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FRENCH ABSTRACT  

 

Modèle thermo-hydro -chemo-mécanique du béton au jeune âge et son adaptation 

pour l’analyse numérique de la croissance des tumeurs cancéreuses. 

 

Mots-clés: multi-physique, multiphasique,  hydratation, retrait, fluage, cellules, division 

cellulaire, nécrose. 

 

L’objectif du travail de thèse a été la mise en place de deux modélisations multi-

physiques fondées sur des fondements théoriques communs mais appliquées à deux 

domaines de la recherche scientifique très différents: i) l’étude du comportement du béton 

au jeune âge pour la prévention de la fissuration précoce; ii) l’analyse des phénomènes 

physiques, chimiques et biologiques qui gouvernent la croissance et l’évolution de la 

tumeur cancéreuse.  

Le développement d’un outil numérique pour la modélisation du béton au jeune 

âge est très important pour la conception de structures durables. Le modèle développé 

pendant la thèse doctorale a été implanté sur le code aux éléments finis Cast3M, puis 

validé expérimentalement. Il permet de multiples applications: étude des sollicitations et 

des phénomènes de fissuration au jeune âge, gradients thermiques et hydriques, prédiction 

du retrait endogène et de dessiccation, étude de l’inhibition de l’hydratation causée par le 

séchage, prédiction du fluage et de la redistribution des contraintes associées, étude des 

réparations. 

Les équations qui gouvernent le comportement thermo-hydro-chemo-mécanique 

du béton au jeune âge ont plusieurs analogies formelles avec celles qui sont typiquement 

à la base de la modélisation de la croissance des tumeurs cancéreuses. L'élargissement de 

l'analyse numérique dans le domaine médical est d’un grand intérêt social en complément 

de l’intérêt scientifique. Les équations utilisées pour le béton ont été réadaptées, et le 

modèle mathématique obtenu a été implanté dans Cast3M. Les premiers résultats du 

modèle ont été satisfaisants et qualitativement très proches des données expérimentales de 

la littérature dans ce domaine.  
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ITALIAN ABSTRACT  

 

Modello termo-igro-chemo-meccanico del calcestruzzo giovane e suo adeguamento 

per l’analisi numerica della crescita e dell’evoluzione del tumore. 

 

Parole chiave: multi-fisico, multifase, idratazione, ritiro, deformazione differita, cellule, 

divisione cellulare, necrosi.   

 

L’obiettivo del Dottorato è stato lo sviluppo di due modelli multifase basati su 

fondamenti teorici comuni ma applicati a due campi della ricerca scientifica molto 

diversi: i) lo studio del comportamento termo-igro-chemo-meccanico del calcestruzzo 

giovane; ii) l’analisi dei fenomeni fisici, chimici e biologici che regolano la crescita e lo 

sviluppo dei tumori. 

La modellazione numerica del comportamento del calcestruzzo giovane è di 

grande importanza per la progettazione di strutture sostenibili e durevoli. Il modello 

sviluppato durante il Dottorato è stato implementato nel codice agli elementi finiti 

Cast3M e in seguito validato con la simulazione di casi sperimentali. Il modello numerico 

consente un’ampia gamma di applicazioni: studio delle sollecitazioni e dei fenomeni di 

fessurazione nel calcestruzzo durante i primi giorni dopo la posa in opera, analisi dei 

gradienti termici e igrometrici, valutazione del ritiro autogeno e di essiccazione, studio 

dell’inibizione dell’idratazione causata dall’essiccazione, ridistribuzione delle tensioni 

dovuta al ritiro e alle deformazioni differite, modellazione delle riparazioni. 

Le equazioni che governano il comportamento termo-igro-chemo-meccanico del 

calcestruzzo hanno molte analogie formali con quelle che sono tipicamente alla base della 

modellazione della crescita dei tumori. L'allargamento dell'analisi numerica al campo 

medico è di grande interesse sociale oltre che scientifico, pertanto le equazioni utilizzate 

per il calcestruzzo sono state riadattate per la modellazione della crescita tumorale, e il 

modello matematico ottenuto è stato anch’esso introdotto in Cast3M. I primi risultati di 

questo modello sono stati soddisfacenti perché qualitativamente molto simili ai dati 

sperimentali della letteratura scientifica. 
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ABSTRACT 

 

Keywords: multi-physics, multiphase, hydration, shrinkage, creep, cells, cell division, 

necrosis.   

The aim of the PhD thesis is the development of two multiphase models from a 

common theoretical basis, applied to two very different research fields: i) the study of the 

behavior of concrete at early ages, essentially for the prevention of cracking and related 

issues; ii) the analysis of the physical, chemical and biological processes that govern the 

growth of cancer. 

The modeling of concrete at early ages is very important and useful for the design 

of durable and sustainable structures. The model developed during the PhD thesis has 

been implemented on the finite element code Cast3M and then validated via the 

simulation of experimental cases. Nowadays this model allows for several applications: 

study of stresses and cracking in young concrete, analysis of thermal and hygral 

gradients, predictions of autogenous and drying shrinkage, creep strain, stress 

redistribution, study of the inhibition of hydration caused by drying, study of repairs, etc.. 

In the fight against cancer, the advance of medical strategies based on numerical 

analysis has a crucial scientific interest and can have a great social impact. The equations 

which govern the thermo-hygro-chemo-mechanical behavior of concrete at early ages 

have many formal analogies with those typically used to model tumor growth. Hence, 

these equations have been readapted and a novel mathematical model for tumor growth 

has been developed. This model has been implemented in Cast3M and the first numerical 

results are encouraging since qualitatively close to the experimental data present in the 

scientific bibliography. 
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L IST OF SYMBOLS AND ABBREVIATIONS  
 
ABBREVIATIONS 

CIT   Classical Irreversible Thermodynamics 

eqn   equation 

eqs   equations 

FE    Finite Element  

HMT   Hybrid Mixture Theory 

ITZ   Interfacial Transition Zone 

M   Mechanical 

REV   Representative Elementary Volume 

TCAT   Thermodynamically Constrained Averaging Theory 

THC   Thermo-Hygro-Chemical 

GENERAL AND TCAT SYMBOLS  

Arabic numerals 

 1 identity tensor 

Greek letters 

 � porosity 

αε   volume fraction of the phase � 

αθ   relative temperature 

α
�   thermal conductivity 

αµ  dynamic viscosity of the phase � 

αρ   density of the phase � 

cακ∈ℑ
�  sum over the set of entities connected to phase � 

αψ  gravitational potential 

Roman letters 

pC α  specific heat of the phase � at constant pressure 
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 d rate of strain tensor ( )1

2
T� �= ∇ + ∇

� �
d v v  

Eα  internal energy 

αg  gravitational force 

EK α  kinetic energy due to microscale velocity fluctuations 

M
κ α→

 inter-phase mass transfer 

EM
κ α→

 transfer of energy due to phase change 

 
αq  heat flow vector 

Q
κ α→

 transfer of energy due to heat transfer 

 
ir α

 intra-phase mass transfer 

 
fR  resistance tensor 

 sα  heat source 

 
αt  stress tensor 

κ α→
T  inter-phase momentum transfer 

vT
κ α→

 transfer of energy due to interfacial stress 

 
αv  velocity vector 

SYMBOLS IN THE CONCRETE SECTIONS (CHAPTERS 1, 2 AND 3) 

Greek letters 

α  Biot’s coefficient 

α∞  final Biot’s coefficient 

Tα  thermal expansion coefficient  

 �  function which depends on the relative humidity  

�cr  constant coefficient which allows to couple damage with creep   

�kl  constant coefficient in the function �(Sl ) 

 � liquid-gas system surface tension 

Eγ  exponent in the function which regulates the evolution of E with hydration  

FTγ  exponent in the function which regulates the evolution of ft with hydration 
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Γ   degree of reaction 

i�  constant coefficient in the desorption isotherm function 

p�  degree of reaction correspondent to the peak of affinity – constant in A(�) 

0�  percolation threshold 

dcδ  constant coefficient which regulates the amplitude of the drying creep strain 

ζ  constant coefficient in A(�) – it regulates the deceleration phase of hydration  

bciη  viscosity of the dashpot in the creep cell i 

0κ  maximal extension of concrete  

ν  Poisson’s ratio 

ν∞  final value of the Poisson’s ratio 

ξ   hydration degree 

ξ∞   final hydration degree 

bciτ  characteristic time of the Kelvin-Voigt chain i  

hϕ  hygral convective coefficient  

tϕ  thermal convective coefficient  

αχ  solid surface fraction in contact with the fluid phase � (i.e. Bishop’s parameter) 

Ψ  function which allows to take into account the Klinkenberg’s effect 

Ω  volume faction of the cement paste  

Roman letters 

a constant coefficient in the desorption isotherm function 

ah constant coefficient in the function � 

a� constant coefficient in the porosity equation �(�) 

A  chemical affinity equation which regulates the hydration reaction 

Ai initial chemical affinity - constant coefficient in A(�)  

Ap affinity peak value - constant coefficient in A(�) 

Ak constant coefficient in the intrinsic permeability function k(�) 

At constant coefficient in the damage model 

b constant coefficient in the desorption isotherm function 

Bt constant coefficient in the damage model 
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 c mass of cement present in the mix 

cΓ  constant coefficient in the desorption isotherm function 

hydrc   mass of hydrated cement 

ijC
 

non linear coefficient of the discretized capacity matrix 

 D mechanical damage 

0
WgD  diffusivity of water vapour in the gaseous phase 

WgD  effective diffusivity of water vapour in concrete 

 e total strain  

cre  creep strain  

the  thermal strain 

she  shrinkage strain 

inst
she  instantaneous shrinkage strain  

visc
she  viscous shrinkage strain 

e
�  equivalent strain (used in the damage model) 

crie  scalar creep strain of the creep cell i 

aE  activation energy 

 E  tangent matrix 

E∞  final value of the Young’s modulus 

sf  in the effective diffusivity equation is the tortuosity function ( ( )s sf f= Γ ) 

tf  tensile strength 

tf ∞  final value of the tensile strength 

if
 

discretized source term associated with the primary variable i 

ftg  density of the dissipated energy 

ftG  fracture energy 

 h relative humidity 

hydrH   specific enthalpy of hydration 

vapH  specific enthalpy of vaporization 
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bcik  stiffness of the spring in the creep cell i 

bc _ik ∞  final stiffness of the spring in the creep cell i 

k∞  final intrinsic permeability 

TK  Bulk’s modulus of concrete 

TK∞  final Bulk’s modulus of concrete 

SK  Bulk’s modulus of the solid phase 

ijK
 

non linear coefficient of the discretized conduction matrix  

 cl  characteristic length 

hydrL   latent heat of hydration 

l Hs

m
→

 mass of chemically combined water 

l Hs

m
→

∞  final mass of chemically combined water 

Mα  molar mass of the phase � 

cpn∞  final porosity of the cement paste 

Asn  porosity of the aggregate 

atmp  atmospheric pressure 

0p  constant coefficient in the function �(Sl ) 

ql flow vector of the liquid phase 

r averaged radius of the menisci 

R  gas constant in the ideal gas equation 

s content of silica fume in the mix 

s
efft  effective stress tensor in the sense of porous media mechanics 

t�  effective stress tensor in the sense of damage mechanics 

spit  scalar stress in the spring in the creep cell i 

dsit  scalar stress in the dashpot in the creep cell i 

T  absolute temperature 

αu  displacement vector of the phase � 

w content of water in the mix 

x  solution vector 
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Subscripts and superscripts 

� phase indicator with � = l, s or g 

Ag dry air 

As aggregate 

cp cement paste 

Cs cement 

g gaseous phase 

Hs hydration products 

l liquid water 

s solid phase 

Wg water vapour 

SYMBOLS IN THE TUMOR SECTION (CHAPTER 4) 

Greek letters 

α  Biot’s coefficient 

β  coefficient for the interpolation of the growth curve 

t
growthγ

 
growth coefficient 

t
necrosisγ  necrosis coefficient 

nl
growthγ  

nutrient consumption coefficient related to growth  

0
nlγ

 
nutrient consumption coefficient not related to growth  

δ
 

exponent in the effective diffusion function for the oxygen  

t
aδ
 

additional necrosis induced by pressure excess   

livingδ
 

coefficient for the interpolation: thickness of the viable rim of tumor cells 

cσ  coefficient in the pressure-saturations relationship 

ας  chemical potential 

αχ  solid surface fraction in contact with the phase �              

Ntω  mass fraction of necrotic cells in the tumor cells phase 

nlω  nutrient mass fraction in liquid. 

nl
critω  critical nutrient mass fraction in liquid for growth 
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nl
envω  reference nutrient mass fraction in the environment 

Roman letters 

αA
 

fourth order tensor that accounts for the stress-rate of strain relationship 

 a coefficient for the interpolation of the growth curve 

aα  adhesion of the phase � 

 b exponent in the pressure-saturations relationship 

ijC
 

non linear coefficient of the discretized capacity matrix 

αd  rate of strain tensor 

il
effD  

diffusion coefficient for the species i dissolved in the phase l 

il
effD  

effective diffusion coefficient for the species i dissolved in the phase l 

sD
 

tangent matrix of the solid skeleton 

se
 

total strain tensor 

s
ele

 
elastic strain tensor 

s
vpe

 
visco-plastic strain tensor 

s
swe

 
swelling strain tensor 

if
 

discretized source term associated with the primary variable i 

H  Heaviside step function 

sαk  absolute permeability tensor of the phase � 

relkα  relative permeability of the phase � 

ijK
 

non linear coefficient of the discretized conduction matrix  

vN
 

vector of shape functions related to the primary variable v 

pα  pressure in the phase � 

t
critp  tumor pressure above which growth is inhibited 

t
necrp  tumor pressure above which stress causes an increase of the death rate 

r∞  tumor radius at sufficiently large time 

sphr  radius of the spheroid 

ncr  radius of the necrotic core 
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αR
 

resistance tensor  

Sα  saturation degree of the phase � 

s
efft  effective stress tensor of the solid phase s 

s
tott  total stress tensor of the solid phase s 

su  displacement vector of the solid phase s 

x  solution vector 

Subscripts and superscripts 

� phase indicator with �=t,h,l, or s 

crit critical value for growth 

h host cell phase 

l interstitial fluid 

n nutrient 

necr critical value for the effect of pressure on the cell death rate 

s solid 

t tumor cell phase 
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GENERAL INTRODUCTION  

Porous media mechanics is a major branch of continuum mechanics since it is of interest 

for a lot of engineering applications. A porous medium consist of a solid porous matrix 

saturated by one or more fluids phases. In geomechanics depending on the saturation 

degree of the liquid water, complete or partial, we distinguish between saturated and 

partially saturated porous media respectively. In the following list the main features of 

porous media are indicated. 

i. Each phase can consist of several species. For instance, in the concrete model 

presented here, the gas in the pores consists of dry air and water vapour. 

ii.  There are interactions and momentum exchanges between the fluid phases and 

between these and the solid skeleton. Hence, part of strains is associated with the 

fluids-solid mechanical interactions. 

iii.  If the porous medium is not in hygral equilibrium (internal and with the external 

environment), mass transport of the different fluid phases and species occurs. 

iv. Mass exchanges between the different phases of the system may arise. For 

instance vaporization of the liquid water and/or dissolution of the solid phase in 

the liquid one may happen. 

v. In non-isothermal conditions, temperature variation impacts on mass exchanges; 

also mass transport is actually coupled with temperature and thermal gradients. 

vi. The macroscopic behavior of a porous medium is significantly connected with the 

microstructure of the solid matrix and with the micro-scale physics. Hence, to 

achieve a meaningful set of macroscopic equations, these must be obtained taking 

into account the pore scale thermodynamics. 

According with the previous list, porous media modeling should be multiphase and 

multiphysics, and must take into account phenomena also at scales different than the 

macroscopic one (microscale and mesoscale). These aspects are the basis of the 

Thermodynamically Constrained Averaging Theory (TCAT) developed by Gray and 

Miller in this last decade (Gray and Miller, 2005). In the TCAT procedure the balance 

equations are initially written at the microscale and then upscaled by averaging theorems 

to obtain the macroscopic balance equations. The main difference between the TCAT and 

its “big sister” i.e. the Hybrid Mixture Theory (HMT) (Hassanizadeh and Gray, 1979a, 
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1979b and 1980), is that in the HMT the respect of entropy inequality is guaranteed only 

at the macroscale (so not assured at the microscale), whilst in the TCAT balance 

equations for entropy of each phase are written at the microscale, and then upscaled 

similarly to the other balance equations; this assures that thermodynamic restrictions are 

respected at both the microscopic and the macroscopic scales, and gives the advantage 

that closure relationships exploiting the entropy inequality can be obtained and introduced 

also at the microscale. Sometimes the macroscopic behaviour cannot be explained 

exhaustively at the macroscale but depends on well-known microscopic phenomena; in 

that case the introduction of closure relationships at the microscale can be helpful. The 

rigorous connection between the microscale and the macroscale given by the 

TCAT procedure allows to take into account also pore scale properties of the phases 

which typically do not appear in classical models of flow where the balance equations are 

directly written at the macroscale. An example of this situation is fluid wettability as 

measured by the contact angle between fluid interfaces and the solid phase at the pore 

scale; wettability is well known to affect drastically multiphase flow at the macroscale, 

but does not appear in classical models of flow at that scale.  

The main features of the TCAT procedure are reported and discussed in Paragraph 1.2. 

However the mathematical procedure employed for upscaling is not fully shown because 

it has not be developed during the PhD thesis; the mathematical framework is presented 

in detail in the papers of Gray and Miller (2005 and subsequent papers).  

The contents of the thesis and its structure reflect the research during the three year of 

PhD studies (2010-2012). Most of this time has been spent on the analysis of concrete 

behavior and on the development of a numerical tool capable to model strains of concrete 

at early age and prevent the related issues (early age cracking which may reduce the 

service life of the structure). Hence, three chapters of the thesis are dedicated to this part 

of the research (see Figure 1). In Chapter 1 TCAT is used as the rigorous theoretical 

base from which the mathematical formulation of the model of concrete at early age is 

fully developed. All the governing balance equations and constitutive equations are 

reported together to the relationships between the main properties of concrete and its 

hydration degree. The model is mainly inspired to the approach of Gawin, Pesavento and 

Schrefler (2006a and 2006b); however there are some differences between this reference 

formulation and the presented model and these are indicated in the text. In Chapter 2 the 

experimental behavior of concrete is presented by means of the analysis of experimental 
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results taken from bibliography. A number of numerical examples are also shown and 

discussed to evidence the potentialities of the numerical model in terms of quantity 

(temperature, relative humidity, saturation degree, gas pressure, hydration degree, thermal 

strains, autogenous and drying shrinkage, creep, damage), and quality of the results by 

means of comparison with experimental ones. Cement hydration, drying, shrinkage and 

creep are the themes of this chapter. Within this chapter some aspects of the model are 

discussed in detail and compared with other approaches present in literature.  

 
Figure 1 - Structure of the thesis 

In Chapter 3 the numerical model is validated through its application to two real cases. 

The first application case is one of the experiments performed during the French 

international benchmark on control of cracking in reinforced concrete structures 

ConCrack1. The second case is the repair of two beams using an ordinary concrete and a 

fiber reinforced ultra-high-performance concrete. A good agreement is shown between 

the experimental results and the numerical ones. In the last paragraph of the chapter other 

application perspectives (for instance the analysis of prestress losses in pretensioned 

concrete structures) of such a model are indicated.  

Chapter 4 is the last one of the thesis and deals with the other theme of the PhD 

research, i.e. tumor growth modeling. After a brief introduction of the research context 

and a short bibliographic analysis of the models present in literature, the TCAT procedure 

is followed to develop the mathematical model. The governing equations and the 

introduced constitutive relationships are presented and explained. Numerical results for 

                                                 
1 This benchmark has been organized within the French project CEOS (Comportement et Evaluation des 
Ouvrages Speciaux vis-à-vis de la fissuration et du retrait) a national French project on behaviour and 
assessment of special construction works concerning cracking and shrinkage. 
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three cases of biological interest as tumor spheroids and tumor cords are also shown. This 

research is still in progress very actively and the last part of the chapter illustrates the 

short term improvements and the perspectives of the model. 
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1 MULTIPHYSICS MODELING OF 

CONCRETE AT EARLY AGES  

1.1 INTRODUCTION 

The behavior of cementitious materials is very complex especially during the first hours 

after the casting, when various physical and chemical phenomena determine thermal, 

hygral and chemical strains. The hydration reaction is associated with the production of 

heat that in some cases, depending on the geometry of the structure and/or on the type of 

concrete, can be very critical. This is the case for instance of massive structures which are 

typically concerned by relevant thermal gradients that can induce cracking due to 

differential and restrained strains. Hence, thermo-chemo-mechanical models (TCM) are 

usually used for massive structures because during the first days their behavior and 

related issues depend mainly on hydration and on related thermal strains. On the other 

hand, in repairs and in thin structures in general the increase of temperature due to 

hydration is not too high and this time the behavior is governed mostly by drying and 

self-desiccation, consequently hygro-chemo-mechanical models (HCM) are the most 

appropriated. Between these two border class of cases (massive and thin structures) there 

are a number of concrete structures whose behavior is governed by both thermal and 

hygral phenomena. One could think that the resulting behavior of these structures can be 

estimated sufficiently summing the results of a TCM and a HCM models but this is false 

essentially for two reasons: the first one is that there is a coupling between thermo-

chemical and the hygral phenomena; the second one is that concrete is not a linear elastic 



CHAPTER1 – Multiphysics modeling of concrete at early age 

30 
 

material and so the actual solution cannot be obtained summing two solutions obtained by 

two different models. Therefore the choice is to develop a thermo-hygro-chemo-

mechanical model, based on the Thermodynamically Constrained Averaging Theory 

(TCAT), which can predict correctly the complex behavior of concrete at early age and 

beyond.  

1.2 BRIEF OVERVIEW OF TCAT 

Thermodynamically constrained averaging theory provides a rigorous yet flexible method 

for developing multiphase, continuum models at any scale of interest. An important 

feature of the procedure is that it explicitly defines larger scale variables in terms of 

smaller scale variables. When modeling flow and transport in systems involving more 

than one phase, the length scale of the model impacts the form and parameterization of 

the relevant conservation equations.   

1.2.1 Microscale  

The smallest scale at which the continuum hypothesis holds is called the microscale or 

pore scale. At the microscale, a single (continuum) point contains a large number of 

molecules so that properties such as density, temperature, and pressure of a phase can all 

be defined. A single point will be in only one phase, so at every location in the domain, 

the type and state of the phase occupying that location is considered. At the microscale, 

well-known, classical “point” conservation equations and thermodynamic expressions can 

be written.  However, the domains of many problems of interest are too large and the 

phase distributions are too complex for the system to be modeled at the microscale. The 

level of detail required to account for geometric structure and the variability of variables 

at the microscale precludes simulation of any but the smallest of problems. To overcome 

this challenge, many porous media models are formulated at a larger scale, called the 

macroscale, that is adequate for describing system behavior while filtering out the high 

frequency spatial variability.   

1.2.2 Macroscale and concept of representative elementary volume REV 

The macroscale depends on the concept of the representative elementary volume (REV), 

an averaging volume that can be centered at each point in the system and is large enough 

to include all phases present such that values of averages are independent of the size of 

the REV.  
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Figure 1.1 -  Physical components of an example three-phase microscale system (Gray, 1999). 

The volume must also be much smaller than the length scale of the entire system (known 

as the megascale), so that quantities such as gradients are meaningful. TCAT uses 

averaging theorems to formally and consistently transform microscale conservation and 

thermodynamic equations to the larger macroscale. These averaging theorems convert 

averages of microscale derivatives into derivatives of macroscale average quantities, and 

they share some features of the better known transport and divergence theorems. The 

description of a multiphase system must include equations for all entities of importance, 

where the term entities is used to designate collectively phases, interfaces (where two 

phases meet), common curves (where three interfaces meet), and common points (where 

four common curves meet). Averaging theorems are available for transforming equations 

describing processes in these entities from the microscale to the macroscale (Gray et al., 

1993). 

1.2.3 Closure techniques 

To close the conservation equations of mass, momentum, and energy for the entities of 

interest, additional model parameters and constitutive relations must be specified. 

Simplifications and modifications of the general equations that are appropriate to reach a 

system of equations that is more easily solvable can be obtained by a variety of methods 
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including elimination of unimportant terms and addition of approximate supplementary 

relations. Many existing models have been closed through ad hoc selection or formulation 

of equations, but TCAT employs averaged thermodynamic relations in the context of an 

entropy inequality to guide closure of the system equations. The microscale 

thermodynamic formalism that is chosen for averaging is classical irreversible 

thermodynamics (CIT). This seems adequate for the modeling goals here, but more 

complex thermodynamic formalisms can be employed if desired.  The essential element 

of TCAT is that regardless of the formalism selected, it is posed at the microscale and 

averaged to the macroscale such that consistent definitions of intensive variables are 

maintained.  

1.2.4 The TCAT procedure 

The TCAT approach consists of the following steps (Gray and Miller, 2005): 

i. formulate conservation equations of mass, momentum, energy, along with an 

entropy inequality for all relevant entities (volumes, interfaces, common curves, 

and common points); 

ii.  make a consistent set of thermodynamic postulates for all microscale entities; 

iii.  employ theorems that allow for a rigorous change in scale of universal relations 

that preserve relations among variables across scales; 

iv. constrain entropy inequality (EI) using the products of Lagrange multipliers with 

conservation equations and with differential, consistent-scale thermodynamic 

equations; 

v. determine values for the set of Lagrange multipliers that are consistent with the 

detail at which the system will be modeled that lead to an entropy generation rate 

that is expressed, essentially, in terms of products of forces and fluxes; 

vi. employ geometric identities and approximations to assist in simplifying the 

entropy generation term to a form that is only in terms of macroscale forces and 

fluxes; 

vii.  use the resultant simplified EI to guide the formulation of general forms of closure  

approximations consistent with conservation laws and the second law of 

thermodynamics; 

viii.  compare microscale and macroscale modeling and experimentation to assist in 

improving the forms and parameterizations of the closure relations; 

ix. develop needed additional constraints that may arise due to the scale of modeling. 
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1.2.5 Advantages of the TCAT approach 

The benefits of using a TCAT approach are as follows. First, the model derivation 

proceeds systematically from known microscale relations to mathematically and 

physically consistent larger scale relations. This is accomplished by use of averaging 

theorems. Closure approximations are inserted near the end of the formulation. So, there 

is an explicit path back to the exact (unclosed) system if closure approximations are 

deemed to be insufficient and need to be reconsidered. Other models that are formulated 

without this systematic procedure may not be as easily mutable. Second, the 

thermodynamic analysis is consistent between scales, in the definitions of variables at 

different scales, and in satisfying the entropy inequality. The interscale consistency and 

explicit definition of variables are achieved using a rational thermodynamic approach. 

Macroscale variables are precisely defined by the averaging theorems. Since they are 

precisely defined from microscale antecedents, there is no chance of inconsistent variable 

definitions among equations; and the macroscale variable maintains a clear connection to 

its microscale counterpart. Models based on conservation and/or constitutive equations 

postulated directly at the macroscale run the risk of being inconsistent with microscale 

physics. Clear variable definitions, which are inherent to TCAT, are vital to the ability to 

observe and measure macroscale parameters. Third, relations may be obtained for the 

evolution of the spaces occupied by phases and of the interfacial area density. These 

relations are based on the averaging theorems. 

1.3 THE MULTIPHASE SYSTEM 

Concrete is modeled as a multiphase material. The multiphase system consists of three 

phases: a solid phase s, a liquid phase l and a gaseous phase g.  

 
Figure 1.2 - The multiphase system 
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The solid phase contains several species: anhydrous grains of cement, aggregates, solid 

addiction and hydrates (CSH, etringite, etc.). The liquid phase l is liquid water whilst the 

gaseous phase g, is modeled as an ideal binary gas mixture of dry air and water vapour. 

The REV and its correlation with the structure scale are illustrated in Figure 1.2.  

1.4 GENERAL GOVERNING EQUATIONS 

The model is inspired by the theoretical approach developed by Gawin et al. (2006a and 

2006b); however, there are differences between this approach and the presented model: i) 

the model has been simplified in some aspects as for instance the partial uncoupling 

between the mechanical (M) and thermo-hygro-chemical (THC) parts (the M solution 

depends on the THC one but not viceversa); ii) a new flexible analytical expression for 

the chemical affinity is proposed and adopted; iii) the constitutive relationship of the 

desorption isotherm has been properly modified to take into account its dependence on 

the concrete hydration degree; iv) the autogenous shrinkage comes out mechanically 

without a dedicate additional constitutive equation, through the adoption of a relevant 

porosity function which respects stoichiometry; v) the mechanical damage is considered 

and coupled with creep; vi) 3D implementation.  

The governing equations are derived by averaging from the microscale to the macroscale 

and then using closure techniques to parameterize the resultant equations. Only the 

macroscopic equations are reported here since their derivation from microscale is 

mathematically intensive such that providing it here in detail would distract from the 

main thrust of the thesis. These averaging techniques have been employed for transport 

and for multiphase systems elsewhere (Gray and Miller 2009, Jackson et al. 2009, and 

Shelton 2011) and the procedure is the same for the current system. An important feature 

of the approach is that the interphase contacts are explicitly accounted for. 

1.4.1 Mass.  

Concrete is treated as a porous solid and porosity is denoted by �, so that the volume 

fraction occupied by the solid skeleton is �
s=1- �. The rest of the volume is occupied by 

the liquid water (�l); and the gaseous phase (�
g). Indeed, the sum of the volume fractions 

for all phases has to be unit 

 1s l gε ε ε+ + =    (1.1) 
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The saturation degree of the phases is: S�=��/� . Indeed, based on the definition of porosity 

� and volume fraction �� in eqn (1.1) it follows that  

 1l gS S+ =  (1.2) 

The mass balance equation for an arbitrary phase � based on application of the averaging 

theorems is written as 

 
( ) ( ) 0

c

M
t

α

α α κ α
α α α

κ

ε ρ
ε ρ

→

∈ℑ

∂
+ ∇ ⋅ − =

∂ �v  (1.3) 

where �� is the density, αv  is the velocity vector, M
κ α→

 are the mass exchange terms 

accounting for transport of mass at the interface between the phases � and �, and 
cακ ∈ℑ
� is 

the summation over all the phases exchanging mass at the interfaces with the phase �. 

An arbitrary species i dispersed within the phase � has to satisfy mass conservation too, 

and therefore the following equation is derived by averaging 
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 (1.4) 

where iαω  identifies the mass fraction of the species i dispersed with the phase �, irα αε  is 

a reaction term that allows to take into account the reactions between the species i and the 

other chemical species dispersed in the phase �, and iαu  is the diffusive velocity of the 

species i. Differently than a mass exchange term between phases (M
κ α→

), a reaction term 

irα αε  is an intra-phase exchange term.  

The solid phase s comprises a portion of anhydrous cement with mass fraction Csω  (the 

anhydrous cement fraction may contains also a percentage of anhydrous silica fume or 

other additions), a portion of aggregate with mass fraction Asω , and hydrates with mass 

fraction Hsω . Thus the conservation equation for each fraction would be similar to eqn 

(1.4). Assuming that there is no diffusion of the different portions of the solid phase the 

mass conservation equations for hydrates, aggregate and the anhydrous cement read 

respectively  
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( ) ( ) 0
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where s Hsrε  and 
l Hs

M
→

represent the hydrated cement and the combined water per second 

respectively. Summation of these three equations yields an overall mass conservation 

equation for the solid phase as 

 
( ) ( )

s s
l Hs

s s s M
t

ε ρ
ε ρ

→∂
+ ∇ ⋅ =

∂
v  (1.8) 

The mass balance equation for the liquid water l reads 

 
( ) ( )

l l
l Wgl Hs

l l l M M
t

ε ρ
ε ρ

→→∂
+ ∇ ⋅ = − −

∂
v  (1.9) 

where 
l Wg

M
→

 is the vaporized water per second. 

