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Summary

Metallatranes (M = Si, Ge, Sn) have been studied intensively during 50 years and have many appli-
cations in various domains namely physics, biology, medicine and so on. However their electrochemical
properties were poorly studied up to date. In the present work, new metallatranes have been synthe-
sized and characterized using different approaches and techniques (organic synthesis, cyclic voltammetry,
preparative electrolysis, EPR, spectroelectrochemistry, cyclic voltammetry coupled with EPR, NMR, GC-
MS). Several novel structures of metallatranes have been obtained and validated by XRD. Electrochemical
measurements show that the electrooxidation of metallatranes occurs via electrochemically reversible one-
electron transfer resulting in the corresponding cation radicals (CRs), detected by cyclic voltammetry,
UV-vis spectroscopy and real-time EPR spectroscopy. The spin delocalization in these paramagnetic
species has been characterized and supported by DFT calculations. We focused on the electronic prop-
erties of metallatranes and on various bonding systems between pentacoordinated silicon and N atom
including the substituents. We also considered the issue of non-coordinating, non-nucleophilic supporting
salts for electrochemistry as they provide good ionic conductivity in the solvents of low polarity and allow
carrying out voltammetry and EPR experiments on unstable electrogenerated electrophilic and radical
species.

Résumé

Les métallatranes (M=Si, Ge, Sn) ont fait 'objet d’un intérét important de la communauté scien-
tifique durant les 50 derniéres années et ont des applications dans de nombreux domaines, de la physique
a la biologie en passant par la médecine, etc... Cependant, leurs propriétés électrochimiques n’ont été
étudiées que de fagon trés incompléte & ce jour. Dans le travail présenté ici, nous avons réalisé la synthése
de nouveaux métallatranes et les avons caractérisés, et ce par plusieurs approches et techniques différentes
(synthése organique, voltammetrie cyclique, électrolyse préparative, EPR, spectroélectrochimie, voltam-
meétrie cyclique couplée & un EPR, RMN, GC-MS). Plusieurs nouveaux métallatranes ont été obtenus, et
leurs structures validées par diffraction RX. Les mesures électrochimiques montrent que ’électrooxidation
des métallatranes a lieu via des transferts électroniques réversibles, et les cations-radicaux (CRs) qui
résultent de leur oxydation ont été détectés par voltammeétrie cyclique, spectroscopie UV-visible, et spec-
troscopie EPR en temps réel. La délocalisation de spin dans ces espéces paramagnétiques a été caractérisée
et soutenue par des calculs de DFT. Nous avons concentré nos efforts sur les propriétés électroniques des
métallatranes et la nature des diverses liaisons entre ’atome de silicium penta-coordonné des silatranes
d’une part, 'atome d’azote de la structure atrane, et les atomes de différents substituants d’autre part.
Nous avons également étudié le probléme posé par les sels du fond pour I’électrochimie, qui doivent étre
non-coordinants et non-nucléophiles, et doivent fournir une bonne conductivité ionique dans des solvants
peu polaires. Ils permettent ainsi de mener des expériences de voltammeétrie et de la RPE sur des espéces
électrogénérées instables, notamment électrophiles ou des radicaux libres.

Key words
1. Silatranes 5. Cyclic voltammetry
2. Hypervalent silicon species 6. DF'T calculations
3. Cation radicals 7. EPR spectroscopy
4. Electrochemistry 8. Non-cooridating electrolyte
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1 Glossary

The abbreviations commonly used in the present manuscript:
3c-4e: 3 centers, 4 electrons bond (5¢c-6e: 5 centers 6 electrons bond, 6¢-8e, etc...)
ACN: Acetonitrile
Bu: Butyl
C: concentration
CCDB: Cambridge Crystallographic DataBase
DDM: Dimethyl diazomalonate
DFT: Density functionnal theory
DMF: Dimethylformamide
E7: Anodic peak potential
E;: Cathodic peak potential
EPR: Electron paramagnetic resonance
F: Faraday’s constant (96 485 C.mol ')

Fc: Ferrocene

G: Gauss (unit of magnetic field strength)
GC: Glassy carbon

GC-MS: Gas Chromatography, coupled with Mass Spectrometry detector
HOMO: Highest occupied molecular orbital
1p: Peak current

J: NMR coupling constant between 2 nuclei
K: equilibrium constant of a reaction

LAH: Lithium aluminum hydride

LUMO: Lowest unoccupied molecular orbital
NBO: Natural Bonding Orbital method
NMR: Nuclear magnetic resonance

ppm: Part per million

p-TsOH: p-toluenesulfonic acid

R-: Any functional group

R: Ideal gas constant (8,3145 J-mol~1.K—1)
S: Entropy

SCE: Saturated calomel electrode

SN: Nucleophilic substitution

Tg: Octahedral silsesquioxanes

TBA: Tetrabutylammonium

TBAP: Tetrabutylammonium perchlorate
THEF: Tetrahydrofurane



TMS: tetramethoxysilane
v : Scan rate, in cyclic voltammetry experiments
°C': Degree centrigrade

«: Transfer coefficient of an electrode reaction
X: electronegativity

0: Chemical shift (NMR, ppm)
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2 Introduction

Since 1960, when a new class of organosilicon compounds, triptych-siloxazolidines, was
firstly synthesized by Frye et al. [1], metallatranes, -the name that has been coined by Voronkov,-
have been studied intensively over 50 years not only because of their unique transannular inter-
actions between nitrogen of the atrane cage and the metal (Si, Ge and Sn) but also because of
many applications in medicine and biology they found [2, 3, 4]. However the electrochemical
properties of metallatranes did not catch enough attention and have been poorly studied [5] up
to date.

Analysis of the literature on physical chemistry of metrallatranes prompts one to believe
that they have big potential namely in the electrochemical aspect. First of all, in the cation
radicals of this family, the hypervalent bond between N and the metal (Si, Ge and Sn) atom
limits the spatial range of spin localization; protected by the three lateral branches of the atrane
cage, the spin is trapped inside and is naturally isolated. Second, the atrane structure has axial
symmetry and is in principle allowing the formation of long linear systems in this direction.
Normal o-conjugated polysilane chains are either chemically unstable or have poor electron
conductivity because of poor overlap of silicon orbital. Bonding element of the extended met-
allatrane structures occupies the axial position and is intrinsically isolated. Now if an electron
transfer can induce a positive charge to these linear systems, one might expect to obtain a new
kind of conductive molecular wires (Figure 1) which are chemically stable, conformation-
independent and allow electronic conjugation throughout their whole length. This would be
a remarkable development compared to the normal o-conjugated polysilane chains which are
either not chemically stable or have poor electron conductivity because of poor overlap of sil-
icon orbital. Thus we consider it is a completely different new concept for conducting chain
molecules in which the electrons are able to be transferred along the chain.

In addition, the cation radicals of metallatranes, at least those already studied, show another
remarkable feature: the distance between N and Si varies depending on the charge on N atom.
Using this axial flexibility of the atrane system, we can modulate the chain length and realize
different electrochemical functions, for instance an electrochemically addressable molecular
muscle. For the above reasons, we decided to focus the present work on the electrochemical
behavior of metallatrane-based systems.

To achieve this goal, the work presented in this manuscript was carried out starting from the
synthesis of metallatranes and their structural characterization, to their electrochemical study
and quantum chemical calculations. This manuscript is composed of four essential chapters.
The first chapter provides bibliography and contains a historical overview of metallatranes,
their structure and behavior as well as that of their cation radicals; some non-coordinating
supporting electrolytes that have similar pentacoordinating structure of incorporated Si atoms

were also considered.
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Figure 1: Different types of silicon chain molecules. a. o-conjugated molecular chain with
good electronic conductivity but poor chemical stability; b. Silicon chain molecule with good
chemical stability but poor molecular orbital overlap; ¢. New molecular chain with atrane
structure as elementary unit, which is supposed to provide efficient electron transfer and good
chemical stability.

The second chapter concerns the experimental details, including chemical and electro-
chemical synthesis, physical and chemical characterization of the prepared compounds con-
sidered afterwards in other chapters of the manuscript. Two main chemical reactions as well
as one electrochemical process were used for the synthesis of the metallatranes. NMR spec-
troscopy, GC-MS and XRD were used for the structural characterization. Cyclic voltammetry,
chronoamperometry and EPR spectroscopy were used for analyzing electrochemical reactiv-
ity.

The following chapter includes the obtained results and discussions; it is divided into five
subsections according to the metallatranes considered and finally one last section concern-
ing new supporting electrolytes. The manuscript begins with simple 1-R-silatranes with sub-
stituents providing different electronic effects to the reaction center of the electron transfer.
Then, bis-(silatranyl)alkanes and bi-silatranes are considered. These molecules with the atrane
moiety doubled in different ways represent the first step of constructing a silylated chain al-
lowing long-distance conjugative interactions. This discussion is followed by 1-R-stannatranes
in which the metal of the atrane is changed from Si to Sn. Finally, we will present new non-

coordinating silsesquioxane-based supporting electrolytes for the large use in electrochemistry
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and organometallic chemistry.
The last chapter, based on the experiment, analysis and above discussion, gives a conclu-
sion for the whole research on metallatranes.

References and appendix are given at the end of the manuscript.
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3 Bibliography

3.1 Silatranes, their structure and specific intramolecular bonding and

their electrooxidation

To a great extent, it is due to their unique structure (see Figure 2) that silatranes are so attractive
systems for researchers since they were first synthesized in 1960 by Frye ef al [1]. Since then,
silatranes have been very well studied in many aspects. Numerous silatranes were synthesized
and characterized by different methods: molecular structure [6, 7, 8], dipole moments [9,
10, 11, 12], vibrational spectra [1, 9, 13, 14, 15], UV spectra [16, 17, 18], NMR spectra
[9, 19, 20, 21], mass spectra [22, 23, 24, 25] and the results of other physical methods were
reported. In addition, cleavage and retention of the silatrane ring were studied [26, 27] as well

as other chemical reactions. A great deal of attention was paid to their biological activity.

First of all, the series of silatranes have common distinctive structure of the atrane frag-
ment: three alkyl branches all connected with a nitrogen atom, on one end, and connected back
together with a O3SiR group on the other. Their cage can also be seen as three heterocyclic
rings sharing two transannular atoms, silicon and nitrogen. The interaction between Si and N
atoms is fascinating because the lone electron pair of the nitrogen acts as an electron-donor
to silicon atom and is usually not available for the interactions with external Lewis acids, like

BF5. Thus silatrane could be considered as a compound bearing a pentacoordinate Si.

Figure 2: Silatrane structure

A large number of reports highlight the existence of the intermolecular N—Si bonding by
means of single crystal diffraction analysis [28, 29]. Table 1 is a part of the large available
crystallographic data, showing that the distance between Si and N ranges from 2.1A to 2.7A.
This distinctly differs from either the usual Si-N bond length (1 .7—1.810%) or the sum of van der
Waals radii of N and Si atoms (~ 3.5&).



Table 1: Crystal data of selected silatranes [28, 29]

R Si-N  Si-R  Si-O
Cl 202 215 1.65
CHs; 217 187 1.67
CoHj 221 188 1.66

CICH, 212 191 1.67
Cl(CHy);  2.18 188 1.66
3-05NCeH, 212 191 1.66

CH30 2.22 1.67 1.66
|
Ly
N 2.088 1.909 1.667
A

\—/ 2.088 1.898 1.664

@N_ 2089 1902 NR

N
©: 2089 1908 1.659

2.097 1897 NR

2.102 1910 NR

2.110 1910 NR

|
oﬁo
Q—

2.118 1.663 1.913

Silatranes might exist in two main configurations of N atom: exo and endo. Without
the valence molecular angles and bonds twisting, the interatomic N—Si distance of endo and
exo structures is limited in a narrow range, 2.35-2.45 and 2.9-3.0 A, respectively. According
to the calculations, as the example of the 1-methylsilatrane molecule, the unstable exo form
should transform naturely to the endo form which is relatively stable [7]. The endo form of
silatranes is more stable due to whole set of factors related to configurational, dipole-dipole
(electrostatic) and covalent interactions [29, 30]. For instance, from the molecular bonding
orbital shown in Figure 3, it is obvious not only the atomic orbital of N and Si was necessarily
involved but also the atomic orbital of oxygen participated into the formation of molecular
bonding as well. According to the features of their frontier molecular orbital: highest occupied
molecular orbital (HOMOs) in endo configuration is lower than exo configuration; and lowest
unoccupied molecular orbital (LUMOs) is rather higher which also support the stability of
endo configuration. Additionaly, the energy gap between HOMO and LUMO decreases in

10



going from structure endo to exo. All the information indicates that endo structure of silatrane
is more stable than exo form [31]. The quantum-chemical calculations also support that the
electronic density “transfer” from the nitrogen atom is about 0.25 eV for the endo form of
silatranes. Thus, the peculiar features of the silatrane structure are associated with the N—Si

interaction [29].

Figure 3: MOs, orbital of methylsilatrane showing contribution of N, Si and O atomic orbital
[28].

3.1.1 Transannular bonds to Si

The interaction between metal and nitrogen atoms in metallatranes to this day cannot be per-
fectly explained by a single theory. Good results are obtained by the use of several theories,
each theory modelising a different part of the molecule. The hybridization theory claims that
silicon in silatranes is pentacoordinated, meaning valence orbital are hybridized as sp®d. Like
in other molecules with sp®d hybridized silicon, the geometry of the Si in silatranes is a trigo-
nal bipyramid with the silicon atom located in the center, and three oxygen atoms, one nitrogen
atom and one atom from the substituent connected to Si located in the corners of each trigonal
pyramid (Figure 4).

Three oxygen atoms and the substituent R form four o bonds with Si whereas N and Si
form a dative bond with the lone electron pair of the N atom as a donor element. Although
this theory seems to explain the molecular geometry of silatrane well, it ignores the fact that
the three heterocyclic rings in the silatrane structure will cause electron density to be different
in the dative N-Si bond and in the covalent bond to the substituent on the other side of silicon
atom.

Due to this change in electron density, the silicon atom is not on the plan of the three
oxygen atoms so the geometry of silatrane is not a perfect trigonal bipyramid. The drawback
of hybridization theory alone is that it presumes the involvement of d-orbital in the chemical

bond. The 3d-orbital of the silicon atom contains comparatively high energy electrons, rather

11



unfit to hybridize. So, rather, 4s- and 4p-orbital of silicon atom must be considered to ex-
plain the electron configuration in the dative N\rightarrow Si bond. In this case, the orbital

hybridization should not be sp>d anymore but turns into a spd4s hybridization (Figure 5).

Figure 4: Structure of a silatrane Si atom as predicted by hybridization theory

To circumvent these issues, attempts to explain silatrane geometry using the molecular
orbital theory (MO) were undertaken. In this theory the silatrane is considered as a hypervalent
molecule. This is a theory first defined by Jeremy I. Musher in 1969 [32]. It involves a
3-centers-4-electrons (3c-4e) bond, which is described as a combination of three molecular
orbital: a half filled p-orbital from the central silicon atom, one fully filled orbital from the
lone electron pair of the nitrogen atom, and one half filled valence orbital from the substituent.
The combination of these electrons results in a filled bonding orbital, a filled non-bonding
orbital (HOMO) and an empty anti-bonding orbital (LUMO). In this theory, the 3s and the
remaining 2p orbital of the silicon atom hybridize into sp? orbital and form three o bonds with
three oxygen atoms in the structure.

As follows from the electrochemical studies and DFT modelling of metallatranes [33, 34],
the N-M-X 3-centers system behaves as a single orbital with electron availability from both
sides, which thus remains open to further conjugative interactions. Now, extrapolating this
3c-4e bond (Figure 5), we expect to apply the same theory to imagine a 5c-6e bond with 2
metallatrane structures enabling a more extended conjugated electron system. In this Sc-6e
bond, the central and terminal positions should be occupied by more electronegative elements,
with less electronegative elements at the other two positions. Farnham ez al. called the 5c-6e
bond an extended hypervalent o bond [35], because it is constructed by the combination of the
two hypervalent n;, - - - 0* 3c-4e metallatrane-like interactions through the central n,, orbital.

Such stablilized 5c-6e system can then be presented as o™ - - -1, - - - 0™ extended hyperva-
lent bonding. For instance, in bis(silyl)hydride niobocene complex CpyNb(SiClMes)oH bear-
ing an electron-withdrawing chloride substituent at silicon [36], direct interligand interaction

causes the rehybridization at the silicon atom: the silicon orbital taking part in the five-center

12



six-electron Cl---Si---H---Si---Cl bond develop more p character, and thus more s char-
acter is left for the bonding with other substituents, thus accounting for the shortening of the
Nb-Si bond and the lengthening of the Si-Cl bond in CpyNb(SiClMes)oH. An approximate
molecular orbital model which summarizes this 5c-6e idea developed by Nakanishi [37, 38] is

shown in figure 6 below.

7 Lumo
«T» <:\ antl bondmg\y3
C><) 0D : ;-T%
c* " “H""HOMO
co oo 2
‘ I non-bondi ng W, Pz
<C><) " HOMO-1
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Figure 5: Molecular orbital diagram for 3c-4e bonding scheme

Cl Si H Si Cl
OO0 — Y¥s
! OO OACD — W
E O O O —f—— Y3
D OO - W2

OISO - Wi

Figure 6: Approximate molecular orbital model of the 5c-6e bond

3.1.2 Electrooxidation of silatranes

To obtain a better understanding of the transannular dative bonding interaction between the
silicon and the bridged nitrogen atom, the silatranyl radical cation is bound to attract attention.
The silatranyl radical cation is expected to be formed when a silatrane loses one electron
which would induce the electron density changes in this system and specifically at the level of

transannular interaction between Si and N.
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Figure 7: Cyclic voltammogram of 10~2 M solution of silatrane with R = C,H;s in ACN +
TBAP on platinum electrode (scan rate 200 mV/s) at 20 °C [5].

The detection of the radical cation by cyclic voltammetry is very easy to achieve. In their
1993 paper, Broka et al. report [5] the electrochemical oxidation of silatranes using cyclic
voltammetry and a rotating ring-disc electrode. A series of silatranes with different subsituents
were studied by their method of cyclic voltammetry. The oxidation peak potentials are in the
range 1.42-1.85 V (vs. SCE). The process is diffusion-controlled and proceeds by one-electron
transfer. The results show that all silatranes exhibit irreversible electro-oxidation signals are
at scan rates below 100 mV/s. When the scan rate increases, the process of oxidation for
silatranes with R = CH3, CoHy, CHy=CH, CgHj and p-C1-CgH4 becomes partially reversible
at the scan rate of 200 mV/s and room temperature (Figure 7). This suggests that cation radicals
are created as the primary products of electro-oxidation and have relatively low stability. This
process is coupled with chemical reactions with moderately low rate constants, which explains

the irreversibility at low scan rates:
N N
— e’ -
Oy\—si—o — o i
o” | o)
R

Scheme 1: Formation of radical cations of silatranes

The potentials of electro-oxidation are affected significantly by the electronic effects of the
silane substituents (Table 2). Electron-donating substituents, by stabilizing the cation radical,

facilitate electrooxidation, whereas electron-withdrawing subsituents shift the potentials of the

14



silatranes towards higher values.

Table 2: Electrochemical oxidation peak potentials® of silatranes [5]

Substituents of silatrane (R)  E,(V)

H 1.70
CHj 1.43
CyHjy 1.42
CH,C1 1.85
OCH; 1.53
OCsoHj5 1.53
Cl not oxid
CH,=CH 1.52
HC=C 1.80
CeHs 1.55
p-CgHyCl 1.60
2-furyl 1.45°
2-thienyl 1.60°
3-furyl 1.60°
3-thienyl 1.55°

® Experiments were carried out in ACN + 0.1 M TBAP. Working electrode was glassy carbon.
All potentials vs. SCE.
b Voltammograms are ill-defined.

Figure 8: HOMO (atrane cage) and HOMO-1 (phenyl ring) orbital of silatranes (R = aryl)

Good correlations between the oxidation potentials and NMR data, as well as the pro-
nounced effect of substituents (the value of p; = 0.4 V shows that the reaction site might be
close to the substituent), could be regarded as an argument that the nitrogen atom is the prob-
able reaction site [5]. However, when considering the impact of the electronic effects of the
substituent on the stability of cation radicals, it should be carefully taken into account that the
p-orbital of aryl substitutents have no effect whatsoever on the 3c-4e silatrane bond. Indeed,
p-orbital are oriented perpendicularly to the components of this dative bond, and therefore

cannot have any interaction with them. In other words, mesomeric effects are not the actors
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in such systems and can be ignored. In this context, an aryl substitutent would have a very

similar effect as that of an alkyl substitutent (see Figure 8).

3.2 Electrooxidation of germatranes

Some previous work done in our laboratory must be mentioned as it set the direction of my
work. Germanium derivatives are another large family of metallatranes. They were first syn-
thesized in 1965 by Mehrotra and Chandra [39] and were widely studied in many aspects.
Similarly to the parent silatranes, the intramolecular coordination between N and Ge atoms of
the germatranes caught many attentions as the subject of studies, by structural characterization,
NMR, mass-spectroscopy, UV, dipole moments measurements and other physico-chemical

properties determinations as well as synthesis and chemical reactivity of germatranes.

-

O—Ge\O

Siw
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=W N -
AR A RI
I
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Figure 9: Germatranes 1-4.

A great deal of the reported works confirm that the most important practical properties of
germatranes are certainly those related to their versatile and high biological activity [2, 3, 4]. A
series of ring-substituted bromobenzyl germatranes were studied in our laboratory. The elec-
trooxidation of the germatranes (1-4) (Figure 9) and of the model compounds 6 and 7 (Figure
10) in CH3CN and DMF solutions was studied [33]. All four germatranes studied show a
distinct oxidation peak (Figure 11). Peak currents 7, for 1-4 are linear with the germatrane

concentration and, for v > 0.5-1 V/s, with the square root of the scan rate (¢, / v1/2

= const.,
Figure 12), thus suggesting diffusional control of the process.The electron stoichiometry for
the first step of oxidation in all cases was determined either from direct comparison of the
limiting currents of the germatrane and ferrocene, taking no account of the difference in their
diffusion coefficients D, or combining voltammetry parameter i, /v'/2 with the Cottrell slope
obtained from chronoamperometry at the same electrode and the same solution [40]. Beyond

the lowest scan rates (v > 0.2 — 0.5 V/s) both methods provide the n values close to 1.
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OH

Figure 10: The model compounds S, 6 and 7.

In the publication, the authors also pointed out [33] that a reverse peak appears on the
voltammograms of the non-substituted 1 and, to a lesser extent, of p-Br benzylgermatrane (4)
at higher scan rates (Figure 13). Because the oxidation peaks of both compounds are too large
(E; — E, =118 and 110 mV for 1 and 4) to correspond to a perfectly reversible redox couple,

the process can rather be characterized as a quasi-reversible one.

5.01
4.0+

3.0

A

2.0
1.0

004 +—

0.0 0.5 1.0 1.5 2.0 25
E, Vvs Ag/0.1 M AgNQO,

Figure 11: Cyclic voltammogram of 3 (C = 2 mmol/L) in CH3CN /0.1 M BuyNPFg at a 0.7
mm glassy carbon electrode. v = 10 V/s; T =22 °C.
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Figure 12: Normalized oxidation peak currents z'p/Cvl/2 of: (o) -1; () -2; (V) -3; (1)) -4; (M)
-5. Voltammetry at GC disc electrode, in CH3CN /0.1 M BuyNPF,.

Triethylamine (6) and triethanolamine (7) as comparisons also were studied by cyclic
voltammograms and compared with four germatranes. In 6 and 7, as is reflected by the trend
in £, (Table 3), the basicity of N is higher than in germatranes for the reason of N—Ge inter-
action in the latter, thus the protonation rate of 1-4 is slower. Also, slightly higher oxidation
potentials of the germatranes versus £, of silatranes [5] indicate larger involvement of the lone
pair of N in N—Ge relative to N— Si dative interaction; consequently, this site is less available

for oxidation and protonation.

5.0+
4.0

3.0+

I, uA

2.0
1.0 1

0.0+

-1.0 4

0.0 ' o|.5 ' 1|.o ' 1|.5
yr E, V vs. Ag/0.1 M AgNQ,

Figure 13: Cyclic voltammogram of 1 (C = 0.8 mmol/L) in CH;CN /0.1 M BuyNPFg ata 0.7
mm glassy carbon electrode. v = 32 V/s; T =22 °C.

The results of cyclic voltammetry combined with DFT B3LYP/6-311G calculations, have
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shown that donor activity of the nitrogen atom is substantially reduced because of the dative
N—Ge bond coordination compared to EtzN and (HOCH,CHs)3N.

Further, Soualmi et al [34] reported electrochemical oxidation of 1-substituted germatranes
1,4,8,9, 10 and 11 (Figure 14) occurring via an electrochemically reversible electron trans-
fer and resulting in germatrane cation radicals that were detected by cyclic voltammetry and

studied by real time CW EPR - spectroelectrochemistry.

The involvement of n(p,) electrons of the atrane nitrogen into intramolecular N—Ge dative
coordination substantially reduces the ease of electron withdrawal during the oxidation of
germatranes (by about 500-600 mV) compared to parent tertiary amines and by about 70-100

mV compared to silatranes so far studied by cyclic voltammetry.

Table 3: Parameters of anodic oxidation of germatranes 1-4 and of the model compounds at a
GC disc electrode

Cmpd E, (V) E, — Ey (V) AE,/Alg(v) (mV)
CH;CN DMF CH;CN DMF CH;CN DMF
1 1.209 59 37
2 1.285 101 45
3 1.276 109 39
4 1.236 1.364 83 74 33 34
5 0.774 0.795 169 124 36 41
6 0.582 0.888 193 145 64
7 1.126 497 98

n E°(V) K o IP(eV) o«
1.1 1.149 11.1 080 6016 1.526
1.0 1237 41 057 6238 1.994
10 1225 20 060 6225 1.703
09 1202 44 074 6105 1.660
1.0

0.9

0.9

* Peak potential at v=1 V/s vs. Ag/0.1 M AgNO3 in CH3CN.

b ks x 10? in cm/s.

