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Introduction

The beginning of knowledge is the discovery of
something we do not understand.
Frank Herbert

For many years, the general interest for robotic systems has been expanding
and the role of robots in society is predicted to continuously increase |Gates 2007].
Robots have been used in the industry sector for decades and they are emerging at
a fast pace in the public market as toys, medical aid, specialized mobile robots, etc.

In parallel to the development of highly specialized robotic systems, several works
are carried on with the purpose of developing advanced humanoid robots that are
able to execute a great variety of tasks |Okada 2006]. The humanoid shape of
such systems is supposed to facilitate their interaction with humans and to allow
actions in human-centered design settings. The main potential applications include
human assistance and autonomous handling of dangerous tasks. Some are designed
specifically for the autonomous exploration of hazardous places such as contaminated
areas or outer space [Bluethmann 2003].

Robots evolving in non-structured environments face particularly challenging
working conditions with unpredictable modifications of their sensory information on
a regular basis. This is particularly true when coming upon new places, people and
objects. Nevertheless, for the proper realization of several autonomous tasks, e.g.
exploration or inspection, it is necessary to adapt the robot actions automatically,
based on new information. The perceived events are compared with the current
knowledge in order to detect and interpret discrepancies, then the results are used
to modify the future actions and perceptions of the robot. In the context of mobile
robots and computer vision, this approach leads to the Active Vision field. It aims
at generating the motions of a robot from the contents of the images obtained from
an embedded camera. This is a particularly challenging field which includes a great
variety of difficult problems that need to be solved in order to enhance the usability
of robots in society.

The presented works are related to the Active Vision field and address the problem
of generating autonomous behaviors for a humanoid robot based on vision. More
specifically, we consider the autonomous three dimensional reconstruction of an un-
known object by relying on the functionalities and specificities of humanoid robots.
The task that the robot must achieve is the modeling of an object in a known en-
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Figure 1: “Two Piece Reclining Figure No. 5”7 by Henry Moore

vironment that is possibly cluttered. The modeling process is autonomously guided
based on the visual feedback from the cameras that are embedded in the robot head.
The efficient completion of this task is complicated by the use of a humanoid robot.
Indeed several constraints need to be dealt with: stability, collision, joint limits, etc.

Our goal is to obtain a model of the object that includes a 3D approximation of its
shape and a set of 2D visual features detected on its surface from different viewpoints.
Such a model could be used in complementary works, tackling different purposes,

The selection of viewpoints of interest is the main scientific problem that we focus
on. The proposed works give solutions to the Next-Best-Posture problem that we
define as:

“Given the model of the environment, the model of the robot, and the
available visual information, what is the next configuration the robot
should take in order to increase the information about the object?”

In order to have a better grasp of the problem, let us consider Figure 1 for a
moment. A single image of the object does not hold enough information to create a
reliable model. Based on a life-long learning experience, a human could infer some
characteristics such as the 3D shape of the visible surface using an estimation of
the material lighting properties. With familiar enough objects, a human could even
guess the textured 3D model from a single image. But unless you are a connoisseur
of the works of Henry Moore, you will need to move around this object in order to
grasp its essence. You have several options to do so but also some constraints: the
guard rail prevents you from getting too close, the objects in the scene such as the
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trees or the pedestal may occlude some parts, and you are probably not tall enough
to see the object from 3 meters above. Given these constraints, you still have a large
set of options from which to decide your next viewpoint. Your selection will most
likely depends on the direct results from the processing of the object appearance
based on the complex analysis of the texture, edges and concavities.

This work proposes to follow a similar approach for a humanoid. We select a
perception pose that satisfy the constraints on the robot and the constraints from
the environment while considering the visual information. Our methods are based
on a specific posture generator, previously developed in our laboratory, where a
constrained whole-body posture is computed by solving an optimization problem.

A first proposed solution is a local approach to the problem where an original
rendering algorithm is designed in order to be directly included inside the posture
generator. The rendering algorithm can display complex 3D shapes, represented by
occupancy grids, while taking into account self-occlusions.

The second proposed method seeks global solutions by decoupling the problem in
two steps: (i) find the best sensor pose while satisfying a reduced set of constraints
on the humanoid, and (ii) generate a whole-body posture with the posture genera-
tor. The first step relies on global sampling and recent derivative-free optimization
methods in order to converge toward good viewpoints, even in configuration spaces
with many local minima. The second step is then used to generate a posture that
satisfies all the constraints on the robot body while setting the robot head according
to the sensor pose computed.

The processing of visual information in experimental conditions relies on various
complementary vision algorithms. We need to acquire the 3D information from
the robot stereo rig, detect visual features on the object surface, and update the
model. The achievement of these steps is based on the investigation of different
available algorithms. Using a humanoid which embeds cameras in its head, the
visual processing of the images must be adapted to the perturbations of the camera
motions that can occur due to the bipedal walking.

This thesis is driven toward the practical realization of a fully autonomous mod-
eling experiment using a humanoid robot. The entire process requires the tight
integration of a number of different but complementary software components, many
of them being at the cutting edge of robotics research. In order to generate walk-
ing paths in a cluttered environment, we rely on a motion planner that can output
collision-free trajectories that are feasible by a humanoid robot. The motion execu-
tion must ensure the continuous robust stability of the robot and the simultaneous
realization of different control tasks.

We discuss the results of our approach in dynamic simulation and in real condi-
tions with the HRP-2 humanoid robot located in the CNRS/AIST Joint Robotics
Laboratory in the AIST Tsukuba research institute.
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1.1 Problem and context

What happens when someone, evolving in some familiar environment, find at some
point an intriguing unknown piece of furniture? Let us assume that the object
appearance is original enough that an approximate complete model cannot be in-
ferred from the initial impression alone. For an average human, it is a quick and
straightforward process to move around, and/or move the object, in order to create
an approximate model good enough for further visual recognition and manipulation.
Though it is an easy task to realize for humans, it requires the successful completion
of various lower level tasks, most of them done unconsciously:

1. visual discrimination between the object and the environment

(a) visual recognition of the environment
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(b) detection and recognition of visual features on the object
2. construct a model

(a) recognize the 3D surface of the object
(b) add perceived visual features on the model

(c) check properties such as size, texture, weight, etc.
3. motion around the object

decide the necessary views
decide a destination position in order to reach the viewpoint
plan your walking motion

walk

)

)

)

)

) stay stable
) avoid (violent) collisions with the environment
) avoid (violent) self-collisions

)

check your position relatively to the object
4. manipulation of the object

(a) detect if the object is desolidarized from the environment
(b) recognize grabbing zones on the object

(c
(d
(e

Do ...

)

)

) decide grab zones to use

) plan the motions of the upper-body
)

move the upper-body

All of these tasks have been independently successfully achieved by various
robotic systems in the scientific world. Nevertheless existing systems usually focus
on the realization of very few of these tasks under specific conditions and relying on
different assumptions.

The work presented in this thesis represents a significant step toward the re-
alization of the autonomous visual modeling of unknown object using a humanoid
robot HRP-2. A successful application relies on the coherent integration of most
of the presented tasks. We believe such an ability is of interest as it can enhance
the usability of multi-purpose robots in collaboration conditions with their human
partners. For instance, visual models of new objects can be build and stored inside
a knowledge database in an autonomous manner.
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Figure 1.1: Next-Best-View for a humanoid robot: how to find the next valid posture

to model an unknown object?

Though the designed framework aims at being as general as possible, We im-
pose some limitations. Some assumptions are made about the operating condi-
tions. Moreover, the manipulation of the object is not considered as it relies on
specific research topics worthy of their own thesis: distinguish whether the object
is movable or not, planning the grasp procedure, etc. We can note that some other
works tackle parts of these problems using humanoids [Ude 2008] |Diankov 2009|
[Vahrenkamp 2009] [Tsuji 2010] [Welke 2010].

Nevertheless, we intend to achieve a high-level behavior by integrating various
software components developed by other researchers, and by developing original
algorithms related to the planning of visual tasks. Specifically, our work considers
the problem of generating and reaching new postures for the robot in order to
complete a visual model of the object. This is known in the scientific literature as
the Next-Best-View (NBV) problem.

The scientific problem tackled during this thesis relates to finding a Next-Best-
View (NBV) solution for a humanoid robot. More precisely, the robot tries au-
tonomously to create a relatively rough visual model of an unknown object by mov-
ing around it and take appropriate postures, as illustrated in Fig. 5.10.

In our case, the viewpoint search itself is not enough to ensure a valid acquisition:
we must consider the limitations of the robot where the visual sensors are placed.
Thus, at each iteration, our NBV algorithm finds a specific robot posture which
ensures an efficient modeling process given the conditions and, more importantly,
the gathered information. Indeed the efficiency of the modeling process and the
optimal computation of the Next-Best-View depend on the assumptions made, the
operating conditions, the caracteristics that need to be retrieved, etc. The conditions
influencing which algorithm to choose are related to:

1. the sensor used: laser scanner, stereo vision, IR range sensor, active vision,
etc.
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2. the possible sensor motion: end effector of a robotic arm, mobile robot, hu-
manoid robot, flying drone, etc.

3. the kind of object considered: textured, size, relatively homogeneous shape,
etc.

4. the environment: known/unknown, presence of obstacles, possible occlusions,
dynamic, lighting conditions, etc.

In this work, we consider the specific case of a humanoid robot HRP-2 in a known
environment which can include some static obstacles. A stereo rig is embedded in
the humanoid head and the available stereo vision algorithm can create range maps
for textured objects with low reflectance. We do not put constraints on the shape
and dimensions of the objects but an approximation of the dimensions is needed.

We note that our work does not consider the minimization of the sensor motion.
Though adding the motion cost to the evaluation of a viewpoint could be use to
minimize the trajectory for each iteration, nothing ensures that the total trajectory
would be optimal as the number of required poses to complete the model may
increase. Both criteria could be efficiently optimized if we would have access to a
good estimation of the occluded parts of the object based on the known features.
But, although it is an interesting research topic, the present work does not tackle
the approach of learning and /or making predictions about the occluded object parts
using the perceived parts.

The next section review some of the main works in related fields.

1.2 State of the art

The work realized during this thesis is part of the "treasure hunting” on-going project
[Stasse 2007| in the JRL laboratory which goal is the construction of the model of
an unknown object and then its autonomous retrieval in a different environment
that is considered unknown. We can notice a recent regain of interest |Meger 2008|
[Forssén 2008| regarding this kind of problem with the Semantic Robot Vision Chal-
lenge [Rybski 2007].

The scientific problems addressed are at the crossing of computer vision, sensory
planning and robotics; As such, various significant works in related specific fields
have been studied in order to evaluate existing solutions, remaining limits and unex-
plored areas. In the computer vision field, the problem of visual object recognition
has been thoroughly addressed; There are fast and robust methods which can be
used in embedded systems |Lowe 2001]. Nevertheless, the modeling part usually
relies on a supervised method where different views of an object are taken manually
by a human operator and are then put in a database available to the recognition
algorithm.
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Figure 1.2: NBV problem for 1 dof system. The sensor position is constrained
on the red circle. The green cone represents the camera which orientation is set
automatically toward the red circle center.

The first recognized work on NBV is the one by Connolly [Connolly 1985] but
works by Bajcsy |Bajesy 1988| are considered instrumental to bring the fields of
planning, control and vision together in order to develop the discipline of Active
Perception.

Solutions to find a Next-Best-View depending on the visual information, come
generally in two flavors, both introduced by Connolly: (i) create an evaluation
function for the sensor pose and test a set of poses distributed in the configuration
space in order to select the best one, or (ii) analyze the current model to deduce a
reduced set of poses and select the best one as the next viewpoint. In both cases, as
the evaluation of a pose is usually expansive, a dense sampling of the configuration
space is avoided in order to retrieve a solution in an acceptable amount of time.
Other shortcuts, such as the reduction of the configuration space dimension, or the
non-consideration of some constraints, can also be used to speed up the evaluation.
The second approach aims at having a much faster decision process by selecting very
few poses, sometimes only one, based on some hypotheses on the link between parts
of the visible surface and parts of the volume occluded.

This section presents an overview of selected papers on the NBV subject in order
to review the main techniques. More extensive analyses of the works in the NBV field
oriented toward object reconstruction are detailed in different surveys by Tarabanis
et al. |Tarabanis 1995|, Scott et al. [Scott 2003|, and Chen et al. [Chen 2008]. Our
review also extends to some selected papers representatives of the field of Active
Vision.



16 Chapter 1. Problem statement and background

1.2.1 Next-Best-View for 1 dof sensor

Few works [Maver 1993] [Pito 1999] consider the problem of object reconstruction by
placing the object on a turntable while the sensor is maintained at a fixed distance,
oriented toward the object center, as illustrated in Fig. 1.2. The search space of such
solutions to the NBV problem is thus limited to a single dof. The algorithms mix
a surface visibility criterion with an occluded surface visibility criterion to select
the NBV position. Both methods rely on polygonal surfaces to describe the 3D
structures of interest.

Maver and Bajcsy |[Maver 1995| [Maver 1991] [Maver 1993] use an active range
scanner and a turntable to model an object based on occlusions. The range scanner
consists of a beam laser and a CCD camera that are located on the same frame which
is translated in one direction to obtain a depth map of the entire scene. Thus the
system is considered to have a single dof that is the rotation angle of the turntable.
The occluded regions are approximated by polygons, and the viewing angles are
computed for all of these polygons. A NBV is determined by relying on the maxima
of histograms created by summing the viewing arcs for each polygon. The main goal
of their NBV formulation is to scan into these polygons from directions which are
not occluded. The algorithm is developed for the particular scanner setup.

In his PhD work, supervised by Ruzena Bajcsy, Pito [Pito 1996] [Pito 1999] im-
proves the complexity of the search by reducing the number of tested sensor location.
This is done by introducing a novel representation, the Positional Space, that repre-
sents the available and necessary parts to scan, in a single data structure. Pito also
considers the need for surface overlap to register new surface information with the
current model. The object is modelized using polygons and the occluded parts are
represented with void patches, which are rectangular patches attached to the edges
of the object and oriented according to the ranging rays of the sensor in order to
lie at the limit of the occluded space. The size of these void patches is relatively
small so that the overlapping constraint is satisfied and that no assumption is made
on the object shape farther away from the edges. The algorithm then relies on the
evaluation of discrete poses to find the NBV. The evaluation of a pose is done based
on the number of void patches visible and the amount of already perceived surface
visible. In addition, the performance of the range scanner is evaluated in order to
incorporate the sensor particular sampling physics in the algorithm. Results are
demonstrated both in simulation and with real objects.

1.2.2 Next-Best-View for 2 dof sensor

Now let us have a look at some works that consider a slightly bigger configuration
space. Most NBV works for object reconstruction limit the sensor position to the
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Figure 1.3: NBV problem for 2 dof system. The sensor position is constrained to the
red sphere surface. The green cone represents the camera which is always oriented
toward the sphere center.

surface of a sphere centered on the object to model, as illustrated in Fig. 1.3. The
orientation of the sensor is set automatically toward the sphere center and thus its
entire pose is decided using latitude and longitude coordinates alone.

The first paper in the NBV field is from Connolly [Connolly 1985 who presents
two algorithms to model an object with an octree structure [Chien 1986] where
voxels have one of three states: empty, occupied or unseen.

The first algorithm, labeled as the Planetarium Algorithm uniformly samples the
sphere surface representing the sensor configuration space, and the visibility of the
unseen area is tested for all samples. The viewpoint displaying the greater surface
of unseen voxels is then selected.

The second method, labeled as the Normal Algorithm, is designed specifically to
reduce the search time. The total area of planes between unseen and empty nodes
is computed for the viewpoint in front of each of the six faces of the cube used as
the root for the octree structure. The camera view direction is set toward the center
of the object and its position on the sphere surface is deduced from the six areas
computed. As stated in the paper conclusion, the second method is much faster than
the first one but the self-occlusions are not dealt with correctly as nothing ensures
that the area computed will be effectively perceived in the selected viewpoint.

In both methods, the exact quantification of the unknown area is not specified
directly but we suppose it is a ray tracing method.

The approach of restricting the sensor position to a sphere surface and the sensor
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orientation toward the sphere center has been used a number of times in works
following Connolly. Each work considers different sensor pose evaluation functions
and /or rely on different methods to select a limited number of points on the sphere
surface to evaluate the corresponding viewpoints.

In a first work by Banta et al. |Banta 1995|, the next viewpoint is computed by
analyzing the points in the range image of the object obtained from the current
viewpoint. The three points in the range image with the highest curvature are
selected. For each of these three points, the camera is set in the same direction as
the normal vector and the visible unknown area is computed by ray tracing. The
view with the largest visible unknown area is selected. The reconstruction process,
based on an occupancy grid, terminates when no more unknown voxels remain or
when a maximum number of iteration is reached.

Though the method work in simulation for the presented objects, there is a
possibility that the reconstruction stay stuck in some local space. Indeed, when
dealing with some object shapes which display a specific arrangement of curves, the
algorithm may be attracted toward the same viewpoints.

In a more recent work by Banta et al. [Banta 2000]|, three simple algorithms are
combined. The first one, labeled as the FEdge-Based Sensor Placement, is executed
only once to select the second viewpoint and aims at targeting large areas of oc-
clusions. The method is similar to the algorithm in the previous paper discussed:
it is assumed that the greatest curvature on the edges of the range map conceals
greater quantities of unknown information. The next viewpoint direction is then
set, using the surface normal vector of the corresponding region. Theoretically, the
assumption does not hold as the shape of an object is not directly linked to the
shape of some local areas. Practically, this may be the case for a range of usual
objects but no analysis is available.

The second method, labeled as Tuargeting the Occluded Surface Centroid, is exe-
cuted twice to select the third and fourth viewpoints. The viewpoint is set toward
the centroid of the occluded region. As precised in the paper, this is efficient only
when there is a single continuous occluded region, and thus the method is used only
amongst the first steps of the reconstruction process.

The last method, Clustering the Occluded Surface Data, is executed for the later
view acquisitions in the modeling process. The remaining unknown voxels are clas-
sified into one or more clusters of joint voxels. The viewpoint then targets the mean
point of the current largest cluster, at each iteration.

Additional methods are implemented to modify the viewpoint selection in the
cases where self-occlusions appear or where the computed viewpoints are concen-
trated in a local area.
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In a paper by Massios and Fisher [Massios 1998|, also based on an occupancy
grid representation, a quality criterion is inserted to judge a viewpoint in addition
to the evaluation of the visibility of unknown parts. This criterion depends on the
viewpoint direction and the voxels normal vector. The quality for a specific voxel is
considered high when its normal vector is aligned with the viewing vector. Sampled
positions on the sphere around the object are tested with the visibility and quality
criteria to find the next viewpoint. Some samples on the sphere surface can be
ignored in order to cope with constraints such as joint limits, collisions, etc. The
algorithm is tested with a laser range scanner and a mobile base where lies the object
to model. The mobile base has two degrees-of-freedom (dof): one in translation and
one in rotation. The quality criterion is used mainly to refine the shape of the object
to enhance the precision of the model once only small parts of unknown remains.
The tests detailed do not show if the addition of the quality criterion can be useful
for the reduction of the needed poses to model the object.

Wong et al. [Wong 1999] demonstrate another kind of NBV method in simulation
which relies on an occupancy grid representation. Two methods are detailed. The
first one is similar to Connolly’s planetarium algorithm [Connolly 1985] but uses
voxels instead of the octree structure. The second relies on unknown voxels visibility
as well as their normal vector.

Chen and Li [Chen 2005] [Chen 2004] [Li 2005] use a structured light system,
which is fixed on a robotic arm, to get a dense disparity map from different view-
points. In order to compute a single NBV, the algorithm analyzes the curvature of
small areas at the edges of the perceived surface. In contrast with the works of Banta
et al. [Banta 1995|, they consider that the prediction of the unseen parts of the ob-
ject is more accurate when the curvature of the surface at an edge is small. But, as
noted earlier, there is no practical analysis on the reliability of such hypotheses.

Bottino and Laurentini [Bottino 2006| present an interactive approach to model
a convex polyhedra using silhouettes. They introduce a criterion and a formulation
for testing if the reconstruction is finished. It uses a characterization of points in the
visual hull and the real object silhouettes. Their algorithm starts with two random
views and then gives some guidelines to help the user select the next view in order
to examine a selected edge. Their method is designed explicitly for polyhedra and
thus cannot be used for curved objects. Furthermore, similarly to all shape-from-
silhouette traditional methods, concavities cannot be modeled.

1.2.2.1 Sensor motion

Few works consider the variation of the object visual features depending on the
sensor motion. In this respect, such works are closer to the field of Visual Servoing
then NBV.

Kutulakos et al. [Kutulakos 1992] [Kutulakos 1994] introduce a NBV algorithm
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for a shape-from-contour method based on the analysis of occlusion boundaries of
objects. Their exploration scheme is formulated as the task of forcing the occlusion
edges to slide over the points occluded from previous poses.

Another work, relatively original in the NBV field, by Arbel et al. [Arbel 2001]
use entropy maps to guide an active observer along an optimal trajectory. They
formulate their NBV search as the minimization of entropy. The object model
is constructed using optical flow and offline PCA analysis, thus they do not have
an explicit 3D shape of the object. Their system can use the model constructed
to recognize objects through a minimal set of motions that aim at reducing the
ambiguities.

1.2.2.2 Parametric model

The NBV system designed by Whaite and Ferrie [Whaite 1997b| [Whaite 1997a| re-
lies on the parametric modeling of the 3D objects in a scene by using super quadrics.
Their system uses a laser range finder located on a robotic arm in order to acquire
a depth map of the scene. The sensor motion is constrained to a view sphere at a
fixed distance from the center of the scene. The objects in the scene are described
using nonlinear superellipsoid models. Their strategy for NBV selection is based
on the uncertainty of the internal model, already investigated in a previous work
[Whaite 1991]. More specifically, the best sensor locations are those where the abil-
ity to predict is considered worst, based on the variance in the fit of the data to the
current model. The search is conservative with motions limited in their magnitude,
and thus, their is an overlap between the acquired surfaces. The algorithm is tested
with experiments that show the attraction of the method toward regions of high
object curvature.

Parts of the work by Dune et al. [Dune 2009| [Dune 2008| related to NBV are
inspired by Whaite formulation [Whaite 1997a]. The view selection is also done
based on the uncertainty in the parameter space, the main difference is that the
models are approximated by quadrics instead of superquadrics.

Such parametric approaches are well adapted to NBV solution based on Visual
Servoing methods. Nevertheless, by using quadrics or superquadrics, the constructed
model offers a limited descriptive value.

1.2.2.3 Polygonal model

Zha et al. [Zha 1997] use a laser scanner on a robotic arm. The point clouds
obtained from the range sensor are converted into a polygonal surface composed of
triangles. The configuration space is sampled and each position is tested using a
function evaluating three criteria: (i) select a viewpoint far away from the previous
ones, (ii) keep some parts of the perceived surface visible to ensure overlapping, and
(iii) ensure that overlapping areas are relatively smooth.
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In the works by Reed et al. [Reed 1997a| [Reed 1997h|, the method is based
on simulation and relies on a polygonal representation of the object model. The
viewpoint planner aims the occluded parts of the object based on the detection of
occlusion edges. The visibility of the targeted occluded parts is represented by a
polygonal volume which can be used in conjunction with the sensor constraints to
find the NBV. Their approach though does not address constraints such as limited
field-of-view, or overlap.

1.2.2.4 NBYV for object reconstruction summary

The aim of most algorithms, apart from the methods relying on parametric models,
is to get an accurate 3D reconstruction of an object, using voxels or polygons, while
reducing the number of viewpoints required. The most usual assumptions about the
sensor are that the depth range image is dense and accurate by using laser scanners
or structured lighting, and that the camera position and orientation is correctly set
and measured relatively to the object position and orientation. But such assump-
tions cannot be made when using an embedded stereo rig on a humanoid robot
controlled in an autonomous manner. Although there are many works dedicated
to the planning of sensor positions in order to create the 3D model of an unknown
object, the specific topic of autonomous object modeling by a humanoid robot could
not be found.

In previous works, the object to model is considered to be inside a sphere or
on a turntable, i.e. the sensor positioning space complexity to evaluate is reduced
since its distance from the object center is fixed, and its orientation is set toward the
object center. This restricts the variety of objects that can be modeled, e.g. objects
with complex concavities may require the sensor to get closer to some specific parts
and /or require having a viewing vector not targeting the object center. Previous
methods also consider that the object is always completely included in the sensor
field of view, but this may not be the case if the object size is large compared to the
boundaries of the sensor admissible configuration space.

Thus hypotheses used previously impose some constraints on the sensor charac-
teristics as well as on the object size and complexity which may not be adequate
with a humanoid carrying tasks in a shared environment with humans. To get rid
of such limitations while taking into account the constraints related to a humanoid
robot, an original NBV algorithm need to be designed. Works addressing a broader
range of problems have thus been reviewed.

1.2.3 Next-Best-View for exploration

Though the configuration space of the robotic system where the sensor is embedded
is rarely considered in NBV works, it is more prominent in works dealing with
environment exploration tasks.
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The works by Wang, Huang and Gupta [Wang 2003| [Huang 2005] [Wang 2006|
consider explicitly the problem of the configuration space of the sensor for a NBV
problem but they restrict their analyses to simulations in a 2D plane. They use a
eye-in-hand system composed of a planar 2-link robotic arm with a triangle FOV
range sensor. The algorithm is designed to balance two goals: (i) explore the local
environment of the robot in order to detect obstacles and increase the area of the
configuration space of the robot, and (ii) maximise the amount of unknown visible
by the sensor at each perception.

