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Bayesian models for stochastic
claims reserving
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The first part of my Ph.D. dissertation develops a Bayesian stochastic
model for computing the reserves of a non-life insurance company.
The first chapter is the product of my research experience as an intern at
the Risk Management Department of Fondiaria-Sai S.p.A.. I present a short
review of the deterministic and stochastic claims reserving methods currently
applied in practice and I develop a (standard) Over-Dispersed Poisson (ODP)
Bayesian model for the estimation of the Outstanding Loss Liabilities (OLLs)
of a line of business (LoB). I present the model, I illustrate the theoretical
foundations of the MCMC (Markov Chain Monte Carlo) method and the
Metropolis-Hastings algorithm used in order to generate the non-standard
posterior distributions. I apply the model to the Motor Third Party Liabil-
ity LoB of Fondiaria-Sai S.p.A..
The Risk Management Department of the company was already developing a
Bayesian model for stochastic claims reserving when I began my intern. My
contribution to the project consisted in a re-parametrization of the model,
that allowed to adopt unrestricted distributional assumptions for the priors.
The practical implementation of this model, which I describe in Chapter 1,
was my own work. I am grateful to the Head of the Technical Risk Manage-
ment Department Fabrizio Restione and to Carmelo Genovese for giving me
the opportunity to work on such an interesting subject and for their helpful
suggestions.
This chapter is also an introduction to the next one, in which I explore the
problem of computing the prudential reserve level of a multi-line non-life
insurance company. In the second chapter, then, I present a full Bayesian
model for assessing the reserve requirement of multiline Non-Life insurance
companies. The model combines the Bayesian approach for the estimation of
marginal distribution for the single Lines of Business and a Bayesian copula
procedure for their aggregation. First, I consider standard copula aggre-
gation for different copula choices. Second, I present the Bayesian copula
technique. Up to my knowledge, this approach is totally new to stochastic
claims reserving. The model allows to ”mix” own-assessments of dependence
between LoBs at a company level and market wide estimates. I present an
application to an Italian multi-line insurance company and compare the re-
sults obtained aggregating using standard copulas and a Bayesian Gaussian
copula. I am again grateful to Carmelo Genovese who suggested the use of
a time series of loss ratios to estimate standard copula parameters.



Chapter 1

A Bayesian stochastic reserving
model

1.1 Introduction

Reserve risk, together with premium risk, constitutes the main source of po-
tential losses for an insurance non-life company. The Italian insurance com-
panies’ monitoring agency, ISVAP, stated in 2006 that, based on a research
carried out through the most important actors in the domestic markets, ac-
tuaries did use mainly deterministic methods for computing claims reserves.
The European (and also the Italian) regulator has strongly encouraged the
use of more sophisticated stochastic models for claims reserving and a deeper
interaction between actuarial and risk management departments within in-
surance companies. The aim of my research experience in the risk manage-
ment department of Fondiaria-Sai Spa, one of the largest Italian insurance
companies, consisted in developing an internal model (in the light of the Sol-
vency II proposal directive) with the purpose of this ”Use Test” principle
of enhancing the integration between different departments of the company.
Bayesian models for claims reserving have in this sense been pointed out as
a tool capable of answering the need risk managers have of deriving a full
distribution of the outstanding loss liabilities faced by the company, while
permitting the inclusion of actuarial experience (expert judgement) in the
calculation of technical reserves. The inclusion of experts’ knowledge about
qualitative factors that can influence the estimates of ultimate costs and the
development pattern is of utmost importance. Indeed, standard deterministic
and stochastic models usually have as inputs the triangle of payments (and
in some cases the triangle of the number of claims paid) only. Hence, they
can not account for important factors such as assessor’s speed and accuracy,
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CHAPTER 1. A BAYESIAN STOCHASTIC RESERVING MODEL 8

expected future changes in legislation, etc. which can indeed be analyzed
by experts (the actuarial department) and included in the model through
Bayesian techniques. We review the deterministic and stochastic models
which are more frequently used in practice in sections 1.2 and 1.3 respec-
tively. In section 1.4 we present bayesian models for claims reserving. Since
these models have analytical solutions for very particular distributional as-
sumptions, Markov Chain Monte Carlo simulation methods are often used.
Section 1.4 offers a quick theoretical treatment of the MCMC simulation
methods. Section 1.5 presents the ODP Bayesian model I developed during
my internship at Fondiaria-Sai s.p.A., while the following section 1.6 shows
an application of the model to the MTPL LoB of the company. Section 1.7
concludes and hints at possible further developments of the model. Basic ref-
erences for this Chapter are Merz and Wuthrich (2008), England and Verrall
(2002), Cowles and Carlin (1996), Gilks et al. (1996) and Robert (2007).

1.2 Deterministic models for claims reserving

Data about past claim payments are usually collected in triangles. It is
common practice to organize them by accident (or origin) year (a.y.)- i.e. the
year in which the claim originated - on the different rows and development
year (d.y.) - i.e. the year in which the payment effectively takes place - on
the columns, as in the following example:

Development Year (d.y.)
Accident Year (a.y.) a.y.+0 a.y.+1 a.y.+2 a.y.+3

2005 100 90 80 65
2006 130 115 85 ?
2007 125 98 ? ?
2008 160 ? ? ?

In the ”upper” part of the triangle - above the main diagonal - lies the set
of payments already reported. In the ”lower” triangle - below the diagonal
- we find data relative to the future. The question marks in the example
symbolize that the payments are yet to be realized and hence their amount is
still unknown. Triangles can be constructed to contain incremental (reporting
in each cell the payment relative to the combination a.y/d.y.) or cumulative
data (in each cell is reported the sum of the payments relative to the a.y. of
the corresponding row up to the d.y. identified by the column). In order to
prudentially evaluate the reserves the company has to keep in order to face
future payments already originated, one has to estimate the unrealized figures
of the lower triangle. The main assumption of almost every deterministic
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and stochastic models that the cumulative claims development pattern is the
same across the different accident years. Another implicit and rather strong
assumption of the model is that, since reserves are computed taking the last
accident year as the last development year for the first a.y., triangles must be
long enough to ensure that what is intentionally (without taking into account
late payments) left out of it, i.e. claims relative to development years not
considered are irrelevant.

Deterministic approaches, based on purely statistical techniques, are used
in most actuarial departments of insurance companies. The reason is that
they are very intuitive, ready-to-use and flexible. Their main downsides
are that - at least in their original formulations - they only provide point
estimates of claims reserves rather then distributions of OLLs and that they
usually rely on a very limited set of observations, and are thus subject to high
estimation errors, especially when they are applied to small LoBs. This is due
to the use of aggregate data, that entails great variability in the triangles, in
particular when they are obtained from a small number of individual claims.

Two are the most important deterministic methods used in the actuarial
practice: the Fisher-Lange method and the Chain Ladder. Another tech-
nique, the Bornhuetter-Ferguson one, has gained increased importance since
its introduction.

In the next sections, we briefly review these methods.

1.2.1 Fisher Lange method

The way practitioners apply the Fisher Lange method, which is probably the
most used in the Italian market, but is almost unknown in foreign countries
differs broadly from one user to another. The basic feature of this method is
that it is based on the principle of the mean cost and thus requires data about
the claim payments’ amount and the number of claims. Different methods are
applied to project these data and obtain estimates of future number of claims
and mean costs for each combination of accident and development year. In
the evaluation mean settlement delay and development pattern features such
as late settlements, reopened claims and claims closed without settlement
rates are taken into account.

1.2.2 Chain Ladder method

Chain Ladder is the most popular technique for claims reserving in the ac-
tuarial world. It has also attracted the scholars’ attentions in the last fifteen
years, being the first method to be extended stochastically Mack (1993). The
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technique uses cumulative data on claim payments to obtain so called ”devel-
opment factors” or ” link ratios”. Define by Xij the incremental payment in
d.y. j for claims originated in year i and by Cij the corresponding cumulative
claim (Cij =

∑j
k=1 Xik). The Chain Ladder estimates development factors

as

λ̂j =

∑n−j+1
i=1 Ci,j∑n−j+1
i=1 Ci,j−1

(1.1)

These quantities are directly linked to the development pattern:

β̂CLj =
J−1∏
k=j

1

λ̂k
, k = 1...J − 1 (1.2)

β̂CLj represents the proportion of the ultimate cost to be sustained - ”de-

veloped” - in d.y. j. Forecasts of the lower triangle of cumulative claims,Ĉi,j,
are obtained from these factors:

Ĉi,n−i+2 = Ci,n−i+1λ̂n−i+2 (1.3)

Ĉi,k = Ĉi,k−1λ̂k k = n− i+ 3, n− i+ 4, ..., n (1.4)

Obviously, once can obtain the triangle of incremental claims simply dif-
ferencing the cumulative claims’ one. Such an easy model can be extended,
assuming that the Cij ’s are stochastic, in order to obtain a statistical model
and a prediction error. Many distributional assumptions have been proposed
to describe claims’ amount behavior, the over-dispersed Poisson being the
most successful in literature1.

1.2.3 Towards a Bayesian perspective: the Bornhuetter-
Ferguson method

The first actuarial technique developed to provide a model-based interaction
between deterministic data based methods and expert judgement is due to
Bornhuetter (1972). The idea consists in using an external estimate of the

1Mack’s (1993) DFCL model was the first stochastic extension of the chain ladder
model. It assumed that payments of different a.y. are independent and proposed to use
λjCi,j−1 as the conditional mean and σ2

jCi,j−1 as the variance of the distribution of cumu-
lative payments. Other possible distributional choices used in literature include the neg-
ative binomial distribution for cumulative claims, the log-normal for incremental claims,
gamma distributions. All models, for estimation purposes, are usually reparametrized to
obtain linear forms that belong to the GLM class.
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ultimate claims together with the development factors derived through the
chain ladder method to estimate outstanding claims. Denoting by x

(CL)
i the

ultimate claim for accident year i obtained using the chain ladder technique,
the estimated OLLs using the chain ladder method can be written as

n∑
i=1

x
(CL)
i

1

λn−i+2...λn
(λn−i+2...λn − 1) (1.5)

Bornhuetter and Ferguson suggested to use an external evaluation of ex-
pected ultimate claims, x(BF ). Following the procedure we described above,
reserves can then be obtained as

n∑
i=1

x
(BF )
i

1

λn−i+2...λn
(λn−i+2...λn − 1) (1.6)

Bayesian models, that we detail in section (1.4), are based on this prin-
ciple of using information derived by expert judgement in order to obtain
reserves estimates. This information, however, is included in the model as a
parameter subject to uncertainty.

1.3 Stochastic models for claims reserving

While for the purpose of computing statutory reserves one needs to indicate
just a point estimate of reserves, risk assessments can be done only in the
presence of a full distribution of the underlying risk factor which, in claims
reserving, is constituted by the OLLs. Stochastic methods are then necessary
to derive this distribution.

In the QIS 4(Quantitative Impact Studies) that CEIOPS proposed to
insurance companies in 2008, the following definitions were given:

• Best estimate: is the probability-weighted average of future cash-flows;

• Risk Margin: ”should be such as to ensure that the value of technical
provisions is equivalent to the amount that (re)insurance undertakings
would be expected to require to take over and meet the (re)insurance
obligations”.

• Required reserve: is the sum of the Best Estimate and the prudential
risk margin

• Risk capital: it is given by the difference between a worst case scenario
value (computed as the 99.5 percentile of OLLs distribution) and the
required reserve.



CHAPTER 1. A BAYESIAN STOCHASTIC RESERVING MODEL 12

A high degree of freedom in the choice of the methodology used for computing
non-life technical reserves is left to the companies through the possibility of
adopting internal models under the Solvency II framework, given that, in the
case of reserve risk, they match the current ”actuarial best practice”. This
section reviews the most important stochastic techniques currently used in
the claims’ reserving practice.

1.3.1 ODP model and GLM theory

One of the most widely used models in stochastic claims reserving is the
Over-dispersed Poisson model for incremental claims.

The model states that:

E [Xij] = mij = xiyj V ar[Xij] = φxiyj, (1.7)

with
n∑
k=1

yk = 1, yk, xk > 0 ∀k, φ > 0 (1.8)

where xi is the expected ultimate claim for accident year i and yj is the
proportion of ultimate claims to emerge in each development year and φ is
the over-dispersion parameter. This multiplicative structure, while extremely
meaningful from an economic point of view, brings the problem of being a
non-linear form, difficult to handle for estimation purposes. It is then often
simpler to re-parametrize the model in order to put it in linear form. Using
the language of Generalized Linear Models, we defining a log link function:

log(mij) = c+ αi + βj (1.9)

Dealing with a GLM model, parameters are easy to estimate with any
standard econometric software, but parameter transformations are then nec-
essary in order to get back to the economic quantities of interest. Constraints
have to be applied to the sets of parameters in order to specify the model. The
most used ones are the corner constraints (α1 = β1 = 0). Once parameter
estimates are obtained, the lower triangle is predicted plugging parameters’
estimations into equation (1.9) and exponentiating. A possible shortcoming
of the model consists in the fact that column sums of incremental claims
can not be negative. This is almost always true, but there are cases, for
example in the motor hull insurance, where insurance companies at certain
late development years receive more money through subrogation and interest
deductions than it spends in payments.
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1.3.2 Obtaining full predictive distributions by simu-
lation

Bootstrap methods

Bootstrapping allows to obtain and use information form a single sample of
data. Assume to have a triangle of past claim payments. The bootstrap tech-
nique is the simplest way of simulating the full predictive distribution since
it entails using past information to creating a set of pseudo-data. Starting
from the triangle of past incremental or cumulative payments, one obtains a
triangle of adjusted residuals and resamples it without replacement to obtain
pseudo-triangles created from the initial distribution of past settlements.

The procedure to apply bootstrap for claims reserving estimation is the
following (England and Verrall (2002)):

1. Obtain standard chain-ladder development factors.

2. Obtain fitted values by backwards recursion using chain ladder esti-
mates.

3. Obtain incremental fitted values m̂ij for the past triangle obtained in
step 2 by differencing.

4. Calculate the Pearson residuals:

rij=
Xij − m̂ij√

m̂ij

(1.10)

5. Adjust Pearson’s residuals by the degrees of freedom of the model.

6. Iteratively create the set of pseudo-data, resampling without replace-
ment the adjusted Pearson’s residuals and obtain incremental claims
as

Xij = rij
√
m̂ij + m̂ij (1.11)

7. Create the set of pseudo-cumulative data, and use chain ladder to fill
the lower triangle, obtaining for each cell the mean of the future pay-
ment to use when simulating the payment from the process distribution.

Figure 1.1 represents the (rescaled) OLL distribution of the MTPL LoB
of Fondiaria-Sai Spa obtained by Bootstrapping from an ODP model.
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Figure 1.1: OLL distribution obtained by bootstrapping. The underlying
model is an ODP for incremental claims.

Simulation from parameters

Another possibility consists in simulating the predictive distribution of out-
standing claims from the joint distribution of the parameters of the model.
Anyway, either the definition and the estimation of a joint distribution for
the parameters of the distribution of claim settlements is usually a difficult
(or at least imprecise) task. The usual procedure consists in making a dis-
tributional assumption on the linear predictor of a GLM model with Normal
errors, estimating the parameters and their variance/covariance matrix and
then sampling. The parameters are usually drawn from a multivariate nor-
mal distribution and lead to a full distribution of each future payment in the
run-off triangle. It is then easy to sum them up to form the required reserve
estimation. However, when we specify a ODP model for incremental claims,
this procedure can not be applied, since the GLM model we are dealing with
does not have Normal errors. Moreover, a Normal approximation is not a
good choice for any triangle.
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1.4 Bayesian models and Markov Chain Monte

Carlo methods

The Bayesian paradigm can partly solve the identification problem we ad-
dressed in the previous section. In the Bayesian world, in fact, parameters
are treated in the same way as the observable quantities of interest. It is thus
necessary to make distributional assumptions about the prior (at least about
the marginals, if they are supposed independent) distributions of parameters
in order to obtain a joint posterior distribution. Markov Chain Monte Carlo
is the simulation tool that allows us to treat analytically intractable joint
distributions and permits us to merge prior assumptions and model uncer-
tainty in a single framework. We denote by D the set of observed data and
by θ the set of model parameters and missing data. Their joint distribution
is given by

P (D, θ) = P (D|θ)P (θ) (1.12)

Applying Bayes’ theorem it is easy to obtain the conditional distribution
of θ given D, called posterior distribution:

P (θ|D) =
P (θ)P (D|θ)∫
P (θ)P (D|θ)dθ

(1.13)

All the relevant quantities, such as moments and quantiles of the posterior
distribution can be expressed in terms of posterior expectations of functions
of θ.

For example,

E[f(θ)|D] =

∫
f(θ)P (θ)P (D|θ)dθ∫
P (θ)P (D|θ)dθ

(1.14)

The task of evaluating these expectations in high dimensions is hardly an
analytically tractable object.

Markov Chain Monte Carlo allows us to evaluate expectations of the form

E[f(X)] =

∫
f(x)π(x)dx∫
π(x)dx

(1.15)

Since π(·) is usually a non-standard distribution, drawing samples of
{Xt} independently from π is not possible. Here comes the Markov Chain
approach.

A Markov Chain is a sequence of variables {X0, X1, X2, ...}, whose evolu-
tion is defined by a transition kernel P (·|·) . Xt+1 is thus sampled at each t
from P (Xt+1|Xt) that depends on the current state of the chain only.



CHAPTER 1. A BAYESIAN STOCHASTIC RESERVING MODEL 16

The chain, under some regularity condition, will converge to a stationary
distribution, which is independent of the initial state X0 or of time t and,
moreover, it is unique.

Following Roberts (1996), we define τii = min{t > 0 : Xt = i|X0 =
i}. The following definitions apply:

Definition 1.4.1 Irreducible, a chain such that for all i, j ∃ t > 0 s.t.
Pij(t) > 0.

Definition 1.4.2 Recurrent, an irreducible chain such that P [τii < ∞] =
1 for some (and hence for all i)2.

Definition 1.4.3 Positive recurrent an irreducible chain X for which
E [τii] < ∞ for some (and hence for all i), or, equivalently, if there exists a
stationary probability distribution, i.e. there exists π(·) such that∑

i

π(i)Pij(t) = π(j) (1.16)

for all j and t ≥ 0.

Definition 1.4.4 Aperiodic, an irreducible chain such that for some (and
hence for all i), the greatest common divider {t > 0 : Pii(t) > 0} = 1.

The following theorem holds true:

Theorem 1.4.5 If a Markov chain X is positive recurrent and aperiodic,
then its stationary distribution π(·) is the unique probability distribution sat-
isfying (1.16).

Then, we say that X is ergodic and the following consequences hold:

1. Pij(t)→ π(j) as t→∞ for all i, j.

2. (Ergodic theorem) If Eπ[|f(X)|] <∞, then P [fN N →∞−−−−−→ Eπ[f(X)] =
1,

where N is the size of the sample, fN =
1

N

∑N
i=1 f(Xi) is the sample

mean, Eπ[f(X)] =
∑

i f(i)π(i) is the expectation of f(X) with respect
to π(·).

2Equivalently,
∑
i Pij(t) =∞ for all i, j.
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The second part of this theorem is fundamental for applications, since it
regards convergence of the quantities we want to evaluate. Anyway, since
convergence is not ruled by a central limit theorem, we have in general no
direct clue about how fast this convergence is reached 3. In practical applica-
tions it is necessary to determine whether or not this convergence is achieved
and how many iterations are necessary in order to ’forget’ the effect of the
initial state and reach the stationary distribution (those first n iterations are
named burn-in and are discarded from the chain and from the calculation of
the posterior mean). To these extents, some convergence diagnostic methods
based on the output of the MCMC simulations are available.
There are some simple ways of monitoring convergence. A first and really
naive one consists in looking at the means of the parameters in the chain.
Once a mean is calculated taking a sufficient number of iterations, taking into
account more iterations should not modify its estimate substantially. The
Gelman-Rubin diagnostic (Gelman and Rubin (1992)) is again a simple but
more robust approach - even though subject to some criticism. It consists in
running several (n) parallel chains starting from points over dispersed with
respect to the stationary distribution and monitoring some scalar quantities
to assess convergence:

GR =
V̂ (θ)

W
, (1.17)

V̂ (θ) =

(
1− 1

n

)
W +

1

n
B (1.18)

W is the sum of the empirical variance of each parallel chain, while B is
the empirical variance of the long unique chain obtained by merging all the
runs.

So, V̂ (θ) is an estimated variance, that, when convergence is achieved,
must be very close to W. Hence, a GR statistic far from 1 points out that
convergence is not achieved.

The practical steps to apply the Markov Chain Monte Carlo technique
consist in starting from a given joint prior distribution for the parameters and
constructing Markov chains of the parameters using the Metropolis Hastings
(Hastings (1970)) algorithm.

This algorithm is structured as follows:

1. Initialize X0.

3However, as Roberts (1996) shows, for geometric ergodic chains we can apply central
limit theorems for ergodic averages.
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2. For each t (for the desired number of iterations) repeat the following
steps:

(a) Sample X∗t+1 from a proposal distribution q(·|Xt)

(b) Sample a uniform variate U ∼ Uniform(0, 1)

(c) Compute the acceptance probability:

α(X∗t+1, Xt) = min

(
1,
π(X∗t+1)q(Xt|X∗t+1)

π(Xt)q(X∗t+1|Xt)

)
(d) If U ≤ α(X∗t+1, Xt) set Xt+1 = X∗t+1, else set Xt+1 = Xt.

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Figure 1.2: A chain for a parameter in the MCMC, with convergence to the
stationary distribution.

Applied to our claims reserving case, while running the algorithm, it is
straightforward to obtain reserves estimates by looking at the run-off tri-
angles computed at each iteration. The samples can then be used for the
estimation of quantiles and risk capital measures based on the VaR approach.

1.5 An ODP Bayesian model for claims re-

serving

The model presented in this section uses parameters with very intuitive eco-
nomic meaning. It rests on an ODP assumption for the distribution of in-
cremental claims, introducing uncertainty on the parameters describing both
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Figure 1.3: Convergent path shown from a 3-dimensional perspective. It is
evident that, after being wandering for several iterations towards the station-
ary distribution, convergence is finally achieved, and the path concentrates
around a smaller area.

the ultimate costs and the development factors in a Bayesian way. Two
different distributional prior assumptions for the parameters are described.

The (over) dispersion parameter φ is simply estimated using Pearson’s
residuals. Even if one could argue that this prevents the model from being
fully Bayesian, this choice is backed by two important considerations: first,
φ has hardly an economic interpretation and, consequently, it will be hard to
define a reasonable prior distribution to model it. Since the model is multi-
plicative, we do not have closed form for the reserves’ posterior distribution.
Hence, we resort to MCMC in order to obtain it. The model makes use
of a Metropolis Hastings random walk algorithm for the implementation of
the MCMC simulation technique, which proved to be very efficient, far more
than the independence sampler. Since several studies found that the most ef-
ficient acceptance probability for the MH algorithm for d-dimensional target
distributions with i.i.d. components is around 23.4% (Roberts and Rosenthal
(2001)), we constructed a simple tool that automatically sets the proposal
distribution’s characteristics before running the algorithm, in order to ensure
an acceptance rate very close to that value.

The model assumes that
Xij

φi
are independently Poisson distributed with
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Figure 1.4: Convergence to the stationary distribution is achieved from dif-
ferent starting points after around 1500 iterations.

mean
µiγj
φi

.

E
[
Xij

φi
|θ
]

=
µiγj
φi

Var

[
Xij

φi
|θ
]

=
µiγj
φi

,

φi > 0, µk > 0 ∀ k = 1, ..., I , γk > 0 ∀ k = 1, ..., J,

where θ = (µ1, ...µI , γ1, ..., γJ , φ1, ..., φI) .
When φi ’s are supposed deterministic (constant), as we will do, this

is equivalent to assume that Xij follows an overdispersed Poisson distribu-
tion with mean µiγj and variance µiγjφi. We choose multivariate normal or
gamma distributions for the priors of µ and γ. We describe the modelling
consequences of the two different prior choices in the following sections.
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1.5.1 Link with GLM theory and CL parameters

Following Merz and Wuthrich (2008), we did not use directly the parameters
used in the chain ladder. Such a parametrization limits the freedom in the
choice of distributional assumptions, since it is necessary to require that the
βj’ s - the proportion of the ultimate claim which is paid in d.y. j - sum up to
1. Hence, we defined parameters which are directly linked to the chain lad-
der estimates, but allow for almost unrestricted distributional assumptions:
µ has the same meaning as the ultimate claim obtained with the chain ladder
method, but in relative terms (taking the observed first year ultimate claim,
x1 as the benchmark), while γ is related to the development pattern. We
characterize the model with the constraint µ1 = 1. The linearized version of
the model, using GLM theory, follows:

log µiγj = c+ αi + βj, (1.19)

µ1 = 1 (1.20)

The use of this constraint, together with α1 = 0 immediately leads to the
following transformations:

γj = ec+βj (1.21)

µi = eαi (1.22)

We can easily verify that the ML estimates of the parameters agree with
the estimates obtained starting from chain ladder ones:

γ̂1 = x1β
CL
1 (1.23)

γ̂j = x1

(
βCLj − βCLj−1

)
, j = 2, ...n (1.24)

µ̂i =
xCLi
x1

, i = 2, ...n (1.25)

1.5.2 Multivariate normal priors

We assume a multivariate normal distribution for the priors of
θ = (µ2, ..., µI , γ1, ..., γJ). We set, as normalization constraint - as we de-
scribed in the previous section - µ1 = 1,and φi = φconstant and equal to the
Pearson residuals’ estimate from the triangle of incremental claims. We run
a Metropolis Hastings algorithm with proposal distribution

q (θ∗|θt) ∼ N (θt,Σ
prop)
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Different ways of choosing the proposal distribution were tested: an algorithm
in which the variance covariance matrix of the proposal distribution was
updated at each step and an independence sampler proved to be less efficient
than the random walk algorithm with fixed variance/covariance matrix we
finally used.
The acceptance probability is computed at each step as the minimum between
1 and the ratio between the likelihoods evaluated at θ∗ ∼ q (θ∗|θt) and at θt.
This ratio can be written as

f(Xij, θ
∗)uθ∗ q (θt|θ∗)

f(Xij, θt)uθ q (θ∗|θt)
,

where f(Xij, ·)denotes the likelihood function of Xij evaluated at · and u· is
the prior density evaluated at ·.
We now write explicitly the likelihood ratio of the ODP model using mul-
tivariate normal proposals for both µ and γ and a random walk Metropolis
Hastings algorithm:

LR =

∏
i+j≤I

exp

(
−
µ∗i γ

∗
j

φ

) (µ∗i γ∗j
φ

)Xij

φ(
Xij

φ

)
!

 ∗
1

(2π)
N/2 |Σprior |

exp

(
−1

2

(
θ∗ − µprior

)′
Σ−1prior

(
θ∗ − µprior

))
∗

1

(2π)
N/2 |Σprop |

exp

(
−1

2

(
θt − µ(t)

prop

)′
Σ−1prop

(
θt − µ(t)

prop

))

∏
i+j≤I


exp

(
−
µ
(t)
i γ

(t)
j

φ

) (µ(t)
i γ

(t)
j

φ

)Xij

φ

(
Xij

φ

)
!