The gaseous phase consists of water vapor with mass fraction Wgω  and dry air with mass 

fraction Agω . The mass conservation equations for these two species read 

  
( ) ( ) ( )

g g Wg
l Wg

g g Wg g g g Wg Wg M
t

ε ρ ω
ε ρ ω ε ρ ω

→∂
+ ∇ ⋅ + ∇ ⋅ =

∂
v u  (1.10) 

 
( ) ( ) ( ) 0
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g g Ag g g g Ag Ag

t

ε ρ ω
ε ρ ω ε ρ ω

∂
+ ∇ ⋅ + ∇ ⋅ =

∂
v u  (1.11) 

Being the gas phase an ideal binary gas mixture, the relationship between the diffusive 

fluxes of vapor water and dry air reads:  

 ( ) ( )g g Wg Wg g g Ag Agε ρ ω ε ρ ω∇ ⋅ = −∇ ⋅u u  (1.12) 

Equation (1.12) allows to rewrite (1.11) as 
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( ) ( ) ( ) 0

g g Ag
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t

ε ρ ω
ε ρ ω ε ρ ω

∂
+ ∇ ⋅ − ∇ ⋅ =

∂
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Summing eqs (1.10, 1.13) gives the mass balance equation of the gaseous phase g 
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→∂
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v  (1.14) 

1.4.2 Momentum.  

The momentum equation for the arbitrary phase �, including multiple species i, is 
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 (1.15) 

where αg  is the body force, 
i i

vM
κ α

α
→

v  represents the momentum exchange from the � to the 

� phase due to mass exchange of species i, αt  is the stress tensor and 
κ α→
T  is the 

interaction force between phase � and the adjacent interfaces. When the interface 

properties are negligible, this last term is simply the force interaction between adjacent 

phases. Given the characteristic times scales (hours and days) of the problem and the 

small velocities, inertial forces as well as the force due to mass exchange are neglected so 

that the momentum equation simplifies to 

 ( ) 0
cα

κ α
α α α α α

κ
ε ε ρ

→

∈ℑ

−∇ ⋅ − − =�t g T  (1.16) 

From TCAT, see Appendix A, it can be shown that the stress tensor for a fluid phase f is 

of the form f fp= −t 1 , with pf being the averaged fluid pressure and 1 the unit tensor, 

and that the momentum balance equation can be simplified to  

 ( ) 0f f f f f f f spε ε ρ∇ − + ⋅ − =g R v v  (1.17) 

where R� is the resistance tensor. 
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1.4.3 Energy  

A general macroscopic averaged equation for total energy conservation of the � phase is 
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where Eα  is the internal energy; EK α  is the kinetic energy due to microscale velocity 

fluctuations; αψ is the gravitational potential; αq is the heat flux vector; sα  is a heat 

source, EM
κ α→

, vT
κ α→

, and Q
κ α→

 express the transfer of energy from the �� interface to the � 

phase due phase change, interfacial stress, and heat transfer. The EKα  terms have 

traditionally been neglected or lumped in with other macroscale quantities, such as the 

internal energy. The heat flux vector is assumed proportional to the gradient of 

temperature α α αθ= − ∇q �  (being α
� the thermal conductivity tensor of the phase �). Also 

not heat source terms sα αε  are usually considered and these will be further omitted. 

Due to the considered time scale it is assumed that phases are locally in a state of 

thermodynamic equilibrium. This means that the averaged temperatures of all phases are 

assumed equal: 

 s l gθ θ θ θ= = =  (1.19) 

In eqn (1.18) terms related to viscous dissipation and mechanical work, caused by density 

variation due to temperature changes have been neglected as usually done in mechanics 

of geomaterials. Being the phases in thermal equilibrium also heat transfers between 

adjacent phases can be neglected, as well as the kinetic energy due to slow velocities. 

Using the general mass balance equation of the phase � (1.3), the linear momentum 

balance equation (1.15), through the definition of the material time derivative and 

expressing the energy balance by means of the specific phase enthalpy give the enthalpy 

balance equations of the solid, the liquid and the gaseous phases respectively 

  ( )
l s

s s s s s
p EC M

t

θε ρ ε θ
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∂
�  (1.20) 
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where the convective heat flux in the solid phase has been neglected since usually 

insignificant. pC α  is the specific heat of the phase � at constant pressure. 

The heat production due to hydration and the energy consumption due to vaporization are 

proportional to the mass of chemically combined and vaporized water respectively  

 
l g g l l Wgl s s l l Hs

E E hydr E E vapM M H M M M H M
→ → →→ → →

+ = + = −  (1.23) 

where hydrH  and vapH  are the specific enthalpies of hydration and vaporization 

respectively. Summing eqs (1.20-1.22) and introducing eqn (1.23) give 
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where 
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1.5 CONSTITUTIVE EQUATIONS 

After the introduction of the general governing equations of the model several 

constitutive relationships are needed to obtain a solvable system of equations. In this 

section all the assumptions and additional equations introduced to close the mathematical 

model are reported and discussed. 

1.5.1 The hydration model and averaged stoichiometry of the reaction 

The hydration degree � is the percentage of hydrated cement, therefore the ratio between 

mass of hydrated cement, ( )hydrc t , and its total content in the mix, c 

 ( ) ( )hydrc

c

t
tξ =  (1.26) 
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When the water to cement ratio is relatively low, as for high performance concretes, only 

a fraction of the cement present in the mix will be hydrated and the percentage of cement 

hydrated at sufficiently large time (nominally t��) is here indicated as ξ∞ . The degree 

of reaction � is the ratio between the amount of water chemically combined at time t, 

( )
l Hs

m t
→

, and that chemically combined for t 	 A, (i.e. 
l Hs

m
→

∞ ) 

 ( ) ( )
�

l Hs

l Hs

m

m

t
t

→

→

∞

=  (1.27) 

thence the relation between the hydration degree �(t) and the degree of reaction ( )� t  reads 

 ( ) ( )�t tξ ξ ∞=  (1.28) 

( )� 1t =  doesn’t mean a priori that all the cement has reacted, but that the hydration 

process is ended and the fraction of hydrated cement has reached ξ∞ . The degree of 

reaction � is the main internal variable of the mathematical model.  

The cement hydration is a thermo-activated process. In the model this is taken into 

account through an Arrhenius type law (e.g. Regourd and Gauthier, 1980) which governs 

the reaction kinetic 

 ( ) ( )
d�

exp
d

a
� h

E
A

t RT
β � �= −� 	

A B
 (1.29) 

where T is the absolute temperature A(�) is the macroscopic volume-averaged chemical 

affinity, Ea is the hydration activation energy, R is the universal gas constant and �(h) is a 

function of the relative humidity (h) to take into account its effect on the hydration 

process. The function ( )hβ varies between 0 and 1 and reads 

 ( ) ( )
14

1 h hh a a hβ
−

� �= + −
� �

 (1.30) 

where ah is an empirical constant which has to be identified with test data (ah � 3÷6). To 

compute the chemical affinity, a new analytical expression is proposed (Sciumè et al. 

2012)  
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A

π

ζ
ζ

+
Γ

+

+

� �� �Γ − Γ
C D� 	+ − −

� 	ΓC D � � Γ − ΓA B� �= −� 	+ − Γ� � A BΓ − ΓC D+
− ΓC D

� �

 (1.31) 

where Ai is the initial affinity, Ap is the maximum value of the affinity function reached 

for � = Bp , C governs the deceleration phase of the hydration process, and < >+ is the 

positive part operator. Figure 1.3 shows that eqn (1.31) is quite accurate to interpolate 

the experimental data of the affinity function. The parameters of such an equation govern 

the hydration reaction and even if they have not a physical interpretation their 

identification results very effortless since they have a “graphical connotation”. Usually no 

more than two numerical tests are needed to reproduce the hydration kinetic. 

To quantify the different phases present in the cement paste during hydration the model of 

Power (1960), subsequently improved by Jensen and Hansen (1996, 2001 and 2002) to 

take into account silica fume, is adopted. This averaging stoichiometric approach is 

governed by the following equations valid for an isolate system (i.e. without mass 

changes with the external environment): 

 

( ) ( )
( ) ( )

( ) ( )

   0,20 0,69 1

          1,32 1,57 1

                    0,60 1,57 1

                  

cs

cw

gw

gs

Chemical shrinkage : k s c p

Capillary water : p k s c p

Gel water : k s c p

Gel solid :   

ε ξ

ε ξ

ε ξ

ε

= ⋅ + ⋅ ⋅ − ⋅� �� �

= − ⋅ + ⋅ ⋅ − ⋅� �� �

= ⋅ + ⋅ ⋅ − ⋅� �� �

( ) ( )
( ) ( )

( ) ( ) ( )

1,52 0,74 1

                     1 1

                1,43 1 1

c

sf

k s c p

Cement :  k p

Silica fume : k s c p

ξ

ε ξ

ε ξ

= ⋅ + ⋅ ⋅ − ⋅� �� �

= ⋅ − ⋅ −

= ⋅ ⋅ ⋅ − ⋅ −� �� �

 (1.32) 

with 1i

i
ε =�  and   

 
( ) ( ) ( ) ( )

( ) ( )
1

1

w c w sf

c sf

w c
p

w c s c

k
s c

ρ ρ ρ ρ

ρ ρ

=
+ + ⋅

=
+ ⋅

 (1.33) 

w, c and s are respectively the masses of water, cement, silica fume. The following typical 

values are assumed as densities:  

 3 3 33150 ; 2200 ; 1000c sf wkg m kg m kg mρ ρ ρ= = =  (1.34) 
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Figure 1.3 - Experimental data (open symbols) of the chemical affinity interpolated using eqn (1.31) 

The cement’s hydration is accompanied by a decrease in volume which is equal to about 

8,7% of the formed hydrates volume, in other words the volume of the hydrates is smaller 

than the volume of the reacting water plus that of the anhydrous cement (LeChâtelier, 

1900). In the set of eqs (1.32) this is expressed by the first equation (chemical shrinkage). 

Hence, in the capillary pores initially quasi-saturated by water, there is the development 

of a volume of gas that causes the self-dessiccation of the cement paste (Jensen, 1993). 

The theoretic upper limit value for the fraction of hydrated cementξ∞ , can be calculated 

imposing equal to zero the capillary water (second one in eqs (1.32)) 

 

( ) ( )

1

min
1,32 1,57 1

p

k s c p

ξ∞

E
F= �
F ⋅ + ⋅ ⋅ −� �� ��

  (1.35) 

It is worth to underline that the value ξ∞ , resulting from the approximated stoichiometry 

of the reaction and corresponding to perfect contact between water and cement grains, is 

always greater than the real one, ξ∞ . The final hydration degree, ξ∞ , depends upon the 

water/cement ratio and can be estimated using empirical equations as for instance those 

proposed by Mills (1966) and Waller (1999) 

  
( )
( ) ( )1.031

1 exp 3.3
0.194

Mills Wallerw c
w c

w c
ξ ξ∞ ∞= = − −� �� �+

 (1.36) 

In Figure 1.4 the differences between the theoretical value ξ∞  (computed with eqn 

(1.35)) and that given by eqs (1.36) can be observed. 
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Figure 1.4 – Maximum hydration degree over the w/c ratio. Value given by eqn (1.35) and estimations 

obtained using eqs (1.36). 

Once assumed ξ∞ , the total porosity of the cement paste can be expressed as function of 

the degree of reaction ( )� t
 
summing the chemical shrinkage, the capillary and gel water 

volume fractions of eqs (1.32) 

 ( ) ( ) ( ) ( )1 1 1s cp Asn a nεε ε ∞� �Γ = − Γ ≅ + −Γ Ω+ −Ω� �  (1.37) 

where Ω  is the volume of the cement paste, 
Asn  is the averaged porosity of the aggregate 

( Asn  can be usually neglected), cpn∞  is the final value of the porosity of the cement paste 

(for 1Γ = ) and aε  is a constant coefficient. cpn∞  and aε are given by 

 
( ) ( )

( ) ( )
0.52 0.69 1

0.52 0.69 1

cpn p k s c p

a k s c pε

ξ∞ ∞= − ⋅ − ⋅ ⋅ − ⋅� �� �

= ⋅ − ⋅ ⋅ −� �� �
 (1.38) 

The porosity function (1.37) respecting stoichiometry and volume balance of the different 

phases during hydration (Jensen, 1993), allows to take into account the chemical 

shrinkage and then to estimate autogenous shrinkage by means of the governing balance 

equations and of the shrinkage constitutive model, without the introduction of additional 

constitutive equations or parameters.  

From eqs (1.32) the total amount of chemically bound water (non-evaporable) for t�� 

can be obtained. This quantity does not depend on the silica fume content and reads 

 0.228
l Hs

cm ξ
→

∞ ∞= ⋅ ⋅  (1.39) 
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Hence from eqs (1.27 and 1.39) the water consumed per second by hydration 
l Hs

M
→

 (sink 

term in eqn (1.9)) reads: 

 
d�

0.228
d

l Hs

cM
t

ξ
→

∞= ⋅ ⋅  (1.40) 

The heat release associated with hydration is taken into account of through the last term 

of equation (1.24). This source term (
l Hs

hydrM H
→

) can be also expressed as 

 
d�

d

l Hs

hydr hydrM L
t

H
→

=  (1.41) 

where 0.228hydr hydrcL Hξ∞⋅ ⋅=  is the latent heat of hydration which usually can be 

estimated from adiabatic calorimetry. 

1.5.2 Fluid phases velocities 

R� of eqn (1.17) is the resistance tensor that accounts for the frictional interactions 

between phases. For example, porous medium flow of a single fluid encounters resistance 

to flow due to interaction of the fluid with the solid. If one has to model the flow at the 

microscale, a viscous stress tensor within the fluid phase would be employed. At the 

macroscale, the effects of the viscous interaction are accounted for as being related to the 

difference in velocities of the phases. In multiphase flow, resistance tensors must be 

developed that account for the velocity differences between each pair of phases. Eqn 

(1.15) contains the interaction vector 
κ α→
T  that arises between each pair of phases. In the 

full implementation of the TCAT analysis, the simplest result is that this vector is 

proportional to the velocity difference between the two considered phases with the 

resistance tensor being the coefficient of proportionality. In the present version of the 

model, the interaction force 
s α→
T  between the fluid phase � and the solid phase s (solid 

mineral skeleton) is explicitly taken into account while the macroscopic effect of the 

interaction forces between the liquid and the gaseous phases is taken care of through the 

relative permeabilities s
relkα . The form of ( ) 1α −

R  is here assumed following the modeling 

of multiphase flow in porous media (Lewis and Schrefler, 1998), that is to say 

 ( )
( )

( )1

2 ,
s

relk
l g

α
α

α α
α

µ ε

−
= =k

R  (1.42) 
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Where k and µ� are the intrinsic permeability tensor and the dynamic viscosity, 

respectively. The relative permeabilities of the liquid (wetting phase) and of the gas (non-

wetting phase) are given by Van Genuchten (1980)  

 ( ) ( )
21

0.5
1 1

b bls l l
relk S S

E �F F� �= − −� �C D� �F F� �

 (1.43) 

 ( ) ( )
2

0.33
1 1

b bgs g g
relk S S� �= − −C D� �

 (1.44) 

Introducing (1.42) in (1.17), and neglecting the effect of gravitational forces give the 

relative velocity of the fluid phase �  

 ( ),
s

s relk
p l g

α
α α

α α α
µ ε

− = − ∇ =k
v v  (1.45) 

The intrinsic permeability tensor k of the interstitial fluid is isotropic and depends on the 

degree of reaction �  

 ( )110 kAk −Γ
∞=k 1  (1.46) 

where kA is the intrinsic permeability when 1Γ = , Ak is a constant coefficient (Ak=4÷6) 

and 1 is the unit tensor.     

1.5.3 Water vapour diffusion 

To approximate the diffusive flux in eqs (1.10 and 1.13), the Fick’s law is used (

g Wg Wg g Wg WgDρ ω ρ ω= − ∇u ). Based on the work of Perre (1987) and Bažant et al. (1972), 

Gawin et al. (1999) proposed the following relationship for the effective diffusivity of 

vapour in concrete 

 
1.667

0  
273.15

Wg Wg gatm
sg

pT
D D f

p
ε� �= � 	

A B
 (1.47) 

where atmp is the atmospheric pressure, 5 2
0 = 2.6 10 m / sWgD −⋅ , and the factor 

0.001 0.01sf = ÷  is a constant coefficient which allows to take into account tortuosity. 

Here ( )110 kA
s sf f −Γ

∞=  to consider the effect of hydration (Ak is the same of eqn (1.46)).  

Dry air, water vapour and their mixture, are assumed to behave as perfect gases, 

following Dalton’s law 

 g gA gWp p p= +  (1.48) 
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and the Clapeyron equation of state: 

 ( ), ,p M RT gA gW gα α
αρ α= =  (1.49) 

where 

 
1 1 1gW gA Wg Ag

g g
g W A W AM M M M M

ρ ρ ω ω
ρ ρ

= + = +  (1.50) 

The density of water vapour, gWρ , calculated by means of (1.49) differs slightly from the 

results of the experimental tests but may be used in the temperature range encountered 

usually in practical problems with sufficient accuracy. In these conditions the diffusive 

flow of the water vapour can be also expressed as  

 2

g gW
g Wg Wg g Wg Wg WgA W

g g
g

M M p
D D

M p

ρρ ω ρ ω
ε

� �
= − ∇ = − ∇ � 	

A B
u  (1.51) 

 

1.5.4 A hydration-dependent desorption isotherm 

The desorption isotherm is closely linked with the microstructure of the cement paste that 

shows important changes during hydration (refinement of the porous network). Hence the 

classical analytical expression proposed by Van Genuchten (1980) is properly adapted to 

take into account the degree of hydration (Sciumè et al., 2012)  

 

1

1

1
1

b b
c b

l

i

c
i� �

a �

p
S

Γ

−
− −

E �
� � �F F
C D+� �
C DF

�+= �
F� �

� �

	+A B
 (1.52) 

where a and b are the classical parameters of the equation of Van Genuchten, while c� 

and Bi are the newly introduced parameters. The curves obtained at different degrees of 

reaction are shown in Figure 1.5.a. The experimental evaluation of adsorption 

properties during hydration is hard to perform, thence the results in bibliography concern 

hydrated or almost completely hydrated concretes or cement pastes. Due to this reason 

eqn (1.52) has not been directly validated. However, if a parallelism between the w/c ratio 

and the hydration degree is considered, via the degree of refinement of the microstructure 

of the cement paste, to a lower w/c ratio corresponds a more refined microstructure and so 

an higher degree of reaction �. 
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Figure 1.5 -  Desorption isotherm function used in the model: the number in the lines is the degree of 

reaction (a); Two different refined porous networks with the same saturation degree (b). Results obtained by 

Baroghel-Bouny (1999): desorption isotherms for a high performance cement paste CH (w/c = 0.19, s/c = 

0.10) and an ordinary one CO (w/c = 0.34) (c), and desorption isotherms for a high performance concrete 

BH (w/c = 0.26, s/c = 0.10) and an ordinary one BO (w/c = 0.48) (d); 

With this parallelism in mind, the experimental results of Baroghel-Bouny (1999) are 

consistent with the proposed equation (Figures 1.5.c-d). Moreover, the curves 

represented in Figure 1.5.a are similar to those proposed by Tacke (2002) who also 

considers the effect of the hydration degree on the desorption isotherm. Also a physical 

justification can be given for eqn (1.52). In fact Figure 1.5.b shows that at two different 

hydration degrees (i.e. different degrees of refinement of the microstructure) the same 

saturation degree of liquid water does not correspond to the same capillary pressure, due 

to the different radii r of the interface between the wetting and the non-wetting phases, 

according with the Young-Laplace equation 

 
2cp
r

γ=  (1.53) 
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where � is the surface tension. For temperatures normally encountered in concrete 

structures (i.e. lower than the critical point of water, T<Tcr) the capillary pressure, pc, is 

given by the difference between the pressures of the non wetting (gas) and wetting phase 

(liquid)  

 c g lp p p= −  (1.54) 

This equation is valid only at thermodynamic equilibrium and can be obtained from an 

exploitation of the entropy inequality as shown by Gray (2000) and Gray and Schrefler 

(2001). The Kelvin equation gives the relationship between the relative humidity h, and 

the capillary pressure pc 

 exp
gw c

w
gws w

Mp p
h

p RTρ
� �

= = −� 	
A B

 (1.55) 

where gwsp  is the saturated vapour pressure which varies with temperature and is given 

by the classical Antoine equation 

 
3

2
4

1 10
b

b
bgwsp b θ

−
+= ⋅  (1.56) 

Where b1=133.322, b2=8.07131, b3=1730.63 and b4=233.426. 

 

1.5.5 The effective stress principle 

The closure relation for the stress tensor acting on the solid phase according with the 

effective stress principle is 

 s s s
eff pα= +t t 1  (1.57) 

with s
efft the effective stress tensor in the sense of porous media mechanics and the solid 

pressure ps given as (Gray and Schrefler, 2007) 

 s l l g gp p pχ χ= +  (1.58) 

where D� is the solid surface fraction in contact with the respective fluid phase, known as 

the parameter of Bishop. This parameter is a function of the degree of saturation and is 

taken here equal to this last one (i.e. Sα αχ = ).  
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1.5.6 Effective thermal conductivity and thermal capacity 

The effect of hydration degree on thermal properties can be considered indirectly by 

accounting for changes of the volume fractions of the liquid water lε  and the solid phase 

sε . More in detail the effective thermal conductivity of the moist material may be 

evaluated as 

 eff 1 4
l l

dry s s

ρ ελ
ρ ε

� �
= +� 	

A B
�  (1.59) 

The effect of the gaseous phase on the effective thermal capacity is not considered. Hence 

the first of eqs (1.25) simplifies to 

 ( )
eff

s s s l l l
p p pC C Cρ ε ρ ε ρ= +  (1.60) 

 

1.5.7 Mechanical constitutive model 

The mechanical behavior is governed by the macroscopic, volume-averaged linear 

momentum balance equation in a rate form (Lewis and Schrefler, 1998):   

 0
t t

ρ∂ ∂� �∇ ⋅ + =� 	∂ ∂A B

t
g  (1.61) 

where � is the averaged concrete density:  

 s s l l g gρ ε ρ ε ρ ε ρ= + +  (1.62) 

The interaction between the solid and the two fluids (liquid water and gas), is accounted 

for through the effective stress principle (eqs (1.57-1.58)) and the related strains which 

are defined in the follow. 

Concrete is modeled as a visco-elastic damageable material, whose mechanical properties 

depend on the hydration degree (De Schutter and Taerwe 1996). The relationship between 

apparent stresses t, effective stresses t�  (in the sense of damage mechanics), damage D, 

elastic stiffness matrix E, elastic strains eel, creep strains ecr, shrinkage strains esh (caused 

by the fluid pressures), thermal strains eth and total strains e reads: 

 ( )1 D= −t t�  (1.63) 

 ( ) ( ) ( )el cr th shΓ Γ= = − − −t E e E e e e e�� � � � � �  (1.64) 
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The Young’s modulus E, the tensile strength ft and the Poisson’s ratio E vary due to 

hydration as follows (De Schutter and Taerwe 1996, De Schutter 2002) 

 ( )
0

01

E

E E

γ

∞Γ
+

Γ −Γ=
−Γ

 (1.65) 

 ( )
0

01

FT

t tf f

γ

∞Γ
+

Γ − Γ=
− Γ

 (1.66)             

 ( ) ( ) ( )0.49exp 10 sin 0.49exp 10
2

πν ν ∞Γ
� �= − − Γ + − Γ� � � 	� �
A B

 (1.67)             

in which �0 is the mechanical percolation threshold that corresponds to the degree of 

reaction below which the concrete has negligible mechanical properties (Young’s 

modulus, strength, etc.),  EA is the final value of the Young’s modulus, ftA and E� are the 

final values of the tensile strength and Poisson’s ratio respectively, and �E and �ft are 

constants obtained from experiments. Equation (1.67) is a readapted version of the 

equation proposed by De Schutter (2002). The mechanical percolation threshold depends 

in general on the aggregate content, type of cement and water to cement ratio (Torrenti 

and Benboudjema, 2005), however for ordinary concretes �0 can be taken equal to 0.1.  

1.5.8 Creep rheological model 

In the reference model of Gawin et al. (2006b), creep is modeled by means of the 

solidification theory (Bažant and Prasannan, 1989a and 1989b) for the description of the 

basic creep, and microprestress theory (Bažant et al., 1997) for the description of the 

long-term creep and the drying induced creep (the so called drying creep); both the 

solidification and the microprestress theories had been properly adapted for a multiphase 

porous material by Gawin et al. (2006b). The thermodynamic consistency of the aging 

visco-elasticity theory has been shown by Pesavento et al. (2008). Here, a rearranged 

version of the reference model is adopted to compute the creep deformation: the separate 

effects of aging elasticity, non-aging creep and microprestress developments are reunified 

through the definition of a rheological model made of a Kelvin-Voigt chain and two 

dashpots combined in serial way (see Figure 1.6). The first two cells (aging Kelvin-

Voigt chain and one single dashpot) are used to compute the basic creep and the last cell 

(single dashpot) is dedicated to the drying creep strain.  
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Figure 1.6 - Creep rheological model 

In the first creep cell an incremental constitutive relation for an aging spring is used: 

 1 1sp dst t t= +�� � �  (1.68)             

in which 1dst and 1spt  are the stresses acting on the dashpot and the spring of the Kelvin-

Voigt chain. The behaviour law of the spring reads: 

 ( )1 1 1bc cr spk e tΓ = ��  (1.69)             

where 1cre  is the basic creep strain of the first cell and 1bck  is the stiffness of the spring. 

The behaviour law of the dashpot reads: 

 ( )1 1 1bc cr dse tη Γ =�  (1.70)             

in which 1bcη  is the viscosity of the dashpot. 

The effect of age on basic creep is taken into account by relating the material parameters 

to the degree of reaction �. The relationships proposed by De Schutter (1999) are slightly 

modified by Benboudjema and Torrenti (2008): 

 ( )
1 0.62

0 0
1 1_

0 0

0.473 2.081 1.608
1 1bc bck k

−

∞
+ +

� �� �Γ − Γ Γ − ΓC DΓ = −� 	� 	− Γ − ΓC DA B� �

 (1.71)            

 
( )
( )

1
1

1

bc
bc

bck

η
τ

Γ
=

Γ
 (1.72)             

 in which 1_bck ∞  is the final stiffness (i.e. when 1Γ = ) of the spring. The retardation time 

1bcτ  is assumed to be constant. Therefore combining the previous equations (1.68-1.72), 

the behavior of the first creep cell is governed by the following non-linear second-order 

differential equation: 
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1 1

1bc
bc cr bc cr

bc bc
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e e
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τ τ

� �
= + +� 	

� 	
A B

���
�� �  (1.73)             

For the creep cells 2 and 3 the constitutive relationships are: 

 2 2bc crt eη=� �  (1.74)             

 3

1
crl

dc

t e
δ

=
q

� �  (1.75)             

in which Fdc   is the coefficient that governs the drying creep response of the model, and ql 

is the liquid water flux in the porous medium.  

For the time integration of the equations (1.73-1.75) and their extension to the three-

dimensional case see the Appendix B. 

1.5.9 Thermal and hygral strains 

The thermal strain eth is related to the temperature variation: 

 th Tα θ=e 1��  (1.76)             

in which �t is the thermal dilatation coefficient (kept constant) and 1 is the unit tensor.  

To compute the shrinkage, the instantaneous elastic part and the viscous one must be 

considered: 

 inst visc
sh sh sh= +e e e  (1.77)             

For a porous medium the hygral strain is proportional to the Biot’s coefficient α :  

 ( )
( )

1
T

S

K

K
α Γ

Γ

� �
= −� 	

A B
 (1.78)             

where KT is the Bulk modulus of the skeleton and KS is the Bulk modulus of the solid 

phase (grain). The Bulk modulus of the skeleton changes with hydration and conforming 

with equations (1.65) and (1.67) can be estimated as: 

 ( ) ( )

( )( )

2.2

max

3 1 2

T

GPa

EK

ν
ΓΓ

Γ

E
FF= �
F −F�

 (1.79)             



THCM model of concrete at early ages and its extension to tumor growth numerical analysis 

53 
 

where 2.2 GPa is the water compressibility assumed as minimum Bulk modulus for the 

skeleton. During hydration also the Bulk modulus of the solid phase KS varies since the 

relative volume fractions of the different solid constituents change due to the chemical 

reactions. However the variation of KS is relatively negligible compared to evolution of 

KT during hydration. Hence the Bulk modulus of the solid phase is here assumed to be 

constant and equal to its final value (i.e. ( )S SK K const∞Γ ≈ = ). With respect to this 

hypothesis and to eqs (1.78, 1.79), assuming as input parameter the final value α∞(Biot 

coefficient when � = 1), the evolution of the Biot coefficient with hydration reads 

 ( ) ( )1
1 T

T
K

K

αα ∞

∞

−Γ = − Γ  (1.80)             

where TK∞  is the final Bulk modulus of the solid skeleton (when � = 1). Note that setting 

α∞  as input parameter is equivalent to assume ( ) 1
1S TK K α −

∞ ∞ ∞= − . Shrinkage and 

autogenous shrinkage are strongly governed by the Biot coefficient and its final value α∞   

should to be evaluated experimentally. 

In Figure 1.7 the evolutions of the most important mechanical properties during 

hydration are represented. 

 
Figure 1.7 - Evolution of the main mechanical properties with hydration 

Defining the solid pressure s g l cp p S p= − , the constitutive model used to compute the 

instantaneous shrinkage reads 
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( )

( )( )
3

sinst
sh T

p

K t

α Γ

Γ

∂
=

∂
1

e�  (1.81)             

Finally the viscous part of the shrinkage strain visc
she� is computed using the creep 

rheological model (eqs (1.68-1.75)) in which the stress tensor is now ( )
spα Γ 1 .  

For the time integration of eqs (1.76-1.81) see the Appendix B. 

1.5.10 Damage model 

The damage D is linked to the elastic equivalent tensile strain ̂e. To take into account the 

coupling between creep and cracking, the expression of ê proposed by Mazars (1986) is 

modified by Mazzotti and Savoia (2003), and reads 

 : :el el cr cr cre β
+ + + +

= +e e e e�  (1.82)             

where �cr is a coefficient calibrated experimentally, which allows to consider that often 

cracking may occur even at lower tensile stress than the expected tensile strength since 

caused by the excess of strain. The damage criterion is given by: 

 ( )0ˆf e κ= − Γ  (1.83)             

where 	0(�) is the tensile strain threshold, which is computed from the evolution of 

tensile strength (1.66) and the Young’s modulus (1.65) 
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∞

∞ +
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 (1.84)             

Considering the equivalent tensile strain ê eqn (1.82) and with respect to criterion (1.83), 

the damage D is given by the equations proposed by Benboudjema and Torrenti (2008). 

Strain softening may induce mesh dependency because of the local damage formulation 

(Pijaudier-Cabot and Bažant, 1987). To overcome this problem the model is regularized 

in tension with the introduction of a characteristic length, lc, related to the size of each 

finite element (Rots, 1988, Cervera and Chiumenti, 2006). After cracking strains localize 

in one row of finite elements but thanks to this characteristic length the same amount of 

energy is dissipated even if different meshes are used. The dissipated energy density gft 

(for tension failure) reads 
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where Gft  is the fracture energy and lc is the characteristic length; At and Bt are constant 

material parameters which control the softening part in the stress–strain curve in tension. 

To take into account the dependence of fracture energy on the degree of reaction �, the 

expression proposed by De Schutter and Taerwe (1997) is used: 

 0

0

( )
1

G

ft ftG G

γ

∞
+

Γ − ΓΓ =
− Γ

 (1.86)             

in with AG is a constant which have to be estimated experimentally (if experiments are not 

available it can be taken equal to 0.46).  