Sanchiz and Fisher [Sanchiz 1999] consider a NBV method for environment mod-
eling, using a mobile robot equipped with a range sensor in simulation. The environ-
ment is represented with a voxel map which is updated using ray tracing. Each voxel
has one of five states amongst: unknown, empty, occupied, occluded, and occlusion
plane, which is an occluded voxel adjacent to an empty voxel. A normal vector is
assigned to each occupied voxel using the normals of the points in the range maps
obtained by the range sensor. Their NBV method relies on three criteria mixed in
a polynomial function used to evaluate a sensor pose: (i) overlapping with known
views, (ii) elimination of occlusion planes areas, and (iii) observation of unseen ar-
eas. The search of a 5 dof sensor pose is done locally to the current pose using
two search methods: (i) the simplex method for selecting the best 3D position and
(ii) an exhaustive sampling that test a finite number of 2D orientations (pitch and
yaw) at each tested position. Although their approach demonstrates exploitable re-
sults in simulation, we note that the simplex methods is known to have convergence
problems even for convex functions [McKinnon 1998] and thus other optimization
methods are preferred.

Klein and Sequeira [Klein 2000] consider a mobile robot with a range sensor com-
posing an acquisition system that provides 8 dof: 3D position, 3D orientation, field
of view and resolution. They propose a NBV method relying on occlusion analysis
and on a criterion related to the quality of the sensing. Their method uses hard-
ware acceleration to decrease the computation time for visibility evaluations. They
use environment maps [Greene 1986| to compute an approximation of the visibility
of the scene for one 3D position of the sensor. These maps are then used for fast
evaluations of their criterion. Global optimization of their NBV criterion is ensured
through a simple global sampling. The use of environment maps is an interesting
technique in the case of the environment exploration problem as large areas can be
perceived simply by changing only the sensor orientation. This cannot be applied
efficiently to the problem of object reconstruction, though, as, in this case, modifica-
tions of the sensor orientation alone are usually less pertinent than the modification
of the sensor complete pose for the perception of unknown areas.

Martinez-Cantin et al. [Martinez-Cantin 2009] address the problem of online path
planning for optimal sensing using a low-cost camera on a mobile robot with three
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dof: 2D location and orientation. The mobile robot starts with a rough probabilistic
estimate of its pose and the location of some landmarks in the environment, and
then tries to reduce the uncertainty about these. The planning problem is modeled
using a POMDP [Kaelbling 1998| [Thrun 2005] where the reward is a function of
the belief state. The expected cost function is approximated by a gaussian process
and is used to balance two strategies: exploration (minimize uncertainty in the
unknown parts of the policy space), and exploitation (reinforce current estimation).
The application of such an approach to the NBV problem for object modeling is not
straightforward as we need to recover and update a complex 3D shape. Because of
the novelty of this work, we could not further investigate its proper exploitation for
our problem, but probabilistic approaches definitely need consideration.

Lopez-Damian et al. [Lopez-Damian 2009] present a NBV method for indoor en-
vironment modeling, relying on an occupancy grid. They simulate a range sensor on
a mobile robot that has 5 dof: 3 for the position and 2 for pitch and yaw orientation.
The NBV search is similar to the work by Sanchiz and Fisher |[Sanchiz 1999|: they
use the simplex method to test positions and a tessellated sphere for the orienta-
tions. Their evaluation function is formulated as a probability density function that
incorporates the percentages of voxels visible depending on their type, and a quality
factor based on the view angle relatively to the voxels normal vector.

1.2.4 Visual Search

In the context of visual search, only one work was found which explicitly considers
a sensor embedded in a humanoid robot though the sensor configuration space is
limited to 4 dof: 2D position and pitch and yaw orientation. This work was done
in our laboratory by Saidi et al. [Saidi 2007b]| [Saidi 2007a] with HRP-2. The pro-
posed algorithm aims at maximizing a target detection probability while minimizing
criteria such as time, trajectory length and energy. The state of the environment is
modeled with an occupancy grid. In order to decrease the computation time of a
NBYV, they use the concept of visibility map that is relatively close to the concept
of Positional Space introduced by Pito [Pito 1999|.

The work by Chung and Burdick [Chung 2007| presents a theoretical analysis
of a decision-making framework adapted to probabilistic search. The environment
is modeled as an occupancy grid and each voxel has a probability of containing
the target. They design and compare five simple search strategies that are used to
compute the successive sensing actions: the first two do not consider the current
knowledge and just serve as a basis for comparison, the third one is an exhaustive
search of a local part of the configuration space, and the two last consider the best
candidate in the local area.

Forssen et al. |Forssén 2008| use cameras and a planar laser range sensor on a
mobile robot to detect and recognize some target objects in an unknown environ-
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ment. Their system has five dof: 2D position, pan, tilt and zoom. Potential objects
are detected using depth from stereo cameras and saliency maps [Hou 2007]. The
environment is modeled as a 2D grid map. Their visual search is based on three
behaviors: (i) exploration phase to discover new areas with the range sensor, (ii)
visual coverage to look for potential objects, and (iii) image acquisition of promising
objects from new perspectives. The decision making strategy is based on several
task-dependent heuristics that are not developed in the article.

Shubina and Tsotsos [Shubina 2010] consider the visual search of an object using
a range sensor on a mobile robot which has three dof: 2D position and orientation.
The environment is modeled as a 3D occupancy grid where each voxel is assigned a
probability of containing the target. Their approach consider the orientation search
and the position search separately and thus several different orientations are tested
for each different position of the mobile robot.

1.2.5 Viewpoint selection related works

A little outside of the NBYV field but still in the domain of looking for viewpoints
to model an object, Ahuja and Veenstra [Ahuja 1989] aim at constructing an octree
model using orthographic silhouettes of an object. Their paper argues for the use
of 13 predefined viewpoints in order to get a rough model in a reduced computation
time. They obtain good results for relatively complex shapes but their method is
tested only in simulation and rely on a sensor with orthographic projection.

Works by Triggs and Laugier [Triggs 1995] consider the problem of visual inspec-
tion of a 3D model by a robot mounted CCD camera, which can be related to the
"art gallery” problem [O’Rourke 1987]. The method relies on an original global func-
tion optimization technique, based on an octree structure, to examine specific parts
of a known model while avoiding occlusions and collisions. As the object model as
well as the environment are known, the method first computes an optimal set of un-
ordered viewpoints and then optimize the trajectory of the sensor, similarly to the
traveling salesman problem [Cormen 2001|. This method shares some similarities
with our approach and is discussed in more details in chapter 3.

In the context of mobile robot control for automatic 3D modeling of an object
relying on vision, we can mention the works by Yamazaki et al. [Yamazaki 2004a|
[Yamazaki 2004b]. In these works, a small mobile robot makes a circle motion
around an object in order to build its model. The algorithm uses visual features
detection and structure from motion in order to recover a rough 3D model. The
motion around the object is planned off line: it begins with a straight line in order
to reach a fixed distance to the object, and then the robot executes a circular motion
which radius depends on the given size of the object.

Works by Ude et al. |Ude 2008| create an image-based model of an object by
manipulating it. They consider a humanoid whose cameras embedded in the head
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are used for stereo perception, and whose arm allow grasping and manipulation
tasks. Their algorithm brings the object to a fixed distance from the camera and
then rotates it to obtain several images. The possibility to change the grasping is
not considered and thus some parts of the object cannot be modeled.

The works developed in the field of sensory planning aim at generating and con-
trolling vision tasks during the robot motion. In this context, the environment
model is available and the robot motion trajectory is an input of the algorithm.
The problem is to compute the orientation of the robot sensor depending on its
location in the trajectory in order to keep some landmarks or known object visible.

Works by Deng et al. |Deng 1996| consider the sensory planning problem in
simulation for a 2D map. The algorithm relies on methods from graph theory to
track limited sets of point landmarks along the trajectory and takes into account
the cost of transition between the perception of different sets.

Seara et al. [Seara 2001| [Seara 2003] [Seara 2004] consider the practical problem
of locating a humanoid robot while it is following a planned trajectory. The visual
attention of the robot is shared between two perception tasks: (i) obstacle avoidance,
and (ii) landmark detection and tracking for online localization. A multi-agent
approach is used to compute the humanoid head orientation for a discrete set of
positions on the trajectory.

Marin-Hernandez et al. [Marin-Hernandez 2005| present a method for a camera
embedded on a mobile robot, demonstrated in simulation. The algorithm considers
planar landmarks in the environment. It relies on a discretization of the configura-
tion space and dynamic programming to compute the sensor orientation relatively
to its location.

A work by Michel et al. [Michel 2008] tackles a slightly different problem where
a humanoid trajectory is planned according to the feasibility of the visual task to
realize. The goal is to visually track a known object while moving to a desired
position with a HRP-2 humanoid robot. The algorithm considers the target object
visibility and possible occlusions by 3D obstacles in the environment in order to
generate a possible trajectory.

1.2.6 Visual servoing

The technique of Visual Servoing uses information extracted from a camera image,
or another visual sensor, in order to control a robot motion. Works in this field
date back to 1979 |Agin 1979| |Hill 1979] and are still actively addressed. Related
control schemes aim at minimizing an error between the desired values of some visual
features and their current measurement.

In the initial works related to Visual Servoing, two basic approaches have been
developed [Corke 1994|: image-based (IBVS) and position-based (PBVS). Both ap-
proaches need to recover the camera intrinsic parameters. In IBVS, some visual
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features in the image plane coordinates need to be set to some specific location.
The PBVS approach is related to the 3D localization problem in computer vision
and relies, first, on the 3D model of the target object to track and, second, on
the estimation of the camera pose in a reference coordinate frame. For more in-
formation about the state of art in Visual Servoing, Chaumette and Hutchinson
made a tutorial [Chaumette 2006] and a presentation of recent advanced techniques
[Chaumette 2007].

Visual Servoing methods for the purpose of autonomous object reconstruction
have been exploited by some researchers, including Marchand [Marchand 1996] and
Berry et al. |Berry 2000|, both using an eye-in-hand robotic arm. Marchand con-
siders the problem of scene modeling based on edge detection and recognition. The
algorithm searches for the best trajectory based on the volume swept by the sensor
(computed by ray-tracing), the joint limits and the motion cost. The camera 6 dof
pose is restricted to the volume of a half-sphere around the scene. A pose solution
is found by relying on the multi-scale ICM algorithm [Besag 1986|.

The algorithm of Berry first moves the camera in order to center the object to
model in the image. The camera then moves at a fixed distance from the object in
the lateral and vertical planes, based on the object principal axes.

In a recent work, close to the subject of this thesis, Chesi |Chesi 2009| presents a
method to compute a local trajectory for a 6 dof camera located at the end-effector of
a robotic arm. That work presents a general parametrization of the trajectory based
on homogeneous forms. Linear Matrix Inequalities optimization is used to solve the
path planning problem while satisfying several constraints: target points visibility,
limits on the camera configuration space, robot joint limitations, and collision and
occlusion avoidance.

We can note an inherent limitation of the Visual Servoing approach: as the meth-
ods rely on the features on the camera image to generate or update the control law,
we must ensure that enough features are visible along the camera trajectory until
the completion of the task. Though some systems can cope with partial occlusions,
a higher level of control is required to overcome total occlusions. In this regard, a
visual servoing approach to the problem of NBV is possible but requires two addi-
tional constraints: (i) set some limitations on the type of visual occlusions, and (ii)
ensure the motion control of the robot can allow the continuous, and robust, track-
ing of the target. Though some works are being conducted to address the second
constraint, the related problem is still not completely solved at the time of writing.

1.2.7 Structure from motion

It is worth mentioning a particular class of methods related to Visual Servoing:
Structure from Motion (SfM) |Aggarwal 1988| |Beardsley 1996] |Beardsley 1997|.
The algorithms developed in SfM aim at constructing 3D models of object by ana-
lyzing a stream of images from a moving camera, or by moving the object in front
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of a fixed camera. The methods thus aim at computing simultaneously the projec-
tion matrices and the 3D coordinates of some features using only the corresponding
points in each view. This approach has the advantage of being cheaper than stereo
systems for 3D reconstruction, as a single camera is enough. To achieve a good
model though, it is necessary to detect and track reliably many features locally on
the target object. There are also larger uncertainties concerning the FEuclidean dis-
tance between 3D points as, contrary to a stereo rig, the pose modification between
different views is not known.

We can mention a number of recent works that demonstrate impressive results.
Pan et al. [Pan 2009] present a system to modelize a 3D object online by moving it in
front of a camera. The system tracks features on the moving object to recover their
geometrical relationship and create a polygonal approximation of the object. The
algorithm uses a probabilistic approach to update constantly the model according
to the new viewpoints that are reached.

Newcombe and Davison [Newcombe 2010] present a method for dense reconstruc-
tion of an entire scene using a single camera moved by hand. The method relies on
the robust estimation of the camera 3D pose and a sparse point cloud both avail-
able through the PTAM framework [Klein 2007|. The dense 3D surface is obtained
from the point cloud using Multi-Scale Compactly Supported Radial Basis Function
(MSCSRBF) technique [Ohtake 2003]. The depth maps are then updated using the
TV-L1 optical flow [Wedel 2008] computed from consecutive images.

A recent work by Stithmer et al. |Stithmer 2010] implements the same applica-
tion as Newcombe and Davison but claims a faster processing time. Their method
processes the live video stream by computing the depth maps directly with a varia-
tional approach.

While these recent works are of particular interest for the problem of object 3D
modeling, some limitations can appear in some particular cases. The main problems
to consider are (i) the occlusions of the object by obstacles in the environment, and
(ii) the robustness of the method when dealing with a moving camera whose motion
is perturbed. As these works were available relatively late in the course of this thesis,
a more thorough analysis of the possibilities in the context of our work could not be
conducted.

1.3 Contribution

Despite a number of interesting works in varied fields in the last 20 years, we can
remark that the problem of the autonomous acquisition of an object 3D model by
a mobile robot has not been solved yet. Most previous works in the NBV field
set, some strong constraints on the sensor configuration space in order to reduce the
complexity of the search. But such approaches can lead to poor results if we consider
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Figure 1.4: Virtual model construction. (left) Original 3D model. (right) First
model constructed using stereo vision and visual features detection.

the presence of obstacles around the object. A limited configuration space may also
lead to many violations of constraints related to the sensor motions.

Methods from Visual Servoing and Structure from Motion fields can be applied
to estimate an object shape in specific conditions, e.g. when no obstacle is present.
But the robustness of the available algorithms needs to be assessed in the context of
object modeling using a sensor whose motion can be perturbed. We can also note
that some related works in Visual Servoing can generate sensor motions relatively
to the estimation of the target object principal axes, but none have addressed the
problem of deducing the motions based on the 3D surface of the object, for example,
in order to consider concavities.

1.3.1 Goal

In contrast, our approach to the object modeling problem is designed specifically
based on the HRP-2 humanoid specificities in terms of constraints, embedded vision
sensor and redundant motion capabilities. Assumptions about the environment and
the object to model are kept minimal in order to allow a greater flexibility of the
designed algorithm.

Regarding the model itself, we aim to build a rough 3D estimation of the target
object surface, and, at the same time, gather a set of 2D visual features on its
surface from different viewpoints, as illustrated in Fig. 5.11. The obtained model is
supposed to serve different purposes in future works:

e Collision avoidance. Especially if the object is relatively large and/or have a
complex shape where a simple bounding box approximation would include an
unnecessary large amount of empty space.
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e Manipulation task. A model providing a precise enough 3D surface, even if not
completely accurate, can allow the efficient planning of various grasp-related
tasks such as the grasp position on the object, the gripper pose, etc.

o Fust detection of the object. Given a set of 2D visual features which have
particular robustness properties, e.g. SURF [Bay 2008], we can quickly process
images of some unfamiliar settings in order to detect the presence and position
of the model.

e (Object pose estimation. Given an image and the visible 3D surface of an
object, two methods can be used to recover the object pose based on its
known model. We can compare the visible 3D surface with parts of the model
surface using methods such as the Iterative Closest Point (ICP) algorithm
[Chen 1991] [Besl 1992]. Or we can detect some visual features on the target
object, match them with features in the model, and check the 3D coordinates
of the matched features in the model.

Following most works in the NBV field for object reconstruction and environment
exploration, the model 3D surface is modeled as an occupancy grid, also referred as
vozel grid in some works.

The visual features should be robust to various modifications of the perception
modalities while allowing relatively fast detection and recognition. Throughout this
work, we do not set more specific conditions on the type of region detectors and fea-
ture descriptors that can be used. Thus the implementation can rely on Shi-Tomasi
features [Shi 1994], SIFT [Lowe 2001|, SURF [Bay 2008], MSER [Matas 2002|, etc.

Regarding the modeling process, this thesis is driven toward the practical real-
ization of a fully autonomous modeling experiment using a HRP-2 humanoid robot.
The entire process requires the tight integration of a number of different but comple-
mentary software components, many of them being at the cutting edge of robotics
research. A detailed presentation of the experiment is presented in section 1.3.3,
after the review of our working hypotheses.

1.3.2 Hypotheses

Due to the hardware and software components which we rely on, some restrictions
on the working conditions need to be set. These depends on the specificities of the
HRP-2 robot as well as the current state of functionalities of some key software
components developed by other researchers. The assumptions made for the efficient
realization of the modeling experiment are:

1. A wide-angle camera is available in order to perform vision-based localization.
This is necessary to have an overview of the environment in order to facilitate
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the localization of the robot. When the object model is updated using images
from new viewpoints, the robot pose relatively to the object pose must be
as precise as possible. The wide-angle camera can also be used to detect the
target object position and detect features on its surface.

. A depth map can be computed. In order to build the object 3D model, we need

to use a specific sensor which can provide the visible 3D surface. The sensor
can be a laser scanner, IR range sensor, etc. In the case of HRP-2, we use the
narrow-angle stereo cameras embedded on the side of the head. A stereo rig
has the advantage that we also have the color information that can be used
for visual features detection and recognition.

. Robot model is known. The geometrical model of the robot is known as well as

various information such as joint and torque limits, kinematics, characteristics
of the embedded cameras, etc. This is necessary to compute valid and useful
postures.

. Known environment. We consider that a geometrical model of the environment

is available so that we can compute collision-free postures and motion trajec-
tories for the robot. Some known landmarks in the environment can also be
present in order to help the robot localization process. Finally, the assumption
that the environment is known is necessary to discriminate it autonomously
from the target object to model.

. Static environment. We do not yet consider the presence of dynamic objects

in the environment. Nevertheless, in some specific conditions, it is possible to
allow some changes. For example, the environment model can be modified if
no visual occlusions and no obstacles on the robot trajectory appear between
the moments when the robot compute a new posture and when it reaches this
posture.

. Flat floor. Though a number of software component can deal with uneven

floor, the current pattern generator used in our experiment restricts the step
sequences to a flat floor.

. The object to model has a known position and an approximate size. We assume

that the unknown object has been detected in some preliminary phase that
is not addressed in this thesis. This detection phase outputs the location of
the object in the environment model and also gives a first approximation of
the object size. These assumptions are used to initialize the parameters of the
occupancy grid used to model the 3D surface of the object. We note that these
assumptions are not critical for our algorithm and thus it is possible to start
with a specific grid size and position, and include additional occupancy grids
in places where parts of the object are getting larger than what expected.
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8.

The object is textured and its surface is lambertian. Due to the characteristics
of the vision system used, we rely on the object texture to model its 3D surface
and detect some visual features. To reduce the influence of the lighting condi-
tions on the appearance of the object, we require the object surface material
to have a low light reflection coefficient.

1.3.3 Modeling process

The practical application that we aim in this work begins with the humanoid robot
facing the unknown object to model. During our modeling process, the algorithm

loops through a sequence of successive steps:

1.

2.

Get the depth map from the actual viewpoint.

The filtered depth map is processed with a Sobel operator to create a normal
map, following a common method used in computer graphics to perform bump
mapping [Hertzmann 1999|.

Detect visual features on the perceived envelop of the object and compute
their normal vector.

. The voxels of the occupancy grid are compared with the depth map in order to

realize a space carving operation and thus update the 3D model. Each voxel
is set to one of the 3 states: empty, known (i.e. perceived from the camera)
or unknown (i.e. occluded by known voxels or out of the field of vision),
similarly to approaches such as Sanchiz and Fisher [Sanchiz 1999]. Actually,
our algorithm only needs to take into account the voxels on the model surface
being build, i.e. known or unknown voxels which have at least one empty
neighbor voxel. Each visual features detected previously is attributed a normal
vector using the normal map.

. The resulting occupancy grid is given as an input to our NBV algorithm. This

one will search for a target robot head pose considering the current model as
well as some constraints related to the use of a humanoid robot.

The modeling task stops in two cases: the model is considered finished when
(i) the prediction of unknown to be perceived falls under a desired threshold
value, or (ii) this amount cannot be reduced after a pre-defined number of
successive poses. In the second case, we acknowledge the fact that the model
is incomplete but good viewpoints are considered to be out of reach from the
robot.

A whole body robot pose is then generated using a Posture Generator detailed
in chapter 2, section 2.1.1.
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8. A collision-free step sequence is computed to move from the current position
to the generated one.

9. The robot moves from the current posture to the generated one. The robot
motions are executed through a sequence of tasks controlled by generalized
inverse kinematics.

10. Evaluate the robot pose relatively to the object based on visual cues in the
environment and the object.

11. If necessary, modify the walking motion to reach the computed pose.

12. go back to (1).

1.3.4 Scientific interest

The main originality of this work comes from the solution given to generate viewing
postures for a humanoid robot considering its incremental knowledge of the envi-
ronment and the object of interest.

Chapter 2 presents a first approach which formulates this visually-guided posture
generation in a coherent manner by implementing an original evaluation function of
the visibility of a 3D model. This specific approach relies on an existing software
component in our laboratory which allows the fast generation of constrained postures
for HRP-2. The algorithm details a local NBV search based on the 3D surface
visibility of the object while satisfying the robot constraints.

Chapter 3 introduces another approach to the NBV problem adapted to a hu-
manoid robot. This original algorithm is inspired by works from Sanchiz and Fisher
[Sanchiz 1999], as well as Triggs and Laugier [Triggs 1995|, and implements a global
approach more robust to local minima in the object visibility estimation function.
In this approach, our visual model is built through the repetition of two main pro-
cesses: considering the current knowledge of the object, a preferred viewpoint is
deduced in order to reveal occluded volumes of the object while taking into account
the constraints related to the embodiment of the vision sensors in the humanoid
head. Then a whole robot posture is generated using the desired head pose while
satisfying several constraints: static stability, collision avoidance, etc.

Chapter 4 presents our investigation over various vision algorithms which are
required for the experimental realization of the autonomous modeling application.
More specifically, we detail our technical approach to model the object, as well as a
number of methods to localize the robot relatively to the object.

Finally, chapter 5 details the complete practical realization of the autonomous
reconstruction of an object. In particular, we present the tight integration of our
NBYV solution with other recent works relative to path planning and control in order
to execute the modeling task using an HRP-2 robot.
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We describe here a first algorithm aiming at generating a realistic pose for HRP-2
which maximizes a vision-based criterion. In this chapter, we focus on a local reso-
lution scheme. The solver that we use works efficiently with C! functions. Therefore
we propose stability constraints and a visual criterion for which an analytic gradient

can be derived.

2.1 Modeling constraints

This section introduces the posture generation scheme developed upon the work of
Adrien Escande. The constraints taken into account in our problem are presented.
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Figure 2.1: Usual constraints to obtain a posture for a humanoid robot: avoid
collisions with the environment, avoid self-collisions, respect joints limits and ensure
stability.

Finally, we review the possible ways to deal with the evaluation of the visibility
of unknown parts of the object. This evaluation is particularly critical for the
appropriate selection of viewpoints.

2.1.1 Posture generation

Our Next-Best-View (NBV) selection procedure specificity consists in taking into
account the constraints on the positionning of the humanoid where the vision sensors
are embedded. The 6 degrees of freedom of the cameras are limited due to the
capabilities of the body in many aspects, even if we do not consider the vision
constraints. For example, the camera cannot be placed at a higher height than
the robot size and it cannot be placed at the same position as an obstacle in the
environment. The constraints we must take into account when looking for a valid
static posture for the humanoid robot are illustrated in Fig. 5.12. They consist
in: staying within joints limits, avoiding collisions and ensuring stability. As such
constraints have a great impact on possible solutions for a viewpoint selection, we are
interested in designing a NBV solution tightly coupled with the posture generation
process. Our NBV problem can then be expressed as the minimization of a criterion
related to the visual data while satisfying some constraints on the robot body.

In this work, the computation of a posture is realized by taking advantage of
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the Posture Generator (PG) proposed in |Escande 2006] and [Stasse 2007|. The PG
addresses the problem of generating a posture by solving an optimization problem:

min f(q) (2.1)

where f is the objective function to be minimized which will be described in para-
graph 2.2.1. X represents the set of constraints on the robot body illustrated in Fig.
5.12. q is a set of parameters defining the posture:

q=[rwe]’ (2.2)

with r the position of the free-floating body, w its orientation, and © a vector
containing all the robot joints angle.

In order to solve this optimization problem, the PG uses the library FSQP
|[Lawrence 1997|, standing for Feasible Sequential Quadratic Programming. This
library provides a gradient-based optimization method. The PG is also composed of
various functions to facilitate the optimization of postures for an HRP-2 humanoid
robot. FSQP can cope with linear and nonlinear constraints formulated as equali-
ties or inequalities. First it tries to satisfy the linear constraints and the non-linear
inequalities constraints, and then tries to solve the non-linear equalities constraints
while minimizing the given objective function. The proof of convergence of the al-
gorithm relies on the assumption that the objective function and the constraints are
formulated as C* functions |[Panier 1987|. However, in practice, C! formulations are
enough for our applications [Escande 2008|. The optimization process is initialized
by using a starting posture and an initial free-flyer position and orientation. In
this work, the default posture is set as a squatting one as it is easier to reach more
challenging joint configurations from this particular posture.

