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Abstract

Despite the existence of an overwhelming amount of research on the quality of system software,
Operating Systems are still plagued with reliability issues mainly caused by defects in kernel-level
services such as device drivers and file systems. Studies have indeed shown that each release of the
Linux kernel contains between 600 and 700 faults, and that the propensity of device drivers to contain
errors is up to seven times higher than any other part of the kernel. These numbers suggest that kernel-
level service code is not sufficiently tested and that many faults remain unnoticed or are hard to fix by
non-expert programmers who account for the majority of service developers.

This thesis proposes a new approach to the debugging and testing of kernel-level services focused
on the interaction between the services and the core kernel. The approach tackles the issue of safety
holes in the implementation of kernel API functions. For Linux, we have instantiated the Diagnosys
automated approach which relies on static analysis of kernel code to identify, categorize and expose
the different safety holes of API functions which can turn into runtime faults when the functions are
used in service code by developers with limited knowledge on the intricacies of kernel code.

To illustrate our approach, we have implemented Diagnosys for Linux 2.6.32 and shown its bene-
fits in supporting developers in their testing and debugging tasks. The contributions of this thesis
are:

• We identify the interface of kernel exported functions as a sweet spot at which it is possible to
interpose the generation of debugging information, in a way that improves debuggability but
does not introduce an excessive runtime overhead.

• We identify safety holes as a significant problem in the interface between a service and the
kernel. Indeed, of the 703 Linux 2.6 commits for which the changelog refers explicitly to a
function exported in Linux 2.6.32, 38% corrected faults that are related to one of our identified
safety holes. Thus, although we may assume that in-tree kernel code is much more thoroughly
tested than new service code under development, violations of these safety holes have still
caused numerous crashes and hangs. In this thesis, we propose an extended characterization of
these safety holes for the Linux kernel.

• We propose an approach to allow a service developer to seamlessly generate, integrate, and
exploit a kernel debugging interface specialized to the service code. This approach has a low
learning curve, and in particular does not require any particular Linux kernel expertise.

• Using fault-injection experiments on 10 Linux kernel services, we demonstrate the improve-
ment in debuggability provided by our approach. We find that in 90% of the cases in which a
crash occurs, the log contains information relevant to the origin of the defect, and in 95% of
these cases, a message relevant to the crash is the last piece of logged information. We also
find that in 93% of the cases in which a crash or hang occurs, the log information reduces the
number of files that have to be consulted to find the cause of the bug.

• We show that the generated debugging interface incurs only a minimal runtime overhead on
service execution, allowing it to be used up through early deployment.

Beyond operating systems software, the Diagnosys approach described in this thesis can be applied
to any software based on the plug-in model, where extension code is written to interact and comple-
ment a core software through an ever-expanding interface. The proposed solution thus opens up new
possibilities for improving the debugging of such software.

Key words
Diagnosys, Debugging, Wrappers, Linux, Device Drivers, Software Engineering, Reliability, Testing.
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Résumé
Alors que la recherche sur la qualité du code des systèmes a connu un formidable engouement, les
systèmes d’exploitation sont encore aux prises avec des problèmes de fiabilité notamment dûs aux
bogues de programmation au niveau des services noyaux tels que les pilotes de périphériques et
l’implémentation des systèmes de fichiers. Des études ont en effet montré que que chaque version
du noyau Linux contient entre 600 et 700 fautes, et que la propension des pilotes de périphériques
à contenir des erreurs est jusqu’à sept fois plus élevée que toute autre partie du noyau. Ces chiffres
suggèrent que le code des services noyau n’est pas suffisamment testé et que de nombreux défauts
passent inaperçus ou sont difficiles à réparer par des programmeurs non-experts, ces derniers formant
pourtant la majorité des développeurs de services.

Cette thèse propose une nouvelle approche pour le débogage et le test des services noyau. Notre
approche est focalisée sur l’interaction entre les services noyau et le noyau central en abordant la
question des “trous de sûreté” dans le code de définition des fonctions de l’API du noyau. Dans le
contexte du noyau Linux, nous avons mis en place une approche automatique, dénommée Diagnosys,
qui repose sur l’analyse statique du code du noyau afin d’identifier, classer et exposer les différents
trous de sûreté de l’API qui pourraient donner lieu à des fautes d’exécution lorsque les fonctions
sont utilisées dans du code de service écrit par des développeurs ayant une connaissance limitée des
subtilités du noyau.

Pour illustrer notre approche, nous avons implémenté Diagnosys pour la version 2.6.32 du noyau
Linux. Nous avons montré ses avantages à soutenir les développeurs dans leurs activités de tests et de
débogage. Les contributions de cette thèse sont les suivantes:

• Nous identifions l’interface des fonctions exportées du noyau comme un endroit opportun où
il est possible d’interposer la génération des informations de débogage. Cette interposition est
réalisée de façon à améliorer le débogage sans introduire un surcoût d’exécution excessif.

• Nous identifions les trous de sécurité comme un problème important dans l’interface entre les
service noyau et le noyau central. En effet, parmi les 703 commits de Linux 2.6 résolvant un
bogue lié explicitement à l’usage d’une fonction d’API, 38% ont corrigé des fautes liées à un
des trous de sûreté que nous avons identifiés. Ainsi, bien que nous puissions supposer que le
code dans le noyau maintenu par les développeurs de Linux est bien mieux testé qu’un nouveau
service en développement, les violations des trous de sécurité y ont causé de nombreux crash
et gels (hangs). Dans cette thèse, nous proposons une charactérisation étendue de ces trous de
sûreté pour le noyau Linux.

• Nous proposons une approche permettant, de façon transparente, à un développeur de services
de générer, d’intégrer et d’exploiter une interface de débogage spécialisée au code d’un service.
Cette approche a une faible courbe d’apprentissage et, surtout, ne nécessite aucune expertise
particulière du noyau Linux.

• En se basant sur des expériences d’injections de fautes sur 10 services noyaux, nous avons
démontré l’amélioration que notre approche apporte en terme de débogage. Nous constatons
que dans 90% des cas dans lesquels un crash se produit, le journal de debogage contient des
informations relatives à l’origine de la faute, et que dans 95% de ces cas, un message pertinent
au crash est la dernière information consignée. Nous avons également constaté que dans 93%
des cas où un crash se produit, ou où le système est gelé, les informations présentes dans le
journal permettent de réduire le nombre de fichiers à visiter en phase de debogage afin de
trouver la cause du bogue.
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• Nous montrons que l’interface de débogage générée rajoute une surcharge d’exécution mini-
male sur l’exécution normale de service, lui permettant d’être utilisée jusqu’en phase de pré-
déploiement.

Au-delà du code de systèmes d’exploitation, l’approche Diagnosys décrite dans cette thèse peut être
appliquée à toute application basée sur le modèle de plug-in, où du code d’extension est produit pour
interagir et compléter le code de base d’une application grâce à une interface en constante expansion.
La solution proposée ouvre ainsi de nouvelles possibilités pour l’amélioration de la mise au point de
tels applications.

Mots clés
Diagnosys, Débogage, Linux, Pilotes de périphériques, Génie Logiciel, Fiabilité, Test
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Aperçu du document

Nous proposons un résumé en français de chacune des 3 parties et des chapitres qui composent ce
document de thèse.

Chapitre 1. En Introduction, nous motivons la thèse dans le contexte des systèmes d’exploitation
(SE) monolithiques, les plus utilisés dans nos environnements quotidiens. Ces types de SE ne séparent
pas le coeur du noyau des extensions, comme les pilotes de périphériques, qui sont souvent réalisées
par des tiers. Conséquemment, une faute introduite dans une de ces extensions peut entrainer la
défaillance de tout le système. Malheureusement, l’utilisation d’outils de détection de bugs ou la mise
en place d’un processus systématique de tests sont difficiles. Nous proposons donc une approche
basée sur l’identification de “trous de sûreté” (safety holes) dans les interfaces de programmation
(APIs) du noyau, et l’utilisation de techniques d’analyse statique pour les localiser. La réalisation de
l’outil Diagnosys a servi pour automatiser la détection des trous et la construction des interfaces de
débogage tout en facilitant les tests. Nous avons validé ces contributions de façon expérimentale.

Partie I: Contexte et Etat de l’Art

Cette partie revient sur le contexte de la thèse avec un chapitre aprofondissant les motivations.

Chapitre 2. Nous nous concentrons sur Linux, un SE monolithique. Nous décrivons les observa-
tions de notre étude des APIs de noyau de Linux. Ces APIs reposent sur des préconditions qui sont
rarement controlées lors des appels. Malheureusement, elles sont peu documentées et évoluent con-
stamment. De telles propriétés favorisent (1) la mauvaise utilisation des APIs par des développeurs
ne pouvant les maîtriser suffisamment, et (2) l’apparition de défauts dans les services noyau utilisant
ces APIs.

Chapitre 3. Dans ce chapitre, nous nous intéressons aux types des fautes les plus fréquentes dans le
noyau de Linux. La catégorisation des fautes est empruntée à une étude de Chou et. [CYC+01]. Nous
discutons également les types de défaillances que ces fautes entraînent (crashes et gels). Enfin, nous
passons en revue diverses techniques qui permettent soit de détecter les fautes, soit d’en atténuer les
conséquences. Toutefois, nous constatons que la portée de ces techniques est souvent trop limitée.

Chapitre 4. De nombreux facteurs fragilisent l’API de Linux. Entre autres, il y’a :

• le manque de robustesse, voulu pour ne pas pénaliser les performances

• la constante évolution des fonctions proposées et leurs signatures

• le trop grand nombre de fonctions et l’absence de documentation pertinente

De plus, le débogage est difficile car les messages d’information fournies dans le journal de crash sont
souvent incomplets. L’analyse statique pour détecter en amont des bogues renvoie trop de faux posi-
tifs, et l’analyse dynamique pénalise les performances. Finalement, l’analyse statique post-mortem
des messages d’erreur en cas de crash n’est pas satisfaisante car ces messages ne contiennent pas tou-
jours les informations pertinentes. Tous ces éléments plaident en faveur de nouveaux outils automa-
tisés d’aide à l’analyse et à la mise au point des services noyau tels que les pilotes de périphériques.
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Chapitre 5. Dans nos travaux, nous avons priviligié l’analyse parmi les diverses techniques de
recherche de bogues. Dans ce chapitre, nous rappelons des notions importantes en analyse statique :
complétude, correction, faux positifs, faux négatifs. Nous présentons ensuite Coccinelle [PLHM08],
l’outil que nous utilisons pour programmer nos analyses, ansi que ses “semantic matches” qui permet-
tent d’identifier un morceau de code dont l’un ou tous les flux de contrôle vérifie certaines conditions.
Nous montrons ensuite comment nous Coccinelle, bien qu’étant initialement conçu pour uniquement
des analyses intraprocédurales, peut être utilisé pour des analyses interprocédurales.

Chapitre 6. Ce chapitre rappelle les points importants de la partie I et annonce les contributions
décrites dans la deuxième partie.

Partie II: Identification des Trous de Sûreté

Chapitre 7. Ce chapitre revient en détail sur la définition de la notion de trou de sûreté (safety hole).
Il s’agit d’un fragment de code du noyau qui peut mener à une défaillance si sa précondition implicite
n’est pas respectée. Des exemples réels de trous de sûretés tirés du noyau de Linux sont discutés
dans ce chapitre. Nous faisons ensuite la distinction entre un entry safety hole, où le noyau est appelé
erronément par le code du pilote, et un exit safety hole où le résultat d’un appel au noyau est mal
utilisé par le pilote. Une taxonomie des trous de sûreté est ensuite proposée: pour chaque type de
bogue défini dans l’étude empirique de Palix et al. [PST+11], nous définissons une paire d’entry et
exit safety holes.

Chapitre 8. Dans ce chapitre nous présentons les différents outils réalisés pour mettre au point
l’approche Diagnosys. Il s’agit de:

• SHAna, l’analyseur statique qui parcours le noyau à la recherche des trous de sûreté et qui
propose des préconditions d’utilisation en rapport avec les défauts potentiels.

• DIGen, le générateur de l’interface de débogage qui produit une enveloppe pour chacune des
fonctions de l’API ayant au moins un trou de sûreté découvert par SHAna.

• CRELSys, le mécanisme de sauvegarde persistant des logs et de redémarrage chaud.

Chapitre 9. Ce chapitre illustre l’utilisation de Diagnosys sur deux défauts connus, menant dans le
premier cas à un crash du système et dans le second à son gel. Nous montrons que le dernier message
enregistré par Diagnosys dans le buffer circulaire de CRELSys est le très fréquemment pertinent pour
identifier le défaut ayant mené à la défaillance du système.

Partie III: Evaluation de l’Impact de l’Approche

Chapitre 10. Dans ce chapitre nous évaluons le besoin et les bénéfices de l’approche Diagnosys.
Ainsi, nous montrons d’abord que SHAna permet de découvrir des milliers de trous des sûreté. En-
suite, nous montrons, grâce à une étude des mises à jour (commits) du noyau que 38% des corrections
sur l’utilisation des fonctions d’API étaient liées à des trous de sûretés. Enfin grâce à une expérimen-
tation ciblée durant laquelle nous avons injecté des fautes dans 10 services noyau pour produire des
crashes et des gels, nous montrons que Diagnosys est efficace pour fournir des informations perti-
nentes sur la cause et l’origine d’un défaut.
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Chapitre 11. Ce chapitres est consacré à l’évaluation du coût supplément de notre approche Diag-
nosys. D’une part, nous évaluons le coût de certification des résultats de SHAna pour détecter les faux
positifs. D’autre part nous évaluons le la perte de performance à l’exécution liée à la vérification des
préconditions. Ces évaluations conduisent à admettre que le coût de Diagnosys est supportable.

Chapitre 12. Le douxième chapitre conclue cette thèse. Nous y rappelons les contributions de
nos travaux avant d’esquisser les perspectives. D’une part, nous discutions comment notre démarche
adoptée peut être appliquée à d’autres applications à base de plugins. D’autre part, nous émettons
l’idée de la correction automatique des bogues découverts avec Diagnosys.
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Chapter 1

Introduction

“UNIX is basically a simple operating system,

but you have to be a genius to understand the simplicity.”

Dennis Ritchie
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Diagnosys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Debugging benefits. . . . . . . . . . . . . . . . . . . . . . . . . . 3
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Proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Modern computers have changed many aspects of today’s world. They have now improved almost
every facet of our lives, by supporting medical procedures, enhancing bank transactions, delivering
more reliable and faster communication, increasing the efficiency of automobiles, and even basic
home appliances such as refrigerators. Though the hardware of such computers come in different
sizes, a unique software is often dedicated to control all operations, direct the input and output of
data, keep track of files and control the processing of other computer programs: it is the Operating
System (OS), which serves as an interface between the computer and the user. Its role is to manage the
functioning of computer hardware, run application programs and share resources among computing
tasks by allocating CPU time and memory.

Unfortunately, computers crash. In the early 90s, Gray has performed a survey which established
that the main cause of outage had shifted from hardware and maintenance failures to failures in soft-
ware [Gra90]. Software failures have now become the dominant cause of system unavailability. OS
failures are particularly serious as they suppose a failure of the kernel to continue its services and thus,
inevitably, lead to down time.

In common monolithic OS architectures, this reliability issue is exacerbated all kernel-level code,
running in privileged mode, i.e., kernel mode, have direct access to all hardware and memory in the
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system. To cope with this issue, alternate micro-kernel-based architectures have been proposed, where
only the near minimum of software required to implement an OS is kept to be run in kernel mode. The
remainder in the collection of software constituting an OS is run in user mode where failures would
have a lesser impact on the entire system. Nonetheless, despite the long time-established performance
of micro-kernels [HHL+97], monolithic architectures are still widespread in commodity OSes where
users increasingly require more reliability and safety.

A monolithic OS is continually enriched with new kernel-level services, such as device drivers or
file systems, for implementing new functionalities or supporting new devices. When the implementa-
tion of such software is faulty, it compromises the reliability of the entire OS. A variety of approaches
have been developed to improve the process of developing driver code, including Devil [MRC+00],
Dingo [RCKH09], and Termite [RCK+09], which propose to derive driver implementations from
specifications, and RevNic [CC10], which proposes to derive new drivers from existing drivers for
other OSes. Other approaches such as Nooks [SBL03], SafeDrive [ZCA+06], TwinDrivers [MSZ09]
and DD/OS [LUSG04] try to protect the kernel from driver defects.

Nevertheless, because of the heavyweight nature of these solutions and their often narrow scope,
industry practice is still to write drivers by hand, and to run them at the kernel level, with full privi-
leges. In this context, developers of kernel-level services rely on classic software analysis tools and de-
bugging techniques. Advances in bug-finding tools [ECCH00, LBP+09, LZ05, BBC+06] and special-
ized testing techniques [MC11, KCC10] have eased but not yet fully solved the challenges in produc-
ing more reliable kernel-level services. In Linux, studies have shown that such services, particularly
device drivers, contain up to 7 times more bugs than other parts of the kernel [CYC+01, PST+11].
Palix et al. have furthermore established that each release of the Linux kernel contains between 600
and 700 bugs [PST+11], suggesting that :

• Extensive usage of existing bug-finding tools is tedious. Indeed, existing tools are known to
produce significant numbers of false positives which can deter developers [LBP+09].

• Testing is not fully thorough in early-stages of driver development. Testing tasks can be cumber-
some in the case of OS services as they often require frequent reboots and special environments
to recover and analyses the outputs of test scenarios.

1.1 This thesis

The thesis presented in this document proposes an alternate approach to support developers in the
testing and debugging of kernel-level services in a monolithic OS. The thesis tackles the development
difficulties of kernel-level services by focusing on the issues that appear in the interaction between a
service and the rest of the kernel. We propose an approach for monitoring this interaction to accurately
inform the developer of any relevant problem that arises during testing.

Experimental work in the course of producing the thesis was done with the Linux kernel, a mono-
lithic OS architecture that has progressively gained popularity. Linux has indeed expanded to an
increasing number and range of platforms, from embedded systems to supercomputers. The proposed
approach, however, is relevant to any monolithic OS architecture.

We propose the Diagnosys [BRLM12] approach which starts with an analysis of the kernel pro-
gramming interface to identify and expose safety holes that may lead to faults when a kernel-level
service misbehaves in its interaction with other kernel code. The tool that we have developed for the
Linux kernel creates debugging interfaces that are specifically tailored to each kernel-level service
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under development, and that allow to record in a crash-resilient log all the flagged misuses of kernel
functions.

1.2 Contributions

The contributions of this thesis are multiple. We first study kernel code and identify safety holes
in kernel APIs as a probable source of difficulties. We then present the steps that we have taken to
systematically categorize safety holes in the kernel and how to detect them using static analysis. We
also discuss the implementation of Diagnosys, in which, information on safety holes is leveraged to
construct debugging interfaces. This implementation also offers a lightweight reboot system, built
on top of existing kernel dumping solutions, to substantially ease testing. Finally, we evaluate our
approach by discussing its benefits and validating its practical usefulness and usability.

Characterization of safety holes. We succinctly discuss the notion of safety hole and its character-
ization in the kernel programming interface. We highlight how safety holes pose a serious problem to
kernel developers. We also provide an extensive exploration of the static analysis rules that we have
written to identify instances of safety holes in the Linux kernel.

Diagnosys. We present Diagnosys, an automated tool for identifying safety holes and monitoring
the execution of relevant code to improve testing tasks in the early stages of kernel-level service
development. We describe in details the implementation of Diagnosys, including the static analysis,
the runtime checks and logging. We describe the usage steps of Diagnosys for testing and debugging
a given kernel-level service.

Debugging benefits. We present an assessment of our approach using both qualitative and quanti-
tative measurements. Qualitatively, we show that the log of dangerous operations recorded by Diag-
nosys contains reliable information about the crash of the kernel. The experiments for this evaluation
has consisted on replay real faults that were reported to kernel developers. We quantitatively evaluate
the improvement of Diagnosys on the debugging of kernel-level services. We have used in this case
mutation testing on 10 kernel-level services from various categories, including both device drivers and
file systems.

Limited overheads. We measure the overhead introduced by Diagnosys runtime checks and logging
operations. We also evaluate the impact of Diagnosys on service performance based on the stressed
execution of two services. The experiences on a Gigabit Ethernet device driver as well as on a network
file system reveals that the performance degradation is minimal.

1.3 Overview of the document

This thesis is organized in three parts: (I) the presentation of the background including the definition
of the kernel-level service development problem and the state-of-the-art of relevant research work, (II)
the description of the approach that we propose to support kernel developers, and (III) a discussion on
the evaluation of the Diagnosys tool.
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Background. The scientific background of our work is highlighted in Chapters 2 through 5. In
Chapter 2 we provide an overview of monolithic OSes to highlight their issues with fault tolerance,
with a case study on Linux. We also briefly discuss in this chapter the increasingly widespread
core/plug-in architectures and further expose the difficulties in avoiding API usage bugs. Chapter 3
presents related work and discusses current techniques for addressing OS faults. In Chapter 4 we intro-
duce the approach that we advocate for more readily supporting kernel developers. Finally, Chapter 5
details how the static analysis required by our approach is performed.

Proposed approach. The second part of this work details the proposed approach. We detail in
Chapter 7 the characterization of safety holes and the static analysis performed to detect them in
kernel code. Chapter 8 describes the design and implementation of Diagnosys for the Linux kernel.
Finally in Chapter 9 we present the steps in using Diagnosys for testing and debugging a kernel-level
service.

Assessment In the last part of this thesis, we assess the implementation of the Diagnosys approach.
In Chapter 10, we perform experiments, which involve mutation testing, to quantify the debugging
benefits provided by Diagnosys. We assess in Chapter 11 the performance overheads incurred by
debugging interfaces on service execution.

Eventually, we conclude this thesis in Chapter 12. We summarize the contributions and offer a
perspective for this thesis.
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Chapter 2

Monolithic Operating Systems

“If anyone had realized that within 10 years this tiny system that was picked up

almost by accident was going to be controlling 50 million computers,

considerably more thought might have gone into it.”

Andrew S. Tanenbaum (talking about MS-DOS)

Contents
2.1 Families of operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 General principles of monolithic OSes . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Plug-in software architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Loadable Kernel Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 API usage challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Linux case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Development model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Kernel exported functions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2.1 API evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2.2 API documentation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2.3 API usage examples . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The term operating system is often used with two different meanings [Ker10]. Broadly, it is used
to denote the entire package consisting of the core software managing a computer’s resources and
all of the accompanying standard software tools (e.g., file utilities, editors, graphical user interfaces,
command-lines interpretors, etc.). More narrowly, the term refers to the kernel, i.e., the central soft-
ware that manages and allocates the computer resources, including the CPU, the RAM memory, and
devices. In this thesis we are concerned with this second meaning where operating system refers to
the kernel. We explore in this chapter the principles of commodity operating systems and raise some
challenges that OS service developers face.
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2.1 Families of operating systems

Computers can run without an operating system. Appliances such as micro-ovens and washing ma-
chines contain computer chips where a single repetitive task is programmed to be executed once a
button is punched. An OS however is meant to greatly simplify the writing and use of other programs,
and to bring power and flexibility by providing a software layer to efficiently manage a computer’s
resources. There are grossly two architectures of operating systems, as depicted in Figure 2.1, that are
essentially differentiated by how much of the OS services run in kernel mode (with the privileges of
directly accessing all hardware and memory in the system).

Device drivers, Dispatcher, ...

Hardware Hardware

Scheduler, Virtual Memory

IPC, file system

VFS

Application

Basic IPC, Virtual Memory, Scheduling, ...

File 

Server

Device 

Driver

UNIX 

Server

Application 

IPC

Kernel Mode

User Mode

Monolithic Kernel

based Operating System

Microkernel

based Operating System

System call

Figure 2.1: Main OS architecture models

Monolithic OSes. In Monolithic OSes, the entire kernel is reduced to a single binary containing the
process management, memory management, file system, device drivers and the rest of services. Most
older OSes are monolithic, including UNIX, MS-DOS, VMS, MVS, OS/360, MULTICS, and many
more.

Microkernel-based OSes. Microkernels are an alternative to monolithic kernels. In a microkernel,
most of the OS services run as separate processes. Most of these processes also run outside the
kernel, the actual kernel being only constituted with the near-minimum software for handling message
handling among kernel-level services, interrupt handling, low-level process management, and I/O.
Examples of microkernel-based OSes include ChorusOS, Mach, Minix and Singularity.

The microkernel architecture was designed to address the fast-paced growth of kernels and the
challenges that they brought along. Microkernels are supposed to ease the management of OS code,
bring more security and stability by reducing the amount of code running with full privileges, i.e.
in kernel mode. Monolithic architectures have long been preferred to first generation microkernels
because of performance reasons. However, second generation of micro-kernels have resolved this
issue and several research work have provided evidence showing that microkernel systems can be just
as fast as monolithic systems [CB93, HHL+97, Ber92].

Nonetheless, today’s commodity OSes embark a monolithic kernel architecture, except Win-
dows NT which was influenced by the Mach microkernel. In the context of this thesis we focus
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our contributions to helping developers of services for such OSes in their testing and debugging tasks.
We first revisit the principles of monolithic OSes to highlight the difficulties facing both users and
developers of kernel-level services. In the second part of this chapter, we briefly introduce our case
study, the Linux kernel.

2.2 General principles of monolithic OSes

An OS is constituted of many independent parts, each providing simple individual features. A mono-
lithic kernel as represented in Figure 2.2 concentrates all these parts in one (possibly large) system
running with full privileges. Aside from low-level functionalities such as InterProcess Communi-
cation (IPC) and CPU scheduling, these parts also include the variety of device drivers, file system
implementations, most instances of network protocols, etc.

CPU Network Memory Disk

Apache

libc     libpthread

Mozilla

libc    libpthread

Emacs

libc 

CPU Scheduling

Security

Networking

Interprocess Communication

File SystemVirtual Memory

O
S

 k
e
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e
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Figure 2.2: Architecture of Monolithic kernel-based systems

There are various privileges granted to the kernel for accessing otherwise protected resources
such as physical devices or application memory. However, the main characteristic in the design of
monolithic kernels is that no attempt is made to restrict the privileges to the different services in the
kernel:

• The entire OS, i.e., all kernel-level services, executes in kernel mode, with maximum privileges.
There is thus a great potential for both accidental and malicious misuse of privileges.

• There is no separation in the implementation of kernel parts. Any service can use the func-
tionality of another. Furthermore, any service can access all memory including memory that is
being used by others.

• New services accumulate in the kernel and participate in substantially increasing its size.

Numerous peripheral devices and file system architectures are regularly unveiled. Any monolithic
kernel would therefore be expected to include all possible anticipated functionality, in form of drivers,
already compiled into the kernel object. All services would then be loaded into memory while they
may not be used during the uptime of the computer. This scenario, which is obviously not bearable,
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has lead OS designers to resort to a plug-in architecture where services can be loaded and unloaded
on-the-fly

2.3 Plug-in software architectures

Monolithic operating systems are exposed to well-known challenges in the practice of software engi-
neering, particularly to challenges related to the constant increase of functionalities. To cope with such
challenges, modern successful software projects have adopted a plug-in architecture model where the
code is centered around a core for which clients should write plug-ins.

In the plug-in model, a core code is structured such that certain well-defined areas of functionality
can be provided by an external module – the plug-in. Plug-ins can therefore be written and compiled
separately from the core, and typically by other developers who are not involved in the development of
core code. Plug-ins, while adding functionalities, often require, for their own functioning, some func-
tionalities of the core or of other plug-ins. Examples of software implementing a plug-in model are
widespread in the software engineering community: the Eclipse integrated development environment,
the Firefox web browser, the Thunderbird email client, or the Microsoft Office word processor.