1.6 FINAL SYSTEM OF EQUATIONS 

Introducing some of the constitutive relationships presented in the previous paragraph the 

governing equations can be rewritten as follows: 

Mass balance equation of the solid phase 
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Mass balance equation of the liquid phase 
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Mass balance equation of the water vapour (species in the gaseous phase) 
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Mass balance equation of the dry air (species in the gaseous phase) 
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 (1.90) 

Enthalpy balance equation 
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Linear momentum balance equation 

 0
t t

ρ∂ ∂� �∇ ⋅ + =� 	∂ ∂A B

t
g  (1.92) 

To simplify the general reference formulation of Gawin et al. (2006a and 2006b) the 

following hypotheses are introduced:  

i) the concrete is always partially saturated by liquid water ( 1lS < );  

ii)  the velocity of the solid skeleton is negligible compared to those of the fluid 

phases;  

iii)  the advective heat transport is insignificant because the heat transport is 

dominated by conduction;  

iv) the parameters governing the thermo-hygro-chemical phenomena (THC) do 

not depend on mechanics (strains, cracking etc.).  

i), ii), iii) and iv) allow to partially uncouple the problem in the sense that the mechanical 

solution depend on the THC one but not viceversa. These assumptions are admissible for 

not extreme thermal and/or hygral load conditions and small cracks opening (less than 

100Bm, Bažant et al., 1986) as is generally the case of concrete at early age. The 

assumption of small deformation regime together with i) and ii) lead to the equivalent 

hypothesis that the impact of mechanical strains on porosity and on the fluid pressures is 

negligible.  
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Hence, taking into account these assumptions eqn (1.90) simplifies to 
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also adding (1.88) and (1.89) eliminates 
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M
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using (1.88) to eliminate 
l Wg

M
→

 from (1.91) and passing from the relative temperature � to 

the absolute one T give: 
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 (1.95) 

1.7 NUMERICAL SOLUTION AND COMPUTATIONAL PROCEDURE 

The primary variables of the model are: the gas pressure pg, the capillary pressure pc,  the 

absolute temperature T and the displacements vector u. The hydration degree � and the 

mechanical damage D are internal variables. With reference to these primary variables the 

weak form of eqs (1.93-1.95) and (1.92) is obtained by means of the standard Galerkin 

procedure and is then discretized using the finite element method (Lewis and Schrelfer, 

1998). The integration in the time domain is carried out using the �-Wilson Method in 

which � is set equal to 0.52. Within each time step the equations are linearized by means 

of the Newton-Raphson method. 
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Figure 1.8 - Computational procedure: step n + 1 

For the FE discretization the primary variables are expressed in terms of their nodal 

values as  
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where ( )g tp , ( )c tp , ( )tT  and ( )tu  are vectors of the nodal values of the primary 

variables at the time instant t, and Np, NT and Nu are vectors of shape functions related to 

these variables. After the FE discretization, the final system of equations can be expressed 

in a matrix form, eqs (1.97 and 1.98).  
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where { }T g, , ,c=x p p T u
 
is the approximated solution. The nonlinear coefficients of the 

matrices ( )ijC x  
and ( )ijK x , and the source terms in the vector ( )if x are given in the 

Appendix C. 

The solution of the system of equations (1.93-1.95) is obtained by a monolithic approach 

(fully coupled) in which the internal variable � (degree of reaction) is updated at each 

iteration via the hydration model presented in the sub-paragraph 1.5.1. After the thermo-

hygro-chemical (THC) step, the new computed THC solution is used to compute the 

mechanical solution (M) (i.e. displacements and damage). The computational procedure 

is represented in Figure 1.8. The degree of reaction, �, and the hydration rate (results of 

the THC computation), are given to the M part of the model as input variables. The effect 

of the THC results on the M solution is taken care through the introduction of the thermal 

and shrinkage strains in the source term in eqn (1.97). Similarly, creep strains (basic and 

drying creep) are introduced in this source term but these are updated at each iteration 

within the time step, because they depend on the rate of the effective stress tensor and on 

its averaged value in the time step. Also damage, D, being related to stresses and strains, 

is updated at each iteration within the time step of the M calculation. This model has been 

implemented in the code Cast3M of the French Atomic Energy Commission (http://www-

cast3m.cea.fr). 
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2 CONCRETE BEHAVIOR :  EXPERIMENTAL 

DATA AND MODEL RESULTS  

2.1 INTRODUCTION 

Concrete is a highly heterogeneous material. Due to the complexity of its micro and meso 

structures its behavior is strongly non-linear and very hard to predict. Concrete can be 

considered as a composite material consisting of cement paste and aggregates (in special 

concretes other phases may be present). The cement paste is a cohesive matrix which 

gives to concrete stiffness and strength; its percentage in volume normally varies between 

25% and 45% of the total volume of concrete. Most of the volume of concrete (up to 

75%) is occupied by aggregates. Originally aggregates were viewed as inert materials 

dispersed throughout the cement paste largely for economic reasons. However economy 

is not the only reason for using aggregates since they confer considerable technical 

advantages to concrete, such as higher volume stability and better durability than 

hydrated cement paste alone. Aggregates are connected by means of the cement paste, in 

a manner similar to masonry construction. The interface area between cement paste and 

aggregates, commonly called the interfacial transition zone (ITZ), is often the weak point 

of concrete where cracks start. Both cement paste and aggregates are porous solids 

phases. The pores are saturated by liquid water and gas (mixture of water vapour and dry 

air) which can flow within the porous network. At early ages, the largest and surface 

pores of aggregates are filled by the fresh cement paste and even if the residual porosity 

of aggregates contributes to the overall porosity of concrete, the liquid and gaseous 
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transfers occur essentially within the cement paste (except in special cases as for instance 

aggregates with entrained water, Hansen and Jensen, 2001). Due to this heterogeneity and 

to the presence of water and gas in the pores, the global behavior of concrete is the 

consequence of the coupling of several chemical, hygral, thermal and mechanical 

phenomena at different scales, from the nano to the macroscopic level.  

This chapter deals about concrete hydration, its mechanical properties, shrinkage and 

creep. Each of these aspects is presented separately by means of simple tests analyzed 

together with the results obtained numerically via the developed model. 

2.2 HYDRATION PROCESS AND RELATED PHENOMENA 

Portland Cements consist essentially of four compounds reported in Table 2.1.  

Table 2.1. – Main compounds of Portland Cement (Neville, 1996). 

Name of compound Oxide composition Abbreviation 

Tricalcium silicate  3CaO.SiO2 C3S 

Dicalcium silicate 2CaO.SiO2 C2S 

Tricalcium aluminate 3CaO.Al2O3 C3A 

Tetracalcium aluminoferrite 4CaO.Al2O3. Fe2O3 C4AF 

 

Cement chemists use abbreviated symbols which describes each oxide by one letter: CaO 

= C; SiO2 = S; Al2O3=A; and Fe2O3=F. Similarly H2O in hydrated cement is denoted by 

H, and SO3 by S. The compounds listed in the previous table react with water forming the 

solid hydrated cement paste. The two calcium silicates are the main constituents of 

cements and so the physical behaviour of cement during hydration is similar to that of 

these two compounds alone. The mechanics of hydration is not yet perfectly known but 

probably hydration proceeds by a gradual reduction of the size of the anhydrous grain of 

cement. For instance, Giertz-Hedstrom (1938) found that after 28 days in contact with 

water only a depth of 4 Bm of cement grains is hydrated and 8 Bm after a year. 

Furthermore Powers (1949) calculated that complete hydration is possible only for 

cement particles smaller than 50 Bm since in greater particles water cannot reach the core. 

The main hydrates are the calcium silicate hydrates C3S2H3 (the so called C-S-H) and the 

tricalcium aluminate hydrate C3AH6. C3S2H3 consists of fibrous particles with a very 

irregular shape (see Figure 2.1).   
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Figure 2.1 – Mesoscopic scale: aggregates within cement paste (a); gel pores scale: Calcium Silicate 

Hydrates (C-S-H) (b).  

Assuming that C3S2H3 is the final product of hydration of both C3S and C2S, the reaction 

of the two calcium silicates and of the tricalcium aluminate with water is given by  

 
( )

( )
3 3 2 3 2

2 3 2 3 2

3 3 6

2C S+6H C S H +3Ca OH

2C S+4H C S H +Ca OH

C A+6H C AH

→

→

→

  (2.1) 

These equations are approximations since the knowledge of the exact stoichiometry of 

cement hydration is not yet exhaustive; also the stoichiometric approach of Power (1960) 

presented in the following pages (and used in the mathematical model) is based on 

approximated equations. In other word stoichiometry of hydration should be understood 

here as approximate stoichiometry.  

The kinetic of cement hydration results from the different hydration rates of its 

compounds and their interactions. Being the hydration of cement an exothermic reaction 

the heat production is a direct indicator of the hydration rate. Figure 2.2 shows the 

evolution of the heat production with respect to time. The first peak corresponds to the 

initial hydration of the surface of the cement particles, largely involving the C3A; in fact 

when the cement grain ‘meets’ water, a quasi-instantaneous hydration of its surface 

happens and the formed layer of hydrates impedes further hydration; consequently 

concrete passes through a dormant phase during which the hydration rate is very low and 

concrete is workable. Following this dormant phase (one or two hours) there is an 

important increase of the hydration rate until a second peak is achieved typically between 

eight and twelve hours of age.  
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Figure 2.2 – Heat of hydration, evolution with respect to time. The first part of the time axis is not in scale. 

 
Figure 2.3 - Compressive strength of cement pastes with different w/c ratios. H/C is the amount of 

hydration products per gram of cement (readapted from Taplin, 1957). 

After this peak the hydration rate decreases during a long period. In some cements there is 

also a third peak related to a renewed reaction of C3A, due to the exhaustion of gypsum. 

The hydration rate of C3A is very high and leads to an immediate stiffening of the cement 

paste, the so called flash set. For this reason, gypsum is added2 to the cement to control 

the reaction of C3A: gypsum and C3A react to form insoluble ettringite crystals retarding 

and weakening the reaction of C3A. However gypsum needs a few minutes to exert its 

retardation effect and consequently we observe a very important peak within the first five 

minutes after the contact with water, probably connected with the reaction of pure C3A 

with water.   

                                                 
2 Gypsum, which reacts with C3A and C4AF, partially modifies the last reaction in eqn (2.1). 
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Figure 2.4 – Microscopic image of the cement paste (Diamond, 2004) (a), and a model for its solid 

microstructure (b). C indicates the capillary pores. 

During the first hours of hydration the change from the semi-liquid to the solid stage 

occurs; this is the so called setting. Setting is the consequence of the mutual coagulation 

of the components of the paste thanks to the cohesive hydration products. For cement 

pastes the amount of hydrates which allows setting depends strictly on the water/cement 

ratio. Figure 2.3 shows that for cement pastes more elevated is the water/cement ratio 

more hydrates are needed to have a not negligible value of compressive strength. 

However for concrete due to the presence of aggregates a lower amount of hydrates is 

sufficient to set the material (Taplin, 1957).  

2.2.1 Microstructure of the cement paste 

The microstructure of the cement paste consists of the hydration products (essentially C-

S-H gel and Ca(OH)2), anhydrous cement grains and capillary pores which are partially 

saturated by water (see Figure 2.4). Actually also hydrates are porous but their pores are 

very small compared to the capillary ones (from one to two orders of magnitude smaller), 

and for the relative humidities higher than the 50% are completely water-filled.  

The porosity of hydrates is approximately equal to 0.28 and the order of magnitude of the 

pores size is about 2 nm. The mass of non-evaporable water (chemically combined) has 

been estimated as 23% of the mass of the anhydrous cement. The volume of the solid part 

of hydrates is smaller than the sum of the volumes of the anhydrous cement and the 

chemically bound water by about 0.254 of the volume of the latter. These averaged 

relationships have been obtained experimentally by Power (1947 and 1960) and are the 

basis for the equations proposed by Jensen and Hansen (1996, 2001 and 2002) where 

silica fume is also considered (eqs (1.32) of Chapter 1). These equations are valid for an 

isolated system (i.e. without mass exchanges with the external environment) and give the  

evolution with hydration of the volume fractions of chemical shrinkage, capillary water, 

gel water, gel solid, anhydrous cement and silica fume. 
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Figure 2.5 – Volume fractions over hydration of unhydrated cement, silica fume, capillary water, gel water 

and hydrates (solid part) for four cement pastes: w/c=0.30 (a); w/c =0.42 (b); w/c = 0.5 (c); w/c = 0.5 and 

s/c = 0.2 (d).  

The chemical shrinkage has been firstly observed and quantified by LeChâtelier in 1900. 

The development of a volume of gas caused by this phenomenon leads to the self-

desiccation of the cement paste (Jensen, 1993). From this averaging stoichiometric model, 

the smallest water/cement ratio that allows the hydration of all the cement is 0.42. Figure 

2.5.a-c shows the volume fractions of the different phases in three cement pastes with 

w/c = 0.30, w/c = 0.42 and w/c = 0.50. In the case represented in Figure 2.5.d also silica 

fume is considered (w/c=0.5, s/c=0.2). The capillary porosity, at any stage of hydration, 

represents that part of the volume which has not been filled by the hydration products; the 

total volume of capillary pores decreases with the progress of hydration and can be 

estimated from Figure 2.5 as the sum of capillary water and chemical shrinkage (white 

area in the diagrams). 
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Figure 2.6 – Idealized structure of hydrated silicates (Feldman et al.,1968). 

The order of magnitude of the size of capillary pores was estimated to be about 1 Bm, 

however the size of pores varies widely and Glasser’s studies (1992) indicate that in 

mature cement pastes few pores are larger than 1 Bm, with most pores being smaller than 

100 nm. The capillary pores are partially filled by water which is commonly called “free 

water”; due to their size, very large compared to that of the gel pores, capillary pores are 

usually empty for relative humidities lower than the 45%. The distribution of the capillary 

pores and their connection grade are the main factors which affect concrete permeability. 

With water/cement ratios greater than 0.7 even after the complete hydration the volume of 

hydrates is not sufficient to fill all the interconnections between capillaries, hence the 

permeability of concrete may become very important. In Figure 2.5 the volume fraction 

of the gel water is also reported. Being the gel pores water filled, the volume fraction of 

gel water in the figure represents also the volume of the gel porosity. Water in gel pores is 

typically classified as evaporable water but is much less “free” than water in capillary 

pores, because gel water is physically adsorbed on the surfaces of C-S-H sheets (see 

Figure 2.6). 

2.2.2 Heat of hydration of cement 

The hydration reaction is exothermic, energy of up to 500 J per gram of cement being 

liberated. Consequently in massive structures hydration can result in a large rise in 

temperature and also in large thermal gradients which may induce diffuse or localized 

cracking. This behavior modified by creep and autogenous shrinkage can be very difficult 

to predict. Moreover, especially in the summer months (depending evidently on the 

geographic region) also solar radiation on the surfaces must be taken into account since it 

has a not negligible effect (Sciumè et al. 2012a). The knowledge of the heat production of 

cement is then critical especially in mass concrete.  



CHAPTER 2 – Concrete behavior: experimental data and model results 

70 
 

Table 2.2. –Indicative values of the heat of hydration of the cement compounds (Lerch et al. 1934). 

Compound Heat of hydration (J/kg) 

C3S 502 × 103 

C2S 260 × 103 

C3A 867 × 103 

C4AF 419 × 103 

 

The measured heat of hydration consists of the chemical heat of the reactions of the 

compounds and the heat of adsorption of water on the surface of the formed gel, this last 

part is almost a quarter of the total heat of hydration. The factors that impact on the heat 

release of concrete during hydration are essentially four. 

i. The quantity of cement in the mix. The cement content can be varied in order to 

control the heat development. 

ii.  The cement type and its chemical composition. The heat of hydration depends on 

the chemical composition of cement, and can be calculated with good degree of 

accuracy summing the heats of hydration of the individual compounds when 

hydrated separately. Typical values of the heat of hydration of pure compounds 

are given in Table 2.2. From this table follows that by reducing the proportion of 

the compounds that hydrate most rapidly (C3A and C3S) the high rate of heat 

release at early ages can be controlled.  

iii.  The fineness of cement. The increase in fineness speeds up the reaction of 

hydration and consequently the heat release rate increases. It is realistic to assume 

that the initial hydration rate is proportional to the surface area of cement. 

However, at later stages, the total amount of released heat is not affected 

significantly by the fineness of cement. 

iv. Curing temperature. The temperature at which hydration occurs has an important 

effect on the development of the rate of heat. However, similarly the fineness of 

cement, the curing temperature has no substantial effect on the long term value of 

the heat of hydration. 

The hydration degree � has been defined as the ratio between the mass of reacted cement 

at time t , ( )hydrc t , and the initial mass of anhydrous cement present in the mix c 

 ( ) ( )hydrc
t

c

t
ξ =  (2.2) 
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However the experimental quantification of the mass of the hydrated cement is not easy. 

For this reason indirect methods based on the evaluation of the consequences of hydration 

have been developed. These methods are based on the definition of the degree of reaction, 

(already introduced, and briefly explained in Chapter 1) which varies from 0 to 1. The 

hydration degree �, is the degree of reaction � times the final hydration degree �A, which 

depends essentially on the water/binder ratio of the cement paste. 

 ( ) ( )t tξ ξ ∞= Γ  (2.3) 

Actually for most of frequently used concretes the amount of water is not sufficient to 

hydrate all the cement present in the mix and so the final hydration degree will be lower 

than 1. Hence, to estimate the hydration degree in time �(t), the evolution of the degree of 

reaction �(t) and the final value of the hydration degree �A are needed. The final hydration 

degree �A can be obtained using the averaged stoichiometric equations presented in 

Chapter 1 (eqs 1.32), imposing the volume of the capillary water equal to zero 

 

( ) ( )

1

min
1,32 1,57 1

p

k s c p

ξ∞

E
F= �
F ⋅ + ⋅ ⋅ −� �� ��

  (2.4) 

However, the obtained value of �A is very often an overestimation of the real final 

hydration degree; indeed after a certain degree of hydration the formed hydrates obstruct 

the contact of water with the not hydrated core of the cement grain. Then empirical 

equations based on experiments (Mills 1966, and Waller, 1999) are commonly used to 

estimate �A. (see eqs (1.36) and Figure 1.4 of Chapter1). 

In the presented model the degree of reaction has been defined as the ratio between the 

amount of water chemically combined at time t, ( )bwm t , and that chemically combined at 

time t = A, ( )bwm t= ∞  

 ( ) ( )
( )

�
bw

bwm t

m t
t =

= ∞
 (2.5) 

The mass of chemically combined water mbw is also indicated as bound water. The degree 

of reaction can also be defined from the amount of heat released until time t, Qhydr(t), and 

the total heat released Qhydr(t=A), when the reaction is finished 
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 ( ) ( )
( )

�
hydr

hydr

Q t

Q t
t =

= ∞
 (2.6) 

Hydration is not only exothermic but also a thermo-activated reaction. For this reason in 

mass concrete the important increase of temperature gives an acceleration of the 

hydration process. Therefore time dependent hydration laws are not adequate in particular 

when the temperature of concrete varies a lot during hydration. The effect of temperature 

can be integrated by means of an Arrhenius type law (e.g. Regourd and Gauthier, 1980)  

 ( )
d�

exp
d

a
�

E
A

t RT
� �= −� 	
A B

 (2.7) 

where T is the absolute temperature A(�) is the macroscopic volume-averaged chemical 

affinity, Ea is the hydration activation energy and R is the universal gas constant (8.314 

J.mol-1.K-1). In eqn (2.7), which is used in the parameters identification process, the effect 

of relative humidity is not explicitly taken into account as done in eqn (1.29) of Chapter 

1 where the function �(h) is introduced. In fact the effect of self-desiccation on hydration 

kinetic is intrinsic on the affinity function, A(�), and  �(h) has essentially no impact in 

sealed condition but only in drying condition. 

Similarly to the heat of hydration the activation energy depends on the chemical 

composition of cement (Kishi & Maekawa, 1994). Recently an empirical equation based 

on the percentage of C3A and C4AF and on the specific surface of cement has been 

proposed by Schindler  (2004)    

 ( ) ( )
3 4

0.3 0.3 0.3522100 C A C AFa P P BlaE ine= ⋅ ⋅ ⋅  (2.8) 

where 
3C AP  and 

4C AFP are the weight ratios of C3A and C4AF respectively (in term of total 

cement content) and Blaine is the Blaine value3.  

The chemical affinity is a hydration dependent function which allows describing the 

hydration kinetic; its evolution with hydration can be obtained by means of the adiabatic 

calorimetry test: the concrete is placed in an adiabatic calorimeter and assuming the 

appropriate activation energy Ea, from the evolution of the concrete temperature the 

averaged chemical affinity can be evaluated.  

 

                                                 
3 The Blaine value is the specific surface area of cement (m2/kg). 



THCM model of concrete at early ages and its extension to tumor growth numerical analysis 

73 
 

 
Figure 2.7 – Hydration degree over time estimated from the measured temperatures in adiabatic condition 

(a); experimental averaged chemical affinity and its interpolation via eqn (1.31) (b); measured temperature 

and numerical one computed after the identification of the averaged chemical affinity (c). 

The system is thermally governed by the following equation 

 ( ) dT d�

d deff
C Q

t t
ρ ∞=  (2.9) 

where Q∞  is the total heat released during hydration which can simply be estimated as 

( ) ( )0
ˆT Tfineff

Q Cρ∞ = − . From the n measured temperatures 0 1
ˆ ˆ ˆT ,T ..... Tn , at the 

correspondent times the degree of reaction Γ̂  can be computed as 

 
( ) ( ) ( )0 1 1

ˆ ˆˆ ˆ ˆ0 , T T 0,1,.., 1eff
i i i i

C
i n

Q

ρ
+ +

∞

Γ = Γ = Γ + − = −  (2.10) 

Once computed the degrees of reaction 0 1
ˆ ˆ ˆ, ..... nΓ Γ Γ , eqn (2.7) allows to calculate 

approximately the chemical affinity as  

 ( ) ( )
1

1
1

1 1

ˆ ˆ
ˆ exp 0,1,.., 1

T̂
i i a

i
i i i

E
A i n

t t R

−

+
+

+ +

� �� �Γ − ΓΓ − = −C D� 	− C DA B�
=

�
 (2.11) 
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Figure 2.8 – Evolution of the hydration degree (HD) and increase of temperature (CT) in non-thermally-

isolated conditions considering three external temperatures (20°C, 30°C and 40°C). 

The following example is considered for an ordinary concrete (w/c = 0.46) with Ea/R = 

5369 K. Figure 2.7.a-b shows the evolution of the hydration degree (corresponding to 

the measured temperatures), the experimental affinity and its interpolation by means of 

eqn (1.31) in Chapter 1. Once the affinity has been evaluated by means of eqs (2.11 and 

2.12) the numerical simulation of the experiment can be performed and the comparison 

between the numerical results and the experimental ones is shown in Figure 2.7.c for 

temperature.  

Considering a cylindrical specimen with a radius of 37 mm and assuming a convective 

exchange of heat at the lateral surfaces only ( 1 -210W K mconvh −= ⋅ ⋅  ), the model is able to 

reproduce the effect of the curing temperature on the hydration process. Three curing 

temperatures are considered: 20 °C, 30 °C and 40 °C. In Figure 2.8 the numerical results 

are reported: a reduction of the dormant phase, an increase of the hydration rate and of the 

rise in temperature can be observed at higher curing temperature.  

The identification of the affinity function is strictly related to the activation energy Ea of 

concrete, in other word the assumed activation energy determines the chemical affinity 

curve obtained via the parameters identification process. With reference to the previous 

considered concrete, Figure 2.9 shows the affinity curves obtained with Ea/R = 4500,  

Ea/R = 5000 and Ea/R = 5369; these three values represent almost the range of the 

common value of Ea/R (Schindler, 2004). The effect of temperature depending on the 

assumed ratio Ea/R is shown in Figure 2.10. 
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Figure 2.9 - Affinity curves obtained from the identification procedure (based on the adiabatic calorimetry 

test) assuming three different values of the activation energy.  

 
Figure 2.10 – Effect of temperature for three assumed values of the activation energy. 

 
Figure 2.11 – Hydration degree during 48 hours for the three considered values of the activation energy. 

Two curing temperatures are considered: 20 °C (blue lines) and 40 °C (red lines). 
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The results in terms of adiabatic temperatures are identical for the three cases, but this is 

obvious since the identification procedure is based on the adiabatic calorimeter test. The 

interesting results is that in non-adiabatic conditions the results are also similar and this is 

shown in Figure 2.11. Of course this does not mean that the use of the correct activation 

energy Ea is not important, but even if its knowledge is not adequate, a small error in the 

activation energy, assumed to identify the averaged affinity function, has no great impact 

on the results of the model. A similar result have been obtained by Briffaut et al. (2012). 

2.3 MECHANICAL PROPERTIES  

Concrete can be considered as a composite material which consists of aggregates within 

the cement paste. Therefore the mechanical properties of concrete depend on the 

properties of aggregate, cement paste and on the quality of their bond zone, also called 

interfacial transition zone (ITZ). Figure 2.12 shows the typical stress-strain curves (in 

compression) of net cement paste, aggregate and concrete. Interesting is to note that 

aggregate and hydrated cement paste, when individually considered, exhibit a linear 

stress-strain relation, although for cement paste this relation becomes non linear for high 

stress level. The curve relative to concrete is placed between those of cement paste and 

aggregate; the stress-strain relationship is linear only in its first part, then the curve 

continues to bend over with an apparent pseudo-plastic behavior until a peak of stress is 

reached. 

 
Figure 2.12 – Stress-strain relation for cement paste, aggregate and concrete (Neville, 1996) 
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Figure 2.13 – Stress-strain relation of concretes tested in compression at a constant rate of strain (Wang et 

al., 1978) (a); Example of the stress-strain relation in direct tension (Guo et al., 1987) (b).  

The reason of this non-linear relationship in concrete is the development of bond 

microcracks at the interfaces between the cement paste and the aggregate. These 

microcracks lead to the reduction of the effective area resisting the applied load, so that 

the local stress is higher than the nominal stress based on the total cross-section of the 

specimen and strain increases at a faster rate than the nominal applied stress until the 

ultimate strength of the specimen is reached. If the test is performed at controlled rate of 

strain also the post-peak part of the stress-strain curve can be obtained: the strain 

continues to increase with a decrease of the nominal applied stress; this is the typical 

strain softening of concrete (see Figure 2.13.a). High strength concretes and lightweight 

aggregate concretes have a more brittle behavior than normal concretes and consequently 

exhibit a steeper descending part of the stress-strain curve (see Figure 2.13.a). The 

stress-strain curve in tension is similar to that in compression but the peak stress is 

considerably lower than in compression since the cracks (perpendicular to the strain rate) 

cause a brutal reduction of the effective area resisting stress. Also the stress-strain curve 

ends more abruptly at the peak than in compression because tensile failure is usually not 

ductile. Figure 2.13.b shows an example of stress-strain relation in direct tension.  

The elastic modulus Ec and the tensile strength ft can be estimated from the compressive 

strength fc. In general a concrete with a high compressive strength has also high elastic 

modulus and tensile strength, and an increase of the compressive strength for instance due 

to hydration corresponds to an increase of the elastic modulus and of the tensile strength. 

For the modulus of elasticity this relationship with the compressive strength is 

recommended by ACI 318-02 

 ( )0.5
4.73c cE f=  (2.12) 
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with Ec expressed in GPa and fc the cylindrical compressive strength expressed in MPa. 

The Eurocode 2  suggests a similar equation 

 
0.3

22
10

cm
c

f
E

� �= � 	
A B

 (2.13) 

where fcm is the mean value of the compressive strength. Also for the tensile strength a 

number of empirical formulae are proposed, and most of them have the form 

 ( )n

t t cf k f=  (2.14) 

In the Eurocode 2 kt = 0.3 and n = 2/3, but depending on the type of aggregate other 

values of these coefficients may be used. In the case of fiber reinforced concretes the 

tensile strength depends also on the amount and type of fibers.  

When a uniaxial load is applied to a concrete specimen, in addition to the longitudinal 

strain in the direction of the applied load it produces a lateral strain of opposite sign. 

Strictly speaking a uniaxial tensile load in the direction z, results in an extension in this 

direction and in a contraction in the directions x and y, this contraction being governed by 

the Poisson’s ratio. For a fully hydrated concrete the Poisson’s ratio is approximately 

constant and depending on the properties of the used aggregate it varies in the range of 

0.15 to 0.22. No differences have been found between the Poisson’s ratio in compression 

and that in tension. On the other hand the Poisson’s ratio varies during hydration but this 

is discussed on the following of the paragraph.  

Concrete properties are very variable and depend on the concrete mix. Nowadays a 

number of concretes and mortars are used and for this reason it is hard to state general 

laws or values for the material properties. Hence several authors have studied the 

influence of the mix on the properties of concrete. Taking into account fully compacted 

concretes (in which the presence of air voids is about the 1% of the total volume), the 

water/cement ratio has been found to be one of the most important features, but also other 

factors have critical effect on the material properties. With reference to the mechanical 

properties, concrete strength is inversely proportional to the water/cement ratio and 

various laws have been proposed from the end of the XIX century and can be found in the 

literature. However Figure 2.14.a shows that the range of the validity of these laws is 

limited. In fact for low values of the water/cement ratio these laws are generally not 

correct and the mean of compaction of the fresh concrete has a crucial impact. 
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Figure 2.14 – Relation between strength and water/cement ratio of concrete (Neville, 1996) (a). Relation 

between the calculated strength of neat cement paste and cement/water ratio (Nielsen, 1993) (b); maximum 

possible hydration is assumed to have taken place. Influence of aggregate/cement ratio on strength of 

concrete (Singh, 1958) (c). Variation in the local porosity of the hydrated cement paste with the distance 

from the surface of an aggregate particle (Scrivener & Gariner, 1988) (d). 

As suggested by Gilkey (1961) the strength of concrete and its mechanical properties in 

general are influenced by: i) ratio of cement to mixing water; ii) ratio of cement to 

aggregate; iii) grading, surface texture, shape, size, strength, and stiffness of aggregate 

particles. 

Ratio of cement to mixing water. For cement pastes cured in water (achieving the 

maximum possible hydration), from 1.2 until a cement/water ratio to almost 2.6 

(corresponding to w/c = 0.38), the relation between the strength and the c/w ratio is 

approximately linear. For cement/water ratios larger than 2.6 there exists a different but 

also linear relation with strength. These results have been obtained by Nielsen (1993) and 

are shown in Figure 2.14.b. According to the model of Power (1960) for w/c ratios 
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lower than about 0.38 the maximum possible hydration is less than 100% and with high 

probability this is the reason of the change of the slope of the curve.  

Ratio of cement to aggregate. The impact of the aggregate/cement ratio is difficult to be 

quantified since it is related also to the hygral state of the particles which may modify the 

effective water content of the mix. For constant water/cement ratio higher strength and 

modulus of elasticity have been measured with the increase of the aggregate/cement ratio 

(see Figure 2.14.c by Singh, 1958). This tendency in some cases may depend on the 

water absorbed by the aggregate which reduces the effective water/cement ratio of the 

cement paste and/or on the lower shrinkage of concrete which produces less damage at 

the bond between the aggregate and the cement paste (shrinkage is proportional to the 

volume of cement paste). Furthermore for constant water/cement ratio the overall porosity 

and the total content of water in concrete are proportional to the volume of cement paste. 

Consequently in a leaner mix the volume of voids is lower and this has a positive effect 

on strength. Indeed, capillary porosity is a primary factor influencing the strength of 

cement paste and concrete. 

