech (nm) 65 90 65 45 90

Core area (mm2) 1.37f 2.74 2.6 3.2 0.62 0.9 3.17
AreaNorm @65nm (mm2) 1.37 2.74 2.6 1.67 0.62 1.8 1.65

Throughput SBTC 78 a 156 a 156 a 450 d 37.2 f 18 e 72 e

(Mbps) DBTC 78 a 156 a 156 a - 18.6 f 18 e 18 e

LDPC 235 b 437 b 306 b 600 b 237.8 b 70 @8 iter 93 @6 iter
LDPC(WiFi) 215 c 368 c 258 c 600 c 257 c 100 @8 iter 165 @10 iter

Parallel MAPs 4 8 8 12 1 12 22
Bits/cycle/iter (Turbo) 4 8 8 12 2 12 -

fclk (MHz) 510 510 510 500 400 150 300
AE (bit/cycle/iter/mm2) (Turbo) 0.72 0.72 0.76 21.5 0.75 2.1 1.12
AE (bit/cycle/iter/mm2) (LDPC) 3.3 3.12 2.3 5.3 10.3 2.9 3.3
a @6.5iter (SBTC/DBTC)
b (LDPC-WiMAX, Crate=5/6, Z=96, 10 iter)
c (LDPC-WiFi, Crate=5/6, Z=81, 10 iter)
d @6iter (SBTC)
e (SBTC/DBTC),@8 iter
f (SBTC/DBTC),@5 iter
g max. frame size is 3072 bits in LTE mode

Table 3.8 — DecASIPv2: Results comparison with few recent state-of-the-art implementations

3.3.6 Discussions and analysis of recent related implementations

During the same period of time as this thesis work, several other initiatives and solutions have
emerged with the target of supporting flexible channel decoders for Turbo and LDPC decoding.
Each of which has different design approaches and targets, besides flexibility, one or a combina-
tion of different design objectives, namely: high throughput, optimized area, energy efficiency,
scalability.

Table 3.8 summarizes the achieved results after logic synthesis of some recent related im-
plementations. From the available published results, we made a normalization effort to evaluate
the impact of our design choices w.r.t. these proposed architectures. The architecture efficiency
(Sub-section 3.1.1) is computed, besides the supported flexibility, while power consumption
results are omitted as it is out of the scope of this thesis. It has to be noted that besides the
architecture efficiency, flexibility and scalability should be considered as design features.

From this table, we can notice the high architecture efficiency AE of 21.5 is achieved in
Turbo mode in the work presented in [107]. This is due mainly to the high sub-block parallelism
degree exploited in this architecture: 12 parallel Max-Log MAP SISO decoders are instantiated.
In fact, this parallelism level does not impact input and extrinsic memories, however only the
SISO decoders are duplicated. Using such high degree of sub-block parallelism should also
be supported by the interleaving scheme of the target standards. For LDPC mode, the SPC
algorithm is adopted and the computational resources are shared with that for the Max-Log
MAP algorithm for Turbo decoding. Furthermore, high parallelism degree is exploited in LDPC

3.3. DECASIPV 2 99

mode by processing 96 check nodes in parallel using a barrel shifter for high memory bandwidth
resulting in AE of 5.3. The proposed architecture, however, does not support DBTC codes of
WiMAX. It uses a parameterized architecture model that target only the Turbo codes of LTE
standard along with LDPC codes of WiMAX and WiFi. Thus, high AE is obtained with careful
choice of target standards, codes, decoding algorithms and allowed high parallelism degree.

Similar design choices and architecture model are used in the work presented in [110]. The
high area occupancy can be attributed to the additional support of DVB-SH and 3GPP standards.
Low operational clock frequency is set in order to reduce power consumption while just fulfilling
the throughput requirements of the target standards (up to 100 Mbps in LDPC mode). However,
memory partitioning and interleaving (which seems to be considered as not part of the decoder)
are not discussed in the presented architecture.

The single core ASIP-based architecture presented in [113] achieves a high architecture
efficiency AE of 10.3 in LDPC mode by processing 27 check nodes in parallel and using NMS
algorithm with no computational logic sharing with Turbo decoding mode. It also supports
multi-mode operation of any SBTC (up to 16 states) and DBTC (up to 8 states), however it
achieves low throughput and architecture efficiency AE of 0.75. Furthermore, the presented
single core decoder lacks scalability to enable higher throughputs.

The last work presented in [115] proposes a NoC based multiprocessor highly scalable ar-
chitecture targeting current and future possible wireless standards supporting LDPC and Turbo
codes. The high scalability implies more area and thus the acheiving the AE of 1.12 and 3.3 for
Turbo and LDPC modes respectively. Similarly, for the 8-DecASIPv2 system, the high scalabil-
ity feature implies additional area overhead, which results in the AE of 0.72 and 3.12 for Turbo
and LDPC decoding modes respectively. Nevertheless, the acheived results are still better than
the 8-DecASIPv1 system.

Even though a fair comparison cannot be drawn w.r.t. the architecture presented in this
chapter, some important conclusions can be derived, which are summarized as follows:

1. High AE is possible by maximising the usage of sub-block parallelism allowed by the
standard that specify hardware-aware interleavers.

2. High scalability can be achieved through the use of multiprocessing and NoC based archi-
tectures. However, for high AE, a special attention should be paid to keep the communica-
tion and the logic overhead to the minimum possible.

3. High throughputs and AE in LDPC mode are possible by increasing the parallelism de-
gree and the memory bandwidth with adequate communication interconnect (e.g. barrel
shifters).

4. Both ASIP and parameterized core architecture models are good candidates to achieve high
AE as can be noticed from [113] in LDPC mode and from [107] in Turbo mode (Table 3.8).

Experiences in design of DecASIPv1 and of DecASIPv2 opened up for us following new research
directions for further explorations:

• Designing a new optimized flexible Turbo decoder with the following design goals: (1)
investigate the maximum attainable architecture efficiency for ASIP-based Turbo decod-
ing when maximising the usage of sub-block parallelism and as the number of parameters
in Turbo mode (Table 3.5) is limited (2) investigate the possibility to design application-
specific parametrized cores using the available ASIP design flow. The idea of this last aim
is to evaluate the benefits from removing the need of a program memory and the related
instruction decoder. Related work is presented in Chapter 5.

100 CHAPTER 3. DECASIP: FLEXIBLE TURBO/LDPC DECODER

• Design of a new optimized flexible LDPC decoder with the following design goals: (1)
investigate the maximum attainable architecture efficiency for ASIP-based LDPC decoding
by increasing the parallelism degree and the memory bandwidth with flexible barrel shifters
and (2) explore the possibility of realizing a flexible decoder that allows to implement and
validate new/incremental algorithm changes with fast turnaround time in design. Related
work is presented in Chapter 6.

3.4 Summary

This chapter has presented our first contributions in the design of scalable, flexible and optimized
channel decoder supporting Turbo and LDPC codes using a multi-ASIP NoC based architecture
model. Several design goals that were targeted at the starting of this work have been achieved
and can be summarized as follows:

1. Resource sharing between the LDPC and the Turbo decoding modes is achieved through
efficient reuse of memories and communication network resources. In fact, the computa-
tional logic required for the low complexity NMS algorithm (LDPC mode) has relatively
low contribution to the overall decoder area and has no direct commonalities with that re-
quired for the Max-Log-MAP algorithm (Turbo mode).

2. Scalability is obtained through multi-ASIP architecture connected through an application-
specific NoC interconnect. Two NoC architectures were explored: the first one is based on
the binary de-Bruijn direct topology which was later replaced by a more area efficient NoC
based on the Butterfly indirect topology. Thus, the final system decoder with 4 DecASIPv2

can achieve a maximum throughput of 80 Mbps and 235 Mbps for Turbo (DBTC, SBTC)
and LDPC modes respectively. When scaled to an 8 DecASIP based system decoder, the
proposed architecture allows throughputs in Turbo and LDPC modes of 160 Mbps and 437
Mbps respectively.

3. New LDPC decoding schedule adapted to the base TurbASIP architecture and to the target
scalable multi-ASIP channel decoder has been proposed. It implies a ring interconnect net-
work to transfer messages across the multiple DecASIP. The DecASIPs here act as variable
and check node processing engines.

4. Compatible with the above architectural choices, possible parallelism techniques have been
explored through the use of shuffled decoding and sub-blocking in Turbo mode. In LDPC
mode, partial parallelism and layered decoding have been explored where the proposed
multi-DecASIP decoder processes disjoint set of check nodes within a check node group.

5. Rapid reconfigurability between the different supported decoding modes is provided by
regrouping all the parameters in a well structured configuration memory and by unifying
the program memory for both SBTC and DBTC modes.

The proposed scalable multi-ASIP LDPC/Turbo decoder fairs reasonably well when com-
pared to the related state of the art implementations. It achieves a high throughput in LDPC
mode with an architecture efficiency of 3.12 bit/cycle/iteration/mm2. The Turbo mode architec-
ture efficiency is lower achieving a 0.72 bit/cycle/iteration/mm2, yet the throughputs target of
150 Mbps is met. Finally the chapter concludes with design strategy analysis which serves as
motivation for the contributions which are presented in Chapter 5 and 6.

CHAPTER

4 FPGA and ASIC Prototyping
of DecASIP

OnBOARD validation is a crucial step to fully validate any proposed novel hardware ar-
chitecture. Two additional benefits can be mentioned in this context: the On board val-

idation can lead to valuable feedbacks to the architecture design particularly regarding system-
level interfacing of the channel decoder, additionally the obtained hardware prototype can be
used as a rapid simulation environment for digital communication applications; e.g. to explore
various system parameter associations.

It is, however, a complex task in the context of ASIP-based multiprocessor implementations
and flexible channel decoders, beside the fact that a fully flexible environment should be de-
signed. Hence, this chapter is dedicated to the presentation of our efforts towards FPGA and
ASIC prototyping of the proposed flexible channel decoder. A complete FPGA-based prototype
of the proposed multi-standard Turbo/LDPC decoder is demonstrated. The functional proto-
type implements a full communication system including encoder, channel model, ASIP-based
decoder and performance counters. All components are flexible and are dynamically config-
urable through a dedicated GUI (Graphical User Interface). The proposed prototype supports all
communication modes defined in LTE, WiFi and WiMAX wireless communication standards.

Furthermore, as a joint effort with another PhD student at the CEA-LETI (Pallavi Reddy),
an ASIC integration of the proposed flexible channel decoder has also been elaborated. A 4-
DecASIP channel decoder is integrated in the latest Telecom chip (namely MAG3D) designed
by the CEA-LETI targeting 4G communication applications.

The chapter is organised as follows: The first section reiterates the communication system
model presented in the first chapter drawing parallels to the implemented design units on the
target FPGA prototype. Two blocks are detailed in the second section of this chapter: the flex-
ible Turbo and LDPC encoders. The third section briefly recalls the implemented 4-DecASIP
system decoder, while the fourth section illustrates the global system controller and the features
supported in the control/execution of the DecASIP system decoder. It also presents the other
system blocks including the AWGN channel emulator and the proposed GUI interface. The
fifth section summarizes the main results obtained from the proposed FPGA prototype. It also
presents performance results in terms of BER and FER obtained from the platform and com-
pared against the C-reference curves. Finally, the chapter ends with a summary on the ASIC
integration in the MAG3D chip from CEA-LETI.

101

102 CHAPTER 4. FPGA AND ASIC PROTOTYPING OF DECASIP

4.1 Overview of the proposed FPGA 4-DecASIP system prototype

Source Encoder Channel Decoder Sink

Config
ASIP 0

Config
ASIP 1

Config
ASIP 2

Config
ASIP 3

Configuration window :
• Parameter setting :

 Standard
 Frame size

Config files …

Display window

Pseudo
random

generator

Flexible
Turbo

Encoder
Discrete AWGN
Channel model

Global Input
interface

Error
Counter

USB
Interface

Global
system

controller

Flexible
LDPC

Encoder SNR

ASIP0

ASIP1

ASIP2
ASIP3

Hard
Decisions
bits

GUI

FPGA

Figure 4.1 — Global FPGA platform architecture overview

On board test is a crucial step to validate the ASIP approach feasibility. It is, however, a
complex task in the context of flexible channel decoders as a fully flexible environment should
be designed. Figure 4.1 shows the overview of the implemented prototype on the FPGA, high-
lighting the hardware blocks that draw parallels to the communication system model (Figure
1.1) presented in Chapter 1.

On the host computer side, the proposed environment integrates a GUI (Graphical User
Interface) in order to configure the platform with desired parameters such as target standards,
frame size, code rate, and number of iterations from a host computer. This GUI also displays
results such as BER (Bit Error Rate) and FER (Frame Error Rate) performance curves, besides
the achieved throughput on FPGA.

On the FPGA board side, several modules are developed: a source of data, a flexible turbo
encoder, a channel model, the Turbo decoder architecture which includes 4-DecASIPs, and an
error counter. For data source, a pseudo random generator based on a 32-bit LFSR (Linear
Feedback Shift Register) is used. The Turbo encoder implements both modes of encoding of
SBTC and DBTC specified in the supported standards. Furthermore, a flexible LDPC encoder is
also implemented in hardware to generate LDPC frames. Both encoder blocks can be configured
on-the-fly to encode data blocks of any frame length as specified the target standards. The
channel block emulates an AWGN (Additive White Gaussian Noise) model. The decoder is
made up of 4-DecASIPs working in shuffled mode, an interleaving address generator, an input
interface (to fill the input memories), and a butterfly NoC to manage the exchange of extrinsic
information between the 4 DecASIPs.

The FPGA board used for this platform prototype is the DN9000k10pci board from the
DiniGroup company. This platform integrates 6 Xilinx Virtex 5 XC5VLX330 of which only one
Virtex 5 has been used for the proposed prototype with occupancy of 60%.

4.2. FLEXIBLE CHANNEL ENCODER 103

Following sections elaborate the implementation of each of the above mentioned blocks in
the proposed hardware prototype which is depicted in Figure 4.1.

4.2 Flexible channel encoder
As there is little commonality between the encoding process of Turbo and LDPC codes, we
proposed and implemented two separate (yet flexible) encoders.

4.2.1 Flexible Turbo encoder

The flexible Turbo encoder is presented in Figure 4.2. The implemented design supports both
SBTC (used for LTE) and DBTC used for WiMAX. It provides a simple flexible architecture to
provide both encodings and supports all frame size of LTE and WiMAX standards. To achieve
this the convolutional encoder and the interleaver are designed to be flexible. Flexibility is
obtained by making the connections ConfigXorBack, ConfigIn, ConfigOutA and ConfigOutB
configurable (Figure 4.3). These configurable connections realize adequate XOR gating based
on the communication mode. Two instances of this convolutional encoder read the data to be
encoded from a dual-port RAM: one in natural sequence and the other in interleaved sequence.
When the source completes the generation of the whole frame of data, the memory is read to
provide the input to the natural and interleaved encoders at the same time.

Natural
address

generator Dual
Port
RAM

Convolutional
Encoder

Convolutional
Encoder

Control Unit
(FSM)

Interleaved
address

generator

Data_in

Params
(Mode,
Frame size)

S0
S1
P0
P1

S0’
S1’
P0’
P1’

S0,S1

S0’,S1’

Figure 4.2 — Flexible Turbo Encoder

Natural
address

generator Dual
Port
RAM

Control Unit
(FSM)

Interleaved
address

generator

Data_in

Params
(Mode,
Frame size)

S0,S1

S0’,S1’
R0

ConfigIn

R1 R2

ConfigOutA

ConfigOutB

ConfigXORBACK

 S1

S0

S0

S1

P0

P1

Figure 4.3 — Flexible convolutional Encoder

104 CHAPTER 4. FPGA AND ASIC PROTOTYPING OF DECASIP

The natural read address is generated by a simple counter. On the other hand, the interleaved
address is generated on the fly recursively using a flexible interleaving address generator. For
SBTC (3GPP-LTE) and DBTC (WiMAX) QPP and ARP interleaving address generator based
on the work presented in Chapter 3 (see Sub-section 3.2.2.4, page 65) has been used.

For SBTC mode, only the outputs S0, P0, S0′ and P0′ are used. S′1i is used to initialize the
memories of the decoder. S0 and S0′ are also sent to verification module in order to compute
BER/FER for the component decoder0 (DecASIP[0,1]) and component decoder1 DecASIP[2,3]
(natural and interleaved order processing elements).

The double binary trellis does not need tail bit termination since the convolutional encoders
are circular. A first encoding with the encoder state equals to 0 is done in order to get the final
state of the encoder. With this final state, using a Look-Up-Table defined in [5], the circular
state to initialize the encoder for a second encoding of the same data is found. For this second
encoding phase, the states at the beginning and at the end are identical.

4.2.2 Flexible LDPC encoder

Compared to Turbo codes, LDPC codes have much higher encoding complexity. However, this
complexity is alleviated for the block-structured LDPC codes which are defined in the standards
of WiFi and WiMAX. For these codes, the parity check matrix is partitioned into an array of
block matrices where each block matrix is either a zero matrix or a right cyclic shift of an
identity matrix.

Efficient encoding method based on the parity check matrix H of WiFi LDPC codes has
been proposed in [120]. This method enables to calculate the parity bits p of the codeword from
the m systematic bits through simple equations. In fact, for these codes, the codeword cb is
divided in groups of Z bits, where Z is the size of the sub-matrix as defined in the standard for
each different H matrix and code rate.

cb = [m,p] = [mo, m1, ..., mkb−1, p0, p1, ..., pmb−1] (4.1)

With this particular structure of the parity check matrix H , the first block of Z parity bits
can be computed through the following expression:

p0 =

mb−1∑
i=0

kb−1∑
j=0

hi,jmj (4.2)

where hi,j is a block matrix and hi,jmj is a cyclic shift of mj. By defining λi coefficients as
follows:

λi =

kb−1∑
j=0

hi,jmj for i = 0, ...,mb − 1 (4.3)

the second block of Z parity bits can be given by the expression:

p1 = λ0 + h0,kb
p0 (4.4)

Similarly, for the subsequent blocks of parity bits pi+1 where they can be obtained recur-
sively using pi and λi [120].

Based on this method, we proposed a parallel and efficient architecture which supports all
LDPC code parameters (H matrix type, frame size, code rate) specified in WiFi and WiMAX

4.3. FLEXIBLE TURBO/LDPC DECODER 105

standards. The proposed architecture (Figure 4.4) is composed of 4 mains units: (1) a memory to
store the definition of parity check matrices, (2) a low complexity pipelined unit for the genera-
tion of λi coefficients, (3) a parallel unit for the generation of parity bits, and (4) a controller unit
(Finite State Machine) to manage and schedule the encoding process. An efficient architecture
is proposed for the λi generator unit which makes use of few counters and cascaded registers
instead of using a conventional complex Barrel Shifter.

en

D Q XOR
Shift

data_in

Z

λ0

en

D Q XOR

data_in

Z

λmb-1

λi Generator pi Generator

pi

Z

Z

1

Z

Z

λ0

λmb-1

Z
p0

∑

d
at

a_
o

u
t

Delay

z

Memory

Parity
Check

Matrices

H

Controller Unit
(FSM + memory address generator)

8

d
at

a_
o

u
t_

va
lid

Shift

Params.
(Mode, Z, Rate)

Figure 4.4 — Flexible LDPC Encoder

4.3 Flexible Turbo/LDPC decoder

The channel decoder is the main unit, for which this complete system prototyping has been de-
veloped. Its original architecture is based on a multi-ASIP architecture model. We consider
in this work an enhanced version of the flexible high-throughput architecture (DecASIPv2) pre-
sented in previous chapter.

Figure 4.5 gives an overview of the flexible channel decoder architecture with 4 DecASIPs.
Besides ASIPs, the decoder architecture integrates several memory banks, configuration and
communication networks to handle the extrinsic data exchanges. Three modes are supported
namely SBTC, DBTC and LDPC. Each DecASIP is connected to 4 types of memories as given
in Table 4.1. All the memories here are synchronous on read and write accesses. They are
mapped on Xilinx dedicated block RAMs, allowing better timing and area occupation.