The constraints to take into account in the set X are formulated as:

Omin < O < Opax

dCpin < d(Bi(a), Bj(a)) V(i,j) € C
F(q) = F7(q) =0

d(pe, Fuey) < &

In the first constraint (2.3), Oy, and Op. are two vectors representing each joint
limits.

(2.3)
(2.4)
(2.5)
(2.6)

The second constraint (2.4) ensures the avoidance of auto-collision as well as
collisions with objects in the environment. d(B;(q), Bj(q)) is the C' distance be-
tween two bodies approximated by a specific type of bounding volume introduced
by Escande et al. [Escande 2007|. This distance must be greater than a precision
value dC,,;,. C is the set of collision pairs which are tracked to avoid non desirable
collisions and auto-collisions. These bounding volumes were designed specifically in
order to be included in the PG as it allows a C! formulation of the collision avoidance
constraint.
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The constraint (2.5) imposes to the feet to be on the ground as a first require-
meent to be stable. This is done by ensuring that the height values of the left foot
F; and right foot F). are set to 0.

The static stability of the posture is further enforced by the last constraint (2.6)
where pc = [¢, ¢,|T is the projection of the CoM on the floor, Fj., is the segment
between the feet centers and & is a value small enough so that the CoM cannot be
projected outside of the support polygon of the robot. We can remark that, with
this formulation, the equilibrium is ensured only if the humanoid evolves on top of
a horizontal plane. This assumption is valid in this work as the generated postures
are intermediate points between walking periods, and the pattern generator used for
walking deals only with motions on a horizontal floor.

The constraint (2.6) has been developed for the purpose of this work and is
presented in more details in the following section.

2.1.2 Equilibrium constraint

The robot is required to be statically stable while taking pictures of the object. It
could be possible to build the object while walking. However, when walking, induced
motion might result in a blurred image. This happens especially during the landing
of the foot; resulting impact propagation creates oscillations at terminal points such
as the head, where the cameras are located.

In some previous works [Stasse 2007|, the requirement for stability is ensured by
three constraints and a criterion:

e one constraint sets the feet height to 0, similarly to the constraint (2.5) seen
earlier.

e another constraint sets the relative position of the robot feet.

e the third constraint forces the projection of the CoM to be in the robot feet
support polygon. This polygon has a fixed shape due to the previous con-
straint.

e the criterion minimizes the distance between the CoM projection and the
barycenter of the support polygon.

However this approach has two limitations: (i) the poses of the feet relatively to
each other cannot be modified, and (ii) a margin between the CoM projection and
the edges of the support polygon is necessary in the constraint implementation. In
fact, practically, if pc is close to the limits of the convex hull of the feet, the robot
can be in an unstable position due to the flexibility in its ankles.

The new approach developed is to set the robot stability as a constraint where
the distance from pc to the segment between both feet must be less than a fixed
value &, typically 2cm for HRP-2, as illustrated in Fig. 2.2. This can appear more
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Figure 2.2: New stability criterion: set a maximum distance between the CoM
projection on the floor and the segment between the two feet.

restrictive than the previous approach as pc is constrained to a space much smaller
than what is practically safe, considering a specific feet configuration. But actually,
as the feet relative pose can be freely modified by the solver in the new approach, a
greater number of solutions can be achieved. There are also four more advantages:
(i) we can still express the constraint as a C! function in order to use the PG, (ii)
a dedicated criterion is not required, (iii) we are sure that the posture generated is
stable practically, and (iv) we do not rely on manual inputs from the user to set the
feet relative position.

2.1.2.1 Mathematical formulation

The formulation of the equilibrium constraint can be expressed in a 2D coordinate
system as we consider only standing postures on a horizontal floor.

First, the distance between the CoM projection, pc and the segment between the
robot left foot center pF, = [F{® FY]" and right foot center pF, = [F* F¥]" needs
to be computed. This distance is noted g(q) and thus the constraint to comply with
is: g(q) <&, with & a pre-defined threshold. When a specific robot pose results in
a g(q) distance small enough so that the CoM projection stays inside the support
polygon, including a margin of error, then the robot stability constraint is solved.

The computation of g(q) depends on the relative position of the three points pc,
pF, and pF,. Three distinct cases are possible: the closest geometric object to pc
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is (i) pF,, (ii) pF, or (iii) the segment between pF, and pF,. For a given posture,
the case encountered, i.e. the formula to use for the distance computation, can be
found by analyzing the point ps, the projection of pc on the segment F.,. The
value of ps can be computed by relying on «, the length of the segment between
pF, and ps, and thus using the following two formulas:

ps = pF; +a, (pF, — pF)) (2.7)
(pc —ps) - (PF, —pF;) =0 (2.8)
By replacing ps in (2.8) by its expression (2.7) we can find the value of «,

. _ (pc—pF) - (pF, — pF)) (2.9)
! | pF = pF |

The value of o, defines the closest geometric object cg to pc in the three possible
cases:

1. if a, < 0= cg(q) = pF,(q)
2. if o, > 1= ¢g(q) = pF,(q)
3.if 0 <, < 1= cg(q) = ps(q)

In our work, the stability constraint is expressed as the square distance between cg
and pc:

g9(a) = (pe(a) — cg(a)) " (pe(a) — cg(a)) (2.10)

The Euclidean distance is not computed in order to avoid a costly computation of
a square root which is not needed; it is only necessary to check that g(q) is below
a defined threshold slightly smaller than the square of half the width of the robot
foot to ensure stability.

2.1.2.2 Gradient formulation

In order to generate a pose which satisfies our stability constraint, FSQP relies on the
partial derivatives formulation of the constraint. Three formulations are possible,
depending on the value of . For simplicity, let us write ¢g(q) = dg(q)/0q.

From (2.10), the gradient is formulated as:

9(q) = 20(q)o(q) (2.11)

with
o(q) = pc(a) — cg(q) (2.12)

and
o(q) = pc(a) — pFi(q)  ifa, <0 (2.13)
o(q) = pc(q) — pF,(q)  ifa, > 1 (2.14)

o(q) =pc(q) —ps(q) ifl1>a,>0 (2.15)
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Figure 2.3: Example of stable poses generated with the new stability constraint.

By solving these three formulas, we can verify the gradient continuity by ensuring
that (2.13) and (2.15) are equivalent to the same expression when «,, = 0, and that
the same is true for (2.14) and (2.15) when «,, = 1.

2.1.2.3 Tests

The stability function was tested using a separate simplified problem. A robot pose
is generated taking into account the following constraints: collisions, joint limits,
feet on the ground, and the constraint that the robot camera must be looking at
a specified point using a specified view direction vector. By modifying the target
point and view direction vector, we checked that the different poses obtained have
the projection of the CoM on the floor lying close enough to the segment between
the feet contact point.

Simulations under various conditions validated the new constraint formulation
and some postures were verified with a real HRP-2 robot. Examples of poses gen-
erated with the real robot are shown in Fig. 2.3.

2.1.3 Unknown representation

Many Next-Best-View algorithms rely on an approximation of position and quantity
of the object unknown parts to compute a solution. For the objective function in the
PG, we want to maximize the area of unknown voxels that will be visible from the
next robot pose in order to reduce the number of required viewpoints to complete the
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object model. Such a function formulation depends directly on the representation
of the object.

In some works (|Pito 1999, |Li 2005]), the envelop of the object is represented
as an aggregation of planar surfaces, usually triangles. This is the usual rendering
method for displaying 3D objects which is well supported by available libraries and
hardware. The problem though is that it is not trivial to get a C! formulation using
planar surfaces. Thus such a representation cannot be integrated in the PG directly.

Others works (|[Whaite 1997b|, [Dune 2008|) have used a parameterized surface,
such as quadrics and superquadrics, to caracterize the object surface. A proper
formulation for the PG is then possible but we are limited to objects with simple
shapes in order to have a meaningful approximation. Indeed a problem arises if
we want to deal with complex objects which present concavities; we must then use
many parameterized surfaces and have to deal with many possible self-occlusions.
In such cases, the quantification of the visible area using a C! formulation might not
be possible.

Further analysis of these two kinds of representation may lead to exploitable
solutions that can be integrated in the PG. Nevertheless, in this thesis, we focus
on representations directly related to occupancy grids. This choice is motivated by
a concern to ensure continuity with previous works in the laboratory [Saidi 2007h|
[Saidi 2007a| [Stasse 2007| dealing with occupancy grids in the contexts of environ-
ment modeling and visual search. Three rendering methods have been considered:
3D cubes, 2D polygonal projections of cubes on the camera plane and 2D Gaussians
on the camera plane.

2.1.3.1 Cubes

The first considered representation is the occupancy grid which has already been
used by previous authors ([Connolly 1985], [Banta 1995], [Banta 2000]). The occu-
pancy grid, as illustrated in Fig. 2.4, is a discretization of the part of the 3D space
where the object of interest is contained. The object is then approximated by a set of
cubes which can have different properties such as color, normal vector, empty /filled
status, etc. Depending on the object shape, the number of voxels needed to repre-
sent it can be reduced by using octree structures [Connolly 1985]. We can note that
this approach is adapted to commonly available libraries such as OpenGL in order
to take advantage of graphic hardware to speed up rendering computation.

However the main problem with such a representation is that the object surface is
represented by planar surfaces and thus formulating a C! evaluation of the visibility
of a specific area is difficult; the area of unknown voxels visible corresponds to a sum
of related pixels in the framebuffer of the rendered object, which is a non-continuous
quantity.

Though cubes cannot be used directly in the PG, we can still rely on such a repre-
sentation to compute an auxiliary Next-Best-View solution which relies on a different
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Figure 2.4: Using an occupancy grid to represent a 3D object.

optimization process; then the result can be integrated with other constraints in the
PG in order to get the final posture. This approach has been developed during this
thesis and is described in chapter 3.

2.1.3.2 Polygons

In a different approach, also relying on the occupancy grid but trying to tackle the
continuity problem, voxels are still represented by cubes but we consider mainly the
projections of the voxels faces on the camera image plane. Each voxel projection
can then be represented by a polygon whose area can be computed analytically from
the voxel vertices 3D coordinates. It is also possible to use an octree structure to
represent the original object in order to speed up the computation. Using such a
formulation, the amount of unknown visible is equal to the sum of visible polygons
surface of unknown voxels. To compute the total area, we rely on an algorithmic
process which runs as detailed in Alg. 1. The intersection of polygons can be
computed using the General Polygon Clipper (GPC) library [Vatti 1992|. The area
of a non-intersecting polygon, defined by N 2D points (X,Y’), can be computed
using the following formula:

i

Aj B XkYk—i-l - Xk—l—lY;c with (XN> YN) = (Xo, Yb) (216)
0

B
Il

Though the implementation of the visibility evaluation is straightforward, a for-
mulation that relies on polygons rendering has 3 disadvantages:
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Algorithm 1 Unknown visible area computation based on polygons
1: area < 0
2: for each voxel do

3:  project voxel corners on camera plane
consider polygon formed by convex hull of these projections
if polygon is outside of camera image then

if polygon intersects with image boundaries then
truncate polygon

: Sort polygons from nearest to farthest from camera
10: for each polygon j do

4
5
6: remove polygon
7
8
9

11:  if polygon is related to known voxel then
12: check next polygon

13:  find polygons which occlude j

14:  update j by removing occluded parts

15:  compute A;, area of j

16:  area < area + A;

17: return area

Voxel

Camera
trajectory

Camera views

Area

Camera position

Figure 2.5: Area of a voxel visible depending on camera trajectory.
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Figure 2.6: Principle of voxel rendering using Gaussians.

e The computation time is much bigger than rendering pixels using dedicated
hardware as it is necessary to compute the polygonal projection of each cube
face and then test for occlusions.

e The final formulation of the unknown area surface is changed depending on
events such as the appearance or disappearance of self-occlusions. Thus an
approximation of its gradient is difficult to formulate.

e As illustrated in the simple example in Fig. 2.5, the gradient is not continuous
everywhere. The visible area varies linearly but the linear equation of the
variation changes abruptly each time a cube face appears or disappears.

For these reasons, the quantification of unknown using polygons has not been further
investigated during this thesis.

2.1.3.3 Gaussians

In the Gaussian approach, we consider the projection of voxels on the image plane
as 2D Gaussians. Our new function, developed during this thesis, is inspired by the
splatting algorithm [Westover 1989] where a voxel projection on the image plane
is represented by a pre-defined kernel. Westover’s algorithm aims at rendering 3D
scenes by aggregating on the framebuffer depth-sorted 2D functions representing the
projection of voxels.

In our case, the voxel is considered as a fuzzy sphere and thus the kernel is a
2D Gaussian function, as illustrated in Fig. 2.6 for the 1D case. With such an
assumption, it is possible to obtain a function which is at least of class C! and which
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can be used as a criterion to minimize in the PG. The next section introduces our
original formulation based on Gaussians.

2.2 Next-Best-View local selection relying on the
gradient

This section introduces a first solution to the NBV problem which can be used inside
the PG in order to ensure that the resulting viewpoint satisfies the constraints on
the humanoid body. This solution relies on a Gaussian representation of the visual
data in order to get the C'! formulation required by the PG.

2.2.1 (" objective function for the Posture Generator

In the present formulation, a voxel is considered as a sphere and its influence on any
pixel (z,y) in the resulting image is expressed as a 2D Gaussian function:

Gi(q) = exp (—0.5 ( Gl X*;l))? I 3/"(2»2)) (2.17)

oi(q) oi(q)

(Xi(q),Yi(q)) are the coordinates of the perspective projection of the voxel i center
V,; on the camera image plane with respect to the current state vector of the robot
q. They are computed relatively to the camera focal length f, its position C(q) and
its orthonormal basis vectors (e, €;, ex):

Z(a) = (V. ~ Cla)) - (219
Nta) = e (2.19)
Via) = (220

0i(q) defines the Gaussian dimension and is directly related to the fixed size of the
voxels, noted o:
(2.21)

The o constant is defined proportionally to the size of the world subspace discretized
by the occupancy grid and the grid resolution.

In order to measure the visibility of unknown voxels, we need to distinguish them
from known ones in our formulation and occlusions must be taken into account. The
first issue is simply solved by setting a parameter S; to each voxel based on their
status:

1. if V; is unknown = S; =1
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2. if V; is known = S; = —1

3. if V; is empty = S5; =0

To help dealing with occlusions, a weight is defined for each voxel depending on
their distance to the robot camera. This weight increases when the voxel is closer

to the camera:
Zz' - me 2
Di(q) = exp (—ad (—Zni?j— me) ) (2.22)

The weight value depends on three values arbitrarily set: o4, Znin and Zpax.

The o4 parameter influences the discrimination based on distance. A small value
results in a poor discrimination while a large value excessively reduces the influence
of voxels relatively far away. Thus we typically set o4 = 20.

Zmin and Z .« are parameters delimiting the maximum and minimum distance
between the camera and the object voxels. These parameters help to influence
further the distance-based discrimination but must be coherent with the allowed
robot movement space and the relative object position and size.

We can remark that some theoretical limits are set depending on the sensor
specificities. In the case of a stereo rig, the limits depend on the intersection of
the space that is visible by the two cameras. Practically, though, it is preferable to
have a reduced interval by setting a smaller value of Z,,, in order to have a better
discrimination.

Finally another coefficient is added to enhance the voxel occlusions handling by
using the voxel normal vector n;. We consider that if the normal vector of a voxel
is pointing away from the camera, then it belongs to a part of the object that is not
visible. The dedicated coefficient is then formulated as follows:

Ni(q) = exp <—0.5 (n;—i“_l)j (2.23)

The o, parameter is chosen so that angles greater than 90 degrees between n; and
—ey are close to 0, e.g. 0.4.

For each pixel in the camera image, we set together these coefficients:

Pyy(q) = Z S; Gi(q) Di(q) Ni(q) (2.24)

The sign of P,, is supposed to depend on the status of the closest visible voxel
projecting at x,y. In some cases where one voxel with a specific status occludes
many neighboring voxels of the other status, the sign of P, , may not reflect the real
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occlusion. To minimize this problem, only voxels on the perceived envelope of the
object are considered. This also has the advantage of speeding up the computation.

By thresholding P, ,, we can find the pixel contribution on the total area of
unknown that is currently visible. The continuous threshold function used is a
sigmoid defined as:

T(r)=(1+exp(—aT))”" (2.25)

The « parameter influences the slope of the sigmoid. In our case, a large value
is required to be discriminant enough but not too much so that discontinuities
introduced by number coding precision can be avoided. Typically we use o = 107.
Using this function, negative values of P, , are set close to 0, i.e. voxels occluded
by a known one are not counted in the total area sum.

The total area is then expressed as:

Nrla) =SS T (Poy) ) (2.26)

z=0 y=0

W is the image width and H its height. Due to the use of Gaussian functions,
P, ,(q) can result in a small positive value in the image parts where no voxels are
projected, thus an arbitrarily defined £ term is used to set such values close to 0
through the threshold function. Typically we set ¢ = 1074

The projection process expressed by our formulation is illustrated in Fig. 2.7 for
a simple 2D case.

2.2.2 Gradient formulation

In order to find the robot pose which will lead to the best visibility of the unknown
parts of the object considering all other constraints, an objective function to min-
imize is required. The PG seeks an optimal value by using the objective function
gradient. In our case, A;n(q) is used with a negative sign so that the minimum
values relate to the biggest amounts of unknown area visible. The gradient is then

P w H
— Awor(a ~3q PIDINA —¢) (2.27)

z=0 y=0

expressed as:

A common multiplier to all partial derivatives can be found by developing the equa-
tion above:

W H
~ Al == ) @y * e (2:28)

P,y (q) = — Z S; Gi(q) Di(q) Ni(q) ¥(q) (2.29)
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Figure 2.8: Influence of the C' function parameters on the unknown area visibility
estimation.

with
¥ (q) (= Xz(‘l)z) + (g Yi(q))
il ) (2.30)
04 (Zz(q) - Zmin) + (ni - —€k — ]-)
(Zmax - Zmin)2 2072L

As the function depends only on the robot head position and orientation, we can

first compute the partial derivatives of the function relatively to the robot head pose
(q) V() 9¥(aq) .. q 9%

oCc ? 8ei ’ 8ej 8ek
then be expressed as:

¥(q) = a\;((jq) a\;é?) agé?) a;jés)] Céi 6 e'kr (2.31)

. The partial derivative relatively to the robot pose can

The gradient continuity was verified by developing all partial derivatives.

2.3 Tests of the objective function

This section presents various analyses of our formulation A;,(q) to assess its va-
lidity, verify its properties and test its limits. This is done by conducting different
experiments in simulation using various objects, mixing simple and complex shapes.

2.3.1 Function parameters

The unknown quantification function contains various parameters that need to be set
manually. As the result of the function is a 2D image directly related to the object
image perceived by the camera, these parameters can be tuned experimentally from
the obtained images. Fig. 2.8 presents some samples of images computed depending
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3916 voxels | 15268 voxels | 65726 voxels

200 x 200 pixels 11s 38s 142s
300 x 300 pixels 25s 865 314s

Table 2.1: Computation time table for the function depending on the sampling size
and the number of voxels.

on different parameters values. On the left of the figure are the original image,
the carved image rendered using OpenGL with known voxels in blue and unknown
voxels in green, and the result of our function using the following default parameters:
o =10, 04 =20, « = 107" and ¢ = 10~%. Quantitative results for o4 < 15 show
that occlusions by known voxels are not correctly rendered when a relatively large
amount of unknown voxels is behind. On the other hand, distant, but not occluded,
voxels may not appear with a large o, value. Small values for a and ¢ create a
background noise, rendered in light gray in the figure, as the values of the function
P, ,(q) get close to 0, resulting then in T'(P, ,(q) —¢) = 0.5. Large values for ¢ make
the function too restrictive. Setting « to a large value gives a correct rendering but
the function reacts as a discrete function with higher variations of the gradient.

2.3.2 Computation time

The complexity of our formulation depends on the sampling of the camera image
and the number of voxels. It can thus be expressed as O(n®). Practically, for an
accurate result, the process involves a high number of samples and voxels. Some
examples of computation time to evaluate the unknown area are presented in table
2.1 for 3 objects with different number of voxels and 2 different image sizes. Tests
were performed with a C implementation of the algorithm on an Intel Xeon 3.2GHz
processor with 1GB of RAM. Some basic techniques were applied to reduce the
computation time: only pixels of the image which are close to the projection of
the voxel center are considered, and a parallel implementation of the algorithm was
realized with 2 threads.

2.3.3 Comparison with OpenGL rendering

To ensure that the function optima are linked to the same camera poses as those
of a traditional rendering method, we implemented a point-based rendering with
OpenGL where voxels are displayed on the screen as points with a fixed size. Though
it is not an accurate method, as the size and shape of voxels does not change
depending on the distance and orientation of the camera, the approximation is
still good enough to result in a satisfying rendering of an object. An example of
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Figure 2.9: Left: setup to test the function variations relatively to the camera
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movement around a sphere. Known voxels are represented in blue and unknown
ones in green. Right: comparison of the amount of unknown area visible depending
on camera position for our evaluation method and a basic voxel rendering method.

test setup is illustrated in the left part of Fig. 2.9 where the camera is translated
around a sphere which has been carved once. Known voxels are represented in
blue whereas unknown voxels are in green. The camera location and orientation
is represented as the black coordinate system. The camera is then moved on the
X or Y axis. The corresponding results, obtained with the default parameters for
the function, are shown in the right part of Fig. 2.9. Though the resulting values
are not equal between the 2 methods, the overall variations of the 2 curves match
and both methods detect the optima in the same positions. This confirms that our
function gives a consistent approximation of the unknown visible area.

2.3.4 Unknown representation comparison

We compared the rendering results for different representations of the 3D data.

The polygon representation is compared with the C! function and a simple point-
based rendering of the voxels using OpenGL. We also included a sampled version
of the polygon approach, where polygons are displayed on the camera image and
the unknown area that is visible is quantified as the number of corresponding pixels
displayed. Evaluation results with the 4 methods are displayed for a small translation
of the camera in front of a single unknown voxel in Fig. 2.10.

For our C! function and the OpenGL method, the evaluation should be constant,
as the distance between the camera plane and the voxel does not change. Never-
theless oscillations appear mostly due to appearance and disappearance of pixels,
highlighting the problem with pixel-based rendering approaches.

The polygon approach gives results consistent with the expectations. As this
formulation does not rely on a threshold function nor any sampling, problems due



2.3. Tests of the objective function 51

0.1328 | ' ' ' ' ' E
0.1322
0.1316
0.131
0.1304

0.10689
0.10688
0.10687
0.10686
0.10685 - b

0.00496 b
0.00494
0.00492 B

0.0049 I .

0.1231 | .
0.1229 - _
0.1227 b

0.1225 E ; } L I L I
0.0014 0.0015 0.0016 0.0017 0.0018 0.0019

Figure 2.10: Comparison of rendering methods for the evaluation of an unknown
voxel visibility relatively to the camera position. A single voxel is displayed and the
camera is translated in the Y axis. top: OpenGL. 2" row: C' function. 3¢ row:
Discretized polygon. bottom: Polygon.
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Figure 2.11: Close-up of area and gradient depending on the camera position on the
Y axis.

to discretization are not present. Indeed the evaluation is constant when only one
face of the cube occludes all the others, then it increases linearly when a side face
becomes also visible.

The discretized polygon method would ideally stay constant then increase in a
series of stair steps but the sampling introduces oscillations.

2.3.5 Gradient evaluation

Though the function has an overall evolution matching our expectations, the gra-
dient has a higher variability than expected. In fact, at smaller movement scale
than presented in the previous section, the function shows abrupt variations of low
amplitude. A typical example of this problem is illustrated in Fig. 2.11 where the
conditions are the same as in the previous section. It appears that the cause of such
variations comes from our formulation which relies on a sampling of the data by
using the result image pixels. In fact, the values of some pixels can change dras-
tically during small movements of the camera around the object. Small variations
in camera pose can result in some parts of voxels becoming visible whereas other
parts become occluded or out of the visual field. The camera pose relatively to the
object and the object specificities can influence the rate at which the value of differ-
ent pixels in the resulting image can increase or decrease, as it is clearly shown in
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Figure 2.12: Example of a generated pose after one iteration of our NBV algorithm.
The object to model is a sphere which has been perceived once from the initial pose.

Fig. 2.10. Unfortunately this affects badly the optimization process which therefore
cannot converge properly, and reflects in the computation time needed to find a
solution.

2.3.6 Pose generation

We tested our posture generation solution in simulation using various virtual objects,
including the sphere shown in Fig. 2.9 and the soldier shown in Fig. 2.8. Two main
problems with our criterion (2.26) need to be faced: (i) the computation time,
as it takes from a few seconds to a few minutes to compute an area or a gradient
depending on the number of voxels to process, and (ii) the presence of many possible
local optima. When seeking a global optimal solution, these problems lead to a
processing time, in order to generate a pose, between several minutes to a few hours.
In such experiments, the optimization algorithm can solve all constraints efficiently
but gets stuck in one of the objective function local minima, relatively far from any
obvious better solution. Thus a complete modeling process cannot be achieved in
an acceptable amount of time using this criterion alone. Fig. 2.12 gives the result
of a typical pose generated from the initial robot posture in front of the object. The
humanoid moved about 1m from its starting position and correctly oriented itself
toward the object. As it can be noticed, though, further movements on the side
would lead to a much higher amount of unknown visible area.
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2.4 Conclusion

In this chapter, we presented a first solution to the Next-Best-View problem which
tackles the constraints of the humanoid robot body. The described solution relies
on the specificities of the Posture Generator which uses formulations which are at
least C! for the constraints and the objective function.

The proposed algorithm can generate statically stable postures without con-
straining the feet relative position thanks to a new equilibrium constraint.