¢ Transfer coefficient estimated as a mean of a from AE, /Alg(v) = 29.6/a and E, — E, ), =
1.85RT/aF [41].

4 Group inductive constants calculated according to o* = 7.84> {Ax;(R;/r;)*} [42].
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R= O-F-C6H4- (8), 0—Br—C6H4— (9), p-EtzN-C6H4- (10), p—MezN-C6H4— (ll)

Figure 14: 1-Substituted germatranes 8-11.

The values of nitrogen Afc constants in their EPR spectra are ay = 18 — 19 G, this result
shows a remarkable feature of aryl germatranes in the form of cation radicals that the nitrogen
atom of atrane is practically planar. This is very typical for planar N-centered radicals. There
is a difference of about 40 times of axial and equatorial a-methylene protons in the cation
radicals in their response to the magnetic field. Neither is any contribution from Ge nor from
the aromatic ring seen in the spin delocalization. While the N atom remains flat, the Ge atom

in the cation radical of aryl germatranes is no more on but out of the Ge(—0)3 plane.

T T
3370 3390

H, Gauss

r
3350

Figure 15: EPR spectrum of the cation radical of benzyl germatrane generated in CH3CN-0.1
mol/L BuyNPF¢ at E = 0.85 V: (a) experimental and (b) simulated using the parameters in the
text. Modulation amplitude a = 0.4 G; T = 233 K [34].

For the cation radicals of benzyl germatranes, we found quite a different spin distribution
as shown followed: the aromatic system altogether with an “electron bridge” o(C—Ge) orbital

accommodate the major part of the spin density while only a small part of it is residing on N

20



atom. Neither EPR spectroscopy (Figure 15) result nor DFT calculations congregate in that
the atrane nitrogen in the cation radical adopts an exo-configuration. On the other hand, a
remarkable molecular motion around Ge atom occurs which provides it much flatter and more
similar to trigonal bipyramid. This is on the contrary to what was found for the cation radicals
of aryl germatranes. For that we could summary that the main driving force determining
the geometry of these species is that the 3c-4e bond N-Ge-Cgp,» upon oxidation and favored
metal pentacoordination in the cation radicals of germatranes because of the importance of the
interactions of Ge with its environment and with all three O atoms.

A distonic cation radical could be formed when nitrogen atom of atrane part 3c-4e bond
(Ge—C fragment) has no possibility for lateral overlapping by its conjugative preferences and
remains the unpaired electron. Because the conjugation is cut off by orthogonal orientation of
the susceptible to conjugative interactions orbital of the substituent. If this N—(Ge—C) center
is available for further conjugation, spin delocalization will find a new configuration which
is more stable and spin density will shift to the aromatic system and only very small amount
of it still seeing the atrane N atom. Thus the formation of distonic cation radicals observed
for aryl germatranes might reflect a typical feature for the germatranes substituted with the
groups “ending” electron transmission by the absence of further conjugation: aliphatic, vinyl
and ethynyl substituents. If so, electrochemistry will provide a new insight into the electronic
interactions in these compounds and open possibilities for designing molecular electronic de-

vices with specific electronic, electromechanic and optical properties [34].

3.3 Stannatranes

In contrast to silatranes or germatranes, stannatranes have attracted much less attention than
their lighter congeners in the family of metallatranes. Compared to Si or Ge atoms, Sn has
evident strong metal properties and much larger atomic diameter. However, the presence of
the transannular bond beween N and Sn in stannatranes was well established; moreover, the

bond strength even slightly increases in the order Si < Ge < Sn [43].

-~ K
toluene AR
Sn(O-t-Bu), + N(CH,CMe,OH); —— >
-3 t-BuOH

t-BuO

Scheme 2: Synthesis of #-butoxystannatrane

Whithin the cooperation with professor K. Jurkschat and his team at the department of

inorganic chemistry in Technical University of Dortmund, a series of the stannatrane deriva-
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tives of the type N(CH,CMe,0)3SnX have been synthesized and studied by XRD and cyclic
voltammetry. Notably in this series of stannatranes, there is no tin-carbon bond as the atom
connecting tin atom with the substituent is either 15 group element (O or S) or halogen. This
feature is responsible for the nontoxicity of these compounds. Inorganic stannatranes of this
type that lack any tin—carbon bond are scarce [44, 45, 46, 47] so it is interesting to investigate
their structure and electrochemical properties.

The starting precursor of stannatrane was tin tetra-tertbutoxide, Sn(O—¢Bu),, which, re-
acting with tris(2-hydroxy-2-methyl-propyl)-amine, N(CH,CMe,OH)3, gave the product ¢-
butoxystannatrane as the starting material for the synthesis of a variety of inorganic stanna-

tranes (Scheme 2).

toluene o |
—_— X (a)
- t-BUOH
XH
12, X=0,R =t-Bu
13, X=S, R=Me
R
'c,,,l .'0,,/
toluene
+ RX —> (b)
- RO-t-Bu

t-BuO 14, X = Cl, R = CH3C(0)
15, X = I, R = Me3Si
16, X = Br, R = Me;Si

Scheme 3: Synthesis of stannatranes 12-16.

The ¢-butoxystannatrane is highly sensitive to moisture, well soluble in dichloromethane,
tetrahydrofurane, and diethylether and show moderate solubility in toluene and benzene. Thus,
in an acid—base type reaction the treatment of the z-butoxystannatrane with p-tBu phenol, 4-
methyl thiophenol gave the stannatranes 12 and 13, respectively, in high yields (Scheme 3 (a)).
The synthesis of the halogenido-substituted stannatranes 14-16 was achieved by the reaction
of z-butoxystannatrane with acetyl chloride, CH3C(O)CI, and trimethylhalogenido silanes,
Me;SiX (X = Br, I), respectively (Scheme 3 (b)).

The five stannatranes are colorless or yellowish crystalline materials. Notably, on expo-
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sure to air and light the color of the iodido-substituted stannatrane 15 changed to yellow.
All compounds are soluble in benzene, toluene, dichloromethane and tetrahydrofurane, but
at room temperature the chlorido and bromido derivatives 14 and 16 are only well soluble in

dichloromethane or chloroform.

3.4 Radical cations of metallatranes (theoretical considerations)

Metallatranyl cations are of peculiar interest because they help to better understand the molec-
ular structures and hypervalent bonding in the molecules of metallatranes. Belyakov et al. in
1999 [48] pointed out that the attractive interaction N-M(X) in atranes XM (Y-CH,—CH,)3N
originates from the donation of the lone pair of the nitrogen atom into the antibonding o* (M-
X) orbital. This claim would imply that the N-M bond strength to depend on the electronega-
tivity of the axial substituent X [30]. However, there is another approach, which states that the
Coulomb interaction of the oppositely charged germanium and nitrogen atoms gives the major
contribution to N-Ge bonding in germatranes [49]. Hence figuring out the structure of the

corresponding cations would help to have a further knowledge about the interaction of M—X.

Figure 16: Equilibrium structures obtained by DFT calculations at the B3LYP/cc-p-VDZ level
of theory of silatranyl and germatranyl cations and corresponding classical cations [50].

Sundius et al. in 2007 [50] carried out a series of calculations on the equilibrium structures
of silatranyl and germatranyl cations as well as of corresponding fluoroatranes using DFT cal-
culations at B3LYP/cc-p-VDZ level of theory, and analyzing ongoing changes in the bonding
from germatranyl cation to a neutral molecule by using the NBO method. In the publication
of this group, the electronic structure of the germatranyl cation is discussed. By comparing
its structure with those of halogermatranes they try to analyze the changes in the transannu-

lar N—Ge bond induced by the evolution from neutral molecule to a cation [50]. From the
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theoretical calculations, it is shown that loss of fluorine substituent shortens the interatomic
distances of M—N and M-O (Figure 16). The cation M becomes tetracoordinated and the M—
N bond formally becomes one of the sp® hybrid bonds. This inversion of the configuration at
M demonstrates itself in the increase of the N-M-O bond angle which becomes larger than
90° [50].

By comparison with “classic” cations ((CH30)3Si* and (CH30)3Ge™, for which bond
lengths are shown in figure 16), M—O bonds in atrane cations are substantially lengthened
(Figure 16). The shortening of M-O interatomic distances in ‘“classic” cations may be ex-
plained by the charge transfer from oxygen lone pairs to the vacant p-orbital of M atom. On
the other hand, the vacant p-orbital in the atrane cations is involved in N-Si bonding. This
significantly decreases the stabilizing interaction between the oxygen lone pair and the vacant
p-orbital of the metal [50].

Sundius et al. also considered the change of natural bond orbital and their interactions upon
the transition from the germatranyl cation to the 1-fluorogermatrane which were revealed by
the NBO analysis. The result showed that Ge—N bonding displays a larger covalent character
in the cation and it may explain the identity of NBO as well as Mulliken positive charges on M
in the germatranyl cation and in the 1-fluorogermatrane: the increase of positive charge on M
upon the formation of a bond with fluorine is compensated by the increase of electron density
in a M-N bond.

The study of orbital interactions in the germatrane cation radicals has been carried out in
our laboratory previously using DFT B3LYP/ 6-311G calculations on a series of germatranes
[34].

D

/O R = p-EtO(O)C-CgHq- (17), p-F-CgH4CC- (18)
O0—Ge

~
(@)
| /\ S (19)

R S \

Figure 17: Germatranes 17-19.

The analysis of the electrochemical reactivity, DFT calculations and the results of electrol-
ysis show that the reaction center of the oxidation of the germatranes 1 and 17, 8, 9 and 18
is localized on the atrane N atom. Its n-electrons bring the main contribution to the HOMO
of these compounds, though they are pointed towards Ge and hidden inside the atrane cage
(Figure 18). The cation radicals of these germatranes exist in endo-configuration, the geom-

etry around Ge atom being closer to trigonal bipyramid than in the neutral molecule. The
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change of entropy AS, noticed using harmonic frequency analysis of 1 and 17°, has shown
that the molecular geometry itself does not undergo substantial structural reorganization upon
oxidation. Thus, the somewhat slow electron transfer kinetics of the oxidation of germatranes
is mostly due to the solvent reorganization following remarkable charge redistribution in the

cation radicals and not to a flip-flopping of N between exo- and endo- configurations.

Figure 18: HOMO of 1, 10 and 19 according to B3LYP/6-311G

If a substituent with low own ionization energy (EtoNCgHy, thienyl) is present in the
germatrane molecule, the reaction center of oxidation is localized on this substituent and the
atrane moiety only acts as a weak electron-donor substituent (Figure 18). When the atrane
moiety itself undergoes the electron withdrawal, the germatranes follow an electrochemically
reversible oxidation with a fast deprotonation of the cation radical, with the kinetics of this
process being modulated by the electronic properties of the substituents at Ge. At higher
scan rates, however, the electron transfer kinetics becomes the limiting factor impeding the
observation of cation radicals. The deprotonation of the a-carbon atom of the atrane cage

allows anodic substitution at this position, in particular with CN~ anion [33].

3.5 Supporting electrolytes

In our work, we considered a not so related to metallatrane chemistry, but very important for
organometallic electrochemistry, issue of non-cooridinating, and non-nucleophilic supporting
salts for electrochemistry. Here is a short exposition of this problem.

The importance of supporting electrolytes in electrochemistry is well recognized and needs
not to be advocated [51]. Major requirements for these systems usually follow from their role
in the electrochemical processes (but not limited to): to be not electroactive (within the range of
potentials used), to provide an ionic dissociation and conductivity much larger than those due
to the analyzed electroactive species added to the electrolyte and to have good solubility, chem-
ical and electrochemical inertness, the ease of separation from the products of electrolyses and,
in many cases, specific interactions with the electroactive substrates, electrogenerated interme-
diates or with the electrode (Li*, MesN™ and higher teraakylammonium salts, ionic liquids,
Ph,B~, perfluorinated arylborates (CgF5),B~ and [(CF3)2CeH;3]4B~, ((CF3)3CO),AlL™ etc)
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[52, 53, 54, 55]. Stabilization and observation of electrophilic electrogenerated intermediates
is often only possible using the supporting salt with an appropriate non-nucleophilic anion. In
the case of weak interactions of the anions of supporting electrolyte with the analyte species of
large size and delocalized charge, ion pairing occurs; this phenomenon was widely explored
by cyclic voltammetry through the modification of AE (E5 — E;) potentials of successive elec-
tron transfers [56, 57, 58]. When electrophilic center is more localized, coordinating and even
covalent interactions occur.

Silicon is less electronegative than carbon (Figure 19) and due to this virtue, organosilanes
are almost always bearing a positive partial charge 4+ centered on the silicon atom, which
makes it very vulnerable to coordinating effects or nucleophilic substitution 2 (Sx2) and like
other attacks from the nucleophilic species. This is even truer for siliconium cations and related
species, often produced in anodic reactions of silicon organic compounds.

For this reason, even more than for most organic compounds, the electrochemistry of
organosilanes requires the choice of a non-coordinating electrolyte; specifically, the choice

of an appropriate non-nucleophilic counterion is often crucial [59].

Xo = 344
7 Cxc=255
+8 S|
/ ¢ si=1.9
Xo = 3.44

Figure 19: Electronegativity of Si center and other atoms in organosilanes ( is the electroneg-
ativity using the Pauling scale) [60].

In particular, the sensitivity of alkoxysilanes to fluorides is well known. Fluoride contain-
ing anions like BF,, PFy, SbF; actually exist in an equilibrium between said anion and free
fluoride with the corresponding tri- or penta-coordinated neutral species, e.g. PFy &= PF; + F~.
Given the very strong affinity of Si for fluoride anions, the use of such anions should therefore
be avoided with organosilanes in most cases (except, naturally, when Si-F bond formation is
the very effect the electrochemist wants to induce). We therefore looked for an alternative non-

nucleophilic ionic system than might serve as supporting electrolyte under these conditions.
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4 Experimental Section

4.1 Solvents, supporting electrolytes

All the solvents that we used for either chemical syntheses or electrochemical tests were of
analytical reagent grade purity (more than 99%). Acetonitrile (99.99%, Fisher Scientific),
dichloromethane (> 99.95%, SDS), toluene (99.5%, VWR) and DMF (99.8%, VWR) dried
by stirring them with calcium hydride followed by distillation under argon, and stored over
molecular sieves 3;\, 8 to 12 mesh (ACROS); THF (99.9%, VWR) was distilled from sodium
benzophenone ketyl.

TBAPFg (98%, ACROS) was used as the supporting electrolyte in cyclic voltammetry and
chronoamperometry. It was dried by stirring the powder for 1h under high vacuum at 60 °C

then stored under argon.

4.2 NMR spectroscopy

The 'H and '*C NMR spectra were recorded on Bruker ARX (300 MHz and 500 MHz) spec-
trometers. TMS (0.00 ppm) was used as internal standard for 'H NMR chemical shifts in all
solvents. The '9Sn NMR spectra was recorded at the Regional Center of Physical Measure-
ments of the West (CRMPO) on a Bruker AM 400 WB spectrometer. Me,Sn was used as the
internal standard reference (0.00 ppm). In *C NMR, chemical shifts were reported in ppm

relative to the central line of the triplet of deuterated chloroform (CDCls, 77.16 ppm).

4.3 Gas chromatography (GC-MS)

The GC-MS spectra were recorded on a Hewlett-Packard 5890 Series Il gas chromatograph,

coupled to a Hewlett-Packard 5972 Series mass selective detector (70 KeV ionizing voltage).

4.4 X-ray crystallography (XRD)

X-ray crystallography was performed on Bruker SAINT [61]. The cell refinement was carried
on Bruker SMART [61]; the structure was solved with the program(s) SIR97 [62] and was
refined with the program(s) SHELXIL.97 [63] and the molecular graphics was processed with
ORTEP-3 for Windows [64]. All the X-ray experiments were done by Thierry Roisnel and
Vincent Dorcet (Institut des Sciences Chimiques de Rennes UMR 6226).

4.5 Electrochemical techniques

The electrochemical properties of the metalatranes were studied by cyclic voltammetry (CV),

chronoamperometry, large-scale electrolysis and electron paramagnetic resonance (EPR) cou-
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pled with cyclic voltammetry.

4.5.1 Cyclic voltammetry and chronoamperometry

Voltammetric and chronoamperometric experiments were performed using a PARSTAT 2273
potentiostat controlled by the PowerSuite sofware. A glassy carbon disc of 3 mm diameter
or a 1 mm Pt disc was used as working electrodes. To assure the reproductivity and preci-
sion of the measurements, the working electrode was carefully polished and washed with ace-
tone before each measurement. The counter electrode was platinum plate with 1 cm? surface
area. The 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF) solutions in acetoni-
trile CH3CN, dichloromethane CH,Cl, and DMF, were used as supporting electrolytes. The
reference electrode was a stainless steel rod with a deposited layer of polypyrrole which was
put into an electrolyte bridge filled with an inert electrolyte TBAPF¢ solution (0.1 M). The
polypyrrole deposited reference electrode provides a stable and precise potential value [65].
IR-compensation facility of the potentiostat was always used to account for ohmic drops in the
solution. To correct the experimental potentials, at the end of every experiment we added fer-
rocene and plotted its voltammogram. E?FC+ JFe) = 0.247 V vs. SCE was used as the reference

[66]. All the experiments were carried out under argon atmosphere at the room temperature of
20 °C.

4.5.2 Electrolyses

The electrolyses have been performed under argon atmosphere, at room temperature, in 50 ml
cell equipped with a magnetic stirrer (Figure 20). The working electrode was made of glassy
carbon fiber as it has the maximum working surface and a platinum wire electrode was used as
reference. The counter electrode was put into small chamber with an electrolyte bridge at the
bottom, which itself was placed in another bigger chamber with an electrolyte bridge as well.
The glassy carbon fiber and platinum wire were fixed outside the bigger filter chamber and
plunged into the 50 ml glass container mentioned above. The counter electrode was separated
from the cathodic compartment by two electrolyte bridges in order to avoid migration of the
product from the anodic reaction to the catholyte; the space between two chambers provided a

static environment, mass transfer in which was effected only by slow natural diffusion.

4.5.3 Electron Paramagnetic Resonance (EPR) spectroscopy

EPR spectra were registered on a Bruker EMX (X-band) spectrometer with a Gunn diode
operating at the working frequency 9.46 GHz, coupled with a standard rectangular cavity.

The modulation frequency was 100 kHz, g-factors were corrected using DPPH as standard.
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Figure 20: Electrolytic cell.

Microwave power was adjusted to 2-8 mW to maintain the EPR signal intensity below power
saturation. EPR capillary spectroelectrochemical cell was a three-electrode version of the cell
described in [67]. Post-processing and simulation of the EPR spectra were carried out using
WINEPR System and WINEPR SimFonia software provided by Bruker [68][69].

4.6 Syntheses of silatranes and related products
4.6.1 Silatranes

To obtain the 1-R-substituded silatranes, we used a typical procedure reacting triethanolamine
with the corresponding organotrichlorosilane. The Si—Cl bond is very easy to hydrolyze,
hence this reaction goes very quickly even at room temperature. However, the main draw-
back of chlorosilanes as starting material is that they require extremely anhydrous conditions,
since water, even in trace quantities, would be a much more potent nucleophile than alco-
hols. Triethanolamine was added to trichlorosilane under argon atmosphere and the reaction
performed, leading to formation of our product and hydrochloric acid. For this reason, triethy-
lamine was added as well, to neutralize said hydrochloric acid (Scheme 44.5.2). Using this
method, tolyl, 1-naphthylmethyl, z-butyl and 2-cyanoethyl silatranes were synthesized using
dichloromethane as a solvent.

Tolylsilatrane. In a 50 ml Schlenk flask flushed with argon, p-tolyltrichlorosilane (2.26
g, 10 mmol) was dissolved in 30 ml of dry dichloromethane. In another Schlenk flask, tri-

ethanolamine (1.49 g, 10 mmol) and triethylamine (3.04 g, 30 mmol) were dissolved as
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oH l
RSiCl; + N(CH,CH,0H)3 > 5 S o 3 N(CH,CHg)3 " HCI
- Gj—
3 N(CH,CHg)3 | ~0
R

R = tolyl, 1-naphthylmethyl, ¢-butyl, 2-cyanoethyl

Scheme 4: Condensation of trichlorosilane and triethanolamine

well in 10 ml of dichloromethane under argon; the latter solution was then added slowly
into the p-tolyltrichlorosilane solution under vigorous stirring. The reaction was exother-
mic, HCl was formed. The solution was stirred overnight (more than 12 h). A side product
N(CH,CH3y)3 - HCl precipitated at the end of the reaction and filtered off on Celite; the solvent
was then evaporated from the filtrate. The residue was purified by column chromatography
(eluent: CH3CN/CH,Cly, 2 : 1 v/v) to give lightly colored tolylsilatrane in 70% yield. The
product was recrystallized from acetonitrile to afford lightly colored, needle-shaped crystals.

'H NMR (300 MHz, CDCl3, 298K): dy: 7.596 (2H, d, J = 7.934 Hz, 2(CH3CCH)
14,16), 7.069 (2H, d, J = 7.422 Hz, 2(SiCCH) 13, 17), 3.880 (6H, t, J = 5.873 Hz, 3(OCH,)
3,7,10),2.904 (6H, t, J = 5.877 Hz, 3(NCH,) 4, 6, 9), 2.275 (3H, s, CH; 18); '3*C NMR (75
MHz, CDCl3, 298K): é¢: 138.0, 137.2, 134.0, 128.1, 57.8, 51.2, 21.4;
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1-Naphthylmethylsilatrane. The procedure is the same as described for tolylsilatrane,
with 1-napthylmethyltrichlorosilane (2.76 g, 10 mmol), triethanolamine (1.49 g, 10 mmol)
and triethylamine (3.04 g, 30 mmol) as starting materials. Crystallization from CH3CN and
gave 2.14 g of 1-naphthylmethylsilatrane (68% yield) as colorless needle-shaped crystals.

'H NMR (300 MHz, C'DC!3, 298K): 65: 8.296 (H, m, CH 22), 7.760 (H, m, CH 19),
7.526 (H, m, CH 16), 7.371 (4H, m, 4(CH) 14, 15, 20, 21), 3.712 (6H, t, J = 5.843 Hz,
3(OCH,) 3, 7, 10), 2.751 (6H, t, J = 5.841 Hz, 3(NCH,) 4, 6, 9), 2.46 (2H, s, CH,Si 12);
13C'NMR (75 MHz, CDCl3, 298K): ¢c: 140, 133.7, 132.5, 128, 126.4, 126.2, 125.4, 124.6,
124.1, 123.8, 57.7, 51.2, 22.9;
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t-Butylsilatrane. Same procedure as described for tolylsilatrane, with #-butyltrichlorosilane
(0.29 g, 1.51 mmol), triethanolamine (1.10 g, 7.4 mmol) and triethylamine (2.24 g, 22.2 mmol)
as starting materials. Crystallization from CH3CN gave 0.23 g of #-butylsilatrane (65% yield).

'H NMR (300 MHz, C DCl3, 298K): d: 3.707 (6H, t, J = 5.730 Hz, 3(OCH,) 3, 7, 10),
2.745 (6H, t, J = 5.720 Hz, 3(NCH,) 4, 6, 9), 0.895 (9H, s, C(CH3)3 13, 14, 15); 13C' NMR
(75 MHz, C DCl3, 298K): d¢: 58.5,51.8,27.7, 19.4;

14 H3C |<—N
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2-Cyanoethylsilatrane. The procedure is the same as described above, with starting mate-
rials 2-cyanoethyltrichlorosilane (0.61 g, 3.24 mmol), triethanolamine (0.48 g, 3.24 mmol) and
triethylamine (0.98 g, 9.72 mmol). Crystallization from CH3CN gave 0.47 g of the product
2-cyanoethylsilatrane (63.5% yield) as light yellow platy crystals.

'H NMR (300MHz, C DCl3, 298K): §: 3.758 (6H, t, J = 5.875 Hz, OCH,), 2.828 (6H,
t, J = 5.873 Hz, NCHy,), 2.360 (2H, m, CH,CN), 1.225 (2H, t, J = 7.109 Hz, SiCH,); 3C
NMR (75 MHz, C'DCl3, 298K): d¢: 123.2,57.3, 51.0, 12.8, 8.4.

= \ /§
1s|<—N

For some compounds, no trichlorosilyl derivatives were available commercially. To ob-
tain these silatranes, we synthesized them by transesterification from trialkoxylsilane and tri-
ethanolamine. Silaphilic fluoride ions were added in catalytical quantities in the form of tetra-
butylammonium fluoride because they are well-known reactants for the cleavage of organosi-
lanes (typically for deprotection of alcohol groups); they were used here to trigger transesteri-
fication. The fluoride ion attacks the silicon atom, creating a penta-coordinated Si center. Thus

activated silicon quickly undergoes transesterification with triethanolamine (Scheme 5).
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Scheme 5: Synthesis of silatranes by transesterification.

This method was applied to synthesize p-aminophenyl, p-methoxylphenyl and benzyl sila-
trane using acetonitrile as solvent.

p-Aminophenylsilatrane. In a 50 ml Schlenk flask flushed by argon atmosphere, p-
aminophenyltrimethoxysilane (0.21 g, 1 mmol) was dissolved in 50 ml CH3CN and 1%
(0.3 ml) tetrabutylammonium fluoride (1 M in THF) was added to the solution above. The
Schlenk flask was put into the oil-bath and heated to 90 °C. Triethanolamine (0.15 g, 1 mmol)
was added into the solution above drop wise and the whole solution was refluxing overnight
(more than 12 h). The solution was purified using silica column chromatography (eluent:
CH3CN/CH4Cly, 2 : 1 v/v) and recrystallized from acetonitrile to afford 0.1 g light yellow
p-aminophenylsilatrane crystals (yield 40%).