In all modes, appropriate program needs to be loaded into the program memory while the
related configurable parameters are loaded into the configuration memory.

4.4 Other blocks of the system prototype

The previous two sections have focused on the channel encoder and decoder, this section groups
the presentation of the remaining blocks of the system prototype.

106 CHAPTER 4. FPGA AND ASIC PROTOTYPING OF DECASIP

Memory Number of banks Depth Width
Input(component dec0) 6 256 12

Input(component dec1)
6 256 6 (for s0’,s1’)
3 256 12

Extrinsic 6 256 12
Cross metric 2 32 80

Config 1 64 24
Instruction memory 1 16 64

Table 4.1 — FPGA platform 2x2 DecASIP memory requirements of the banks

DecASIP0

DecASIP3

DecASIP7

DecASIP4

CV
Ext.

Mem

Ext.
Mem

Ext.
mem

Ext.
Mem

NI0

NI3

NI7

NI4

40

40

40

40

3x

3x x3

x3

x3

x3 3x

3x

Butterfly NoC

α-β network

α-β network

 DBTC LDPC

LDPC DBTC

Program
Mem.

Config

Config.
module

CV
CV

CV

40

Program
Mem.

Program
Mem.

Program
Mem.

Config

Config

Config

To Global System
Controller

From channel

Figure 4.5 — DecASIP decoder system architecture

4.4.1 Pseudo random generator

In order to emulate an equi-probable data source, a pseudo random data generator is imple-
mented in hardware using a simple linear feedback shift register (LFSR) of 32 bits. This length
ensures that there is no correlation between the data frames during the long simulation runs.

4.4.2 Flexible channel model

The communication channel considered in this prototype is an Additive White Gaussian Noise
(AWGN) as shown in Figure 4.6. The hardware implementation used in this prototype emulates
the model proposed in [121] and available as a black box at the Electronics Department of
Telecom Bretagne. The quantization of the transmitted soft-bits is different for Turbo (6 bits)
and LDPC (7 bits) codes. Additionally quantized outputs for 4 bits and 5 bits are also provided
for DBTC and SBTC mode. The noise level is represented on 17 bits. The quantization depends
on the communication mode. It is automatically selected after the configuration process. The
formula to compute the value to apply at the input σ2 port of the channel module for a target
SNR is as follow:

σ =

√
10
−SNR

10

2× log2(m)×R
× 216 (4.5)

4.4. OTHER BLOCKS OF THE SYSTEM PROTOTYPE 107

AWGN Channel

Emulator

S0

S1

P0

P1

P0’

P1’

𝜎2

S0

S1

P0

P1

P0’

P1’

6 or 7
bits each

DataValid

Clk

Reset

17

Figure 4.6 — AWGN channel input and output ports

i.e. for code rate R = 1/3, number of symbols in the modulation m=2 (BPSK), and targeting
an SNR of 0.25dB, the binary value of σ2 to apply at the channel module input port is σ2 =
10011000010100011.

4.4.3 Global input interface

In order to correctly feed the incoming channel LLR to the DecASIP’s input memories, a Global
Input Interface has been proposed and designed. This flexible block considers the system param-
eters in terms of communication mode (LDPC, Turbo), frame size, and the interleaving rules.
In Turbo mode, DecASIP 0 and 1 process the frame in natural order, while DecASIP 2 and 3
process it in interleaved order. In order to fill the input memories of ASIPs 2 and 3, interleaving
addresses are required. Instead of using look-up tables to store interleaving addresses for all
supported standards and frame sizes, the recursive address generator presented in figure 3.10
(in 67) is used. As the ring bus connects the ASIPs in this order. For LDPC mode the ring
bus connects the ASIPs in the following order: DecASIP0, DecASIP1, DecASIP2 and finally
DecASIP3, thus all the input memories are filled sequentially by the same order

4.4.4 Error counter

In order to evaluate error performance, an error counter is added to the FPGA system prototype.
This error counter stores the transmitted frame and compares it to the decoded one. To be able
to perform long simulations, the error counter is dimensioned to 64 bits. In Turbo mode, the
number of errors in the interleaved frame is also calculated for debugging and performance
exploration purposes.

4.4.5 Configuration module

The configuration module is used to initialize the platform at the beginning of a simulation. It
analyses the configuration data (transmitted through the USB interface) and fills the DecASIP’s
configuration memories accordingly. In addition, this module initializes the corresponding reg-
isters that configure the whole platform. For example, communication mode, frame size, and
interleaving seeds used in the global input interface are set through this module. During the

108 CHAPTER 4. FPGA AND ASIC PROTOTYPING OF DECASIP

configuration, the platform goes to the ”reset” state. When the whole platform is configured, the
encoding/decoding processes start.

4.4.6 Global system controller

The Global System Controller module implements the Finite State Machine (FSM) that drives
the different modules of the system prototype and performs in sequence the different simulation
steps. First, the controller waits for the end of the configuration, initiated by the GUI. Depending
on the configuration parameters, the controller starts the Turbo or LDPC encoders and then the
corresponding decoding. After the end of the decoding and the bit/frame error counting, the
controller starts again the encoding with the same parameters. This controller acts as slave for
the GUI. Figure 4.4.6 illustrates the different system states. In addition to the regular scheduling
of DecASIPs in shuffled mode (all ASIPs active at the same time) for Turbo mode processing,
there is a support to activate ASIPs in sequential mode (run component decoder0 followed by
component decoder1) and serial mode (run each ASIP serially). In LDPC mode, the input
memories can also be initialized by a text file and is used for debugging.

Nb_iter= Max
 Iterations

Shuffled decoding

Reset

Init

LDPC wait
Encoder

LDPC
acquisition

LDPC
decoding

Decoding
Finished

Run
Interleaved 4

Run
Interleaved 7

Run
Natural 3

Run
Natural 0

Run
Interleaved

Run
Natural

Hard decision
natural

Decoding
Finished

Wait input
Valid

Wait
encoder

Run
Shuffled

Force hard
Decision

Last iteration

Data in valid

Text init =False

Text init =True

Coding Finished &
Shuffled

Data in Valid

Coding Finished

Text Init= True

Nb_iter= Max Iterations

 End Iteration

 End Iteration

 End Iteration

 End Iteration

Nb_iter= Max Iterations

 End Iteration

 End Iteration Stopping
criteria

Nb_iter= Max Iterations

Coding Finished &
Serial

Serial decoding
LDPC decoding

Seq. decoding

Figure 4.7 — FSM of the global system controller

4.4.7 Graphical User Interface (GUI)

A GUI has been developed to permit the configuration of the platform, launch the simulation,
and get the error rate results (Figure 4.8). The proposed GUI consists of two windows: one for
the configuration and one for results display on the fly during the simulation. The configuration
allows to set the following parameters:

• Communication mode (Turbo: 3GPP-LTE/WiMAX or LDPC WiFi/WiMAX),

4.4. OTHER BLOCKS OF THE SYSTEM PROTOTYPE 109

• Turbo mode parameters: frame size, window size, code rate, number of iterations, extrinsic
scaling factor,

• LDPC mode parameters: frame size, sub-matrix size, code rate, number of iterations,

• Quantization used in the channel model

• Display of different performance curves (BER/FER, natural, interleaved, uncoded)

• SNR range and step values that determine the number of SNR points to be had to plot the
error rate curves.

Once all the parameters are validated by the user, the interface generates corresponding
configuration text files. Then it sends these configuration files to the FPGA platform through the
USB interface.

Furthermore, the GUI reads continuously the values of the error counter from the FPGA.
When the number of errors reaches a parameterized threshold, the SNR is incremented by the
step defined by the user. When the SNR reaches the limit defined by the user, the simulation is
stopped. All the results, in addition to the BER/FER curves plots, are saved to an output text file
along with all the simulation parameters. This allows to exploit the results by external tools.

Main bus to host GUI

Figure 4.8 — Graphical User Interface (GUI) for the DecASIP FPGA prototype

4.4.8 USB interface

The communication between the FPGA platform (from DiniGroup [122]) and the host computer
(running the GUI) is realized through a USB interface. An interface controller module (for
the FPGA platform side) and a software driver (for the host computer side) are provided by
DiniGroup for this purpose.

110 CHAPTER 4. FPGA AND ASIC PROTOTYPING OF DECASIP

4.5 Results of the FPGA prototype

4.5.1 FPGA synthesis results

The FPGA synthesis for Xilinx Virtex-5 (xc5vlx330-1ff1760) device yielded the results shown
in Table 4.2. The total design occupies 31497 slices which represent around 60% of the logic
slices available on the target device.

Component Slices RAM blocks DSP48E
LDPC/Turbo decoder (2x2 DecASIPs) 21164 82 0

LDPC Encoder 6096 1 0
Turbo Encoder 343 1 0

Channel 2622 7 56
Error Counter 884 4 0

Global system controller 34 0 0
Total (design+Glue Logic) 31497 95 56

Table 4.2 — FPGA prototype synthesis on Xilinx Virtex-5 LX330 FPGA

4.5.2 Speed of reconfiguration between different decoding modes

The configuration (or programming) time is defined here as the number of clock cycles needed
to write a new program memory contents to the DecASIPs along with writing the configuration
memory contents. It should be emphasized that when we are changing between LDPC to another
configuration of LDPC (or Turbo to another configuration of Turbo), only few parameters need
to be updated in the configuration memory while the program memory content remains the same.
Table 4.3 gives an estimate of the number of clock cycles needed to change the decoding mode
in the proposed prototype. We can see that the decoding mode can be changed with at most
167 clock cycles. The reinitialization of program memory to LDPC mode take 51 (length of the
assembly code in LDPC mode) clock cycles. Similarly, reinitialization the program memory to
Turbo mode takes 37 clock cycles.

From mode To mode Clock cycles needed
Turbo Turbo 17*4 = 68
Turbo LDPC 51+(5+24)*4 = 167
LDPC LDPC (5+24)*4 = 116
LDPC Turbo 37+(17*4) = 105

Table 4.3 — Required number of cycles to change the decoding mode for the 4-DecASIP system

4.5.3 Scalability and throughput

The architecture presented here has four DecASIPs operating in 2x2 mode for Turbo decoding
and 4 DecASIPs connected to a unidirectional ring network for LDPC decoding. The DecASIPs
can also be configured to 1x1 mode for lower throughput and/or shorter frames. The number of
available memory blocks depends on the number of DecASIPs in the system. The frame sizes
supported in different modes are as shown in Table 4.4. It has to be noted that for the system
with 4 or 2 DecASIPs in LDPC mode, the extrinsic memory depth for each DecASIP must be
large enough to store all the check to variable node messages processed by it.

The throughput estimate for LDPC mode is given by equation (4.6). The best throughput
achieved for the presented configuration is 36.9 Mbps for WiMAX with code rate Crate = 5/6,

4.6. ASIC INTEGRATION OF DECASIP 111

Number Throughput Frame size in bits
of De-
cASIPs

Turbo @ 9
iterations

LDPC @ 10
iterations

Turbo LDPC

8 17.7 68.5 6144 576,628..2048
4 8.88 36.9 3072 576,628..2048
2 4.44 19.2 1536 768

Table 4.4 — Scalability and throughput achieved for FPGA prototype implementation and operating
frequency of 80 MHz

sub-matrix size Z = 96, number of rows Mb = 4 and number of columns Nb = 24 in the check
matrix Hbase. The number of iterations considered is Niter = 10. The required number of clock
cycles to process one complete sub-iteration Tsub−iterationv2 is given by the equation (3.19)
in page 92. The clock speed considered is Fclk=80MHz which is the maximum frequency
achieved for the FPGA implementation.

ThroughputLDPC =
Z ∗ Crate ∗ Fclk

Tsub−iterationv2
∗ (Mb∗Niter

Nb
)

(4.6)

Similarly, equation (4.7) gives the throughput in Turbo mode. An average Ninstr = 4 in-
structions are needed to give a symbol which is composed of Bitssym = 2 bits. Considering
Niter = 9 iterations, the maximum throughput achieved is 8.88 Mbps.

ThroughputTurbo =
Bitssym ∗ Fclk ∗ (NA/2)

Ninstr ∗Niter
(4.7)

4.5.4 Performance results

Using the proposed complete system prototype we are able to evaluate the error performance
on hardware for any communication mode of the supported standards. Figures 4.9, 4.10, and
4.11 show the BER and FER curves obtained after FPGA evaluation along with corresponding
software model reference curves. For SBTC mode, Figure 4.9 presents the performance results
for LTE standard using frames of length 1440 bits encoded with 1/3 code rate. For DBTC mode,
Figure 4.10 considers the WiMAX standard with frames of 960 symbols and a code rate of 1/3.
For LDPC mode, Figure 4.11 shows the performance results obtained for WiMAX and WiFi
frames of sub-matrix size Z=48 and Z=54 with a code rate of 1/2. These results illustrate how
the prototyped flexible communication system is correcting transmission errors as expected with
acceptable performance degradation of less than 0.20 dB w.r.t. to the reference C-simulation
curves.

4.6 ASIC integration of DecASIP

The FPGA prototyped 4 DecASIP system was in addition integrated within the digital base-
band platform MAG3D designed by the CEA-LETI. In this section we will introduce briefly the
MAG3D platform; followed by the integration details and results in terms of area and perfor-
mance. This ASIC platform is still under test at the time of this manuscript. This work was done
as a joint effort with another PhD student at the CEA-LETI: Pallavi Reddy.

112 CHAPTER 4. FPGA AND ASIC PROTOTYPING OF DECASIP

0 0.2 0.4 0.6 0.8 1 1.2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

C_equiv_LTE_720_8iter_in5ext7
C_equiv_LTE_720_7iter_in6ext8
C_floating_LTE_720_6iter
HW_LTE_720_8iter_in5ext7
HW_LTE_720_9iter_in5ext7

(a) BER results

0 0.2 0.4 0.6 0.8 1 1.2
10

−3

10
−2

10
−1

10
0

SNR [dB]

F
E

R

C_equiv_LTE_720_8iter_in5ext7
C_equiv_LTE_720_7iter_in6ext8
C_floating_LTE

7
20_6iter

HW_LTE_720_8iter_in5ext7
HW_LTE_720_9iter_in5ext7

(b) FER results

Figure 4.9 — FPGA prototype BER and FER results in SBTC mode for LTE frame size of 1440 bits
and code rate of 1/3

0 0.2 0.4 0.6 0.8 1 1.2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

C_floating_WiMAX_960_6iter
C_floating_WiMAX_960_8iter
C_equiv_WiMAX_960_7iter_in5ext7
C_equiv_WiMAX_960_7iter_in6ext8
HW_WiMAX_960_8iter_in5ext7

(a) BER results

0 0.2 0.4 0.6 0.8 1 1.2
10

−3

10
−2

10
−1

10
0

SNR [dB]

F
E

R

C_floating_WiMAX_960_6iter
C_floating_WiMAX_960_8iter
C_equiv_WiMAX_960_7iter_in5ext7
C_equiv_WiMAX_960_7iter_in6ext8
HW_WiMAX_960_8iter_in5ext7

(b) FER results

Figure 4.10 — FPGA prototype BER and FER results in DBTC mode for WiMAX frame size of 1920
bits and code rate of 1/3

4.6.1 MAG3D chip from CEA-LETI

The MAG3D MPSoC chip intends to map multiple digital baseband IPs of complex telecommu-
nication protocols onto a single 3D chip. As a 4G digital baseband chip, it is aimed at leveraging
several objectives, both in terms of target application and system design. At the application level,
the main objective is to support flexible baseband processing needed by the current and future
telecommunication standards namely, 3GPP-LTE and its potential evolutions, with a possibil-
ity to support other standards based on OFDM techniques. Wherein, throughputs up to Gbits/s
are achieved through support of multi antennas schemes (MIMO) with advanced features such
as Hybrid Automatic Repeat reQuest (H-ARQ). Additionally, the aim is to support quick re-
configuration between different protocols/applications with autonomous reconfiguration for the
different IPs on MAG3D. The idea here is to share resources between two or more protocols,
using the same baseband processor for applications like Cognitive Radio (CR). At the system de-
sign level, the objective was to demonstrate a communication efficient interconnect architecture
based on the Globally Asynchronous Locally Synchronous (GALS) infrastructure. MAG3D is
composed of different IP blocks which communicate via a mesh-based NoC as shown in Figure

4.6. ASIC INTEGRATION OF DECASIP 113

0 0.5 1 1.5 2 2.5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

C_SPA_WiFi_Z54_15iter
C_NMS_WiFi_Z54_15iter_a875_in7ex5
HW_WiFi_Z54_a875
C_SPA_WiMAX_Z48_15iter
C_NMS_WiMAX_Z48_15iter_a875_in7ex5
HW_WiMAX_Z48_a875

(a) BER results

0 0.5 1 1.5 2 2.5

10
−3

10
−2

10
−1

10
0

SNR [dB]

F
E

R

C_SPA_WiFi_Z54_15iter
C_NMS_WiFi_Z54_15iter_a875_in7ex5
HW_WiFi_Z54_a875
C_SPA_WiMAX_Z48_15iter
C_NMS_WiMAX_Z48_15iter_a875_in7ex5
HW_WiMAX_Z48_a875

(b) FER results

Figure 4.11 — FPGA prototype BER and FER results in LDPC mode for WiMAX Z=48 and WiFi
Z=54 and code rate of 1/2

Figure 4.12 — MAG3D system architecture

4.12. The chip is semi-heterogeneous, i.e. all the IP blocks are not identical and multiple copies
of the same IP are available and used depending on the application needs. The design contains
two main kinds of resources:

1. Coarse-grain reconfigurable cores: these are either DSP for data processing functions
(MEPHISTO) or reconfigurable memory resources for data storage and management
(Smart Memory Engine - SME).

2. Specific reconfigurable IP cores: these are specialized reconfigurable IP cores that di-
rectly support dedicated functions such as OFDM (TRXOFDM), bit operations (RX BIT,
TX BIT), channel decoding algorithms (DecASIP).

114 CHAPTER 4. FPGA AND ASIC PROTOTYPING OF DECASIP

4.6.2 Integration constraints

As mentioned before, the specification of the DecASIP system is mainly defined as per the per-
formance and cost needs of MAG3D MPSoC platform (Figure 4.13). The available space on
the platform is shown in the green zone on which the channel decoder system has to be imple-
mented. The total area available on the MAG3D plan was 1.3mm2 + 1.2 mm2. Hence, in order
to adhere to this area constraint, 4 DecASIPs are considered taking into account the possible
increase in area after the place and route. Thus two modules each containing 4 DecASIPs are
implemented in MAG3D.

Figure 4.13 — Placement of DecASIPv2 system on MAG3D

A network interface for the DecASIP system is developed to enable its integration with the
MAG3D platform as shown in Figure 4.14. This interface includes a set of configuration, data
flow and service (test mode) signals.

4.6.3 ASIC integration results

Synthesis has been done with CMOS 65nm low power technology (worst case, 1.10V, 105C).
The total area of MAG3D MPSoC platform is 8500µm x 8500µm (72mm2). The total area of
the 4 DecASIP system is 1.47 mm2 without the Globally Asynchronous Locally Synchronous
(GALS) interface. Back-End area with GALS interface, placement and routing is 2.22 mm2,
where the area of GALS interface accounts for 0.02 mm2. The placement density is 66%. The
resulting chip diagram of the implemented design is as shown in Figure 4.15. Memories, com-
binational and sequential circuits occupy 55%, 20% and 25% of the total area dedicated for the
DecASIP system respectively. The critical path for this design is 2.8 ns with asynchronous NoC
working at 500 MHz. In this joint effort with the PhD student at CEA-LETI, power reduction
techniques have been proposed and integrated, at different levels (algorithmic, architecture, and
technology levels).