An original formulation of the visibility of 3D data, adapted to the PG, has been
introduced which results in rendering results that are consistent with traditional
methods. Though it aims at solving the NBV problem while taking into account
the constraints on the robot body in one coherent step, it has a relatively high
computation cost and it also presents high variations in the gradient which result in
convergence problems to generate a posture. Moreover it is difficult to put additional
vision constraints in such a formulation.

Though the main cause of limitations for our C' function is now well understood,
we could not find a way to modify the formulation in order to decrease the amount
of local optima without increasing the computation time, for example, by increasing
the sampling frequency.

For these reasons, we designed and tested another approach, presented in the
next chapter, to the formulation of the NBV selection which does not rely on FSQP.
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This chapter introduces another original approach to the NBV problem for au-
tonomous object modeling which also tackles the constraints on the humanoid body.
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The new algorithm aims at solving the problems induced by our C! formulation of
unknown visual information visible detailed in the previous chapter: (i) the slow
convergence due to the presence of local minima and (ii) the high computation time
for each viewpoint evaluation. To avoid these problems, we remove the reliance on
a C! formulation for the evaluation of visual data by moving this evaluation process
out of the Posture Generator. The generation of the robot posture is then done in
two steps:

1. We find a camera position and orientation that maximizes the amount of
unknown visible while solving specific constraints related to the robot head.
Various visual constraints can also be introduced to enhance the robustness
of the algorithm. The search involves the evaluation of a great number of
viewpoints, typically few thousands, in order to cope with a possibly great
number of local minima depending on the object shape complexity.

2. We generate a whole-body posture for the robot by considering the desired
viewpoint found in the first step as well as additional constraints related to
the humanoid body. In the cases where a posture cannot be generated in the
second step, we modify some conditions in the first step and launch the process
again.

Though these two steps could be more tightly coupled, e.g whole-body postures
are generated for each viewpoint tested, this would result in a great increase in the
convergence time as both steps’ computation time would be multiplied instead of
being added.

Though most works in the NBV field have offered different solutions for the first
step, we designed an original algorithm in order to cope with restrictive common
assumptions, and in order to deal with the second step constraints. For example, as
seen in chapter 1, various works in the litterature reduce the problem dimensionality
by constraining the sensor position and orientation, and sample the configuration
space in order to retrieve a solution in an acceptable amount of time. By using a
Graphical Processing Unit (GPU) and recent optimization algorithms, though, it is
possible to relax these assumptions while keeping a reasonable computation time.

We introduce this two-steps NBV algorithm, illustrated in Fig. 5.13, in order to
broaden the types of object to be modeled while taking into account the constraints
related to the use of a humanoid robot. Moreover the algorithm can be easily
adapted to a broader range of problems such as the exploration of an unknown
environment.

We propose to solve the first step by using a global sampling coupled with
NEWUOA [Powell 2004], an optimization method adequate for noisy functions. The
properties of NEWUOA allow us to broaden our choice for the practical quantifica-
tion of visual information as detailed in section 3.1. The objective function given to
NEWUOA is detailed in section 3.2 and the viewpoint serach process is presented
in 3.3.
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Step 1: find the constrained head pose (6 dof) Step 2: generate posture (36 dof)
using NEWUOA, based on visual information using FSQP, based on body constraints
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Figure 3.1: Two steps to generate the next posture to update the object model.

The second step is solved using the Posture Generator presented in the previous
chapter with the same constraints. The objective function is replaced with a function
that sets the robot toward a desired posture and thus acts as an esthetic criterion.
We then add a constraint to set the robot head in the configuration found in the
first step. The second step is detailed in the section 3.3.3.

3.1 Basis for viewpoint selection

Before the presentation of the details for the first step realization, we need to intro-
duce the basic foundations to find an adequate viewpoint in the first step. First we
examine briefly the specificities of the NEWUOA algorithm which is used to evaluate
an original objective function in order to find a viewpoint. Then we review possible
quantification methods to evaluate the amount of visual data of interest depending
on the camera viewpoint. We focus on methods that are adapted to NEWUOA and
efficient in terms of computation time.

3.1.1 NEWUOA optimization method

NEWUOA (NEW Unconstrained Optimization Method) [Powell 2004] is a local
derivative-free optimization method. The search for an optimum is done by con-
structing and updating a quadratic approximation of the objective function through
a deterministic iterative sampling. The process to find a local minimum is illus-
trated in Fig. 3.2. The sampled vectors at each step in the NEWUOA search
process are selected according to the previous sampling results and the actual state
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Figure 3.2: NEWUOA method to find the minimum of a non-differentiable function.

of the quadratic approximation. A spherical trust region must be defined using
two radius parameters: pp, and penq, and a given starting vector which will be the
camera pose in our case. The parameter py, sets the maximum variation that can
be taken by the objective function variable for the initial quadratic approximation.
The parameter p.,q sets the desired accuracy of the optimum search. We can remark
that the trust region influences the sampling process but it does not limit it. Indeed,
depending on the quadratic approximation found, vectors outside of this region can
be tested and selected as the optimal found.

NEWUOA has the advantages of being fast and relatively robust to noise while
allowing us to keep the 6 degrees of freedom required for the viewpoint selection.

3.1.2 FEvaluation of the unknown visible

As we do not rely anymore on a function inside the PG to evaluate the visibility of
the object, we can use a quantification of visual information which uses traditional
rendering methods. In this approach, the estimation of unknown data visible from a
specific viewpoint is based on the visualization of the current occupancy grid. It can
be computed quickly by taking advantage of current hardware acceleration through
the OpenGL library. As we have seen in the section 2.3.4 of chapter 2, pixel based
rendering methods introduce oscillations of small amplitude and high frequency in
the measured quantity. But such oscillations have only a negligible influence on
the convergence of NEWUOA when the variations of the measurements inside the
trust region are greater than the oscillations. We thus consider such approximate
representation to be a useful indicator to find a good viewpoint.

Two practical quantification of the visible area are possible with a hardware-
accelerated rendering of an occupancy grid, as illustrated in Fig. 3.3:



3.1. Basis for viewpoint selection 59

Results on the camera screen

Unknown voxels

Known voxel —

Viewpoint \

111111

Figure 3.3: Practical quantification of unknown data visible for an occupancy grid.
We can set all unknown voxels to the same color and count the number of corre-
sponding pixels (top), or set a different color to each unknown voxel and count the
number of different colors (bottom).

1. pixel-based: the number of pixels visible which are related to the unknown
voxels are counted. This is easily implemented by setting all unknown voxels
to the same color, e.g green, make sure all other displayed objects have a
different color, and counting the number of green pixels in the result image
taken from the current viewpoint. The problem is that it tends to attract the
camera unnecessary close to the object; The camera image can be filled by the
pixels from the desired type though only very few voxels are perceived.

2. voxel-based: the number of unknown voxels visible are counted. An efficient
implementation, which relies on the GPU, assigns a different color for each
unknown voxel while all other objects and known voxels share the same color
as the background. The area of interest is then equivalent to the number of
different colors displayed. This limits the number of unknown voxels to the
number of colors that can be used, e.g 256% — 1 for RGB 24 bits rendering, but
this limitation is enough in practice; Even with large occupancy grids of di-
mension 5123, only voxels corresponding to the object surface or the occupancy
grid surface are displayed.

This quantification method though has the opposite problem compared to the
pixel-based method: the camera tends to be too far away from the object.
Indeed, due to the perspective projection, more voxels can be visible from
farther position but then most of them appear unnecessary small.

We choose to mix the two quantifications in order to increase the number of voxels
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visible while having a minimum visibility for each voxel. The amount of unknown
visible, noted N,, is set as the number of unknown voxels visible, but a voxel is
considered visible only if the number of corresponding visible pixels is above a defined
threshold, typically 5. This ensures the robot is neither too close nor too far from
the object.

Our viewpoint selection problem thus relies on the maximization of N, (or more
precisely, the minimization of —/V,) while satisfying other constraints.

We can note that a more accurate shape of the object, based on triangles instead
of voxels, can be used also for a hardware-accelerated evaluation of visible areas. In
our case, though, we rely on an occupancy grid to update the shape of the object
through the space carving algorithm. We thus choose to work directly with the
occupancy grid in order to reduce the computation cost as we avoid the conversion
of the object model from voxels to triangles each time the model is updated.

3.1.3 Related works

Let us first review various works in the literature which have considered occupancy
grid representation as a basis for their NBV algorithm. They have been introduced
in previous chapters but we analyze some of them in more details in this section in
order to clarify the main specificities of our approach.

3.1.3.1 Next-Best-View for object modeling

As we have seen in chapter 1, the main common assumptions for the NBV algorithms
dedicated to object modeling are that (i) the viewpoint position is constrained to
the surface of a sphere around the occupancy grid, (ii) the viewpoint orientation
is set toward the grid center, and (iii) the field of view is large enough to perceive
the entire object. Such constraints can be problematic with concave or elongated
objects where the camera would be too close to some parts while being too far from
other. Moreover, especially when considering objects with complex concavities, some
optimal viewpoints may not be oriented toward the object center.

3.1.3.2 Next-Best-View for scene exploration

Though the problem of scene exploration is slightly different then object modeling,
the dedicated algorithms can address some similar points to our problem.

In |Sanchiz 1999|, the presented algorithm manipulates the five degrees of free-
dom of a mobile robot to build the model of an unknown environment. The paper
proposes different criteria to optimize depending on the viewpoint:

e the amount of unknown area visible.
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e a minimum amount of known area visible. This is set in order to correct
eventual positioning errors of the mobile robot when registering new data
with the current model.

e the quality of the viewpoint. The criterion, similar to [Massios 1998], is based
on the voxel normal vector and the sensor view vector when the range map is
acquired.

e the navigation cost from the current position to the computed viewpoint.

Actually only one criterion is tested on the paper which is a function based on the
unknown area visible and the quality of known voxels visible.

The search of a viewpoint is done locally to the current pose using two search
methods: (i) the simplex method for selecting the best 3D position and (ii) an
exhaustive sampling that test a finite number of 2D orientations at each tested
position.

Our approach, though roughly similar in some aspects to this work, has many
particularities:

e The simplex method is replaced with the more recent NEWUOA method which
improves the convergence speed, especially in a high dimension space.

e We need to include in the objective function some constraints that reflect
some of the constraints on the humanoid body. This is necessary for the
proper execution of the humanoid robot posture generation.

e The correction of eventual positionning errors is done using visual landmarks
that can be located on the object or in the environment.

Triggs and Laugier [Triggs 1995| used a relatively similar approach than our work
but oriented toward the problem of visual inspection. They use a robot mounted
CCD camera to analyze parts of a known model. The evaluation of a sensor pose
is formulated as a weighted function that includes many constraints related to the
robot: kinematics, visibility of the model, score of the pose for the specific inspection
task, mobility of the robot, robot/environment collisions. The method relies on an
original global function optimization technique to examine specific parts of a known
model while avoiding occlusions and collisions. As the object model as well as
the environment are known, the method first computes an optimal set of unordered
viewpoints and then optimize the trajectory of the sensor. To reduce the complexity,
they restrict the search to the 3D position of the camera and the orientation is set
automatically to point toward the target of the visual task to realize. The 3D
positions that are evaluated during the search are chosen by relying on an octree
structure. Based on the evaluations at the corners of the cubes, parts of the octree
are subdivided to allow the tests of new positions. As noted in the paper, though,
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the model is strictly local as the function samples at each region vertex act as the
controlling vertices of the region. This may be problematic when the function is
noisy and thus we prefer to rely on optimization techniques such as NEWUOA.

3.2 Formulation of the constraints on the camera
pose

Though NEWUOA is supposed to be used for unconstrained optimization, some
constraints on the camera pose need to be solved in order to generate a posture
with the PG in the second step from the computed viewpoint in the first step. This
is done by using classically the method of Lagrange multipliers.

The constraints on the camera position C and orientation v, included in the
evaluation function of the first step given to NEWUOA are formulated as:

( Cmin < C. < Comae
YV, dpmin < d(C, Vc;)
wcxmin < wcx < wcxmam
Veymin < Yey < Yeymaz
N; > Nimin

(Vi,C # F; Ve # Fr;

The range of the camera height is limited by (3.1) to what is accessible by the
humanoid size and joints possible configurations. Practically for an HRP-2 robot,
using a squatting posture, it is possible to set the camera at a height of about 1
meter. The standing posture sets the camera at about 1.3 meter.

The constraint expressed in (3.2) sets a minimum limit distance d,,;, which is
needed between the robot head and V¢; the center of each voxels of the object. This
is required to obtain depth information using the stereo rig. We can also remark that
as the camera is embedded in a robot, it needs a minimum distance to avoid physical
collisions with the object. This constraint help to ensure that, even if the camera
does not face some parts of the object, the robot will respect a safety distance from
them. The value of d,,;, is then deduced from the specificities of the stereo rig and
the robot size.

The rotations on X and Y axes are limited by (3.3) and (3.4) to ranges set
according to the robot particularities, mostly the joint limits of the neck.

The constraint (3.5) keeps a minimum number of landmarks, i.e. visual fea-
tures that are known or were detected in previous views, visible from the resulting
viewpoint. This constraint is used to help recover precisely the pose of the newly
perceived 3D points relatively to the previously acquired data. Though most works
in the NBV field consider the sensor motion to be precise enough so that the registra-
tion of new points in the model is not problematic, motion errors cannot be ignored
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with a humanoid. The occurrences of drifts is usual when the robot moves from a
posture to another and thus the final pose of the camera is not exactly the one com-
puted. Therefore we want to consider visual landmarks to correct the estimation of
the reached pose. We can remark that, for this NBV method, we do not restrict the
landmarks to be on the object; they can be positionned in the environment around
the object as well.

Finally, the particular constraint (3.6) ensures that the resulting pose will not
be near previously found poses, with position F; and orientation F'r;, which could
not be reached by following steps in the modeling process. Another purpose of this
is to offer a method to avoid positions in the environment where known obstacles
are located. We can remark that this constraint is necessary to ensure that the
algorithm can converge toward a valid posture even though some constraints are
not expressed in the viewpoint or posture generation search. For example, some
obstacles in the environment may limit the possible motion trajectories while not
visually occluding the view of the camera and thus, the motion planner may fail to
find a way between the current posture and the target one.

3.2.1 Evaluation function formulation

In order to include the constraints into the function that NEWUOA evaluates, we
designed continuous mathematical formulations to express them.

3.2.1.1 Interval

The interval constraints (3.1), (3.3) and (3.4), are expressed as:
K, = (av—p)’ (3.7)

where parameters « and p are set according to the limits possible for the variable N,,.
These are used to modulate, respectively, the interval center and width depending
on the parameter v to constrain and are thus directly deduced from the robot body
specificities. v can correspond to the viewpoint height C,, and orientation angles
Ve, and e, p can be set to a large value, typically 4, so that the result is close to 0
inside the interval and increases quickly outside of it. The parameters are computed
in order to reach the maximum possible value of N, when we reach the point where
the constraint is not satisfied.

3.2.1.2 Minimum distance

The inequality constraint (3.2) related to the minimum distance between the camera
and the object is formulated as:

Kq = exp” (7 (dmin — d(C, Viear))) (3.8)
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where v and r parameters are also set according to N,. V.. designates the closest
voxel relatively to the current camera position. The minimum distance d,,;, is
computed using the stereo rig parameters and the robot size.

3.2.1.3 Landmark visibility

For the landmark visibility constraint (3.5), the formulation relies both on the vis-
ible surface of landmarks and their normal vector. The surface visibility for each
landmark 7 is computed relatively to its amount of pixels visible from the current
viewpoint pv; using a sigmoid function:

1
1+ exp (pmin; — pv;)

The parameter pmin; is the minimum amount of pixels required to consider the
landmark ¢ visible, and its value depends on the original landmark size.

The visibility of each landmark relatively to their normal vector NI1; and the
current camera view direction vector C,;.,, is expressed using another sigmoid:

1
T 1teap (B ((Cuicw-NL) + 9))

where ¢ is related to the angle range allowed, and [ determine the slope of the
sigmoid function.

lni

(3.10)

The final visibility coefficient for each landmark is computed by multiplying [s;
with [n;. We set an arbitrary defined minimum number of visible landmark Nlm,,;,
which is compared to the obtained coefficients by :

N
lv= <lei.ln,-) — Nilmyin, (3.11)
i=0

The constraint for the evaluation function is defined in one of two ways depending
on the sign of [v. Configurations maximizing [v are slightly encouraged when it is
positive:

K =-nlv (3.12)

The n parameter can be small so that the minimization of other constraints and the
maximization of unknown visible both have a greater priority than the increase of
number of visible landmarks beyond the defined threshold. In the other case, where
lv <0, the configurations are greatly penalized:

K =21, (l—v>2 (3.13)

The penalty is expressed in relation to the total number of pixel I, in the camera
image.
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3.2.1.4 Forbidden poses

The constraint to avoid unreachable postures (3.6) is simply formulated as a distance
between the viewpoint considered and each of them:

Ky = Zexp(—dep) (3.14)
fp

where Dy, represents the sum of absolute differences between the values of the
actual viewpoint and the unreachable pose fp. The ¢ parameter corresponds to the
sensitivity of the constraint.

3.2.1.5 Viewpoint evaluation function

The evaluation function, used as input to the NEWUOA algorithm, includes all
previously defined constraints formulations as well as the evaluation of visual data:

f.= NKe, + Awacw + )\wacy + N K g+ MK+ )\fo - N, (3.15)

where the \ parameters are computed to modify the scale of each constraint in
order to match the range of values that can be taken by the variable N,. More
specifically, when a constraint is violated, the constraint formulation multiplied by
the corresponding A parameter should be equal to the largest value that can be
taken by N,.

3.2.2 Evaluation function behavior

Due to the constraints used and the specificities of objects to model, many different
cases can result in local minima in our evaluation function that are quite disjoint as
can be seen in the example shown in Fig. 3.4. This figure illustrates the behavior
of some constraints in the evaluation function for different camera position around
an object carved twice. For each position, the camera orientation is set toward the
object center. The simulated object is 2 meters high, the camera is placed at a
height of 1.3 meters and its X and Y positions are in the interval [-10,10] meters.
There is a distance of 5 millimeters between each position tested.

The visual occlusions, the landmarks visibility and the obstacles in the environ-
ment introduces many local maxima. We can note in the final evaluation (center
row-left column) that the landmark constraint do not allow the algorithm to select
a camera pose where the visibility of unknown is the best: near the opposite side of
the perceived object face.

A particularity of our algorithm is highlighted by the constraint on the minimum
distance (bottom row-right column) where the camera is allowed to be placed inside
the model space. For objects which present concavities, when space carving is
applied, some parts inside the occupancy grid appear to be empty. This means that
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Figure 3.4: Example of the evaluation function components values depending on the
viewpoint position. The components are computed with a fixed camera height and
depending on the camera 2D position on the plane XY around an object which has
been perceived twice. top-left: object model and environment used. top-right: the
two views used to update the 3D model: perception pose 1 (top) and perception pose
2 (bottom). center row, from left to right: evaluation function result f,, amount of
unknown that is visible N,,, and forbidden poses constraint K. bottom row, from left
to right: landmark visibility constraint with Zi]\io ls; and Zfio In;, and minimum
distance constraint K.
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the algorithm has the possibility to set a robot pose inside the object if it is large
enough, for example a house. Thus, though it is not its initial goal, the algorithm
can also be used for exploration tasks by adding the consideration of the motion
trajectory between the computed poses.

3.3 Viewpoint search process

As the function to evaluate in order to compute a viewpoint can have local minima,
we are completing the algorithm through three additional process: (i) limit the trust
region in NEWUOA, (ii) launch iterative searches, and (iii) test different starting
camera poses.

3.3.1 NEWUOA configuration

In this work, NEWUOA is used to seek locally the minimum of f, by approximating
it with a quadratic model. As seen earlier in the paragraph 3.1.1, three parameters
are used as input to this optimization algorithm: an initial vector from where the
search is started, a value which delimits the trust region around the initial vector
in order to build the initial quadratic approximation, and a desired accuracy value
used as a stopping criterion.

Due to the constraints in the evaluation of viewpoints, the trust region used as an
input to NEWUOA needs to be limited to some local space around the initial vector
in order to be pertinent enough. The limits of the trust region are set according to the
voxels size and the distance between the camera and the object. More specifically, it
is computed as the size of a voxel multiplied by the initial distance. We need to take
into account these parameters for computing the size of the trust region in order to
get, significant visual changes when NEWUOA tests some vectors inside the trust
region.

3.3.2 Iterative search

As a local method, the quality of the results found by NEWUOA can depend greatly
on the starting poses given. Thus two additional techniques are implemented which
are illustrated in Fig. 3.5. First, we run NEWUOA in an iterative way, i.e. it is run
once using a defined starting pose and run again by using its result configuration
as a new starting pose. This is done until a chosen maximum number of iterations

has been reached, or until the result pose is not better than the last starting one. A
step of this Iterative NEWUOA (ItN) search is formulated as:

posey, = Newuoay, (posex_1) (3.16)

with k the iteration number of the NEWUOA algorithm from 1 to n, and posep_4
and posey, respectively the starting and found camera poses.
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Figure 3.5: Illustration of the NBV selection for the robot head.

Second, we sample the 3D space around the object to obtain a set of starting
camera viewpoints and we launch the ItN process for each of them. Results of all
optimizations are then compared to select the best camera pose.

To reduce the computation time, the search can be executed in two stages. First,
one ItN process is launched for each starting pose with a limited maximum number
of iterations, typically one or two. Then we compare the results and launch one
more [tN search from the best found pose, allowing a larger maximum number of
iterations.

We can note that the sampled positions can be generated inside the object to
handle cases where it has large empty spaces. For example, the algorithm can be
applied to model both the inside and outside of a house. This also gives us the
ability to bias the search toward some specific area by modifying the distribution of
the starting poses.

In this work, the positions are distributed in the space relatively to their distance
to the object: the density gets smaller when getting far away from the object as
greater motions are required to get significant visual changes.

3.3.3 Posture Generator configuration

Once a viewpoint is computed in the first step of our algorithm, we use it as a
constraint on the robot head to generate a complete posture for the humanoid 36
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degrees of freedom. The Posture Generator (PG), presented in the paragraph 2.1.1,
provides us with the constrained whole-body posture.

Our previous algorithm, presented in chapter 2, includes directly the evaluation
of viewpoints as a C! function which is set as the objective function to minimize.
Other constraints are added to generate a posture: static stability, self-collisions
avoidance, collisions avoidance with the environment, keeping the feet flat on the
ground, and joints limits.

In the algorithm described in this chapter, we keep the same constraints but
remove the objective function. We then add constraints to put the robot head in
the desired position Cg; and orientation ., formulated as:

C=C, and Y = Ve (317)

For this algorithm, the objective function for the PG is not necessary. Nevertheless
it is possible to use it as an esthetic criterion to place the robot posture close to a
reference posture.

The posture generation starts by using an initial posture and an initial free-
flyer position and orientation. In this work, the default initial posture is set as a
squatting posture which has proved to be well suited for reaching various difficult
joint configurations after several tests. The free flyer position and rotation on the 7Z
axis are set accordingly to the desired viewpoint pose.

In cases where the PG cannot converge, the goal camera pose is put inside the list
of forbidden poses which is used in the constraint 3.6 and the first step is launched
again to find another viewpoint.

3.4 Simulation results

Let us now present additional tests on the performance of the first step to select
a pertinent viewpoint. We investigate further the quantification of unknown, the
influence of the parameters for NEWUOA, the efficiency of a NEWUOA search
relatively to a uniform sampling, and the average computation time to generate a
whole-body posture for the humanoid robot. Finally some results of object modeling
processes in simulation are presented.

3.4.1 Unknown quantification comparison

We compare the improvement of our unknown quantification method against a sim-
ple quantification of pixels corresponding to unknown voxels.

The results are roughly similar when modeling small objects. The robot cannot
get too close to the object due to the minimum distance constraint and thus the
camera viewport encompasses the entire object.



Chapter 3. Local quadratic approximation of an object visibility for
70 Next-Best-View selection

Figure 3.6: Reconstruction of a large object by quantifying the unknown using pixels
quantification only.

If we consider pixels only, a problem arises when we build a model of a large
object, as can be seen in Fig. 3.6. Patches of unknown voxels are separated from
the rest of the occupancy grid as the robot is set too close to the object when trying
to maximize the number of unkown pixels visible. Parts of the object are then not
included in the camera view space.

During our tests, we could verify that our estimation of unknown based on voxels
and pixels results in a significant reduction, which can go up to 40 percent, of the
number of poses necessary to model objects with a height of about 4 meters.

3.4.2 NEWUOA tests for camera pose evaluation

Using our objective function f., described in 3.2.1, the initial conditions for a
NEWUOA search influences the viewpoint found. We thus tested the influence
of the trust region parameters (Fig. 3.7) and the starting position (Fig. 3.8).

Fig. 3.7 shows the average results for the viewpoint obtained depending on the p
parameters. py, sets the maximum variation that can be taken by the camera pose
parameters for the initial quadratic approximation, and the parameter p.,, sets the
desired accuracy of the optimum search. The tests were conducted by selecting a
camera pose around an object model and by launching the optimization with dif-
ferent values for pyy and penq. This was repeated for 14 different objects with 3
different starting poses for each. Overall, better evaluated poses are obtained when
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Figure 3.7: Influence of NEWUOA trust region parameters on the search results.
The pyeg and penqg parameters are multiplied by the object maximum size.
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Figure 3.8: Influence of the starting position on f.(poses) and the viewpoints found
by our [tN process Newuoa; (poses) and Newuoa,, (pose,_1).
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Preg 15 equal or superior to the object maximum size, and when pe,q is smaller than
one hundredth of this size.

Fig. 3.8 shows the influence of the starting pose on the viewpoint found. This
was tested by launching a NEWUOA search with different initial configurations, i.e
the camera is translated on the Y axis in front of an object model. These tests were
done with pye, = 0.4 and pe,g = 107°.