'H NMR (300 MHz, CDCl3, 298K): 65: 7.512 (2H, d, J = 8.392 Hz, 2(NH,CCH) 14,
16), 6.618 (2H, d, J = 8.392 Hz, 2(SiCCH) 13, 17), 3.876 (6H, t, J = 5.833 Hz, 3(OCH,) 3,
7, 10), 3.577 (2H, s, NH, 19, 20), 2.888 (6H, t, J = 5.837 Hz, 3(NCH,) 4, 6, 9); '3C' NMR
(75 MHz, CDCl3, 298K): d¢: 154.8, 135.3, 126.0, 114.6, 57.9, 51.2;
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p-Methoxylphenylsilatrane. The procedure is the same as described above for p-amino-
phenylsilatrane, with p-methoxylphenyltrimethoxysilane (0.23 g, 1 mmol) and triethanolamine
(0.15 g, 1 mmol) as starting materials. Crystallization from CH3CN gave 0.22 g of p-methoxy-
phenylsilatrane (80% yield) as colorless platy crystals.

'H NMR (300 MHz, C'DCl3, 298K): 5: 7.625 (2H, d, J = 8.658 Hz, 2(CH;0OCCH) 14,
16), 6.795 (2H, d, J = 8.663 Hz, 2(SiCCH) 13, 17), 3.870 (6H, t, J = 5.858 Hz, 3(OCH,) 3,
7,10), 3.753 (3H, s, OCH3 19), 2.885 (6H, t, J = 5.865 Hz, 3(NCH,) 4, 6, 9); 13C NMR (75
MHz, CDCl3, 298K): 6¢: 159.4, 135.4, 133.0, 112.9, 57.7, 54.9, 51;
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Benzylsilatrane. The procedure is the same as described, with benzyltriethoxysilane (0.38
g, 1.5 mmol) and triethanolamine (0.22 g, 1.5 mmol) as starting materials. Crystallization from
CH3CN gave 0.26 g of benzylsilatrane (65% yield) as colorless needle-shaped crystals.

LH NMR (300 MHz, CDCl3, 298K): 65: 7.197 (4H, m, Ph 2, 3, 5, 6), 6.983 (1H, m, Ph
4), 3.733 (6H, t, J = 5.833 Hz, 3(OCH,) 3, 7, 10), 2.772 (6H, t, J = 5.838 Hz, 3(NCH,) 4
6,9), 1.962 (2H, s, SiCH, 12); 13C NMR (75 MHz, C DCl3, 298K): 6¢: 143.1, 129.0, 127.4,
123.0, 57.6, 51.1, 26.2.
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4.6.2 Bis-(silatranyl)alkanes

For the synthesis of bis-(silatranyl)alkanes, we had considered using the same method as the
one previously used for silatrane synthesis. However, it didn’t work very well. The product
tended to polymerize when it was mixed with triethanolamine, and the resulting polymer was
in mixture with the triethylammonium hydrochloride which could not be separated thereafter.

We therefore looked for another method in the hope that transesterification might work
well in this case. So instead of using a chlorosilane, we first transformed the chlorosilane
into corresponding acetylsilane, which was then reacted with triethanolamine to obtain the
desired bis-silatrane (Scheme 6). The side product, acetic acid, would be removed easily by
evaporation under vacuum [70].

Bis(silatranyl)methane. Bis(trichlorosilyl)methane (1.83 mL, 10 mmol), acetic anhydride
(6.2 g, 60 mmol) and sodium acetate (200 mg) were placed in a two-necked flask fitted with
a pressure equalising dropping funnel and a Vigreaux column with a distillation unit. The
reaction mixture was heated to 60 °C while stirred for 4-5 h. After removal of acetylchlo-
ride formed during the reaction, the temperature was raised to 150 °C when unreacted acetic

anhydride distilled over as well. The reaction mixture was cooled down to 0 °C then 20 mL
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Scheme 6: Synthesis of bis-silatranes.

of dichloromethane was added into the mixture. Triethanolamine (2.65 g 20 mmol) dissolved
in 10 mL of dichloromethane was drop wise added with vigorous stirring overnight (12 h).
The white solid present in suspension was then removed by filtration and the filtrate was con-
centrated by rotary evaporator, affording a light colored solid bis(silatranyl)methane (2.5 g,
70%).

NMR (300 MHz, C'DC's, 298K): d5: 3.798 (12H, d, J = 4.878 Hz, OCH, 3, 7, 9, 14, 18,
20), 2.890 (12H, t, J = 4.897 Hz, NCH, 2, 8, 10, 15, 17, 22), 1.253 (2H, s, SiCH,Si 23); 13C
NMR (75 MHz, C'DCl3, 298K): d¢: 57.605, 53.744, 3.825;

Bis(silatranyl)hexane. The procedure is the same as described for bis(silatranyl)methane,
with bis(trichlorosilyl)hexane (2.65 mL, 10 mmol) and triethanolamine (2.65 mL, 20 mmol)
as starting materials and obtained 2.25 g of bis(silatranyl)hexane (52% yield) as light yellow
solid.

'H NMR (300 MHz, CDCl3, 298K): d5: 3.745 (12H, d, J = 5.787 Hz, OCH, 3,7, 9, 14,
18, 20), 2.772 (12H, t, J = 5.784 Hz, NCH, 2, 8, 10, 15, 17, 22), 1.25 (8H, m, 2(CH;CH,)
24-27), 0.419 (4H, m, 2(SiCHy) 23, 28); 13C NMR (75 MHz, CDCl3, 298K): dc: 58.005,
53.447, 30.996, 16.952, 12.095;
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Bis(silatranyl)octane. The procedure is the same as described for bis(silatranyl)methane,
with bis(trichlorosilyl)octane (2.97 mL, 10 mmol) and triethanolamine (2.65 mL, 20 mmol) as
starting materials and obtained 3.18 g of bis(silatranyl)octane (69% yield) as light pink solid.

LH NMR (300 MHz, C'DCl3, 298K): 65: 3.751 (12H, d, J = 5.789 Hz, OCH, 3,7, 9, 14,
18, 20), 2.779 (12H, t, J = 5.783 Hz, NCH, 2, 8, 10, 15, 17, 22), 1.245 (12H, m, 3(CH,CH,)
24-29), 0.415 (4H, m, 2(SiCHy) 23, 30); 13C NMR (75 MHz, CDCl3, 298K): §c: 57.985,
51.200, 31.588, 22.655, 14.126.

4.6.3 Bi-silatranes

Tris(1,3-dihydroxy-2-propyl)amine In order to prepare these compounds, we followed the
synthesis reported in [71]. Based on this method, we adjusted some steps in the way more
adapted to our later synthesis.

The 1,3-dihydroxyacetone dimer (starting product) can better be seen, as the name indi-
cates, as the hemiacetal of two molecules of 1,3-dihydroxyacetone (a in Scheme 7). The addi-
tion of ammonia NH} on this ketone will form an imine (dehydratation rection b in Scheme 7).
The addition of the hydride H™ from the borohydride BH,CN allows to reduce the imine back
to an amine (¢ in Scheme 7), which can then react with the C=0 group of a second molecule of
1,3-dihydroxyacetone to form the branched imine (d, e in Scheme 7). After the first reaction,
we obtained a white sticky liquid residue which was dissolved in water and has been passed
through an ion-exchange column (Amberlite, IR-120, H™).
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Scheme 7: Synthesis of intermediate tetrahydroxy diisopropylamine

Before usage, the Amberlite resin was twice soaked in 7% HCI solution for 24h, then
packed in the column and washed with water until the exit flow turns neutral. We then injected
our product (dissolved, in water) and eluted it with water until all impurities were flushed out,
and the outlet flow turns neutral once more. Finally, we then passed a solution of aqueous

ammonia (1.00 M) to wash out the pure product from the column.

This tetrahydroxy diisopropylamine was dissolved in methanolic HCI to form the corre-
sponding ammonium chloride. Then the solvent was removed under vacuum, which is a very
crucial point to the whole reaction. The H,O must be absolutely removed from the product
to let the reaction be able to start in an anhydrous environment. Under argon, the ammonium
chloride was dissolved in anhydrous DMF, before 2,2-dimethoxypropane (DMP) and the cat-
alyst p-toluenesulfonic acid monohydrate (p-TsOH) were added. The solution was stirred at
least 12 h until the solution became very turbid. The solution was neutralized with triethy-
lamine. The mixture was concentrated in vacuum, the residue redissolved with triethylamine
and ethyl acetate. The ammonium salts were simply filtered off, and the solvent evaporated to
afford an orange colored viscous liquid. Recrystalization in hexane followed: however, even
with heating, the viscous liquid cannot be dissolved completely into hexane. The hot 2-phases
solution was put to the refrigerator immediately. On cooling, white crystals formed right at the

interface between hexane and the orange colored viscous liquid. This partial recrystalization

36



step was repeated several times to obtain 25% yield of bis(4,4-dimethyl-3,5-dioxanyl)amine
(Scheme 8).

;< HCl \—2 DMP, DMF o) o
_MeOH__ o  _p-TSOH, 1t j\ L
O y o

H

Scheme 8: Hydroxy group protection

The next step was to introduce the third branch to the tetrahydroxy diisopropylamine, and
we did it by inserting an N—H bond to the secondary amine with a carbene or carbenoid gen-
erated from a diazocarbonyl compound, which is the key step in the synthesis of the target
tertiary amine. Dimethyl diazomalonate (DDM) was chosen as the source of carbenoid. DDM

was synthesized by a diazo transfer reaction (Scheme 9).

S0,Cl SO,N;3

n-Bu)sN* Br
+ Nan, —OBUMNTBI_

CH,Cl,
NHCOCH; NHCOCH;
SO,N; SO,NH,
CO,Me CO,;Me
. Et;N N, .
Co,Me CHsCN co,Me
NHCOCHS3; DDM NHCOCH3

Scheme 9: Synthesis of dimethyl diazomalonate (DDM)

To insert DDM into the NH bond of bis(4,4-dimethyl-3,5-dioxanyl)amine, dirhodium tetraac-
etate was used as a catalyst of the decomposition of DDM since it is well-known to form strong
complexes with Lewis bases. This would lead to the tertiary amine-dimethyl 2-(N,N-bis(4,4-
dimethyl-3,5-dioxanyl)amino)malonate. However, according to Porter and his coworkers [72,
73], the catalytic activity of Rhy(OAc), is totally inhibited by primary amines (Scheme 10).
If the secondary bis(4,4-dimethyl-3,5-dioxanyl)amine has some impurities containing primary
amine, the catalyst will be poisoned immediately when added. The solution would then be-
come red-brown instead of the normal green color. Hence, bis(4,4-dimethyl-3,5-dioxanyl)amine
must be very pure when used. Fortunately, we obtained very white pure crystals from the pre-
vious step. Therefore, a slight excess of DDM and 8 mol% of catalyst Rhy(OAc), were added

into a toluene solution of acetonide amine at room temperature. The mixture was heated to
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reflux (110 °C) for one night. The solvent was removed by rotary evaporator and the prod-
uct was purified by chromatography passing it on a silica column with ethyl acetate: hexane
(1:3 / v:v) as an eluent to afford the tertiary amine dimethyl 2-(N,N-bis(4,4-dimethyl-3,5-
dioxanyl)amino)malonate.

Lithium aluminum hydride (LiAlH,) was then used to reduce the ester groups. 6 Equiva-
lents of LAH were dissolved in 20 ml of THF to give a gray suspension which was injected
drop wise into 10 ml of tertiary amine in THF solution under argon at 0 °C. The whole sus-
pension was kept stirring overnight at room temperature. Then were added sequentially water
(0.9 ml), 15% sodium hydroxide (0.9 ml) and water (3 0.9 ml). The mixture was filtered and
the filtrate was evaporated to obtain a light yellow transparent liquid, 2-(N,N-bis(4,4-dimethyl-
3,5-dioxanyl)amino)-1,3-propanediol. Yield 50%.

OMeA/ \F A/ \A
dy e T A e A0
J\ L/ er]ﬁj()(()Ac)4 PhH Meow

(0] (0] OH OH

Scheme 10: Synthesis of 2-(N,N-bis(4,4-dimethyl-3,5-dioxanyl)amino)-1,3-propanediol

Trifluoroacetic acid in aqueous THF was employed to cleave the acetal groups of 2-(N,N-
bis(4,4-dimethyl-3,5-dioxanyl)amino)-1,3-propanediol, affording deprotected tertiary amine
as trifluoroacetate salt. This mixture was flushed through an ion-exchange resin column, Am-
berlite, IR-120, H*. The column was eluted with water first, and then with a solution of 1 M
aqueous ammonia. A yellow oil was obtained. The oil was kept under high vacuum overnight,
and it became a yellow solid tris(1,3-dihydroxy-2-propyl)amine (Scheme 11). The product
was obtained in 72% yeild.

Tris(1,3-dihydroxy-2-propyl)amine

LH NMR (300 MHz, D0, 298K): §y: 3.521 (12H, m, CH,0), 3.146 (3H, m, NCH); 3C
NMR (75 MHz, D,0O, methanol, 298K): d-: 57.1, 61.3.
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Scheme 11: Synthesis of tris(1,3-dihydroxy-2-propyl)amine.
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Using this tris(1,3-dihydroxy-2-propyl)amine, we synthesized 3 new silatranes which have
two atrane structures sharing the same nitrogen atom and three adjacent carbon atoms. The
silatranes were synthesized by transesterification of tris(1,3-dihydroxy-2-propyl)amine with
the corresponding organotrialkoxysilane. The transesterification method is wildly used in sila-
trane synthesis. In the thesis of Yuan Pingjie [71], it was mentioned that they obtained two
triptych-silatranes, di(phenyl)- and di(methyl)-bi-silatrane using this method. In our case, we
used mixed solvents DMF and toluene instead of single solvent DMF. DMF was used as a
good solvent to dissolve tris(1,3-dihydroxy-2-propyl)amine and toluene was used to provide

a lower reflux temperature, thus preventing the product from thermal decomposition (Scheme
12).

oI

Toluene, DMF OSi-O
o g
N

Si 110°C

3 .
HO 3 Overnight g
e Si—0

R
R= CH2CH3, C6H5CH2, C6H5

Scheme 12: Synthesis of bisilatranes.

Di(phenyl)-bi-silatrane. Phenyltriethoxysilane (0.49 mL, 2.016 mmol) was added to
the solution of tris(1,3-dihydroxy-2-propyl)amine (80 mg, 0.336 mmol) in DMF (1 mL) and
toluene (4 mL). Under argon, the solution was heated (oil bath 110 °C) for 12 h. TLC was
employed to follow the reaction. At the beginning of the reaction there were two new spots on
the TLC plates. The relatively polar spot of the two gradually disappeared. Finally, there was
only one new spot left. The solvent and excess of phenyltriethoxysilane were removed under
reduced pressure and the residue was purified by recrystallization from CH3CN to afford white
crystal (126 mg, 85%).

H NMR (300 MHz, C DCl3, 298K): §y: 7.704 (4H, m, CsH; 24, 25, 29, 30), 7.380 (6H,
m, CgH; 23, 27, 26, 28, 31, 32), 3.813 (6H, dd, J = 4.568, 11.58, CH, 3, 7, 11, 13, 15, 18),
3.744 (6H, t, J = 11.520, CH, 3, 7, 11, 13, 15, 18), 3.509 (3H, m, CH 4, 6, 9); *C NMR (75
MHz, CDCl3, 298K): d¢: 134.3, 131.9, 130.5, 128.0, 61.1, 57.6.
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Di(ethyl)-bi-silatrane. The procedure is the same as described for di(phenyl)-bi-silatrane,
with ethyltriethoxysilane (0.43 mL, 2.016 mmol) and tris(1,3-dihydroxy-2-propyl)amine (80
mg, 0.336 mmol) as starting materials. Crystallization from hexane gave 60 mg of di(ethyl)-
bi-silatrane (51% yield) as colorless needle-shaped crystals.

LH NMR (300 MHz, CDCl3, 298K): dy: 3.664 (6H, dd, J = 4.375, 11.48, CH, 3,7, 11,
13, 15, 18), 3.524 (6H, t, J = 11.146, CH, 3, 7, 11, 13, 15, 18), 3.283 (3H, m, CH 4, 6, 9),
0.967 (6H, t, J = 7.887,CHj3 21, 22), 0.582 (4H, q, J = 7.94, 15.76, SiCH,; 19, 20); 13C NMR
(75 MHz, C' DCl3, 298K): d¢: 60.62, 57.17, 6.63, 3.90;
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Di(benzyl)-bi-silatrane. The procedure is the same as described above, with benzyltri-
ethoxysilane (0.52 mL, 2.016 mmol) and tris(1,3-dihydroxy-2-propyl)amine (80 mg, 0.336
mmol) as starting materials. Crystallization from toluene gave 116 mg di(benzyl)-bi-silatrane
(78% yield) as colorless crystals.

H NMR (300 MHz, C DCl3, 298K): §: 7.125 (10H, m, CgHj 23-32), 3.637 (6H, dd, J
=4.263,11.49, CH, 3,7, 11, 13, 15, 18), 3.483 (6H, t, J = 11.219, CH, 3, 7, 11, 13, 15, 18),
3.238 (3H, m, CH 4, 6, 9), 2.129 (4H, s, SiCH, 19, 20); '3C' NMR (75 MHz, C DCl3, 298K):
0c: 137.71, 128.83, 128.10, 124.56, 60.70, 57.18, 21.42.
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4.7 Electrosynthesis of di-stannatrane

In the two-compartment electrolytic cell described above, 0.049 g of stannatrane chloride
and 0.48 g of lithium perchlorate were dissolved into 30 mL of acetonitrile under argon. A
tension of -1.94 V was then applied to the system for 1 hour and the current changes were
recorded. At the end of the electrochemical reaction, the solvent was evaporated on a rotary
evaporator. The resulting product was re-dissolved in hexane, creating a suspension of LiClO4
that was filtered off. The remaining impurities were purified by column chromatography (elu-
ent: hexane) to afford pure di-stannatrane. In the series of repeated electrolyses, the material
yield was between 5% and 30%.

Bi-stannatrane.

'H NMR (500 MHz, C'DCl3, 298K): §5: 1.608 (12H, s, 2 x 3(NCH,) 4, 6, 11, 15, 17,
22), 1.345 (36H, s, 2 x 6(CHj3) 23-34); 13C NMR (125 MHz, C DCl3, 298K): 6¢: 72.075,
69.197, 31.104, 29.263; 119Sn NMR (186 MHz, C DCl3, 298K): dg,,: -639.72.
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5 Results and discussion

Analysis of bonding and electronic interactions in aryl, benzyl and alkyl silatranes allows
us to outline several conjugative schemes involving transannular interactions (both axial and
lateral) which might be found in metallatrane-based reaction series. Main building block in
these systems is the 3c-4e unit. As it was revealed above, most interesting feature of the 3c-4e
system in silatranes is that upon one-electron withdrawal (providing a 3c-3e system), it forms
an odd-electron system with axial symmetry in which the unpaired electron occupies internal
axial orbital (mostly, p,(N)). Extension of such structure by further axial (/lateral) conjugation
(/hyperconjugation) can open the route to formation of more conjugated systems like 4c-6e,
5c-6e, 6¢-8¢ efc.

Their efficiency of conjugation and stability might be quite different but those identified as
stable energy minima can then be envisaged to be used for designing molecular systems with
long-term transmission of electronic effect, i.e. a limiting nc-(n+1)e scheme which might start

a new generation of molecular wires.

From this standpoint, we considered several systems and attempted their synthesis and
study of their electrochemical behavior. Selected structures and their bonding schemes are

shown in figure 21.
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Figure 21: Selected metallatrane-based structures and their bonding schemes.

5.1 Simple 1-R-silatranes
5.1.1 Introduction

Though the family of known 1-R-silatranes is extremely large, it has been very poorly studied
by electrochemistry [74, 5]. Comparison of the few available data on the electrooxidation
of this class of compounds with the works on electrochemistry of homologous germatranes
[49, 33, 34] allowed to suppose that electronic structure on the cation radicals of Si-substituted
aromatic and aliphatic derivatives on one hand, and benzylic derivatives on the other, should
have different nature and therefore, would result in a different electrochemical behavior. This

difference is intrinsically related to the nature of bonding interactions in neutral silatranes.

O ey

p-aminophenyl 1- naphthylmethyl t-butyl tolyl

C
z e
N Hsy
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p-methoxypheny! benzyl 2-cyanoethyl

Figure 22: 1-R-silatranes

In order to elucidate the specific features of these effects and the possibility of incorpora-
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tion of a simple 3c-4e system into more extended Sc-6e or higher (5c-6e),, electronic systems,

we first synthesized and studied several model silatranes (Figure 22).

5.1.2 Structure

Seven 1-R-silatranes structures, studied in the next section were prepared according to previ-
ously reported methodes, as described in the experimental section.

Although they all are already known and their crystal structure was even released in several
publications [1, 28, 29], we found that these structures were neither deposited at CCDB, nor
the details on their structure were really published. So we found it useful to consider more
this missing aspect. The crystal structures of four silatranes were obtained by X-ray single
crystal diffraction. The structure of p-aminophenylsilatrane, 1-naphthylmethylsilatrane, p-
methoxyphenylsilatrane and benzylsilatrane are the first we characterized. Their molecular
structures are shown in figures 23-26, the crystallographic data are listed in the table 4 and the
selected bond lengths and angles are listed in table 5.

Table 4: Selected crystallographic data and details of refinement for p-aminophenylsilatrane,
I-naphthylmethylsilatrane, p-methoxyphenylsilatrane and benzylsilatrane.

R p-aminophenyl  1-naphthylmethyl p-methoxyphenyl benzyl
Empirical formula C12H15N20O3Si C17H21NO3Si C13H1gNO4Si C13H1sNO3Si
Formula weight 266.37 315.44 281.38 265.38
Crystal system Orthorhombic Orthorhombic Monoclinic Monoclinic
Space group Pc2in Pbca P2y /n P2y /n
a(A) 6.6141 (4) 13.8928 (5) 10.4799 (8) 10.3529 (2)
b (A) 11.8122 (8) 14.5060 (6) 10.4219 (8) 11.5350 (2)
c (A) 16.1752 (11) 15.0774 (6) 12.5058 (10) 11.0310 (2)
a(?)
B(%) 99.275 (4) 102.224 (1)
(%)
1% (143) 1263.72 (14) 3038.5 (2) 1348.03 (18) 1287.46 (4)
Z 4 8 4 4
Deaea(Mg/m?) 1.400 1.379 1.386 1.369
Radiation (MoKa) A =0.71073A A =0.71073A X\ =0.71073A X\ =0.71073A
T (K) 150 150 423 150
fRange (°) 2.5-27.5 2.4-27.5 2.4-27.5 2.7-27.4
Total reflections 14009 46767 10522 10430
Unique reflections 2496 3488 3091 2919
Parameters 163 199 173 163
Ri, wR2 (I >20(I))® 0.023, 0.064 0.045,0.119 0.037, 0.097 0.032, 0.087
Goodness-of-fit on F2 1.04 1.06 1.06 1.05
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The silatrane structure can be seen as a distorted trigonal bipyramid with N atom and C
atom in the axial positions, three oxygen atoms occupying the equatorial sites and the Si atom
in the body center. The N-Si-C atoms are almost aligned (177.61(7)-179.29(6)°) in all these
compounds. The values of the distance between Si and N in these four molecules lie within
the typical range for silatranes (1.964-2.420 A) which clearly verifies the existence of Si-N
transannular bond [75].

Table 5: The main geometrical parameters for p-aminophenylsilatrane, 1-

naphthylmethylsilatrane, p-methoxyphenylsilatrane and benzylsilatrane

Compound d(Si---N) (A) d(Si-C) (A) dSi-O(A) ZN-Si-C (°)
1.6710(11)

p-aminophenylsilatrane ~ 2.1665(13)  1.8831(14)  1.6718(10) 179.29(6)
1.6727(11)
1.6663(13)

l-naphthylmethylsilatrane ~ 2.1393(14)  1.9020(17)  1.6676(13) 177.61(7)
1.6698(12)
1.6702(11)

p-methoxyphenylsilatrane 2.1523(13) 1.8958(15) 1.6713(10) 178.20(6)
1.6631(11)
1.6685(9)

benzylsilatrane 2.1215(11)  1.8990(13)  1.6700(9) 178.50(5)
1.6733(9)

d Siy- - (0,~07=010) (A)  d N;-- - (Co—C5—-Cy) (A)

0.2031 0.3782
0.1884 0.3786
0.1897 0.3735
0.1761 0.3821

The silicon atom is displaced from the plane formed by three oxygen atoms towards the
carbon atom on the apical position, whereas the nitrogen atom is displaced from the plane of
three carbon atoms in a-positions inward the atrane cage thus adopting an endo-configuration.
Concerning the five-membered side branches of the rings of silatrane skeleton in these four
compounds, they adopt an “envelope”-like conformation, the carbon atoms in a-positions to
the N atom being like the “flap” sites.

As shown in the table 5, in the atrane structure N atom is not on the plane of the three C
atoms (C2, C5 and C8) but is sunk inward by a distance around 0.37-0.38 A. According to the
VSEPR (valence shell electron pair repulsion) theory, the lone-pair-electron of N and the other
three valence electrons should repel each other as much as possible to reach a stable status.

From this theory it is as well proved that the lone pair electrons of N are pointed right to the
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Si atom.

The Si atom is ~0.18 A off the plane formed by O4, O7 and O10 which is also explained
by VSEPR theory. We notice that the distance between Si and three oxygen atoms has a slight
difference. This could be caused by the substituents because the angle /N-Si—C in those four
silatranes is not 180° (Table 5).