4.7. SUMMARY 115

UDEC IP core NI

cfgdump_addr

cfg_data

21

32

cfg_wr

dump_data 32

dump_rd

Cfg_dump

input data
flow
Nin

output data
flow

Nout

Service
clk

rst_n

test_mode
bist_run

bist_ok

ANoC

bist_fail

bist_end

NI

exec

eoc
status

32
 in_data

in_send
read_event
size_released

32
out_data

out_send
size_available

slotid

in_accept

out_accept

32

Figure 4.14 — 4 DecASIP system: Network interface to GALS on MAG3D

Figure 4.15 — Post-route DecASIP chip diagram on MAG3D

4.7 Summary

In this chapter, we have presented an FPGA prototype of a full communication system targeting
the support of multi-standard Turbo/LDPC Encoding and Decoding. To our knowledge, this is
the first demonstrated multi-ASIP NoC-based FPGA prototype of such flexible channel decoder
supporting LDPC and Turbo (SBTC and DBTC) codes. The proposed functional prototype illus-
trates the effectiveness of ASIP concept in the implementation of scalable, flexible and optimized
multi-standard platforms for wireless communications. The prototype supports all communica-
tion modes defined in LTE, WiFi, and WiMAX standards. To enable reasonable throughputs
on FPGA most of the system components (including emitter, channel model, decoder, and sys-
tem controller) have been implemented in hardware. A GUI enables the reconfiguration of the
decoding mode on-the-fly and enables the monitoring of the communication system through a

116 CHAPTER 4. FPGA AND ASIC PROTOTYPING OF DECASIP

user friendly interface. Besides its wide flexibility, the proposed FPGA prototype achieves a
throughput of 11.4 Mbps in Turbo modes and 36.5 Mbps in LDPC modes when operating at a
clock frequency of 80 MHz.

Furthermore, as a joint effort with the PhD student at the CEA-LETI (Pallavi Reddy), an
ASIC integration of the proposed flexible channel decoder has been presented. A 4-DecASIP
channel decoder is integrated in the latest Telecom chip (namely MAG3D) designed by the
CEA-LETI targeting 4G communication applications. Moreover, the ASIC integrated channel
decoder incorporates power reduction techniques which have been proposed by the student at
different levels (algorithmic, architecture and technology levels).

CHAPTER

5 TDecASIP: Parameterized
Turbo Decoder

InTHIS chapter we present a new optimized flexible standalone Turbo decoder, namely
TDecASIP. The objective behind the conducted new design is twofold: (1) investigate

the maximum attainable architecture efficiency for ASIP-based Turbo decoding, and related to
this first objective (2) investigate the possibility to design application-specific parametrized cores
using the available ASIP design flow. The idea of this last objective is to evaluate the benefits
from removing the need of a program memory and the related instruction decoder.

Keeping in mind these goals, TDecASIP architecture is proposed and designed as a
parametrized Turbo decoder. The proposed architecture exhibits a very high architecture ef-
ficiency and supports all SBTC modes of 3GPP LTE and DBTC of WiMAX standards respec-
tively.

The chapter is organized as follows: First section presents the proposed design flow using
Processor Designer tool to describe application-specific parametrized cores. The second section
illustrates the motivations behind the architectural choices and describes the proposed architec-
ture of TDecASIP. Finally, the last two sections of the chapter presents the FPGA and ASIC
synthesis results highlighting the attained architecture efficiency of this new flexible Turbo de-
coder design.

117

118 CHAPTER 5. TDECASIP: PARAMETERIZED TURBO DECODER

5.1 Proposed design flow for parameterized cores

Although the proposed multi-DecASIP LDPC/Turbo decoder in Chapter 3 presents original scal-
ability and flexibility features, the achieved overall architecture efficiency is still relatively low.
The objective of this new study is to focus more on the architecture efficiency and to investigate
the maximum achievable architecture efficiency when using ASIP-based LDPC decoder design.
To that end, different parallelism choices and corresponding memory organization are explored.

Another related motivation of this work concerns the investigation of the possibility design
parameterized cores using the available ASIP design approach. Such possibility can potentially
lead to a higher architecture efficiency by simplifying the instruction decoding logic and remov-
ing the program memory. Furthermore, it should lead for an increased energy efficiency as there
are no program memory accesses in this case. Finally, such an approach still keeping the benefit
of the short design cycle enabled by the well established ASIP design tools.

LISA files

ASIP HDL
files

VHDL
memory files

Synthesis

Place &
route

User
Constraint

(.ucf)

HDL simulation
and

Memory layout
files

Memory
content files

(.mmap)

Exe file

Macro
assembler
and linker

Processor
generator

Simulation
HDL

Simulator
and

debugger

FPGA

C-description
(behavior + memory

contents)

LISA level

HDL level

FPGA level

Hardware equivalent
C-description

Figure 5.1 — Proposed design flow for parameterized ASIP

To that end, Figure 5.1 illustrates the proposed modified ASIP design flow for parameterized
cores design. The instruction program memory is used as a configuration (config) memory,
where the configuration parameters are stored. Rather than defining specialized instructions, the
corresponding finite state machine (FSM) is directly described in LISA. The current state of the
FSM is treated as an instruction by the Decode pipeline stage. This approach can be effective
when the application exhibits a reduced number of flexible parameters and the corresponding
processing presents a reduced number of control states. The target application in this study
(flexible Turbo decoding) is a good example with 7 states and few flexible parameters that do
not change during the decoding process (detailed in Section 5.2.2). Compared with the original
ASIP design flow (Figure 2.3 in page 40), the proposed design flow presents the following

5.2. DESIGN CHOICES AND TDECASIP DECODER ARCHITECTURE 119

features:

1. The target parameterized design does not have a program memory and hence no instructions
are to be designed. The design of the specialized instructions is replaced by a state machine
control, which is done as part of the LISA ADL description in the Fetch pipeline stage.

2. Since hardware-equivalent C model is already used for studying the quantization effects on
the algorithm implemented in hardware, the same model can be used to generate the input
memory files for simulation purpose, i.e. *.mmap files. Additionally, the corresponding
test vectors can be generated for various check points in the design and can be used to cross
verify the design functionality between LISA modeling, HDL simulation, and on-board
FPGA implementation.

3. The use of the LISA simulator and debugger is still possible. A dummy assembly file with
NOP (idle command) is sufficient to generate the required executable file (*.out) in order to
mimic the fetch from instruction memory by the fetch stage of the pipeline. The Fetch stage
reads the configuration parameters (e.g. decoding mode, iterations, window sizes, etc.) and
passes the control to the FSM that issues the commands to the rest of the pipeline stages.
Thus, the design of the FSM can be validated with the Processor designer LISA debugger.

5.2 Design choices and TDecASIP decoder architecture

Towards the above mentioned objectives, this section summarizes the main design choices and
presents the proposed TDecASIP architecture along with the corresponding memory organiza-
tion.

5.2.1 Design choices

The main design choices can be summarized as follows:

• In order to achieve the target throughput in the range of hundreds Mbps, a maximum sub-
block parallelism degree of 4 is adopted. In fact, such parallelism degree allows for conflict-
free memory accesses in both WiMAX and LTE standards.

• As in the DecASIP case, each sub-block is further divided into L windows of length W .
This reduces the depth of the storage memory required for storage of previous state metrics
(as required by the equation (1.31) in page 19) to W .

• Each TDecASIP uses two recursion units and employs Backward-Forward schedule for
window processing. The first recursion unit (processing in the backward direction of the
trellis) works on window j while the second recursion unit (processing in the forward direc-
tion of the trellis) works on window j−1 at the same time instant (as shown in Figure 5.2).
This enables to achieve the throughput equivalent to butterfly schedule (as in TurbASIP
design) but by using backward-forward schedule which further enables use of hardware
interleave address generators for extrinsic memory addressing.

• In backward recursion, at the end of processing of the jth window, the boundary state
metrics are stored in an external (BoundaryState) memory. These state metrics are later
used as initial states for the window (j − 1) in the subsequent iteration. In TDecASIP,
the window size is considered to be W=64 symbols (as it was the case in TurbASIP and
DecASIP).

120 CHAPTER 5. TDECASIP: PARAMETERIZED TURBO DECODER

W1

W2

WL

Time

Su
b

b
lo

ck
0

… … … … …

TD
ec

A
SI

P
0

W1

W2

WL

Su
b

b
lo

ck
1

TD
ec

A
SI

P
1

Iteration 1

…

…

…

Backward recursion (β)

Forward recursion (α)
& Extrinsic generation

Boundary α metrics
Exchange inside TDecASIP

Boundary α metrics
Exchange between TDecASIPs
(via the α- β network)

Boundary β metrics
Exchange inside TDecASIP
(between iterations)

Boundary β metrics
Exchange between TDecASIPs
(via the α- β network)

Iteration 2

… … … … …

… … … … …

… … … … …

βinit

βinit

αinit

αinit

Processing repeated twice for the
two half iterations by TDecASIP 0 & 1

Figure 5.2 — TDecASIP: Windowing and backward-forward schedule

• Half iterations are performed in serial order, i.e. all processing cores perform first half
iteration by reading the systematic and extrinsic information sequentially from memories,
followed by the second half iteration where the systematic and extrinsic memories are read
in interleaved order. The generated extrinsic data are written at the same location as it
was read from. In both of these half iteration cycles the parity memory is always read
sequentially. This type of scheduling has the following advantages:

1. Only one copy of systematic information bits are needed to be stored. This reduces
the number of memory banks required and the configuration network complexity.

2. Only sequential counter and interleaved address generator are needed for addressing
the memories while the shuffled decoding needs in addition a deinterleaved address
sequence. Given the adopted low sub-block parallelism degree of 4, this serial de-
coding reduces the memory access complexity as only low number of multiplexers
would be sufficient (crossbar switch). WiMAX interleavers support sub-blocking of
2 and 4 while LTE interleavers support sub-blocking of at least 2 and 4 [123] (with a
maximum of 64).

3. Fewer number of memory banks also results in less address decoding logic and hence
reduced total memory area, resulting in area efficient decoding core.

• The DecASIP architecture, described in the previous chapter, was validated and demon-
strated with the complete communication system prototyped on FPGA. This approach is
good when both validation and real time working prototypes are the design objectives.
However, it is a complex task which requires significant design and validation time as
many blocks other than the channel decoder itself, have to prototyped. Thus, when quick
on-board validation of the design is the objective, a simpler hardware-in-the-loop strategy
with only the design under test implemented onto the FPGA is sufficient.

Based on the above design choices, we propose a 2-TDecASIP decoder architecture as shown in
Figure 5.3. Each TDecASIP core processes a sub-block of the input frame and interconnected
by two ring 80 bit bus to enable state metric exchanges across sub-blocks.As β state metrics

5.2. DESIGN CHOICES AND TDECASIP DECODER ARCHITECTURE 121

are quantized to 10 bits, 80-bit (for 8 states) wide bus is needed to exchange the boundary
state metrics between processors. Each core has direct access to configuration, cross metric,
boundary state and input parity memories. The input Systematic and Extrinsic memory banks
are connected to the cores through a simple read/write exchange network as illustrated in Figure
5.3.

TDecASIP1

TDecASIP0

Config
memory

Crossmetric
memory

StateBoundary
Memory

Parity memory
(P0’P1’_P0P1)

Sub-block1

Systematic memory
banks

Extrinsic memory
banks

Parity memory
(P0’P1’_P0P1)

Sub-block1

Config
memory

Crossmetric
memory

StateBoundary
Memory

20

5+5

12+12

5+5

12+12

20

80

80

80

128

16

16

128

80 Alpha state boundary
Of last window

beta state boundary
Of first window

Figure 5.3 — Overview and memory organization of the proposed 2-TDecASIP Turbo decoder archi-
tecture

5.2.2 TDecASIP decoder architecture

Figure 5.4 shows the different hardware components of the proposed design. The design consists
of 8 pipeline stages, of which the first 3 stages are dedicated for data fetch from the memories
and for the control of the pipeline. Since the number of flexible parameters is small, these values
are fetched from the configuration memory by the ConfigFetch stage. These parameters consist
of the following:

• Mode: LTE or DVB/WiMAX.
• The number of iterations to be executed.
• Normal window size (W), size of the last window (WL) and the number of windows (L).
• Extrinsic address generation initialization values: these values are required to configure the

address generation logic in WiMAX/DVB or LTE modes [123].

122 CHAPTER 5. TDECASIP: PARAMETERIZED TURBO DECODER

Control and
Address Generation

OperandFetch

Interleaved
address gen

Sequential
address gen

FSM for

pipeline control

Config

memory

(24x16)

ConfigFetch

LLRtoSymbol

BackwardBM

BackwardSM

ForwardBM

ForwardSM_Extr

ExtrinsicGen

S1

(1536x5)

Input Systematic mem.

Odd
in SBTC mode

S0

(1536x5)

Even
in SBTC mode

(1536x20)

P1’ P0’ P1 P0

(1536x12)

Extrinsic

mem.

(1536x12)

Loc Extr2 Extr1 Extr0
in DBTC mode

in SBTC mode

ExtrEvenExtrOdd

Config read

LLR to Symbol
Unit+

x2 x2

-

+-

rd@

rd@

rd@

S1, S0

Extrinsic

(P1’, P0’) or (P1, P0)

Connection

to memory

banks of

sub-block1

�����, �����, ����	, ����
 ������, ������ �
����, �
����

previous β state metrics

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

S0 S1 S2 S3 S4 S5 S6 S7

connections based on the Trellis definition

00

01

10

11

BoundaryState

memory

(24x80)

��,�,	,…,��

80

48

�
����, �
����, �����
(00,01,10,11)

Forward
Branch Metric Unit

+
x8 x8

-

80

, ����� (00,01,10,11)�
����, �
����

previous α state metrics

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

S0 S1 S2 S3 S4 S5 S6 S7

connections based on the Trellis definition

00

01

10

11

��,�,	,…,��

β state metrics

MAX

S0 S1 S2 S3 S4 S5 S6 S7

MAX MAX MAX

+ + + + + + + +00

+ + + + + + + +01

+ + + + + + + +10

+ + + + + + + +11

Interleaved
address gen

Sequential
address gen

Extrinsic write address generationMagnitude correction

Symbol to bit
conversion

Subtract
intrinsic

Normalize
with Min

Subtract
intrinsic

Hard
Decision

�����
(00,01,10,11)

�����.���(�0, �1)

wr@

ExtrOdd ExtrEven

(in SBTC mode)

Loc Extr2 Extr1 Extr0

(in DBTC mode) To the write port of the Extrinsic memory

(through the Read/Write Exchange network)

� + (!", !)

��
#��� ��
#��� ��
#��� ��
#���

CrossMetric

memory

(64x128)

48

Backward
Branch Metric Unit

+
x10 x10

-

Initialize

(S0)

Backward

recursion

(S1)

Forward

recursion

(S4)

Wait for

Pipeline

data flush

(S5)

Wait for end

of Fw recursion

(S3)

Forward &

Backward

recursions

(S2)

L > 1

Start the Next

half iteration

Wcurr= L & WL<WR

start

L=1

Wcurr=0

Wcurr< L

Note: transitions occur when the processed window boundary is reached

Wcurr= L & WL=WR

FSM

Input Parity mem.

TDecASIP0

Figure 5.4 — Detailed pipeline architecture and FSM of the proposed TDecASIP parametrized core

5.2. DESIGN CHOICES AND TDECASIP DECODER ARCHITECTURE 123

5.2.2.1 Pipeline control finite state machine

Using the above parameters, the address generation and control unit of the OperandFetch stage
implements a finite state machine (FSM) that generates appropriate control signals to activate or
deactivate appropriate stages of the pipeline (Figure 5.5). As soon as the start signal is asserted
the processor starts with the Initialize state, initializing the registers to the default values, reading
the configuration parameters mentioned in before.

Initialize
(S0)

Backward
recursion

(S1)

Forward
recursion

(S4)

Wait for
Pipeline

data flush
(S5)

Wait for end
of Forward
recursion

(S3)

Forward &
Backward
recursions

(S2)

Wcurr< L

Start the Next
half iteration

Wcurr= L & WL=WR Wcurr= L & WL<WR

start

L=1

Wcurr=0

Wcurr< L

Note: transitions occur when the processed window boundary is reached

Figure 5.5 — TDecASIP: Finite state machine for decoder execution control

At the end of the initialization, the FSM reaches S1 state generating appropriate signals for
the backward recursion execution. If the processor is executing first half iteration, the generated
addresses for systematic and extrinsic memories are sequential otherwise interleaved addresses
are generated. The addresses for parity memories are always sequential.

All FSM transitions in Figure 5.5 occur when the window boundary is reached. At the
end of the window processing, if the number of windows L = 1 then the forward recursion is
executed for the window currently processed else the control is passed to S2 state. In S2 state
both forward recursion for Wcurr−1 and backward recursion for Wcurr window are executed in
parallel by two dedicated state metrics processing units as shown in Figure 5.4. Since Cross
metric memory is read and written simultaneously by two different execution units, Crossmetric

124 CHAPTER 5. TDECASIP: PARAMETERIZED TURBO DECODER

memory bank is chosen to be dual port memory.

When the backward recursion unit completes the processing of all L windows, the forward
recursion unit would still be executing WL−1. In case WL < WR, i.e. the Lth window size is
less than WR, a wait state S3 is introduced (corresponding to WR-WL clock cycles) so that the
forward recursion unit can complete the execution of the (L− 1)th window before transition to
state S4. The S4 state only generates signals to activate forward recursion of the last window.
Once the forward recursion of the last window (WL) is complete, 5 clock cycles wait state S5 is
inserted to ensure all the control data are flushed out of the pipeline before starting the next half
iteration. During the last half iteration, hard decisions are made on the aposteriori LLRs.

5.2.2.2 Pipeline architecture

The LLRtoSymbol pipeline stage converts the fetched systematic and parity bit LLRs to symbol
LLRs according to equations (1.27) to (1.30). If the processor is executing the first half iteration,
the least significant 10 bits (P1,P0) of the parity data fetched are used, else the most significant
10 bits (P1’,P0’) are used for processing. With negligible performance loss the channel LLRs
can be quantized to 5 bits and normalized extrinsic information from the processor are quantized
to 7 bits as it was inferred from the quantization analysis in Sub-section 3.1.2 in page 60. The
BackwardBM pipeline stage computes the branch metrics γi(s′, s) for the backward recursion
using extrinsic, systematic, and parity symbol LLRs as described by the equation (1.33).

Then the pipeline stage BackwardSM computes the 8 backward state metrics βi(s) corre-
sponding to the received symbol i as defined in equation (1.31). To that end, the computations
related to the 32 trellis transitions (refer Figure 1.7) are done in parallel using 32 adder nodes
and 8 maximum operators as illustrated in Figure 5.4. The computed 8 backward state metrics
βi(s) are buffered in the CrossMetric memory as they are needed to compute the aposteriori
information Zapos

i in the ForwardSM Extr stage. In addition, the CrossMetric memory buffers
the γintri (s′, s) and γpari (s′, s) of the processed window so they can be used directly in the
ForwardBM pipeline stage for the computation of the branch metrics γi(s′, s) in the forward re-
cursion (avoiding external memory accesses and double-ported input memories). State metrics
are quantized to 10 bits while the intrinsic LLRs γintri need an 8 bits quantization.

The ForwardSM Extr pipeline stage includes all the required hardware units (Figure 5.4)
to compute the forward state metrics αi(s) as defined in equation (1.32) and to complete the
computation of the 4 aposteriori LLRs Zapos

i of the symbol k after fetching the βi(s) from
the CrossMetric memory. Overflows are allowed in the state metric calculations (α(s), β(s))
and the magnitude correction unit of the ExtrinsicGen pipeline stage implements the modulo
normalization (as explained in Chapter 2). Finally, the magnitude corrected aposteriori Zapos

i

and the intrinsic γintrxi LLRs are used to generate the normalized extrinsic (for DBTC or SBTC
modes) and the hard decision.