The plug-in model addresses a number of issues in software engineering and provides various
advantages. We briefly summarize the most salient reasons why applications support plug-ins:

• First, plug-ins allow to more readily add features to an already large code base. This property of
software plug-ins is praised by both users, who wish to choose the capabilities of the software,
and developers who wish to extend them, in a limitless way.

• Second, project architects often propose to break down a software architecture into multiple
components that can be plugged in a minimal core. This procedure allows to reduce the size of
the original application.

• Third, the plug-in model allows for the interaction of various code parts developed under dif-
ferent licensing schemes. Plug-ins indeed separate source code and as such do not threaten the
liability of the core application.

• Finally, adoption of the plug-in model enables third-party developers to participate in the growth
of a software project by providing new abilities that extend the core code base.

The reasons outlined above are valid to any successful monolithic operating system. Indeed, the
need for new drivers to support new manufacture devices suggest a need for controlling the growth of
the kernel. Furthermore, device manufacturers who are not necessarily taking part to the development
of the kernel may need to separately develop their code and plug-it to the kernel. Finally, introducing
modularity into the implementation of the OS may ease maintenance. Loadable kernel modules were
therefore imagined to address these issues by re-using a plug-in model for kernels.

2.3.1 Loadable Kernel Modules

While the architecture of most contemporary kernels is monolithic, their internal implementations
provide a mechanism for dynamically loading code for extending an already-running kernel. This
modular implementation is common in modern monolithic OSes, including most current Unix-like
systems and Microsoft Windows. The extension modules, which are referred to as Loadable Kernel

Modules (LKMs) or more simply as Kernel MODules (KMOD), are typically used to add support for
new hardware and/or file systems.
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In FreeBSD, LKMs are denoted kld. In OS X, they are referred to as kernel extensions (kext).
In any case, LKMs, when they are loaded, are part of the kernel. They communicate with the base

kernel in the same way as the other parts of the kernel that were already bound, at compile time, into
the image that is booted. When the functionality provided by an LKM is no longer required, it can be
unloaded to reduce the runtime memory footprint of the OS.

As an extension code that must interlock with an existing code base, a plug-in is required to
properly use the interfaces available for its interactions with the core. In the case of a monolithic
kernel where the loadable kernel module, once loaded, is entirely part of the kernel and runs with
privilege mode, any misuse of the kernel API will lead to an unrecoverable failure that can bring
about the demise of the entire system.

2.3.2 API usage challenges

An Application Programming Interface (API) specifies how different components of a software com-
municate and interact. In the plug-in model, the API is the central interface that lists the set of rou-
tines/functions/methods that are accessible from the core code base to the plug-ins. A specific class
of problems can then be found in the usage of API functions due to implicit usage protocols. In these
cases, developers are in presence of core code that in itself is not actually wrong, but that is prone
to errors when combined with certain kinds of plug-in code. Indeed, APIs are subject to misuses as
illustrated in the example of Figure 2.3.

unsigned char *skb_put(struct sk_buff *skb, ...)

{ unsigned char *tmp = skb_tail_pointer(skb);

SKB_LINEAR_ASSERT(skb);

skb->tail += len; ...

}

a) Unrobust core API function

tx_skb = dev_alloc_skb(pkt_len);

pkt_data = skb_put(tx_skb, pkt_len);

b) Buggy plugin code

Figure 2.3: Bug fix of the usage of Linux skb_put API function

We consider an example of function, skb_put, that is part of the Linux core and that can be used for
adding data to a network skb buffer. An excerpt of the code is shown in Figure 2.3(a). The skb_put

function begins with some operations that extend the tail pointer of the network buffer. In particular
the first line of code calls a helper function that retrieves the current value of this tail pointer. skb_put

is not robust in that it assumes that its argument is not NULL.
Figure 2.3(b) shows some plug-in code, i.e., a network driver, that calls the skb_put function in

an unsafe way. In particular, it calls the function with the first argument tx_skb that it has obtained
from a call to the function dev_alloc_skb. However, dev_alloc_skb can return NULL in some cases,
which will then lead to a dereferencement fault in the function skb_put.

The illustrated example details a situation where the plug-in code is actually buggy, because it is
its responsibility to check for NULL. This is combined with a case where the core code is not robust,
because it dereferences its argument without checking for NULL. Consequently, the bug in the plug-in
code leads to a failure within the core code. Moreover, in this example, the failure is not within the
code called by the plug-in, but, deeper, in a function that this code calls, making the problem harder
to spot. We acknowledge however that the core is not actually wrong, because it can put whatever
preconditions it wants on its callers. For example, in Linux, the standard practice is to avoid inserting
validity checks for the arguments of API functions for performance reasons. Indeed, inserting checks
may lead to costly double checks, both by the calling code and in the function definition, which could
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introduce an important performance penalty for functions that are called a significant number of times
during a service execution. In our experiments with the NFS file system, when transferring eight (8)
GB of data in less than 10 minutes, we have recorded over sixteen (16) millions calls to API functions,
in which validity checks were justifiably omitted. Nonetheless, we refer to the problem posed by such
an implementation as a safety hole, because the core function can be used in a context that will make
the combination of the plug-in and the core a bug.

The safety hole issue is exacerbated in the plug-in model by two main modern software engineer-
ing facts:

• Core code, which can amount to millions of lines of code, is often not well known to the plug-in
developer, making it difficult to debug safety hole-related problems.

• API functions are not properly documented, making it more likely for plug-in developers to
misuse them, especially when the usage preconditions are idiosyncratic.

In particular, in monolithic OSes that use a mechanism of loadable kernel modules, and that are
developed as open source projects, the issues with safety holes is significantly exacerbated. Indeed,
such OS core code size makes them some of the biggest project code base, while the number and
disparity of developers makes for the most distributively developed projects.

2.4 Linux case study

The monolithic kernel family includes most of contemporary operating systems including Linux and
Windows1. In this thesis we focus our study, including the implementations and experiments, on the
Linux open-source kernel.

Linux is a monolithic multi-user multi-task OS built in the model of Unix. First released in
October 1991 by Linus Torvalds, Linux has grown to be maintained by over 9,000 kernel developers
around the world and many more bug reporters and patch submitters who have contributed to the 13
millions lines of code that are now available in the version 3.6 released in September 2012.

Linux was originally developed for Intel x86-based PCs, but has since been ported to more com-
puter hardware platforms than any other operating system [IBM01]. It is a leading operating system
in servers, mainframe computers and supercomputers, and is also widespread in embedded systems.
Countless distributions of Linux are available with different focus on security, performance, user ex-
perience, etc. As of 2012, we have been able to list about 500 known distributions.

2.4.1 Development model

The Linux kernel development model process is based on the assumption that the source code of
all kernel-level services is available within the publicly available kernel source tree, and thus kernel
APIs are, for efficiency, as robust as required by their internal client services. Furthermore, kernel
developers can freely adjust the kernel APIs, as long as they are willing to update all of the affected
service code. The kernel is thus, by design, maximally efficient and evolvable, enabling it to rapidly
meet new performance requirements, address security issues, and accommodate new functionalities.
Unfortunately, these assumptions complicate the task of the developers of new services who require
more safety and help in debugging.

1Except Windows NT
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To cope with the sustained support of devices and the interest of developers, Linux has adopted
a modular architecture allowing kernel-level services, such as device drivers and file systems, to be
developed outside the mainline tree. Developers however face the challenges of writing code against
the Linux core since it does not provide a well-defined API nor a stable one [KH].

2.4.2 Kernel exported functions

The Linux kernel provides support for conveniently loading an out-of-tree driver into a running
kernel using the loadable kernel module facility [dGdS99]. Such a module may interact with the
kernel via those kernel functions that the Linux kernel developers have chosen to export using the
EXPORT_SYMBOL mechanism. To produce a working driver, a developer must use these functions
according to the correct usage protocol. Nevertheless, there are many exported functions and their
usage protocol is often idiosyncratic, making correct usage of these functions a challenge for devel-
opers. We now examine how kernel interfaces have evolved in recent releases and how this evolution
impacts their usage.

2.4.2.1 API evolution

Figure 2.4 presents the number of functions exported by versions of the Linux kernel released over the
course of three years (December 2008-January 2011). The graph distinguishes between the functions
already exported in the first considered version, Linux 2.6.28, and the functions added or modified
since then. The results show that the number of exported functions has been steadily increasing. For
example, Linux 2.6.37 exports 224 more functions than Linux 2.6.36. The results also show that the
set of exported functions continuously changes [KH]. Indeed, over 3,000 (25% of all) exported func-
tions present in 2.6.37 were not available in 2.6.28, while over 1,000 (10% of all) exported functions
present in 2.6.28 have disappeared. In addition, over 3,000 (33% of all) functions present in 2.6.28
have been modified in 2.6.32.
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Figure 2.4: Evolution in the number of functions exported by the Linux kernel (baseline Linux 2.6.28)

2.4.2.2 API documentation

One way to become aware of the usage protocols of the functions exported by the Linux kernel is to
read the associated documentation. A small number of functions exported by the Linux kernel are
documented in Section 9 of the Linux “man” pages, if these are installed by using the appropriate
kernel make file target. Figure 2.5 shows that the number of interface functions with man pages is
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increasing, but at a slightly lower rate than the number of interface functions themselves. Further-
more, less than 15% of the exported functions have man pages available in the versions considered.
Finally, the second curve (dashed line) reveals that the documentation of exported functions does not
significantly improve over time.
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number of exported functions in the kernel version)

2.4.2.3 API usage examples

In the absence of documentation, a common programming strategy is to find reliable examples of how
exported functions are used. Indeed, it is well known that driver developers often copy/paste code
fragments of kernel code [LLMZ04]. Yet, as illustrated in Figure 2.6 for recent releases, an increasing
number of exported functions are no longer used by in-tree code, thus depriving programmers of usage
examples. Actually, some of these functions are not used by in-tree code because their use is no longer
recommended. For instance, the sys_open and sys_read functions that implement the open and read

system calls have been exported for a long time, even though opening and reading files at the kernel
level is rarely appropriate [KH05]. Attempts to remove such functions in order to prevent misuse
by third-party developers have lead to heated discussions as these functions may still be required by
out-of-tree code.2
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Figure 2.6: Number of kernel exported functions not used by in-tree C code

We look in detail at the exporting and use of exported functions in the drivers directory, as this
directory contains code that is most similar to the code found in out-of-tree kernel-level services.
Figure 2.7 shows that almost 70% of the exported functions used by drivers are provided by other
drivers and the many libraries implemented in the drivers directory. The invocations of these interface

2http://lwn.net/Articles/249265
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functions constitute about 20% of all the usage calls of interfaces in drivers, suggesting that drivers use
more functionalities from other types of services, but still require a significant amount of interactions
with other drivers. Overall, the figures suggest that drivers in general interact to a great extent with
code in this directory. Unfortunately, as device drivers evolve and are adapted fast, code in the drivers
directory is often revisited, potentially introducing changes in the interfaces proposed by the code. As
a result, out-of-tree code which interact with code from this directory is likely to fail to follow the
frequent updates in the conventions for accessing kernel interfaces.
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Figure 2.7: Number of kernel exported functions not used by in-tree C code

2.5 Summary

In this chapter, we have introduced monolithic operating systems with a focus on the Linux kernel.
We discuss some of the challenges for developing kernel-level services in this context, in particular
with regards to the use of the kernel APIs.

In monolithic OSes, a single fault in a kernel-level service may bring about the demise of the entire
system without leaving any clue as to what went wrong. Some of those faults are due to misuses of
kernel API functions which are largely undocumented and contain implicit usage preconditions.

We have described a study of the Linux kernel programming interface to explore how API func-
tions evolve and why they constitute a source of difficulties for kernel-level service developers. We
have thus shown that the interface is large and ever changing, and that API functions are scarcely doc-
umented, often with limited usage examples for novice programmers. Theses characteristics of the
kernel interface combined with the idiosyncratic implementations of API functions create a significant
number of opportunities for violating different usage preconditions.
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Chapter 3

Dealing with System Failures
– Testing, Debugging, Recovery –

“The Linux philosophy is to laugh in the face of danger.

Oops. Wrong one. Do it yourself. That’s it."

Linus Torvalds
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Operating systems fail. These failures are often due to programming errors that manifest them-
selves in different ways. A large body of research work has been proposed to characterize OS faults
and to address them. In this chapter, we discuss the origin and the manifestations of OS failures and
investigate related work for dealing with kernel reliability.

3.1 Kernel failures

When the execution of kernel code stumbles upon a faulty code path, OS failure may ensure. The
manifestations of these failures can be classified in two categories, i.e., kernel crashes and kernel
hangs, but the immediate solution to any of them generally involves rebooting the entire system to
reinitialize the failed service.
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3.1.1 Kernel crashes

When the execution of the kernel encounters a fault, a kernel oops is issued to warn about the failure.
When an oops occurs, the kernel may be able to continue operating, although the kernel service
involved in the oops will no longer be available. However, often, kernel oops lead to kernel panics
after which the system cannot continue running and must be restarted. In device drivers, kernel oops
typically don’t immediately cause panics, however they often leave the system in a semi-usable state.
Nevertheless, from the developer point of view, a kernel oops also requires a system reboot for re-
testing the failed module. In some cases, a kernel oops may cause a kernel panic when something
vital is affected. In this thesis, the expression “kernel crash” is used to refer to the state of the kernel
when its execution leads to a kernel oops or a kernel panic.

Kernel oopses are caused, for example, by the kernel dereferencing an invalid pointer. The equiva-
lent of such fault for user-space programs is known as the segmentation fault from which the program
cannot recover. Figure 3.1 shows an excerpt of a kernel oops message which contains important
information for debugging as produced by the Linux kerneloops program. First, the oops displays
the type of error that occurred, in this case “Unable to handle kernel NULL pointer

dereference at [...]”, indicating the reason for the crash. Then, follows information about
the oops number which indicates the number of the oops so that the developer may know the order
at which multiple oopses have occurred in order to select the first one, as the most reliable, for back-
tracing the error. The code segment and the address of the instruction that were being executed are
indicated by the EIP field value. Finally, the kerneloops program prints the contents of the CPU’s
registers and a stack backtrace, i.e., the list of functions that the crashed process was in when the
oops occurred. Developers are required to rely on the Symbol Map to map the function names to the
numeric addresses present in the call trace.

It is to be noted that a kernel crash systematically leads to the service whose process has failed to
be unresponsive. It does not however necessarily lead to the demise of the entire system. For example,
if the crash occurs in a sound driver and in code exclusively related to that driver, the sound system
will probably stop functioning but the computer will likely continue running (with compromised reli-
ability). Nevertheless, when the crashed code is vital to the system, the first oops may be followed by
other oops from other processes and this cascade of oops can lead to a kernel panic, forcing a reboot
of the entire OS.

3.1.2 Kernel hangs

Kernel hangs are OS failures that leave the system unresponsive, and systematically require a system
reboot. They manifest themselves when a process get stuck in its execution without giving the possi-
bility for other processes to benefit from execution time. Kernel hangs are generally linked to issues
with locking and interrupt management.

Deadlocks are a common programming error. In this case, a developer has misplaced lock acqui-
sition and release statements for protecting critical sections, causing the possibility for processes to
indefinitely wait for a lock to be released, or the possibility for processes to attempt to release locks
that they have not acquired themselves.

In the Linux kernel, interrupts are used as a means for hardware, such as sound, video and usb
devices, to interrupt whatever the CPU is currently doing and execute some special code for handling
a new event. This special code usually operates in the CPU interrupt mode during which no other in-
terrupts can happen, with some exceptions, for example when the CPU ranks the interrupts. Handling
interrupts however is a sensitive task as there are regions in the kernel which must not be interrupted
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1 [43470.712897] BUG: unable to handle kernel NULL pointer dereference at 0000010c
2 [43470.712900] [. . .]
3 [43470.712909] Oops: 0000 [#1]
4 [43470.712911] [. . .]
5 [43470.712913] Modules linked in: nls utf8 isofs usbhid hid [. . .]
6 [43470.712943] Pid: 31941, comm: mount Tainted: [. . .]
7 [43470.712946] EIP: 0060:[<c01fc71f>] EFLAGS: 00010282 CPU: 0
8 [43470.712948] EIP is at iput+0xf/0x60
9 [43470.712950] EAX: fffffff4 EBX: fffffff4 ECX: fffebedc EDX: 00000000

10 [43470.712951] ESI: f717de00 EDI: 00000000 EBP: f287bde0 ESP: f287bddc
11 [43470.712953] DS: 007b ES: 007b FS: 0000 GS: 00e0 SS: 0068
12 [43470.712955] Process mount (pid: 31941, ti=f287a000 task=f1efe500 task.ti=f287a000)
13 [43470.712956] Stack:
14 [43470.712958] 0000002f f287be78 f84f50e7 f84fab68 00000003 ffffffff ffffffff 00001a00
15 [43470.712961] <0> 00000000 f1829000 f390c200 756ebd83 00000800 01400100 000003e8 000003e8
16 [43470.712965] <0> f37d31b0 ffffffff ffffffff f37d31b0 dec68000 dec68000 00000000 ffffffea
17 [43470.712969] Call Trace:
18 [43470.712973] [<f84f50e7>] ? isofs fill super+0x70e/0x8c4 [isofs]
19 [43470.712977] [<c031b09a>] ? snprintf+0x1a/0x20
20 [43470.712981] [<c01ecc12>] ? get sb bdev+0x162/0x1a0
21 [43470.712984] [<f84f49d9>] ? isofs fill super+0x0/0x8c4 [isofs]
22 [43470.712988] [<f84f631c>] ? isofs get sb+0x38/0x40 [isofs]
23 [43470.712991] [<f84f49d9>] ? isofs fill super+0x0/0x8c4 [isofs]
24 [43470.712994] [<c01ec777>] ? vfs kern mount+0x67/0x170
25 [43470.712997] [<c01ff1c3>] ? get fs type+0x33/0xb0
26 [43470.712999] [<c01ec8de>] ? do kern mount+0x3e/0xe0
27 [43470.713002] [<c0201c00>] ? do mount+0x430/0x640
28 [43470.713005] [<c01b746b>] ? get free pages+0x2b/0x30
29 [43470.713008] [<c01ffcb1>] ? copy mount options+0x41/0x140
30 [43470.713010] [<c0201e7b>] ? sys mount+0x6b/0xa0
31 [43470.713014] [<c0108583>] ? sysenter do call+0x12/0x28
32 [43470.713015] Code: ff ff 8b 4b 4c 39 4b 5c 8d 74 26 00 0f 89 41 ff ff ff 66 [. . .]
33 [43470.713033] EIP: [<c01fc71f>] iput+0xf/0x60 SS:ESP 0068:f287bddc
34 [43470.713036] CR2: 000000000000010c
35 [43470.713038] −−−[ end trace 711cf1989f2fc2e0 ]−−−

Figure 3.1: Excerpt of an example of Kernel oops report in the isofs filesystem

at all. For these cases, kernel developers can use a pair of available interrupt handling primitives to
delimitate such regions. Unfortunately, mistakes in the use of such primitives can be fatal to the sys-
tem because they can leave the system uninterruptible, i.e., no hardware can function correctly, and
lead to a kernel hang.

3.2 Faults in Kernel

Currently, most operating systems are written in the C native programming language for performance
reasons. The C language is however known to be less safe than new generation languages, such as
objected oriented programming languages, and its issues also contribute to degrade kernel reliability.
Furthermore, OS code is complex and involves various idiosyncrasies that only experienced core
developers can thrive with. For example, in the Linux kernel, function pointers are pervasive, and are
the source of different programming errors whose diagnosis is challenging. A 2001 empirical study
on operating system errors by Chou et al., based on systematic analysis of kernel source code with
the Coverity tool, has provided many insights on programming errors that kernel developers leave
in the Linux kernel1 code [CYC+01]. The authors of this study have found that device drivers have

1The study was based on kernel release 2.4.1



20 Dealing with System Failures – Testing, Debugging, Recovery –

Category Actions to avoid faults

Block To avoid deadlock, do not call blocking functions with interrupts disabled or a spinlock held

Null Check potentially NULL/ERR_PTR pointers returned from routines

Var Do not allocate large stack variables (> 1K) on the fixed-size kernel stack

INull Do not make inconsistent assumptions about whether a pointer is NULL/ERR_PTR

Range Always check bounds of array indices and loop bounds derived from user data

Lock Release acquired locks; do not double-acquire locks

Intr Restore disabled interrupts

Free Do not use freed memory

Float Do not use floating point in the kernel

Real Do not leak memory by updating pointers with potentially NULL realloc return values

Param Do not dereference user pointers

Size Allocate enough memory to hold the type for which you are allocating

Table 3.1: Categorization of common faults in Linux [CYC+01, PLM10]

error rates up to three to seven times higher than the rest of the kernel. They also found that the
largest quartile of functions have error rates two to six times higher than the smallest quartile and that
the newest quartile of files have error rates up to twice that of the oldest quartile. This last finding
confirms that kernel code “hardens” over time. Finally, they have found, at that time, that bugs remain
in the Linux kernel an average of 1.8 years before being fixed.

Ten years later, Palix et al. [PST+11] have reproduced the study on recent versions of the Linux
kernel using the Coccinelle open-source static analyzer. They found that, though code in the drivers
directory have improved in quality, they still contain the highest error rates. Furthermore, according
to their study on multiple versions of Linux, each release of the Linux kernel contain between 600 and
700 faults. These faults mainly involve memory allocation issues, pointer dereferencements, locking
and interrupt management. We summarize the different categories of common faults in Linux in
Table 3.1.

3.3 System Failures: What To Do About Them?

In previous sections, we have shown that kernel code contains various categories of programming
errors that compromise the reliability of operating systems. Various research directions have been
followed to address the issue. These include building tools for testing software systems, improving
the resilience of kernel code to OS errors, automating the production of bug-free software, identifying
bugs in developer manually-written code, improving debugging by providing better failure informa-
tion, and improving programming habits.

3.3.1 System robustness testing

To address the presence of such errors, developers often submit their code to a battery of tests de-
signed to stress the OS and assess its robustness. To this end, fault injection has been applied to the
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Linux kernel to evaluate the impact of various fault classes: Albinet et al. have proposed a frame-
work for characterizing the impact of faulty drivers on the robustness of the Linux kernel [AAF04].
Cotreno et al. have focused on injecting faults for detecting hangs in Linux [CNR09]. Marinescu and
Candea [MC11] focus on the returns of error codes from userspace library functions. Overall, these
research contributions have provided evidence that puts into question the robustness of the Linux ker-
nel. However, they do not provide explanations on the root causes of their observations in order to
allow developers to address them early. Furthermore, the test suites proposed by the authors are gen-
erally restricted to a few, though the most common, categories of faults, leaving many others of the
common faults that we have summarized in Figure 3.1.

Frameworks for assessing OS robustness provide insights on the quality and re-
liability of the kernel. However, they often target a niche of faults and are not
necessary useful for producing explanations of the observations made based on
their outputs. Yet, in the early stages of driver development, kernel developers
need more information on the origins of their errors.

3.3.2 Automating OS software production

Having established, through extensive robustness testing, that current monolithic systems present reli-
ability issues, researchers have developed a variety of approaches to improve the process of developing
driver code. The aim of these research work has been to automate as much as possible the production
of driver code in order to avoid, as much as possible, programming errors. For example, Merillon et al.

have proposed the Devil language-based approach for allowing developers to specify a device driver
that will be automatically generated [MRC+00]. With Dingo [RCKH09] and Termite [RCK+09],
Ryzhyk et al. also propose to use specifications for automatic driver synthesis. Finally, Chipounov
and Candea propose RevNic [CC10] for deriving new drivers from existing drivers for other operating
systems.

Research work from academia for automating the generation of driver code has
proven to be very effective in producing efficient and reliable code. However,
one main weakness of the proposed approaches is that they are not broad enough
as the built tools only work for narrow classes of device drivers. Thus, the ap-
proaches still face resistance to be adopted in industry where the standard prac-
tices remain to write device drivers by hand.

3.3.3 Recovering from OS failures

OS code is bound to contain programming errors, especially in device drivers. To prevent driver
defects from compromising the entire kernel against which the drivers run, a number of approaches
have been developed for isolating drivers [CCM+09, ?] or for recovering from OS failures [SBL03,
MSZ09]. Swift et al. have proposed Nooks [SBL03], a framework whose aim is to improve the relia-
bility of operating systems, by implementing a layer that enables the OS to recover from device driver
crashes. Zhou et al. have also proposed SafeDrive [ZCA+06] that relies on language-based techniques
to add safety in the execution of device drivers. TwinDrivers [MSZ09], proposed by Menon et al.,
also aim at providing a safe environment for executing device drivers. Finally, the DD/OS [LUSG04]
system proposed by Levasseur et al. relies on virtual machines to isolate device drivers from the rest
of the kernel.
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Approaches for protecting the kernel from driver defects have been successful in
research venues a decade ago. Their adoption however remains only for research
purpose. In production settings, as the authors have later admitted, the proposed
solutions are too heavyweight.

3.3.4 Logging

An immediate debugging technique for diagnosing OS failures is to navigate through runtime logs
to identify lines reporting events that may explain OS misbehaviors. Unfortunately, runtime logs
are frequently insufficient for failure diagnosis especially in case of unexpected crashes [YMX+10,
YPH+12]. A research avenue has then been to improve runtime logging mechanisms so as to benefit
from more exploitable information when failures occur. Yuan et al. have recently proposed LogEn-

hancer [YZP+] to enrich log messages with extra information. LogEnhancer does not however create
new messages in places where they might be necessary.

Runtime logs remain the most readily available source of information on sys-
tem failures. Kernel code however only includes logging instructions in places
that core developers believe to be important for monitoring functionality. Other
places, including interaction sites as at the boundary between the kernel and a
driver, are not monitored enough, missing important information that driver de-
velopers could find useful during driver testing.

3.3.5 Static bug finding

Model checking, theorem proving, and program analysis have been used to analyze OS code to find
thousands of bugs. Ball et al. have designed a static analysis engine that was incorporated into Mi-
crosoft’s Static Driver Verifier (SDV) tool [BBC+06] where it is used for finding kernel API usage
errors in a driver. Post and Küchlin have manually extracted conformance rules from the Linux doc-
umentation and have formulated them in the SLIC extended version of SDV’s SLIC specification
language [PK07]. Dawson et al. [ECH+01] have proposed techniques to automatically infer check-
ing information from the source code itself, looking for contradictions between the code and what
appears to be the programmer beliefs. For example, a call to “spin_lock” followed once by a call to
“spin_unlock” implies that the programmer may have paired these calls by coincidence. If the pairing
happens 999 out of 1000 times, though, then it is probably a valid belief and the sole deviation a
probable error. Unfortunately, these tools take time to run and the results require time and expertise to
interpret. Thus, these tools are not well suited to the frequent modifications and tests that are typical
of initial code development.

Numerous approaches have proposed to statically infer so-called protocols, describing expected
sequences of function calls. Thus, in the search for contradictions, Dawson et al. were actually infer-
ring call protocols first [ECH+01]. With their “What You See Is Where It Bugs” approach [LBP+09],
Lawall et al. rely on the Coccinelle static analysis tool to declaratively specify the protocols and iden-
tify their violations in driver code. Li and Zhou have proposed PR-Miner [LZ05] for identifying, auto-
matically, implicit programming rules in large code base such as the Linux kernel. Ramanathan et al.

have proposed Chronicler [RGJ07], a tool that applies scalable inter-procedural path-sensitive static
analysis to automatically infer accurate function precedence protocols. In general, these approaches
have focused on sequences of function calls that are expected to appear within a single function, rather
than the specific interaction between a service and the rest of the kernel.
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The use of advanced type systems have been demonstrated to be efficient in eliminating some
unsafe usage preconditions in API functions. For example, Bugrara and Aiken propose an analysis to
differentiate between safe and unsafe userspace pointers in kernel code [BA08]. They focus, however,
on the entire kernel, and thus may lead to the analysis of parts of code that do not interest a given
service developer who is only familiar with his own code.