For the silatranes shown in figure 23 and figure 25, the aromatic substituents are con-
nected to the silicon atom directly. As the carbon atoms in the aromatic substituent have sp?
hybridization, the delocalized 7 bonds are on the both sides of the aromatic plane and are per-
pendicular to the orbital of Si and N atoms in the atrane structure. Thus there is not interaction
between the N—Si bond and the 7-system of aromatic substituents. On the other side, there
are amino- and methoxy- groups at the para-position of the aromatic substituent (Figure 23
and figure 25, respectively). The lone pair electron on the N and O atom participate in the
formation of delocalized 7 bond and the conjugated system even if they are not exactly on the

same plane.

Figure 24: ORTEP drawing of the molecular structure of 1-naphthylmethylsilatrane.

For 1-naphthylmethylsilatrane and benzylsilatrane (Figure 24 and figure 26), the Si atom
connected the CHj, bridge by a o bond (with C in the sp® hybridization). The ¢ bond is sym-
metrical with respect to rotation about the bond axis which cause the angle /Si—-C21-C22
(Figure 24) to be equal to 118.37° and £Si—C11-C12 (Figure 26) equal to 116.07°. On the
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other hand, the carbon atoms C22 (Figure 24) and C12 (Figure 26) of the aromatic substituent,
either phenyl or naphthyl, are in sp? hybridization. The electrons from this o bond and the
adjacent C atom 7* orbital can interact via hyperconjugation mechanism which leads to the
shortening of the single bond length (d (C11-C12) = 1.5057 A and d (C21-C22) = 1.518(2)
A). For naphthyl substituent, the conjugated system is weaker than in phenyl, hence the hyper-
conjugation is not that notable which makes the single bond length much closer to the normal
C—C length (~1.520 A).

Figure 26: ORTEP drawing of the molecular structure of benzylsilatrane

5.1.3 Cyclic voltammetry

The oxidation of seven Si-substituted silatranes was studied in 0.1 M tetrabutylammonium
hexafluorophosphate (TBAPF¢) acetonitrile (CH3CN) solutions at a Pt electrode. A Pt mi-
crodisk electrode was used as the working electrode as it yielded voltammograms better shaped
than those obtained with other electrodes (glassy carbon was also tried). The oxidation peak
potentials of these compounds are in the range 0.78-1.45 V (vs. SCE), depending on the na-
ture of substituent R (Table 6). Upon oxidation, three out of seven silatranes show a distinct
reversible peak (Figure 27). We observed direct proportionality between the oxidation peak
current (z,) and the concentration of the electroactive substance. Direct proportionality was
observed as well between the peak current and the square root of the scan rate (i,/ vl/? =

const.) at sufficiently fast scan rates (v > 0.5 V/s). These two results suggest a diffusion
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control of the process. The number of electrons transferred at this oxidation step has been
determined using the method proposed by Malachesky [40] which is based on the following
relations. Peak current ¢, for a linear sweep voltammogram of a reversible redox system can

be expressed as follows:

i, = 2.68 x 10°n*2AC D"/?y'/?

On the other side, for potentiostatic chronoamperometry [66]:

it'? = nF ACDY?r~1/2

Combining these two equations, one obtains the following relationship:

— 4.92n1/2

which allows one direct evaluation of the absolute electron stoichiometry. This method is
free of the uncertainty due to the different diffusion coefficient D, concentration and electrode
surface, contrary to the method based on the comparison of ¢, with a standard compound like
ferrocene. Now applying this relationship to the oxidation of sever silatranes, we found that

all of them undergo mono-electronic process at I/ (Table 6).

Table 6: Parameters of electrochemical oxidation of silatranes at a platinum disk electrode at
v=1V/s?

R Bv) EV) Eev) o Tp o B AE/AGE)

(mV) (mV)
p-aminophenyl 0.78 - - 1 93 14 0.50
I-naphthylmethyl  1.10 - - 1 88 28 0.50
t-butyl 1.22 1.14 1.18 1 91 10 0.50
tolyl 1.35 1.26 1.30 1 72 14 0.65
p-methoxyphenyl  1.37 - - 1 66 40 0.72
benzyl 1.42 - - 1 150 40 0.32
2-cyanoethyl 1.45 1.30 1.38 09 81 23 0.58

@ Cyclic voltammetry was carried out in CH3CN /0.1 M TBAPFg. All the voltammograms
are brought to the SCE scale.
b Transfer coefficient estimated as a mean of o from E,—E,;= 1.85RT/aF [41].

As mentioned previously, the electronic effects of the substituents R affect significantly the
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oxidation potentials of the silatranes [5]. Amongst seven silatranes, 7-butyl and tolyl silatranes
show a distinct reversible electrooxidation signal even at low scan rate (v = 0.5 V/s). Tolyl-
silatrane has an oxidation peak at E, =1.35 V (vs. SCE), with the corresponding cathodic
counterpart at 1.26 V (vs. SCE). As for the #-butyl derivative, it is a substituent with a strong
electron-donating inductive effect which leads to a relatively easy oxidation of this silatrane
(1.22 V vs. SCE).

I, A
ANy

0.2 0.4 0.6 0.8 1.0 12 14

Figure 27: Cyclic voltammetry of a, t-butylsilatrane; b, tolylsilatrane; ¢, 2-cyanoethylsilatrane
(C = 0.1 mmol/L) in CH3CN/0.1M BuyNPF¢ at a 1 mm Pt electrode. v = 1 V/s; T = 25 °C.

Quite surprisingly at first sight but perfectly in agreement with our hypothesis on electronic
interactions as main factor of the stability of cation radicals of metallatranes, 2-cyanoethly-
silatrane exhibits reversible oxidation at EE, = 1.45 V vs. SCE (Figure 27). The corresponding
cathodic peak is less pronounced compared to 7-butylsilatrane and formal E; is anodically
shifted (Table 6). Both facts supposedly arise from the electron-withdrawing inductive effect
of the CN group.

The other four silatranes (Figure 28) showed a different electrochemical behavior under
the same conditions. Their oxidation peaks (Table 6) are irreversible even at higher scan rates
(v = 10 V/s). In order to rationalize these data, electronic structure and possible mechanisms
of transmission of electronic effects in these systems were considered in more details.

For the methoxyphenyl silatrane, phenyl substituent is in principle a mesomeric m-donor,
but it does not have the expected effect on E;, and stability of cation radicals because the 7
orbital system of the phenyl ring is perpendicular to the o orbital of the bond between Si and
C atoms (Figure 30). Thus the inductive effect of the substituent must be considered in this
case. According to Hammett equation [76]:

K

IOgZ =o0p
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For a given equilibrium reaction with substituent R, K is relating the equilibrium constant
and the reference K, constant when R is a hydrogen atom to the substituent constant o which
depends only on the specific substituent R and the reaction constant p which depends only on
the type of reaction but not on the substituent used. Here the constant o reflects all the com-
bination of field, inductive and resonance effects influencing the reaction rates. However, in
our case, we only consider the inductive influence of the substituent. Thus we use o7 constants

(Taft’s modification) indicating the electronic effect of a substituent (Table 7).

Table 7: Substituent field/inductive parameters for selected substituents

o1 = 0.450* b o1 Taft®

R CH,X Taft®  F 18 g MR)
L1 0.05 0.00 0.06
CeH, Me 0.11 0.12 0.14
H 0.00 0.00 0.00
CeH,OMe 0.14 0.13 0.08
Cl 0.47 0.45 0.43
C,H,CN 0.33 0.17 0.53
C(CHy)s 10.09 0.00 0.09

@177, 78]; ® [79]; ¢ Calculated from the meta-substituted fluorobenzene F NMR shift (felative
to fluorobenzene) [80].
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Figure 28: Cyclic voltammetry of a, p-aminophenylsilatrane; b, naphthylsilatrane; ¢, p-
methoxyphenylsilatrane; d, benzylsilatrane (C = 0.1 mmol L.™!) in CH3CN/0.1M BuyNPFg
at a 1 mm Pt electrode. v=1 V/s; T =25 °C.

It can be seen that the oxidation peak E,, of #-butyl, tolyl, methoxyphenyl and 2-cyanoethyl-

silatrane correlate well with inductive o7 constants (Figure 29), with a slope of 1.78 (R-square

53



=0.97). The fact that inductive effect affects the oxidation peak is not surprising in itself; most
important is that the points for aromatic subsituents fit the same correlation as aliphatic groups.

This is perfectly in agreement with the 3c-4e character of the HOMO in these compounds.

0.4
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Figure 29: Oxidation peak of selected silatranes vs. oy constants. 1. z-butylsilatrane; 2.
tolylsilatrane; 3. p-methoxyphenylsilatrane and 4. 2-cyanoethylsilatrane.
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Figure 30: Molecular orbital of methoxyphenylsilatrane and inductive effect in this system
(the atrane cage is not shown).

From the table we can see that the electron-withdrawing effect of phenyl is stronger than
that of akyl substituents which makes methoxyphenyl group a o-acceptor; in accordance with
this, this silatrane has a relatively higher E, = 1.37 V vs. SCE (Table 6). In fact comparing
to Cgps in akyl substituents with Cg,2 linking atom in phenyl, the latter has stronger electron-

withdrawing properties. Moreover, Pauling electronegativity of Si atom (1.90) is less than
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that of C atom attaching the substituent. Aryl substituents therefore, are simply o-acceptors
with respect to the silatrane moiety, leading to the lowering of the HOMO of such compounds
which is another reason why they have a high electrooxidation potential. Inductive effect fades
out very rapidly with distance (Figure 30); so there must not be a big difference in an overall
inductive effect of phenyl and anisyl groups in the corresponding silatranes (Table 7). The
p-methoxyphenylsilatrane, on its part, has a very sharp oxidation peak (the value E — E? 2=
66 mV is close to those for purely Nernstain systems), and might therefore become reversible

for v — oo (Figure 31).

| 1pA

1 1 1 1 1
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Figure 31: Cyclic voltammogram of p-methoxyphenylsilatrane oxidation at v = 10 V/s.

One can see that methoxyphenylsilatrane has an oxidation peak potential E, =1.37 V
vs. SCE, (Table 6) higher than that of the naphtylmethylsilatrane (E, =1.10 V). Indeed, 1-
naphtylmethylsilatrane -contrary to tolyl- and anisyl derivatives- exhibits an overall m-donor
effect of the naphtyl group. Remarkably, 7m-system from naphtyl and the o(C-Si) fragment
from the 3c-4e bond are in the hyperconjugation which leads to the electron delocalization
(Figure 32).

Figure 32: Hyperconjugation of 3c-4e bond with the 7-system in 1-naphtylmethylsilatrane.
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Same conjugative mechanism also allows spin delocalization in the cation radical from
N atom to naphthyl 7-system. The unpaired electron, localized on N atom and isolated in-
side the atrane cage in the case of alkyl or aryl silatranes, becomes visible from outside by
external radicalophilic species due to its presence on naphtyl rings, primarily at 4-position.
Thus the observed lowering of the oxidation potential of this silatrane is due to two factors:
electron donating thermodynamic contribution of the substituent, and fast ensuing reaction of
electrogernerated cation radicals (kinetic shift of E). Therefore, it unsurpisingly has one of
the lowest oxidation peak potentials in Table 6, at E, =1.10 V vs. SCE.

The benzylsilatrane is very similar to 1-naphtylmethylsilatrane. However, it has a more
positive oxidation peak E, = 1.42 V vs. SCE (Table 6), which supposedly results from the
hyperconjugation interplay of the same factors as in 1-naphtylmethylsilatrane, plus -probably-
some contribution of heterogeneous interactions with the electrode. Indeed, different from
other voltammograms, benzyl silatrane exhibits a rather large irreversible oxidation peak. Al-
though the oxidation of benzylsilatrane begins at close potentials (foothill part of the voltam-
mogram, figure 28), the peak potential is located at 1.42 V vs. SCE. The peak width, E), — E,
of benzylsilatrane is 150 mV, which is remarkably larger than for the other compounds of the
reaction series (Table 6). Since its oxidation is supposed to be electrochemically reversible,
as in general is expected in the silatrane family, one could think of adsorptional interactions
of its aromatic system with Pt as a possible reason of this abnormally large peak. However,
naphtyl silatrane, which has a similar (and even more developed) aryl moiety, does not show

this feature which thus remains quite unclear.

NH, NH,

0.78 V vs. SCE

Scheme 13: p-Aminophenylsilatrane oxidation.

Finally, p-aminophenylsilatrane has the less anodic oxidation potential (0.78 V vs. SCE)
which falls out of the silatrane electrooxidation range. This might be explained by the ease
with which the amino substituent itself can be oxidized. The oxidation peak at 0.78 V would
then arise from the oxidation of the aniline fragment (Scheme 13), since the p,(N) electrons,

contributing the most to the HOMO of this compound have lowest ionization potential and
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therefore this atom would be the first that would become electrooxidized. The voltammogram

of the aminophenylsilatrane might become reversible at high scan rates (Figure 33).

0.2 0.4 0.6 0.8 1.0 1.2

Figure 33: Cyclic voltammogram of p-aminophenylsilatrane oxidation at higher scan rate v =
10 V/s

Compared to the voltammograms of triethylamine (E, = 0.582 V) and triethanolamine
(Ep, = 1.126 V [33]) in which the nitrogen atom is not involved in any coordinating interac-
tions, silatranes have higher oxidation potentials. This anodic shift is explained by the transan-
nular interaction between nitrogen and silicon atoms. This effect causes a strong transmission
of electron density from N to Si atom which could be considered as an internal donor-acceptor
charge transfer. This anodic shift is clearly seen in the results shown in Table 6. In gen-
eral, the potentials of electrooxidation of the silatranes were 0.52-0.87 V higher than that of
triethylamine.

Thus, the potential of electrooxidation of silatranes reflects the combined effects of the
N—Si transannular bonding and the electronic effects of the substituent R attached to the

silicon atom.

5.1.4 EPR spectroscopy

Reversibility of the oxidation of phenylsilatrane (reverse peak of reduction of the cation radi-
calsis seen already at v=0.2 V/s allowed us to study this silatrane by EPR-spectroelectrochemistry.
When phenylsilatrane was oxidized at microelectrode in an EPR cell, a signal of electrogen-

erated odd-electron species appeared at E = 0.7 V. The spectrum has a characteristic feature 9
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group of repeating pattern, the separation between them going to the baseline.

EPR spectrum of the cation radical of phenylsilatrane (Figure 34) has a large end-to-end
width (~160 G) and consists of more than 184 well-resolved lines. Given its large spectral
span, the high field part of this spectrum shows some distortion by second-order effects, which
makes it difficult to reconstruct it with the simple tools included into Bruker Symphonia pack-
age. Nevertheless, the following parameters have been extracted from low-field part allowing
a 99.8%-quality reconstruction of this spectrum: g =2.0037; aN = 18.41 G; 3 x a®H,, =37.93
G; 3 x a®Hy,, = 0.23 G; 6 x a”H = 1.8 G. This spectrum corresponds to a species with prac-
tically planar N atom, carrying the major part of the free electron density, which has strong
interaction with three axially-oriented a-protons. The C-H bonds of the other three a-protons
are practically orthogonal to the axes of this molecule so that their interaction with magnetic

field is about 160 times weaker compared to that of axial a-protons.
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Figure 34: EPR spectrum of the cation radical of phenylsilatrane. Pt microplate electrode.
Microwave frequency f = 9.46 GHz; modulation amplitude a=0.25G. T=223 K. E=0.7 V.

The oxidation of p-methoxyphenylsilatrane (Figure 35) under similar conditions also re-
sulted in an EPR spectrum of electrogenerated cation radical though less resolved than in the
case of phenylsilatrane (Figure 35). The spectrum is also split into 9 groups with the same
integral intensities and has a similar end-to-end width. These facts indicate similar spin dis-
tribution in these two species. It is to be noted that very similar spectra were observed for the
cation radicals of 1-organogermatranes [34], attesting that in these two families of metalla-
tranes, the unpaired electron is mostly residing on N-atom, with relatively strong spin-orbital
interactions with the elements (C—H bonds) parallel to the axes of the atrane cage.

Upon the oxidation of 1-naphtylsilatrane at Pt electrode in the EPR spectroelectrochemical
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cell, the signal of paramagnetic species-cation radicals produced by le at £}, = 1.25 V was ob-
served (Figure 36). The spectrum of the cation radical of naphthylsilatrane was reconstructed
using the following parameters: g = 2.0051, hfc ay = 6.152, 3xay_,, = 3.633, 2xay(CH,) =
2.326, ~ ap—p = 2.595, ~2xay = 1.509, ~ ay = 0.34. LW = 0.28 G. In the whole it cor-
responds to a radical strongly delocalized over naphthyl moiety with only small contribution
from N atom and from three a-protons of the silatrane cage.

Anisylsilatran
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Figure 35: EPR spectrum of electrogenerated cation radicals of p-methoxyphenylsilatrane.
Oxidation in CH3CN/0.1M TBAPFg at a Pt microspiral electrode. E=1.35V, T =224 K.

Oxidation of p-aminophenylsilatrane in the cavity of the EPR spectrometer also allowed
detecting the electrogenerated cation radicals. The spectrum (figure 37) was then reconstructed
using the following parameters: g = 2.003, ax = 11.73 G, a,_g = 7.309 G, a,,_g = 0.65
G, anpg = 5.718 G. The g-factor corresponds to a purely organic radical, apparently with no
contribution from the Si atom. The coupling with only one nitrogen is present which, based
on own ionization potentials of aminophenyl and silatranyl fragments, was assigned to the
NH,-group nitrogen. The spectrum of this cation radical is therefore, the one of the silatranyl-
substituted aniline cation radical. Because comparing to the aniline, atrane fragment has higher
HOMO and needs more energy to be oxidized. Therefore, the oxidation potential £, of p-
aminophenylsilatrane has approximate value as aniline as well as similar spin EPR spectrum.
This observation is perfectly in line with the results of DFT calculations of this and NEt-

substituted compounds.
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Figure 36: EPR spectrum of electrogenerated cation radicals of naphthylsilatrane. a. experi-
mental; b. Simulated. Oxidation in CH3CN/0.1M TBAPFg at a Pt microspiral electrode. E =
1.25V, T=224 K.
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Figure 37: EPR spectra of p-aminophenylsilatrane. Upper — experimental, lower — simulated.
Oxidation in CH3CN/0.1M TBAPFg at a Pt microspiral electrode. E=0.7 V, T = 234 K.
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Figure 38: HOMO and HOMO-1 of diethylanilinesilatrane by DFT B3LYP/Lanl2DZ calcula-
tions.

5.1.5 UV-vis spectroscopy

Voltammetric stability of the electrogenerated cation radicals of silatranes are allowed to study
their UV absorbance using in situ UV-vis spectroelectrochemistry the spectrum of neutral z-
butylsilatrane and of its cation radicals are shown in figure 40. Compared to phenylsilatrane
(Figure 39), the maximal absorbance of the cation radicals of #-butylsilatrane lies at longer

wavelenths, A = 362 nm.

064 %

Absorbance, a.u.

~

T T T T T ¥ T
250 300 350 400
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Figure 39: Solvent-subtracted UV spectra of phenyl silatrane a. and of its electrogenerated
cation radical (dotted line, ). CH3CN/0.1M TBAPFg. E,, = 1.2 V, Pt micro grid electrode.
Amax = 295 nm. The star shows a UV transition which is symmetry-forbidden in the neutral
molecule and which becomes allowed in the cation radical.
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Figure 40: Solvent-subtracted UV spectra of ¢-butylsilatrane (blue) and of its electrogenerated
cation radical (black). DME/AN (1:2 v/v) + 0.1 M TBAPF6. Ew = 1.2 V, Pt micro grid
electrode. T =270 K.

Donor inductive effect of three Me groups of the t-butylsilatrane substituent at Si rises
the level of o(C-Si) component of the 3c-4e bond thus reducing the LUMO-SOMO gap in
the cation radical compared to that in the cation radical of methyl or phenyl silatrane. This
effect accounts to the bathochromic shift of the maximum of UV-absorbance of this species
(sf. Figure 40).

5.1.6 DFT calculations

The geometry and electron density of phenyl- and benzyl- silatrane as well as their cation
radicals were adjusted first at HF/6-311G level then the structures were optimized by DFT
B3LYP/Lanl2DZ level for long-term and delocalizing electronic interactions. The same level
was used for NBO analysis and to check the optimized structures for the absence of imaginary

vibrations.

In a total agreement with the results of EPR and qualitative orbital considerations, DFT
calculations reveal that the HOMO of the “proper” silatranes (i.e. those not carrying an easy to
oxidize substituent, like HoNCgH,—) is mainly built of the n(N) orbital at the atrane nitrogen
(Figure 41) upon withdrawal of one electron, transforming a 3c-4e system into a 3c-3e, the
localization and symmetry of the highest (singly) occupied molecular orbital is conserved:
main contribution to the SOMO still comes from the p,(N) orbital. Axial C—H bonds, parallel
to the main spin-carrying orbital, participate in spin stabilization in these species and determine

the specific pattern of the EPR spectra of “proper”” metallatranes.
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Figure 41: HOMO of phenylsilatrane and N-localized SOMO of its cation radical by DFT
B3LYP/Lanl2DZ calculations.

Figure 42: SOMO of the cation radical of benzylsilatrane by DFT B3LYP/Lanl2DZ.

The silatranes with benzyl- and 1-naphthyl substituents have similar HOMO (main contri-
bution from n(N) electrons) but their cation radicals show a quite different structure of highest
frontier orbital (Figure 42) As is shown in figure 42 by DFT B3LYP/Lanl2DZ calculations,
spin density in the cation radical of benzylsilatrane is mostly delocalized over benzyl frag-
ment, with only small part still residing on N atom (For HOMO of this type of molecules, see
figure 32 above). The contribution of the o(C-Si) orbital, playing the key role in 3c-4e bonding
and in the "spin-leakage" mechanism is clearly seen. Supposedly, this feature must be typical

for all benzylic (CHs-aryl) type substituents.

5.2 Bis-(silatranyl)alkanes

In this chapter we will present the results of three products bis-(silatranyl)methane, bis-
(silatranyl)hexane and bis-(silatranyl)octane including the cyclic voltammetry and DFT calcu-

lations analyses.
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5.2.1 Cyclic voltammetry

Three bis-(silatranyl)alkanes were studied in acetonitrile (CH3CN) solutions containing

0.1 M tetrabutylammonium hexafluoro- phosphate (TBAPF). Several drops of dichloromethane

were added to help dissolving these products. A glassy carbon (GC) working electrode was
used to carry out the voltammetry of these compounds because it gave better peak shape than
Pt in this case. All these compounds of this reaction series exhibit either one or two oxidation
peaks (Figure 43). The oxidation peak current has a good relation with measured scan rate
(ip/ v'/2 = const.) which implies the electrooxidation reactions follow a diffusion controlled
process. In the same electrolyte the chronoamperometry was measured, then this result was

combined with the value of the peak current to calculate the absolute electron stoichiometry.
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Figure 43: Cyclic voltammetry of a, bis-(silatranyl)hexane; b, bis-(silatranyl)methane; c, bis-
(silatranyl)octane (C = 1 mmol/L) in CH3CN /0.1 M BuyNPFg (several drops of CH5Cl, was
added to help dissolving the product) at a 2 mm GC electrode. v =1 V/s; T = 25 °C.

Table 8: Parameters of Electrochemical Oxidation of Silatranes at a GC Disk Electrode at
v=1V/s

R ES(V) EJ(V) E°(V) n E,—E,»mV) AFE, JAlgV (V)  «
bis-(silatranyl)methane  0.85 - - 1 117.13 0.18 0.41
bis-(silatranyl)hexane  0.78 - - 1 114.63 0.08 0.21
bis-(silatranyl)octane 1.30 1.14 122 2 87.44 - 0.24

The cyclic voltammetry was carried out in acetonitrile, with 0.1 M of TBAPF§ as the support-
ing electrolyte. All the voltammograms are corrected by SCE.
Transfer coefficient estimated as a mean of «, from £, — E,/» = 1.85RT /anF

In this series of three compounds, the oxidation peak of bis-(silatranyl)hexane is the low-

est, at £ = 0.78 V, and the peak is irreversible at low scan rate. Similarly the peak of bis-
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(silatranyl)methane is very close to bis-(silatranyl)hexane £, = 0.85 V as well as the first peak
of bis-(silatranyl)octane (£ = 0.79 V). If it is the atrane moiety that gets oxidized, the oxida-
tion potential should be higher than this value (less than 1 V). Moreover the measured value
of the peak current should be much larger, at such concentrations as the ones presented in the
conditions, and at the respective scan rate. On the other hand, this potential corresponds to the
oxidation of one of the reactants, namely triethanolamine. It is therefore credible that the peak
observed at less than 1 V for the three products represents the oxidation of triethanolamine.
Apart from the first peak shown on its cyclic voltammograms, the bis-(silatranyl)octane
displays peaks showing a reversible reaction (Figure 43), at £° = 1.22 V even at low scan
rate. It shows a normal peak current value, compared to the previous peak, each recorded
in the same conditions respectively. Bis-(silatranyl)octane displays a reversible peak even at
low scan rate (v = 0.5 V/s) and has the oxidation peak (E, — L,/» = 87.44 mV) (Table 8),
but the apparent peak width is too large to correspond to a perfect reversible redox process.
As briefly mentionned above, during the experiment, several drops of dichloromethane were
added to the solution to help dissolve the compound. However, the quantity of added CH5Cl,
was somewhat different for the three compounds. Compared to acetonitrile, dichloromethane
is less polar (¢ = 9 vs. 37 for acetonitrile) so the voltammograms in such binary solvent are
subject to higher distortion due to uncompensated ohmic drops, iR. This could lead to the

observed deformation, a broadening and anodic shift of the voltammogram.