First, we can note that the evaluation of the unknown function, i.e the ’starting
pose’ curve, can change abruptly even with small variations of the pose. This high-
lights the complexity of our evaluation function, already discussed in 3.3.1, which
has a lot of local minima. Depending on the starting position, NEWUOA can thus
generate relatively different quadratic approximations which will lead to different
samples selected.

This graph also highlights that, though a single iteration of NEWUOA results
in an improved pose, it is often stuck inside a local minima. Nevertheless, by using
successive iterations, much better viewpoints are reached. In some tests, the camera
can get moved up to 0.7 meters and rotated up to about 50 degrees in many final
optimized poses around a small object, e.g. 0.4 meters long. In order to find a good
pose, a large number of iterations is not necessary. In this test, the average number
of iterations was 5 and the maximum number allowed, which was set to 10, was
reached for only 2 percent of the tested initial poses.

3.4.3 NEWUOA VS fixed sampling

We compared the results obtained with a simple NEWUQOA search against a pre-
computed fixed sampling of the 6D viewpoint configuration space. This sampling is
done around the last position where a space carving operation has been done. The
number of samples as well as the limits of the area to test are defined manually for
each of the 6 dimensions.

Not surprisingly, the fixed sampling can result in viewpoints with similar or
better results using roughly the same number of sampled vectors. As noted earlier,
depending on various parameters such as the object complexity or the landmarks
distribution, the NEWUOA search may find itself restricted to local minima close
to the starting pose. Nevertheless, such local minima can be reached by NEWUOA
using less samples than a fixed sampling of the local space. Thus our search for
a viewpoint, presented in paragraph 3.3.2, includes the two methods: first, have a
rough sampling of positions in the areas of interest, then use NEWUOA to refine
the search for the closest local minima.

3.4.4 BOBYQA

In the meantime of the development of this NBV approach, Powell released a new
algorithm called Bound Optimization BY Quadratic Approximation (BOBYQA)
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[Powell 2009]|, which is an upgrade of his NEWUOA algorithm. As the name implies,
the main particularity of BOBYQA, compared to NEWUOA, is that it can use
bound constraints on the set of parameters to optimize.

By using BOBYQA, we can remove our formulation of the interval constraints
on the camera pose (Kc., Ky.,, Ky,,) from our evaluation function f, in Eq. (3.15).
The other constraints (K, K, Kf) have complex bounds that cannot be expressed
directly in BOBYQA, therefore they are left inside f,.

Though we discover the existence of BOBYQA relatively late, we could perform
some preliminary tests using the implementation of the algorithm available in the
NLopt open-source library [Johnson 2009]. The performance of BOBYQA, in terms
of resulting pose score and number of iterations, was compared to NEWUOA on a
number of virtual objects. Overall BOBYQA could reach viewpoints with a score
in an order of magnitude similar to those reached by NEWUOA. But the great
advantage of BOBYQA over NEWUOA is the numer of iterations needed which
is about 10 times less. One reason is that the current formulation of the interval
constraints in the evaluation function for NEWUQOA drive the pose search away from
the limits and thus restricts the optimization algorithm search to a smaller space
that the real one. But BOBYQA can reach poses with high scores that are close to
the limits of the interval constraints satisfaction as these are not expressed in the
evaluation function.

Though more tests are needed to assess the performances of BOBYQA in our
approach, simulation tests show it as a good alternative to NEWUOA. It has thus
been included in our NBV software.

3.4.5 BOBYQA VS Nelder-Mead Simplex

The Simplex method is another derivative-free optimization algorithm, which was
introduced by Nelder and Mead [Nelder 1965|. Though some convergence problems
have been demonstrated for some convex functions [McKinnon 1998|, it has been
widely used, including in some works related to the NBV problem [Sanchiz 1999|
[Lopez-Damian 2009].

We tested the implementation of this method, provided by the NLopt library
[Johnson 2009], to evaluate its performance with our evaluation function and to
compare the results with BOBYQA. The tests were conducted by testing different
models and searching for the Next-Best-View from different starting poses. We
then compare the score of the found view, according to our evaluation function f,
(Eq.3.15), and the number of evaluations needed.

Overall, BOBYQA results in better scores although, in a small number of specific
configurations, the Simplex can give better results. Moreover the Simplex has a
much slower convergence, testing between 2 to 10 times more evaluations before
terminating. As BOBYQA converges faster toward local minima, we prefer to use
it inside our viewpoint search process, presented in section 3.3. In most cases,
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a Simplex search makes more function evaluations than a global sampling with
a BOBYQA search. By relying on a global sampling method, the algorithm can
test specific viewpoints that cannot be accessed by a single local search. This is
particularly useful in two specific cases: (i) when visual occlusions by obstacles in
the environment create local minima, and (ii) when only sparse sets of unknown
voxels remain in the object concavities in the final stages of the modeling.

3.4.6 Computation time

Each evaluation of a viewpoint relies on the OpenGL visualization of the occupancy
grid which is loaded inside the graphic card memory. The evaluation time is thus
relatively small and stays in the order of 1072 seconds though, of course, it can
vary depending on the number of voxels in the model, and the performances of the
graphics card and the dedicated driver.

The search for the best viewpoint in the first step of the algorithm typically
requires few thousands of evaluation. This depends on the number of sampled
positions for the preliminary search, the input parameters for NEWUOA, and the
number of iterations. During our tests, the first step could give a solution between
10 seconds and one minute.

The second step can generate a posture in the order of 10~! seconds if the starting
conditions are relatively close to the solution and if the space in the final location
is not too constrained by obstacles. In others cases, it can take up to few seconds
to get a solution or to abort the search.

3.4.7 Modeling process simulation

The experimental setting is simulated by having a 3D object perceived by a virtual
camera. One example of generated postures to complete the modeling is presented
in Fig. 3.9. The posture 0 is set manually and the six following are generated
using our NBV algorithm with BOBYQA as the local optimization method. The
trust region parameters, ppey and pepq, were set respectively to 0.4 and 10e-5. Other
parameters settings are: p = 6, v = 20, dyin = 0.6, Nlmyy, =5, n=1,0 =1,
Ag = 100, \; = 1 and Ay = 1000.
The simulated modeling process loops through the following steps:

1. The disparity map is constructed using the object 3D informations and is used
to perform a space carving operation on the occupancy grid. Some known
voxels are randomly selected to be considered as landmarks.

2. The viewpoint search process, as described in the section 3.3, is launched. We
sample the space around the object and launch iterative NEWUOA searches.

3. When an optimal camera pose is found, it is sent to the PG in order to generate
a whole-body posture. If the PG does not converge, we add this camera pose
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Figure 3.9: Postures generated for the reconstruction of a 2 meters high object in a
cluttered environment.

in the list of poses to avoid, using the constraint (3.6), and run the first step
again.

Another example of postures generated during the successful modeling process of
a b0 centimeters ship on a table is illustrated in Fig. 3.10. The modeling was
completed after 7 poses.

At the end of the process, we can note that some voxels in the upper deck on
the back of the ship could not be perceived. This the result of the constraints on
vision distance and limited height of the camera pose. The robot cannot be set close
enough to the object as the parts of the object perceived by the two cameras in the
stereo rig would be different and thus the 3D surface cannot be retrieve. Moreover,
due to the limited size of the humanoid robot and the position of the stereo rig on
the robot, the cameras height cannot be set high enough to observe the unknown
surface.

There are also some patchs of unknown voxels in other various concavities of
the object. This can be explained by the distribution density of the starting poses
for the NBV search. The patches remaining between the ship sails are only visible
from a restricted subspace of the configuration space of the camera. Depending on
the concavity, this subspace is too small compared to the sampling size of the poses
tested. A possible solution is to increase the number and ranges of sampled starting
poses for the NEWUOA routine at the cost of increasing the computation time.
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Figure 3.10: Postures generated for the reconstruction of a 50 centimeters high
object in a cluttered environment. Remaining unknown parts on the object are
displayed in green.
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3.5 Conclusion

This chapter introduced a new method to generate automatically postures for a
humanoid robot depending on visual cues in order to model unknown objects. The
algorithm presented is general enough to efficiently find a pertinent viewpoint in
order to complete models of objects which can have complex shapes, various sizes,
and which are located in cluttered environments with possible visual occlusions.
The postures are selected amongst the possible configurations allowed by stability,
collisions, joint limits and visual constraints, so as to complete the modeling of an
unknown object using a minimum number of postures.

Three complementary optimization methods: global sampling, NEWUOA and
FSQP, are used in this two-steps algorithm in order to generate each Next-Best-
Posture. The NEWUOA search, coupled with a fixed sampling of the robot head
configuration space, can deal efficiently with the noise and discontinuities of the
viewpoint evaluation function to minimize while keeping the six degrees of freedom
(dof) of the robot head. We also tested the possibility of replacing the NEWUOA
search with the newer optimization method BOBYQA. The Posture Generator can
then quickly find a posture addressing all necessary constraints on the humanoid
body to compute a solution in the 36 dof configuration space.

This approach was validated in simulation by building successfully models of
various objects with complex shapes using a limited number of postures and a limited
computation time. Though the separation in two steps of the posture generation
process induces the possibility that the result of the first step leads to a second step
that cannot converge, a solution has been implemented which launch again the first
step by modifying the constraints in order to generate a new solution.

The current approach can be enhanced in various directions:

1. The motion planning between generated postures is not considered for the
moment when evaluating possible viewpoints. This can result in cases where
the computed postures is not reacheable as there are obstacles on the way
from the current posture. A temporary solution for such cases is currently
implemented by setting the unreacheable posture in the list of forbidden poses
and launch the viewpoint selection process again. Another solution would be
to integrate a path planning algorithm inside the viewpoint selection process
at the cost of increased computation time. This would allow to consider the
motion cost when selecting a viewpoint and would be required to adapt the
current algorithm to the task of explorating an unknown environment.

2. A solution may exist that merge the two steps in one coherent step: searching
the high dimensional configuration space of the humanoid body based on visual
cues. The approach presented in the previous chapter tackles this problem but
the results are not exploitable practically. Another approach could incorporate
the constraints on the humanoid body in the BOBYQA search.
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In order to achieve the autonomous modeling application with a real HRP-2 robot,
we focused our efforts on solving various technical constraints and could not invest

more time on these interesting problems.



CHAPTER 4

Vision tools

Contents
4.1 Vision hardware . . . . .. ... .. e 80
4.1.1 Camera specifications . . . . . . .. ... 80
4.1.2 Poselimits . . . . ... 81
4.1.3 Computing power . . . . . . . . . ... 81
4.2 Object modeling . . . ... ... ... ... ... 0000, 81
421 Occupancy grid . . . . . . ... 82
4.2.2 Visual features . . . . .. ..o 88
4.3 Robot pose estimation based on vision. . . . ... ... ... 95
4.3.1 Monocular SLAM . . . .. ... 95
4.3.2 'Tracking and virtual visual servoing . . . . . .. .. ... .. 97
4.3.3 Object pose estimation . . . . . . . . .. ..., 99
4.4 Conclusion. . . . . . . . o0 0L e e e e e e 100

This chapter introduces the vision based methods that play an important role in
the successful realization of the modeling experiment.

First, we present briefly the vision related hardware at our disposal to carry out
the experiment.

We then discuss the processing of the visible object surface that allows to com-
pute the sequence of robot poses necessary to the completion of the object model.
As seen in the previous chapters, we rely on the perceived 3D surface of the object
and the detected visual features in order to generate the Next-Best-View and the
related Next-Best-Pose for the humanoid.

Finally we discuss the central role of vision for the autonomous localization of the
robot. The precise position and orientation of the robot with respect to the object
is required in order to register correctly newly obtained visual information with the
current model. Practically though, when the robot walks, some drift usually occur
[Stasse 2006a]. We thus rely on the environment model and the detected features
to recover the robot pose using vision.
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Narrow angle cameras

Figure 4.1: left: HRP-2 No.10. right: close up of the head with the location of the
embedded cameras. In this work, we rely on the wide angle camera and the two
narrow angle cameras located on the side of the head.

4.1 Vision hardware

Our experimental setup relies on the available robotic platform at the Joint Robotics
Laboratory in AIST Tsukuba. Our work takes advantage of the functionalities
offered by the robotic platform HRP-2 [Kaneko 2004|, presented in Fig. 5.14.

4.1.1 Camera specifications

The head of HRP-2 number 10 is dedicated to vision tasks and includes four Point
grey Flea 1.0 IEEE1394a cameras. All cameras can output 640x480 Bayer images
at 60fps. Let us notice that only three cameras can be used simultaneously due to
the limitation related to the bus controller and the device drivers used.

The two cameras on the side of the head and the left camera inside the head
have a narrow angle with a vertical field-of-view of 25 degrees. The side cameras
constitutes the robot stereo rig and are aligned horizontally with a baseline of 144
millimeters which makes them adapted for stereo vision on objects located between
50 centimeters and 4 meters |Stasse 2006b|. The right camera inside the robot head
has a wide-angle with a field-of-view of 90 degrees and can be used for scene analysis.

We can remark that the cameras embedded inside the head are located behind
a rounded dark plastic shield which results in visual artifacts in the images such
as additional distortions and lens flares. This is a particular drawback for many
visual processes. Nevertheless the plastic shield is left during experiments in order
to answer concerns about the interaction between the humanoid robot and humans.
To facilitate the acceptance of robots in environments shared with humans, the
importance of the robot design is generally recognized.
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4.1.2 Pose limits

In addition to the visual constraints depending on the vision system, we must con-
sider the constraints on the vision sensors pose that are based on the robot charac-
teristics. The height of the stereo rig can vary between ~ 1.m and 1.39m, when the
robot stands on its two feet. The lower limit is set according to the lowest squatting
posture the robot can achieve with regards to its joint limits and the constraint on
self-collision avoidance. Of course, lower heights can be reached if the robot is set in
specific configurations such as quadrupedal postures. The upper limit on the stereo
rig height is reached when all joints are set to 0, i.e. the robot is in its standing
posture.

Regarding the orientation, all four cameras have a pitch of 10 degrees relatively
to the head joint. The limits of the camera pitch, using the head and chest joints,
are [—25, 115] degrees but the lower limit may be reduced by relying on hip and legs
joints.

The cameras roll depends only on the configuration of the hip and legs joints
and is thus directly linked to the roll of the waist. Unstable configurations are
quickly reached when the roll increases and thus the rotation on this axis is severely
restricted. To ensure the robot stability, the pitch and roll limits will vary depending
on the robot configuration.

The yaw is limited to [—90,90] degrees if we rely only on the chest and head
joints, but is, of course, unrestricted if the robot is allowed to perform walking
motions.

4.1.3 Computing power

For processing purposes, HRP-2 integrates two computers in its chest: hrp2010c and
hrp2010v.

hrp2010c is dedicated to the control of the robot, managing most of the sensors
and all actuators. It runs Ubuntu 8.04 on an Intel Pentium M processor at 1.80GHz,
with 1 GB of RAM.

hrp2010v is dedicated to the vision tasks, accessing the cameras and processing
the images. It runs Ubuntu 8.04 on an Intel Core 2 CPU T7400 at 2.16GHz, with
1GB of RAM. It also includes an Intel Mobile 945GME Express graphics controller.

As the robot is equipped with a wireless connection IEEE 11a, it is possible to
distribute an application between the robot and other external computers in order
to share the computation load.

4.2 Object modeling

As we have seen previously in chapter 2 and illustrated in Fig. 4.2, the model to
build in our experiment consists of an occupancy grid and a set of visual features
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Figure 4.2: Model of a teapot using an occupancy grid. left: original 3D object.
center: model obtained after one perception. perceived voxels are displayed in green
and unknown space is displayed in blue. right: model constructed for fast visibility
estimation. Simulated visual features on the object surface are displayed in orange
and the unknown voxels are displayed in yellowish colors.

whose 3D coordinates in the object coordinate system are available. The choice of
the model was based on previous works in the laboratory on the treasure hunting
project |O. 2008| which makes use of both visual feature processing and occupancy
grid. As this PhD work is part of this project, our model is meant to be integrated
in a coherent manner with the existing works.

Similarly to some existing approaches to the problem of environment exploration
[Saidi 2007a|, an occupancy grid is used to quantify the amount of space that needs
to be perceived in order to build the object model. This quantification is made
possible by giving a specific status value to each voxel amongst Known, Unknown
and Empty. At the end of the reconstruction process, the grid provides a rough 3D
model of the object shape.

The detection of visual features on the object surface serves two purposes: (i)
to have an additional way to retrieve the robot pose relatively to the object pose,
and (ii) to provide a quick way to detect and recognize the object. Indeed, once the
object model is completed and we have a set of features distributed on the object
surface, this set can be used afterwards in order to find the object when it is placed
at some unknown location in different environments [Stasse 2007].

4.2.1 Occupancy grid
4.2.1.1 Initialization

An occupancy grid has three main characteristics: size, position in the world, and
the resolution. In this work, we consider that all of these characteristics are given as
an input of the object modeling process. We rely on the hypothesis that, as our goal
is to model an unknown object in a known environment, the object has already been
detected and isolated from the rest of the environment so that an approximation of
its size and position is available.
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The resolution of the grid can be directly deduced from the object size and the
accuracy of the model we want to obtain. We must keep in mind that the maximum
accuracy we can get depends also on the precision of our stereo matching as well
as on the robustness of the registration of new 3D surfaces of the object with the
current model.

4.2.1.2 Depth map acquisition process

Each time the robot reaches a new posture in front of the object, the grid is up-
dated using a depth map obtained from the stereo cameras embedded in the robot
head. The update process relies on a specific implementation of the space carving
algorithm that is presented in section 4.2.1.4. This algorithm requires, as an input,
a conservative depth map of the object, i.e. each pixel of the depth map is closer or
at the same distance to the camera viewpoint than the corresponding points on the
surface of the real object.

In order to obtain this depth map, several successive steps, illustrated in Fig.
4.3, are required:

1. Acquisition of left and right images.
2. Rectification of both images.

3. Creation of the disparity map.

4. Filtering of the disparity map.

5. Creation of the depth map.

For vision processing, we use a pinhole camera model. To perform the rectification
step, we need the matrix I, of intrinsic parameters of the camera as well as the
matrix E, of extrinsic parameters of the stereo rig:

feo 0 ¢,
I.= 0 fy Cy
0O 0 1

E. = (R]t)

[z and f, are the focal lengths expressed in pixel. ¢, and ¢, are the coordinates of the
principal point in pixel, which, in practice, is slightly off the image center, depending
on the quality of the camera. The joint rotation-translation matrix E. represents the
pose difference between the first and the second camera in the stereo rig. Additional
parameters are computed to modelize the radial and tangential distortions of the
camera lens.
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Figure 4.3: Steps to get a disparity map for space carving. top row: original images.
center row: rectified images. bottom-left: disparity map obtained with OpenCV
Semi-Global Block Matching algorithm. bottom-right: filtered disparity map. the
white parts have unknown values.
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All these parameters can be computed using a calibration process where several
images of a known pattern are taken while moving the pattern in different configura-
tions [Bouguet 2004|. The calibration process generates the transformation matrices
I. and E. required to correct the image distortions of the cameras and to align the
epipolar lines of the stereo images.

The rectified images are then used in the stereo matching algorithm in order to
generate a disparity map. This map encodes the detected motion, in pixels, be-
tween parts of the left image and the corresponding parts in the right image. The
disparity map is generated using the Semi-Global Block Matching (SGBM) algo-
rithm available in OpenCV, which is a modified version of Hirschmiiller algorithm
[Hirschmiiller 2008|.

As some parts of the images cannot be correctly matched, mainly because of
occlusions or lack of texture, the corresponding parts of the disparity map have no
values. We thus use the post-processing function presented in 4.2.1.3 in order to
recover a disparity value for empty parts of the disparity map.

Finally, the depth map is obtained by using the transformation matrices in order
to recover the 3D position of the image pixels in the world coordinate system.

4.2.1.3 Disparity map filtering

In practice, most algorithms for stereo matching produce a disparity map where
many pixels do not have any value. In cases where the texture on an object is
insufficient and there is no model of the object available, the matching of the cor-
responding surfaces between the stereo images becomes too ambiguous to assign a
value. This problem occurs also in cases where some parts of a scene are visible in
one view but not in the other. For example, there are self-occlusions in the scene,
or the invisible parts belong to subspaces of one of the cameras view frustum that
do not overlap with the other camera view frustum.

The lack of values in the disparity map can become problematic when there is
a great number of such unknown parts which are sparsely distributed in the scene,
especially when they are close to the surface of the object to model. In such cases,
the occupancy grid, updated through the space carving algorithm, displays a lot
of concavities which hinders the ability of our NBV algorithm to find a pertinent
viewpoint. An example of resulting grids is shown in Fig. 4.4.

We thus implemented a simple filtering of the disparity map based on the com-
parison of image blocks. As the post processing of a disparity map is still an open
problem in computer vision, we considered only a simple interpolation method which
provides relatively good results in practice. The corresponding algorithm is detailled
in Alg. 2. Although this filtering process has its flaws, e.g. we cannot find a value for
elements when either a left or right valued element is not present, it gives relatively
good results in practice with the settings tested, as is illustrated in Fig. 4.4.



86

Chapter 4. Vision tools

P

Figure 4.4: Examples of occupancy grid obtained after a space carving process using
the disparity maps from Fig. 4.3. left: using the unfiltered dispary map. right: using
the filtered disparity map.

Algorithm 2 Filtering of disparity map

1: for each element ¢ of the disparity map do

2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:

if value is valid then
check next element i
get related 3x3 image block [, in left image
find disparity element d; on the left which has a value
if d; does not exist then
check next element i
find disparity element d,. on the right which has a value
if d, does not exist then
check next element
get 3x3 image block Iy related to d,
get 3x3 image block I, related to d,
compute entrywise 1-norm: || I, — Iy ||y and || I, — Iy |1
assign disparity value by interpolating d; and d, values, weighted by norms
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4.2.1.4 Space carving

Space carving is a method to construct 3D models of objects using a set of images
and/or depth maps. The process relies on the segmentation of the regions of the
space corresponding to the object and the rest of the scene.

A first method [Martin 1983], known as shape-from-silhouette, considers only the
images of an object taken from different viewpoints in order to update an occupancy
grid. As there is no depth information, for each viewpoint, the contour of the object
is segmented apart from the background scene, and all voxels that appear outside
of the contour are removed. Though it is an efficient method for mostly convex
objects, it may require a lot of viewpoints in order to obtain a relatively accurate
shape. Indeed, this method does not consider the texture or shadow information
that can be used to decrease the number of views needed to complete the object
model. There is also a constraint on the object which should be separable from the
background in order to find the contour.

Voxel coloring [Seitz 1999] [Kutulakos 2000], an improvement of the original
shape-from-silhouette algorithm, uses the color information on the object surface
in order to deal with concavities. Some recent works demonstrate remarquably
accurate results by using graph-cut methods [Sinha 2005| |Furukawa 2009]. To be
efficient though, the objects to model are assumed to be Lambertian, i.e. the color of
the points on the surface of the object does not change depending on the viewpoint.

Another attempt to improve the shape-from-silhouette method by dealing with
concavities is the shadow carving method [Savarese 2007]. The algorithm adds a
moving light source in the reconstruction setting that creates shadows in the concav-
ities of the object surface. By analyzing the modifications of the shadow depending
on the light source position, it is possible to make a conservative estimate of the
object surface which is more accurate than the shape-from-silhouette method alone.

Using depth maps to augment the 3D information available for space carving has
been exploited in a number of works |[Kanehiro 2005] [Yemez 2007|. This approach
helps to further reduce the number of viewpoints required to complete the model
of an object. In our case, this means we can decrease the number of robot motions
necessary for the reconstruction process. Of course, the quality of the results depends
directly on the approximation of the depth map.

Our implementation of the depth map-based space carving algorithm is detailed
in Alg. 3. This algorithm is conservative as the voxels are considered empty only if
most of their volume is closer to the camera position than the values found in the
depth map. It is necessary to be cautious when removing voxels as we do not create
new voxels even when the information in the depth map is not consistent with the
current state of the occupancy grid.

A better way to handle such kind of errors is to use probabilistic space carving
methods [Elfes 1989] [Broadhurst 2001| [Nakhaei 2008|. Such approaches though
increase the computation time needed to update the grid and to evaluate the view-
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Algorithm 3 Depth map based space carving
1: sort voxels in the current model from nearest to farthest from camera
2: for each voxel 7 do

3:  compute Euclidean distance d; to the camera

4 project ¢ on camera image plane

5.  for each pixel j in the projection do

6: compare d; with depth map value d; according to voxel size v,
7 if d,, —d; < % then

8 mark voxel as filled

9 check next voxel ¢

10:  mark voxel as empty

points. We thus rely on a fast and simple implementation of the space carving
algorithm to update the model in order to allow the realization of preliminary ex-
periments.

4.2.2 Visual features

The detection of visual features on the object surface has been shown to be an effi-
cient way to detect the location of the object in some unknown settings and to com-
pute an estimation of its pose |Forssén 2008]. Most successful object recognition sys-
tems rely on robust feature descriptors and invariant region detectors, such as SIF'T
[Lowe 2004], SURF [Tongphu 2009], or MSER. [Obdrzalek 2005] [Forssén 2007].

As mentioned earlier in this chapter, we use the features on the surface of the
object to retrieve the camera pose relatively to the object pose. This is possible when
enough features are matched between images obtained from different viewpoints. Of
course this relies on the practical robustness of the feature detection and matching
processes in our particular setting. During our experiments, the robot modifies its
distance to the object as well as its relative position and orientation. Thus the
feature chosen should be robust to modifications of scale, translation and rotation.
Moreover, in practice, as the objects to model are not Lambertian, the features
recognition should also be robust to minor illumination changes in order to cope
with the modifications of appearance induced by the specular component of the
light.