In general, static bug finding tools are not intensively used by driver developers
before the code is shipped to users. Indeed, running these tools take some time
and produce a significant number of false positives which usually deter develop-
ers. This situation is mainly due to the fact that the analysis performed in these
cases are not focused to specific code places, such as kernel interfaces, but rather
runs through function calls and definitions across the entire OS.

3.3.6 Implementing robust interfaces

To prevent API usage errors from seriously impacting the reliability of software systems, different
approaches have been developed for strengthening the robustness of interfaces. LXFI [YHD+] isolates
kernel modules and includes the concept of API integrity, which allows developers to define the usage
contract of kernel interfaces by annotating the source code. LXFI, however, aims at limiting the
security threat posed by the privileges granted to kernel modules, while various other categories of
common faults in kernel code still have the potential of compromising the integrity and the reliability
of operating systems.

Healers automatically generates a robust interface to a user-level library without access to the
source code [FX03]. It relies on fault injection to identify the set of assumptions that a library func-
tion makes about its arguments. Healers can obtain information about runtime values, such as array
bounds, that may be difficult to detect using static analysis. However, Healers does not address the
important safety holes involving locking behaviors since they require calling-context information. In-
deed, supporting locking safety holes would require testing the state of all available locks, which
would be expensive and are likely unknown.

Approaches for adding robustness layers to APIs aim at protecting the system
from usage errors. However, they focus on specific classes of problems and are
not designed to account for the variety of programming errors that non-malicious
developers leave in their code. Furthermore, kernel programmers are wary of
such layers which are known to generally degrade execution performance.

3.3.7 Programming with contracts

Since developers regularly misuse system APIs, especially when those include implicit and undoc-
umented usage preconditions, researchers and practitioners have proposed to explicitly detail for
each API function the contract of its usage to avoid misbehavior. A software contract represents
the agreement between the developer of a component and its user on the component’s functional be-
havior [FLL+02, HPSA10, Mey88, Mil04]. Contracts include pre- and post-conditions, as well as
invariants. A safety hole is essentially the dual of a contract, in that a contract describes properties
that the context should have, while a safety hole describes properties that it should not have.

Contract inference is analogous to the process inferring safety holes. Arnout and Meyer infer
contracts based on exceptions found in .NET code [AM03]. Daikon infers invariants dynamically
by running the program with multiple inputs and generalizing the observations [EPG+07]. Linux
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kernel execution however is highly dependent on the particular architecture and devices involved, and
thus a service developer would have to actively use Daikon in his own environment. Finally, from
the Daikon invariant list,2 we note that only a few invariants may be used to uncover relevant safety
holes in kernel code. It is, for example, the NonZero invariant which may correspond to a safety hole
relevant to faults that involve dereferencing invalid pointers. Other kinds of safety holes, including
those relevant to memory release errors, user/pointer bugs and other kernel specific faults are not
handled by Daikon.

The Extended Static Checker for Java (ESC/Java) [FLL+02] relies on programmer annotations
to check method contracts. Annotation assistants such as Houdini [FL] automate the inference of
annotations. Houdini supports various exceptions involving arguments, such as NullPointerException
and IndexOutOfBoundsException, but does not provide tests for e.g., the validity of allocated memory.

Implementation of software contracts aims at avoiding confusion in the use of
APIs. Nonetheless, they require too much effort from developers who fail to even
include proper documentation. Thus, contract description is not yet part of kernel
developers habits. Contract inference on the other hand is limited to few rules and
remain cumbersome for daily usage.

3.4 Summary

In this chapter, we have studied how programming errors compromise the reliability of operating sys-
tem kernels such as Linux. We have then investigated research work that attempt to provide solutions
for improving the safety of system code. Over the years, various research efforts have been directed at
evaluating the impact of some classes of faults on the robustness of operating systems, at automating
the production of more reliable, i.e., bug-free, OS code, at providing means to dynamically recover
from OS failures, at enhancing logging mechanisms for improving failure diagnosis, at detecting bugs
early in source code, and at strengthening the usage of API functions.

We have discussed the weaknesses of each approach and shown how, alone, the different ap-
proaches cannot fully resolve the problems of kernel reliability. The lessons learned from the success
and failures of these approaches can however be leveraged to design a new approach for support-
ing kernel developers in the testing and debugging of kernel-level services in order to produce more
reliable services that will interact correctly with the kernel.

2http://groups.csail.mit.edu/pag/daikon, Documentation, Sec. 5.5



Chapter 4

Supporting Linux Kernel-level Service
Developers

“Everyone knows that debugging is twice as hard as writing a program in the first place.

So if you are as clever as you can be when you write it, how will you ever debug it?”

Brian Kernighan
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In previous chapters, we have unveiled different challenges that developers face in the develop-
ment of kernel-level services. We have also discussed related work that support our main concern that
driver development processes would still benefit from the design of new approaches and advanced
tools to improve developers activities.

In this thesis, we focus on the debugging process of kernel-level services such as device drivers
and file systems that are built outside the mainline kernel tree. Indeed, before any driver code can be
integrated into the kernel tree where it can benefit from the expertise of more experienced developers,
the code must first meet a number of requirements, both in terms of functionality and reliability. Thus
developers of out-of-tree code, including many developers in hardware companies, such as Intel,
who need to build drivers for their products to make them Linux compliant, are on their own in the
early stages of driver development. One particular source of errors is in the usage of kernel APIs that
contain implicit and ill-documented usage preconditions. In this chapter we outline the different points
that need to be addressed in the road of building a framework for supporting kernel developers. We
have listed four main points starting with a better understanding of kernel APIs (Section 4.1) and the
integration of enhanced and more informative debugging information in APIs that may be the source

25
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of faults (Section 4.2). In a second step, we describe the need for more adding checking instructions
without compromising OS performance (Section 4.3). Finally, we discuss the recovery steps of crash
information and the reliability issues that they are associated with (Section 4.4).

4.1 Thorough analysis of API safety holes

In a Plug-In software architecture model, APIs are a source-code-level means of communication be-
tween software components, namely core and plug-ins. API functions expose core functionalities to
be used by external code. In kernel programming, APIs are mainly constituted of kernel functions that
are available for use in kernel-level services. Unfortunately, API functions often contain idiosyncratic
usage preconditions that introduce the potential for errors. Kernel developers are therefore challenged
to acquire a substantial knowledge on the details of each API function before using them. In the Linux
OS kernel, the API is further challenging to grasp due to a number of specificities in this open-source
distributed development context.

4.1.1 Implementation idiosyncrasies

The Linux kernel internals include implementation details that are often missed by out-of-tree de-
velopers. For example, for performance reasons, kernel APIs are unrobust, by design, with limited
checks on the validity of parameter pointer values. Critical sections may also be split with only one
part implemented in the body of an API function, requiring calling functions to implement the other
part. Thus, for example, an implicit usage precondition of an API function could be that it must be
called with a specific lock held. There exists a variety of such usage preconditions and these lead to
the proliferation of API safety holes as defined in Section 2.3.2 (p. 11).

The idiosyncratic details of kernel code is a challenge to kernel-level service developers who are
not necessary experienced kernel software developers. In particular, code that is maintained outside
the kernel tree does not benefit from the insights of experienced kernel developers.

4.1.2 Unstable API

The Linux kernel API is unstable and the kernel documentation contains an entire section where
prominent kernel maintainers have discussed why the need for a stable Linux kernel seems like a
non-sense for Linux [KH]. Functions are added and removed, at will, between version releases. Fur-
thermore, kernel maintainers do not offer any guarantee on the stability of the design and implemen-
tation details of each function. For example, even the signature of API functions continuously change
with parameters being added or removed. Finally, the results of our study previously illustrated in
Figure 2.4 shows that the set of API functions continuously changes. Indeed, for example, over 3,000
(33% of all) API functions present in 2.6.28 have been modified in 2.6.32.

The unstable property of the kernel API makes it difficult for driver developers to keep up. Indeed,
they are regularly required to check the implementation details of the functions that are called by their
code, and potentially of all other core routines that are called in those functions. This exercise is
particularly tedious for out-of-tree code that do not benefit from maintainers attention.

4.1.3 Undocumented API

In Section 2.4.2.2 (p. 13), we have shown that, in each release, only a small number of the Linux kernel
API functions are documented. We have furthermore shown that documentation does not significantly
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improve with time. Finally, existing documentation often misses to mention the usage preconditions
that are otherwise implicit in function implementations.

The poor documentation of kernel API functions reduces the chances for developers to produce
bug-free kernel-level service code.

4.1.4 Large API

The last specificity of the Linux kernel is that its API includes thousands of functions that cannot be
thoroughly understood by a single developer. For example, Linux kernel 2.6.28 released in December
2008 came with about 11,000 exported functions1. Our study of the evolution of the kernel API in
Section 2.4.2.1 (p. 13) has revealed that the number of Linux kernel API functions has been steadily
increasing. For instance, Linux 2.6.37 exports 224 more API functions than 2.6.36 which was released
3 months earlier.

Support: The formulated specificities of the kernel API introduce programming and debugging
challenges for kernel-level service developers. To support development activities, it is necessary to
provide a tool-based approach for analyzing the kernel API to expose the prevalent safety holes. For
the approach to be realistic, it should account for the variety of faults that developers may come across
during kernel-level service development. It should also be automated to ease the investigation of the
numerous API functions.

4.2 Extra debugging information

OS code does not include sufficient information for tagging execution paths or for describing crit-
ical behaviors. In case of crash, the runtime logs thus lack useful information for diagnosing OS
failures [YMX+10, YZP+].

Adding information however remains a challenge since the nature of the information needed by
developers as well as the adequate location to insert this information are undefined. Furthermore,
simply enriching existing log messages cannot solve the problem of missing debugging information
since logs are not systematically inserted in many places where they might be necessary.

Support: Debugging will undoubtly benefit from more exploitable information that can bring newly
created messages in sensitives execution places. It is thus necessary to devise an approach to identify
such places, and for creating the most appropriate messages that could help developers more readily
debug kernel-level services.

4.3 Low-overhead dynamic monitoring

Static analysis helps to uncover bugs in driver code. However, as discussed in the study of related
work, the existing approaches yields a significant number of false positives which deter kernel de-
velopers. Dynamic analysis is therefore relevant to accurately monitor the behavior of kernel-level
service code.

Unfortunately, execution efficiency is a key issue in kernel programming. Thus, introducing extra
instructions can dramatically degrade the performance of the kernel which in turn will noticeably

1Exported functions are kernel API functions that are available to external modules
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affect user applications. Even in the early stages of driver development, outside production settings, a
minimum degree of efficiency is required.

Support: The performance requirements in kernel programming constrain the use of dynamic mon-
itoring. Thus, to support this approach of debugging, it is necessary to identify key points in kernel
code where to interpose runtime checks. These checks and the possible logging instructions must be
designed and implemented to only leave a reasonable computation footprint.

4.4 Reliable crash information retrieval

Monolithic OS kernels are notably hard to debug, because when they crash the whole system dies.
It is possible to debug a kernel remotely or via a virtual machine, but the former is inconvenient
and some kinds of code, such as drivers, typically does not run in a virtual machine, instead the
virtualization process uses the native versions. Consequently, initial debugging tends to rely on crash
reports, that contain some information about the place where the crash occurred as well as a backtrace
of the called functions. Using this information in debugging raises two issues: 1) the reliability of the
provided information, and 2) the relevance of the provided information to the actual fault. Debugging
kernel hangs raises further issues.

To explicit those issues we consider a bug due to a misunderstanding of the idiosyncratic return
value of a kernel API function, namely open_bdev_exclusive. Figure 4.1(a) shows an ex-
cerpt of the definition of the kernel exported function open_bdev_exclusive, which returns a
value constructed using the kernel function ERR_PTR when an error is detected. Dereferencing such
a value will crash the kernel. Thus, this return statement also represents a safety hole. In Linux
2.6.32, in the file fs/btrfs/volumes.c, the function btrfs_init_new_device called open_-

bdev_exclusive and compared the result to NULL before dereferencing the value. This test,
however, does not prevent a kernel crash, because an ERR_PTR value is different from NULL. Yet,
many developers still consider NULL as the unique error return value. Figure 4.1(b) shows a patch
fixing the fault.

1 struct block device *open bdev exclusive(
2 const char *path, fmode t mode, void *holder)
3 {
4 . . .
5 return ERR PTR(error);
6 }

a) Excerpt of the definition of open_bdev_exclusive

1 commit 7f59203abeaf18bf3497b308891f95a4489810ad

2 bdev = open bdev exclusive(. . .);
3 − if (!bdev) return −EIO;
4 + if (IS ERR(bdev)) return PTR ERR(bdev);

b) Excerpt of the bug fix patch

Figure 4.1: Bug fix of error handling code

Reliability of kernel oops reports Linux kernel backtraces suffer from the problem of stale point-

ers, i.e., addresses within functions that have actually already returned. To illustrate this problem, we
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consider a crash occurring in the function btrfs_init_new_device previously shown in Fig-
ure 4.1. The crash occurred because the kernel exported function open_bdev_exclusive returns
an ERR_PTR value in case of an error, while btrfs_init_new_device expects that the value
will be NULL. This caused a subsequent invalid pointer dereference.

To replay the crash, we installed a version of the btrfs module from just before the application
of the patch. To cause open_bdev_exclusive to fail we first create and mount a btrfs volume
and then attempt to add to this volume a new device that is not yet created. This operation is handled
by the btrfs_ioctl_add_dev ioctl which calls btrfs_init_new_device with the device
path as an argument. This path value is then passed to open_bdev_exclusive which fails to
locate the device and returns an ERR_PTR value.

Figure 4.2 shows an extract of the resulting oops report. Line 1 shows that the crash is due to an
attempt to access an invalid memory address. Line 5 shows that the faulty operation occurred in the
function btrfs_init_new_device a priori during a call to btrfs_ioctl_add_dev (line 8).
Source files and line numbers can be obtained by applying the standard debugger gdb to the compiled
module and to the compiled kernel.

[847.353202] BUG: unable to handle kernel paging request at ffffffee
2 [847.353205] IP: [<fbc722d9>] btrfs init new device+0xcf/0x5c5 [btrfs]

[847.353229] *pdpt = 00000000007ee001 *pde = 00000000007ff067
4 [847.353233] Oops: 0000 [#1] . . .

[847.353291] EIP is at btrfs init new device+0xcf/0x5c5 [btrfs] . . .
6 [847.353298] Process btrfs−vol (pid: 3699, . . .

[847.353312] Call Trace:
8 [847.353327] [<fbc7b84e>] ? btrfs ioctl add dev+0x33/0x74 [btrfs]

[847.353334] [<c01c52a8>] ? memdup user+0x38/0x70 . . .
10 [847.353451] −−−[ end trace 69edaf4b4d3762ce ]−−−

Figure 4.2: Oops report following a btrfs ERR_PTR pointer dereference crash.

This backtrace contains possibly stale pointers, as indicated by the ? symbol on lines 8 and 9.
While btrfs_ioctl_add_dev really does call btrfs_init_new_device, this is not the
case of memdup_user. Indeed, it is quite unlikely that a very generic function like memdup_user
would call a very specific file-system related function like btrfs_ioctl_add_dev. These spu-
rious call stack entries seem to come from the use of function pointers, and unfortunately functions
pointers are used quite heavily in the kernel. Since it cannot be known a priori whether a function
annotated with ? is really stale, the service developer has to find and study the definitions of all of the
functions at the top of the backtrace, until finding the reason for the crash, including the definitions of
functions that may be completely unrelated to the problem. A goal of the kernel debugger kdb,2 which
was merged into the mainline in Linux 2.6.35, was to improve the quality of backtraces. Nevertheless,
backtrace quality remains an issue.3

Relevance of kernel oops reports A kernel oops backtrace contains only the instruction causing
the crash and the sequence of function calls considered to be on the stack. The actual reason for a
crash, however, may occur in previously executed code that is not represented. For the fault shown
in Figure 4.1, the oops report mentions a dereference of the variable bdev in the function btrfs_-
init_new_device, but the real source of the problem is at the initialization of bdev, to the result
of calling open_bdev_exclusive. This call has returned and thus no longer appears on the stack.

2https://kgdb.wiki.kernel.org/
3https://lkml.org/lkml/2012/2/10/129
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Such situations make debugging more difficult as the developer must thoroughly consult kernel and
service source code to localize important initialization code sites.

Kernel hangs By default, the Linux kernel gives no feedback in the case of a kernel hang. It can,
however, be configured to panic when it detects no progress over a certain period of time. When the
hang is due to an infinite loop, the backtrace resulting from the panic can occur anywhere within this
loop; the point of the panic may thus have no relation to the actual source of the problem.

Support: While backtraces remain a valuable tool for isolating the functions in the call stack, it
contain noise that may hide useful information on the instruction at which the fault manifested itself,
and it does not necessarily provide a hint to the reason why, at the point the crash, the system failed.
Kernel debugging tasks could therefore benefit from tools that more readily and more accurately trace
the origin of an error and its cause.

4.5 Summary

In this chapter, we have explored the different points of kernel debugging that could be improved to
offer an enhanced support to kernel-level service developers. First we have shown that kernel code
can be large and complex and that kernel APIs require much attention in their usage to avoid runtime
errors that appear because developers failed to take into account implicit usage preconditions. Second,
we explored the need for creating new log messages in the execution paths of service code so that,
when a crash occurs, developers may benefit from more exploitable information. Third, we have
re-stated the performance constraints of kernel debugging which imposes a low overhead to runtime
monitoring instructions. Finally, we have discussed the current practices of kernel debugging and
shown that the kernel backtraces, main available information after a crash, are not rigorously reliable
and are not always relevant to pinpoint the cause of a crash.

The investigation on the challenges of debugging tasks in kernel-level service development has
driven the design and implementation of the Diagnosys approach [BRLM12]. In this approach, we
have chosen to focus our interest in the interactions between a kernel-level service and the core kernel.
To study the potential faults that may appear in this interaction we first analyze the entry points, i.e.,
the kernel APIs, to identify the safety holes that they may contain. To this end, we rely on an existing
rule-based analysis tool, namely Coccinelle, that could be used for specifying safety hole criteria. To
conclude this background part of our thesis, we introduce Coccinelle in the next chapter.



Chapter 5

Static Program Analysis

“First law: the pesticide paradox. Every method you use to prevent or find bugs

leaves a residue of subtler bugs against which those methods are ineffective”

Boris Beizer
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To analyze the behavior of computer programs, developers often resort to automated program
analysis tools. These are generally applied to check program correctness or to perform program
optimization. Some of the tools look at the code, either at the form of text, or in the form of a
syntax tree, to determine certain properties of the code such as the interdependency between software
modules: such tools are said to perform static analysis. Other tools look at the flow of execution and
can be useful for getting the flow of arguments, or determining the time spent in certain parts of the
program: these tasks are generally performed by dynamic analysis tools.

Dynamic program analysis is performed by executing programs on a processor. Unfortunately,
for this approach to be effective, the target program must be executed with sufficient test inputs to
cover all possible behaviors. In the case of an OS, such as the Linux kernel, the variety of execution
contexts, of available hardware, hence of device drivers, lead to an important number of configuration
possibilities. For example, the Linux kernel, with about 10,000 configurable features [TLSSP11], is
even growing rapidly making exhaustive dynamic analysis an impossible endeavor.

Static program analysis, on the other hand, is performed without actually executing the target
program. Thus, the analysis is generally performed on the available source code, although it can
also be performed on some forms of program object code. In the scope of this thesis, we resort to
static analysis techniques to thoroughly study the implementation of kernel APIs. We first explore in
Section 5.1 some generalities on static analysis to introduce different notions that will be referred to
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in the rest of this document. In Section 5.2, we introduce Coccinelle, the static analysis tool that we
have used in the implementation of Diagnosys.

5.1 Generalities on static analysis

Static analysis tools have gained popularity for safeguarding against the most common causes of errors
in software by focusing on automatic bug finding. The bug finding tool warns about potential bugs
that the human confirms and then corrects. We discuss in the following the approaches of finding
bugs with static analysis to highlight their challenges (Section 5.1.1). We also present the possible
outcomes of static analysis that justify why bugs still remain to be found in the code of software
systems (Section 5.1.3).

5.1.1 Bug finding

To find bugs in software, developers have often relied in various techniques, including software test-
ing, code inspection, model checking, theorem proving, static program analysis and combinations
thereof. Static analysis however presents many practical advantages that make it widely used by
researchers and practitioners alike.

Software testing consists in running the program with a set of inputs and checking whether it
behaves correctly. This approach however presents a number of limitations. First, test scaffolding
is time-consuming to create, which often leads to insufficient tests. Second, not all bugs are easily
caught during testing. For example, threading bugs can be very hard to reproduce. Third, other bugs
are actually difficult to test because they do not necessarily depend on the input tests. For example,
error handling code is difficult to exercise.

Code inspection refers to the process of manually examining the source code to look for bugs.
The main limitations of this approach is that it is labor intensive and subjective. Indeed, humans are
known to have blind spots when reading source code [AHM+08]. Thus, the source code might appear
to be correct when actually it is not.

Model checking computes the runtime states of the program without running the program and
uses these states to check whether some property holds [Mer01]. Because of undecidability, the model
checking approach may fail to prove or disprove a given property. Furthermore, model checking is
a far lesser reachable technique for common developers and software designers who must write or
provide tools for inferring checking specifications.

The idea behind static analysis approaches is to automate code inspection by using a program
to analyze other programs to find bugs. This analysis is performed on program statements, on the
general control flow, on function calls, etc., and offers the advantages of being relatively objective. In
addition, the automation enables the analysis of many more program behaviors (different control flow
paths).

Using static analysis for bug finding has now become an extremely active research area. Some
of the more well known static program analysis tools include PREfix [BPS00], SLAM [BMMR01],
ESP [DLS02], ESC [FLL+02], MOPS [CW02], and Coccinelle [PLHM08]. The design of these tools
however have generally favored one of two important properties, namely scalability and usability.

Scalability Engler et al. [ECH+01], Li et al. [LZ05], and Padioleau et al. [PLM06] have proposed
approaches that specifically aimed at being highly scalable. Building on techniques such as model
checking, statics and data mining, the proposed approaches were successfully applied to software of
millions of lines of code including the Linux kernel. Unfortunately, the limited interaction between
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the user and the analysis strategies complicate the use of such approaches. Indeed, these static analysis
tools use complex heuristics over which a user has little control [LZ05].

Usability Static program analysis tools rely on user specifications of what is correct or incorrect
code. As it is difficult for tool developers and tool users to anticipate specifications for all possible
bugs, researchers have devised various strategies for inferring specifications. To improve usability of
static bug finding tools, automata-based languages have been proposed for describing code patterns
that constitute bugs [ECCH00]. The proposed specifications however remained difficult to relate to
the code structure, making it difficult for a user to understand why a code pattern is considered to
be part of bug, or why it is overlooked by the analysis tool. Padioleau et al. have proposed to write
specifications using a language that is very close to C code, the Linux kernel language, in order to
ease specification development [PLHM08].

5.1.2 API usage protocols

In earlier sections of this document, we have discussed at length the invalid usage of API functions
and explained how it is now one common bug in the Linux kernel. Static analysis tools have been used
to identify those API functions, the protocol for their correct usage as well as any code that violates
these protocols. Engler et al., building on their experience with their static analysis tool, have identi-
fied unspecified or implicit protocols as a “major obstacle” to finding bugs in real systems [ECH+01].
Tan et al. have proposed AutoISES [TZM+08] which uses data mining to search for protocols involv-
ing access control primitives. In this approach, the user provides the list of access control primitives
and the data mining process searches for structure field accesses that these primitives should protect.
The WYSIWIB declarative approach [LBP+09] is based on the Coccinelle control-flow based search
engine. In this setting, the programmer is able to express bug search specifications, called semantic

matches, using a syntax that is close to that of ordinary C code.

5.1.3 Analysis failures

A major limitation of static analysis is that, in general, it can never be precise. Instead, it approxi-
mates the behavior of the target program either towards completeness (never miss a bug) or towards
soundness (never report a false alarm). Balancing between those ends is a key property of current
approaches which present different rates of false positives and false negatives.

False positive False positive errors, also know as false alarms or type I errors, are analysis results
indicating that the tool has found an issue in a program point where there is really no such an issue.
This happens as static analysis cannot always determine whether an apparent execution path is possi-
ble or combinations of variable values are possible, leading it to sometimes report potential errors that
are not actually possible.

Bug finding tools can be designed towards completeness. In this case, the analysis is performed to
always overestimate possible program behaviors, so as to never miss a bug. However, it might report
some false positive bugs. The analysis may thus report too many false positives that will hide the real
bugs which will not be noticed during manual checking. A trivial example of analysis that aims for
completeness is the case where the tool reports a bug at every point in the program.

We illustrate, with the code example in Figure 5.1, how a false positive can occur. In this example,
static analysis calculates that the set of possible values for x are {6,3} and the set of possible values
for y are {3,0}. Static analysis does not know that the combination of values where x and y are both



34 Static Program Analysis

equal to 3 is impossible, so it issues a false positive error about a possible divide-by-zero error on
line 4.

1 #include <stdio.h>
2
3 double carelessOp(int x, int y){
4 return 1/ (x−y);
5 }
6
7 int main(int argc, char **argv) {
8 int x,y;
9 if (argc > 3) {

10 x = 6;
11 y = 3;
12 } else {
13 x = 3;
14 y = 0;
15 }
16 printf("%f\n", carelessOp(x,y));
17 return 0;
18 }

Figure 5.1: Example of code highlighting “Division by 0” warnings

False negative False negative errors, also known as type II errors, are real bugs that are missed by
the static analysis.

Bug finding tools can be designed towards soundness. In this case, the analysis is performed to
always underestimate possible program behaviors so as to never report a false positive bugs. However,
it might miss some real bugs. The analysis may thus report fewer bugs than the ones actually contained
in the target program. A trivial example of analysis that aims for soundness is the case where the tool
does not report any bugs when analyzing any program.

Table 5.1 summarizes the different possibilities of analysis outcomes at any point of the program.

Tool did find the bug Tool did not find the bug

A bug exists OK False negative

A bug does not exist False positive OK

Table 5.1: Combinations between analysis results and reality

There are however practical issues involved with the use of static analysis tools. Given a program
with 100 bugs, a static analysis aiming for completeness may find all those 100 bugs while issuing
1,000,000 bug reports. Another analysis aiming for soundness would then find 25 bugs while issuing
only 50 bug reports. Many approaches work with the assumption that using a bug finding tool must be
a productive use of developer’s time and thus aim at fewer false positives. In critical settings, however,
missing bugs can be damaging.

Pursuing the right Trade-off

Finding the right trade-off between the requirement for completeness to ensure execution safety of
programs and the need for soundness to ease debugging tasks is essential. Thus, a static analysis for
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bug finding processes does not need to be consistent in its approximations: current approaches are
neither complete nor sound. Current approaches allow the analysis to be flexible in its estimation of
likely program behaviors, to allow it to be, in general, more precise in the findings.

Nonetheless, it is important to allow static analysis tool users to have more control on the cursor
between completeness and soundness. Most static analysis approaches, which aim at being scalable,
fail to include this usability requirement. Coccinelle, thanks to its specification language, allows
to write specifications, called semantic matches, that can be easily tailored so as to eliminate false
positives or catch more potential bugs.

5.2 Coccinelle

Coccinelle was originally designed to document and automate collateral evolutions in the Linux kernel
source code [PLHM08]. It is now used in various code bases as a tool performing control-flow-based
program searches and transformations in C code [BDH+09]. Coccinelle is built on an approach where
the user guides the inference process using patterns of code that reflect the user’s understanding of
the conventions and design of the target software system [LBP+09]. Static analysis by Coccinelle
is specified using control-flow sensitive concrete syntax matching rules. Coccinelle provides a lan-
guage, SmPL1, for specifying search and transformations. It also includes a transformation engine for
performing the specified searches and transformations.