5.2.3 Memory organization

The memory organization of the proposed architecture is illustrated in Figure 5.3. With negligi-
ble performance loss, the channel LLRs can be quantized to 5 bits and the normalized extrinsic
information to 7 bits. As radix-4 is adopted in SBTC, systematic LLRs are stored in two memory
banks, and similarly for extrinsic LLRs. This memory organization and the corresponding effi-
cient address generation are allowed by the QPP (quadratic permutation polynomial) interleaver
adopted in LTE standard which maps even addresses to even addresses and odd to odd. The total
depth of these memories allow to store up to 6144 LLRs, which corresponds to the maximum

5.3. FPGA PROTOTYPE AND SYNTHESIS RESULTS 125

specified LTE frame length. As the parity LLRs are always read in sequence, the consecutive
parity LLRs information bits are combined and stored in one memory bank as shown in Figure
5.3.

Emitter
Turbo

DBTC/SBTC
Encoder

Channel
Turbo

Decoder
Modulation Demodulation

FPGA

Error performance
evaluation and

validation

C simulation functional modules on host computer

USB

USB

Hw-equivalent C function

TDecASIP

Figure 5.6 — TDecASIP: Prototyping environment

5.3 FPGA prototype and synthesis results

As mentioned in the design motivations (Sub-section 5.2.1) , prototyping the complete com-
munication system is a complex task which requires significant design and validation time as
many blocks other than the channel decoder itself, have to prototyped and validated towards
their reference software models. This approach has been used for the validation of DecASIP.

However, for TDecASIP, we proposed to explore a simpler hardware-in-the-loop strategy
with only the design under test implemented onto the FPGA for quick on-board validation (Fig-
ure 5.6). The basic design principle of the proposed prototype is to implement only the Turbo
decoder (TDecASIP) along with its memories on the FPGA while keeping all the other compo-
nents of the communication system running in software at the host computer. The USB interface
connecting the FPGA board to the host computer is used to establish the required data and con-
trol transfers. The TDecASIP can be configured to run for one or several iterations and the
memory values are read back into the host computer to validate the decoding process and to
estimate the error rate performance.

This approach of FPGA prototyping enables fast validation as it requires the implementation
of very few additional hardware components on the FPGA apart from the channel decoder (i.e.
TDecASIP, the design unit under validation) itself. All remaining design units like data source
(emitter), Turbo encoder, modulation, channel model and demodulation units are executed as C
functions in the host computer connected to the FPGA platform.

The output of the demodulation function is decoded in parallel on the FPGA and on the
host computer (by the hardware-equivalent C function of the Turbo decoder). Once the required
number of decoding iterations is reached, the outputs of the hardware-equivalent C function are
compared with that obtained from the FPGA to evaluate the error rate performance and to prove
the correctness of the implemented design.

In this context, a single TDecASIP along with the associated memories are synthesized and
prototyped into the FPGA hardware (Xilinx Virtex-5 (xc5vlx330-1ff1760)). The results of logic
synthesis are as shown in Table 5.1.

126 CHAPTER 5. TDECASIP: PARAMETERIZED TURBO DECODER

Design unit Slices regs. LUTs
ConfigFetch 8 11
OperandFetch 250 381
LLRtoSymbol 0 133
BackwardBM 0 176
BackwardSM 92 1102
ForwardBM 0 300
ForwardSM Extr 160 1875
ExtrinsicGen 27 569
RegisterFile 806 468
MemoryInterface 297 548

Total logic area 1697 5582
Total BRAMs 20
Operating frequency 44 MHz

Table 5.1 — TDecASIP: FPGA (Xilinx Virtex-5 (xc5vlx330-1ff1760)) resource utilization for 1 pro-
cessor

5.4 ASIC synthesis results

The proposed parameterized core was modeled with Synopsys Processor Designer tool and the
corresponding VHDL description was generated and synthesized targeting 65nm general pur-
pose CMOS technology (worst case 0.9v and 125C). Table 5.2 and 5.3 and summarizes the
memory partitions and the post-synthesis logic and memory area results obtained for a single
core respectively. All the memories used are single port (sp) memories except for the CrossMet-
ric and extrinsic memories which are double port (dp) memories. The total logic area, including
the interleaver, is 0.065 mm2 while the memory area for one processor is 0.15 mm2. The total
area (post-synthesis) for the two core Turbo decoder design presented in this paper is 0.437 mm2

for a clock frequency of 510 MHz. If the frame length is N bits and the window size is W

Memory width (bits) depth # typea

Systematic 5 1536 2 sp
Parity 20 1536 1 sp

Extrinsic 12 1536 2 dp
Cross Metric 128 64 1 dp

BoundaryState 80 48 1 sp
Configuration 16 24 1 sp
a Dual port (dp) / Single port (sp)

Table 5.2 — TDecASIP: Memory partitions

symbols, then the throughput of the proposed Turbo decoder is given by:

Throughput =
Numprocs ×N × fclk

((
dNsym/W e
Numprocs

+ 1)×W +Npip)× (2×Niter)
(5.1)

For the presented architecture: Numprocs = 2 processors, the maximum clock frequency is
fclk = 510MHz, considering the largest LTE frame size Nsym = 3072 symbols or N = 6144
bits and Niter = 6.5 iterations, the throughput obtained is Throughput = 150 Mbps.
The proposed 2 processor Turbo decoder achieves an architecture efficiency of 4.37 bit/clock
/iteration /mm2. Furthermore, the proposed architecture is scalable and can be extended to 4
processing cores, since both LTE and WiMAX interleavers support sub-blocking levels of 4.
In this case, the memory area of one processing core decoder 0.097mm2 which results in total
area occupancy of 0.65mm2. The architecture efficiency in this case is ArchEfficiency = 5.88

5.4. ASIC SYNTHESIS RESULTS 127

Design unit Area (um2)
ConfigFetch 191

OperandFetch 6586
LLRtoSymbol 957
BackwardBM 1905
BackwardSM 10038
ForwardBM 2480

ForwardSM Extr 17847
ExtrinsicGen 5006
RegisterFile 13695

MemoryInterface 6683
Total logic area 65390
Total mem area 153478

Total area 218868

Table 5.3 — TDecASIP: Post synthesis area utilization per processor for 2 processor architecture with
general purpose CMOS 65nm, (worst case 0.9v, 125C)

bit/clock/iteration/mm2. This further illustrates the area efficiency of sub-block parallelism,
wherein the throughput is doubled while the occupied area is increased only by 1.47 times
(rather than doubled). This is due to the fact that Systematic, Parity, Extrinsic, and Bound-
aryState memory sizes remain unchanged.
The achieved results of the proposed design are summarized and compared along with some
recent related works in Table 5.4. Considering this definition, the proposed 2 processor Turbo

This work [59] [124] [62]
Standard supported LTE, WiMAX LTE, WiMAX LTE LTE

LTE modes supported # 188 188 188 188
WiMAX modes supported # 17 17 - -

Technology (nm) 65 130 90 65
Core area (mm2) 0.438 0.65 10.7a 2.1 7.7a

AreaNorm @65nm (mm2) 0.438 0.65 1.335 1.1 3.85
Throughput (Mbps) 150 @6.5iter 300 @6.5iter 187 @8iter 284 @5iter 2150 @6iter

Parallel MAPs # 2 4 8 16 32
fclk (MHz) 510 250 200 450

AE (bits/cycle/iter/mm2) 4.37 5.88 4.48 6.49 7.45
a Post place&route

Table 5.4 — Results and comparison with with few recent related works

decoder achieves an architecture efficiency of 4.37 bits/cycle/iteration/mm2. Furthermore, the
proposed architecture is scalable and can be extended to 4 processing cores, since both LTE
and WiMAX interleavers support sub-blocking level of 4 with conflict-free memory accesses.
In this case, the memory area of one processing core decoder becomes 0.097mm2 which re-
sults in a total area occupancy of 0.65mm2. The architecture efficiency in this case is 5.88
bits/cycle/iteration/mm2. This further illustrates the area efficiency of the sub-block parallelism,
where the throughput is doubled while the occupied area is increased only by 1.47 times (rather
than doubled). This is due to the fact that Systematic, Parity, Extrinsic, and BoundaryState
memory requirements remain unchanged. The achieved results of the proposed design are sum-
marized and compared along with few recent related works in Table 5.4. The cited three imple-

128 CHAPTER 5. TDECASIP: PARAMETERIZED TURBO DECODER

mentations [59] [124] [62] use a conventional parametrized design approach with almost similar
internal computation, interleaving, and storage optimization techniques. However, each of them
has selected a different sub-blocking parallelism level (8, 16, and 32). The increased architecture
efficiency with the sub-blocking parallelism degree is coherent with the above discussed results
of the proposed 2- and 4-TDecASIP architectures. The 4-TDecASIP architecture achieves even
a slightly better architecture efficiency than the one presented in [59] which supports both Turbo
modes (DBTC and SBTC) and uses 8 parallel MAP decoders. The LTE-dedicated implementa-
tions presented in [124] and [62] exploit the available higher sub-blocking parallelism degrees
in this standard (parallel interleaving with conflict-free memory accesses). Results compari-
son illustrates how the proposed architecture achieves a high architecture efficiency while using
such an ASIP-based parameterized core approach by selecting the appropriate parallelism and
optimization techniques.

5.5 Summary

In this chapter we have presented a novel parameterized architecture for multi-standard Turbo
decoding, namely TDecASIP. The architecture was designed to maximize the architecture effi-
ciency, which was achieved through the use of high sub-block parallelism degree compared to
DecASIP (presented in Chapter 3). Thus, a 2 TDecASIP system decoder reaches a through-
put of 150 Mbps with an AE of 4.37 bit/cycle/iteration/mm2 outperforming related state of the
art implementations. Furthermore, the proposed architecture is scalable to the degree of sub-
block parallelism allowed by the standards (4 for WiMAX and 32 after Radix-4 optimization for
LTE). The attainable architecture efficiency increases with sub-block parallelism degree, thus a
4-TDecASIP Turbo decoder achieves and AE of 5.88 bit/cycle/iteration/mm2 with a throughput
of 300 Mbps.

Another main contribution of this work concerns the use of available ASIP design flow to
design application-specific parametrized cores. The main idea was to evaluate the benefits from
removing the program memory and the related instruction decoder. Besides its direct impact on
the architecture efficiency, such an architecture model should improve energy efficiency while
keeping the benefit of ASIP design tools for high level and quick design and debugging flow.
Thus, the proposed TDecASIP does not perform instruction fetch from an external program
memory which has been replaced by a simple and structured finite state machine implemented in
the OperandFetch pipeline stage. Finally, a new FPGA-based prototyping environment has been
proposed with a hardware-in-the-loop approach for quick and accurate on-board validation.

CHAPTER

6 LDecASIP: LDPC Decoder

InTHIS chapter we present an optimized flexible standalone LDPC decoder, namely LDe-
cASIP. The objective behind the conducted new design is twofold: (1) investigate the

maximum attainable architecture efficiency for ASIP-based LDPC decoding and (2) explore the
possibility of realizing a flexible decoder that allows to implement and validate new/incremental
algorithm changes with fast turnaround time in design. The idea of this last objective is to en-
hance the ASIP-based LDPC decoder with a design-time feature enabling incremental changes
for future support of other QC-LDPC codes (e.g. DVB-S2 with high expansion factor Z = 360).

Towards fulfilling these objectives, LDecASIP architecture is proposed and designed. The
proposed architecture exhibits a very high architecture efficiency, supports all QC-LDPC codes
and related parameters of WiFi and WiMAX standards (with expansion factors ranging from
Z = 24 to Z = 96), and enables the support other QC-LDPC codes with structured incremental
hardware changes at design time.

The chapter is organized as follows. The first section describes the design motivations along
with the proposed LDPC decoder architecture. The second section presents the added design-
time flexibility feature and illustrates the proposed way of upgrading the design to support other
QC-LDPC codes through the example of DVB-S2 LDPC decoding. Finally, the third section
presents the FPGA and ASIC synthesis results with architecture efficiency evaluation and related
discussions.

129

130 CHAPTER 6. LDECASIP: LDPC DECODER

6.1 Design motivations and LDecASIP decoder architecture

Although the proposed multi-DecASIP LDPC/Turbo decoder in Chapter 3 presents original scal-
ability and flexibility features, the achieved overall architecture efficiency is still relatively low.
The objective of this new study is to focus more on the architecture efficiency and to investigate
the maximum achievable architecture efficiency when using ASIP-based LDPC decoder design.
To that end, different parallelism degree, memory organization, and communication intercon-
nect are proposed. Another motivation of this work concerns the investigation of the possibility
to support other QC-LDPC codes than the ones specified in WiFi and WiMAX. In this context,
we considered the QC-LDPC codes specified in the DVB-S2 standard which present very high
expansion factor Z=360 and frame lengths (64800 and 16400 bits).

Regarding the parallelism degree, in fact the VN update and CN update steps of the NMS
decoding algorithm can be parallelized and pipelined as long as there are no conflicts in simulta-
neous updates of the variable nodes. Supporting the maximum parallelism degree of 360 allowed
by DVB-S2 standard leads to inefficient use of the hardware resources when lower parallelism
degrees are permitted (e.g. Z=24 for WiMAX LDPC standards). Furthermore, considering the
throughput requirement of these standards which is in the range of hundreds of Mbps and the
number of iterations required for decoding which is in the range of 10 to 25 (depending on the
standards and the code rate for WiMAX and WiFi and DVB-S2 [86,98,108]), a maximum paral-
lelism degree PDeg=48 is chosen. This means that a maximum of 48 check nodes are processed
in parallel by the proposed new ASIP for LDPC decoding, namely LDecASIP (Figure 6.1).

In
stru

ctio
n

 fetch

In
stru

ctio
n

 D
eco

d
e

A
d

d
r

G
en

era
te

D
a

ta
Fetch

Extrinsic
memories
(256x30)

Input
memories

(48x7)

Instruction
/Config

memory
(256x17)

x48

x8

Min
select

+

Scale Satu
rate to

 7
 b

its

Barrel
Shifter
(size 48)

InvBarrelShift

FIFO
(96x32)

x4

Update

Barrel
Shifter
(size 48)

M
U

X

0

Su
b

tracto
r

BarrelShift

x48

MinFind

Abs M
in

 Fin
d

er

Min1

Min0
Sgn

Min1

Min0
Sgn

Saturate
to 5 bits

x48

x48

Figure 6.1 — LDecASIP pipeline architecture

Two flexible barrel shifters of size 48 are used to implement the cyclic shifts of any permu-
tation (related to the standards): one for reading and one for writing channel LLRs in the input
memory banks. With this parallelism degree, decoding LDPC frames with Z > 48 are supported
by dividing the group of check nodes into two sub-groups (refer Figure 1.20 in page 28). Each
sub-group is scheduled for processing in two phases by applying the layered decoding schedule
(as explained in section 1.5.3 of page 32). In fact, all expansion factors for Z > 48 are multiple
of ”2” except for Z = 81 in WiFi standard. For this particular case, the group is split into two
sub-groups containing 40 and 41 check nodes. In this context, the barrel shifter flexibility covers
all specified expansion factors Z < 48: 24, 26,28,30,32...48, besides the support of Z=27 and
41. For DVB-S2 with Z=360, each group is split into 9 sub-groups containing 40 check nodes
each.

6.1. DESIGN MOTIVATIONS AND LDECASIP DECODER ARCHITECTURE 131

The proposed LDecASIP architecture has 8 pipeline stages. The configuration parameters
regarding check matrix definition and the decoding instructions are stored in a single 17 bit
wide instruction/config memory (Figure 6.2). The first part of this memory until ConfigBase
stores the configuration parameters specifying the key characteristics of the check matrix: the
number of parallelism degree (MaxDataPaths), the depth of the instruction memory (LastIndex),
number of sub-groups (MaxSubgroups), number of iterations (MaxIterations) and the lookup
table containing the scaled 4-bit CN to VN message L(m,n) (scale[0..15]). As in DecASIP the
quantization of 7 bits for channel LLR L(n) and 5 bits for L(m,n) are used with acceptable
performance losses (as shown in figure 3.3 of page 61).

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MaxDataPaths (i.e. X) ConfigBase

1 LastIndex LastExtrWRaddr

2 MaxSubLayers MaxIterations

3 Scale[2] Scale[1] Scale[0]

ConfigBase Scale[15] Scale[14] Scale[13]

ConfigBase

+1

Opcode Subgroup Row

status

Hcol Permutation

ConfigBase

+2 In
st

ru
ct

io
n

s
C

o
n

fi
gu

ra
ti

o
n

 p
ar

am
e

te
rs

Figure 6.2 — LDecASIP: Instruction/config memory

The rest of the memory carries the instructions that control the execution as shown in Figure
6.2. Each instruction is composed of 5 fields. The first two fields, Hcol and Permutation specify
the column number of the LDPC check matrix Hbase and the associated cyclic permutation
value respectively. The permutation value specified here is given after taking into account the
available parallelism degree. The third field, RowStatus indicates if the Hcol corresponds to the
beginning, middle or end of a row. The fourth field Subgroup is equal to 1 or 0 depending upon
if the Permutation value fetched is above or below PDeg respectively. The Hcol and Subgroup
are used to determine the read addresses for the input channel memories. These read addresses
are calculated as:

(fetch address)banknum = Hcol ∗ 2 + (Subgroup+ b(banknum + Permutation)

Z
c)%2

(6.1)

where banknum = 0...PDeg − 1 is the number of the bank that is being accessed. The fifth
field of the instruction format is the Opcode. This field can have one of the four values namely:
CNupdt, VNupdt, CombinedVNnCNupt or NOP corresponding to the execution of CN update,
VN update, combined VN and CN updates or idle cycle respectively.

CNupdt instruction initiates the variable to check node messages calculated according to
equation (1.59) by using the output of the barrel shifter and the check node to variable node
message Li−1(m,n) of the previous iteration (i− 1) fetched from the extrinsic memory banks.
The 8 bit variable to check node message, namely Li(n,m) are stored in a FIFO memory along
with Permutation, Hcol and Subgroup values to be used to generate addresses and barrel shift
values during update step. The MinFind pipeline stage (Figure 6.1) serially calculates the 2 least
absolute minimums min(0, 1)m and sgnm of the variable to check node messages correspond-
ing to a check node of the sub-group under processing.

132 CHAPTER 6. LDECASIP: LDPC DECODER

Once the variable node group corresponding to the last column of the sub-group/group con-
nected to check node group is read, the Update and InvBarrelShift stages of the pipeline is acti-
vated. This done by CNupdt or CombinedVNnCNupt instructions depending on if one or more
than one sub-group is present per group. Li(n,m) is read from the FIFO and aposteriori LLRs
Li(n) are calculated according to equation (1.64). Furthermore, the extrinsic LLRs Li(m,n) are
also calculated as given by the equation (1.63). The InvBarrelShift pipeline stage (in Figure 6.1)
shifts the newly calculated aposteriori LLRs to the original order and writes them back to the
channel memories. The check node to variable node update messages Li(m,n) are stored in the
extrinsic memory banks. When more than one sub-groups are present, the CombinedVNnCNupt

Emitter
LDPC

Encoder
Channel

LDPC
Decoder

Modulation Demodulation

FPGA

Error performance
evaluation and

validation

C simulation functional modules on host computer

USB

USB

Hw-equivalent C function

LDecASIP

Figure 6.3 — LDecASIP: FPGA prototyping environment

instruction is used to execute the VN update step for the current sub-group while the Update and
Inverse Barrel Shifter pipeline stages execute the VN update for the previous sub-group. This
implies the use of dual-port memories for input and extrinsic, however it allows a perfect usage
of all pipeline stages.