5.2.2 DFT calculations

DFT calculations were carried on with the molecule bis-(silatranyl)methane as an example.
Compared to the other bis-(silatranyl)alkanes with long chains, bis-(silatranyl)methane has
only one CH; between two atrane moieties. The CH, between the two atrane structures forms
2 o bonds, with the Cgp3 atom connected with each of the two Si atoms. Taking into account
the lone electron pairs on two N atoms, this structure can be seen as two 3c-4e bonds, one on

each side of the atrane molecule.

Figure 44: Molecular orbital of bis-(silatranyl)methane lateral o(Si—O)-0(Si—C) conjugation.
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Compared to the silicon atom, each of the two N atoms on the terminal positions and the
C atom on the center are more electronegative elements. This is the right condition to form a
Sc-6e bond. However, the geometry of the central CH; means the two o bonds form an angle
between two atrane parts, instead of being aligned whereas the orbital between Si and O atoms
would approach to the two H atoms from CH, and form a W shape moleculare orbital which
is demostrated in the figure 44. This is supported by the DFT result (Figure 45). Either the
neutral or the cation radical form shows clearly that the carbon atom connecting two atrane
forms an angle with the two silicon atoms. This angle ZSi—C-Si’ ~ 118° (Table 9).

Figure 45: Geometry of neutral (left panel) and cation radical (right panel) of bis-
(silatranyl)methane optimized by DFT B3LYP/Lanl2DZ

The result ofthe DFT calculations of the SOMO of bis-(silatranyl)methane when it forms
a cation radical is shown figure 46. It is clearly seen that the two parts of the atrane molecule
present 2 independent 3c-4e hypervalent bonds instead of one 5c-6e bond. From all the evi-
dences and analyses above, it can be concluded that the hypervalent structure of bis-(silatranyl)methane
is established by 2 3c-4e bonds, and not 5¢c-6e bond, because sp3 hybridization of the central
carbon atom and the attraction force between the central hydrogen atom CH, and the molecu-

lar orbital between Si and O.

Figure 46: SOMO of the cation radical of bis-(silatranyl)methane from DFT B3LYP/Lanl2DZ
calculations. Two crossing 3c-4e moieties are well seen.
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5.2.3 6 center-8 electron hypervalent bonding

Both bis-(silatranyl)hexane and bis-(silatranyl)octane have long alkyl chains linking the two
atrane moieties. This leads us to think that the flexibility displayed by such a long chain would
allow two atrane moieties to approach each other when it forms the cation radicals and estab-
lish a new hypervalent bonding: 6¢c-7e. However, for these two compounds, even the length
of (CHay)s chain is not enough to allow the required axial arrangement of the two terminal
silatranyl groups, which finally form two independent 3c-4e bonds (Figure 47). Probably, if
the number of carbons on the alkyl chain was higher than 12, such interamolecular arrangment

could be observed (Figure 48).

(CH2)e (CH2)g

Figure 47: Two independent 3c-4e bonds in molecule bis-(silatranyl)hexane and bis-
(silatranyl)octane.

PN N QSI;X 6c-7e

KSRy

Figure 48: 6¢-7e hypervalent bonding in cation radicals when number of carbon on the alkyl
chain is more than 12.

5.3 Bi-silatranes

In the previous section we saw the hypervalent bonding in bis(silatranyl)methane. In fact, in
classical 5c-6e bond, the central and terminal ligands are highly electronegative with respect

to Si. In the case of bis(silatranyl)methane, these positions (the central carbon atom and two
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terminal atoms N) are indeed occupied by more electronegative elements. In this section,
a series of compounds with two merged silatrane structures were also synthesized, different
from bis(silatranyl)methane. In a way, nitrogen atom is now the central atom in the 5c-6e bond
(perfectly linear in these molecules), and the two carbon atoms from the substituents act as the
terminal atoms. The electrochemical behavior of these new compounds will be discussed in

the following section.

5.3.1 Structure

Two novel structures of bi-silatranes were obtained and analyzed by XRD. To complete our
research, a known structure di(phenyl)-bi-silatrane was synthesized as well but its structure is
not shown in this section.

We started by characterizing the structure of the newly prepared di(ethyl)- and di(benzyl)-
bi-silatranes. Their molecular structures are shown in figures 50 and figure 52, the crystallo-

graphic data is listed in table 12 and the selected bond lengths and angles are listed in table
13.

Table 12: Crystallographic data and details of structure refinement for di(benzyl)-bi-silatrane

Crystal di(benzyl)-bi-silatrane
Empirical formula Ca3HogNOgSiy
Formula weight 471.65
Crystal system Monoclinic
Space group P2;/c
a(A) 12.3388(3)
b (A) 10.6408(2)
c (A) 18.0121(4)
(%)
B(°) 99.0570(10)
()
v (4% 2335.41(9)
Z 4
Deatea(Mg/m?) 1.341
Radiation (MoKa) A = 0.71073A
T (K) 150
fRange (°) 2.99-27.47
Total reflections 17784
Unique reflections 5275
Parameters 319
Ri, wR2 (I >20(I))® 0.0563, 0.1465
Goodness-of-fit on F2 1.055

"Ry = L ||Fo| = [E/ X |Fol wR2 = {0 [w(F§ — F2)2)) Slw(F3)H}?
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The structure of bi-silatranes can be seen in two ways. First, two atrane parts can be
considered like two distorted bipyramids with two Si atoms in the body center with three O
atoms, one C atom from the substituent and the sharing N atom on the vertexes (Figure 49
a). Second, bi-silatrane can be seen as one distorted bipyramid formed by N atom in the body

center with three adjacent C atoms and two Si atoms on the vertexes (Figure 49 b).

Figure 49: Structure of bi-silatranes a. two distorted bypyramids with two Si atoms in the
body center; b. one non-distorted bipyramid with N atom in the body center.

Notably, in the structure of bi-sialtrane, the nitrogen atom is located on the plane formed
by the three carbon atoms in a-positions to the nitrogen atom (as can be seen since the sum of
these C-N-C angles is 360°). This is very different from the classic silatranes that we studied
until now where nitrogen in endo-configuration always kept some tetrahedrality due to its sp?
hybidization. Both silatrane moieties in this molecule are perfectly symmetric in relation to a
plane containing the central N atom and the 3 carbon atoms around it. The Si1-N-Si2 axes is

close to linear (Table 13) in both compounds.

Table 13: Main geometrical parameters for di(ethyl)-bi-silatrane and di(benzyl)-bi-silatrane

Compound d(Si---N) (A) d(Si-C) (A) d(Si-0) (A)
1.583(3) 1.643(9)

di(ethyl)-bi-silatrane 32471(6)2 }ggig; 1.643(7) 1.712(2)
’ ' 1.656(9) 1.600(6)
1.617(2) 1.576(3)

. - 2.9214 1.860(2)
di(benzyl)-bi-silatrane 5 3996 1.858(2) 1.621(3) 1.649(2)

1.665(2) 1.668(3)

ZN=-Si-C (°) £Sil-N-Si2 (°)
169.927

169.362 176.01
179,436
178.427 179.91

From these two ways it is obvious that all three atoms Sil, N and Si2 are contorted to an
extracoordinating geometry so we can analyze its structure like coordination complex. Appar-

ently being the center atom in a pentacoordination the atom should be electron pair acceptor.
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However in the second propose of pentacoordination structure (Figure 49 b) that N atom being
the center atom of pentacoordinating molecule is not very suitable, thus it is not very interest-
ing for us. On the other hand, being pentacoordinating center Si atom is perfect because not
only it is electron pair acceptor but also in first structure propose (Figure 49 a) the atoms on the
vertexes are more electronegative elements. The substituent of the C atom is positioned on the
axial positions, three oxygen atoms at each atrane structure are occupying the equatorial sites
and the two Si atoms are in the body centers of each of two pyramidal bodies. This proposal

has similar geometry as simple silatrane structure.

For the di(ethyl)-bi-silatrane, the complete crystallographic data could not be obtained suc-
cessfully since there are more than one molecular structure in one unit lattice - in fact, twelve
- and they all point to different directions (Figure 53). This would be caused by the conforma-
tionnally fluctuating ethyl substituent on the both sides of this molecule (Figure 51). The Si—C
o bonds of the ethyl fragments allows the rotation about it leading to different orientations of
substituents and cause a variety of molecular structures with different mutual orientations of

the Et groups (Figure 53).

C13

c12

Figure 50: ORTEP drawing at the molecular structure of di(ethyl)-bi-silatrane. H atoms are
omitted for clarity.

The silicon atom (Sil and Si2 from figure 50) is displaced from the plane established
by three oxygen atoms towards the carbon atom (C2 and C12 from figure 50) on the apical
substituents. The distance between N atom and two Si atoms is practically the same on the
both sides though there is a slight difference of 0.1358 (A) (4.5%) for di(ethyl)-bi-silatrane.
This difference does not seem meaningful in terms of pentacoordination of N but rather relates

to the inhomogeneity caused by crystal field during the package of the elementary blocks.
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Figure 51: Conformational ambiguity of di(ethyl)-bi-sialtrane depending on the orientation of
ethyl substituents.

Figure 52: ORTEP drawing of the molecular structure of di(benzyl)-bi-silatrane. Thermal
ellipsoids are drawn with 50% probability.

Figure 53: A unit cell molecular structure of di(ethyl)-bi-silatrane.

The crystallographic data for di(benzyl)-bi-silatrane is listed in table 13. It has the similar
structure on the atrane part. The difference of the distances between N1 to Sil and to Si2 is
0.0218 A (0.7%) which is not large enough to be meaningful so we can consider the atom N1
is in the middle of Sil and Si2.
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5.3.2 DFT calculations

The geometry of the bi-silatranes as well as their cation radicals were optimized using by a
combined treatment: firstly, geometric parameters were done at HF/6-311G level, and then the
structures and NBO analysis were optimized at the DFT B3LYP/LANL2DZ level.

Figure 54: A DFT B3LYP/Lanl2DZ-optimized geometry of neutral di(methyl)-bi-silatrane.
Lateral and axial views.

Figure 55: HOMO of di(methyl)-bi-silatrane from DFT B3LYP/Lanl2DZ calculations. Axial
5c-4e bonding system is clearly seen.

Figure 56: SOMO of di(methyl)-bi-silatrane. Left: one-electron populated (a-orbital) part;
right: empty level (S-orbital). DFT UB3LYP/Lanl2DZ calculations.

Unrestricted mode of consideration of the electron configuration of di(methyl)-bi-silatrane
allows one to visualize that main contribution to the HOMO of this molecule is constituted of
n-electrons of N atom: after the electron removal, its empty part (seen as [S-orbital, figure 56)
is mostly on N p,-orbital, whereas remaining unpaired electron (seen as a-orbital) is delocal-

ized over the axial S5c-6e system (which became 5c-5e in the cation radical). A remarkable

73



participation of parallel elements of the bi-atrane cage (C—C and C—O bonds o-orbital) is also

seen.

5.3.3 Cyclic voltammetry of bi-silatranes and of the model tris(1,3-dihydroxy-2-propyl)-
amine

For a better understanding of the electrochemical oxidation of the bi-silatranes, we carried
out a series of cyclic voltammetry experiments on these bi-silatranes, and compared these re-
sults to the precursor tris(1,3-dihydroxy-2-propyl)amine. The cyclic voltammetry was carried
out on the glassy carbon electrode either in acetonitrile (for bi-silatranes) containing 0.1M of
BusNPFg or in the mixture of DMF and acetonitrile (for tris(1,3-dihydroxy-2-propyl)amine)
containing 0.1M of BuyNPFg4. The peak currents for all four compounds are linear with

the square root of the scan rate (i, /v'/?

= const.), thus suggesting diffusional control of the
process. The electron stoichiometry was determined by combining voltammetry parameter
i,/v'/? with the Cottrell slope obtained from chronoamprometry at the same electronde and
the same solution.

The electrooxidation is proceeding by one-electron transfers in all four cases (Table 14).
As is shown in figure 58, di(ethyl)- and di(phenyl)-bi-silatranes reveal a distinct reversible
electrooxidation step even at low scan rate (v = 0.5 V/s). Di(ethyl)-bi-silatrane has an oxidation
peak at 1.62 V (vs. SCE) with the cathodic counterpeak at E = 1.49 V (vs. SCE). Di(phenyl)-
bi-silatrane has an electrooxidation peak at 1.68 V (vs. SCE) and cathodic peak at 1.59 V (vs.
SCE). The width (AE = E, — E,/» =~ 65 — 80 mV) for these three compounds is somewhat
larger than 58 mV, the theoretical value for an electrochemically reversible electron transfer.
For di(benzyl)- and di(ethyl)-bi-silatranes, the F, increases with the scan rate slightly more
than expected for a first-order electrochemical follow up process of the cation radicals (first-
order increase with the slope of 30 mV per decade of the scan rate would be expected). The
oxidation peak width of di(phenyl)-bi-silatrane is the smallest of the three compounds (Table
14) which implies that it is closer to a pure Nernstian system. Moreover, the AE,/Alg(v)
slope is close to 20 mV instead of 30 mV which seems to reflect a reversible electron transfer
and meaning that the cation radicals of this compound undergo a fast second-order reaction in
contrast to the other compounds of this reaction series.

Both di(ethyl)-bi-silatrane and di(phenyl)-bi-silatrane have reversible oxidation peak even
at low scan rate (v = 0.5 V/s) which attests a good stability of the cation radicals. There is a
slight difference between di(ethyl)-bi-silatrane and di(phenyl)-bi-silatrane in £),. This slight
difference is caused by the electronic properties of the substituents on two sides of bi-silatrane.
The Cgp2 linking atom from phenyl has higher value of o7 which makes it more electron-
withdrawing as an electron acceptor than ethyl-substituent which has sp® hybridization of

linking C atom. This slight difference on the hybirdization was reflected in the peak potentials:
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di(phenyl)-bi-silatrane has 60 mV higher £, compared to di(ethyl)-bi-silatrane (£, = 1.62 V).

5c-6e
A
G( \ o
(O Hc G s O@PNID siGB,.C
A e
T T

Figure 57: Hyperconjugation effect in di(benzyl)-bi-silatrane

The oxidation peak of di(benzyl)-bi-silatrane is irreversible even at high scan rate (> 5
V/s) which means the cation radical of di(benzyl)-bi-silatrane is unstable at least at room
temperature. It has the lowest oxidation value (£, = 1.45 V vs. SCE) in all three bi-silatranes
which can be explained from two aspects. First of all, both sides of this molecule have the
electron donating substituents which for the reasons discussed above for benzyl derivatives
in metallatrane series, can manifest some of its m-donnor ability through hyperconjugative
mechanism. In fact, similar to the 1-naphthylmethyl silatrane, the o(C-Si) fragment from the
3c-4e bond and 7-system from phenyl are boned by hyperconjugation. At the stage of the
cation radical, this effect can cause the spin delocalization from N atom to the m-system of
phenyl (Figure 57). Along with the increase HOMO energy (thermaldynamic facilitation of
oxidation by lowering the E,), the increased reactivity of electrogenerated cation radicals also
contribute to the lowering of the apparent oxidation [, through the kinetic shift of £, with
respect to £,. Based on these two reasons, di(benzyl)-bi-silatrane has the lowest £, = 1.45 V
in three bi-silatranes.

Table 14: Cyclic voltametry data for the oxidation of bi-sialtranes. All samples are taken at v
= 1V/s and potentials are corrected to SCE

Compound E;(V) ER(V) E°(V) n Ep,— E,;»(mV)
Tris(1,3-dihydroxy-2-propyl)amine ~ 0.84 0.69 076 1 72
di(benzyl)-bi-silatrane 1.45 - - 1 81
di(ethyl)-bi-silatrane 1.62 1.49 1.55 1 81
di(phenyl)-bi-silatrane 1.68 1.59 1.63 1 67

AE,/AlgV(mV) a°

34 0.7
33 0.6
36 0.6
18 0.7
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“Transfer coefficient estimated as a mean of « from E, — E,/» = 1.85RT /anF'.
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Figure 58: Cyclic voltammetry of q, tris(1,3-dihydroxy-2-propyl)amine (C = 0.1 mmol/L) in
CH3CN/DMF, 4:1 v/v 0.IM BuyNPFg at a 2 mm GC electrode; b, di(ethyl)-bi-silatrane;
¢, di(benzyl)-bi-silatrane; d, di(phenyl)-bi-silatrane (C = 0.1 mmol/L) in CH3CN/0.1M
BusNPFg at a 2 mm GC electrode. v =1 V/s; T = 25 °C.
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Figure 59: Cyclic voltammetry of the di(benzyl)-bi-silatrane (C = 0.1 mmol/L) in
CH3CN/0.1M BuyNPFg at a 2 mm GC electrode. v = 1 V/s; T = 25 °C.

Thus one-electron oxidation of bi-silatranes results in the corresponding silatrane cation
radicals. Potential-determining deprotonation of the cation radicals of di(benzyl)- and di(ethyl)-
bi-silatranes can be limited at relatively slow scan rates, which creates favorable conditions for
stabilizing these species at low temperatures and studying them by EPR spectroscopy. Cation
radicals of di(phenyl)-bi-silatrane seem to follow a bimolecular way of reactivity, the feature

more typical for delocalized or low energy intermediates.
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Figure 60: Cyclic voltammetry of di(benzyl)-bi-silatrane at a 2 mm GC electrode. v = 10 V/s;
T=25°C.

For comparison, the voltammogram of tris(1,3-dihydroxy-2-propyl)amine was recorded
under the similar conditions as the three bi-silatranes. The only difference was that the solvent
was mixed with 20% DMF to help dissolving the tris(1,3-dihydroxy-2-propyl)amine com-
pletely. Obviously the molecule has only one atom which can be directly involved in elec-
trooxidation (the nitrogen). In this sense, all these compounds have similar reaction center
of electron transfer. It is seen (Figure 58) that bi-silatranes have 0.61-0.84 V higher oxida-
tion potentials than tris(1,3-dihydroxy-2-propyl)amine. At the same time the oxidation poten-
tials of the bi-silatranes are higher than those of homological simple silatranes: for instance,
di(phenyl)-bi-silatrane has £, = 1.68 V whereas tolylsilatrane and phenylsilatrane have oxi-
dation peak potentials at 1.35 V and 1.55 V [5], respectively; similarly di(ethyl)-bi-silatrane
has 200~400 mV more anodic value (£, = 1.62 V) comparing to ¢-butylsilatrane (£, = 1.22
V) or ethylsilatrane (£, = 1.42 V) [5]. This anodic shift would be correlated with the specific
position of nitrogen atom. As the molecules are symmetric, N atom is located in the center
of bi-silatrane. Unlike the structure of simple silatrane, N atom in bi-silatrane was on the
plane of three carbon atoms on the a-position. From the point of view of electronic effects,
there are two acceptors on both sides of N atom forming two axial bonds with two Si atoms
and three 2p orbital of N atom as well as three equatorial o-bonds from sp® hybridized with
carbon atoms on the a-position (Figure 61). N atom is forced to have a planar configuration
so as its p, orbital (4-electrons) is equally available for donor-acceptor interaction with both
Si-fragments. As a result, its energy is remarkably lowered, which is reflected in the increased

oxidation potentials.
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Figure 61: Bonding structure of N atom in bi-silatranes

5.4 1-R-Stannatranes

From the previous studies of metallatranes by various physical chemical methods there fol-
lows that dative N—M interactions are stronger when going down the group 14, in the order
Si < Ge < Sn [43]. It is expected more than the availability of the lone pair of nitrogen must
decrease in the same order and hence the electron withdrawal in the homological metalla-
tranes must become more and more difficult. No data on electrochemistry of stannatranes was
reported so far, so we considered the oxidation of several selected stannatranes under the same

conditions as described above.

5.4.1 Cyclic voltammetry

To obtain an insight into the intermolecular electronic interactions in the new stannatranes we
worked with, their electrochemical behavior was considered. Depending on their solubility,
cyclic voltammetry of compounds 12, 13, 14 and 15 (Figure 62) was carried out in acetonitrile
(CH3CN), CH,Cl; or in a binary mixture (CH3CN/CH,Cly, 1:1 v/v) containing BuyNPFg
(0.1 M) as supporting salt.

Contrarily to silatranes [74, 5] and germatranes [33], the stannatranes 12 and 13 show dis-
tinct oxidation signals only at a Pt electrode. The limiting currents 7, of stannatranes 12 and
13 are both diffusion controlled (i,/v'/? =const; 1g(i,)/1g(v) = 0.45 and 0.46 for 12 and 13,
respectively) and, as was shown using i,/ v'/? ratio along with Cottrell slope from chronoam-
perometry at the same electrode [40], the number of electrons transferred at this step is n =1
(Table 15). Temperature dependence of lg(z’}o) of 13 provides F, =2.46 kJ/mol (2.85 klJ/mol for
second peak), corresponding to the activation energy of the diffusion flow of solvent. The peak
half-widths E}, — E,, /5 of 12 and 13 are too large for simple one-electron reversible processes,
supposedly because of the adsorption interactions or substantial structural reorganization ac-
companying electron transfer.

In a less polar solvent such as CH5Cls, the oxidation of 13 proceeds via two steps (Figure
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63), with the second one being reversible already at v = 0.5 V/s. With the vertex potential set
before the onset of the second oxidation peak (£, = 1.45 V), the first peak also starts showing
cathodic counterpart (at v > 50 V/s). Thus, both oxidation signals arise from electrochemically

reversible processes.

R: 12,

“‘\\\

13,

14, Cl
15,1

Figure 62: 1-R-stannatranes 12, 13, 14 and 15

Table 15: Parameters of electrochemical oxidation of stannatranes 12, 13, 14 and 15 at a
platinum disk electrode

Cpd Solvent E, V® E,—E,;,V AE,/lg(v),mV —n 1PeV
12 CH3CN 1.47 0.171 30 0.94 5.569
12 CH3CN/CHyCl, 1.46 0.115 48 0.94
12 CH2Cly 1.33 0.127 43 0.97
13 CH3CN 1.41 0.119 25 1.40 5.959
13 CH3CN 1.41(1.47)% 0.098 49 1.18
13 CH3CN/CH3Cly  1.40(1.53) 0.082 58 1.03
14 CH,Cly >2.2 7.338
15 CHQC]Q >2.3

Cpd Solvent b AE,/lg(v), mV®
12 CH3CN 0.3 23

12 CH3CN/CH3Cl, 0.4 19

12 CHCly 0.4 17

13 CH3CN 0.4 22

13 CH3CN 0.5 25

13 CH3CN/CH:Cly, 0.6 26

“ Peak potentials at v = 1 V/s. * Formal transfer coefficient, found from (E, — E,»)/1.85 =
RT/aF. ¢ Two peaks merged. ¢ Second of two peaks.

The i-t curve with the hold at E; (Figure 63) allowed to subtract the diffusion limited
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current of the first peak i}, (the baseline for the second peak [66] and to quantify the current
of the second oxidation step, z’f). The latter was shown to have an electron stoichiometry of
n = 0.4, caused by self-reactions involving cation radicals, as it was observed in the case of
oxidation of AryS or ArSM [81] with the HOMO localized on the ArS fragment. Thus, the
similarity in the oxidation pattern of 13 and of aryl sulfides suggests that the p-CH3CgH4S
fragment in 13 is most probably the reaction site that accounts for the first oxidation peak. The
E, of compound 13 is about 150-200 mV higher than those of diaryl or arylalkyl sulfides [82],
due to the electron acceptor effect of the stannatranyl substituent. The possibility of oxidation
of the stannatranyl moiety at Eg should obviously be ruled out because not only the HOMO
but also the lower lying HOMO-1 in 13 is mostly built of sulfur atom orbital.

Moreover, considering orbital energies (as IP = —epomo in Koopman’s approach, by
B3LYP/LANL2DZ) of HOMO-1 in 13 (6.655 e¢V) and of SOMO in 13"* (6.094 eV), it is
more probable that a second electron withdrawal affects the cation radical, like in the case of
aryl sulfides. In contrast to the trend in £, of diaryl and arylalkyl thioethers, which are easier
to oxidize than parent ethers [82], the order of £, values for oxygen- and sulfur-containing
stannatranyl derivatives is reversed (Table 15). This is supposedly because of stronger Sn—S
versus Sn—O bonding and a stronger acceptor effect of the stannatranyl moiety on the £, of 13

compared to the F, of 12.

2 1A

-0.5 0I.5 1.5 0.75 ' 1.60 ' 1.'25 ) 1.50 1.75
E Vvs. Fc E, Vvs. Fe

Figure 63: Cyclic voltammograms for the oxidation of stannatranes. Left: (a) — 12 and (b)
— 13 (1072 mol/L) in CH3CN/0.1 M BuyNPF at a Pt disk electrode; v = 5 V/s. Right: I-E
curve of 13 (1.1 x 1072 mol/L) in CH,Cl5/0.1 M BuyNPFg at a Pt disk electrode. (a) normal
scan; (b) /-t curve after the hold at F,. (c) diffusion limiting current of the second oxidation
step. v=0.5V s71; T=22°C.

The stannatranes 14 and 15 did not show any distinct oxidation peaks up to the media lim-
its. As was pointed out by Broka ez al. [5], the chloro-substituted silatrane N(CH,;CH0)3SiCl
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cannot be oxidized. No such data exist for the chloro-substituted germatrane N(CH;CH,0)3GeCl
but one can expect even higher F, since germatranes are more difficult to oxidize than sila-
tranes [33, 83]. From a simple correlation of F,, with calculated IPs of the stannatranes 12, 13
and 14, the oxidation potential of the chloro-substituted derivative 14 should be above 2.3 V

which corroborates the results of its voltammetry.