In this thesis, we use Coccinelle for writing only semantic matches which are used for code search-
ing. Program transformations which are used for bug fixes are not discussed in this document. We
present SmPL in terms of simple semantic matches for detecting bad usage protocols of API func-
tions. We furthermore discuss how inter-procedural analysis, which is not integrated into Coccinelle,
can be achieved.

5.2.1 Samples of SmPL

SmPL specifications are based on pattern matching, but can contain OCaml or Python code, to be able
to perform arbitrary computations. In this section, we describe in details semantic match writing and
some of SmPL features that are leveraged in the scope of this thesis work.

The semantic match of Figure 5.2 detects cases where the implementation of a function deref-
erences unsafely the pointer value of a parameter of this function. Such a dereference is potentially
dangerous in kernel code as if the pointer value is invalid (NULL or Error pointer), then the unsafe
dereference will crash the kernel. The semantic match consists of two rules: the first (lines 1-15) is
named unsafe_dereference and is written in SmPL, and the second (lines 20-30) is written using
the SmPL interface to Ocaml. Each rule begins with the declaration of a collection of metavariables
and then follows with either a C-code-like pattern specifying a match in the case of a SmPL rule or an
ordinary Ocaml code.

The rule unsafe_dereference defines eight metavariables (lines 2-6): T (type) which represents
any data type, p, which represents an arbitrary position in the source program, new_val, which repre-
sents an arbitrary expression, fn (function name), param (parameter name) and fld (data structure field
name), which represents arbitrary identifiers, and params_prec (preceding parameters names) and n

(number of parameters), which represents arbitrary list of parameters and their number. Metavari-
ables are bounded by matching the code pattern against the C source code. For example, the pattern
fragment on line 8 will cause fn to be bounded to the name of a function in its definition, and cause

1Semantic Patch Language
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1 @unsafe dereference exists@
2 type T;
3 position p;
4 expression new val;
5 identifier fn, param, fld;
6 parameter list [n] params prec;
7 @@
8 fn(params prec, T *param, . . .){
9 . . . when != param = new val

10 when != param == NULL
11 when != param != NULL
12 when != IS ERR(param)
13 param−>fld@p
14 . . . when any
15 }

16 // Ocaml code for printing information on
17 // the unsafe dereference detected with the
18 // semantic match rule <unsafe dereference>
19 // Print function, filename and linenumber
20 @script:ocaml@
21 fn << unsafe dereference.fn;
22 t << unsafe dereference.T;
23 n << unsafe dereference.number;
24 p << unsafe dereference.p;
25 @@
26 let p = List.hd p in
27 let file = p .Coccilib.file in
28 let line = p .Coccilib.line in
29 Printf.printf "FUNCTION [%s] - PARAM: %s (%i)

30 FILE: %s - LINE:%i\n" fn t n file line

Figure 5.2: A semantic match to search and report unsafe dereferences of function parameters

param to be bounded to any pointer parameter name and params_prec to the list of parameters that
precede it. The notation @p binds the position variable p to information about the position of the
match of the preceding token. Once bounded, a metavariable must maintain the same value within the
current control-flow path; thus, for example, the occurrences of param on lines 8-13 must all match
the same expression. The code pattern (lines 8-15) then consists of essentially C code, mixed with a
few operators to raise the level of abstraction so that a single semantic match can apply to many code
sites.

Sequences The main abstraction operator provided by SmPL is ‘...’, representing a sequence of
terms. In line 8,‘...’ represents the remaining parameters of a function after a given parameter
is matched; in line 9, ‘...’ represents the sequence of statements reachable from the begin of the
definition of a function along any control-flow path. By default2, such a sequence is quantified over
all paths (e.g., over all branches of a conditional), but the annotation exists next to the rule name
indicates that for this rule, there need be only one. It is also possible to restrict the kinds of sequences
that ‘...’ can match using the keyword when. Lines 9-12 use when to indicate that there should be
no reassignment of param nor any check on the validity of the param pointer value before reaching
the dereference that consists in accessing a field fld in the corresponding data structure.

Figure 5.3 shows an example of C function definition code where a parameter is unsafely deref-
erence in one possible execution path. A SmPL rule only applies when it matches the code com-
pletely. The rule unsafe_dereference matches the parameter of type struct person * on line 1 and
the dereference on line 6 as it exists a control-flow path where the validity of pers is not checked. The
metavariable fn is bound to the identifier get_age, and param is bound to pers. The metavariable p is
bound to various information about the position of the dereference, such as the file name, line number,
and so on.

Inheritance A script rule does not match against the source code, but instead inherits metavari-
ables from other rules and performs some processing on their values [Stu08]. We use Ocaml rules
in this work to print information on matched code patterns. In the example of Figure 5.2, the Ocaml
rule inherits, among other metavariables, the identifier metavariable fn (line 21) from the rule un-

safe_dereference representing the name of the function matched, and the position metavariable

2This default behavior can also be explicitly stated using the forall annotation
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1 int get age(int alive, struct person *pers, char *context){
2 int age=0;
3 if (alive == 1 && pers != NULL)
4 age=pers−>age death − pers−>age;
5 else
6 age=pers−>age
7 return age;
8 }

Figure 5.3: Example of C function code including an unsafe dereference

p (line 24) from the rule unsafe_dereference holding the position of the unsafe dereference. The
Ocaml rule prints information on this dereference, including the function name, the relevant parameter
number and its number, the file name and the line number on which the dereference occurred.

Disjunctions and Nests A semantic match can consist of multiple rules, each of which can inherit
metavariables from any previous ones. A given rule is applied once for each possible set of values of
the inherited metavariables. Besides the ‘...’, SmPL provides disjunctions, (pat1 | ... | patn), and
nests, < ... pat ... >. A disjunction matches any of the patterns pat1 through patn and is used in
the semantic match of Figure 5.4 to consider the two kinds of pointers representing error values that
can be returned by a function.

1 @return error exists@
2 position p; identifier virtual.fn;
3 expression *E; expression E0;
4 @@
5 fn (. . .) {
6 . . . when any
7 ( return@p NULL; | return@p ERR PTR (. . .); )
8 }

Figure 5.4: A semantic match to report all functions that may return an invalid pointer value

A nest < ... pat ... > in SmPL matches a sequence of terms, like ‘...’. However, addition-
ally, it can match zero or more occurrences of pat within the matched sequence. Another form of
nest exists for matching one or more occurrences of pat. By analogy to the + operator of regular
expressions, this form is denoted < +... pat ...+ >.

We have presented these features of Coccinelle to provide a hint of the power that it gives to
developers looking to perform a static analysis where they need much control on the writing of the
specifications and of how the analysis will be performed across possible control-flow paths. Fur-
thermore, the SmPL language allows a user to easily interject his understanding of the code struc-
ture, as well as a project coding conventions, into the bug finding process. This flexibility that
SmPL offers to constrain the searches more or less loosely along the control-flow paths, lets the
user have control on the potential false positives that a static analysis will yield. The Coccinelle
tool has been used in various works to automate collateral evolutions [PLHM08], find and document
bugs [Stu08, LBP+09, PLM10, LLH+10], support code transformations [Bis10], etc. In this thesis
we leverage the capabilities of Coccinelle to search, categorize and document safety holes in kernel
APIs.
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5.2.2 Interprocedural analysis

A major caveat in the implementation of Coccinelle is that it does not support interprocedural analysis.
However, this kind of analysis, which consists of gathering information across multiple procedures of
a program, is important to identify bugs and API usage protocols. Indeed, by extending the scope of
control-flow analysis across procedure boundaries, interprocedural analysis accounts for all issues that
may span across multiple function definitions or across the entire program. To this end, the analysis
incorporates the effects of procedure calls in the calling contexts, and the effects of calling contexts
in the called procedures. There is therefore a need to find a workaround to perform thorough static
analysis (intra and interprocedurally), while benefiting from the power and flexibility of SmPL.

Since version 0.2.5, Coccinelle has supported iteration of a set of rules over a set of files, which
can be used to write specifications for an interprocedural analysis. In this case, the tool user is respon-
sible for integrating the need for interprocedural analysis by specifying which rules must be re-used
in iterations over a set of files over which they have complete control. Figure 5.5 shows a semantic
match that extends the semantic match of Figure 5.2 by searching for functions that, instead of deref-
erencing unsafely their pointer parameters, forward them to internal routines that may dereference
them unsafely. The rule parameter_forward matches (line 13) the name of the internal function
and the number of the parameter that is forwarded. The Ocaml script rule (lines 17-32) is then in
charge of scheduling this function for a later analysis by calling a function implemented by the user to
handle such interprocedural analysis (line 32). A virtual identifier (line 20), through which users can
specialize the analysis, is used to contain the source code directory where the interprocedural analysis
must search for the implementation of the internal function.

Figure 5.6 illustrates how Coccinelle allows iterations to be systematically performed. The Ocaml
initialize rule contains code that is loaded once before any matching is performed on any SmPL
rule for any program source file. In this function, we define two functions that will be called by
the different rules. The first function, interprocedural_analysis (lines 5-17), is the one that actually
registers the iteration to be performed after setting a few values for the Coccinelle search engine. In the
second function, add_for_iteration (lines 19-24), which is called after a match is found (Figure 5.5),
the engine continues with the interprocedural analysis and records the iteration level to allow the
program to terminate in large systems such as Linux, where the existence of many functions with the
same name can make the analysis run indefinitely.

Coccinelle however has limitations with regards to the lack of data flow analysis. Furthermore,
because program analyses are necessarily approximate, the Coccinelle user should understand the
limitations of the tool, and iteratively refine his semantic matches to improve the results so as to get
the fewer false positives while identifying a large instances of bugs.

5.3 Summary

In this chapter, we have explored the power and challenges of static program analysis, and define
a few notions, including false positives and false negatives, that will be regularly referred to in the
remainder of this document. Thus, in Section 5.1, we discuss some generalities about static analysis
and how it is often used to find bugs in programs or to identify API usage protocols. In section 5.2, we
introduce the Coccinelle static analysis tool and the SmPL language for specifying searches. A large
part of the implementation work of this thesis is built around the Coccinelle tool, making it necessary
to discuss its features. We also discuss how interprocedural analysis can be achieved, to work around
a Coccinelle limitation that has been pointed in previous works [LBP+09, LBP+12, PLM10].
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1 @parameter forward exists@
2 position p;
3 expression E;
4 identifier fn, param, fn in;
5 expression list [f number] args prec;
6 parameter list [h number] params prec;
7 @@
8 fn(params prec, T *param, . . .){
9 . . . when != param = E

10 when != param == NULL
11 when != param != NULL
12 when != IS ERR(param)
13 fn in@p(args prec, param, . . .)
14 . . . when any
15 }
16
17 @script:ocaml depends on parameter forward@
18 p << parameter forward.p;
19 fn << parameter forward.fn;
20 src dir << virtual.src dir;
21 fn list << virtual.fn list;
22 fn in << parameter forward.fn in;
23 n fn << parameter forward.h number;
24 n fn n << parameter forward.f number;
25 @@
26 let p = List.hd p in
27 let arg number = n fn + 1 in
28 let param number = n fn n + 1 in
29 let hazard file = p .Coccilib.file in
30 let hazard line = p .Coccilib.line in
31 let fn list = fn list ^ ’-_-’ ^ fn in
32 add for iteration src dir fn fn in fn list param number arg number hazard file hazard line

Figure 5.5: Semantic match taking into account interprocedural analysis

1 @initialize:ocaml@
2 open Str
3 open Printf
4
5 let interprocedural analysis src dir fn fn internal all fn list param number arg number filename linenumber =
6 let it = new iteration() in
7 it#set files [files];
8 it#add virtual rule Interprocedural analysis;
9 it#add virtual identifier Fn fn internal;

10 it#add virtual identifier Src dir src dir;
11 it#add virtual identifier Fn list all fn list;
12 it#add virtual identifier Hazard file filename;
13 it#add virtual identifier Hazard line (string of int linenumber);
14 it#add virtual identifier Param number (string of int param number);
15 it#add virtual identifier Fn arg number (string of int arg number);
16 it#register()
17 ;;
18
19 let add for iteration src dir fn fn internal all fn list param nbr arg nbr filename linenumber =
20 let all fns = Str.split (Str.regexp string "-_-") all fn list in
21 // (* Here, we have chosen not to go deeper than 5 internal functions *)
22 if (List.length fns < 6) then
23 interprocedural analysis src dir fn fn internal all fn list param number arg number filename linenumber
24 ;;
25

Figure 5.6: SmPL-based Ocaml script for integrating support for interprocedural analysis
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Chapter 6

Thesis Steps

“When it is obvious that the goals cannot be reached,

don’t adjust the goals, adjust the steps”

Confucius
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In Chapter 2 (p. 7), we have discussed the challenges for developing kernel-level services in the
context of monolithic operating systems, in particular with regards to the use of kernel APIs. We
have then explored in Chapter 3 (p. 17) the state-of-the-art approaches for helping developers find and
address bugs in system software, and shown the insufficiencies of the different techniques. We have
further enumerated in Chapter 4 (p. 25) different points that must be addressed to provide improved
support to kernel-level service developers. Among those points are the static analysis of program code
which usually yields too many false positives. To account for the necessity for the user to have more
control over the analysis, this thesis work builds around a more suited tool, Coccinelle, which was
presented in Chapter 5 (p. 31).

We introduce in this chapter the general steps that we have taken to propose an approach for
addressing some of the problems encountered by kernel-level service developers in early stages of
service development. We describe this approach from the identification of the various issues to the
evaluation of our solution.

6.1 Problems

In this section, we consider the practical case of developing drivers for Linux, a monolithic kernel,
where new devices are being developed every day for both consumer and industrial systems. Indeed,
about 200 new drivers have been integrated to the mainline Linux kernel per year over the last 7
years.1 In this environment, it is important to provide support for the development of new drivers.
Because the importance of Linux to device manufacturers is a fairly recent phenomenon, drivers for
new devices are often developed by engineers who are not experts in the design of the Linux kernel.

1In all the document, we use the term “the Linux kernel” to refer to the complete mainline Linux kernel source tree,
including drivers, filesystems, etc.
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To allow driver development to proceed as rapidly as possible, such engineers could benefit from the
support of a debugging interface to the OS. At a minimum, such an interface should provide a well-
defined set of entry points that fail gracefully, while leaving traces, when invoked on invalid inputs or
from an invalid execution context, and whose traces provide understandable log messages describing
the reason for any failure.

Unfortunately, Linux has many weaknesses in this regard: (1) Linux does not provide a well-
defined interface. Instead, the set of exported functions is fluid and their implementation tends to
favor efficient execution over robustness to common programming errors. This complicates the initial
driver development process, as developers have to identify the functions that are available and then
study their definitions, as well as the definitions of any other function they call, to determine how
to use them correctly. Furthermore, (2) Linux drivers run in privilege mode and their failure, which
impacts the entire kernel, are hard to diagnose because of the reliability and relevance issues of the
kernel oops reports (cf. Section 4.4) (p. 28).

The issues enumerated in this section and in previous parts of this document can also be found in
other systems, including other monolithic kernels and other software systems that are built based on
the plug-in architecture model. The various research work that we have presented in Chapter 3 (p. 17),
propose different approaches that have shown their limitations in addressing fully the challenges of
kernel software development. It therefore appears that devising a tool that aims at significantly reduc-
ing the pains for early-stage driver development is still of interest to the community. We now present
the general steps that we have followed to design and implement our approach.

6.2 Approach and steps

To ease and improve debugging tasks in kernel-level service development, we propose an approach
that focuses on the interactions between a kernel-level service and the rest of the kernel. We propose
a mixed approach with different steps including static analysis of source code, code instrumentation,
runtime monitoring of service behavior, and adapted tools for helping developers readily test and
recover debugging informations after failures. Figure 8.1 illustrates the general process that we define
for supporting developers of kernel-level services.

Static Analysis of 

Kernel source code

Runtime Checks &

Monitoring

Execution tests 

- Thorough analysis of kernel APIs
- Inference of API usage contracts

- Generation of debugging interfaces
- Creation of new runtime log messages

- Support for reliable code testing
- Effective debug log retrieval

Figure 6.1: Different contributions points for improving testing and debugging tasks in kernel-level
service development
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The different steps of this thesis, which will be extensively reported in the next part of the docu-
ment, are as follows:

• The first step consists in building analysis tools for identifying in kernel APIs all important
usage contracts that may be overlooked by kernel-level service developers. This supposes an
intimate knowledge of the kinds of errors that may arise in the usage of kernel interfaces and
the possibility of writing search specifications for categorizing API functions that are prone
to such errors. Our work thus starts with a study of bug reports filed for code in the Linux
mainline tree. Then, we propose a taxonomy of safety holes in the implementation of kernel
API functions based on our findings and of previous work on empirical studies on operating
system errors [CYC+01, PST+11].

• In the second step, we wish to take into account the categories of safety holes that may be
contained in API functions used by a given kernel-level service. To this end, we devise a gener-
ation process for producing debugging interfaces that will accompany the service code. In this
step we help developers by adding, during execution, extra-debugging information that might
be valuable to trace back the cause of a system failure. This step is supported by the literature
where regular log messages have been shown to be insufficient for diagnosing failures [YZP+].

• The third step consists of the testing phase of kernel-level services. We implement a runtime
support comprised of a crash-resilient logging system allowing all stored log information to
remain readily available even after a kernel crash or hang. This step is important to leverage all
the information collected in steps 1 and 2, and requires an instrumentation of the kernel memory
management, of kernel behaviors when a failure occurs, as well as of the reboot system to avoid
information lost.

• The fourth, and last, step concerns the evaluation of our approach and of the implemented tools.
We first assess, based on our findings in recent kernel versions, whether safety holes have a
significant impact on the quality of kernel-code. Then, we study whether the tools that we have
built allow to cover a large set of safety hole-related failures. We furthermore investigate how
the log information obtained with our approach compares to the kernel oops report. Finally, we
evaluate the performance penalty that our approach introduces in the execution of kernel-level
services.

The structure of the remainder of this document follows the steps thus introduced. Before intro-
ducing the Diagnosys approach, we report on the study that we have conducted to characterize safety
holes (cf. Chapter 7 (p. 47). We detail the Diagnosys approach in Chapter 8 (p. 8 and describe debug-
ging replay scenarios with Diagnosys in Chapter 9 (p. 71). Assessment of the Diagnosys approach
is proposed in Chapters 10 (p. 77) and 11 (p. 83). Chapter 12 concludes this document, followed by
some annexes on the Diagnosys implementation.
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Chapter 7

Characterization of Safety Holes

“If debugging is the process of removing software bugs,

then programming must be the process of putting them in.”

Edsger Dijkstra
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In kernel programming, we consider a safety hole to be a fragment of kernel code that can
cause the kernel to crash or hang if the code is executed in a context that does not respect some
implicit preconditions.

In this chapter, we report on our study of the characterization of safety holes in kernel code. We
have first investigated bug fixes reported in kernel logs to identify bugs that relate to the misuse of
API functions. We restrict the set of locations of operations that cause a kernel crash or hang to those
that are reachable from an exported function. We describe in Section 7.1 a few examples of such
programming errors. We then discuss in Section 7.2 the methodology for characterizing safety holes
in kernel APIs and propose a taxonomy.

7.1 Examples of safety holes

The Linux kernel does not define a precise internal API. Thus, in identifying safety holes, we focus on
the set of functions that are made available to dynamically loadable kernel modules. Such functions
are exported using either EXPORT_SYMBOL or EXPORT_SYMBOL_GPL. In early stages of kernel
code programming, developers resort to dynamically loadable kernel modules as a convenient means

47
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to develop new services. Indeed, they allow the service to be loaded into and removed from a running
kernel for testing new service versions. In the remainder of this document, kernel exported functions

are considered as the API functions.
To understand the challenges posed by safety holes, we consider in this section some typical

examples in Linux kernel internal API functions and the problems that they have caused, as reflected
by Linux patches. These examples involve unchecked parameters, error handling strategies, critical
sections and interrupt management.

7.1.1 API function parameters

An unchecked parameter safety hole occurs when the value of a parameter of an exported kernel
function can trigger a dereference of an invalid pointer, either the parameter itself or another value
derived from it. Since kernel code runs in a single protection domain, dereferencing an invalid pointer
will crash the entire system. Yet, many exported kernel functions do not check their parameters, for
efficiency reasons, because the in-kernel call sites already ensure that the corresponding arguments are
valid pointers. For example, in Linux kernel 2.6.32, over 8,000 parameter values from 7,000 (60%) of
API functions are dereferenced without any checks. Nonetheless, service developers can assume that
these checks are performed or they simply forget to ensure that arguments to such functions are valid.

In-tree code bugs. In the simplest case, the definition of an exported function directly dereferences
an unchecked parameter. Because any crash incurred by such a dereference occurs in the function
called directly by the service code, it should be easy for a developer to track down the source of the
problem. Figure 7.1(a) shows an excerpt of the definition of the exported function skb_put, which
dereferences its first argument without first checking its value. Many kernel functions are written
in this way, assuming that all arguments are valid. This code represents a safety hole, because the
dereference is invalid if the corresponding argument is NULL. Such a fault occurred in Linux 2.6.18
in the file drivers/net/forcedepth.c. In the function nv_loopback_test, skb_put is called with
its skb argument being the result of calling dev_alloc_skb, which can be NULL. The fix, as
implemented by the patch shown in Figure 7.1(b), is to avoid calling skb_put in this case. skb_put
remains unchanged.

1 unsigned char *skb put(struct sk buff *skb, . . .)
2 { unsigned char *tmp = skb tail pointer(skb);
3 SKB LINEAR ASSERT(skb);
4 skb−>tail += len; . . .
5 }

a) Excerpt of the definition of skb_put

1 commit 46798c897e235e71e1e9c46a5e6e9adfffd8b85d

2 tx skb = dev alloc skb(pkt len);
3 + if (!tx skb)
4 + { . . . goto out; }
5 pkt data = skb put(tx skb, pkt len);

b) Excerpt of the bug fix patch

Figure 7.1: Bug fix of the usage of skb_put

It may also occur that an exported function forwards an unchecked parameter to another, possibly
non-exported, function that then dereferences an unchecked pointer argument. In that case the safety
hole is interprocedural and the danger that it poses may be more difficult to spot. For example, the
exported function kmap, which takes as argument a single pointer-typed value, does not dereference
its parameter directly. Instead, kmap forwards it via the PageHighMem macro (Figure 7.2(a), line 5)
to the page_zone function, which in turn forwards the pointer, again without ensuring its validity,
to the function page_to_nid. The function page_to_nid then dereferences its parameter in line 5
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(Figure 7.2(b)). Because the definitions of the various functions may be dispersed in different kernel
files and directories, tracing a dereference bug to its origin can be tedious.

1 // arch/x86/mm/highmem 32.c
2 void *kmap(struct page *page)
3 { might sleep();
4 if ( !PageHighMem(page)) return page address(page);
5 return kmap high(page);
6 }. . . EXPORT SYMBOL(kmap);

a) The API function forwards a parameter

1 // include/linux/mm.h
2 static inline int page to nid(struct page *page)
3 {
4 return ( page–>flags >> NODES PGSHIFT)
5 & NODES MASK;
6 }

b) An internal function dereferences the forwarded parameter

Figure 7.2: The page_to_nid internal function unsafely dereferences the parameter value of the ex-
ported function kmap

Figure 7.3 shows a fragment of in-kernel code that calls kmap. In this code, the argument to kmap

is page, which is the unchecked result to a previous call to read_mapping_page. read_mapping_page,
however, can return an error value constructed by the function ERR_PTR,1 and kmap does not check
for such an argument. Instead, kmap dereferences its argument untested, which, on an ERR_PTR

value would cause a kernel crash. This bug was found and fixed in Linux 2.6.28.

1 commit 649f1ee6c705aab644035a7998d7b574193a598a

2 int hfsplus block allocate(. . .) { . . .
3 page = read mapping page(. . .);
4 + if (IS ERR(page)) { start = size; goto out; }
5 pptr = kmap(page); . . .
6 }

Figure 7.3: An incorrect use of an exported function and the associated fix patch

Finally, we have observed that a value derived from a parameter of an exported function may
determine the return value of some other function (possibly non-exported), and that return value is
dereferenced without being checked. In this case, the dereference bug is triggered on a variable
that appears to be decorrelated from the parameters of the function. Bugs deriving from unchecked
parameter safety holes in this category are thus harder to debug.

The exported function uart_resume_port (Figure 7.4(a)) passes an unchecked field of the uport

parameter to the function device_find_child (Figure 7.4(a), line 4). When device_find_child receives
an invalid pointer as its first argument, it returns an invalid pointer, NULL, as the result (Figure 7.4(b),
line 4). This result is then dereferenced after the call return in device_may_wakeup (Figure 7.4(c),
line 2). If this result is NULL, the dereference will crash the kernel. In this case, the value that causes
the crash is not that of a parameter to an exported function itself, but is derived from the value of one.

7.1.2 Error handling strategies

The Linux kernel is written in C, which, contrary to modern programming languages, does not sup-
port exceptions. As a result, a function’s return value is the primary indicator of the outcome of its
execution. Nevertheless, developers often fail to check or even record return values. The annotation
__must_check, which expands to gcc’s warn_unused_result attribute, is used occasionally
on Linux function definitions to inform the compiler that the result of the function must be stored,

1In the rest of this paper, we refer to a value constructed with ERR_PTR as just “ERR_PTR”
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1 // drivers/serial/serial core.c
2 int uart resume port(. . ., struct uart port *uport)
3 { . . . // No check of ’uport->dev’ here
4 tty dev = device find child(uport−>dev, . . .);
5 if (. . . && device may wakeup(tty dev)) . . .
6 } . . . EXPORT SYMBOL(uart resume port);

a) A usage of a data variable
is questioned

1 // drivers/base/core.c
2 struct device *device find child
3 (struct device *parent, . . .)
4 {
5 . . . if (!parent) return NULL;. . .
6 }

b) The routine fails if the
pointer parameter is invalid

1 // include/linux/pm wakeup.h
2 inline int device may wakeup
3 (struct device *dev)
4 { return dev−>power.can wakeup
5 && . . .
6 }

c) Dereferencing a NULL pointer
dev crashes the kernel

Figure 7.4: A dereference bug will occur in the execution of uart_resume_port if its parameter uport

is not correctly initialized

with the intention that the result will be checked, although gcc does not currently enforce the latter.
Nevertheless, even though in e.g., Linux 2.6.32, there are almost 4000 exported functions that return
an error code, we have found that in the last 10 Linux versions, only about 100 exported functions in
each version are marked as __must_check. In addition, exported functions have different conven-
tions of error values that can cause dangerous misinterpretations. For example, while most functions
return a negative error code, some return a positive error code. Driver programmers may thus fail
to appropriately handle a failure, especially when finding out the type of error code is not obvious.
Indeed, exported functions can simply forward the return values of internal API functions requiring
iterative analysis to detect other possible return values.

In-tree code bugs. Allocation, initialization and some copy functions may fail. Yet their execution
outcome, which is usually essential for further processing, is often left unchecked, leading to bugs
that have various impacts on the OS. The copy_from/to_user exported functions, which copy a block
of data from/to user space, return the number of bytes that could not be copied. A positive return
value therefore represents an error. This convention is supposed to be widely understood by kernel
developers. Nevertheless, kernel change logs show that in each of the last 10 versions of Linux,
bug fix patches have been committed to check the return value of these exported functions properly.
Figure 7.5 shows an example of such a fix in recent code from the Linux mainline tree.