6.2 Prototype and incremental feature addition

The above architecture is prototyped on an FPGA platform and controlled via graphical user
interface on a host computer. As it was with the validation of TDecASIP, hardware-in-the-loop
strategy is used to validate the design under test as in 5.3, with LDPC encoder and hardware
equivalent decoder as shown in Figure 6.3.

Furthermore, as the barrel shifter description is also included in the LISA modelling, the
generated VHDL needs only addition of memory modules and input interface to realize a com-
plete decoder system. The input configuration parameters and the channel memories are written
through the USB interface from the host computer running the C based simulation program and
can be modified at run time. The LDPC hardware chosen can be modified to include 3-λ-min al-
gorithm [99], which is shown to be more performant when the LDPC code rates are less than 1/2
as in the case of DVB-S2 standard. This is done by modifying the MinFind pipeline stage to find
3 least minimum absolute values of the variable to check node messages connected to a check
node as shown in Figure 6.4. Similarly, the Update pipeline stage is also modified accordingly.
Furthermore, DVB-S2 specifies frame sizes of length 64800 bits and 16400 bits. These huge
codeword lengths correspond to sub-matrix size of Z=360, which can be supported by dividing
into 9 sub-groups with each sub-group containing 40 check nodes. It also implies that the input
memory banks and correspondingly the extrinsic memory banks need to be extended. The input
memory depth for each bank is given by (Max. frame length)/PDeg and the maximum number
of banks remains 48. Similarly, given the width of the extrinsic memory W and the number of
banks Pext (in the proposed LDecASIP architecture it is chosen to be Pext=8), the depth of an

6.3. FPGA AND ASIC SYNTHESIS RESULTS 133

A>B

X>C

Z>C

m
in

0

m
in

2

m
in

1

m
in

0

m
in

1

m
in

2

Row end

Latch
 |L(m,n)|5bits

Enable

Figure 6.4 — LDecASIP: Min calculator unit for DVB-S2

extrinsic memory bank is given by:

Extr. mem. depth =

∑
all CNs check node degree

W × Pext
(6.2)

Resulting memory cuts are summarized in Table 6.1 for WiFi and WiMAX standards along
with DVB-S2 support (shown in brackets). Furthermore, the DVB-S2 standard specifies check
matrices that have few double diagonal permutation matrices (superposed sub-matrices) instead
of the single diagonal permutation matrix as in WiFi and WiMAX standards. This implies that
the current update mechanism would result in overwriting of the Li(n) (equation (1.64)) by a
second update in the same sub-iteration. This problem can be resolved by differential update
mechanism as proposed in [99], where the difference of the extrinsic messages from the check
nodes involved in the update of the variable node is used as the final update value.

Memory width (bits) depth # typeb

Channel 7 48 (1620a) 48 (40a) dp
Extrinsic 5x6 256 (4860a) 8 dp

FIFO 128 32 4 dp
Instruction 17 256 1 sp
a for DVB-S2
b Dual port(dp) /Single port (sp)

Table 6.1 — LDecASIP: Memory bank partition for WiFi and WiMAX standard

6.3 FPGA and ASIC synthesis results

LDecASIP was modeled with Processor Designer tool through which an RTL VHDL descrip-
tion has been generated. Table 6.2 summarizes the synthesis results for both ASIC and FPGA
implementation on Xilinx Virtex5 (xc5vlx330-1ff1760) device. The design synthesized cur-
rently features the support of WiMAX and WiFi standards. Targeting general purpose CMOS

134 CHAPTER 6. LDECASIP: LDPC DECODER

Hierarchical CMOS FPGA (Xilinx Virtex-
5(xc5vlx330-1ff1760))

Unit 65nm (um2) Slice regs. LUTs BRAMs
MemoryInterface 29836 1245 3891 0

RegisterFile 27742 1890 1890 0
InstrFetch 552 11 47 0

InstrDecode 591 20 61 0
AddrGenerate 5964 22 294 0

DataFetch 2433 18 373 0
BarrelShift 19530 5 2508 0
MinFind 23317 685 2087 0
Update 29105 95 2389 0

InvBarrelShift 15094 0 2370 0
Total logic area 154328 3991 15807 0

Total memory area 427886 0 0 60
Total Area 582215 3991 15807 60

Table 6.2 — LDecASIP: ASIC and FPGA synthesis results

1/2 2/3(A) 2/3(B) 3/4(A) 3/4(B) 5/6
Z @20 iter @17 iter @17 iter @15 iter @15 iter @10 iter

L thru. L thru. L thru. L thru. L thru. L thru.
WiMAX Mode

24 - 48 87 82 - 165 89 126 - 253 91 124 - 248 98 146 - 293 101 142 - 285 114 210 - 421
52 - 96 163 95 - 176 169 144- 267 173 141 - 261 183 170 - 314 189 165 - 304 202 257- 475

WiFi Mode
27 110 73 100 127 110 147 104 259
54 192 84 196 129 193 167 185 291
81 200 121 190 200 185 262 172 470

Table 6.3 — LDecASIP: Throughput (in Mbps) and latency L (in clock cycles per iteration) for WiMAX
and WiFi mode @500MHz

65nm technology (worst case 0.9V, 125C), the logic area occupies around 0.15 mm2 while the
memory occupies 0.43 mm2 with maximum operating clock frequency being 500 MHz. The
total area of the design post-synthesis is given 0.58 mm2. Thus resulting best case AE is 13.6
bits/cycle/iter/mm2.

The achieved results of the proposed design are summarized and compared along with some
recent related works in Table 6.5. As it can be seen from the table, the AE of LDecASIP is
comparable to the other cited architectures. However, there still room for further optimizations
in order to reach the maximum achievable AE of 36.3 obtained in [127]. In fact, such high AE
can be explained by the lack of run-time flexibility to support different frame sizes [127]. The
architectures presented in [125] and [126] support only WiMAX LDPC codes which have better
organization for parallelism than those specified in WiFi standard.

Similarly, synthesis on Virtex-5 (xc5vlx330-1ff1760) FPGA resulted in a design utilization
of 3991 slice registers, 15807 LUTs and 60 BRAMs and occupying about 10% of the FPGA

Code rates 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 5/6 8/9 9/10
Latency 2430 3240 3888 4050 5832 4320 4860 5184 5346 4500 4536

Throughput 133 133 133 160 133 200 200 200 202 256 257

Table 6.4 — LDecASIP: Expected DVB-S2 latency L (in clock cycles per iteration) and throughputs
(in Mbps) at 25 iterations @500MHz

6.4. SUMMARY 135

LDecASIP [125] [126] [127]
Standard sup-
ported

WiMAX/WiFi WiMAX WiMAX WiMAX/Wifi

Tech (nm) 65 180 65 130
Core area(mm2) 0.58 3.39a 3.36a 2.744
AreaNorm
@65nm(mm2)

0.58 0.44b 1.68b 0.3430

Throughput
(Mbps)

73- 475 68 1056 141-249

fclk (MHz) 500 100 110 300
AE
(bit/cycle/iter/mm2)(LDPC)

5-13.6 15 14.29 20-36.3

a (post-layout area)
b (scaled down by factor 2 to get an estimated post synthesis area)

Table 6.5 — LDecASIP: Comparison with the state of the art

logic resources with maximum clock frequency of 90MHz. The core latency in terms of numbers
of clock cycles per iteration required during the decoding process is as shown in Table 6.3. We
can notice that the decoding latency is approximately twice for frames with Z > 48 than when
compared to Z < 48 due to the sub-group decoding strategy. Yet the maximum throughput that
can be achieved is more than 470Mbps for both WiFi and WiMAX standards.

Similarly, expected throughput for DVB-S2 standard with 25 iterations is given in Table 6.4
with a maximum reaching 257 Mbps. As only slight incremental changes are expected during
design time in the logic structure of the hardware, the memories are the major contributor for
area increase.

6.4 Summary

In this chapter we have presented a flexible and optimized ASIP-based architecture for multi-
standard LDPC decoding, namely LDecASIP. This new architecture was designed to maximize
the architecture efficiency, which was achieved by increasing the parallelism degree and the
memory bandwidth with flexible barrel shifters. LDecASIP exploits a maximum parallelism
degree of 48, i.e. 48 check nodes are processed in parallel, achieving a maximum throughput of
475 Mbps and an architecture efficiency of 13.6 bit/cycle/iteration/mm2. It supports all LDPC
codes and related parameters specified in WiFi and WiMAX standards.

Another main contribution of this work concerns the design time flexibility feature of LDe-
cASIP which allows to implement and validate new/incremental algorithm changes with fast
turnaround time in design. The proposed architecture for LDecASIP LDPC decoder enables
through incremental changes the future support of other QC-LDPC codes, such as those spec-
ified in DVB-S2 with high expansion factor Z = 360. This illustrates how the ASIP-based
design approach can be used as a way to achieve both design-time and run-time flexibility fea-
tures. Finally, the proposed architecture has been fully validated through an FPGA prototype
based on a hardware-in-the-loop approach.

Conclusions and
Perspectives

This thesis work has investigated multi-ASIP architecture model towards the target of unifying
flexibility-oriented and optimization-oriented approaches in the design of flexible channel de-
coders. By considering mainly the challenging Turbo and LDPC decoding applications, multi-
ASIP channel decoder architectures are proposed targeting high flexibility combined with high
architecture efficiency in terms of bits/cycle/iteration/mm2. Different architecture alternatives
and design approaches are explored.

In this context, three original contributions have been proposed. The first one concerns the
design of a scalable and flexible high throughput multi-ASIP LDPC/Turbo decoder. Several
design objectives have been attained in this work in terms of scalability, resource sharing, and
configuration speed between the different supported decoding modes. The proposed DecASIP
supports the decoding of LDPC and Turbo codes specified in WiFi, WiMAX, and LTE stan-
dards. An 8-DecASIP system decoder achieves an architecture efficiency AE of 0.7 in Turbo
mode and a maximum AE of 3.12 in LDPC mode. Achieved throughputs are 156 Mbps and
437 Mbps in Turbo and LDPC modes respectively. The second contribution concerns the de-
sign of a parameterized ASIP for Turbo decoding (TDecASIP). Here the objective was to in-
vestigate the maximum attainable architecture efficiency for ASIP-based Turbo decoding when
maximising the usage of sub-block parallelism. The proposed 4-TDecASIP system decoder
achieves an architecture efficiency AE of 5.3 and a throughput of 300 Mbps in both SBTC and
DBTC modes. Furthermore, with this architecture we demonstrated the possibility to design
application-specific parametrized cores using the available ASIP design flow. The third contri-
bution corresponds to the design of an optimized ASIP for LDPC decoding (LDecASIP). As for
LDecASIP, the objective was to investigate the maximum attainable architecture efficiency for
ASIP-based LDPC decoding by increasing the parallelism degree and the memory bandwidth
with flexible barrel shifters. The proposed LDecASIP decoder achieves a maximum architecture
efficiency AE of 13.6 and a maximum throughput of 475 Mbps.

A fourth main contribution of this thesis work concerns the proposed flexible and fully func-
tional multi-ASIP channel decoder. A complete communication system platform has been em-
ulated along with Turbo and LDPC encoder, channel, proposed 4-DecASIP channel decoder
and error counter. The decoding mode and parameters can be configured on-the-fly through a
dedicated GUI from a host computer. To our knowledge, this is the first demonstrated multi-
ASIP NoC-based FPGA prototype that is capable of decoding LDPC and Turbo (SBTC and
DBTC) codes. Furthermore, an ASIC integration of the 4-DecASIP system decoder has been
accomplished on the MAG3D Telecom chip designed by the CEA-LETI which targets 4G com-
munication applications.

These results allowed the proposal of original flexible and optimized implementations for

137

138 CONCLUSIONS AND PERSPECTIVES

channel decoding. They further demonstrate the effectiveness of ASIP based design in this
application domain to fine tune design trade-offs w.r.t. diverse design objectives.

In this thesis manuscript we firstly provided the basic background on Turbo and LDPC codes
along with their construction and decoding algorithms. Max-Log MAP and Normalized Min-
Sum algorithms were illustrated to be the hardware efficient versions of the MAP and Sum-
Product algorithms respectively. The different parallelism levels which can be exploited in the
implementation of a Turbo decoder were also explained. For LDPC decoding, a brief presen-
tation on existing computation scheduling techniques was given. Finally, the modified NMS
formulation adopted in this thesis work was presented.

The concept of ASIP-based design and the associated design methodology and tool which
are considered in this thesis work have been then presented in Chapter 2. Furthermore, an
overview on state-of-the-art efforts in channel decoder design was addressed. The proposed
overview presents a selection of recent works related to the thesis scope in terms of flexibility
support of Turbo and LDPC decoding in order to clarify the position of the proposed contribu-
tions in this thesis. The chapter has also presented the architecture of an initial ASIP for flexible
Turbo decoding. This ASIP has been developed in a previous thesis study at the Electronic de-
partment of Telecom Bretagne. In this initial architecture, the main target was to explore the
effectiveness of the newly proposed ASIP-design tools in terms of quality of the generated HDL
code and flexibility limitations when targeting this class of applications. To that end, the target
flexibility was set very high to investigate the support of any convolutional code trellis of Turbo
codes. Although not supporting LDPC decoding, this architecture has investigated the exploita-
tion of the various parallelism techniques available for Turbo decoding, particularly for DBTC.
This initial effort constitutes the starting point of this thesis work.

Chapter 3 presented our first contributions in the design of scalable, flexible and optimized
channel decoder supporting Turbo and LDPC codes using a multi-ASIP NoC based architec-
ture model. Several design objectives that were targeted at the starting of this work have been
achieved. Resource sharing between the LDPC and the Turbo decoding modes is achieved
through efficient sharing of memories and communication network resources. In fact, the com-
putational logic required for the low complexity NMS algorithm (LDPC mode) has relatively
low contribution to the overall decoder area and has no direct commonalities with that required
for the Max-Log-MAP algorithm (Turbo mode). Scalability is obtained through multi-ASIP ar-
chitecture connected through an application-specific NoC interconnect. Two NoC architectures
were explored: the first one is based on the binary de-Bruijn direct topology which was later
replaced by a more area efficient NoC based on the Butterfly indirect topology. Thus, the final
system decoder with 4 DecASIPv2 can achieve a maximum throughput of 78 Mbps and 235
Mbps for Turbo (DBTC, SBTC) and LDPC modes respectively. When scaled to an 8 DecASIP
based system decoder, the proposed architecture allows throughputs in Turbo and LDPC modes
of 156 Mbps and 437 Mbps respectively. New LDPC decoding schedule adapted to the base Tur-
bASIP architecture and to the target scalable multi-ASIP channel decoder has been proposed.
Compatible with the above architectural choices, possible parallelism techniques have been ex-
plored through the use of shuffled decoding and sub-blocking in Turbo mode. In LDPC mode,
partial parallelism and layered decoding have been explored where the proposed multi-DecASIP
decoder processes disjoint set of check nodes within a check node group. Rapid reconfigurabil-
ity between the different supported decoding modes is provided by regrouping all the parameters
in a well structured configuration memory and by unifying the program memory for both SBTC
and DBTC modes.

The proposed scalable multi-ASIP LDPC/Turbo decoder fairs reasonably well when com-
pared to the recent related state of the art implementations. It achieves a high throughput in

CONCLUSIONS AND PERSPECTIVES 139

LDPC mode with an architecture efficiency of 3.12 bit/cycle/iteration/mm2. The Turbo mode
architecture efficiency is lower achieving a 0.72 bit/cycle/iteration/mm2, yet the throughputs
target of 150 Mbps is met.

In chapter 4 we presented an FPGA prototype of a full communication system targeting
the support of multi-standard Turbo/LDPC Encoding and Decoding. To our knowledge, this is
the first demonstrated multi-ASIP NoC-based FPGA prototype of such flexible channel decoder
supporting LDPC and Turbo (SBTC and DBTC) codes. The proposed functional prototype illus-
trates the effectiveness of ASIP concept in the implementation of scalable, flexible and optimized
multi-standard platforms for wireless communications. The prototype supports all communica-
tion modes defined in LTE, WiFi, and WiMAX standards. To enable reasonable throughputs
on FPGA most of the system components (including emitter, channel model, decoder, and sys-
tem controller) have been implemented in hardware. A GUI enables the reconfiguration of the
decoding mode on-the-fly and enables the monitoring of the communication system through a
user friendly interface. Besides its wide flexibility, the proposed FPGA prototype achieves a
throughput of 11.4 Mbps in Turbo modes and 36.5 Mbps in LDPC modes when operating at
a clock frequency of 80 MHz. Furthermore, as a joint effort with another PhD student at the
CEA-LETI (Pallavi Reddy), an ASIC integration of the proposed flexible channel decoder has
been elaborated. A 4-DecASIP channel decoder is integrated in the latest Telecom chip (namely
MAG3D) designed by the CEA-LETI targeting 4G communication applications.

Chapter 5 presented a novel parameterized architecture for multi-standard Turbo decoding,
namely TDecASIP. The architecture was designed to maximize the architecture efficiency, which
was achieved through the use of high sub-block parallelism degree compared to DecASIP (pre-
sented in Chapter 3). Thus, a 2 TDecASIP system decoder reaches a throughput of 150 Mbps
with an AE of 4.37 bit/cycle/iteration/mm2 outperforming related state of the art implementa-
tions. Furthermore, the proposed architecture is scalable to the degree of sub-block parallelism
allowed by the standards (4 for WiMAX and 32 after Radix-4 optimization for LTE). The at-
tainable architecture efficiency increases with sub-block parallelism degree, thus a 4-TDecASIP
Turbo decoder achieves and AE of 5.88 bit/cycle/iteration/mm2 with a throughput of 300 Mbps.
Another main contribution of this work concerns the use of available ASIP design flow to design
application-specific parametrized cores. The main idea was to evaluate the benefits from remov-
ing the need of a program memory and the related instruction decoder. Besides its direct impact
on the architecture efficiency, such an architecture model should improve energy efficiency while
keeping the benefit of ASIP design tools for high level and quick design and debugging flow.
Thus, the proposed TDecASIP does not perform instruction fetch from an external program
memory which has been replaced by a simple and structured finite state machine implemented
in the OperandFetch pipeline stage. Finally, a new FPGA-based prototyping environment has
been proposed with a hardware-in-the-loop approach for quick and accurate on-board validation.

Finally, the last chapter presented a flexible and optimized ASIP-based architecture for
multi-standard LDPC decoding, namely LDecASIP. This new architecture was designed to max-
imize the architecture efficiency, which was achieved by increasing the parallelism degree and
the memory bandwidth with flexible barrel shifters. LDecASIP exploits a maximum parallelism
degree of 48, i.e. 48 check nodes are processed in parallel, leading to an architecture efficiency
of 13.3 bit/cycle/iteration/mm2 with a maximum throughput of 475 Mbps. It supports all LDPC
codes and related parameters specified in WiFi and WiMAX standards. Another main contri-
bution of this work concerns the design time flexibility feature of LDecASIP which allows to
implement and validate new/incremental algorithm changes with fast turnaround time in design.
The proposed architecture for LDecASIP LDPC decoder enables through incremental changes
the future support of other QC-LDPC codes, such as those specified in DVB-S2 with high expan-

140 CONCLUSIONS AND PERSPECTIVES

sion factor Z = 360. This illustrates how the ASIP-based design approach can be used as a way
to achieve both design-time and run-time flexibility features. Finally, the proposed architecture
has been fully validated through an FPGA prototype based on a hardware-in-the-loop approach.

Perspectives

Regarding work perspectives, several ideas can be investigated:

• The last architecture presented (LDecASIP) for LDPC decoding was designed to serve as
the base for a future work on the common architecture integrating TDecASIP for Turbo
decoding. The resulting architecture should lead to a high architecture efficiency in both
modes.

• Increasing the architecture efficiency in terms of bits/cycle/iteration/mm2 leads to optimal
usage of available hardware resources which should optimizes energy consumption. It
would be interesting to evaluate the impact of the explored diverse design choices on energy
efficiency and to investigate the integration of low power design techniques.