Grading, surface texture, shape, size, strength, and stiffness of aggregate particles. The 

meso-structure of concrete (at the level of the aggregate particles) has an important effect 

on the strength which is also affected by the capacity of the material to resist crack 

propagation. In a loaded specimen, peaks of stress occur at the interfaces between the 

coarse aggregate and the mortar arising from the difference in the modulus of elasticity 

and the Poisson’s ratio of the two materials. Mechanics of bond is influenced by the 

surface properties and the shape of the coarse aggregate; in fact microcracking starts at 

the interface between coarse aggregate and the surrounding mortar, and also at failure 

macrocracks mostly include interface areas. Therefore improving the mechanical 

properties of the interface zone leads to higher strength of concrete. During mixing of 

fresh concrete, unhydrated cement particles are unable to become closely packed against 

large particles of aggregate. Hence, in the proximity of coarse aggregate the water/cement 

ratio is higher than the averaged value of the mix and so in this zone porosity is much 

higher than in the hydrated cement paste further away from the coarse aggregate (see 

Figure 2.14.d). The influence of porosity on strength is relevant and this explains the 

weakness of the interface zone. Thus, the ability to resist crack propagation depends on 

the quality of the interface between the coarse aggregate and the surrounding mortar and 

on the surface properties of the particles: smooth gravel leads to cracking at lower stresses 

than rough and angular crushed rock.  
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Figure 2.15 – Relation between the compressive strength of mortar and gel/space ratio (Power, 1958) (a). 

Cumulative volume of pores larger than the indicated ore diameter in concrete with a water/cement ratio of 

0.45 (Winslow et al., 1990) (b). 

The quality of bond is often enhanced by the addition of silica fume with is very much 

finer than cement particles and leads to a more dense interface zone; also aggregates with 

a porous outer layer improves mechanical interlocking of the aggregate particles and the 

hydrated cement paste.   

Until this point only the final mechanical properties of concrete have been considered and 

discussed. However it is clear that mechanical properties, as well as physical and 

chemical ones, vary with hydration. In such a scenario, very interesting is the correlation 

between the strength of cement paste and the gel/space ratio proposed by Powers (1958) 

(see Figure 2.15.a). In fact the microstructure of the cement paste has an important 

impact on the mechanical properties of the concrete. During hydration with the 

refinement of the porous microstructure the strength of concrete increases; in Figure 

2.15.b the distribution of pores at two different degrees of hydration is represented. The 

gel/space ratio, according with Powers’ model, depends on the hydration degree and reads 

 
( )

0.657

0.319

gel

space w c

ξ
ξ

=
+

 (2.15) 

The strength versus the gel/space ratio has a more general application than relationships 

based on the water-cement ratio because the amount of gel and the volume of voids 

depend on the cement type, on the mix of the cement paste (w/c ratio, silica fume, 

admixtures etc.), but also on the degree of hydration. 
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Figure 2.16 – Relationships between the degree of reaction and the compressive strength (a), Young’s 

modulus (b), tensile strength (c) and Poisson’s ratio (d). Readapted from De Schutter & Taerwe (1996). 

If the evolution of the hydration degree is known, the development of the mechanical 

properties with time can be predicted. The knowledge of the strength-time relation is 

important to state when the structure can be put into use, to remove formwork or in other 

situations as for example prestressed concrete. The relationships proposed by De Schutter 

and Taerwe (1996) give the mechanical properties (Young’s modulus, tensile strength and 

compressive strength) from the degree of reaction (eqn (2.5). These equations can be 

summarized in the following form 

 ( ) ( ) ( ) 0

0

1
1

Mt
M M

α

+

Γ −Γ
Γ = Γ =

−Γ
 (2.16) 

where M  is the considered mechanical property, ( )1M Γ =  is the final value of M , and 

aM is the exponent (associated with M) which has to be calibrated experimentally. An 

empirical relationship between the Poisson’s ratio E, and the degree of reaction has been 

also proposed by De Schutter (2002)    

 ( ) ( )0.18sin 0.5exp 10
2

πν Γ = Γ + − Γ  (2.17) 



THCM model of concrete at early ages and its extension to tumor growth numerical analysis 

83 
 

Eqn (2.17) gives E = 0.5 when � = 0; 0.5 is the characteristic value of the Poisson’s ratio 

for non compressible fluids. Eqn (2.16) and a modified version of eqn (2.17) are used in 

the mathematical model to relate the hydration degree with the mechanical properties of 

concrete. 

2.4 SELF-DESICCATION AND AUTOGENOUS SHRINKAGE 

After setting, with the progress of hydration the volume changes of the different phases 

present in the cement paste have as consequence the development of a volume of gas 

which leads to the self-desiccation of the cement paste (Jensen, 1993). The self-

desiccation is very important in high performance concretes and cement pastes with a low 

water/binder ratio. In Figure 2.17 the internal relative humidity measured in an ordinary 

concrete (OC) and in a high-performance concrete (HPC) is plotted over time (the 

specimen are sealed). A strong self-desiccation for the high-performance concrete is 

shown. Being the self-desiccation related to the hydration process the decrease of relative 

humidity is very important during the first 3 weeks after the casting. 

 
Figure 2.17 - Internal RH measured in sealed conditions by RH-sensors at T = 20°C. Readapted from 

Baroughel-Bouny and Mounanga (2005). 

However the first couple of data-points in Figure 2.17 is relative to 28 days; this 

depends probably to the fact that RH-sensors often don’t work properly at early age since 

water condensation inside the protection ‘head’ of the sensor occurs. This problem has 

been observed by our research team using a type of sensors which during the first 5 days 

of hydration stay at RH = 100%. Due to self-desiccation the capillary pressure in the pore 

increases inducing an autogenous contraction commonly called autogenous shrinkage.  
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Figure 2.18 – Chemical shrinkage and autogenous shrinkage for a cement paste (Jensen, 2005). 

 
Figure 2.19 - 1-D autogenous deformation (length changes) versus age, measured from setting up to 1 year 

on Ø20x160-mm sealed samples of cement pastes cast with cement 1 and various w/c, at T = 20 °C. From 

Baroughel-Bouny and Mounanga (2005). 

In concretes, autogenous shrinkage is partially restrained by the aggregate particles and 

then is an order of magnitude smaller than in neat cement paste. Before setting the 

autogenous shrinkage corresponds to the chemical shrinkage since capillary effects are 

negligible at this stage (pores remain almost saturated). After setting, which for concretes 

corresponds to a degree of reaction � � 0.1, the chemical shrinkage results in a diminution 

of the liquid saturation degree and the autogenous shrinkage is produced mainly by 

capillary forces. The volumetric amplitudes of chemical and autogenous shrinkage for a 

cement paste are represented in Figure 2.18. Autogenous shrinkage depends on the 

water/cement ratio of the mix and in concretes is inversely proportional to the volume of 

aggregate. In Figure 2.19 the autogenous shrinkage of seven cement pastes is plotted; 

the influence of the water/cement ratio is clear and is evidenced also in Figure 2.20.   
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Figure 2.20 – 28-days and 1-year autogenous deformation versus the water/cement ratio (no silica fume is 

present in the considered cement pastes). From Baroughel-Bouny and Mounanga (2005). 

Autogenous  shrinkage can be modeled with different approaches which are mainly based 

on the degree of hydration of concrete.  

When the hygral aspects are not explicitly considered the autogenous contraction, eash, 

can be assumed proportional to the degree of reaction 

 ( )1ash ashe
t

∂Γ= Γ =
∂

e 1�  (2.18) 

where ( )1ashe Γ =  is the final isotropic contraction. Using this constitutive model the 

autogenous shrinkage stops to increase when hydration is ended. Also the viscous part of 

the contraction cannot be correctly taken into account. In fact after setting the autogenous 

shrinkage is governed by capillary forces which impact on the effective stress tensor and 

cause elastic and viscous strain.  

Another method is based on the evolution of porosity and liquid saturation degree during 

hydration. The volume of pores and the pore size distribution with hydration are predicted 

using empirical models based on experiments. Hence, porosity and the decrease of the 

saturation degree, Sl, (given by stoichiometry), allow to calculate the averaged radius of 

liquid menisci (at the pore level), and so the capillary pressure, pc, by means of the 

Laplace’s equation 

 
2lc gp pp
r

γ= − =  (2.19) 

where � is the surface tension of water. Assuming the impact of gas pressure negligible 

the autogenous shrinkage can be computed by means of the effective stress principle as 
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 ( )
3

s
ash T

p
K t

α∂=
∂

1
e�  (2.20) 

where TK is the Bulk modulus of concrete, α  is the Biot’s coefficient and ps is the solid 

pressure, given  by 

 s l cp S p= −  (2.21) 

An example of this approach is that of Michaud et al. (2006); in such a model concrete 

viscosity is taken into account and so the viscous strain originated by the solid pressure ps 

is computed and added to the elastic part of autogenous shrinkage (eqn (2.20)). For this 

type of model we can summarize that the relationship between the saturation degree and 

the capillary pressure is given through the volume of pores and the pore size distribution. 

In the presented model the pore size distribution is not modeled, however the capillary 

pressure pc is a primary variable of the model and is governed essentially by the mass 

balance equation of the liquid phase. In sealed condition the evolution of the saturation 

degree depends only on the volume balance of the different phases in the mix, and is 

given fundamentally by the averaged stoichiometry of the hydration reaction (Power, 

1960); on the other hand the evolution of capillary pressure results from the assumed 

desorption isotherm and its evolution with hydration (eqn (1.52)). In other words 

changing the desorption isotherm gives different capillary pressure but the results in terms 

of saturation degree Sl do not change. The hygral solution (capillary pressure and 

saturation degree) is used to compute the autogenous visco-elastic contraction with 

respect to the effective stress principle similarly to the previous presented method (for 

more details see Paragraph 1.5.9). To conclude the features and the parameters of the 

developed model which govern autogenous shrinkage can be summarized in the 

following list: 

a) Volume balance of the phases during hydration. It depends on the concrete mix 

according with the model of Powers (1960). No parameters have to be identified.  

b) Advance of the hydration degree. The evolution of the autogenous shrinkage 

depends on concrete hydration. The parameters that govern the hydration process 

are effortlessly identified by means of adiabatic calorimetry. 

c) Desorption isotherm function. The capillary pressure is related to the assumed 

desorption isotherm which can be calibrated using experimental results of the 

evolution of relative humidity during hydration in a sealed specimen. 
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d) Biot’s coefficient.  The contraction is proportional to the Biot’s coefficient which 

can be estimated from the autogenous shrinkage test. Only the final value of the 

Biot’s coefficient α∞  is needed (see eqn (1.80)); the evolution of the Biot’s 

coefficient with hydration is represented in Figure 1.7. 

e) Bulk’s modulus and creep properties. The Bulk’s modulus and creep have a 

primary impact on autogenous shrinkage. However in the model calibration 

procedure, when autogenous shrinkage is analyzed, Bulk’s modulus and the 

parameters which govern creep are already known since previously identified 

from the experimental measurements of Young’s modulus and Poisson’s ratio at 

different age and by means of the basic creep test. 

Hence, to reproduce correctly the autogenous deformation the final Biot’s coefficient of 

concrete and the desorption isotherm are the key points of the presented model. The 

desorption isotherm is evaluated from the evolution of relative humidity in sealed 

condition while for the identification of the Biot’s coefficient the autogenous shrinkage 

measured experimentally is considered. 

 
Figure 2.21 – Geometry and boundary conditions of the simulated case. 

A numerical example is presented for three different concretes: two ordinary concretes 

(OC1 and OC2) and an ultra-high-performance concrete (UHPC) (see Table 2.3). The 

geometry and the boundary conditions of the modeled 1D case are represented in Figure 

2.21. The specimens are supposed to be in perfectly sealed condition. A convective heat 

exchange at the surface is assumed 

 ( )t t s extT Tϕ= −q n  (2.22) 

where �t = 10 W.m-2.K-1 is the thermal convective coefficient, Ts is the temperature on 

the surface, Text  is the imposed ambient temperature (20 °C), and n is the unit vector 

normal to the surface (oriented towards the exterior).  
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Figure 2.22 – Desorption isotherms of the three concretes at different degrees of reaction. 

The evolution of the degree of reaction �, saturation degree Sl, relative humidity h, gas 

pressure pg and temperature � are reported in Figures 2.23-28 for the point C 

represented in Figure 2.21. The assumed desorption isotherm for the three considered 

concretes are shown in Figure 2.22. Figure 2.23 and Figure 2.25 show the decrease 

of relative humidity h and saturation degree Sl due to self-desiccation for OC1 and OC2. 

For ordinary concretes, in sealed condition typically the relative humidity doesn’t 

decrease below 90-85%, also the saturation degree Sl stays generally below the relative 

humidity h; these facts can be observed in the numerical results of OC1 and OC2. On the 

other hand for high-performance concretes the decrease of relative humidity is more 

important and relative humidity can fall below the saturation degree as in the case of 

UHPC (see Figure 2.27). 

Table 2.3 – Mix data of the three concretes modeled in the 1D case in Figure 2.21 

 water/cem. Silica fume/cem. water/binder 

OC1 0.67 0.10 0.62 

OC2 0.46 0.00 0.46 

UHPC 0.27 0.25 0.21 
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Figure 2.23 - Degree of reaction �, saturation degree Sl and relative humidity h for OC1. Specimen in 

perfectly sealed condition (numerical results). 

 

 

Figure 2.24 - Degree of reaction �, gas pressure pg and temperature � for OC1. Specimen in perfectly sealed 

condition (numerical results). 
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Figure 2.25 – Degree of reaction �, saturation degree Sl and relative humidity h for OC2. Specimen in 

perfectly sealed condition (numerical results). 

 

 
Figure 2.26 - Degree of reaction �, gas pressure pg and temperature � for OC2. Specimen in perfectly sealed 

condition (numerical results). 
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Figure 2.27 - Degree of reaction �, saturation degree Sl and relative humidity h for UHPC. Specimen in 

perfectly sealed condition (numerical results). 

 

 

Figure 2.28 - Degree of reaction �, gas pressure pg and temperature � for UHPC. Specimen in perfectly 

sealed condition (numerical results). 
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Figure 2.29 – Degree of reaction and autogenous contraction during the first week. 

 
Figure 2.30 – Ratio between the autogenous shrinkage strain and that obtained after 28 days. 

These differences between the two ordinary concretes (OC1 and OC2) and the considered 

ultra-high-performance concrete (UHPC) depend also on the desorption isotherm 

functions (see Figure 2.22). A relatively important decrease of the gas pressure can be 

observed for each of the three concretes (see Figure 2.24, Figure 2.26 and Figure 

2.28). This internal depressurization is due to the LeChatelier contraction which leads to 

an increase of the volume of gas.  
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Figure 2.31 - Degree of reaction and autogenous shrinkage during 60 days. The solid line are the strains 

computed from the beginning whilst the dashed lines are the strains computed from 1 day after the casting. 

Figure 2.29 shows the degree of reaction and the autogenous shrinkage versus time for 

the three concretes. The hydration kinetics are quite different, in particular the progress of 

hydration for UHPC is slower than those of the two ordinary concretes OC1 and OC2. 

After seven days the amplitude of the autogenous shrinkage of UHPC is almost two times 

that of OC1 and more than two times larger than that of OC2. In Figure 2.30 is 

interesting to observe that for the ordinary concretes after 1 year the autogenous 

shrinkage is only 8% larger than that obtained at 28 days, in contrast for UHPC the 1-

year-strain is almost 30% larger than that obtained after 28 days; these differences in 

terms of strain evolution are the reflections of the different hydration kinetic between the 

two ordinary concretes, OC1 and OC2, and the high-performance concrete, UHPC.  

The experimental measurement of autogenous shrinkage at very early age is difficult to 

perform because the specimen has low mechanical properties and its manipulation is 

delicate. Thus, very frequently the autogenous shrinkage is not measured from the 

beginning but from a time that varies between 12h and 24h after the casting.  
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Figure 2.32 – Ratio between the autogenous shrinkage (considered from the beginning) and that considered 

from 24 hours, when typically the experimental measurement starts. Numerical results over the time (a); 

numerical results over the water/binder ratio (b). 

Figure 2.31 shows the autogenous shrinkage considered from the time “zero”, when the 

degree of reaction for the three concretes is � = 0 (solid lines), together with the 

autogenous shrinkage considered from 1 day after the casting (dashed lines). From this 

figure and from Figures 2.32.a-b we can realistically presume that the shrinkage 

measured from 1 day is an underestimation of the real shrinkage of the material especially 

for ordinary concretes. Of course autogenous strains are larger in high-performace 

concretes with low water/cement ratio, however, when sometimes in literature is stated 

that for concretes with relatively big water/cement ratio the autogenous shrinkage is not 

relevant it must be added that a non-negligible amount of strain occurs before the start of 

experimental measurement, and if this fact is not taken into account in the design process 

it can results in early age cracking.  
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2.5 HYGRAL TRANSPORT AND DRYING SHRINKAGE 

In the previous paragraph the self-desiccation of concrete and its consequences have been 

discussed, and numerical examples have been presented. When the material is hygrally 

isolated from the environment, if not important thermal gradients are established during 

the hydration process, the hydration degree increases homogenously and so also the self-

desiccation is homogenous. This means that in sealed conditions hygral gradients are 

negligible and then no mass transport of water occurs; nonetheless it is important to 

remember that for mass concrete this statement is not valid because in that case serious 

thermal gradients leads to non homogenous hydration advancement, and so also to a non 

homogenous self-desiccation of the material which induces a weak hygral transport from 

the colder border to the hydrated core of the structure; an example is presented in the 

following pages.  

After the exposure of concrete to the environment, as happens in civil engineering 

structures when the formworks are removed, if the environmental relative humidity is 

lower than that of the material, a movement of the internal water from the concrete 

structure to the environment occurs. Taking into account this phenomenon in concrete 

structure design is of critical significance because drying is the cause of shrinkage and has 

effect on creep strain. Moreover hygral gradient induces gradient of strain which can 

produce cracks due to the self-restrained shrinkage.  

In the present model liquid transport, gas transport and diffusion of vapour water and dry 

air are considered. The equations have been presented in Chapter 1. The fluxes are 

computed with a generalized form of the Darcy’s law in which the relative permeabilities 

of the liquid and of the gas are introduced (ls
relk and gs

relk ). As typically done for 

geomaterials other than concrete, the darcian gas permeability of concrete is assumed 

equal to the liquid one according with the concept of intrinsic permeability of a porous 

medium, which is independent from the nature of the considered fluid. Several authors, as 

for instance Gawin et al. 2006, follow the philosophy of an unique intrinsic permeability 

of concrete for both the liquid and the gaseous phases. However recent experimental 

measurements (Baroghel-Bouny et al., 2002) demonstrate that the intrinsic gas 

permeability kgs, may be two or three order of magnitude larger than the intrinsic water 

permeability kls. In addition, for high-performance concretes the Klinkenberg’s e�ect may 

become important. This e�ect is due to the slip flow of gas at pore walls which enhances 

gas flow when pore sizes are very small. Therefore, the liquid flow is only laminar whilst 
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the gas flow, following the approach of Klinkenberg (1941), consist of two parts: i) one is 

the viscous flow; ii) the second one is the slip flow due to the slippage velocity of the gas 

molecules at pore walls. The Klinkenberg’s e�ect is taken into account by Thiery et al. 

(2007) who considers also two different intrinsic permeabilities for the gaseous and the 

liquid phases (i.e. kgs and k ls). These aspects can be easily incorporated in the present 

model modifying the relative velocity of gas (eqn (1.45)) which becomes 

 
gs

g s gs g
relg g g

k p
pµ ε

� �Ψ− = − + ∇� 	
A B

k
v v  (2.23) 

where gsk is the intrinsic gas permeability and � allows to take into account the 

Klinkenberg’s effect. The other symbols have been explained in Chapter 1. The 

coefficient � is not constant and depends on the saturation degree of concrete. It can be 

estimated using the following equation 

 ( ) ( )0 expl l
klS p SβΨ = Ψ = −  (2.24) 

where �kl and p0 are constant parameters. Figure 2.33 shows experimental curves of 

�(Sl) interpolated using eqn (2.24). 

 
Figure 2.33 – Experimental estimation (symbols) of the function �(Sl) (Klinkenberg effect) for several 

concretes (Villain et al., 2001, and Thiery, 2000). The experimental results are interpolated using eqn (2.24) 

(solid lines). The used coefficients are: i) p0 = 47334 and �kl = 4.28 for B20; ii) p0 = 100604 and �kl = 3.77 

for BO; iii) p0 = 173862 and �kl = 4.01 for B60; iv) p0 = 758336 and �kl = 7.26 for BH. 



THCM model of concrete at early ages and its extension to tumor growth numerical analysis 

97 
 

 
Figure 2.34 – Ratio between the loss of mass after 1000 days of drying calculated using the two simplified 

models (SM1 and SM2) and that calculated using the full model (FM). Three concretes have been 

considered (M25, BO and BH). The initial relative humidity has been set equal to h0 = 99% and the 

resulting ratios are plotted as functions of the imposed external relative humidity hext. Image readapted from 

Thiery et al. (2007). 

Figure 2.33 is taken from the paper of Thiery et al. (2007), where also the results of 

simplified models for hygral transport are studied in detail. Two simplified approaches 

are analyzed: in the first one the drying is modeled only taking into account the darcian 

flow of liquid water (this simplified version is indicated as SM1 in the sequel), in the 

second one transport is modeled considering liquid flow and vapour water diffusion with 

the gas pressure assumed to be constant and equal to 1 atm (this simplified version is 

indicated as SM2 in the sequel). The conclusion of this comparative study is summarized 

in Figure 2.34 where the ratio between the loss of mass after 1000 days of drying 

obtained with the two simplified models and that obtained with the full model are plotted 

for several external values of relative humidity, in isothermal condition (� = 20°C). The 

water/cement ratio of the three concretes considered in this study are: w/c = 0.84 for M25, 

w/c = 0.487 for BO and w/c = 0.267 for BH. If the maximum admissible relative error is 

0.1, from Figure 2.34 can be learned that SM2 is always adequate for BH, while for BO 

and M25 can be used respectively for hext>20% and hext>30%. Concerning SM1, the 

ranges of validity are more restrictive: hext >20% for BH, hext >45% for BO and hext >65% 

for M25. Thus, from this interesting comparative study, it may be deduced that it is 

sufficient (at ordinary thermal and hygral environmental conditions) to take into account 

the liquid flow and vapour diffusion (SM2) to model drying; in addition this may be valid 

for all concretes since the considered materials cover almost the whole range of usual 

water/cement ratios. In other words, one can affirm that the darcian flow of gas has no 
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significant effect on the final results in terms of loss of mass. Moreover, from these 

results we can suppose that probably gas pressure has also no impact on the evolution of 

the saturation degree and on its spatial distribution; these last hypotheses are confirmed in 

the same paper by Thiery et al. (2007). In spite of these numerical results, it is important 

to underline that this negligible impact of gas pressure, in the general solution of a drying 

case, has been demonstrated only in isothermal conditions and at 20°C. Furthermore, 

sometime it may be very interesting to know qualitative and quantitative numerical data 

about the gas flow, for instance in the analysis of the infiltration in concrete of unwanted 

gases (carbon dioxide is an example). Also is important to remember that at high 

temperatures the gas pressure together with concrete dehydration is the main cause of 

spalling. Hence, as already shown in Chapter 1 the choice is to include the gas pressure 

pg between the primary variables of the model, together with the capillary pressure pc, 

temperature T and the displacement vector u in order to have a flexible mathematical 

model which from early age can be easily extended to modeling of other aspects. In fact 

this general mathematical model has been already used for concrete at high temperature 

(Gawin et al., 2003), leaching (Gawin et al., 2008) and for the analysis of concrete 

degradation due to alkali-silica reaction (Pesavento et al., 2012).  

On the other hand, even if experimental measurements (Baroghel-Bouny et al., 2002) 

apparently demonstrate that the intrinsic gas permeability kgs is different from the liquid 

one k ls, and also suggest the existence of the Klinkenberg’s effect (especially in concretes 

with relatively low water/cement ratio), in the developed model the choice is to neglect 

the Klinkenberg’s effect and to use a unique intrinsic permeability for both the gaseous 

and liquid phases according to the concept of intrinsic permeability and to the reference 

paper of Gawin et al. (2006). The main reason of these preferences is essentially the 

absence of certain experimental results of the gas pressure distribution and evolution in a 

drying specimen. A small number of data are currently available in literature, these are 

mostly numerical results, frequently in contrast with each other. Also experimental 

techniques for the measurement of concretes’ gas permeability seem still not 

consolidated: the intrinsic gas permeability is measured in completely dried specimens 

and it cannot be excluded that the micro-cracking due to the specimen desiccation process 

(caused by strain incompatibilities at meso and micro-level) leads to an increase of the 

measured value. This opinion is also supported by the paper of Hearn and Morley (1997) 

where the water permeability of concrete was measured in two sets of concrete 

specimens: the first set consists of virgin samples, (i.e. never-dried), while the second one 
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consists of dried and resaturated samples. In the second set an important increase (two 

order of magnitude) of the water permeability has been measured and this is explained as 

caused by the previous drying of the specimens and the consequent micro-cracking which 

enhances the water flow within the porous network of concrete. In this paragraph it has 

been shown that the effect of Klinkenberg can be easily incorporated in the model 

together with the adoption of a different permeability for gas; these aspects may be 

implemented in a future version of the code when more experimental results will be 

available. 

 
Figure 2.35 - Geometry and boundary conditions (before and after 1 day) of the simulated 1D case. 

For the 1D case considered in the previous paragraph, we assume now drying condition at 

the lateral surface from 1 day after casting, (see Figure 2.35). This time for sake of 

brevity only the OC2 is considered (w/c = 0.46). The hygral boundary conditions are 

assumed to be of convective type similarly to the thermal boundary ones. Thus, the 

convective water mass flux qh (kg s-1 m−2) is given by 

 ( )*
c c

h h s extp pϕ= −q n  (2.25) 

where �h is the hygral convective coefficient; csp  is the capillary pressure at the surface in 

contact with the environment and *
c
extp  is a fictitious capillary pressure related  to the 

ambient relative humidity and temperature (calculated using the Kelvin equation eqn 

(1.55) in Chapter 1). The gas pressure pg is imposed equal to the atmospheric one since 

1 day after the casting 
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Figure 2.36 – Saturation degree at different times (numerical results). The indicated time is considered since 

the casting of the specimen. 

 
Figure 2.37 - Relative humidity at different times (numerical results). The indicated time is considered since 

the casting of the specimen. 

 
Figure 2.38 – Spatial distribution of the gas pressure at different times (numerical results). The indicated 

time is considered since the casting of the specimen. 
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Figures 2.36-37 shows the saturation degree and relative humidity at different time 

within the structure. The spatial distribution and temporal evolution of the gas pressure 

shown in Figure 2.38  is qualitatively consistent with that obtained for a similar case by 

Mainguy et al. (2001) (see Figure 2.39). In this interesting article is also shown that 

when a higher permeability of the gaseous phase is used (103 times greater than the 

intrinsic permeability to water) the magnitude of the obtained overpressure decreases 

notably and the transport of water vapour is enhanced. Consequently to obtain the same 

experimental results numerically (evolution and spatial distribution of the liquid 

saturation degree), the intrinsic permeability of the liquid phase has to be re-identified: 

the value found is 60% lower than that identified using the model with a unique intrinsic 

permeability: 4×10-22 m2 instead of 10-21 m2 (Mainguy et al., 2001). 

 
Figure 2.39 - Predicted gas pressure at different times in an ordinary cement paste (Mainguy et al., 2001). 

The following example is a massive wall with a thickness of 150 cm. The geometry of the 

wall is represented in Figure 2.40.a. As in the previous example for sake of brevity only 

the OC2 is considered (w/c = 0.46). Half of the structure is analyzed (see Figure 

2.40.b). The thermal and hygral boundary conditions at the external faces are assumed to 

be of convective type similarly to the previous case; at the axis y the symmetry of the 

problem is respected. The structure is assumed in sealed condition during the first 24 

hours after the casting, then a convective water flow (liquid and water vapour) is imposed 

at the external surfaces. The gas pressure pg is imposed equal to the atmospheric one since 

1 day after the casting. For the first week, the numerical results at different times over the 

line joining the points C and B (LCB) are shown in Figure 2.41.  
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Figure 2.40 – Geometry of the massive wall (a). Finite element mesh of half of the wall (b). 

 
Figure 2.41 – Numerical results over the line LCB at different times (12 hours, 24 hours, 48 hours, 4 days 

and 7 days). Relative humidity near the edge (i); temperature over the full LCB (ii); relative humidity over 

the full LCB (iii); degree of reaction near the edge (iv). 
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Figure 2.42 – Relative humidity over the line LCD at different times: 7 days, 2 years, 4 years, 2 years, 8 

years, 10 years (results are plotted from x=0.5 m to the edge of the structure). 

 
Figure 2.43 – Numerical results from 0 to 7 days for the points A, B, C and D: degree of reaction (i); 

temperature (ii); relative humidity (iii); normalized gas pressure (iv).   
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Figure 2.44 – Temperature in the massive wall at 2 days after the casting (a); Relative humidity at 2 and 10 

years in the proximity of point A (b). 

 
Figure 2.45 - Numerical results during 10 years for the points A, B, C and D: degree of reaction (i); relative 

humidity (ii). 
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Figure 2.42 shows the relative humidity over LCB at 7 days, 2 years, 4 years, 2 years, 8 

years and 10 years; from this figure is confirmed that hygral phenomena are very slow 

compared to thermal ones. In Figure 2.43 the obtained results are also plotted over the 

time (from 0 to 7 days after the casting) for the four point represented in Figure 2.40.a. 

In Figure 2.44.a the severe thermal gradient established at two days after the casting of 

the wall can be clearly observed. Figure 2.44.b shows the relative humidity after 2 and 

10 years of drying in the proximity of the point A. Due to drying the hydration in A and B 

is inhibited and retarded. This can be seen in Figure 2.45.i where the evolution with 

time of the degree of reaction from 1 to 10 years is plotted for the considered points (A, 

B, C and D). In Figure 2.45.ii the relative humidity is plotted for the same period. 

The decrease of relative humidity and the loss of water in consequence of drying cause 

the drying shrinkage which in the model is computed by means of the same constitutive 

model already presented for autogenous shrinkage. The change in the volume of the 

drying concrete is not equal to the volume of water removed since drying results 

essentially in the decrease of the saturation degree of the porous medium. The reduction 

of concrete porosity due to the autogenous and drying shrinkage is of a lower order of 

magnitude (the same of concrete contraction) and so can be neglected in the governing 

equation of the thermo-hygro-chemical part of the developed model4.  

Shrinkage is larger the higher the water/cement ratio because the latter determines the 

amount of evaporable water in the cement paste and the material permeability and 

consequently also the rate at which water can move towards the surface of the specimen. 

Brooks (1989) demonstrated that shrinkage of cement pastes is proportional to the 

water/cement ratio between the values of about 0.2 and 0.6. At higher water/cement ratios 

the additional water is removed upon drying without resulting in shrinkage. Passing from 

cement paste to mortar and concrete experimental evidences have demonstrated that the 

content of aggregate has a critical impact on shrinkage since aggregate particles restrain 

the shrinkage contraction; the degree of restraint offered depends on the mechanical 

properties of aggregate. In the system aggregate + cement paste, being in general the 

cement paste much more involved by drying and shrinkage than the aggregates, the 

resulting contraction in concrete is larger the higher is the volume of cement paste. Also, 

shrinkage consists of an elastic part and a viscous part and so its magnitude depends 

primarily on concrete compressibility and on its creep potential.  

                                                 
4 This is another way to enunciate the simplification hypothesis ii in Paragraph 1.6. 
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Figure 2.46 – Relation between shrinkage and time for concretes stored at different relative humidities 

(Troxell, 1958). Time reckoned since end of wet curing at the age of 28 days. 

 
Figure 2.47 – Schematic pattern of crack development when tensile strain due to restrained shrinkage is 

relieved by creep (Neville, 1996). 

Clearly the environmental relative humidity is the external factor which mainly affects the 

magnitude of shrinkage as shown in Figure 2.46; this figure illustrates also swelling of 

concrete in water (curve with r.h. = 100%): the absolute magnitude of swelling is very 

lower than that of shrinkage.  