∗

1

(2π)
N/2 |Σprior |

exp

(
−1

2

(
θt − µprior

)′
Σ−1prior

(
θt − µprior

))
∗

1

(2π)
N/2 |Σprop |

exp

(
−1

2
(θ∗ − µ∗prop)

′
Σ−1prop (θ∗ − µ∗prop)

)

(1.26)

Thus, getting rid of some terms and passing to the log likelihood ratio we
get:
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logLR =
∑
i+j≤I

[
Xij

φ
log

(
µ∗i γ

∗
j

µ
(t)
i γ

(t)
j

)
−
µ∗i γ

∗
j

φ
+
µ

(t)
i γ

(t)
j

φ

]
+ (1.27)

+
1

2

[
(θt − µprior)

′
Σ−1
prior (θt − µprior) +

− (θ∗ − µprior)′Σ−1
prior (θ∗ − µprior)

]
+ (1.28)

+
1

2

[
(θ∗ − µ∗prop)′Σ−1

prop (θ∗ − µ∗prop) +

−
(
θt − µ(t)

prop

)′
Σ−1
prop

(
θt − µ(t)

prop

) ]
(1.29)

in which we can recognize the parts of the likelihood ratio respectively
due to the ODP model(1.27), to the prior(1.28) and to the proposal(1.29)
distributions.

The logarithmic transformation we performed is made for computational
convenience, in order to avoid overflows while running the algorithm. Since
we made a monotonic transformation, our Metropolis Hastings algorithm is
still proper, the acceptance probability being min(0, logLR).

The MH algorithm we implemented is a random walk one and works as
follows:

1. Sample µ∗i , γ
∗
j for i = 2, ...I, j = 1, ...J from the multivariate normal

distribution q (θ∗|θt) = N (θt,Σ
prop) .

2. Draw a random uniformly distributed number U ∼ Unif(0, 1)

3. If log U ≤ min
(
0, logLR

(
θ(∗), θ(t)

))
,then set θ(t+1) = θ∗; else set

θ(t+1) = θ(t).

1.5.3 Gamma priors

In this section we explore the implementation of the model when a mul-
tivariate Gamma is chosen as the prior distribution for parameters. The
Gamma distribution is conjugate to the Over Dispersed Poisson we chose
for the incremental claims. Thus, if one fixes one of the two parameters to
a constant value - for example if we give to the γ′s their ML estimates -
analytical expressions for the posterior distributions are available (Merz and
Wuthrich (2008)). However, if we want to implement a Bayesian model with
uncertainty on both the µ′s and the γ′s, we have again to apply simulation
techniques. The parameters of the gamma distribution are updated at each
step in order to set the mean of the distribution to the current values of
µ(t) and γ(t). The prior distribution is set to match the expert judgement on
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the cv and mean of each parameter. As before, we keep the overdispersion
parameter deterministic and constant: φi = φ.

Hence, we have µ such that

µ1 = 1, (1.30)

µi ∼ Γ (a, bi) i = 2, ..., I (1.31)

with a =
1

cv(µ)2
and bi =

µpriori

a

and γ

γj ∼ Γ (c, dj) , j = 1, ..., J (1.32)

with c =
1

cv(γ)2
and dj =

γpriorj

c

The proposal distributions for implementing the Metropolis Hastings ran-
dom walk algorithm are also gamma distributions and have chosen coeffi-
cients of variation (cv) and fixed shape parameters. The scale parameters
are updated at each step in order to let the mean coincide with the value of
the chain at the previous step:

q(µ∗i |µ
(t)
i ) ∼ Γ(e, fi) (1.33)

with e =
1

cvp(µ)2
and fi =

µ
(t)
i

e

q(γ∗j |γ
(t)
j ) ∼ Γ(g, hj) (1.34)

with g =
1

cvp(γ)2
and hj =

γ
(t)
j

g

Then, the likelihood ratio follows:
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LR =

∏
i+j≤I exp

(
−
µ∗i γ

∗
j

φ

) (µ∗i γ∗j
φ

)Xij

φ(
Xij

φ

)
!

∗

∏
i≤I µ

∗(a−1)
i

exp

(
−µ
∗
i
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)
Γ(a)b

(a)
i

∏
j≤J γ

∗(c−1)
j

exp

(
−
γ∗j
dj

)
Γ(c)d

(c)
j

∗

∏
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(t) (e−1)
i

exp (−e)

Γ(e)

(
µ
(t)
i

e

)e ∏j≤J γ
(t) (g−1)
j

exp (−g)

Γ(g)

(
γ
(t)
j

g

)g

∏
i+j≤I exp

(
−
µ
(t)
i γ

(t)
j

φ

) (µ(t)
i γ

(t)
j

φ

)Xij

φ

(
Xij

φ

)
!

∗

∏
i≤I µ

(t) (a−1)
i

exp

(
−µ

(t)
i

bi

)
Γ(a)b

(a)
i

∏
j≤J γ

(t) (c−1)
j

exp

(
−
γ
(t)
j

dj

)
Γ(c)d

(c)
j

∗

∏
i≤I µ

∗(e−1)
i

exp (−e)

Γ(e)

(
µ∗i
e

)e ∏j≤J γ
∗ (g−1)
j

exp (−g)

Γ(g)

(
γ∗j
g
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(1.35)

and the log-likelihood:

logLR =
∑
i+j≤I

[
Xij

φ
log

(
µ∗i γ

∗
j

µ
(t)
i γ

(t)
j

)
−
µ∗i γ

∗
j

φ
+
µ
(t)
i γ

(t)
j

φ

]
+ (1.36)

+
∑
i≤I

(a− 1) log
µ∗i

µ
(t)
i

+
1

bi

(
µ
(t)
i − µ

∗
i

)
(1.37)

+
∑
i≤I

(e− 1) log
µ
(t)
i

µ∗i
+ e log

µ∗i

µ
(t)
i

(1.38)

+
∑
j≤J

(c− 1) log
γ∗j

γ
(t)
j

+
1

dj

(
γ
(t)
j − γ

∗
j

)
(1.39)

+
∑
j≤J

(g − 1) log
γ
(t)
j

γ∗j
+ g log

γ∗j

γ
(t)
j

(1.40)

in which we can recognize respectively the contribution of the ODP model
(1.36), of the prior on µ (1.37), of the proposal for µ (1.38), of the prior on
γ (1.39) and of the proposal on γ (1.40).
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Another way of implementing this same model consists in fixing the variance
of the proposal distribution instead of the coefficient of variation.

1.6 Applying the model in practice

The model obviously needs prior distributions for the parameters and thus at
least an estimate of their mean and of how precise this estimate is expected
to be. Here comes the expert judgement to provide this information. The
reserve evaluation - the output of the model - which has still its basis on
statistical methods (namely the Chain Ladder approach) can incorporate
input data which are not captured by the historical triangle of paid claims.
We apply our model to the undiscounted 1997-2008 triangle of the MTPL
Line of Business of Fondiaria-Sai Spa, which is one of the largest Italian
insurance companies. We chose to use statutory reserves as a part of the
expert judgement process to obtain priors xPi on the ultimate claims. We
choose the mean of the distribution for each a.y. i to be the sum of the
statutory reserve (RSTAT

i ) and the value on the diagonal of the triangle of
cumulative paid claims, which represents the last observation on total claim
payments relative to each accident year:

E[xPi ] = Di,n−i+1 +RSTAT
i (1.41)

We use chain ladder estimates as prior means E[yPj ] for the development
pattern:

E[yPj ] = βCLj − βCLj−1 (1.42)

It is indeed worth noticing that prior reserves’ mean, E[RP
i ], assuming

independence between all the parameters, is different from statutory reserves:

E[RP
i ] =

n∑
i=2

n∑
j=n−i+2

E[xPi ] ∗ E[yPj ] =
n∑
i=2

n∑
j=n−i+2

(
Di,n−i+1 +RSTAT

i

)
∗ yPj

(1.43)

1.6.1 Tests of convergence to the prior and to the chain
ladder estimates

We carried out some preliminary tests in order to establish the convergence
and stability properties and quality of the different MH algorithms we imple-
mented. For the multivariate normal priors, we tested two different versions
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of the simulation algorithm: one in which the parameters were updated all
at once at each step of the Metropolis-Hastings algorithm, and one in which
they were updated in blocks (the µ’s first and then the γ′s). For the Gamma
priors, instead, as described in section 1.4, we used two different ways of de-
scribing the prior and proposal distributions (fixing the coefficient of variation
(cv) - i.e. the ratio of the standard deviation and the mean of the distribution
- or the variance of the proposal distribution as constants throughout all the
algorithm).
We based are tests on the observation that, using precise priors, the reserves’
”best estimate” should converge to the prior one, since the information given
is supposed to be very precise and ”drives” the result, while, using vague
priors, it is supposed to converge to the chain ladder estimate, since the im-
portance given to observed data is maximal.
We discarded a burn-in of 50000 iterations and analyzed the convergence on
a long run of 250000 iterations. Table 1.6.1 summarize the results obtained
on the triangle of the MTPL LoB. We used the triangle of dimension 12 × 12
collecting the claims amount paid for a.y. 1997 to 2008. While convergence
to the prior is ensured by every model and method we used, convergence to
the chain ladder while using vague priors is a bit more difficult and, looking
at the tables, it is evidently faster and more precise for the Gamma prior
choice implemented by fixing the coefficient of variation of the proposal dis-
tributions.
MCMC methods naturally lead, especially when the acceptance probabil-
ity of the MH algorithm is set to be low, to high posterior autocorrelation
in the chains. This can result in a slow exploration of the whole domain
of the posterior distribution. To avoid this problem, one can consider the
draws sampled every k iterations of the algorithm. A thinning the chain al-
gorithm of this kind was implemented, in order to reduce autocorrelation in
the chains. Anyway, the results and convergence properties for our model did
not different significantly, while the efficiency was clearly reduced (because
of the discarded iterations).

As Table 1.6.1 highlights, some convergence problem are found, for very
vague priors, for the Normal prior choice model. In particular, the last
element of the chain is the most subject to those problems, since it is obtained
through the use of the lowest number of observed data.
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The Normal prior choice model, moreover, has an important theoretical
drawback. In fact, it theoretically allows for negative values in the chains4.
An accurate tuning of the model - and eventually adequate controls - can
easily prevent this from happening. Anyway, when the priors are very vague
and the proposal distributions have a high coefficient of variation, it is likely
that throughout the algorithm the system considers or accepts negative val-
ues in the chains at some step. This problem is surely one of the causes of
the worst performance of the model with Normal priors with respect to the
Gamma one.

1.6.2 Results

There is an important trade-off in claims reserving: on one side reserves con-
stitute a cost for the firm, since they are kept for prudential purposes and
can’t be used for firm’s core activities. On the other side they are mandatory,
in the sense that they have to be there when claim payments to insured enti-
ties are due. Thus, a too high value of reserve stored prevents the firm from
expanding itself, while a too low one exposes the company to the risk of being
unable to repay its obligations. The challenge of our Bayesian model is then
to give the right importance (in terms of variability) to the expert judgement
- and hence establishing its precision: very precise prior obviously shrink the
distribution of OLL towards the prior mean, while very vague priors can-
cel the effect of prior knowledge. The first consideration from our analysis
is that the prior mean of OLLs - computed from realized losses and statu-
tory reserves - is clearly lower than the one predicted by the Chain Ladder
method. The consequence will be obvious: when the priors on ultimate costs
are judged to be precise, the distribution of OLLs obtained following our
Bayesian model will be shifted to the left with respect to the bootstrapped
one.

We are interested in computing the following quantities:

• Worst Case Scenario (W): it is computed as the 99.5 percentile of the
distribution of OLLs.

• Best Estimate (BE): it’s the expected value of the distribution of OLLs.

• Unanticipated Loss (U): the difference between the ”worst case sce-
nario” (RR) and the best estimate.

4This problem is avoided when choosing Gamma priors, since the Gamma distribution
has support [0,∞].



CHAPTER 1. A BAYESIAN STOCHASTIC RESERVING MODEL 30

Prior mean ML estimate
µ2 1.055 1.036
µ3 1.163 1.147
µ4 1.247 1.235
µ5 1.343 1.334
µ6 1.410 1.410
µ7 1.399 1.436
µ8 1.337 1.394
µ9 1.354 1.427
µ10 1.435 1.541
µ11 1.227 1.556
µ12 1.292 1.898
γ1 52912764.33 52912764.33
γ2 60161364.85 60161364.85
γ3 27342320.13 27342320.13
γ4 14084776.78 14084776.78
γ5 9031656.063 9031656.063
γ6 7264483.908 7264483.908
γ7 5932867.041 5932867.041
γ8 4877265.307 4877265.307
γ9 3508310.21 3508310.21
γ10 2513839.843 2513839.843
γ11 1785509.988 1785509.988
γ12 1453146.824 1453146.824

Table 1.2: Prior means and ML estimates of model parameters

Table 1.3 presents required reserves, best estimates and unanticipated
losses for the different models and different prior cv’s for the choice of prior
we describe in Table 1.2. In the Appendix we report the results of the
estimation of the ”original” GLM model.
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cv W(99.5%) BE U
Precise priors (cv 0.01)

ODP Bootstrap 3.33 % 6.79E+08 6.24E+08 5.47E+07
Normal en bloc 0.50 % 5.17E+08 5.10E+08 6.66E+06

Normal single component 0.52 % 5.17E+08 5.10E+08 6.92E+06
Gamma fixed cv 0.52 % 5.17E+08 5.10E+08 6.86E+06

Gamma fixed variance 0.52 % 5.17E+08 5.10E+08 7.13E+06
Intermediate priors (cv 0.08)

ODP Bootstrap 3.33 % 6.79E+08 6.24E+08 5.47E+07
Normal en bloc 2.17 % 6.11E+08 5.78E+08 3.32E+07

Normal single component 2.18 % 6.12E+08 5.79E+08 3.37E+07
Gamma fixed cv 2.33 % 6.16E+08 5.82E+08 3.40E+07

Gamma fixed variance 2.34 % 6.20E+08 5.83E+08 3.69E+07
Vague priors (cv 0.2)

ODP Bootstrap 3.33 % 6.79E+08 6.24E+08 5.47E+07
Normal en bloc 2.90 % 6.60E+08 6.14E+08 4.54E+07

Normal single component 2.90 % 6.61E+08 6.14E+08 4.76E+07
Gamma fixed cv 2.91 % 6.63E+08 6.15E+08 4.86E+07

Gamma fixed variance 3.03 % 6.64E+08 6.14E+08 5.00E+07
Very vague priors (cv 1)

ODP Bootstrap 3.33 % 6.79E+08 6.24E+08 5.47E+07
Normal en bloc 3.29 % 6.85E+08 6.30E+08 5.51E+07

Normal single component 3.49 % 6.87E+08 6.29E+08 5.79E+07
Gamma fixed cv 3.18 % 6.78E+08 6.25E+08 5.30E+07

Gamma fixed variance 3.42 % 6.79E+08 6.23E+08 5.56E+07

Table 1.3: This Table reports the VaR 99.5% (W), the mean (BE) and the
Unexpected Loss (U) of the distribution of OLLs for the MTPL LoB of
Fondiaria-Sai SpA for different prior choices and algorithms.

Table 1.2 highlights the fact that, especially for more recent accident
years, the predictions given using balance sheets indications are very distant
from the ones obtained using standard methods.

Table 1.3 shows that the models seem to agree in their predictions. Any-
way, different choices of the prior distribution and (with very vague priors) of
the algorithm specification, bring different results. A goodness-of-fit test for
the four models can be carried out by backtesting. It is important to notice
that no convergence problems are found, both by using a traceplot approach
and by controlling the results using the Gelman-Rubin statistics (described
in section 1.4). A very conservative choice of the burn-in (50000 iterations)
was anyway made, in order to avoid any possible troubles. The priors we
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used naturally lead to a very low best estimate and risk capital, if they are
judged to be precise (see the upper panel of Table 1.3). The distribution is in
fact concentrated on the left of the ODP one, and its coefficient of variation is
very low. The next figures (which refer to the Gamma Gamma with fixed cv
model) show how, giving precise priors, the distribution of OLLs is concen-
trated around the prior mean (cv=0.5%), while, as the coefficient of variation
of the prior distribution increases - and external information is meant to be
less reliable - the distribution widens and approaches the bootstrap one.

4.5 5 5.5 6 6.5 7 7.5
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0.014

0.016

Bootstrap and MCMC reserves simulated density

Figure 1.5: OLL distribution obtained from ODP bootstrap (red) and
MCMC with precise priors (blue).

The coefficient of variation of the MCMC simulated distribution becomes
higher than the ODP bootstrap distribution for very vague priors. Table
1.3 highlights that the OLL distribution obtained with the Gamma model
presents is slightly more skewed to the right than the Normal one when priors
are intermediate or vague. Also the Unexpected Loss predicted by the former
model is higher. When priors are very vague, instead, the Normal model
shifts to the right and presents both a higher mean (629 vs. 623 millions)
and a higher 99.5 percentile (687 vs. 679 millions) thant the Gamma model.
The same analysis was carried out for other LOBs’ triangles. When dealing
with lower dimension triangles (the Italian regulator mandates the use of 8x8
triangles for almost every line of business with the exception of the MTPL
LoB when compiling survey modules), obviously convergence becomes more
difficult because the number of observed data is lower and their variability
is greater. Thus, results from the application of our Bayesian model are
obviously less accurate.



CHAPTER 1. A BAYESIAN STOCHASTIC RESERVING MODEL 33

1 2 3 4 5 6 7 8 9 10 11
1

1.2

1.4

1.6

1.8

2

Convergence on mu

 

 

postmean

postmean+2std

postmean−2std

prior

cl

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7
x 10

7 Convergence on gamma

 

 

postmean

postmean+2std

postmean−2std

prior

cl

0 5 10 15

x 10
4

4.5

5

5.5

6

6.5
x 10

8

MCMC total reserves

Figure 1.6: Convergence to prior parameters’ means(µ, upper left panel, and
γ, upper right panel) and chain of MCMC reserves. Green lines represent
chain ladder figures (parameter estimates in the upper panels and reserve
estimate in lower panel), while red lines represent prior figures. Notice the
convergence towards these latter values.

1.7 Conclusions and further possible model

extensions

There are two main directions of further development of the model: including
inflation and aggregate OLLs across Lines of Business. The first issue can
be naively addressed by rescaling the triangle of past settlements using some
measure of inflation specific to the LoB (the issue of estimating specific infla-
tion is indeed not at all simple) and then running the Bayesian model on the
rescaled triangle. However, the whole procedure requires careful attention
and is not easy to tackle. The most important problem lies in the estimation
of LoB-specific inflation, which is very hard to perform. The second issue
regards the aggregation of the reserve risk estimates at the company’s level.
In this chapter we estimated the risk capital requirements for each single line
of business. The next step consists in finding a measure of the overall com-
pany and group risk capital requirements. Solvency II preliminary studies
involved the use of a given correlation matrix to aggregate data. They thus
implicitly assumed to be dealing with a Gaussian world.
In the next chapter, we specifically address this problem and we present a
highly flexible model for aggregating outstanding loss liabilities across LoBs.
The most important issue is defining and measuring the dependence struc-
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Figure 1.7: OLL distribution from ODP bootstrap (in red) and MCMC with
vague priors from Table 1 and 2.

ture for the different line of business (and companies). We resort to the use
of copulas and provide a theoretical framework for estimating the OLLs of
a multiline non-life insurance company, extending the Bayesian approach we
used in this chapter to a multi-dimensional setting.

1.8 Appendix

The following Table reports GLM parameter estimates for the triangle of in-
cremental claim payments we used. It refers to the MTPL LoB of Fondiaria-
Sai spa.
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Figure 1.8: Convergence to the chain ladder parameters (µ, upper left panel,
and γ, upper right panel) and chain of MCMC reserves. Green lines represent
chain ladder figures (parameter estimates in the upper panels and reserve
estimate in lower panel), while red lines represent prior figures. Notice that,
with respect to Figure 4, parameters and reserves are shifting towards the
chain ladder values.

Table 7: GLM parameter estimates
Parameter Estimate

c 14.1892
α1 0
α2 0.0350
α3 0.1371
α4 0.2110
α5 0.2884
α6 0.3436
α7 0.3619
α8 0.3323
α9 0.3558
α10 0.4323
α11 0.4419
α12 0.6407
β1 3.5949
β2 3.7233
β3 2.9347
β4 2.2714
β5 1.8270
β6 1.6093
β7 1.4068
β8 1.2109
β9 0.8814
β10 0.5481
β11 0.2060
β12 0
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Figure 1.9: With very vague prior(cv=1), MCMC reserves’ posterior dis-
tribution converge to the ODP bootstrap predictive distribution. With the
Gamma/Gamma model with fixed cv, ODP reserves’ distribution is larger
with respect to the MCMC one, Best Estimates and W are very close to each
other.
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Figure 1.10: Posterior means plots are almost indistinguishable from chain
ladder estimates ones, while total reserves fluctuate around the chain ladder
estimate.



Chapter 2

A Bayesian copula model for
stochastic claims reserving

2.1 Introduction

The estimation of Outstanding Loss Liabilities (OLLs) is crucial to reserve
risk evaluation in risk management. Classical methods based on run-off tri-
angles need a small amount of input data to be used. This fact determined
their fortune, making them immediate to use, requiring the knowledge of
triangle of annual paid claims amount only. However, this fact constitutes
also an important shortcoming, since using a small sample of data to predict
future outcomes may possibly lead to inaccurate estimates. Anyway, their
widespread use in professional practice encourages further improvements to
limit this problem.
Starting from the beginning of this century, bayesian methods in estimat-
ing run-off triangles gained increasing attention as a tool to include expert
judgement in stochastic models1 and enlarge the information set on which
reserves are computed. The use of Bayesian methods in loss reserving started
decades ago, but it was the possibility of using MCMC fast computer-running
algorithms that gave high flexibility to the application of this methodology,
allowing for almost unrestricted distributional assumptions. De Alba (2002),
De Alba and Nieto-Barajas (2008) - who introduced correlation among differ-
ent accident years - and Ntzoufras and Dellaportas (2002) offer examples of
how Bayesian methods can be implemented in the estimation of outstanding
claims for a line of business, introducing prior information on both future
claim amount (ultimate costs) and frequency. Simultaneously, some works

1For a nice treatment on the use copulas to aggregate expert opinions, see for example
the seminal work Jouini and Clemen (1996).

37
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tried to introduce the use of copulas - which gained increasing popularity in
the finance world in the last decade - also in loss reserving2.
The question of how to cope with dependent risks such as the losses an in-
surance company has to face in its different lines of business (LoBs) is surely
of utmost importance. Current practice and Solvency II standard formulas
account for diversification by means of linear correlation matrices estimated
on a market-wide basis. Obviously, these correlation matrices can fail to cap-
ture the specificities insurance companies can present, due to geographical
reasons or management choices.
A few papers studied the application of copulas to run-off triangles estima-
tion. Tang and Valdez (2005) used simulated loss ratios to aggregate losses
from different LoBs. Li (2006) compared aggregation through the use of dif-
ferent copula functions, given distributional assumptions on the marginals.
More recently, De Jong (2009) introduced a Gaussian copula model to de-
scribe dependence between LoBs.
This paper aims at combining both these two important aspects: bayesian
methods and the use of copulas. The bayesian approach, introducing data
coming from expert judgement, allows to include additional reliable informa-
tion when estimating reserves and to derive full predictive distibutions. Cop-
ulas allow to obtain joint distributions in an easily tractable way, separating
the process of defining the marginals and the dependence structure. Hence,
we introduce prior information on the dependence structure, using Bayesian
copulas in the aggregation of losses across LoBs. Up to our knowledge, this
paper is the first attempt in introducing Bayesian copulas in stochastic claims
reserving. Dalla Valle (2009) applied a similar technique to the problem of
the estimation of operational risks. We adapt their approach to the aggre-
gation of OLLs from different LoBs.
Combining a Bayesian approach to derive the marginal distributions of OLLs
for each single LoB and the use of Bayesian copulas to aggregate them, one
obtains a fully Bayesian model that incorporates expert judgement on the
ultimate costs and development pattern of each LoB as well as on the depen-
dence structure between them.
We apply this model to four lines of business of an Italian insurance com-
pany. We compare results obtained from the Bayesian copula model with
those obtained from a standard copula approach.3.
The outline of the paper is the following. Section 2.2 presents a simple

2Copulas have been recently used in individual claim models (Zhao and Zhou (2010)).
3Financial literature offered only few examples of application of non bivariate copulas.

This paper, testing the theoretical framework on a multi-line insurance company, pro-
vides a four-dimensional application of our model of aggregation through copulas and a
comparison of results for different copula choices
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Bayesian model, which uses Markov Chain Monte Carlo (MCMC) simula-
tion methods to derive the predictive distribution of OLLs for each LoB.
Section 2.3 motivates the choice of modeling dependence between LoBs and
briefly reviews the most important notions on the theory of copulas. Section
2.4 presents the Bayesian copula approach. Section 2.5 applies the model
to a large insurance company, reports and compares the results. Section 2.6
concludes.

2.2 A Bayesian approach for computing Lob’s

reserves

First, we briefly present a bayesian model for the estimation of the OLLs
for the single LoBs. We assume that an Over-Dispersed Poisson (ODP) dis-
tribution models incremental claims in the run-off triangle. Then, denoting
with Xij the claim payments in the development year (d.y.) j concerning
accident year (a.y.) i and with φi the overdispersion coefficient for accident

year i, we assume that
Xij
φi

are independently Poisson distributed with mean
µiγj
φi

:

E
[
Xij

φi
|Θ
]

=
µiγj
φi

,

Var

[
Xij

φi
|Θ
]

=
µiγj
φi

,

φi > 0, µi > 0

∀ i = 1, ..., I, γj > 0 ∀ j = 1, ..., J,

Θ = µ1, ..., µI , γ1, ..., γJ , φ1, ..., φI ,

We renormalize the model setting the (observed) parameter µ1 = 1. µi’
s then represent ultimate claims relative to year 1, while the γj’ s repre-
sent the development pattern in monetary terms relative to ultimate cost of
a.y. 1. This renormalization allows to increase flexibility in distributional
assumptions, avoiding the awkward constraint that the parameters of the
development pattern by d.y. have to sum up to 1.
We estimate the overdispersion parameter φ using the Pearson’s residuals
obtained from the triangle and assume it constant across accident years. Al-
though one can object that this prevents the model from being fully bayesian,
this choice is backed by two important considerations: first, φ has hardly a
simple economic interpretation and, consequently, it will be hard to define a
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reasonable prior distribution to model it. Moreover, the MCMC algorithm
turns out to be considerably more stable if φ is not bayesian. We choose the
prior distribution of both the µ’s and the γ’s to be independently gamma
distributed. We don’t have analytical expressions for the posterior distribu-
tion. Hence, we set up a Markov Chain Monte Carlo algorithm in order to
simulate the posterior distribution of parameters. The prior distribution is
set through coefficient of variation (cv) and mean; at each step, we update
the parameters to match the current mean values of µ(t) and γ(t), where t is
the iteration step in the simulation algorithm. Hence,

µ1 = 1

µi ∼ Γ(a, bi) i = 2, ..., I

with a =
1

cv(µ)2
and bi =

µPi
a

and

γj ∼ Γ(c, dj) j = 1, ..., J

with c =
1

cv(γ)2
and dj =

γPj
c

We implement the MH algorithm with gamma proposal distributions,
whose coefficient of variation is kept fix throughout the algorithm. The lower
part of the triangle is obtained through simulation and then discounted using
the term structure of interest rates at the end of the last a.y..