• Exploring other architecture-level technique such as the use of dynamic reconfiguration
concept associated with the ASIP design approach. Having a dynamically reconfigurable
fabric attached to the ASIP pipeline can enable better resource sharing and usage over
different algorithm variants and parameters.

• Exploring other emerging target technologies such as the 3D integration which can enable
further improvements in energy, reconfiguration speed, and architecture efficiency.

Résumé en Français

De nombreuses techniques de codage de canal sont spécifiées dans les nouvelles normes de com-
munications numériques, chacune adaptée à des besoins applicatifs spécifiques (taille de trame,
type de canal de transmission, rapport signal-à-bruit, bande-passante, etc.). Si l’on considère les
applications naissantes multi-mode et multi-standard, ainsi que l’intérêt croissant pour la radio
logicielle et la radio cognitive, la combinaison de plusieurs techniques de correction d’erreur
devient incontournable. Néanmoins, des solutions optimales en termes de performance, de con-
sommation d’énergie et de surface sont encore à inventer et ne doivent pas être négligées au profit
de la flexibilité. Le tableau (Table 1) donne un panel représentatif de normes mobiles sans fil
afin de mettre en évidence leurs différences en termes de taux de transfert et de mode de codage
de canal. Les codes correcteurs d’erreurs les plus communément utilisés dans ces normes sont
des codes convolutifs (CC), les turbocodes (TCSB: Turbo Codes Simples Binaires, et TCDB:
Turbo Codes Doubles Binaires) et les codes LDPC (Low-Density Parity-Check codes).

Problèmes

Dans le contexte décrit ci-dessus, le décodage canal représente un des composants les plus
exigeants en terme de capacités de calcul, de communications, de mémoire, et donc de
consommation d’énergie. La conception de décodeurs de canal a été largement étudiée au
cours des dernières années et plusieurs implémentations ont été proposées. Certaines de ces
implémentations ont réussi à atteindre de très hauts débits pour des normes spécifiques grâce à
l’adoption d’architectures dédiées qui fonctionnent comme des accélérateurs hardwares. Toute-
fois, ces réalisations ne prennent pas en compte la flexibilité d’application et l’évolutivité. En
effet, cette approche implique l’attribution de plusieurs accélérateurs hardwares distincts pour
réaliser des systèmes multistandards, ce qui se traduit souvent, par une mauvaise optimisation
de l’utilisation des ressources hardware. De plus, ceci implique un temps de conception long,
incompatible avec les contraintes de délais de mise sur le marché et l’avènement continu de
nouvelles normes et d’applications.

Plus récemment, plusieurs contributions ont été proposées pour l’implémentation de
décodeurs canal, les rendant flexibles tout en conservant un haut débit. La flexibilité varie
de la prise en charge de plusieurs modes de communication monostandard, à la prise en
charge d’applications multistandards et multimodes. D’autres implémentations ont proposé
d’augmenter la flexibilité cible afin de prendre en charge différentes techniques de codage canal.
En réalité, un fossé s’est rapidement creusé ces dernières années entre le besoin de flexibilité
dans le domaine du traitement numérique en bande de base des systèmes de communication
modernes, et la disponibilité réelle d’implémentations flexibles et efficaces avec la prise en
charge de la reconfigurabilité. Les principales raisons de cet écart sont, d’une part, la faible

141

142 RÉSUMÉ EN FRANÇAIS

efficacité en terme de surface et de consommation des solutions flexibles proposées jusqu’à
maintenant et d’autre part l’augmentation considérable des coûts d’ingénierie non-récurrente
(NRE) dans la production de circuits intégrés dédiés à des applications spécifiques (ASIC) avec
des nouvelles technologies utilisant des semi-conducteurs.

Objectifs et portée de la thèse

Ce travail de thèse vise à définir et à développer un modèle d’architecture de décodage canal
flexible et haut débit pour les systèmes de communications numériques émergents et futurs. Il
est nécessaire d’optimiser les solutions en termes de performances, de surface et de consom-
mation d’énergie. Ceci ne peut être négligé au profit d’une plus grande flexibilité. L’objectif
de ce travail est d’allier les approches augmentant la flexibilité et l’optimisation. L’objectif
principal est de fournir des outils se présentant comme un jeu de construction pouvant être as-
semblé à la guise afin de trouver le meilleur compromis entre très grande flexibilité et très grande
spécificité/optimisation pour une application donnée. Pour atteindre cet objectif, le travail de
thèse étudie le multitraitement et les jeux d’instructions de processeur à application spécifique
(ASIP) qui permettent au concepteur d’ajuster librement la flexibilité par rapport à la perfor-
mance conformément aux exigences de l’application considérée.

De nouvelles contributions sur le sujet ont été publiées récemment, elles visent
l’amélioration de l’efficacité de l’architecture résultante, en termes de compromis perfor-
mances/surface et de flexibilité. En se concentrant sur les techniques Turbo et LDPC, des
architectures de décodage canal multi-ASIP ciblant une grande flexibilité alliée à une grande
efficacité architecturale (AE) en terme de bits/cycle/itération/mm2 ont été proposées. Dans ces
contributions, différentes solutions architecturales et approches de conception sont explorées.
Afin d’être pertinent par rapport aux normes existantes et émergentes, nous limitons la flexi-
bilité à la prise en charge des codes LDPC et Turbo spécifiées dans le WiFi, WiMAX et LTE.
Cela permet également de les comparer aux implémentations actuelles.

Contributions

Dans ce contexte, trois contributions originales ont été proposées.

La première concerne la conception d’un décodeur multi-ASIP LDPC/Turbo à haut débit,
évolutif et flexible. Plusieurs objectifs de conception ont été atteints dans ce travail en termes
d’évolutivité, de partage des ressources, et de vitesse de configuration entre les différents modes
de décodage supportés. Le DecASIP proposé prend en charge le décodage des codes LDPC et
Turbo spécifiés dans les normes WiFi, WiMAX et LTE. Un décodeur 8-DecASIP atteint une
efficacité d’architecture (AE) de 0, 7 en mode Turbo et 3, 12 en mode LDPC. Les débits obtenus
sont de 156 Mbps et 437 Mbps respectivement en mode Turbo et LDPC.

La deuxième contribution porte sur la conception d’un ASIP paramétrable pour turbo-
décodage (TDecASIP). Ici, l’objectif était de déterminer l’efficacité d’architecture maximale
pour un turbo-décodage ASIP tout en maximisant les parallélismes de sous-blocs. Le décodeur
4-TDecASIP proposé, atteint une efficacité d’architecture (AE) de 5, 3 et un débit de 300 Mbps
dans les deux modes, SBTC et DBTC. De plus, nous avons démontré qu’avec cette architec-
ture, il était possible de paramétrer les cœurs de façon spécifique aux applications en utilisant la
méthodologie ASIP.

RÉSUMÉ EN FRANÇAIS 143

La troisième contribution correspond à la conception d’un ASIP optimisé pour le décodage
LDPC (LDecASIP). En ce qui concerne le LDecASIP, l’objectif était d’étudier l’efficacité
d’architecture maximale pour un décodage LDPC ASIP, en augmentant le degré de parallélisme
et la bande passante de la mémoire grâce à des registres à décalage flexibles. Le décodeur LDe-
cASIP réalisé a atteint un maximum d’efficacité d’architecture (AE) de 13, 6 et un débit maximal
de 475 Mbps.

La quatrième contribution principale de ce travail de thèse porte sur le projet de décodeur-
canal multi-ASIP flexible et totalement fonctionnel. Une plate-forme simulant un système de
communication complet a été développé sur cible FPGA. Cette plate-forme embarque un en-
codeur Turbo, un encodeur LDPC, un modèle de canal, un décodeur canal 4-DecASIP (proposé
dans ce projet) et un compteur d’erreurs. Le mode de décodage et les paramètres peuvent être
configurés à la volée à l’aide d’une interface graphique dédiée sur ordinateur. À notre connais-
sance, c’est la première fois qu’un tel prototype FPGA multi-ASIP à base de NoC est capable
de décoder les codes LDPC et Turbo (SBTC et DBTC). En outre, une intégration ASIC du
décodeur système 4-DecASIP a été réalisée sur la puce MAG3D Telecom conçu par le CEA-
LETI qui cible les applications de communication 4G.

Structure du manuscrit

Dans ce manuscrit de thèse, nous avons tout d’abord fourni les connaissances de base sur les
codes LDPC et les turbocodes avec leur construction et leurs algorithmes de décodage. Les al-
gorithmes Max-Log MAP et Min-Sum normalisé ont été utilisés comme les versions matérielles
efficaces des algorithmes MAP et Sum-produit. Les niveaux de parallélisme différents qui peu-
vent être exploitées dans l’implémentation d’un décodeur Turbo a aussi été présenté. Pour le
décodage LDPC, une brève présentation sur les techniques existantes d’ordonnancement a été
donnée. Enfin, la formulation modifiée NMS adoptée dans ce travail de thèse a été présentée.

Ensuite, le concept du développement basé sur les ASIP, la méthodologie associée ainsi
que les outils considérés dans ce travail de thèse ont été présentés dans le chapitre deux. En
outre, un état de l’art sur les travaux dans le domaine de de la conception de décodage canal
a été abordé. Cet état le l’art présente une sélection de contributions récentes relatives aux
travaux de cette thèse en termes de support et de flexibilité de décodage Turbo et LDPC afin de
mettre en évidence la position des contributions proposées dans cette thèse. Dans ce chapitre
à aussi été présenté l’architecture d’un ASIP initiale de turbo-décodage flexibles. Cet ASIP
a été développé dans une précédente thèse au département électronique de Télécom Bretagne.
Pour cette architecture initiale, l’objectif principal était d’étudier l’efficacité de l’approche basée
sur les ASIP et des outils associé en termes de qualité du code HDL généré et les limites de
flexibilité lors du ciblage de cette classe d’applications. À cette fin, la flexibilité ciblée était très
haute afin d’étudier le support de tous les treillis possibles en code Turbo et codes convolutifs.
Bien que ne prenant pas en compte le décodage LDPC, ce travail s’est porté sur l’exploitation
des techniques de parallélisme disponibles pour les turbo-décodage, en particulier pour TCDB.
Cet effort initial constitue le point de départ de ce travail de thèse.

Dans le chapitre 3 nous avons présenté nos premières contributions à la conception de
décodeurs canal évolutifs, flexibles et optimisé supportant des codes LDPC et Turbo à l’aide
d’un modèle multi-ASIP basée sur une architecture autour d’un NoC (Figure 3.4). Plusieurs
objectifs de conception qui ont été ciblées au départ de ce travail ont été atteints. Le partage
des ressources entre les LDPC et les modes Turbo décodage est réalisé par un partage efficace
des mémoires et des ressources réseau de communication. En revanche, la ressource en cal-
cul nécessaire pour l’algorithme de faible complexité NMS (mode LDPC) prend une très faible

144 RÉSUMÉ EN FRANÇAIS

part de la surface globale du décodeur n’a pas de partie commune direct avec celle requise
pour l’algorithme Max-Log-MAP (en mode Turbo) (Figure 3.25). Évolutivité est obtenue par
l’architecture multi-ASIP reliés par une interconnexion sous forme de réseau sur puce (NoC).
Deux architectures NoC ont été explorées: la première est basée sur la topologie directe binaire
de-Bruijn qui a ensuite été remplacé par un NoC plus efficace basé sur la topologie butterfly indi-
recte. Ainsi, le décodeur avec 4-DecASIPv2 peut atteindre un débit maximal de 78 Mbps et 235
Mbps respectivement pour les modes Turbo (DBTC, SBTC) et LDPC. Lorsque l’on extrapole
pour un système utilisant 8 DecASIP basé sur l’architecture proposée les débits en modes Turbo
et LDPC montent respectivement à de 156 Mbps et 437 Mbps. Un nouvel ordonnancement
pour le LDPC adapté à l’architecture de base TurbASIP et à celle du décodeur multi-ASIP à été
proposé.

Compatible avec les choix architecturaux ci-dessus, différentes techniques de parallélisme
potentielles ont été explorées notamment l’ordonnacementy shuffle et le découpage de trame en
sous bloc en mode Turbo. En mode LDPC, le parallélisme partielle et le décodage layered ont
été explorées, où le décodeur multi-DecASIP proposé traite des ensemble disjoint de check-node
d’un groupe de check-node. La reconfigurabilité rapide entre les différents modes de décodage
pris en charge est assurée par le regroupement de tous les paramètres de configuration dans une
mémoire bien structuré et en unifiant la mémoire de programme pour les deux modes TCSB
et TCDB. Le décodeur évolutif LDPC/Turbo multi-ASIP, ici présenté soutient la comparaison
par rapport à ceux trouvé dans les contributions de l’état de l’art. Il atteint un haut débit en
mode LDPC avec une efficacité d’architecture de 3, 12 bits/cycle/itération/mm2. L’efficacité
d’architecture en mode Turbo est inférieure, elle atteint 0,72/cycle/itération/mm2, néanmoins
l’objectif d’un débit de 150 Mbps est atteint.

Dans le chapitre 4, nous avons présenté le prototype FPGA d’un système complet de commu-
nication supportant le codage et le décodage Turbo/LDPC multi-standard. À notre connaissance,
c’est le premier prototype de décodeur de canal FPGA multi-ASIP basé sur des NoC, flexible
prenant en charge les codes LDPC et Turbo (SBTC et DBTC). Le prototype proposé (Figure
4.1) parfaitement fonctionnel, illustre l’efficacité du concept de l’ASIP dans l’implémentation
de plateformes multi-standards évolutives, flexibles et optimisés pour la communication sans fil.
Le prototype prend en charge tous les modes de communication définis dans les normes LTE,
WiFi et WiMAX. Afin de permettre des débits raisonnables sur FPGA, la plupart des composants
du système (y compris l’émetteur, le modèle de canal, le décodeur, et le contrôleur système) ont
été déportés sur le FPGA. Une interface utilisateur graphique permet une configuration du mode
de décodage et un contrôle du système de communication aisée. En plus de sa grande flexibilité,
le prototype FPGA proposée permet d’atteindre un débit de 11, 4 Mbps en mode Turbo et 36, 5
Mbps en mode LDPC en fonctionnant à une fréquence d’horloge de 80 MHz. Par ailleurs, en
collaboration avec une doctorante au CEA-LETI (Pallavi Reddy), une intégration ASIC d’un
tel décodeur flexible à été réalisée. Un décodeur canal 4-DecASIP est intégré dans la dernière
puce Telecom (à savoir MAG3D) conçu par le CEA-LETI ciblant les applications de communi-
cation 4G. De plus, ce décodeur canal intégré sur ASIC, embarque des techniques de réduction
de puissance/énergie qui ont été proposées par Pallavi Reddy à différents niveaux (niveaux al-
gorithmique, de l’architecture et de la technologie).

Le chapitre 5 détaille une nouvelle architecture paramétrée pour le décodage turbo multi-
standard, à savoir le TDecASIP. Par rapport à DecASIP (présentée dans le chapitre 3),
l’architecture a été conçue pour maximiser l’efficacité architectural, grâce à l’utilisation d’un
degré élevé de parallélisme sous-bloc. Ainsi, un décodeur système de 2 TDecASIP atteint un
débit de 150Mbps avec une AE de 4, 37 bits/cycle/itération/mm2, dépassant aisément les perfor-
mances des décodeurs actuels trouvés dans la littérature. De plus, l’architecture proposée peut

RÉSUMÉ EN FRANÇAIS 145

s’adapter au degré de parallélisme sous-bloc autorisé par les normes (4 pour le WiMAX et 32
pour le LTE avec l’optimisation Radix-4). L’efficacité maximal de l’architecture augmente avec
le degré de parallélisme sous bloc, donc un 4-TDecASIP Turbo décodeur réalise un AE de 5, 88
bits/cycle/itération/mm2, avec un débit de 300 Mbps. Une autre contribution principale de ce
travail concerne l’utilisation de la méthodologie de conception ASIP pour concevoir des coeurs
de calcul paramétrés spécifique à une application. L’idée principale était d’évaluer les avan-
tages de la suppression de la mémoire programme et des instructions décodeur associées. Outre
son impact direct sur l’efficacité architectural, un tel modèle d’architecture devrait permettre
d’améliorer l’économie d’énergie tout en conservant le bénéfice des outils ASIP pour leur ra-
pidité et leur qualité de conception et débogage. Ainsi, ce TDecASIP n’éxécute pas d’instruction
récupérée à partir d’une mémoire de programme externe, ceci a été remplacé par un simple au-
tomate à états finis structuré intégré au pipeline OperandFetch. Enfin, un nouvel environnement
de prototypage basé sur FPGA a été proposé avec une approche hardware-in-the-loop pour une
utilisation rapide et précise de validation embarquée.

Enfin, le dernier chapitre présente le LDecASIP (Figure 6.1), une architecture flexible et
optimisée basée sur le principe des ASIP, pour le décodage LDPC multi-standard. Cette nou-
velle architecture a été conçue pour maximiser l’efficacité architectural obtenue en augmentant
le degré de parallélisme et la bande passante de la mémoire grâce à des registres à décalage
(barrel shifters) flexibles. LDecASIP exploite un degré de parallélisme maximal de 48, soit 48
check-nodes traités en parallèle, avec un efficacité architectural de 13, 3 bits/cycle/itération/mm2

avec un débit maximal de 475 Mbps. Il prend en charge tous les codes LDPC et les paramètres
associés spécifiés dans les normes WiFi et WiMAX. Une autre contribution principale de ce tra-
vail concerne la flexibilité temporelle de conception de LDecASIP, qui permet d’implèmenter et
de valider les changements successifs d’algorithme avec une réacivité rapide lors de la concep-
tion. L’architecture proposée pour le décodeur LDPC LDecASIP, permet par des changements
progressifs, la prise en charge future d’autres codes QC-LDPC, tels que ceux spécifiés en DVB-
S2 avec des facteurs d’expansion élevés Z = 360. Cet exemple illustre le fait que l’approche
de conception basée sur l’ASIP peut être utilisé comme un moyen d’atteindre à la fois des
temps de conception, et des temps d’éxécution modulables. Enfin, l’architecture proposée a été
entièrement validée par un prototype FPGA basé sur une approche hardware-in-the-loop.

Perspectives proposées

En ce qui concerne les perspectives de travail, plusieurs idées peuvent être étudiées:

• La dernière architecture présentée (LDecASIP) pour décodage LDPC a été conçu pour
servir de base à un futur travail sur une architecture commune intégrant TDecASIP
pour le décodage Turbo. L’architecture résultante devrait conduire à une haute efficacité
d’architecture dans les deux modes.

• L’augmentation de l’efficacité d’architecture en termes de bits / cycle / itération / mm2 con-
duit à une utilisation optimale des ressources matérielles disponibles, ce qui devraient op-
timiser la consommation énergétique. Il serait intéressant d’évaluer l’impact des différents
choix de conception étudiés sur l’économie d’énergie et d’étudier l’intégration des tech-
niques de conception à faible puissance.

• Explorer des techniques à d’autre niveau d’architecture telle que l’utilisation du concept
de reconfiguration dynamique associée à l’approche de conception ASIP. Avoir un réseau

146 RÉSUMÉ EN FRANÇAIS

dynamiquement reconfigurable attaché au pipeline ASIP peut permettre un meilleur partage
des ressources et d’utilisation des différents paramètres et variables de l’algorithme.

• Explorer d’autres technologies émergentes clés telles que l’intégration 3D qui peut per-
mettre de nouvelles améliorations en matière d’énergie, de vitesse de reconfiguration et
d’efficacité architecture.