 Experimentally, the magnitude of the measured shrinkage varies considerably with the 

size and the shape of the specimen and depends on the surface/volume ratio. In fact  

moisture loss takes place at the surfaces in contact with the environment. The established 

gradient of relative humidity induces fluid flow from the core of the structure to the 

external surfaces, and produces a non-homogenous shrinkage: the contraction is more 

important at the dryer external surfaces than in the core of the structure. In addition to 
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drying shrinkage, the surface zone of concrete undergoes carbonation and the associated 

contraction. Hence, even if drying and carbonation are quite distinct phenomena, often 

experimental data on drying shrinkage include also the effect of carbonation. At the dried 

surfaces, the differential shrinkage induces tensile stresses partially relaxed by creep in 

tension; this latter, if drying in not too rapid, may prevent the development of cracking. 

Therefore the cracking tendency depends not only on the magnitude of shrinkage but also 

on the rate of the contraction, on tensile strength and on the extensibility of concrete (of 

course in concrete structures cracking tendency depends also on the mechanical boundary 

conditions which may restrain shrinkage). At early age concrete properties vary with time 

and so cracking prevention is very hard to be generalized in a number of design 

specifications because cracking tendency depends on several factors. Figure 2.47 shows 

the schematic pattern of crack development due to restrained shrinkage with the induced 

stress relaxed by creep. Nowadays self-restrained shrinkage and cracking tendency of 

concretes are often studied experimentally by means of a ring-shaped concrete specimen 

restrained by an internal steel ring. This test is also useful for the analysis of cracking due 

to thermal shrinkage and autogenous shrinkage in massive structures: a thermo-activated 

ring reproduces the increase of temperature due to the hydration process and restrains the 

contraction due to autogenous shrinkage and to the decrease of temperature which occurs 

when the hydration rate decreases and the reaction goes towards its end (see Figure 2.48 

taken from the paper of Briffaut et al. 2011).  

 
Figure 2.48 – Geometry of the thermo-activated ring test (a); Cracks due to the restrained autogenous 

contraction (b) (readapted from Briffaut et al. 2011). 

In such a scenario is clear that numerical modeling may be crucial in the prevention of 

cracking caused by restrained or self-restrained shrinkage.  
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The first set of numerical results deals with a typical cylindrical specimen sealed during 

the first 24 hours and then drying at the lateral surfaces only (different environmental 

conditions are tested). The geometry of the modeled specimen and the FE mesh are 

shown in Figure 2.49. Half of the cylinder is considered and the case is solved in axial 

symmetry (y is the vertical axis of the cylinder). 

 
Figure 2.49 – Geometry (a), and FE mesh (b), of the considered cylinder. The specimen is sealed during the 

first 24 hours, then it dries at the lateral surface only. 

 
Figure 2.50 – Predicted results during 36 months: loss of mass (a), drying shrinkage (b), loss of mass versus 

drying shrinkage curves (c), legend of the graphs (d). 
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Figure 2.51 – Shrinkage measured on the vertical axis of the specimen. 

Figures 2.50.a-c show the numerical results during 36 months after the casting of the 

specimen. Four environmental situations are considered varying the external temperature, 

Text, and relative humidity, hext: i) Text = 20°C and hext=50%; ii) Text = 40°C and hext=50%; 

iii) Text = 20°C and hext=70%; iv) Text = 40°C and hext=70%.  

The averaged shrinkage is estimated from vertical displacement of points A in Figure 

2.49 (the point C doesn't move according to the symmetry of the problem). This is 

consistent with the experimental measuring method represented in Figure 2.51. 

However shrinkage sometimes is measured at the surface of the specimen. The 

autogenous shrinkage is removed from the total contraction in order to obtain the sole 

drying shrinkage.  

As expected, with the same external temperature, loss of mass and shrinkage are higher 

the lower the external relative humidity is (i.e. for hext=50%). Interesting is the effect of 

temperature. A higher external temperature has as consequence an higher loss of mass 

and this means that the mass transport of water is enhanced the higher the temperature. 

On the other hand shrinkage is smaller when the external temperature is set equal to 40 

°C. Actually at 24 hours, when the concrete is exposed to the external environment, the 

specimen cured at 20°C is much less hydrated than that cured at 40 °C and therefore in 

this last one the amplitude of drying shrinkage is smaller. The loss-of-mass versus drying-

shrinkage curves represented in Figure 2.50.c are in agreement with literature (Neville 

1996), in fact the loss of free water causes initially a modest contraction, then as drying 

continues the absorbed water begins to be removed and more substantial shrinkage 

occurs.  
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Figure 2.52 - Predicted results during 36 months for the reference cylinder (11Ø×22) and the bigger one 

(16Ø×32): loss of mass (a), drying shrinkage (b), loss of mass versus drying shrinkage curves (c), legend of 

the graphs (d). 

 
Figure 2.53 - Predicted results during 1080 days for the reference cylinder (11Ø×22) and the bigger one 

(16Ø×32): loss of mass [% of the initial weight] (a), loss of mass[kg/m2] (b).  

The effect of the surface/volume ratio can be observed in Figure 2.52.a-c where the 

results obtained with a cylinder 16Ø×32 are compared with those obtained with the 

cylinder 11Ø×22 (for both cases Text = 20°C and hext=50%). Even if the loss of mass is 

more important in the smaller specimen (see Figure 2.52.a), shrinkage after a certain 

time tends to the same value (see Figure 2.52.b). On the other hand in Figure 2.52.a 

the loss of mass is expressed in terms of percentage of the initial mass of the cylinder. 
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Being the initial mass of the two cylinders very different (m0 = 4.9 kg for the cylinder 

11Ø×22 and m0 = 15.1 kg for the cylinder 16Ø×32) it is interesting to plot the loss of  

mass per  m2 of drying surface [kg/m2] to understand better the drying process in the two 

cases. This plot is shown in Figure 2.53.b over a logarithmic time scale; the graph in 

percentage (i.e. Figure 2.52.a) is re-plotted over a logarithmic time scale in Figure 

2.53.a to facilitate the comparison with the previous one. We can clearly observe that in 

the two cases the loss of mass per square meter of drying surface is not influenced by the 

size of the cylinder until one month; then the drying rate decreases in the cylinder 

11Ø×22. 

To test the effect of the shape, a prismatic specimen is also modeled. When the specimens 

dry only from the lateral faces, a cylinder and a square prism have the same 

surface/volume ratio if the edge of the square base is equal to the diameter of the cylinder. 

The geometry of the prism and the 3D finite element mesh are represented in Figure 

2.54. The specimen has three planes of symmetry, hence only an octave is modeled. The 

external temperature and relative humidity are respectively Text = 20°C and hext=50%. 

Figure 2.55 shows damage and stresses at 36 months in 1/8 of the prismatic specimen.  

 
Figure 2.54 - Geometry (a), and FE mesh (b), of the considered square prism. The specimen is sealed during 

the first 24 hours, then it dries at the lateral surfaces only . 

In Figure 2.56.a-b the obtained results are compared with that of the cylinder having 

the same surface/volume ratio: the differences between the two cases is not remarkable 

and this means that the loss of mass and the amplitude of drying shrinkage depend 

essentially on the surface/volume ratio and not on the shape of the specimen.  
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Figure 2.55 – Negative stresses tzz (a), positive stresses tzz (b), and damage (c) in the prismatic specimen at 

36 months. 

 
Figure 2.56 - Predicted results during 36 months for the reference cylinder (11Ø×22) and the prismatic one 

(11×11×22): loss of mass (a), drying shrinkage (b). Predicted drying shrinkage for the reference cylinder 

(11Ø×22) and a cylinder 11Ø×10 (c), legend of the graphs (d). 
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Concerning the loss of mass, being the difference between the two cases irrelevant when 

this is expressed in percentage of the initial weight (Figure 2.56.a), if this is expressed 

in kg per m2 of drying surface the difference between the two cases is also irrelevant 

because the specimens have the same surface/volume ratio. 

To conclude this group of numerical tests, a cylinder 11Ø×10 is modeled. In this case 

even at constant surface/volume ratio the estimated shrinkage is lower than in the cylinder 

11Ø×22 because the structural effect is significantly reduced (see Figure 2.56.c).   

The numerical results presented and discussed within this paragraph are in agreement 

with the experimental data of concrete’s bibliography regarding drying and drying 

shrinkage. It can be summarized that the external relative humidity together with the 

external temperature and the surface/volume ratio5 of the specimen are the key factors 

which control the loss of mass and drying shrinkage. In addition, when the ratio between 

the height of the specimen and the characteristic length of the base6 is lower than 2, the 

drying shrinkage can be underestimated if measured using the method shown in Figure 

2.51. 

2.6 BASIC AND DRYING CREEP 

The total strain of concrete can be expressed as summation of several components: elastic 

strain, thermal and hygral strains (autogenous and drying shrinkage) and viscous strain 

which is usually is indicated as creep. Creep can be defined as the increase in strain under 

a sustained stress. From another point of view creep has also the effect of relaxation: if a 

concrete specimen is subjected to a constant strain, the consequence of creep is the 

conversion of the elastic strain in a viscous deformation which leads to the decrease of 

stress. Being the final creep strain almost two or three times the instantaneous elastic 

strain obviously it cannot be neglected in design of concrete structures. The mechanism of 

creep has not yet been fully elucidated, but a number of aspects have been understood 

with time and are explained in the following pages. The basic creep is the strain of a 

concrete specimen loaded in sealed condition. However this definition is not completely 

exhaustive. In effect the specimen must been in sealed condition but also in internal 

hygral equilibrium (not necessary saturated or at a specific relative humidity but water 

transport must not occur). 
                                                 
5 The surface is the drying surface of the analyzed specimen. 
6 The characteristic length of the base is the diameter for a cylinder and the edge for a square prism. 



CHAPTER 2 – Concrete behavior: experimental data and model results 

114 
 

 
Figure 2.57 – Time dependent deformation in concrete subjected to a sustained load (Neville, 1996) 

If a specimen is drying while under load another component of strain called drying 

creep is induced (in addition to shrinkage). This additional deformation has been 

discovered by Pickett (1942).  In other word the summation of the basic creep strain of a 

sealed specimen, and the shrinkage of the same drying specimen (not loaded), is lower 

than the total strain of a third identical specimen drying and loaded at the same time.  
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Figure 2.58 – Creep and creep recovery of a mortar specimen loaded with a stress of 14.8 MPa and then 

unloaded after 120 days (Neville, 1959). 

 
Figure 2.59 – Creep of concrete cured at r.h=100% for 28 days, then loaded and stored at different relative 

humidities (Troxell, 1958). 

This means that creep and shrinkage are not independent phenomena and that their 

associated strains are not additive (see Figure 2.57). Hence distinction will be made 

between creep of concrete under conditions of no moisture movement to or from the 

ambient medium (basic creep) and the additional creep caused by drying (drying creep).  

When the load is removed the instantaneous elastic recovery is followed by the creep 

recovery, however part of strain remains unrecovered not being creep completely 

reversible (residual deformation in Figure 2.58). The main significant property of creep 

is its proportionality with the applied stress when the loading stress is less than 1/2 of the 

concrete strength (this limit may vary depending on the type of concrete). After this limit 
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value for the applied stress, creep loses the proportionality with stress because of the 

development of severe micro-cracking.  

The factors that influence creep are essentially the same which impact on shrinkage 

strain. This is due almost certainly to the intrinsic connection of both creep and shrinkage 

with cement paste micro-structure and concrete mix. For example, similarly to shrinkage, 

creep is function of the volumetric content of cement paste in concrete. Also, creep is 

inversely proportional to the strength of concrete at the time of application of the load. 

The relation between creep and the stress/strength ratio has been demonstrated to be 

approximately linear (Neville, 1959).  

If the specimen is not sealed, the environmental relative humidity has an important effect 

on creep: generally creep is higher the lower the relative humidity (see Figure 2.59). 

However, this figure is just indicative, because the importance of the effect of relative 

humidity depends also on the size and on the shape of the considered specimen. Also, the 

influence of relative humidity is much smaller in the case of specimens which have 

reached the hygral equilibrium with the surrounding environment prior to the application 

of the load. Hence it is not the relative humidity that influences creep but the process of 

drying which induces the drying creep strain. A number of hypotheses, more or less 

plausible, have been proposed to explain the drying creep but up to now its mechanism 

has not been fully understood. Surely drying creep cannot be connected with a sort of 

consolidation: Maney (1941) had shown experimentally that the mechanical load does not 

increase the drying rate of a specimen. A probable explication is given by Bažant et al. 

(1997) who suggest that drying creep is a stress induced shrinkage caused by local 

movement of water between capillary pores and gel pores; the rheological model 

proposed by Bažant is one of the most used for modeling drying creep. In this model 

creep is explained with the microprestress-solidification theory. More in detail basic and 

drying creep are associated with the microprestress generated as a reaction to the 

disjoining pressure at the micro level. This microprestress depends on relative humidity 

and changes with time; in brief with a constant relative humidity, 0
h

t

∂ =
∂

, this model 

gives the basic creep, while with 0
h

t

∂ <
∂

 and additional strain is computed (i.e. the drying 

creep). This model works for the current experimental cases, but even if is clear that 

drying creep is associated with drying, experiments have not clarified if this additional 
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strain is related to moisture movement (vapor and liquid water flows) or to the specimen 

desiccation (decrease of the internal relative humidity). In fact in some situations we can 

have moisture movement without decrease of relative humidity. An example of such a 

situation is illustrated in Figure 2.60: with the represented boundary conditions 

(constant with time) the hygral equilibrium is achieved after a certain time tequ, which 

depends on the thickness of the concrete structure. In this case the hygral equilibrium 

does not correspond to a homogenous relative humidity but to the establishment of a 

hygral gradient which determines a stationary water flow. Hence if drying creep is only 

connected to changes of relative humidity (as in the model proposed by Bažant et al., 

1997) drying creep is exhausted when the hygral equilibrium is achieved. On the other 

hand if drying creep is the consequence of the moisture transport, it persists even after the 

hygral equilibrium is reached, because of the stationary water flow. However, similar 

cases have not yet been analyzed experimentally and so the question remains still open. 

 
Figure 2.60 – Example of mass transport under hygral equilibrium. 

As already pointed out, the physical mechanisms of basic and drying creep seem not 

sufficiently understood until now. For instance, in completely dried specimen creep is 

negligible or absent, but the intrinsic effect of the water content on creep has not been 

quantified.  

 
Figure 2.61 - Creep rheological model 
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In the present model creep is modeled by means of a Kelvin-Voigt chain and two 

dashpots combined in serial way (see Figure 2.61). The first two cells (aging Kelvin-

Voigt chain and one single dashpot) are used to compute the basic creep and the last cell 

(single dashpot) is dedicated to the drying creep strain. The effect of hydration is taken 

care by relating the material parameters to the degree of reaction �. The relationship is 

similar to that proposed by De Schutter (1999). In the model is hypothesized that drying 

creep is directly associated with the liquid flow within the porous medium (see eqn 

(1.75)). Details about the adopted rheological model are given in the section 1.5.8 of 

Chapter 1. The intrinsic impact of temperature is not negligible (see for instance Figure 

2.62 which represents experimental results from Arthanari and Yu (1967)). Temperature 

increases creep strains due to the two following factors (Hauggaard et al., 1999): i) at 

constant temperature, creep strain rate increases the higher the temperature and this is due 

to the decrease of water viscosity with temperature; ii) transient temperature history 

increases also creep strains. The obtained deformation is called transient thermal creep or 

load induced thermal strains.  

 
Figure 2.62 - Basic creep strain evolution for different constant temperatures (experimental results are from 

Arthanari and Yu, 1967). 

Such kind of strain is also observed at very high temperature (above 100 °C). Bažant et 

al. (1997) suggest that this strain correspond to drying creep. The effect of temperature 

and its correlation with the progression of the hydration degree of concrete is broadly 

discussed in the work of Benboudjema and Torrenti (2008), where a way to integrate the 

intrinsic effect of temperature in creep modeling is also proposed.  
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In the first numerical example the cylinder 11Ø×22 modeled in the previous paragraph is 

loaded in compression at 7 days with 10 MPa. The geometry and the mechanical 

boundary conditions are represented in Figure 2.63.a. The concrete is the same used for 

the numerical analyses of shrinkage (OC2, w/c = 0.46). 

Three situations are considered: i) the cylinder is sealed; ii) the cylinder dries with hext = 

50%; iii) the cylinder dries with hext = 70%. The sole creep strains (shrinkage and 

autogenous shrinkage are removed) are plotted in Figure 2.63.b. In case i) the strain is 

only the elastic one + basic creep while in the cases ii) and iii) also drying creep occurs, 

since the material is drying while loaded. As expected when the specimen is exposed to 

hext = 50% creep strain is more important.  

 
Figure 2.63 – Geometry and boundary condition of the modeled case (a); Creep strains in the three 

considered conditions (b).  

 
Figure 2.64 – Basic creep of three specimens loaded at 1 day, 2 days and 7 days respectively. The three 

specimens have been unloaded at 30 days.  
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In the second example three numerical analyses are performed: the three cylinders are 

loaded at 1 day, 2 days and 7 days respectively, and then unloaded at 30 days. This 

example is useful to evidence the effect of the degree of reaction and creep recovery. The 

specimens are assumed to be in sealed condition. Figure 2.64 shows that the residual 

strain is more important when the cylinder is loaded at early age (1 day and 2 days). 

In the actual version of the model the effect of temperature on creep is not considered but 

will be introduced in a future development of the model. Also the effect of aging on the 

creep properties of concrete must be investigated more in detail and taken into account in 

the definition of rheological model. Therefore, the present model needs to be enhanced 

regarding these two aspects of creep.  
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3 VALIDATION OF THE MODEL :  TWO REAL 

APPLICATION CASES  

3.1 INTRODUCTION 

In the first chapter the mathematical model of concrete at early age, the associated 

constitutive equations, and its numerical solution have been presented. Then, in the 

second chapter the complex behavior of concrete has been analyzed more in detail. Also, 

the developed model is used to perform numerical analyses of simple cases and the 

obtained results are commented and compared qualitatively with the experimental data of 

literature7.  

Within this third chapter the model is validated through its application to two real cases: a 

massive beam specimen with restrained shrinkage, and two repaired beams (one repaired 

using an ordinary concrete, OC, the other using a fiber reinforced ultra-high-performance 

concrete, UHPC).   

3.2 THE CONCRACK BENCHMARK 

ConCrack has been an international benchmark for Control of Cracking in reinforced 

concrete structures. This benchmark is part of the national French project CEOS 

(Comportement et Evaluation des Ouvrages Speciaux vis-à-vis de la fissuration et du 

retrait) dedicated to the analysis of the behaviour of special construction works 

concerning cracking and shrinkage. The modeled structure is a large beam specimen with 
                                                 
7 The experimental results of Chapter 2 are principally taken from Neville (1996). 
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restrained shrinkage (Figures 3.1, 3.2 and 3.3).  This test deals with the cracking 

occurring at early age under THM loading and its influence on the mechanical behavior 

of the structure. The massive structure has a special form and the contraction of the 

central part is restrained by two metallic struts which induce cracking at early age. 

We can divide the test in three phases.  

i) During two days after the casting the structure is protected from drying and 

thermally isolated. Therefore, the structure is first subjected to a THM loading 

(self-desiccation and temperature elevation due to hydration). 

ii)  After these two days the isolation and the formwork are removed and the 

structure is conserved during 2 months in the environment. During these 2 

months environmental temperature and relative humidity have been measured. 

iii)  Finally, subsequent to this THM test, the structure has been submitted to a 

static bending test. 

During the hardening stage (phases i) and ii)) the beam was instrumented by: temperature 

sensors, vibrating cord sensors for local internal and external deformation, internal and 

external optical fibre sensor, electrical strain gauges placed on reinforcement bars. 

Moreover, during the bending test (phase iii)), also load and displacement sensors, 

acoustic sensors and an image correlation technique on a lateral face have been used. 

 

Figure 3.1 - 3D specimen model (a). Photo of the specimen after the  removal of formwork and thermal 

isolation (b). Images from ConCrack home page 

The test process has followed this schedule: 

− 07 April 2010, 10:30: beginning of the casting (Tini concrete = 17°C); 

− 07 April 2010, 12:00: end of the casting; 

− 09 April 2010, 9:00: prestressing of the “heads” of the structure; 

− 09 April 2010, 10:00: removing of the isolation and the formwork on all the faces; 

− 06 June 2010: static bending test; 
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Figure 3.2 - Geometry of the specimen (ConCrack website 2010) 
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Figure 3.3 - Formwork and thermal isolation (ConCrack website 2010) 
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3.2.1 Identification of the model parameters 

The concrete used in the analyzed structure is a C50/60 concrete cast with a CEM I 52.5N 

cement. The composition is given in the following table: 

Table 3.1 - Mix design of the concrete used in the calculation 

CONSTITUENTS Quantities (kg/m3) 

CEM I 52,5N CE CP2 NF Couvrot 400 

Sand 0/4 GSM LGP 785 

Gravel 4/20 GSM LGP 980 

Superplastifiant Axim 4019 5.4 

Total water 185 

 

Several tests have been performed by the benchmark organizers8 to characterize the 

concrete used to cast the beam. These tests are used to identify the input parameters of the 

numerical model. 

Hydration adiabatic test. The hydration adiabatic test has the objective to follow the 

concrete’s temperature during the cast and maturation phase. The fresh concrete has been 

placed in a 300 mm sealed cubic container, thermally isolated (adiabatic conditions). 

 

Figure 3.4 - Results of the hydration adiabatic test. Adiabatic temperature (a). Numerical results for the gas 

pressure and the saturation degree (b) 

There is good agreement between the experimentally measured temperature and the 

numerical one (see Figure 3.4.a). The only available experimental result is the 

temperature, but the numerical simulation gives also the expected evolution of the 

saturation degree and of the gas pressure during the adiabatic test. The cement’s hydration 

is accompanied by a decrease in volume which is equal to about 8,7% of the formed 

                                                 
8  All the experimental results shown within this paragraph have been obtained by the organizers of 
ConCrack. 
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hydrates volume (LeChâtelier, 1900). Before the development of a rigid mineral skeleton, 

this contraction produces only a small decrease in the external volume of cement paste. 

After the transition from semi-fluid state to semi-solid state (� > �0), the decrease in 

volume due to hydration is incompatible with the admissible deformation of the solid 

skeleton. Therefore in the capillary pores initially almost saturated by water, the volume 

of gas increases and consequently the gas pressure shuts down (see Figure 3.4.b). The 

decrease of the saturation degree causes the autogenous shrinkage. The stoichiometric 

approach used in the mathematical formulation of the hydration model allows to compute 

the autogenous shrinkage mechanically without the introduction of additional constitutive 

equations.  

Loss of mass and shrinkage test. Autogenous and total shrinkage are determined by a 

refractometer with 70x70x280 mm specimens. Three specimens have been made up for 

each kind of shrinkage.  

 
Figure 3.5 - Comparison of the simulation results with the experimental data for: autogenous shrinkage (a); 

total shrinkage (b); loss of mass (c);  loss-of-mass versus drying-shrinkage curve (d). 

After the cast, the specimens have been protected by a plastic film and kept at 20° for the 

first 24 hours. Then the specimens have been removed of their form and transported to the 

laboratory. The autogenous shrinkage has been measured without water exchange 
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between the specimen and the environment. For the total shrinkage, the specimens are 

subjected to the environmental conditions of the laboratory (20°C and 50±5% RH). For 

the specimen subjected to the desiccation, the loss of water mass has also been measured. 

Experimental and numerical results are shown in Figure 3.5. 

Mechanical properties during hydration. The mechanical properties of concrete have 

been measured at several ages in order to investigate their variation during hydration. 

Figures 3.6-a-b show the good agreement between experimental measures and 

numerical results. 

 

Figure 3.6 - Evolution of Young’s modulus (a), and tensile strength (b) during hydration 

Viscous properties. To investigate the delayed behaviour of concrete some cylindrical 

110x220 mm specimens were cast in the laboratory (initial temperature 17.3°C) and 

saved at 20°C. 

 

Figure 3.7 - Comparison of the simulation results with the experimental data for the creep test 

After 48 hours, they have been loaded at 60% of the compressive strength measured on 

the specimens (Rc = 20.3 MPa => load = 12.2MPa). The test was performed without 

water interchange between the specimen and the environment (basic creep). The delayed 
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creep deformation has been calculated by deduction of the instantaneous elastic strain 

from the total strain measured. The experimental and numerical results are shown in 

Figure 3.7.  

A lot of parameters are needed to model the beam. Some of these are given by the 

literature, others, as for instance those of the porosity function are given by stoichiometry, 

and the remains parameters are identified via the previous presented experiments. In the 

following table the main identified parameters are reported.   

Table 3.2 - Main input parameters  

PARAMETERS SYMBOL UNIT CEOSconcrete 

Thermal conductivity (dry ) �eff [ W/mK ] 1.5 

Heat of hydration Lhydr [ MJ/m3 ] 117 

Activation energy Ea/R [ K  ] 5369 

Parameter Ai in Equ. (1.31) Ai [ 1/s ] 0.15 

Parameter AP in Equ. (1.31) AP [ 1/s ] 1350 

Parameter �P in Equ. (1.31) �P [ - ] 0.215 

Parameter C in Equ. (1.31) D  [ - ] 71 

Mechanical percolation threshold �0 [ - ] 0.1 

Porosity (final i.e. for �= 1) n� [ - ] 0.13 

Biot’s coefficient (final i.e. for �= 1) α ∞  [ - ] 0.33 

Intrinsic permeability  (final i.e. for �= 1) K� [ m2 ] 6E10-22 

Parameter a in Equ. (1.52) a [ MPa] 23 

Parameter b in Equ. (1.52) b [ - ] 2.1 

Parameter c� in Equ. (1.52) c� [ - ] 1.1 

Parameter �i in Equ. (1.52) �i [ - ] 0.1 

Young modulus (final i.e. for �= 1) E� [ GPa] 39.4 

Tensile strength (final i.e. for �= 1) ft� [ MPa] 4.65 

Poisson ratio (final i.e. for �= 1) E� [ - ] 0.19 

Creep cell 1: spring (final i.e. for �= 1) kbc1� [ GPa] 24 

Creep cell 1: retardation time Fbc1 days 20 

Creep cell 3: drying creep coeff. Fdc [ m2/(Pa·kg) ] 1.0 × 10-10 

 

3.2.2 Finite element mesh of the structure and boundary conditions 

The mesh of concrete consists of 3D elements (Figure 3.8). To model the steel, truss 

elements rigidly linked with the concrete 3D mesh are used. Two truss elements are also 

used to model the two struts that contrast shrinkage. The boundary conditions are 
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assumed to be of convective type for both heat and mass exchange. Thus, the convective 

heat flux qt (Wm−2) and convective water mass flux qh (kg s-1 m−2) are defined as: 

 ( ) ( )*
c c

t t s ext h h s extT T p pϕ ϕ= − = −q n q n  (3.1) 

where �t and �h are the thermal and hygral convective coefficients, Ts is the temperature 

on the surface, Text is the ambient temperature, pc
s is the capillary pressure on the surface, 

pc
ext* is a fictitious capillary pressure related  to the ambient relative humidity and 

temperature (calculated using the Kelvin equation), and n is the unit vector normal to the 

surface (oriented towards the exterior).  

 

Figure 3.8 - Finite elements mesh of concrete (a). Mesh of reinforcement bars (b) 

According with the real conditions of the test three phases are considered: 

Phase1: structure isolated. For the thermal part, we use two different equivalent 

convective coefficients (0,73 W K-1m−2 and 3,9 W K-1m−2), in this way we can take into 

account the thermal bridge of the lateral isolation (see Figure 3.9). For the hygral part, 

we assume sealed conditions. 

 
Figure 3.9 - Drawing of lateral isolation interrupted by formwork reinforcements (ConCrack website 2010). 
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Phase2: structure in the environment. For the thermal part, we pass at a uniform thermal 

convective coefficient (10,0 W K-1m−2) and we take into account also solar irradiation. 

For the hygral part, we use a hygral convective coefficient set to 5.e-14 kg s-1 m−2 Pa-1. 

Phase3: four point bending test. After 60 days the structure is submitted to a four points 

bending test. 

3.2.3 Thermo-hygro-chemical results 

During the test, the temperature has been measured in several point of the specimen. For 

the first phase (structure isolated) to take into account the thermal bridge of the lateral 

isolation, two different equivalent convective coefficients (0,73 W K-1m−2 and 3,9 W K-

1m−2) are used. For the hygral part sealed conditions are assumed.  

For the second phase a uniform thermal convective coefficient (10 W K-1m−2) is used and 

solar radiation is taken into account. To compute the convective water mass flux the 

hygral convective coefficient is set equal to 5e-14 kg s-1 m−2 Pa-1. 

 
Figure 3.10 - Specimen orientation and surrounding (a). Temperature after 2,25 days (b). Temperature in 

the central point of the beam (c). Hydration degree in the central point of the beam (d) 

3.2.4 Mechanical results and four point bending test 

During the first and second phases the longitudinal displacements of the specimen are 

globally restrained by the two metallic struts. During hydration the thermal extension of 
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concrete is restrained and so in this phase the beam is axially compressed. Then, when 

hydration is ended the thermal and hygral contractions of the beam, due to the decrease of 

temperature and to autogenous and drying shrinkage, are contrasted and this generates 

tensile stresses and localized and diffuse cracks. In Figure 3.11.b the relative 

displacement between the points C and D is shown (see Figure 3.11.a, for the position 

of the two points).  

 

Figure 3.11 - Position of the points C and D where the relative displacement is measured (a); Relative 

displacement between the point C and D (b). Numerical results for the axial force in the two metallic truss 

which restrain shrinkage (positive values indicate compression) (c). 

 

Figure 3.12 - Deformed configuration (× 500) and damage after 60 days. Face exposed to the sun (a) and 

face not exposed to the sun (b) 
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Figure 3.13 - Estimation of cracks width two months after the cast for two specimens with different amount 

of longitudinal bars reinforcement. Specimen 1 more reinforced than specimen 2. 

In Figure 3.11.c the axial forces obtained numerically in the two metallic struts are 

shown over time; these forces are different because the boundary conditions are not 

symmetric due to the solar radiation. This asymmetry of the solution is clearly visible also 

in Figure 3.12 where damage after 60 days is depicted.  

Figure 3.13 shows the cracks’ width two months after the cast for two specimens with 

different amount of longitudinal bars reinforcement. When the structure is more 

reinforced, case 1 in Figure 3.13, the distance between the cracks is smaller but also the 

cracks widths are generally smaller than in case 2.  

After two months a static four point bending test until rupture has been carried out. 

Compression will be assured by eight jacks and live controlled by a pressure sensor with 

an independent data registration system. The load is applied with increments of 50kN and 

each loading step is kept during 20 min. For more details on the analyzed test see the 

reference web page of the benchmark (Concrack website, 2010). In Figure 3.14.a the 

experimental crack pattern is compared with that obtained numerically; a good agreement 

can be observed especially in the central part of the beam.  
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Figure 3.14 - Comparison between the numerical and experimental crack pattern (a). Curve force vs 

displacements during the bending test (b). 

3.3 APPLICATION TO REPAIRS OF CONCRETE STRUCTURES 

Concrete, even if exposed to aggressive environments, can have a service life of 50 years 

or longer. However, due to workmanship or design errors and to the current fast 

construction methods, some concrete structures being built in the past and today may 

require repairs after as few as 5 years of service; also change of environmental conditions, 

not taken into account during the dimensioning process, may induce extensive cracking. 

For example, the total cost for repair, strengthening, and protection of the concrete 

structures in the U.S. represents $18 to $21 billion a year (Emmons and Sordyl, 2006).  