2.3 A copula approach to aggregate across

LoBs

In the previous section we presented a way of retrieving the predictive dis-
tribution of OLLs for a single line of business. From now on, we address the
problem of generating the joint distribution of OLLs from different LoBs,
in order to estimate prudential reserves for multi-line insurance companies.
Notice that what follows can be applied independently of the choice of the
method used to obtain the predictive distribution of reserves.
Correctly capturing the presence of dependence between the losses in different
LoBs is intuitively a desirable feature of a good model for claims reserving.
The following Table compares the correlation matrix between the LoBs of an
Italian insurance company, estimated from a time series of loss ratios, and
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the one the CEIOPS mandated to use when calculating reserve risk with the
standard formula in the Quantitative Impact Studies (QIS):

LoB
MTPL MOC FP TPL

MTPL
1 0.4751 0.4598 0.5168

(0) (0.0463) (0.0549) (0.0281)

MOC
0.4751 1 0.8789 0.7331

(0.0463) (0) (0.000001) (0.0005)

FP
0.4598 0.8789 1 0.8748

(0.0549) (0.000001) (0) (0.000002)

TPL
0.5168 0.7331 0.8747 1

(0.0281) (0.0005) (0.000002) (0)

Table 2.1: Linear correlation between LoBs. The brackets report p-values.

LoB
MTPL MOC FP TPL

MTPL 1 0.25 0.25 0.5
MOC 0.25 1 0.5 0.25
FP 0.25 0.5 1 0.25

TPL 0.5 0.25 0.25 1

Table 2.2: This Table reports the correlation matrix the CEIOPS estimated
and requires the participants to the Quantitative Impact Studies (QIS) to
use in the evalutaion of reserves.

Table 2.1 clearly shows that the ”industry-wide” estimate proposed by
CEIOPS and the industry-specific ones differ. Results on the correlation of
a time series of realized losses, which we will present in Section 2.5 further
support this evidence.
We then turn to the use of copulas in order to model the dependence between
LoBs. Indeed, they allow us to separate the estimation of the characteristics
of the dependence structure from the modeling of marginal distributions.

2.3.1 Copulas

In this section we briefly give the basic definitions and fundamental no-
tions about copulas. We are interested in modelling the joint distribution
F (L1, ..., Ln), where Li denotes the OLLs of the i-th LoB of a company
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whose business involves n sectors, since our object of interest is

Ltot =
n∑
i=1

Li

and its related percentiles. Copula functions permit us - as we will briefly
show in this section - to separate the process of estimating the marginal
distributions F (L1), ..., F (Ln) of the OLLs of each LoB from the estimation
of the dependence structure. Moreover, the latter can be modeled in a highly
flexible way, since many copula functions are available to describe it and
capture its (also non-linear) properties. We recall the most important results
on multivariate copulas, which we will use in the construction of our model.4

First of all, we define multivariate copulas:

Definition 2.3.1 An n-dimensional subcopula is a function C:A1×A2×...×
An → Rwhere, for each i, Ai ⊂ I and contains at least 0 and 1, such that:

1. C is grounded5

2. its one-dimensional margins are the identity function on I: Ci(u) = u,
i = 1, 2, ..., n

3. C is n-increasing.6.

C is a copula if it is an n-dimensional subcopula for which Ai = I for every
i.

The following (Sklar’s) theorem proofs the link between a copula and the
marginal distribution functions7:

4For a comprehensive review of the theory of copulas and their use in finance the reader
can refer to Cherubini, Luciano, and Vecchiato (2004) and Nelsen (2006).

5Let C : R∗n → R be a function with domain A1 × ... × An, where Ai are non-empty
sets with a least element ai. C is grounded iff it is null for every v ∈ Dom C, with at least
one index k such that vk = ak:

C(v) = C(v1, v2, ..., vk−1, ak, vk+1, ..., vn) = 0

6C : A1 ×A2 × ...×An → R is n-increasing if:

∑
w∈ver(A)

C(w)

n∏
i=1

sgn(2wi − ui1 − ui2) > 0

where ver(A) is the set of vertices of A.
7For a proof of this theorem in the multivariate case we refer the reader to Schweizer

and Sklar (1983).
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Theorem 2.3.2 Let F1(x1), ..., Fn(xn) be marginal distribution functions.
Then, for every x = (x1, ..., xn) ∈ R∗n:

1. If C is any subcopula whose domain contains RanF1 × ... × RanFn,
C(F1(x1), ..., Fn(xn)) is a joint distribution function with margins F1(x1),
..., Fn(xn).

2. Conversely, if F is a joint distribution function with margins F1(x1)
, ... ,Fn(xn) there exists a unique subcopula C, with domain RanF1

×...×RanFn such that F (x) = C(F1(x1), ..., Fn(xn)).

If the marginals are continuous, the subcopula is a copula; if not, there
exists a copula C such that

C(u1, ..., un) = C(u1, ..., un) for every (u1, ..., un) ∈ RanF1 × ...×RanFn.

This is the most important result in the theory of copulas: it states that
- as we pointed out before - starting from separately determined marginals
and dependence structure copula functions allow to represent a joint distri-
bution function of the variables involved. Moreover, overall uniqueness is
ensured when marginals are continuous; when they are discrete, uniqueness
is guaranteed on the domain RanF1 × ...×RanFn.

2.3.2 Applying copulas to claims reserving

We outline first a simple procedure to obtain a joint distribution of OLLs for
an n-dimensional non-life insurance company through the use of copulas:

1. derive the marginal distributions of the OLLs F (L1), ..., F (Ln) for each
LoB independently. For this task, it is possible to resort to classical
methods, simulation, as well as to the Bayesian technique we described
in Section 2.2.8

2. estimate the dependence structure between the Li’s for i = 1, ...n.

3. choose a convenient copula function and evaluate its parameter(s). The
copula will satisfy the uniqueness properties of Theorem 2.3.2, depend-
ing on the form of its marginals.

8Tang and Valdez (2005) used simple distributional assumptions on the marginals
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Sampling from any n-dimensional copula obtained can be done exploiting
the properties of conditional distributions. Then, we can easily evaluate the
quantities of interest on the simulated sample. Difficulties in the procedure
above lie mainly on the correct estimation of the dependence structure, which
is a complicated task given the low (annual) frequency of the input data used
in stochastic claims reserving models based on run-off triangles. The same
observation applies to the choice of the most appropriate copula function. In
section 2.5.2 we compare the results of evaluating the OLLs of a multi-line
insurer under different copula assumptions.

2.4 A Bayesian copula approach

As we saw in Tables 2.1 and 2.2, industry-wide estimates of the dependence
between the different LoBs and own assessments based on companies’ tracks
can differ. This can be due - for example - to geographical issues as well as to
management actions or policies. Hence, including company-specific measures
of dependence in reserves’ estimation as expert judgement together with
industry-wide estimates can help in improving the quality of the predictions
of future losses. Hence, we present a Bayesian approach to the use of copulas,
by adding uncertainty on the parameters of the copula function.
The procedure which has to be applied to implement the Bayesian copula
model is similar to the one we described for standard copulas in the previous
Section 2.3.2, but a few more steps are required:

1. choose a convenient distributional assumption for the prior of the cop-
ula parameter(s) θ, π(θ)

2. compute, using Bayes’ theorem, the posterior distribution of the pa-
rameter given the input data:

f(θ|x) = f(x|θ)π(θ),

where x denotes the n× T matrix of observations (T is the number of
observations).

A convenient choice of the prior distribution requires the choice of priors
whose densities are conjugate to the one of the distribution of the estimation
object - in our context, OLLs per a.y.. We now present - as an example - the
application of the procedure to a Gaussian copula choice.
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2.4.1 Bayesian Gaussian copula

This Section introduces the use of Bayesian Gaussian copulas for aggregating
marginal distribution of OLLs. The choice of a Gaussian copula is the most
immediate one and it entails using a linear measure of dependence - linear
correlation - to represent the link between LoBs. Hence, we assume that
OLLs across different LoBs are distributed following a multivariate Gaussian
density. The multivariate Gaussian copula density is

c(u1, ..., un|Σ) = |Σ|−1/2exp

{
−1

2
x′(Σ−1 − In)x

}
where Σ denotes the (n × n) covariance matrix between the LoBs, In is
an identity matrix of dimension n and x is a matrix of observed OLLs.
Dalla Valle (2009) applied Bayesian Gaussian copulas to the estimation of
operational losses. However the paper considered correlation matrices, in-
curring in the problem of requiring the priors to be vague - and thus un-
informative. Starting from equation 2.4.1, we take the product over the T
observation of the sample to obtain the likelihood function:

f(x|Σ) = |Σ|−T/2exp

{
−1

2

T∑
i=1

(xi −m)′(Σ−1)(xi −m)

}
We choose the Inverse Wishart as a prior distribution for Σ. Inverse

Wishart distributions are commonly used to represent covariance matrices
and the attractive property of being conjugate to the multivariate Gaussian.
Hence we set

π(Σ) ∼ W−1(α,B).

, where W−1(α,B) denotes the Inverse Wishart Distribution with α degrees
of freedom and precision B. We can write its probability density function

|B|α/2 |Σ|−(α+n+1)/2 e−tr(BΣ−1)

2αn/2Γn(α/2)

and apply Bayes’ theorem to compute its posterior distribution.
Following DeGroot (2004), we can easily conclude that the posterior dis-

tribution of Σ follows again an inverse Wishart distribution:

π(Σ|x) ∼ W−1(T + α,B +
T∑
i=1

xix
′
i)

The precision parameter of the posterior inverse Wishart is then given
by the sum of the precision parameter in the prior distribution and T − 1
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times the sample covariance matrix. Since the mean of the inverse Wishart
distribution is

E[Σ] =
B

α− n− 1

we set α to n+ 2, making the precision matrix B coincide with our prior
mean choice.
Then, in order to simulate a random sample from the Gaussian copula for
OLLs, we first draw a covariance matrix from the inverse Wishart distribution
and then we use it to generate outcomes from the Gaussian copula. Gener-
ating a sufficient number of outcomes from the Bayesian Gaussian copula is
then easy and permits to derive a full distribution of aggregate OLLs.

2.5 An application to an Italian Insurance

Company

In this section we apply the methodologies described in the previous parts
of the paper to obtain and compare the predictive OLLs distribution of a
multi-line insurance company for different (standard and bayesian) copula
choices. First, in section 2.5.1 we derive the marginal distribution for each
LoB as described in Section 2.2, then we compare the results obtained by
aggregating the marginals using both standard and Bayesian copulas. Our
dataset is composed by the paid claims triangles of a large insurance company
from 2001 to 2008. We restricted our attention to its 4 most important
LoBs, whose linear correlation estimates based on a time series of loss ratios
- reported in Table 2.1 - were significant at least at a 10% level.
It is important to remark that we derive full predictive distributions and, as
a consequence, that we can easily compute not only best estimates, but all
the relevant percentiles9. Notice that the approach can be easily extended to
derive a predictive distribution of the overall losses of a company, considering
all the LoBs in which it is involved. However, we recognize that data quality
must be high enough to return reliable estimates of the dependence structure.

2.5.1 Estimation of the marginals

Applying the method described in section 2.2 we derive the marginal distri-
bution of OLLs 4 LoBs: Motor Third Party Liability (MTPL), Motor Other
Classes (MOC), Fire and Property (FP) and Third Party Liability (TPL).

9This is important in terms of the VaR-approach followed by Solvency II.
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Table 2.3 reports the most important figures of the predictive distribution
for different choices of the precision of the priors. We define the mean of the
prior distribution of ultimate costs (before renormalization) as

E[µ′i] =
r−i+1∑
j=1

Xij +RS(i)

This means that, for each a.y., the prior mean is given by the sum of the last
observed cumulative claim payment and the statutory reserves RS(i). The
mean prior on the development pattern is simply the chain ladder estimate:

E[γ′j] = βCLj − βCLj−1

where

βCLj =
J−1∏
k=j

1

λ̂k
, k = 1, ..., J − 1

and λ̂k are the chain ladder estimates of the development factors. Model
parameters’ prior mean µi, i=2,...,I and γj, j=1,...J are obtained as

E[µi] =
E[µ′i]

µ1

E[γj] = E[γ′j] ∗ µ1

Table 2.3 compares the key figures of the predictive distribution for each
LoB for different choices of the coefficient of variation of the priors.

It shows largely different OLL distributions for different prior choices.
As soon as the priors become more vague the estimates converge to the
chain ladder ones, while convergence to the prior is achieved when the priors
themselves are precise. Hence, differences arise, since statutory reserves are
not computed using the Chain Ladder method, but a different one which
accounts for the speed of finalization and mean costs also. It is easy to
notice from the Table that - as one could expect - as soon as the prior
information becomes less precise the standard deviation of the distribution
of OLLs increases.

2.5.2 Estimation of reserves through copulas

In this Section we present model results obtained from classical copula meth-
ods and compare the figures obtained with different copula choices. We first
estimate copula parameters from adequately chosen time series data. We
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decided to use loss ratios, following Tang and Valdez (2005), since they con-
stitute the most reliable source of information. Our choice of using the his-
torical loss ratio series is motivated by the lack of qualitatively useful data
about our direct object of interest, losses, for which historical data are either
unavailable or too far away in time.10 Hence we implicitly assume that the
correlation between loss ratios is a good proxy for the correlation of losses
themselves. Moreover, loss ratios are a non-monetary measure, allowing us to
abstract from the challenges of correctly capturing overall and LoB-specific
inflation when estimating.
While Tang and Valdez (2005) used industry-wide estimates, we use a company-
specific time series of loss ratios. We compare the results obtained from these
industry-specific estimates with those obtained using the matrix proposed by
the CEIOPS in the Quantitative Impact Study 5 (QIS 5).

We first deal with the Gaussian and the t copulas, using the (ML) linear
correlation estimated matrix reported in Table 2.1 as the parameter. The
Upper Panel of Table 2.4 compares the results from the Independence, the
Gaussian and the Student’s t copula with 4 degrees of freedom.

10In Section 2.5.3, however, we will be forced to derive a measure of losses per a.y. using
observed data and statutory reserves
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Precise Priors (cv 0.05)
LoB 4 5 7 8

Mean 404388773.3 13519713.9 34505262. 65461545
Std Deviation 9732942.751 441754.4416 1081978.667 1580984.48

VaR 75 410995838.9 13816484.7 35222255.7 66524262.8
VaR 97.5 423699508 14392490.3 36666395.9 68564682.2
VaR 99 427297420.1 14567031.5 37072985.5 69171034.6

VaR 99.5 429308413.2 14681856.6 37329907.2 69600078.3
RC 24919640.0 1162142.6 2824644.6 4138533.1

Intermediate Priors (cv 0.1)
LoB 4 5 7 8

Mean 433049373.5 13748473.7 35500766.5 68943031.8
Std Deviation 14963435.3 515438.8 1436387.9 2699322.4

VaR 75 442997813.3 14099498.8 36452316.5 70747579.4
VaR 97.5 463012090.3 14776090.2 38371337.7 74270158.7
VaR 99 469270928.2 14972190.1 38966614.0 75294702.3

VaR 99.5 473098522.3 15109019.8 39376102.7 76096070.4
RC 40049148.8 1360546.2 3875336.2 7153038.6

Vague Priors (cv 0.5)
LoB 4 5 7 8

Mean 466678568.2 13823953.1 36158247.4 76376715.6
Std Deviation 23091344.0 589537.2 1798075.8 4849745.317

VaR 75 482416095.4 14222419.8 37337075.1 79526592.3
VaR 97.5 513180633.3 15015262.8 39834101.3 86254875.9
VaR 99 521989486.5 15246807.0 40609193.4 88270812.9

VaR 99.5 528830674.6 15412128.7 41120258.5 89657400.2
RC 62152106.4 1588175.7 4962011.2 13280684.6

Very Vague Priors (cv 1.5)
LoB 4 5 7 8

Mean 469457550.6 13889439.6 36537741.4 77348490.4
Std Deviation 23657712.1 631536.8 1930043.5 4823628.448

VaR 75 485141513.3 14297531.7 37813249.2 80594262.3
VaR 97.5 516938239.6 15181185.6 40468961.1 87318681.5
VaR 99 527327189.6 15420777.1 41177121.6 89221792.3

VaR 99.5 534835778.5 15568471.2 41727870.5 90309880.2
RC 65378227.9 1679031.6 5190129.0 12961389.8

Table 2.3: This Table reports mean and VaR measures for the OLL distri-
butions for each LoB for different choices of cv of the priors
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Since no negative correlation between the LoBs is captured by the time
series of loss ratios nor by the QIS 5 matrix, the Independence copula obvi-
ously offers the lowest level of Prudential Reserves (656 millions). Using the
own assessment of correlation (in the Gaussian or t MLE column) returns a
distribution with slightly fatter tails than the one obtained when using the
CEIOPS QIS matrix. The consequent ”risk capital” - which is the capital
kept in excess of the best estimates of OLLs - is also higher when using the
own assessment of correlation. We then turn our attention to Archimedean
copulas. First, we estimate the Kendall’s τ matrix from the time series of loss
ratios. Since the corresponding parameters of the bivariate copulas involving
the various LoBs differ, we used the recursive procedure of Genest (1987)
and Genest and Rivest (1993) in order to generate random samples from the
multivariate copulas. The procedure exploits the properties of conditional
distribution functions. We describe the technical details and the algorithm
of the procedure in the Appendix. The Lower panel of Table 2.4 reports
also the figures obtained when using the Archimedean Clayton, Gumbel and
Frank’s copulas.
The 99.5th percentile of the OLL distribution - which is usually indicated as
a standard measure for prudential reserves in the Solvency II framework -
computed with the Clayton copula is lower than the one obtained with any
other copula type, with the only exception of the Independence copula. On
the contrary, Gumbel’s copula predicted V aR99.5% is the highest among the
Archimedean families we compared, but its estimate is however lower than
the one obtained from the Gaussian and the t copulas.

2.5.3 Estimation of reserves using Bayesian Copulas

Unfortunately, the procedure described in Section 2.4 can not be applied
when the record of past losses is not sufficiently long and homogenous across
years. In our data sample, information about past claim payments lacked
the deepness to allow us to use a significant time series of observed OLLs.
To overcome this problem, we derived a time series of losses adding the ob-
served paid claims by a.y. for the d.y. available (inflated at a monetary
rate of inflation provided by ISTAT) and the reserved amount at the end
of the observation period obtained from the balance sheet. Using this time
series, we obtained an own assessment of correlation which is reported in
Table 2.5. This matrix evidently differs sharply from both the QIS5 one and
the one estimated from the time series of loss ratios. In particular, losses in
the MTPL LoB appear to be negatively correlated with the other 3 LoBs,
which, as happened in terms of loss ratios, show instead a very high degree
of positive correlation. It is worth noticing however that these estimates,
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computed on a small series of data, can be inaccurate, as the p-values in
the Table highlight. Hence, the idea of coupling this information with some
more reliable assessments, such as the market-wide one provided by some the
CEIOPS seems particularly appropriate.
We assume that losses across LoBs follow a multivariate Gaussian distri-
bution. We include uncertainty on the variance/covariance matrix and we
assume a prior Inverse Wishart distribution with precision parameter equal
to the QIS5 implied variance/covariance matrix11 and n+ 2 degrees of free-
dom. As we showed in the previous section, we can then derive easily the
posterior distribution of this variance/covariance matrix and sample from
it to generate the multivariate Gaussian copula outcomes. This posterior
distribution accounts for both the mean prior (the QIS5 matrix) and the
estimated variance/covariance matrix of Table 2.5. We then obtained the
aggregate distribution of OLLs, using the “vague priors” marginals derived
in 2.2.
Table 2.6 reports best estimates and relevant quantiles of predicted OLLs.

LoB
MTPL MOC FP TPL

MTPL
1 -0.5275 -0.5389 -0.3530

(0) (0.1791) (0.1682) (0.3910)

MOC
-0.5275 1 0.9728 0.8945
(0.1791) (0) (0.000001) (0.0027)

FP
-0.5389 0.9728 1 0.8560
(0.1682) (0.000001) (0) (0.0067)

TPL
-0.3530 0.8945 0.8560 1
(0.3910) (0.0027) (0.0067) (0)

Table 2.5: Linear correlation between LoBs estimated from a time series of
losses.Brackets report p-values.

We first compare standard Gaussian copula results when using this new
estimated matrix with those obtained using the previously reported assess-
ments of correlation. The distribution of joint OLLs obtained using a stan-
dard Gaussian copula with the matrix showed in 2.5 as a parameter is lep-
tokurtic with respect to the one obtained assuming an Independence copula.
The V aR99.5%, in particular, is 7 millions lower (649 vs. 656 millions of eu-
ros).
The Bayesian Gaussian copula approach, instead, ”mixing” between the use
of this own assessment of correlation and the QIS matrix reported in Table

11We get this precision matrix by transforming the correlation matrix using the esti-
mated sample variance
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Figures Copula Type
Independence Gaussian MLE Bayesian Gaussian

Mean 593012692.6 593072251.84 593108913.85
Std Dev 23661871.8 21099212.30 21859435.62
VaR 75 609074201.8 607307094.19 607782835.70

VaR 97.5 640745885.5 635540055.89 637227064.46
VaR 99 649693108.9 643711062.03 646107459.86

VaR 99.5 656323827.6 649551647.17 652061589.16

Table 2.6: This Table reports the simulated joint distribution of the OLLs
for an Independence copula, a Gaussian copula whose MLE of the correlation
matrix is estimated from the time series of losses as described in Section 2.5.3
and for the Bayesian Gaussian copula.

2.2, presents a less sharp diversification effect (its V aR99.5% is 652 millions
of euros). Figures 2.1 and 2.2 compare the densities of the predictive dis-
tribution of OLLs obtained from the standard Gaussian copula with the
estimated and the QIS correlation matrix and the one obtained with the
Bayesian Gaussian technique. They clearly show that this latter distribution
is ”intermediate” between the other two. Its standard deviation increases
with respect to the one reported in the Gaussian MLE, as reported in Ta-
ble 2.2. The distribution obtained using a Gaussian copula with the QIS 5
correlation matrix as the parameter presents, as expected, fatter tails with
respect to the Bayesian Gaussian one. This is due to the different depen-
dence structure and mainly to the negative correlation between the biggest
LoB in terms of volume (the MTPL one) and the other ones.

2.6 Conclusions

In this paper we proposed a way to couple Bayesian methods and copulas for
stochastic claims reserving method. We showed how to account for expert
judgement through Bayesian techniques not only in the estimation of the
marginal distribution of losses, but also in the process of aggregating these
estimates across multiple Lines of Business.
We made use of copula functions, which allowed us to treat separately the
marginals and the dependence structure. We examined how to introduce
uncertainty on copula parameters. In particular - due to their analytical
tractability - we focused on Bayesian Gaussian copulas. We presented an ap-
plication of the methodology to a large multi-line Italian insurance company
and we compared the results obtained with standard copula aggregation -
under different assumptions on the copula type - and the Bayesian copula
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model.
Unfortunately, at the moment, lack of enough statistically reliable data mine
the possibility of backtesting the model and the performance of goodness of
fit tests for establishing best fit copulas. However, we plan to explore these
aspects in the future. Extension of the Bayesian approach to other copula
functions (t or Archimedean) can also be addressed.

2.7 Appendix - Generating n-dimensional cop-

ulas

2.7.1 The Genest and Rivest approach

In this Appendix we present Genest and Rivest’s approach to the simulation
of n-dimensional Archimedean copulas with one parameter. This method
naturally encompasses the special case in which all the bivariate copulas
present the same parameter. The objective is to generate variates from the
distribution function

F (x1, x2, ..., xn) = C(F1(x1), F2(x2), ...Fn(xn))

where C is a copula function. If C is Archimedean, it admits this represen-
tation:

C(u1, u2, ..., un) = φ−1(φ(u1) + ...+ φ(un)),

where φ is called the generator of the Archimedean copula. Genest (1987),
Genest and Rivest (1993) and Lee (1993) showed how to generate full dis-
tributions by recursively simulating conditional ones. Assume a joint prob-
ability density function of a multivariate distribution (X1, X2, ..., Xn) exists.
Then, for i = 2, ..., n the density function of X1, ..., Xi can be written as:

fi(x1, x2, ..., xi) =
∂i

∂x1...∂xi
φ−1{(φ(F1(x1)) + ...+ φ(Fi(xi))} =

= φ−1(i){(φ(F1(x1)) + ...+ φ(Fi(xi))}
i∏

j=1

φ1 [Fj(xj)]F
(1)
j (xj)

where the superscript (j) denotes the j-th partial derivative. Hence, we
can compute the conditional density of Xi given X1, ..., Xi−1

Fi(xi|x1, ..., xi−1) =
fi(x1, ..., xi)

fi−1(x1, ..., xi−1)
=
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= φ(1)[Fi(xi)]F
(1)(xi)

φ−1(i−1){(φ(F1(x1)) + ...+ φ(Fi(xi))}
φ−1(i−1){(φ(F1(x1)) + ...+ φ(Fi−1(xi−1))}

Then, we obtain the conditional distribution function ofXi givenX1, ..., Xi−1:

Fi(xi|x1, ..., xi−1) =

∫ xi

−∞
fi(x|x1, ..., xi−1)dx =

=
φ−1(i−1){(ci−1 + φ(Fi(xi))}

φ−1(i−1)(ci−1

where ci = φ[F1(x1)] + ...+ φ[Fi(xi)].
Starting from these considerations, we present the algorithm that Lee

(1993)proposed to generate outcomes from an n-dimensional Archimedean
copula:

1. Generate n independent uniform random numbers Ui ∼ U [(0, 1)] for
i = 1, ...n

2. Set X1 = F−1
1 (U1), c0 = 0.

3. Calculate Xi for i = 2, ...n recursively exploiting the properties of the
conditional distribution:

Ui = Fi(Xi|x1, ..., xi−1) =
φ−1(i−1){(ci−1 + φ(Fi(xi))}

φ−1(i−1)(ci−1)

2.7.2 Generating 4-dimensional Archimedean copulas

In the following subsections we report the algorithms to generate the 4-
dimensional copulas we used in the paper: the Clayton, the Frank and the
Gumbel ones. Please notice that closed form solutions can be obtained for the
former, while for the Frank and the Gumbel copula, numerical methods are
necessary to recover the variates. Throughout the section, θ1, θ2 and θ3 refer
to the corresponding bivariate copula parameter between dimension 1 and,
respectively, dimensions 2, 3 and 4, while (U1, ...U4) refers to a 4-dimensional
vector where where each of the Ui’s, i = 1, .., 4 generated independently from
a uniform distribution with values in (0,1). For the copulas we considered,
these parameters can be obtained simply from their relationship with the
sample Kendall’s τ :

1. Clayton: θ = 2τ
1−τ

2. Gumbel: θ = 1
1−τ
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3. Frank: τ = 1− 4
θ
[D1(−θ)− 1], where D denotes the Debye function of

order 1.