1 commit d3553a52490dcac54f45083f8fa018e26c22e947

2 static long vhost net ioctl(. . .){
3 . . .
4 − return copy to user(featurep, &features, sizeof features);
5 + if (copy to user(featurep, &features, sizeof features))
6 + return −EFAULT;
7 + return 0;
8 . . .
9 }

Figure 7.5: An incorrect use of an exported function and the associated fix patch

As another example, Figure 7.6(a) shows an excerpt of the definition of the kernel exported func-
tion open_bdev_exclusive, which returns a value constructed using the primitive ERR_PTR
when an error is detected. Dereferencing such a value will crash the kernel. Thus, this return
statement also represents a safety hole. In Linux 2.6.32, in the file fs/btrfs/volumes.c, the function
btrfs_init_new_device calls open_bdev_exclusive and compares the result to NULL

before dereferencing the value. This test, however, does not prevent a kernel crash, because an ERR_-
PTR value is different from NULL. Figure 7.6(b) shows a patch fixing the fault.
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1 // fs/block dev.c
2 struct block device *open bdev exclusive(
3 const char *path, fmode t mode, void *holder)
4 { . . .
5 return ERR PTR(error);
6 }

a) Excerpt of the definition of open_bdev_exclusive

1 commit 7f59203abeaf18bf3497b308891f95a4489810ad

2 bdev = open bdev exclusive(. . .);
3 − if (!bdev)
4 − return −EIO;
5 + if (IS ERR(bdev))
6 + return PTR ERR(bdev);

b) Excerpt of the bug fix patch

Figure 7.6: Bug fix of error handling code

7.1.3 Critical sections

While many Linux critical sections both begin and end within the body of a single function, some
span function boundaries, implying that they expect to be called within a critical section. When the
calling code fails to respect this condition, deadlock may ensue.

In-tree code bug. Between Linux 2.6.32 and 2.6.33, a bug was first introduced and then fixed in the
nouveau drm driver for nVidia R© cards, in which the ttm_bo_wait exported function was called by
the nouveau_gem_ioctl_cpu_prep without holding the bo lock. Since ttm_bo_wait attempts to release
and then re-acquire that lock, as depicted in Figure 7.7(a), a subsequent call to another function,
nouveau_bo_busy, which acquires the lock, hanged the machine. This bug was fixed by ensuring that
the bo lock is held when invoking the ttm_bo_wait API function (cf. Figure 7.7(b)).

1 // drivers/gpu/drm/ttm/ttm bo.c
2 int ttm bo wait(struct ttm buffer object *bo, . . .){ . . .
3 spin unlock(&bo−>lock);
4 driver−>sync obj unref(&tmp obj);
5 spin lock(&bo−>lock); . . .
6 }

a) Excerpt of the definition of ttm_bo_wait

1 commit f0fbe3eb5f65fe5948219f4ceac68f8a665b1fc6

2 if (req−>flags & NOUVEAU GEM CPU PREP NOBLOCK){
3 + spin lock(&nvbo−>bo.lock);
4 ret = ttm bo wait(&nvbo−>bo, false, false, no wait);
5 + spin unlock(&nvbo−>bo.lock);
6 }

b) Excerpt of the bug fix patch

Figure 7.7: Bug fix of critical section code

7.1.4 Enabling and disabling interrupts

In Linux kernel code, the implementation of a critical section often both takes a lock and disables
interrupts, to prevent a context switch or other interruption that may increase the critical section’s
duration. The interrupt state is also changed when kernel code explicitly does or does not want to
be notified of external events. While locking is a local property, interrupt state is global to a given
processor. This introduces the possibility of two types of safety holes:

i) a safety hole where an exported function unconditionally turns on interrupts, as an external
driver may assume that interrupts are turned off for the duration of the call;

ii) a safety hole where the execution of an exported function ends by turning interrupts off, as an
external driver may assume that interrupts are turned on after the call.

In-tree code bug. A bug due to the first kind of interrupt precondition safety hole has been detected
in the implementation of the Reliable Datagram Sockets (RDS) protocol which provides reliable de-
livery of datagrams over Infiniband and iWARP [BT05]. In the code for this protocol, the exported
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function set_page_dirty unconditionally turns on interrupts. This behavior implies that set_page_dirty

should not be called with interrupts turned off. To ensure this property, code has been added to the
definition of set_page_dirty to deliberately halt the system with a kernel panic when this precondition
is not respected. Figure 7.8 shows the excerpt of the fix patch.

1 commit 561c7df63e259203515509a7ad075382a42bff0c

2 + BUG ON(in interrupt());
3 set page dirty(page);

Figure 7.8: Bug-fix taking into account a safety hole related to interrupt management

7.2 Taxonomy of safety holes

The examples revisited in previous sections illustrate (1) how safety holes lead to bugs that reach the
mainline kernel and that may remain unnoticed for a long time, and (2) how they involve various
types of bugs. We now describe here how, based on this investigation, we were able to define a
methodology for recasting a type of code fault as a collection of one or more safety holes. We then
use this methodology to enumerate the kinds of safety holes considered in this thesis.

7.2.1 Methodology

As illustrated by the bug fixes in Section 7.1, some fragments of code executed by kernel API func-
tions, while themselves being correct, can provoke kernel crashes or hangs when the kernel is used
incorrectly. In the most obvious case, the service code passes the API function some bad arguments or
calls it from an inappropriate context (e.g., with a lock held or while interrupts are disabled) causing
an execution error in the core kernel: we refer to this kind of safety holes as entry safety holes. In
other cases, the kernel API function may return a value or from a context that might not meet the
expectations of the service code: we refer to this kind of safety holes as exit safety holes. Such exit

safety holes appear when, for example, the API function returns NULL rather than a pointer to a valid
region of memory, or returns with a lock held or with interrupts turned off. In these cases the crash
or hang may happen in the service code, with the API function that caused the problem no longer on
the call stack. Figure 7.9 illustrates the two families of entry and exit safety holes, by representing
where, in each case, the execution error occurs. In the figure, the box represents the definition of an
API function, while the symbol ⊥ indicates the point of crash.

entry safety hole ED
��

⊥

BC
oo⊥ exit safety hole

Figure 7.9: Schematisation of the two families of safety holes

More concretely, we observe that any bug type that involves multiple disjoint core fragments can
lead to an entry or exit safety hole. We illustrate this observation with a schema in Figure 7.10 from an
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example of bug involving a lock/unlock combination for defining a critical section. In this example,
the lock and unlock have been written correctly (i.e., the lock is followed by a corresponding unlock).
In practice however, a possible bug would be forgetting the unlock, or doing the unlock when the lock
has not taken place (e.g., characteristic of a double unlock). Based on the observation that a bug is
possible in the interaction between a (or an expected) lock and an (or an expected) unlock, we can
split this code inside an exported function in two ways to identify possible exit and entry safety holes.
Thus, if a kernel API function ends with a lock (i.e., no unlock), it implements an exit safety hole,
because the service code may miss in its implementation the corresponding unlock. Likewise, if the
API function begins with an unlock (i.e., no lock), this represents an entry safety hole, because the
service may not have previously done what is necessary to take the lock.

... exit safety hole

Lock

Bug ...

Unlock

... entry safety hole

Figure 7.10: Schematisation of safety hole code fragments in a Lock bug

This simple example illustrates the methodology that will be used to enumerate all categories of
safety holes in our taxonomy. This taxonomy will then drive the implementation of Diagnosys, our
tool for supporting developers of kernel services to readily deal with kernel faults that occur at the
boundary between their services and the core kernel.

7.2.2 Taxonomy

The methodology depicted above shows that, broadly, we can consider any bug type involving multiple
fragments of code (one of which being inside an API function), and use them to derive definitions of
entry and exit safety holes. To propose our taxonomy we refer to the literature and consider the set
of bug types that were categorized by Chou et al [CYC+01] and later by Palix et al. [PST+11] in
empirical studies of faults in Linux code, respectively in 2001 and 2011. Based on this faults, we
derive the kinds of safety holes identified.

A safety hole being a fragment of code inside the definition of an API function, it belongs to an
execution path. We distinguish between executions paths that are possibly followed during a call to the
API function, from execution paths that are certainly followed. Figure 7.2.2 illustrates a combination
of executions paths from an entry point (noted as ), on call of an API function, to any of the different
potential exit points (noted as ). From this graph, we observe that the execution paths pass through
different program points (noted as ) and are split at some of these points (noted as ). A safety
hole-related crash point may be located at program points that are reached by all execution paths. We
refer to such a safety hole as a certain safety hole, indicating that when using the API function, the
service code must account the presence of this safety hole. Other safety hole crash points however are
located at program points that are placed in execution paths that may not be followed by the execution
of the API function. Such safety holes are referred to as possible safety holes since calling the API
function may not involve the execution of the relevant code fragments. The illustration of Figure 7.2.2
describes the common cases of entry safety holes indicating that these can be possible or certain. Exit
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certain

possible

Figure 7.11: Localization of possible and certain safety holes in the execution paths of an API function

safety holes, on the other hand, are always only possible since once the exported function has returned,
there is no way of knowing, based on the study of kernel code, what will happen in the execution of
the service code.

We now discuss the categorization of safety holes following the categories of faults established
through empirical studies. We have already described and presented this categorization of common
Faults in Section 3.2 (p. 19). For some of the categories, however, we have not been able to derive
safety holes for various reasons that are further developed in the following:

• NullRef (A pointer is dereferenced and then tested for being NULL.) seems meaningless in the
context of safety hole search. Indeed, on one hand, if the dereference fails, then the machine has
crashed. On the other hand, if the dereference succeeds, this value will not cause the machine
to crash.

• Float (Do not use floating point in the kernel.) is a purely local property. Thus, it is not relevant
to the interface between a service code and the kernel exported functions.

• Real (Do not leak memory by updating pointers with potentially NULL realloc return values.),
in practice, is also a purely local property.

For the remaining categories of faults, we develop in Table 7.1, the different derived kinds of safety
holes. For each fault type, we split the possible bug code fragment into two parts and characterize the
part that may be located inside the implementation of an API functions. Thus, for each fault type, we
provide a summarized definition of the possible entry and exit safety holes that an API function, f , can
contain in its definition. The terminology of faults used in Table 7.1 is the same as proposed by Palix
et al. [PST+11] based on the seminal categorization by Chou et al. [CYC+01]. We note in this ter-
minology, that a few categories have been augmented to take into account new kernel functionalities.
For example, in kernel 2.6, ERR_PTR, along NULL, is widely used as an invalid pointer indicating
errors. Thus, in the Null and INull categories, we add ERR_PTR as an invalid pointer. The same
reasoning goes for LockIntr which was added to account for new primitives, such as spinlock_irq, that
manipulate simultaneously locks and interrupts. For more details, see Appendix A (p. 93).
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Block To avoid deadlock, do not call blocking functions with interrupts disabled or a spinlock held.

Entry safety hole f possibly/certainly calls a blocking function
Exit safety hole f returns after disabling interrupts or while holding a lock

Null Check potentially NULL pointers returned from routines.

Entry safety hole f possibly/certainly dereferences an argument without checking its validity
Exit safety hole f returns NULL/ERR_PTR pointer

Var Do not allocate large stack variables (> 1K) on the fixed-size kernel stack.

Entry safety hole f possibly/certainly allocates an array whose size depends on a parameter
Exit safety hole f returns a large value

INull Do not make inconsistent assumptions about whether a pointer is NULL/ERR_PTR.

Entry safety hole f possibly/certainly dereferences an argument without checking its validity
Exit safety hole f returns NULL/ERR_PTR pointer

Range Always check bounds of array indices and loop bounds derived from user data.

Entry safety hole f possibly/certainly uses an unchecked parameter to compute an array index
Exit safety hole f returns value obtained from user level.

Lock Release acquired locks; Do not double-acquire locks

LockIntr Entry safety hole f possibly/certainly acquires a lock derived from a parameter
Exit safety hole f returns without releasing an acquired lock

Intr Restore disabled interrupts.

LockIntr Entry safety hole f possibly/certainly calls a blocking function
Exit safety hole f returns with interrupts disabled

Free Do not use freed memory.

Entry safety hole f possibly/certainly dereferences a pointer-typed parameter value
Exit safety hole f frees memory derived from a parameter

Param Do not dereference user pointers.

Entry safety hole f possibly/certainly dereferences a pointer-typed parameter
Exit safety hole f returns a pointer-typed value obtained from user level

Size Allocate enough memory to hold the type for which you are allocating.

Entry safety hole f possibly/certainly allocates memory of a size depending on a parameter
Exit safety hole f returns an integer value

Table 7.1: Recasting Common faults in Linux into safety hole categories. f refers to an API function

7.3 Summary

In this chapter, we have described an investigation of Linux mainline tree code bugs and their fixes to
provide an insight of the prevalence of safety holes in kernel code. This investigation has allowed us
to devise a methodology for recasting any operating system common fault type into safety hole kinds
involving API functions. Based on the proposed methodology, we have defined a taxonomy of safety
holes that corresponds to the categories of faults discussed in empirical studies on operating system
errors. We refer to this taxonomy in the remainder of this document where we will further detail the
search for safety hole instances in kernel code and how to use these results to support kernel-level
service development.
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After having characterized the safety holes contained in the implementation of kernel API func-
tions, we propose an approach for helping Linux kernel-level service developers to address efficiently
the problems that such safety holes may cause during testing and debugging phases of their services.



Chapter 8

Diagnosys

“There are two ways of constructing a software design:

One way is to make it so simple that there are obviously no deficiencies,

and the other way is to make it so complicated that there are no obvious deficiencies.

The first method is far more difficult.”

C.A.R Hoare
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The goal of Diagnosys is to improve the quality of the information available when a crash or hang
occurs. To this end, we focus on the various opportunities of crashes and hangs that result from safety
holes in kernel API functions. As previously discussed, the motivation for such a focus is threefold:
(i) kernel API functions are somewhat an “unknown territory” for kernel-level service developers;
(ii) API functions are entry points to the kernel code that are not safe; (iii) limiting the focus at the
boundary between service code and core kernel code is an efficient way to improve the reliability of
kernel code testing.

Figure 8.1 illustrates the steps in using the Diagnosys approach, which involves three phases:

1. Identification of safety holes in kernel API functions and inference of the associated usage
preconditions, using the static analysis tool SHAna. This phase is carried out only once by a
kernel maintainer, for each new version of the mainline Linux kernel. Indeed, although each
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Figure 8.1: The steps in using Diagnosys

Linux distribution may add some specific patches to the Linux kernel, these are unlikely to affect
the kernel API. Furthermore, a service that should ultimately be integrated into the mainline
kernel must be developed against the API supported by that kernel.

2. Automatic generation of a debugging interface using DIGen based on the inferred precondi-
tions. This phase is carried out by each service developer for each specific service under devel-
opment.

3. Testing service code with the support of the debugging interface and of the CRELSys crash
resilient logging system. This phase is also carried out by each service developer who would
like to use Diagnosys.

In this chapter we succinctly describe the design of SHAna, DIGen and CRELSys. Some im-
plementation details are discussed and others are included in the appendix section of this document.
We start by discussing the identification of safety holes and the inference of usage preconditions in
Section 8.1. Section 8.2 elaborates on the generation process of debugging interfaces. Finally Sec-
tion 8.3 presents a short overview of the runtime support that is included in Diagnosys for ensuring
the preservation of runtime logs.

8.1 SHAna: Safety Hole Analyzer

SHAna is a collection of tools built on top of Coccinelle for identifying safety holes in kernel API
functions and inferring their usage preconditions. Figure 8.2 shows the inputs and output of the
precondition inference process that is run through SHAna.

Based on the safety hole descriptions, SHAna first searches the kernel code for occurrences of
safety holes in the implementations of API functions and then computes the preconditions that must
be satisfied for these safety holes to cause a kernel crash or hang. The analysis focuses on unsafe
operations that occur in code that is in, or reachable from, an API function. For each such occurrence,
a backward analysis amounting to a simple version of Hoare logic [HR00] produces the weakest
precondition to be satisfied such that the safety hole may cause a crash. These weakest precondition is
computed on entry to the function, for entry safety holes, and on exit from the function, for exit safety
holes.
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8.1.1 Theory of precondition inference

Hoare logic, also known as Floyd-Hoare logic as it was based on an idea of Robert Floyd, is a formal
system proposed by Hoare [Hoa69] for reasoning about the correctness of computer programs. In
particular this logic introduces the Hoare triple to describe how the execution of a program code
changes the state of the computation.

A Hoare triple (8.1) consists of two assertions, the precondition P and the postcondition Q, and a
program S. The predicate logic states that : If the execution starts in a state where the precondition P

is met, at the end of the program execution the postcondition is realized. Consider the simple Hoare
triple example (8.2) where the precondition x = y is true before the execution of the program. Once
the program is executed, the post-condition is true as the value of y has not been changed, and is still
equal to the initial value of x. Thus, at the end of execution, we have x = xinitial + 3 ⇔ x = y + 3.

{P}S{Q} (8.1)

{x = y}x := x+ 3{x = y + 3} (8.2)

This logic can be used to establish function specifications, i.e., the contract between the implemen-
tation of a core API function and the client plug-in (the service code). In this case, the precondition
represents the predicate that describes the condition that the API function relies on for correct op-
eration. The postcondition on the other hand describes the condition that the function establishes
after correctly running. If some service code calls the API function after fulfilling the function’s pre-
condition, the function will execute to completion and when it terminates, the postcondition will be
true.

Starting with a post-assertion, i.e., given a postcondition, the weakest precondition wp(S,Q) of S
with respect to Q is defined by Equation 8.3 where the program is allowed to be invoked in the most
general condition P that would still lead to the realization of the postcondition Q.

P = wp(S,Q) ⇔ {P}S{Q} ∧ ∀P ′,{P ′}S{Q} ⇒ (P ′ ⇒ P ) (8.3)

Using a simplified version of this logic we infer the weakest preconditions of API functions in
presence of the different kinds of safety holes. For ease of prototyping, we use the program matching
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tool Coccinelle [PLHM08] to implement an interprocedural static analyzer that finds the safety holes
and constructs the preconditions.

In our search analysis, the postcondition is satisfied when the execution of the API function com-
pletes without leading to an execution error for entry safety holes and without returning invalid values
or leaving a context that is unsafe for the execution of service code. As previously defined in Sec-
tion 7.2 (p. 52), a precondition associated with an entry safety hole is classified as :

• certain, if satisfaction of the precondition is guaranteed to result in a crash or hang within the
execution of the kernel API function

• possible, if satisfaction of the precondition may cause a crash or hang on at least one possible
execution path

The preconditions of exit safety holes are always classified as possible. The result of SHAna is a list
mapping each kernel API function identified as containing safety holes to the associated preconditions.

8.1.2 Analysis process

The search analysis for identifying safety holes and inferring their preconditions starts from the def-
inition of an API function, which in our case is a function recognized as one that is declared using
EXPORT_SYMBOL or EXPORT_SYMBOL_GPL. We provide in Table 8.1 a complete summary of the
description of the safety holes for all categories of faults. The table also indicates for each category
of safety hole, whether intraprocedural, interprocedural or no analysis is used.

In a few cases, we do not collect safety holes, because the condition seems too common and an
error seems relatively unlikely. For example, according to Table 8.1, collecting Free entry safety holes
would entail collecting every function that dereferences a pointer argument, as there is no way to check
whether a value has been freed. This does not seem useful in practice, and thus SHAna does not collect
safety holes in this case. In other cases however, we augment the scope of the categories of safety holes
by considering new fault kinds that may arise at the boundary of kernel API functions. For example,
the fault types considered by Chou et al. [CYC+01] and later by Palix et al. [PST+11] only include
double-locks and deadlocks in the Lock category. Nevertheless, we have seen in mainline bug fixes
that attempting to unlock a lock that has not been acquired, or that has been released (double-unlock)
is a damaging fault (cf. Section 7.1.3, p. 51). Thus, we also implement search analysis to account for
this kind of safety holes. Finally, for the Null category of safety holes, SHAna furthermore includes
unchecked dereferences of values that in some way depend on the value of an unchecked parameter,
and for which the failure caused by the dereference may be hard to diagnose by the service developer.
We have already provided an example of such cases in Section 7.1.1 (p. 48).

Intraprocedural In search scenarios that only require intraprocedural analysis, the analyzer scans
the definition of the API function to identify code fragments that represent safety holes. For example,
in searching for the various Lock and Intr entry safety holes, SHAna only looks for interrupt disabling
operations in the kernel API function itself, because interrupt state flags should not be passed from
one function to another [RC01].

Interprocedural In the case of interprocedural analysis, SHAna starts from the definition of an API
function and iteratively analyzes all called functions. For example, in searching for Null entry safety
holes, SHAna searches through both the kernel API function itself and all called functions that receive
a parameter of the kernel API function as an argument to find unchecked dereferences.
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Category Actions to avoid faults safety hole safety hole description Analysis type

Block
To avoid deadlock, do not call blocking functions entry f calls a blocking function (function referencing GFP_KERNEL) interprocedural
with interrupts disabled or a spinlock held exit f returns after disabling interrupts or while holding a lock intra/interprocedural

Null
Check potentially NULL/ERR_PTR pointers entry f dereferences an argument without checking its validity interprocedural
returned from routines exit f returns a NULL/ERR_PTR pointer interprocedural

Var
Do not allocate large stack variables (> 1K) entry f allocates an array whose size depend on a parameter intraprocedural
on the fixed-size kernel stack exit f returns a large value interprocedural

INull
Do not make inconsistent assumptions about entry f dereferences an argument without checking its validity interprocedural
whether a pointer is NULL/ERR_PTR exit f returns a NULL/ERR_PTR pointer interprocedural

Range
Always check bounds of array indices entry f uses an unchecked parameter to compute an array index intraprocedural
and loop bounds derived from user data exit f returns a value obtained from user level interprocedural

Lock Released acquired locks; do not double-acquire locks
entry f acquires a lock derived from a parameter interprocedural
exit f returns without releasing an acquired lock interprocedural

Intr Restore disabled interrupts
entry f calls a blocking function interprocedural
exit f returns with interrupts disabled intraprocedural

Free Do not use freed memory
entry f dereferences a pointer-typed parameter value none
exit f frees memory derived from a parameter interprocedural

Float Do not use floating point in the kernel These fault kinds depends on local properties and are therefore none

Real
Do not leak memory by updating pointers not relevant to the interface between a service none
with potentially NULL realloc return values and the kernel exported functions

Param Do not dereference user pointers
entry f dereferences a pointer-typed parameter none
exit f returns a pointer-typed value obtained from user level interprocedural

Size
Allocate enough memory to hold the entry f allocates memory of a size depending on a parameter intraprocedural
type for which you are allocating exit f returns an integer value none

Table 8.1: Categorization of common faults in Linux [CYC+01, PST+11]. f refers to the API function. The interprocedural and intraprocedural

qualifiers indicate whether the analysis is interprocedural or intraprocedural
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We now discuss the search strategies that we have implemented for the various categories of
safety holes in the taxonomy. Table 8.2 summarizes examples of conditions that enable the safety
holes to manifest themselves into faults. SHAna bases its analysis on such enabling conditions which
provides insights on how to derive the usage preconditions of API functions. The details provided in
the following are focused on the identification of safety holes in the implementation of kernel API
functions.

Category Entry safety hole Enabling condition

Block f calls a blocking function service code takes a lock or disables interrupts

Null f dereferences an argument without checking its validity service code passes a NULL argument to f

Var f allocates an array whose size depends on a parameter service code calls f with a large value for that parameter

INull f dereferences an argument without checking its validity service code passes a NULL argument to f

Range f uses an unchecked parameter to compute an array index service code obtains a value from user level

Lock f acquires lock derived from a parameter service code re-acquires a lock from an argument to f

Intr f disables interrupts service code disables interrupts

Free f dereferences a pointer-typed parameter value service code calls or has called a function that may free a value

Param f dereferences a pointer-typed parameter value service code forwards a value obtained from user level

Size f allocates memory of a size depending on a parameter service code has obtained a value form user level

Table 8.2: Enabling conditions for triggering API function safety holes

Block: To identify API functions that contain Block entry safety holes, SHAna performs an inter-
procedural analysis, searching for functions that may block. In this case, we focus on the common
case of functions that are allowed to block during memory allocations. We recognize such functions
as those that contain a function call having GFP_KERNEL as an argument as this argument allows the
basic kernel memory functions to block, waiting for more memory to become available. An extract of
analysis specification in SmPL is provided in Appendix B.1 (p. 95).

API functions that contain a Block exit safety hole are collected along with the collection of Lock-

/Intr/LockIntr entry safety holes, which is described below. Along this description will be mentioned
a set of relevant functions commonly used for locking (See Appendix A, p. 93).

IsNull/Null: To identify API functions with IsNull/Null safety holes, SHAna performs an interpro-
cedural analysis that detects unsafe dereferences of pointer-typed parameters. The search identifies
dereferences that are performed prior to any validity check in all, or one, of the control-flow paths. We
have also augmented this search strategy by detecting, in the implementation of API functions, un-
safe dereferences of other pointer values whose validity depends on the validity of an API function’s
unchecked parameter. A search specification in SmPL corresponding to that sub-categories of safety
holes, and for the most obvious INull safety hole, can be found in Appendix B.2 (p. 95).

To collect API functions that exhibit an IsNull/Null exit safety hole, SHAna interprocedurally
searches for functions that may return an invalid pointer. We recognize both NULL and values con-
structed by the function ERR_PTR1 as invalid pointers. Appendix B.2 (p. 95) provides an example of
semantic match for identifying such safety holes in API functions.

Var: To identify API functions that implement Var entry safety holes, SHAna performs an intraproce-
dural analysis for detecting operations of array allocations with sizes depending on a parameter value,
whether it is a parameter integer value or an integer derived from a parameter. Appendix B.3 (p. 100)
provides an example of search specification matching this safety hole profile.

1In this document, we refer to a value constructed with ERR_PTR as just “ERR_PTR”.
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To collect API functions with a Var exit safety hole, SHAna searches for functions that return
large constant values. We parameterize SHAna to report constant integer values larger than 128.

Range: To identify API functions that exhibit Range entry safety holes, SHAna performs an intrapro-
cedural analysis for identifying code places where an API function parameter is used to compute an
array index.

To collect API functions with a Range exit safety hole, SHAna performs an interprocedural
analysis for identifying functions that return a value obtained from user-level. The search strategy
relies on a number of Linux kernel primitive, listed in Appendix A (p. 93), that give access to user
data. We provide an example of semantic match leveraging those primitives in Appendix B.4 (p. 101).

Lock/Intr/LockIntr: To identify API functions that implement a Lock/Intr/LockIntr entry safety
hole, SHAna performs an intraprocedural analysis, searching for functions that disable interrupts or
acquire locks that are derived from parameters. The search strategy relies on a set of commonly used
functions for locking and interrupt management listed in Appendix A (p. 93). We have furthermore
augmented this category of safety holes by identifying API functions that attempt to release locks that
they have not acquired themselves, so as to account for another type of real-world usage bug2 that
were not considered by Chou et al. Indeed, while many Linux critical sections both begin and end
within the body of a single function, some span function boundaries, implying that some functions
expect to be called within a critical section. When the calling code fails to respect this condition,
deadlock may ensue.

To collect API functions that expose a Lock/Intr/LockIntr exit safety hole, SHAna follows the
same search strategy as for Lock/Intr/LockIntr entry safety hole, relying on the same locking and
interrupt management functions.

Free: To identify API functions that exhibit a Free entry safety hole, we consider that any pointer-
value argument to an API function may refer to a freed memory, thus making any dereference of a
pointer-typed parameter a risky operation. Nonetheless, because practically all API functions deref-
erence their parameters, we do not perform a precondition inference for this sub-category.

To collect API functions that implement the Free exit safety hole, SHAna performs an interpro-
cedural analysis for identifying code places where an API function argument is passed to the kernel
memory release function kfree. Appendix B.6 (p. 105) provides an example of search specification
matching this safety hole profile.