Glossary

3GPP 3rd Generation Partnership Project

ACS Addition Comparaison Selection
ADL Architectural Description Language
AE Area Efficiency
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction-set Processor
ARP Almost Regular Permutation
AWGN Additive White Gaussian Noise

BCJR Bahl-Cock-Jelinek-Raviv
BER Bit Error Rate
BP Belief propagation
BPSK Binary Phase Shift Keying

CC Convolutional Codes
CN Check Node
CNG Check Node Group
CMOS Complementary Metal Oxide Semi-Conductor
CRSC Circular Recursive Systematic Convolutional

DBTC Double Binary Turbo Codes
DVB-RCS Digital Video Broadcasting Return Channel Satellite
DVB-T Digital Video Broadcasting Terrestrial
DSP Digital Signal Processor

FER Frame Error Rate
FEC Forward Error Correction
FIFO First In First Out
FPGA Field Programmable Gate Array
FS Flooding Schedule
FSM Finite State Machine

GALS Globally Asynchronous Locally Synchronous
GSM Global System for Mobile Communications
GUI Graphical User Interface

147

148 GLOSSARY

HDL Hardware Description Language
HSS Horizontal Shuffle Scheduling

IP Intellectual Property
ISS Instruction Set Simulator

LDPC Low-Density Parity-Check
LLR Log Likelihood Ratio
LTE Log Term Evolution
LUT Look Up Table

MAP Maximum A Posteriori
MPSoC Multiple Processor System on Chip

NI Network Interface
NMS Normalized Min-Sum algorithm
NoC Network on Chip

OFDM Orthogonal Frequency Division Multiplexing

PCCC Parallel Concatenated Convolutional Codes
PSK Phase Shift Keying

QC Quasi-Cycle
QPP Quadratic Permutation Polynomial

RAM Random Access Memory
RTL Register Transfer Level

SBTC Single Binary Turbo Codes
SCCC Serial Concatenated Convolutional Codes
SDR Software Defined Radio
SIMD Single Instruction Multiple Data
SISO Soft In Soft Out
SNR Signal to Noise Ratio
SoC System on Chip
SPC Single Parity Check Algorithm
SOVA Soft Output Viterbi Algorithm

TPMP Two-Phase Message Passing

UMTS Universal Mobile Telecommunications System
USB Universal Serial Bus

VHDL VHSIC hardware description language
VLIW Very Long Instruction Word
VN Variable Node
VNG Variable Node Group
VSS Vertical Shuffle Scheduling

GLOSSARY 149

WiMAX Worldwide Interoperability for Microwave Access

ZOL Zero Overhead Loop

Notations

Channel Coding:
Xi Coded symbol of sequence i
Yi Modulated symbol of sequence i
Eb Energy per information bit
N0 Real power spectrum density of the noise
r Code rate
σ Gaussian noise noise variance
p(Yi|Xi) The channel transition probability

Turbo Decoding:
di Information symbol
αi(s) Decoder forward recursion metrics for ith bit and

s in Max-log-MAP algorithm
α int(witer

(n))(i) Initial forward recursion metrics of ith

symbol of window n in iteration iter
βi(s) Decoder backward recursion metrics (Max-log-MAP algorithm)
β int(witer

(n))(i) Initial backward recursion metrics of ith

symbol of window n in iteration iter
γ(s′, s) Decoder branch metrics in Max-log-MAP algorithm
γext Turbo decoder extrinsic information LLR
γintr Turbo decoder intrinsic information LLR
γapos Turbo decoder a posteriori information LLR
γn.app Turbo decoder normalized a priori information LLR
γHard.dec Turbo decoder hard decision
Sc Extrinsic scaling factor

LDPC Decoding:
M Number of check nodes
N Number of variable nodes
Mb Number of block rows in a QC-LDPC check matrix
Nb Number of block columns in a QC-LDPC check matrix
m Check node m
n Variable node n
Z Permutation matrix size or expansion matrix size
Hbase Base parity check matrix described in terms of permutation values
H Parity check matrix
Li(n,m) Variable node message from n to m, for sub-iteration i

151

152 NOTATIONS

Li(m,n) Check node message from m to n, for sub-iteration i
Li
ext(m,n) Extrinsic check node message from m to n, for sub-iteration i

Li(n) a posteriori LLR for sub-iteration i
∆n Channel value for variable node n
min0k1T0(m) Overall minimum of the received |L(n,m)|

for ASIP k1 at time T0
min1k1T0(m) Second minimum of the received |L(n,m)|

for ASIP k1 at time T0
Px,y Permutation value of the sub-matrix at block row x and block column y
PV NGy
x (m) Permutation value which results in the variable node of VNGy connected

to the check node m of the xth check node group
P Number of check nodes processed in parallel
LOC(m) The index of the connected VNm providing min0
PDeg Parallelism degree in LDPC mode in LDecASIP
RV k

T (m) Running Vector group [min0,min1, ind, sgn](m),
for ASIP k at time T

sgn(m) Product of the signs of the received L(n,m)
UV k(m) Update Vector of variable node m containing

from ASIP k [min0,min1, ind, sgn]

Others:
Bitssym Bits per symbol
Crate Coding rate
fclk Operational frequency
NIter Number of iteration
NInstr Number of instructions
f technology Feature size
NA Normalized Area
NA Number of ASIPs
AE Architecture Efficiency

BIBLIOGRAPHY 153

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell system technical jour-
nal, vol. 27, 1948.

[2] C. Wang, D. Sklar, and D. Johnson, “Forward Error-Correction Coding,”
Crosslink, the Aerospace Corportaion magazine of advances in aerospace
technology, accessible online: http://aerospace.wpengine.netdna-cdn.com/wp-
content/uploads/crosslink/V3N1.pdf, vol. 3, no. 1, Winter 2001/2002, pp. 26–29.

[3] G. J. Forney, ”Performance of concatenated codes”, Key papers in the development of
coding theory, E. Berlekamp, Ed. IEEE Press, 1974.

[4] “3GPP TS 36.212: Multiplexing and channel coding, version 8.4.0, Sept. 2008 .”

[5] 802.16 IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface
for Fixed and Mobile Broadband Wireless Access Systems, Std., 2005.

[6] S.Lin and D. Costello, Error Control Coding. Englewood Cliffs, NJ:Prentice Hall, 1982.

[7] C. Douillard, M. Jezequel, C. Berrou, J. Tousch, N. Pham, and N. Brengarth, “The Turbo
Code Standard for DVB-RCS,” in Proc. of the 2nd International Symposium on Turbo
Codes & Related Topics, Brest, France, 2000, pp. 535 – 538.

[8] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decod-
ing algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 260 –269,
Apr. 1967.

[9] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random and non-
random permutations,” The Telecommunications and Data Acquisition Report, Tech. Rep.
pp. 56-65., 1995.

[10] O. Takeshita and J. Daniel, “New deterministic interleaver designs for Turbo codes,” IEEE
Transactions on Information Theory, vol. 46, no. 6, pp. 1988–2006, 2000.

[11] O. Takeshita, “On maximum contention-free interleavers and permutation polynomials
over integer rings,” IEEE Transactions on Information Theory, vol. 52, no. 3, pp. 1249
–1253, Mar. 2006.

[12] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting cod-
ing and decoding: Turbo-codes,” in Proc. of the IEEE International Conference on Com-
munications (ICC 93), vol. 2, May 1993, pp. 1064 –1070.

[13] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its ap-
plications ,” in Proc. of the IEEE Global Telecommunications Conf. and Exhibition Com-
munications Technology for the 1990s and Beyond. (GLOBECOM), Nov. 1989, pp. 1680
–1686.

[14] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for mini-
mizing symbol error rate (Corresp.),” IEEE Transactions on Information Theory, pp. 284
– 287, Mar. 1974.

[15] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal
MAP decoding algorithms operating in the log domain,” in Proc. of the IEEE Interna-
tional Conf. on Communications, vol. 2, jun 1995, pp. 1009 –1013.

154 BIBLIOGRAPHY

[16] O. Muller, “Architectures multiprocesseurs monopuces génériques pour turbo-
communications haut-débit,” Ph.D. dissertation, Institut Mines-Télécom-Télécom
Bretagne-UEB, 2007.

[17] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures for the MAP algorithm,”
IEEE Transactions on Communications, vol. 51, no. 2, pp. 175–185, 2003.

[18] Y. Zhang and K. Parhi, “Parallel Turbo decoding,” in Proc. of the International Sympo-
sium on Circuits and Systems (ISCAS), vol. 2, 2004.

[19] Z. Wang, “High-Speed Recursion Architectures for MAP-Based Turbo Decoders,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 4, pp. 470 –474,
Apr. 2007.

[20] H. Moussa, “Architectures de réseaux sur puce pour décodeurs canal multiprocesseurs,”
Ph.D. dissertation, Institut Mines-Télécom-Télécom Bretagne-UEB, 2009.

[21] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Transactions on Commu-
nications, vol. 53, no. 2, pp. 209 – 213, Feb. 2005.

[22] R. Gallager, Low-Density Parity-Check Codes. Cambridge, MIT Press, 1963.

[23] D. MacKay, “Good error-correcting codes based on very sparse matrices,” in Proc. of the
IEEE International Symposium on Information Theory, jun 1997, p. 113.

[24] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under
message-passing decoding,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 599 –618, feb 2001.

[25] S.-Y. Chung, J. Forney, G.D., T. Richardson, and R. Urbanke, “On the design of low-
density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Communica-
tions Letters, vol. 5, no. 2, pp. 58 –60, feb 2001.

[26] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on Infor-
mation Theory, vol. 27, no. 5, pp. 533 – 547, Sept. 1981.

[27] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 976 –996, Dec. 2003.

[28] 802.11n Local and metropolitan area networks,Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, Std., 2009.

[29] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced-Complexity
Decoding of LDPC Codes,” IEEE Transactions on Communications, vol. 53, no. 8, pp.
1288 – 1299, Aug. 2005.

[30] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolu-
tional codes,” IEEE Transactions on Information Theory, vol. 42, pp. 429–445, 1996.

[31] P. Ienne and R. Leupers, ”Customizable Embedded Processors–Design Technologies and
Applications”. Morgan Kaufmann, 2006.

[32] “CoWare Processor Designer Homepage,” http://www.synopsys.com/Systems/
BlockDesign/ProcessorDev.

http://www.synopsys.com/Systems/BlockDesign/ProcessorDev
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev

BIBLIOGRAPHY 155

[33] “ARC Configurable Cores Homepage,” http://www.synopsys.com/IP/ProcessorIP/
ARCProcessors.

[34] “Tensilica Xtensa 7 Homepage,” http://www.tensilica.com/products/x7 processor
generator.htm.

[35] “Stretch Software-Configurable Processors Homepage,” http://www.stretchinc.com/
technology/ .

[36] B. Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and R. Lauwereins, “Architecture
exploration for a reconfigurable architecture template,” IEEE Transactions on Design Test
of Computers, vol. 22, no. 2, pp. 90 – 101, Mar. 2005.

[37] “Target IP Designer Homepage,” http://www.retarget.com/resources.php.

[38] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. Panainte, “The
molen polymorphic processor,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1363 – 1375, nov. 2004.

[39] X. Chen, A. Minwegen, Y. Hassan, D. Kammler, S. Li, T. Kempf, A. Chattopadhyay,
and G. Ascheid, “FLEXDET: Flexible, Efficient Multi-Mode MIMO Detection Using
Reconfigurable ASIP,” in Proc. of the IEEE 20th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), may 2012, pp. 69 –76.

[40] K. Karuri, A. Chattopadhyay, X. Chen, D. Kammler, L. Hao, R. Leupers, H. Meyr, and
G. Ascheid, “A Design Flow for Architecture Exploration and Implementation of Partially
Reconfigurable Processors,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 10, pp. 1281 –1294, oct. 2008.

[41] A. La Rosa, L. Lavagno, and C. Passerone, “Software development for high-performance,
reconfigurable, embedded multimedia systems,” IEEE Design Test of Computers, vol. 22,
no. 1, pp. 28 – 38, jan.-feb. 2005.

[42] NEWCOM++ (NoE FP7), “Report on the state for the art on hardware architectures
for flexible radio and intensive signal processing,” http://www.newcom-project.eu:8080/
Plone/public-deliverables/research/DR.C.1 final.pdf .

[43] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr, “A method-
ology for the design of application specific instruction set processors (ASIP) using the
machine description language LISA,” in Proc. of the IEEE/ACM International Confer-
ence Computer Aided Design (ICCADICCAD), 2001, pp. 625–630.

[44] J.-M. Hsu and C.-L. Wang, “A parallel decoding scheme for turbo codes,” in Proc. of the
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 4, Jun. 1998, pp.
445 –448.

[45] Z. Wang, H. Suzuki, and K. Parhi, “VLSI implementation issues of TURBO decoder
design for wireless applications,” in Proc. of the IEEE Workshop on Signal Processing
Systems (SiPS), 1999, pp. 503 –512.

[46] T. W. Kwon, D. W. Kim, W. T. Kim, E. K. Joo, J. R. Choi, P. Choi, J. J. Kong, S. H. Choi,
W. H. Chung, and K. W. Lee, “A modified two-step SOVA-based turbo decoder for low
power and high performance,” in Proc. of the IEEE Region 10 Conference (TENCON),
vol. 1, 1999, pp. 297 –300.

http://www.synopsys.com/IP/ProcessorIP/ARCProcessors
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors
http://www.tensilica.com/products/x7_processor_generator.htm
http://www.tensilica.com/products/x7_processor_generator.htm
http://www.stretchinc.com/technology/
http://www.stretchinc.com/technology/
http://www.retarget.com/resources.php
http://www.newcom-project.eu:8080/Plone/public-deliverables/research/DR.C.1_final.pdf
http://www.newcom-project.eu:8080/Plone/public-deliverables/research/DR.C.1_final.pdf

156 BIBLIOGRAPHY

[47] C. Chaikalis and J. Noras, “Implementation of an improved reconfigurable sova/log-map
turbo decoder in 3gpp,” in Proc. of the Third International Conference on 3G Mobile
Communication Technologies, May 2002, pp. 146 – 150.

[48] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative Decoding of Concatenated Con-
volutional Codes: Implementation Issues,” Proceedings of the IEEE, vol. 95, no. 6, pp.
1201 –1227, Jun. 2007.

[49] D. Gnaedig, “Optimisation des architectures de décodage des turbo-codes,” Ph.D. dis-
sertation, Université de Bretagne-Sud, Institut Mines-Télécom-Télécom Bretagne-UEB,
2005.

[50] F. Viglione, G. Masera, G. Piccinini, R. Ruo Roch, and M. Zamboni, “A 50 Mbit/s iter-
ative turbo-decoder,” in Proc. of the ACM/IEEE Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2000, pp. 176 –180.

[51] Z. Wang, H. Suzuki, and K. Parhi, “Efficient approaches to improving performance of
VLSI SOVA-based turbo decoders,” in Proc. of the IEEE International Symposium on
Circuits and Systems (ISCAS), 2000, pp. 287 –290.

[52] “TMS320C64x DSP Turbo-Decoder Coprocessor,” http://www.ti.com/ lit/ug/spru534b/
spru534b.pdf .

[53] K. Loo, T. Alukaidey, and S. Jimaa, “High performance parallelised 3gpp turbo decoder,”
in Proc. of the 5th European Personal Mobile Communications Conference (2003), Apr.
2003, pp. 337 – 342.

[54] Z. Zhong, T. Peng, Z. Zhong, W. Wang, and Z. Liu, “Hardware implementation of turbo
coder in lte system based on picochip pc203,” in Proc. of the 12th IEEE International
Conference on Communication Technology (ICCT), Nov. 2010, pp. 995 –998.

[55] F. Gilbert, M. Thul, and N. Wehn, “Communication centric architectures for turbo-
decoding on embedded multiprocessors,” in Proc. of the ACM/IEEE Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2003, pp. 356 – 361.

[56] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2 reconfigurable turbo de-
coder chip with parallel architecture for 3GPP LTE system,” in Proc. of the Symposium
on VLSI Circuits, Jun. 2009, pp. 288 –289.

[57] D.-S. Cho, H.-J. Park, and H.-C. Park, “Implementation of an efficient UE decoder for
3G LTE system,” in Proc. of the International Conference on Telecommunications (ICT),
Jun. 2008, pp. 1 –5.

[58] D. Wu, R. Asghar, Y. Huang, and D. Liu, “Implementation of a high-speed parallel Turbo
decoder for 3GPP LTE terminals,” in Proc. of the IEEE 8th International Conference on
ASIC (ASICON), Oct. 2009, pp. 481 –484.

[59] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder for mobile WiMAX
and 3GPP-LTE,” in Proc. of the IEEE Custom Integrated Circuits Conference (CICC),
2009, pp. 487 –490.

[60] C.-H. Lin, C.-Y. Chen, E.-J. Chang, and A.-Y. Wu, “A 0.16nJ/bit/iteration 3.38mm2 turbo
decoder chip for WiMAX/LTE standards,” in Proc. of the International Symposium. on
Integrated Circuits (ISIC), Dec. 2011, pp. 168 –171.

http://www.ti.com/lit/ug/spru534b/spru534b.pdf
http://www.ti.com/lit/ug/spru534b/spru534b.pdf

BIBLIOGRAPHY 157

[61] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE Turbo code de-
coder,” in Proc. of the Design, Automation Test in Europe Conference Exhibition (DATE),
2010, pp. 1420 –1425.

[62] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15GBit/s turbo code decoder for LTE
advanced base station applications,” in Proc. of the International Symposium on Turbo
Codes and Iterative Information Processing (ISTC’12), Aug. 2012, pp. 21 –25.

[63] O. Muller, A. Baghdadi, and M. Jézéquel, “ASIP-Based Multiprocessor SoC Design for
Simple and Double Binary Turbo Decoding,” in Proc. Design, Automation and Test in
Europe (DATE), Munich, Germany, Mar. 2006, pp. 1330–1335.

[64] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly and Benes-Based on-
Chip Communication Networks for Multiprocessor Turbo Decoding,” in Proc. of the
ACM/IEEE Design, Automation & Test in Europe Conf. & Exhibition (DATE), Apr. 2007,
pp. 1–6.

[65] M. J. Thul, F. Gilbert, and N. Wehn, “Optimized concurrent interleaving architecture
for high-throughput Turbo decoding,” in Proc. of the IEEE International Conference on
Electronics, Circuits and Systems, 2002, pp. 1099–1102.

[66] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly and Benes based on chip
communication networks for multiprocessor Turbo decoding,” in Proc. of the ACM/IEEE
Design, Automation and Test in Europe Conference and Exhibition (DATE), 2007, pp.
654–659.

[67] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-
check code decoder,” IEEE Journal of Solid-State Circuits, pp. 404 –412, Mar. 2002.

[68] D. Hocevar, “A reduced complexity decoder architecture via layered decoding of LDPC
codes,” in Proc. of the IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2004,
pp. 107 – 112.

[69] B. Levine, R. Reed Taylor, and H. Schmit, “Implementation of near Shannon limit error-
correcting codes using reconfigurable hardware,” in Proc. of the IEEE Symposium on
Field-Programmable Custom Computing Machines, 2000, pp. 217 –226.

[70] F. Verdier and D. Declercq, “A low-cost parallel scalable FPGA architecture for regular
and irregular LDPC decoding,” IEEE Transactions on Communications, pp. 1215 –1223,
Jul. 2006.

[71] S. Kim, G. Sobelman, and J. Moon, “Parallel VLSI architectures for a class of LDPC
codes,” in Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS),
vol. 2, 2002, pp. 93 – 96.

[72] T. Zhang and K. Parhi, “A 54 Mbps (3,6)-regular FPGA LDPC decoder,” in Proc. of the
IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2002, pp. 127 – 132.

[73] M. Mansour and N. Shanbhag, “A 640-Mb/s 2048-bit programmable LDPC decoder
chip,” IEEE Journal of Solid-State Circuits, pp. 684 – 698, Mar. 2006.

[74] Z. Wang and Z. Cui, “Low-Complexity High-Speed Decoder Design for Quasi-Cyclic
LDPC Codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.
104 –114, Jan. 2007.