Notice that the parameters for Frank’s copula are obtained numerically
finding the zero of the equation that links them to Kendall’s τ .

4 dimensional Clayton copula

First, we recall the generator of the Clayton copula:

φ(t) = t−θ − 1

We then compute its inverse and its first three derivatives:

φ−1(s) = (1 + s)−
1
θ

φ−1(1)(s) = −1

θ
(1 + s)−

1
θ
−1

φ−1(2)(s) = −1

θ
(−1

θ
− 1)(1 + s)−

1
θ
−2

φ−1(3)(s) = −1

θ
(−1

θ
− 1)(−1

θ
− 2)(1 + s)−

1
θ
−3

Then, after having drawn (U1, ..., U4), we compute the random variates from
the Clayton copula in the following way:

X1 = F−1
1 (U1)

X2 = F−1
2

 θ1

√√√√ 1[
1
θ1

+1

√
1
U2
− 1
]
F1(x1)−θ1 + 1


X3 = F−1

2

 1

{
[

1
θ2

+2

√
1
U3
− 1
]

[F1(x1)−θ2 + F2(x2)−θ2 − 1] + 1}
1
θ2



X4 = F−1
4

 θ3

√√√√ 1[
1
θ3

+3

√
1
U4
− 1
]

[F1(x1)−θ2 + F2(x2)−θ2 + F3(x3)−θ3 − 2] + 1


As we remarked above, the form of the Clayton copula permits us to find

these analytical expressions for (X1, X2, X3, X4) generated with the Genest
and Rivers’ approach.
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4-dimensional Frank copula

Frank’s copula generation is somewhat more difficult than the generation
of the Clayton copula. We recall the copula generator, its inverse and its
derivatives up to the third order:

φ(t) = − ln
e−αt − 1

e−α − 1

φ−1(s) =
1

α
ln [1 + es(eα − 1)]

φ−1(1)(s) = − 1

α

1

1 + es(eα − 1)
(eα − 1)es

φ−1(2)(s) =
1

α

1

(1 + es(eα − 1))2
(eα − 1)es

φ−1(3)(s) =
1

α

1− es(eα − 1)

(1 + es(eα − 1))3
(eα − 1)es

From the expressions we derive below, it is easy to see that the high non-
linearity of the equations does not allow us to obtain closed-form solutions,
contrary to the Clayton copula:

X1 = F−1
1 (U1)

U2 =
eθ1F1(x1)

[
eθ1F1(x1) − 1

]
eθ1 − 1 + [eθ1F1(x1) − 1] [eθ1F2(x2) − 1]

U3 =

[
eθ2F3(x3) − 1

] [
eθ2 − 1

]
{eθ2 − 1 +

[
eθ2F1(x1) − 1

] [
eθ2F2(x2) − 1

]
}2

{[eθ2−1]2 + [eθ2F1(x1) − 1] [eθ2F2(x2) − 1] [eθ2F3(x3) − 1]}2

U4 =

[
eθ3F4(x4) − 1

] [
eθ3 − 1

]
{
[
eθ3 − 1

]3 − P}{[eθ3 − 1
]2

+Q}3

{[eθ3 − 1]3 + P}3{[eθ3 − 1]2 −Q}
where

P =
4∏
i=1

eθ3Fi(xi) − 1

and

Q =
3∏
i=1

eθ3Fi(xi) − 1

We find the zeros of the above equations to obtain (X1, X2, X3, X4).
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4 dimensional Gumbel copula

As for the Frank copula, the high non-linearity of the relationship between
Ui’s and the Xi’s do not permit to obtain analytical expressions. Resorting
to numerical methods, anyway, one can easily solve the equations derived
from the properties of conditional distributions and generate variates from a
4 dimensional Gumbel copula. First, we recall the generator of the bivariate
Gumbel copula with parameter θ, its inverse and the derivative of the latter
up to the third order:

φ(t) = (− ln t)θ

φ−1(s) = e−t
1
α

φ−1(1)(s) = − 1

α
t

1
α
−1e−t

1
α

φ−1(2)(s) = − 1

α2
t

1
α
−2e−t

1
α (1− α− t

1
α )

φ−1(3)(s) = − 1

α3
t

1
α
−3e−t

1
α (1− 3α + (2α− 3)t

1
α + 2t

2
α )

Applying Genest and River’ s procedure we get:

X1 = F−1
1 (U1)

U2 =
e−[φ(F1(x1))+φ(F2(x2))]

1
θ1 [φ(F1(x1)) + φ(F2(x2))]

1
θ1
−1

e−φ(F1(x1))
1
θ1 φ(F1(x1))

1
θ1
−1

U3 =
e−[P+φ(F3(x3)]

1
θ2 [P + φ(F3(x3))]

1
θ2
−2
[
1− θ2 − (P + φ(F3(x3)))

1
θ2

]
e−P

1
θ2 P

1
θ2
−2
[
1− θ2 − P

1
θ2

]

U4 =

e−[Q+φ(F4(x4))]
1
θ3 [Q+ φ(F4(x4))]

1
θ3
−3
[
2θ23 − 3θ3 + 1 + (2θ3 − 3)(Q+ φ(F4(x4)))

1
θ3 + 2(Q+ φ(F4(x4)))

2
θ3

]
e−Q

1
θ3 Q

1
θ3
−3
[
2θ23 − 3θ3 + 1 + (2θ3 − 3)Q

1
θ3 + 2Q

2
θ3

]
where

P =
2∑
i=1

φ(Fi(xi))

and

Q =
3∏
i=1

φ(Fi(xi))
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Figure 2.1: This Figure shows the density of the predictive distribution of
OLLs obtained using a Gaussian copula with correlation matrix estimated
from company data on losses (red) and using the Bayesian Gaussian model
(blue).
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Figure 2.2: This Figure shows the density of the predictive distribution of
OLLs obtained using a Gaussian copula with the correlation matrix given by
the CEIOPS (red) and using a Bayesian Gaussian model (blue).
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In this second part of my Dissertation I propose a theoretical model
that studies optimal capital and organizational structure choices of finan-
cial groups which incorporate two or more business units. The group faces
a VaR-type regulatory capital requirement. Financial conglomerates in-
corporate activities in different sectors either into a unique integrated en-
tity, into legally separated divisions or in ownership-linked holding com-
pany/subsidiary structures. I model these different arrangements in a struc-
tural framework through different coinsurance links between units in the
form of conditional guarantees issued by equityholders of a firm towards the
debtholders of a unit of the same group. I study the effects of the use of such
guarantees on optimal capital structural and organizational form choices. I
calibrate model parameters to observed financial institutions’ characteristics.
I study how the capital is optimally held, the costs and benefits of limiting
undercapitalization in some units and I address the issues of diversification
at the holding’s level and regulatory capital arbitrage.



Chapter 3

Optimal Capital Structure and
Organizational Choices in
Financial Conglomerates

3.1 Introduction

Conglomeration in the financial sector has gained growing importance since
the beginning of the Nineties. As soon as the legal barriers which prevented
firms involved in different financial sectors from merging disappeared almost
everywhere, institutions of large size and involved in different sectors started
to merge. Even the United States, that since the Thirties imposed separation
between the three sectors, favoured this phenomen through the adoption of
the Gramm-Leach-Bliley Act in 19981, which allowed banks, insurance com-
panies and securities to merge. The consequence was the rise of financial
conglomerates2, which are now widespread and represent a large part of the
actors in the market. The possible diversification benefits arising from the
combination of non-perfectly correlated activities seem to provide per se a
first rationale for their success3. Diversification indeed should reduce the
probability of entering financial distress - as a consequence of lower cash
flow volatility - and the need for external, more costly, financing. Another

1For a detailed description of the Act and its consequences on the banking sector we
refer the reader to Macey (1999).

2Financial conglomerates are formally defined(Dierick (2004)), as financial institutions
that incorporate activities in at least two out of the three financial sectors (banking,
securities and insurance).

3See, for instance, Dierick (2004) for a comprehensive review of financial conglomerates’
main characteristics.

63
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potential benefit of conglomeration is the creation of synergies in costs and
revenues4. However, the extent to which these economies of scale and scope
can effectively be realized is still an open issue in empirical studies5.
What is not arguable is that the trend towards financial conglomeration has
posed new challenges to the regulators. Coordination between supervisors of
the different sectors at the national level, besides international harmonization
of the rules in place, has become a key issue. Moreover, the recent financial
crisis brought to anyone’s attention that the interconnection between mar-
kets, the increasing concentration, the high leverage6 and the existence of too
big to fail or systemic important entities pose a serious threat to the whole
economic system. Regulators are trying to adapt the regulatory framework
and mitigate these problems. At the end of 2009 the Solvency II Directive
on the capital adequacy of insurance companies has been approved and will
become effective in the next few years and the Basel committee is already
working on a revised set of rules for the banking industry.
The aim of this paper is to investigate theoretically the capital structure
decisions of financial firms subject to capital requirements and how they dif-
fer across the different organizational structures financial conglomerates can
adopt. We do this in the context of a two-period static framework model.
Firms face a unique source of risk, operating cash flow volatility. We consider
frictions in the market in the form of proportional taxes and default costs.
The units are financed through debt or equity. Since debt is tax advantaged,
a trade-off between tax savings through leverage and default costs emerges.
Firms maximize their value through the choice of principal debt and have to
meet an equity capital requirement. We reproduce the different arrangements
financial conglomerates can take through the presence of different coinsur-
ance links, in the form of guarantees of rescue in case of default, between
divisions.
First, we focus on the optimal behavior of the different arrangements a finan-
cial group can assume and compare their properties in terms of value, debt
capacity and default costs. We characterize analytically the case in which
the firm does not lever up.
Second, we address the issue of the optimal allocation of equity capital among

4Vennet (2002) carried out an empirical analysis of cost and revenue synergies of Euro-
pean conglomerates, concluding that revenue efficiency is improved after conglomeration,
but there is no evidence of scale effects on the cost side.

5See for instance Laeven and Levine (2007), Schmid and Walter (2009) and
Van Lelyveld and Knot (2009).

6Hellwig (2009) reports that institutions like Deutsche Bank and UBS had narrowed
their equity capital buffer down, reaching a level between 2 and 3% at the time of the
subprime crisis.
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divisions and of how the capital requirement affects it. We find that when
consolidated supervision is in place - i.e. capital adequacy is required at the
group’s level - an uneven distribution of equity capital among divisions op-
timally arise. In this case, financial conglomerates isolate the risk of default
in one thinly capitalized unit, which exploits tax savings through leverage
and bears high default costs. This optimal arrangement is also the one that
maximizes default costs, which are a deadweight cost to the economy. Solo
supervision - i.e. capital adequacy is prescribed at the single entities’ level -
avoids this problem and can make holding company/subsidiary (HS) struc-
tures emerge as both the privately (value maximizing) and the welfare (de-
fault costs minimizing) optimal arrangements.
Third, we address the issue of capital arbitrage when units in the same group
are subject to different regulatory constraints. We give a characterization of
the optimal arrangement under such an asymmetry.
The paper is structured as follows: Section 3.2 briefly reviews the related lit-
erature on financial conglomerates and their modelling, section 3.3 describes
how financial groups are legally organized and supervised in the real world.
Section 3.4 presents the model and some analytical results. Section 3.5 and
Section 3.6 provide numerical analysis for different organizational structures.
Section 3.7 concludes.

3.2 Related Literature

Recently, some papers focused on the optimal organizational choice of finan-
cial conglomerates. Dell’Ariccia and Marquez (2010) analyzed the trade-off
between branches or subsidiaries structures for cross-border banking groups
facing macroeconomic risks and exogenous capital constraints. Harr and
Rønde (2003) studied a similar problem for multinational banks facing capi-
tal requirements, moral hazard and adverse selection problems. Gatzert and
Schmeiser (2008) analyzed the different arrangements financial conglomerates
can take and focused on the diversification benefits exploitation and share-
holder value, under an exogenous capital structure. We contribute to this
stream of theoretical literature by studying simultaneously the endogenously
optimal organizational and financing choices of financial conglomerates sub-
ject to capital requirements.
The literature has also devoted a strong effort to study the interplay between
capital regulation and the risk-taking incentives of banks. Freixas, Lóránth,
and Morrison (2007) focus on endogenous risk taking choices of banks under
asymmetric information. They argue that socially excessive risks are under-
taken by financial institutions in the absence of capital requirements. In this



CHAPTER 3. FINANCIAL CONGLOMERATES 66

paper, we give theoretical support to their hypothesis, describing the inter-
actions between financing constraints and firms’ optimal decisions and their
impact on endogenously determined default costs, default probabilities and
recovery rates.
We draw our modelling set up from Leland (2007) and Luciano and Nico-
dano (2010). They both study the optimal capital structure choices of uncon-
strained commercial firms in a structural model. We adapt their framework
to regulated firms by introducing financing constraints. We also perform
some numerical analysis and we calibrate the model to the observed features
of financial institutions. By assuming perfect information and no agency
costs, we depart from Kahn and Winton (2004) and Freixas, Lóránth, and
Morrison (2007), who study the problem of interdivisional optimal capital
allocation for financial institutions under different market frictions, related
to informational asymmetries.
A number of papers focused on the creation of coinsurance opportunities
through conglomeration or capital and risk transfer instruments. Lewellen
(1971) first argued that imperfect correlation between units can increase debt
capacity. Flannery, Houston, and Venkataraman (1993) extended this result
analyzing joint vs. separate incorporation in a model with corporate taxation
and trade-off between the tax advantage and agency costs - due to under-
investment - of debt. Leland (2007) carefully explored the purely financial
synergies of merging two - possibly asymmetric7 - units, finding that diversifi-
cation between cash flows and pooling (i.e. risk sharing among units) allows
the firm to increase debt capacity and value relative to comparable stand
alone companies, if divisions’ characteristics are not too different. When this
is the case, instead, conglomerates are penalized by their reduced capital
structure flexibility. We analyze the effects of cash flow pooling - which is
implicitly an unconditional rescue guarantee among units - in financial con-
glomerates. We explore different ways of recognizing diversification benefits
when computing the capital requirement. We find that joint incorporation
can be sub-optimal also when units have the same characteristics and the
same cash flow distribution.
Following Luciano and Nicodano (2010) we model holding company/subsidiary
structures as issuers of binding unilateral or mutual support commitments,
conditional on the ability of the guarantor unit to cover both the obligations
of the insolvent beneficiary and its own ones without experience default.
The existence of such formal or informal guarantees is supported by previous

7Throughout the paper, the term ”asymmetric” units will refer to divisions whose
characteristics differ for at least one parameter. It does not mean that the distributions
of their cash flows are asymmetric in a statistical sense.
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studies (Boot, Greenbaum, and Thakor (1993), Khanna and Palepu, 2000).
Luciano and Nicodano (2010) show that these conditional guarantees are al-
ways optimal with respect to the no guarantee case and that the units of
a group always specialize either as a guarantor or as a beneficiary. In this
paper we find that, when units are subject to capital requirements, mutual
guarantees are in general more effective than unilateral ones: in most cases,
each unit of a ”regulated” holding/subsidiary structure both provides and
receives support optimally.

3.3 Financial Groups and their supervision

3.3.1 Financial conglomerates and coinsurance

In this section we briefly discuss how financial conglomerates set up and how
they are supervised.

Dierick (2004) surveys the corporate structures of financial conglomerates
and identifies four main models:

1. horizontal groups (HG), in which no direct link exists between the
different units,

2. integrated conglomerates (IC), which operate as a unique company,

3. holding company-subsidiary structures (HS), in which units are legally
and operationally separated, but are connected through ownership or
control links,

4. holding company models (HCM), in which a non-operating entity8 con-
trols one or more operating subsidiaries9.

Stand alone companies (SA) which are not linked through any control
structure constitute HGs10. They do not exploit any coinsurance opportunity,
but they can take advantage of full capital structure flexibility. Integrated
conglomerates (IC) set up a unique entity which merges the cash flows of its

8On top of the structure lies a Non Operating Holding Company (NOHC), which is
paradoxically sometimes less strictly regulated than standard holdings.

9Recently, some OECD economists (Blundell-Wignall et al., 2009), hinted at NOHC as
a possible instrument to avoid systemic and counterparty risk in a crisis. Anyway, they
assume no coinsurance and capital transfer allowed between the units. So, what they have
in mind is equivalent to horizontal groups, with the on-top company providing economies
of scale and scope through centralized IT and back-office functions.

10The structure of an HG consists usually also of an ”umbrella” corporation on top of
it, which has the purpose of establishing their common ownership.
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units and files a unique balance sheet. Hence, divisions provide unconditional
coinsurance for each others’ debt repayment. Coinsurance in HS structures is
provided by the possibility of risk and capital transfers between the holding
and its subsidiaries.

3.3.2 The supervision of financial groups

A fundamental difference between financial and non-financial companies is
that, given the key role they play in the economy, the former are subject
to more stringent capital standards. In particular, after the first Basel ac-
cord the focus of supervision of financial groups has primarily concerned the
avoidance of double gearing - i.e. using the same capital to hedge against
different risks11 - and the development of internal models that could link
capital standards to the risk characteristics of firms. After the recent finan-
cial crisis, the focus of regulators seem to have shifted towards the avoidance
of excessive leverage and the limitation of systemic risk. Nonetheless, the
growing importance of conglomeration12 and bancassurance recently led to
focus on cross-sectoral regulation. In particular, two main issues seem to
be particularly important: how to account for within and between sector
diversification at the holding level13 and how to prevent regulatory capital
arbitrage. Firms can in fact exploit diversification benefits and asymmetries
in the supervisory rules at their own advantage14.
According to the Joint Forum document 2010, there are two possible ap-
proaches to the supervision of a group: accounting consolidation, which treats
the group as a single entity, or risk-based aggregation, according to which
capital requirements apply to the single entities and are then aggregated in
order to give a group-wide figure. Even if under Basel II requirements have
to be met at a consolidated level, insurance undertakings in a financial group
have to be treated separately from their banking affiliates. Hence, both ap-
proaches coexist in the Basel/Solvency framework: when firms in the group
belong to the same sector a consolidated approach is followed, while capital
requirements are computed separately for affiliates involved in different in-

11In particular, from an economic capital perspective, this means using the same capital
to hedge against risks in two different entities of the group.

12The FSA agency in 2007 recognized that, for example, the four largest Japanese banks
are financial conglomerates, combining undertakings in each sector.

13EU regulators, prescribing de-consolidation between banking and insurance undertak-
ings belonging to the same group, decided to rule out inter-sectoral diversification benefits,
while they can be taken into account in internal models when units belong to the same
sector.

14In particular, banking and securities on one side and insurance on the other are subject
to different capital adequacy standards.
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dustries. This situation can provide incentive to shift assets from banking to
insurance undertakings and viceversa when capital arbitrage is possible.
Recently, during the debate on the Solvency II framework, an interesting
Group Support Regime framework has been proposed and highly discussed.
It intended to legally bind holding companies to intervene to meet their sub-
sidiaries’ solvency capital requirements. Its conceptual innovations lied in
stressing the role of intergroup guarantees and capital transfers and in the
explicit regulation of capital fungibility within the units. In particular, the
proposal prescribed that each subsidiary should hold enough capital to meet
its MCR, but the capital buffer between the MCR and the SCR could be
covered through transfers from the holding company, provided that the over-
all group SCR, equal to the sum of the solo SCRs, was reached. Thus, the
proposal explicitly tackled two of the problems we will discuss in the follow-
ing sections. First, it somehow gave guidelines on where to hold the capital
inside a group. Second, it highlighted the possibility of using intra-group
guarantees as regulatory instruments. However, the Group Support Regime
was finally dropped in the final draft of the Directive, in favour of a consoli-
dated approach already used in the Basel II set up. In the paper, we analyze
theoretically the potential benefits and shortcomings of adopting both these
approaches.

3.4 Modelling financial conglomerates

In the following sections we model the different arrangements can take.
An entrepreneur wants to set up a financial business made up of N units
at time 0. The divisions can either be incorporated into legally separated
- stand alone - entities which create an horizontal group, into a unique en-
tity, the integrated conglomerate, or into a control-linked holding/subsidiary
structure.

3.4.1 Basic set up: the stand alone firm and the HG

We describe our basic model for stand alone firms (SA). This section reviews
Leland (2007)’s model, establish some of its properties and describes how we
adapt it to financial firms through the introduction of a capital requirement.
An entrepreneur sets up a SA (which we denote with the subscript i) which
has a future exogenous random operating cash flow Xi over an horizon of T
years. The problem he faces concerns how to finance this future cash flow at
time 0, being subject to proportional taxes and dissipative default costs. The
institution can choose between two types of financing instruments: debt and
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equity. Debt is modelled as a zero-coupon risky bond with maturity T15. The
entrepreneur chooses the nominal value Pi the firm issues and it has to repay
at time T. Debt has a fiscal advantage, since interests are tax-deductible.
We define XZ

i as the tax shield, i.e. the level of operating cash flows under
which the firm pays no taxes, since interest deductions offset them16:

XZ
i (Pi) = Pi −D0i (3.1)

where D0i(Pi) represents the value of debt at time 0.
Due to the presence of the tax shield, a firm can increase value through

the use of leverage. The expected value of tax savings is

TS0i(Pi) = τiφE
[
Xi1{Xi<XZ

i } +XZ
i 1{Xi≥XZ

i }

]
(3.2)

where τi is the proportional effective tax rate, φ =
1

(1 + r)T
is the discount

factor and r is the exogenous risk-free interest rate in the economy and E[·]
denotes the mathematical expectation operator.

Equity is a residual claim and represents the own funds the firm has.
Debtholders and equityholders evaluate their claims on the firm at time

0 in a risk-neutral environment as the discounted present value of their ex-
pected future payoffs. At time T , cash flows are realized and proceeds are
distributed to the stakeholders of the firm. The firm enjoys limited liability.
The tax authority has absolute priority and it is repaid first. Debt claimants
receive income net of taxes up to the principal Pi, while equityholders are en-
titled to proceeds only if the firm is solvent and receive cash flows after taxes
and debt repayment. If cash flows realized at time T are not sufficient to
meet in full the debt obligation to bondholders the firm is declared insolvent.

Leland (2007) defines XD
i as the distress threshold, i.e. the level of cash

flows necessary to repay debtholders in full at the end of the horizon:

(1− τi)Xi + τiX
Z
i = Pi (3.3)

XD
i =

Pi − τiXZ
i

1− τi
= Pi +

τiD0i

1− τi
(3.4)

15Our modelling of debt as a risky long-term zero-coupon bond cannot accurately repre-
sent the whole bunch of debt instruments (deposits, policies, bond issues) a financial firm
can issue. Anyway, we remark that short-term forms of debt can be thought of as contin-
uously rolled over up to the end of the horizon and we can account for deposit insurance
and other investors’ protection systems when calibrating model parameters. In the end,
we do not seem to lose much by modelling debt parsimoniously as a zero-coupon bond.

16Notice that interests are deductions: if Pi − D0i exceeds realized cash flow Xi, no
reimbursement is obtained: no carry-forward is allowed.
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We can easily notice that XD
i is always greater than XZ

i , since D0i ≥
0, 0 ≤ τi ≤ 1.

Equityholders receive then

Ei = (Xn
i − Pi)

+ (3.5)

were Xn
i indicates cash flow net of taxes

Xn
i = (1− τi)Xi + τiX

Z
i . (3.6)

Debtholders receive

Di = Xα
i 1{0<Xi<XZ

i } +Xn,α
i 1{XZ

i <Xi<X
D
i } + Pi1{Xi>XD

i } (3.7)

where Xα is the realized cash flow net of default costs:

Xα
i = (1− αi)Xi (3.8)

and Xn,α represents realized cash flows net of taxes and default costs:

Xn,α
i = (1− αi)Xi − τi(Xi −XZ

i ) = (1− αi − τi)Xi + τiX
Z
i (3.9)

Default costs are proportional to income: αi represents the fraction of
operating cash flows lost due to the costs associated with bankruptcy.

The present value of these expected costs of default is

DC0i(Pi) = αiφE
[
X1{Xi<XD

i }

]
. (3.10)

These costs represent a deadweight loss to the economy, while expected
levied taxes are

T0i(Pi) = τiφE
[
(X −XZ)+

]
. (3.11)

The discounted present values of payoffs to equityholders and debtholders
represent the market values of equity and debt respectively:

E0i(Pi) = φE
[
(Xn

i − Pi)
+] (3.12)

D0i(Pi) = φE
[
Xα
i 1{0<Xi<XZ

i }
+Xn,α

i 1{XZ
i <Xi<X

D
i }

+ Pi1{Xi>XD
i }

]
(3.13)

We can establish some properties of equity and debt values for a stand alone
firm. In particular, the following properties hold:
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Proposition 3.4.1 1. The value of debt D0(P ) is concave in P and its
derivative with respect to P is bounded above by 1 and below by −1−τ

τ
.

2. The value of equity E0(P ) is decreasing and convex in P .

Proof. See Appendix A. Being in the context of a structural model, we

remark that default probabilities, DPi, and recovery rates, RRi (conditional
on default) are endogenous:

DPi(Pi) = Pr[Xi < Xd
i ] (3.14)

RRi(Pi) =
E
[
Xα
i 1{0<Xi<XZ

i } +Xn,α
i 1{XZ

i <Xi<X
D
i }

]
Pi Pr[Xi ≤ Xd

i ]
(3.15)

Total value V0i is obtained summing up debt and equity market value at
time 0 (D0i and E0i, respectively).

Capital requirement for a SA

Firms have to fulfill a minimum own-funds (equity) requirement at time 0.
We model it as a Value-at-Risk bound evaluated on operating cash flows -
which, being the only random variable17, captures the whole uncertainty the
company faces. Firms that do not match this equity standard at time 0
are not allowed to exercise their activity and hence cannot set up. Such a
capital requirement is in the spirit of the Solvency/Basle II Solvency Capital
Requirement (SCR) but, at the same time, it is also a Minimum Capital Re-
quirement (MCR), since firms are not allowed to set up if they do not meet
it.
We define the distribution of future losses as Li = −Xi and we formally intro-
duce the capital adequacy constraint as a Value at Risk on their distribution
at a confidence level βi at a certain time horizon:

E0i(Pi) ≥ max(0, V aRβi(Li)) (3.16)

17Since the distribution of cash flows is known, we depart from the stream of literature
that focused on the asymmetric information problems related to the disclaim of finan-
cial institutions’ risk to the regulators. Here, we assume that the capital requirement is
computed in an internal-model fashion and, as it happens in reality, that the information
disclaim, calibration and validation of the model is subject to the approval of the regulator.
Hence, both the company and the regulator have of full knowledge of this distribution.
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Value maximization

The entrepreneur chooses the amount of principal debt P0i to issue in order
to maximize firm value18. Hence, optimal capital structure is determined as
the solution of the following program:

max
Pi

V0i(Pi) = max
Pi

[E0i(Pi) +D0i(Pi)] = V0i(P
∗
i ) (3.17)

s.t. E0i(Pi) ≥ max(0, V aRβi(Li)) (3.18)

Pi ≥ 0 (3.19)

Numerical solution is required, since (3.13) is an implicit equation (XZ
i and

XD
i both depend on D0i).