On the contrary, compound 14 shows a well-shaped reduction peak at £, = -1.5 V; the re-
duction process results in elimination of C1~ anions whose oxidation peak at ~1 V is detected
by voltammetry during the second cycle. The peak at -1.5 V falls into the range of reduc-
tion potentials of known chloridostannanes [84] and might have arisen from the dissociative
reduction of Sn—Cl bond in 14. Similarly, the oxidation peak of the iodide anion I~ appears
after the reduction of 15. This is in agreement with the conductivity measurements of 14 in
CH3CN/CH,Cly (50:50 v/v), which have only shown residual solvent conductance and no
contribution from any ionic conductivity due to the possible Sn—Cl dissociation prior to the
reduction. A practically identical conductivity curve was observed for the phenolatosubsti-
tuted stannatrane 12. Therefore the chloridosubstituted stannatrane 14, just as 12, remains a

covalent compound in solution, at least in this media.

5.4.2 EPR-spectroelectrochemistry

Since the oxidation of the phenoxy-substituted stannatrane 12 shows partial reversibility
(Figure 63), it was studied by real-time EPR-coupled electrochemistry. The solution of 12
(1073 mol/L) in CH3CN/0.1 M BuyNPFg, initially ERP-silent, has shown the signal of para-
magnetic species when the potential 1.23 V was applied (Figure 64).

The visible end-to-end span of the observed spectrum (A = 23 — 24 G) corresponds
to the coupling constants from 2 sets of equivalent protons and to some contribution from
17/1198n nuclei. The g-factor (g = 2.0036) is slightly increased relative to that of pure organic
radicals because of the interaction with oxygen and tin and falls into the range of the values
for known phenoxyl radicals [85, 86]. The triplet of triplets pattern with 1:2:1 intensities
is rather straightforward and fits well with two pairs of practically equivalent protons (0,0 -
and m,m ~) in the supposed phenoxyl species. Though the ends of the spectrum are not well
enough resolved to allow extracting exact Sn'!7/119
to suppose two values a''?Sn = 6.7 G and a!'!"Sn = 7.4 G. The set of 2H with the Afc constant

of aH, = 6.22 G can be substituted with two large proton Afc constants (a¢H,_-= 6.27 G and

coupling constants, its symmetry permits

aH,, =6.03 G), assigned to two slightly different ortho-protons of the phenyl ring (see Figure
63).
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Figure 64: EPR spectrum from the oxidation of stannatrane 12 in CH;CN/0.1 M BuyNPFy at
a Pt microspiral electrode. Upper, experimental; lower, simulated using the parameters in the
text. T=233 K,E=1.23 V.

This substitution provides a better fitting but in any case, this difference is at the level of
the (possible) contribution from the protons of the #-Bu group. Two m-protons account for
a smaller constant, aH,, = 1.85 G (2H). It appears as there is no coupling with the atrane
cage nitrogen atom or, if any, its contribution is very small. In general, the presence of d-
metals often results in strong spin-orbital interactions [87] broadening the spectral lines and
making it difficult to observe well resolved hyperfine structure. Thus the cation radical of
stannatrane 12 has the spin distribution as an O-substituted 7-Bu-phenoxy radical and not as a
proper metallatrane, similarly to the cation radicals of germatranes in which the 1-substituent
has lower own ionization potential than the atrane nitrogen atom [83].

5.4.3 DFT calculations

The geometry of the stannatranes 12, 13 and 14 and of their cation radicals was optimized
using a combined treatment: primary adjustment was done at HF/6-311G level, and then the
structure was optimized at DFT B3LYP/ DGDZVP level, better accounting for long-term and
delocalizing electronic interactions. The same level was used for NBO analysis and to check
the optimized structures for the absence of imaginary vibrations.

The N-Sn distance is affected very little by electron withdrawal. It becomes slightly longer
in 12+, slightly shorter in 13** and remains practically unchanged in 14** (Table 16). Mean-
while, other geometrical parameters of these stannatranes show remarkable configurational

change when forming the cation radical. Thus, for the neutral stannatrane 12, the dihedral
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angle p(£Co-Ar-Ci-Ar-O-Sn) is 93.63°, while it becomes 3.81° in the cation radical (Figure
65) showing that the atrane moiety twists around the O—Sn bond by the right angle (55° for
the couple 13/13"°).

Figure 65: B3LYP/DGDZVP optimized geometry of stannatrane 12 and of its cation radical
(see text).

The driving force of this remarkable twist is the interaction of p,-orbital of the O and S
atoms with the m—systems of the aromatic fragments, destabilizing the HOMO in the neutral
molecules and stabilizing the corresponding CRs. The stabilization of the phenoxy system
in 127* is stronger than of the arylthio fragment in 13"°: while the couple 12/12*"* clearly
switches between two most stable forms, orthogonal and planar, (both corresponding to global
minima on the corresponding energy surface), the bulkiness of the S atom and the poorer match
in the size of overlapping orbital in 13"* force the latter to adopt a compromise half-eclipsed
configuration. It implies that the nuclear frames of 12 and 13, following the redistribution
of the electron density upon oxidation (electrochemical electron transfer is adiabatic by its
nature), exist in two fixed geometries: those of neutral and of the oxidized forms (12 vs 12**
and 13 vs 137°).

This fact precludes the formation of pure Nernstian reversible redox systems for these
compounds which accounts for small apparent transfer coefficient o for 12 and 13 (Table 15).
There is no contribution of the nitrogen atom to the spin—orbital interactions in 127 since the
3c-4e system has lower energy than SOMO (Figure 66) and is doubly populated. The 12 is
thus a phenoxyl radical; it agrees very well with its EPR spectrum that has no characteristic
pattern of a nitrogen-centered radical. Fermi contact couplings at the nitrogen and tin atoms
(Table 16), and at the atoms of the phenoxy fragment, obtained from B3LYP/DGDZVP cal-
culations, agree well with this feature. Contrary to cation radicals of germatranes, showing
no unpaired spin density on the germanium atom and no coupling with it [34], the spectrum

of the iodido-substituted stannatrane 15 shows the 117/119Sn satellites which is also consistent
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with the nonzero FCT on the Sn atom (Table 16).

Table 16: Selected geometrical parameters (distances in A, angles in degrees), fermi contact
terms (FCT, MHz), and NBO charges for stannatranes 12, 13, 14 and their cation radicals from
DFT B3LYP/DGDZVP calculations

Cpd [(Sn—-N) [(Sn-X)* /N-Sn-X  /X-Sn-O° /0-Sn-0b
12 2.240 2.030 171.66  102.46 (89.07) 126.77 (101.43)

127 2.265 2.121 177.84 96.32 (98.93) 118.73
13 2.402 2.442 175.94 101.72 116.02
13t 2273 2.582 173.82 99.99 (91.72) 118.46
14 2.374 2.373 179.97 100.60 116.69

14t 2376 2.332 164.89 105.72 (90.45) 126.34 (111.03)

N Sn
Cpd
FCT ¢g(NBO) FCT q(NBO)

12 -0.348 1.296
127*  0.0000 -0.342 -0.3056 1.307

13 -0.326 1.171
137* 0.0003 -0.342 -2.6584 1.196

14 -0.327 1.195

14** 0.7022 -0.327 104.5738  1.163

@ X is first atom of the 1-substituent. ° for two Sn-symmetrical O, atoms, the value given in
the parentheses is for the remaining nonsymmetrical O,,.

Upon oxidation of the chlorido-substituted stannatrane 14, the tin atom also undergoes
substantial reorganization: instead of a trigonal bipyramid it adopts the configuration of the
pyramid with a thombic base, when one oxygen atom is at the apical position and the long
diagonal of the base is formed by nitrogen and chlorine atoms (Figure 67); in general it resem-
bles to Berry pseudorotation transition state. The calculated Sn—O,, bond length is 1.994 A
in average, whereas the third Sn—O, distance (for which ZCl-Sn—O,, = 90°) is 2.244A. The
N-Sn—Cl angle being 180° in the neutral molecule is smaller by about 15°, bringing closer the
nitrogen and chlorine atoms (Table 16).

The structure of the HOMO of the chloro-substituted stannatrane 14 is rather complex
(Figure 67). Contrary to the HOMOs of lighter metallatranes (M = Si, Ge) the 3c-4e bond-
ing system of which involves the easiest to ionize orbital (n-electrons of N) [33, 34, 88], the
HOMO of 14 only contains it to a small extent (at least, at the B3LYP/DGDZVP theory level)
suggesting that upon electron withdrawal, the whole orbital system involved must be very

perturbed with no possibility of delocalizing stabilization of the cation radical.
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Figure 66: Unpaired electron density (SOMO) delocalization on the phenoxy fragment in the
cation radical 127* by B3LYP/DGDZVP (a), and doubly populated (SOMO-1) orbital (b)
with small contribution of 3c-4e N—Sn—O bonding.

Figure 67: Geometry and FMOs for 14/14** from B3LYP/DGDZVP optimization: (@) neutral,
(b) cation radical, (¢c) HOMO of 14 and (d) SOMO of 14"*. The contribution of intramolecular
N-S-O (3c-4e) bonding is clearly seen, though with moderate orbital coefficients.

The spin-bearing orbital in 14™* is mainly localized on the tin atom (sf. Table 16), and
is neither sterically shielded nor involved into conjugation as in germatranes [33, 34]. On
this reason it is probably much more difficult to observe this species in solution, since it is
closer to R4Sn or R55n radicals [89] than to known cation radicals of sila- or germatranes
with N-centered spin-carrying orbital [33, 34]. The importance of surrounding Sn O,-atoms
in the HOMO suggests a strongly perturbed Sn environment upon electron removal leaving
few chances for observing such cation radical under conventional conditions. It is then rather
questionable whether it is possible to observe these species in solution, above the freezing
point of common electrochemical solvents. Also, 14 has high value of the ionization potential
(Table 15) which, using the approximate £, — IP correlation, leads to the ), of about 2.4-2.6
V, meaning that the oxidation of this stannatrane could not be observed under the conditions
employed. However, these estimations are based on the gas phase data and bonds polarization
in the solution might lower the actual oxidation potential, so a broad shoulder observed at
~2.2-2.3 V for 14 and 15 in CH,Cl, might actually stem from this oxidation. In any case,

high oxidation potential of 3 and 15 excludes the use of spin traps because many of them
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undergo oxidation much before these potentials.

5.5 Distannatrane from electroreduction of halostannatranes

Because of their low lying HOMO, halostannatranes are hardly oxidizable. On the contrary,
they have a LUMO localized on antibonding o*(Sn—X) orbital which can relatively easily

accept an extra electron and therefore allow electroreduction.

Alkyl and even aryl chlorostannanes have similar LUMO, therefore one can expect that
the reduction of halostannatranes would follow a similar way. Electrochemical reduction of
chlorostannanes was reported by several authors who provided a lot of information on this
process, albeit quite contradictory [90, 91, 92]. Most important conclusion that one can draw
from these studies, is that -whatever the exact mechanism- electroreduction of tin chlorides
in aprotic media results in the corresponding distannane products. With this in mind, we
examined cathodic reduction of the above halostannatranes (X = Cl, Br, I) in view of obtaining

so far unknown distannatrane.

This molecule, containing central Sn—Sn bridge, corresponds to the 4c-6e bonding scheme
and therefore it would be very tempting to prepare it in view of exploring its behavior in

electron-withdrawal processes.

5.5.1 Cyclic voltammetry of electroreduction of halostannatranes

Before creating the Sn—Sn bond by electrochemical reaction of halostannatranes, it is required
to reveal the mechanism of the electrochemical reduction of these compounds. We studied
electroreduction of the halo stannatranes (X = Cl, Br, I) and compared it with model tin com-
pounds, Ph3SnCl and Bu3SnCl.

All three halostannatranes, chloride, bromide and iodide have well-shaped reduction peaks
(Figure 68, 69). Although the peak shape is somewhat deformed -probably by adsorptional
interactions-, their reduction peak currents are linear with concentration and with square root
from the scan rate (Alg(i)/Alg(y/v)); these tests confirm the diffusional character of the pro-
cess at these potentials. To determine the calculate the electron stoichiometry of electrore-
duction of these hoalstannatranes, we used three methods whose results are presented in table
17. First, absolute n was obtained by combination of 7, from the linear sweep voltammetry
and of Cottrell relationship. Second, known amount of ferrocene was added to the solution at
the end of every experiment and the voltammogram was recorded with ferrocene; n was then
calculated from the proportion between ¢, of the stannatrane and ¢, of ferrocene. Third, n was
obtained from the comparison of 7, of stannatranes with those of C1~ or Br~ ions, added as
corresponding salts LiCl and Et,NBr. All these methods converge in that the process at E;

corresponds to the transfer of 1-electron.
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Figure 68: Cyclic voltammetry of electroreduction of left, stannatrane chloride; right, stanna-
trane bromide (C = 0.1 mmol/L) in CH3CN/0.1M BuyNPFg at a 2 mm GC electrode. v = 1
V/s; T =25 °C.
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Figure 69: Cyclic voltammetry of electroreduction of a, stannatrane chloride; b, stannatrane
bromide (C = 0.1 mmol/L) in CH3CN/0.1M BuyNPFg at a | mm Pd electrode; ¢, stannatrane
iodide (C = 0.1 mmol/L) in CH3CN/0.1M BuyNPFg at a 1 mm Pt electrode. v =1 V/s; T =
25 °C.

Table 17: Parameters of electrochemical reduction of stannatrane chloride, stannatrane bro-
mide, tributyltin chloride and triphenyltin chloride at a GC electrode.

Cmpd E,(V)* AE,—E,;»(V) n’ n° n°
Stannatrane chloride  -1.94 0.19 1 1 1
Stannatrane bromide  -2.04 0.15 1 1 1

Stannatrane iodide - - - - -
Tributyltin chloride -2.14 0.16 2 -
Triphenyltin chloride  -2.55 0.11 2 1 -

@ Peak potentials (F,) at v =1 V/s; ® n is obtained from chronoampermetry; ¢ n is from compar-
ison with 7, of ferrocene; 4 1 is from oxidation currents of C1~ and Br~ ions, in CH3;CN /0.1
M BuyNPFgv=1V/s; T=25°C.

Several articles have reported the reduction process of Ph3SnCl. A. Savall ef al. claimed
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Table 18: Parameters of electrochemical reduction of stannatrane chloride, stannatrane bro-
mide, tributyltin chloride and triphenyltin chloride at a transition metal electrode.

Cmpd E,(V) E)V) AE,—E (V) n
Stannatrane chloride -1.17¢ -1.90¢ 0.13¢ 2
Stannatrane bromide -1.20¢ -1.89¢ 0.16 2

Stannatrane iodide -1.00%  -1.90° 0.15° 2
Tributyltin chloride  -1.60¢ -2.90° - 2
Triphenyltin chloride - - - -

%The values are measured at a | mm Pd electrode; ® the values are measured at a 1 mm Pt
electrode; ¢ [93].

that the reduction of Ph3SnCl at -2.2 V vs. Ag/Ag* is a two-electron process leading to
Ph3Sn~ via Ph3Sn® and thereafter to Ph3SnSnPhs by chemical steps [91] whereas R. E.
Dessy et al. [93] found that the reduction of triphenyltin chloride exhibits two well-defined
waves. The reduction step at -1.6 V vs. AgClO4/Ag, shown to require one electron per mole
of triphenyltin chloride, yielded quantitatively hexaphenylditin. The second reduction wave at
-2.9 V vs. AgClO4/Ag could represent the uptake of two electrons per mole to lead directly
to Ph3Sn™ then to the dimer Ph3SnSnPhg [93]. By the other side, Holm et al. [94] reported
E 3 potentials of Epy,gne /physn- and Epy,sne /Bussn—» Which are -0.54 V and -0.93 V vs. SCE
respectively [94]. The discrepancy one can note in the bibliographic data stems on the re-
duction of Ph3SnCl is caused by the fact that the reduction has been carried out on cathodes
made of different materials. More precisely, some electrodes were made of transition (Pt) or

post-transition (Hg) metals while others were made of graphite or glassy carbon (GC).

At a GC electrode, a proper reduction of the Sn—X bond whose o* component corresponds
to the (LUMO of the molecule) takes place. On the contrary, on a Pt or Hg electrodes, a preced-
ing oxidative addition of the Sn—X compound to the surface-located metal atoms might occur.
Consequently, it is not a Sn—X but Sn—Pt—X or R3—Sn—X intermediates who undergo elec-
troreduction under these conditions (Figure 69). The electron uptake to such metallo-organic
species requires much less cathodic potentials than the direct reduction of cation radicals to
the R3Sn—X o* orbital (LUMO). The reduction potentials of such R3Sn—M—X species are less
negative than those of known E /; of reductuion of Sn°®-centered radicals [94]. Therefore, it is
not surprising that one-electron reduction of R3Sn—M-X surface-located intermediates is fol-
lowed by second one-electron step at more negative potentials, corresponding to the formation
of R3Sn™ anions (the step being less cathodic and hence usually absorbed in an overall two

electron reduction peak if the reduction is carried out at a GC electrode).

Difference in the observed n values for Ph3;SnCl and BusSnCl on the one hand, and for

halo- stannatranes on the other, might arise from different steric hindrance in these systems in
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homobimolecular reactions like Sy 2 or radical dimerization: Ph3Sn > BusSn > Stannatrane.
Unlike parent Si or even Ge derivatives, stannatrane is bulky because of the inner d-orbital of
Sn. Sn atom forms longer bonds with its environment and is much more available for ex-
ternal reagents steric hindrance from the phenyl groups is comparable with that of three i-Pr
substituents; n-Bu, though normally, create more steric hindrance than three O-Alk groups in
stannatrane, because the latter are attached to the back N-atom and fixed in one direction.

Therefore, the rates of Sy2 attack of stannatranyl anion on chlorostannatrane or of the
radical dimerization of stannatranyl radicals are supposedly higher than for the corresponding
Ph3Sn-species.

In the case of a two-electron process (n = 2), the mechanism could be the following:

-CI . te
R3SnCl+e —> R3Sn —> R3S
Ex Ez |E1l > |E2]

RsSN + RsSNCl —S'»  RySNSNRs

Scheme 15: Two-electron reduction process of chlorostannanes (R = Ph, Bu).

Halogenostannane has associated one electron and lost Cl™ at the first step, leading to the
radicals R3Sn®; then these unstable radicals were reduced (addition of another electron) and
formed R3Sn~at the potential of their formation.

Then the R3Sn~ anions would attack the unreduced molecule R3SnCl to substitute one
Cl™ and to form the dimeric organotin (Scheme 15). If there is a proton source in the system,
HD, the R3Sn™ anions could be protonated to form R3SnH:

RsSN + HD —2 » R3SnH

Therefore, Qrota1 in a large scale reduction must be 1 F/mol, since two electrons per mole
are needed for the reduction of one Sn—Cl bond (Scheme 15) but the R3Sn™ anions, reacting
with neutral molecule R3SnCl, consume second equivalent of the chlorostannane thus leading
to the overall stoichiometry of 2e/2 molecules = 1 F/mol. However, from the cyclic voltamme-
try of R3SnCl the electron stoichiometry is n = 2. This probably because of the slow rate of
the nucleophilic displacement (Scheme 15) in a short time scale (+—0), which does not occur
to a substantial extent during the voltammetric experiment but is accomplished during much
longer preparative electrolysis. Thus there is a disagreement on the electron stoichiometry
between the results of cyclic voltammetry and large scale reduction analysis.

On the contrary, for halo-stannatranes the n value is unity even in the conditions of voltam-
metry. This is supposedly because of higher rate of nucleophilic substitution at these com-

pounds for the steric reasons discussed above.
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The order of £, of halo-stannatranes is seemingly inversed with respect to the usual easi-
ness of the series Cl < Br < I. However, the values of their AE, — E, »(V) are quite large (Table
17), so the observed difference in £, (stannatrane chloride) and F, (stannatrane bromide) is

not really meaningful.

5.5.2 Electroreduction of halostannatranes at transition metal cathodes

From the analysis above it is supposed that for stannatrane chloride, during the electroreduc-
tion at a transition metal working electrode (Pt, Pd or Hg), the radical intermediate R3Sn*® is

formed at less negative potential:

Pd®© +e
N(CH,CMe,0)3SnCl+e —— N(CHCMGzO)gSI’]—Pd(“)—C| —_—
-CI

. + e
N(CH,CMe,0)3Sn — N(CH,CMe,0)3Sn"

N(CH,CMe,0)3Sn™ + N(CH,CMe,0)3SnCl T> (N(CH2CMe,0)3Sn),

To prove the existence of these intermediate stannatranyl radicals, spin trapping with a-
phenyl-N-zert-butyl-nitrone (PBN) was applied. Because the reduction potential of PBN is
more negative than the potential of forming atranyl radicals Sn®, this spin trap can be used
under the condition of reduction of R3Sn—Pt—Cl intermediates:

Pd +e
N(CH,CMe;0)3SnCl + e  — N(CH,CMe;0)3Sn —Pd—C| ——

-Pd, -CI
O.
b
. PBN N
N(CH,CMe,0)sSn ~ —— » >‘/

N(CH2CM620)3SH

During the electroreduction of the corresponding halostannatranes (table 19) it is con-
firmed the formation of Sn-centered radicals during the reduction process in this range of
weakly cathodic potentials and hence the occurrence of a different mechanism of reduction
at transition metal electrodes. Under these conditions, similar species were as well trapped
with model chlorostannanes, Ph3SnCl and BusSnCl (Figure 70). Small proton Afc constants
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in these adducts attest bulky character of the trapped radical addend and the values of ay are
reciprocate to the steric demand of the concerned species: Ph3Sn > BusgSn > stannatrane. In
the case of stannatrane iodide (Figure 73), only the nitrogen triplet spectrum was obtained,
arising from the spin-adduct without a-proton. As was mentioned before, this stannatrane is
light-sensitive, its decomposition probably involving radical species. In addition, it has higher
Lewis acidity than the other stannatranes. Since the concentration of PBN in the catholyte
is inferior to that of the iodostannatane, the nitrone was supposedly all reacted with these

decomposition-induced radicals via hydrogen abstraction or simply via deprotonation.

Table 19: Spin trapping of electrogenerated stannyl radicals with PBN®

Halostannane g-factor hfc, G Ratio
Ph3SnCl 2.0065 an: 14.687, ay: 2.732  50%
2.0067 ay: 13.815, ay: 2.333  50%

BusSnCl 2.0065 ay: 14.625, a: 3.129  75%
2.0067 ay: 13.854, ay: 2.286 23%

2.0073 an: 16.183 2%

Stannatrane chloride® 2.0083 ay: 14.596, ay: 3.357 92%
Stannatrane bromide  2.0065 an: 14.543, ag: 2.760 79%
2.0067 an: 13.846, ay: 2.329 18%

Stannatrane iodide 2.0064 an: 15.704 98%

@ Electrolyses at a Pd electrode in CH3CN/0.1 M TBAPFg; ° Electrolysis in THF/0.1 M
TBAPF.

5G

Figure 70: EPR spectrum from ex-cell spin-trapping experiments with PBN during the reduc-
tion of BusSnCl. Electrolysis at a Pd cathode in CH3CN/0.1 M TBAPF4, E=-0.9 V. T =293
K.

Besides major spin-adduct, in all experiments run in acetonitrile, there is also a signal
from an extra radical species (with g =2.0067 and ax = 13.83 G, aig = 2.3 G), supposedly the
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Figure 71: EPR spectrum from ex-cell spin-trapping experiments with PBN during the reduc-
tion of chlorido stannatrane. (a) Experimental, (b) baseline-corrected, (c) simulated. Electrol-
ysis at a Pd cathode in THF/0.1 M TBAPFg, E=-1.0 V. T =293 K.

spin-adduct from the trapping of solvent-related radical by PBN. In similar experiments using
THF as solvent, this signal was not observed. In case of reduction of BuzSnCl in the presence
of PBN, trace amounts of a spin-adduct without a-proton (spectrum as simple triplet with
single nitrogen constant, g = 2.0073 and ax = 16.183 G) was registered, the species issued of
a two-step trapping, which involves H-abstraction by BuzSn*® and first stannyl-radical addition
providing an even-electron stannylated adduct which then acts as a trap for second BuzSn®

radical.

Therefore we tried to obtain the dimer of stannatrane by electroreduction. The result was
shown in the figure 74: a is the cyclic voltammogram of stannatrane chloride before the elec-
trolysis and b is after 1 h electrolysis. It is obvious that the reduction peak of stannatrane
chloride disappeared after the electrolysis which indicates that there is no more stannatrane
chloride in the solution (distannanes are not reducible [93]). After separation purification, and
we obtained dimer of stannatrane chloride. We did the same electrolyse with two model organ-
otin chlorides (triphenyltin chloride and tributyltin chloride) and also obtained corresponding
the dimers. Table 20 shows the chemical shifts of 'Sn NMR. There are large shifts to higher
fields from the monomer to dimer (Table 20). The result of GC-MS also proved that the dimer

was obtained after electrolysis in the case of triphenyl- and tributyl tin chloride. However it
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Figure 72: EPR spectrum from spin-trapping with PBN during the reduction of bromo stanna-
trane. Electrolysis at a Pd cathode in CH3CN/0.1 M TBAPFg, E=-0.9 V. T =293 K.

5G

Figure 73: EPR spectrum from spin-trapping experiments with PBN during the reduction of
iodo stannatrane. Electrolysis at a Pd cathode in CH3CN/0.1 M TBAPF4, E=-0.7 V. T =293
K.

cannot detect the dimer of stannatrane chloride.

Table 20: dimer SnSn (Result of GC-MS)

Compound o19Sn (ppm) E (V) Product d19Sn (ppm)
Triphenyltin chloride -44.90 -0.54  Tris(n-phenyl)distannane -143.27
Tributyltin chloride  156.88(144)* -0.93  Tris(n-butyl)distannane -82.66
Stannatrane chloride -243 -1.94 Bis-stannatrane -639.72
195, 96]

5.5.3 Okxidation of distannatrane

Besides the above proofs obtained from chemical analysis, the cyclic voltammetry of elec-
trooxidation of distannatrane was examined as well as compared with the oxidation of dimer
BusSnSnBus.