Size: To identify API functions that exhibit a Size entry safety hole, SHAna relies on an intraprocedu-
ral analysis that searches for places where the kmalloc and kzalloc memory allocation functions
are given a size argument involving a sizeof expression defined according to an API function pa-
rameter value.

8.1.3 Certification Process

As is standard in static analysis, SHAna makes some approximations to ensure termination and scal-
ability. These approximations may result in false positives, i.e., reported safety holes that cannot
actually lead to a crash or hang. Using such false positives in the inference of API function usage
preconditions may cause two important issues:

1. inferring unnecessary usage preconditions will potentially lead to excessive checking at runtime
in the Diagnosys approach, which in turn will degrade the execution performance

2Commit: f0fbe3eb5f65fe5948219f4ceac68f8a665b1fc6



64 Diagnosys

2. false positives may also lead to the generation of runtime warnings that are actually unuseful,
and will thus clutter the debug log with messages that are not relevant to any encountered crash
or hang.

To address the problem of false positives, our approach requires that a kernel maintainer study the
inferred safety holes to discard those that represent false positives. A kernel maintainer is indeed more
knowledgeable than a novice service programmer in the internals of core kernel code. Furthermore,
the certification process that would consist of validating that the identified safety holes and the inferred
preconditions are correct is only necessary for each version of the kernel.

To reduce the workload, SHAna maintains information about safety holes across OS versions, so
that the kernel maintainer need only validate reported safety holes in those functions whose defini-
tions have changed. This information is leveraged in a utility that allows for incremental certification
between versions of the kernel.

8.2 DIGen: Debugging Interface Generator

DIGen is the counterpart of SHAna for introducing runtime checks and monitoring into the execution
of kernel-level services. The main goal of DIGen is thus to allow the creation of new log messages
that reflect the usage preconditions of kernel API functions to keep track of any violation of the
contracts by service code. To this end, DIGen relies on preconditions uncovered by static analysis
to automatically generate and integrate a debugging interface tailored to the implementation of each
service under test. This process is illustrated in Figure 8.3.

DIGen

H

Usage Preconditions 

of API functions

Service code

Service code supplemented with a 

debugging interface

(1) Identification of kernel API functions 

used in service code

(2) Generation of debugging wrappers for API 

functions with safety holes

(3) Integration of the overall debugging interface 

with the service code

Figure 8.3: The debugging interface generation process

Based on the results of SHAna, DIGen generates a debugging interface as a collection of wrapper
functions that augment the definitions of kernel API functions with the necessary checks and calls
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to logging primitives, to detect and record violations of safety hole preconditions. Ideally, the kernel
maintainer who runs SHAna would also generate a single debugging interface for the entire kernel that
could be used by all service developers. Unfortunately, many kernel source files target specific hard-
ware platforms, and thus have mutually incompatible header file dependencies, making it impossible
to compile a single debugging interface wrapping all of the kernel API functions at once. Accord-
ingly, we shift the interface generation process into the hands of the service developer, who generates
an interface specific to his service. Because the functions invoked by a single service can necessarily
be compiled together, this approach avoids all compilation difficulties, while producing a debugging
interface that is sufficient for an individual service’s needs. We now describe the generation of the
debugging interface (Section 8.2.1) and how it is integrated into a service under development (Sec-
tion 8.2.2).

8.2.1 Generating a debugging interface

The first step in the generation of a debugging interface for a given kernel-level service (e.g., a device
driver) is to determine the API functions that are actually called by the service code. A reliable way
to identify such functions is to analyze the object code of the tested kernel-level service. DIGen thus
disassembles the object code and recovers information about the symbol table entries of the compiled
loadable kernel module (.ko). Figure 8.4(a) provides an example of a Linux kernel toy module that
tests the latency of a Ftrace [Ros09] primitive. Ftrace is an in-kernel infrastructure for tracing the
internal operations of the kernel (e.g., it is meant to accurately answer questions such as “How long

it takes a process to run after it is woken?” without introducing significant performance penalties in
its tracing operations). We also provide in the Figure an excerpt of the symbol table entries obtained
from the corresponding module object code (Figure 8.4(b)).

#include <linux/init.h>
#include <linux/ftrace.h>
[. . .]
MODULE LICENSE("Dual BSD/GPL");
void testing ftrace () {

printk (KERN EMERG "Testing Ftrace\n");
int i=0;
for (i=0; i<100000; i++) {

start = rdtsc();
trace printk ("TRACE\n");
end = rdtsc ();
latency[i]=end−start;

}
}
[. . .]

static int driver init (void) {
testing ftrace (); return 0;

}
static void driver exit (void) { }
module init(driver init);
module exit(driver exit);

a) Linux toy module for testing Ftrace

1 test ftrace.ko: file format elf32−i386
2
3 SYMBOL TABLE:
4 [. . .]
5 00000000 l d mcount loc 00000000 mcount loc
6 00000000 l d versions 00000000 versions
7 00000000 l d .data 00000000 .data
8 [. . .]
9 00000000 l df *ABS* 00000000 test ftrace.c

10 00000000 l F .text 00000025 driver exit
11 00000030 l F .text 00000030 driver init
12 [. . .]
13 00000000 l O .modinfo 00000023 mod description10
14 00000023 l O .modinfo 00000015 mod license9
15 00000040 l O .modinfo 00000034 mod author8
16 00000000 l df *ABS* 00000000 test ftrace.mod.c
17 [. . .]
18 00000000 g F .text 00000025 cleanup module
19 00000000 *UND* 00000000 trace bprintk
20 00000030 g F .text 00000030 init module
21 00000000 *UND* 00000000 mcount
22 00000000 *UND* 00000000 printk

b) Excerpt of the symbol table entries

Figure 8.4: Identification of core kernel primitives in module object code with GNU objdump

The object code represents the symbol table entries from the module object code. In each row3, the

3More information on GNU objdump can be found at http://www.gnu.org/software/binutils/.

http://www.gnu.org/software/binutils/
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first number represents the symbol value (i.e., address). The next field is a set of characters and spaces
indicating the flag bits that are set on the symbol (e.g., l ⇔ local, g ⇔ global, u ⇔ global unique,
etc.). Next is the section with which the symbol is associated. When this section is not connected
to any other section, i.e., is absolute, the field contains instead *ABS*. However, if the section is
referenced in the analyzed object file but not defined there, the field is marked with *UND*. Thus,
the printk, mcount and __trace_bprintk symbols which are defined in the core kernel and used in the
tested module are marked as undefined (lines 11,13-14.).

Overall, the symbols listed by disassembling the object code not only include symbols that are
apparent in the service code (e.g., printk), but also include symbols that are called from inside
core kernel header files (e.g., cleanup_module) or that were integrated after macros expansion (e.g.,
__trace_bprintk). The list of undefined symbols is then mapped with the list of the kernel version
exported functions4. Based on this method, DIGen can list API functions (which are defined in core
kernel) that are called by service code.

For each kernel API function that is used in the service and for which SHAna identified at least
one safety hole, DIGen generates a wrapper function. The general structure of such a wrapper is
shown in Figure 8.5. Based on the argument values, the wrapper first checks each entry safety-
hole precondition (line 4) and then, if the precondition is not satisfied, logs a message indicating the
violation. This message includes the safety hole category, which specifies the kind of safety hole and
whether the violation is certain or possible (line 5), as defined in Section 7.2 (p. 52). The wrapper
then calls the original function. If the original function has a return value, this value is stored in a
local variable, __ret, and then the preconditions on any exit safety holes are checked based on this
information and on the context (lines 9-10). As all exit safety holes are possible, exit safety hole
log messages are simply annotated with EXIT (instead of CERTAIN or POSSIBLE for entry safety
hole log messages). Finally, the return value, if any, of the original function is returned as the result
(line 12).

1 static inline 〈rtype〉 debug 〈kernel function〉 (. . .) {

2 〈rtype〉 ret;
3 /* Check preconditions for entry safety holes */

4 if 〈an entry safety−hole precondition is violated〉
5 diagnosys log(〈EF id〉, 〈SH cat〉, 〈info (e.g., arg number)〉);
6 /* Invocation of the intended kernel function */

7 ret = 〈call to kernel function〉;
8 /* Check preconditions for exit safety holes */

9 if 〈an exit safety−hole precondition is violated〉
10 diagnosys log(〈EF id〉, 〈SH cat〉, 〈info (e.g., err ret type)〉);
11 /* Forward the return value */

12 return ret;
13 }

14 #define 〈kernel function〉 debug 〈kernel function〉

Figure 8.5: Wrapper structure for a non-void function

For performance reasons, Diagnosys does not log formatted strings in kernel memory, instead it
logs integers representing unique information identifiers that are decoded and translated on-the-fly
during log retrieval.

4These are the functions that we refer to as API functions throughout the document.
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8.2.2 Integrating a debugging interface into a service

Given all API functions with safety holes used in a kernel-level service, DIGen constructs wrappers
(one for each API function) and assembles them to implement the generated debugging interface as
a header file to be included in the service code. Each wrapper function is followed by a #define
macro (Figure 8.5, line 14) which, upon expansion, will replace in the service code all calls to kernel
API functions with their debugging counterparts. Thus, once compiled with the interface included,
the service uses the wrapper functions instead of the corresponding kernel API functions.

To facilitate the integration process of a debugging interface into a kernel-level service under test,
Diagnosys provides an automated script, dmake. This script manages the generation of the interface
in four steps: (1) dmake compiles the original service code, (2) identifies the kernel API functions
referenced by the resulting object files, (3) generates an interface dedicated to these functions, and
(4) recompiles the service with the interface included. The resulting kernel module object thus pro-
duced is ready for loading into a running kernel for execution tests.

8.3 CRELSys: Crash-Resilient & Efficient Logging System

To be able to use a Diagnosys-generated debugging interface, the service developer must use a version
of the Linux kernel providing support for the Diagnosys runtime system. This support, CRELSys, is
a kernel patch, which we have implemented for Linux 2.6.32, that extends the kernel with a crash
resilient logging system. The patch additionally configures the kernel to send all crashes and hangs
(Linux soft and hard lockups) to the kernel panic function, which the patch extends to reboot into a
special crash kernel if Diagnosys is activated or to continue with a normal panic, otherwise. Finally,
the Diagnosys runtime system includes a tool that can be run from user space to install a copy of the
Diagnosys kernel as a crash kernel, initialize the reserved log buffer, activate and deactivate logging,
and retrieve and format the logs. We discuss in the following how the logs are stored in the kernel
memory (Section 8.3.1) and how they are preserved upon a crash (Section 8.3.2).

8.3.1 Ring-buffer logging in an arbitrary kernel memory area

Once CRELSys has been activated, the service developer may test his code as usual. During service
execution, if a wrapper function detects a safety hole for which the precondition is violated, the wrap-
per logs information about the safety hole in a reserved area of memory, annotated with a timestamp
and including the memory address of the call site.

To reserve memory for Diagnosys runtime logs, we leverage the kernel memmap boot parameters5

which allow to instruct the kernel to completely ignore a chunk of memory during its own allocations
and use. Thus, CRELSys, which is aware of the location of this memory area will use it at will for
the needs of Diagnosys without any risks of conflicts with other parts of the kernel. This reserved
area of memory is managed through a ring buffer. When the ring buffer, which is of fixed sized, fills
up, adding another log element overwrites the first. In Figure 8.6, the ring buffer is illustrated as
able to hold only eight log messages. A ninth message (i.e., Log 9) has been added which overwrote
the first (i.e., Log 1). A subsequent message will overwrite the second (i.e., Log 2). Such a ring
buffer presents numerous advantages that are very much appreciated in the context of Diagnosys.
First, writing to memory is not only fast, compared to doing an I/O to disk, but is also necessary
as in Linux programming, only user-level programs should access the file system [KH05]. Second,

5For more details see https://www.kernel.org/doc/Documentation/kernel-parameters.txt.

https://www.kernel.org/doc/Documentation/kernel-parameters.txt
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continuous logging is practically impossible since memory is limited. Using a ring buffer allows to
avoid manually removing logs when memory is filled up. Finally, often, debugging tasks only require
to visit the last logs that were inserted into the log buffer. Thus, the ring buffer implemented by
CRELSys retains information about only the most recent violations.

Log 9

Log 2

Log 3

Log 4Log 5

Log 6

Log 7

Log 8

Logger Cursor

Figure 8.6: A ring buffer for logging

With this architecture based on an early reservation of memory zone for Diagnosys and a careful
implementation of a ring-buffer to store the log messages, CRELSys ensures mainly :

• a fast insertion of messages in log buffers to avoid impairing kernel performances

• a reliable retention of critical records on kernel API usage violations

However, upon failure, there is still a need for guaranteeing that the precious information con-
tained in log messages will be available to the developer. This issue is particularly important as
operating system failures are often followed by a systematic reboot during which information is lost.

8.3.2 Fast and non-destructive system reboot

On a kernel crash or hang, CRELSys redirects the execution into a panic state where using a Kexec-
based [Nel04] mechanism, the system is rebooted into a new instance of the Diagnosys-enabled kernel.
Kexec (i.e., Kernel execution) is a mechanism of the Linux kernel that allows some kind of “live”
booting of a new kernel over the currently running one.

Figure 8.7 shows the different stages of the Linux system boot process. When a Personal Com-
puter (PC) system is first booted, or is reset, the processor executes code located in the the Basic
Input/Output System (BIOS), which is stored on flash memory on the motherboard. The BIOS then
must determine which devices are candidates for boot. When a boot device is found, the first-stage
bootloader is loaded into RAM and executed. The job of the first bootloader is actually to load the
second-stage bootloader into RAM and starts its execution. The second-stage bootloader is then in
charge of loading Linux and a temporary root file system (e.g., ramfs) into memory. The kernel then
takes control to decompress the kernel image and load kernel modules. At the completion of this stage,
init, the first user-space program is started, and high-level system initialization can be performed.

During system reboot, the bootloader stage is preceded by a shutdown of the previously running
system. This involves terminating running processes, writing back cache buffers to disk, unmounting
file systems, and performing a hardware reset. The Kexec patch allows to skip the entire bootloader
stage and directly jump into the new kernel that the user has programmed to reboot on. Thus the
Kexec-based mechanism performs the reboot with no hardware reset, no firmware operation and no
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Figure 8.7: Linux boot process

bootloader involved. The main advantage of this process, which is the goal of Kexec, is to increase the
speed of the reboot process. We have found however that, because the new kernel we reboot into needs
to sit in the same place in memory as the currently running one, the mechanisms is suitable in the scope
of CRELSys. Indeed, since the reboot is performed without reinitializing any hardware, including the
memory, while the new kernel will still respect the boundaries of the memory reservation, the Kexec
mechanism ensures that the accumulated Diagnosys log is still available. The service developer may
then access the log messages after a crash that was followed by a fast reboot.

To allow kernel-level service developers to readily access the log messages, upon reboot, from
user space, we have implemented a character device driver that transfers data directly to and from
a user process. A pseudo device is then setup for this purpose to serve as an entry point of user
commands (e.g., cat /dev/crelsys) and exit point of log messages that were stored in kernel memory.
The messages are made available in the order in which they were generated. When a crash occurs, the
Diagnosys runtime system also inserts the kernel stack trace into the Diagnosys log before rebooting.

8.4 Summary

In this chapter, we have detailed the design and some implementation choices of Diagnosys. The
Diagnosys approach is implemented through a number of tools for identifying safety holes in kernel
code, generating debugging interfaces and supporting a reliable logging.

In section 8.1, we have presented SHAna and discussed the analysis for identifying safety holes in
the implementation of API functions, as well as for inferring usage preconditions of these functions.
We present in Section 8.2 the process for generating a debugging interface that is tailored to a kernel-
level service code. The goal of DIGen is to create new log messages at the boundary between service
code and kernel code where they might be the most useful for debugging kernel failures during service
code testing. Finally, in Section 8.3 we provide an overview of the CRELSys runtime logging sys-
tem that will enable developers to always recover the log messages that are produced during service
executions and that may contain the cause of the late crash.
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Chapter 9

Kernel Debugging with Diagnosys

“It’s hard enough to find an error in your code when you’re looking for it;

it’s even harder when you’ve assumed your code is error-free.”

Steve McConnell
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In this chapter we describe some debugging experiences that we have performed to highlight
the benefits of Diagnosys support for developers of kernel-level services. In particular, we wish to
investigate how Diagnosys solves the different issues, enumerated and discussed in Section 4.4 (p. 28),
that make kernel debugging difficult. Indeed, we have demonstrated that kernel debugging is made
difficult by unreliable backtraces and by the questionable relevance of the information in crash reports.
Based on the example that were used to explore the need for a new approach to debugging, we assess
the qualitative benefits of our proposed Diagnosys approach. To this end, we replay a kernel crash
from the btrfs file system (Section 9.1). To account for the second category of OS failures, we also
replay a hang reported in kernel commit logs (Section 9.2).

9.1 Replaying a kernel crash

Kernel crashes are the most common type of OS failures. When they occur, developers must identify
(1) the origin and (2) the cause of the failure based on the oops report that were issued and that they
managed to capture, often through heavyweight remote debugging setups. As an example of kernel
crash, we again consider the btrfs example used for illustration in Section 4.4. Figure 9.1 shows
the bug fix patch that were introduced in mainline code to fix the usage of the open_bdev_exclusive

API function.
For the purpose of this experiment, we have recovered and installed a version of the btrfs file

system, right before the relevant patch was applied. The obtained code was still compatible to the
Linux kernel 2.6.32. The goal of the experiment was then to execute the code so that a fault will
manifest itself to reflect the need for the patch. Thus, to cause open_bdev_exclusive to fail, we first
create and mount a btrfs volume and then attempt to add to this volume a new device that is not yet

71



72 Kernel Debugging with Diagnosys

1 commit 7f59203abeaf18bf3497b308891f95a4489810ad

2 bdev = open bdev exclusive(. . .);
3 − if (!bdev)
4 − return −EIO;
5 + if (IS ERR(bdev))
6 + return PTR ERR(bdev);

Figure 9.1: Excerpt of a bug fix patch in btrfs file system

created. This, as previously discussed in Section 4.4, leads the open_bdev_exclusive API function to
return an ERR_PTR after failing to locate the device to open.

Figure 9.2 shows the crash report that we have collected from the kernel console at the end of the
above experiment. Study of this report in Section 4.4 (p. 28), in the context of debugging, showed that
the source of the problem was not readily available in the backtrace. Some of the issues we found were
that the backtrace contained many stale pointers that makes it more challenging to readily pinpoint
the origin of the crash. Furthermore, the backtrace did not contain information on the root cause of
the crash.

1 [ 847.353202] BUG: unable to handle kernel paging request at ffffffee
2 [ 847.353205] IP: [<fbc722d9>] btrfs init new device+0xcf/0x5c5 [btrfs]
3 [ 847.353229] *pdpt = 00000000007ee001 *pde = 00000000007ff067 *pte = 0000000000000000
4 [ 847.353233] Oops: 0000 [#1]
5 [ 847.353235] last sysfs file: /sys/devices/system/cpu/cpu0/cpufreq/scaling cur freq
6 [ 847.353238] Modules linked in: btrfs zlib deflate crc32c libcrc32c ib iser rdma cm ib cm iw cm ib sa [. . .]
7 [ 847.353271]
8 [ 847.353274] Pid: 3699, comm: btrfs−vol Not tainted (2.6.32−diagnosis−btrfs #32) Latitude E4300
9 [ 847.353276] EIP: 0060:[<fbc722d9>] EFLAGS: 00010246 CPU: 0

10 [ 847.353291] EIP is at btrfs init new device+0xcf/0x5c5 [btrfs]
11 [ 847.353293] EAX: ffffffea EBX: fbc7cc0d ECX: f716ea80 EDX: fbc9cdc0
12 [ 847.353294] ESI: fbc972a0 EDI: 00000004 EBP: f0a61eb8 ESP: f0a61e70
13 [ 847.353296] DS: 007b ES: 007b FS: 0000 GS: 00e0 SS: 0068
14 [ 847.353298] Process btrfs−vol (pid: 3699, ti=f0a60000 task=ed840ca0 task.ti=f0a60000)
15 [ 847.353299] Stack:
16 [ 847.353301] fbc98044 ee28e008 ee24bc00 ee31c630 f0a61ebc 00001000 fbc7b84e 00000246
17 [ 847.353304] <0> f0a61ea4 00000000 00000000 f1f62c00 bff0e12c ffffffea c01c52a8 fbc7cc0d
18 [ 847.353308] <0> fbc7cc0d fbc972a0 f0a61ed0 fbc7b87f bff0e12c ee24bc00 ca048334 ee28e000
19 [ 847.353312] Call Trace:
20 [ 847.353327] [<fbc7b84e>] ? btrfs ioctl add dev+0x33/0x74 [btrfs]
21 [ 847.353334] [<c01c52a8>] ? memdup user+0x38/0x70
22 [ 847.353349] [<fbc7cc0d>] ? btrfs ioctl+0x0/0x243 [btrfs]
23 [ 847.353363] [<fbc7cc0d>] ? btrfs ioctl+0x0/0x243 [btrfs]
24 [ 847.353378] [<fbc7b87f>] ? btrfs ioctl add dev+0x64/0x74 [btrfs]
25 [ 847.353393] [<fbc7cdaa>] ? btrfs ioctl+0x19d/0x243 [btrfs]
26 [ 847.353396] [<c01f7031>] ? vfs ioctl+0x21/0x70
27 [ 847.353398] [<c01f7672>] ? do vfs ioctl+0x72/0x580
28 [ 847.353401] [<c01cbe6e>] ? handle mm fault+0x23e/0x9d0
29 [ 847.353404] [<c01ce635>] ? unmap region+0xe5/0x100
30 [ 847.353409] [<c0543a40>] ? do page fault+0x160/0x390
31 [ 847.353411] [<c01f7be7>] ? sys ioctl+0x67/0x80
32 [ 847.353414] [<c0108583>] ? sysenter do call+0x12/0x28
33 [ 847.353416] Code: 80 b0 1b 00 00 8b 40 6c 85 c0 74 1c c7 45 e0 01 00 00 00 8b 45 e4 83 c0 3c e8 54 [. . .]
34 [ 847.353433] EIP: [<fbc722d9>] btrfs init new device+0xcf/0x5c5 [btrfs] SS:ESP 0068:f0a61e70
35 [ 847.353449] CR2: 00000000ffffffee
36 [ 847.353451] −−−[ end trace 69edaf4b4d3762ce ]−−−

Figure 9.2: Oops report following a btrfs ERR_PTR crash in Linux 2.6.32

To compare with information that could potentially be obtained with our approach, we have re-
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played the same execution scenario when using Diagnosys. The experiment is identical to the previous
one, except that when the kernel crashes, the system is automatically rebooted to make available for
exploitation the log messages accumulated by CRELSys. These log messages are actually constructed
on the fly, translating identifiers in raw logs to the corresponding meaning based on compiled infor-
mation from DIGen. A typical Diagnosys log line contains the timestamp of the log, the source file
and line number where the unsafe call was performed, the name of the API function, the category of
the safety hole and possibly the name of a relevant argument or an unsafe return value. In the case of
the replay of the btrfs crash, Figure 9.3 shows the last line added to the Diagnosys log before the
crash, which is the line that the developer is likely to consult first. This line shows that the function
open_bdev_exclusive activated an INull exit safety hole by returning an ERR_PTR. It also reports the
runtime timestamp and the call site where the safety hole was violated. Combining this information
with the information about the crash site in the oops report and the service source code shows that
the problem is the inadequate error handling code after open_bdev_exclusive. Using Diagnosys, the
service developer can focus on his own code, and does not have to probe the kernel source or object
code to obtain the needed information.

1 [4294934950]|@/var/diagnosys/tests/my btrfs/volumes.c:1441|open bdev exclusive|INULL(EXITED)|ERR PTR|

Figure 9.3: Last Diagnosys log line in the execution of btrfs

9.2 Replaying a kernel hang

Kernel hangs are notoriously hard to debug1 as they can simply freeze the computer leaving the
developer without any information on the ongoing failure. When the kernel is programmed to panic
after a certain delay, this panic, which occurs long after the actual fault, can produce a backtrace
that is hard to correlate to the source of the problem. In such situations, Diagnosys, which records
information about previous potentially dangerous operations, can be a reliable tool for support kernel
programmers. We assess the benefits of this support by replaying a bug that were also discussed
during the characterization of safety holes in Section 7.1.3 (p. 51).

Just before the release of Linux 2.6.33, the nouveau_drm nVidia R© graphics card driver con-
tained a hang resulting from the use of the kernel API function ttm_bo_wait. This function exhibits
a Lock entry safety hole and a Lock exit safety hole, as it first unlocks and then relocks a lock re-
ceived via its first argument. The nouveau_drm driver called this function without holding this
lock, hanging the kernel.

When we do not use the Diagnosys debugging interface, the hang leaves the developer with little
information. Using Diagnosys, the hang is immediately detected and causes a kernel panic, which in
turn causes a reboot with CRELSys that preserves the execution log messages. In Figure 9.4, the last
line of the Diagnosys log shows that ttm_bo_wait has been called without the expected lock held. The
log messages indicates the type of safety hole, the place of the offending call to the API function and
the relevant lock that needs to acquired to avoid the failure.

Correlating the information provided by the Diagnosys log message with the source code suggests
taking the lock before the call and releasing it after the call, as shown in the Linux patch in Figure 9.5
which reflects the fix that were ultimately made in mainline code.

1See an article at http://www.linuxjournal.com/article/5749
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1 [437126]|@/var/diagnosys/tests/nouveau/nouveau gem.c:929|ttm bo wait|LOCK/ACQUIRE(POSSIBLE)|bo−>lock|

Figure 9.4: Last Diagnosys log line in the execution of nouveau_drm

1 commit f0fbe3eb5f65fe5948219f4ceac68f8a665b1fc6

2 if (req−>flags & NOUVEAU GEM CPU PREP NOBLOCK){
3 + spin lock(&nvbo−>bo.lock);
4 ret = ttm bo wait(&nvbo−>bo, false, false, no wait);
5 + spin unlock(&nvbo−>bo.lock);
6 }

Figure 9.5: Patch to avoid a fault involving a Lock safety hole in nouveau_drm

9.3 Summary

In this chapter, we have presented two main debugging experiments using the Diagnosys infrastruc-
ture. The goal of these experiments was to illustrate the qualitative benefits of the proposed approach.
We have mainly showed that, contrary to traditional kernel debugging capabilities with backtraces
where the provided information is unreliable and often irrelevant, if not missing, debugging with
Diagnosys provides the opportunity to record dangerous operations to help developers more readily
pinpoint the mistakes in their code. This approach is even more useful to developers who are not
necessarily knowledgeable in the internals of the OS and the idiosyncrasies of kernel API functions.

In the next part of this thesis, we more thoroughly assess the Diagnosys approach both quanti-
tatively. Indeed, we evaluate the extent of the safety hole issue in kernel code and their impact on
real-world bugs from mainstream kernel-level services that are used daily in consumer computers.
We also evaluate different claims of the approach regarding the benefits in terms of faster and easier
debugging, and in terms of performance overheads.
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Chapter 10

Opportunity and Benefits of Diagnosys

“You can’t trust code that you did not totally create yourself.”

Ken Thompson
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In this chapter we assess various aspects of the Diagnosys approach to establish its opportunity in
today’s context of kernel-level service programming in monolithic commodity operating systems such
as Linux. We also perform a quantitative evaluation of the benefits of debugging with Diagnosys. Our
experiments use code from Linux 2.6.32, which is used1 in the 10.04 Long Term Support version
of Ubuntu R©, in Red Hat Enterprise Linux 6, in Oracle Linux, etc. Our performance experiments
are carried out on a Dell 2.40 GHz Intel R© CoreTM 2 Duo with 3.9 GB of RAM. Unless otherwise
indicated, the OS is running a Linux 2.6.32 kernel that has been modified to support CRELSys, the
Diagnosys logging infrastructure. 1MB is reserved for CRELSys’ crash-resilient log buffer.