The VaR constraint counterbalances the risk-taking incentive provided by
limited liability19. The higher the cash flow volatility, the higher the level
of prudential equity capital required. The introduction of a VaR-type con-
straint, then, results in an important departure from Leland’s model where,
due to limited liability, optimal firm value is convex in cash flow volatility
and hence increasing from a certain level onwards.
We can rewrite the objective function highlighting the trade-off between tax
savings and default costs. Problem 3.17 is equivalent either to maximize the
sum of unlevered value and tax savings, net of default costs or to minimize
the sum of tax burdens and default costs:

V0i(P
∗
i ) = max

Pi
[V0i(0) + TS0i(Pi)−DC0i(Pi)] = (3.20)

= min
Pi

[T0i(Pi) +DC0i(Pi)] (3.21)

Obviously, the constraint is binding only when the optimal unconstrained
solution implies a level of equity which lies below the requirement. When this
is not the case, the firm is unaffected by regulation, since it finds it optimal
to hold more capital than what is prescribed and the unconstrained solution
coincides with the constrained one.
We now establish some properties of the constrained maximization program’s
solutions:

18The entrepreneur maximizes this sum because it represents the amount of money he
cashes in at time 0 as a transfer received by the debtholders (D0i) and as the present value
of his equity share in the firm (E0i), which is the amount he would earn from selling the
stocks.

19Increasing cash flow volatility allows to exploit the asymmetry induced by limited
liability, which shields the entrepreneur from downside losses.
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Proposition 3.4.2 There exists no unlevered (P ∗ = 0) solution in which the
constraint is non-binding when τ > 0. When the constraint is non-binding,

feasible solutions satisfy a property on the ratio
α

τ
.

Proposition 3.4.3 The constraint is binding at the optimum if the ratio
α

τ
lies below a certain function of the optimal solution g(P ∗).

Proof. See Appendix A.

HGs are constituted by SA firms. We simply notice that the absence of
any linkage between the units results in completely independent financing
decisions. The N units have siloed and not fungible capital. Thus, the total
value of the HG is given by the sum of the values obtained by solving the
maximization program (3.17) for each division.

3.4.2 Integrated conglomerates

An IC merges N units into one legal entity. Its capital structure is unique:
debt and equity are issued on the name of the merger entity rather than
on the single divisions’ ones. The cash flows realized by each division are
used to service the debt raised at the group’s level20: implicitly, each unit
is liable for each others’ debt21 and coinsurance is present in the form of a

20Total operating cash flows are given by the sum of the ones realized by each division:

XC =

N∑
i=1

Xi. (3.22)

Hence, for what concerns the first two moments:

E[XC ] =

N∑
i=1

E[Xi], (3.23)

σ2[XC ] =

N∑
i=1

σ2 [Xi] + 2

N∑
i=1

∑
i<j

ρi,jσiσj (3.24)

=

N∑
i=1

N∑
j=1

Cov(Xi, Xj) (3.25)

where σ2[Xi] denotes the variance of cash flows for the i−th unit and ρij the (Pearson’s)
correlation coefficient between cash flows of units i and j.

21Financial literature often use the term ”branches” structure to indicate an IC, in which
capital structure is unique and units are liable for each others.
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mutual unconditional rescue guarantee between divisions. As a consequence,
there can then be states of the world in which one or more units would be
insolvent if taken individually, but the IC is not, since units with positive
net income provide enough cash flows to repay debtholders. On the contrary,
there might be divisions which would be solvent individually and are dragged
into default by the bad performances of the other units.

The VaR capital requirement consists of a unique constraint, computed
either on the joint distribution of losses or as the sum of the constraints
computed individually on each unit:

V ∗0C(P ∗C) = max
PC

V0C(PC) = max
PC

[E0C(PC) +D0C(PC)] (3.26)

s.t. E0C(PC) ≥ max (0, V aRβC (LC)) or (3.27)

E0C(PC) ≥
N∑
i=1

max (0, V aRβC (Li)) , (3.28)

PC ≥ 0 (3.29)

where PC , E0C(PC) and D0C(PC) denote respectively the principal, the
equity and the debt value of the IC.
Notice that the constraint (3.27) accounts for diversification effects across
units when computing the constraint, while the (3.28) one does not. The
choice of whether to account for these effects in the capital requirement is a
highly debated theme. Diversification at the group’s level is a real economic
phenomenon if it captures diversification benefits which are not already ac-
counted for at the single risk aggregation level. The extent to which this
holds true is not clear22. Hence, these two constraints model the two oppo-
site extreme situations: recognizing diversification effects according to the
correlation between cash flows and not recognizing them at all when com-
puting the capital requirement.
Payoffs to debt and equityholders are derived in the same way as in the stand
alone case.

22Kuritzkes et al. (2003) try to compute the possible diversification effects within single
risk-factors, within business lines and across business units, possibly involved in different
sectors, suggesting that incremental benefits from this last diversification type are modest
(5%-10%). An HM Treasury (2008) technical report recognizes that group SCR is generally
expected to be lower than the group’s constituent parts solos.
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3.4.3 Holding/Subsidiary structures

In a HS, units are linked together through a control structure, which is exer-
cised through an infinitesimal share holding. Hence, no cash dividend trans-
fers involve the subsidiary and the equityholders of the holding company23.
Parent companies drive their subsidiaries’ financing choices. Each of the N
units in the HS can issue an amount of debt principal Pi on its own name
and these amounts are decided by the same individual, the entrepreneur who
owns the HS.

Group Support - Conditional Guarantees

As we already mentioned, we follow Luciano and Nicodano (2010) and we
assume that units are linked by legally enforceable rescue guarantees. From
now on, we consider an HS in which there are two units (N = 2), that we will
simply refer to as a holding company (H) and a subsidiary (S). Guarantees
can be either unilateral or mutual. In the first case one of the two firms,
the issuer, commits itself to transfer cash to the beneficiary when it is able
to avoid its default without experiencing it itself. In the second case, both
firms can act as guarantors or beneficiaries.

We formally describe the event of rescue RH associated to the unilateral
conditional guarantee issued by H:

RH(PH , PS) =

{
XS < XD

S

(Xn
H − PH) ≥ (PS −Xn

S )

}
(3.30)

We rewrite the second condition as XH ≥ h(XS), where

h(XS) =


PS + PH − τXZ

H −XS

1− τ
, 0 < XS < XZ

S

PS + PH − τ(XZ
S +XZ

H)

1− τ
−XS, XS ≥ XZ

S

 . (3.31)

and h(XS) is then the minimum level of XH which makes the transfer
possible.

23This assumption does not mean that holding’s shareholders are owners of the whole
capital of the subsidiary. We can extend the model including the existence of an ownership
share ω, that entitles the holding to subisidiary’s dividends. Dividends are transferred to
the holding when subsidiary’s operating income exceeds its solvency threshold.

The parent company can use these proceeds to repay its debtholders. Hence, dividend
transfers provide hedging against some bad states of the world, in which the holding is
rescued through dividends.
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We obtain a symmetrical expression for the rescue event RS associated to
the case in which S issues a unilateral guarantee:

RS(PH , PS) =

{
XH < XD

H

(Xn
S − PS) ≥ (PH −Xn

H)

}
(3.32)

where the second condition can be written as

h(XH) =


PS + PH − τXZ

S −XH

1− τ
, 0 < XH < XZ

H

PS + PH − τ(XZ
H +XZ

S )

1− τ
−XH , XH ≥ XZ

H

 . (3.33)

Notice that the two events RH and RS are disjoint but have both to be
considered when the guarantee is mutual.

The presence of the conditional guarantee enhances HS value with respect
to equivalently indebted SA companies24.

We denote as 1 and 2 the SA units which have characteristics (cash flow
distribution, default cost, tax rates) equivalent to H and S respectively. Fol-
lowing Luciano and Nicodano (2010), we can decompose the value of the
conditional guarantee into two components 25:

G(PH , PS) = Γ(P ∗1 , P
∗
2 )︸ ︷︷ ︸

rescue effect

+ ν0HS(P ∗H , P
∗
S)− ν0HS(P ∗1 , P

∗
2 )︸ ︷︷ ︸

leverage effect

(3.34)

where

Γ(P ∗1 , P
∗
2 ) = E

[
αSXS1{RH} + αHXH1{RS}

]
is the saving in default costs due to the presence of the guarantee26.

Hence, the effect of the guarantee is both direct (rescue effect), since it helps
in saving from default costs, and indirect (leverage effect), since it allows the
firm to lever up more and modify its tax savings and default costs.

Payoffs to debt and equity

We now focus on the payoffs to the stakeholders of the two units at time T .
Shareholders receive the difference between net cash flows and nominal debt

24This result is independent of the correlation between units, of the density functions
and of other parameters. Luciano and Nicodano (2010) obtain a sufficient condition for
which HS’s value with conditional guarantee is higher than mergers’.

25They consider also a third component, the ”limited liability”, which is however always
zero in our model.

26It is evident from expression 3.4.3 that Γ is positive as soon as RH or RS are non-empty
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value, when positive, and they transfer the amount of cash needed to rescue
their beneficiary company from default when their unit issued a conditional
guarantee:

ES(PH , PS) =
[
(Xn

S − PS)+ − (PH −Xn
H)1{RS}

]
(3.35)

EH(PH , PS) =
[
(Xn

H − PH)+ − (PS −Xn
S )1{RH}

]
(3.36)

The payoff received by the debtholders of H is

DH(PH , PS) = Xα
H1{0<XH<XZ

H},{XS6h(XH)} +Xn,α
H 1{XZ

H<XH<X
D
H },{XS6h(XH)} +

+PH

[
1{XH>XD

H }
+ 1{RS}

]
(3.37)

and, symmetrically, the payoff for the debtholders of S is

DS(PH , PS) = Xα
S1{0<XS<XZ

S ,XH≤h(XS)} +Xn,α
S 1{XZ

S <XS<X
D
S ,XH≤h(XS)} +

+PS

[
1{XS>XD

S }
+ 1{RH}

]
(3.38)

When the guarantee is unilateral, the above expressions hold, with 1{RB}=∅
and h(XG) = +∞ where B(beneficiary) and G(guarantor) can be either H
or S. The market values of equity (E0S and E0H) and debt (D0S and D0H)
of both units are simply obtained as the discounted present values of these
payoffs.

Capital Requirements in HS

We model the VaR-type constraint for the HS structure either as:

1. a unique capital requirement for the group, according to the consoli-
dated approach27

E0H + E0S > V arβH (LH) + V aRβS(LS) (3.39)

2. a unique capital requirement, that accounts for diversification effects
in its computation:

E0H + E0S > V arβH,S(LH + LS) (3.40)

27Under our set of assumptions, consolidation is full. The value of the participation in
a subsidiary does not enter the own funds of the holding, but enters the asset side. Notice
that in the constraints (3.39) and (3.40), E0S is however added to E0H , to take account
of the dividend transfer that would enhance holding’s shareholders value.
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3. two separate capital requirements for H and S, ”solo supervising” the
two units:

E0H > V arβH (LH), E0S > V aRβS(LS) (3.41)

Notice that the two levels βH and βS can differ, to account for the possible
diversity of capital adequacy rules when H and S are involved in different
sectors. The constraint establishes how much capital must be held by the
group and where. Consolidated constraints do not limit the distribution of
capital among units. This situation leaves room for two possible concerns.
First, potential abuse on subsidiary’s minority shareholders interests can be
exercised by the entrepreneur. Second, an uneven distribution of capital
between units could raise political issues when the entities involved in the
group supervision process belong to different countries. Potential solution to
this problem is given by the use of solo supervision, which requires a specific
level of capital to be held at the subsidiary’s level.

Value maximization

The entrepreneur maximizes the total value of the group VHS, by choosing
both PS and PH . The program he solves is then:

V ∗HS(P ∗S , P
∗
H) = max

PS ,PH

[
E0S(PS, PH) +D0S(PS, PH)+
+E0H(PS, PH) +D0H(PH , PS)

]
(3.42)

s.t. one of

(3.39) , (3.40), or (3.41)

PS ≥ 0, PH ≥ 0 (3.43)

Luciano and Nicodano (2010) prove in an unconstrained setting that the
subsidiary is never unlevered at the optimum. The following theorem states
instead that this can be the case when a capital requirement is introduced.
We provide necessary conditions for the subsidiary to be unlevered in the
constrained setting when there is a unilateral guarantee from H to S:

Proposition 3.4.4 a) There exists a set of necessary conditions for a solu-
tion of the HS constrained problem in which the subsidiary (P ∗S = 0) is unlev-

ered:

τ < 1
1−φ(1−F (0))

, α
τ
≤

dXZH
dPH

(1−F (XZ
H))(1−τ)(

1−τ
dXZ

H
dPH

)
 , with α

τ
=

dXZH
dPH

(1−F (XZ
H))(1−τ)(

1−τ
dXZ

H
dPH

) if

P ∗H > 0. b) There exists no solution in which both S and H are unlevered.

Proof. see Appendix B.
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3.5 Numerical Analysis: HG and IC

In this section we analyze the numerical application of our model for HGs
and ICs. First, we calibrate the parameters of a SA to the observed figures
of a financial firm in the medium class of speculative grade-rated companies.
Then, we analyze whether joint or separate incorporation of identical units
is optimal.

3.5.1 The Stand Alone constrained firm case: calibra-
tion

We calibrate our model parameters to the observed figures of financial insti-
tutions.
We assume that cash flowsXi are normally distributed, following Leland(2007):

Xi ∼ N(X0(1 + r)T , σ2
i T ) (3.44)

We set X0 to 100 and the risk-free rate r to 5%, as he does.
Since deposits and policies can be considered as having virtually infinite

maturity, we fix a time horizon T longer than the average maturity of bonds
issued by financial companies 28and we set it to 10 years. Hence, the mean
of Xi is 162.89. As Leland (2007) does, we calibrated cash flow volatility to
match our model-implied figures to a Ba/B Moody’s rating class for finan-
cial firms (medium segment of the speculative grade). Indeed, we set σ to
17%, using the annualized equity volatility of financial institutions provided
by Gropp and Heider (2010) and a linear transformation from Schaefer and
Strebulaev (2008). 10-year model implied default probability is 22.7%, which
is close to the Ba rating class observed one (19.1% according to Moody’s
(2009)). Since mixed evidence is found in empirical literature on the effective
tax rates of financial firms29, we follow Leland’s calibration for non-financial
companies, and set τ = 0.2. Finally, we set the bankruptcy costs rate α, which
is very hard to observe, to 10%, in order to obtain a leverage ratio of 82%30

(Harding, Liang, and Ross (Harding et al.),Gropp and Heider (2010)) and

28Recent Moody’s studies indicate average global bond maturity to 4.7 years
29Harding, Liang, and Ross (Harding et al.) point out that, based on FDIC Call reports,

the average effective tax rate for commercial banks in the U.S. ranges from 19.8% for small
firms to 32.7% for large ones.

30We use market leverage as a measure of leverage, following Gropp and Heider (2010)

L0(P ) = 1− E0(P )

(E0(P ) + P )
(3.45)
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Table 3.1: Optimal value of SA with different β
β = 99% β = 99.5%

V ∗0 84.37 84.13
P ∗ 107 97
L∗ 82.1% 77.7%
E∗0 23.39 27.80
D∗0 60.98 56.33
DC∗0 1.26 0.85
TS∗0 5.62 4.97
RR∗ 68.1% 67.7%
DP ∗ 22.5% 16.8%

a recovery rate of 68.1%, which match the common observed figures of fi-
nancial institutions. This value, way higher than the usual observed one for
bonds (around 40%), is in line with our assumption that debt comprises also
deposits and policies. Harding, Liang, and Ross (Harding et al.) report that
these instruments, which are fully or almost completely insured, account for
67% of financial institutions’ liabilities. Hence, our base case calibrated re-
covery rate seems to fit well our assumptions. Unlevered firm value is 80.00.
Optimal nominal debt level is 107. Following the general practice used for
banking firms, we calibrate our base case setting the regulatory requirement’s
β to 99% and compute the VaR constraint on a one-year horizon31, under
the hypothesis that operating cash flows are identically distributed in time.
Annualized standard deviation of cash flows is then 17.00.
Table 3.1 presents the optimal figures of a stand alone company, when β is
set to 99% and 99.5%.

3.5.2 Integrated conglomerates

We consider an IC which merges two units having the same characteris-
tics of the SA unit described in the previous section 3.5.1. Cash flows are
non-negatively correlated32 and normally distributed. We explore whether
the diversification effects of pooling the cash flows from correlated activities
make the IC more valuable than the HG.

31Kretzschmar, McNeil, and Kirchner (2010) provide a theoretical framework for eco-
nomic capital modelling and apply it to a sample of financial institutions. When using a
VaR measure, they set the confidence bound to 99%, and the horizon to one year, as we
do.

32We do not explore negative correlation cases since evidence suggests strong positive
correlation between firms involved in the financial sectors.
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Table 3.2: Integrated Conglomerates vs. Horizontal Groups
HG IC with div ρ = 0.5 IC no div ρ = 0.5

V ∗0 168.73 168.97 168.63
P ∗ 214 234 209
BL∗ 82.28% 86.62% 81.71%
E∗0 46.77 36.12 46.76
D∗0 121.96 132.85 121.87
DP ∗ 39.86%∗ 26.47% 17.70%
RR∗ 68.10% 71.58% 71.63%
TS∗0 11.24 12.39 10.68
DC∗0 2.52 3.42 2.06
Constraint 46.52 35.92 46.52

* The DP of the HG is the probability that at least one of the 2 units
experiences default.

The benefits from diversification can derive from two channels: coinsurance
between units and the reduction of regulatory capital when the VaR bound is
computed on the merged cash flows’ distribution. The two effects both have
the same sign, as coinsurance decreases with correlation and a less diversified
firm requires more prudential own funds.
Figure 3.1 compares the optimal value of an HG and of an IC. When the IC
has to satisfy a constraint which accounts for diversification effects, it is more
valuable than the SA for all correlation levels. It appears then that - purely
financial - diversification opportunities can be exploited. Value gains are
smaller for higher correlation between the cash flows of different units. For
low correlation levels, value gains in the IC derive more from the tax savings
obtained from leverage than from lower default costs. Up to a certain level of
correlation, both tax gains and default costs increase with leverage. Above a
certain correlation level (0.8 in our simulations), the capital requirement be-
comes binding. Further increasing correlation results in both tax savings and
default costs to decrease. The former shrinks faster, leading to smaller value
gains relative to the HG the higher the correlation (0.24 for ρ = 0.5, 0.13 for
ρ = 0.8, 0.06 for ρ = 0.9).

The equity capital required for an IC with uncorrelated units (23.35) to
set up at time 0 is halved compared to the HG required one (46.52)33. For all

33Notice that constraints are computed as V aR99% on a normal with mean −2µ/10 and
variance 2σ2/

√
10 for the HG case and on a normal with mean −2µ/10 and variance

σ2(2 + 2ρ)/
√

10 for the IC case, where µ, σ2 and ρ denote mean, variance and correlation
of the expected losses respectively.
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Figure 3.1: This Figure compares the optimal values of an IC and a SA
with changing correlation. When the capital requirement takes into account
diversification effects (’IC div’) IC outperforms SA for all values of correla-
tion. The opposite happens if the constraint is insensitive to different levels
of correlation (’IC no div’).
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levels of correlation the IC faces a lower capital requirement relative to the
HG. This allows it to raise a higher principal and enjoy greater tax savings.
Leverage increases from 82% to almost 87%. The default probability of an
IC is indeed lower than the one of one of the two SA (17% when ρ = 0.5 vs.
35%), but higher than the one of a joint default of both units of the HG
(5%).
The opposite happens when no diversification effects are considered: HG is
more valuable than the IC for all correlation levels. This is perhaps not sur-
prising, since it strengthens the result obtained by Flannery et al. (1993) in a
model in which tax advantaged debt generates an underinvestment problem.
They argue that, with perfectly correlated activities, jointly incorporated di-
visions are suboptimal relative to separately incorporated ones, due to the
lower flexibility of a unique capital structure. We obtain their result for all
positive correlation levels simply imposing a financing constraint that does
not allow for a diversification effect34. Hence, we shed some light on the role
of regulation as a driving factor in the choice of separately vs. joint incorpo-
ration. Table 3.2 reports the optimal results for a correlation level ρ = 0.5.
Expected default costs are remarkably lower than in the HG case (2.06 vs.
2.52), but this is not sufficient to offset the reduction in tax savings (10.68 vs.
11.24) and lead the IC to emerge as the optimal arrangement. Hence, value
gains of an IC relative to a HG when units are symmetric derive uniquely
from a ”constraint effect”.

3.6 Numerical Analysis: HS

In this section we study the optimal properties of an HS structure and their
sensitivity with respect to different financing constraints. We consider the
two cases of consolidated and solo supervision and we analyze the role of
legally binding support guarantees. We consider a HS made up of two units
with identical cash flow distribution, tax rates, default cost rates and whose
correlation between cash flows is ρ = 0.5.

3.6.1 Consolidated Supervision

Table 3.6.1 summarizes the results of our numerical analysis when the group
is subject to consolidated supervision. It shows optimal HS figures under

34Notice that in the unconstrained case and for Leland’s calibration for commercial
firms, coinsurance results in purely financial synergies to be exploited when symmetric
units are merged, for all correlation levels.
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Table 3.3: HS and HCM with consolidated constraint, ρ = 0.5
HS HCM

V ∗0 174.83 169.73
P ∗S 297 230
P ∗H 58 0
E∗0S 0.01 27.69
E∗0H 35.93 15.20
D∗0H 35.12 0
D∗0S 103.77 126.84
DP ∗H 4% 0.12%
DP ∗S 71.4% 26.88%
JD 3.7% 0.12%

DC∗0HS 6.81 2.85
TS∗HS 21.62 12.56

JD is the probability of joint default at T, while DPi is the selective default
probability of unit i. Units of HS are identical.

constraint (3.39).35

Unreported results highlight that when ρ is positive and units are sym-
metric HS always emerges as the optimal arrangement, since it maximizes
value with respect to its equivalent IC and HG.
As showed in Luciano and Nicodano (2010), without any limitation on equity
capital, the optimal choice for the firm would be to exploit the conditional
guarantee keeping the whole equity capital in one unit - which acts as the
guarantor - and issue debt only on the name of the other one, which is a
beneficiary of support only and never provides it. When we introduce a cap-
ital requirement which has to be met at a consolidated level, principals of
both units can instead be positive at the optimum. However, the guarantee
still turns out to be almost exploited one-way as in the unconstrained case.
Equity capital is kept in one unit which specializes in providing conditional
support to the other. Debt continues to be issued mostly on the name of
the other division, where high tax savings are generated. Optimality of HS
relative to the HG and IC structures is due entirely to these tax savings,
which are almost twice their HG and IC counterparts (21.62 vs. 11.24 and
12.39, respectively). As a consequence, the 10-year default probability of this
subsidiary is huge, 75.1%, and expected default costs are 5 times the ones
of a comparable SA (6.71 vs. 1.26). Rescue takes place with a probability
of 25%. The high recovery rate (56.85%) leads to moderate implied credit

35The intuition behind the results does not change when the financing constraint is met
at the consolidated level, but its level is the sum of the ”solo” ones, (3.40).
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spreads36 (6.10%). This value is however way (4 times) higher than the credit
spread observed for Ba/B firms according to Huang and Huang (2002) (165
basis points). On the contrary, the holding’s default probability (3.6%) is
8 times lower than the stand alone one and its expected default costs are
minimal (0.1). Summarizing, the HS optimally presents a safe holding com-
pany which exploits the high recovery rate and the conditional guarantee to
provide support to its subsidiary’s debtholders.
Despite being the privately optimal arrangement, HS emerges then in this
case as the less desirable one from the regulator’s perspective for many rea-
sons. First, because default costs, which are way higher in the HS than in
the other competing organizations, represent a deadweight loss in the econ-
omy. Second, because one of the two units has optimally almost zero equity
value.37 Group value enhancement is obtained at the expenses of the equi-
tyholders of the subsidiary and - in particular - of its minority shareholders.
Moreover, imagine the two units are incorporated in different countries: the
subsidiary will bring no capital in the market where is set, despite being a
very risky firm.38

3.6.2 Regulating subsidiaries

The results of the previous section highlight that a more equal distribution
of capital should be beneficial for the economy as a whole. In this section we
analyze the effects of introducing solo supervision, which is an instrument
the regulator has to drive HS’s choices.
Hence, we solve the maximization program (3.42) under the constraint (3.41).
We set βH = βS = 99%. The first column of Table 3.4 reports the optimal

36Model credit spreads are computed as

s∗i (Pi) = yi(Pi)− r = T

√
Pi
D0i
− 1 (3.46)

y∗i (P ∗i ) denotes than the yield of the risky debt of a unit at the optimum.
37This finding could point out a role of mutual guarantees in explaining the ”mystery

of zero leverage firms” Strebulaev and Yang (2006) point out. In particular, it could help
reconcile the fact that zero leverage firms do not seem to be concentrated among holding
companies or subsidiaries.

38Many factors prevent such a situation to arise in reality when the subsidiary is a reg-
ulated entity. First, when the subsidiary is a public company, the interests of minority
shareholders can not be threatened this way. Second, minimum capital standards or lever-
age ratios are generally required in order to enjoy the deposit insurance scheme that allows
the firm to offer its debtholders a secured amount of instruments and thus to experience
the high recovery rate we highlighted above as crucial. However, such a representation
can closely mimic what happens in reality when the subsidiary is an unregulated financial
company.
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Table 3.4: Optimal Value for HS, solo regulation
HS 2(H),1(S) MG 1(H),2(S) UG

V ∗0HS 169.34 169.06 168.85
P ∗HS 210 201 201
P ∗S 105 106 106
P ∗H 105 95 95
E∗0HS 46.91 51.13 51.57
D∗0HS 122.28 117.93 117.27
DP ∗S 3.85% 13.84% 13.82%
DP ∗H 3.85% 11.73% 15.16%
TS∗0HS 11.64 11.02 10.23
TS∗0S 5.82 5.85 5.38
TS∗0H 5.82 5.17 4.85
DC∗0HS 1.68 1.34 1.40
DC∗0S 0.84 0.75 0.62
DC∗0H 0.84 0.59 0.78

The ’HS MG’ column refers to a HS structure in which a Mutual Guarantee is in
place, while the ’HS UG’ one refers to a HS structure in which H is the guarantor

of S. 1 refers to the unit with β = 99.5%, while for 2 β = 99%.

figures of this arrangement, when the correlation between units ρ = 0.5.
Optimal total value drops from 174.83 when HS is subject to consolidated

supervision to 169.34. The optimal guarantee in place is mutual39. This
decrease in value is due to the reduction of total tax savings which is even
higher than the decrease in total default costs, which drop from 6.81 to 1.68
(1.91 when the guarantee is unilateral). This is a highly desirable outcome
from a welfare perspective, since the default costs of both units (0.84) are
lower than the stand alone ones (1.25) and groups’ figures are lower relative
to any other arrangement (2.52 in the HG, 3.42 in the IC with diversification
effects, 2.05 in the IC when no diversification is accounted for). Moreover,
taxes levied are higher than in the stand alone case. The optimal solution
presents the same level of principal in both units, which are less levered than
their stand alone counterpart (105 vs. 107): total debt capacity is the lowest
among all the arrangements. Obviously, the entrepreneur strictly prefers the
previous situation, since he cashes in more money at time 0. This is due
basically to the higher amount lent by the debtholders of the subsidiary.
However, even when regulated in this way, HS is value maximizing with
respect to other organizations. Hence, solo supervision, combined with the
presence of a legally binding conditional support guarantee issued by the

39The value of a HS with unilateral guarantee (unreported) is 169.07.
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holding to its subsidiary, is able to make HS structure both private and
welfare optimal, at least for some levels of correlation.