We discarded the MSER features as they are known to be less robust than SIFT
or SURF to change of distance. We can mention the ASTFT [Morel 2009a| that were
designed to enhance the robustness of feature recognition to the modification of the
latitude and longitude angles. The main drawback, though, is the detection and
matching computation time of the currently available implementation [Morel 2009b|
which is about 20 times longer than for SURF features.

In our current work, the processing of visual features rely on OpenCV imple-
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mentation of SURF features [Bay 2008| as they are faster to compute than SIFT
and keep similar robustness qualities.

4.2.2.1 Features selection

Once the rectified stereo images as well as the corresponding depth map are available,
we want to find a set of features on the object surface which can be used for the
object detection and recognition. We also want to recover the surface pose relatively
to the robot pose and thus we aim at selecting features which are relatively robust
to viewpoint change. We tested two methods for feature selection, both based on
the stereo images of the object and both relying on a number of assumptions:

o The size of the features needs to be tested. Features that have a small size
relatively to the object size in the image have low discriminative values. On
the other hand, large features include significant parts of the background.

o The feature must be on the object surface. Using the stereo rig, we can recover
the 3D location of the feature and compare it with the approximative position
of the object.

o Matching features are on the same epipolar line. Taking advantage of the
stereo rectification of the images, each couple of corresponding features in
both images should lie on the same line. Moreover the column of the right
feature can be deduced using the disparity value related to the feature in the
left image.

e Matching features have similar scale. As the distance between the cameras in
the stereo rig is relatively small compared to their distance to the object, the
scale of matching features should be the same.

The first method, presented in Alg. 4 filters the detected features based on
their geometrical properties and then matches the remaining candidates based on
their descriptor. While this filtering is relatively basic, it is able to remove a great
number of false and weak matches. An example of result is illustrated in Fig. 4.5.
One concern, though, is that, as the descriptor matching is done late in the process,
most features are only tested against a single feature based on their descriptor. Thus
the discriminative value of the feature descriptor is not correctly tested.

To answer this concern, we tested a second method, detailed in Alg. 5, that first
finds the best match for all the features based on their descriptor, and then filters
the matches based on the properties of the features. This second method results in
a slightly reduced number of matched features for each viewpoint, as illustrated in
Fig. 4.6. Nevertheless, the ratio of correct matches on the total number of matches
when comparing images taken from different viewpoints increases substantially.
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Algorithm 4 First method for feature selection based on stereo images
1: detect features in left and right rectified images.
2: for each feature ¢ in the left image do
3:  compare feature size s with limits s,,;, and S,,4x
if s < 8,0 US> S0 then
check next feature ¢
if descriptor response is low, or feature not on the object then
check next feature ¢

matching feature m; <« dummy

best match score Myepre < dummy

10:  second best match score mogepre < dummy
11:  for each feature j in the right image do

12: if not on the same epipolar line as ¢+ then

13: check next feature j

14: if disparity value of ¢ is different than the distance between the location of
¢ and 7 in the images then

15: check next feature j

16: if scale difference between 7 and j is large then

17: check next feature j

18: compute Euclidean distance j,.,.. between ¢ and j descriptors

19: if jscore < Mescore then

20: m; <)

21: M2score < Miscore

22: Mescore < jscore

23: else if ji.ore < Moseore then

24: M2score < jscore

25:  if mgeore 1S below a threshold then

26: check next feature ¢

27: if % > (0.5 then

28: check next feature ¢

29: save 1
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Figure 4.5: Example of features matching on rectified stereo images using SURF.
334 features are matched.

Algorithm 5 Second method for feature selection based on stereo images

1: detect features in left and right rectified images.
2: for each feature ¢ in the left image do

3:

10:

11:
12:
13:
14:

find feature m; which matches ¢ the best, based on descriptors Euclidean
distance
if 7 descriptor response is low then
check next feature ¢
if feature ¢ distance from camera is different than object distance then
check next feature 7
if 7 and m; not on the same epipolar line then
check next feature ¢
if disparity value of ¢ is different than the distance between the location of ¢
and m; in the images then
check next feature ¢
if scale difference between ¢ and m; is large then
check next feature ¢
save 19
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Figure 4.6: Example of features matching on rectified stereo images using the second
method. 286 features are matched.

4.2.2.2 Matching features from different viewpoints

In order to update the occupancy grid correctly when a new depth map is obtained,
we need to ensure that our estimation of the camera pose relatively to the object
is correct. The first two methods presented in section 4.3 aim at providing a rough
estimation of the robot pose by using a known model or a feature map of the
environment. We then want to use the features detected on the object surface from
previous viewpoints in order to refine the pose estimation. To achieve such a result,
we need to detect, amongst all features that are visible from the current viewpoint,
which features correspond to already perceived ones from previous viewpoints. Once
we have a set of matched features, we can recover the pose modification between
the two viewpoints using a bundle adjustment method |Brown 1976| |Triggs 2000].

The matching of features between different viewpoints is based on the features
descriptor comparison as well as on their relative geometric relations, as detailed
in Alg. 6. The algorithm above can give exploitable results if the number of false
matches is limited compared to the number of correct matches. Some false matches
may remain but, by using the bundle adjustment method presented in section 4.3.3,
the recovered pose computation can cope with them. An example of viewpoint
matching is presented in Fig. 4.7.

For this matching process to be reliable, we note that the difference of orientation
between the current viewpoint and the previous ones should be limited. The limits
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Algorithm 6 Matching features from different viewpoints

1:
2:
3:

10:

11:
12:
13:
14:
15:
16:
17:
18:

19:

detect features in left images of the two viewpoints.
for each feature 7 from viewpoint 1 do
find feature j which matches i the best, based on the descriptors Euclidean
distance
find feature which is the second best match to i
if match score below a threshold then
check next feature i
if scores of first two best matches are close then
check next feature ¢
store 7 and j in list of matches mqs
perform similar matching tests for each feature from viewpoint 2 and construct
list of matches mao;
for each match (7,j) in m2 do
find j in list mg; and check best match £
if i # k then
remove match from mqo and mo;
for each viewpoint left image do
compute Euclidean distance between each pair of remaining features
for each match (7,j) do
check Euclidean distances between ¢ and all remaining features in the image
is coherent with the Euclidean distances between j and all remaining features
in the other image.
save a fixed number of the first best matches

Figure 4.7: Example of features matching on different viewpoint images. The fea-
tures have different color in order to display more clearly the matches. Couples of
matched features have the same color: either red, green or blue. The object has
been rotated by approximately 20 degrees and the distance to the camera is the
same. In this case, there are 4 false matches on the 16 couples in total.
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Figure 4.8: Example of features matching on different viewpoint images. top row:
matching using the first method presented in section 4.2.2.1. There are 8 correct
matches on a total of 37. bottom row: matching using the second method. There

are 14 correct matches on a total of 32.

depend on a number of parameters such as the object material reflective properties,
the type of feature used, or the shape of the object. The variation of the distance
between the camera and the object also has an influence on the matching results.
An example of difficult case that we need to handle in our experiments is illustrated
in Fig. 4.8, where the camera orientation and position are both modified. Though
the second feature selection method presented in section 4.2.2.1 can improve slightly
the robustness of the matching process, the detected matches are mostly outliers.

We conducted some experiments to measure the response of our viewpoint match-
ing process depending on the rotation angle between viewpoints. Using SURF fea-
tures on the triceratops object, we obtain a satisfactory matching of features between
two viewpoints when these have an orientation difference between 5 and 30 degrees.
The results depend greatly on the shape of the perceived object. When the camera
is facing a mostly planar surface, e.g. the side of the dinosaur, the features can
be correctly matched through a larger pose modification of the viewpoint. On the
opposite, the viewpoint modification that can produce a good matching score is
severly limited when the camera faces the head or the tail of the triceratops.
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4.3 Robot pose estimation based on vision

It is critical for our application to have a precise pose estimation of the robot cam-
eras relatively to the object in order to update our object model efficiently. Small
discrepancies between the real and estimated camera pose can lead to great varia-
tions in the results of the space carving algorithm that may hinders the usability of
our model to find a pertinent robot pose.

The problem we must face, though, is that when the robot moves toward a
computed position in the environment based on odometry alone, there is a difference
both in position and orientation between the computed and the effectively reached
pose. The magnitude of these differences depends on the length and complexity of
the motion. The errors are partly due to the flexibility of the ankle and the friction
forces between the robot foot sole and the floor. Our reconstruction application
requires the robot to perform several circular motions around the object to model,
and such motions are known to result in significant drifts. The robot pose errors
are particularly important in our case as we rely on the narrow-angle cameras with
a vertical field of view of 25 degrees to analyze the object. Minor errors in the
robot orientation can result in the partial or even complete disappearance of the
object from the camera images. Thus this section presents our investigation of three
different methods to retrieve autonomously the robot position and orientation using
visual features in the environment and on the object to model.

By using a model of the environment and some visual features on the object sur-
face, we can track the features perceived when the robot tries to follow a computed
trajectory. These features are used to recognize the robot surroundings and localize
the robot position with respect to the environment. This allows us to correct the
sequence of steps before its completion if the robot moves out from the computed
trajectory. As the object to model is supposed to be fixed in the environment, we
can compute the object pose relatively to the robot pose when the walking motion
is finished. The robot pose, i.e. head and chest orientation, can then be modified
to ensure that the object is included in both cameras field of view.

The main difficulty, in our case, is the online estimation of the robot localization
while walking. Even when following a straight trajectory, lateral motions are induced
as the robot alternates the foot used for each single support contact phase. Moreover,
the contact of a foot on the floor also induces jerk movement at the head which results
in blurred images. These particularities represent critical constraints on the kind of
feature tracking system that can output exploitable results.

4.3.1 Monocular SLAM

A first method relies on the preliminary detection, in the environment, of a set of
visual features that can be relatively robustly recognized and tracked in real time.
The goal is to build a feature map of the known environment which can be used
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Figure 4.9: Example of monocular SLAM results. Features robustly tracked are
displayed as green circles. Red circles displays the features which tracking is lost.
The images are part of a sequence taken as the robot walks.

to localize the robot. A similar topic is still actively investigated in the SLAM
(Simultaneous Localization And Mapping) |[Davison 1998| research field. As the
name suggests, a SLAM system aims at building a map of an unknown environment
while simultaneously localizing the position of the perception sensor. Vision-based
monocular SLAM considers the special case where a single camera is used to execute
the mapping.

Though, in SLAM, the mapping and localization are updated in parallel, we
use the method in a slightly different way. Before the modeling experiment, we first
execute a number of trajectories in the environment until we get (i) a relatively good
distribution of features covering most of the space, and (ii) a robust localization of
the robot. During the modeling experiment, we then use the constructed feature
map to mainly localize the robot. When the robot is placed in some random pose,
its position and orientation can be retrieved based on the features visible from there.

In this work, we take advantage of the software component for monocular SLAM
[Chekhlov 2006] [Chekhlov 2007] developed by the Computer Vision Group of the
University of Bristol [Calway 2007]. This component relies on a novel SIFT-like
feature descriptor and a scale prediction scheme in order to overcome two limitations
of usual real-time monocular SLAM algorithms which are (i) the restricted range of
views over which they can operate, and (ii) the lack of robustness against erratic
camera motion or visual occlusions. These properties are particularly adapted for
our case where the camera is embedded in a humanoid robot which induces sway
motions when moving. Thus we choose the Bristol method over our previously used
monocular SLAM |Davison 2007| which relied on Shi-Tomasi features [Shi 1994],
less robusts to viewpoint changes. A sample of feature tracking results is illustrated
in Fig. 4.9.

The integration and preliminary tests of this method were executed mainly by
Clement Petit, a master student at INSA Lyon. The first tests gave results which
were not reliable enough to localize the robot in the environment. One issue that
is yet to be solved is the robust recognition and tracking of landmarks in our ex-
perimental environment when the viewpoint changes. For example, the reflection
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of the lights on the floor appears as valid candidates for tracking but their position
changes depending on the camera viewpoint. This is apparent in Fig. 4.9 with the
features 8, 21, 22, 51 and 75. Another issue, inherent to many methods of monoc-
ular SLAM, is the problem of scale where the distance between the camera and
the features cannot be reliably recovered without using some information about the
camera motion. There is also a precision problem on the location of the landmarks
where the uncertainty grows depending on the distance between the camera and the
landmarks. We note that a recent work by Stradat et al.[Strasdat 2010| aims at
solving such problems.

Possible solutions to enhance the robustness of the algorithm include the inte-
gration of (i) the robot odometry to have an estimation of the camera motion, and
(ii), for known environments, the 3D coordinates of some of the landmarks in the
environment. The implementation of these solutions relies on EKF-based methods
to correctly identify the noise parameters for the measurements and the process.
Practically it is quite difficult to tune correctly those parameters when dealing with
several measurements source. The behavior of the system can be quite sensitive to
the choice of those values and thus it is still an on-going work.

4.3.1.1 Parallel Tracking And Mapping

Another SLAM approach, which is being investigated in our laboratory, relies on
the Parallel Tracking And Mapping (PTAM) framework [Klein 2007|. The PTAM
system makes use of multi threading to split the tracking and mapping processes
into two separate tasks. The first task estimates the camera motion by tracking
a set of known 3D points. The second task produces a 3D map of features from
the video stream using bundle adjustment. Preliminary tests of this framework are
performed by Sebastien Druon, a visiting researcher from LIRMM. As PTAM has
been specifically designed for Augmented Reality tasks in a small space, further tests
are needed to ensure its usability in our setting for our requirements.

4.3.2 Tracking and virtual visual servoing

In parallel to the Monocular SLAM approach, we tested a second method to localize
the robot in its environment that relies on the use of a geometrical model of the
environment. This approach has been already used by other researchers with HRP-
2 |Michel 2008]. In this work, we take advantage of the ViSP (Visual Servoing
Platform) software [Lagadic 2000] developed by the Lagadic group in INRIA Rennes
[Marchand 1999] [Marchand 2005].

In an initialization phase, an image is grabbed when the robot is standing in
a static pose. The model initial pose relatively to the robot is manually set by
matching points in the image with points in the 3D model. The image stream of the
camera is then analyzed to match the visual features, such as line segments, with
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Figure 4.10: Example of visual tracking of a geometric model. The model tracked
is composed of the electric panel and the part of the wall highlighted in red. The

images are part of a sequence taken as the robot walks.

the features of the virtual model and recover the modification of the model pose.

4.3.2.1 Tracking tests

To track the environment, two approaches are being tested: (i) track a single virtual
model of the entire environment, or (ii) track different smaller models of objects in
the environment depending on the robot location and orientation in the environment.
Preliminary tests and comparison of the two approaches were conducted by Claire
Dune, a JSPS postdoc researcher in our laboratory, Thomas Moulard, a PhD student
at LAAS, and Stephane Embarki, a master student at IFMA. They used the video
sequence from which images are presented in Fig. 4.10. They checked the tracking
results for two models: (i) the electric panel and wall part displayed in the figure,
and (ii) a model that includes the previous one plus the panels displayed on the left
part of the image and the lines on the floor. The bigger model resulted in the loss
of the tracker in the middle of the motion while the smaller model could be robustly
tracked during the entire sequence. The tracking problem with the bigger model can
have different causes that need to be further investigated. We need to consider (i)
the precision errors between the constructed model and the real environment, (ii)
the precision of the camera calibration, and (iii) the proper parameterization of the
ViSP program to handle models including objects at different depths.

4.3.2.2 Future works

Though the second approach appears to be more robust, we need to handle the
problem of automatic initialization of models which are not visible at the initializa-
tion phase. In this work, we consider only static objects in the scene as models to
be tracked and, thus, their relative position is known beforehand. The problem is
then to have a tracking of the models which is robust and precise enough to enable
the automatic initialization of a new tracker when another modeled object enters
the visual field of the camera.
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Once we have a reliable tracking of the visible model of the environment in real
time, we can use this information to recover the current location of the robot in the
environment. The robot position is compared to the odometry information in order
to check if the motion of the robot follows precisely the computed trajectory. In the
case where the robot is deviating, we can use a reactive pattern generation method to
modify the robot future steps and recover from the detected errors [Morisawa 2007|.

An alternative approach to online trajectory correction based on vision is to take
advantage of the works done by Claire Dune and Andrei Herdt, a PhD student at
INRIA Grenoble. Andrei Herdt is developing a reactive pattern generator which
can generate steps automatically to react to perturbations of the CoM [Herdt 2010).
Claire Dune worked on the realization of a visual task which generates artificial
perturbations of the CoM in order to guide the robot toward a desired pose. The
trajectory of the robot in a known environment can then be controlled by the suc-
cessive execution of visual tasks that are defined depending on the features visible
throughout the trajectory.

4.3.3 Object pose estimation

The last method investigated aims at refining the pose estimation of the robot
relatively to the object by using the images of the object itself. When we reach a
new viewpoint of the object, we execute a SURF detection and look for some of the
features that were detected on the object surface in previous viewpoints, as presented
in section 4.2.2.2. In order to recover the pose parameters of the camera with respect
to the object, we need at least four correctly matched 3D points. In practice, as
there are false candidates amongst the matched features, we use the entire set and
rely on the hypothesis that we have a small number of outliers compared to inliers.

4.3.3.1 Estimation based on feature matching

A first basic method performs the camera pose recovery in two steps, using the
results of the feature matching process presented in section 4.2.2.2.

1. First we modify the camera position in order to put the two centers of gravity
of the matched features at the same 3D position.

2. Then we formulate the recovery of the camera orientation as an optimization
problem where the objective is to minimize the distance between the matched
features. As the detection of the features location, as well as the matching pro-
cess, are prone to errors, we cannot compute the result directly. The minimum
search is done by using a Levenberg-Marquardt optimization.

This method gives exploitable results when most of the matches are correct and when
the 3D coordinates of the features have enough precision. Typically, the estimation
process fails when the rotation on the yaw axis of the camera is too large depending
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on the object surface curvature, resulting in an increasing amount of mismatches
of features. The feature detector for SURF appears to be sensitive to viewpoint
changes and thus it fails to detect similar patches of the object in such conditions.
The estimation process can also fail when the distance between the camera and the
object is too large compared to the object size, resulting in a poor precision in the
depth estimation of the object surface.

4.3.3.2 Estimation based on point cloud matching

In collaboration with Sebastien Druon, we tested a second method based on the
matching of two 3D point clouds corresponding to the object visible surface from
two distinct viewpoints. One of the dominant registration methods in the literature
for aligning pairs of range images is the Iterative Closest Point (ICP) algorithm
|Chen 1991] |Besl 1992]. We used a slightly modified version that also considers the
point colors to match the surfaces.

The problem that we encounter with this method is that its results depend
greatly on the percentage of overlap between the two surfaces. For small objects
like the dinosaur, the algorithm can cope only with small modifications of the camera
pose in order to produce exploitable estimations. Practically, such severe restrictions
on the camera motion result in a significant increase in the number of required poses
to build the object model.

Another inconvenient of this method is the great amount of computation time
needed to compute a solution. Typically for two clouds of about 60 000 3D points,
the current implementaiton of the algorithm takes about 5 minutes to recover the
camera pose.

Though there are a number of other efficient methods for point cloud matching
that have been implemented |Rusinkiewicz 2001|, we did not have time to further
test the results of these algorithms on our problem settings.

4.4 Conclusion

This chapter presented the main vision tools that are at our disposition for the
practical realization of the autonomous object modeling experiment. We rely on the
stereo rig and the wide-angle camera embedded in the HRP-2 head in order to build
a model of the object and localize the robot in its environment.

The stereo rig is used to capture the visible 3D surface of the object at different
viewpoints in order to obtain a rough 3D model by relying on algorithms such as
stereo matching and space carving. Images from the stereo rig are also analyzed
to detect SURF features on the object surface. The aim is to obtain a set of 2D
features, covering the object entire surface, which can be used to detect the object
and recognize its pose relatively to the camera pose.
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Our experiments highlighted the difficulty of the robot pose estimation based
on visual cues. Monocular SLAM methods have to deal with the scale uncertainty
which depends on the magnitude of the camera motion relatively to the distance
and size of the landmarks. Though the algorithm developed by the Computer Vision
group of the University of Bristol is designed to increase the robustness of the SLAM
against such limitations, in our first tests, we could not achieve a precise enough
localization for our purpose in our particular setting.

We could obtain better results through the visual tracking approach which esti-
mates in real-time the pose of an object based on the matching of its geometrical
features with its virtual 3D model. Experiments validated the robust tracking of
one object in the environment but some points need to be addressed in order to use
the tracker in our modeling application. As the object tracked may not be visible
during the entire experiment, we need to consider either the tracking of the envi-
ronment entire model, or the successive tracking of smaller models. Some works are
still required to test the usability of these two approaches. We note that, in order to
be used efficiently, the visual tracking should consider the possible occlusions of the
tracked objects by some obstacles. Visual tasks should then be determined in order
to avoid such occlusions depending on the robot trajectory and the environment
settings.

Relying on the features detected on the object surface, we tested the object pose
estimation based on the matching of features between the current view and the
previous viewpoints. It appears that the matching is efficient only when there are
relatively small modifications of the viewpoint distance and yaw or pitch orienta-
tions. More robust types of feature would be required.

Overall the main problem that still needs to be addressed for our modeling
experiments is the precise estimation of the pose of the object relatively to the
robot pose. This is critical for the valid registration of new information in the
current object model, and the validity of the model is critical for the pertinence
of the viewpoint and postures generated in order to complete a useful model. The
methods that have been tested so far are not precise and /or robust enough in order
to be used on the humanoid robot. Thus more tests and research are required to
validate our global NBV approach experimentally.
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5.1 Autonomous modeling application

The work developed in this thesis aims at allowing a robot to move autonomously
around an object in order to modelize it using the stereo rig embedded in its head.
So far, such application has not been demonstrated with a humanoid robot. A
similar functionality has been implemented using mobile robots with much less de-
grees of freedom in the NBV research field but previous works consider controlled
environments without obstacles and limitations on the complexity of the shape of
the object to model. As noted in the first chapter, different software modules are
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used to make this application possible on a HRP-2 robot. This chapter details how
these modules are integrated together with the original algorithms introduced in
this thesis to realize an autonomous object modeling experiment.

5.1.1 Scenario assumptions

Let us recall the main assumptions that are considered in this work.

Known environment The environment model is considered to be available. This
hypothesis can be used to compute collision-free motion trajectories. Moreover, it
facilitates the discrimination of the object and the environment. For example, it is
possible to filter the range map to keep only the parts related to the object and then
analyze the corresponding parts of the color images.

The environment model should also include a set of known visual features as we
rely on them in order to correct the robot positioning errors induced by its walking
motions.

Known object size and position The second main assumption is that an un-
known object has been detected previously and the detection phase can output an
approximation of the bounding box position and size for the object. Though this
detection step is not addressed in this thesis, it is not considered a critical step of
the application; By using the model of the environment, it is possible to compare
the perceptions of the environment with the available model in order to analyze
discrepancies.

We can remark that the assumption that the object should be included inside a
known occupancy grid can be easily removed. It is straightforward to detect parts
of the object going out of the grid and add other occupancy grids where necessary.
By keeping in memory all perceived range maps with all corresponding view poses,
we can launch the space carving algorithms on the aggregation of occupancy grids
to obtain an updated model.

Textured object Finally, as we use a stereo rig and aim at exploiting visual
features from the object surface, the application requires the object to be well-
textured. Moreover, the vision algorithms rely on the assumption that the object
surface exhibits Lambertian reflectance.

5.1.2 Modeling process overview

The algorithm begins with the humanoid robot placed initially in front of the de-
tected unknown object. By using a given approximation of the object size and
position, we can create a virtual occupancy grid at the proper location in the en-
vironment model. The grid is used as the object model that needs to be updated.
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The updated object and environment models are then analyzed in order to compute

the sequence of postures needed to complete the object reconstruction.
Practically, the algorithm loops through the following states:

1. Observe the object.

Place the robot head toward the object.

Grab the images of the object using the stereo rig and the wide-angle
camera.

2. Put the robot in a standing posture. This is needed as some generated postures

can require relative high torques in some joints. For example, for the knee and
hip joints when the robot is in a squatting posture. We thus need to minimize

the time spent in such configuration.

3. Process the grabbed images (see chapter 4).

Use OpenCV implementation of the Semi-Global Block Matching al-
gorithm to get a disparity map of the object surface from the actual
viewpoint [Hirschmiiller 2008|.

Filter the disparity map to decrease the noise. The method implemented
is detailed in section 4.2.1.3.

Compute the depth map from the filtered disparity map.

Create a normal vector map using the filtered depth map. The normal
map can be used to assign a normal vector to voxels, as required in our
first NBV method (chapter 2), or to the features on the object surface,
as required in the second NBV method (chapter 3).

Detect visual features on the object surface. In the current implemen-
tation, we use the SURF descriptors [Bay 2008| as they are considered
relatively robust to changes of illumination, scale and rotation. The
features are characterized by their descriptor, size and orientation. By
relying on the computed depth map, we also add the 3D position and
normal vector to the characterization of a feature.

Match the features that are currently visible with previously perceived
features in order to recover the object pose relatively to the robot pose.
As presented in section 4.3.3, we must point out that our feature match-
ing process is not robust enough to handle significant variations of the ob-
ject appearance induced by the modification of the camera pose. There-
fore, further investigations are needed to compute a reliable estimation
of the robot pose in the environment.

4. Update the object internal model (see section 4.2).
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e Match the visible features with the already known features in order to
enhance the precision of the depth map registration with the current
internal model. This is a critical step as a wrong estimation of the
camera pose when updating the model may result in the deletion of
valid voxels which cannot be recovered afterwards. This pose estimation
using vision is discussed in more details in section 4.3.

e Space carving operation: remove voxels in the occupancy grid perceived
as empty using the filtered depth map. The algorithm is presented in
section 4.2.1.4.

e Set labels for newly discovered voxels: perceived voxels as known and
occluded voxels as unknown.

e Attach detected features to corresponding voxels. This is done by check-
ing the 3D distance between the voxel and the feature, and compare it
with the size of the feature.