The benefit of a Diagnosys-generated debugging interface is determined by the quality of the
information collected by SHAna. Thus, Diagnosys is only beneficial if SHAna identifies safety holes
in functions that are used by a wide range of drivers and if these functions are likely to be used in
an incorrect way. Consequently, we assess in Section 10.1 the number of safety holes collected by
SHAna and in Section 10.2 the impact these safety holes have had on the robustness of the Linux
kernel. Finally, using fault injection, we assess the completeness of the set of safety holes collected
by SHAna.

10.1 Prevalence of safety holes in kernel code

In this section, we investigate how widespread the safety hole types exposed in Section 7.2 (p. 52)
are. We describe the exploration of Linux kernel code by SHAna to provide insights on the preva-

1At the time of experiments, 2.6.32 was the version used in Ubuntu LTS.
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lence of safety holes and the opportunity of devising an approach such as Diagnosys to address the
issues that they may pose. Table 10.1 summarizes, for each kind of safety hole, the number of API
functions exported in Linux 2.6.32 that SHAna identifies as containing at least one occurrence of that
kind of safety hole. In all, SHAna reported 22,940 safety holes in 7,505 exported functions. The
most frequently occurring kinds of safety holes are IsNull/Null, Lock/Intr/LockIntr and Block. Over
7,000 functions process pointer-typed parameters without checking their validity. More than 94%
of these functions perform unsafe dereferences directly within the body of their definition, and 5%
forward the parameter value to other functions that unsafely use them with no prior check. In the
Lock/Intr/LockIntr entry sub-category, 98% of the over 800 collected functions try to acquire a lock
that has been transmitted to them via a parameter, without first checking its state. The remaining 2%
assume that the transmitted mutexes or spinlocks are already held in the calling context and unsafely
attempt to release them.

Safety hole
Number of exported functions collected in the

entry sub-category exit sub-category

Block 367 815
IsNull/Null 7 220 1 124
Var 5 11
Lock/Intr/LockIntr 815 23
Free - 11
Size 8 -
Range - 8

Table 10.1: Prevalence of safety holes in Linux 2.6.32

To estimate the utility of the kernel exported functions in new services, we consider the number of
calls to these functions within the kernel code itself. In the 147,403 call sites across the entire kernel
source code where exported functions are used, 1 out of 2 calls invokes a function containing a known
safety hole. Depending on the kind of safety hole, the median number of calls to functions containing
an entry safety hole ranges from 3 to 9, while the median number of calls to functions containing an
exit safety hole ranges from 8 to 20. This suggests that the kernel exported functions containing safety
holes are likely to be useful to new services.

10.2 Impact of safety holes on code quality

After having established that safety holes are widespread in kernel API functions and that such func-
tions are pervasive in kernel-level service code, we wish to investigate whether API function safety
holes are effectively dangerous in kernel programming, i.e., (1) if programmers write programs with
bugs that are related to the presence of safety holes in API functions, and (2) if the percentage of those
bugs are significant compared to the overall bugs related to the usage of exported functions.

Thus, to assess the impact of the identified safety holes over the course of the development of
Linux, we have searched through the changelogs of the history of Linux 2.62 to identify patches that
mention the kernel API functions exported in Linux 2.6.32. The search strategy consists in considering
all commits whose changelogs mention the name of an exported API function. Nonetheless, we ignore
commits in which the function name is used as a common word (e.g., “sort”, “panic”, etc.) to limit the
number of false positives during manual processing. We have then manually reviewed these patches to

2git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git - history back to 2.6.12.
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identify those that are related to the usage of exported functions. Finally from these relevant patches,
we identify those for which the bug fix was made to account for a usage precondition as defined by
SHAna. As shown in Table 10.2, 267 out of 703, i.e., 38%, of the usage defects are related to the
categories of safety holes that we have classified in this document.

Total number of commits in Linux 2.6 278,078

Commits in any way related to exported functions 11,294

Commits related to the usage of exported functions 703

Commits related to the categorized safety holes 267

Table 10.2: Linux kernel bug fix commits

10.3 Improvement in debuggability

To be useful, Diagnosys must cover a high percentage of the misuses of kernel API functions. We
first evaluate this in Section 10.3.1 by artificially creating and activating misuses of API functions in
kernel services and measuring how many are trapped by Diagnosys. Additionally, Diagnosys must be
able to produce log messages that ease the debugging process. We evaluate the debugging effort in
Section 10.3.2 by measuring the number of files and functions that have to be studied to identify the
cause of a crash, with and without Diagnosys.

Our experiments involve a number of commonly used kinds of services: networking code, USB
drivers, multimedia drivers, and file systems. Services of these kinds make up over a third of the Linux
2.6.32 source code. We have selected a range of services that run on our test hardware. Table 10.3
presents those services along with the number of API functions exhibiting safety holes that they use.

Category Service module Description
# of used functions
with safety holes

Networking

e1000e Ethernet adapter 57
iwlagn Intel WiFi Next Gen AGN 57
btusb Bluetooth generic driver 26

USB drivers
usb-storage Mass storage device driver 51
ftdi_sio USB to serial converter 31

Multimedia uvcvideo Webcam device driver 28
device drivers snd-intel8x0 ALSA driver 35

File systems

isofs ISO 9660 file system 26
nfs Network file system 198
fuse File system in userspace 86

Table 10.3: Tested Linux 2.6.32 services

10.3.1 Coverage of Diagnosys

We now assess the number of false negatives of SHAna, i.e., the set of safety holes that can lead
to faults in practice but are not identified by SHAna. To determine this coverage of Diagnosys, we
first mutate existing services so as to artificially create bugs. Then, we inject faults at run-time to
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potentially cause the mutation to trigger actual crashes systematically across the execution of our test
services.

Fault model. The largest percentage of our identified safety holes are related to NULL and ERR_PTR
dereferences, and so we focus on these safety holes in our fault injection study. To devise a fault model,
we consider how it can happen that such values are manipulated by kernel code. One prominent source
of NULL and ERR_PTR values is to indicate the failure of some sort of allocation. Robust kernel code
checks for these values and aborts the ongoing computation. Nevertheless, omission of these tests is
common. For example, in Linux 2.6.32, for the standard kernel memory allocation functions kmalloc,
kzalloc, and kcalloc, over 8% of the calls that may fail3 do not test the result before dereferencing the
returned value or passing the returned value to another function.

Based on these observations, our fault injection experiments focus on missing NULL and ERR_PTR
tests in the service code. Our mutations remove such tests from the service code, one by one, and use
the failslab feature of the Linux fault injection infrastructure [Cor04] within the initialization of the
tested value to inject failures into the execution of any call to a basic memory allocation function that
this initialization involves. Because the initialization can invoke basic memory allocation functions
multiple times, a single mutation experiment may involve multiple injected faults.

Results. One possible result of a fault injection test is that there is no observable effect. This can
occur when the code initializing the tested variable does not involve a memory allocation, when the
effect of the failure of the memory allocation is confined within the kernel code and does not affect
the service, or when the safety hole is possible and is not encountered in the actual execution. Another
possible result is that there is a crash, but there is no information relevant to the cause of the crash
in the Diagnosys log. In this case, either the information has been overwritten in the ring buffer or
SHAna has not detected the safety hole, representing a false negative. The final possible result is
that there is a crash and information related to the crash is found in the Diagnosys log, representing
a success for Diagnosys. In this latter case, we can further consider the position of the information
relevant to the crash in the Diagnosys log. It is most helpful for the developer if this information is in
the most recent entry before the crash occurred, as this position is easily identifiable.

Table 10.4 presents the fault injection results for 10 services implemented as kernel modules.
Overall, we have performed 555 mutations. For each mutation, we have exercised the various exe-
cution paths of the affected module. 56% of the experiments have resulted in a service crash. After
reboot, in 90% of the cases, the log contained information relevant to the origin of the defect. The
table also distinguishes between cases where this information is at the last position in the log buffer
and the cases where other information that is irrelevant to the crash was logged subsequently. As a
metric of debuggability we use the ratio between the number of crashes for which the log contained
information in the last position, and the total number of crashes. On average, Diagnosys has improved
the debuggability of the service by 86%. In one case, the improvement is as low as 66%, but there are
very few mutation sites in this code.

10.3.2 Ease of the debugging process

Provided with an oops report containing a backtrace and debugging tools that can translate stack
entries into file names and line numbers, a developer typically starts from the point of the crash,

3Kernel allocation functions use flags to indicate whether the process can afford to have a failed allocation. Calls that
are not allowed to fail have the flag information containing __GFP_NOFAIL or __GFP_RETRY.
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Category
Kernel
module

# of
mutations

# of crashes with
% improved
debuggabilityno log

log is
not last

log is
last

Networking

e1000e 57 0 0 20 100%
iwlagn 18 1 0 8 88.9%
btusb 9 1 0 7 87.5%

USB drivers
usb-storage 11 0 0 3 100%
ftdi_sio 9 0 0 6 100%

Multimedia snd-intel8x0 3 1 0 2 66.7%
device drivers uvcvideo 34 3 3 17 73.9%

File systems

isofs 28 3 0 9 75.0%
nfs 309 13 9 157 87.7%
fuse 77 3 1 41 91.1%

Table 10.4: Results of fault injection campaigns

visiting all files and caller functions until the origin of the crash is localized. When the crash occurs
deep in the execution, the number of functions and files to visit can become large.

We have considered 199 of the mutations performed in our coverage tests that lead to crashes,
from btusb, nfs, and isofs. We also consider 31 mutations in nfs code that add statements
for arbitrarily acquiring and releasing locks in services in order to provoke kernel hangs, focusing on
locks that are passed between functions as they can trigger safety holes in core kernel code.

We have compared the 230 oops reports with the corresponding Diagnosys logs. In 92% of these
crashes, the Diagnosys log contains information on the origin of the fault. For those cases, debugging
with the oops report alone required consulting 1 to 14 functions, including on average one possibly
stale pointer, in up to 4 different files distributed across kernel and service code. In 73% of the cases
for which the Diagnosys log contains relevant information, we find that using Diagnosys reduces
by at least 50% the number of files and functions to consult. In 19% of the cases for which the
Diagnosys log contains relevant information, the crash occurred in the same file as the mutation, but
the Diagnosys log made it possible to more readily pinpoint the fault by providing line numbers that
are closer to the mutation site.

Finally, we consider the impact of stale pointers on the debugging process. The considered back
traces contain an average of 5 entries that are marked as possibly stale, of which on average one ap-
pears between the entry indicating the point of crash and the entry of the function where the mutation
was performed. We have furthermore assessed the improvement brought by kdb, and established that
its backtraces contains fewer unreliable entries, but still include 2 on average.

Our assessment has also shown that kernel backtraces can miss functions, which can be attributed,
in some cases, to tail call optimizations. Such corrupted stack traces can then adversely affect debug-
ging.

10.4 Summary

In this chapter, we have investigated a posteriori the need for the Diagnosys approach to deal with
the prevalence of safety holes in kernel code (Section 10.1, p. 77). Based on bug fixes submitted to
the Linux mainline kernel, we establish that safety holes, especially those that we have defined in our
taxonomy, have a real impact on the quality of kernel-level services (Section 10.2, p 78).
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In section 10.3 (p. 79), we have quantified the improvement in debuggability brought by Diag-
nosys. Relying on a fault model that concerns a common type of faults we have established that the
analysis of SHAna leaves very few false negatives, i.e., most safety-hole related faults will be noticed
by Diagnosys during execution. We have also estimated the gain in debugging by showing that our
approach reduces the effort for tracing back an error and pinpointing the cause of a fault.
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The benefits of Diagnosys come at the cost of some overhead, both in terms of the effort required
for the kernel maintainer to certify the safety holes identified by SHAna, and in terms of the runtime
cost of the checks and logging operations performed by the debugging interface during service exe-
cution. We show that the information maintained by SHAna substantially reduces the effort required
from the kernel maintainer over time, while the service execution overhead is minimal. Section 11.1
assesses the overhead incurred by the certification of the analysis results provided by SHAna. Sec-
tion 11.2 details the runtime overheads introduced by the debugging interfaces. The measurements
include both micro and macro benchmarks.

11.1 Certification overhead of analysis results

Static analysis is necessarily approximate, as it does not have complete access to run-time values. This
may lead to false positives, in which a safety hole is reported that in fact cannot lead to a crash. Such
false positives can increase the logging time and clutter the log with irrelevant messages.

The Linux operating system provides more than 10,000 configuration features which can be com-
bined at compile-time. Those configurations, whose combinations can be problematic [TLSSP11], are
often incompatible, making a few execution paths unlikely, in general or for a given execution con-
text. To account for false positive safety holes that are due to the presence of multiple, configuration-
specific, definitions of some functions SHAna annotates as potential false positives, safety holes de-
rived from calls to such functions with the file in which the relevant function instance is defined.

Of the 22,940 safety holes reported by SHAna for Linux 2.6.32, SHAna itself annotated 465 (2%)
as potential false positives, because of the ambiguity of the identification of called functions during
interprocedural analysis. Since the Linux kernel provides different definitions of some functions for
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different architectures, these different definitions may exhibit different safety holes, and therefore
require a thorough validation of analysis results. We have attempted to evaluate the necessary delay
for checking the annotated results of SHAna. At a rate of about 5 minutes per safety hole, this
certification requires about a week of work (38 hours). Of the 465 potential safety holes, we have
found that 405 (87%) are actual false positives.

We have also manually reviewed all other reported safety holes by SHAna for Linux 2.6.32.
Among the remaining reported safety holes that were not annotated as potential false positives during
the analysis, we have identified some cases for which misuse seems very unlikely. For example, some
lock-related exported functions such as unlock_rename clearly indicate their purpose in their name.
Similarly, clk_get_rate may return a large integer, but it seems unlikely that a developer would use
this integer to declare the size of an array. We have found 9 such false positives in Linux 2.6.32. Most
of the associated functions are called fewer than 5 times, with the most frequently used, clk_get_rate,
being called 144 times. Thus, given the small rate of these safety holes and the low usage of the as-
sociated functions, we consider that it is sufficient for the kernel maintainer to certify the safety holes
annotated as potential false positives by SHAna.

To further reduce the certification overhead, Diagnosys maintains information about safety holes
across OS versions, so that the kernel maintainer need only validate reported safety holes in those
functions whose definitions have changed. To demonstrate the potential benefit of this information,
we have also certified the SHAna annotated safety holes in 5 versions that were released after Linux
2.6.32. As shown in Figure 11.1, the burden on the maintainer is significantly reduced when data from
a previous certification are available. Between two certification processes, the workload can drop by
50 to 95%, often to around a day or less, depending on the amount of time elapsed since the release
of the previously certified version.
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Figure 11.1: Certification overhead

Considering that the releases of Linux distributions are not aligned with the versionning of the
Linux kernel, service developers may have to go from programming drivers for one kernel version
(e.g., Linux 2.6.32) to programming for another (e.g., Linux 2.6.38). Thus the analysis may be skipped
for the intermediary versions (e.g., Linux 2.6.33 to 2.6.37). We note that even in such cases, perform-
ing a certification based on a previous, but not preceding, version can still substantially reduce the
maintainer workload.
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11.2 Service execution overhead

Testing preconditions and logging incur a performance overhead on the execution of a kernel-level
service. This overhead must be sufficiently small to avoid interfering with the normal service execu-
tion. In this section, we evaluate the overheads introduced by the primitives used by Diagnosys to
test preconditions (Section 11.2.1), and investigate at a macroscopic level the impact of Diagnosys on
service performance (Section 11.2.2).

11.2.1 Penalties introduced by Diagnosys primitives

To measure the execution time of the Diagnosys precondition checking and logging operations, we
have used the Klogger framework [ETKF]1, a state-of-the-art tool for performing fine grained logging
of kernel operations. We also compare the execution time of a call to an exported API function with
an empty body to that of a call to an exported API function containing a single precondition test.
Table 11.1 summarizes the overhead for one instance of a each of the types of validity tests performed
by a Diagnosys debugging interface. The observed overhead varies between 1.35% and 11.04%.

Check Primitive
Performance Overhead

(processor clock ticks) (%)

Pointer validity IS_ERR_OR_NULL 248.13± 121.24 3.12%

Spin_lock state spin_is_locked 267.19± 121.24 11.04%

Mutex state mutex_is_locked 243.88± 109.13 1.35%

Interrupt state irqs_disabled 260.66± 91.34 8.32%

Performance of a call to an exported function with an empty body 240.62± 95.19

Table 11.1: Checking overhead ± standard deviation

Table 11.2 compares the execution time of Diagnosys’ logging primitive with that of other logging
mechanisms used in the kernel. printk is the most commonly used logging function. Ftrace [Ros09]
optimizes the logging process by deferring formatting from tracing time to output time. In Diagnosys,
string formatting is not needed as the log message is generated at compile-time and only contains
integers that uniquely identify either an API function, a safety hole type, etc. Diagnosys’ logging
primitive is 1.3x faster than Ftrace’s trace_printk, and 5x faster than printk. In Diagnosys, the time-
consuming processing tasks are performed in user space once the service developer attempts to display
the log messages.

Logger printk Ftrace (trace_printk) Diagnosys

Execution time
3280.05± 82.52 884.16± 578.124 673.15± 129.26

(processor clock ticks)

Table 11.2: Performance of the Diagnosys logging primitive

1Klogger kernel patch for Linux 2.6.31.4
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11.2.2 Impact of Diagnosys on service performance

To understand the global performance overhead induced by the Diagnosys approach, we execute var-
ious real-world kernel services with and without a generated debugging interface.

Network driver performance. Our first test scenario involves a Gigabit Ethernet device that re-
quires both low latency and high throughput to guarantee high performance. We evaluate the im-
pact of a debugging interface by exercising the e1000e Linux device driver using the TCP_STREAM,
UDP_STREAM and UDP_RR tests from the netperf benchmark [Jon]. For these experiments, the
netperf utility was configured to report results accurate to 5% with 99% confidence. Table 11.3 sum-
marizes the performance and CPU overhead for the e1000e driver when it is run without and with a
debugging interface. The debugging interface only reduces the throughput by 0.4% to 6.4%, and in-
creases the CPU utilization by 0.4% to 10%. Nevertheless, while small, the existence of this overhead
suggests why kernel developers would not want to systematically implement API functions such that
they always perform all of these checks. This shows the need for a pluggable debugging interface
dedicated to a service under development, as provided by Diagnosys.

Test Without Diagnosys With Diagnosys Overhead

TCP_STREAM
Throughput 907.91 Mb/s 904.32 Mb/s 0.39%
CPU 52.57% 58.48% 10.10%

UDP_STREAM
Throughput 951.00 Mb/s 947.73 Mb/s 0.34%
CPU 58.92% 65.45% 9.98%

UDP_RR
Throughput 7371.69 Tx/s 6902.81 Tx/s 6.36%
CPU 55.19% 55.37% 0.33%

Table 11.3: Performance of the e1000e driver

File system performance. Our second test scenario involves the NFS file system, whose imple-
mentation uses about 200 exported functions exhibiting safety holes. The experiment consists of
sequential read, sequential write/rewrite and random seek phases based on patterns generated by the
Bonnie benchmark [Bra]. For this experiment, the client and server run on the same machine, con-
nected using a network loopback interface, to eliminate the network transmission time. During a run
of this benchmark with a debugging interface integrated into the NFS file system, we have recorded
over 48,000,000 calls to the interface wrapper functions to write and read 8G of data. As shown in Ta-
ble 11.4, for data transfers of only one character, amounting to 1 byte, the overhead can be significant,
of up to 67%. For block reads and writes, however, the overhead is only up to 17%, and for random
seeks and sequential rewrites it is under 3%.

11.3 Summary

In this chapter we have investigated the overheads incurred by the Diagnosys approach at different
levels. First, we evaluate in Section 11.1 the maintainer burden. We show that thanks to information
stored by SHAna, the certification process is significantly eased, especially when certified results
from a previous version of the kernel are available. In Section 11.2 (p. 85), we assess the impact of
Diagnosys’ debugging interfaces on the execution of kernel-level services. After micro-benchmarks



Summary 87

Test
Without Diagnosys With Diagnosys

Overhead
(Access rate - K/sec) (Access rate - K/sec)

Sequential reads
per char 930 642 30.9%
per block 28795 23811 17.3%

Sequential writes
per char 494 162 67.2%
per block 42467 38329 9.7%

Sequential rewrites 13647 13327 2.3%

Random seeks 2145 2143 0.9%

Table 11.4: Performance of the NFS file system

have established that the implementation choices in Diagnosys are favorable to performance, we use
a driver for a Gigabit Ethernet device and a NFS file system to show that the performance impact of
our approach is within the limits of what is acceptable when testing a kernel-level service in the initial
stages of development. The experiments also show that the approach can even be used up to the phase
of initial deployment.
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Chapter 12

Conclusion

Defects in kernel-level services can cause the demise of the entire operating system, often leaving
developers without any clue as to what went wrong. In the Linux kernel for example, one significant
difficulty in developing drivers is that the kernel does not export a debugging interface to its internal
functionalities [KH]. Many of the functions that are exported to external modules have implicit ill-
documented preconditions, which, if not satisfied, can cause the entire system to crash or hang.

In this thesis, we have presented a new approach for supporting kernel-level service developers in
early-stages of development. Diagnosys [BRLM12] was designed and implemented as an approach
to automatically constructing a debugging interface for the Linux kernel. The approach is based on
static analysis of the kernel code, to infer the preconditions of each API function, making it possible
to construct an interface containing a wrapper for each identified function in use by service code.
This constructed debugging interface performs a runtime monitoring of the interactions between the
services and the kernel. The Diagnosys approach is therefore set in several phases:

• First, a designated kernel maintainer uses Diagnosys to identify constraints in the use of kernel
API functions.

• Second, based on this information, developers of kernel-level services can then use Diagnosys
to generate a debugging interface specialized to their code.

• Third, when a service including this interface is tested, it records information about potential
problems. This information is preserved following a kernel crash or hang.

Our experiments show that the generated debugging interface provides useful log information and
incurs a low performance overhead.

In the remainder of this chapter, we present a summary of the different contributions of our thesis
before outlining some ongoing and future work in line with the Diagnosys approach.

12.1 Contributions

In the course of building this thesis, we have made different contributions on better understanding
some causes of the difficulties of writing safe and reliable kernel-level services (Section 12.1.1). We
have also proposed a practical approach that even novice service programmer, without substantial
knowledge on kernel code, could use to produce better driver code (Section 12.1.2). We have finally
evaluated our work, by 1) demonstrating the acuteness of the safety hole issue and discussing the
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benefits of the Diagnosys approach (Section 12.1.3), and by 2) validating its practical usefulness and
usability (Section 12.1.4).

12.1.1 Characterization of safety holes

In this thesis, we have discussed the notion of safety hole, a fragment of code that introduces a potential
of fault in the interaction between a driver and the kernel. We have then provided a characterization of
safety holes in the kernel programming interface. We have furthermore highlighted how safety holes
pose a serious problem to kernel developers. Finally, we have provided an extensive exploration of the
static analysis rules that we have written to identify instances of safety holes that reflect the common
faults that appear in the Linux kernel.

12.1.2 Diagnosys

The Diagnosys approach is the central element of our thesis. We have proposed an automated tool for
identifying safety holes and monitoring the execution of relevant code to improve testing tasks in the
early stages of kernel-level service development. The debugging interface constructed by Diagnosys
amounts to a collection of wrappers on the kernel API functions, that logs information about the
potentially dangerous uses of these functions. Localizing the interface in this way, at the boundary
of the interface between the service and the OS kernel, ensures that the feedback provided by the
interface is in terms of the code that the developer has written, and that he is thus expected to be
familiar with. In this thesis, we describe in details the implementation of Diagnosys, including the
static analysis phase, the runtime checks, and the logging operations. We further describe the usage
steps of Diagnosys for testing and debugging a given kernel-level service.

12.1.3 Debugging benefits

We have conducted an assessment of the Diagnosys approach and of its implementation using both
qualitative and quantitative measurements. The aim of this assessment was to show the benefits of
Diagnosys in terms of debugging improvement.

Qualitatively, we have demonstrated that the log of dangerous operations recorded by Diagnosys
contains reliable information about the crash of the kernel. For this evaluation, we have performed
experiments that consisted on replaying real faults that were reported to kernel developers.

Quantitatively, we have evaluated the improvement of Diagnosys on the debugging of kernel-level
services through mutation testing. We have mutated 10 kernel-level services from various categories,
representative of the major part of services written by kernel developers. The services, which include
device drivers and file systems, were mutated to get safety hole-related faults to be manifested during
execution. These experiments allowed to assess the capability of Diagnosys to help developers quickly
pinpoint the locations of these faults in service code.

12.1.4 Limited overheads

Diagnosys comes with a number of overheads, both with respect to the certification of the static anal-
ysis results, the runtime checks and the logging operations introduced by the debugging interface. We
have measured these different overheads to show that the Diagnosys approach is viable. Furthermore,
we have evaluated the overall impact of Diagnosys on service performance based on the stressed
execution of two services, namely a Gigabit Ethernet device driver and a network file system. The
experiments revealed that the performance degradation with Diagnosys is minimal.
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12.2 Ongoing and future work

The work presented in this document describes a new, practical, hybrid approach — based on static
code analysis and runtime monitoring — for supporting kernel-level service developers in their testing
and debugging tasks. With Diagnosys [BRLM12], we have provided different tools at different steps
of the approach, and some of those tools can be adapted to other software engineering issues.

Ongoing work. Building on the Diagnosys approach, we are currently attempting to generalize to
other, including non-OS, software. Indeed, as discussed in Section 2.3 (p. 10), many software are built
based on the plug-in model, and as such, present the parallel issues. Plug-ins interacting with core
software can lead to different execution errors at the boundary of the APIs that need to be monitored.
To this end, our first endeavor is to automatically infer the interface of a software that is available
for use by external code and identify the relevant safety holes that appear in the interface. We have
already collected hundreds of open source software projects for this new study.

Future work. Debugging approaches, such as Diagnosys, are most relevant when software bugs
appear before the code is shipped. Unfortunately, the rapid-pace of modern software produces a huge
amount of bugs which are reported back to developers for fixing. Development teams manage to fix
and document an important number of bugs. More importantly, as Andy Chou, co-designer of the
Coverity static analysis tool [ECCH00], has stated about the deluge of buggy mobile software, the
exposed bugs are nothing new and are “actually well-known and well-understood in the development
community – the same use after free and buffer overflow detects we have seen for decades”. We have
witnessed this fact in the evaluation of the impact of safety holes on the quality of kernel-level services:
the different faults are actually similar and based on the same implicit preconditions or the same
programming errors. Nevertheless, when project teams, such as the Linux kernel maintainers team,
are flooded with bug reports, the time-to-fix interval increases and some even remain unfixed for a very
long time. It is thus necessary to start investigating a new approach to drastically improve the fix rate of
bugs through automatic bug fix recommendations. To this end, we could rely on a collected knowledge
on safety hole categories and leverage historical information extracted from software development
artifacts, including bug reports and bug fix links, to produce candidate fixes for newly reported bugs.
Complementary to Diagnosys, this approach would rely on information retrieval techniques that have
already been shown successful for helping bug triagers detect and dismiss duplicate bug reports. We
thus take these techniques further to accelerate, and if possible avoid, manual debugging by presenting
developers with fix directions.

12.3 Concluding remarks

Diagnosys was designed as a complementary approach to various research work [LBP+09, SBL03,
MRC+00]. Indeed, in practice, current approaches have not been completely effective in clearly solv-
ing the need for producing more reliable kernel-level services. On one hand, the standard practice re-
mains to write device drivers by hand despite the existence of techniques for generating them [MRC+00,
RCKH09]. On the other hand, device driver developers, who are not experts in kernel programming,
cannot afford to thoroughly validate their code before shipping their services, which leads to the pres-
ence of about 600 to 700 faults in each release of the kernel [PST+11].