3.6.3 HCM

We reproduce the holding company model in a stylized way, as a parent
company which has little or no operating income40 and owns a merger of its
subsidiaries. We set the non-operating holding’s operating (NOHC) returns
as 9 times smaller than those of its subsidiaries, which are merged into a
unique entity and consider a unilateral guarantee from H to S. The group
meets its capital requirement at the consolidated level and we consider a
unilateral guarantee from the NOHC to its subsidiaries. The last column in
Table 3.3 reports the optimal figures of such an arrangement. When ρ = 0.5
the value of the HCM structure is higher than the IC and HG.

Optimal value is 169.43. Capital is held more in the larger subsidiary
(31.54) than at the holding company’s level (15.29), while debt is issued only
on the name of the controlled company. Since equity capital is more evenly
distributed between units, the problems we described for HS under consol-
idated supervision are avoided. Optimal holding’s equity value is higher
than the solo requirement (4.65), while the subsidiary’s one is correspond-
ingly lower. Despite a very high principal (219), the default probability of
the subsidiary (23.2%) is just slightly higher than the one of a stand alone
(22.3%). Rescue happens 9% of the times, even if the holding expects a re-
markably lower level of returns. The figures we obtained seem to reproduce
what happens in reality. Non operating holding companies do not issue debt
(P ∗H is 0) and thus are perceived as very safe (0.12% 10-year default prob-
ability). Very interestingly, such an arrangement outperforms comparable
ICs and HGs also when the two units have to meet their capital requirement
separately. Value is 168.89 and the capital distribution we described above
does not change much, since while the constraint in the subsidiary becomes
binding (41.87), the holding still keeps more capital than it is forced to and
uses this extra buffer to rescue its subsidiary in case of default (it happens
with a probability of 2.7%). The holding optimally levers itself, issuing a
principal debt of 16, contrary to what happens with the consolidated con-
straint. Consequently, it becomes more risky, raising its default probability
to 9.5% . The subsidiary, instead, issues a lower nominal amount of debt
than its HS counterpart (193), is slightly safer and experiences distress with
a probability of 20% in 10 years.

40Evidence (Edwards (1998)) shows that NOHC have assets of total size 10 times smaller
than their subsidiaries.
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3.6.4 Regulatory arbitrage in units subject to different
capital requirements

The term bancassurance indicates all the kind of relationships between the
banking and insurance industries and also the financial conglomeration be-
tween these two sectors. Empirical literature highlighted that diversification
of products and geographical areas when combining two units can lead to rev-
enue and cost advantages41. The difference in regulation between banking,
securities and insurance firms, which originates from the very nature of the
products and services they offer, along with de-regulation of these segments,
gives financial conglomerates possibilities and incentives to shift assets from
more to less demanding units in terms of capital requirements. In the cur-
rent regulatory environment, no diversification benefits are recognized when
computing capital requirements when units belong to different sectors42. In
this section we analyze the purely financial effects of a regulatory asymmetry
on capital structure. We consider a simple HS arrangement, made up of two
units which differ in the level of confidence of the VaR constraint. We set
the level of β to 99% for one entity and to 99.5% for the other one.
The last two columns of Table 3.4 report the optimal configuration when
β1 = 99% and β2 = 99.5%. Cash flow correlation is set to ρ = 0.5. The
HS is most valuable when there is a mutual guarantee in place between the
divisions. When a unilateral guarantee is in place, the optimal configuration
of the HS is the one in which the unit that faces the tighter capital require-
ment - unit 2 in this case - is the guarantor. Firm 1 can be capitalized less
and levered up more due to the conditional guarantee. The beneficiary is
not extremely leveraged anymore, since it is ”solo” supervised. In the uni-
lateral guarantee case, the group issues less debt in the unit that provides
support relative to the HG case (106 vs. 107) but levers up the beneficiary
more, exploiting the conditional rescue opportunities (rescue happens with
a probability of 9.68%). It has the same principal of the SA case, but debt
market value is improved by the insurance provided by the guarantee (57.07
vs. 56.33). The value of the HS arrangement under the mutual guarantee is

41Chen et al. (2006) empirically study bank and insurance M&As from 1983 to 2004.
They highlight the growing trend to conglomeration (2 transactions in 1983, 20 in 2004),
they find diversification effects in the bidder bank’s beta with the national stock index,
but no long-term significant wealth effect on the acquirer. Also, Chen, Li, Liao, Moshirian,
and Szablocs (2009) provide evidence in favour of the profitability of bancassurance, high-
lighting that revenue and cost savings are significant and that the latter are positively
related to the size of the operation.

42Herring and Carmassi (2008) provide a detailed survey of country-level supervision of
the different sectors and analyze possible benefits and disadvantages of creating a unique
cross-sectoral regulator as a response to such a problem.
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greater than that of an equivalent HG, 169.05 (168.71 when the guarantee
is unilateral) vs. 168.49, thanks to the value increase due to coinsurance.
Though mutual guarantees are optimal, the HS where unit I is the guarantor
of a unilateral guarantee is again preferred to the HG. The value increase is
again obtained despite a lower debt capacity (201 vs. 204 in the HG). When
can regulatory asymmetries (different βs across units) and size asymmetries
are coupled, we can reproduce the phenomenon of capital arbitrage due to
asset shifting. Luciano and Nicodano (2010) showed that larger firms should
optimally be the guarantors of unilateral guarantees. By means of our model,
we can analyze when a smaller firm optimally emerges as the guarantor when
subject to a stricter capital requirement.

3.7 Concluding comments

We analyzed optimal capital structure and ex-ante optimal organizational
form choices of regulated financial conglomerates. We abstracted from agency
problems and informational asymmetries to focus on the trade-off between
tax advantaged debt and default costs and coinsurance between units. The
presence of prudential regulation in the form of a VaR-type constraint op-
timally reduces the ex-ante risk-taking incentives of an entrepreneur who
maximizes his own initial cash flow. Firm’s capital structure choices are ob-
viously influenced by the capital requirements.
When monitored at a consolidated level, HS structures in which conditional
guarantees exist hold all their capital in one unit. As in Luciano and Nico-
dano (2010), we find thinly capitalized units in the optimum, raising both a
minority shareholder protection and a political issue. Moreover, these units
are highly levered and bear most of the default costs of the group, which are
higher than in any other competing organization. Capital is more equally
distributed and the group is more sound when units are regulated as ”solo”
entities. In this latter case, when firms can not freely allocate their equity
capital among units, private value drops but still HS can emerge as the pri-
vate optimal configuration. Moreover, HS structures in this case can bear
the lowest level of default costs, which are a deadweight loss to the economy.
Hence, our analysis suggests that enforcing conditional guarantees - in a way
similar to the one suggested by the Group Support Framework - inside groups
could enhance welfare, without altering the optimality of HS structures. We
also analyzed the case in which units are subject to different capital require-
ments and found that unilateral guarantees are optimally issued by the firms
which are more strictly regulated. We leave to further work the application
of our model to capital arbitrage, exploring the possible combinations of size
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and regulatory asymmetry.

3.8 Appendix A - Stand Alone Maximization

Problem

Before tackling the problem of the SA optimal solution, we establish some
properties for its debt, equity, tax shield and default threshold by proving
propositions 3.4.1, 3.4.2 and 3.4.3. Throughout this Appendix, we suppress
the index i for notational simplicity, since we refer to a stand alone firm.

Proof of proposition 3.4.1.
Let us first focus on showing part 1 of the proposition. First of all, we

prove that
dD0(P )

dP
is bounded above and below.

dD0

dP
= φ

[
−αdX

d

dP
Xdf(Xd) + τ

dXZ

dP

(
F (Xd)− F (XZ)

)
+ 1− F (Xd)

]
(3.47)

dD0

dP
=
−αXdf(Xd) + τ

[
F (Xd)− F (XZ)

]
+ 1− F (Xd)

1

φ
+

ατ

1− τ
Xdf(Xd) + τ(F (Xd)− F (XZ))

(3.48)

This is lower than or equal 1 if its numerator is lower than the denominator.
Then:

1

φ
+

ατ

1− τ
Xdf(Xd) ≥ −αXdf(Xd) + 1− F (Xd) (3.49)

=⇒ 1

φ
− 1 +

ατ

1− τ
Xdf(Xd) ≥ −αXdf(Xd)− F (Xd) (3.50)

This is true since the l.h.s is non negative

(
1

φ
≥ 1

)
while the r.h.s. is

negative. The inequality is strict as soon as r > 0 (φ < 1) .This com-
pletes the proof of 1 as an upper bound. For the lower bound, we check

whether
dD0

dP
> −1− τ

τ
. This would imply:

−ατXdf(Xd) + τ 2
[
F (Xd)− F (XZ)

]
+ τ − τF (Xd) > (3.51)

−(1− τ)

[
1

φ
+

ατ

1− τ
Xdf(Xd) + τ(F (Xd)− F (XZ))

]
(3.52)
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−ατXdf(Xd) + τ 2
[
F (Xd)− F (XZ)

]
+ τ − τF (Xd) > (3.53)

−1

φ
+
τ

φ
− ατXdf(Xd)− τ(F (Xd)− F (XZ)) + τ 2

[
F (Xd)− F (XZ)

]
(3.54)

τ − τF (Xd) > −1

φ
+
τ

φ
− τ(F (Xd)− F (XZ)) (3.55)

τ(1− F (Xd)) > −(1− τ)
1

φ
− τ(F (Xd)− F (XZ)) (3.56)

Which is always true since the l.h.s. is positive and the r.h.s. negative (even
with τ = 0).

Remark 3.8.1 We can not unequivocally sign the derivative of D0 with re-

spect to debt.
dD0

dP
is negative when

α

τ
≥

Pr(XZ < X < Xd) +
Pr(X > Xd)

τ
Xdf(Xd)

. Its

value when P = 0 is
dD0(0)

dP
= φ (3.57)

Before showing concavity, we need to prove some useful bound on the
derivatives of XZ and XD

Lemma 3.8.1 XZ
i and XD

i are both increasing in P and their derivatives

have upper bounds (
1

τ
and

1

1− τ
respectively)

Proof.

dXZ

dP
= 1− dD0

dP
. (3.58)

dXZ

dP
≥ 0 since

dD0

dP
≤ 1 and

dXZ

dP
<

1

τ
since

dD0

dP
> −1− τ

τ
(3.59)

dXd

dP
= 1 +

τ

1− τ
dD0

dP
. (3.60)

Hence,
dXd

dP
< 1 +

τ

1− τ
=

1

1− τ
and

dXd

dP
> 0. (3.61)

This concludes the proof of our lemma.
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We can now use this lemma and easily show the concavity of D0 with
respect to P :

d2D0

dP 2
=

−α
(
dXd

dP

)2

f(Xd)− αXdf(Xd)−
(

1− τ dX
Z

dP

)
dXd

dP
f(Xd)− τ

(
dXZ

dP

)2

f(XZ)

1

φ
+

ατ

1− τ
Xdf(Xd) + τ(F (Xd)− F (XZ))

(3.62)

The denominator is positive, hence in order to show concavity we have

to prove that the numerator is negative. Using lemma 3.8.1,
dXZ

dP
<

1

τ
and

dXd

dP
> 0 imply that all the terms in the numerator are non positive and that

at least the third is strictly negative. Hence
d2D0

dP 2
< 0.

This completes our proof of the first part of proposition 3.4.1.
Let us now turn to part 2.

The first derivative of E0 is given by
dE0

dP
= φ

∫ +∞
Xd f(x)dx

(
τ
dXZ

dP
− 1

)
.

From lemma 3.8.1,
dXZ

dP
<

1

τ
implies that the term in parenthesis is strictly

negative. Hence, E0 is decreasing in P .
The second derivative is

d2E0

dP 2
= φ

(
1− F (Xd)

)
τ

(
−d

2D0

dP 2

)
+ φ

(
1− τ dX

Z

dP

)
dXd

dP
f(Xd) (3.63)

Since in the first part of the proof we showed concavity of debt with respect

to P ,
d2D0

dP 2
< 0, the first term of this derivative is non-negative, while the

second is strictly positive. This implies
d2E0

dP 2
> 0 and hence convexity of

E0 with respect to P. This concludes the proof of the proposition.
We now establish some conditions under which the objective function

D0 + E0 is quasi-concave. Under these conditions, the Kuhn-Tucker condi-
tions of the program (3.17) are necessary and sufficient for an optimum.

Proposition 3.8.1 Conditions for concavity of the objective func-

tion. We can provide bounds on the first derivative of
dD0

dP
that ensure

concavity of the objective function.

Proof.

d2E0

dP 2
= φ

(
1− F (Xd)

)
τ

(
−d

2D0

dP 2

)
+ φ

(
1− τ dX

Z

dP

)
dXd

dP
f(Xd) (3.64)
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d2E0

dP 2
+
d2D0

dP 2
=
d2D0

dP 2

(
1− φ

(
1− F (Xd)

)
τ
)

+ φ

(
1− τ dX

Z

dP

)
dXd

dP
f(Xd)

(3.65)

We want to see when
d2D0

dP 2

(
1− φ

(
1− F (Xd)

)
τ
)

+ φ

(
1− τ dX

Z

dP

)
dXd

dP
f(Xd) ≤ 0.

This happens if

d2D0

dP 2
≤ −

φ

(
1− τ dX

Z

dP

)
dXd

dP
f(Xd)

(1− φ (1− F (Xd)) τ)
=

φf(Xd)(τ − 1)

(
dXd

dP

)2

(1− φ (1− F (Xd)) τ)
. (3.66)

(obtained using the fact that
dXZ

dP
= 1− 1− τ

τ

dXd

dP
+

1− τ
τ

) or, since

d2E0

dP 2
+
d2D0

dP 2
= φ


(
1− F (XZ)

)
τ
d2XZ

dP 2
− αd

2Xd

dP 2
Xdf(Xd)+

−α
(
dXd

dP

)2

f(Xd)− τ
(
dXZ

dP

)2

f(XZ)

 (3.67)

This can be written, using the fact that
d2D0

dP 2
=

A

C

dD0

dP
(where A is the

numerator in (3.48), C the one in (3.62)) as a second order equation in
dD0

dP
that implies:

−b−
√
b2 − 4ac

2a
≤ dD0

dP
≤ −b+

√
b2 − 4ac

2a
, (3.68)

where (3.69)

b = 1− φτ + φτF (Xd) + 2φτf(Xd) (3.70)

a =
φτ 2

1− τ
f(Xd) (3.71)

c = φf(Xd)(1− τ). (3.72)

The KT conditions of the program (3.17) for a SA firm

max
P

E0(P ) +D0(P ) (3.73)

s.t. P ≥ 0 (3.74)

E0(P ) ≥ VaRβ(X) = inf{l : P (X > l) ≥ 1− β} (3.75)

are:
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1. (1 + λ1)
∂E0(P )

∂P
+
∂D0(P )

∂P
≤ 0

2. P ≥ 0

3. P

[
(1 + λ1)

∂E0(P )

∂P
+
∂D0(P )

∂P

]
= 0

4. E0(P ) ≥ V aRβ(X)

5. λ1 ≥ 0

6. λ1 [E0(P )− V aRβ(X)] = 0

We can now proceed to prove proposition 3.4.2
Proof of Proposition 3.4.2. The constraint can be non binding only
when λ1 = 0. It is easy to show that the l.h.s. of 1 at P ∗ = 0 is:

∂E0(0)

∂P
+
∂D0(0)

∂P
= φ [1− F (0)] [τ (1− φ(1− F (0))− 1] +(3.76)

+φ [1− F (0)] = φτ [1− F (0)] [φ(1− F (0))] (3.77)

which is non negative, since φ ≤ 1 and it is (3.78)

strictly positive as soon as r > 0, (1− F (0)) < 1. (3.79)

The KT condition 1 is violated and no optimally unlevered solution exists
if the constraint is non binding, unless τ = 0 or F (0) = 1. These are both
uninteresting cases, since the first implies no taxes and the second implies
no positive probability of positive cash flows.

When P ∗ > 0, instead we can characterize the solution through this
condition:

α
dXd

dP
(P ∗)Xd∗f(Xd∗)− τ dX

Z

dP
(P ∗)

(
1− F (XZ∗)

)
= 0 (3.80)

α

τ
=

dXZ

dP
(P ∗)

(
1− F (XZ∗)

)
Xd∗dX

d

dP
(P ∗)f(Xd∗)

. (3.81)

Proof of Proposition 3.4.3. There exists a solution if the KT conditions
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are not violated. Hence, feasible solutions must meet Condition 1:

(1 + λ1)(1− F (Xd∗))

(
τ
dXZ

dP
(P ∗)− 1

)
− αdX

d

dP
(P ∗)Xd∗f(Xd∗)+ (3.82)

+τ
dXZ

dP
(P ∗)

(
F (Xd∗)− F (XZ∗)

)
+ 1− F (Xd∗) ≤ 0 (3.83)

τ
dXZ

dP
(P ∗)

(
1− F (XZ∗)

)
+ λ1

(
τ
dXZ

dP
(P ∗)− 1

)
(1− F (Xd∗))+ (3.84)

−αdX
d

dP
(P ∗)Xd∗f(Xd∗) ≤ 0 (3.85)

λ1 ≤
α
dXd

dP
(P ∗)Xd∗f(Xd∗)− τ dX

Z

dP
(P ∗)

(
1− F (XZ∗)

)(
τ
dXZ

dP
(P ∗)− 1

)
(1− F (Xd∗))

= f(P ∗) (3.86)

Notice that this condition must be satisfied with an equality if P ∗ > 0.
This condition should be coupled with Condition 5. For Condition 5 to be

satisfied, since its denominator is negative

(
τ
dXZ

dP
(P ∗)− 1

)
< 0, we need

to prove that its numerator is negative too. Hence:

αXd∗dX
d

dP
(P ∗)f(Xd∗)− τ dX

Z

dP

(
1− F (XZ∗)

)
≤ 0 (3.87)

α

τ
≤

dXZ

dP
(P ∗)

(
1− F (XZ∗)

)
Xd∗dX

d

dP
(P ∗)f(Xd∗)

= g(P ∗) (3.88)

Hence, the constraint can be binding at the optimum when condition
(3.88) holds. In this case, λ1 = f(P ∗) .

As soon as conditions (3.86) and (3.88) hold, one can always find an
interval of values of β such that KT condition 4 holds.

When P ∗ = 0, condition (3.86) becomes

λ1 ≤
−τ (1− φ) (1− F (0))

(τ(1− φ)− 1) (1− F (0))
(3.89)

λ1 ≤
τ (1− φ)

1− τ(1− φ)
(3.90)

while (3.88) is always satisfied since the r.h.s. goes to infinite. Hence, an

unlevered solution exists for some β when 0 < λ1 ≤
τ (1− φ)

1− τ(1− φ)
. This

condition is always satisfied for the (uninteresting) case of φ→ 0 (hence, as
r →∞).
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3.9 Appendix B - HS value maximization prob-

lem

Before tackling the proof of proposition 3.4.4, we compute the derivatives of
Γ(PS, PH) with respect to both its variables:

dΓ(PS , PH)

dPH
= −φα

dXD
H

dPH

[∫ XZS

0
xf(x,XD

H +
PS

1− τ
−

x

1− τ
)dx+

∫ XDS

XZ
S

xf(x,XD
H +XD

S − x)dx

]

dΓ(PS , PH)

dPS
= φα

 − 1
1−τ

∫XZS
0 xf(x,XD

H + PS
1−τ −

x
1−τ )dx+

− dX
D
S

dPS

∫XDS
XZ
S

xf(x,XD
H +XD

S − x)dx+
∫+∞
XD
H

dXDS
dPS

XD
S f(XD

S , y)dy


Proof of proposition 3.4.4. Without loss of generality, we prove the
theorem and derive the conditions when a unilateral guarantee from H to S
is in place. A fortiori, a similar result can be obtained when the guarantee
is mutual. When the constraint is binding, then λ1 > 0.

Then, one of the KT conditions implies (at P ∗S = 0)

(1 + λ1)
dE0S(0)

dPS
+
dD0S(0)

dPS
+
dΓ(0, P ∗H)

dPS
+ λ1

dE0H(0, P ∗H)

dPS
≤ 0

The last two terms vanish at PS = 0, as one can see below:

∂E0H(PS,PH)

∂PS
= φ


+ 1

1−τ
∫XZS
0

(PS − (1− τ)y − τXZ
S )f(XD

H + PS
1−τ −

y
1−τ , y)dy+

+
dXDS
dPS

∫XDS
XZS

(PS − (1− τ)x− τXZ
S )f(XD

H +XD
S − y, y)dy+

−
∫ +∞
XDH+

PS
1−τ−

y
1−τ

(
1− τ dX

Z
S

dPS

) ∫XZS
0

f(x, y)dydx+

−
∫ +∞
XDH+XDS −y

(
1− τ dX

Z
S

dPS

) ∫XZS
0

f(x, y)dydx


Hence,

(1 + λ1)
dE0S(0)

dPS
+
dD0S(0)

dPS
≤ 0

must be satisfied.
Substituting:

(1 + λ1)φ [1− F (0)] [τ (1− φ(1− F (0))− 1] + φ [1− F (0)] ≤ 0

(1 + λ1) [τ (1− φ(1− F (0))− 1] + 1 ≤ 0

λ1 [τ (1− φ(1− F (0))− 1] + τ (1− φ(1− F (0)) ≤ 0

λ1 ≤
τ (1− φ(1− F (0))

[1− τ (1− φ(1− F (0))]
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Feasible solutions have λ1 > 0. The numerator is always positive, while
the denominator is positive when

[1− τ (1− φ(1− F (0))] > 0

τ <
1

1− φ(1− F (0)

∂E0H(PS,PH)

∂PH
= φ


(
τ
dXZH
dPH
− 1
)

(1− F (XD
H ))+

+
dXDH
dPH

∫XZS
0

(PS − τXZ
S − (1− τ)y) f(XD

H + PS
1−τ −

y
1−τ , y)dy

+
dXDH
dPH

∫XDS
XZS

(PS − τXZ
S − (1− τ)y) f(XD

H +XD
S − y, y)dy


As for the other condition, since

∂E0H(0, PH)

∂PH
= φ

[(
τ
dXZ

H

dPH
− 1

)
(1− F (XD

H ))

]
then one has

−αdX
D
H

dPH
XD
Hf(XD

H ) + τ
dXZ

H

dPH
(1− F (XZ

H))(1 + λ1) ≤ 0

λ1 ≤
α
dXD

H

dPH
XD
Hf(XD

H )− τ dX
Z
H

dPH
(1− F (XZ

H))

τ
dXZ

H

dPH
(1− F (XZ

H))
(3.91)

which has feasible solutions only when λ1 is non negative, leading to a
condition on α

τ

α
dXD

H

dPH
XD
Hf(XD

H )− τ dX
Z
H

dPH
(1− F (XZ

H)) ≥ 0

α

τ

(
1

1− τ
− τ

1− τ
dXZ

H

dPH

)
XD
Hf(XD

H )− dXZ
H

dPH
(1− F (XZ

H)) ≥ 0

α

τ
≤

dXZ
H

dPH

(
1− F (XZ

H)
)

(1− τ)(
1− τ dX

Z
H

dPH

)
part b) Notice that there can’t be a solution in which both H and S are

unlevered, since from (3.91) P ∗H = 0 implies λ1 ≤ −1 which violates λ1 ≥ 0.
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The last part of my Ph.D. Dissertation studies the hedging problem of
life insurance policies, when the mortality rate is stochastic. The field devel-
oped recently, adapting well-established techniques widely used in finance to
describe the evolution of rates of mortality. The chapter is joint work with
my supervisor, prof. Elisa Luciano and Elena Vigna. It studies the hedging
problem of life insurance policies, when the mortality and interest rates are
stochastic. We focus primarily on stochastic mortality. We represent death
arrival as the first jump time of a doubly stochastic process, i.e. a jump
process with stochastic intensity. We propose a Delta-Gamma Hedging tech-
nique for mortality risk in this context. The risk factor against which to
hedge is the difference between the actual mortality intensity in the future
and its ”forecast” today, the instantaneous forward intensity. We specialize
the hedging technique first to the case in which survival intensities are affine,
then to Ornstein-Uhlenbeck and Feller processes, providing actuarial justi-
fications for this restriction. We show that, without imposing no arbitrage,
we can get equivalent probability measures under which the HJM condition
for no arbitrage is satisfied. Last, we extend our results to the presence of
both interest rate and mortality risk, when the forward interest rate follows
a constant-parameter Hull and White process. We provide a UK calibrated
example of Delta and Gamma Hedging of both mortality and interest rate
risk.