5. Generate the next posture (see chapter 3).

e Use the current grid to generate the next viewpoint for the camera in
our Next-Best-View algorithm detailed in chapter 3.

e If the score of the found viewpoint is below a defined threshold, the
algorithm stops and the model is considered complete. We also use an-
other termination criteria which considers the currently found viewpoint
score with the score of the last two generated viewpoint. If the variation
stays below a defined threshold, i.e. the algorithm has a slow rate of
convergence, then the reconstruction is terminated.

e Use the found viewpoint to generate a whole-body posture with the
Posture Generator, as described in 3.3.3.

e If the posture generator cannot produce a posture using the desired
viewpoint, the first step of the Next-Best-View algorithm is launched
again with this unreacheable viewpoint included in the list of forbidden
poses.

6. Plan the step sequence to get from the current position to the final posture.

7. If the planning fails to compute a step sequence to the desired position, the
Next-Best-View algorithm is launched again with this unreachable final pose
included in the list of forbidden poses. This is done to ensure that the new
found posture will not result in the same walk planning failure.

8. Move to the final posture.

e Launch the walking motion.
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Figure 5.1: Main components involved in the Modeling experiment. The communi-
cation between the components is ensured by CORBA.

e Modify online walking planning using visual cues to correct possible drift.
Although there are on-going works on this subject in our laboratory, they
are not mature enough to be included in the application at the time of
writing.

e Stop the walking motion.

e Evaluate the robot position and orientation using visual cues.

e Set the posture to the desired one that is generated by our NBV algo-
rithm.

9. Go back to 1.

The key software components used to realize the complete application are pre-
sented in more details in the next section.

5.2 Architecture of HRP-2 control for the modeling
experiment

The application is controlled by several components which interact with each other,
as illustrated by Fig. 5.15. The main high-level operator is the entity labeled as
Decision By HFSM (Hierarchical Finite State Machine) which synchronizes the ex-
ecution of some specific components depending on the current sub-task to achieve.
The communication between the components is ensured by omniORB, an imple-
mentation of the CORBA standard. The components can then be dispatched to
different computers and thus the computation load is shared between many CPU
and/or GPU.
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Though we limit our description to the architecture involved in the object mod-
eling task, we can note that the Decision By HFSM component can handle different
high level tasks by connecting with other components as well.

In our application, the main interlocutor of Decision By HFSM is the Stack of
Tasks which is used to control the robot motion through OpenHRP. The Stack of
Tasks monitors the Pattern Generator which is in charge of creating the walking
motion. The sequence of steps needed to realize the motion comes from the Walk
Planner component which generates a collision-free trajectory based on the robot
approximative pose and the environment model given by the Model Loader. The
pose to reach is computed by the Next-Best-View component which uses the visual
information in the range images and a set of features provided by the Low Level
Vision Server component.

Each component is described in more details in the following sections.

5.2.1 High level control: Decision By HFSM

The Decision by HFSM is a library developed by Olivier Stasse in the context of
the Robot@CWE European project [Stasse 2008|. It aims at providing a simplified
interface to create Hierarchical Finite State Machines (HFSM) which act as high
level controllers for specific applications.

The original HFSM used in the final demonstrator for the RobotQCWE project
synchronizes several components in charge of executing various tasks. For the object
modeling application, we re-use the Walk Planner, Stack of Tasks and Low Level
Vision Server, and ignore two components related to web connection and teleoper-
ation. Some functionalities are added in the Decision By HFSM communication
module with the Stack of Tasks in order to control the modification of the robot
posture. Finally we add the Next-Best- View component connected through CORBA
to Decision By HFSM.

In our application, the components are activated through the different processes
that are presented in the statechart in Fig. 5.2 and detailed below. These processes
can communicate by putting and retrieving specific data structures from a white
board which can be accessed by all actors of the modeling application.

Grab images. Initially, we assume that the robot is facing the unknown object,
thus the application starts by grabbing the images from the robot stereo rig. In the
current implementation, the images are directly grabbed and stored by the Next-
Best-View component. The Decision By HFSM sends a command to the Next-
Best-View component in order to initiate the grabbing and then it waits for the
completion.

In case of failure, e.g. communication or image retrieval problems, the robot is
put to the last half-sitting pose recorded in the white board and the application
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Figure 5.2: Composition of the HFSM for the object modeling task.

exits.

Set pose to half-sitting. The second process puts the robot back to the last
half-sitting pose that is recorded in the white board. Initially, as no poses are
recorded, nothing is done and the next process is called.

If some poses are present, the Stack of Tasks component is called to set the poses
of the robot waist, chest, and head, back to the configuration reached at the end
of the last walking motion. This is to ensure the proper initialization of the Walk
Planner for the next walking motion.

Compute robot location. At the time of writing, this process is not yet final-
ized and thus its implementation is not fixed. This is the component in charge of
analyzing the images from the cameras in order to recover the robot position and
orientation in the environment. Some of the works presented in section 4.3 are still
being tested. Once the pose is recovered, the process sends the corrected camera
pose to the Next-Best-View component.

Compute next posture. In the current implementation, the Nezt-Best-View
component is activated when the stereo images are available and when the robot goes
back to a half-sitting posture. The depth map is computed and the SURF feature
detection is executed in order to update the object model. The NBV algorithm
presented in chapter 3 is then launched in order to output the next robot pose. The
Nezxt-Best-View component returns the robot 2D position and orientation in the
environment as well as the desired joints configuration. These data are stored in the
white board so that the Walk Planner component can use them.
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The Nezt-Best- View component can also return whether the modeling is finished
or not. If the model is considered complete, the application exits with a Success
report.

In cases of failure, e.g. communication error, the application exits.

Compute step sequence. If the model is not completed, once the computation
of the next posture is finished, the Walk Planner component retrieves the next
robot pose in the environment from the white board. The model of the environment
is loaded through the Model Loader component. The Walk Planner then relies on
KineoWorks to generate a sequence of steps for the robot that ensures a collision-free
trajectory.

The current implementation of the component considers that the robot start
and final postures are set to a default half-sitting posture. But the postures that
are computed by the Nezt-Best-View component may place the robot joints, and
especially the feet relative pose, in different configurations. We thus need to modify
the step sequence by adding a few steps at the beginning and at the end. The steps
at the beginning are used to set the feet back to the half-sitting pose. The required
steps depends on the last step sequence that has been executed and thus the required
motions are communicated through the white board. The steps at the end put the
feet in the last configuration computed by the Next-Best-View component.

The complete list of steps is then stored in the white board. If the planner cannot
output a feasible trajectory, the desired robot pose is set in the list of forbidden poses
that is inside the Nezt-Best-View component and the previous process (Compute
next posture) is called again.

Execute walking motion. This process retrieves the step sequence in the white
board and initiates the walking motion using the Stack of Tasks component. The
Pattern Generator loaded inside the Stack of Tasks generates the robot motion that
is sent to the robot through OpenHRP. Decision By HFSM queries the Stack of
Tasks at regular interval to detect the end of the walking motion.

In cases of failure, the application exits.

In a future version, this process will also include some works that aim at evaluat-
ing the robot position and location based on vision, computing the drift in real-time,
and modifying the step sequence in order to correct the drift. The real time cor-
rection of the step sequence is already available, based on Morisawa et al. pattern
generator [Morisawa 2007|. Tt has been implemented and tested on HRP-2 in some
previous works [Stasse 2009|. As mentioned in chapter 4, some works on localiza-
tion are currently investigated by other members of the laboratory. They have not
yet demonstrated results robust enough and thus we cannot include them in the
application for now.
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Figure 5.3: The OpenGL program dedicated to the modeling of a 3D object based
on our Next-Best-View search.

Set computed pose. When the walking motion is terminated, this process
accesses the white board in order to retrieve the desired joint configuration computed
by the Next-Best-View component. Then it uses the Stack of Tusks component to
query the current robot joint configuration and store it in the white board. This
current configuration will be recovered by the “Set pose to half-sitting” process
before realizing another walking motion. The Stack of Tasks component is then
used again to move the robot joints toward the configuration. Decision By HFSM
queries the Stack of Tasks at regular interval to retrieve the tasks errors and modify
the activation of the tasks accordingly.

In case of failure, the robot is put to the last half-sitting pose recorded in the
white board and the application exits.

5.2.2 Next posture generation according to visual cues: Next-
Best- View

This component has been developed in the course of this thesis to help design, test,
and improve the works detailed in chapters 2 and 3.

In the context of the modeling application, it takes as input a first estimate of
the position and size of the object to model as well as a list of forbidden poses
representing the obstacles locations in the environment. The initial model of the
object is thus represented by an occupancy grid with a fixed size and position.

At each step of the modeling, when the robot reaches its perception pose, the
component is activated by Decision By HFSM. 1t connects to the Low Level Vision
Server, retrieves the images from the stereo camera and launches their processing
(see section 4.2). When the visual processing is finished, the two datas required for
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the object modeling are available: (i) the depth map representing the visible surface
of the object, and (ii) the set of visual features that were detected on the object
surface. The current model is updated with the depth map by using a space carving
operation in order to remove empty voxels and modify the state of the voxels on the
model surface (see section 4.2.1.4).

The updated model is used by our NBV algorithm (see section 3.3), to find a
feasible camera pose that can perceive an optimal amount of the object occluded
parts while satisfying various constraints.

Then we generate a whole-body posture that ensures that the robot camera is
set to the desired pose and that the constraints on the robot body are satisfied.
The whole-body posture is currently computed by relying on the functions from
the Posture Generator library made by Adrien Escande |Escande 2008| (see section
2.1.1). The posture is defined by the CoM position, the waist 6 dof pose and the
joints angle. For the walking motion, we also compute the 3 dof pose of each feet.

We note that, Karim Bouryarmane, a PhD student in our laboratory is currently
adding functionalities to the Posture Generator, for example, the ability to compute
postures with contact points on non-planar surfaces. In future works, his implemen-
tation could be used to relax some constraints on the camera pose by considering
the additional set of postures that can be achieved based on the 3D models of the
objects in the environment.

In a more general context, the Next-Best-View component is developed as a stan-
dalone C++/OpenGL application whose GUI is presented in Fig. 5.3. This pro-
gram was developed during the course of this thesis to allow the fast prototyping
of evaluation functions for the purpose of the NBV search. It offers four modes of
interaction:

e The virtual camera can be controlled by using mouse and keyboard actions
on the rendering window of the program.

e A large set of commands can be executed through the embedded terminal in
the lower part of the program.

e A CORBA server is launched at the program initialization and provides an
interface to the commands used by the Decision By HFSM component.

e A script can be executed at the program initialization by giving the script
filename as an input argument.

The program also includes a CORBA client that is in charge of the communication
with the Low Level Vision Server. In the current implementation, the Low Level
Vision Server is just used to retrieve the images from the robot cameras. The
processing of the stereo images is done in the Next-Best-View component itself, by
using the OpenCV library.
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For tests purpose, a virtual 3D object can be loaded in the program as an occu-
pancy grid. The object is used to simulate the 3D perception of the stereo rig. We
also used this functionality to test complete sequences of motion tasks with HRP-2
while avoiding the problems of recovering the exact pose of the camera relatively to
the object. Results of such a test are presented in section 5.3.1.

The program also allows to load the model of the environment as a list of 3D
objects. These are considered in our NBV algorithm to compute viewpoints while
taking into account collisions and visual occlusions.

5.2.3 Planning walking steps: Walk Planner

This component relies on the motion planning software component for the humanoid
build upon KineoWorks [Laumond 2006]. Tt is implemented as an OpenRTM com-
ponent which communicates with the Model Loader component in order to have
access to the environment model. It receives the current and desired positions and
orientations of the robot from Decision By HFSM and give it back a sequence of
steps and the reference foot at the start of the sequence. Each step is composed of 3
variables representing the 2D position and the yaw orientation of the next foot rela-
tively to the previous foot. The current implementation of the component generates
the step sequence by considering that the starting and ending postures are set as the
default half-sitting postures. As the Posture Generator can output postures where
the feet are placed in various configurations, we need to modify the step sequence,
as mentioned in section 5.2.1.

The planner uses Rapidly-exploring Random Trees to find a trajectory between
the current posture and the desired position and orientation. The trajectory is
composed of a set of specific motion segments which matches the motion capabilities
of the humanoid robot. Self-collisions are avoided by imposing some constraints
on the curvature of the possible motions. The transitions between any two states
are validated by considering a simplified model of a non-holonomic mobile robot.
The collision avoidance with the objects in the environment is simplified by using
a bounding box around the robot when it is in the half-sitting posture. These
characteristics allow the method to compute solutions typically in a few tenths of a
second.

Finally, we note a limitation of the current version which is its inability to plan
trajectories on non-flat terrains.

5.2.4 Motion control: Stack of Tasks

The control of the robot complex motions is ensured by generalized inverse kinemat-
ics [Siciliano 1991] using the Stack of Tasks component |[Mansard 2006]. The Stack
of Tasks executes several control tasks in parallel with different priorities. It ensures
that tasks with lower priorities do not perturb the execution of higher priority tasks.
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It includes a number of default tasks that can be used to control some body parts
at a higher level of abstraction.

The Stack of Tasks is used as a plugin for OpenHRP in order to access the
control of the actuators and get sensors feedback from the robot. The execution
of the Stack of Tasks can be controlled by using scripts sent through a CORBA
interface.

From the beginning until the completion of the application, we fix the arms joints
of the robot with the hands at the height level of the waist. The arms are not used
in this application and thus they are put in a configuration that ensures self-collision
avoidance even when the robot assumes squatting stances. As seen in the HFSM
presented in section 5.2.1, three main states are achieved by Stack of Tasks during
the modeling application:

e Setting the robot to the half-sitting posture. Before walking, we set the robot in
a default posture that ensures stability during the walking motion. Four low-
level control tasks are executed simultaneously in order to reach the desired
configuration while keeping the feet in their current pose. The first one sets
the CoM to the computed 3D position and the second puts the waist in the
desired 6D pose. The third and fourth tasks set respectively the two chest
joints and the two head joints.

e FExecuting the walking motion. The walking motion is supervised inside the
Stack of Tasks by the Pattern Generator library, presented in section 5.2.5.

e Setting the robot to a computed pose. The posture computed by the Next-Best-
View component is set through the same four control tasks that are used to
set the robot to the half-sitting posture.

5.2.5 Walking motion execution: Pattern Generator

The Pattern Generator computes the robot body reference trajectories used for the
walking motion. It is coded as a library called inside the Stack of Tasks compo-
nent. The current algorithm used is an implementation of Morisawa’s algorithm
[Morisawa 2007]. The component takes the sequence of steps computed by the Walk
Planner and executes the corresponding walking motions.

The particularity of the algorithm is that it is reactive in the sense that it allows
the modification of the step sequence before the walking motion finishes. This
functionality can thus be used to correct the possible drifts in the motion of the
robot while it is supposed to follow a specific trajectory.

5.2.6 Vision processing: Low Level Vision Server

The processing of the robot camera images is done by the Low Level Vision Server
component. It is implemented as a CORBA server running on hrp2010v, the com-
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Figure 5.4: Simulation of the modeling experiment with OpenHRP. The application
generates successively the robot motions to model an object that is supposed to be
on top of the table.

puter dedicated to vision located inside the robot. It relies on the libdc1394 library
for grabbing the images from the robot IEEE cameras.

The algorithms used to process the images comes from different open source
softwares and libraries dedicated to computer vision such as ViSP and OpenCV. We
specifically rely on algorithms for stereo vision, 2D features detection and recogni-
tion, SLAM, and visual tracking. The methods that are called for the purposes of
our modeling application are presented in greater details in chapter 4.

5.3 Validation of the modeling application

The complete software architecture of the application has been first tested in dy-
namic simulation with OpenHRP. This first test phase is used to check the stability
of the application as well as the safe realization of the motion tasks. A specific
attention has been directed toward the test of the torques on the joints of the robot
during several simulations. This is necessary as some of the postures generated in
our Next-Best-View algorithm are close to the limits of what can be safely achieved
by HRP-2. In particular, when the humanoid is set in a squatting posture, as il-
lustrated in Fig. 5.4, the torques increase significantly in the knee and hip joints.
Though theses torques remains under the maximum limit of the motors, we need to
shorten the time spent in this configuration. Thus, as soon as the computed pose
is reached, the images of the cameras are grabbed and the robot is set back to the
standing posture before processing the images.

Several tests showed that the application was reliable and, more importantly, safe
for the robot in terms of collisions and stress on the motors. The torques obtained
remain below the maximum limits and the highest values are only reached for a very
limited amount of time.
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Figure 5.5: Experimental setup for the modelization of a dinosaur toy in a known
environment.

5.3.1 Experiments without vision

Following the simulation tests, the application and its software architecture have
been verified through experiments with a real HRP-2 robot in a basic setting, as
shown in Fig. 5.5. The first experiments of the autonomous modeling application
with HRP-2 consider simplified conditions:

e No obstacles in the environment around the object apart from the table.

e No perception of the real object in front of the robot. The object perception is
simulated with a 3D model loaded in memory and the virtual camera pose is
always considered to be exactly at the computed pose. In real experiments, if
the vision processing is not reliable enough to compute the precise camera pose
relatively to the object pose, the pertinence of the updated model degrades
quickly and becomes unusable after 2 or 3 perceptions.

e No robot localization correction based on vision.

Such approach is used to further test the integration of the software components
in real situations. We also want to estimate the magnitude of the drift in the
robot trajectory with the kind of walking motions that are generated to reach the
computed poses.

An example of the sequence of reached poses is presented in Fig. 5.16, with the
corresponding trajectory in Fig. 5.17. Even though the walking motions between
two successive poses are relatively short, a significant drift appears. There are
thus important differences between the computed poses and the configurations that
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Figure 5.6: Poses reached by HRP-2 during a simulation of object modeling.
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° HRP-2 position
—> HRP-2 orientation

Figure 5.7: Comparison between the trajectory computed and the trajectory exe-
cuted by HRP-2. The robot position and orientation are not corrected during the
experiment. The object perception is simulated with a virtual 3D object and the
camera pose is set to the configuration computed by the NBV algorithm.
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are actually reached by HRP-2, and these differences increase with the number of
motions that are realized.

The object is still visible in most, but not all, images from the stereo rig, and
always visible with the wide-angle camera. It is thus possible to use specific vision
processing tasks in order to analyze the object and its surroundings in order to
retrieve the robot pose relatively to the object.

5.3.2 Experiments including vision

As discussed in chapter 4, a number of vision-related works are being conducted
in the laboratory in order to retrieve the robot position and orientation relatively
to some reference frame. Monocular SLAM and visual tracking methods have been
investigated but the first works on these subjects still need improvements in order
to be exploited in our application.

A modeling experiment with vision has been executed where the robot pose
estimation is based first on odometry. Then we refine the estimation by using feature
matching on the object surface, as presented in section 4.3.3. The problem is then to
limit the magnitude of the motion between generated viewpoints sufficiently enough
in order to have a robust feature matching. This can be achieved in our Next-Best-
View algorithm presented in chapter 3, by using the parameters of the landmark
visibility constraint (see section 3.2.1.3).

In the conditions tested, it appears that the feature matching process gives un-
reliable results even when the robot is moved by as little as 1m. The difficulty of
the task has been already highlighted in section 4.2.2.2 and is confirmed when us-
ing the robot with our NBV algorithm. Fig. 5.8 illustrates the problem when the
drift occurrence results in reached pose that are significantly different than the com-
puted one. In such cases, the object is projected at different part of the occupancy
grid. Depending on the implementation of the space carving algorithm, the model
becomes unusable, e.g. if it is composed of small patches of the object surface at
different locations, and even empty if we remove all voxels perceived as empty and
never create any even when they are perceived as occupied.

There are a number of possible solutions to allow the estimation of the pose
of the camera based on the object feature matching in real conditions. We can
restrict the application to specific objects with large planar surfaces and robust
artificial features on their surface, or we can further reduce the distance between
two successive viewpoints. But these approaches severely limit the usability of the
application. An investigation of the robustness of other visual feature detectors and
descriptors than SURF could lead to a better matching process but we lack time to
include such a study in this thesis. Moreover, there is a possibility that the drift of
the robot can be large enough so that the object is not visible in the camera images.
It is thus more advantageous to rely on the environment than on the object for the
camera pose estimation.



Chapter 5. Practical realization of the modeling experiment with
120 HRP-2

Initial update of the object model
using stereo vision

Occupancy grid viewed from the camera pose
computed by the Next-Best-View algorithm

-~

Object perception from the
pose reached by the robot

- no drift correction -

~

Occupancy grid obtained
by merging the two views

Figure 5.8: Modeling experiment without drift correction. The projection of the
object 3D surface in the occupancy grid is erroneous and thus the object model is
unreliable. top-left: stereo images obtained from the initial robot posture and the
corresponding updated occupancy grid. center-right: occupancy grid perceived from
the computed Next-Best-View. center-left: stereo images obtained from the posture
reached after walking without drift corrections. The occupancy grid obtained using
the corresponding depth map shows that the object is not located at the desired
position. bottom-right: merge of the initial and following occupancy grids. Due to
the presence of drift during the walking motion, the occupancy grid is not properly
positioned relatively to the robot and thus the model is badly updated.
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5.4 Conclusion

This chapter presented the software architecture of our modeling application that is
based on the specificities of the HRP-2 humanoid robot. The object reconstruction
process is implemented as a Hierarchical Finite State Machine where each state is
used to interact with one or more independent software components. The execu-
tion of most of these components is distributed among different computers on the
laboratory internal network by relying on the CORBA middleware. This has the
advantages of (i) distributing the computation load on different hardware units and
(ii) ensuring the reusability of the components for different tasks as their implemen-
tation is not tightly coupled to the code of the current application.

The complete modeling application has been simulated with the dynamic engine
of OpenHRP 3. This first test phase validated the complete software architecture by
checking the smooth interactions of the components and by ensuring the reliability
of the control tasks sent to the robot. It is particularly important to test the stability
of the robot and the torque of the joints before experimenting with a real robot.

Real experiments with a HRP-2 were carried out and they highlighted the prob-
lem of drift. When the robot moves from its current pose to a specific computed
position, the reached pose is erroneous in terms of both position and orientation.
The magnitude of the error can vary between few millimeters to several centime-
ters or more, depending on the nature of the steps realized and the length of the
trajectory.

Because of such a drift problem, it is necessary to compute a reliable estimation
of the robot pose by using vision cues. The visual features on the object to model
proved to be difficult to match robustly when the robot reaches significantly different
viewpoints. Robot localization approaches that rely on the environment model have
the potential to offer better robustness but further investigations are necessary in
order to apply such methods to our problem. In particular, preliminary works on
the ViSP software, which performs the visual tracking of polyhedral objects, and the
PTAM framework, which allows the localization of a monocular camera by relying
on a structure-from-motion method, gave promising results that need to be more
thoroughly tested with HRP-2.
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The only true voyage of discovery, the only foun-
tain of Eternal Youth, would be not to visit strange
lands but to possess other eyes, to behold the uni-
verse through the eyes of another, of a hundred
others, to behold the hundred universes that each
of them beholds, that each of them is;

Marcel Proust

This thesis has attempted to help HRP-2 on its quest to discover the model of an
object by providing a way to iteratively compute, and reach, new viewpoints. The
autonomous modeling of objects in a realistic environment is a challenging task,
especially when it is realized by complex systems such as a humanoid robot. Like
many scientific works, much has been learned, much has been done and much more
remains to be investigated.

The first focus of this work has been on the proper evaluation of 3D visual in-
formation in order to select pertinent viewpoints while satisfying the constraints on
the humanoid robot body. This has lead to an automatic posture generation scheme
that considers the incremental knowledge about the object of interest.

A first approach formulates this visually-guided posture generation in a coherent
manner by implementing an original evaluation function of the visibility of a 3D
model. This method relies on the Posture Generator that allows the fast generation
of specific postures for HRP-2 by solving an optimization problem based on smooth
functions. A new equilibrium constraint has been added to the Posture Generator
in order to generate statically stable postures without constraining the feet relative
position. This approach performs a local Next-Best-View search based on the 3D
surface visibility of the object while satisfying the robot constraints. Though our
surface visibility evaluation function has the potential to solve the NBV problem
while considering the specificities of the robot body in one coherent step, it has a
relatively high computation cost and presents high variations in the gradient that
lead to convergence problems. Moreover it is a local method whose convergence is
sensitive to local minima created by visual occlusions.

A second approach relies on both global and local optimization methods to en-
hance the robustness of the NBV search to local minima. The visual model is built
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Figure 5.9: Simulation of the modeling experiment for a 3m high treehouse. The

environment includes many obstacles that create visual occlusions.

through the repetition of two main processes. First, considering the current knowl-
edge of the object, a preferred viewpoint is deduced in order to reveal occluded
volumes of the object while taking into account the constraints related to the em-
bodiment of the vision sensors in the humanoid head. Then a whole robot posture is
generated using the desired head pose while satisfying several constraints: static sta-
bility, collision avoidance, etc. The first process can deal with visibility evaluations
of complex objects in cluttered environments by relying on a global sampling coupled
with an iterative local minimization based on BOBYQA [Powell 2009|. The second
process is achieved by the Posture Generator, which outputs constrained whole-body
postures. This approach was validated in simulation by successfully building mod-
els of various non-convex objects. Though the separation of the posture generation
process in two steps induces possible convergence problems, a solution has been im-
plemented that put any unreachable configuration in a list of poses to avoid. The
first step is then launched again in order to generate a new solution.