 
Figure 3.15 - Drying cracking due to self and external restraint in a reparation (adapted from Molez, 2003) 

During the last twenty years great progress has been achieved in the study and 

development of special mortars and concretes for the repairs of damaged concrete 

structures. The main modes of failure in repair/substrate systems are tensile cracking 
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through the thickness and peeling or shearing at the interface between both materials 

(Mauroux et al. 2012, Molez L. 2003, Emmons et al. 1994, Cusson et al. 1996, Saucier et 

al. 1997): internal stresses and cracking may be induced by the differential shrinkage 

between the reparation layer and the repaired material. Indeed, the development at early 

age of the aforementioned stress state is very complex and heterogeneous in the mortar 

thickness (Figure 3.15) due to the combination of several phenomena, such as 

hydration, drying, evolution of mechanical properties, creep. Therefore, a good 

compatibility between both materials has to be achieved for a durable repair: low 

shrinkage and Young’s modulus, great tensile strength and creep strains in tension, 

especially.  

Lots of experimental studies can be found in the literature on the durability of repairs 

regarding: i) characterization of material properties involved in cracking process by 

differential shrinkage: autogeneous and drying shrinkage, basic and drying creep (in 

particular in tension), Young’s modulus and tensile strength evolutions, influence of 

fibers, quality of adhesion (Bissonnette et al., 1995 and 1999); ii) development of devices 

to analyze the behavior of repaired systems. One example is the ring-test, which consists 

in casting a mortar ring around a metallic ring (modeling the substrate rigidity) for the 

determination of stresses induced by strain incompatibilities during hardening in the 

reparation material (Hossain et al. 2006, Bentur et al. 2003, Briffaut et al. 2011). Besides, 

several authors designed “real” systems (beams for instance). Experiments are performed 

in laboratory conditions (temperature and relative humidity, mechanical boundary 

conditions) which may be controlled or not. Since, all phenomena involved in cracking by 

differential shrinkages are strongly dependent on these conditions, but also on specimen 

size, such approaches and results cannot be easily transposed to any other conditions. 

Hence the experimental approaches can typically introduce errors when changing from 

laboratory specimens to real repairs cases. A predictive (numerical) model, which takes 

into account all complex phenomena involved (hydration, drying, shrinkages, creeps, 

cracking, etc.) needs to be used for such a goal. 

The purpose is to show that the developed numerical model is useful for the analysis of 

the thermo-hygro-chemo-mechanical behaviour of repairs, taking into account the history 

of the repaired material (drying, hydration, shrinkages, creeps, cracking), realistic casting 

and environmental conditions. A numerical tool to predict the expected behavior of the 

repairs would be of great help for the industry allowing it to improve repair materials and 

to design optimal and durable repair solutions. 
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Two repaired beams analyzed experimentally by Bastien Masse (2010) are modeled. The 

experimental data are used to identify the material parameters; most of these have been 

measured, and all tests have been performed in well controlled conditions. 

3.3.1 Identification of the model parameters 

The beams were repaired using two different concretes: an ordinary concrete (OC) and an 

ultra-high performance fiber reinforced concrete (UHPC). The mix of the two concretes 

used for the repairs is reported in Table 3.3. 

Table 3.3 - Formwork and thermal isolation data 

CONSTITUENT UNIT OC UHPC 

Cement [ kg/m3 ] 276 1007 

Silica fume [ kg/m3 ] 24 252 

Gravel [ kg/m3 ] 980 - 

Sand [ kg/m3 ] 875 600 

Water [ L/m3 ] 184 225 

Superplasticizer [ L/m3 ] 2.50 42 

Steel fibers  (10 mm) [ % vol. ] - 4 

 

To predict correctly the behavior of a concrete structural repair the knowledge of the 

material properties, in particular those of the restoration materials is essential. An 

exhaustive experimental analysis to identify the properties of the two repair concretes 

(shrinkage, Young’s modulus, tensile strength, creep, etc.) has been carried out by 

Bastien Masse (2010). On the other hand for the concrete used to cast the beams only the 

mechanical properties have been measured. Being this concrete very similar (in term of 

mix design) to the ordinary concrete (OC), the choice is to assume the unknown 

properties equal to those of OC.  

 

Figure 3.16 - Adiabatic calorimetry test for the two repair concretes. Experimental (open symbols) and 

numerical results (solid lines) 
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Figure 3.17 - Shrinkage (a,b) and creep tests (c,d): experimental (open symbols)  and numerical results 

(solid lines) for the two repair concretes 

The hydration parameters are identified via semi-adiabatic calorimetry: the fresh concrete 

is placed in a quasi-adiabatic calorimeter and during six days the evolution of the 

temperature is measured (the temperature of the laboratory is 23°C ± 1°C). From the 

measured temperatures, knowing the calorimeter heat loss, it is possible to compute the 

adiabatic temperature (open symbols in Figure 3.16). Figure 3.16 shows also the 

numerical results (solid lines) of the adiabatic calorimetry for the two repair concretes, 

and their fine agreement with the experiments. 

Measuring shrinkage is very important because it is the first cause of repairs’ cracking 

(which reduce the service life). The total shrinkage and the autogenous shrinkage have 

been measured in for both the repair concretes (open symbols in Figures 3.17.a-b). 

Concerning the UHPC, due to the low water/cement ratio and its high cement content, 

Figure 3.17.b shows that the autogenous shrinkage is relevant and is larger than the 

drying shrinkage (difference between the total shrinkage and autogenous one). Globally 

the UHPC has a total shrinkage potential (autogenous + drying shrinkage) almost 1.5 

times bigger than the OC.  
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Table 3.4 - Parameters of the two concretes used for the repairs. 

PARAMETERS SYMBOL UNIT OCrepair  UHPCrepair  

Thermal conductivity (dry ) �eff [ W/mK ] 1.5 1.95 

Heat of hydration Lhydr [ MJ/m3 ] 64 230 

Activation energy Ea/R [ K  ] 5000 4500 

Parameter Ai in Equ. (1.31) Ai [ 1/s ] 10 2.0 

Parameter AP in Equ. (1.31) AP [ 1/s ] 340 17.5 

Parameter �P in Equ. (1.31) �P [ - ] 0.16 0.13 

Parameter C in Equ. (1.31) D  [ - ] 16 18 

Mechanical percolation threshold �0 [ - ] 0.1 0.1 

Porosity (when �= 1) n� [ - ] 0.1439 0.2071 

Intrinsic permeability  (when �= 1) K� [ m2 ] 8 × 10-21 2.8 × 10-22 

Parameter a in Equ. (1.52) a [ MPa] 17.00 58.04 

Parameter b in Equ. (1.52) b [ - ] 2.4 2.11 

Parameter c� in Equ. (1.52) c� [ - ] 1.50 1.50 

Parameter �i in Equ. (1.52) �i [ - ] 0.20 0.20 

Biot coefficient (when �= 1) α ∞  [ - ] 0.68 0.36 

Young modulus (when �= 1) E� [ GPa] 30 36 

Tensile strength (when �= 1) ft� [ MPa] 3.0 11.0 

Poisson ratio (when �= 1) E� [ - ] 0.20 0.25 

Parameter �cr in Equ. (1.82) �cr [ - ] 0.35 0.35 

Creep cell 1: spring (when �= 1) kbc1� [ GPa] 38 37 

Creep cell 1: retardation time Fbc1 days 16 35 

Creep cell 2: dashpot (when �= 1) �bc2 [ GPa·days] 9.3 × 104 3.5 × 104 

Creep cell 3: drying creep coeff. Fdc  [ m2/(Pa·kg) ] 3 × 10-11 1 × 10-12 

 

In Figures 3.17.a-b the numerical results are also reported (solid lines). Figures 3.17.c 

shows the results of the basic creep test for the OC and the UHPC. The specimens have 

been charged in compression at 7 days with two different loads; to simplify the 

comparison the experimental and numerical results are shown in Figure 3.17.c in term 

of specific creep. Also Figures 3.17.d shows the numerical results for three OC 

specimens charged at 1, 3 and 7 days and discharged at 120 days. The specific creep 

potential and the residual strains (after unloading) are higher when the specimen is 

charged at 1 and 3 days as clearly shown in the figure. This typical behavior due to the 

evolution of the main mechanical properties during hydration is taken care in the model 

via the evolution of the Young’s modulus ( )E Γ (eqn (1.65)) and of the stiffness of the 

spring of the first creep cell ( )1bck Γ  (eqn (1.71)).  

The described experiments test are used to calibrate the numerical model and the 

identified input parameters are summarized in Table 3.4. 
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3.3.2 Modeling of the two repaired beam and of the reference one 

Once the model parameters have been identified, the numerical simulation of the thermo-

hygro-mechanical behavior of the two repaired beams can be performed. The geometry of 

the beams is represented in Figure 3.18. 

For the experiment, three identical reinforced beams were cast. Two of these beams, after 

the hydrodemolition of 30 mm of the upper part, had been repaired: one using the 

ordinary concrete (OC) and the other using the ultra-high performance fiber reinforced 

concrete (UHPC). The third beam is the reference specimen. Two fiber-optic sensors 

(FO-h and FO-b) were placed inside the beams. 

 

Figure 3.18 - Geometry of the repaired beams (readapted from Bastien Masse, 2010) and associate finite 

element mesh 

The experiment was realized in a laboratory with controlled environmental conditions (22 

± 2 °C  and 50 ± 5 % of relative humidity). The fresh concrete of the repairs has been 

cured and protected from drying during the first 90 hours. The lateral surfaces of the 

beams had been covered using a resin so that the case can be analyzed in 2D plane stress 

(the lateral surfaces were not thermally isolated, but the thermal aspect has not a critical 

impact on thin repairs). The 2D F.E. mesh of the concrete consists of 1200 plate elements. 

To model the reinforcements, beam elements rigidly linked with the concrete mesh are 

used. The nodes of the mesh of the reinforcement bars have the same spatial position of 

those of the concrete mesh.   
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For temperature T and capillary pressure pc the boundary conditions are assumed to be of 

convective type. The convective heat flux qt (Wm−2) and convective water mass flux qh 

(kg s-1 m−2) are: 

 ( ) ( )*
c c

t t s ext h h s extT T p pϕ ϕ= − = −q n q n  (3.2) 

where the meaning of symbols is the same of eqn (3.1). The gas pressure pg is assumed 

equal to the atmospheric one at the surface of the specimens. The environmental 

conditions of the laboratory and the initial conditions for the two repairs are summarized 

in Table 3.5.   

Table 3.5 - Environmental and initial conditions for the repairs. 

 T R.H � 
Environment 22 °C (± 2 °C) 0.50 (± 0.05) - 

Repair concretes (initial values) 22 °C 0.99 0.00 

  

The full THCM history of the reference beam and of the two repaired beams, and the 

wetting procedure for the preparation of the substrate are also taken into account; in other 

words the numerical simulations start from the casting of the three beams. Figure 3.19 

shows the boundary conditions of the three beams before and after the repair time which 

is indicated in the following as the time “zero”. 

 
Figure 3.19 - Boundary conditions for the reference beam and the two repaired beams before and after the 

repair of the beams. The repair time is the time zero. 
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Figure 3.20 - Relative humidity (a) and (b), and saturation degree (c) and (d), for the two repair cases. 

Because of the two types of repair concretes, the global and local behaviour of the 

repaired beams will be very different. For both cases the relative humidity is continuous 

at the interface (see Figures 3.20.a-b), but there are discontinuities for the liquid phase 

saturation degree (see Figures 3.20.c-d). This discontinuity depends on the different 

porous micro-structures (and associated desorption isotherms) of the new material of 

restoration and the substrate. When the repair material is the same of the substrate this 

discontinuity decreases due to hydration and becomes imperceptible after 1 month  (see 

blue line Figure 3.20.c). If the repair material is different from that of the substrate, this 

discontinuity of the saturation degree persists even after the hydration of the restoration 

material. Concerning the analyzed case, Figure 3.20.d shows that at the beginning 

(dashed and red line) at the interface the substrate is more saturated than the repair, but 

after the first hours the discontinuity inverts since the solid skeleton of the UHPC has a 

more refined porous micro-structure. 

Figures 3.21 shows the numerical and the experimental results for the vertical 

displacement of the three beams measured using the linear potentiometer placed in the 

lower middle point of the beams (Pot. in Figure 3.18). 
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Figure 3.21 - Experimental (open symbols) and numerical results (solid lines) for the vertical displacement 

of the middle points of the three beams. The time “zero” corresponds to the application of the repairs 

 

Figure 3.22 - Damage at 5 days (a), at 30 days (b) and at 120 days (c) after the repair of two of the beams 

(numerical results for a half beam). 

In Figure 3.21 a good agreement between the experimental results and the numerical 

ones can be observed. The deflection of the reference beam is mainly due to its weight 

and also to the not symmetric position of the steel reinforcements: in other words the 

shrinkage of the upper and lower part of the beam generates an eccentric force which 

increases the deflection of the beam. In the repaired beams the deflections are accentuated 

by the autogenous and drying shrinkage of the fresh restoration materials. Figure 3.22 

shows the damage at 5 days (first line), 30 days (second line) and at 120 days (third line) 

after the repair of two of the beams.  
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Figure 3.23 - Horizontal displacements ux at 120 days along the upper face (AB) and lower face (CD) of the 

three beams. 

These beams had been repaired 30 days after their casting, hence 5 days after the repair 

means also 35 days after the casting of the beams. Concerning the beam repaired using 

the OC (second column), Figure 3.22.a shows that after 5 days there is damage only at 

the interface between the restoration material and the substrate, although after 30 days the 

whole thickness of the restoration concrete is damaged due to the contrasted shrinkage. 

Differently the third column of Figure 3.22 shows that for the UHPC repaired beam up 

to 120 days the damage is localized only at the interface with the substrate. The horizontal 

displacements ux at 120 days along the upper face (from A to B) and the lower face (from 

C to D) are reported in Figure 3.23. For each of the three beams the lack of evident 

discontinuities in the horizontal displacements of the upper face indicates that only 

diffuse micro-cracks caused by the contrasted shrinkage are present. On the other hand in 

the lower face, four macro-cracks are clearly observable from the horizontal 

displacements discontinuities. For the reference beam and the OC repaired beam the 

maximum cracks’ width is of about 18 Bm while for the UHPC repaired beam is of about 

45 Bm. 
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Figure 3.24 - Mechanical boundary conditions and geometrical configuration for the three points bending 

test (a); Force versus averaged strain of the compressed fiber optic sensor (b); Force versus displacement 

curves (numerical results) (c) 

After 120 days from the repair, the repaired beams and the reference one are first 

submitted to a fatigue test and then to a three point bending test until failure. Here only 

the bending test is simulated and the imposed boundary conditions are represented in 

Figure 3.24.a. A controlled vertical displacement has been imposed in the charged area 

(surface Ach in Figure 3.24.a). Figure 3.24.b shows that experimentally the global 

response (in term of force-strain curve) of the reference beam is very similar to that of the 

OC repaired beam, and this is confirmed by the numerical simulations. Also the results in 

terms of damage for the reference and the OC repaired beams are very similar (see 

Figure 3.25). The analogous bending behavior of these two beams is due mainly to the 

fact that the OC repaired beam had been repaired only 30 days after its casting, hence the 

substrate was yet saturated (see Figure 3.20.c) and the differential shrinkage is not too 

relevant. In other words when the three point bending test was performed (120 days after 

the repair) no relevant differences can be observed between the reference and the OC 

repaired beams in terms of damage and stresses. Concerning the UHPC repaired beam the 

increase of the initial flexural stiffness and of the limit load observed during the 

experiment is qualitatively obtained by the numerical model as shown in Figure 3.24.b. 
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Figure 3.25 - Damage of the three beams at different imposed displacements: 5mm (a), 10 mm (b), 15 mm 

(c). Numerical results for the entire beam obtained by symmetry 

 

Figure 3.26 - Cracks width of the UHPC repaired beam at 15 mm of imposed vertical displacement. 

Numerical results for the entire beam obtained by symmetry 

Indeed UHPC has greater mechanical performance than OC. Similarly to the 

experimental crack pattern (insert in Figure 3.26), Figure 3.26 shows that not all the 

cracks obtained numerically cross the UHPC repaired thickness.  

As shown within this section, the numerical model is able to capture the most significant 

physical phenomena governing the behavior of concrete structural repairs. The 

experimental results have been successfully reproduced by the model which is useful for 

completely general repair cases, when experiments can be not representative of the real 

environmental and casting conditions.   
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3.4 CONCLUSIONS 

In the first application is shown that the 3D implementation in Cast3M allows to model 

properly reinforced concrete structures (Sciumè et al., 2012). Moreover the tests 

performed by the benchmark organizers to characterize the CEOS concrete allowed the 

model validation.  

In the second application the model is used to simulate the behavior of two repaired 

beams analyzed experimentally by Bastien Masse (2010). These beams had been repaired 

using two wholly different concretes: an ordinary concrete (w/b = 0.62) and an ultra high 

performance fiber reinforced concrete (w/b = 0.22). The model is able to simulate 

accurately the thermo-hygro-mechanical behavior of the two considered concretes: 

hydration evolution, autogenous and drying shrinkage, creep. Going from the material 

scale (experimental tests used to identify the parameters of the model) to the structure one 

(modeling of the reference and repaired beams), an agreement between the numerical and 

experimental results is achieved qualitatively and quantitatively. The analyzed cases 

confirm that the factors influencing mainly the behaviour of repairs are: installation and 

environmental conditions, the repair’s geometry and the materials’ properties. Concerning 

the repair material, elastic modulus, tensile strength and creep potential impact critically 

on the success of a repair. The creep has a very important role because it relaxes the 

tensile stress and moderates crack phenomena.  

To succeed in simulating the behaviour of concrete at early age many parameters are 

needed and the model must be calibrated accurately. However to identify the main input 

parameters only four classical experiments are needed: i) adiabatic calorimetry, ii) 

measuring shrinkage and loss of mass, iii) Young modulus and tensile strength values 

(possibly also their evolution during hydration), iv) creep test. Therefore even if the 

model is quite sophisticated it can be reasonably applied to real cases of interest. This 

multiphase THCM model can be applied to very different situations such as massive 

structures, repairs, losses analysis in pre-stressed concrete structures, and reinforced 

structures in general. Examples of model application to practical engineering problems 

have been presented, showing the effectiveness of such a kind of approach.  
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4 EXTENSION OF THE MATHEMATICAL 

APPROACH TO TUMOR GROWTH 

MODELING  

4.1 INTRODUCTION 

Several mathematical formulations have analyzed the time-dependent behaviour of a 

tumor mass. However, most of these propose simplifications that compromise the 

physical soundness of the model. Here, multiphase porous media mechanics is extended 

to model tumor evolution, using governing equations obtained via the 

Thermodynamically Constrained Averaging Theory (TCAT). A tumor mass is treated as a 

multiphase medium composed of an extracellular matrix (ECM); tumor cells (TCs), 

which may become necrotic depending on the nutrient concentration and tumor phase 

pressure; healthy cells (HCs); and an interstitial fluid (IF) for the transport of nutrients. 

The equations are solved by the Finite Element method to predict the growth rate of the 

tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient 

concentration, mechanical strain, cell adhesion and geometry. Within the chapter results 

are shown for three cases of biological interest such as multicellular tumor spheroids 

(MTSs) and tumor cords. First, the model is validated by experimental data for time-

dependent growth of an MTS in a culture medium. The tumor growth pattern follows a 

biphasic behaviour: initially, the rapidly growing tumor cells tend to saturate the volume 

available without any significant increase in overall tumor size; then, a classical 
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Gompertzian pattern is observed for the MTS radius variation with time. A core with 

necrotic cells appears for tumor sizes larger than 150 Bm, surrounded by a shell of viable 

tumor cells whose thickness stays almost constant with time. A formula to estimate the 

size of the necrotic core is proposed. In the second case, the MTS is confined within a 

healthy tissue. The growth rate is reduced, as compared to the first case – mostly due to 

the relative adhesion of the tumor and healthy cells to the ECM, and the less favourable 

transport of nutrients. In particular, for host cells adhering less avidly to the ECM, the 

healthy tissue is progressively displaced as the malignant mass grows, whereas tumor 

cells infiltration is predicted for the opposite condition. Interestingly, the infiltration 

potential of the tumor mass is mostly driven by the relative cell adhesion to the ECM. In 

the third case, a tumor cord model is analyzed where the malignant cells grow around 

microvessels in a 3D geometry. It is shown that tumor cells tend to migrate among 

adjacent vessels seeking new oxygen and nutrient. This model can predict and optimize 

the efficacy of anticancer therapeutic strategies. It can be further developed to answer 

questions on tumor biophysics, related to the effects of ECM stiffness and cell adhesion 

on tumor cell proliferation. 

4.2 TCAT PROCEDURE FOR BIOLOGICAL SYSTEM 

Although TCAT has heretofore been employed primarily in hydrology, it can impact 

tumor modeling in that the underlying physics and mathematics needed to describe 

tumors are related. Biological growth also lends itself to modeling using mass 

conservation because cells require nutrient input to grow and divide into new cells.  

TCAT provides a framework in which the aspects that are unique to biological modeling 

can be incorporated directly, and the fundamental physical laws remain unchanged 

whether we are modeling a tumor or an aquifer. Additionally, if hybrid tumor models are 

to be developed in the future, it is essential that the relation between the smaller scale 

variables and continuum variables be known. TCAT ensures that these relations are 

known.   

4.3 CONTEXT AND BIBLIOGRAPHIC REVIEW OF TUMOR GROWTH MODELS 

With the aging world population, a surge in cancer incidence is anticipated in coming 

years, with major societal and economic impact. With such a scenario, the development 



THCM model of concrete at early ages and its extension to tumor growth numerical analysis 

153 
 

of novel therapeutic strategies is critical for improving the prognosis, outcome of 

intervention, quality of life, and minimizing economical impact. In this context, 

computational models for tumor growth and its response to different therapeutic regimens 

play a pivotal role. Over the past two decades, multiple models have been developed to 

tackle this problem. As discussed in the comprehensive works of Roose et al. (2007), 

Lowengrub et al. (2010), and Deisboeck et al. (2011), three major classes of models have 

been proposed: discrete, continuum, and hybrid models. Discrete models follow the fate 

of a single cell, or a small cohort of cells, over time. As such, they cannot capture tissue 

mechanics aspects, nor are the modelled subdomains representative of the whole tumor. 

However, they explain cell-to-cell cross signalling and cell response to therapeutic 

molecules (Perfahl et al. 2011).  On the other hand, continuum models describe cancerous 

tissues as domains composed of multiple homogeneous fluid and solid phases interacting 

one with the other. Differential equations describe the spatiotemporal evolution of the 

system, but no direct information is provided at the single cell level (Roose et al. 2007). 

Finally, hybrid models incorporate different aspects of discrete and continuum models, 

depending on the problem of interest. For instance they represent cells individually and 

extracellular water as a continuum (Chaplain, 2000, Anderson, 2005, Bearer et al. 2009). 

At very early stages, solid tumors are composed of a few abnormal cells growing within 

an otherwise healthy tissue. The vasculature is generally absent, and the tumor cells take 

all their nutrients by diffusion from the surrounding tissue. This is defined as the 

avascular phase for a solid tumor. As the mass of tumor cells increases, the extracellular 

matrix undergoes extensive rearrangements with increased deposition of collagen fibers, 

making the resulting tissue thicker and more difficult to trespass (Jain, 1999, Jain and 

Stylianopoulos, 2010). Also, since the tumor cells divide much faster than normal cells, 

the growing tumor mass exerts mechanical stresses on the surrounding healthy tissue, 

leading to the localized constriction and, at times, collapse of blood and lymphatic 

vessels. At this point, the tumor cells are already in millions and the malignant tissue has 

reached a characteristic size of hundreds of microns. A necrotic zone appears deep inside, 

far from the pre-existing vasculature, and the interstitial fluid pressure (IFP) builds up 

against the vascular hydrostatic pressure mainly due to the compression of the healthy 

tissue, obstruction of the lymphatic vessels and hyper-permeability of the new blood 

vessels. Using proper biochemical stimuli, the tumor cells recruit new blood vessels 

(angiogenesis) to support a continuous transport of nutrients and oxygen. This is defined 

the vascular phase of a solid tumor.  
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Figure 4.1 – Stages of tumor growth. From the avascular to the vascular stage: angiogenesis (from 

Yancopoulos et al.,2000) (a). Spheroid of 600 Bm diameter stained with Pimonidazole to show regions of 

hypoxia (in brown). Staining starts approximately 150 mm from the surface, and increases in intensity 

towards the center with a loosely packed necrotic center (from Tupper J et al., 2004) (b). Metastatic stage 

and formation of secondary tumor (Permalink, 2005)(c). 

Over time, these new blood vessels become also a preferential route for the malignant 

mass to shed into circulation millions of abnormal cells that, transported by the blood 

flow, would reach distant sites and lead eventually to the develop secondary tumors. This 

is the metastatic phase, typically occurring for a few solid tumors. This briefly describes 

the multiple phases and stages that characterize the evolution of tumors; representations 

of these phases are shown in Figure 4.1. In this chapter, the focus will be on tumor 

initiation, and on a novel continuum model for the evolution of avascular tumors. 

However angiogenesis is currently studied and its introduction in the model is one of the 

future objectives. 

Most continuum models for avascular tumors describe the malignant mass as a 

homogeneous, viscous fluid and employ reaction-diffusion-advection equations for 

predicting the distribution and transport of nutrients and cells (Roose et al. 2007). Cell 

diffusion, convection and chemotactic motion are included, and cell proliferation is 

governed by mass and momentum balance equations. The first model was by Casciari et 

al. (1992). More advanced models also included intracellular mechanical interactions 
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(pressure, shear, adhesion) and interaction of cells with the interstitial fluid pervading the 

extracellular matrix. In these cases, momentum balance equations and constitutive 

relations are also required for describing the stress-strain response of each individual 

phase. One of the earlier models (Byrne and Chaplain, 1996) treated the tumor cells as a 

viscous liquid and introduced, quite artificially, a hydrostatic pressure within the tumor 

domain representing the IFP. More sophisticated models since treated solid and fluid 

phases independently. For instance, Roose et al. (2003) modelled the tissue matrix as a 

linear poroelastic solid, whilst the interstitial fluid was prescribed to obey Darcy’s law. 

Cell growth was incorporated in the stress-strain relationship, still imposing small 

displacements. See also Sarntinoranont et al. (2003).  

Byrne et al. (2003) has proposed a new class of models derived in the multi-phase 

framework of mixture theory. Mixture theory consists in a macroscopic description (level 

of observation) of the system where conservation laws are introduced in analogy with the 

balance laws of single bodies. Additional terms are introduced to account for the 

interaction among phases. The disadvantage of this approach is that no connection is 

made with the microscopic reality. Interfacial properties are absent from both 

conservation laws and constitutive equations - a serious deficiency when applied to 

porous media (Gray and Miller, 2005). Within this approach the cellular phase (for both 

tumor and healthy tissues) is modelled as a viscous fluid and the interstitial fluid as 

inviscid.  Although, the mixture theory formalism is potent and flexible, major challenges 

lie in the treatment of the interfaces arising the different phases. Traditionally, two classes 

have been proposed: the sharp interface method, considering the interface as a sharp 

discontinuity; and the diffuse interface method, considering the interface as a diffuse 

zone. The sharp interface approach – difficult to implement for interfaces separating pure 

media (interstitial fluid) and mixtures (tumor cells and healthy tissue) – has been followed 

by Preziosi and Tosin (2009), and Preziosi and Vitale (2011). However, necrotic cells are 

not distinguished from live tumor cells: tumors are modelled as if necrotic cells are no 

longer part of the tumor. They are hinted at in the source/sink term but the related balance 

equations are missing. Their inclusion would require accounting for an additional 

interface between living and dead cells, which is not sharp in nature. On the other hand, 

the diffuse interface approach introduces an artificial mixture at the interface, and the 

challenge here is to derive physically, mathematically, and numerically consistent 

thermodynamic laws for these interfaces. Wise et al. (2008), Cristini et al. (2009); Oden 

et al. (2010) and Hawkis Daarud et al. (2012) have all followed this approach. However, 
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they include only one interface, separating the tumor cells from the healthy tissue. 

Strictly, this is insufficient in the mixture theory formalism where each interface should 

be accounted for throughout the whole computational domain. The models lack some 

rigour because the designation of phases as distinct from chemical constituents 

comprising a phase is unclear. Consequently some of the balance equations contain terms 

that cannot be justified on a theoretical basis. These simplified approaches lead to fourth-

order-in-space parabolic partial differential equations, of Cahn-Hilliard type. This entails 

some difficulties for three-dimensional solutions with finite element methods because 

higher order basis functions are needed than in the realm of second order spatial operators 

(Gomez et al. 2008). Further, considering more than two or three phases becomes 

cumbersome, especially if a solid phase is included. 

There is a need for tumor growth models for the dynamics of multiple phases and 

interfaces in a physically and numerically sound way. Recently the thermodynamically 

constrained averaging theory (TCAT) framework has been established (Gray and Miller 

(2005); Gray et al. (2012)) for continuum, porous media models that are 

thermodynamically consistent across scales. Here, the TCAT formalism will be used for 

predicting the growth of tumors under different physiologically relevant conditions. We 

show that second-order differential equations can accommodate more phases than most of 

the existing models. The interface behaviour is modelled through surface tension (Dunlop 

et al. 2011, Ambrosi et al. 2012) and adhesion (Baumgartner et al., 2000). More than the 

60% of the human body consist of fluids and a lot of biological tissues can be classified 

(and modeled) as porous media. Many porous media models are formulated at the 

macroscale, adequate for describing system behaviour while filtering out the high 

frequency spatial variability. The standard continuum mechanics approach to formulating 

these models is a direct approach wherein the conservation equations are written at the 

larger scale and a rational thermodynamic approach is employed to obtain closure 

relations. Although this approach can be mathematically consistent, the use of rational 

thermodynamics fails to retain a connection between larger scale variables and their 

microscale precursors (Maugin 1999, Jou et al. 2001). Thus mathematical elegance is 

achieved typically at the price of inconsistent variable definitions and an inability to relate  

quantities at one scale to those at another scale. By averaging conservation and 

thermodynamic equations, TCAT avoids both of these pitfalls and leads to equations that 

are both thermodynamically and physically consistent.  
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4.4 THE MULTIPHASE SYSTEM  

The proposed computational model comprises the following phases: i) the tumor cells 

(TC), which partition into living cells (LTC) and necrotic cells (NTC); ii) the healthy 

cells (HC); iii) the extracellular matrix (ECM); and iv) the interstitial fluid (IF) (see 

Figure 4.2).  

 
Figure 4.2 - The multiphase system within a representative elementary volume (REV). 

The ECM and IF pervade the whole computational domain, whereas the TC and HC are 

limited only to the subdomains with the tumor mass and the healthy tissue, respectively. 

The ECM is modelled as a solid, while all other phases are fluids. The tumor cells 

become necrotic upon exposure to low nutrient concentrations or excessive mechanical 

pressure. The interstitial fluid, transporting nutrients, is a mixture of water and 

biomolecules, as nutrients, oxygen and waste products. In the following mass and 

momentum conservation equations, � denotes an arbitrary phase, t the tumor cells (TC), h 

the healthy cells (HC), s the extra cellular matrix (ECM), and l the interstitial fluid (IF). 

4.5 GENERAL GOVERNING EQUATIONS  

The governing equations are derived by averaging from the microscale to the macroscale 

and then using closure techniques to parameterize the resultant equations. These 

techniques have been employed for transport and for multiphase systems elsewhere (Gray 

and Miller 2009, Jackson et al. 2009) and the procedure is the same for the current 

system, although the number of phases is different. An important feature of the approach 

is that the interphase contacts are explicitly accounted for. 