With the Diagnosys approach, we propose to support developers by providing them with runtime
debugging support, and post-mortem code analysis information that will allow even novice program-
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mers to pinpoint the origin and understand the cause of some important, and idiosyncratic, program-
ming faults [BRLM12]. This approach has received academic praise1 from researchers in both soft-
ware engineering and systems reliability communities. We have also been contacted by developers of
device drivers at Intel R© who have asked assistance in using Diagnosys in their development process.
This manifestation of interest thus shows that the Diagnosys approach deals with an important prob-
lem in kernel-level service development. We hope to continue investigating around the problem and
improving the proposed solution.

1Best paper award at the 27th IEEE/ACM International conference on Software Engineering (ASE 2012)
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Relevant kernel primitives

The Linux kernel provides various commonly known primitives for different programming tasks. We
provide in this Appendix a list of those that we have collected and used in the implementations of
SHAna.

A.1 Locking functions

{mutex,spin,read,write}_lock

{mutex,spin,read,write}_trylock

A.2 Interrupt management functions

cli, local_irq_disable

A.3 Functions combining locking and interrupt management

{read,write,spin}_lock_irq

{read,write,spin}_lock_irqsave, local_irq_save, save_and_cli

A.4 Kernel/userland access primitives

getuser, memcpy_fromfs, copy_from_user
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Appendix B

Examples of semantic matches
implemented in SHAna

The semantic matches illustrated in this appendix are provided for describing search specifications
implemented in SHAna. They include different SmPL rules for matching and reporting identified
safety holes from the various categories of our taxonomy.

Contents
B.1 Block safety holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2 Null/INull safety holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.3 Var safety holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.4 Range safety holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.5 Lock/Intr/LockIntr safety holes . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.6 Free safety holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.7 Size safety holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.1 Block safety holes

We provide in Figure B.1 an excerpt of the semantic match implemented in SHAna for detecting
Block entry safety holes in Linux kernel API functions. In this specification, SHAna focuses on API
functions that call kernel primitives with the GFP_KERNEL flag enabled, allowing the kernel to block.
The analysis in this case is interprocedural to collect all API functions that may block after calling
internal routines that can block.

B.2 Null/INull safety holes

For Null/INull safety holes, we present in Figure B.2 (p. 97) the complete version of the semantic
match that we have used to describe the capabilities of Coccinelle in Section 5 (p. 31). As discussed
previously, this semantic match collects kernel API functions that directly dereferences their argu-
ments without any validity check.

Figure B.3 (p. 98) details the semantic match for a more subtle kind of Null/INull entry safety
hole where the unchecked value that is dereferenced is derived from an unchecked parameter. We
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1 virtual start
2 virtual after start
3 virtual should be static
4 #include "block.ml"

5
6 @export depends on !start && !after start@
7 identifier handler;
8 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
9 @@

10 (
11 EXPORT SYMBOL(handler);
12 |
13 EXPORT SYMBOL GPL(handler);
14 )
15 @exported@
16 identifier export.handler;
17 position p;
18 @@
19 handler@p (. . .) {. . .}
20
21 @script:ocaml@
22 symbol << export.handler; p << exported.p; sf << virtual.save file;
23 version << virtual.save file; linux << virtual.linux;
24 @@
25 start iteration symbol (List.hd p).file version linux sf
26
27 // −−−−−−−−−−−−−−−−−−−− COMING back to start −−−−−−−−−−−−−−−
28 @r0 depends on !should be static@
29 identifier virtual.fn;
30 @@
31 static fn (. . .) {. . .}
32
33 @r depends on (start | | (after start && !should be static && !r0) | | (after start && should be static)) exists@
34 identifier virtual.fn; position p1, p2;
35 @@
36 fn@p1 (. . .) {
37 <+. . . GFP KERNEL@p2 . . .+>
38 }
39
40 @forwards depends on !r && (start | | (after start && !should be static && !r0) | | (after start && should be static)) exists@
41 identifier virtual.fn, in fn; position p, p2;
42 @@
43 fn@p (. . .) {
44 . . . when any
45 in fn@p2 (. . .)
46 . . . when any
47 }
48
49 //We eliminate some trivial functions
50 @is special depends on forwards@
51 identifier special ˜= ".*lock\|.*unlock\|.*irq_save\|.*irq_restore\|wait_event"; position forwards.p2;
52 @@
53 special@p2 (. . .)
54
55 @script:ocaml depends on is special@
56 @@
57 Coccilib.include match(false)

Figure B.1: Detecting Block entry safety hole instances – This semantic match is focused on possible

safety holes
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have discussed in Section 8.1.2 (p. 60) how errors related to this kind of safety holes are hard to
debug. Contrary to the case of the previous semantic match, we have implemented this one to perform
an interprocedural analysis.

Finally, we present in Figure B.4 (p. 99) an excerpt of the semantic match implemented for iden-
tifying Null/INull exit safety holes interprocedurally. The search consists in detecting API functions
that can explicitly return an invalid pointer : NULL or an ERR_PTR value.

1 #include "direct_deref.ml"

2
3 @export@
4 identifier handler;
5 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
6 @@
7 (
8 EXPORT SYMBOL(handler);
9 |

10 EXPORT SYMBOL GPL(handler);
11 )
12
13 @exist deref depends on export exists@
14 type T;
15 position p;
16 expression new val;
17 identifier param, fld;
18 identifier export.handler;
19 parameter list [h number] params prec;
20 @@
21 handler(params prec, T *param, . . .){
22 . . . when != param = new val
23 when != param == NULL
24 when != param != NULL
25 when != IS ERR(param)
26 param−>fld@p
27 . . . when any
28 }
29
30 @forall deref@
31 type exist deref.T;
32 position exist deref.p;
33 expression new val;
34 identifier exist deref.param, exist deref.fld;
35 identifier export.handler;
36 parameter list [h number] exist deref.params prec;
37 @@
38 handler(params prec, T *param, . . .){
39 . . . when != param = new val
40 when != param == NULL
41 when != param != NULL
42 when != IS ERR(param)
43 when forall
44 param−>fld@p
45 . . . when any
46 }

Figure B.2: Detecting obvious intraprocedural Null/INull entry safety hole instances
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1 virtual check internal
2 virtual check dependancy
3 #include "subtle_deref.ml"

4 @exported depends on !check internal && !check dependancy@
5 identifier handler;
6 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
7 @@
8 (
9 EXPORT SYMBOL(handler);

10 |
11 EXPORT SYMBOL GPL(handler);
12 )
13 @export def@
14 identifier exported.handler; position p;
15 @@
16 handler@p (. . .) {. . .}
17 @fn uses arg depends on !check dependancy exists@
18 type T; expression arg, E, val, new val, other val;
19 identifier param, fn; identifier virtual.handler;
20 parameter list [h number] params prec;
21 position p1, p2; expression list [f number] args prec;
22 @@
23 handler(params prec, T* param, . . .){
24 . . . when != param = new val
25 when any
26 (
27 E = fn@p1(args prec, <+. . . param . . .+>, . . .);
28 |
29 arg=<+. . . param . . .+>;
30 . . . when != arg = val
31 when any
32 E = fn@p1(args prec, <+. . . arg . . .+>, . . .);
33 )
34 . . . when != E == NULL
35 when != E != NULL
36 when != IS ERR(E)
37 when != E = other val
38 (
39 E == NULL
40 |
41 E != NULL
42 |
43 IS ERR(E)
44 |
45 E = other val
46 |
47 E@p2
48 )
49 . . . when any
50 }
51 // When invalid pointer E2 is returned, it constitutes another
52 // safety hole reported in another category
53 @returned depends on fn uses arg exists@
54 position fn uses arg.p2; identifier virtual.handler;
55 expression fn uses arg.E;
56 @@
57 handler(. . .){
58 . . .
59 return E@p2;
60 }

61 @only pointers depends on fn uses arg && !returned@
62 type ret T; ret T *pointer global; position fn uses arg.p1;
63 identifier pointer local, fn uses arg.fn;
64 @@
65 (
66 pointer global = fn@p1(. . .);
67 |
68 ret T *pointer local = fn@p1(. . .);
69 )
70 @static fn depends on fn uses arg@
71 identifier fn uses arg.fn;
72 @@
73 static fn(. . .){. . .}
74 // −−−−− Coming back for check dependancy −−−−−
75 @found fn depends on check dependancy@
76 identifier virtual.fn; position p def;
77 @@
78 fn@p def (. . .){. . .}
79 @fn fails depends on check dependancy exists@
80 identifier virtual.fn, fld; expression E, ret; position p, found fn.p def;
81 @@
82 fn@p def(. . .){
83 . . . when any
84 (
85 return@p NULL;
86 |
87 return@p ERR PTR(. . .);
88 |
89 ret@p = NULL;
90 . . . when != (ret=E | ret−>fld)
91 return ret;
92 |
93 ret@p = ERR PTR(. . .);
94 . . . when != (ret=E | ret−>fld)
95 return ret;
96 )
97 . . .
98 }
99 @fails following param depends on fn fails exists@

100 type T; position p, found fn.p def;
101 expression new val; identifier virtual.fn, param;
102 parameter list [number] params prec;
103 @@
104 fn@p def (params prec, T param, . . .){
105 . . . when != param = new val
106 (param@p | | . . .)
107 . . .
108 return . . .;
109 }
110 @other fails following param depends on fn fails exists@
111 type T; position p, found fn.p def; expression E, new val;
112 identifier virtual.fn, param; parameter list [number] params prec;
113 @@
114 fn@p def (params prec, T param, . . .){
115 . . . when != param = new val
116 E = <+. . . param . . .+>;
117 . . .
118 (E@p | | . . .)
119 . . .
120 return . . .;
121 }

Figure B.3: Detecting subtle Null/INull entry safety hole instances of type possible
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1 // May return NULL or ERR PTR
2 virtual after start
3 virtual should be static
4 #include "return_null.ml"

5
6 @ret ptr@
7 type T;
8 identifier virtual.fn;
9 @@

10 T *fn (. . .) {. . .}
11
12 @export depends on ret ptr && !after start@
13 identifier virtual.fn; declarer name EXPORT SYMBOL; declarer name EXPORT SYMBOL GPL;
14 @@
15 (
16 EXPORT SYMBOL(fn);
17 |
18 EXPORT SYMBOL GPL(fn);
19 )
20
21 @r0 depends on ret ptr && !should be static@
22 identifier virtual.fn;
23 @@
24 static fn (. . .) {. . .}
25
26 // fn may be the exported symbol or a function whose
27 // return value is returned by the exported function
28 @ret inv ptr depends on ret ptr && (export | | (after start && !should be static && !r0) | | (after start && should be static)) exists@
29 position p, p1; identifier virtual.fn; expression *E; expression E0;
30 @@
31 fn@p (. . .) {
32 . . . when any
33 (
34 return@p1 NULL;
35 |
36 return@p1 ERR PTR (. . .);
37 |
38 E = NULL
39 . . . when != E = E0
40 return@p1 E;
41 |
42 E = ERR PTR(. . .)
43 . . . when != E = E0
44 return@p1 E;
45 )
46 }
47
48 @forward depends on !ret inv ptr && ret ptr && (export | | (after start && !should be static && !r0) | | (after start && should be static)) exists@
49 position p; expression E; expression *ret; identifier virtual.fn, in fn;
50 @@
51 fn (. . .) {
52 . . . when any
53 (
54 return@p in fn (. . .);
55 |
56 ret@p = in fn (. . .)
57 . . . when != ret = E
58 return ret;
59 )
60 }

Figure B.4: Detecting Null/INull exit safety hole instances
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B.3 Var safety holes

Figure B.5 shows the semantic match that tracks Var entry safety hole instances in kernel API func-
tions. The specification is written to detect array allocations that are performed based on the value of
an API function parameter.

1 #include "var.ml"

2
3 @export@
4 identifier fn;
5 declarer name EXPORT SYMBOL;
6 declarer name EXPORT SYMBOL GPL;
7 @@
8 (
9 EXPORT SYMBOL(fn);

10 |
11 EXPORT SYMBOL GPL(fn);
12 )
13
14 @r@
15 identifier export.fn;
16 identifier i, param;
17 parameter list [n] paramsb;
18 type T, T1, T2;
19 T1 V;
20 expression E;
21 position p, p1;
22 @@
23 fn(paramsb, T param@p1, . . .) {
24 . . . when any
25 when forall
26 (
27 T1 i[sizeof(. . .)];
28 |
29 T1 i@p[<+. . . param . . .+>];
30 |
31 V = <+. . . param . . .+>;
32 . . . when != V = E
33 T2 i@p[<+. . . V . . .+>];
34 )
35 . . . when any
36 }
37
38 @script:ocaml@
39 n << r.n;
40 p2 << r.p;
41 param << r.param;
42 symbol << export.fn;
43 sf << virtual.save file;
44 vers << virtual.version;
45 @@
46 let nb = n+1 in
47 report var safety symbol param nb (List.hd p2).file (List.hd p2).line vers sf "certain"

48

Figure B.5: Detecting Var entry safety hole instances of type certain
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B.4 Range safety holes

We present in Figure B.6 the specification implemented in SHAna for identifying kernel API functions
that contain a Range exit safety hole. The search, which is performed intraprocedurally, consists of
detecting cases where an API function may return a value obtained from userland.

1 #include "range.ml"

2
3 @export@
4 identifier fn;
5 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
6 @@
7 (
8 EXPORT SYMBOL(fn);
9 |

10 EXPORT SYMBOL GPL(fn);
11 )
12
13 @c@
14 identifier export.fn;
15 expression E, E0, V, V0;
16 position p, p2;
17 type T;
18 @@
19 fn (. . .) {
20 . . . when any
21 (
22 copy from user@p((T)E,. . .)
23 |
24 copy from user@p(E,. . .)
25 |
26 memcpy fromfs@p(E,. . .)
27 |
28 memcpy fromfs@p((T)E,. . .)
29 )
30 . . . when != E = E0
31 (
32 return@p2 <+. . . E . . .+>;
33 |
34 V = <+. . . E . . .+>;
35 . . . when != V = V0
36 return@p2 <+. . . V . . .+>;
37 )
38 }
39
40 @get prim@
41 identifier primitive;
42 position c.p;
43 @@
44 primitive@p(. . .)
45
46 @script:ocaml@
47 symbol << export.fn;
48 p << c.p;
49 sf << virtual.save file;
50 primitive << get prim.primitive;
51 vers << virtual.version;
52 @@
53 let p =List.hd p in
54 report range safety symbol primitive p .file p .line vers sf "may"

Figure B.6: Detecting Range exit safety hole instances of type possible
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B.5 Lock/Intr/LockIntr safety holes

In the category of Lock/Intr/LockIntr safety holes, different situations may appear as the primitives
vary. We discuss in this Appendix the exit safety holes that consist for an API function to take a lock
or systematically disables interrupts while finishing its execution.

Figure B.7 shows the semantic match for detecting API functions that may take a lock (and omit
to release it) until it returns. The primitives used in this case are for locking only. Figure B.8 (p. 103)
on the other hand presents the specification for collecting API functions that systematically leave
the interrupts disabled after they have been called. In Figure B.9 (p. 104 )we provide the semantic
match that searches for cases where the API function both takes a lock and disables interrupts before
returning.

1 #include "lock.ml"

2
3 @exported@
4 identifier handler;
5 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
6 @@
7 (
8 EXPORT SYMBOL(handler);
9 |

10 EXPORT SYMBOL GPL(handler);
11 )
12
13 @locked depends on exported@
14 position p,p1;
15 expression E1;
16 @@
17 (
18 mutex lock@p1
19 |
20 mutex trylock@p1
21 |
22 spin lock@p1
23 |
24 spin trylock@p1
25 |
26 read lock@p1
27 |
28 read trylock@p1
29 |
30 write lock@p1
31 |
32 write trylock@p1
33 ) (E1@p,. . .);
34
35 @ends in lock exists@
36 expression locked.E1;
37 identifier lock;
38 position locked.p,p1,p2;
39 identifier exported.handler;
40 @@
41 handler (. . .) { <+. . .
42 lock@p1 (E1@p,. . .);
43 . . . when != E1
44 return@p2 . . .;
45 . . .+> }

46 @ends in unlock depends on ends in lock exists@
47 expression locked.E1;
48 identifier unlock;
49 position p!=locked.p;
50 identifier exported.handler;
51 @@
52
53 handler (. . .) {
54 <+. . .
55 unlock (E1@p,. . .);
56 . . . when != E1
57 return . . .;
58 . . .+>
59 }
60
61 @balanced depends on ends in lock && ends in unlock exists@
62 position locked.p, p1 != locked.p1;
63 identifier ends in lock.lock,ends in unlock.unlock, exported.handler;
64 expression E,locked.E1;
65 @@
66 handler (. . .) { <+. . .
67 if (E) {
68 <+. . . when != E1
69 lock(E1@p,. . .)
70 . . .+>
71 }
72 . . . when != E1
73 when forall
74 if (E) {
75 <+. . . when != E1
76 unlock@p1(E1,. . .)
77 . . .+>
78 }
79 . . .+> }
80
81 @script:ocaml depends on ends in lock && ends in unlock
82 && !balanced@
83 p << locked.p;
84 symbol << exported.handler;
85 sf << virtual.save file;
86 version << virtual.version;
87 lock << ends in lock.lock;
88 @@
89 let p = List.hd p in
90 report lock safety symbol lock p .file p .line "may" version sf

Figure B.7: Detecting Lock exit safety hole instances of type possible
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1 #include "intr.ml"

2
3 // This virtual rule is never used
4 virtual after start
5
6 @exported@
7 identifier handler;
8 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
9 @@

10 (
11 EXPORT SYMBOL(handler);
12 |
13 EXPORT SYMBOL GPL(handler);
14 )
15 // For recent 2.6 versions, save and cli was deprecated
16 // and now removed from kernel
17 @locked depends on exported@
18 position p,p1;
19 expression E1;
20 @@
21 (
22 local irq save@p1
23 |
24 save and cli@p1
25 ) (E1@p,. . .);
26
27 @ends disabling exists@
28 expression locked.E1;
29 identifier lock;
30 position locked.p,p1,p2;
31 identifier exported.handler;
32 @@
33
34 handler (. . .) { <+. . .
35 lock@p1 (E1@p,. . .);
36 . . . when != E1
37 return@p2 . . .;
38 . . .+> }

39 @ends reenabling depends on ends disabling exists@
40 expression locked.E1; identifier unlock;
41 position p!=locked.p; identifier exported.handler;
42 @@
43 handler (. . .) { <+. . .
44 unlock (E1@p,. . .);
45 . . . when != E1
46 return . . .;
47 . . .+> }
48
49 @balanced depends on ends disabling && ends reenabling exists@
50 position locked.p, p1 != locked.p1; expression E,locked.E1;
51 identifier ends disabling.lock,ends reenabling.unlock,
52 exported.handler;
53 @@
54 handler (. . .) { <+. . .
55 if (E) {
56 <+. . . when != E1
57 lock(E1@p,. . .)
58 . . .+>
59 }
60 . . . when != E1
61 when forall
62 if (E) {
63 <+. . . when != E1
64 unlock@p1(E1,. . .)
65 . . .+>
66 }
67 . . .+> }
68
69 @script:ocaml depends on (ends disabling && !ends reenabling)
70 | | (ends disabling && !balanced)@
71 lock << ends disabling.lock;
72 sf << virtual.save file; version << virtual.version;
73 p << locked.p; symbol << exported.handler;
74 @@
75 let p = List.hd p in
76 report intr safety symbol lock p .file p .line "arg" "may" version sf

Figure B.8: Detecting Intr exit safety hole instances of type possible
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1 #include "lock_intr.ml"

2
3 @exported@
4 identifier handler;
5 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
6 @@
7 (
8 EXPORT SYMBOL(handler);
9 |

10 EXPORT SYMBOL GPL(handler);
11 )
12
13 @locked depends on exported@
14 position p,p1;
15 expression E1;
16 @@
17 (
18 spin lock irq@p1
19 |
20 read lock irq@p1
21 |
22 write lock irq@p1
23 |
24 spin lock irqsave@p1
25 |
26 read lock irqsave@p1
27 |
28 write lock irqsave@p1
29 )
30 (E1@p,. . .);
31
32 @ends locked and disabling exists@
33 position locked.p,p1,p2;
34 identifier exported.handler;
35 expression locked.E1; identifier lock;
36 @@
37 handler (. . .) { <+. . .
38 lock@p1 (E1@p,. . .);
39 . . . when != E1
40 return@p2 . . .;
41 . . .+> }

42 @ends unlocked and reenabling depends on
43 ends locked and disabling exists@
44 expression locked.E1; identifier unlock;
45 position p!=locked.p; identifier exported.handler;
46 @@
47 handler (. . .) { <+. . .
48 unlock (E1@p,. . .);
49 . . . when != E1
50 return . . .;
51 . . .+> }
52
53 @balanced depends on ends locked and disabling &&
54 ends unlocked and reenabling exists@
55 expression E,locked.E1; position locked.p, p1 != locked.p1;
56 identifier ends locked and disabling.lock,
57 ends unlocked and reenabling.unlock, exported.handler;
58 @@
59 handler (. . .) { <+. . .
60 if (E) {
61 <+. . . when != E1
62 lock(E1@p,. . .)
63 . . .+>
64 }
65 . . . when != E1
66 when forall
67 if (E) {
68 <+. . . when != E1
69 unlock@p1(E1,. . .)
70 . . .+>
71 }
72 . . .+> }
73
74 @script:ocaml depends on (ends locked and disabling &&
75 !ends unlocked and reenabling) | | (ends locked and disabling
76 && !balanced)@
77 p << locked.p; symbol << exported.handler;
78 sf << virtual.save file; version << virtual.version;
79 lock << ends locked and disabling.lock;
80 @@
81 let p = List.hd p in
82 report lock intr safety symbol lock p .file p .line "may" version sf

Figure B.9: Detecting LockIntr exit safety hole instances of type possible
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B.6 Free safety holes

Figure B.10 describes the semantic match implementing in SHAna the search for Free exit safety
holes. This search, which is performed interprocedurally, is programmed to detect cases where an
API might return a pointer to a memory that has been freed with kfree.

1 virtual start
2 virtual after start
3 virtual should be static
4
5 #include "free.ml"

6
7 // Just match exported functions and iterate
8 @export depends on !start && !after start@
9 identifier fn;

10 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
11 @@
12 (
13 EXPORT SYMBOL(fn);
14 |
15 EXPORT SYMBOL GPL(fn);
16 )
17
18 @def depends on export@
19 identifier export.fn; position p;
20 @@
21 fn@p (. . .){. . .}
22
23 @script:ocaml@
24 symb << export.fn; sf << virtual.save file;
25 dir << virtual.linux; p << def.p;
26 version << virtual.version;
27 @@
28 start iteration symb dir (List.hd p).file version sf
29
30 // −−−−−− START | AFTER START
31 // Make sure you do not confuse static functions
32 @r0 depends on !should be static@
33 identifier virtual.fn;
34 @@
35 static fn (. . .) {. . .}
36
37 @fns depends on (start | | (after start &&
38 !should be static && !r0) | | (after start &&
39 should be static)) exists@
40 expression E, E0, E1; identifier virtual.fn;
41 parameter list [n] paramsb; type T;
42 identifier i; position p, p2;
43 @@
44
45 fn@p(paramsb, T i, . . .) {
46 . . . when != \(i = E\|&i\)
47 (
48 kfree@p2 (<+. . . i . . .+>);
49 |
50 E0 = <+. . . i . . .+>;
51 . . . when != E0 = E1
52 kfree@p2 (E0);
53 )
54 . . . when any
55 }

56 //If the params number do not match why bother
57 @script:ocaml depends on after start@
58 n1 << fns.n; n2 << virtual.fn number;
59 @@
60 let n1 = n1 +1 in let n2 = int of string n2 in
61 if (n1 <> n2) then
62 Coccilib.include match(false)
63
64 @forw depends on !fns && (start | |
65 (after start && !should be static && !r0) | |
66 (after start && should be static)) exists@
67 identifier virtual.fn, i, in fn;
68 type T; position p, p2; expression E, E0, E1;
69 parameter list [n] paramsb; expression list [ne] argsb;
70 @@
71 fn@p(paramsb, T i, . . .) {
72 . . . when != \(i = E\|&i\)
73 (
74 in fn@p2 (argsb, <+. . . i . . .+>, . . .);
75 |
76 E0 = <+. . . i . . .+>;
77 . . . when != E0 = E1
78 in fn@p2 (argsb, E0, . . .);
79 )
80 . . . when any
81 }
82
83 @script:ocaml depends on after start@
84 n1 << forw.n; n2 << virtual.fn number;
85 @@
86 let n1 = n1 +1 in let n2 = int of string n2 in
87 if (n1 <> n2) then
88 Coccilib.include match(false)
89
90 @in fn static@
91 identifier forw.in fn;
92 @@
93 in fn(. . .) {. . .}
94
95 @script:ocaml depends on after start && forw@
96 symb << virtual.symb; fn << virtual.fn;
97 c file << virtual.call file;
98 e file << virtual.export file; p << forw.p;
99 @@

100 add for filtering symb fn e file c file (List.hd p).file
101
102 @script:ocaml depends on forw && start && !in fn static@
103 e file << virtual.export file;
104 fn << forw.in fn; symb << virtual.symb;
105 dir << virtual.linux; save << virtual.save file;
106 n1 << forw.ne; n2 << forw.n;
107 version << virtual.version; param << forw.i;
108 @@
109 let n1 = n1 + 1 in let n2 = n2 + 1 in
110 external search symb fn param n2 n1 dir e file symb version save

Figure B.10: Detecting Free exit safety hole instances of type possible
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B.7 Size safety holes

To detect Size entry safety holes, we rely on the semantic match of Figure B.11. The specification
searches for locations in kernel API functions where the size of memory to be allocated with common
kernel allocation primitives is computed following the value of a kernel API function parameter.

1 #include "size.ml"

2
3 @exported@
4 identifier fn;
5 declarer name EXPORT SYMBOL, EXPORT SYMBOL GPL;
6 @@
7 (
8 EXPORT SYMBOL(fn);
9 |

10 EXPORT SYMBOL GPL(fn);
11 )
12
13 @r exists@
14 type T, T1, T2;
15 T2 **z;
16 expression x, y, E;
17 identifier param, exported.fn;
18 parameter list [number] params b;
19 position p;
20 typedef u8;
21 {void *, char *, unsigned char *, u8 *} a;
22 {struct device, struct net device} dev;
23 @@
24 fn (params b, T param, . . .) {
25 . . .
26 (
27 z = \(kmalloc\|kzalloc\)(<+. . . sizeof(T1) . . .+>, . . .);
28 |
29 a = \(kmalloc\|kzalloc\)(<+. . . sizeof(T1) . . .+>, . . .);
30 |
31 x@p = \(kmalloc\|kzalloc\)(<+. . .sizeof(*param) . . .+>, . . .);
32 |
33 y = <+. . . param . . .+>;
34 . . . when != y = E
35 x@p = \(kmalloc\|kzalloc\)(<+. . . sizeof(*y) . . .+>, . . .);
36 )
37 . . . when any
38 }
39
40 @script:ocaml@
41 symb << exported.fn;
42 p << r.p;
43 sf << virtual.save file;
44 vers << virtual.version;
45 param << r.param;
46 n << r.number;
47 @@
48 let number = n+1 in
49 let p =List.hd p in
50 report size safety symb param number p .file p .line vers sf "may"

Figure B.11: Detecting Size entry safety hole instances of type possible
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