Chapter 4

Delta and Gamma hedging of
mortality and interest rate risk

4.1 Introduction

This paper studies the hedging problem of life insurance policies, when the
mortality rate is stochastic. In recent years, the literature has focused on
the stochastic modeling of mortality rates, in order to deal with unexpected
changes in the longevity of the sample of policyholders of insurance com-
panies. This kind of risk, due to the stochastic nature of death intensities,
is referred to as systematic mortality risk1. In the present paper we deal
with this, as well as with two other sources of risk life policies are subject
to: financial risk and non-systematic mortality risk. The former originates
from the stochastic nature of interest rates. The latter is connected to the
randomness in the occurrence of death in the sample of insured people and
disappears in well diversified portfolios.
The problem of hedging life insurance liabilities in the presence of system-
atic mortality risk has attracted much attention in recent years. It has been
addressed either via risk-minimizing and mean-variance indifference hedging
strategies, or through the creation of mortality-linked derivatives and secu-
ritization. The first approach has been taken by Dahl and Møller (2006)
and Barbarin (2008). The second approach was discussed by Dahl (2004)
and Cairns, Blake, Dowd, and MacMinn (2006) and has witnessed a lively
debate and a number of recent improvements, see f.i. Blake, De Waegenaere,
MacMinn, and Nijman (2010) and references therein.
We study Delta and Gamma hedging. This requires choosing a specific
change of measure, but has two main advantages with respect to

1In this paper we do not distinguish between mortality and longevity risk.
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risk-minimizing and mean-variance indifference strategies. On the one side
it represents systematic mortality risk in a very intuitive way, namely as
the difference between the actual mortality intensity in the future and its
“forecast” today. On the other side, Delta and Gamma hedging is easily
implementable and adaptable to self-financing constraints. It indeed ends up
in solving a linear system of equations. The comparison with securitization
works as follows. The Delta and Gamma hedging complements the securiti-
zation approach strongly supported by most academics and industry leaders,
in two senses. On the one hand, as is known, the change of measure issue on
which hedging relies will not be such an issue any more once the insurance
market, thanks to securitization and derivatives, becomes liquid. On the
other hand, securitization aims at one-to-one hedging or replication, while
we push hedging one step further, through local, but less costly, coverage.
Following a well established stream of actuarial literature, we adapt the set-
ting of risk-neutral interest rate modelling to represent stochastic mortality.
We represent death arrival as the first jump time of a doubly stochastic pro-
cess. To enhance analytical tractability, we assume a pure diffusion of the
affine type for the spot mortality intensity. Namely, the process has linear
affine drift and instantaneous variance-covariance matrix linear in the inten-
sity itself.
In this setting, Cairns, Blake, and Dowd (2006) point out that the HJM
no arbitrage condition typical of the financial market can be translated into
an equivalent HJM-like condition for forward death intensities. Usually, the
respect of the HJM condition on the insurance market is imposed a priori.
We show that, for two non-mean reverting processes for the spot intensity,
whose appropriateness will be discussed below, there exists an infinity of
probability measures – equivalent to the historical one – in which forward
death intensities satisfy an HJM condition. No arbitrage holds under any
of these measures, even though it is not imposed a priori. These processes
belong to the Ornstein Uhlenbeck and the Feller class.
As a consequence, we start by introducing the spot mortality intensities, dis-
cuss their soundness as descriptors of the actual – or historical – mortality
dynamics, derive the corresponding forward death intensities and tackle the
change of measure issue. Among the possible changes, we select the minimal
one – which permits to remain in the Ornstein-Uhlenbeck and Feller class –
and parameterize it by assuming that the risk premium for mortality risk is
constant. By so doing, we can avoid using risk minimizing or mean-variance
indifference strategies. We can instead focus on Delta and Gamma hedging.
For the sake of simplicity we assume that the market of interest rate bonds is
not only arbitrage-free but also complete. First, we consider a pure endow-
ment hedge in the presence of systematic mortality risk only. Then, under
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independence of mortality and financial risks, we provide an extension of the
hedging strategy to both these risks.
To keep the treatment simple, we build Delta and Gamma coverage on pure
endowments, using as hedging tools either pure endowments or zero-coupon
survival bonds for mortality risk and zero-coupon-bonds for interest rate
risk. Since all these assets can be understood as Arrow-Debreu securities –
or building blocks – in the insurance and fixed income market, the Delta and
Gamma hedge could be extended to more complex and realistic insurance
and finance contracts.
In spite of our restriction to pure endowments, the final calibration of the
strategies – which uses UK mortality rates for the male generation born in
1945 and the Hull-White interest rates on the UK market – shows that

1. the unhedged effect of a sudden change on mortality rate is remarkable,
especially for long time horizons;

2. the corresponding Deltas and Gammas are quite different if one takes
into consideration or ignores the stochastic nature of the death inten-
sity:

3. the hedging strategies are easy to implement and customize to self-
financing constraints;

4. Delta and Gamma are bigger for mortality than for financial risk.

The paper is structured as follows: Section 4.2 recalls the doubly stochastic
approach to mortality modelling and introduces the two intensity processese
considered in the paper. Section 4.3 presents the notion of forward death
intensity. Section 4.4 describes the standard financial assumptions on the
market for interest rates. Section 4.5 derives the dynamics of forward in-
tensities and survival probabilities, after the appropriate change of measure.
Section 4.6 shows that the HJM restriction is satisfied without imposing no
arbitrage a priori. In Section 4.7 we discuss the hedging technique for mor-
tality risk. Section 4.8 addresses mortality and financial risk. Section 4.9
presents the application to a UK population sample. Section 4.10 summa-
rizes and concludes.

4.2 Cox modelling of mortality risk

This Section introduces mortality modelling by specifying the so-called spot
mortality intensity (mortality intensity for short). Section 4.2.1 describes the
general framework, while Section 4.2.2 studies two specific processes which
will be considered troughout the paper.
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4.2.1 Instantaneous death intensity

Mortality in the actuarial literature has been recently described by means of
Cox or doubly stochastic counting processes, as studied by Brémaud (1981).
The modelling technique has been drawn from the financial domain and in
particular from the reduced form models of the credit risk literature, where
the time to default is described as the first stopping time of a Cox process 2.
In the actuarial literature, mortality modelling via Cox processes has been
introduced by Milevsky and Promislow (2001) and Dahl (2004). Intuitively,
the time to death - analogously to the time to default in finance - is supposed
to be a Poisson process with stochastic intensity. The intensity process may
be either a pure diffusion or may present jumps. If in addition it is an affine
process, then the survival function can be derived in closed form.
Let us introduce a filtered probability space (Ω,F,P), equipped with a filtra-
tion {Ft : 0 ≤ t ≤ T} which satisfies the usual properties of right-continuity
and completeness. On this space, let us consider a non negative, predictable
process λx, which represents the mortality intensity of an individual or head
belonging to generation x at (calendar) time t. We introduce the following

Assumption 1 The mortality intensity λx follows a process of the type:

dλx(t) = a(t, λx(t))dt+ σ(t, λx(t))dWx(t) + dJx(t) (4.1)

where J is a pure jump process, Wx is a standard one-dimensional
Brownian motion3 and the regularity properties for ensuring the exis-
tence of a strong solution of equation (4.1) are satisfied for any given
initial condition λx(0) = λ0 > 0.

The existence of a stochastic mortality intensity generates systematic
mortality risk. Given this assumption on the dynamics of the death intensity,
let τ be the time to death of an individual of generation x. We define the
survival probability from t to T > t, Sx(t, T ), as the survival function of the
time to death τ under the probability measure P, conditional on the survival
up to time t:

Sx(t, T ) := P (τ > T | τ > t)

It is known since Brémaud (1981) that - under the previous assumption - the
survival probability Sx(t, T ) can be represented as

Sx(t, T ) = E
[
exp

(
−
∫ T

t

λx(s)ds

)
| Ft
]

(4.2)

2See the seminal paper Lando (1998).
3The extension of the mortality intensity definition to a multidimensional Brownian

motion is straightforward.
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where the expectation is computed under P and is evidently conditional on
Ft. When the evaluation date is zero (t = 0), we simply write Sx(T ) instead
of Sx(0, T ).

In this paper, we suppose in addition that

Assumption 2 the drift a(t, λ(t)), the instantaneous variance-covariance
coefficient σ2(t, λ(t)) and the jump measure η associated with J , which
takes values in R+, have affine dependence on λ(t).

Hence, we assume that these coefficients are of the form:

a(t, λ(t)) = b+ cλ(t)

σ2(t, λ(t)) = d · λ(t)

η(t, λ(t)) = l0 + l1λ(t)

where b, c, d, l0, l1 ∈ R . Under this assumption standard results on func-
tionals of affine processes allow us to state that

Sx(t, T ) = eα(T−t)+β(T−t)λx(t)

where α and β solve the following Riccati differential equations (see for in-
stance Duffie and K.Singleton (2000)):

β′(t) = β(t)c+
1

2
β(t)2d2 + l1

[∫
R
eβ(t)zdν(z)− 1

]
α′(t) = β(t)b+ l0

[∫
R
eβ(t)zdν(z)− 1

]
where ν is the distribution function of the jumps of J . The boundary condi-
tions are α(0) = 0 and β(0) = 0.

4.2.2 Ornstein-Uhlenbeck and Feller processes

In this paper we focus on two intensity processes, which belong to the affine
class and are purely diffusive. These processes, together with the solutions
α and β of the associated Riccati ODEs, are:

— Ornstein-Uhlenbeck (OU) process without mean reversion:

dλx(t) = aλx(t)dt+ σdWx(t) (4.3)

α(t) =
σ2

2a2
t− σ2

a3
eat +

σ2

4a3
e2at +

3σ2

4a3
(4.4)

β(t) =
1

a
(1− eat) (4.5)
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— Feller Process (FEL) without mean reversion:

dλx(t) = aλx(t)dt+ σ
√
λx(t)dWx(t) (4.6)

α(t) = 0 (4.7)

β(t) =
1− ebt

c+ debt
(4.8)

with b = −
√
a2 + 2σ2, c = b+a

2
, d = b−a

2
. Here, we assume a > 0, σ ≥ 0.

A process, in order to describe human survivorship realistically, has to
be ”biologically reasonable”, i.e. it has to satisfy two technical features:
the intensity must never be negative and the survival function has to be
decreasing in time T .
In the OU case, λ can indeed turn negative, with positive probability:

u = P(λ(t) 6 0) = φ

− λ(0)eat

σ
√

e2at−1
2a


where φ is the distribution function of the standard normal. The survival

function is always decreasing when time T is below a certain level T ∗:

T < T ∗ =
1

a
ln

[
1 +

a2λ(0)

σ2

(
1 +

√
1 +

2σ2

a2λ(0)

)]
(4.9)

In practical applications (section 4.9) we verify that the probability u is
negligible and that the length of the time horizon we consider (the duration
of a human life) never exceeds T ∗.
For the FEL process, instead, the intensity can never turn negative and
the survival function is guaranteed to be decreasing in T if and only if the
following condition holds:

ebt(σ2 + 2d2) > σ2 − 2dc. (4.10)

We verify this condition, which is satisfied whenever σ2−2dc < 0, for our
calibrated parameters (see section 4.9).

In spite of the technical restrictions, Luciano and Vigna (2008) and Lu-
ciano, Spreeuw, and Vigna (2008) suggest the appropriateness of these pro-
cesses for describing the intensity of human mortality. In fact, they show
that these models meet all but one of the criteria - motivated by Cairns,
Blake, and Dowd (2006) - that a good mortality model should meet:
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1. the model should be consistent with historical data: the calibrations of
Luciano and Vigna (2008) show that the models meet this criterium;

2. the force of mortality should keep positive: the first model does not
meet this criterium; however, the probability of negative values of the
intensity is shown to be negligible for practical applications;

3. long-term future dynamics of the model should be biologically reason-
able: the models meet this criterium, as the calibrated parameters
satisfy conditions (4.9) and (4.10) above;

4. long-term deviations in mortality improvements should not be mean-
reverting to a pre-determined target, even if the target is time-dependent:
the models meet this criterium by construction;

5. the model should be comprehensive enough to deal appropriately with
pricing valuation and hedging problem: these models meet this cri-
terium, since it is straightforward to extend them in order to deal with
pricing, valuation and hedging problems; this is indeed the scope of the
present paper;

6. it should be possible to value mortality linked derivatives using an-
alytical methods or fast numerical methods: these models meet this
criterium, as they produce survival probabilities in closed form and
with a very small number of parameters.

Cairns, Blake, and Dowd (2006) add that no one of the previous criteria
dominates the others. Consistently with their view, we claim the validity
of the proposed models, which meet five criteria out of six. The violation
of the second criterium above in the OU case is the price paid in order to
have a simple and parsimonious model. Notice though that this is only a
theoretical limit of the model, as a negative force of mortality has a negli-
gible probability of occurring in practical applications. In addition, the fact
that survival functions are given in closed form and depend on a very small
number of parameters simplifies the calibration procedure enormously. Last
but not least, these two processes are natural stochastic generalizations of
the Gompertz model for the force of mortality and, thus, they are easy to
interpret in the light of the traditional actuarial practice.
These processes (and especially the first one, the OU) turn out to be signif-
icantly suitable for the points 5 and 6 above. In fact, in Sections 6, 7 and
8 we will show that the Delta and Gamma OU-coefficients can be expressed
in a very simple closed form. Thus, the Delta-Gamma Hedging technique –
widely used in the financial context to hedge purely financial assets – turns
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out to be remarkably easy to apply. This feature renders quite applicable
this hedging technique also in the actuarial-financial context. The Delta and
Gamma FEL coefficients are more complicated to find, but the technique is
still applicable.

4.3 Forward death intensities

This Section aims at shifting from mortality intensities to their forward coun-
terparts, both for the general affine case and for the OU and FEL processes.
The notion of forward instantaneous intensity for counting processes repre-
senting firm defaults has been introduced by Duffie (1998) and Duffie and
Singleton (1999), following a discrete-time definition in Litterman and Iben
(1991). Stochastic modelling of this quantity has been extensively studied in
the financial domain. In the credit risk domain indeed the notion of forward
intensity is very helpful, since it allows to determine the change of measure
or the intensity dynamics useful for pricing and hedging defaultable bonds
(the characterization is obtained under a no arbitrage assumption for the
financial market and is unique when the market is also complete).
Suppose that arbitrages are ruled out, that the recovery rate is null and λx(t)
in (4.1) represents the default intensity of a firm whose debt is traded in a
complete market. Then, we would have the following HJM restriction under
the (unique) risk-neutral measure corresponding to P :

a(t, λx(t)) = σ(t, λx(t))

∫ t

0

σ(u, λx(u))du (4.11)

In the actuarial domain, forward death intensities have already been intro-
duced by Dahl (2004) and Cairns, Blake, and Dowd (2006), paralleling the
financial definition. In section 4.5 we prove that, even though the restriction
(4.11) can be violated by death intensities in general, it holds true for the
OU and FEL intensity processes, even without imposing no arbitrage, but
simply restricting the measure change so that the intensity remains OU or
FEL under the new measures.

Let us start from the forward death rate over the period (t, t+∆t), evaluated
at time zero, as the ratio between the conditional probability of death be-
tween t and t+ ∆t and the time span ∆t, for a head belonging to generation
x, conditional on the event of survival until time t:

1

∆t

(
Sx(t)− Sx(t+ ∆t)

Sx(t)

)
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Let us consider its instantaneous version, which we denote as fx(0, t). We
refer to it as to forward death intensity. It is evident from its definition that
- if it exists - the forward death intensity is the logarithmic derivative of the
(unconditional) survival probability, as implied by the process λ:

fx(0, t) := lim
∆t→0

1

∆t

(
1− Sx(t+ ∆t)

Sx(t)

)
= − ∂

∂t
ln (Sx(t))

The similarity of this definition with the force of mortality is quite strong.4

Similarly, one can define the forward death intensity for the tenor T , as
evaluated at time t < T , starting from the survival probability Sx(t, T ):

fx(t, T ) = − ∂

∂T
ln (Sx(t, T )) (4.12)

The forward death intensity fx(t, T ) represents the intensity of mortality
which will apply instantaneously at time T > t, implied by the knowledge
of the process λ up to t (or under the filtration Ft). This explains the
dependence of fx on the current date t as well as on the future one, T . It can
be interpreted as the ”best forecast” of the actual mortality intensity, since
it coincides with the latter when T = t :

fx(t, t) = λx(t)

Please notice also that the forward death intensity definition, and conse-
quently its expression for the affine case, is analogous to the one of forward
instantaneous interest rates, the latter being defined starting from discount
factors rather than survival probabilities. As in the case of forward instan-
taneous interest rates, it can be shown that forward intensities, for given t,
can be increasing, decreasing or humped functions of the application date T .
It follows from the above definition that the survival probabilities from t to
T > t can be written as integrals of (deterministic) forward death probabili-
ties:

Sx(t, T ) = exp

(
−
∫ T

t

fx(t, s)ds

)
(4.13)

and not only as expectations wrt the intensity process λ , as in (4.2) above.5

4The two concepts coincide when the diffusion coefficient of the intensity process is
null.

5Notice that, at any initial time t, forward death intensities can be interpreted as the
(inhomogeneous) Poisson arrival rates implied in the current Cox process. Indeed, it is
quite natural, especially if one wants a description of survivorship without the mathemat-
ical complexity of Cox processes, to try to describe mortality via the equivalent survival
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Let us turn now to the affine case. As it can be easily shown from (4.13),
when λ is an affine process the initial forward intensity depends on the
functions α and β:

fx(0, t) = −α′(t)− β′(t)λx(0) = −α′(t)− β′(t)fx(0, 0) (4.14)

and at any time t ≥ T ≥ 0:

fx(t, T ) = −α′(T − t)− β′(T − t)λx(t) = −α′(T − t)− β′(T − t)fx(t, t)

For the processes defined by equations (4.3) and (4.6), the instantaneous
forward intensities can be computed as:

OU fx(t, T ) = λx(t)e
a(T−t) − σ2

2a2
(ea(T−t) − 1)2 (4.15)

FEL fx(t, T ) =
4λx(t)b

2eb(T−t)

[(a+ b) + (b− a)eb(T−t)]2

4.4 Financial risk

In order to introduce a valuation framework for insurance policies, we need
to provide provide a description of the financial environment. In addition to
mortality risk, we assume the existence of a financial risk, in the sense that
the interest rate is described by a stochastic process. While in the mortality
domain we started from (spot) intensities – for which we were able to motivate
specific modelling choices – and then we went to their forward counterpart,
here we follow a well established bulk of literature – starting from Heath,
Jarrow, and Morton (1992) – and model directly the instantaneous forward
rate F (t, T ), i.e. the date-t rate which applies instantaneously at T .

Assumption 3 The process for the forward interest rate F (t, T ), defined on
the probability space (Ω,F,P), is:

dF (t, T ) = A(t, T )dt+ Σ(t, T )dWF (t) (4.16)

probability in a simpler (inhomogeneous) Poisson model. Once a λ process has been fixed,
and therefore survival probabilities have been computed, according to (4.2), one can won-
der: what would be the intensity of an inhomogeneous Poisson death arrival process, that
would produce the same survival probabilities? Recalling that in the Poisson case survival
probabilities are of the type (4.13), one can interpret – and use – f(t, T ) exactly as the
survival intensity of an (inhomogeneous) Poisson model equivalent to the given, Cox one.
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where the real functions A(t, T ) and Σ(t, T ) satisfy the usual assump-
tions for the existence of a strong solution to (4.16), and WF is a
univariate Brownian motion6 independent of Wx for all x.

The independence between the Brownian motions means, loosely speak-
ing, independence between mortality and financial risk.7

Let us also denote as {Ht : 0 ≤ t ≤ T} the filtration generated by the inter-
est rate process. As a particular subcase of the forward rate, obtained when
t = T , one obtains the short rate process, which we will denote as r(t):

F (t, t) := r(t) (4.17)

It is known that, when the market is assumed to admit no arbitrages and
be complete, there is a unique martingale measure Q equivalent to P - which
we will characterize in the next section - under which the zero-coupon-bond
price for the maturity T , evaluated at time t, B(t, T ), is

B(t, T ) = exp

(
−
∫ T

t

F (t, u)du

)
= EQ

[
exp

(
−
∫ T

t

r(u)du

)]
(4.18)

We will provide a specific choice for the forward interest rate only at a
later stage. We will have no need to motivate it, since it corresponds to
a very popular model in Finance, the one-factor Hull and White (Hull and
White (1990)).

4.5 Change of measure and insurance valua-

tions

This section discusses the change of measure that allows us to compute the
prices of policies subject to mortality risk in a fashion analogous to (4.18).
First, we define the process of death occurrence inside the sample of insured
people of interest. As in Dahl and Møller (2006), we represent it as follows.
Let τ1, τ2, ....τN be the lifetimes of the N insured in the cohort x, assumed
to be i.i.d. with distribution function Sx(t, T ) in (4.2). Let M(x, t) be the

6We assume a single Brownian motion for the forward rate dynamics, since we reduced
the discussion of mortality risk to a single risk source too: however, the extension to a
multidimensional Brownian motion is immediate.

7This assumption is common in the literature and seems to be intuitively appropriate.
See Miltersen and Persson (2006) for a setting in which mortality and financial risks can
be correlated.
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(pure jump) process which counts the number of deaths in such an insurance
portfolio:

M(x, t) :=
N∑
i=1

1{τi≤t}

where 1 is the indicator function. We define a filtration on (Ω,F,P) whose
σ -algebras {Gt : 0 ≤ t ≤ T} are generated by Ft and {M(x, s) : 0 ≤ s ≤ t}.
This filtration intuitively collects the information on both the past mortality
intensity and on actual death occurrence in the portfolio. Let us consider, on
the probability space (Ω,F,P), the sigma algebras It := Gt ∨ Ht generated
by unions of the type Gt ∪ Ht, where the σ-algebra Gt collects information
on the mortality intensity and actual death process, while Ht, which is in-
dependent of Gt, reflects information on the financial market, namely on the
forward rate process The filtration {It : 0 ≤ t ≤ T} therefore represents all
the available information on both financial and mortality risk. In order to
perform insurance policies evaluations in (Ω,F,P), equipped with such a fil-
tration, we need to characterize at least one equivalent measure. This can
be done using a version of Girsanov’s theorem, as in Jacod and Shiryaev
(1987)8:

Theorem 4.5.1 Let the bi-dimensional process θ(t) := [θx(t) θF (t)] and
the univariate, positive one ϕ(t) be predictable, with∫ T

0

θ2
x(t)dt < ∞,∫ T

0

θ2
F (t)dt < ∞,∫ T

0

|ϕ(t)|λx(t)dt < ∞

Define the likelihood process L(t) by{
L(0) = 1

dL(t)
L(t−)

= θx(t)dWx(t) + θF (t)dWF (t) + (ϕ(t)− 1) dM(x, t)

and assume EP [L(t)] = 1, t ≤ T. Then there exists a probability measure Q
equivalent to P, such that the restrictions of P and Q to It, Pt := P | It,
Qt := Q | It, have Radon-Nykodim derivative L(t) :

dQ
dP

= L(t)

8See also Dahl and Møller (2006) for an application to a similar actuarial setting.
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The mortality indicator process has intensity ϕ(t)λx(t) under Q and

dW ′
x : = dWx − θx(t)dt

dW ′
F : = dWF − θF (t)dt

define Q−Brownian motions. All the probability measures equivalent to P
can be characterized this way.

Actually, the previous theorem characterizes an infinity of equivalent mea-
sures, depending on the choices of the processes θx(t), θF (t) and ϕ(t). These
processes represent the prices - or premia - given to the three different sources
of risk we model.

The first source of risk, the systematic mortality one, is represented by θx(t).
This source of risk is not diversifiable, since it originates from the random-
ness of death intensity. We have no standard choices to apply in the choice
of θx(t), see for instance the extensive discussion in Biffis (2005) and Cairns,
Blake, Dowd, and MacMinn (2006). For the sake of analytical tractability, as
in Dahl and Møller (2006), we restrict it so that the risk-neutral intensity is
still affine. Therefore, we substitute Assumptions 1 and 2 with the following

Assumption 4 The intensity process under P is purely diffusive and affine.
The systematic mortality risk premium is such as to leave it affine under
Q:

θx(t) :=
p(t) + q(t)λx(t)

σ(t, λx(t))

with p(t) and q(t) continuous functions of time.

Indeed, with such a risk premium, the intensity process under Q is

dλx(t) = [a(t, λx(t)) + p(t) + q(t)λx(t)] dt+ σ(t, λx(t))dW
′
x. (4.19)

which is still affine. This choice boils down to selecting the so-called minimal
martingale measure. It can be questioned – as any other choice – but proves
to be very helpful for hedging.9 For the OU and FEL processes we choose
the functions p = 0 and q constant, so that we have the same type of process
under P and Q, with the coefficient a in equations (4.3) and (4.6) replaced
by a′ := a+ q.

The second source of risk, the financial one, originates from the stochastic
nature of interest rates. The process θF (t) represents the so called premium

9Its calibration will be straightforward, as soon as the market for mortality derivatives
becomes liquid enough.
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for financial risk. Assume that the financial market is complete. The only
choice consistent with no arbitrage is

θF (t) := −A(t, T )Σ−1(t, T ) +

∫ T

t

Σ(t, u)du

Under this premium indeed the drift coefficient of the forward dynamics
A′(t, T ) is tied to the diffusion by an HJM relationship:

A′(t, T ) = Σ(t, T )

∫ T

t

Σ(t, u)du (4.20)

It follows that, under the measure Q,

dF (t, T ) =

[
Σ(t, T )

∫ T

t

Σ(t, u)du

]
dt+ Σ(t, T )dW ′

F (t) (4.21)

The time-t values of the forward and short rate are respectively (see f.i.
Shreve (2004)):

F (t, T ) = F (0, T ) +

∫ t

0

Σ(s, T )

∫ T

s

Σ(s,m)dmds+

∫ t

0

Σ(u, T )dW ′
F (u)

(4.22)

r(t) = F (0, t) +

∫ t

0

Σ(s, T )

∫ t

s

Σ(s,m)dmds+

∫ t

0

Σ(u, t)dW ′
F (u)

where

dW ′
F = dWF − θF (t)dt and

θF (t) = −A(t, T )Σ−1(t, T ) +

∫ T

t

Σ(t, u)du.

The third source of risk is the non systematic mortality one, arising from the
randomness of death occurrence inside the portfolio of insured people. In
the presence of well diversified insurance portfolios, insurance companies are
uninterested in hedging this idiosyncratic component of mortality risk, since
the law of large numbers is expected to apply. Hence, we assume that the
market gives no value to it and we make the following assumption for ϕ(t),
which represents the premium for idiosyncratic mortality risk:

Assumption 5 ϕ(t) = 0 for every t
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The fair premium and the reserves of life insurance policies can be com-
puted as expected values under the measure Q.
Consider the case of a pure endowment contract10 starting at time 0 and
paying one unit of account if the head x is alive at time T . The fair premium
or price of such an insurance policy, given the independence between the
financial and the actuarial risk, is:

P (0, T ) = Sx(T )B(0, T ) = eα(T )+β(T )λx(0)EQ

[
− exp

(∫ T

0

r(u)du

)]
The value of the same policy at any future date t is:

P (t, T ) = Sx(t, T )B(t, T )

= EQ

[
exp

(
−
∫ T

t

λ(s)ds

)]
EQ

[
− exp

(∫ T

0

r(u)du

)]
(4.23)

Hence, we can define a ”term structure of pure endowment contracts”. The
last expression, net of the initial premium, is also the time t reserve for the
policy, which the insurance company will be interested in hedging. Notice
that we did not impose no arbitrage on the market for these instruments.
Once the change of measure has been performed, we can write P (0, T ) in
terms of the instantaneous forward probability and interest rate (f and F
respectively):

P (t, T ) = exp

(
−
∫ T

t

[fx(t, u) + F (t, u)] du

)

4.6 HJM restriction on forward death inten-

sities

In this section we show that, if the risk premium for mortality is constant,
then the OU and FEL processes for mortality intensity satisfy an HJM-like
restriction on the drift and diffusion. This is important, since proving that
the HJM condition holds is equivalent to showing that no arbitrage holds,
without having assumed it to start with. We keep the head x fixed, and in
the notation we drop the dependence on x.