The ECM is treated as a porous solid and porosity is denoted by �, so that the volume 

fraction occupied by the ECM is �
s=1- �. The rest of the volume is occupied by the tumor 
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cells (�t); the healthy cells (�h); and the interstitial fluid (�l). Indeed, the sum of the volume 

fractions for all phases has to be unit 

 1s h t lε ε ε ε+ + + =  (4.1) 

The saturation degree of the phases is: S�=��/� . Indeed, based on the definition of porosity 

� and volume fraction �� in eqn (4.1) it follows that  

 1h t lS S S+ + =     (4.2) 

The mass balance equation for an arbitrary phase � based on application of the averaging 

theorems is written as 
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where �� is the volume fraction; �� is the density, αv  is the local velocity vector,M
κ α→

 are 

the mass exchange terms accounting for transport of mass at the interface between the 

phases � and �, and 
cακ ∈ℑ
� is the summation over all the phases exchanging mass at the 

interfaces with the phase �. However, if the interface is treated as massless, the transfer is 

to the adjacent phases, designated as �. An arbitrary species i dispersed within the phase � 

has to satisfy mass conservation too, and therefore the following equation is derived by 

averaging 
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where iαω  identifies the mass fraction of the species i dispersed with the phase �, irα αε  

is a reaction term that allows to take into account the reactions between the species i and 

the other chemical species dispersed in the phase �, and iαu  is the diffusive velocity of 

the species i. 

In particular, the mass conservation equation of the nutrient species i in the IF (phase l) 

reads 
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where it is assumed that no chemical reaction occurs within the phase and that the 

exchange of mass in the liquid is only with the tumor phase. Summing eqn (4.5) over all 

species gives  
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Note that the mass exchange from the liquid to the tumor is actually to the living cell 

(LTC) portion of the tumor phase. The necrotic portion of the tumor is inert and does not 

exchange any nutrient with the IF. Also there is no need to make a distinction between the 

solvent part of the liquid phase and any of the dissolved species. All species are in the 

liquid phase. However, due to the relatively low concentrations of chemicals, the solvent 

phase is the dominant species and hence the global physical properties of the IF, such as 

density, intrinsic permeability and dynamic viscosity are essentially those of the solvent.  

The tumor phase t comprises a necrotic portion with mass fraction N tω  and a growing 

phase with living cells whose mass fraction is 1 N tω− . Thus the conservation equation for 

each fraction would be similar to eqn (4.5). Assuming that there is no diffusion of either 

necrotic or living cells, and that there is no exchange of the necrotic cells with other 

phases the mass conservation equation for the necrotic portion reads as 

 
( ) ( ) 0

t t N t

t t N t t t Ntr
t

ε ρ ω
ε ρ ω ε

∂
+ ∇ ⋅ − =

∂
v  (4.8) 

where t N trε  is the rate of death of tumor cells, or in other words the rate of generation of 

necrotic cells. Differently than a mass exchange term between phases (
l t

M
→

 in eqn (4.6) for 

instance), the reaction term t Ntrε  is an intra-phase exchange term. The mass balance 

equation for the living tumor cells is given as 
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where 
l t

M
→

 includes the exchange of nutrients and solvent from the IF to the tumor. 

Summation of these two equations yields an overall mass conservation equation for the 

tumor phase as 

 
( ) ( ) 0

t t
l t

t t t M
t

ε ρ
ε ρ

→∂
+ ∇ ⋅ − =

∂
v   (4.10)  

We can expand eqn (4.8) by use of the product rule and substitute in eqn (4.10) to obtain 

an alternative form of the necrotic species equation as 

 0
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For the ECM and HC, the mass conservation equation becomes respectively 
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For the ECM and the HC phases no mass exchange is expected with any other phase 

The momentum equation for the arbitrary phase �, including multiple species i, is 
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where αg  is the body force, 
i i

vM
κ α

α
→

v  represents the momentum exchange from the � to the 

� phase due to mass exchange of species i, αt is the stress tensor and 
κ α→
T  is the 

interaction force between phase � and the adjacent interfaces. When the interface 

properties are negligible, this last term is simply the force interaction between adjacent 

phases. Given the characteristic times scales (hours and days) of the problem and the 
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small difference in density between cells and aqueous solutions, inertial forces as well as 

the force due to mass exchange are neglected, thus the momentum equation simplifies to 

 ( ) 0
cα

κ α
α α α α α

κ
ε ε ρ

→

∈ℑ

−∇ ⋅ − − =�t g T   (4.15)  

From TCAT, see Appendix A, it can be shown that the stress tensor for a fluid phase is 

of the form pα α=−t 1, with p� being the averaged fluid pressure and 1 the unit tensor, 

and that the momentum balance equation can be simplified to  

 ( ) 0spα α α αε ∇ + ⋅ − =R v v   (4.16)  

where R� is the resistance tensor. 

4.6 CONSTITUTIVE EQUATIONS 

No special assumption has been made yet for the constitutive behaviour of the different 

phases, except for the fluid phases described by eqn (4.16). In this paragraph, constitutive 

relations are explicitly presented for describing i) the tumor cell growth and ii) the tumor 

cell death, as a function of the nutrients’ mass fraction and local mechanical stresses, for 

eqn (4.6) and eqn (4.8), respectively; iii) the rate of nutrient consumption from the IF, in 

particular, to the living tumor cells, for eqn (4.5); iv) the diffusion of nutrients within the 

porous ECM, for eqn (4.5); v) the interaction force among the phases, for eqn (4.15); vi) 

the mechanical behaviour of the ECM; and vii) the differential pressure between the fluid 

phases.  

The formulation presented in the above paragraph can be further simplified by assuming 

that the densities of the phases are constant and equal 

 s h t l constρ ρ ρ ρ ρ= = = = =   (4.17)  

4.6.1 Tumor cell growth.  

This is regulated by a variety of nutrient species and intracellular signalling. However, 

without losing generality, in the present model one single nutrient is considered: oxygen. 

The case of multiple species can be easily obtained as a straightforward extension of the 

current formulation. Tumor cell growth is related to the exchange of nutrients between the 

IF and the living portion of the tumor. Therefore the mass exchange term in eqn (4.6) 
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represents tumor growth and, similarly to a part of the relevant equation in Preziosi and 

Vitale (2011), takes the form 

 ( ) (1 )
nl nll t il it

t t t N t tcrit
growth critnl nlgrowth

i l env crit

M M H p p S
ω ωγ ω ε
ω ω

→ →

∈ +

� �−= = − −C D
−C D� �

�   (4.18)  

where the coefficient 
t
growthγ  accounts for the nutrient uptake and the consumption of water 

needed for cell growth from the IF; nlω
 
is the local mass fraction of the nutrient, a 

fundamental variable in the problem; nl
critω  is a constant critical value below which cell 

growth is inhibited; and the constant nl
envω  is the environmental mass fraction of the 

nutrient. Also, pt denotes the tumor cell pressure and  its critical value t
critp  above which 

growth is inhibited. The Macaulay brackets +  indicate the positive value of its 

argument. Note that, since the local nutrient mass fraction nlω  within the tumor domain 

can be equal or smaller than 
nl
envω , it derives that the non-negative part of the argument of 

the Macaulay brackets varies between 1 (nl nl
envω ω= ) and 0 ( nl nl

critω ω< ). Consequently the 

growth rate for the viable tumor cells could at most be equal to 
t
growthγ  . Also in eqn (4.18), 

H is the Heaviside function which is zero for t t
critp p>  and is unity for t t

critp p< . Note 

that 
N t N t

N t
t t

ε ρω
ε ρ

= is the mass fraction of tumor cells that are necrotic and hence 

(1 )N t tSω ε−  is the volume fraction of viable tumor cells.  

4.6.2 Tumor cell death.  

The rate of tumor cell death in eqn (4.8) can be described by the relation 

 ( ) (1 )
t

nl nl
t N t t t t N t tcrit

necrosis a necrnl nl
env crit

r H p p S
ω ωε γ δ ω ε
ω ω

−

� �−= − + − −C D
−C D� �

  (4.19)  

where 
t
necrosisγ  is the rate of cell death. All the other terms are similar to those presented 

in eqn (4.18). However, the negative part of the argument of the Macaulay brackets  −  

is considered. Also, 
t
necrp  is the pressure above which the tumor stress has effect on the 

cell death rate, and �a is the additional necrosis induced by a pressure excess. Note that 
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the mathematical form of eqn (4.19) is very similar to eqn (4.18) in that cell death is 

assumed to be solely regulated by insufficient concentration of nutrients (oxygen) and 

excessive mechanical pressure. No drugs or other pro-apoptotic molecules are used in the 

present model, but eqn (4.19) can be readily modified to include also this contribution. 

Mathematically, a therapeutic agent or drug would be treated just as a ‘nutrient’. Effects 

of cells membrane rupture and consequent transfer of liquid from the tumor cell phase to 

the interstitial fluid has been not yet included in the model. These aspects will certainly be 

included in future extensions of the current computational model. This will be also 

connected with the release of chemo-attractants and subsequent infiltration of 

macrophages. As such, these aspects can influence the local interstitial fluid pressure. 

4.6.3 The rate of nutrient consumption.  

As tumor grows, nutrients are taken up from the IF so that the sink term in eqn (4.5) takes 

the following form 

 ( ) 0 sin (1 )
2

nl nl nlnl t nl nt
nl t t nl N t tcrit
growth critnl nl nl

env crit env

M M H p p S
ω ω π ωγ γ ω ε
ω ω ω

→ →

+

� �� �−= = − + −C D� 	� 	−C DA B� �
 (4.20)  

Nutrient consumption from IF is due to two contribution namely i) the growth of the 

tumor cells, as given by the first term within the square brackets in eqn (4.20); ii) the 

normal metabolism of the healthy cells, as presented in the second term. Indeed, nl
growthγ  is 

related to the tumor growth, as discussed above; whereas the coefficient 0
nlγ  relates to the 

normal cell metabolism. Being the nutrient mass fraction nlω  in the tumor extra-cellular 

spaces always equal to or smaller than nl
envω , the argument of the sine function varies 

between 2π  and 0. The part of consumption of oxygen related to the cells metabolism 

depends on the oxygen availability and becomes zero when the mass fraction of oxygen is 

zero; this allows having always positive values of the local mass fraction of oxygen since 

negative values have not physical meaning. 

4.6.4 The diffusion of nutrients through the ECM. 

To approximate the diffusive flux in eqn (4.5), Fick’s law is used ( l nl il nl l nlDρ ω ρ ω= − ∇u

). The effective diffusion coefficient of nutrients in the extracellular spaces is given as 
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 ( )0
nl nl l
effD D S

δ
ε=   (4.21)  

where 0
nlD  is the diffusion coefficient in the unbound interstitial fluid and F is a constant 

coefficient greater than one which takes into account the tortuosity of the porous network. 

Actually the effective diffusion coefficient of oxygen has not a linear dependence on the 

volume fraction of the IF, because it depends on the connectivity grade of the extra 

cellular spaces. F is a parameter that has to be calibrated experimentally.  

4.6.5 The interaction force among the phases.  

R� of eqn (4.16) is the resistance tensor that accounts for the frictional interactions 

between phases. For example, porous medium flow of a single fluid encounters resistance 

to flow due to interaction of the fluid with the solid. If one has to model the flow at the 

microscale, a viscous stress tensor within the fluid phase would be employed. At the 

macroscale, the effects of the viscous interaction are accounted for as being related to the 

difference in velocities of the phases. The coefficient of proportionality is the resistance 

tensor. In multiphase flow, resistance tensors must be developed that account for the 

velocity differences between each pair of phases. Eqn (4.14) contains the interaction 

vector 
κ α→
T  that arises between each pair of phases. In the full implementation of the 

TCAT analysis, the simplest result is that this vector is proportional to the velocity 

difference between the two indicated phases with the resistance tensor being the 

coefficient of proportionality. In the present version of the model, the interaction force 

s α→
T  between the fluid phase � and the solid phase s (the ECM) is explicitly taken into 

account while the macroscopic effect of the interaction forces between the fluid phases 

l t→
T ,

l h→
T  and 

t h→
T is taken care of through the relative permeability s

relkα . The form of ( ) 1α −
R  

is here assumed following the modelling of multiphase flow in porous media (Lewis and 

Schrefler, 1998), that is to say 

 ( )
( )

( )1

2 , ,
s s

relk
h t l

α α
α

α α
α

µ ε

−
= =k

R   (4.22)  

where sαk  and µ� are the intrinsic permeability tensor and the dynamic viscosity, 

respectively. Since there is no information available about this relative permeability 
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which is a nonlinear function of the saturation and varies between 0 and 1, the following 

form is assumed 

 ( ) ( )2
, ,relk S h t lα α α= =   (4.23)  

Eqn (4.23) respects the constraint 
, ,

1rel
h t l

kα

α =
<�  and gives realistic results in agreement 

with the classical models present in the literature on porous media mechanics (Brooks and 

Corey (1964), Corey et al. (1956), Van Genuchten.(1980)). A more accurate 

determination of s
relkα

 should derive from specific experiments or by the application of 

Lattice-Boltzmann modelling or analysis of micro-models. By introducing (22) in (16), 

the relative velocity of the phase � is derived as 

 ( ), ,
s s

s relk
p h t l

α α
α α

α α α
µ ε

− = − ∇ =k
v v   (4.24)  

The intrinsic permeability tensor k ls of the interstitial fluid phase is constant and isotropic. 

Experimental evidence confirms that cells would stay in contact with the ECM if the 

mechanical pressure gradients exerted over the cell phase are smaller than a critical value 

(Baumgartner et al. 2000). For this reason, for the healthy and tumor cells the intrinsic 

permeability tensors (i.e. hsk  and tsk ) are isotropic but not constant, and are computed 

using the following equation  

 ( )max 1 , ,
100

s
s s a

h t
p

α
α α α

α α
+

� �
� 	= − =
� 	∇
A B

k
k k   (4.25)  

This represents in mathematical terms the fact that if cells adhere firmly to the ECM, the 

phase permeability within the ECM is reduced. The minimum value of the permeability 

(set equal to 100sαk ) eliminates the indeterminacy in the case p aα
α∇ < , contained in 

the approach of Preziosi and Tosin (2009). This is an analogue in fluid dynamics to the 

stick-slip behaviour in contact mechanics (Zavarise et al, 1992). 

4.6.6 The mechanical behaviour of the ECM.  

The closure relation for the stress tensor acting on the ECM (sole solid phase) is 
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 s s s
eff tot pα= +t t 1   (4.26)  

with s
efft the effective stress tensor in the sense of porous media mechanics and the solid 

pressure ps given as (Gray and Schrefler, 2007) 

 s h h t t l lp p p pχ χ χ= + +   (4.27)  

where D� is the solid surface fraction in contact with the respective fluid phase, known as 

the Bishop parameter. This parameter is a function of the degree of saturation and is taken 

here equal to this last one (i.e. Sα αχ = ). The Biot coefficient α  is equal to 1 because of 

the incompressibility of the ECM. Indeed, this does not mean that the ECM cannot 

deform. The constitutive behaviour of the solid phase is that of an elasto-visco-plastic 

solid in large deformation regime. (Zienkiewicz and Taylor, 2000).  

4.6.7 The differential pressure between the three fluid phases. 

 The differential pressure between the fluid phases is a different concept from the 

interaction forces dealt with in section 3.2.5. In brief, the interaction forces are in play 

when there is flow.  The different velocities of the different phases set up resistance 

forces between the phases. These are the interaction forces discussed above. Differential 

pressure, on the other hand, can exist even at equilibrium. It is not related to flow 

processes but is a statement that the pressures in adjacent phases can be different. In 

multiple fluid flow in porous media, this difference in pressures can be attributed to the 

curvature of the interface between fluid phases and to the surface tension. In the tumor 

system, the interfaces between phases are also capable of sustaining a jump in pressure 

between phases. In fact cells have surface tension which influences their growth and 

adhesion behaviour (Dunlop et al. 2011, Bidan et al. 2012, Ambrosi et al. 2012). At the 

microscale, the pressure difference between the cell phases and the fluid phases is equal 

to the interfacial tension, �c, multiplied by the interfacial curvature. After transformation 

to the macroscale, a macroscale measure is needed as a surrogate for the interfacial 

curvature. In porous media analyses, a surrogate for the pressure difference between fluid 

phases is proposed heuristically as a function of the fluid saturations (e.g., Brooks and 

Corey 1966, van Genuchten 1990). The cell pressure becomes very large when the 

available pore space is occupied by the cells, i.e. when Sl tends to zero. This behaviour is 

depicted in Figure 4.3. The following equation is proposed as a model for the pressure 
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difference between the interstitial fluid phase pressure pl and those of the cell phases pt 

and ph
 

 ( )tan
2

bt l h l t h
cp p p p p S S

πσ � �∆ = − = − = +C D� �
  (4.28)  

where �c and b are constants. The use of eqn (4.28) to account at the macroscale for the 

curvature of the interface between the phases is an approximation that assumes the 

distribution of the cells within the pore space does not impact the pressure difference 

between the phases. This expression can be refined subsequently in light of experimental 

analysis.  

 
Figure 4.3 - Pressure difference - saturation relationship. 

4.7 FINAL SYSTEM OF EQUATIONS  

The primary variables of the model are: the tumor saturation – tS , the healthy cell 

saturation – hS , the IF pressure –lp , and the nutrient mass fraction –nlω , together with 

the displacement of the solid phase (ECM) su . The time derivative of the latter is the 

ECM velocity vs. After substituting for the explicit form of the constitutive equations, the 

final form of the governing equations is obtained. The mass balance equations of the 

ECM, TC, HC and IF are, respectively: 

 ( ) ( )1
1 0

s

t t

ε
ε

∂ − � �∂+ ∇ ⋅ − =C D∂ ∂� �

u   (4.29)  

 
( ) 1

t t tss l t
t trel

t growth

S k
S p M

t t

ε
ε

µ ρ
→∂ � �� �∂+∇⋅ −∇⋅ ∇ =� 	� 	∂ ∂A B A B

ku
  (4.30)  
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( )

0
h h hss

h hrel
h

S k
S p

t t

ε
ε

µ
∂ � �� �∂+ ∇ ⋅ − ∇ ⋅ ∇ =� 	� 	∂ ∂A B A B

ku
  (4.31)  

 
( ) 1

l l lss l t
l lrel

l growth

S k
S p M

t t

ε
ε

µ ρ
→∂ � �� �∂+ ∇ ⋅ − ∇ ⋅ ∇ = −� 	� 	∂ ∂A B A B

ku
  (4.32)  

Summing eqs (4.30-32), using the constraint equations on porosity and saturation, gives 

 0
t ts h hs l lss

t h lrel rel rel
t h l

k k k
p p p

t µ µ µ
� � � � � �� �∂∇ ⋅ − ∇ ⋅ ∇ − ∇ ⋅ ∇ − ∇ ⋅ ∇ =� 	 � 	 � 	� 	∂A B A B A B A B

k k ku   (4.33)  

The mass fraction of the necrotic cells is obtained from eqn (4.11) as 

 ( )1N t l t
t Nt N t t t N t

t growth
r M S

t S

ω ε ω ε ρ ω
ε ρ

→∂ � �� �= − − ⋅∇� 	C D∂ A B� �
v   (4.34)  

The mass balance equation of the nutrient, using the Fick’ Law to approximate the 

diffusive velocity ( l nl il nl l nlDρ ω ρ ω= − ∇u ) and assuming eqn (4.17) is: 

 
( ) ( ) ( )

nl tl nl

l il l l nl nl
eff

S M
S S D

t

ε ω
ε ω ε ω

ρ

→∂
+ ∇ ⋅ − ∇ ⋅ ∇ = −

∂
v   (4.35)  

Expanding eqn (4.35) by use of the product rule and substituting eqn (4.6) gives an 

alternative form of the advection-diffusion equation of the nutrient species: 

 ( ) 1nl l t nl t
l l nl nl nl l l nl

effS S D M M S
t

ωε ε ω ω ε ω
ρ

→ →∂ � �− ∇ ⋅ ∇ = − − ⋅ ∇� 	∂ A B
v   (4.36)  

The linear momentum balance of the solid phase in a rate form (Schrefler, 2002) is 

 0
s s
eff p

t t

� �∂ ∂
� 	∇ ⋅ − =
� 	∂ ∂
A B

t
1   (4.37)  

where the interaction between the solid and fluids, inclusive of the cell populations, has 

been accounted for through the effective stress principle, i.e., eqs (4.26-27).  

Finally for the solid phase the constitutive relationship between the effective stresses 
s
efft  

and the elastic strains sele , which is the difference between total strains se  and visco-

plastic strains svpe , reads as  
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s ss s
eff vpel

s st t t t

� �∂ ∂∂ ∂= = −� 	� 	∂ ∂ ∂ ∂A B

t ee e
D D   (4.38)  

where sD  is the tangent matrix containing the mechanical properties of the solid skeleton. 

The elasto-visco-plastic behavior of tumor is currently under investigation; an more 

exhaustive description of the mechanical model will be presented in the future being the 

enhancement of the mechanical part of the model is a short time objective of the research. 

4.8 SPATIO-TEMPORAL DISCRETIZATION AND COMPUTATIONAL PROCEDURE 

The weak form of equations (4.30), (4.31), (4.33), (4.36) and (4.37) is obtained by means 

of the standard Galerkin procedure and is then discretized in space by means of the finite 

element method (Lewis and Schrefler, 1998). Integration in the time domain is carried out 

with the generalized mid-point rule where an implicit procedure is used. Within each time 

step the equations are linearized by means of the Newton-Raphson method. For the FE 

discretization the primary variables are expressed in terms of their nodal values as  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

nl nl t t h h
n t h

l l s s
l u

t t S t t S t t

p t t t t

ω ≅ ≅ ≅

≅ ≅

N � N S N S

N p u N u
  (4.39)  

where ( )nl
i t� , ( )t

i tS , ( )h
i tS , ( )l

i tp , ( )s
i tu  are vectors of nodal values of the primary 

variables at time instant t, and Nn, Nt, Nh, Nl, and Nu are vectors of shape functions related 

to these variables. 

For the solution of the resulting governing equations, a staggered scheme is adopted with 

iterations within each time step to preserve the coupled nature of the system. The 

convergence properties of such staggered schemes have been investigated by Turska et 

al., (1994). In particular, for the iteration convergence within each time step a lower limit 

of ∆t/h2 has to be observed. Such a limit has also been found by Murthy et al., (1989) for 

Poisson equations and by Rank et al. (1983) invoking the discrete maximum principle. 

The existence of this limit means that we cannot diminish at will the time step below a 

certain threshold without also decreasing the element size.  
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Figure 4.4 – Computational procedure implemented in Cast3M. 

Three computational units are used in the staggered scheme: the first is for the nutrient 

mass fraction, the second to compute St, Sh, and pl, and the third is used to obtain the 

displacement vector su . Within each coupling iteration, eqn (4.36) is solved for the mass 

fraction of the nutrient nlω . Then the group of eqs (4.30, 4.31, 4.33) is solved in a fully 

coupled way for St, Sh, pl. In this second computational unit, at each iteration i the 

approximate solution tiS , h
iS , l

ip  is used to update the mass fraction of the necrotic tumor 

cells N t
iω , eqn (4.34), the mass exchange term, eqn (4.18), and the reaction term, eqn 

(4.19). Once convergence is achieved for the second computational unit, the pressure in 

the cells phases (given by eqn (4.28)) is used to compute the solid pressure, eqn (4.27). 

The solid pressure is needed to solve the momentum balance equation (eqn (4.37)). Once 

convergence is achieved within a time step the procedure can march forward. The 

computational procedure is represented in Figure 4.4. 

Taking into account the chosen staggered scheme, the final system of equations can be 

expressed in a matrix form as follows, where some of the coupling terms have been 

placed in the source terms and are updated at each iteration to preserve the coupled nature 

of the problem. 

 ( ) ( ) ( )ij ij it

∂ + =
∂
x

C x K x x f x   (4.40)  

With 
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  (4.41)  

where { }T , , , ,nl t h l= sx � S S p u . The non linear coefficient matrices ( )ijC x , ( )ijK x  and 

( )if x are given in the Appendix D. 

The modular computational structure allows to take into account more than one chemical 

species, simply adding a computational unit (equivalent to the first one used for the 

nutrient) for each of the additional chemical species considered. 

The procedure has been implemented in the code CAST3M (http://www-cast3m.cea.fr) of 

the French Atomic Energy Commission taking advantage of previous work done on 

modelling concrete at early age (Gawin et al., 2006). There is a striking analogy between 

the two physical problems (concrete hydration and tumor growth) as far as the balance 

equations are concerned. In both we have one solid phase and immiscible fluid phases 

together with reactions and mass exchanges. 

4.9 THREE APPLICATIONS OF BIOLOGICAL INTEREST 

The computational framework above has been applied to solve three cases of practical 

interest: i) growth of a multicellular tumor spheroid (MTS) in vitro; ii) growth of a 

multicellular tumor spheroid (MTS) in vivo; and iii) growth of a tumor along micro-

vessels (tumor cord model). For all cases, the growth of the tumor mass, including the 

necrotic mass and living tumor cells; and the consumption of nutrient (oxygen) are 

analyzed over time. A direct comparison with experimental data is presented for case i). 

The extracellular matrix (ECM) is assumed rigid for all three cases. This assumption will 

be relaxed in future studies. Results are presented in terms of volume fractions, �t, �h
 and 

�
l, pressures, cp and lp , and mass fraction of oxygen nlω .  
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4.9.1 Growth of a multicellular tumor spheroid (MTS) in vitro 

MTS can be efficiently used to study the in vitro growth of tumors in the avascular stage. 

The tumor size can be easily measured experimentally using microscopy techniques and 

can be predicted quite accurately by analytical and computational methods. Here, the time 

evolution of a MTS is considered, assuming that the cellular mass is floating in a 

quiescent, cell culture medium. The geometry and boundary conditions of the problem are 

described in Figure 4.5. Modeled as a half sphere imposing cylindrical symmetry the 

MTS comprises three phases: i) the living and necrotic tumor cells (LTC and NTC); ii) 

the extracellular matrix (ECM); and iii) the interstitial fluid (IF). At time t = 0 h, these 

phases coexist in the red area shown in Figure 4.5, having a radius of 50 Bm. Within this 

region, the initial volume fraction of the tumor cells (TC) is set to 0.01; whereas the 

volume fraction of the ECM is set to 0.05 throughout the computational domain. Note 

that, assuming a characteristic cell diameter of 10 Bm, the initial number of tumor cells in 

the red area would be ~ 10. 

 
Figure 4.5 - Geometry and boundary conditions for an MTS (red) in a medium (not to scale). 

 

Table 4.1 - Initial conditions for an MTS in a medium. 

�� �� �� �� ���
�  

Red zone 0.05 0.01 0.00 0.00 7·10-6 

Blu zone 0.05 0.00 0.00 0.00 7·10-6 
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Table 4.2 -  Input parameters used to simulate the first case 

Parameter Symbol Value Unit 

Density of the phases � 1000 kg/m3 

Diffusion coefficient of oxygen in the interstitial fluid ��
���  3.2·10-9 m2/sec 

Coefficient � (eqn (4.21)) F 2.00 — 

Intrinsic permeability for interstitial fluid phase �
�� 1.8·10-15 m2 

Intrinsic permeability for tumor cell phase �
�� 5·10-20 m2 

Adhesion of tumor cells (to ECM) at 1·106 N/m3 

Growth coefficient of tumor cells (eqn (14.8)) �
����� 
�  0.016 — 

Critical mass fraction of oxygen (eqs (4.18,4.20)) !"�#�
���  3·10-6 — 

Critical pressure for cell growth (eqs (4.18,4.20)) $
"�#�
�  1330 Pa 

Necrosis coefficient (eqn (4.19)) �
�%"���#�
�  0.016 — 

Cells pressure above which necrosis occurs (eqn (4.19)) $
�%"�
�  930 Pa 

Pressure dependent additional necrosis (eqn (4.19)) F&
�  5·10-4 — 

Consumption coeff. related to growth in eqn (4.20) �
����� 
���  4·10-4 — 

Consumption coeff. related to metabolism in eqn (4.20) �
�
���  6·10-4 — 

Coefficient �c  in eqn (4.28) �c 532 Pa 

Coefficient b  in eqn (4.28) b 1 — 

 

The blue shell in Figure 4.5 - the cell culture medium surrounding the MTS - is the rest 

of the computational domain up to 1,000 Bm. These initial conditions are summarized in 

Table 4.1. At the outer boundary (B1), the primary variables tS , nlω  and lp are fixed 

with time (Dirichlet boundary conditions). At the symmetry boundaries B2, zero flux 

(Neumann boundary conditions) is imposed for all the phases. The atmospheric pressure 

is taken as the reference pressure. In this example, oxygen is the sole nutrient species, and 

its mass fraction is fixed to be 67 10nl
envω −= ⋅  at B1 and throughout the computational 

domain at t = 0 h. The non-apoptotic cell death rate is calculated by eqn (4.19), where the 

critical value of the oxygen mass fraction is given by 63 10nl
critω −= ⋅ , and the cell pressure 

above which the cell death rate increases is 930 Pat
necrp = . The necrotic regions are those 

where the mass fraction of necrotic cells 
N t N t

N t
t t

ε ρω
ε ρ

=  exceeds 0.5. All other governing 

parameters are listed in Table 4.2. 
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Figure 4.6 - (a) Volume fraction of the tumor cells (total and living) during 360h. (b) Volume fraction of the 

tumor cells phase over 120h; lines drawn at every 10h of simulations. (c) Numerical results compared with 

different in vitro experiments. The symbols are data obtained in the following in vitro cultures: squares = 

FSA cells (methylcholantrene-transformed mouse fibroblasts, Yuhas et al., 1977); diamonds = MCF7 cells 

(human breast carcinoma, Chignola et al., 1995); circles = 9L cells (rat glioblastoma, Chignola et al., 2000). 

(d) Numerical results (points) for spheroid and necrotic core radii, and their interpolations (solid lines).  

The volume fractions of the tumor cells tε (TC – solid line) and of the living tumor cells 

(LTC – dashed line) with time is presented in Figure 4.6.a. The radius for which the 

volume fraction tε  is zero gives the actual radius rsph of the MTS. With time, the TC 

front moves outward and rsph
 grows. The difference between the solid and dashed lines 

(TC – LTC) identifies the volume fraction of the necrotic tumor cells. The LTC lines 

present a peak that moves outward with time, implying a continuous growth of the 

necrotic area within the MTS. Figure 4.6.a clearly shows that rsph
 grows from 50 µm (t 

= 0h) to ∼  400 µm at 360h. The early evolution of the tumor mass is shown with more 

details in Figure 4.6.b. Starting from a 50 Bm radius with St = 0.01, the tumor does not 

grow significantly in size within the first 50h. The tumor cells are rapidly dividing, 

increasing the volume fraction but not the size of the tumor mass. Thence, the tumor 

enlarges with a monotonic growth of rsph. The tumor radius (rsph(t)) is presented in 

Figure 4.6.c (solid line) along with experimental data (open symbols). 
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Figure 4.7 - (a) Apparent volume of the tumor spheroid, effective volume of the tumor cells, and the 

effective volume of the living tumor cells, over time. (b) Mass fraction of oxygen over 360h. (c) Pressure in 

the tumor cells phase over 360h. (d) Numerical prediction of the interstitial fluid pressure over 180h; Lines 

drawn at every 10h of simulations. 

Notably, our prediction agrees well with three different MTS datasets (Yuhas et al. 1977; 

Chignola et al. 1995; Chignola et al. 2000). The growth rate of tumor is lower for the first 

80h. The numerical results are interpolated in Figure 4.6.d using the Gompertzian 

growth function  

 ( ) exp( exp( ))sph
tr r a tβ∞= − −   (4.42)  

where rA = 600 Bm is the tumor radius rsph at sufficiently large times (nominally t � �), 

a and � are two constants derived from numerical data (a = 7.5 and � = 0.00545 h-1). The 

time t in eqn (4.42) is measured in hours. For the necrotic core, a similar functional 

relationship is here proposed as 

 ( ) exp( exp( ))nc
livingtr r a tβ δ∞ +

= − − −   (4.43)  

where livingδ is a constant, penalty term related to the thickness of the outer shell 

comprising mostly viable cells (LTC) which are still well nourished and oxygenated. The 
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shell thickness depends on the cell line and nutrients availability (Mueller-Klieser et al., 

1986), but it is well accepted that at distances larger than 100 – 200 Bm, nutrient diffusion 

is impaired. From our simulation, the shell thickness is 150 Bm. Figure 4.6.d also shows 

the necrotic core and the viable shell at three different times: necrotic cells are in the 

darker zone.  