158 BIBLIOGRAPHY

[75] Y. Dai, Z. Yan, and N. Chen, “High-Throughput Turbo-Sum-Product Decoding of QC-
LDPC Codes,” in Proc. of the 40th Annual Conference on Information Sciences and Sys-
tems, Mar. 2006, pp. 839 –844.

[76] M. Karkooti, P. Radosavljevic, and J. Cavallaro, “Configurable, High Throughput, Irreg-
ular LDPC Decoder Architecture: Tradeoff Analysis and Implementation,” in Proc. of the
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), Sept. 2006, pp. 360 –367.

[77] S.-H. Kang and I.-C. Park, “Loosely coupled memory-based decoding architecture for
low density parity check codes,” IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 1045 – 1056, May 2006.

[78] “Encyclopedia of sparse graph codes, D. Mackay.” http://www.inference.phy.cam.ac.uk/
mackay/codes/data.html.

[79] “Software for low density parity check (LDPC) codes, R. M. Neal.” http://www.cs.
utoronto.ca/∼radford/ ldpc.software.html.

[80] T. Brack, M. Alles, F. Kienle, and N. Wehn, “A Synthesizable IP Core for WIMAX
802.16E LDPC Code Decoding,” in Proc. of the IEEE 17th International Symposium on
Personal, Indoor and Mobile Radio Communications, Sept. 2006, pp. 1 –5.

[81] K. Gunnam, G. Choi, M. Yeary, and M. Atiquzzaman, “VLSI Architectures for Layered
Decoding for Irregular LDPC Codes of WiMax,” in Proc. of the IEEE International Con-
ference on Communications (ICC’07), Jun. 2007, pp. 4542 –4547.

[82] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29 mm2 52 mW Multi-Mode
LDPC Decoder Design for Mobile WiMAX System in 0.13µm CMOS Process,” IEEE
Journal of Solid-State Circuits, pp. 672 –683, Mar. 2008.

[83] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder implementation
for quasi-cyclic LDPC codes,” IEEE Journal on Selected Areas in Communications, pp.
985 –994, Aug. 2009.

[84] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A Scalable Decoder Architecture for
IEEE 802.11n LDPC Codes,” in Proc. of the IEEE Global Telecommunications Confer-
ence (GLOBECOM ’07), Nov. 2007, pp. 3270 –3274.

[85] J. Jin and C.-Y. Tsui, “A low power layered decoding architecture for LDPC decoder
implementation for IEEE 802.11n LDPC codes,” in Proc. of the ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED), Aug. 2008, pp. 253 –258.

[86] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N. L’Insalata, F. Rossi,
M. Rovini, and L. Fanucci, “Low Complexity LDPC Code Decoders for Next Generation
Standards,” in Proc. of the ACM/IEEE Design, Automation Test in Europe Conference
Exhibition (DATE), Apr. 2007, pp. 1 –6.

[87] Y. Sun, M. Karkooti, and J. R. Cavallaro, “High Throughput, Parallel, Scalable LDPC
Encoder/Decoder Architecture for OFDM Systems,” in Proc. of the IEEE Dallas/CAS
Workshop on Design, Applications, Integration and Software, Oct. 2006, pp. 39 –42.

[88] C.-H. Liu, C.-C. Lin, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee, Y.-S. Hsu, and S.-
J. Jou, “Design of a Multimode QC-LDPC Decoder Based on Shift-Routing Network,”
IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 734 –738, Sept. 2009.

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://www.cs.utoronto.ca/~radford/ldpc.software.html
http://www.cs.utoronto.ca/~radford/ldpc.software.html

BIBLIOGRAPHY 159

[89] C.-H. Liu, C.-C. Lin, H.-C. Chang, C.-Y. Lee, and Y. Hsua, “Multi-mode message pass-
ing switch networks applied for QC-LDPC decoder,” in Proc. of the IEEE International
Symposium on Circuits and Systems (ISCAS), May 2008, pp. 752 –755.

[90] Y. Sun and J. Cavallaro, “A low-power 1-Gbps reconfigurable LDPC decoder design for
multiple 4G wireless standards,” in Proc. of the IEEE International SOC Conference,
Sept. 2008, pp. 367 –370.

[91] X. Zhang, Y. Tian, J. Cui, Y. Xu, and Z. Lai, “An multi-rate LDPC decoder based on ASIP
for DMB-TH,” in Proc. of the IEEE 8th International Conference on ASIC (ASICON),
Oct. 2009, pp. 995 –998.

[92] L. Dinoi, R. Martini, G. Masera, F. Quaglio, and F. Vacca, “ASIP design for partially
structured LDPC codes,” Electronics Letters, pp. 1048 –1049, 31 2006.

[93] T. Theocharides, G. Link, N. Vijaykrishnan, and M. Irwin, “Implementing LDPC decod-
ing on network-on-chip,” in Proc. of the 18th International Conference on VLSI Design,
Jan. 2005, pp. 134 – 137.

[94] F. Quaglio, F. Vacca, C. Castellano, A. Tarable, and G. Masera, “Interconnection frame-
work for high-throughput, flexible LDPC decoders,” in Proc. of the ACM/IEEE Design,
Automation and Test in Europe (DATE), Mar. 2006, p. 6.

[95] F. Vacca, H. Moussa, A. Baghdadi, and G. Masera, “Flexible architectures for LDPC
decoders based on network on chip paradigm,” in Proc. of the 12th Euromicro Conference
on Digital System Design (DSD), 2009.

[96] H. Moussa, A. Baghdadi, and M. Jézéquel, “Binary de Bruijn on-chip network for a flex-
ible multiprocessor LDPC decoder,” in Proc. of the 45th Design Automation Conference
(DAC), Jun. 2008, pp. 429–434.

[97] A. Segard, F. Verdier, D. Declercq, and P. Urard, “A DVB-S2 compliant LDPC decoder
integrating the Horizontal Shuffle Scheduling,” in Proc. of the International Symposium
on Intelligent Signal Processing and Communications (ISPACS’06), Dec. 2006, pp. 1013
–1016.

[98] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E. Lantreibecq, and
B. Gupta, “A 135Mb/s DVB-S2 compliant codec based on 64800b LDPC and BCH
codes,” in Proc. of the Digest of Technical Papers IEEE International Solid-State Cir-
cuits Conference, (ISSCC), vol. 1, Feb. 2005, pp. 446 –609.

[99] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. Wehn, “A novel LDPC
decoder for DVB-S2 IP,” in Proc. of the ACM/IEEE Design, Automation Test in Europe
Conference Exhibition (DATE), 2009, pp. 1308 –1313.

[100] J. Wang, M. Ghosh, and K. Challapali, “Emerging cognitive radio applications: A sur-
vey,” IEEE Communications Magazine, vol. 49, no. 3, pp. 74 –81, Mar. 2011.

[101] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 2, pp. 201 –220, feb. 2005.

[102] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G. Zhou, and L. M.
Davis, “A Unified Turbo/Viterbi Channel Decoder for 3GPP Mobile Wireless in 0.18-
mm CMOS,” IEEE Journal of Solid-State Circuits, pp. 1555–1564, Nov. 2002.

160 BIBLIOGRAPHY

[103] C. Thomas, M. Bickerstaff, L. Davis, T. Prokop, B. Widdup, G. Zhou, D. Garrett, and
C. Nicol, “Integrated Circuits for Channel Coding in 3G Cellular Mobile Wireless Sys-
tems,” IEEE Communications Magazine, pp. 150–159, Apr. 2003.

[104] G. Kreiselmaier, T. Vogt, and N. Wehn, “Combined Turbo and Convolutional Decoder
Architecture for UMTS Wireless Applications,” in Proc. of the ACM/IEEE Design, Au-
tomation and Test in Europe (DATE), Feb. 2004, pp. 192–197.

[105] J. R. Cavallaro and M. Vaya, “VITURBO: A Reconfigurable Architecture for Viterbi and
Turbo Decoding,” in Proc. of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP) , Apr. 2003, pp. 497–500.

[106] Y. Sun and J. R. Cavallaro, “Unified decoder architecture for LDPC/Turbo codes,” in
Proc. of the IEEE Workshop on Signal Processing Systems, (SiPS), Oct. 2008, pp. 13–18.

[107] Y. Sun and J. Cavallaro, “A Flexible LDPC/Turbo Decoder Architecture,” Journal of
Signal Processing Systems, pp. 1–16, 2010.

[108] F. Naessens, V. Derudder, H. Cappelle, L. Hollevoet, P. Raghavan, M. Desmet, A. Ab-
delHamid, I. Vos, L. Folens, S. O’Loughlin, S. Singirikonda, S. Dupont, J.-W. Weijers,
A. Dejonghe, and L. Van der Perre, “A 10.37 mm2 675 mW reconfigurable LDPC and
Turbo encoder and decoder for 802.11n, 802.16e and 3GPP-LTE,” in Proc. of the IEEE
Symposium on VLSI Circuits (VLSIC), Jun. 2010, pp. 213 –214.

[109] F. Naessens, B. Bougard, S. Bressinck, L. Hollevoet, P. Raghavan, L. Van der Perre,
and F. Catthoor, “A unified instruction set programmable architecture for multi-standard
advanced forward error correction,” in Proc. of the IEEE Workshop on Signal Processing
Systems (SiPS), Oct. 2008, pp. 31 –36.

[110] M. R. Giuseppe Gentile and L. Fanucci, “A Multi-Standard Flexible Turbo/LDPC De-
coder via ASIC Design,” in Proc. of the 6th International Symposium on Turbo Codes
and iterative information processing., Sept. 2010.

[111] J. Dielissen, N. Engin, S. Sawitzki, and K. van Berkel, “Multistandard FEC Decoders
for Wireless Devices,” IEEE Transactions on Circuits and Systems II: Express Breifs, pp.
284–288, Mar. 2008.

[112] T. Vogt and N. Wehn, “A Reconfigurable Application Specific Instruction Set Processor
for Convolutional and Turbo Decoding in a SDR Environment,” in Proc. of the ACM/IEEE
Design, Automation and Test in Europe (DATE), Mar. 2008.

[113] M. Alles, T. Vogt, and N. Wehn, “FlexiChaP: A reconfigurable ASIP for convolutional,
turbo, and LDPC code decoding,” in Proc. of the 5th International Symposium on Turbo
Codes and Related Topics, 2008, pp. 84 –89.

[114] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaver laws to parallel Turbo
and LDPC decoders architectures,” IEEE Transactions on Information Theory, pp. 2002–
2009, Sept. 2004.

[115] C. Condo, M. Martina, and G. Masera, “A Network-on-Chip-based turbo/LDPC decoder
architecture,” in Proc. of the Design, Automation Test in Europe Conference Exhibition
(DATE), Mar. 2012, pp. 1525 –1530.

[116] M. Imase and M. Itoh, “A Design for Directed Graphs with Minimum Diameter,” IEEE
Transactions on Computers, vol. C-32, no. 8, pp. 782 –784, Aug. 1983.

BIBLIOGRAPHY 161

[117] F. Kienle, N. Wehn, and H. Meyr, “On Complexity, Energy- and Implementation-
Efficiency of Channel Decoders,” IEEE Transactions on Communications, vol. 59, no. 12,
pp. 3301 –3310, Dec. 2011.

[118] A. Hekstra, “An alternative to metric rescaling in Viterbi decoders,” IEEE Transactions
on Communications, vol. 37, no. 11, pp. 1220 –1222, Nov. 1989.

[119] ITRS: International Technology Roadmap for Semiconductors, “System Drivers,” 2011
Edition, [online] Available: http://www.itrs.net/Links/2011ITRS/Home2011.htm.

[120] J. Perez and V. Fernandez, “Low-cost encoding of IEEE 802.11n,” Electronics Letters,
vol. 44, no. 4, pp. 307–308, 2008.

[121] E. Boutillon, Y. Tang, C. Marchand, and P. Bomel, “Hardware Discrete Channel Em-
ulator,” in Proc. of the International Conference on High Performance Computing and
Simulation, 2010, pp. 452 –458.

[122] The Dini Group, Inc., “ DN9000K10PCI: Xilinx Virtex-5 Based ASIC Prototyping En-
gine,” http://www.dinigroup.com/new/DN9000k10PCI.php.

[123] Y. Sun, Y. Zhu, M. Goel, and J. Cavallaro, “Configurable and scalable high throughput
turbo decoder architecture for multiple 4G wireless standards,” in Proc. of the Interna-
tional Conference on Application-Specific Systems, Architectures and Processors (ASAP),
2008, pp. 209 –214.

[124] A. Ahmed, M. Awais, A. Rehman, M. Maurizio, and G. Masera, “A High Throughput
Turbo Decoder VLSI Architecture for 3GPP LTE Standard,” in Proc. of the IEEE 14th
International Multitopic Conference (INMIC), 2011, pp. 340–346.

[125] T.-C. Kuo and A. Willson, “A flexible decoder IC for WiMAX QC-LDPC codes,” in Proc.
of the IEEE Custom Integrated Circuits Conference (CICC) , Sept. 2008, pp. 527 –530.

[126] X. Peng, Z. Chen, X. Zhao, D. Zhou, and S. Goto, “A 115mW 1Gbps QC-LDPC decoder
ASIC for WiMAX in 65nm CMOS,” in Proc. of the IEEE Asian Solid State Circuits
Conference (A-SSCC), Nov. 2011, pp. 317 –320.

[127] M. Awais, A. Singh, E. Boutillon, and G. Masera, “A Novel Architecture for Scalable,
High Throughput, Multi-standard LDPC Decoder,” in Proc. of the 14th Euromicro Con-
ference on Digital System Design (DSD), Sept. 2011, pp. 340 –347.

List of publications

International Conferences

[1] P. Murugappa, R. Al-Khayat, A. Baghdadi, and M. Jézéquel. A Flexible High Throughput
Multi-ASIP Architecture for LDPC and Turbo Decoding. In Proc. of the ACM/IEEE Design,
Automation and Test in Europe Conference & Exhibition (DATE), Grenoble, France, 13-17 March,
2011.

[2] R. Al-Khayat, P. Murugappa, A. Baghdadi, and M. Jézéquel. Area and Throughput Optimized
ASIP for Multi-Standard Turbo Decoding. In Proc. of the 22nd IEEE International Symposium on
Rapid System Prototyping (RSP), Karlsruhe, Germany, 24-27 May, 2011.

[3] P. Murugappa, J-N. Bazin, A. Baghdadi, and M. Jézéquel. FPGA Prototyping and Performance
Evaluation of Multi-standard Turbo/LDPC Encoding and Decoding”. In Proc. of the 23nd IEEE
International Symposium on Rapid System Prototyping (RSP), Tampere, Finland, 11-12 Oct, 2012.

[4] P. Murugappa, A. Baghdadi, and M. Jézéquel. Parameterized Area-Efficient Multi-standard Turbo
Decoder. Accepted in the ACM/IEEE Design, Automation and Test in Europe Conference &
Exhibition (DATE), Grenoble, France, 18-22 March, 2013.

National Conferences

[5] P. Murugappa, P. Reddy, R. Al-Khayat, J-N. Bazin, A. Baghdadi, F. Clermidy, and M. Jézéquel.
Flexible Multi-ASIP SoC for Turbo/LDPC Decoder. Colloque National du GDR SoC-SiP : Groupe
de Recherche System on Chip - System in Package Paris, France, 13-15 June, 2012.

Ready for Submission

[6] P. Murugappa, A. Baghdadi, and M. Jézéquel. Reconfigurable Decoder Architecture for
QC-LDPC Codes. Ready for submission to the ACM/IEEE Design Automation Conference (DAC),
2013.

[7] P. Murugappa, A. Baghdadi, and M. Jézéquel. Multi-ASIP Platform for Multi-standard
Turbo/LDPC Decoding. Ready for submission to the University Booth of the Design, Automation
and Test in Europe Conference & Exhibition (DATE), 2013.

[8] P. Murugappa, A. Baghdadi, and M. Jézéquel. ASIP-based Flexible and Optimized Channel
Decoders for Turbo and LDPC Codes. In preparation for submission to IEEE Transactions on
Circuits and Systems Part I.

[9] P. Murugappa, A. Baghdadi, and M. Jézéquel. Unifying Flexibility and Optimization Techniques
in the Design of Multi-ASIP LDPC/Turbo Decoders. In preparation for submission to IEEE
Transactions on Communications.

163

	Acknowledgements
	Introduction
	Background: Channel Codes and Decoding Algorithms
	Communication system overview
	Turbo codes
	Recursive Systematic Convolutional codes
	Turbo Code Interleaver
	Almost regular permutation (ARP)
	Quadratic polynomial permutation (QPP)

	Turbo decoding
	Maximum Aposteriori Probability (MAP) algorithm
	Max-Log-MAP approximation
	Max-Log-MAP for Turbo decoding
	Parallelism in Turbo decoding
	Metric level parallelism
	SISO decoder level parallelism
	Turbo decoder level parallelism

	Low Density Parity Check codes
	Linear block codes
	QC-LDPC codes
	LDPC in WiFi and WiMAX standard

	Low Density Parity Check decoding
	LDPC decoding algorithm: Normalized Min-Sum (NMS)
	Scheduling
	Modified NMS formulation for implementation

	Summary

	ASIP Design Methodology and State of the Art in Channel Decoder Design
	Customizable embedded processors
	Application-Specific Instruction-set Processors
	 ADL-based design tool: Processor designer
	Classical ASIP design flow

	State of the art in channel decoder design
	Turbo decoding architectures
	LDPC decoding architectures
	Multi-code channel decoding architectures

	Initial ASIP architecture for flexible Turbo decoding
	Overview of the TurbASIP architecture
	TurbASIP pipeline
	Max and modulo operators
	 TurbASIP: sample assembly code
	Memory partitions
	ASIC synthesis results

	Summary

	DecASIP: Flexible Turbo/LDPC Decoder
	Design motivations
	Architecture Efficiency
	Quantization analysis

	DecASIPv1
	System architecture
	Turbo mode
	Memory architecture
	Processing schedule
	 Pipeline architecture
	Interleave/deinterleave address generation
	NoC messages
	Assembly code

	LDPC mode
	Proposed scheduling illustrated with simple example using 2-DecASIPv1 architecture
	Proposed scheduling with 8-DecASIPv1 architecture
	Memory architecture
	NoC messages
	Pipeline architecture and assembly Code

	ASIC synthesis results

	DecASIPv2
	System architecture
	Turbo mode
	LDPC mode
	NoC messages and NoC schedule
	LDPC assembly code

	Configuration memory
	ASIC synthesis results
	Discussions and analysis of recent related implementations

	Summary

	FPGA and ASIC Prototyping of DecASIP
	Overview of the proposed FPGA 4-DecASIP system prototype
	Flexible channel encoder
	Flexible Turbo encoder
	Flexible LDPC encoder

	Flexible Turbo/LDPC decoder
	Other blocks of the system prototype
	Pseudo random generator
	Flexible channel model
	Global input interface
	Error counter
	Configuration module
	Global system controller
	Graphical User Interface (GUI)
	USB interface

	Results of the FPGA prototype
	FPGA synthesis results
	Speed of reconfiguration between different decoding modes
	Scalability and throughput
	Performance results

	ASIC integration of DecASIP
	MAG3D chip from CEA-LETI
	Integration constraints
	ASIC integration results

	Summary

	TDecASIP: Parameterized Turbo Decoder
	Proposed design flow for parameterized cores
	Design choices and TDecASIP decoder architecture
	Design choices
	TDecASIP decoder architecture
	Pipeline control finite state machine
	Pipeline architecture

	Memory organization

	FPGA prototype and synthesis results
	ASIC synthesis results
	Summary

	LDecASIP: LDPC Decoder
	Design motivations and LDecASIP decoder architecture
	Prototype and incremental feature addition
	FPGA and ASIC synthesis results
	Summary

	Conclusions and Perspectives
	Résumé en Français
	Glossary
	Notations
	Bibliography
	List of publications