Forward death intensities, being defined as log derivatives of survival prob-
abilities, follow a stochastic process. This process can be derived starting

10We do this recognizing that more complex policies or annuities can be decomposed
into these basic contracts.
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from the one of the survival probabilities themselves, recalling that the pro-
cess λ is given by (4.19). Under Assumption 4, Ito’s lemma implies that the
functional S follows the process:

dS(t, T ) = S(t, T )m(t, T )dt+ S(t, T )n(t, T )dW ′(t)

where

m(t, T ) =
1

S

[
∂S

∂t
+
∂S

∂λ
[a(t, λ) + p(t) + q(t)λ(t)] +

1

2

∂2S

∂λ2
σ2(t, λ)

]
n(t, T ) =

1

S

∂S

∂λ
σ(t, λ)

The forward death intensity f(t, T ), defined as the logarithmic derivative of
S(t, T ), can be shown to follow the dynamics:

df(t, T ) = v(t, T )dt+ w(t, T )dW ′(t) (4.24)

where the drift and diffusion coefficients are:

v(t, T ) =
∂n(t, T )

∂T
n(t, T )− ∂m(t, T )

∂T
(4.25)

w(t, T ) = −∂n(t, T )

∂T
(4.26)

Since – according to the Assumption 4 – the intensity process is of the affine
class, the drift and diffusion of the survival probabilities are

m(t, T ) = −α′(T − t)− β′(T − t)λ(t) +

+ [a(t, λ) + p(t) + q(t)λ(t)] β(T − t) +
1

2
σ2(t, λ)β2(T − t)

n(t, T ) = σ(t, λ)β(T − t)

Given that, one can easily derive the forward intensity process coefficients:

v(t, T ) = α′′(T − t) + β′′(T − t)λ(t)− [a(t, λ) + p(t) + q(t)λ] β′(T − t)
w(t, T ) = −σ(t, λ)β′(T − t)

In general, the forward dynamics then depends on the drift and diffusion
coefficients of the mortality intensity and on the properties of the solutions
of the Riccati equations. One can wonder whether - starting from a mortal-
ity intensity process - an HJM-like condition, which works on the forward
survival intensities,

v(t, T ) = w(t, T )

∫ T

t

w(t, s)ds (4.27)

is satisfied. We provide the following:
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Theorem 4.6.1 Let λ be a purely diffusive process which satisfies Assump-
tion 4. Then, the HJM condition (4.27) is satisfied if and only if:

∂m(t, T )

∂T
= n(t, t)

∂n(t, T )

∂T
.

In particular, this condition is satisfied in the cases of the Ornstein-Uhlenbeck
process (4.3) and of the Feller process (4.6) with p = 0 and q constant.

Proof.
Using (4.26), we get the r.h.s. of the HJM condition (4.27):

w(t, T )

∫ T

t

w(t, s)ds =
∂n(t, T )

∂T
(n(t, T )− n(t, t)).

Hence, plugging (4.25) into the HJM condition (4.27) we get 11:

∂m(t, T )

∂T
= n(t, t)

∂n(t, T )

∂T
.

As for the second part, if the intensity follows an OU process, the forward
probability f satisfies the HJM condition (4.27). This result is a straightfor-
ward consequence of the fact that – with p = 0 and q constant – the functions
α and β of the OU process satisfy the system of ODEs’:{

β′(t) = −1 + a′β(t)
α′(t) = 1

2
σ2β2(t)

(4.28)

with the boundary conditions α(0) = 0 and β(0)=0. In fact,

v(t, T ) = α′′(T − t) + β′′(T − t)λ(t)− β′(T − t)a′λ(t)

= σ2β(T − t)β′(T − t)
w(t, T ) = −σβ′(T − t).

and property (4.27) is satisfied.
Consider now the Feller process (4.6) and its well-known solution to the

Riccati ODE: {
α′(t) = 0
β′(t) = −1 + a′β(t) + 1

2
σ2β2(t)

(4.29)

Again, we can easily show that condition (4.27) is satisfied, since

v(t, T ) = β′′(T − t)λ(t)− a′λ(t)β′(T − t) = σ2β(T − t)β′(T − t)λ(t)

11Notice that a similar condition on the drift and diffusion of spot interest rates is in
Shreve (2004).
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w(t, T ) = −σ(t, λ)β′(T − t) = −σ
√
λ(t)β′(T − t).

The HJM condition is a characterizing feature of some models for inter-
est rates such as the Vasicek (1977), Hull and White (1990), the CIR (Cox,
Ingersoll Jr, and Ross (1985)). It is well known that the HJM condition
(4.27), applied to the coefficients of the interest rate process, as in (4.20),
is equivalent to the absence of arbitrage. In our case, since we showed that
- under Assumption 4 - the OU and FEL processes satisfy the HJM condi-
tion, arbitrage is ruled out without being imposed. Please notice that the
dynamics of the forward intensity under for the OU case Q is

df(t, T ) =
σ2

a′
ea
′(T−t)

(
ea
′(T−t) − 1

)
dt+ σea

′(T−t)dW ′(t). (4.30)

It reminds of the Hull and White dynamics for forward interest rates, when
the parameters are constant.

4.7 Mortality risk hedging

In order to study the hedging problem of a portfolio of pure endowment
contracts, we assume first that the interest rate is deterministic and, without
loss of generality, equal to zero. This allows us to focus in this Section on the
hedging of systematic mortality risk only. At a later stage, we will introduce
again financial risk (section 4.8) and study the problem of hedging both
mortality and financial risk simultaneously.
Once the risk-neutral measure Q has been defined, in order to introduce
an hedging technique for systematic mortality risk we need to derive the
dynamics of the reserve, which represents the value of the policy for the
issuer (assuming that the unique premium has already been paid). We do
this, for the sake of simplicity, assuming an OU behavior for the intensity.

4.7.1 Dynamics and sensitivity of the reserve

Affine intensity

Let us integrate (4.24), to obtain the forward death probability:

f(t, T ) = f(0, T ) +

∫ t

0

[v(u, T )du+ w(u, T )dW ′(u)] (4.31)

Substituting it into the survival probability (4.13) and recalling that we write
S(u) for S(0, u), we obtain an expression for the future survival probability
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S(t, T ) in terms of the time-zero ones:

S(t, T ) =
S(T )

S(t)

[
exp−

∫ T

t

∫ z

0

[v(u, T )du+ w(u, T )dW ′(u)] dz

]
Considering the expressions for v and w under Assumption 4, we have:

S(t, T ) =
S(T )

S(t)
[exp−

∫ T

t

∫ z

0

{α′′(T − u) + β′′(T − u)λ(u) +

− β′(T − u) [a(u, λ) + p(u) + q(u)λ(u)]]du+

− β′(T − u)σ(u, λ)dW ′(u)]}dz].

OU and FEL intensities

We focus now on the OU intensity case. We derive the expression for the
forward survival probabilities integrating the dynamics (4.30):

f(t, T ) = f(0, T )− σ2

2a′2
{e2a′T

[
e−2a′t − 1

]
− 2ea

′T
[
e−a

′t − 1
]
}

+ σ

∫ t

0

ea
′(T−s)dW (s)

Hence, the reserve can be written simply as

P (t, T ) = S(t, T ) =
S(T )

S(t)
exp [−X(t, T )I(t)− Y (t, T )] (4.32)

where12

X(t, T ) =
exp(a′(T − t))− 1

a′

Y (t, T ) = −σ2[1− e2a′(T−t)]X(t, T )2/(4a′)

I(t) := λ(t)− f(0, t)

We have therefore provided an expression for the future survival proba-
bilities - and reserves - in terms of deterministic quantities (X, Y ) and of a
stochastic term I(t), defined as the difference between the actual mortality
intensity at time t and its forecast today f(0, t). I(t), therefore, represents
the systematic mortality risk factor. Let us notice that, as in the correspond-
ing bond expressions of HJM, the risk factor is unique for all the survival
probabilities from t onwards, no matter which horizon T − t they cover.
Moreover, as Cairns, Blake, and Dowd (2006) point out, if we extend our

12Notice that −X(t, T ) = β as soon as a = a′.
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framework across generations and model the risk factor as an n dimensional
Brownian motion, we obtain that the HJM condition is satisfied for each
cohort. Applying Ito’s lemma to the survival probabilities, considered as
functions of time and the risk factor, we have:

dPdS ' ∂S

∂t
dt+

∂S

∂I
dI +

1

2

∂2S

∂I2
(dI)2

It follows that the hedging coefficients for mortality risk are

∂S

∂I
= −S(t, T )X(t, T ) ≤ 0 (4.33)

∂2S

∂I2
= S(t, T )X2(t, T ) ≥ 0 (4.34)

or, for given t,

dP (t, T )

P (t, T )
' −X(t, T )dI +

1

2
X(t, T )2(dI)2

We denote (4.33) as Delta(∆M) and (4.34) Gamma (ΓM), where the super-
script M indicates that the coefficient refers to mortality risk. These factors
allow us to hedge mortality risk up to first and second order effects. They
are the analogous of the duration and convexity terms in classical financial
hedging of zero-coupon-bonds, and they actually collapse into them when
σ(t, λ) = σ = 0. In this case, in which mortality has no systematic risk
component, we have:

Y (t, T ) = 0

Hence, Delta and Gamma are functions of a′ only, as in the deterministic
case. We have

∆σ=0 =
S(T )

S(t)
X(t, T )

Γσ=0 =
S(T )

S(t)
X2(t, T )

It is straightforward to compute the sensitivity of any pure endowment
policy portfolio with respect to mortality risk (evidently, this must be done
for each generation separately). If the portfolio, valued Π, is made up of
ni policies with maturity Ti, i = 1, ..n, each one with value S(t, Ti), we have

dΠ =
∑

nidS(t, Ti) =

n∑
i=1

ni
∂S

∂t
dt+

n∑
i=1

ni
∂S

∂I
dI +

1

2

n∑
i=1

n2
i

∂2S

∂I2
(dI)2
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4.7.2 Hedging

In order to hedge the reserve we have derived in the previous section we
assume that the insurer can use either other pure endowments – with different
maturities – or zero-coupon longevity bonds on the same generation 13. Since
we did not price idiosyncratic mortality risk, the price/value of a zero-coupon
longevity bond is indeed equal to the pure endowment one. The difference,
from the standpoint of an insurance company, is that it can sell endowments
– or reduce its exposure through reinsurance – and buy longevity bonds,
while, at least in principle, it cannot do the converse14. We could use a
number of other instruments to cover the initial pure endowment, starting
from life assurances or death bonds, which pay the benefit in case of death
of the insured individual. We restrict the attention to pure endowments and
longevity bonds for the sake of simplicity. Let us recall also that – together
with the life assurance and death bonds – they represent the Arrow Debreu
securities of the insurance market. Once hedging is provided for them, it can
be extended to every more complicated instrument.
Suppose for instance that, in order to hedge n endowments with maturity
T , it is possible to choose the number of endowments/longevity bonds with
maturity T1 and T2: call them n1 and n2. The value of a portfolio made up
of the three assets is

Π(t) = nS(t, T ) + n1S(t, T1) + n2S(t, T2).

Its Delta and Gamma are respectively

∆M
Π (t) = n

∂S

∂I
(t, T ) + n1

∂S

∂I
(t, T1) + n2

∂S

∂I
(t, T2)

ΓMΠ (t) = n
∂2S

∂I2
(t, T ) + n1

∂2S

∂I2
(t, T1) + n2

∂2S

∂I2
(t, T2)

We can set these Delta and Gamma coefficients to zero (or some other precise
value) by adjusting the quantities n1 and n2. One can easily solve the system
of two equations in two unknowns and obtain hedged portfolios:{

∆M
Π = 0

ΓMΠ = 0

13If there is no longevity bond for a specific generation, basis risk arises: see for instance
Cairns, Blake, Dowd, and MacMinn (2006).

14Reinsurance companies have less constraints in this respect. For instance, they can
swap pure endowments or issue longevity bonds: see for instance Cowley and Cummins
(2005).
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Any negative solution for ni has to be interpreted as an endowment sale,
since this leaves the insurer exposed to a liability equal to n times the policy
fair price. Any positive solution for ni has to be interpreted as a longevity
bond purchase. The cost of setting up the covered portfolio – which is rep-
resented by Π(t) – can be paid using the pure endowment premium received
by the policyholder. Alternatively, the problem can be extended so as to
make the hedged portfolio self-financing. Self-financing can be guaranteed
by endogenizing n and solving simultaneously the equations Π = 0,∆M

Π = 0
and ΓMΠ = 0 for n, n1, n2. As an alternative, if n is fixed, a third pure endow-
ment/bond with maturity T3 can be issued or purchased, so that the portfolio
made up of S(t, T ), S(t, T1), S(t, T2) and S(t, T3) is self-financing and Delta
and Gamma hedged. Our application in section 4.9 will cover both the non
self-financing and self-financing possibilities.

4.8 Mortality and financial risk hedging

Let us consider now the case in which both mortality and financial risk exist.
Again we develop the technique assuming a OU intensity. We also select
a constant-parameter Hull and White model for the interest rate under the
risk-neutral measure:

Σ(t, T ) = Σ exp(−g(T − t)) (4.35)

with Σ, g ∈ R+. Substituting in (4.21) indeed we have

r(t) = F (0, t) +
1

2

Σ2

g2
(1− e−gt)2 + Σ

∫ t

0

e−g(t−s)dW ‘F (s).

which allows us to derive an expression for B(t, T ) analogous to (4.32):

B(t, T ) =
B(0, T )

B(0, t)
exp

[
−X̄(t, T )K(t)− Ȳ (t, T )

]
where

X̄(t, T ) :=
1− exp(−g(T − t))

g

Ȳ (t, T ) :=
Σ2

4g
[1− exp(−2gt)] X̄2(t, T )

where K is the financial risk factor, measured by the difference between the
short and forward rate:

K(t) := r(t)− F (0, t)
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The pure endowment reserve at time t, according to (4.5) above, is

P (t, T ) = exp

(
−
∫ T

t

[f(t, u) + F (t, u)] du

)
= S(t, T )B(t, T )

Given the independence stated in Assumption 3, we can apply Ito’s lemma
and obtain the dynamics of the reserve P (t, T ) as

dP = BdS + PdB ' B

[
∂S

∂t
dt+

∂S

∂I
dI +

1

2

∂2S

∂I2
(dI)2

]
+

+ S

[
∂B

∂t
dt+

∂B

∂K
dK +

1

2

∂2B

∂K2
(dK)2

]
where

∂B(t, T )

∂K
= −B(t, T )X̄(t, T ) ≤ 0

∂2B(t, T )

∂K2
= B(t, T )X̄2(t, T ) ≥ 0

It follows that, for given t,

dP (t, T )

P (t, T )
' −X(t, T )dI +

1

2
X(t, T )2(dI)2 − X̄2(t, T )dK +

1

2
X̄2(t, T )(dK)2

Hedging of the reserve is again possible by a proper selection of pure en-
dowment/longevity bond contracts with different maturities and/or zero-
coupon-bonds with different maturities. Here we consider the case in which
the hedge against mortality and financial risk is obtained either issuing (pur-
chasing) pure endowments (longevity bonds) or using also bonds.
Consider first using mortality linked contracts only. We can see that Delta
and Gamma hedging of both the mortality and financial risk of n endow-
ments with maturity T can be obtained via a mix of n1, n2, n3, n4 endow-
ments/longevity bonds with maturities ranging from T1 to T4, by solving
simultaneously the following hedging equations:

∆M
Π = 0

ΓMΠ = 0

∆F
Π = 0

ΓFΠ = 0

(4.36)

This indeed means solving the system of equations
∆M

Π = nBSX + n1B1S1X1 + n2B2S2X2 + n3B3S3X3 + n4B4S4X4 = 0

ΓMΠ = nBSX2 + n1B1S1X
2
1 + n2B2S2X

2
2 + n3B3S3X

2
3 + n4B4S4X

2
4 = 0

∆F
Π = nBSX̄ + n1B1S1X̄1 + n2B2S2X̄2 + n3B3S3X̄3 + n4B4S4X̄4 = 0

ΓFΠ = nBSX̄2 + n1B1S1X̄1
2

+ n2B2S2X̄2
2

+ n3B3S3X̄3
2

+ n4B4S4X̄4
2

= 0

(4.37)
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where B denotes B(t, T ) and Bi, Xi, X̄i denote B(t, Ti), X(t, Ti), X̄(t, Ti)
for i = 1, ..., 4.

Consider now using both mortality-linked contracts and zero-coupon-
bonds. In this case, the hedging equations (4.36) become:

∆M
Π = nBSX + n1B1S1X1 + n2B2S2X2 = 0

ΓMΠ = nBSX2 + n1B1S1X
2
1 + n2B2S2X

2
2 = 0

∆F
Π = nBSX̄ + n1B1S1X̄1 + n2B2S2X̄2 + n3B3X̄3 + n4B4X̄4 = 0

ΓFΠ = nBSX̄2 + n1B1S1X̄1
2

+ n2B2S2X̄2
2

+ n3B3X̄3
2

+ n4B4X̄4
2

= 0

(4.38)

These equations can be solved either all together or sequentially (the
first 2 with respect to n1, n2, the others with respect to n3 and n4), covering
mortality risk at the first step and financial risk at the second step.
Both problems outlined in (4.37) and (4.38) can be extended to self-financing
considerations. In both cases the value of the hedged portfolio is given by

Π(t) = nBS + n1B1S1 + n2B2S2 + n3B3S3 + n4B4S4

It is self-financing if Π(0) = 0 or if an additional contract is inserted, so that
the enlarged portfolio value is null. In our applications we will explore both
possibilities.

4.9 Application to a UK sample

In this Section, we present an application of our hedging model to a sample
of UK insured people. We exploit our minimal change of measure, which
preserves the biological and historically reasonable behaviour of the intensity.
We also assume that a′ = a, i.e. that the risk premium on mortality risk
is null. This assumption could be easily removed by calibrating the model
parameters to actual insurance products, most likely derivatives. We take the
view that their market is not liquid enough to permit such calibration (see
also Biffis (2005), Cairns, Blake, Dowd, and MacMinn (2006), to mention a
few). We therefore calibrate the mortality parameters to historical data (the
IML tables, that are projected tables for English annuitants). We assume
also - at first - that the interest rate is constant and, without loss of generality,
null - as in Section 4.7. We derive a ”term structure of pure endowments”
and the values of coefficients Delta and Gamma of the contracts. Afterwards,
we introduce also a stochastic interest rate.
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4.9.1 Mortality risk hedging

We keep the head fixed, considering contracts written on the lives of male
individuals who were 65 years old on 31/12/2010. Hence, we set t = 0 and
we calibrate our parameters a65, σ65, λ65(0) = − ln p65 from our data set,
considering the generation of individuals that were born in 1945. For this
generation, a is calibrated to 10.94 %, while σ is 0.07 %. λ65(0) is instead
0.885%.15

First of all, we analyze the effect of a shock of one standard deviation
on the Wiener driving the intensity process. Figure 4.1 shows graphically
the impact of an upward and downward shock of one standard deviation on
the forward intensity at t = 1 for different time horizons T . The forward
mortality structure is derived from (4.3) using (4.15). The Figure clearly
highlights that the effect becomes more and more evident – the trumpet
opens up – as soon as the time horizon of the forward mortality becomes
longer. Please notice that the behaviour is – as it should, from the economic
point of view – opposite to the one of the corresponding Hull-White interest
rates. In the rates case indeed the trumpet is reversed, since short-term
forward rates are affected more than longer ones.

The following Table 4.1 reports the ”term structure of pure endowment
contracts” and compares the Delta and Gamma coefficients associated with
contracts of different maturity in the stochastic case with the deterministic
ones.

It appears clearly from the previous Table that the model gives hedging
coefficients for mortality-linked contracts which are quite remarkably differ-
ent from the deterministic ones for long maturities. For instance, the ∆M and
ΓM hedging coefficients for a contract with maturity 30 years are respectively
6% smaller and larger than their deterministic counterparts. Contracts with
long maturities are clearly very interesting from an insurer’s point of view
and hence their proper hedging is important.

As an example, imagine that an insurer has issued a pure endowment
contract with maturity 15 years. Suppose that he wants to Delta-Gamma
hedge this position using as cover instruments mortality-linked contracts with
maturity 10 and 20 years. At a cost of 0.37, the insurer can instantaneously
Delta-Gamma hedge its portfolio, by purchasing, respectively, 1.11 and 0.26
zero-coupon longevity bonds on these maturities. Having at disposal also
the possibility of using contracts with a maturity of 30 years on the same
population of individuals, a self-financing Delta-Gamma hedging strategy can

15We refer the reader to Luciano and Vigna (2008) for a full description of the data set
and the calibration procedure.



CHAPTER 4. HEDGING MORTALITY RISK 126

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

f(0,T) f(1,T)+ f(1,T)-

Figure 4.1: This figure shows the effect on the forward death intensity f(1, T )
of a shock equal to one standard deviation as a function of T . The central –
solid – line represents the initial forward mortality intensity curve f(0, T )
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Table 4.1: Stochastic vs. deterministic hedging coefficients

Stochastic hedge Deterministic hedge
Maturity S(t, T ) ∆M ΓM ∆σ=0 Γσ=0

1 0.99069 -1.04691 1.10633 -1.04691 1.10633
2 0.98041 -2.19187 4.90030 -2.19187 4.90030
5 0.94282 -6.27449 41.75698 -6.27439 41.75633
7 0.91116 -9.58396 100.80807 -9.58347 100.80284
10 0.85174 -15.46366 280.74803 -15.46053 280.69129
12 0.80306 -19.94108 495.16678 -19.93255 494.95501
15 0.71505 -27.19228 1034.08392 -27.16108 1032.89754
18 0.60899 -34.31821 1933.91002 -34.22325 1928.55907
20 0.52957 -38.32543 2773.64051 -38.14219 2760.37929
25 0.31713 -41.77104 5501.91988 -41.05700 5407.86868
27 0.23633 -39.27090 6525.53620 -38.18393 6344.91753
30 0.13319 -31.20142 7309.51024 -29.46466 6902.64225
35 0.03144 -12.93603 5322.98669 -10.78469 4437.74408

be implemented by purchasing 0.48 and 0.60 longevity bonds with maturity
respectively 10 and 20 years, and issuing 0.10 pure endowments with maturity
30 years.

4.9.2 Mortality and financial risk hedging

The same procedure, as shown in Section 4.8, can be followed to hedge si-
multaneously the risks deriving from both stochastic mortality intensities and
interest rates. Notice that, if we consider that the interest rate is stochas-
tic (or at least different from zero), prices of pure endowment contracts no
longer coincide with survival probabilities. Nonetheless, their ∆M and ΓM ,
the factors associated to mortality risk, remain unchanged when we intro-
duce financial risk (see Section 4.8). Once one has estimated the coefficients
underlying the interest rate process, we can easily derive the values of ∆F

and ΓF , the factors associated to the financial risk, and the prices P (t, T ) of
pure endowment/longevity bond contracts.
We calibrate our constant-parameter Hull and White model for forward inter-
est rates to the observed zero-coupon UK government bonds at 31/12/2010.16

Table 4.2 shows prices and financial risk hedging factors of pure endowment
contracts subject to both financial and mortality risks. Please notice that

16The parameter g is 2.72%, while the diffusion parameter Σ is calibrated to 0.65 %
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Table 4.2: Hedging coefficients for stochastic financial risk

Maturity P (t, T ) ∆F ΓF

1 0.98395 -0.9798 0.9666
2 0.96214 -1.9103 3.7185
5 0.86696 -4.2988 20.0963
7 0.78430 -5.4865 34.9707
10 0.64372 -6.6170 57.9341
12 0.54597 -6.9606 71.2657
15 0.40404 -6.9596 85.7216
20 0.20649 -6.0149 92.7836
25 0.07972 -4.5599 82.7129
27 0.04902 -3.9667 75.8645
30 0.02037 -3.1366 64.3246
35 0.00278 -1.9995 45.1377

the absolute values of the factors related to the financial market are smaller
than the ones related to the mortality risk.

These factors ∆F and ΓF , together with their mortality risk counterparts,
∆M and ΓM , allow us to hedge pure endowment contracts from both finan-
cial and mortality risk by setting up a portfolio - even self-financing - which
instantaneously presents null values of all the Delta and Gamma factors.
As an example, consider again the hedging of a pure endowment with ma-
turity 15 years. In order to Delta-Gamma hedge against both risks, we need
to use four instruments (five if we want to self-finance the strategy). We
can either use four pure endowments/longevity bonds written on the lives of
the 65 year-old individuals or two mortality-linked contracts and two zero-
coupon-bonds. In the first case, imagine to use contracts with maturity 10,
20, 25 and 30 years. The hedging strategy consists then in purchasing 0.35
longevity bonds with maturity 10 years, 1.27 with maturity 20 years and
0.30 with maturity 30 years, while issuing 0.87 pure endowment policies with
maturity 25 years. In the second case, imagine the hedging instruments are
mortality contracts with maturities 10 and 20 years and two zero-coupon-
bonds with maturities 5 and 20 years. The strategy consists in purchasing
1.11 longevity bonds with maturity 10 years and 0.26 with maturity 20 years
and in taking a short position on 0.60 zero-coupon-bonds with maturity 5
years and a long one on 0.10 zero-coupon-bonds with maturity 20 years. A
self-financing hedge can be easily obtained by adding an instrument to the
portfolio. For example, such a self-financing hedge can be obtained by pur-
chasing 0.41 longevity bonds with maturity 10 years, 0.98 with maturity 20
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years and 0.22 with maturity 35 years and issuing 0.38 pure endowments
with maturity 25 years and 0.13 with maturity 30 years.

4.10 Summary and conclusions

This paper develops a Delta and Gamma hedging framework for mortality
and interest rate risk.
We have shown that, consistently with the interest rate market, when the
spot intensity of stochastic mortality follows an OU or FEL process, an HJM
condition on its drift holds for every constant risk premium, without assum-
ing no arbitrage. Hence, we have shown that it is possible to hedge systematic
mortality risk in a way which is identical to the Delta and Gamma hedging
approach in the HJM framework for interest rates. Delta and Gamma are
very easy to compute, at least in the OU case. Similarly, the hedging quan-
tities are easily obtained as solutions to linear systems of equations. Hence,
this hedging model can be very attractive for practical applications.
Adding financial risk is a straightforward extension in terms of insurance
pricing, if the bond market is assumed to be without arbitrages (and com-
plete, so that the financial change of measure is unique). Delta and Gamma
hedging is straightforward too if - as in the examples - the risk-neutral dy-
namics of the forward interest rate is constant-parameter Hull and White.
Our application shows that the unhedged effect of a sudden change on the
mortality rate is remarkable and the stochastic and deterministic Deltas and
Gammas are quite different, especially for long time horizons. Last but not
least, calibrated Deltas and Gammas are bigger for mortality than for fi-
nancial risk. The Delta and Gamma computation can be performed in the
presence of FEL stochastic mortality. The whole hedging technique can also
be extended using the same change of measure to the case of a CIR mortality
intensity, reverting to a function of time.

4.11 Appendix: Cox Processes

Throughout the paper, we explored models in which the intensity of a Pois-
son process is stochastic. Hence, stochasticity of the process is two-fold. On
one side, the jump component η is random, on the other its probability is
also stochastic. For this reason, these processes we studied are called doubly
stochastic or Cox processes. In this Appendix we briefly review their defini-
tion and properties.
We assume that the process underlying the intensity λ(t) is adapted to the
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filtration Ft, right continuous and independent of the jump process η. Ob-
viously, conditional on the filtration Fλ - and hence on λ(t) - we still have
a Poisson process. We define the cumulated intensity or hazard process
Λ(t) =

∫ T
0
λtdt.

The first jump time can be represented as τ = Λ−1(η). Hence, we can state
the following property:

P{τ ∈ [t, t+ dt]|τ > t,Ft} = λtdt

Hence, the probability of a first jump in the interval dt, given the information
set at t, is equal to λtdt, i.e. the product of the intensity at time t and the
length of the interval. Moreover, it is possible to show the following, which
in the paper allowed us to compute the survival probabilities:

P{τ > s} = P{Λ(τ) > Λ(s)} = P{η >
∫ s

0

λ(u)du} =

= E
[
P{η >

∫ s

0

λ(u)du|Fλ}
]

= E
[
e−

∫ s
0 λ(u)du

]
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