On the anodic branch of voltammogram of the solutions electrolyzed at 1.34 V vs. SCE,
new peaks appeared, as shown in figure 75. Since neither stannatrane chloride nor tributyltin
chloride are oxidizable at these potentials, one can suppose these peaks to arise from the
oxidation of the corresponding distannane products.

However, other candidates for the oxidation at these potentials should be considered as
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Figure 74: Voltammetric monitoring of the electrolysis of stannatrane chloride E =-1.94 V at
GC electrode in CH3CN/0.1 M LiClOy a. electroreduction before electrolysis; b. after 1 h

well. A very easy oxidation of Ph3SnH was reported, £, = —0.3 V vs. SCE [97] or E, =
—0.4 V vs. SCE [98], though in more recent accounts it was confronted with much higher
value of £, = 0.8 V vs. SCE [99]. It was mentioned above that the F /; of the redox couple
PhsSn* /PhsSn® was reported, £ /o = 0.2V vs. SCE [94]. (E}/2(PhsSn®/PhsSn~) = —0.46
V in CH3CN vs. SCE and E; /2(BusSn®/BusSn~) =-0.93 V in DMSO vs SCE).

400
300 a
200 (-

—100

-100

> v sce *°

Figure 75: Cyclic voltammetry of a bis-stannatrane (C = 0.1 mmol/L) in CH3CN/0.1M
LiClO4 at a 2 mm GC electrode v = 1 V/s T = 25 °C; b tris(n-butyl)distannane (C = 0.1
mmol/L) in CH3CN/0.1M TBAPF¢ at a 2 mm GC electrode v = 1 V/s, T = 25 °C.

Moreover it is reported that the oxidation dimer of MesSnSnMe; and Et3;SnSnEts occurs
at 1.28 V and 1.24 V vs. Ag/AgCl (Ag/AgCl = 1.99 V vs. NHE), respectively, in CH3CN
at GC electrode [100] these values are close to those observed in our cyclic voltammetry
expressions of dimers. Thus one can believe that the oxidation peaks at the potential 1.34 V
and 1.33 V vs. SCE (Figure 75) are dimer Bu3SnSnBujs (b) and distannatrane (a) respectively
even though the peaks are not reversible and the values of peak width (£, — [£,/3) are much

larger to correspond to a perfect redox process.
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5.6 New non-coordinating fluoride encapsulating silsesquioxane-based

supporting electrolyte

Weekly coordinating anions mostly used in supporting electrolytes can be arbitrarily divided
into four groups (Figure 76): those with a Lewis acid central atom carrying additional electron-
acceptor substituting atoms (a: BF,, PFg, AsF;, SbFy), those with bulky delocalizing
organic groups (b: PhyB7), those combining both features (c: bulky delocalizing groups
with electron-withdrawing substituents, (CgF5),B~, [(CF3)2CeHs|4B~, [(CF35)3COJ4ALT),
and relatively recently introduced icosahedral carboranes CB;; containing no 7w-orbital (d:
CB11HgXy with X = Cl or Br).

On the other hand, many "rattle-like" systems (e) are known, in which an atom or an
ion is entrapped inside of a hollow cavity, with no covalent bonding between them. Metals
inside of fullerenes (M@ Cg), hydrogen atom in octahedral silsesquioxanes (H*@Tg), and
fluoride anion in zeolites provide such examples. Recently, Bassindale et al [101] discovered
anew class of silsesquioxane structures, with F~ anion encapsulated inside of the TgPhg cage.
Negative charge in these systems is hidden in the center of an inert siloxane box cutting off

direct coordination with external electrophiles in favor of purely electrostatic interactions.

Figure 76: Different types of low-coordinating supporting electrolyte anions

It was pointed out that such compounds could not be prepared with non-acceptor sub-
stituents at Si [101, 102]. Since the LUMO of TgRg structures lies inside of the T cage
[103], the electron-withdrawing substituents should raise its level, so if it worked with R =
Ph, then all substituents whose inductive electron-withdrawing effect (Taft’s og) is stronger
than that of Ph (Figure 77), in principle must permit the formation of such anions. Based on
this consideration, we prepared TBA salts with F~ encapsulating TgRg cages choosing the
R groups bordering the silsesquioxane cage which would be potentially compatible with the
electrochemical environment (R = Ph, CH,CN, CH;CH;CN, CH,CH,CF53).
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Figure 77: The substituents with Taft inductive constants op suitable for the formation of
fluoride-encapsulated silsesquioxane salts TBA[F~@TgRg].

In the meantime other structures, all with the substituents R satisfying or > opy, require-
ment, have been prepared: R = p-R-Ph, (CH,)s(CF3),,CF3 (m = 0, 3, 5, 7 [104]), Vin,
CH=CH,Ph and CH,CH,(CF5),CF3 (n=0, 3, 5) [105].

As was shown by DFT B3LYP/6-311G(d,p) calculations, there is no substantial charge
transfer from the central F~ anion to the surrounding atoms of the silsesquioxane cage: NBO
charge on '~ changes from -1 to -0.89 when passing from free to the Ts-entrapped form.
Given that F'~ ion can enter and leave the T cage [104, 105], the use of polar solvents should
rather be precluded, as they will destabilize the F~ @Tg systems by solvation of the cage-

escaped F'~ anion.

B(CsFs)s F-@T4(CH,CN)g

F-@T,Phg

Figure 78: Negative charge (dark areas for I~ and BF,, and those marked with the arrows
for the other anions) mapped on solvent available surface for low-coordinating anions (DFT
B3LYP/6-311G(d,p) calculations); F~ and BF; are given for comparison.

X = eFx/rn{0.5y(y/x)?[1 + rg + 4Ts\/§/(7" +7g)2(1 4+ My /Ms)"?]}

5.6.1

Negative charge, mapped on the solvent available surface and visible by external elec-
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trophiles, is shown in figure 78 for F~ @TsRg (with R = CH,CN and Ph), and is compared
to several common anions. Whereas free F~ anion is 100% available from all sides, only
small electrophiles (H', Li™, Na™) can approach the zones of a meaningful nucleophilicity in
F~@Tg(CHyCN)g and F~ @TgPhg.

In aprotic solvents like CH3CN and THF, the TBA(F~ @TgRg) salts undergo ionic dis-
sociation. Limiting values of molar conductivity of these anions, \,, have been estimated
(table 21) using Stokes equation \, = Npe?/(67nr) and within the more advanced model of
Kuznetsova (Eq 5.6.1) taking into account solvent holes fluctuation, radius of the solvation
sphere and frontal resistance to the movement of a bulky ionic complex in this media [106].

Here x is a mean distance between solvent molecules, 7, and rg are “hole” and solvent
radii, y is the radius of the moving ionic complex, My and Mg are ion and solvent masses,

respectively, and 7) is solvent viscosity.

Table 21: Limiting molar conductivites of '~ @Tg anions and their TBA salts

My (F~@TsRs), r(F~@QTgRg) A’ Ao(F~@TsRs), A, S em?%/mol

R g/mol S cm?/mol

Ph 1033 6.70 27.15 (29.75) 69.45 (71.87)
(CH,),CF3 1212 6.40 29.75 (30.96) 72.05 (73.26)
(CHz)2CN 867 6.34 29.97 (31.25) 72.27 (73.55)

“ From DFT B3LYP/6-311G(d, p) optimized geometry.
b A0 = A°(F~@TgRg) + A°(BuyN™); in parenthesis, the values form Stokes model are given.
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Figure 79: Molar conductivity of THF solutions of: (CJ)TBA[F~QTg(CHyCHyCF3)s],
(0)TBA[F~@Ts(CH,CN)s), () TBA[F~@TsPhs], (A)TBABF,, (7)TBAF.
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In THF solutions, the conductivity of TBA(F~ @TgRyg) salts are about 10 times higher than
that of TBABF, (Figure 79); in CH3CN it is slightly lower, even for the anion with CH,CN
substituent, mimicking acetonitrile itself. Interestingly, that in THF (¢ = 7.8) the F~ @TgRg
anions all show a shallow minimum due to ion pairing, which occurs at the concentrations
much below those practically used (C = 5-!° M) beyond which the conductivity remains sta-
ble. For TBABF,, such minimum is observed at the values close to practical concentrations (C
=~ 919 M). In perfluoroisopropanol, TBA(F~ @ TgPhg) shows a deep minimum corresponding
to the formation of ion pairs and then the conductivity regains the same values as in CH3CN
(Figure 80).

1.5+

HSd b e oD

@
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Figure 80: Molar conductivity of CH3CN solutions of: ()TBA[F~@QTg(CHyCH,CF3)s),
(o) TBA[F~@Tg(CHoCN)g], (o) TBA[F~@TgPhs], (A)TBABF,, (v)TBAF, (0)TMAF,

In the same solvent, the difference of potentials between two consecutive electron transfers
of an electrochemically stable redex system, AE = E! — E2, is a good criterion for assessing
the energy of ion pairing between the electrogenerated ionic species and the counter ion of the
supporting electrolyte; this aspect was considered in details in many papers, both for reduction
and oxidation processes, see e.g. [56, 57, 58]. We used the reversible one-electron oxidation
of phenothiazine (Scheme 16), followed by formation of unstable dication, as a probe for com-
paring the ion-pairing ability of F~ @TgRg anion with that of several common electrochemical

anions.
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Scheme 16: Reversible one-electron oxidation of phenothlazme

Table 22: Difference in potentials of first and second oxidation peaks of phenothiazine with
different supporting salt anions TBAX in CH3CN

X E),V* AE}, V' E2V E2—E!V
BF, 0.269 0 0.869 0.600
PF; 0.281 0.012  0.925 0.644

B(C¢F5); 0325 0056 1.188  0.863
F-@TgPhs 0325 0056 1316  0.991

@ vs. Ag/0.1 M AgNOj3 in CH3CN
bys. EX(BFy)

Table 23: Difference in potentials of first and second oxidation peaks of phenothiazine with
different supporting salt anions TBAX in CH5Cl,

X EL Ve AEL Vb Eg(Eg), A% Eg — ENAE,),V
BF, 0.258 0 1.018 0.760
PFg 0.258 0 0.986(0.873) 0.728(0.615)
B(CsF5), 0.319 0.061 1.148(0.967) 0.829(0.648)
F~Q@QTg(CH,CH,CF3)s  0.321 0.061 1.395 1.074

@ vs. Ag/0.1 M AgNOj3 in CH3CN
bys. EX(BFy)

The voltammograms of oxidation of phenothiazine with different anions are shown in fig-
ure 81, and the corresponding values of E, and E,, are collected in Table 22. First oxidation
peak shows slight anodic shift upon going from BF, anion, taken as a reference, to less co-
ordinating PFy and then to (CgF5),B~ anion. Though E; with F~ @TgPhg anion is more
positive than that with (CgF5),B~, the E, values are similar in these two cases (Table 22).
Second oxidation peak shows more dramatic anodic shifts and the AE*"! (Eg — E!) value
is maximal for F~ @TgPhg anion attesting its least ion pairing with the dication of phenoth-
iazine. Similar trends were observed in CH,Cl, (Table 23), the corresponding AE?~! value
for F~ @Tg(CH,CH,CF3)g in this case is even greater.
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Figure 81: Oxidation of phenothiazine (2 x 1073 mol/L) at a GC disk electrode in CH;CN
using different supporting TBA salts. (a) TBABF,, (b) TBAPFg, (¢) TBAB(CsF5)4, (d)

The THF/0.07 M BuyN(F~ @TgPhg) system was used for EPR-spectroelectrochemical
study of one-electron reduction (Scheme 17) of 9-halofluorene [107]. Reconstruction of the
observed spectrum (Figure 82) using Simphonia program (Bruker) was possible with the pa-
rameters (g = 2.0026; ag_y = 13.89 G, a11.—u = 3.92G, az2.-u = 0.88 G, ags_n = 3.81
G, as4.—n = 0.68 G) close to those reported for free fluorenyl radical. It is supposed that
Ph groups of the silsesquioxane anion serve as a kind of aromatic matrix accommodating and

stabilizing fluorenyl radical.

T=228K
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Figure 82: EPR spectra from the reduction of 9-iodo-fluorene (in propylene carbonate-THF
(1:2 v/v)/0.07 M BuyN(F~@TgPhg). (a) experimental, (b) high-frequency component, (c)
same signal after FFT filtering, (d) simulated using the parameters in the text.
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Scheme 17: One-electron reduction of 9-halofluorene.
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Scheme 18: Oxidation of the model disilane and two short-lived odd-electron species.

Electrooxidation of specially prepared ligand-stabilized 1, 1, 2, 2-tetramethyl-1, 2-bis
(quinolin-8-yloxy) disilane (the process is EPR-silent in CH3CN/0.05 M TBAPFy) in EPR
spectroelectrochemical cell using (DME-CH,Cly, 3:1 v/v) as solvent and TBA(F~ @TPhg)
as supporting electrolyte at 253 K allowed to detect two odd-electron species, supposedly
short-lived cation radical of this disilane and the radical product of its cleavage (Scheme 18).
First species (g = 2.01, ag; = 39.2 G) is obviously a Si-centered radical, the integration of its
29Si satellites (~9%) indicates the spin localization on two Si atoms. Second species is an
organic radical, as follows from its g-factor (2.0033). Spin density in this radical is distinctly
delocalized over the quinoline moiety (ax = 3.78 G, ayy = 6.86 G, ays = 4.03 G, ay; = 2.08
G, ans = 1.20 G, apg = 1.12 G) with an additional Afc constant, either from *C or ?°Si (a =
7.1 G), the quality of the spectrum edges not allowing a more precise assignment.

The TBA(F~ @TgRg) supporting salts are chemically stable and can be stored without
any decomposition while solid; their solutions in the tested solvents are also stable, at least
within the timeframe of typical electrochemical experiments. However, as was first pointed
out by Bassindale [104] and as follows from the above DFT consideration (Figure 78), they
are sensitive to the presence of small cations in solution, namely of Li* and H. Figure 83
shows that in CH3CN, if LiClOy is added to the solution, the "leakage" of F~ anion from the
F~@Tg(CH,CN)g cage to form LiF/TBAF and an empty Ts(CH,CN)g is practically accom-

plished within 9-10 hours. In a similar way, the protons liberated during 30 min experiments
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(voltammetry of methylanthracene) in F~ @Tg(CHyCH,CF3)g in liquid SO, caused the ap-
pearance of free F~ in the solution, though this process became visible in '°F NMR only upon
4 hours of staying of the used solution. Supposedly, the solvent polarity and the efficiency of

free I~ solvation play here an important role, as pointed out above.

-5, ppm

Figure 83: YF NMR-monitored leakage of F~ anion from the TsRg cage (R = CH,CN) in the
presence of LiClO,. Solvent: CH3CN, T =20 °C.
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6 Conclusion

Seven simple 1-R-silatranes have been synthesized. Four of their structures are character-
ized by X-ray diffraction (XRD). Electrochemical measurements show that electrooxidation of
tolylsilatrane, 2-cyanoethylsilatrane and ¢-butylsilatrane are electrochemically reversible cre-
ating cation radicals by one electron transfer; these species can be detected by cyclic voltam-
metry, UV spectroscopy and real-time EPR spectroelectrochemistry. N and Si atoms from the
atrane moiety and substituent atom at a-position to Si compose a 3c-4e conjugated system
responsible for the redox properties of these compounds. The m-orbital of Ar substituents, are
orthogonal to this system, so the electrooxidation of silatranes with Ar substituent are only
affected by inductive effect of the substituent.

Three bis-(silatranyl)alkanes have been synthesized but the structures were not diffractive
by XRD because of the difficulty of obtaining the single crystals. However, electrochemical
measurements show that anodic oxidation of bis-(silatranyl)octane is electrochemically re-
versible and results in relatively stable cation radicals. There are two electron transfers during
the process. Bis-(silatranyl)methane has 7c-8e bonding system whereas bis-(silatranyl)hexane
and bis-(silatranyl)octane have long carbon chains between two atrane structures which are
flexible but not long enough to let the two atrane parts face each other in a line to form a 6¢-8e
bonding system.

Three bi-silatranes have been synthesized. Their structure differs from other silatranes
in that the N atom is now included in the plan formed by the 3 adjacent carbon atoms, as
XRD spectroscopy has shown. In fact, the whole molecule is perfectly symmetrical in relation
to this plane. This has consequences on the electrochemistry of these compounds. Though
the electrooxidation is still proceeding via a one-electron step, the electrooxidation of these
compounds is reversible (even at low scan rates for di(ethyl)-bi-silatrane and di(phenyl)-bi-
silatrane). We have proved that the chemical structure, and most importantly the effect of the
substituents, are the main factors explaining the electrochemical behavior of bi-silatranes. In
line with the position of the N atom in the middle of the plan formed by its three carbon neigh-
bors, we did record a noticeable anodic shift of the oxidation peak toward higher potentials.

Electrochemical measurements show that anodic oxidation of p-aminophenylsilatrane, p-
(tert-butyl)-phenylmethoxystannatrane and tolylsulfylstannatrane occurs via electrochemically
reversible electron transfer resulting in corresponding cation radicals detected by cyclic voltam-
metry and real-time EPR spectroelectrochemistry. The own oxidation potential of the X-Ar
substituent in these compounds is lower than that of the silatranyl and stannatranyl moiety, so
p-aminophenylsilatrane, p-(tert-butyl)-phenylmethoxystannatrane and tolylsulfylstannatrane
follow the oxidation pattern and form the cation radicals of the corresponding aromatic deriva-
tives substituted with a silatranyl or stannatranyl group.

Tetrabutylammonium salts with fluoride-encapsulating octaorganosilsesquioxane anions
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TBA(F~ @TgRg) met several electrochemical tests on their suitability as low-coordinating
non-nucleophilic supporting electrolytes. They provide good ionic conductivity in the solvents
of low polarity (THF, perfluoroisopropanol, liquid SO,) and fair conductivity in acetonitrile
and allow one carrying out voltammetry and EPR experiments on unstable electrogenerated
electrophilic and radical species. Since F~ anion can leave the Tg cage and to appear in
the solution in free form, the use of the supporting salts with F~ @Tg anions is subject to the
limitations imposed by the kinetics of this process. In the systems where the exohedral fluoride
is thermodynamically more favorable than encapsulated endo-form, the interference of F~ will
occur. Fortunately, this process seems rather slow, leaving, at least in our experiments, more
than 30 min working period before it becomes seen by means of voltammetry and NMR. In
general, first results on the use of these new salts as supporting electrolytes are very promising,

though more extensive studies on their advantages and limitations are necessary.
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RESUME



1 Introduction général

Depuis qu’en 1960, un nouvel organosilane, baptisé triptych-siloxazolidine, a été découvert
pour la premiere fois par Frye et al. les métallatranes ont fait I’objet d’études et de recherches
intensives pendant plus de 50 ans, non pas seulement en raison de son unique interaction
transannulaire entre 1’atome métallique (Si, Ge, ou Sn) et un atom d’azote, mais également
en raison des nombreuses applications en médecine et en biologie qui utilisent ces composés.
Cependant, les propriétés électrochimiques des métallatranes n’ont pas autant attiré 1’attention
des chercheurs, et ont été peu étudiées pendant une longue période. Les métallatranes ont pour-
tant un potentiel tres élevé en électrochimie en raison de leur structure particuliere: 1’atome
métallique peut étre vu comme pentacoordiné, avec une liaison hypervalente. En efet, pour
commencer, la liaison hypervalente N-M¢tal limite la zone de probabilité de présence de la
paire d’électron. Ensuite, en raison de la présence des trois branches alkoxysilanes, le doublet
électronique est “pi€gé” dans la cage du métallatrane. Enfin, la structure atrane peut étre éten-
due linéairement par répétition du méme motif. Les molécules formées d’une chaine silylée
normale sont soit instables chimiquement, ou bien font preuve d’une mauvaise conduction
électronique en raison du mauvais recouvrement des orbitales des atomes de silicium. En re-
vanche, une chaine atrane possede une liaison Si-O forte, permettant de garantir la stabilité de
la molécule, et la paire d’électrons libres de 1’atom d’azote peut étre partagée avec 2 atomes
de silicium, permettant le transfert d’électrons le long de la chaine (Figure 1). Il s’agit d’un
concept nouveau de chaine moléculaire, ou les électrons peuvent étre transférés le long de la

chaine.

Une autre caractéristique des métallatranes est diie aux radicaux cations correspondants
a leur forme oxydée. La distance entre 1’atome d’azote et I’atome de métal dans le radical
cation est différente de celle exhibée dans le métallatrane sous forme réduite, ce qui permet
de changer la longueur de la molécule selon le potentiel. Cette flexibilité des systemes atranes
peut-étre utilisée et modulée en ajoutant différents substituants permettant la réalisation de

différentes fonctions électrochimiques.

Pour toutes ces raisons, nous avons décidé de porter notre attention sur les comportements
électrochimiques des métallatranes, et nous en avons fait le sujet de recherche traité dans cette
these. Dans le cadre de cette étude, nous avons étudié les métallatranes depuis leur voie de
synthese jusqu’aux calculs de chimie quantique, en passant par la caractérisation structurale

de ces molécules et I’étude de leur comportement électrochimique.
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Figure 1: Différents types de chaines silylées. a. Chaine moléculaire possédant une bonne
conductivité électrochimique, mais une forte instabilité; b. Chaine silylée stable chimique-
ment, mais exhibant de faibles recouvrements orbitalaires. c. Nouvelle chaine moléculaire
incorporant la structure atrane, permettant une bonne stabilité moléculaire et des transferts
électronqiues faciles.

2 1-R-silatranes

Si I’on se concentre sur la famille des 1-R-silatranes (métallatranes dont 1’atome métallique
est le silicium), bien qu’elle soit extrémement large, elle a fait comme les autres familles
d’atranes I’objet de peu d’études électrochimiques. La comparaison des quelques données
disponibles sur 1’électro-oxydation de cette classe de molécules avec les travaux effectués
sur des germatranes similaires peut permettre de supposer que la structure électronique des
radicaux cations des silatranes substitués par un groupement aliphatique ou aromatique, d’une
part, et ceux substitués par un groupement benzilique d’autre part, auraient un comportement
électrochimique différent. Cette différence est intrisequement liée a la nature des interactions
liantes entre les atomes des molécules de silatrane sous leur forme réduite (neutre).

Afin d’élucider les caractéristiques spécifiques de ces effets, et d’étudier la possibilité
d’étendre un systeme électronique basé sur des liaisons a 3 centres et 4 électrons (3c-4e) a
un systéme plus large, a 5 centres et 6 électrons (5c-6e), voire plus large encore (5¢ — 6e),,
nous avons commencé par réaliser la synthese et I’étude de plusieurs “silatranes modeles”.

7 structures de 1-R-silatranes, étudiées dans la section suivante, ont été préparées selon des

méthodes publiées.



4~

CH;

NH, | X

2 R=
N &
oy y—
o\

Si—O p-aminophenyl 1-naphthylmethyl t-butyl tolyl
Ha
c
R x
., O
o~
p-methoxyphenyl benzyl 2-cyanoethyl

Figure 2: 1-R-silatranes

Bien qu’ils s’agisse de composés déja connus et que leur structure cristalline ait méme déja
fait I’objet de quelques publications, Nous avons noté qu’elles n’avaient fait I’objet d’aucun
dépot dans la CCDB, et que les détails de ces structures, eux, n’avaient pas été publiés. Nous
avons donc estimé utile de nous pencher sur ces aspects manquants. Les structures de 4 de
ces silatranes ont été étudiées par diffraction des rayons X sur monocristal. La structure des
p-aminophenylsilatrane, 1-naphthylmethylsilatrane, p-methoxyphenylsilatrane et benzylsila-

trane ont €té€ les premieres que nous avons caractérisées.

L’oxydation de 7 silatranes Si-substitués a été étudiée dans des solutions d’acétonitrile
contenant 0.1M de tétrabutylammonium hexafluorophosphate (TBAPF), sur une électrode
de platine. nous avons utilisé une électrode microdisque de Pt comme €lectrode de travail dans
la mesure ou cela nous a permis d’obtenir des voltammogrammes mieux formés que ceux
obtenus avec d’autres types d’électrodes (des électrodes de carbone vitreux ont notamment
aussi été essayées). Les potentiels des pics d’oxydation de ces composés se trouvent dans
une fenétre de 0.78-1.45V (vs. SCE), selon la nature du substituant R (table 1). Soumis
a oxydation, 3 de ces 7 silatranes exhibent un pic réversible distinct. Nous avons observé
I’existence d’une loi de proportionnalité entre le courant de pic (i,) et la concentration de
substance électroactive. Une loi de proportionnalité a également été observée entre le courant

/2 = const.) pour des vitesses de

de pic et la racine carrée de la vitesse de balayage (i,/v
balayage suffisamment élevées (v > 0.5 V/s). Ces 2 résultats suggerent une cinétique controlée
par la diffusion. Le nombre d’électrons transférés durant 1’étape d’oxydation a été déterminé

par la méthode proposée par Malachesky, basée sur les relations suivantes.

Le courant de pic 7, pour un voltammogramme a balayage lin€aire d’un systéme rédox

réversible peut-Etre exprimé par:

i, = 2.68 x 10°n*2AC D" ?y'/?
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Parallelement, en chronoampérométrie potentiostatique [?]:
it? = nFACDY?5~1/2

La combinaison de ces 2 équations donne la relation suivante:

12
R= Z”éfﬂ — 4.92n1/
2

Le qui permet d’évaluer directement la stoechiométrie électronique du mécanisme. Ce
résultat est indépendant des incertitudes dues aux differents coefficients de diffusion D, ainsi
que de la valeur de la concentration en silatrane a la surface de 1’électrode, contrairement a
la méthode basée sur la comparaison des 7, avec un compos€ standard comme le ferrocene.
En appliquant cette relation au cas de I’oxydation des 7 silatranes, nous avons abouti a la

conclusion qu’ils suivent tous un mécanisme mono-€lectronique a E; (Table 1).