This NBV approach is general enough to allow the modeling of objects in difficult
conditions, as illustrated in Fig. 5.9. We can reconstruct objects of various sizes
even when many obstacles and visual occlusions are present. Nevertheless, there
are numerous ways to further improve the algorithm. For example, the reliability
can be enhanced by including the motion cost inside the viewpoint evaluation. Our
NBYV method could then be also applied to the problem of environment exploration.
Another interesting development is to consider probabilistic methods to represent
and update the object 3D model. Similarly to a human, the ability to infer the
shape of occluded parts from the visible surface can be of great value to further
speed up the modeling process.

The second focus of this work has been on the evaluation of various state-of-the-
art research works in order to realize practical experiments with a HRP-2 robot.
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A system as complex as a humanoid robot relies on robust components to execute
different tasks while ensuring stability and self-collision avoidance. These compo-
nents are executed on different computers and interact with each other through
the CORBA middleware. This ensures the distribution of the computation load
on different hardware which helps improve the reactivity of the system for complex
processes.

The object modeling application is implemented as a Hierarchical Finite State
Machine. Each state communicates with the different components (i.e. CORBA
servers) in order to realize specific low-level tasks for the humanoid robot such
as: vision processing, Next-Best-Posture generation, motion planning, and motion
control. Apart from the Next-Best-Posture generation component, the application
reuses libraries that are developed by collaborating researchers, and open softwares
that are freely available for academic purposes.

Images from three of the cameras embedded inside the robot head are processed
for the vision tasks of the application. The stereo rig is used to recover the 3D
shape of the object and to detect the visual features on its surface. The processing
of the stereo images is realized by recent algorithms available through the OpenCV
library. The wide angle camera is intended to help localize the robot. Works in the
fields of SLAM and visual tracking are being carried on, in our laboratory, in order
to compute a reliable estimation of the robot pose by using visual cues.

Although the current architecture has been validated in simulation and through
experiments, a robust localization of the robot in the environment is still required
in order to realize the object modeling application. Real experiments with a HRP-2
highlighted the problem of drift that occurs in most walking motions. The robot
is thus unable to reach the computed postures and the model cannot be correctly
updated. Some of the works on the robot localization have shown promising results
but further investigations are required to ensure a robust estimation during the
robot motions. Once such an estimation is possible, the robot walking motion
can be modified in real-time to correct the drift and reach the computed pose with
minimal pose errors. It is thus the only bottleneck of the application that, hopefully,
will soon be cleared.

This thesis attempted to provide a meaningful contribution to the problem of
autonomous vision-based object modeling by a humanoid robot. We introduced
a general viewpoint selection scheme, detailed a coherent software architecture to
realize high-level tasks, and presented the main practical problems that need to be
considered. Although some challenges remain, this work is already a solid starting
point for the future realization of autonomous vision-based high-level tasks.
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Résumé en francais

Ce travail est focalisé sur le probléme de la construction autonome du modéle tri-
dimensionnel d’un objet inconnu en utilisant un robot humanoide. Plus particuliére-
ment, nous considérons un HRP-2 guidé par la vision au sein d'un environnement
connu qui peut éventuellement contenir des obstacles. Notre méthode considére les
informations visuelles disponibles, les contraintes sur le corps du robot ainsi que
le modéle de I'environnement dans le but de générer des postures adéquates et les
mouvements nécessaires autour de 1'objet.

Le calcul autonome d’une séquence de poses pour un capteur en vue de constru-
ire le modéle d’'un objet a fait I'objet de nombreuses recherches dans le domaine
du "Next-Best-View" durant les 25 derniéres années. Toutefois, les contraintes a
prendre en compte diies au systéme robotique ou se trouve le capteur ne sont que
rarement prises en compte dans des expériences pratiques.

Le probléme de sélection de vue ("Next-Best-View") est abordé en se basant
sur un générateur de postures qui calcule une configuration par la résolution d'un
probléme d’optimisation. Une premiére solution est une approche locale o un algo-
rithme de rendu original a été concu afin d’étre inclus directement dans le générateur
de postures. Une deuxiéme solution augmente la robustesse aux minima locaux en
décomposant le probléme en 2 étapes: (i) trouver la pose du capteur tout en satis-
faisant un ensemble de contraintes réduit et (ii) calculer la configuration compléte
du robot avec le générateur de posture. La premiére étape repose sur des méthodes
d’optimisation globale et locale (NEWUOA, BOBYQA...) afin de converger vers des
points de vue pertinents dans des espaces de configuration admissibles non convexes.

Notre approche est testée en conditions réelles par le biais d’une architecture
cohérente qui inclut différents composants logiciels spécifique a I'usage d’un hu-
manoide. Ces expériences intégrent des travaux de recherche en cours en plan-
ification de mouvements, controle de mouvements et traitement d'image, afin de
construire de facon autonome le modéle 3D d’un objet.

5.5 Probléme et contexte

Que se passe-t-il lorsque quelqu’un, se déplacant dans un environnement familier,
tombe, a un moment donné, sur un objet inconnu? Imaginons que cet objet ait une
forme et une texture suffisamment particuliéres qui ne permettent pas de deviner le
modéle complet en s’appuyant sur 'apparence initiale percue. La tache est consid-
érée comme simple pour un humain qui peut a loisir se déplacer autour de 'objet, ou
le prendre et le manipuler, afin d’observer les différentes surfaces. L’humain est alors
capable de créer un modéle visuel simple qu’il pourra utiliser pour la réalisation de
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taches ultérieures. La réalisation de cette tache par un humain est aisée, toutefois
elle nécessite la mise en oeuvre de beaucoup de taches bas-niveau:

1. discrimination entre I'objet et I’environnement
2. construction d’un modeéle de 'objet

(a) reconnaissance de la surface 3D de I'objet
(b) addition des amers visuels percus dans le modéle de 1'objet

(c) détection des propriétés telles que taille, texture, poids...
3. mouvement autour de I'objet

a) calcul du prochain point de vue pour percevoir l'objet

(c) plannification du mouvement permettant d’atteindre la pose désirée
(
(e
(

)
g) évitement de collisions (violentes) avec soi-méme
)

(h

d) mise en oeuvre du mouvement

prise en compte de la stabilité

—

(b) calcul de la pose du robot permettant I'acquisition du point de vue désiré
évitement de collisions (violentes) avec I'environnement

test de la pose d’arrivée par rapport a 'objet
4. manipulation de 'objet

(a) détection de la désolidarisation de ’objet par rapport a I’environnement
(b) reconnaissance des zones aptes a étre utilisées pour prendre 1'objet

(c
(d
(e

Do ...

)

)

) calcul de la préhension de 1'objet

) plannification du mouvement de manipulation
)

mise en oeuvre du mouvement

Toutes ces taches ont été abordées par différents travaux. Toutefois les systémes
existants ne se concentrent que sur un ensemble trés réduit de ces taches et sous des
conditions trés particuliéres.

Le travail présenté dans cette thése s’attache au probléme pratique de la construc-
tion d’'un modéle 3D virtuel basé sur la prise de différentes vues d’un objet inconnu
par un robot humanoide HRP-2 (voir Fig. 5.10). Pour se faire, nous nous appuyons
sur une intégration cohérente des résultats de plusieurs travaux de recherche tout en
apportant une contribution scientifique axé sur le calcul du prochain point de vue.
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Figure 5.10: Sélection de point de vue pour un robot humanoide: recherche d’une
posture valide pour modéliser un objet inconnu.

Occluded voxels
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Figure 5.11: Construction du modéle virtuel. (gauche) modéle 3D original. (droite)
modéle mis & jour en utilisant la vision stéréo et la détection d’amers visuels.

Il est important de noter que, dans ce travail, nous ne considérons pas les dif-
férents problémes liés a la manipulation de 1'objet.

Plus particuliérement, notre but est de générer et atteindre de nouvelles postures
pour le robot tout autour de I'objet afin de créer un modeéle visuel 3D. Ce probléme
a été abordé plusieurs fois dans le domaine du "Next-Best-View".

Le modéle visé se compose d'une grille de voxels ainsi que d’un ensemble d’amers
visuels distribué sur la surface de I'objet (voir Fig. 5.11). Un tel modéle a pour but
d’étre utilisé dans des taches ultérieures telles que la détection et la reconnaissance
de I'objet en question, ou encore sa manipulation.

Le calcul des points de vue nécessaires a la modélisation se fait en tenant compte
de la forme et de la texture de l'objet, des contraintes du robot, ainsi que des
obstacles présents dans ’environnement. Deux méthodes originales sont présentées
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Collision avoidance

Self-collision
] avoidance

Q

Static stability

Figure 5.12: Constraintes de base pour obtenir une posture pour un robot hu-
manoide: évitement de collisions avec ’environnement, évitement d’auto-collisions,
respect des limites de joints et la stabilité statique.

dans les chapitres 2 et 3. Le chapitre 4 présente les outils matériels et logiciels sur
lesquels nous nous appuyons pour réaliser une expérience pratique compléte. Le
dernier chapitre présente les résultats expérimentaux.

5.6 Formulation C! de la visibilité d’un objet pour
la sélection de point de vue

Ce chapitre introduit un premier algorithme original servant a générer une pose
réalisable pour un robot HP-2 qui permet de maximiser un critére visuel. Cet algo-
rithme représente une solution locale au probléme posé et repose sur une méthode
d’optimisation adaptée a des fonctions C!. Nous introduisons une contrainte de
stabilité ainsi qu’un critére visuel dont le gradient peut étre calculé de maniére ana-
lytique. L’originalité de notre procédure de sélection de point de vue est de prendre
en compte les contraintes sur la configuration du corps du robot humanoide. Par
exemple, la hauteur de la caméra est limitée par la taille du robot et les points
d’appui possibles. Les contraintes prises en compte pour générer une posture sont
illustrées dans la Fig. 5.12 et sont: la limite des joints, ’évitement de collisions et
la stabilité.

De telles contraintes ont un impact important sur les solutions possibles pour la



5.7. Approximation locale quadratique de la visiblité d’un objet pour
la sélection de point de vue 133

sélection de point de vue, de ce fait, notre algorithme est concue afin d’étre intégré
au coeur méme de notre méthode de génération de posture. Nous cherchons ainsi
a minimiser un critére visuel tout en satisfaisant des contraintes sur le corps du
robot. Ce travail repose sur un générateur de posture disponible dans le laboratoire,
dévelopé par Adrien Escande. Ce générateur utilise le solveur de FSQP pour ré-
soudre différentes contraintes tout en minimisant une fonction objectif relatifs a la
configuration d’HRP-2.

Un premier travail sur ce générateur de posture présente une formulation adaptée
de la stabilité statique pour le robot. Ce critére assure que la distance entre la
projection du centre de gravité du robot sur le sol est située a une distance limitée
par rapport au segment entre le centre de chaque pied. Ceci permet d’assurer la
stabilité statique du robot tout en autorisant le solveur a bouger la pose des pieds
du robot librement.

Pour calculer la pose du robot de facon itérative afin de construire et compléter
le modéle de 'objet inconnu, nous cherchons a observer les parties du modéle 3D de
I’'objet qui n’ont pas encore été percue. Le modéle est représenté par un ensemble
de voxels 3D qui prennent trois valeurs principales: vide, pergu et inconnu. La
seconde contribution scientifique de cette thése est une formulation originale de la
visibilité des voxels inconnu d’un modéle 3D en fonction de la pose a 6 dimensions
du capteur. Cette formulation représente la projection des voxels tri-dimensionnel
sur le capteur par des gaussiennes en deux dimensions. Différents coefficients sont
également présentés afin d’approximer les occlusions entre différents types de voxels.
Cette formulation est de type C! et peut donc étre intégrée en tant que fonction
objectif dans le générateur de posture utilisé.

Toutefois cette formulation & deux inconvénients pratiques: (i) le temps de calcul
important et surtout (ii) la présence typique de nombreux minimums locaux dans
le gradient qui nuisent a la convergence du solveur. Afin de répondre aux limites
de cette formulation nous testons une autre approche, présentée dans le chapitre
suivant.

5.7 Approximation locale quadratique de la visib-
lité d’un objet pour la sélection de point de vue

Ce chapitre introduit une autre méthode originale au probléme de sélection de point
de vue prenant en compte les contraintes liées a 'utilisation d’un robot humanoide.
Ce nouvel algorithme est formulé afin de résoudre les deux principaux problemes ren-
contrés avec notre précédente formulation: (i) la lente convergence diie a la présence
de nombreux minimums locaux, et (ii) le temps de calcul élevé pour I’évaluation de
chaque point de vue. Il est possible d’éviter ces problémes en évaluant les données
visuelles en dehors du générateur de posture, retirant ainsi la nécessité d’une formu-
lation C!. La génération de posture est donc faite en deux étapes, illustrées dans la
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Step 1: find the constrained head pose (6 dof) Step 2: generate posture (36 dof)
using NEWUOA, based on visual information using FSQP, based on body constraints

\ Limited Target
rotations viewpoint
Hei \ .
eight R Minimum
range distance /\

. \_/
) Object
' 2

model -
1 Static
-t stability

Figure 5.13: Deux étapes pour la génération de posture afin de compléter le modéle
de I'objet.

Fig. 5.13:

1. Trouver une position et orientation de caméra qui maximize la quantité de
voxels inconnu visible tout en satisfaisant certaines contraintes sur la téte du
robot. Différentes contraintes visuelles peuvent également étre introduites afin
d’améliorer la robustesse de I'algorithme.

2. Générer une posture compléte pour le robot en considérant le point de vue
trouvé dans la premiére étape ainsi que des contraintes additionnelles.

La premiére étape est résolue en s’appuyant sur un échantillonage global de ’espace
des configurations de la caméra ainsi que sur une méthode d’optimization sans
dérivée telle que NEWUOA ou BOBYQA. La deuxiéme étape calcule la posture
compléte pour le robot en s’appuyant sur le générateur de posture existant.

Ce chapitre se focalise plus particulierement sur la réalisation de la premiére
étape, notamment la formulation de la fonction & minimiser par les méthodes
NEWUOA ou BOBYQA, ainsi que le processus de recherche d'un point de vue.
La fonction objectif considérée est constituée de différents critéres: visibilité des
voxels inconnus, visibilité des amers visuels connu, occlusions visuelles par des ob-
stacles dans la scéne, et distance a I'objet. La recherche d’un minimum global de
cette fonction complexe est réalisé par I'utilisation d’un échantillonage de faible den-
sité de ’espace des configurations, couplé a des recherches locales en s’appuyant sur
NEWUOA ou BOBYQA.

L’algorithme présenté est formulé de facon a générer des postures pour le robot
humanoide afin de contruire des modeles d’objets qui ont des formes complexes, des
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Narrow angle cameras

Figure 5.14: gauche: HRP-2 No.10. droite: gros plan sur la téte de 'humanoide
avec la position des caméras. Dans ce travail, nous utilisons une caméra grand angle
ainsi que les deux caméras petit angle situees sur les cotes.

tailles variables et qui peuvent étre dans des environnements comprenant beaucoup
d’obstacles. Les postures générées sont sélectionnées parmi les configurations satis-
faisant les contraintes de stabilité, d’évitement de collisions, et de respect des limites
de joints. Différents critéres visuels sont également évalués afin de limiter le nombre
de postures nécessaires tout en prenant en compte les caractéristiques visuelles de
I’environnement et de 1'objet.

Cette approche est validée avec succés en simulation pour différents objets de
forme complexe.

5.8 Outils dédiés a la vision

Ce chapitre présente le matériel ainsi que les outils logiciels qui sont utilisés pour
réaliser 'application compléte de modélisation automatique d’objet.

Notre expérience s’appuie sur la plateforme robotique disponible au Joint
Robotics Laboratory a "AIST de Tsukuba. Ce travail utilise les fonctionalites of-
fertes par le robot humanoide HRP-2 présente dans la Fig. 5.14. La téte comprend
4 caméras au total dont 3 sont utilisees pour notre application. Les caméras a angle
de vue reduit, situees sur le cote de la téte, sont utilisees pour avoir une vue stéréo
permettant I'obtention de la surface tri-dimensionnelle detaillee de 'objet a mod-
eliser. Les images stéréo couleurs sont egalement utilisee pour la détection de points
d’intéréts sur la surface de I'objet. Une caméra a grand angle, située a l'intérieur
méme de la téte, permet d’avoir une vue d’ensemble de la scéne et ainsi peut étre
utilisée pour localiser le robot dans I'environnement.

L’utilisation de la vision sert donc deux intéréts principaux: (i) la modélisation
méme de la surface visible de I'objet et (ii) le calcul de la position et I'orientation
du robot par rapport & 'objet et ’environnement.
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Comme il a été abordé dans les chapitres précédents, nous nous basons sur la
surface 3D percue de l'objet ainsi que sur une détection de points d’intéréts afin
de générer un point de vue pertinent et la pose compléte du robot qui correspond.
Les images stéréo obtenues sont analysées par un algorithme de correspondance
stéréo pour obtenir une partie de la surface 3D de l'objet. Ici, nous utilisons
lalgorithme "Semi-Global Block Matching" qui est disponible librement dans la
librairie OpenCV. Un algorithme de "space carving" est ensuite chargé d’intégrer
cette surface 3D dans la grille d’occupation représentant ’état courant du modéle
3D de lI'objet. Finalement nous faisons une détection de descripteurs visuels SURF
dans les images stéréo pour trouver les points d’intéréts sur la surface visible. Ces
points d’intéréts sont mis en relation avec des voxels du modéle 3D.

Une autre part importante de la vision abordée dans cette thése est la localisation
autonome du robot. La position et orientation précise du robot par rapport a I’'objet
est nécessaire afin d’intégrer les nouvelles données dans le modéle de 1'objet en
construction. En pratique, lorsque le robot marche, des erreurs de positionnement
s’accumulent, diis & une prise en compte incompléte des glissements des pieds sur le
sol. Trois méthodes sont testées pour résoudre ce probléme: (i) SLAM monoculaire,
(ii) asservissement visuel virtuel, et (iii) reconnaissance de points d’intéréts. Pour
la premiére méthode, nous utilisons le logiciel fourni par le groupe de vision par
ordinateur de I'université de Bristol. L’asservissement visuel virtuel repose sur le
logiciel ViSP du groupe Lagadic a 'INRIA de Rennes. Enfin, pour la derniére
méthode, nous nous appuyons sur les fonctionalités disponibles dans la librairie
OpenCV.

Ces travaux de localisation automatique n’ont pas pu aboutir & des résultats
exploitables en pratique avant la fin de cette thése. Toutefois différentes pistes a
explorer sont mentionnées.

5.9 Reéalisation pratique de ’expérience de modéli-
sation avec HRP-2

Le travail dévelopé dans cette thése vise a générer de facon automatique toutes les
étapes nécessaires pour la modélisation tri-dimensionnelle d’un objet inconnu au
moyen d’'un robot humanoide HRP-2. Cela représente une application complexe
qui doit, entre autres, planifier et atteindre des postures spécifiques, planifier et
exécuter des mouvements, assurer la stabilité et ’évitement de collisions, et prendre
en compte les informations visuelles accessibles. Pour mener a bien ces travaux,
nous nous reposons sur divers outils logiciels dévelopés par d’autres chercheurs. Une
vue d’ensemble de I'architecture logicielle de notre application est présentée dans la
Fig. 5.15. La communication entre les composants est assurée par omniORB, une
implémentation du standard CORBA, ce qui permet d’exécuter ces composants sur
différents ordinateurs, répartissant ainsi la charge de calcul.
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Figure 5.15: Principaux composants actifs dans I’expérience de modelisation.

Le chef d’orchestre est représenté par Uentité Decision By HFSM (Hierarchical
Finite State Machine) qui va synchroniser 'exécution des autres composants en
fonction des sous-taches courantes a réaliser. Le principal interlocuteur & Decision
By HFSM est Stack of Tasks, une implémentation de cinématique inverse généralisée
réalisée au LAAS qui permet de controler les mouvements du robot en passant par
le logiciel OpenHRP réalisé a '’AIST. L’entité Stack of Tasks commande Pattern
Generator en charge de la création du mouvement de marche. La séquence de pas
requise pour amener le robot vers une pose désirée tout en évitant les collisions
avec les obstacles présents dans I'environnement, dont le modéle est chargé grace
a Model Loader, est produite par Walk Planner. La pose du robot utilisée pour
capturer les images de I'objet sont générées par le composant Next-Best-View qui
implemente 'algorithme détaillé dans le chapitre 3. Finalement, la partie bas niveau
des opérations de vision est réalisée par le composant Low Level Vision Server.

L’application compléte est testée en simulation au moyen du logiciel OpenHRP et
en utilisant des objets et des obstacles virtuels. La simulation confirme la plausibilité
de notre approche, i.e. les postures et mouvements générés sont stables et sans
collisions, et les moments de force sur les joints du robot obtenus n’atteignent pas
de niveaux dangereux pour les moteurs.

[’application est ensuite testée au travers d’expériences avec un humanoide
HRP-2. Les premiéres expériences sont réalisées dans des conditions simplifiées:

e Pas d’obstacles dans I'environnement mis a part la table ou est posé 1'objet.

e La vision du robot est simulée, i.e. les images prisent par les caméras em-
barquées sur le robot ne sont pas utilisées. La perception de I'objet est donc
simulée en utilisant un objet 3D virtuel et nous considerons que la caméra est
toujours placée a I’endroit calculé.
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e Pas de correction de la localisation du robot basé sur la vision.

Ces tests sont conduits afin de vérifier I'intégration de tous les composants logiciels.
Il est également utile d’évaluer I’ampleur des glissements du robot durant la marche
pour atteindre une position voulue. Il faut noter que la précision de la localisation
du robot par rapport a 'objet est primordiale pour mettre & jour de facon correcte
le modéle de I'objet. Une mauvaise localisation rend le modéle inexploitable aprés
seulement deux ou trois perceptions. Un example de séquence de poses atteintes
est présentée dans la Fig. 5.16, avec la trajectoire correspondante dans la Fig.
5.17. Nous pouvons remarquer I'amplitude des erreurs de déplacement méme sur
des courtes distances. Il en resulte une importante disparité entre la pose du robot
obtenue et celle désirée. Ainsi il est nécessaire de localiser avec précision le robot
pendant ses déplacements.

Les travaux de localisation basé vision n’ont pu aboutir a des résultats exploita-
bles avant la fin de cette thése et donc une expérience réelle compléte de modélisation
d’objet n’a pu étre effectuée. Néanmoins différentes pistes sont mentionnées afin de
surmonter ces difficultés dans des travaux futurs.
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Figure 5.16: Poses atteintes par HRP-2 pendant une simulation de modélisation
d’objet.
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Figure 5.17: Comparaison entre la trajectoire calculée et la trajectoire exécutée par
HRP-2. Les positions et orientations du robot ne sont pas corrigées. La perception
de l'objet est simulée avec un objet virtuel 3D et la pose de la caméra virtuelle est
placée dans la configuration calculée par I’algorithme de sélection de point de vue.
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Titre en frangais: Modélisation Visuelle d’'un Objet Inconnu par un Robot Humanoide Autonome

Résumé en frangais: Ce travail est focalisé sur la construction autonome du modéle 3D
d’'un objet inconnu en utilisant un robot humanoide. Nous considérons un HRP-2 guidé par la
vision au sein d’un environnement connu qui peut contenir des obstacles. Notre méthode considére
les informations visuelles disponibles, les contraintes sur le corps du robot ainsi que le modéle de
I’environnement dans le but de générer les postures et mouvements nécessaires.

Le probléme de sélection de vue est abordé en se basant sur un générateur de postures qui
calcule une configuration par la résolution d’un probléme d’optimisation. Une premiére solution est
une approche locale ou un algorithme de rendu original & été con¢u afin d’étre inclus directement
dans le générateur de postures. Une deuxiéme solution améliore la convergence en décomposant
le probléme en 2 étapes: (i) trouver la pose du capteur tout en satisfaisant un ensemble réduit de
contraintes, et (ii) calculer la configuration compléte du robot avec le générateur de posture. La
premiére étape repose sur des méthodes d’optimisation globale et locale afin de converger vers des
points de vue pertinents dans des espaces de configuration admissibles non convexes.

Notre approche est testée en conditions réelles par le biais d’une architecture cohérente qui
inclus différents composants logiciels spécifique a 1'usage d’'un humanoide. Ces expériences inté-
grent des travaux de recherche en cours en planification de mouvements, contréle de mouvements
et traitement d’image, afin de construire de facon autonome le modeéle 3D d’un objet.

Mots-clés: robotique, humanoide, modélisation, sélection de vue, vision, BOBYQA.

Title: Visual Modeling of an Unknown Object by an Autonomous Humanoid Robot

Abstract: This work addresses the problem of autonomously constructing the 3D model of an
unknown object using a humanoid robot. We consider a HRP-2 evolving in a known environment,
which is possibly cluttered, guided by vision. Our method considers the visual information avail-
able, the constraints on the robot body, and the model of the environment in order to generate
pertinent postures and motions.

Our two solutions to the Next-Best-View problem are based on a specific posture generator,
where a posture is computed by solving an optimization problem. The first solution is a local
approach to the problem where an original rendering algorithm is specifically designed in order to
be directly included in the posture generator. The rendering algorithm can display complex 3D
shapes while taking into account self-occlusions. The second solution seeks more global solutions
by decoupling the problem in two steps: (i) find the best sensor pose while satisfying a reduced set
of constraints, and (ii) generate a whole-body posture with the posture generator. The first step
relies on global sampling and local optimization method to converge toward pertinent viewpoints
in non-convex feasible configuration spaces.

Our approach is tested in real conditions by using a coherent architecture that includes
various complex software components that consider the specificities of the humanoid robot. This
experiment integrates on-going works addressing the tasks of motion planning, motion control,
and visual processing, in order to build autonomously the 3D model of the object.

Keywords: robotics, humanoid, object model, next-best-view, vision, BOBYQA.
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