Note that the measured (apparent) volume  
TC

appV
 
of the MTS could be very different from 

the effective volume
TC

effV . Figure 4.7.a shows these along with the effective volume of 

the living tumor cells 
TCL
effV ; these are defined as 

 ( ) ( )0 1TC t t TC t LTC N t t
app eff effV H d V d V dε ε ε ω ε

Ω Ω Ω

= − Ω = Ω = − Ω� � �   (4.44)  

where 0 0.01tε = , H is the Heaviside function which is zero for �
t � 0

tε  and unity for  �t > 

0
tε , and Ω  is the computational domain. The apparent volume contains also the IF while 

the effective volume comprises tumor cells alone. Figure 4.7.a shows that for small 

times, 
TC

effV  and 
LTC

effV are equal as necrosis is initially negligible.  

The evolution of the oxygen mass fraction, the sole nutrient species considered here for 

cell proliferation and metabolism, is shown in Figure 4.7.b. As the spheroid increases in 

size, gradients of oxygen concentration develop from the periphery, where the oxygen 

mass fraction is fixed to 
67 10nl

envω −= ⋅ , to the center of the spheroid. Once the nutrient 

concentration in the center goes below an imposed critical value (
63 10nl

critω −= ⋅ ), cell 

necrosis commences. Note that at the boundary between the tumor and the surrounding 

cell culture medium, a significant change in the gradient of the mass fraction of oxygen is 

observed as a kink in the curves (see Figure 4.7.b) - due to the lower effective 

diffusivity in the tumor. After a certain time, in the necrotic core the mass fraction of 

oxygen reaches a minimum value of about 1.5×10-6, lower than the threshold critical 

value (
63 10nl

critω −= ⋅ ). The oxygen concentration continues to fall below the threshold 

value until all cells are dead since in the necrotic region (here defined as the region where 

at least 50% of the cells are dead) the still living cells consume oxygen and slowly die. 

From Figure 4.7.b the necrotic core could be also identified as the portion of the MTS 
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with a relatively homogeneous mass fraction of oxygen. The reasons: i) necrotic cells do 

not consume oxygen, hence no nutrient gradient in the core; ii) the local consumption of 

oxygen (regulated by eqn (4.20)) decreases substantially and tends to zero with the 

reduction of the oxygen availability.  

The pressure of the tumor cells within the computational domain (computed using eqn 

(4.28)) is plotted in Figure 4.7.c. The maximum pressure of about 6.0 mmHg (~ 800 Pa) 

in the core of the MTS is lower than the critical pressure for cell death ( 930 Pat
necrp = ). 

Thus oxygen deficiency is the sole cause of cell necrosis in the current example. Note that 

for relatively low saturations, the relationship between pressure and volume fraction is 

almost linear (see Figure 4.3). Hence, the trends shown in the Figures 4.6.a and 

Figure 4.7.c are similar. However with increasing saturation level of the tumor cells, the 

relationship with the pressure becomes nonlinear and so the peak pressure in Figure 

4.7.c is more pronounced than the peak volume fraction �
t (�t = St /�) in Figure 4.6.a. 

The interstitial fluid pressure (pl) is plotted in Figure 4.7.d. Within the first 50h, the 

tumor cells grow locally, whilst the overall external radius of the tumor mass stays 

constant at its original value (50 Bm). As the IF is consumed by the tumor cells, and the 

assumption (4.17) allows satisfying the volume balance locally the IF pressure gradient 

remains unaltered. Figure 4.7.d shows that until 50h the IF pressure gradient is zero so 

that no additional interstitial fluid from the environment is needed (oxygen moves only by 

diffusion). After 50h, the spheroid increases its radius; hence with tumor growth the 

interstitial fluid must flow inward, per constraint eqn (4.2). Therefore the IF pressure in 

the MTS core decreases. The intrinsic permeability of the interstitial fluid phase is 

relatively high compared to that of the tumor cells phase (see Table 4.2). For this reason, 

the variations in pressure (Figure 4.7.d) are minimal but significant to explain that IF 

flows into the viable tumor shell during growth. Indeed, the interstitial fluid pressure 

computed is slightly lower than in the surrounding tissue. This has to be ascribed to the 

lack of vasculature networks and lymphatic systems in the current model. The high 

interstitial fluid pressure measured in tumors is mostly associated to the higher 

permeability of the fenestrated tumor endothelium and lack, or reduction, in lymphatic 

flow. Therefore the plasma permeating the tumor from the vascular compartment cannot 

be drained out efficiently through the dysfunctional lymphatic systems leading the 

progressive liquid accumulation in the extracellular space and consequent pressure built 

up (Jain and Stylianopoulos, 2010). All this will be included in future extensions of the 
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model incorporating also the vascular compartment and the lymphatic system. It should 

also be noted that, in the present computational model, the IFP depends among others 

strongly on the pressure difference-saturation relationship of sub-paragraph 4.6.7 and 

possibly also on the deformation of the ECM. This aspect is currently under investigation. 

4.9.2 Multicellular tumor spheroid (MTS) in vivo 

In this second example, the tumor is growing within the healthy tissue, which substitutes 

the cell culture medium in the previous case. Therefore, the initial configuration of the 

system comprises four phases: i) the living and necrotic tumor cells (LTC and NTC); ii) 

the host cells of the healthy tissue surrounding the tumor mass (HC); iii) the extracellular 

matrix (ECM); and iv) the interstitial fluid (IF). The ECM and IF are distributed 

throughout the computational domain. The growing MTS pushes on the healthy cells as 

its radius increases.  

 
Figure 4.8 - Geometry and boundary conditions for a MTS growing within a healthy tissue. (not to scale) 

 

Table 4.3 - Initial conditions for a MTS growing within a healthy tissue. 

�� �� �� �� ���
�  

Red zone 0.05 0.45 0.00 0.00 4.2·10-6 

Blu zone 0.05 0.00 0.45 0.00 4.2·10-6 
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Table 4.4 - Additional input parameters for the second case. 

Parameter Symbol Value Unit 

Intrinsic permeability for host cell phase �
 � 5·10-20 m2 

Adhesion of host cellsa (to ECM) ah 1·106 / 1.5·106 N/m3 

Growth coefficient of tumor cells (eqn (4.18)) �
����� 
�  0.0096 — 

Necrosis coefficient (eqn (4.19)) �
�%"���#�
�  0.0096 — 

Consumption coeff. related to growth in eqn (4.20) �
����� 
���  2.4·10-4 — 

a In the second case the effect of cells adhesion is analyzed; then more than one value is used 

Also, it is anticipated that the diffusion of nutrients towards the tumor mass would be 

reduced by the presence of the healthy tissue. As the tumor, the thin healthy tissue corona 

is assumed here to be not vascularised. The geometry and boundary conditions of the 

problem are described in Figure 4.8. The MTS is modelled considering a half sphere 

and imposing cylindrical symmetry. The red region contain the tumor cells (TC) with an 

initial radius of 30 Bm (t = 0 h) and an initial volume fraction set to 0.45. The orange 

region is the healthy tissue extending till the outer boundary B1 of the computational 

domain of 150 Bm. The volume fraction of the host cells in the healthy zone is initially 

homogeneous and set to 0.45 (t = 0 h). At B1, the primary variables tS , hS , nlω and lp

are prescribed and constant (Dirichlet boundary condition). At the boundaries B2, zero 

flux (Neumann boundary condition) is imposed for all phases and nutrients due to the 

radial symmetry. The atmospheric pressure is the reference pressure. As in the previous 

example, oxygen is the sole nutrient and its mass fraction is fixed at 64.2 10nl
envω −= ⋅  on 

B1 and throughout the computational domain at t = 0h. The chosen mass fraction of 

oxygen corresponds to the average of the dissolved oxygen in the plasma of a healthy 

individual. Although in this case the vasculature is not explicitly considered, the radius of 

the computational domain (here 150 Bm) can be taken as an indicator of the 

vascularisation grade of the host tissue: higher radii correspond to smaller vascularisation 

and vice versa. Due to the lower reference environmental mass fraction of oxygen nl
envω , 

the parameters tgrowthγ  and t
necrosisγ , that govern growth and necrosis respectively, and one 

coefficient of the oxygen sink term function (nl
growthγ , see eqn 4.20) are different from the 

first example (see Table 4.4). The initial conditions are listed in Table 4.3 while the 

parameters of the healthy phase are given in Table 4.4. All the other parameters are the 

same as in Table 4.2.  
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Figure 4.9 - (a,b)Numerical prediction of the volume fractions of the living tumor cells (LTC), the necrotic 

tumor cells (NTC) and the host cells (HC), at different times (from up to down: 1h, 180h, and 360h). The 

left column (a) is for ah = at, while the right column (b) is for ah = 1.5·at. (c) Evolution of the effective 

volume of the tumor cells, and the effective volume of the living tumor cells. The black lines refer to the 

case (ah = at), while the grey lines refer to the case (ah = 1.5at). (d) Scaled effective volume of tumor 

(normalized by initial value) after 360 hours for different radii of the computational domain. 

The adhesions of the cells to the ECM (at and ah) has a more significant effect than in the 

first case, since there were no healthy cells surrounding the tumor mass. This example 

shows clearly that the relative cell adhesion plays a major role in affecting the overall 

tumor growth. The panels in Figure 4.9a and Figure 4.9.b show the variation of the 

tumor cell volume fractions over time for two different adhesion conditions, namely ah = 

at (left column, Figure 4.9.a) and ah = 1.5 at (right column, Figure 4.9.b). The times 

for the 3 panels are 1h, 180h and 360h. As for the first example, the variation of the 

volume fraction for the tumor cells (TC) is presented as a solid line, the living portion of 

the tumor cells (LTC) by a dashed line; the difference between the two gives the fraction 

of necrotic cells (NTC). As expected, the overall tumor mass expands with time and a 

necrotic area appears in the core. Interestingly, the panels reveal a significant difference 

in the evolution of the volume fractions depending on the adhesion conditions. When ah = 

at (Figure 4.9.a), the growing tumor mass displaces completely the healthy cells; 
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whereas for ah > at (Figure 4.9.b), the tumor spheroid during its growth pushes on the 

healthy cells and partially invades their domain. Interestingly, tumor invasion of the 

surrounding healthy tissue is controlled by the relative adhesion properties of the cell 

populations. Diffuse interface models and fourth order differential equations as used by 

Hawkins-Daarud et al. (2012) are not needed to capture the invasive behaviour. 

Surprisingly, cell adhesion does not affect the overall volume size as clearly seen in 

Figure 4.9.c where the effective volumes of the tumor and the living tumor cells are 

plotted for the two adhesive conditions defined above. On the other hand, by comparing 

Figure 4.9.c and Figure 4.7.a, the growth patterns of an MTS in a medium and an 

MTS in tissue appear quite dissimilar. This is mostly due to the presence of the adhesive 

host cells phase that contrasts the tumor growth and reduces the nutrient supply. In 

addition to the difference in growth pattern, a one to two orders of magnitude difference 

in effective tumor volume can also be observed. Hence the experimental results obtained 

in vitro are not indicative of the in vivo cases since the growth environments are very 

different.  

The radius of the computational domain can be taken as an indicator of the 

vascularisation grade of the host tissue, because at the boundary B1 the mass fraction is 

fixed to be 
64.2 10nl

envω −= ⋅
 (mass fraction of dissolved oxygen in the plasma of a healthy 

individual). We have solved the case with ah = 1.5at for rext= 200 Bm,  rext = 250 Bm and 

rext = 300 Bm, (values of the initial thickness of host cells respectively of 170 Bm, 220 Bm 

and 270 Bm) to evaluate the influence of the vascularisation grade on the growth of 

tumor. The ratio between the effective tumor volume at 360h and at t = 0h has been 

plotted in Figure 4.9.d for the different considered spherical domains: after 360 hours 

the volume of the tumor is 18 times the initial volume for rext= 150 Bm, and 13 times the 

initial volume for rext= 200 Bm, hence if we increase rext the growth rate decreases. 

4.9.3 Tumor growth along microvessels (tumor cord model).  

In this last case, tumor cells grow in proximity of two otherwise healthy blood vessels 

that are the only source of oxygen. The presence of capillary vessels has an important 

impact on the tumor development and on its spatial configuration (Astanin and Preziosi 

(2009)); this is confirmed in our application case where  the progressive migration of 

tumor cells among adjacent vessels is also shown. 
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Figure 4.10 - Initial conditions of the third case. Yellow shows the axes of the two capillary vessels. (b) 

Geometry and boundary conditions. (c) Volume fractions of the living tumor cells (first column) of the 

healthy cells (second column) and mass fraction of oxygen (third column) for the case S1. 

The system comprises four phases: i) the living and necrotic tumor cells (TLC and NTC); 

ii) the healthy tissue surrounding the tumor mass; iii) the extracellular matrix (ECM); and 

iv) the interstitial fluid (IF). The ECM and IF are distributed throughout the 

computational domain. The geometry and the boundary conditions of the problem are 

described in Figure 4.10.b. We consider two straight blood vessels of 8 Bm diameter. 

The tumor cells are initially located around one vessel only (see Figure 4.10.a). Two 

different separation distances between the vessels are considered: in the first simulation 

(S1) the distance is 80 Bm; in the second (S2) the distance is 100 Bm. Note that in these 

cases, a full three dimensional (3D) computational solution is required. The geometry has 

two planes of symmetry (i.e. the median horizontal plane and that passing through the two 

vessels, Figure 4.10.b); hence only a quarter of the complete geometry is discretized. 

The FE mesh here is more complex than that of the previous cases. The parameters used 

are those of the second case, as treated in the paragraph 4.2, with the exception of the 

volume fraction of the ECM, here set to 0.1.  
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Figure 4.11 - (a) Mass fraction of oxygen along the line joining points A and B for S2. (b) Volume fractions 

of the LTC and oxygen mass fraction for S2 at 15 days. (c) Volume fractions of the LTC for S2 at 20 days. 

“N” indicates the necrotic areas. (d) Volume of the tissue invaded by the tumor. 

The mass fraction of the oxygen, ( 64.2 10nl
envω −= ⋅ ) is imposed as a boundary condition on 

the cylindrical surface of the two blood vessels. At the remaining bounding surfaces the 

flux of oxygen is zero. The fluxes of all the phases (l, h, t) are zero at the two symmetry 

planes and at the cylindrical surface of the two capillary vessels. For the remaining 

boundary the imposed conditions are shown in Figure 4.10.b. The initial conditions are 

summarized in Figure 4.10.a.  

The volume fractions at 7 and 15 days of the healthy cell phase HC, and of the living 

tumor cells phase TCL are shown in Figure 4.10.c for case S1. The healthy cells are 

almost completely replaced by the tumor cells and after 15 days necrosis occurs in parts 

of the tumor which are more distant from the left blood vessel. Figure 4.10.c shows also 

the oxygen mass fraction at 7 days and 15 days for the same simulation. The strong 

decrease in the oxygen mass fraction, caused by the presence of the tumor, can be readily 

observed by comparing the areas populated by the abnormal and healthy cells. 
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In the second numerical simulation (S2), the distance between the two vessels is higher 

than in case S1. The progressive expansion of the tumor mass from the left to the right 

vessel is therefore less. The results for the oxygen mass fraction are qualitatively similar 

to that of S1. Figure 4.11.a shows the mass fraction of oxygen along a line passing 

through the two vessels, at different days. The effects of consumption of oxygen coming 

from the vessels are evident. Oxygen is here replenished only through the two blood 

vessels (two peaks). Figure 4.11.b shows the tumor and the local mass fraction of 

oxygen (in the computational grid) at 15 days; clearly the higher values of the oxygen 

mass fraction are close to the two capillary vessels (
64.2 10nl

vesselω −= ⋅ ). In S2, the tumor 

has not yet completely reached the right vessel after 15 days. In Figure 4.11c, the 

volume of the tumor after 20 days is represented for S2, and the necrotic area is clearly 

visible (only the finite elements in which the volume fraction of the tumor phase is higher 

than 0.01 are shown). In Figure 4.11.d, the time evolution of the tumor volume is 

plotted for the two cases, S1 and S2. The plotted volume is that of the finite elements with 

a volume fraction of the tumor cells higher than 0.01. Note that initially there is no 

difference between the two cases because the growth is mainly influenced by the left 

vessel. After 10 days, the growth rate increases for the S1 case due to the additional 

nutrient supply coming from the right vessel. 

4.10 CONCLUSIONS AND PERSPECTIVES 

A tumor growth model has been developed based on multiphase porous media mechanics. 

The governing differential equations have been derived by means of the 

Thermodynamically Constrained Averaging Theory. These are mass balance equations 

for the different phases with the appropriate linear momentum balance equations. The 

equations have been discretized by means of the finite element method and a staggered 

procedure has been adopted for their solution. The lower limit of the ratio between time 

step size and square of the element size, necessary for a proper numerical behaviour of 

staggered schemes and Poisson type equations, has been determined by means of 

numerical tests. 

The computational framework has been applied to three examples of practical interest, 

namely a multicellular tumor spheroid (MTS) immersed in a cell culture medium; a tumor 

spheroid surrounded by healthy tissue; and a tumor cord. Multiple phases have been 
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considered in the model including i) the living and necrotic tumor cells (LTC and NTC); 

ii) the extracellular matrix (ECM); iii) the interstitial fluid (IF) and iv) the healthy cells 

(HC). For all cases, growth of the tumor mass, including the necrotic and living tumor 

cells areas; and the consumption of nutrient (oxygen) are analyzed over time within the 

whole computational domain. 

For an MTS suspended in its culture medium, a direct comparison with three different 

experimental cases in the literature is presented. The agreement between the 

computational prediction of the tumor radius and the experimentally measured values is 

good. Also, the tumor growth follows the well know Gompertzian growth pattern 

demonstrating again the accuracy of the computational model. Interestingly, the early 

development of the malignant mass is characterized by a rapid division of the tumor cells 

accompanied by an equally rapid increase in tumor cell volume saturation, whilst the 

overall tumor size stays almost constant. This was observed up to 50-60h from the 

beginning. This early phase is then followed by fast exponential growth (Gompertzian 

growth pattern). The model allows the volume of each individual phase to be calculated at 

each time. 

In the second example, the MTS is surrounded by a healthy tissue. The coexistence of 

two different cell populations (healthy and tumor) allows quantification of their relative 

adhesion to the ECM on tumor growth. In this respect two different conditions are 

analyzed showing that when the healthy cells adhere less to the ECM, the tumor 

advancing front displaces uniformly the healthy tissue; in the opposite case the tumor 

cells infiltrate the healthy tissue at discrete points. Interestingly, this result has been 

achieved without involving diffuse interface models and fourth order differential 

equations. The presence of the healthy tissue leads to an overall reduction in tumor 

growth mostly due to the lower nutrient transport and geometrical confinement. 

In the third example, the of tumor cells along microvessels is predicted in a fully 3D 

geometry, with a clear delineation of necrotic and living tumor regions. The progressive 

migration of tumor cells among adjacent vessels in search of additional sources of 

nutrients and oxygen is revealed. Also shown is that a larger distance between adjacent 

vessels needs longer time tumor to grow, also demonstrating our model’s capability to 

account for the vasculature. 
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The numerical accuracy and physical soundness of the computational model will increase 

the level of complexity that we can address in tumor biophysics - such as the contribution 

of the ECM stiffness, relative cell adhesion and IF pressure on the infiltration and 

development of malignant masses. Also, modelling the transport of therapeutic agents, in 

the form of individual drug molecules as well as nanoparticle, and angiogenic vascular 

growth will be introduced in future extensions. A direct comparison of the predicted 

tumor behaviour with experimental data derived from patients using clinically relevant 

imaging modalities should provide a validation of the presented approach. The modular 

structure of the framework allows straightforward inclusion of additional phases and 

nutrient types. 

Faced with a continuously aging world population and the surge in cancer incidence, the 

approach presented here should engender novel therapeutic strategies and treatment 

optimization for improving the prognosis, outcome of intervention and quality of life. 
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APPENDICES 

A. L INEAR MOMENTUM BALANCE EQUATION FOR A FLUID PHASE 

The general conservation of momentum eqs (1.15 and 4.14) will be denoted for the fluid 

phase using the letter f as a qualifier.  

 

( ) ( ) ( )
0

cf s

f f f

f f f f f f

i if f
f f f f

v
i

t

M
κ κ

κ

ε ρ
ε ρ ε
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∂
+ ∇ ⋅ − ∇ ⋅ +

∂
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− − + =� 	
A B

� �

v
v v t

g v T

 (A.1) 

where fg  is the body force, 
i if

f
vM

κ →
v represents the momentum exchange from the � to the 

f phase due to mass exchange of species i, 
fκ →

T  is the interaction force between phase f 

and the adjacent interfaces, and ft is the stress tensor. If the inertial terms are considered 

to be negligible, as is the case for slow flow in a porous medium, the first two terms in 

eqn (A.1) can be neglected. Additionally, the momentum exchange due to mass transfer, 

i if
f

vM
κ →

v may also be considered small since this term is of the same order of magnitude as 

the inertial terms. Thus the momentum equation simplifies to 

 ( ) 0
cf

f
f f f f f

κ

κ
ε ε ρ
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−∇ ⋅ − − =�t g T  (A.2) 

The TCAT method of closure involves arranging terms in the entropy inequality into 

force-flux pairs. At equilibrium each member of the force-flux pair will be zero. This 

equilibrium constraint guides closure of the conservation system for near equilibrium 

situations. In the case here where the flows are slow, the near-equilibrium state 

assumption is appropriate. Based on the TCAT procedure, the elements of the entropy 

inequality relating to flow velocity that arise in the entropy inequality are 
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In this equation, fθ  is the macroscale temperature of the f phase, fψ  is the gravitational 

potential, fς  is the chemical potential, pf is the fluid pressure, sv  is the velocity of the 

solid phase and fd the rate of strain tensor of the phase f ( ( )1

2

T
f f f� �= ∇ + ∇

C D� �
d v v ). All of 

these quantities are macroscale averages. 

Consider the variability in volume fraction of the f phase to be small. For this situation, 

0fψ∇ + =g . Additionally, consider an isothermal case such that the Gibbs-Duhem 

equation provides 0f f fpρ ς∇ − ∇ = . Application of these two conditions to eqn (A.3) 

reduces it to 

 ( ) ( )1
: 0

cf

f f
f f f f f f s

f f
p p

κ

κ

ε ε
θ θ

→

∈ℑ

� �
+ − − ∇ + ⋅ − ≥C D

C D� �
�t 1 d T v v  (A.4) 

This equation contains two independent force-flux products. The stipulation that both 

elements of each product pair must be zero at equilibrium and the requirement that the 

grouping of terms must be non-negative suggests the linear relations 

 ( )
cf

f
f f f f sp

κ

κ
ε

→

∈ℑ

− ∇ = − ⋅ −� T R v v  (A.5) 

and 

 :f f f fp+ =t 1 A d   (A.6) 

In the first relation, fR  is a symmetric, positive, semi-definite tensor accounting for the 

resistance to flow. In the second relation, fA  is fourth order tensor that accounts for the 

dependence of the stress tensor on the rate of strain. At the macroscale for slow flow, this 

tensor is taken to be zero such that 

 f fp=−t 1 (A.7) 

is the resulting form of the stress tensor. We note that this does not imply that the fluid is 

inviscid. The effects of viscosity are accounted for at the macroscale by the momentum 

exchange term
fκ →

T . Substitution of the closure relations eqns (A.5) and (A.7) into Eqn 

(A.2) provides the momentum equation in the form 
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 ( ) 0f f f f f f f spε ε ρ∇ − + ⋅ − =g R v v  (A.8) 

Typically this relation is expressed as 

 ( ) ( )f f f f f f sp ρ ε− ⋅ ∇ − = −K g v v  (A.9) 

where ( ) ( )2 1f f fε
−

=K R is called the hydraulic conductivity. 

The hydraulic conductivity depends on the properties of both the flowing fluid and the 

solid porous material. For an isotropic medium, f fK=K 1 . The morphology and 

topology of the solid media are important in determining the hydraulic conductivity of the 

cellular solid phases. The conductivity is influenced by the cell size distribution, shape of 

the cells, tortuosity of passages, specific surface area, and porosity (the sum of the fluid 

volume fractions). It also depends on the density and viscosity of the fluid. Neglecting 

gravity in eqn (A.8) yields eqn (4.16). 

B. TIME DISCRETIZATION OF CREEP, SHRINKAGE AND THERMAL STRAINS  

The creep rheological model has been described in Chapter 1 and consists of a Kelvin-

Voigt chain and two dashpots combined in serial way, Figure 1.6. 

The creep strain is updated as follows: 

 1 1 1 1
1 2 3

n n n n n
cr cr cr cr cr

+ + + += + ∆ + ∆ + ∆e e e e e    (B.1) 

For the creep cell 1 combining the eqs (1.68 - 1.72), we obtain a non-linear second-order 

differential equation (eqn (B.2)) that is here discretized in time. 

 1
1 1 1 1

1 1

1bc
bc bc bc bc
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e e

k k
τ τ
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A B
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The stiffness of the spring 1bck depends on the hydration degree (see eqn 1.71). Assuming 

1
0.5
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�  constant during the time step, and 
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�

, (B.2) can be discretized in time as follows: 
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Some operations give:
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Hence 
1
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n
cr
+∆e  can be estimated as: 
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Extending to the 3D case, the creep strain of the first cell can be expressed as: 

 
1 1 1
1 1 1 1 1 1

n n n n n
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+ + +∆ = − = + +e e e A B t C t� �    (B.7) 

The vector Acr1 reads: 
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A e�    (B.8) 

where the creep rate ncre� is updated at the end of each time step ( 11
1 12

n
n ncr
cr crt

−∆= −
∆
e

e e� � ). The 

two matrices Bcr1 and Ccr1 read: 
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in which the matrix P by means of a creep Poisson ratio (taken equal to the elastic one) is: 
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For the creep cells 2 and 3 the strain increments are: 
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The thermal strain and the instantaneous part of the shrinkage strain are computed as 

follows: 

 ( ) ( )1 1n n n
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the viscous part of the shrinkage strain ( ) 1nvisc
sh

+
∆��

 
is computed using the creep rheological 

model in which the stresses are now the solid pressures ( )( ) 1n
spα

+

Γ 1 and ( )( )n
spα Γ 1  using 

the previous described approach (eqs (B.1 - B.12)). 

C. COEFFICIENTS OF THE MATRICES APPEARING IN EQUATION (1.98) 

The coefficients which are not reported are equal to zero. 
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D. COEFFICIENTS OF THE MATRICES APPEARING IN EQUATION (4.41) 

In the following equations Ks is the Bulk modulus of the solid skeleton and 

3
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p

t K t
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e 1

 is the swelling strain rate depending on the solid pressure (eqn (4.27)). 

( )T l
nn n nS dε

Ω
= Ω�C N N   (D.1) 

t t h
T t h t l

tt t t ts t t

S p p
S S p p d

K S S
ε

Ω

� �� �∂ ∂= + + + − ΩC D� 	∂ ∂A B� �
�C N N N  (D.2) 

t t h
T t h h l

th t hs h h

S p p
S S p p d

K S SΩ

� �� �∂ ∂= + + − ΩC D� 	∂ ∂A B� �
�C N N  (D.3) 

t t h
T t h l

tl t ls l l

S p p
S S S d

K p pΩ

� �� �∂ ∂= + + ΩC D� 	∂ ∂A B� �
�C N N  (D.4) 

h t h
T t h t l

ht h ts t t

S p p
S S p p d

K S SΩ

� �� �∂ ∂= + + − ΩC D� 	∂ ∂A B� �
�C N N  (D.5) 



APPENDICES 

198 
 

h t h
T t h h l

hh h h hs h h

S p p
S S p p d

K S S
ε

Ω

� �� �∂ ∂= + + + − ΩC D� 	∂ ∂A B� �
�C N N N  (D.6) 

h t h
T t h l

hl h ls l l

S p p
S S S d

K p pΩ

� �� �∂ ∂= + + ΩC D� 	∂ ∂A B� �
�C N N  (D.7) 

1 t h
T t h t l

lt l ts t t

p p
S S p p d

K S SΩ

� �� �∂ ∂= + + − ΩC D� 	∂ ∂A B� �
�C N N  (D.8) 

1 t h
T t h h l

lh l hs h h

p p
S S p p d

K S SΩ

� �� �∂ ∂= + + − ΩC D� 	∂ ∂A B� �
�C N N  (D.9) 

1 t h
T t h l

ll l ls l l

p p
S S S d

K p pΩ

� �� �∂ ∂= + + ΩC D� 	∂ ∂A B� �
�C N N  (D.10) 

( ) T
uu sij

d
Ω

= − Ω�C B D B   (D.11) 

 

( ) ( )T l nl
nn n eff nS D dε

Ω
= ∇ ∇ Ω�K N N   (D.12) 

( )T
t ts t
rel

tt t tt t

k p
d

SµΩ

� �∂= ∇ ∇ Ω� 	∂A B
�

k
K N N   (D.13) 

( )T
t ts t
rel

th t ht h

k p
d

SµΩ

� �∂= ∇ ∇ Ω� 	∂A B
�

k
K N N   (D.14) 

( )T
t ts t
rel

tl t lt l

k p
d

pµΩ

� �∂= ∇ ∇ Ω� 	∂A B
�

k
K N N   (D.15) 

( )T
h hs h
rel

ht h th t

k p
d

SµΩ

� �∂= ∇ ∇ Ω� 	∂A B
�

k
K N N   (D.16) 

( )T
h hs h
rel

hh h hh h

k p
d

SµΩ

� �∂= ∇ ∇ Ω� 	∂A B
�

k
K N N   (D.17) 

( )T
h hs h
rel

hl h lh l

k p
d

pµΩ

� �∂= ∇ ∇ Ω� 	∂A B
�

k
K N N   (D.18) 

( )T
t ts h hst h
rel rel

lt l t tt t h t

k kp p
d

S Sµ µΩ

� �∂ ∂= ∇ ∇ + ∇ Ω� 	∂ ∂A B
�

k k
K N N N  (D.19) 

( )T
t ts h hst h
rel rel

lh l h ht h h h

k kp p
d

S Sµ µΩ

� �∂ ∂= ∇ ∇ + ∇ Ω� 	∂ ∂A B
�

k k
K N N N  (D.20) 

( )T
t ts h hs l lst h
rel rel rel

ll l l l lt l h l l

k k kp p
d

p pµ µ µΩ

� �∂ ∂= ∇ ∇ + ∇ + ∇ Ω� 	∂ ∂A B
�

k k k
K N N N N  (D.21) 



THCM model of concrete at early ages and its extension to tumor growth numerical analysis 

199 
 

1 l t nl t
T nl l l nl

n n M M S dω ε ω
ρ

→ →

Ω

� �� �= − − ⋅∇ Ω� 	� 	
A BA B

�f N v  (D.22) 

( )1
tr

ss sl t
T t tsw

t t
growth
M S S d

t t t
ε

ρ
→

Ω

� �� � � �∂∂ ∂= − − −∇ ⋅ ΩC D� 	 � 	∂ ∂ ∂A BA B� �
�

ee u
f N  (D.23) 

( )tr
ss s

T h hsw
h h S S d

t t t
ε

Ω

� �� � � �∂∂ ∂= − − −∇ ⋅ ΩC D� 	 � 	∂ ∂ ∂A BA B� �
�

ee u
f N  (D.24) 

tr
ss

T sw
l l d

t tΩ

� �� �∂∂= − − ΩC D� 	∂ ∂A B� �
�

ee
f N   (D.25) 

s s
vpT T sw

u s sd d
t tΩ Ω

� �∂ � �∂= Ω+ Ω� 	 � 	� 	∂ ∂A BA B
� �

e e
f B D B D  (D.26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDICES 

200 
 

 

 