Table 1: Parametres de I’oxydation electrochimique des silatranes par une electrode a disque
de platine, av = 1V/s*

Ey—Ep ) AES/Alg(V)

R Es(V) EiV) E°(V) n ) ) aP
p-aminophenyl 0.78 - - 1 93 14 0.50
I-naphthylmethyl  1.10 - - 1 88 28 0.50
t-butyl 1.22 1.14 1.18 1 91 10 0.50

tolyl 1.35 1.26 1.30 1 72 14 0.65
p-methoxyphenyl  1.37 - - 1 66 40 0.72
benzyl 1.42 - - 1 150 40 0.32
2-cyanoethyl 1.45 1.30 1.38 0.9 81 23 0.58

* Voltammetrie cyclique réalisée dans un melange CH3CN /0.1 M TBAPFy. Tous les voltam-
mogrammes sont corriges par SCE.
b Coefficient de transfert estimé par a avec E, — E,;» = 1.85RT/aF.

Comme mentionné précédemment, les effets électroniques des substituants R affectent
significativement les potentiels d’oxydation des silatranes. Parmi les 7 silatranes testés, les t-
butyl et tolyl-silatranes exhibent un signal distinct d’électrooxydation réversible méme a faible
vitesse de balayage (v = 0.5 V/s). Le tolylsilatrane a un pic d’oxydation a E, =1.35 V (vs.
SCE), avec un pic cathodique correspondant a 1.26V (vs. SCE). Quant au dérivé tert-butyl, il

s’agit d’un substituant présentant un fort effet inductif donneur, ce qui conduit a une oxydation
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aisée de ce silatrane (1.22 V vs. SCE).

Les 4 autres silatranes montrent des comportements électrochimiques différents sous les
mémes conditions. Leurs pics d’oxydation (table 1) sont irréversibles méme a des vitesses de
balayage plus élevées (v = 10 V/s). Afin de rationnaliser ces données, les structures électron-
iques et les mécanismes possibles de transmission des effets électroniques de ces systémes ont
été étudiés en détail.

On peut noter que le méthoxyphénylsilatrane a un potentiel de pic d’oxydation E, =1.37V
vs. SCE (table 1), soit un potentiel plus élevé que celui du pic d’oxydation du naphtylméthyl-
silatrane (E,, =1.10 V). En effet, lel1-naphtylméthylsilatrane (contrairement aux dérivés tolyl-
et anisyl-) profite d’un effet globalr-donneur du groupe naphtyl. De facon remarquable, le
systeme 7 du groupe naphtyl et la liaison 0(C-Si) de la liaison 3c-4e sont hyperconjugués, ce

qui conduit a une délocalisation électronique (figure 3).

0

N

Figure 3: Hyperconjugaison de la liaison 3c-4e avec le systeme 7 du 1-naphtylméthylsilatrane.

Le méme mécanisme de conjugaison permet la délocalisation électronique du radical cation
dans le systtme 7 du naphtyl. L’électron libre, localisé sur 1’atome d’azote et isolé dans la
cage atrane des alkyl ou aryl silatranes, devient dans le cas des naphtylsilatranes, visible de
I’extérieur de la cage pour des entités radicalophiles externes en raison de sa présence sur
les cycles aromatiques naphtyl, principalement en position 4. De la, la diminution observée
du potentiel d’oxydation de ce silatrane est diie a deux facteurs: la contribution thermody-
namique (donneur électronique) du substituant, et la rapidité de la réaction de consommation
des radicaux cations électrogénérés qui s’ensuit (contribution cinétique provoquant un shift
de la valeur de E;). Par conséquent, ce composé a sans surprise 1'un des potentiels de pic
d’oxydation parmi les plus bas de la table 1, a E, =1.10 V vs. SCE.

Le caractere réversible de 1’oxydation du phénylsilatrane (le pic retour de réduction du
cation radical est détecté des v = 0.2 V/s) nous permet d’étudier ce silatrane par spectroélec-
trochimie EPR. Quand on oxide le phénylsilatrane sur une microélectrode placée dans une
cellule EPR, le signal de I’électron libre de I’espece générée apparait a E = 0.7 V. Le spectre

exhibe un aspect caractéristique, 9 groupes d’un motif qui se répete, la séparation entre ces 9
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groupes rejoignant la ligne de base.

Le spectre EPR du radical cation d’un phénylsilatrane (figure 4) a une importante largeur
de spectre (~160G), et consiste en plus de 184 bandes parfaitement résolues. Etant donnée la
largeur importante du spectre, la partie de ce spectre située aux champs les plus hauts montre
une distortion diie aux effets de 2e ordre, ce qui rend difficile sa reconstruction a I’aide de
I’ outil simple inclus dans le pack Briiker Symphonia.

Néanmoins, les parametres suivants ont été extraits de la partie situés aux champs bas,
permettant une reconstruction de ce spectre avec 99.8% de qualité: g = 2.0037; aN = 18.41
G;3 x a®H,, =37.93G; 3 x a®Hy,; =023 G; 6 x a®H=1.8 G. Ce spectre correspond a des
especes dont I’atome d’azote est pratiquement plan. Celui ci porte la majorité de la densité
électronique libre, et possede un forte interaction avec les 3 protons « orientés de facon axiale.
Les liaisons C-H avec les 3 autres protons « sont presque orthogonales a 1I’axe de la molécule,
de sorte que leur interaction avec le champ magnétique est pres de 160 fois plus faible que

celle des protons o axiaux.

—

=
?

LN kA
MJMY%"'\H‘M’)MWI’J N,A\M' f"\ ‘l Iﬁ“ ]*W 4,”#" f.n\ﬂ mﬂ,)"\'ﬂb‘l\“w

Figure 4: Spectre EPR du cation radical du phénylsilatrane. Electrode: microplaque de Pt.
Fréquence des micro-ondes f = 9.46 GHz; Modulation d’amplitude a = 0.25 G. T=223 K. E
=0.7 V.

3 Bis-(silatranyl)alkanes

Nous allons a présent présenter les résultats de voltammétrie cyclique de 3 bis-(silatranyl)alkanes:

le bis-(silatranyl)méthane, le bis-(silatranyl)hexane et le bis-(silatranyl)octane qui ont été étudiés

dans des solutions d’acétonitrile (CH3CN) contenant 0.1 M de tétrabutylammonium hexafluoro-
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phosphate (TBAPFg). Quelques gouttes de dichlorométhane ont été ajoutées a ces solutions

pour permettre une bonne dissolution de ces produits.

Tous les composés de cette série exhibent un pic d’oxydation, suivi d’une seconde étape
d’oxydation. Ce second pic d’oxydation a été observé dans les mesures de voltammétrie cy-

clique de chacun des 3 composés.

Les courants de pic d’oxydation de ces composés, mesurés a différentes vitesses de bal-

1/2 — const.), ce

ayage, sont proportionnels a la racine carrée de la vitesse de balayage (i,,/v
qui implique que I’électrooxydation a ce potentiel suit un contrdle diffusionnel. Le nombre de
moles d’électrons transférés durant la réaction d’électrooxydation a été calculé a partir de la
valeur du courant de pic i, et de la racine carrée de la vitesse de balayage correspondante +/v,
en utilisant le coefficient de Cottrell issu des courbes i=f{t). Ces courbes i=f{t) ont été€ obtenues
par chronoampérométrie a double saut de potentiel, et toutes les mesures ont été réalisées sur
la méme électrode et dans la méme solution. Les premiers potentiels de pic d’oxydation de
ces composés sont compris dans une fenétre de 0.78-1.05 V (vs. SCE), selon la nature du

fragment central.

Dans cette série de 3 composés, le pic d’oxydation du bis-(silatranyl)hexane est le plus bas,
aEj =0.78 V, et ce pic est irréversible a faible vitesse de balayage. Le coefficient apparent de
transfert « du bis-(silatranyl)hexane, déterminé a partir de la largeur de pic, est de 0.21, ce qui
n’est pas compatible avec le caractere réversible de 1’oxydation et indique probablement que

des interactions d’absorption déforment le voltammogramme.

Le bis-(silatranyl)octane présente un pic réversible méme a faible vitesse de balayage (v
= 0.5 V/s), et a le pic d’oxydation le plus étroit en largeur (£, — E,/» = 117.20 mV) des
3 composés. Mais méme pour ce composé, la largeur de pic apparente est trop large pour

pouvoir correspondre a un processus rédox parfaitement réversible.

Tous ces composés ont un second pic d’oxydation a des potentiels de valeur positive plus
élevée, en particulier le bis-(silatranyl)octane, dont le second pic d’oxydation réversible se
trouve a £, = 1.30 V. Ceci suggere que le cation radical instable formé a I’issue de la premiere

réaction a été par la suite réoxidé pour donner N*.

Les bis-(silatranyl)hexane et bis-(silatranyl)octane ont tous deux une longue chaine alkyle
faisant la liaison entre les deux groupes atrane. Ceci laisse penser que la flexibilité d’une
chaine aussi longue pourrait permettre le rapprochement des deux groupes atrane, donnant
lieu a une nouvelle liaison hypervalente: 6¢-8e. Cependant, pour ces deux composés, méme la
longueur importante de la chaine (CHy)g n’est pas suffisante pour permettre 1’alignement axial
requis des 2 groupes terminaux silatranyls, ce qui amene finalement a penser en 1’existence de
2 liaisons 3c-4e indépendantes (figure 5). 11 est probable qu’une chaine alkyle de plus de 12

atomes de carbone pourrait conduire a un tel arrangement intramoléculaire (figure 6).

Dans une liaison Sc-6¢ classique, les 2 ligands central et terminal sont tres électronégatifs
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(CHy)s (CH2)g

Figure 5: 2 liaisons indépendantes 3c-4e dans les molécules de bis-(silatranyl)hexane et de
bis-(silatranyl)octane

6¢-8e

Figure 6: Liaison hypervalnte 6¢-8e, pour un nombre d’atomes de carbones de la chaine alkyle
supérieur a 12.

par rapport au silicium. Dans le cas du bis-(silatranyl)méthane, par exemple, ces positions
(I’atome de carbone central et les deux atomes d’azote terminaux) sont effectivement occupées
par des €léments plus électronégatifs. Dans cette section, une série de composés possédant 2
structures silatranes fusionnées, ce qui les différencient du bis-(silatranyl)méthane, ont été
synthétisées.

D’un certain point de vue, I’atome d’azote peut maintenant étre considéré comme 1’atome
central de la liaison 5c-6e (parfaitement linéaire dans ces molécules), et les deux atomes de
carbone des substituants considérés, commes les atomes terminaux. Le comportement élec-

trochimique de ces composés va €tre discuté dans la section qui suit.

4 Bi-silatranes

Deux nouvelles structures de bi-silatranes ont été synthétisées et analysées par DRX. La struc-
ture de ces bi-silatranes peut étre vue de deux facons. Premierement, les deux parties atranes
peuvent étre considérées comme deux bipyramides distordues, avec les deux atomes de sili-
cium au centre et les 3 atomes d’oxygene, I’atome de carbone du substituant, et I’atome d’azote
partagé formant les sommets (figure 7 a).

Deuxiemement, le bi-silatrane peut €tre considéré comme une bipyramide non distordue
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formée de I’atome d’azode au centre, les 3 atomes de carbone adjacents et les 2 atomes de

silicium formant les sommets. (figure 7 b).

Figure 7: Structure des bi-silatranes. a. 2 bipyramides distordues avec les 2 atomes de silicium
au centre; b. Une bipyramide non distordue, I’atome d’azote occupant le centre.

Pour une meilleure compréhension de 1’oxydation chimique des bi-silatranes, nous avons
conduit une série d’expériences de voltammétrie cyclique sur ces composés, et avons com-
paré ces résulats a ceux obtenus avec un précurseur de ces molécules, la tris(1,3-dihydroxy-
2-propyl)amine. L’électrooxydation procede par transfert monoélectronique dans les 4 cas
que nous avons considéré. Les diéthyl- et diphényl- bi-silatranes montrent distinctement une
étape d’électrooxydation réversible méme a faible vitesse de balayage (v = 0.5 V/s). Pour les
di(benzyl)- et di(éthyl)-bi-silatranes, £, augmente avec la vitesse de balayage légerement plus
qu’anticipé pour que le processus électrochimique suivant cette oxydation en cation-radical
soit du premier ordre (un accroissement du premier ordre avec une pente de 30 mV par décade
de la vitesse de balayage devrait avoir lieu). La largeur du pic d’oxydation du di(phenyl)-bi-
silatrane est la plus faible de la série des trois composés, ce qui indique que I’on se rapproche
d’un pur systeme Nernstien. De plus, la pente AE,/Alg(v) est proche de 20 mV plutdt que
de 30 mV, ce qui semble indiquer un transfert électronique réversible et signifie donc que ce
composé subit une rapide réaction du deuxieme ordre apres oxydation, au contraire des autres
composés de la série.

Les di(éthyl)-bi-silatrane et di(phényl)-bi-silatrane ont tous deux un pic d’oxydation réversible
méme a faible vitesse de balayage (v = 0.5 V/s), ce qui atteste de la bonne stabilité de ces 2
radicaux cations. Par conséquent, I’oxydation mono-électronique de bi-silatranes aboutit au

radical-cation correspondant.

5 1-R-stannatranes et distannatrane

D’apres des études antérieures des métallatranes par diverses méthodes physico-chimiques, il
ressort que I’interaction dative N—M est de plus en plus forte au fur et a mesure que 1’on
descend dans les atomes du groupe 14, dans I’ordre Si < Ge < Sn. Il est prévisible que la
disponibilité du doublet libre de 1’azote décroisse selon le méme ordre, et donc que 1’attaque

électrophile du métallatrane soit de plus en plus difficile. Aucune donnée sur 1’électrochimie
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Table 2: Resultats de voltammetrie cyclique pour I’oxydation de bi-sialtranes. Tous les echan-
tillons sont pris a v = 1V/s et les potentials sont corriges par SCE.

Compound E;(V) Ej(V) E°(V) n E,— E,;(mV)
Tris(1,3-dihydroxy-2-propyl)amine ~ 0.84 0.69 076 1 72
di(benzyl)-bi-silatrane 1.45 - - 1 81
di(ethyl)-bi-silatrane 1.62 1.49 155 1 81
di(phenyl)-bi-silatrane 1.68 1.59 1.63 1 67

AE,/AlgV(mV) o

34 0.7
33 0.6
36 0.6
18 0.7

“Coifficient de transfert estimé avec a de £, — E,/» = 1.85RT /ankF.

des stannatranes n’a été rapportée a ce jour, a notre connaissance, et nous avons donc porté
notre attention sur I’oxydation de quelques stannatranes que nous avons sélectionné, dans les
mémes conditions que celles décrites précédemment.

Afin d’obtenir un apercu des interactions électroniques intramoléculaires dans les nou-
veaux stannatranes avec lesquels nous avons travaillé, leur comportement €lectrochimique a
été observé. Selon leur solubilité, les expériences de voltammétrie cyclique sur les composés
12,13, 14 et 15 (figure 8) ont été menées dans 1’acétonitrile (CH3CN), le dichlorométhane CH,Cl,

ou dans un mélange binaire (CH3CN/CH,Cly, 1:1 v/v), contenant dans tous les cas 0.1M de
BusNPFg.

R: 12,
.““\\

13,

14, Cl
15,1

Figure 8: 1-R-stannatranes 12, 13, 14 et 15

A T’opposé des silatranes et des germatranes, les stannatranes 12 et 13 n’exhibent un sig-

nal d’oxydation distinct que sur €lectrode de Pt. Les courants limitants 7, des stannatranes
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12 et 13 sont tous deux sous contrdle diffusionnel (z,/ v'/2 =const; 1g(i,)/1g(v) = 0.45 et 0.46
pour 12 et 13, respectivement), et comme on peut le voir en comparant le rapport 7,/ V2 a
la pente de Cottrell obtenue a partir d’une expérience de chronoampérométrie sur la méme
électrode, le nombre d’électrons transférés au cours de cette étape est n = 1. La dépendance a
la température de lg(izl,) pour 13 nous donne F, = 2.46 kJ/mol (2.85 kJ/mol pour le deuxieme
pic), ce qui correspond a I’énergie d’activation du flux de diffusion du solvant. Les largeurs
de demi-pics £, — £,/ de 12 et 13 sont trop larges pour de simples procédés résersibles
mono-€lectroniques, probablement en raison d’interactions d’absorption ou d’une réorganisa-
tion structurelle substantielle accompagnant le transfert électronique.

Dans un solvant moins polaire comme CH,Cl,, 1’oxydation de 13 procede en 2 étapes
(figure 9), la seconde étant réversible des v = 0.5 V/s. Si I’on fixe le potentiel maximum avant
le début du second pic d’oxydation (£, = 1.45 V), le premier pic commence aussi a exhiber un
pic cathodique lui correspondant (a v > 50 V/s). Par conséquent, les deux signaux d’oxydation

découlent de processus électrochimiques réversibles.

21A

0'.5 15 075 100 125 150 175
E Vvs. Fc E,Vvs. Fc¢

-0.5

Figure 9: Voltammétrie cyclique sur les composés 12, 13. Gauche: (a) — 12 et (b) — 13 (1073
mol/L) in CH3CN/0.1 M BuyNPFg at a Pt disk electrode; v =5 V/s. Right: I-E curve of 13
(1.1 x 1072 mol/L) in CH5Cl5/0.1 M BuyNPFg at a Pt disk electrode. (a) normal scan; (b) -t
curve after the hold at £,. (c) diffusion limiting current of the second oxydation step. v = 0.5
Vs 1 T=22°C.

En raison d’une HOMO située a un faible niveau d’énergie, les halostannatranes sont tres
difficiles a oxyder. IIs ont au contraire une LUMO localisée sur une orbitale anti-liante o*(Sn—
X), qui peut accepter relativement facilement un électron supplémentaire, et donc permettre
leur électroréduction.

Par conséquent, nous avons tenté d’obtenir un dimere de stannatrane par électroréduc-

tion. Le résultat est montré figure 10: en a est représenté le voltammogramme cyclique du
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chlorostannatrane avant électrolyse, et en b apres 1h d’électrolyse. Il est évident que le pic de
réduction du chlorostannatrane a disparu apres électrolyse, ce qui indique qui n’y a plus de
chlorostannatrane en solution (les distannatranes ne peuvent pas €tre réduits).

Apres séparation et purification, nous avons de fait obtenu le dimere de chlorostanna-
trane. Nous avons réalisé une électrolyse similaire sur deux composés organostanniques util-
1sés comme modeles (chlorure de triphénylétain et chlorure de tributylétain), et nous avons
également obtenu les dimeres correspondants. La table 3 montre les déplacement chim-
iques observés en RMN du 'Sn. On constate un large déplacement du pic vers les champs
élevés quand on passe du monomere au dimere (table 3). Les résultats d’analyses de GC-MS
on également démontré la présence de dimere apres électrolyse dans le cas du chlorure de

triphényl- et de tributyl-étain.

30 -25 20 -15 -10 -05 0.0
E, Vvs SCE

Figure 10: Suivi voltammétrique de 1’électrolyse du chlorure de stannatranne. E =-1.94 V sur

électrode de carbone vitreux dans CH3CN/0.1 M LiClOy a. Electroréduction avant électrolyse;
b. Apres 1 h d’électrolyse.

Table 3: Dimere SnSn (d’apres analyse GC-MS)

Compound o19Sn (ppm) £ (V) Product Q (F/mol) §'”Sn (ppm)
Chlorure de triphénylétain -44.90 -0.54  Tris(n-phenyl)distannane 29.03 -143.27
Chlorure de tributylétain ~ 156.88(144) -0.93  Tris(n-butyl)distannane 35.57 -82.66
Chlorure de stannatrane -243 -1.94 Bis-stannatrane 11.06 -639.72

6 Nouvel electrolyte supportant

Les anions faiblement coordinants utilisés dans les électrolytes de support peuvent arbitraire-
ment €tre sépares en 4 groupes (figure 11) : ceux dont I’atome central, acide de Lewis lui-

méme, porte en plus des substituants électro-accepteurs (a : BF,, PFg, AsFg, SbFy), ceux
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qui portent de gros groupements organiques permettant la délocalisation des charges élec-
troniques (b : PhyB™), ceux combinant ces 2 caractéristiques en méme temps (c : larges
groupes aromatiques portant des substituants électroattracteurs (CgF5),B~, [(CF3)2CeHsl4B™
et [(CF3)3COJ4Al7), et les carboranes icosaédriques CBy; ne contenant aucune orbitale 7,
d’utilisation relativement récente (d: CB;HgXg avec X=Cl ou Br).

D’autre part, plusieurs systemes basés sur des « pieges quantiques » (e) sont connus, dans
lesquels un atome ou un ion est pi€gé dans une cavité sans qu’il n’y ait de liaison covalente en-
tre la paroi de la cavité et I’espece piégée. On peut penser a titre d’exemple aux métaux piégés
dans des fullerenes (M@Cg), ou aux atomes d’hydrogene pi€gés dans des silsesquioxanes
octaédraux (H®*@Ty), ainsi qu’a des anions fluorures dans des zéolites. Récemment, Bassin-
dale et al ont découvert une nouvelle classe de structures silsesquioxane, dont ’anion F~ est
encapsulé dans une cage TsPhg. La charge négative de ce type de systeme est cachée au
centre d’une boite siloxane inerte, interdisant toute coordination directe avec des électrophiles

extérieurs et ne permettant que des interactions purement électrostatiques.

Figure 11: Différents types d’anions faiblement coordinants pour utilisation dans des élec-
trolytes support

Ainsi, comme des calculs de DFT B3LYP/6-311G(d,p) ’ont démontré, il n’y a pas de
transfert de charge substantiel entre I’anion F~ central et les atomes environnants de la cage
silsesquioxane. La charge NBO de F~ varie de -1 a -0.89 quand on passe de 1’état libre a
I’état piégé dans un Tg. Etant donné que I’ion F~ peut entrer dans la cage du T'g et en sortir,
I’utilisation de solvants polaires est a bannir, dans la mesure ou ils vont déstabiliser le systeme
F'~@Tyg par solvatation de I’ion F~ libre.

La charge négative, cartographiée sur la surface de solvant disponible et visible par les
électrophiles extérieurs est montrée figure 12 pour F~ @TgRg (avec R= CH;CN et Ph), et
est comparée a celle de plusieurs anions communs. Alors que 1’anion F~ libre est disponible
a 100% depuis n’importe quelle direction, seuls les électrophiles de taille tres réduite (H,
Li*, Na™) peuvent approcher des zones présentant un caractere nucléophile significatif dans
F~@Tg(CHyCN)g et F~ @TgPhsg.

Le systtme THF/0.07M BuysN(F~ @TsPhg) a été utilisé pour I’étude par spectroélec-
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F-@T4Phg

Figure 12: Charges négatives (zones sombres pour F'~ and BF, et marquées par des fleches
pour les autres anions), cartographiées sur la surface de solvant disponible pour des anions
faiblement coordinants (selon calculs DFT B3LYP/6-311G(d,p)); F~ et BF; sont donnés pour
comparaison.

trochimie EPR de la réduction mono-électronique (Schéma 17) des 9-halofluorenes. La recon-
struction du spectre observé (figure 13) grace au programme Simphonia (Bruker) a été réalisé,
conduisant a des parametres (g = 2.0026; ag_py = 13.89 G, a1 1.—n = 3.92 G, az 2.y = 0.88
G, as3_n = 3.81 G, asq,—u = 0.68 G) proche de ceux rapportés pour le radical fluorenyl
libre. On peut supposer que les groupes phényl de 1’anion silsesquioxane agissent comme une

sorte de matrice aromatique stabilisant le radical fluorenyl.

T=228K
(a)
WMVMWMMMWW&
(<)

3350 3375 " 3400
H, Gauss

Figure 13: Spectres EPR de la réduction du 9-iodofluorene (dans un systéme propylene car-
bonate : THF - 1:2 - viv / 0.07M BuyN(F~ @TgPhg). (a) : Expérimental. (b) : Section des
hautes fréquences. (c) : Le méme signal apres traitement FFT. (d) : Simulé en utilisant les
parametres du texte.

Les sels supports de TBA(F~ @TgRg) sont chimiquement stables, et peuvent étre stockés

sous forme solide sans crainte de décomposition. Leurs solutions dans les solvants testés
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sont stables également, du moins pendant la durée typique d’une expérience d’électrochimie.
Cependant, comme cela a été remarque pour la premiere fois par Bassindale et comme on
peut le déduire des calculs DFT ci-dessus (figure 12), ils sont sensibles a la présence de petits
cations en solution, spécifiquement Li*™ et H.

La figure 14 montre que dans 1’acétonitrile, si on ajoute LiClO4 a la solution, 1’anion
F~ fuit hors de la cage du systeme F~ @Ts(CH,yCN)g pour former LiF/TBAF, et on obtient
des cages Tg(CH,CN)g entierement vides en 9-10 heures en pratique. De facon similaire,
les protons libérés au cours des 30 minutes d’expérience (voltammetrie du méthylanthracene)
dans le cas de F~ @Tg(CHyCH,CF3)g dans le SO, liquide ont provoqué 1’apparition de F~
libre en solution, bien que ce processus ne soit devenu visible en RMN du F qu’apres 4
heures de repos de la solution utilisée. Il est probable que la polarité du solvant et 1’efficacité

de la solvatation des F~ libres aient joué un rdle essentiel, comme mentionné précédemment.

-0, ppm

Figure 14: Fuite des anions F~ suivie par RMN du '°F hors d’une cage de TsRg (R = CH,CN),
en présence de LiClO4. Solvant: CH3;CN, T = 20°C.
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